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Chapter I 

INTRODUCTION 

Interlaminar stresses play an important role in the load trans- 

fer mechanism in composite laminates. Both numerical and experimental 

results have demonstrated that when a thin laminate is subjected to a 

uniaxial extension (Fig. 1), there exist highly localized stress con- 

centration regions near the free edges, the so-called boundary layer 

regions. This phenomenon has been suggested to be the dominant factor 

initiating failure of some composite laminates. 

The present thesis will analyze the boundary layer by "perturb- 

ing" the exact elasticity equations with a stretching transformation. 

Solutions to these transformed equations provide a higher order analysis 

than idealized lamination theory [1].* Hence better insight into the 

interlaminar stress behavior is obtained using the perturbation 

analysis [2]. 

1.1 REVIEW OF LITERATURE 

Bogy [3] analyzed a bonded material containing two mutually dis- 

similar orthogonal wedges under arbitrary tractions. The stress fields 

were found to contain a mathematical singularity at the intersection of 

the interfacial plane and the loaded surface. Hein [4] studied the 

residual stresses in a two-material wedge and found similar behavior. 

♦Numbers in brackets refer to the references l.isted in the 
bibliography. 
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FIGURE   I.    LAMINATE GEOMETRY 



Hess [5] developed a plane elasticity solution for the end problem in 

a two-layer laminated strip and showed a mathematical singularity, 

defined to be a point where the convergence of an eigenfunction expan- 

sion could not be attained. Puppo and Evensen [6] modeled the finite- 

width symmetric laminate as a set of anisotropic layers separated by 

isotropic shear layers. Each anisotropic layer was assumed to be under 

generalized plane stress, i.e., the out-of-plane normal stress oz 

(Fig. 1) is zero and the in-plane stresses and displacements are the 

thickness averages of the actual values. Solutions to the corresponding 

equilibrium equations showed that while the interlaminar shear stresses 

vanish everywhere for a laminate of infinite width, they attained 

maximum finite values near the free edge of a finite width laminate. 

Furthermore, in regions far away from the free edge, the solution 

agreed well with the classical lamination theory [1], A complete three 

dimensional analysis was carried out by Pipes and Pagano [7] using the 

finite difference technique to solve the exact elasticity equations. 

The results showed good agreements with those of Reference [6] except 

at the free edge where the interlaminar shear stress TXZ seemed to 

grow without bound for some laminates. Due to the approximate nature 

of the finite difference analysis, however, no evidence was available 

to show the intensity of the suggested singularity. Isakson and Levy 

[8] used a finite element approach to analyze a model similar to that 

of Reference [6]. Based on the constant strain assumption within each 

element, the corresponding stresses were obtained from the constitu- 

tive equations. The total elastic strain energy was calculated and 



minimized [9] to yield a set of simultaneous linear algebraic equa- 

tions. Levy, et al. [10] used the same model and formulation as 

Reference [8] to further investigate the elastic and plastic inter- 

laminar shear deformations in the laminate. The out-of-plane "peel 

stress" was not taken into account in both studies due to the modeling. 

Results from these solutions were quite similar to those of Reference 

[6] except at the free edge where the interlaminar shear stress TXZ 

was 40% lower than that of Reference [6]. This presumably was due to 

the limitations of the finite element approximation. Improvements 

were made by Rybicki [11] who carried out a three-dimensional finite 

element analysis based on a complimentary energy formulation in terms 

of three Maxwell stress functions. These functions resulted in a set 

of simultaneous linear algebraic equations which were solved by Gauss 

reduction and the back substitution process. The "peel stress" was 

obtained in this investigation. The results showed excellent agreement 

with References [6] and [7] in regions removed from the free edges, 

while near the edges the interlaminar shear stress TX2 agreed only with 

Reference [6]; the magnitude of TXZ was much lower than the singular 

value of Reference [7]. The approximate nature of the finite element 

formulation for the laminated plate apparently leads to questionable 

and quite possibly poor results at the exact free edge. Pipes [12] 

used the finite difference procedure to carry out extensive parametric 

studies including laminate geometry, fiber orientations and stacking 

sequerces. The program used in Reference [12] is capable of handling 

no more than an 8 layer symmetric laminate owing to the limited 



computer capacity. 

