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WIEDER, ROBERT 

THE ROLE OF BASIC FIBROBLAST GROWTH FACTOR IN HUMAN BREAST CANCER 

Annual report, September 28, 1995 

INTRODUCTION 

The role of bFGF in breast cancer 
Among the many gene products which play a role in the complex angiogenic process 

in breast cancer, basic fibroblast growth factor (bFGF, FGF-2) is one of the most important (1). 
Cancer cells acquire the capacity to secrete bFGF in a nonclassical maimer as one of the last 
steps to malignant transformation (2). Immunohistochemical stains of primary tumor samples 
demonstrated that bFGF was not present in hyperplasia or intraductal carcinomas, but was only 
seen in benign myoepithelial cells or basement membranes surrounding the tumors (3). Once 
secreted, bFGF is associated with the extracellular matrix (ECM), a complex array of heparan 
sulfate proteoglycans (HSPG) associated with laminin, fibronectin and collagen (4). bFGF is 
released from the ECM by coUagenases produced by tumor cells and induces migration and 
proliferation of endothelial cells. bFGF also induces the production of plasminogen activator 
(PA) in endothelial cells, which further degrades the ECM. 

Basic FGF is a ubiquitous member of the heparin binding protein/fibroblast growth 
factor family of proteins (5). It plays important roles in embryogenesis, muscle development, 
neural generation and differentiation, angiogenesis and in particular, tumor angiogenesis (6), 
and normal (7,8) and malignant hematopoiesis (9-12). The protein has extensive inter- and 
intra-species homology with other members of the heparin binding growth factor family of 
proteins, of which there are currently nine members identified (13) and some of which are 
proto-oncogenes, but differs from most of them by lacking a signal peptide which permits 
classical secretion (14). 

The origin and functions of different bFGF moieties 
Because bFGF is so ubiquitous and yet has many different specific function in many 

systems, the specificity of its function and divergence of its signalling potential must 
necessarily be mediated by many factors at many levels. One mechanism of modulating the 
activity of bFGF is through the coding of multiple moieties by the same gene, with alternate 
characteristics. A single mRNA species gives rise to four bFGF moieties using four translation 
initiation sites. An AUG classical translation initiation site is the start site for an 18 kD species 
(CIF) and three upstream CUG alternate translation initiation sites result in the synthesis of a 
22, 22.5 and 24 kD species (AIF) (15) which have the capacity to localize in the nucleus by 
virtue of the presence of nuclear-localization sequences (16-18). The cytoplasmic and nuclear 
species appear to have different roles (19, 20). 

Although bFGF does not have a signal peptide, like some other, related members of the 
FGF family, it is secreted in a non-classical manner by cells which become transformed (2). 
Nontransformed fibroblast cell lines expressing the 18 kD bFGF moiety proliferate more 
rapidly, but are not transformed unless a signal peptide is attached to their amino terminal (21, 
22). Fibroblasts which express high levels of the 18 as well as the 22 and 24 kD species which 
localize in the nucleus to high levels (23, Wieder in preparation), are phenotypically 
transformed. NIH 3T3 cells which express both cytoplasmic and nuclear localizing forms of 
bFGF only secrete the 18 kD moiety in NIH 3X3 cells (24). Preferential secretion of different 
moieties is another divergence mechanism. 

Basic FGF is mitogenic in many cell types, including fibroblasts, neuronal cells, 
hematopoietic cells and, as mentioned above, endothelial cells. It was reported that bFGF is 
slightly mitogenic in MCF-7 breast cancer cell lines in serum-free conditions (25-28), but it 
inhibited IGF-I induced proliferation of MCF-7 cells in one study (28). In contrast to its effects 
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on endothelial cells, the 18 kD moiety of bFGF inhibits the proliferation of fibrosarcoma cells 
(29) and several human breast cancer cell lines (27, 30, 31) when added exogenously in the 
presence of serum. 

We investigated the effects of bFGF in MCF-7, an estrogen dependent cell line (ATCC, 
Rockvile, MD), and other human breast cancer cell lines. Basic FGF inhibited MCF-7 cell 
proliferation both in the presence or absence of estradiol. Basic FGF inhibited thymidine 
incorporation by 50% at 50 pg/ml in MCF-7 cells and reached maximal inhibition at 250 
pg/ml. The effect w^ith 500 pg/ml was noticeable after 8 hours and became maximal after 96 
hours. Tissue culture kinetics were affected similarly. Basic FGF inhibited the proliferation of 
MCF-7 cells induced by insulin, estradiol and epidermal growth factor (EGF) and accentuated 
the antiproliferative effect of TGFp in these cells. The inhibitory effect by bFGF was reversible 
by coincubation with neutralizing antibody or by removal of bFGF from the media. Growth 
inhibition was due to an increase in the GQ/GI phase of the cell cycle from 31.7% to 69.9% in 
estrogen-containing media and from 53.4% to 72.7%) in hormone-deprived media (p < 0.01). 
Binding studies and Scatchard curve analyses revealed high affinity binding of bFGF in MCF-7 
cells with a constant of 57 pM and the presence of 5,200 sites per cell. 

