
NESL User's Manual
(For NESL Version 3.1)

Guy E. Blelloch Jonathan C. Hardwick
Jay Sipelstein Marco Zagha

August 20, 1995

CMU-CS-95-169

^^^^^"1
AEProved tor public release

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

19951207 025
Abstract

This manual is a supplement to the language definition of NESL version 3.1. It describes how
to use the NESL system interactively and covers features for accessing on-line help, debugging,
profiling, executing programs on remote machines, using NESL with GNU Emacs, and installing
and customizing the NESL system.

This research was sponsored in part by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330 and
contract number F19628-91-C-0168. It was aJso supported in part by an NSF Young Investigator Award and by
Finmeccanica.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of Wright Laboratory or
the U. S. Government.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D
□

DistUibuiion /

Availability Code

Dist

D'l

Avaii and/or
Special

Keywords: Parallel programming languages, collection-oriented languages, remote execution,
programming environments, supercomputers, nested parallelism

Contents

1 Introduction 2
1.1 System requirements 2
1.2 Other sources of information 2
1.3 Conventions 3

2 Using NESL 3
2.1 Starting NBSL 3
2.2 How NESL evaluates expressions 3
2.3 Top-level expressions and commands 3
2.4 Errors 5
2.5 The init file 6
2.6 Exiting NESL 6
2.7 Variable and Function Redefinition 6

3 Top-level Commands 7
3.1 On-line help 7
3.2 Loading NESL files 7
3.3 Customizing output 8
3.4 Monitoring execution 9
3.5 Configurations and remote execution 12
3.6 Background execution 13
3.7 Checking interpreter status 14
3.8 Saving NESL state 14

4 Editor Support 14
4.1 Using NESL with GNU Emacs 14
4.2 Using NESL with other editors 15

5 Installing NESL 15
5.1 Getting the files 15
5.2 Structure of NESL distribution 16
5.3 Building NESL 17
5.4 Building Stand-alone NESL 18
5.5 Machine configurations 19

6 Bugs 21
6.1 Current bugs 21
6.2 How to report bugs 21

Bibliography 21

A NESL Examples 23
A.l Example code in distribution 23
A.2 Sample session 23

A.2.1 Scalar operations 23
A.2.2 Vector operations 25
A.2.3 An example: string searching 26

Index 29

1 Introduction

This manual is a supplement to the language definition of NESL version 3.1 [1], and assumes that
the reader is familiar with the basics of the language. It describes how to use the NESL system
interactively and covers features for accessing on-line help, debugging, profiling, executing programs
on remote machines, using NESL with GNU Emacs, and installing and customizing the NESL system.

NESL 3.1 is available via anonymous FTP and runs on serial workstations, Connection Machines
CM-2 and CM-5, Cray Y-MP (8, C90, J90, EL) vector machines, the MasPar, and most machines
supporting MPI such as the IBM SP-1 and SP-2 and the Intel Paragon. The normal mode of
operation is for the interactive front end to run on a user's workstation and for the computational
back end to run on a remote supercomputer. The NESL 3.1 system has the following features:

• Remote execution

• Profiling

• Tracing

• On-line documentation

• Background execution

1.1 System requirements

NESL assumes the machine on which it is running uses some variant of the Unix operating system.
Building NESL requires a C compiler, lex and yacc and Common Lisp (GNU, Allegro, CMU, or
Lucid). For the graphics functions it also requires the XI1 library.

There is also a stand-alone version of NESL only requiring Common Lisp. This version imple-
ments all of NESL, but has no support for remote evaluation or graphics. See Section 5.4 for more
on this version.

1.2 Other sources of information

There are several additional sources of information if you want to learn more about NBSL:

• A World Wide Web home page for the SCANDAL project, which always contains the latest
information on NESL. The URL is

http://www.cs.emu.edu/"scandal

If you have any problems accessing the page send e-mail to nesl-bugs@cs.cmu.edu. This
page contains links to many NESL related web pages including an on-line demo and tutorial,
html manual, and many examples.

• Our FTP site (see Section 5.1). The WWW home page contains a link to this site.

• A mailing list used to discuss NESL and announce new patches and releases. If you want to
be added to this list send e-mail to nesl-request@cs.cmu.edu.

• Papers on the implementation [2], uses [4], and teaching [3] of NESL. These can be obtained
from the FTP site, or viewed directly from the WWW home page.

1.3 Conventions

Within this document, interactions with the NESL system are shown in a typewriter font, and
command arguments are shown in an italic font. Enumerated choices are shown within curly braces
{on, off}, and optional arguments are shown within square brackets Ivar].

2 Using NESL

2.1 Starting NESL

To start NESL, type runnesl. This should load a dumped Common Lisp image containing the
NESL system. If runnesl isn't on your PATH, look for bin/runnesl in to the NESL distribution
tree at your site. See Section 5 for instructions on installing NESL.

2.2 How NESL evaluates expressions

The NESL system is interactive: the current implementation is built on top of Common Lisp
and implements a similar read-eval-print loop. Expressions are typed at the NESL prompt and
terminated with a semicolon and a carriage return. For example:

<Nesl> 2+3;

Compiling..Writing..Loading..Running..
Exiting..Reading..
it = 5 : int

Expressions are compiled dynamically into an intermediate language called VcoDE, which is then
interpreted by a subprocess. The phases of executing an expression are:

• Compiling: Compiles the expression and any uncompiled needed to evaluate it into VcoDE.

• Writing: Writes the compiled VcoDE program out to a file.

• Loading: Starts up a subprocess for the VcoDE interpreter and loads the VcODE program.

• Running: Subprocess executes the VcoDE program.

• Exiting: Subprocess writes the results to a file.

• Reading: Reads the results back into the NESL system.

This setup makes it relatively easy to run code on remote machines, since the VCODE interpreter
can be run remotely, communicating with the NESL system through a shared file system or through
calls to rsh and rep. This is how the CM-2, CM-5, Cray, Maspar, and MPI implementations work.

2.3 Top-level expressions and commands

At the NESL prompt you can type a NESL top-level expression, as defined by the language, or a
top-level command, which is used to control or examine various aspects of the environment. The
top-level commands are summarized in Figure 1 and most are described in Section 3.

