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Chapter I
INTRODUCTION

Interlaminar stresses play an important role in the load trans-
fer mechanism in composite laminates. Both numerical and experimental
results have demonstrated that when a thin laminate is subjected to a
uniaxial extension (Fig. 1), there exist highly localized stress con-
centration regions near the free edges, the so-called boundary layer
regions. This phenomenon has been suggested to be the dominant factor
jnitiating failure of some composite laminates.

The present thesis will analyze the boundary layer by "perturb-
ing" the exact elasticity equations with a stretching transformation.
Solutions to these transformed equations provide a higher order analysis
than idealized lamination theory [1].* Hence better insight into the
jnterlaminar stress behavior is obtained using the perturbation

analysis [2].

1.1 REVIEW OF LITERATURE

Bogy [3] analyzed a bonded material containing two mutually dis-
similar orthogonal wedges under arbitrary tractions. The stress fields
were found to contain a mathematical singularity at the intersection of
the interfacial plane and the loaded surface. Hein [4] studied the

residual stresses in a two-material wedge and found similar behavior.

*Numbers in brackets refer to the references listed in the
bibliography.
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FIGURE |. LAMINATE GEOMETRY




Hess [5] developed a plane elasticity solution for the end problem in

a two-layer laminated strip and showed a mathematical singularity,
defined to be a point where the convergence of an eigenfunction expan-
sion could not be attained. Puppo and Evensen [6] modeled the finite-
width symmetric laminate as a set of anisotropic layers separated by
isotropic shear layers. Each anisotropic layer was assumed to be under
generalized plane stress, i.e., the out-of-plane normal stress oy

(Fig. 1) is zero and the in-plane stresses and displaccments are the
thickness averages of the actual ;alues. Solutions to the corresponding
equilibrium equations showed that while the interlaminar shear stresses
vanish everywhere for a laminate of infinite width, they attained
maximum fihite values near the free edge of a finite width laminate.
Furthermore, in regions far away from the free edge, the solution
agreed well with the classical lamination theory [1]. A complete three
dimensional anaTysis was carried out by Pipes and Pagano [7] using the
finite difference technique to solve the exact elasticity equations.
The results showed good agreements with those of Reference [6] except
at the free edge where the interlaminar shear stress 14, seemed to
grow without bound for some laminates. Due to the approximate nature
of the finite difference analysis, however, no evidence was available
to show the intensity of the suggested singularity. -Isakson and Levy
[8] used a finite element approach to analyze a model similar to that
of Reference [6]. Based on the constant st:rain assumption within each
element, the corresponding stresses were obtained from the constitu-

tive equations. The total elastic strain energy was calculated and

E
i
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minimized [9] to yield a set of simultaneous linear algebraic equa-
tions. Llevy, et al. [10] used the same model and formulation as
Reference [8] to further investigate the elastic and plastic inter-
laminar shear deformations in the laminate. The out-of-plane "peel
stress" was not taken into account in both studies due to the modeling.
Results from these solutions were quite similar to those of Reference
[6] except at the free edge where the interlaminar shear stress Tyy
was 40% Tower than that of Reference [6]. This presumably was due to
the limitations of the finite element approximation. Improvements

were made by Rybicki [11] who carried out a three-dimensional finite

-element analysis based on a complimentary energy formulation in terms

of three Maxwell stress functions. These functions resulted in a set
of simultaneous linear algebraic equations which were solved by Gauss
reduction and the back substitution process. The "peel stress" was
obtained in this investigation. The results showed excellent agreement
with References [6] and [7] in regions removed from the free edges,
while near the edges the interlaminér shear stress t,, agreed only with
Reference [6]; the magnitude of tyx; was much lower than the singular

value of Reference [7]. The approximate nature of the finite element

' formulatiqn for the laminated plate apparently leads to questionable

and quite possibly poor results at the exact free edge. Pipes [12]
used the finite difference procedure to carry out extensive parametric
studies including laminate geometry, fiber orientations and stacking
sequerces. The program used in Reference [12] is capable of handling

no more than an 8 layer symmetric laminate owing to ihe limited

S e ! < . 2 S A A i 8 2




computer capacity.

Several attempts have recently been made to verify experimentally
the numerical predictions. Results by Pipes and Daniel [13],
Herakovich [14], and Oplinger, et al. [15] have 211 showed significant

stress ccncentration behavior near the free edges. Although stress

~intensities were not determined in these studies, there were strong

evidences to support the numerical prediction of significant stress
concentrations near the free edge.

Pipes and Pagano [16] more recently developed an analytical
solution to the elasticity equations under the assumptions of zero
interlaminar normal stress, o,, and zero transverse normal stress, Oy
for the [145]s laminate. Pagano [17] obtained yet another approximate
solution following the cylindrical bending theory of Whitney and
Sun [18]. Good agreement with the elasticity solution of Reference
[7] was found for the interlaminar normal stress, gz, (the "peel
stress") on the midplane of a bidirectional [0/90]¢ laminate. However,
the solution did not recognize the stress free boundary conditions

Tyz(¢b,2) = 0. 1In addition, no through thickness distribution of the

- stresses was available. An approximate approach was then considered

by Tang [19] following the isotropic theory of Reiss and Locke [20].

 The interior domain (regions removed from the free edges) was assumed

to be in a state of plane stress, the axial displacement u was assumed
to be a function of x only, and the displacement components, v and W,
were both assumed to vanish identically. The boundary layer equilib-

rium equations coupled with the compatibility equations were split into




two problems. MNamely, a modified torsion problem and a modified

plane strain problem. The resulting fourth order differential equa~
tions were solved by asymptotic expansion in terms of the ply thickness
h/2. The matcaing of the boundary layer solution with the interior
domain solution was satisfied by the impoced boundary conditions for
the two problems. The results for a [+45] graphite-epoxy laminate
showed good agreement for the interior regions with References [6] and
[7] while the interlaminar shear stress t,, at the free edge was found
to be lower than the predicted singularity of Reference [7]. The
through-thickness stress distributions showed nonzero shear stresses
Txz and Tyz ON the free surfaces 2z = th as well as on the midplane

z = 0. Also, the out-of-plane normal stress o, vanished on both the
interfacial planes z = +h/2 and the midplane z = 0. This is unlike
the results of Reference [7] which indicated maximum values of o, on
the midplane of a [0/90]S laminate and on the interfacial planes of a
[145]S laminate. Finally, it should be noted that the approximate
nature of the formulation in Reference [19] did not satisfy the vanish-
ing stress boundary conditions 1yy (+b,z) = 0 and oy (:b,2z) = O for

each layer.

1.2 THE FINITE DIFFERENCE SOLUTION

In view of the discussion in Section 1.1, the finite difference
solution of Reference [7] seems to serve as the most dependable solu-
tion known to the researcher. This is due to the fact that the formu-
lation was required to obtain the exact elasticity >:lution to the

problem. However, there were inherent deficiencies in the finite




difference procedures as pointed out by Pagano and Pipes [21]. To
this end, numerous tests were carried out by this author to examine
the “"exactness" of the solution in Reference [7] with emphasis on its
behavior near the free edge. The following observations can be made.

(1) For bidirectional lamirates (0° and 90” plies), all stress
free boundary Eonditions were satisfied except at the four corners
of the laminate where the out-of-plane normal strecs did not vanish
but took o4 & low value. Also, the sign of the outer layer o, at the
exact free edge was found to be inconsistent with that of the inner
layer. These results may be attributed to the dissatisfaction of the
equilibrium equations on the free boundaries as can be seen in the work
of Pipes [12].

(2) For angle-ply laminates [:e]s, neither of the stress free
boundary conditions, oy(tb,z) = rxy(tb,z) = 0, was satisfied at the
intersection of the interface and the free edge. Both oy, and 1yy at
this suggested singularity were of an erroneously large order of
magnitude--as high as the axial stress ox. As a result, the inter-
laminar shear stress 1y, attained a maximum finite value rather than
the possible infinity predicted by Pipes and Paganc [7]. Failure to
satisfy the vanishing stress boundary conditions at the four corrers,
oz{2b,*h) = rxz(:b,:h) = 0, was found again. Moreover, the sign
reversal of stresses which was found for the bidirectional laminates
as a result of change in the stacking sequence, was not observed for
the angle-ply lamirates. The above boundary violation may be due

to errors inherent in the sclution procedure for the angle-ply




Taminates.

It may be concluded that despite the good agreement with the
results of References [6], [11] and [19] in regions removed from the
free edges, the finite difference solution yields podr results near

“the mathematical singularity. In order to determine the proper order
of magnitude of stress intensity near the singular point, a more
rigorous analytical solution to the field equations must be obtained.
Such a solution was described by Pagano and Pipes [21] as a "mathe-
matical nightmare."

The present thesis secks a solution which predicts accurate
interlaminar free edge stress intensities for laminates. Due to the
above-mentioned mathematical complexities, it is certainly not an easy
task. As described in the preceding section, all the previous investi-
gations show a common result--the plane stress lamination theory is
recovered near the central plane y = 0 provided the laminate is suf-
ficiently wide (b/h >> 1). This suggests that the boundary layer
effect is directly related to the geometrical ratio b/h, and that the
stress distribution throughout the laminate is the combination of the
interior region solution and the boundary layer solution. The method
of solution employed in the present thesis is the perturbation
analyses [2, 22] developed in the 1940's to solve boundary value prob-
lems in fluid mechanics and extended to problems in salid mechanics in
the 1950's. The isotropic theory of Reiss and Locke [20] and the
anisotropic theory of Tang [19] were essentially based upon such

analyses. The main differences between the present 4thesis and the




theory of Reference [19] are summarized as follows. (1) The present

thesis is based upon the displacement formulation in which the compati-
bility equations are satisfied automatically. }he resulting field
equations are second order partial differential equations in terms of
the displacement functions. Reference [19] was based upon the stress
formulation in which satisfaction of the éompatibi]ity equations
resulted in fourth order partial differential equations in terms of
the stress functions. (2) For the interior regions, the present
thesis detrrmines the three dimensional solution to the reduced govern-
ing equatiuﬁs (h/b ~ 0) while satisfying the symmetry and antisymmetry
conditions, the displacement condition, the continuity conditions

and the vanishing stress boundary conditions on the top and bottom
surfaces. In reference [19] the displacement components v and w

were both assumed to vanish identically for the interior regions and
the axial displacement u was assumed to be a linear function of x
alone for -.uch regionsf (3) For the boundary layer region, the
present thesis removes mathematical complexities by considering the
free body diagram of an infinitesimally thin slice containing the
interfacial plane. Such a limiting analysis provides sufficiently
accurate determination of the coefficients of the boundary layer
solution for h/b << 1. The physical validity of the composite solution
(interior and boundary layer solutions combined) is insured by the
following requirements. The material immediately adjacent to thé

interfacial plane must satisfy the “"stretched" governing differential

equations, the matching principle of perturbation theory (Section 1.3),

e Wil e e
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the force and moment balance wéth the stress resultanfs on the central
plane (y = 0), the self-equilibrating conditions of the out-of-plane
normal stress resultant, and the free edge stress boundary cqnditions.
Reference flg] considered two separate problems for the boundary layer
region according to the even and odd nature of the stress components.