The role of FGF receptors in signal diversity by different members of the FGF family 
FGF effects are mediated through binding to one of four high-affinity receptors (32). 

Basic FGF also binds to cell surface heparan sulfate proteoglycans with low affinity (33), but 
heparin is necessary for binding to high-affinity receptors (34) and for biological activity (35, 
36) through a heparin binding domain of FGF receptors (37) and through interaction with the 
carboxy terminal of bFGF (38). Heparin exerts its effect by binding to many molecules of 
FGF, and is responsible for receptor dimerization (39) and can also initiate cellular signalling 
by receptor activation (40). These molecules, their presence on particular cell types and their 
preferential interaction to different bFGF's contribute significantly to signal diversity required 
by bFGF in various systems. 

FGF receptors are members of the tyrosine kinase receptor family. Four distinct FGF 
receptor genes have been identified, which are used by all of the menibers of the heparin 
binding FGF family (41). At least two receptors, FGFRl and FGFR2, give rise to multiple 
forms due to alternate splicing in the binding domain (42). Different receptors and alternately 
spliced receptors bind different members of the FGF family with different affinities, giving rise 
to another layer of diversity in signal specificity (reviewed in 43). The extracellular binding 
domain consists of three immunoglobulin-like domains which bind the FGFs and induce a 
conformational change in the receptor. Activated receptors heterodimerize with other FGFR 
family members and transphosphorylate (44), activating signal pathways unique to each 
receptor (45). Signalling by FGF occurs partly through cell surface receptors and the cascade 
they initiate, and partly by transport of the growth factor into the cell (46). Binding of FGF 
results in nuclear localization through its receptor, in contrast to endogenously expressed bFGF, 
which remains cytoplasmic (47). 

Signal diversity through receptor-initiated pathways 
Basic FGF exerts its mitogenic effect by binding to high-affinity tyrosine kinase 

receptors (48-50) and transiently activating the ERK, extracellular receptor mitogen activated 
kinase (MAP kinase) pathway (51) through parallel, divergent, convergent and redundant signal 
pathways which results in the phosphorylation of MAP kinases ERKl and ERK2. FGFR-4 
binds bFGF variably (52-54), has a tissue-specific expression pattern from FGFRl and 2 (52), 
causes alternate signalling from FGFRl (55) and does not cause phosphorylation of MAP 
kinase (56). Phosphorylation of specific tyrosine moieties of different Src homology (SH2) 
domains of tyrosine kinase receptors determine the pathway of activation from the receptor (57- 
59). The receptor-activated signal proceeds through one of several described pathways (60-65). 
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Induction of the pathways causes rapid transcription of jun, fas and myc {66), causing cells to 
be released from growth arrest to S phase. 

Cell cycle control by cyclins, cyclin dependent kinases (cdk's) and cdk inhibitors 
In MCF-7 cells, bFGF activates the ERK pathway and induces tyrosine phosphorylation 

of p42'"^'''' and p44™'''' while inhibiting cellular proliferation, and increases the cellular content 
of the cyclin dependent kinase (cdk) inhibitor p21^^^"^'''' (67). p21 exists in a quaternary 
complex with Gj cyclins, cdks and PCNA, proliferating cell nuclear antigen (68). The 
stoichiometric variability of the p21 content of cyclin/kinase complexes determines whether 
the complex is catalytically active or not (69). PCNA, which activates DNA polymerase 6 and 
is active in excision repair of Gj-accumulated DNA damage, is directly inhibited by p21 with 
regard to its DNA synthetic function (70) but not to its nucleotide-excision repair function 
(71). Another mechanism of p21 activity appears to be the inactivation of cyclin/cdk complexes 
(67), resulting in a decrease in the hyperphosphorylation of retinoblastoma protein Rb (72), 
which then represses E2F and other transcription factors required for the expression of S phase 
genes (73). 