A top-level expression is one of

NESL top-level forms:

function <naine> <pattern> [:

datatype <name> <typeexp>;

<pattern> = <exp>;

<exp>;

Top-level Commands:
help; OR ?

load [<exp>];

describe <funcname>;

apropos <name>;
set arg_check {onjOff};

set trace <funcname> <n>;

set profile <funcname> {on,off};

set print_length <n>;
set verbose {on,off};

set editor <pathname>;

show status;

show bugs;

show code <funcnaine>;
dump vcode <filename> <exp>;
dump world [<filename>];

dump info [<filename>3;

edit [<filename>];
<pattern> |= <exp>;

exit;
lisp; or ~D

<typespec>] = <exp>; Function Definition

Record Definition

Top level Assignment

Any NESL expression

Print this message.

Load a file. If no arg, reload last file.

Describe a NESL function.

List functions which contain <ncime>.

Set the argument check switch.

Trace a NESL function.

O=off, l=fname, 2=args, 3=vars, 4=vals

— Set profiling for function <funcname>.

Set maximum sequence print length.
Set the verbose switch.

Set the editor.

List settings of current environment.
List the known bugs.

Show the code for a function.

Dump VCODE for <exp> to file <filename>.
Dump current NESL environment to a file.

Dump info for bug reports (default=stdout).

Edit & load a NESL file (default=last file).
Assign to a file variable.

Exit NESL.

Go to the Common Lisp interpreter.

Commands for running VCODE on remote machines:

defconfig <name> <args>; — Define a new configuration.
set config <config>;
set memory_size <n>;
show config;

show configs;

<name> &= <exp> [,mem

get <name>;

— Set the current configuration to <config>.

— Set the memory size of the current configuration.
— List the properties of the current configuration.

— List the available configurations.

<n>] [,max_time := <n>] [.config := <config>];

— Execute exp in the background.

— Get a background result.

Figure 1: Top-level commands (screendump obtained by typing

toplevel ::= function name pattern [: typedef] = exp ; function definition
datatype name typedef ; datatype definition
pattern = exp ; variable binding
exp ; expression

where exp is any expression and pattern can either be a single variable name or a parenthesized
pattern of variable names (the square brackets indicate that the typedef in a function definition is
optional). A full syntax for each of these is given in Appendix A of the NESL language definition [1].

Some examples of top-level expressions include:

function double(a) = 2*a;
function add3(a,b,c) = a + b + c;
datatype complex(float.float);
foo = doubleO) + add3(l,2,3);
foo;

Expressions that are not assigned to a user defined variable are assigned to the variable it.
If you hit Return before an expression is completed, either for readability or by mistake, a ">"

is printed at the beginning of each new line until the expression is completed. For example:

<Nesl> 2
> +

> 3;

Compiling..Writing..Loading..Running..

Exiting..Reading..
it = 5 : int

If you get lost, instead of hitting Ctrl-C try typing a few semicolons to end the expression.
For an example NESL session showing many features of the language, see Appendix A.

2.4 Errors

In NESL most errors result in an error message being printed, and the system returns you to the
NESL prompt.

<Nesl> nosuchfunc(2);
Error at top level.
NOSUCHFUNC is undefined.
<Nesl>

Some errors, however, may cause you to abort out of NESL and back to the Common Lisp prompt.
The only case where this is supposed to happen is if you hit Ctrl-C. If it happens in any other
situation, please report it as a bug (see Section 6.2). When it does happen, you can return to NESL

by getting back to the top level of your Common Lisp system and then typing (nesl).

Running out of memory: The VCODE interpreter uses a fixed amount of memory for storing
data. The default value depends on the configuration used (see Section 5.5), but is normally at
least 1048576 (2^°) 64-bit words. It can be changed with the command set memory_size n (see
Section 3.6).

If your program requires too much memory, you will get the following error,

<Nesl> [0:1000000000];

Compiling..Writing..Loading..Running..

compacting vector memory...done

vinterp: ran out of vector memory. Rerun using larger -m argument.

Reading..

Error at top level.
Error: Error while running VCODE.

Before allocating more memory using set memory_size (see Section 3.5), think about why you
are running out of memory. Your algorithm might require more memory than your machine can
possibly supply. Or your algorithm might have a bug and be recursing infinitely. In any case,
the memory size probably should not be set to more than your total physical memory. So if you
have 16 Megabytes on your workstation, don't set memory_size to anything more than 2097152 (2
Megawords). If you want to find out more about the memory system used by NESL and the meaning
of the compacting vector memory message, see the paper on the implementation of NESL [2].

Parse errors: Common syntax errors include functions with no arguments, mismatched paren-
theses, and empty vectors without types. Sometimes errors are a bit cryptic, for example:

function foo = sqrt(2.0); =^ = is missing its left argument.

Most semantic errors (such as type mismatches) produce more informative error messages.

Garbage collection: The NESL system will occasionally pause because of a garbage collection
by the underlying Common Lisp. This does not affect the operation of NESL programs, and in
particular has no affect on the running times of programs.

2.5 The init file

When NESL is started, it loads the file .nesl (if it exists) from your home directory. This file should
be in the same format as any NESL file—it can contain definitions as well as top-level commands. It
is typically used to modify environment defaults such as the preferred configuration (set conf ig),
memory size (set memory_size), editor (set editor), and maximum print length for sequences
returned at the top level (set print-length). These commands are all described later in this
manual.

2.6 Exiting NESL

lisp;

Exits NESL to Common Lisp. Ctrl-D can also be used. To get back to NESL type (nesl).

exit;

Exits both NESL and Common Lisp.

2.7 Variable and Function Redefinition

In most functional languages, when you define a variable with the same name as an existing variable,
the new definition shadows the old definition but will not affect any previous references to the old
variable. For example:

6

a = 22;
function foo(b) = a + b;
a = 1.0;

Now a is redefined to be 1.0, but foo would still refer to the value 22.
For the sake of convenience, NESL adds the feature that when you define a variable at the

top level and then later redefine it with the same name and type, the system changes all previous
references to the variable to the new value (note that function names are variables, so the same
is true with function definitions). This allows the user to redefine a variable or function without
having to reload everything that depends on it. It is important to realize that previous references
to the variable are not redefined if the new value is of a different type, including the redefinition
of a function to have a new type (since such a redefinition would lead to type inconsistencies), and
that redefining only happens at the top level. The system warns the user when defining a variable
with an existing name but a new type. For example:

<Nesl> x=2;

X = 2 : int

<Nesl> x=0.0;
Redefining X with a new type. Old calls will not be modified.

X = 0.0 : float

3 Top-level Commands

The top-level commands are used for controlling and examining the NESL environment. They are
not part of the NESL language and therefore are not found in the language definition. Top-level
commands can be used either at the <Nesl> prompt, or at the top level within a file—they cannot
appear within an expression.