Several attempts have recently been made to verify experimentally 

the numerical predictions. Results by Pipes and Daniel [13], 

Herakovich [14], and Oplinger, et al. [15] have all showed significant 

stress concentration behavior near the free edges. Although stress 

intensities were not determined in these studies, there were strong 

evidences to support the numerical prediction of significant stress 

concentrations near the free edge. 

Pipes and Pagano [16] more recently developed an analytical 

solution to the elasticity equations under the assumptions of zero 

interlaminar normal stress, o2, and zero transverse normal stress, cy, 

for the [±45]s laminate. Pagano [17] obtained yet another approximate 

solution following the cylindrical bending theory of Whitney and 

Sun [18]. Good agreement with the elasticity solution of Reference 

[7] was found for the interlaminar normal stress, az, (the "peel 

stress") on the midplane of a bidirectional [0/90]s laminate. However, 

the solution did not recognize the stress free boundary conditions 

TyZ(+b,z) = 0. In addition, no through thickness distribution of the 

stresses was available. An approximate approach was then considered 

by Tang [19] following the isotropic theory of Reiss and Locke [20]. 

The interior domain (regions removed from the free edges) was assumed 

to be in a state of plane stress, the axial displacement u was assumed 

to be a function of x only, and the displacement components, v and w, 

were both assumed to vanish identically. The boundary layer equilib- 

rium equations coupled with the compatibility equations were split into 



two problems. Namely, a modified torsion problem and a modified 

plane strain problem. The resulting fourth order differential equa- 

tions were solved by asymptotic expansion in terms of the ply thickness 

h/2. The matching of the boundary layer solution with the interior 

domain solution was satisfied by the imposed boundary conditions for 

the two problems. The results for a [±45]s graphite-epoxy laminate 

showed good agreement for the interior regions with References [6] and 

[7] while the interlaminar shear stress TXZ at the free edge was found 

to be lower than the predicted singularity of Reference [7]. The 

through-thickness stress distributions showed nonzero shear stresses 

TXZ and tyz on the free surfaces z = ±h as well as on the midplane 

z = 0. Also, the out-of-plane normal stress nz  vanished on both the 

interfacial planes z = ±h/2 and the midplane z = 0. This is unlike 

the results of Reference [7] which indicated maximum values of o2 on 

the midplane of a [0/90]s laminate and on the interfacial planes of a 

[±45]s laminate. Finally, it should be noted that the approximate 

nature of the formulation in Reference [19] did not satisfy the vanish- 

ing stress boundary conditions xXy (±b,z) = 0 and cy (?b,z) = 0 for 

each layer. 

1.2 THE FINITE DIFFERENCE SOLUTION 

In view of the discussion in Section 1.1, the finite difference 

solution of Reference [7] seems to serve as the most dependable solu- 

tion known to the researcher. This is due to the fact that the formu- 

lation was required to obtain the exact elasticity :>;1ution to the 

problem. However, there were inherent deficiencies in the finite 



difference procedures as pointed out by Pagano and Pipes [21]. To 

this end, numerous tests were carried out by this author to examine 

the "exactness" of the solution in Reference [7] with emphasis on its 

behavior near the free edge. The following observations can be made. 

(1) For bidirectional laminates (0° and 90° plies), all stress 

free boundary conditions were satisfied except at the four corners 

of the laminate where the out-of-plane normal strecs did not vanish 

but took on u  low value. Also, the sign of the outer layer az  at the 

exact free edge was found to be inconsistent with that of the inner 

layer. These results may be attributed to the dissatisfaction of the 

equilibrium equations on the free boundaries as can be seen in the work 

of Pipes [12]. 

(2) For angle-ply laminates [±e]$, neither of the stress free 

boundary conditions, ay(±b,z) = xxy(±b,z) = 0, was satisfied at the 

intersection of the interface and the free edge. Both ay  and tXy at 

this suggested singularity were of an erroneously large order of 

magnitude—as high as the axial stress ox. As a result, the inter- 

laminar shear stress xxz attained a maximum finite value rather than 

the possible infinity predicted by Pipes and Pagano [7]. Failure to 

satisfy the vanishing stress boundary conditions at the four corners, 

oz(±b,±h) = rxz(±b,±h) = 0, was found again. Moreover, the sign 

reversal of stresses which was found for the bidirectional 'laminates 

as a result of change in the stacking sequence, was not observed for 

the öngle-ply lamirates. The above boundary violation may be due 

to errors inherent in the solution procedure for the"angle-ply 



laminates. 