The wild type tumor suppressor p53, which is induced to high levels by cellular DNA 
damage, causes cells to arrest in late G, by directly inducing transcription of p21 mRNA 
through binding to WAFl upstream sequences (74). Basic FGF can also induce transcription 
of p21 mRNA using non-p53-mediated pathways in cells with mutant or inactive p53 (75). 
p53-independent expression of p21 appears to correlate with terminal differentiation (76, 77). 
The mechanism of induction of p21 by bFGF has not been determined. 

Other cyclin kinase inhibitors modulating cell cycle arrest have been discovered. p27'"''\ 
a TGFp-induced cdk4 inhibitor (78) and pi6"^'' (79) are among the best studied. In addition 
to proliferation, pi6 inhibits Ras-induced transformation (79) and is also associated with 
differentiation (80). 

The phenomenon of dual effects resulting from the stimulation of Ras signalling 
pathways has precedent in biology, as exemplified by events in embryogenesis (81). Defining 
how bFGF inhibits some breast cancer cells while stimulating other cell types will contribute 
to understanding the control of the malignant cell cycle by growth factors. 
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BODY 

Positive and negative signals modulate G; cyclins, cdk's and their inhibitors 
A. Mitogenic events 

Although we found bFGF to be inhibitory in out previous work, it activated the mitogen 
activated pathway in these cells. Figure 1 shows anti-phosphotyrosine antibody immunoblots 
of immunoprecipitated ERK2 (MAP kinase) from MCF-7 cells treated with increasing doses 
of bFGF (ng/ml) for 15 minutes (A) or with 10 ng/ml bFGF for variable times (B). Activation 
of the pathway is observed by 2 minutes of exposure, but the signal diminishes to low levels 
by 24 hours, although it remains present. To determine if the inhibitory signal is mediated 
through the protein kinase C (PKC) part of the pathway, PKC was depleted by a 24 hour 
incubation with PMA 200 nM or inhibited (nonspecifically) with H7. Significant inhibition of 
thymidine uptake by these two interventions was further accentuated by addition of 500 pg/ml 
bFGF, suggesting that the negative bFGF signal transduction is not mediated through PKC. 

We studied the effects of bFGF on cyclins, cyclin-dependent kinases and Rb, which 
govern the passage of cells from the Gj to the S phase of the cell cycle, in order to understand 
the effect we were observing. In a bFGF dose-dependent manner in log phase MCF-7 cells, 
24 hours after the addition of bFGF there was an increase in cyclin Dj, cdk4 and cyclin E, as 
determined by Western inmiunoblots (figure IC). These initial data demonstrated a bFGF- 
induced stimulatory signal mediated through the mitogen activated pathway which did not 
account for the inhibitory phenotype. 

C! bFGFng/mt        o   0.1   0.3  1.0 3.0  io   lOO 

Cyclin D1 - kD 

0     0.1   0.3   1.0   3.0   10   30   100 PMA 

44-=.    ~ '^'"s: '3E'"^Z'"-a£ se. -ss: S-- 
42- -   W "Sf'^'Si"'^ "^ IE" bFGF ng/ml        0   0.1   0.3 1.0   10  100 

B Cyclin E 

Minutes Hours 
I 1 I 1: 

0    .5      2     5     15    30    4    8   2£! bFGF ng/ml    0    0.1   0.3   1.0   3.0   10   100 

" ^■:^^'*SiSSB« .« «S*BS::::,::**..»S"».-.^-- Cdk4- !t«*»   «W    «*   «#■ 

Figure 1. Mitogenic events. Anti-phosphotyrosine immunostained Western blots of anti-ERK2 
immuno-precipitates from MCF-7 cells treated with increasing doses of bFGF or with 100 nM 
PMA for 15 minutes (A) or from cells treated with 10 ng/ml bFGF for varying times (B). C. 
Western immunoblots with antibodies to cyclins Dj, E and cdk4 of lysates prepared from MCF- 
7 cells treated with bFGF 10 ng/ml for 24 hours. 
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B. Inhibitory events 
Cyclin A levels were decreased by bFGF, correlating with a decreased S phase cell 

fraction (figure 2A). Absolute levels of cdk2 were unaffected, but the faster migrating, active 
form of cdk2 (82) disappeared in a bFGF dose-dependent manner. Retinoblastoma protein 
converted from its inactive, slower migrating hyperphosphorylated form to its unphosphorylated 
form upon addition of bFGF in a dose dependent marmer. These data were suggestive of the 
induction of an inhibitor which would account for the phenotypic data. 