3.1 On-line help

help;

Prints a list of all the top-level commands, as shown in Figure 1. The command ? (with or without
a terminating semicolon) has the same effect.

describe funname;

This gives a description of function funname, including the documentation from the manual [1].

apropos name;

This prints the names of all the NESL functions and variables that contain the string name in either
their name or their documentation string.

show code funname;

This displays the NESL code for function funname. Code cannot be shown for primitive functions.

3.2 Loading NESL files

load lexp];

This loads a NESL file into the current environment. If present, the expression exp must evaluate

7

to a string (sequence of characters) and be a valid filename. If the filename ends with the suffix
".nesl", the sufRx can be omitted. If exp is omitted, it defaults to the last file that was loaded,
or edited using edit (see Section 4.2). Files are loaded relative to the current directory. NESL files
can contain any NBSL top-level expressions or top-level commands; a file can therefore load other
files, or set various environment variables, such as the memory size (see Section 3.6).

3.3 Customizing output

set verbose {on,off};

This turns the verbose mode on or off. When verbose mode is off, the NESL system no longer
prints

Compiling..Writing..Loading..Running..
Exiting..Reading..

when evaluating an expression at the top level. Note that this command is local to a file, so that
putting it in your .nesl file only turns verbose mode off while that file is being loaded. Verbose
mode is often useful when debugging a new configuration (see Section 5.5).

set print_length n;

This sets the maximum print length for sequences returned at the top level. Only n elements of a
sequence are printed on the screen, followed by "...". The default value for printJ.ength is 100.
The print length applies to each level of a nested sequence. For example:

<Nesl> set print_length 3;
<Nesl> X = [[1:10],[1:10],[1:10],[1:10]];
x= [[1, 2, 3,...], [1, 2, 3,...], [1, 2, 3,...],...] : [[int]]

pattern |= exp;

By typing a |= exp; at the top level, the expression exp is assigned to the file variable a. The
pattern can be any variable pattern. This construct is useful for evaluating expressions with a large
return value, because the user does not have to wait for the result to be read back into NBSL—only
the type is returned. You can use file variables in expressions just like any other variables. Here is
an example:

<Nesl> a 1= index(10000);
a : [int]
<Nesl> sum(a);
it = 49995000 : int
<Nesl> function foo(n) = take(a,n);
foo = fn : int -> [int]
<Nesl> foo(lO);
it = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] : [int]

File variables are stored in the temp_dir specified by the configuration (/tmp/ by default). This
means that if you switch your configuration to a new configuration with a different temp_dir, the
VCODE interpreter won't be able to find the variable and will give a runtime error message. Files
created in this process are not removed by NESL.

3.4 Monitoring execution

set arg_check {on,off};

This turns argument checking on or off. Argument checking is on by default and includes bounds
checking, divide by zero checking, and range checking. Runtime errors detected by argument
checking print a message of the form:

<Nesl> let a = [2,3,4] in a[5];

Compiling..Writing..Loading..Running..
RUNTIME ERROR: Sequence reference (a[i]) out of bounds.
Exiting..Reading..

Argument checking takes time, so it can be turned off to generate faster code.

set trace funname n;

This sets the tracing level for any non-primitive function. Tracing is used for debugging and prints
out a message each time the function is entered and exited. The argument n specifies the level of
tracing. The choices are:

1 Print the function name when entering and exiting the function.

2 Print the function name along with the values of its arguments and the result.

3 Print the function name, and the variable names for each binding in the outermost let
statement when it is assigned. This can be used to help locate a runtime error.

4 A combination of 2 and 3, plus it prints the value of each binding in the outermost let
statement.

Tracing can be turned off for the function by specifying a trace level of 0. An example use is:

<Nesl> function norm(a,b) = sqrt(a"2 + b*2);

norm = fn : (float, float) -> float
<Nesl> set trace norm 2;

<Nesl> set trace sqrt 1;

<Nesl> norm(3.0,4.0);

Compiling..Writing..Loading..Running..

Entering NORM

A = S.OOOOOOeO

B = 4.000000eO

Entering SQRT

Leaving SQRT

Leaving NORM

RESULT = S.OOOOOOeO

Exiting..Reading..

5.0 : float

NESL primitives cannot be traced. If you would like to trace a primitive, you can create a stub
function that calls the primitive, and then replace calls to the primitive with calls to the stub. For
example:

<Nesl> set trace sin 4;

SIN is a primitive, you cannot trace it.

<Nesl> function my_sin (x) = sin(x);

<Nesl> set trace my_sin 4;

When tracing prints values, it truncates sequences and only prints the first few elements. It
also only prints nested sequences down to a fixed depth. The truncation of sequences for tracing
is different than the print-length set by set print-length, and is controlled by the two variables,
trace_string_length and trace_string_depth. They are ordinary NESL variables and should be
set at top level using var = val.

When tracing functions that are called in parallel, NESL will only print an "entering f oo"
message once even though the functions is being entered many times in parallel. It will, however,
print any values (arguments, results, or values of let statements) for each parallel call. For example:

<Nesl> function foo(a) = a + 3;

foo = fn : int -> int
<Nesl> set trace foo 2;

<Nesl> {foo(a): a in [2,3,4]>;

Compiling..Writing..Loading..Running..
Entering FOO

A = 2
A = 3
A = 4

Leaving FOO
RESULT = 5
RESULT = 6
RESULT = 7

Exiting..Reading..
it = [5, 6, 7] : [int]

set trace off;

Turns tracing off for all functions.

set profile funname {on,off};

When profiling is turned on for a function, the time taken for each expression on the right of a
let binding in that function are printed. The profihng also works on functions that are called in
parallel: it prints the total time taken across all parallel calls.

In the example below, suppose we would like to profile a function that scrambles the order of
elements in a vector. We could first use the time function to measure the total running time:

10

function scramble (vec) =
let

n = #vec;

rands = {rand(j): j in dist(n,n)>;

random_permutation = rank(rands)
in

vec->random_permutation;

<Nesl> time(#scramble([100000:200000]));

it = (100000, 0.042053647356) : int, float

To find out where the time is going, we turn on profiling as shown below. The timings indicate
that the rank function is consuming most of the running time.

<Nesl> set profile scramble on;

Turning timing on for each let binding of SCRAMBLE.

<Nesl> #scramble([100000:200000]);

5.106242e-5 seconds for expression:
#vec

5.976757e-3 seconds for expression:
■Crand(j): j in dist(n, n)}

3.046853e-2 seconds for expression:
rank(rands)

3.965526e-3 seconds for expression:
vec -> random_permutation

To get more accurate profiling, we turn argument checking off. Note that some functions are much
faster with argument checking off.