It may be concluded that despite the good agreement with the 

results of References [6]. [11] and [19] in regions removed from the 

free edges, the finite difference solution yields poor results near 

the mathematical singularity. In order to determine the proper order 

of magnitude of stress intensity near the singular point, a more 

rigorous analytical solution to the field equations must be obtained. 

Such a solution was described by Pagano and Pipes [21] as a "mathe- 

matical nightmare." 

The present thesis seeks a solution which predicts accurate 

interlaminar free edge stress intensities for laminates. Due to the 

above-mentioned mathematical complexities, it is certainly not an easy 

task. As described in the preceding section, all the previous investi- 

gations show a common result--the plane stress lamination theory is 

recovered near the central plane y = 0 provided the laminate is suf- 

ficiently wide (b/h »1). This suggests that the boundary layer 

effect is directly related to the geometrical ratio b/h, and that the 

stress distribution throughout the laminate is the combination of the 

interior region solution and the boundary layer solution. The method 

of solution employed in the present thesis is the perturbation 

analyses [2, 22] developed in the 1940's to solve boundary value prob- 

lems in fluid mechanics and extended to problems in solid mechanics in 

the 1950's. The isotropic theory of P.eiss and Locke [20] and the 

anisotropic theory of Tang [19] were essentially based upon such 

analyses. The main differences between the present thesis and the 
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theory of Reference [19] are summarized as follows. (1) The present 

thesis is based upon the displacement formulation in which the compati- 

bility equations are satisfied automatically. The resulting field 

equations «>re second order partial differential equations in terms of 

the displacement functions. Reference [19] was based upon the stress 

formulation in which satisfaction of the compatibility equations 

resulted in fourth order partial differential equations in terms of 

the stress functions. (2) For the interior regions, the present 

thesis determines the three dimensional solution to the reduced govern- 

ing equations (h/b -> 0) while satisfying the symmetry and antisymmetry 

condition:., the displacement condition, the continuity conditions 

and the vanishing stress boundary conditions on the top and bottom 

surfaces. In reference [19] the displacement components v and w 

were both assumed to vanish identically for the interior regions and 

the axial displacement u was assumed to be a linear function of x 

alone for such regions.' (3) For the boundary layer region, the 

present thesis removes mathematical complexities by considering the 

free body diagram of an infinitesimally thin slice containing the 

interfacial plane. Such a limiting analysis provides sufficiently 

accurate determination of the coefficients of the boundary layer 

solution for h/b« 1. The physical validity of the composite solution 

(interior .«nd boundary layer solutions combined) is insured by the 

following requirements. The material immediately adjacent to the 

Interfacial plane must satisfy the "stretched" governing differential 

equations, the matching principle of perturbation theory (Section 1.3), 
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the force and moment balance with the stress resultants on the central 

plane (y = 0), the self-equilibrating conditions of the out-of-plane 

normal stress resultant, and the free edge stress boundary conditions. 

Reference [19] considered two separate problems for the boundary layer 

region according to the even and odd nature of the stress components. 

A stress function following the isotropic torsion problem was assumed 

for the T° (modified torsion) problem. A similar function was then . 

chosen as the particular solution to the fourth order equation of the 

P° (modified plane strain) problem. This particular solution along 

with the homogeneous solution (5*n order polynomial) constituted the 

solution to this problem. The combination of the T° problem and the 

P° problem failed to satisfy some of the stress boundary conditions at 

the free edge and on the free surfaces. And the approximate nature 

made the through-thickness stress distributions incapable of properly 

describing the force and moment equilibrium and the self equilibrating 

condition at any level of z. 

1.3 PERTURBATION METHOD 

Consider the differential equation 

e-y" -y'+y=0  ,  0 ^ x <. 1 

y(0) = a ,  y(l) = ß 

(1.1) 

(1.2) 

where 0 < e << 1. 