To assay for an inhibitory effect on catalytic activity, we carried out kinase assays with 
immunoprecipitated cyclin/cdk complexes from bFGF-treated cells. Immunoprecipitated cyclin 
A/cdk complexes from bFGF treated MCF-7 cells (10 ng/ml for 24 hours) had less capacity 
to phosphorylate histone HI than untreated controls, and lysates were inhibitory when added 
to cdk/cyclin complexes obtained from MvlLu mink epithelial cells (83) as compared to 
control lysates (figure 2B, + /- bFGF). Control lane shows background histone HI 
phosphorylation by unreconstituted MvlLu cell lysates, and the cyclin lane shows HI 
phosphorylation by cyclin A-reconstituted MvlLu cell lysates. The data were similar with 
cyclin E reconstituted complexes. We found that the cyclin kinase inhibitor p21*^''"'^"'' protein 
was induced by bFGF in a dose and time (figure 2C) dependent manner by bFGF, as was the 
p2iWAFi/cipi j^j^A (not shown). To determine if p21 induction was a cause and not an effect 
of Gj arrest, cells were restricted to G, to the same degree by aphidicolin 5 )ig/ml for 24 hours 
as by 10 ng/ml bFGF, but no induction of p21 was evident on Western blot except by bFGF 
(figure 2D). 

To determine if induction of p21 by bFGF was a direct effect, not specific to the G, 
phase, cycle-independent induction of p21 by bFGF was demonstrated (figure 3). Cells were 
Gj arrested by aphidicolin for 24 hours, then released and either treated or not treated by bFGF 
after two hours. Cell cycle distribution and the p21 content of cellular lysates on Western blots 
were determined every two hours until six hours after bFGF treatment. This experiment 
suggested that bFGF can induce the accumulation of p21^^^'''^'^' in S phase, demonstrating that 
p21 induction by bFGF is not specifically a G, phenomenon. 

The transcription of p21^^^'"^'^' is induced by wild type p53 in many cell types. 
Preliminary determination by sequencing of PCR products demonstrated that p53 is wild type 
in this cell line. There was no modulation of p53 levels by 24 hours of bFGF stimulation on 
Western blots of total cellular lysates. 

To determine what effects the induction of cyclin D,, cdk4, cyclin E and p21^'^^''^'^' 
along with the decrease in cyclin A, inactivation of cdk2 and dephosphorylation of Rb had on 
the cyclin/cdk complexes, co-immunoprecipitation experiments were carried out with antibodies 
to the three cyclins, to cdk 4 and 2, to Rb and to p21. The immunoprecipitated complexes were 
electrophoresed in an SDS polyacrylaraide gel, transblotted to PVDF paper and immunostained 
with antibodies to cyclin Dj, cdk2, cdk4 and Rb (figure 4). The blots confirmed that there was 
an absolute increase in total cyclin D, and cdk4, and that the total Rb was dephosphorylated 
and cdk2 was inactivated. There was an increase in the association of cdk4 and cyclin D, with 
the complexes, probably due to the increased levels of cyclin D,. There was an increase in the 
association of inactive cdk2 with the complex and in the association of the dephosphorylated 
form of Rb with the complex. p21*^^'"^^' association with both cdk4- and cdk2-containing 
complexes was markedly elevated in cells treated with bFGF. This would account for the 
inactivation of cdk2 and for the dephosphorylation of pRB due to inactivation of cyclin D/cdk4 
complexes and inhibition of histone HI phosphorylation by cyclins E/ or A/cdk complexes. Co- 
immunoprecipitation experiments with ^^S-labeled cells confirmed these data. These 
experiments demonstrate that one mechanism of inhibiting cell cycle progression by bFGF in 
MCF-7 cells is direct induction of p21^^^"^^' in a cycle-independent manner, resulting in its 
increased association with cdk4- and cdk2-containing complexes, inactivation of cdk2 and 
dephosphorylation of Rb. 
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B 

''''?'' 0    0.1     0.3    1.0     10.   100. 
ng/tnl 

bFGFng/ml     0     oi   "-^   10    3.0    10   100 

cdk2 : 

bFGF 
ng/ml 

p21- 

FGF -       + Ctrl  CycA 

HIstons H1 -    ^^KMM |gi|^K, 

0       0.1      0.3        1.0       3.0 10.       100. 
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p21 - 