A stress function following the isotropic torsion problem was assumed

for the T° (modified torsion) problem. A similar function was then .~

chosen as the particular solution to the fourth order equation of the
pe (modified plane strain) problem. This particular solution along
with the homogeneous solution (5th order polynomial) constituted the
solution to this problem. The combinration of the T° problem and the
P° problem failed to satisfy some of the stress boundary conditions at
the free edge and on the free surfaces. And the approximate nature
made the through-thickness stress distributions incapable of properly
describing the force and moment equilibrium and the self equilibrating

condition at any level of z.

1.3 PERTURBATION METHOD

Consider the differential equation
ey' -y'+y=0 , 0<x<1 (1.1)

8 (1.2)

y(0) =a , y(1)

where 0 < ¢ << 1.
Assuming the exact solution to the problem is not available, the

following approximate steps must be taken:

AR AR RS A e

e b T
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As ¢ vanishes, Equation (1.1) reduces to

y'-y=0 . (1.3)

which has a solution of the form

y° = ae® (1.4)

where the superscript ° denotes the solution corresponding to e = 0
and & is an unknown coefficient. Solution (1.4) can satisfy only one
of the boundary conditions (1.2). For the other boundary condition

to be satisfied, a stretching transformation is introduced in the form
€=|B- xl/c)‘ (1.5)

where A > 0 and B is the boundary 1imit of the stretched end (0or1

in the present problem). It will be shown that this transformation
magnifies a small region called the boundary layer in which y changes
rapidly in order to retrieve the dropped boundary condition at the end
x = B. Solution to the boundary layer equation must match the solution
of the reduced equation (1.3) according to Prandtl's matching

principle [2],

lim y° _ Tlim yBL
X*BY -5+,y (1.6)

where yBL is the boundary layer solution.
It may be shown [2] for the present problem that the boundary
layer exists near the end x = 1 and the value of X in Equation (1.5)

ijs found to be 1. Hence

=
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. -
y = aeX

since it must satisfy the first of Equations (1.2). Also, the

stretching transformation (1.5) becomes

1 -x

£ =

(1.7)

(1.8)

Equation (1.8) is now introduced to transform the original Equation

(1.1) into
dy , dy
+& =9
dgz dE
for e << 1.

Equation (1.9) has the solution
yBL = ¢ + de”t
which should satisfy the second of Equation (1.2).
c+d=38
The métching principle (1.6) is now applied as
Tim y° - lim yBL

X + 1] [

or,

Hence from Equation (1.11),

Hence,

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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which yields

¥l = e + (8 - ae)e~t (1.15)

Finally a uniformly valid solution is formed according to the

equation

Yo =y + B (y0)BL (1.16)

where Yc is the composite solution and (yo)BL represents the common

- part contained in both solutions.

It is clear that in the present problem

Bl im yBL = qm Y = ae, (1.17)
£+ x -+ 1

(y

hence the composite solution to the original equation is
Yo = aeX + (B - qe)et (1.18)

The above derivation was required for the zeroth order problem
of Equation (1.1). Fcr a very small e, the zeroth order composite
solution (1.18) provides sufficient accuracy. For a relatively larger
€, solution to higher orders must be carried out to achieve better
accuracy. This is shéwn in the following steps.

The solution to the original equation‘(l.l) may be expressed as

an asymptotic expansion of the form

™~

y= ey (x) , €< (1.19)

n=0

Substituting (1.19) into Equation (1.1) results in

P
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I (€n+1y"n - c"y'n + e"yn) =0

(1.20)
n=0 :

Since this is an identity equation in the nonzero parameter e,
the coefficients corresponding to each n must vanish for all x in the

domain specified by (1.1). Hence,
Yo -¥ =0 (1.21)
Y'n-¥n =Yy 021 (1.22)

Also, substituting (1.19) intc the beundary condition (1.2) leads to

¥o(0) = a (1.23)
Yo(l) =8 (1.24)
¥a(0) = y,(1) =0 n>0 (1.25)

It is clear that the zeroth order problem is defined by Equa-
tions (1.21), (1.23) and (1.24). The composite solution to this
problem can be shown to be identical to (1.18). Also, it is seen that
at any level of approximation n, Yn-1 is known, hence y, for any n is
given by the first-order equation (1.22}. Therefore, the stretching
transformation (1.8) should be continually introduced near the end
X = 1 where the boundary condition is dropped. If the asymptotic
expansion

o«

n=0

(1.26)

€ << 1
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is assumed, the transformed equations are

dzy0 dyg '

—_— = (1.27)
d€2 dg

d2yn dy,

;.ET- a.g-: -yn_] n _>_] (].28)

Ancg the boundary condition at x = 1 becomes

Yole = 0) =8 (1.29)

(1.30)

1
o
3

v
—

ynl€ = 0)

At this point it must be noted that Prandtl's matching principle
(1.6) fails to match expansions containing higher-order solutions.
Instead, Van Dyke's matching principle [2, 22] should be employed to
obtain a composite solution. For simpiicity in the present thesis,
only the zeroth order problem will be considefed, hence no elaboration

will be given. Nevertheless, it may well be an intriguing topic of

future study.




'Chapter I1
PROBLEM FORMULATION

Figure 1 shows a balanced symmetric laminate of 2m plies of
homogeneous orthotropic lamina oriented at angles [6]/82/83/..../9m]s
with the x axis. The laminate thickness is small compared to other
dimensions, i.e., the length dimensions are of the order L > b >> h.
One of the orthotropic axes of the laminate coincides with the z axis.
The laminate is subjected to a constant inplane axial strain ey. As-
suming elastic response exists everywhere throughout the laminate, the

field equations can be derived as indicated in the following section.

2.1 GOVERNING FIELD EQUATIONS
Introducing a rotational transformation (Reference [1]) to the
layerwise orthotropic material leads to the following constitutive

equations with respect to the reference coordinate axes xyz

o 1M o Gz w3 0 0 1] ™) ey 10

oy (G2 G2 C23 0 0 Cz6 ey

% _ |3 Ce3 C3 0 0 Gy 2 (2.1)
Ty 0 0 0 Cgq Cs5 O Yy

Tyz 0 0 0 C4s Cg5 O Yxz

[Txy 16 Co6 C36 0 0  Cgel  Lvyyl

where the superscript k denotes the kth layer in the laminate. The

strain-displacement relations in each layer are

16
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X
Ey = V,y
CZ = W,z
(2.2)
Yyz = WY + V.2

Yxz = WoX + U,z

Yxy = VaX + u,y

where a comma denotes partial differentiation.

Sincé the Tong laminate is loaded only at its ends x = L.
Saint Venant's principle [23] can be invoked such that the stresses in
regions far away from the ends are indeperdent of x. Thus, the

equilibrium equations in such regions reduce to

T a1
XY 4,2 xz 0

ay 3z
90 9T

i AR 7 A

dy * F¥4 0 (2.3)
9T 0
—yz , 7z _

3y T3z <0

Combining equations (2.1) and (2.2), and intearating the
resulting stress-displacement relations (independent of x) results in

the following displacement fields for each layer.

u = (C]y + Coz + C3)x + U(y,z)
2
v = (Cgz + Cs)x - =+ V(y,2) (2.4)
2
= - + Cex - G220 + ¥(y,z
W= -Caxy + Cgx Cor* (y,z) ]

where C; through Cg are unknown constants and U, V and ¥ are unknown
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functions of y and z only.

The following symmetry and antisymmetry conditions must be

imposed:

u(x,y,z) = uix,y,-z)
v(x,y,z) = v(x,y,-2)
w(x,y,z) = —w(x;y,-Z) (2.5)
v(x,y,2) = -v(x,-y,2)

w(x,y,z) = w(x,-y,z)
and the experimentally verified [13] condition

U(O,y,h) = ”U(Oa'Y$h) (2-6)

is imposed.

Equation (2.6) leads to a more general antisymmetry condition
u(09Ytz) = -U(O,'y,l) (2-7)

for continuity conside.ation.
At this point, the even and odd nature of the displacements u, v,
w in relation to y and z can readily be seen. Substitution of Equa-

tions (2.4) into Equations (2.5) and (2.7) results in

C]=C2=C4=C5=C6=O (2.8)
and
U(y,-Z), V(y,Z) = V(y,'Z), W(Y-Z) = ’N(Yv'z)

°U('y,1)- V(y,z) = -V(-y,z), N(Yiz) = W(‘Y»Z)

Uly,z)
U(y.z)

(2.9)
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This greatly reduces the Iayefwise displacement field functions (2.4)

to
u = C3x + U(y,z)
v = V(y,z) | : (2.10)
w=Wy,z)

As defined in the beginning of the present chapter, the laminate
is subjected to a uniform axial strain. Hence the constant C3 in
Equations (2.10) is nothing but the applied strain Ex-

Combfning Equations (2.1), (2.2), (2.3) and (2.10) resu]tsvin
the following set of simultaneous partial differential equations with-

in each layer.

|
o

CosU-yy + CggU,zz + CogV,yy + Ca5Vizz + (C36 + Cq5)M,yz =

- C26Usyy + Cq5U,zz + CopV,yy + CqqV,2z + (€3 + Caql¥yyz = 0 (2.11)

(C45 + Cag)U,yz + (Caq + Cx3)V,yz + CagW,yy + C33M,zz = 0
The appropriate traction free boundary conditions are (Fig. 1)

Gy(tb ,Z) =0
Txy(tb,z) =0 (2.12)

ryz(:b,z) =0

along the free edges, and

o,(y,th) = 0
Tz (¥,2h) = 0 (2.13)
Tyz (y’th) =0
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on the top and bottom surfaces of the laminate.
Equations (2.12) and (2.13) may be expressed in terms of the

unknown functions U, V, I in the form

A ' k
Lo {Cyzex + CpoV,y(2b,z) + CogW,z(2b,z) + Czsu.y(ib,z)}( ). 0
{Crpex + CopVsy(tb,z) + CagM,z(2b,z) + C66U,y(tb,z)}(k) =0 (2.12)

{C4qV,2(b,2) + Cagh,y(2b,z) + Cg5U,2(2b2)}(K) = o

)
o

{C]3€x + C23V,y(y,th) + C334,z(y,=h) + C36U,y(y,1h)}(]) =

0]

{CaqV.z(y,th) + Caall,y(y,th) + Cael,z(y,+h)}{1) = o (2.13)

(CasVz(y2h) + Cagsy(y,2h) + CssU,Z(y,:h)}(]) =0

where the superscripts k and 1 denote the kth layer and the outermost
layer (Fig. 1), respectively. Equations (2.9) also yield the following

restrictions on the displacement fields

{,2(y,001™ = ¢

]

.z(y,001™ = ¢ (2.14)

(=]

{H(y,0)3 (™ -

along the midplane and

!
Q

. ((o,2)3(K) -
(2.15)

1
Q

v(0,2)3{¥) -

[
o

{H.y(O.Z)}(k) =

along the central plane and the superscript m denotes the layer
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adjacent to the midplane (Fig. 1).