Assuming the exact solution to the problem is not available, the 

following approximate steps must be taken: 
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As e vanishes, Equation (1.1) reduces to 

y' - y = 0 (1.3) 

which has a solution of the form 

ae (1.4) 

where the superscript ° denotes the solution corresponding to e = 0 

and a is an unknown coefficient. Solution (1.4) can satisfy only one 

of the boundary conditions (1.2). For the other boundary condition 

to be satisfied, a stretching transformation is introduced in the form 

« - |B - x|/e5 (1.5) 

where X > 0 and B is the boundary limit of the stretched end (0 or 1 

in the present problem). It will be shown that this transformation 

magnifies a small region called the boundary layer in which y changes 

rapidly in order to retrieve the dropped boundary condition at the end 

x = B. Solution to the boundary layer equation must match the solution 

of the reduced equation (1.3) according to Prandtl's matching 

principle [2], 

lim y _ lim y 
x ■* B    C -*• °° 

BL 
(1.6) 

where yBL is the boundary layer solution. 

It may be shown [2] for the present problem that the boundary 

layer exists near the end x = 1 and the value of > in Equation (1.5) 

is found to be 1. Hence 

I 
1  : * 
I 
i i 
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y° = aex                       (1.7) 

• 
since it must satisfy the first of Equations (1.2). Also, the 

, stretching transformation (1.5) becomes 

m 

« - 1 E 
X                     0.3) 

1 
Equation (1.8) is now introduced to transform the original Equation 

'. (1.1) into 

&- + &= 0                                                  M 91 
dc2 

+ d?  U                    (l'9) 

for E « 1. 

Equation (1.9) has the solution 

yBL = c + de-5                  (l.io) 

which should satisfy the second of Equation (1.2). Hence, 

c + d = ß                    (1.11) 

The matching principle (1.6) is now applied as 

lim y = lim yBL                 (1.12) 

or, 
w 

c = ae                     (l.i3) 

•            » Hence from Equation (1.11), 

d = ß - ae          .         (1.14) 
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which yields 

yBL = ae + (s - ae)e"c 0.15) 

Finally a uniformly valid solution is formed according to the 
equation 

yc = / + yBL . (/)BL (hl6) 

where yc is the composite solution and (y°)
BL represents the common 

part contained in both solutions. 

It is clear that in the present proble lern 

(y°)  = lim yBL = um y° = ae , n 17) 

hence the composite solution to the original equation is 

yc = ae
x + (ß - ae)e"^ (1>18j 

The above derivation was required for the zeroth order problem 

of Equation (1.1). Fcr a very  small e, the .reroth order composite 

solution (1.18) provides sufficient accuracy. For a relatively larger 

e, solution to higher orders must be carried out to achieve better 

accuracy. This is shown in the following steps. 

The solution to the original equation (1.1) may be expressed as 

an asymptotic expansion of the form 

00 

y"ntQ
c\M      .     "«1 (1.19) 

Substituting (1.19)  into Equation (1.1) results in 
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a» 

r (en+1y"n - eVn + e
nyj = 0 (1.20) 

n=0 

Since this is an identity equation in the nonzero parameter e, 

the coefficients corresponding to each n must vanish for all x in the 

domain specified by (1.1). Hence, 

y'n - yn 
s yj.]      n >i (1.22) 

Also, substituting (1.19) into the boundary condition (1.2) leads to 

yO(0) = a (1.23) 

y00) = ß (1.24) 

yn(°) = y„0) = o  n>o (1.25) 

It is clear that the zeroth order problem is defined by Equa- 

tions (1.21), (1.23) and (1.24). The composite solution to this 

problem can be shown to be identical to (1.18). Also, it is seen that 

at any level of approximation n, yn_-j is known, hence yn for any n is 

given by the first-order equation (1.22). Therefore, the stretching 

transformation (1.8) should be continually introduced near the end 

x = 1 where the boundary condition is dropped. If the asymptotic 

expansion 

y = E e"yn^)  ,  e « 1 (1.26) 
n=0 
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is assumed, the transformed equations are 

^-- ^=0 0.27) 
dc2  dc 

^-gr^Vi    -"ii n.28) 

And the boundary condition at x = 1 becomes 

y0U = 0) = B (1.29) 

ynU = 0) = 0   n^l (1.30) 

At this point it must be noted that PrandtVs matching principle 

(1.6) fails to match expansions containing higher-order solutions. 