D Ctrl   FGF Aphid 

p21- 

% G1      47 61 63 

Figure 2. Inhibitory events. A. Western immunoblots with antibodies to cycUn A, cdk2 and Rb of lysates 
prepared from MCF-7 cells treated with bFGF 10 ng/ml for 24 hours. B. In vitro kinase assay of histone 
HI substrate by lysates from MvLu mink lung epithelial cells (Ctr), cells in which cyclin /cdk complexes 
were reconstituted by addition of exogenous recombinant cyclin A (Cyclin A) and reconstituted mink cyclin 
complexes to which were added lysates from MCF-7 cells treated with bFGF 10 ng/ml for 24 hours (+) or 
not treated with bFGF (-). C. Western immunoblots with antibodies to p21^^''''^°'' of lysates prepared from 
MCF-7 cells treated with variable doses of bFGF for 24 hours or with bFGF 10 ng/ml for variable times. 
D. Western immunoblot of lysates from MCF-7 cells treated with media alone (Ctrl) bFGF 10 ng/ml or 
aphidicolin 5 |xg/ml for 24 hours. Release 
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Figure 3. Gi-independent induction of p21 WAFl/CIPl by bFGF. Rapidly proliferating MCF-7 cells were cycle 
arrested in Gl with 5 )ag/ml aphidicolin, released for two hours, and incubated with media alone or with 
bFGF 10 ng/ml for another 22 hours. Cell cycle status was determined every two hours for three 
measurements after addition of media or bFGF, and simultaneous cell lysates were prepared for Western 
immunoblots for bFGF. Control cells which were not cycle arrested were also assayed for p21 on Western. 
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Figure 4. Basic FGF induced-p21^^'''^'-^'^' associates with G; cyclin complexes, inactive cdk2 and 
unphosphorylated Rb. Coimmunoprecipitation experiments with antibodies to Cyclins A, E, Dj, cdk's 4 and 
2, Rb and p2iw^^'"^°'' in rapidly growing MCF-7 cells treated with 10 ng/ml bFGF or media alone for 24 
hours, immunostained with antibodies to Cyclins A, E, and Dj, cdk's 4 and 2 and Rb (p21 co-migrates with 
the Ig light chain) and visualized using the ECL system (Amersham). 

Basic FGF inhibits other breast cancer cell lines 
We found that bFGF inhibited proliferation of other mammary cell lines which did not contain 

measurable intracellular levels of bFGF, including three MCF-7 lines reported to be stimulated by bFGF in 
serum-free conditions (25-27) (Table 1; shown are day 7 cells numbers with FGF as a percent of vmtreated). 
We also found that cell lines containing 18, 22 and 24 kD moieties of bFGF were not affected by exogenous 
bFGF (MDA-MB-436 inhibition was marginally significant). These results suggest that our findings are not 
unique to MCF-7 cells, and that intracellular bFGF levels modulate the response of cells to exogenous 
bFGF. 

Table 1. Response to bFGF in mammary cell lines negatively correlates with bFGF content 
Cells          Endog. bFGF cell# (% Ctrl)                g         CeUs     Endog. bFGF   cell# (% Ctrl.)       E 
MCF-7                       - 8.3 < 0.0005   MDA-MB-435      +                     116.1        > 0.05 
MCF-7(L)(30)            - 21.8 < 0.005    MDA-MB-436      +                      71.9        < 0.05 
MCF-7(P)(29)            - 19.0 < 0.0025   MCF-10               +                     129.7        > 0.05 
MCF-7(R)(28)           - 55.8 < 0.0025   MCF-12               +                      93.0        > 0.05 
MDA-MB-134           - 44.2 < 0.005 
MDA-MB-231           - 84.2 > 0.05 
MDA-MB-453           - 32.6 < 0.05 
T47D                         - 23.3 < 0.025 
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Different  moieties  of bFGF expressed  in MCF-7 cells modulate inhibition  through 
different pathways 

The association of a different response of mammary-derived cell lines to exogenous 18 
kD bFGF with their intracellular bFGF content suggests an important regulatory role for 
intracellular bFGF in breast cancer cells. We constructed MCF-7-based cell lines expressing 
the 18 kD (AA), the 18 and 22 kD (AS) or the 18,22 and 24 kD (NCF) bFGF moieties using 
retroviral transduction with a series of N2-based (84) vectors (figure 5A) packaged using the 
amphotropic cell line G+P-envAml2 (85) as described (86). Cells contained intact vectors on 
Southern blots, expressed high levels of bFGF by ELISA which were bioactive (87) and 
expressed the expected bands on Western blot (figure 5B). The 22 and 24 kD moieties in NCF 
and AS localized in the nucleus in fractionation experiments, as predicted (17) (figure 5C). The 
cells secreted all moieties of bFGF, as shown by 2 M NaCl washes and 10% trichloroacetic 
acid (TCA) precipitated proteins on a Western blot (figure 6), contradicting observations with 
NIH 3T3 cells (24). However, NIH 3T3 cells expressing bFGF from the NCF vector 
preferentially secreted the 18 kD moiety, in agreement with Bikfalvi, et al.'s findings. The 
secretion of bFGF into the media were measurable after 2 days with a Quantikine ELISA kit, 
representing a fraction of the secreted bFGF which leached from the surface proteoglycans. 