<Nesl> set arg_check off;

<Nesl> #scramble([100000:200000]);

5.183748e-5 seconds for expression:
#vec

3.150965e-3 seconds for expression:
■{rand(j): j in dist(n, n)>

3.034669e-2 seconds for expression:
rank(rands)

8.495138e-4 seconds for expression:
vec -> random_permutation

It should be noted that timing will give erroneous numbers when nested. This means that if
you profile a recursive function, the times for the let bindings that do not make recursive calls
will be accurate, but the time for the recursive call itself will meaningless. It should also be noted
that to get reasonably accurate timings, the function should be profiled a few times, since the time
taken by an expression can vary depending on the system load.

11

Redefining monitored functions: When you redefine a function with a new type, old calls to
the function are still traced or profiled but the new version will not be monitored.

set profile off;

Turns profiling off for all functions.

3.5 Configurations and remote execution

In NESL it is possible to evaluate any top-level expression on a remote machine. The remote
machine can be another workstation, a Cray Y-MP, a CM-2 or CM-5, a Maspar, or one of the
supported MPI machines. To run expressions on a remote machine, configurations first need to be
set up using defconf ig (see Section 5.5). Assuming that the configuration files have already been
set up, this section describes the top-level commands used for remote execution.

show configs;

This displays a list of currently-available machine configurations. Note that the same physical
machine might be in multiple configurations, depending on the turnaround time requested for a
job, how many processors are used, etc.

<Nesl> show configs;
The current machine configurations are:
LOCAL

CRAY

CMS

To use one type: set config <config>;

set config config;

This causes all future NESL expressions (until the next set config command) to be evaluated on
the machine configuration config. (In order to use NESL graphics, you must first give the remote
machine access to your X server by executing the command xhost + remotejnachine in a local
shell.)

<Kesl> set config cray;

<Nesl> 2+3;

Compiling..Writing..Loading on PSC Cray C90 (mario)..
Running..
Exiting..Reading..
it = 5 : int

show config;

This displays parameters of the current machine configuration. At a minimum, it displays the
name of the configuration, the default memory size, the path to the VcoDE interpreter, the path
to the Xll graphics interface program xneslplot (see Section 5.5), and the directory used by the
NESL system for temporary files. Remote configurations may also include the name of the remote
machine, the rsh command used to start up the VcoDE interpreter, and the name of the script
used to submit batch jobs.

12

<Nesl> show config;
Configuration Name: "cray"
interp_file: "/afs/cs.uvwx.edu/user/j oeuser/nesl/bin/vinterp.cray"
memory_size: 3600000
temp_dir: "/afs/cs.uvwx.edu/user/j oeuser/tmp/"
plot_file: "/afs/cs.uvwx.edu/user/j oeuser/nesl/bin/xneslplot.cray"
rsh_coinmand: "rsh -1 joeuser mario.psc.edu"
machine_name: "CRAY C90 at PSC"
background_command: "background-cray"

set memory_size n;

This sets the amount of memory that the VcoDE interpreter allocates for data storage in the
current configuration. In the standard configurations, it defaults to 1048576 (2^°) 64-bit words.
See Section 2.4 for what happens when you run out of memory.

3.6 Background execution

NESL allows background execution of expressions. This is most useful when evaluating expressions
that might take a long time to complete. It is also useful on supercomputers that allow more
machine resources (memory, processors, runtime) to be used for batch jobs than for interactive
jobs.

name &= exp [,mem := n] [,max_time := n] C,config := config];

This evaluate the expression exp in the background and assigns the result to the background variable
name. The NESL prompt returns soon as the job has been submitted. For example:

<Nesl> a ft= sum([0:100000]);

Compiling..Writing..Submitting..
[1] 12782
background a : int
<Nesl>

The result is retrieved using the get command described below. The &= command has three
optional arguments:

• mem: This specifies the amount of memory the job will need. It uses the same units as used
by the mem_size field of a configuration, and defaults to the value specified in the current
configuration.

• max_time: This specifies the maximum amount of time (in seconds) that the job will run. It
is normally used when submitting jobs on supercomputers, since it can be used as a safety
cap in case the job goes into an infinite loop.

• config: This is used to specify a configuration other than the current configuration on which
to run the job.

get name;

This is used to retrieve a background variable. If the job is not completed, the message "Variable

13

waiting for result" will be printed. If the job is completed, all output generated during execu-
tion will be printed, and if there was no error the result will be assigned to the variable name. The
status of background jobs can be examined with the show status command described below.

3.7 Checking interpreter status

show status;

This command will report the current print-length and whether verbose mode and argument
checking are turned on. It will also list all the functions that are being traced or profiled, and all
the outstanding background variables and whether the corresponding jobs have completed.

<Nesl> show status;
verbose on
arg_check on
print_length = 100
traced functions:

sort
background variables:

X (done)
Y (waiting on PSC Cray C90 (mario))

3.8 Saving NESL state

dump world [.filename] ;

This dumps an executable Common Lisp image containing all of the current NESL environment to
filename. If filename is not specified it defaults to bin/runnesl relative to the NESL distribution
tree. The NESL image can then be run directly rather than entering Common Lisp and loading the
NESL source files. Note that the image will typically be very large (from 3 to 35 Megabytes) and
might take a long time to dump. Also, since it contains everything defined in the current session,
you might want to start a fresh NESL before executing dump world.

dump vcode filename exp;

In normal operation the NESL system deletes the intermediate VcoDE files after they have been
read. This command writes a permanent copy of the VcoDE program that evaluates exp to the file
filename. It is normally used for reporting bugs (see Section 6.2). It can also be used for creating
stand-alone VcoDE applications, which can be executed by the VcoDE interpreter outside of the
NESL system. This is useful for improving the startup time and memory usage of applications once
they have been debugged in the NESL system.

4 Editor Support

4.1 Using NESL with GNU Emacs

Within the top-level NESL directory there should be a subdirectory named emacs which contains
the files nesl-mode.el and nesl.el, written by Tom Shefiier. If you use M-x load to load these
files into your GNU Emacs, all files whose names end with .nesl will from then on be edited in
nesl-mode (see the comments at the top of nesl-mode.el for how to load these automatically).
This mode adds the following functions to GNU Emacs:

14

Variable Default

nesl-process "nesl"

nesl-mode-hook nil
inferior-nesl-program "runnesl"

nesl-indent-level 4

TAB Adjust indentation of current line.
C-M-x Evaluate the function containing or after point, and send it as input to the NESL

process (nesl-send-defun).