Instead, Van Dyke's matching principle [2, 22] should be employed to 

obtain a composite solution. For simplicity in the present thesis, 

only the zeroth order problem will be considered, hence no elaboration 

will be given. Nevertheless, it may well be an intriguing topic of 

future study. 



Chapter II 

PROBLEM FORMULATION 

Figure 1 shows a balanced symmetric laminate of 2m plies of 

homogeneous orthotropic lamina oriented at angles [e-j/Bg/ej/ /em^s 

with the x axis. The laminate thickness is small compared to other 

dimensions, i.e., the length dimensions are of the order L > b >> h. 

One of the orthotropic axes of the laminate coincides with the z axis. 

The laminate is subjected to a constant inplane axial strain ex. As- 

suming elastic response exists everywhere throughout the laminate, the 

field equations can be derived as indicated in the following section. 

2.1 GOVERNING FIELD EQUATIONS 

Introducing a rotational transformation (Reference [1]) to the 

layer-wise orthotropic material leads to the following constitutive 

equations with respect to the reference coordinate axes xyz 

r_ -,00 

rxz 

-Txy. 

cll c12 C13 ° ° C16 

c12 C22 C23 0 ° C26 

C13 C23 C33 ° ° C36 

0 0 0 C44 C45 0 

0 0 0 C45 c55 0 

LPl6 C26 C36 0 0 C66J 

th 

(k) 
Lx 

£y 

ez 

Yxz 

L^xyJ 

(k) 

(2.1) 

where the superscript k denotes the ktn layer in the laminate 

strain-displacement relations in each layer are 

The 

16 



(2.2) 
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ex = u,x 

ey = v,y 

c2 = w,z 

Yy2 = w,y + v,z 

Yxz = w»x + u«2 

YXy = v,x + u,y 

where a comma denotes partial differentiation. 

Since the long laminate is loaded only at its ends x = tL. 

Saint Venant's principle [23] can be invoked such that the stresses in 

regions far away from the ends are  independent of x. Thus, the 

equilibrium equations in such regions reduce to 

3txy 

ay 
+ 

3T
XZ 

3Z 

3y 
+ V 

3Z 

^yz + 
9az 
3Z~ = 

0 

(2.3) 

Combining equations (2.1) and (2.2), and integrating the 

resulting stress-displacement relations (independent of x) results in 

the following displacement fields for each layer. 

u = (C}y  + C2z + C3)x + U(y,z) 

v = (C4z + C5)x - C-,|— + V(y,z) (2.4) 

w = "C4xy + C6x - C2|i + H(y,z) 

where C1 through C6 are unknown constants and U, V and W are unknown 
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functions of y and z only. 

The following symmetry and antisymmetry conditions must be 

imposed: 

u(x,y,z) = u(x,y,-z) 

v(x,y,z) = v(x,y,-z) 

w(x,y,z) = -w(x,y,-z) (2.5) 

v(x,y,z) = -v(x,-y,z) 

w(x,y,z) = w(x,-y,z) 

and the experimentally verified [13] condition 

u(0,y,h) = -u(0,-y,h) (2.6) 

is imposed. 

Equation (2.6) leads to a more general antisymmetry condition 

u(o,y,z) = -u(o,-y,z) (2.7) 

for continuity consideration. 

At this point, the even and odd nature of the displacements u, v, 

w in relation to y and z can readily be seen. Substitution of Equa- 

tions (2.4) into Equations (2.5) and (2.7) results in 

Ci = C2 = C4 = C5 = C6 = 0 (2-8) 

and 

U(y,z) = U(y,-z), V(y,z) = V(y,-z), W(y,z) = -W(y,-z) 

U(y,z) = -U(-y,z), V(y,z) = -V(-y,z), W(y,z) = W(-y,z) 
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This greatly reduces the layerwise displacement field functions (2.4) 

to 

u - C3x + U(y,z) 

v = v(y»z) (2.10) 

w = W(y,z) 

As defined in the beginning of the present chapter, the laminate 

is subjected to a uniform axial strain. Hence the constant C3 in 

Equations (2.10) is nothing but the applied strain ex. 

Combining Equations (2.1), (2.2), (2.3) and (2.10) results in 

the following set of simultaneous partial differential equations with- 

in each layer. 