Equations (2.11) along with Equations (2.12) - (2.15) represent
a well defined boundary value problem. Also, it is important to note
that these field equations werz derived for individual layers. Hence
continuity in displacements and tractions across the interfaces must
be enforced to insure completeness of the solution.

Equations (2.11) - (2.15) can be put in the dimensionless forms

(Qgg(h/D)2U,YY + 955U,22 + Qpg (h/D)2V,YY + g5V,
+ (Q35 + Q45)(h/b)w,YZ)(k) =0

{0p6(/b)2U,YY + Qq5U,ZZ + Qpp(h/b)2Y,YY + QqaV,22

+ (Qp3 + Qgg) (h/DJU,YZ) I = 0
{{Qq5 + Q3g)(h/D)U,YZ + (Qgq + Qp3)(h/b)V,YZ
+ Qaa(h/b)2, vy + Q331,223 (¥) = 0
Q
{Qy2ex + -%gV.Y(tl.Z) + 9%gw,z(ﬂ,z) + 9-ﬁ-éu,v(ﬂ.z))(k) =9
Q
Wigex + —¥(21,7) + 9§§w,z(:1,z) + 56y y(:1,20%) =0 (2.17)
{’%QV,Z(_I,Z) + QQEW,Y(tl,Z) + —%ﬁu,z(:l 7)}‘k) =0
{Q3ex + Q%QV-Y(Y»rl) + 9%g-w.z{v,ﬂ) + E%QU,Y(Y,fI)}(]) = 0
Q Q
{Q%QV.Z(Y.:I) + AL Y(Y,20) + —%§u,z(v,t1)}(1) -0 (2.18)
{9%§V.Z(Y.r1) + 9%§w,v(v,:1) + 9%§U'z(y,f])}(l) =0
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w,z(v,03{m) =

)
()

(2.19)

|
o

v, z(v,0n™ -
w(y,0)1™m =

1
@]

t
o

{u(o,z)}“‘) =
o,k =
o, ¥(0,2)3 (%)

(2.20)

t
1 (o=
o

k
where ng) = C§§)/C£:i

ficient of the kth layer, Y = %»and = % , the dimensionless co-

1
with Cégé being the largest stiffness coef-

ordinates, and U, V, W and their partial derivatives being dimension-

less quantities.

2.2 EQUILIBRIUM CONSIDERATIOHN

Before developing the solution procedures, it will be shown that
a close examination of the force and moment equilibrium of a section
of the laminate will lead to significant reduction in the mathematical

complexity. Consider the free body diagram in Fig. 2. Let

t=f o k= 12.m (2.21)

hence,
m
r t.=1. (2.22)

AT 4031 R 2 B 1
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‘which gives
1 1 ;
1 oyt0,2)haz - | ry2 M (Y, 2, baY (2.23) :’*
and £ My = 0 which gives %
1 } |
| oyt0.2002(z - 7,30 = I o, () (¥, 7, )b2VaY (2.28)
Iy 0

) k
where Z, = 1 - ¢ tjis the elevation of the kth interface in the
j=1
first quadrant.

On the other hand, the force equilibrium per unit length

requires
I Fe=0

which yields

1 1
Jz Tyy(0,2)hdZ =I txz (Y52, )bdY (2.25)
k (o}

At this point, an important premise must be recognized in the
solution method of the present thesis. It has been numerically
observed in [24] and examined in the present study that the central
plane stresses ay(k)(O,Z) and rxy(k)(O,Z) are essentially constant

in each layer for h/b << 1 (Figs. 2, 3). Hence it may be expressed

mathematically that




g

IF = £1 o, 80,008, = 0 (2.26)

and

I (3 .
zFy = kfl Ty (0,2)f =0 (2.27)
for equilibrium considerations.

Equations (2.23) through (2.27) together serve as an important
tool to reduce the mathematical complexities in the present thesis.
Since the material on either side of the kth interface 7 = 7, must
satisfy the governing equations (2.16) and the boundary conditions
(2.17) and (2.20), and since the interlaminar stress distributions are
of primary interests, the boundary layer equatiohs will be solved by
considering only the infinitesimally thin free body diagram about this
interface (Fig. 4). By doing so, the boundary value problem is re-
placed by the free body force and moment system of Fig. 4. Thus, the
stress boundary conditions on the top and bottom surfaces, (2.18), can

be safely ignored. This will be elaborated upon in Subsection 2.3.2.

2.3 PERTURBATION SOLUTION

As described in Section 1.3, two regions will be considered
separately. HNamely, the interior region where the solution to the
reduced equations (¢ -~ 0) satisfies boundary conditions at one end, and
the boundary-layer region where solution to the “"stretched" equations
satisfies the boundary condition at the other end. Matching of these

two solutivns must be enforced to insure uniformity of the resulting
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composite soluticn.

- 2.3.1 THE INTERIOR REGION

To seek a straightforward expansion, let

k) = 3 ey (K(y,z)
n=0
vk o 5 oy (Ky g (2.28)
n=0
WK = 5 e gy ety k=1,2,3,0,m
- n=0

whére the small parameter e represents the geometrical ratio h/b.
Substituting these expansions into Equations (2.16) and equating
coefficients of equal powers of e to zero result in the following sets

of equations:

k
e® : {st“o,zz * 045Vo,ZZ}( V<o
k
{04on,zz *+ 044V, 22 Mg (2.29)
{0agto, 22}4) = 0
el Qscl - QacV + (Qqe + Qze )W (k) - 0
et 1Q65U1,72 + QusVy,zz + (Q3g *+ Qas)Vo,yz
QqsVy,7z *+ QgV1,2z + (Qp3 + 044)”o,vz}(k) =0 (2.30)

() . g

{(045 + Q36)Uq,v7 *+ (Qqq * Q3)Vp,v7 * 033W1,zz}
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el : {QGGUr-Z,YY + Qg5Up 77 * Q6Vr-2,vy + QsYy,7z
+ (Q3g * 045)Wrw1,vz}(k) =0

{QZGUr-Z,YY * QgsVr,2z * Q22Vr-2,vy * Qaaly 2z
+ Qg3 + Q44)Nr-1,YZ}(k) =0 (2.31)

{(045 * Q36)0p_y,yz * (Qag * Qp3)Vro1 vz
* QqqMpo2 vy * 033”r,zz}(k) =0 r>2

Now the displacement conditions (2.19) and (2.20) give

unfg)(v,o) = 0
vnf?)(v,o) =0 (2.32)
W, ™ (1,0) = 0 n=0,1,2,....
and
un(k)(o,z) =0
v, *Y0,2) = 0 (2.33)
uy§)(0,2) = 0 n=0,.,2,
k =1,2,...,m

Retognizing that the boundary 1ayer'regions exist near Y = + 1,
the stress free boundary conditions (2.17) are dropped for this
interior region.
| | The stress boundary conditions on the top and bottom surfaces,

Equations (2.18), yield
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Q Q Q .
{Q13€x + —gl Vn,y(v,ﬂ) + —]::é Nn’Z(Y,t]) + —% Un,Y(Y»i],)}“) =0
Q Q
) {géi'vn.z(y’*‘) * "gg'”n.v(y»f‘) + ‘%é'un,z(Y,:l)}(]) =0 (2.34)

45 Qa5 Qs
{gﬁ'— Vn’Z(Y’i]) + B wn,Y(Y,i]) + “h un,Z(Y’t] )}(]) =0

n=20,1,2,....

s (k) . _ (k) __ (k).
For the lamination theory, a, Tyz = Tyz =0

(k = 2,3,4,...,m) must also hold for the interior region. Hence

Equations (2.34) may be generalized te

{Q]3ex + —%Q-Vn’y(Y,tl) + —%gvun,z(y,f]) . '%Q'Un’y(Y,:l)}(k) -0

‘éé'vn,z(y’i]) + ggi Wo,y(Y,21) + ggé Un‘Z(Y,tl)}(k) =0 (2.35)
Q Q Q
{"%é Vn,z(Y,£1) + ‘§§'wn,y(Y,t1) + —%é-un,z(v,:l)}‘k) =0

n

n=0,1,2,....

k=1,2,...,m

The derived symmetry and antisymmetry conditions (2.9) lead to

0 v,2) = 0, Mv,-2)
Vo (k) (v,2) = v (K)(y,-z)

(k) = -y (k)
Wy N/ (v,2) = -u (K)(y, -7
n o (1.2) n - {a-2) (2.36)

(K v,2) = .o Wiy z)
o K(v,2) = v (K)(y,z)
. K (v,2) = w () (y,2)

n-= 0,1.2,..:.
k=1,2,....,m
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Equations (2.35) may be but in the following form with respect

to the order of €, similar to Equations (2.29) through (2.31).

59 : 013(k) exp + Q33(k)HO,Z(k)(Y,tI) =0

0 (2.37)
0

C44(k)V6,Z(Y,t]) + Q4S(k)UO,Z(Y’i])
Qg5 KIvy 7(¥,21) + 055 (Kl 5(v,e1)

‘ (k)
TR AN O R A TR

+ 0360, 5y (r,01) = 0

044(k)vr’z(k)(Y,tl) + Qqs(k)ur,z(k)(Y’i])

, (2.38)
+ 044‘k)wrf$3y(v,¢1) =0 ‘
Q4s(k)vrez(k)(Y,f]) + st(k)ur’z(k)(Y,i])
+ Q4S(k)wrf§zy(v,:l) =0 r>1

Thus, the interior region problem is redefined by the infinite
sets of equations with.respect to the order of ¢.
The Zeroth Order Problem:

Equations (2.29), (2.32), (2.33), (2.36) and (2.37), (n = 0)
constitute the zeroth order problem for the interior region.

The solutions to Equaticns (2.29) have the form

Uo(k) = Ao(k)(Y)Z + Bo(k)(Y)
v ()
o]

"o(k)

¢,z + 0, K (v) (2.39)
£V 1)z + £ (K)(v)

]

k=1,2,...,m

where Ao(k)(Y) through Fo(k)(y) are unknown functions. It may be
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noted that the form of Solution (2.39) is similar to Pagano‘s approxi-

mate solution of Reference [17].

From Equations (2.36) with n = 0, it may be shown that
(K)pvr =~ (K) gy = g (K)puy
Ay  (Y) = C () = F ol (Y) = 0 (2.40)

The first of Equation {2.37) then leads to

Q (k)e h
R
Q33
hence (k) (k)
L0 Qy3' " eyh .- Ci3° egh , (2.41)

The last two of Equations (2.37) are identically satisfied.