C-M-a Move to the beginning of current or preceding function (beginning-of-nesl-function).
C-M-e Move to the end of current or following function (end-of-nesl-function).
C-c t Insert function type for the function containing or after the point (nesl-insert-

function-type).

For nesl-mode to find the end of a function, the function needs to be terminated with a dollar-sign ($)
sign instead of a semicolon (;). In NESL, the dollar-sign and semicolon can be used interchangeably
to mark the end of a function definition. C-M-x only works if it can find the end of the function.

The following variables can be set by the user:

Documentation
String name of the inferior NESL process.
Function hook called on entry to nesl-mode.
Program to execute on M-x run-nesl.
Indentation to be used inside NESL blocks.

A NESL subprocess can be started with M-x run-nesl.

4.2 Using NESL with other editors

set editor command;

This sets the command line that gets invoked when using edit. The argument command must be a
string. When you run edit, it will prepend the string to the filename specified (with a space) and
run it as a shell command. The command can therefore include flags. For example, "set editor
"xterm -e vi";" will set up the editor so that it will invoke vi within a new xterm.

edit {.filename'] ;

This starts the editor (which must have previously been set with set editor) on the NESL file
filename. If no filename is specified, it defaults to the last file loaded. If the filename ends with the
suffix ".nesl", the suffix can be omitted. When you exit from the editor, you will be asked if you
want to load the file you just edited.

5 Installing NESL

5.1 Getting the files

FTP to nesl. scandal. cs. emu. edu (currently 128.2.198.40), login as anonymous, enter your e-mail
address as the password, cd code/nesl, and get nesl.tar.Z^. Depending on your FTP client
you may need to set the transfer mode to binary first. Finally, uncompress and untar the file.

'/, ftp nesl.scandal.cs.cmu.edu
Name: anonymous
Password: meSmy.site.name
ftp> cd /afs/cs/project/scandal/public/code/nesl

'if you have GNU gzip, nesLtar.gz is also available, and should be more compact)

15

ftp> binary

ftp> get nesl.tar.Z

ftp> quit

'/, uncompress nesl.tar

*/. tar -xf nesl.tar

The system requires about 3.5 Megabytes of disk space uncompressed and without binaries. Some
of this can be removed if you are not going to be using all of the parallel machines (see the cvl
directories in the next section), or if you don't need to keep the manuals. The biggest use of space
will be for the dumped Common Lisp image you will make after building NESL; this will occupy
from 3 to 35 Megabytes, depending on the version of Lisp you use and the machine on which you
are running (see the discussion of building the system in Section 5.3).

5.2 Structure of NESL distribution

The nesl distribution unpacks into the following directory tree. The files in shnted font will be
created during the build process.

BUILD
COPYRIGHT
Makefile
README
bin/

runnesl

vinterp.*
xneslplot
foreground-*
background-*

config.nesl
cvl/

cm2/
cm5/
Cray/
mpi/
serial/

doc/
cvl.ps
manual.ps
user.ps
vcode-ref.ps

emacs/
examples/
include/
lib/

Ubcvl.a,
neslseqsrc/
neslsrc/

Directions on how to build NESL

The NESL executable
The VcoDE interpreter, for various architectures
Xll interface used for NESL graphics
Scripts for executing VcoDE from NESL in the foreground
Scripts for executing VcoDE from NESL in the background
Definitions of configurations

Source code for the CM-2 version of CvL
Source code for the CM-5 version of CvL
Source code for the CRAY version of CvL
Source code for the MPI version of CvL
Source code for the serial version of CvL

The CvL manual
The NESL manual
This user's guide
The VCODE manual
NESL editing mode for GNU Emacs
Collection of NESL examples (see Appendix A)
cvl.h include file

The CVL library
Source code for stand-alone NESL

Source code for NESL

16

release.notes List of changes since the last release
utils/ Source code for xneslplot
vcode/ Source code for the VcoDB interpreter

5.3 Building NESL

Once you have unpacked the NESL distribution, the following steps should be sufficient to build a
version of NESL to run on your local workstation:

1. Run make from the top-level NESL directory. This builds CVL, VcoDE, and xneslplot,
leaving vinterp.serial and xneslplot in the bin directory.

2. Start a Common Lisp (either GNU, Allegro, CMU, or Lucid) in the top-level NESL directory,
and enter (load "neslsrc/build.lisp").

3. Follow the instructions for dumping an executable version of NESL. This will create a file
bin/runnesl, which can be executed directly to start NESL.

4. The simplest test of the system is to enter 1+1;, which should exercise all the phases of the
system as explained in Section 2.2. For a more complete test, try load "neslsrc/test";
followed by testall(O);, which runs through a series of test functions.

The rest of this section discusses what can be changed if the above procedure does not work or if
you don't want to create a dumped NESL Lisp image. The next section discusses how to set up
configurations for remote execution.

The C compiler: The default C compiler and optimization level is gcc -02. This can be changed
by setting the variable CC at the top of the Makefile.

Making CvL, VCODE and xneslplot separately: The top-level Makefile recursively calls
make in the subdirectories cvl/serial, vcode, and utils, and then moves the result to either the
lib or bin directory. These builds can also be done by hand if necessary.

Compiling CvL and VCODE for a Connection Machine, Cray, or Maspar: To build a
version of the VcoDE interpreter for a CM-2, CM-5, Cray or Maspar, you will need to make cm2,
make cm5, make cray or make maspar.

Compiling CvL and VCODE for MPI: To build a version of the VcoDE interpreter using
MPI, you will need to do some customization. Read the cm5_mpi, paragon_mpi and spl_mpi
entries in the top-level Makefile, and modify one of them (and the appropriate mpiCC and mpidir
variables) to match your MPI installation. Note that only the MPICH implementation of MPI
from Argonne/Mississipi State is directly supported by this release, and that ANSI C is required.
See the Makefile and README files in the vcode and cvl/mpi subdirectories for further details. A
comparison of the CM-2, CM-5 and MPI versions is given in [5].

17

Compiling for multiple serial architectures: If you want versions of NESL for multiple serial
architectures, you will need copies of vinterp.serial, xneslplot and runnesl for eacii architec-
ture. If you are using a shared file system, before building a version for a new machine, you should
run make clean from the top-level directory to clean up any old object files. Before dumping the
executable image of NESL (runnesl), you should make sure that the configuration points to the
correct versions of vinterp.serial and xneslplot (see the next section for an explanation of
configurations).

Compiling for Linux To compile NESL for Linux, do a make linux. The Linux version assumes
you have Gnu Common Lisp, the Gnu C compiler, flex and bison.