C66".yy + C55U>ZZ + C26V,yy + C45V,zz + (C35 + C45)W,yz = 0 

C26".yy + C45U,zz + C22V,yy + C44V,zz + (C23 + C44)W,yz = 0   (2.11) 

<c45 + C36)U,yz + (C44 + C23)V,yz + C44W,yy + C33W,zz = 0 

The appropriate traction free boundary conditions are (Fig. 1) 

*y(±b,z) = 0 

Txy(±b,z) = 0 (2.12) 

Ty2(±b,z) = 0 

along the free edges, and 

crz(y,±h) = 0 

TX2(y,±h) = 0 (2J3) 

Tyz(y,±h) = o 
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on the top and bottom surfaces of the laminate. 

Equations (2.12) and (2.13) may be expressed in terms of the 

unknown functions U, V, W in the form 

{C12ex + C22V,y(±b,z) + C23W,z(±b,z) + C26U,y(±b,z)/
k) = 0 

<c16Ex + C26V,y(±b,z) + C35W,z(±b,z) + C66U,y(±b,z)}
(k) «= 0  (2.12) 

{C44V,z(±b,z) + C44W,y(±b,z) + C45U,z(±bz)}
fk) = 0 

{C13£x + C23V,y(y,±h) + C33W,z(y,±h) + C36u-,y(y,±h)}
(1) = 0 

{C44V,z(y,±h) + C44W,y(y,±h) + C45U,z(y,±h)}^) = 0        (2.13) 

{C45V,z(y,±h) + C45W,y(y,±h) + C55U,z(y,ih)}
(1) = 0 

where the superscripts k and 1 denote the ktn layer and the outermost 

layer (Fig. 1), respectively. Equations (2.9) also yield the following 

restrictions on the displacement fields 

{U,z(y,0)}(m) = 0 

{V,z(y,0)}(m) = 0 (2J4) 

{W(y,0)}(m) = 0 

along the midplane and 

{U(0,z)}(k) = 0 

{V(0,z)}(k) = 0 (2.15) 

(W,y(0,z)}(k) = 0 

along the central plane and the superscript m denotes the layer 
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adjacent to the midplane (Fig. 1). 

Equations (2.11) along with Equations (2.12) - (2.15) represent 

a well defined boundary value problem. Also, it is important to note 

that these field equations were derived for individual layers. Hence 

continuity in displacements and tractions across the interfaces must 

be enforced to insure completeness of the solution. 

Equations (2.11) - (2.15) can be put in the dimensionless forms 

{Q65(h/b)
2U,YY + Q55U,ZZ + Q25(h/b)

2V,YY + Q45V,ZZ 

+ (Q36 + Q45)(h/b)W,YZ)(k) = 0 

{Q26(h/b)
2U,YY + Q45U,ZZ + Q22(h/b)

2V,YY + Q44V,ZZ 
r<,\ (2.16) 

+ (Q23 + Q44)(h/b)W,YZ)}^ = 0 

C(Q45 + Q35)(h/b)U'YZ + (Q44 + Q23)(h/b)V,YZ 

+ Q44(h/b)2W,YY + Q33W,ZZ}fk) = 0 

<Ql2Ex + -^V.Y(±1,Z) + ^W,Z(±1,Z) + ^U,Y(il,Z)}(k} = 0 

«16cx + "T^V.YCil.Z) + ^W,Z(±1,Z) + ^i'J,Y(iltZ)}(k) = 0      (2.17) 

{5^.2^1.2) ♦ ^.YCil.Z) ♦ 3g§u.z(ftl.Z)}^>  - 0 

{Q13Ex + --jpV.YfY.tl) + 5^W,Z(Y,il) + ^U,Y(Y.O)}(1) = 0 

{^V,Z(Y,±1) + ^W,Y(Y,±1) + ^pU,Z(Y,±l)}(1' = 0 (2.18) 

{^V,Z(Y,±1)  + ^.YfY.il)  + ?^j,Z(Y,tl)}(1> = 0 



{U,Z(Y,0)}W = 0 
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(m) 

{V,Z(Y,0)} (m) 

{W(Y,0)}M = 0 

{U(0,Z)}M = 0 

{V(0,Z)}{k) = 0 

{W,Y(0,Z)}(k) = 0 

(2.19) 

(2.20) 

where Q.. = cS^/cmax 
with C^l  being the 1ar9GSt stiffness coef- 

ficient of the kth layer, Y = £- and Z = f , the dimensionless co- 
fa      n 

ordinates, and U, V, W and their partial derivatives being dimension- 

less quantities. 