From Equations (2.32) withn = 0

B K0 =0, =0 k=1,2,...m (2.42)

n
(=

Also, from Equations (2.36) with n

Bo(k)(_y) = - Bo(k)(y)

2.43
vy = -0, k=12, (2:43)

Equations (2.26) and (2.27) may now be expressed in the form

m CsaCqqy (k) m
2313 (k), o *(k)
£ [[C - ’—“-—4 ]h b+ 5 C h, D Y
k=1Lt 12 C33 j kEx k=1 22 ko (¥)

m
RO

k=1 nBo 00 < 0 (2.44)




m CoeCyay (k)7 m ' -
2 [[cls - % ]3) ]"k‘xb - Czs(k)hkno'(k)(y)

k=1 €33 k=1

. kg; ces gy ®y) = o (2
where Bo'(k)(Y) and Do'(k)(Y) are the first derivatives of the cor-
respondihg functions. Note that the higher order terms were neglected
in these equations. '

Equation (2.41) implies that continuity in the displacement
W(Y,2) can be insured only when higher order terms are included since
Qij(k) (k = 1,2,...,m) are different in general.,

Enforcing displacement continuity in U(Y,Z) and V{Y,2) results

in

Bo(')(v) = BO(Z)(Y) = eeee = 8, ™(y) (2.46)

0oV v) = 0,y = ... = DoY) (2.47)

Integrating Equations (2.44) and (2.45), making use of Equations

(2.42) and combining the resulting Equations with Equations (2.46) and

(2.47) lead to

B, (K)(y) - - N9 tMSESQ%  bY
0 9295 - 9343

k=1,2,...,m (2.48)

944z - Gag
oM () = . (1%~ Iy
929 - 939,

where
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m CoaCyq1(k)
23“13
7 e - 292,
» q] k=1 12 C33 k
m
q ] z c ( )h %
‘ 27 F2
m ;
(k)
ag = L (2.49)
m [? C25C13](k)
Qs < - C
4 k=1 16 33 k
m (k)
q. = £ C h
57 Lles M

As mentioned in the preceding section, higher-order approxima-
tions are not pursued in this thesis for simplicity. Hence, the

interior region solutions are found to be

u(k) = g (K vy + o(e)

v(k) = Do(k)(y) + 0(c) (2.50)
(k)
w(k) = - El%;;?%?"z £ 0(e) k=1,2,....m

where Bo(k)(Y) and Do(k)(Y) are given by Equations (2.48), and O(c)
represents the highest order term truncated in the asymptotic expan-
sion.
2.3.2 MODIFIED ZEROTH ORDER INTERIOR REGION SOLUTION

Solution (2.50) does not completely satisfy the vanishing stress
condition (2.35) to the proper order of e. This can be seen

. y
from Equation {2.38) where the zeroth order displacements Uo(k'(Y,Z)
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and Vo(k)(Y.l) weée related to the undetermined first order displace-
ment w](k)(v,/). It has been described (Section 1.3) that solving
higher order problems requires more complex mathematical procedures
such as Van hivke's matching principle. Also in Section 2.2, it

was shown that the uniform stress distribution on the central xz -
plane (Y = 0). a numerical result, is utilized as an important tool

to reduce mathematical complexity for the boundary layer region.
Therefore, an improved zeroth order interior region solution to evalu-

ate better stross intensity near the central plane is certainly quite

demanding.

To seck ~uch an improvement, Equation (2.39) along with Equation
(2.40) are new required to satisfy the stress conditions (2.35)
exactly. Equ:iions (2.32), (2.33) and (2.36) remain satisfied. The

following equ::ions are obtained.

u, (k) - Eo(k)Z (2.51)

Uo(k) - Bo(k)(Y) (2.52)

vo(k) - Do(k)(Y) (2.53)

(Qyq¢, 9%2 Do' (Y) + 9%2.50 + 939 Bo'(Y)}(k) =0 (2.54)

where Eo(k) nov Jecomes an unknown constant for the kth layer.
Again er :cing contiiuity in displacements Uo(k)(Y,Z) and

‘o(k)(y,z), rc--2cCtively, yields

B,(1) - 80(2)(Y)»= e = 8,0y - g (vy (2.55)
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and 0,1y = 0,y =L = 0Ky = ) (2.56)

Hence, Equation (2.54) may be written as E
(k) (k) (k)

k Co3' " =, C33 k) , 36 -
C13( )ex'+ - Do'(Y) + - Eo( ) 4 — By'(Y) =0 (2.57)
Continuity in the displacement wo(k)(Y,Z), as developed in Sub-
section 2.3.1 (Equation (2.41}), will be insured only by higher order
considerations, hence it is not imposed as a physical requirement in
the present modification.

Finally, recalling Equations (2.26) and (2.27) gives

(k)p
m C K fm ¢ he)
[g (c]2+_gzgol‘ >hk}x+ e LT P
k=1 k=1 )
(k)
CoekIn
+ [ g —géB'—_E}Eb.(Y) =0 (2.58)
k=1
and
(k)
m Cye (K m Cos hyl
[kfl,(cls"TEo] Mejex * B TB }Do'(Y)
| (k)
M Cep My
R0 RIR YY) = 0 2.59
‘ (kil (1) (2.59)

Since there are m + 2 simultaneous equations ((2.57) - (2.59))
for the m + 2 unknowns By'(Y), Dy'(Y), and Eo(k), the modified zeroth
order interior solution can be readily determined.

To show the improvement made in the present modified interior

region solution, two numerical examples are given in Tables 1 and 2.
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TABLE 1*
[0/90] (e = 0.133)

Modified
Displacement Finite Difference ZIR** Solution ZIR Solution
uk)/(e,bY) 0 0 0
v(K) /(e bY) -0.0397 -0.0391 -0.0396
W /(e n2) -0.2467 -0.2534 -0.2448
W(2) /(e D) -0.2055 -0.2172 -0.2072
* Material: graphite-epoxy laminate with constant ply
thickness.
** Zeroth order interior region.
TABLE 2
[45/-45]¢ (c = 0.133)
Modified
Displacement Finite Difference ZIR Solution ZIR Solution
uk)/ (e, bY) 0 0 0
v(k)/ (e bY) -0.7409 -0.7298 -0.7433
W/ (e h2) -0.0607 -0.2354 -0.0604
w(z)/(cxhl) -0.0613 -0.2354 -0.0604
As expected, the Modified ZIR solution yields more reliable

results than the ZIR solution.

ek ]




38
(1) =(2) coupLE OF Ry (Y=0) (7)-(8) CcouPLE OF Rxy
(3)~(4) coupLE OF Rxy(Y:0) {9}-(10) courLE OF Rxz
{5)- (6) courLE OF Rxy {11)~(12) COUPLEOF Rz
NOTE. RESULTANTS OF Oy AND Oz ARE ONLY SHOWN
_IN YZ-PLANE
VA
< | £
7
T
gy _.®8 |
(3} \
L)
BN S F . ] _.vL.___.__Y
We)f A
(2! L7 /, 4,____(6)
’/
(II)T (12)
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FIGURE 5. FREE BODYDIAGRAM OF FIRST QUADRANT
OF TYPICAL SECTION
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Hence the former will be employed throughout the present thesis
to evaluate the central plane stress fntensity for the determination
of the unknown coefficients in the boundary layer region solution.
2.3.3 THE BOUNDARY LAYER REGION

Consider the first quadrant of the yz - plane as shown in

Figure 5. Introducing the stretching transformation

n= '(‘J—C:“Y“) (2.60)

near the free edge Y = 1 to the governing equations (2.16) results in

the following equations for this quarter plane of the laminate.

, (k) _
{Qe6Usy, * Qs5Uszz * QgVonn * 045Vszz - (Qzg + Qg )4, 7} ) - 0
k
{QpgUsnn + QasUszz *+ QaVann + QaaVszz - (023 + 044)N’n2}( Y=o

. \ (k)
{-(Qg5 + Q36)Usz - (Qqq * Q3)Vonz * QagMonn * Q33tszz} ~ = 0

(2.61)

To satisfy Prandt1's matching principle (Section 1.3), assume the
following composite expansions
(k) - Aon (k)
] = [By(Y) + Pge cos ag Z] + 0(c)
Aon
V&) = o (1) + Re™®" cos ag 1) 4 0(e) k= 1.2,..m (2.62)

ulk) = [E,Z + spe 0" sin o 1K) + 0(c)

where Bo(k)(Y), Do(k)(Y) and Eo(k) are the Modified ZIR solution
given by Equations (2.57) - (2.59), Po(k), Ro(k) and_So(k) are un-

. - k . oo s
determined coefficients, and ao( ) are undetermined positive quantities

DA

Sprns. S
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boundary layer region.

The subscript o implies the zeroth order solution for the

Substituting Equations {2.62) into Equations (2.61) and neglect-

ing the 0(c) terms results in the following set of three simultanecus

{(045

Thus,

Q6>

algebraic equations corresponding to the =0 order:

2 2 k
{(Qgg2e - U555 )P0 * (Qaghg” - Qg5 IRy - (U3 + 045)A0“oso}( ’ -0
((Op6107 = Qsao?)Po * (Qp2y” - Q44207 Ro - (g3 * 044)*00'050}(k =0

k
*+ Q3)2000P0 *+ (Qqq *+ Qp3)20o0Ry + (344A02 - 033a02)50}( )=
k=1,2,...,m (2.63)
For each nontrivial term of Solution (2.62) to exist the
determinants of these algebraic equations must vanish individually.

2 2 2 2 , (k)

o Q55 Q62" = Q57 -(G36 + Q45))0“0

Opgrol - Useo?  Qpprg” - Qaasg’ Qg3 + Qga)igs,| = 0 (2.60)
(Qg5 + Q36)202p  (Qag *+ Q23)20% Qago” - Q33707
k =1,2,...,m

tions

These sixth order equations may

by the classical treatment [25]

variables [26].

be regarded as third-order equa-

and the method of complex

The six roots are found to be in the form
0o(1,2) = + 7 agt®)
(3g(3,8) = + 5 agt{¥) (2.65)
0g(5,6) = + T ag(¥)
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where E(k}, B(k), E(k) are three positive constants in terms of
material constants of the kiP layer (see Section 3.2). For matching
consideration, however, the positive roots must be dropped since they
lead fo exponential growths of the disp?acements for large n (or small
Y).

Upon determining the characteristic roots from Equations (2.65),

Solution (2.62) takes the following general form.

ulk) = {By(Y) + (P1e.aa°n + PzébGO" + P5e*0") cos o Z}(k) +0(c)
v = o)+ (R E®07 4 ryePo0n 4 g E0N) s ag 13K) 4 g
w(k) - {EgZ + (5763200 + 5265-&0n + S3éca°n) sin o Z}(k) + 0(c) (2.66)

where Po(k), are replaced by P](k), Pz(k), P3(k), etc.
With the above solution, the stress boundary conditions (2.17a),

(2.17b) and (2.17¢) transform to

{[QZG(EPI + EPZ + E‘P3) + Q22(5R] + th + ER3)
+ Qp3(Sy + Sy + $3)Jag cos(ag Zk)

Q Q Q (k)
= - [(Qp + 53 Eo)ex f,z Do' (1) + —Zﬁ Bo'(£1}]h)

(2.67)

+ Q36(Sy + Sp + $3)]ag cos (eq Zy)

Q36 Q Q
= - [(Qlﬁ + h EO)‘ 56 Dy’ (£1) + + Bo' (- ])h}( )

(2.68)
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(Qaal(Ry + Ry + R3) - (517 + SpB + S3T)] + Que(Py + P, + P3)3(K) = g
| k=1,2,...,m (2.69)

Note that the right hand sides of Equations (2.67) and (2.68) are all
known quantities from the interior problem. Since there are ten un-
known coefficients in the kth layer, solQing simultaneously three
equations from the boundary conditions (2.67) through (2.69), and six
equations from Equations (2.63) leads to the determination of the nine
unknown coefficients in terms of ag. The accuracy of the coefficients
thus obtained can be readily checked by the self-equilibrating condi-

tion of the stress resultant,
b
IF, =j o,y = g (2.70)
0

for any level of Z (Fig. 2).