Avoiding dumping NESL: Because Common Lisp images can be quite large, the NESL exe-
cutable (runnesl) may require a comparatively large amount of space: between 3 and 35 Megabytes
(the exact amount depends on which version of Common Lisp you are using, and can be as big as
35 Megabytes for Lucid Common Lisp). If this is too much space for your liking, then the variable
nesl-path should be set in the file neslsrc/load.lisp, and the user should start up Common
Lisp and load neslsrc/load. lisp each time they want to run NESL. This will load in the compiled
files and be much faster than doing a build, but not as fast as starting up a dumped executable.

Portable pseudorandom numbers: For users who want a pseudorandom number generator
that is portable across parallel machines, we supply hooks in the MPI and CM-5 code to use the
additive lagged-Fibonacci generator described in [6]. This is available to US residents via FTP from
ftp://ftp.super.0rg/pub/mascagni/lfibrng6a.tar.Z. See the appropriate CVL Makefile for
instructions on how to enable the hooks.

What can be deleted?: After building working versions of the three binaries vinterp. serial,
xneslplot and runnesl, the only files that are necessary for running NESL are all in the bin
directory: anything else can be deleted, if so desired. If you run make clean in the top-level
directory, it will remove all unnecessary object files.

5.4 Building Stand-alone NESL

This release of NESL includes an experimental stand-alone verson of the language that does not
use VcoDE or CvL. This version runs inside a Common Lisp environment and is limited in several
respects:

1. no graphics

2. no remote execution

3. no tracing

4. no profiling

5. no spawn function

6. significantly slower on large problems

18

However, this version is much easier to build and is a good way for a new user to experiment with
NESL.

To build the stand-alone NESL, first cd neslseqsrc and then start up Common Lisp. Load the
NESLfiles into the lisp with (load "neslseqsrc/load.lisp"). To start up NESL, type (nesl).

5.5 Machine configurations

The top-level NESL command def conf ig is used to define new configurations. Machine configura-
tions are mostly used for remote execution, but can also be used to define aspects of the environment
for local execution, such as the amount of memory allocated by the VCODE process, or a VcoDE
interpreter file other than the default. This section describes def conf ig and outlines how remote
execution is implemented. The mechanism for remote execution was designed to be quite flexible;
we hope that you will be able to adapt it to the idiosyncrasies of your environment.

Machine configurations for your local site should be defined in the conf ig.nesl file in the top-
level directory. This file includes several example configurations. Users can also specify their own
configurations by using def conf ig either from the interpreter or within a file (it is common to put
def conf igs within the .nesl init file). The syntax for def conf ig is:

defconfig name [,memory_size := n] [.interpjfile := str] C,temp_dir := str]
[,rsh-command := str] [.plotjfile := str] [,machineJiame := str]
[,foreground_coinmand := str] [,background_coinmand := str]
[,max_time := n] [.arguments := str];

This command takes several optional arguments, described below. These optional arguments can
appear in any order. In its simplest form, defconfig name, it defines a configuration with all the
default settings. In the following, nesLpath refers to the pathname to the nesl distribution.

• memory-Size: This specifies the memory size used by the VcoDE interpreter. The default is
1048576 (2^°) double precision floating point numbers (64 bits each on most machines).

• interpjfile: The executable file for the interpreter for this configuration. The default is
nesLpath/hin/vinteTj).

• temp_dir: This is the directory to which the VcoDE source file and the output from the
VcoDE interpreter are written each time an expression is executed. If the remote machine
shares a file system with the local machine, this should be a shared directory so that both
NESL (running locally) and the VCODE interpreter (running remotely) can access it. The
default is /tmp/.

• rsh_command: This is the command used to initiate remote execution. If both the local and
remote machine support rsh and the user name is the same locally as remotely, then this can
simply be rsh machinename. If the remote user name is different, then rsh -1 username
machinename should work. Of course, the user needs to set the .rhosts appropriately at the
remote host (see your local manual page for rsh(l), and note that some sites may restrict its
use because of security considerations). If your system does not support rsh, but supports
some other command for remote procedure calls, it may be possible to substitute that. The
default for rsh_command is the empty string, specifying that the VcoDE interpreter should
be executed locally.

19

• machinejiame: This is used to specify the remote machine's name. It is only used to print
messages for the user, so it need not be the "ofRcial" name. The default is the empty string.

• plotjfile: The NESL graphics routines work by starting a subprocess from within the
VcoDE interpreter using the spawn function. This subprocess is then passed commands
from the interpreter through a pipe to its standard input, and translates them into XI1
calls. The file that is used to invoke the subprocess is specified by plotjfile. The default is
nesl_paf/i/biii/xneslplot.

• foreground-command: The shell script used for foreground execution. The script is first
searched for on the user's path, and then in *nesl_path*/bin. The default is f oreground-unix.

• background-command: The shell script used for background execution. It is searched for as
above. The default is background-unix.

• max_time: The maximum number of seconds allowed for background jobs. This can be
overridden with the max_time option of the name &= command.

• arguments: This string is passed directly to the shell scripts specified by foreground-command
and background-command. It can be used for various purposes, such as specifying the number
of processors for the CM-2 or CM-5 implementations. The default is the empty string.

Remote execution works as follows: After NESL writes out the vcode file, it starts up a sub-
process by executing one of the background-* or foreground-* scripts from the bin directory.
The script to be used is specified by the foreground-command and background-command in the
configuration definition. NESL passes these scripts the following 7 arguments:

1. rsh-command: This is passed directly from the configuration. The scripts are set up so that
if this argument is the empty string, the interpreter will run locally.

2. interpjfile: Passed directly from the configuration.

3. memory-size: Passed directly from the configuration.

4. temp-dir: Passed directly from the configuration.

5. job_ident: A unique job identifier (used to generate filenames).

6. max-time: Passed directly from the configuration.

7. arguments : Passed directly from the configuration.

NESL always writes the VcoDE program to the file temp-dir/jobJdent-Code. VcODE, in turn,
writes the result to the file temp-dir/job-ident-outj)Ut, where NESL expects to find it. With back-
ground mode, two additional files temp-dir/jobJdent-err and temp-dir/jobJdent-ch.eck are created.
The err file is used to store all output generated during the execution of the VcODE interpreter,
including any errors. The check file is written to after the VcoDE interpreter has completed, and
is used so that NESL can determine when it can read the result. It should be noted that if the job
was successful, all these files are deleted after being read.

It might be necessary to create new background and foreground scripts for your local site.
Looking at the existing scripts should help in defining new ones.