B C 

v3? 

WMM—\',!S^ (iibFgFt—I 

-lw«»aH—|gS~ (wai'l 
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NCF 
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oA 
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24- 

22- 

18- 

.^   ^ .^ 
bFGF .'S   <f<fy^ 

10ng   ing      #### kD 

24-   I 

22-   i 

u ■ 'f 

I I J 1_ 

NUCLEAR       NUCLEAR-FREE 
FRACTION LYSATE 

Figure 5. Overexpression and nuclear localization of bFGF in MCF-7 cells. A. N2- based retroviral vectors 
expressing the 18 kD (AA), the 18 and 22 kD (AS) or the 18,22 and 24 kD (NCF) bFGF moieties. B. 
Western immunoblot of lysates from MCF-7 cells containing bFGF vector constructs and of 18 kD 
recombinant human bFGF using anti-bFGF rabbit IgG antibody. C. Subcellular fractionation of MCF-7 cell 
constructs depicting nuclear localization of the 22 and 24 kD bFGF moieties. 

BASIC FGF CONTENT OF CELLULAR LYSATES AND CONDITIONED MEDIA 

MCF-7/N2 MCF-7/NCF MCF-7/AA 

pg bFGF/lff cells 1.4 + 0.1 428.3 + 8.0 893.1+9.1 

pg bFGF/ral cm.'® 24 hrs 1.4 + 0.4 2.6 ±0.2 2.8 ±0.2 

pg bFGF/ralcm.'® 48 hrs 1.4±0.2 7.2 + 0.3 9.8±0.1 

'conditioned media 

kD 

24- 
22- 

18- 

A.' A:   A.'   A'    A A A A' 

f,^-- 

NaCl wash Lysates 

Table 2. Basic FGF content of lysates and conditioned serum-free media after 24 and 48 hours of incubation 
as measured with a Quantikine Elisa kit (R&D Systems, Minneapolis, MN). 
Figure 6. MCF-7 cells secrete both cvtoplasmic and nuclear bFGF moieties. Western immunoblot of TCA 
precipitated 2 M NaCl washes of confluent cells incubated with serum-free media for 48 hours compared 
with 100 |j,g of protein  from cellular lysates from the MCF-7 constructs. 
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Figure 7. Figure 8. 
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Figure 7. Overexpression of different bFGF moieties in MCF-7 cells modulates growth and response to 
exogenous bFGF. Cell proliferation kinetics demonstrating growth inhibition by expression of AA and NCF 
in MCF-7 cells compared to N2-transduced controls. N2- and AA-transduced cells were inhibited by 
exogenous 18 kD bFGF but NCF-transduced cells were affected minimally. 
Figure 8. Binding of 18 kP bFGF to MCF-7 cells is modulated by endogenously overexpressed bFGF 
moieties. Relative specific binding of '^'l-bFGF to MCF-7/AA and MCF-7/NCF cells is presented as a 
percentage of binding to MCF-7/N2 cells. 
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Figure 9. Overexpression of 22 and 24 kP bFGF but not 18 kP in MCF-7 cells inhibits MAP kinase 
activation bv exogenous bFGF but not by PMA. Anti-ERK2 and anti-phosphotyrosine immunostained 
Western blots of anti-ERK2 immunoprecipitated lysates from MCF-7/N2, MCF-7/AA andMCF-7/NCF cells 
which were treated for 15 minutes with variable concentrations of bFGF or 100 nM PMA. 
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Expression of the A A and NCF vectors in MCF-7 cells inhibited their proliferative capacity compared 
with N2 controls (figure 7) and arrested the cells in G, (not shown). Exogenous bFGF 500 pg/ml decreased 
proliferation of MCF-7/N2 controls and further decreased the growth rate of MCF-7/AA cells, but only had 
a marginal effect in MCF-7/NCF cells. The data were similar with ^H-thymidine incorporation experiments. 
To understand the mechanism for lack of response to exogenous bFGF by cells expressing nuclear localizing 
bFGF species, we undertook binding studies with '^'l-labeled 18 kD bFGF. While Scatchard analysis 
demonstrated a binding constant of 137 + 112 pM with an estimated number of binding sites of 2606 + 363 
per MCF-7/N2 cell, Scatchard analysis could not be carried out with MCF-7/AA or MCF-7/NCF cells due 
to decreased specific binding. We report in figure 8 a decreased relative specific binding by '^^I-labeled 18 
kD bFGF in these two cell types, with a greater inhibition in cells secreting nuclear-localizing bFGF 
moieties. Signal transduction through the mitogen activated pathway was investigated. Whereas MCF-7/N2 
cells respond to bFGF by phosphorylating MAP kinase (figure 9), MCF-7/NCF cells do not constitutively 
phosphorylate MAP kinase, nor can they do so in response to exogenous 18 kD bFGF. However both PMA 
and insulin (not shown) phosphorylate MAP kinase in MCF-7/NCF cells, suggesting that only FGF receptor- 
mediated pathways are inhibited. MCF-7/AA cells constitutively phosphorylate MAP kinase, and do not 
incrementally increase the level of phosphorylation in response to exogenous 18 kD bFGF. 
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cdk4- 