Finally, imposing the moment equilibrium conditions (2.24) and
the force equilibrium conditions (2.23) and (2.25) determines the
values of uo(k) and tan (ao(k)Zk) to their orders of accuracy.

In summary, the zeroth order interior solution (ZIR) was ob-
tained by letting h/b go to zero. The Modified ZIR solution improved
the ZIR solution by satisfying the vanishing stress boundary condi-
tions (2.35) exactly. The zeroth order boundary layer solution was
obtained by transforming the governing equations and the boundary con-
ditions (2.17) at the free edge. The matching principle was satisfied
by the composite solution, and the self-equilibrating condition of the

interlaminar normal stress resultant was employed to check the

accuracy of the calculated coefficients. The continuity conditionc
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in both displacements and tractions were imposed. And the force and
moment equilibrium of the composite solution with the central plane
stress resultants were satisfied for the kth interfacizl plane

= 7 (Figs. 3, 4).

A

8 A




Chapter III
SPECIAL LAMINATES

The solution method developed in the preceding chapter applies
to balanced, symmetric laminates with variab]e-thickness plies. For
certain special cases the field equations are greatly simplified by
the vanishing of some elements in the stiffness matrix. Among the
various laminates studied in the literature (Section 1.1) are the bi-
directional laminates [0/90]¢ and [90/0]¢, and the angle-ply laminates
[6/-6] and [-8/8];. These two laminates will be considered in this

chapter.

3.1 BIDIRECTIONAL LAMINATES WITH CONSTANT PLY THICKNESS
When the orientation of the fibrous layer is either 0° or 90°

with respect to the x axis, the constitutive equation reduces to

P R (T e S R S L R 1O

oy €12 Cpp C23 0 0 0 cy

%2 >= Ci3 C3 C33 O 0 0 €z (3.1)
Tyz| 0 0 0 Ca4 0 0 Yyz

Tyz 0 0 o 0 Cgg 0 Yxz

[ Txy | 0 0 0 0 0 Ce6 Yy

k=1,2,...,m.
Consider the laminate consisting of 2m layers with the stacking

sequence [0/90/0/90/0/90...]S as shown in Fig. 6a.

44
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Equations (2.16) reduce to

2
h (k)
Qg6 [B'] Usyy * Qg5 Uszzd " = 0

h)?2 (h K
{022 (B’] Vayy * Qag Vogzz + (Qp3 + Q44)i5} w,yz>( Yoo ()

2
h h (K
{(Qqq + 023)[5} Voyz + Qg {E] Wayy + 033 w,zz,s( )2 g

Note that the first equation is an independent equation whose complete

solution may be assumed in the form

ulk) - {
n

where an(k) (n =0,1,2,....) are unknown coefficients.

e~ 8

AnY k :
. a, e " cos ap, Z}( ) (3.3)

Substituting Equation (3.3) into the first of Equations (3.2)

yield
(k) | { %55 b (k) )
xn“,?) " Qs a"} n=20,1,2,.... (3.4)
Hence ]
o0 . (k)
olk) = ] . h[ 55 b v) . L
{n:O a, sin 066 h “n COS up f ( )

Solution (3.5) automatically satisfies the first of the displace-
ment symmetry conditions (2.19) and (2.20). The second equation of the

free edge stress boundary conditions (2.17) reduces to

Q6 .k 3.
{T Upy ( ]’Z)/ 0 . (3.6)
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Substituting Solution (3.5) into Equation (3.€) results in
a, (=0 n=o0.2,.... (3.7)

hence, U(k) =0 . (3.8)
everywhere in this laminate.
] o (k) (k)
This leads to the vanishing of the shear stresses Txy and L
throughout the bidirectional laminate as may be physically expected.
The modified ZIR solution (Subsection 2.3.2) for V(k) and W(k)
may be determined by solving Equations (2.57) - (2.59) simultaneously
with ﬁb'(Y) vanishing identically. For the simplest case of the four

layer symmetric [0/90]S laminate, the displacements are found to be

v(k) = p (K
uM =g ()7 (3.9)
W@ - g (2);
where
2(2) (2)01 (1) (2) (1) () (2
E(1) c23% 3%13- c23E 3 E 2 22+C22; 2C12+C12;1 texh (3.10)
° (5 5.%35%2333- Siesste 5%9
(2) (V) ( )
e (2) Cp3 €33 (M 1 Gi3 C¥;)C§§)} (3.1)
crcley o T\t gm—m} -
23 “33 23 "33
(1) (1)
DO(k)(Y) - _ m EO + ——c X1y (3.12)
23 23

Introducing the stretching transformation .

B e
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(1 - ¥
n = h (3.13)
tb

into the remaining coupled equations of (3.2) results in the boundary

layer equation in the form

(k)
Q2 Vann + Qa4 Vazz - (Qp3 + Qgq) Wapz} = 0
®2 Vann * Qag Vszz - (Q3 + Qgq) W,y (3.14)

k
{-(Qaq * 023) Vinz + Qgq Wunn + Q33 W,773(K) = o
Following Subsection 2.3.3, the displacements are assumed to be

v(k)

i

A n
Do) (¥) + [Re © ao 21 + 0()
° of % (3.15)

W) < £ M7 4 150 &% gin o 210K 4 oqe)

where Do(k)(Y), Eo(k) are known quantities from the modified ZIR solu-
tion. For the four ply [0/90]S Taminate, they are given by Equations
(3.10) - (3.12). Ro(k) and So(k) are unknown cocfficients.
Substituting Equations (3.15) into Equations (3.18) results in
the algebraic equations for the zeroth order boundary layer problem as

follows

{(Qy; Ao2 - Qg4 “oz)Ro - (Op3 + 04402 2 So}(k)

]
o

(3.16)
{(044 + 023)).0 % RO + (044 102 - 033 ao?)so)(k) =0

For a nontrivial solution, the determinant of these equations

must vanish. Thus,

2
Q2 *02 - Qgq 2 ~(0p3 + Qgq)2g g

"
D

(3.17)

2 2
(Qgq + 03)29 g 44 79" - 033




hence
N . |2 . 4 %3172

p ¥ in ﬁ——
aolk) = 22 uo(k) (3.12)
2
(k)
oK) < Q33 _ Q23%3 * 2023[}44}. (3.19)
Qg4 022044 | '

Note that the 2 x 2 determinant is only a principal minor of the
determinant in Equations (2.68). For conventional composites, such as

graphite-epoxy and boron-epoxy laminates,

Q (k)
(92 -4 63%} >0 | (3.20)

Hence Equation (3.18) yields two pairs of real roots. For match-
ing considerations, the positive roots are dropped, and the zeroth

order composite solution (Section 1.3) takes the following form

a k
Vc(k) = Do(k)(Y) + {(Ry 21907 4 g, 22 “")cos «g Z}( )
‘ (3.21)
wc(k) = EO(k)Z + {(S] 53] apn + SZ 582 ao”)sin ‘19 Z}(k)
| (k)
where p + [92 -4 9§§}]/2
(k) . 022} ,
S D 2
(3.22)
. (k)
{ 2 033}”2
(k) - 2
82 2

and Prandt1's matching principle (Section 1.3) is satisfied.
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The first and third of boundary conditions (2.17) Tead to

. {[Q22(B1Ry + BaRo) + Qn3(S1Sp]ag cos (ag Zk)
= - exh(Qr2 + Qpp Do (¥) + Qp3Ee)}(K) (3.23)
* _' {044 (R] + R2 - S]B] - 5232)}“() =0

From Equations (3.16), additional relations between Ry and Sy

R2 and Sz, are obtained as follows

(3.24)

fl
e

[(Q22517 - Qaq)Ry - (Qp3 + Qgq)87571)

(3.25)

H
o

[(022822 - Qa4)Ry - (Qp3 + 044)8252](k)

Solving Equations (3.23) - (3.25) simultaneously results in
R](k), Rz(k), S](k) and Sz(k) in terms. of hey/(ay cos ag(Zk + ¢))
where 0 < ¢ <<< 1 and 7} is defined in Equation (2.24) and (2.25).

Equations (2.23) and (2.24) then lead to the determination of
ao(k) and tan (aO(k) Zx - ¢) to their orders of accuracy.

Thus the complete solution for the zeroth order displacement
function U(k), V(k), w(k) are obtained and the interlaminar stresses
between the kth layer and the (k+1)th Tayer, 2, = 1 - rgltr , may be
readily calculated from the strain-displacement equations (2.2) and the

constitutive equations (3.1).

3.1.1 [0/90]s GRAPHITE-EPOXY LAMINATE
As a numerical example, the four-ply [0/90]S graphite-epoxy lami-
nate with constant ply thicknesses (Fiq. 7a) is considered. The stiff-

ness coefficients (after transformation) are listed below.




e

— T, e ey
—— YT g Ty il S B
m.......,,L-M‘., ~

e ¢ s e i e N TG |

51
Y4 Z
o m |7 ? 90 (1)
A Al A Al
oL s0@ [i? 0 o @ Jig,
(0. [0/50] LAMINATE (d) [90/0] LAMINATE
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A= Q_-U—; WA‘Z‘&" AE= T\? 13’%
=yt ===
o<t <<<]| o<t <<<i
(c) FBD OF Z=1/2¢ (NFBD OF z=1/2¢
FIGURE 7. FOUR PLY BIDIRECTIONAL LAMINATES
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0 (x 1078 psi) 90 (x 1076 psi)
c{l) = 20.2 cf?) = 2.2
c{l) = o.56 c{%’ - 0.56
c{}) = 2.2 | cég) - 20.2
cfl) = 0.5 cf2) = 0.4
Cé;) = 0.48 cég) - 0.56 (3.26)
c{l) = 2.21 c{2) = 2.2
cia) = o0.85 c{2) = 0.8
c{l) = o.85 c{) = 0.8
céé) = 0.85 ci) = 0.85

From Equation (3.8), the axial displacement function U vanishes
everywhere in the laminate.

The interior region solutions (3.9) are found to be

., @ _
v = vt = 00396 eybY (3.27)
W) = -0.2448 ez (3.28)
0 ‘ X :
uy(2) = -0.2072 c4hz . (3.29)

From Equations (2.2), (3.1), and (3.27) - (3.29), the central

plane (Y = 0) stresses are found to be

oy(])(o,Z) = 0.3552 cx(106 psi) (3.30)
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oy 21(0,2) = -0.3552 ¢, (106 psi)

(1) (2) '
Ty (0:2) = 1,0(0,2) = 0

Equation (3.22) gives

61¢") = 1.10899
| 8,(1) = 0.90172
| 8,(2) = 157550
| 8,(2) = 0.20994

(3.31)

(3.32)

Considering continuity of Equations (3.28) and (3.29) at the

1

interfaces Z = + — and the exponents given by Equations (3.32), it may

N

be postulated that the boundary layer effect in the 90°-ply (Layer 2)

penetrates deeper into the interior of the laminate than that in the

0°-ply (Layer 1).