20

6 Bugs

6.1 Current bugs

show bugs;

This displays a list of known bugs, and possible workarounds, in the current release of the NESL

system.

6.2 How to report bugs

If you find a bug not listed by show bugs, please send a bug report to nesl-bugs@cs.cmu.edu.
You can help us identify and correct the bug by first finding the smallest example demostrating the
bug and by including the following information in your bug report. Include the NESL source, and
in addition, the VCODB output from the NESL compiler using the dump vcode command. Use the
dump info command to generate a description of your Lisp and hardware platform. If you found
the bug on a parallel machine, does your local serial configuration exhibit the same problem?

We will try to respond to your bug report promptly, but can make no guarantees - NESL is a
research tool rather than a production system.

If you make any improvements to the system, please send them to us so we can incorporate
them in future versions.

Acknowledgements

Margaret Reid-Miller and Girija Narlikar provided useful comments on this manual. Tom Sheffler
implemented the GNU Emacs nesl-mode. Martin Santavy suggested several of the features included
in the NESL system.

References

[1] Guy E. Blelloch. The NESL language definition (version 3.1). Technical Report CMU-CS-95-
170, School of Computer Science, Carnegie Mellon University, July 1995.

[2] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel language. Journal of Parallel and
Distributed Computing, 21(1):4-14, April 1994.

[3] Guy E. Blelloch and Jonathan C. Hardwick. Class notes: Programming parallel algorithms.
Technical Report CMU-CS-93-115, School of Computer Science, Carnegie Mellon University,
February 1993.

[4] John Greiner. A comparison of data-parallel algorithms for connected components. In Pro-
ceedings Sixth Annual Symposium on Parallel Algorithms and Architectures, pages 16-25, Cape
May, NJ, June 1994.

[5] Jonathan Hardwick. Porting a vector library: A comparison of MPI, paris, CMMD and PVM.
Technical Report CMU-CS-94-200, School of Computer Science, Carnegie Mellon University,
November 1994.

21

[6] Daniel V. Pryor, Steven A. Cuccaro, Michael Mascagni, and M.L. Robinson. Implementa-
tion of a portable and reproducible parallel pseudorandom number generator. In Proceedings
Supercomputing '94, pages 311-319, Washington D.C., December 1994. ACM.

22

A NESL Examples

A.l Example code in distribution

The subdirectory examples contains the following examples of NESL code:

adaptive-integration Adaptive integration of single-variable functions.

awerbuch-shiloach Algorithm for finding the connected components of a graph.

convex-hull The QuickHull algorithm for finding convex hulls. Includes a graphics demo.

hash-table An implementation of a parallel hash table.

line-fit Least-squares fit of a line to a set of points.

micro-shell A micro shell that keeps track of current directory and executes commands.

nas-cg The NAS conjugate gradient benchmark.

median Recursively finds the A;*'' largest element of a vector.

primes Work-efRcient parallel implementation of the prime sieve algorithm.

separator Geometric separator code. Includes a graphics demo of it running on an airfoil.

sort Various sorts: quicksort, Batcher's bitonic sort and Batcher's odd-even mergesort.

spectral Spectral separator code. Includes a graphics demo using everyone's favorite airfoil.

string-search Fast string search algorithm.

The class notes [3] contain other examples.

A.2 Sample session

This transcript of a NESL session shows many of the language features.

A.2.1 Scalar operations

<Nesl> 2 * (3+4);

Compiling..Writing..Loading..Running..
Exiting..Reading..
it = 14 : int
<Nesl> set verbose off; '/. turns off verbose compiler messages '/,

<Nesl> (2.2 + 1.1) / 5.0;

it = 0.66 : float

<Nesl> t or f;

it = T : bool
<Nesl> 'a < 'd; '/, that's a backquote, not a quote */,

23

it = T : bool
<Nesl> 3;

it = 3 : int

<Nesl> 1.6 + 7; '/, these aren't the same type */,

Error at top level.

For function + in expression

1.6 + 7

inferred argument types don't match function specification.
Argument types: float, int

Function types: a, a :: (a in number)

<Nesl> 1.6 + float(7);

it = 8.6 : float

<Nesl> sin(.6);

it = 0.564642473395035 : float
<Nesl> a = 4;

a = 4 : int
<Nesl> a + 5;

it = 9 : int

<Nesl> if (4 < 5) then 11 else 12;

it = 11 : int

<Nesl> let a = 3 * 4 */, the '>' is a prompt for you to enter more '/.
> in a + (a * 5);

it = 72 : int

<Nesl> let a = 3 * 4;

> b = a + 5

> in a + b;

it = 29 : int

<Nesl> function fact(i) = '/, you can define functions at top level '/,

> if (i == 1)
> then 1

> else i * fact(i-l);

fact = fn : int -> int

<Nesl> fact(5);

it = 120 : int

<Nesl> function circarea(r) = pi * r * r; */, pi is predefined '/,

circarea = fn : float -> float
<Nesl> circarea(3.0);

it = 28.2743338823081 : float

24

<Nesl> (2, 'a);

it = (2, 'a) : int, char

<Nesl> function div_rem(a, b) = (a / b, rem(a, b));

div_rem = fn : (int, int) -> (int, int)

<Nesl> div_rem (20, 6);

it = (3, 2) : int, int

A.2.2 Vector operations

<Nesl> [2, 5, 1, 3];

it = [2, 5, 1, 3] : [int]

<Mesl> "this is a vector";

it = "this is a vector" : [char]

<Nesl> [(2, 3.4), (5, 8.9)]; */. a vector of tuples */,

it = [(2, 3.4), (5, 8.9)] : [(int, float)]

<Nesl> ["this", "is", "a", "nested", "vector"];

it = ["this", "is", "a", "nested", "vector"] : [[char]]

<Nesl> [2, 3.0, 4]; '/, vectors must have homogeneous elements '/,

Error at top level.