<\   ^r <\r ^r 
A' ^^ A^ A^ 

# ^^ ^^ ^^ 

„^^ 

■<^ B 
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Histone HI' 

/y^ C° '^ .^' 
^^"^ A^" 

Cyclin E ■ 

cdk2 : 

Cyclin A ■ 

p21- 

Rb- 

MCF-7/ MCF-7/ MCF-7/ 
N2 NCF        AA 

+   bFGF 

p21 - h, 

Pi6.m    .   ^.^ : .^ 

p27 -' *^  nf^ ,pf|| ^^  ^f^ 4MK 
^^m^    ■*•■•■    4MW.      —*•      »*■       ■<•** 

Figure 10. Effects of overexpressing bFGF in MCF-7 cells on G; cyclins, cvclin kinases, their inhibitors and 
cvclin kinase inhibitorv activity. A. Western immunoblot of cellular lysates from MCF-7, MCF-7/N2, MCF- 
7/NCF and MCF-7/NCF cells treated with 10 ng bFGF for 24 hours stained with antibodies to Cyclins Dj, 
E and A, cdk's 2 and 4, p21^'^^''*^°'' and pRb, demonstrating no significant modulation of the levels or active 
states of these proteins, as described earlier. B In vitro kinase assay of HI phosphorylation, as described in 
figure 2, depicting inhibitory activity in lysates of MCF-7 and MCF-7/N2 cells treated with bFGF 10 ng/ml 
for 24 hours and in MCF-7/NCF cells. C. Western immunoblot of lysates from MCF-7/N2, /AA and /NCF 
cells treated with media or bFGF 10 ng/ml for 24 hours, stained with antibodies to p21^AFi/ciPi^ pl6'^'' and 
p27'"P', depicting constitutive upregulation of p27 levels in MCF-7/NCF cells. 

14 



WIEDER, ROBERT 

Investigating mechanisms of cycle arrest in MCF-7/NCF cells revealed that endogenous expression 
of cytoplasmic and nuclear-localizing bFGF moieties together had no effect on levels of cyclins Dj, E or 
A, cdk's 2 or 4, p21^'^^'"^'''' or pRb (figure lOA). In addition, cdk2 was not inactivated, and in fact, was 
probably activated, and Rb was not dephosphorylated. Exogenous 18 kD bFGF had no effect in these cells. 
The presence of an inhibitor was demonstrated in the in vitro kinase assay described earlier and is shown 
in figure lOB. Assays for levels of known Gj cdk inhibitors by Western immunoblot showed that p21*^''''^'''' 
and pi6°^'' levels were not affected constitutively, nor were they modulated by exogenous 18 kD bFGF 
(figure IOC). The levels of p27'"''^ were however, elevated constitutively, but did not respond to exogenous 
18 kD bFGF. These results were congruous with our previous findings that transforming growth factor 
(TGF)(3 levels were elevated in these cells (not shown) and TGFp modulates expression of p27'"''' (83). 