Hence the zeroth order composite solution (3.21) is in the form

=800nn

-81apn
e 1cg +Ry e

Ve(1) = -0.0396 c by + [(R;

8 -8
uc() = -0.20a8 e hz + [(5; 710" 4 5, SF200T

v.(2) = _0.0396 coby + [(Ry & 1%0" | p c2%n
c X 1 2

Byagn

M) < “0.2072 e bz + [(5; 1%0" . 5, e

)eos aq Z](])

sin ag Z](])

(3.33)

)cos a, Z](z)

Bzuon)sin ag Z](Z)

The unknown coefficients are found (setting 7 = %) to he
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R 1) = 0.8385 Ry (2) = -0.0028 o
R(1) = -1.1776 o R(2) = 0.0984 4,
1) (2) (3.34)
S = -1.0619 ¢ S = 0.N625 ¢
s,(1) = 0.9208 4, 5,() = _0.0134 4,
where
o (3.35)
9 00(1)c05(a0(1)(%_+ z))
e h
6, = X (3.36)
2 ao(z)cos(uo(z)(% -z))

0 < <<< 1

The self-equilibrating condition & F, = 0, Equation (2.70), can

be written in the form

_j° o), Lt hdn =0 0 < g eee T (3.37)

N

Substituting the coefficients of Equations {3.34) into Equations
(3.21) and the constitutive equation (3.1) determines the stresses on

either side of the interface 7 = It may be shown that Equation

1
5
(3.37) is satisfied identically. This further confirms the correct-
ness of the calculated coefficients of Equations (3.34).

Equations (2.23) and {2.24) now become

0
_I@ - 1y, (D, %-+ e)hdn = - 0352 he {(10%) (3.38)

0
j i Tyz(Z)("’ I ondn = - 282 h (106 (3.39)
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. :
[ - oMo, Lo mntt - e = - 2BZ o ah? a0
)
I - 0, (ny 3 - b0(1 - endan = 232 he, (106)2 (3.41)
® 0 < c<< 1
where g’is the approximate distance of the resultants Ry(}), Ry(z)

from the interfacial plane.
To compare with the numerical results of Pipes and Pagano [7],
the interlaminar stresses are calculated based on the 80° ply (the

lower layer). Equation (3.39) leads to

(2)
a
tan 02 - “0(2) 4
= 0.5 0 < g <<< ] (3.42)
o« (2)
0
whence GO(Z) = 0.180, 8.9868, 15.4505, .... (3.43)
Equation (3.41) gives
oo\ = 2.8208 (3.44)

From Equations (3.38) - (3.41), it is clear that the stress resultant
is of order O(hexlos) while the couple moment is of order O(hchIOS).
Hence, requiring exact satisfaction of Equation (3.39) and approximate

satisfaction of Equation (3.41) fixes the value of uo(z) at

ao?) = 8.9868 (3.45)

While Txy and Tyz vanish throughout the laminate, the other

stress components are obtained in the following zeroth order form

Ux(z)(n,%'- £) = [2.08837 + (0.0275 &' * 208"

']4.]587})]‘_

+0.0051 o (108 psi). (3.46)
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? oy@n,g - ©) = - (0.3552 + 0.0546 5% 158"

. - 0.4098 57'887“)ex(106 psi) (3.47)
Tyz(z)(,,,;.. c) = 0.3865(c 887" _ 614']58")cx(1o5 psi)  (3.48)
§ | az(z)(n,%-- e) = (01356 &80 L 0185 8B (166 pei)  (3.49)

where 0 < ¢ <<< 1

The last two components of stress, the interlaminar stresses,
are plotted and compared with numerical results in Figs. 8 - 11.

If the stacking sequence of the laminate is reversed to [90/0]5,
(Fig. 7d), the derivation of these interlaminar stresses is as indi-
cated in the following subsection.
3.1.2 [90/0]5 GRAPHITE-EPOXY LAMINATE

While U(k) vanishes everywhere in the laminates, the modified ZIR
solution for V(k) and w<k) can be obtained by interchanging the
superscripts in Equations (3.27) through (3.41).

To compare with the numerical results 7], the 0° ply is now
used as the reference layer for the intertaminar stresses.

The stress components in zeroth order forms are obtained as

ox(z)(n,%-- ©) = [20.08 - 0.074(5% %" 4 100y (306 13y (3.50

cy(z)(n,%-- z) = (0.3552 + 1.5457 &2 -966n
y - 1.9004 &8 109 (10 psi) (3.51)

Y -q - -8.
v, (0} - 1) = 7.6906(8%- 9667 _ ;B 108 (08 psi)  (3.52)

- - . -8.1
o2 o - 0) = (-1.9008 8297 1 gasp BB (406 bh) (a.)

0 < <z

where the last two are the interlaminar stresses.
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These stresses are plotted in Figs. 12 - 15,

3.2 ANGLE PLY LAMINATES WITH CONSTANT PLY THICKNESS

For contemporary fiber-reinforced composites havinag three mutuai-
1y perpendicular planes of elastic symmetry, C45(k) vanishes. If the
laminate consists of one material with symmetric [e/-8]5 or [-0/8]g
orientations (Fig. 6b), it is called an angle ply laminate and the

following relations between material constants are found,

1 2
ci§ ). ci§ ) , i=1,2,3and j=1,2,3
1
cké ). ckﬁz) , k=4,56 (3.54)
1
¢,V < - Cl? L, net23
The modified 7IR solution gives
() - (2) .
U =y (2 =0
(C1sCan = Craloa) Verb
b oy (2 o (Gaebas - Casles) e (3.55)
0 ° (C22C33 - Ca3Ca3) (V)
: 1
) _ (G130 - Cialea) &b

w1 = u

(1}
(€gpC33 = Cp3Cp3)
On the central plane (Y = 0), the stresses are obtained from

Equations (3.55), (2.2), and (3.1) as

oy(1(0,2) = - 0,{2)(0,2) = 0 (3.56)
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*6 (1) h
=8 (2) h
to (3) h,

—————

g (4 n,
T

S .

b
Tyz dy=0
'L‘y yfb b
0‘d= s
OZY'/O‘O}ydyO

FIGURE |6. ANGLE -PLY LAMINATE OF 2 m LAYERS
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&
] ny{100,2) = - 1 () (0.2)
Eo - [016 - €26'C12033 - C13Ca3) * C36(Cy5CH, - C12C33)]‘”
(C22C33 - T23C23) X
Eo, ' | (3.57)
%‘ The first equation indicates that the zeroth order solution
: (3.55) contributes no transverse normal stress throughout the angle ply
laminate. For the laminate to be in equilibrium, two self-equilibrat-
ing conditions in addition to Equation (2.70) should be expected to
hold (Fig. 16). Recalling Equations (3.38) through (3.41), the follow-
ing equations may be established.
® (k)
j gt ohdn =0 k=1, (3.58)
0 < ¢ <<< 1
0
-j oz(k)(n,*;- + g)bh{1 -~ en)dn = 0 k=1.2 (3.59)
Furthermore, the shear stress resultants R (]) and R, (2) must
also be in equilibrium (Fig. 3 withm = 2) as 1nd1cated in the follow-
ing equations.
P (1) m_ .
), e e+ Ry U= 0 where vy, (V= i o o230z (3.60)
® 2
1
. o (2), 1, (2) . (2) _ [z . (2)
-L T (nsghndn + Ry B < 0 yhere g (2) - Zry (0,202 (3.61)

The characteristic equation (2.64) leads to two identical sixth
order algebraic equations for both layers. Three positive roots to
| this equation must be dropped for matching considerations The compos-
]
p

ite solution will be in the form of Equation (2.66) with 0(c)
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truncated. A numerical example is presented in the following sub-

section.

3.2.1 [45/-45]; GRAPHITE-EPOXY LAMINATE

Consider the [45/-45]; graphite-epoxy laminate of constant ply

thickness h/2 (Fig. 17a). The stiffness coefficients (after transfor-

A mation) are

45(x 10-6 psi)
)y _

Ci' ) = 6.745
¢V = s5.05
clgl) = 0.521
| c,0) = 6785

(1) _
Cp3 * = 0.521
(1)

Cy3 ' = 2.213
C]é]) = ng]) = -4.506
C3é]) = -0.04387

C4£]) = ng]) = 0.85
cor!) = 5.33

Gy = 0

-45(x 1076 psi)
(2) .
C]] = 6.745

Cléz) = 5.045
c]§2) = 0.521
ngz) = 6.745
ngz) = 0.521
C3§2) = 2.213

(2) _ . (2) _
C]G = C26 - 4.506

c3é2) = 0.04387
(2) _ ¢ (2) g g5

Cas = Cog
(2) _

Cop = 5.33
(2) _

Cos = 0

The modified ZIR solution (3.55) gives

Uo(1) -y, (2
v, (1) = Vo(2)
1) =y, (@

]

0
-0.7433 ¢,bY _ (3.62)
-0.0604 €,hZ

S T i M NN N
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a2
45 (1)

Q -45 (2) =Y

(a) [45/-45]_ LAMINATE
A2 S
A 45(1) Y

T {oy

(0) QUARTER

YZ - PLANE OF TOP LAYER
Az

& X

A <«<a— A

(C) QUARTER
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e to}

=
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aZ

-45(1)
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(e} [-45/45
el ]

X

»Y
5

e
(f) QUARTER YZ - PLANE
OF TOP LAYER
A yA
-Ai'] (,7
] > X

A —> A

(g)QUARTER XZ—-PLANE
OF TOP LAYER

P -
Al 1 iL

(NFBD OFZ =)o %

FIGURE 17. FOUR LAYER ANGLE —PLY LAMINATE
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. . 2 .
Equation (3.57) yields rx;])(O,Z) = -rx§ )(O,Z) = 1.154cx(106 psi).