For function maie_sequence in expression
[2, 3.0]

inferred argument types don't match function specification.
Argument types: [int], float

Function types: [a], a :: (a in any)

<Nesl> -{a + 1: a in [2, 3, 4]};

it = [3, 4, 5] : [int]

<Nesl> let a = [2, 3, 4] in {a + 1: a};

it = [3, 4, 5] : [int]

<Nesl> {a + b: a in [2, 3, 4]; b in [4, 5, 6]};

it = [6, 8, 10] : [int]

<Nesl> let a = [2, 3, 4]; b = [4, 5, 6] in {a + b: a; b>;

it = [6, 8, 10] : [int]

<Nesl> {a == b: a in "this"; b in "that"};

it = [T, T, F, F] : [bool]

<Nesl> {fact(a): a in [1, 2, 3, 4, 5]};

it = [1, 2, 6, 24, 120] : [int]

<Nesl> -Cdiv.remdOO, a): a in [5, 6, 7, 8]};

25

it = [(20, 0), (16, 4), (14, 2), (12, 4)] : [(int, int)]
<Nesl> sum([2, 3, 4]);

it = 9 : int
<Nesl> dist(5, 10);

it= [5, 5, 5, 5, 5, 5, 5, 5, 5, 5] : [int]
<Nesl> [2:50:3];

it = [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47] : [int]
<Nesl> "big" ++ " boy";

it = "big boy" : [char]
<Nesl> {x in "wombat" 1 x <= 'm};

it = "mba" : [char]
<Nesl> {sum(a): a in [[2, 3, 4], [1], [7, 8, 9]]};

it = [9, 1, 24] : [int]
<Nesl> bottop("testing"); '/, split sequence into two parts */,

it = ["test", "ing"] : [[char]]
<Nesl> partition("break into words", [5, 5, 6]);

it = ["break", " into", " words"] : [[char]]

<Nesl> function my_sum(a) =
> if (#a == 1) then a[0]
> else
> let res = {my_sum(x): x in bottop(a)}
> in res[0] + res[l];

my_sum = fn : [a] -> a :: (a in number)
<Nesl> my_sum([7, 2, 6]);

it = 15 : int

A.2.3 An example: string searching

The algorithm shown here is explained in [3]. The example illustrates the way in which NESL
functions can be developed "from the inside out", using the interactive system to test each new
addition.

<Nesl> teststr = "string small strap asop string";

teststr = "string small strap asop string" : [char]
<Nesl> candidates = [0:#teststr-5];

candidates = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24] : [int]

<Nesl> {a == 's: a in teststr -> candidates};

it = [T, F, F, F, F, F, F, T, F, F, F, F, F, T, F, F, F, F, F,

26

F, T, F, F, F, T] : [bool]

<Nesl> candidates = ic in candidates;
> a in teststr -> candidates | a == 's};

candidates = [0, 7, 13, 20, 24] : [int]

<Nesl> candidates = {c in candidates;

> a in teststr -> {candidates+1:candidates}
1 a == 't};

candidates = [0, 13, 24] : [int]

<Nesl> candidates = {c in candidates;

> a in teststr -> ■[candidates+2:candidates}
> I a == 'r};

candidates = [0, 13, 24] : [int]

<Nesl> candidates = {c in candidates;

> a in teststr -> {candidates+S:candidates}
> I a == 'i};

candidates = [0, 24] : [int]

<Nesl> candidates = {c in candidates;
> a in teststr -> ■{candidates+4:candidates}
> I a == 'n};

candidates = [0, 24] : [int]

<Nesl> function next_cands(cands, w, s, i) =

> if (i == #w) then cands

> else

> let letter = w[i];

> next_chars = s -> {cands + i: cands};

> new_cands = {c in cands; 1 in next_chars I 1 == letter}
> in next_cands(new_cands, w, s, i + 1);

next_cands = fn : ([int], [a], [a], int) -> [int] :: (a in ordinal)

<Nesl> > function string_search(w, s) =

> next_cands([0:#s - (#w - 1)], w, s, 0);

string_search = fn : ([a], [a]) -> [int] :: (a in ordinal)

<Nesl> longstr =

> "This course will be a hands on class on programming parallel

algorithms. It will introduce several parallel data structures and a

variety of parallel algorithms, and then look at how they can be

programmed. The class will stress the clean and concise expression of
parallel algorithms and will present the opportunity to program

non-trivial parallel algorithms and run them on a few different

parallel machines. The course should be appropriate for graduate
students in all areas and for advanced undergraduates. The

prerequisite is an algorithms class. Undergraduates also require

permission of the instructor.";

longstr =

"This course will be a hands on class on programming parallel

27

algorithms. It will introduce several parallel data structures and a
variety of parallel algorithms, and then look at how they can be

programmed. The class will stress the clean and concise expression of
parallel algorithms and will present the opportunity to prograjn

non-trivial parallel algorithms and run them on a few different

parallel machines. The course should be appropriate for graduate

students in all areas and for advanced undergraduates. The

prerequisite is an algorithms class. Undergraduates also require

permission of the instructor."

: [char]

<Nesl> string_search("will", longstr);

it = [12, 77, 219, 291] : [int]

<Nesl> string_search("student", longstr);

it = [461] : [int]

28

Index

> continuation character, 5
l=,8
k=, 13

apropos,7
argument checking, 9

background execution, 13, 14
bug reporting, 21
bugs, 21
building NESL, 17

Common Lisp, 2, 3, 5, 6, 14
config.nesl, 16, 19
configurations, 12, 19
Ctrl-C, 5
Ctrl-D, 6
CvL, 16, 17

defconfig,12,19
describe,7
dump info, 21
dump vcode, 14, 21
dump world, 14

edit, 15
editor support, 14, 16
emacs, 14, 16
errors, 5
exit,6

file variables, 8
FTP, 2, 15

garbage collection, 6
get, 13
gnu-emacs, 14, 16

help,7

init file, 6, 8, 19

Linux, 18
lisp,6
load, 7

mailing lists, 2, 21
memory size, 5, 6, 13, 19

NESL distribution, 16
NESL system requirements, 2, 16
nesl-bugs mailing list, 21
nesl-request mailing list, 2

.nesl init file, 6, 8, 19
nested sequences, 8, 10

out of memory error, 5

patches, 2
print length, 6, 8
profiling, 10, 12, 14

redefining, 6, 12
remote execution, 12, 20
runnesl,3,14
runtime errors, 9

set arg_check, 9
set conf ig, 6, 12
set editor, 6, 15
set memory_size, 5, 6, 13, 19
set printJLength, 6, 8
set profile,10, 12
set trace,9,10
set verbose,8
setmemory^ize, 6
shell scripts, 20
show bugs,21
show code, 7
show config, 12
show configs, 12
show status, 14
stand-alone NESL, 2, 18
starting NESL, 3
status, 14

temp_dir, 8
timing, 10
toplevel commands, 3
toplevel expressions, 3
trace_string_depth, 10
trace_stringJ.ength, 10
tracing, 9, 10, 14

VCODE, 3, 14
VCODE interpreter, 5, 12, 13, 19
verbose mode, 8

World Wide Web, 2

xneslplot, 12, 16, 17, 20

29