2.2 EQUILIBRIUM CONSIDERATIONS 

Before developing the solution procedures, it will be shown that 

a close examination of the force and moment equilibrium of a section 

of the laminate will lead to significant reduction in the mathematical 

complexity. Consider the free body diagram in Fig. 2. Let 

hb 
k = 1,2,...,m 

hence, 
m 
E t. = 1 
M J 

(2.21) 

(2.22) 

The force and moment equilibrium per unit length require 

£Fy = 0 



23 

NOTE : Txy , Txr (NOTSHOWN] 

/•cry(o, Z)hdZ 

3 B,        t, 
02       t2 

i i 
l I 
i l 

Jk LfcL r i—>y 

f"Zyz(Y,ZK)bdY 

fcrz (Y,zK)b2rdY^ 
•'o * ^ 

J    CTy(0,Z)hd2 

FIGURE  2    FREE BODY DIAGRAM OF QUARTER YZ-PLANE 
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NOTE: cr, 

FIGURE  3.  PARTIAL FREE BODY DIAGRAM OFQUARTER 
SECTION. 
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t 

t 

which gives 

f1 oy(0,Z)hdZ= f xyz
(k)(Y,Zk)bdY (2.23) 

and E MA = 0 which gives 

[1CTy(0,Z)h
2(Z-Zk)dZ=f

1az
(^(Y,Zk)b2YdY        (2.24) 

J7i. J0 

k 
where Z,, = 1 - z t« is the elevation of the kth interface in the 

k     j=l J 

first quadrant. 

On the other hand, the force equilibrium per unit length 

requires 

which yields 

f1 xxy(0,Z)hdZ - j1 xxz(Y,Zk)bdY (2-25) 

At this point, an important premise must be recognized in the 

solution method of the present thesis. It has been numerically 

observed in [24] and examined in the present study that the central 

plane stresses cy
(k>(0,Z) and rxy

(k>(0,Z) are essentially constant 

in each layer for h/b « 1 (Figs. 2, 3). Hence it may be expressed 

mathematically that 



—, z:::i 
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and 

IF=! 0y
(k)(O,Z)t^ = 0 

y k=1 y K 

x  k=1 V 

(2.26) 

(2.27) 

for equilibrium considerations. 

Equations (2.23) through (2.27) together serve as an important 

tool to reduce the mathematical complexities in the present thesis. 

Since the material on either side of the ktn interface Z = Zk must 

satisfy the governing equations (2.16) and the boundary conditions 

(2.17) and (2.20), and  since the interlaminar stress distributions are 

of primary interests, the boundary layer equations will be solved by 

considering only the infinitesimally thin free body diagram about this 

interface (Fig. 4). By doing so, the boundary value problem is re- 

placed by the free body force and moment system of Fig. 4. Thus, the 

stress boundary conditions on the top and bottom surfaces, (2.18), can 

be safely ignored. This will be elaborated upon in Subsection 2.3.2. 

2.3 PERTURBATION SOLUTION 

As described in Section 1.3, two regions will be considered 

separately. Namely, the interior region where the solution to the 

reduced equations (e -»■ 0) satisfies boundary conditions at one end, and 

the bDundary-layer region where solution to the "stretched" equations 

satisfies the boundary condition at the other end. Matching of these 

two solutions must be enforced to insure uniformity of the resulting 
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)bdY    w 
(g)y   *«!*<¥, ZK*£)bdY     •*> 

^o Al 

/•'      (K+l)       -"\ 
/ Tyz (Y,ZK-C)bdY 

0<£<<<| 

ZK+£ 

°i      (Y,ZK-C)bZYdY 

FIGURE 4.   LIMITING FREE BODY DIAGRAM OFTHE INTERFACE 
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composite solution. 

• 2.3.1 THE INTERIOR REGION 

i To seek a straightforward expansion, let 

I • 

:_n 

U<k> = Z    enUn(
k)(Y,Z) 

n=0 

v(k) = I cnVn
(k)(Y,Z) 

n=0 

W(k) = Z    enWn
(k)(Y,Z)   e « 1,  k = 1,2,3,. 

n=0 

(2.28) 

,m 

where the small parameter e represents the geometrical ratio h/b. 