The bcundary layer equations (2.61) through (2.64) yield the

algebraic equation for both layers

Ao - 2.5460 25" 2 + 1.6337 3 %t - 0.1202 0 8 =0 (3.63)

which is readily transformed to
w? - 2.5460 W% + 1.6337 w - 0.1202 = 0 (3.64)
by letting dog Tt aom]/Z (3.65)
Furthermore, setting w =y - 1/3(-2.5460) = v + 0.8487 | (3.66)
results in v3 - 0.5269 v + 0.0438 = 0 (3.67)
Let Y = po * 9 (3.68)

and substitute it into Equation (3.67). The resulting set of algebraic

equations are

3, 3
P, +q° = -0.0438
o o (3.69)
Podo = 0-1756
which give
P> = (0.0736){cos(2kn + 107.3°) + i sin(2kn + 107.3°)) (3701
3.70
9,3 = (0.0736) (cos(2k= + 252.7°) + i sin(2kn + 252.7°))

k =0,1,2

By applying DeMoivre's formula [26] and reca]]{nq Equation
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(3.68), (3.66) and (3.65), the six roots for Equation (3.63) are

found to be
‘ x0(1,2) = + 1.2364 aq
. Ao(3,4) = + (0.2903 g (3.71)
AO(S,G) = *+ (0,9659 g

Hence the zeroth order composite solution (Section 1.3) takes

the form
Uc(k) - {(P];B1ao" + PZ;BZGOn + P3;63a°n)cos aoZ}(k)
Vc(k) = - 0.7433 e4bY + {(R];81°O” + RZ;BZ“o”
+ R3;B3a°n)cos qu}(k) (3.72)
wc(k) = - 0.0604 eyhZ + {(S];Blao" s Szgazao“
v 532 370" )sin agy
where B](k) = 1.2364
8,{¥) = 0.2903

85(%) = 0.9659

Satisfying the governing equations and the boundary conditions

leads to the following equations:
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M= oseney . B = osen o
pz(]) = 0170 6 Pz(z) = - 0.1707 o,
psM = 120219y, P = 202001,
R = - 0.6309 4, R](z) = -'0.6309 ¢,
(3.73)
RZ(” =-0.1813 ¢, RZ(Z) = - 0.1813 ¢,
RV = 1189747 . R(2) = 11897 4
3 1 3 2
s](fS = asse L 5@ = 10w,
52(1) = 0.0347 ¢7 , 52(2) = 0.0347 4,
s3t = - 10736 67, 55(8) = - 1.0736 4,
h
EX
where ¢ <
1 a (”cos(a (”(]—*‘ z))
2 (3.74)
exh
27 (2)cos (@ (2)(% - 7))
0 < g <<< 1

It can be shown that these coefficients lead to identical satis-

faction of Equations (2.70), (3.54) and (3.55). Hence the correctness

of these coefficients is confirmed.

Equation (3.61) then leads to

(2
tan _g.- z ao(2)

= 0.5
e

0 < g <<<]

which is identical to Equation (3.42).

(3.75).

W b ety

VB 2
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Now consider Equations (3.69). It is clear that Layer 1
(+ 45°) and Layer 2 (- 45°) are antisymmetric in U and symmetric in
V and W with respect to the infinitesimal thin slice (Fig. 17d).
Upon enforcing exact centinuity in displacements at Z = %-, the

following equation is obtained.

Q) (@
i 0 (1) . (2)
1im cos tapt g = 1im cos -0g 'zl =0 (3.76)
>0 70
which gives
“0(]) =(2n+ 1) , n=0,1,2,....
(2) (3.77)
@, =(2n + 1jn , n=0,1,2,....
Hence,
_m @
cos tz ao(]) = COS 02 -z 00(2) = 0 (3.78)
for 0 < <<< 1
where ao(]) and ao(2) are given in Equations {3.77).
MO
Thereby 1im] tan 02 + “o( ); = (3.79)
0
)
L)
-~ and tan 02 + ao("\ il = X (3.80)‘
P
0 < g <<< 1

where K is a finite large posicive value.
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At this stage, assigning any large value for K determines the

ag(k)
corresponding ao(k) and tan —95—— * ao(k);] and hence the interlaminar

stresses. It may be shown that the only stresses related to
. (K) .
tan[—9§—-: uo(k)c are sz(k) and ryz(k). However, the latter

vanishes identically at the free edge as required by the stress free
boundary conditions (2.17). Hence the singular behavior is found in

z(k) at the intersection of the free edge and the interfacial plane

= 1-. This provides a definite mathematical evidence for the pre-

2
dicted singularity in Reference [7] and will be further discussed in

Tx

the following chapter.

The interlaminar stressea re plotted in Figures 18 - 20.
3.2.2 [-45/45] GRAPHITE-EPOXY LAMINATE

Consider the laminate of Fig. 17e. Interchanging the super-
scripts 1 and 2 in Equations (3.62) through (3.73) gives a composite

solution identical to (3.72). The corresponding interlaminar stresses

are shown in Figures 21 - 23.
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Chapter IV
RESULTS AND DISCUSSION

In tie preceding chapter, the general method of solution of
Chapter II was applied to the special graphite-epoxy laminates [0/90]5,
[90/0];, [45/-45]S and [-45/45]5. To demonstrate the capability of
the solution the results for these laminates are presented and dis-

cussed in this chapter.

4.1 THE FOUR LAYER UNIDIRECTIONAL LAMINATES

It has been stated in Section 1.3 that the accuracy of the pertur-
bation solution depends upon the perturbation parameter -. That is,
the smaller ¢, the better the result. This will be demonstrated in
what follows.

The interlaminar shear stress Tyz and the interlaminar normal
stress o, (the peel stress) as functions of the perturbation parameter
e are presented, respectively, in Figures 8 and 9 for the [Cf?O]S
laminate. From the figures, it is clear that the boundary layrr width
becomes smaller as ¢ decreases in magnitude. (Asymptotic recovery of
the lamination theory is implied by the incomplete domain of %u) It
should be noted that the relative extreme values of the stresses are
finite and remain unchanged as ¢ decreases. This indicates that the
present theory is capable of approximating the maximum value of the
interlaminar stress intensities for intermediate as well as small

values of ¢. Also, the difference between the cases ¢ = 0.133 and
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e = 0.050 is much more than that between ¢ = 0.050 and ¢ = 0.033.
Hhile the curve of e = 0.033 serves as the most accurate of the three
stress results for their corresponding e, it lends confidence to say
that for this [0/90]s graphite-epoxy laminate, a geometric ratio of
0.050 (= %5) or smaller is sufficiently small to lead to good results
using the present method of solution.

Numerical results obtained by this author using the finite dif-
ference program of Pipes [12] indicate that the smallest geometric
ratio for which that program gives physically admissible result is
e = 0.133 (t%gé. Below this ratio, the instability in the solution
does not yield satisfaction of the force equilibrium & Fy = 0 (Fig. 2
and Equation (2.26)). This may be attributed to the inherent sensi-
tivity of the finite difference approximation to the ratio of the gric
spacings for partial differential equations [27].

Comparisons between the results of the finite difference solution
and the present theory are presented in Figures 10 and 11 for the case
e = 0.133. From Figure 10 it is clear that the present theory tends to
predict a higher maximum intensity for the interlaminar shear stress
Tyz- The boundary layer width is approximately the same for both
solutions. Figure 11 shows that the present theory predicts a smooth,
continuous distribution for o, which identically satisfies the self-
equilibrating condition £ F, = 0 (Equation (2.7C)) whereas the finite
difference solution yields unstable results near the free edge which
obviously do not satisfy this equilibrium condition. In regions

removed from the free edge, both solutions indicate asymptotic recovery
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of the lamination theory.

Figures 12 and 13 show the interlaminar stresses for the [90/0]¢
laminate--the reversed stacking sequence from the previous example.
From the figures, the physical va]idity-of the present theory is con-
firmed by the sign reversals in both 1y, and o as a result of force
and moment equilibrium (Fig. 7). Again, boundary layer shifts due to
the reduction in ¢ are observed. The maximum stress intensities of
Tyz and oz in the [90/0]5 laminate are found to be finite but higher
than those in the [0/90] laminate (Figs. 8 and 9). This is due to
the fact that in the calculation for the [90/0]S laminate, the 0° layer
was employed as the reference layer. On the other hand, in the calcu-
lation for tae [0/90]S laminate, the 90° layer was employed as the
reference layer.

Comparisons between the finite difference results and the present
theory are presented in Figures 14 and 15. The present theory again
pfedicts a higher ty; than the finite difference solution. Also, the
present theory yields a more acceptable distribution for the inter-
iaminar normal stress oz in view of the zero stress resultant require-

ment. In regions removed from the free edge, the lamination theory is

recovered asymptotically in both solutions.

4.2 THE FOUR LAYER ANGLE-PLY LAMINATES

Pipes and Pagano [7] pointed out that the interlaminar shear
stress 1,, in a [45/-45]S laminate tends to grow witﬁout bound near
the free edge (Section 1.1). Hence the calculated maximum intensity of

ty; by the finite difference approximation, though higher than other




numerical investigations [6, 8, 11], is stil] very questionable. It

was discussed in Section 1.2 that failure to satisfy some stress free
boundur ¢ conditions were observed in the finite difference solution.
Also, these results showed no sign rever;a]s in gy, oz and Tyz in
consequence of reversing the stacking sequence.

In the present theory the mathematical evidence for the singu-

larity in ty, can be shown (Subsection 3.2.1) to be in terms of

the trignometric equation

(2)

tan (55— - a(2)g) = ¢ (4.1)

where 0 < £ <<< 1 and K is a near-singular large number. The value of

0(2) must satisfy equation (3.75)

«(2)
tan (—*2-— (2) ) - 0.5

. y 0 < <<<]
O

(4.2)

Obviously, the limiting analysis of the present theory (Fig. 17d, h)
provides no unique determination of the value of K. It is only through
experimental investigation that this value may be realistically deter-
mined. Such an investigation should be considered as a future study
For the purpose of comparisons, K is taken to be 20. 3713, a value that
leads to a maximum stress intensity within the elastic limit, -
Comparisons between the results of the finite difference solution
and the present theory are presented in Figures 18 through 23. Figure

18 shows the variation of the interlaminar shear stress 1xz along the
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interface Z = %—. The near-singﬁ1ar free edge intensity of the present
theory is much higher than the finite difference result and the
boundary layer width is much smaller. Figure 19 shows the variation
of the interlaminar shear stress Tyz. Both solutions satisfy the
stress free boundary condition Tyz = 0 at the free edge. The negative-
positive variation of the present theory confirms the additional self-
equilibrating condition

b

sFy= [ dy <0 (4.3)
0

y
(as a result of the zeroth grder vanishing of Oy in the interior
region). The finite difference solution, on the other hand, cannot
satisfy such a condition. The erroneous I, of the finite dif-

ference solution at the free edge (not shown in the figures), as
described in Section 1.2, is believed to be caused by inherent errors.
In Figure 20 the interlaminar normal stress o, of the finite difference
solution indicates instability near the free vdge; hence, no comparison
can be made between the two solutions in this region. Since the auto-

matic satisfaction of the self-equilibrating condition

b
zrz=] oy dy = 0 (4.4)
0

has been demonstrated by the present theory (Chapter III) and can be

observed from the figure, and since 9, is not proporticnal* to the

*As shown in Equations (3.46) - (3.53).
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near-singular value of K, the p;esent tﬁeory is believed to have pre-
dicted a more accurate maximum finite intensity of the interlaminar
normal stress. Such a determination is most important in the delami-
nation failure mode [21, 28] of composites. Although the moment self-
equilibrating condition (Fig. 16) is not directly observable from

Figure 20, the magnitude of this couple moment can be determined as

b hey 10%
= = X in-1b
M= Jo az y dy = 0.0027 mﬂz(m}-{] (4.5)

where a(z) equals 2K, a near-singular value from Equations (4.1) and
(4.2). Hence the self-equilibrating cc..dition of the couple moment is
confirmed immediately.