Published studies have shown that FGFR4 expressed in cells lacking FGF receptors is incapable of 
signalling the activation of MAP kinase upon stimulation with FGF (56). We determined the content of the 
four FGF receptors in cellular lysates and membrane preparations obtained by subcellular fractionation (17) 
of the FGF-producing and control cells using Western immunoblots with commercial antibodies (figure 11). 
We demonstrated, in duplicate experiments, a lack of difference in the relative quantity of any of the four 
receptors among the three cell types. We also showed a decreased amount of FGFR4 associated with the 
membrane fraction in MCF-7/NCF cells. To complement this finding, we determined the heterodimerization 
pattern of the four FGF receptors with FGFRl. Figure 12 shows that MCF-7/NCF cells lack tyrosine 
phosphorylation in one of the four receptors associated with receptor 1 not identifyable from this 
experiment. The experiment clearly demonstrates, however, that there is a constitutive heterodimerization 
of FGFR4 with FGFRl in MCF-7/NCF cells which is not modulated by exogenous 18 kD bFGF. In MCF- 
7/N2 cells FGFRl heterodimerizes with all of the other three receptors upon addition of 18 kD bFGF. 
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Figure 11. Downmodulation of membrane-associated FGFR4 in cells expressing and secreting both nuclear 
and cvtoplasmic bFGF moieties. Western immunoblots of total cellular lysates from the FGF-expressing and 
control cells and of TCA precipitated protein from membrane preparations obtained from subcellular 
fractionation of the same cells. 
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Figure 12. Preferential heterodimerization of FGFRl with FGFR4 in cells expressing nuclear-localizing 
bFGF moieties. Western immunoblots of immunoprecipitates of FGF receptors 1-4 from FGF-producing and 
control MCF-7 cell constructs imunostained with antibodies to phosphotyrosine and FGF receptors 1-4. 
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Conclusions and significance 
These preliminary data support our hypothesis that the 18 kD bFGF moiety activates 

more than one signal pathway upon binding to high-affinity receptors. One of those pathways 
is the mitogen activated pathway through MAP kinase, Gj cyclins D, and E and cdk4 causing 
cycle activation. Another pathway, deviating from the previous one at an unknown point, 
induces the cell cycle inhibitor Tp2\'^^^^'^^^ and induces cdk2 inactivation and Rb 
dephosphorylation through increased association with cyclin complexes, causing cell cycle 
arrest in G;. 

Higher molecular weight forms of bFGF probably bind a different set of FGF receptors 
with different affinities, although such hypotheses are without definitive experimental proof 
These moieties do cause preferential heterodimerization of FGFR4 with FGFRl and 
internalization of receptor 4. These molecules do not stimulate the MAP kinase stimulatory 
pathway because FGFR4 acts as a "dominant negative" in the activation of MAP kinase. 
Consequently, G, cyclins are not induced by the mitogenic pathway. ^21'^^^^"^''^^ is also not 
induced by these moieties, but p27'"''' is induced, probably secondary to TGFP induction. Cells 
expressing only the 18 kD moiety constitutively phosphorylated MAP kinase to a low level, 
and were not able to upregulate phosphorylation with addition of exogenous bFGF. This 
phenomenon was probably due to downregulation of MAP kinase activation, as occurs after 
24 hours of exposure by exogenous bFGF (figure IB). This downmodulation is also probably 
mediated by TGFp, at least partially, because antibody to TGFp increases the 24 hour bFGF 
induced phosphorylation of pp42'"'''''' (data not shown). Exogenous bFGF does induce increased 
levels of p21^^^'''^"'' in cells overexpressing 18 kD bFGF, suggesting that the pathway to its 
induction diverges before MAP kinase in the signal cascade. These conclusions are only 
possible scenarios which can be deduced from the data, as the high molecular weight moieties 
were expressed intracellularly, localized to the nucleus and may have used alternate signalling 
paths not involving receptors. Similarly, the 18 kD moiety expressed intracellularly may use 
direct cytoplasmic signal pathways not involving cellular receptors. 

MCF-7 cells transduced with both cytoplasmic and nuclear bFGF moieties secrete both 
FGF types. The higher molecular weight bFGF inhibits binding of 18 kD exogenous bFGF to 
cellular receptors, probably through noncompetitive inhibition, while in cells expressing the 18 
kd moiety, inhibition of binding is competitive. These hypotheses will only be proven with 
competition experiments between the moieties. In addition, these data may also have broader 
significance, as other, naturally occurring mammary-derived cell lines are also inhibited by 
bFGF, and their response appears to correlate negatively with their intracellular content of both 
cytoplasmic and nuclear-localizing bFGF moieties. 

A number of manuscripts describing these preliminary data are in preparation and will 
be submitted for publication in the next several months. 

Future work will address the mechanisms through which bFGF mediates signalling 
towards induction of p21^'^^"'^^', from the four FGF receptors through various divergent 
signalling paths. Cells lacking FGF receptors will be transfected with each of the four receptors 
individually and in pairs to determine the receptor combinations transmitting the inhibitory 
signal. Signal pathways will be interrupted by dominant negative expression vectors for Ras, 
Raf-1 and MAP kinase to determine the pathway to induction of the inhibitory signal. 
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