When the stacking sequence is reversed to [-45/45]S (Figs. 21, 22,
23), the interlaminar shear stress 1y, experiences a sign change in

1
order to balance the central plane shear resultant f] rxy(l)(o,z)hdl

: 2
which also experiences a sign reversal. The sign of both Tyz and o,

remain unchanged. This is in agreement with the finite difference
results (Figs. 19 and 22, 20 and 23). For e = 0.133, the finite dif-
ference solution prediéts a small uniform oy along the central plane
(not shown in the figures) which does not change its sign and magnitude
for the reversed stacking sequence. For ¢ < 0.0133 the finite dif-
ference solution yields erroneous results for oy due to the instabi}it}
of the solution. The present theory exhibits no such instabilities.

It is important to note that the interlaminar normal stress oy

is independent of the stacking sequence and always tensile near the
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free edge. For both the [45/-45]¢ and the [-45/45]¢ laminates, a
finite maximum intensity is predicted at the exact free edge (Figs. 20,
23). This indicates that the aelamination failure mode [21, 28] should
always be considered for reliable design of such laminate configura-
tions. A

It is clear that the present study has obtained improved results
for the interlaminar behavior of the [45/-45]s and [-45/45]; graphite-
epoxy laminates. Since the aforementioned self-equilibrating conditions
were originally considered for the 2m layer angle-ply laminate (Figq.
16), the interlaminar siress variations in any angle-ply laminate may

be expected to be similar to those in Figures 18 through 23.

4.3 ACCURACY AND LIMITATIONS

As discussed earlier, the accuracy of the present theory depends
upon the geometric ratio e = g-. Hence, the relative order of magni-
tude of the individual terms in the governing equations, in relation to
g » should be further discussed.
4.3.1 BIDIRECTIONAL LAMINATES

The coupled yoverning differential equations for bidirectional
laminates (Equations (3.2)) are

Q) Vagy + Quq¥ozz * (Qgq * 023) ()iayz = 0y

(4.6)

2
((Qgq * 023} (PVoy7 + QgD Wy + Qgqgz = )

From these dimensionless equations, it is essential that the

order of magnitude of the coefficients of Viyy and W,.yy, V,y7 and
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Wayzs Vszz and W,77 be 0(52) < 0(%) < 0(1)*, respectively, in order to
properly stretch the boundary layer regicn with a transformation in the
form

n=0_-Y (4.7)

€
Hence, if the material properties are fixed, the geometric ratio g
obviously plays the dominant role. For the graphite-epoxy laminate

with §-= 0.133 (Chapter III), Equations (4.6) may be transformed to

[
(o]

( .
0.046 Voyy + V,77 + 0.208 W,y,

(0°) | voooa (4.8)
10'080 V’YZ + 0.007 H’YY + w,zz =

i
[l

[

0.82 Vyyy + Vy77 + 0.22 W,ys = 0

(90°) { R vz (4.9)
L0.085 V’YZ + 0.007 ld,yy + w’ZZ =

1
(=]

It may be observed that, for this geomeiric ratio, a perturba-
tion solution using the 0° laver as the reference iayer should lead to
more accurate results.

If the geometric ratio is now reduced to 0.050 for the same

laminate material, Equations (4.5) become

]
o

[ ,

0.0065 V, + YV, + 0.0782 w’YZ
(0°) 4 e (4.10)
0.030 V’YZ + 0.001 Woyy + W,ZZ =

1
o

|
Q

( i
0.05 V’YY + V,ZZ + 0.083 ”’YZ

(90°) ; (4.11)
0.032 V’YZ + 0.0N1 ”'YY + W’ZZ =

'
feo]

* ¢ represents the approximate order of the products of Qij
and «.




TR RN

89

It is clear that the order of each term relative to V,77 or
W.z7 shrinks as ¢ diminishes. This means that the degree of accuracy
of the zeroth order perturbation solution is improved by the diminish-

ing geometric ratio. Obviously, these equations provide mathematical

 evidence to support the judicious statemént made in Section 4.1--

“A geometric ratio of 0.050 or smaller leads to sufficiently accurate
results,”
4.3.2 ANGLE-PLY LAMINATES

' The governing difierential equations for the + 45° graphite-epoxy

laminate with §-= 0.133 are

0.111 Usyy + U,z - 0.094 V,yy - 0.007 W,y; = 0

(45°) {-0.094 U,y + 0.140 V,yy + V.77 + 0.215 U,y = 0 (4.12)
-0.003 Uyyz + 0.083 Vyyz + 0.007 Hoyy + W,y = 0
| I 0.111 U,yy + U,z7 + 0.098 V,yy + 0.007 H,y7 = 0

(-45¢) 1 0.094 U,yy + 0.140 Voyy + V,77 + 0.215 W7 = 0 (4.13)
0.003 U,yz + 9.083 V,y; + 0.007 il,yy + W,77 = 0

Again, the order of magnitude of ezch coefficient relative to

Usz7, Vyz7 and W,77 can be observed. From Equations (4.12) and (4.13),

it can be safely stated that the present theory should lead to suf-
ficiently accufate results for 3’= 0.133 or below. Hence no further
reduction of'the geometric ratio needs be elaborated upon,

Fromithe above discussion, the fact that the boundary layer

penetration becomes weaker as g-decreases can be detected simply by
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examining the relative orders of variocus terms in the govern1ng dlf— '1'  R

ferential equations. The smaller the coefficients relative to the co--
" efficient one of U,77, Vs77 and W,77. the weaker the boundary layer ,'

effect. Hence the uniform stress distribution in the central plane

(Section 2.2) is justified by the more rapid recovery of the lamina- '~ .

tion solution. v »
It must be recalled that in the interior region of the pfese5t ;”
theory the exact satisfaction of the vanishing stress boundary condi;:
tions on the top and bottom surfaces, the continuities in the inter?
laminar stresses, and the force equilibrium in the central plane were
inforced. Also in the interior region the exact displacement contlnuvtv
in U and V were satisfied by the modified zeroth order interior
region (Subsection 2.3.2). For bidirectional laminates, the slight d§f7
ference found in the displacement W (Table 1) for the two layers may
be reduced or eliminated by higher order considerations. This is
mainly due to the differences in material properties that constitute
the governing differential equations. For the angle-ply laminates,
the exact continuity in this displacement was found to be satisfied
automatically (Table 2). , ;
In the boundary layer region, the bidirectional laminafes again

reveal differences in the exponential functions (Equations (3.33))

owing to the intractable material dissimilarities. Hence no exact_.;l_‘if R

displacement continuity in this region may be inforced for the limit- o

ing free body considered in Figure 7. Nevertheless, the'satisfattidnf;f25?5}"i'”‘ o

of the symmetry conditions, the stress boundary conditians at'tjg free~~,r
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' ﬁédQé;_fﬁé fbrcé'and‘mdheﬁt equiiibriﬁm aﬁout this free body, and the
"’contingity in interlaminar tractions, is believed to have attained a
o sb]utibh whfth is an improvément over previously avai]able solutions.
o " 0On the other hand the boundary Tayer region so]utlon for the
*ﬂangle-ply lam1nate exact]y satisfies tbe synnmtry conditions, the
;‘stress boundary cond1t10ns at the free edoe, tho d1splacement and
.?_stress cont1nu1ty condltlons, and the force and moment equ111br1um re-
‘qu1rements (Fjgs. 16, 17). This exactness of the present theory is

'entire1y due to the favorable parametric relations

Ci('”“cu(z) . i=1,2,3adj=1.2,3
: ,

cké ) " c (2) , k=4,5,6 | (4.14)
1 (2)

Cné ) = 'cn6 ’ n=1,2,3

Moreover, it is this exactness that leads to the mathematical evidence

for the stress singularity in the interlaminar shear stress Txz-

4.4 GENERALITY AND APPLICABILITY

» From the solution method developed in Chapters II and I1I, it is
c]ear.that the detailed solution procedures of the present theory can
be readi]y programmed for a computer. The simple calculation steps
_>requife no approximate of iterative techniques. The genéra]ity of the
vthéofy.éan be direct]y‘applied to Qariab]e lamihate configufaticns
(Fig} 1) with moré 1ayefs than any existing computer program can

possibly handle. Thermal strains can be readily inciuded through the

. constitutive cquations (2.1) to determine the induced thermal stresses

R R -
_&: sty
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due to the temperaturé‘dfop from the curing temperature of the laminate
or for laminates in a high temperature environment. The computer

program thus developed would be capable of predicting the interlaminar

stress intensities between any two layers including the midplane Z = 0.

Failure hypotheses can then be established based on the interfacial gf'
plane where the stress intensity reaches a relative maximum.

Finally the generality of the solution procedures in the present
theory can be directly applied to explore related problems such as a
laminate with internal free edge in the form of center holes, cracks,
etc., a laminate subject to pure bending at the ends x = + L, time-
depandent boundary layer effects due to cyclic loadings,_and so forth.

The important experimental determination of the material parameter K

may also be pursued as a future research topic. .




' Chapter V
CONCLUSIONS

4‘In the present thesis a general method of solution for a balanced
symmetric composite laminate subject to a uniaxiai extension has been
developed based upon a perturbation analysis of an elastic limiting
free body containing an interfacial plane.

In summary of the theoretical achievements of the present study,

the following conclusions can be made.

(1) The solution satisfies the symmetry conditions, the stress
free boundary conditions, most continuity conditions, and
the force and moment equilibrium of the limiting free b:dy.

(2) The solution predicts smooth continuous interlaminar
stresses with no instabilities.

(3) The solution provides the finite maximum magnitude of the
interlaminar normal stress oy for all laminate configura-
tions.

(4) For given material properties, the solution accuracy depends

upon the geometric ratio ¢ = h-. For [0/90]g Gr/E laminate,

b
€ 5_%6-1eads to satisfactory results while for [+45]¢ Gr/E
laminate, ¢ 5.%§'Predicts satisfactory results.

(5) For all laminates with geometric ratio, 0 < % << 1, high
gradient displacement, strain and stress fields are shown

to exist near the free edge.
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(6)

(7)

(8)

(9)

(10)

(1)

(12)
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The above boundary Téyer effect decays exponentially to
recover the lamination solution in the intericr regions.
For bidirectional laminates the axial displacement function
U is identically zero. Hence no tyy or txz exist in the
Taminate.

For bidirectional laminates, the interlaminar normal stress
o, is finite with the sign depending upon the stacking
sequence. For example, for a [0/90]¢ Gr/E iaminate, a

maximum tensile o, exists at the free edge while for a

z
[80/0]g Gr/E laminate, a maximum compressive o, is predicted.
For angle-ply laminates, the exactness of the solution leads
to the mathematical evidence of singular interlaminar shear

stresses t,, and 7, at or near the free edge.

Ty
For angle-ply laminates, the interlaminar normal stress o,
takes on a finite maximum tensila value at the free edge, and
is independent of the stacking sequence.

The solution procedure can be readily programmed for a
computer. Sucﬁ a generalized computer program would be
capable of predicting interlaminar stresses between any
two layers of a general multi-layered laminate.

The present theory suggests vaiable means for solving

important related problems of practical interest.

VR SRR
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