Substituting these expansions into Equations (2.16) and equating 

coefficients of equal powers of E to zero result in the following sets 

of equations: 

e° : {%5Uo,ZZ + %Vo,Zz}(i° - 0 

{Q45UO,ZZ + Q44Vo,ZzJ(k) = ° 
{Q33wo,ZZJ(k) " 0 

** : {Q55U1,ZZ + Wl.ZZ + % + Q45)W0,Yz}(k) " 0 

{Q45U1,ZZ + Vl.ZZ + (Q23 + Q44)W0,Yz}(k) = 0 

{(Q45 + Q36)Uo,YZ + (Q44 + WVYZ + Qs3Wl,Zz}(k) = 0 

(2.29) 

(2.30) 
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er : {%6Ur-2,YY + %5Ur,ZZ + ^26vr-2,YY + %Vr,7Z 

+ (Q36+Q45)Wr-i,YZ}
(k) = ° 

{%Ur-2,YY + Vr.ZZ + ^22Vr-2,YY + Vr.ZZ 

+ (Q23 
+Q44)Wr-1,Yz}(k) = ° (2-31) 

{(Q45 + Q36) Vl ,YZ + (Q44 + WVl ,YZ 
+ Q44Wr-2,YY+(b3wr,Zz}(k) "0 

and 

r > 2 

Now the displacement conditions (2.19) and (2.20) give 

(m) 
Un,Z (Y'°) = ° 

Vn[z](V,0) -  0 (2.32) 

Wn
(m)(Y,0) =0    n = 0,1,2,.... 

un
(k)(o,z) = 0 

Vn
(k*(0,Z) = 0 (2.33) 

Wn^(0,Z) = 0     n = 0...2,.... 

k = 1,2,....m 

Recognizing that the boundary layer regions exist near Y = « 1, 

the stress free boundary conditions (2.17) are dropped for this 

interior region. 

The stress boundary conditions on the top and bottom surfaces. 

Equations (2.18), yield 
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{^x + -F V„iY(Y,±l) + ^ H,fZ(Y.tl) + ^ Un>Y(Y.tl)}^) = 0 

{^VntZ(Y.±l)+54i^Y(Y.±l,+^^iZ(y.±,,}n).0      (2.34) 

4> {^Vn.z(V.*l)+5BiWiliY(Y.±l)+^lVliZ(Yf±l)}n).o 

n = 0,1,2  

For the lamination theory, a  ^ = T W = T (k) = n 
z     xz    yz 

(k = 2,3,4,...,m) must also hold for the interior region. Hente 

Equations (2.34) may be generalized to 

{"I3=x * TT V„,y(Y,tl) * ^ w„iZ(v,„) ♦ °f U^yfy.il)}'1' = 0 

$i »„jjr..! J ♦ «M «„,,(,,,,) ♦ «S Un-Z(y,,„}(« , „     (2.35) 

1 
$r »n.20f..D * ^ H,.,(T..l) * ^ un,z(y.fl)}<

k' . o 
■'I 

n = 0,1,2  

i 
I k = l,2,...,m 

1 The derived symmetry and antisymmetry conditions (2.9) lead to 

i Un
(k)(Y,Z) - Un^)(Y,-Z) 

1 Vn<
k)(Y,Z) = VnW(Y,-Z) 

Wn
(k,(Y,Z) = Vk)(Y,-Z) 

Un(
k)(Y,Z) - -Un^)(-Y.z)               (2-36) 

Vn
(k)(Y,Z) = -Vnf

k)(-Y,Z) 

♦ Wn
(k)(Y,Z) = Wn(

k)(-Y,Z) 

n = 0,1,2,.... 

1 k = 1,2, ,m 
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Equations (2.35) may be put in the following form with respect 

to the order of e, similar to Equations (2.29) through (2.31). 

^O:Ql3(k)^ + Q33^WOjZ^{Y,tl)=0 

^A{k\^^ +  %(k)uo,z(Y'±D = 0       (2.37) 

(k) 

^ : Q23(k)ViyY^) + Q33
(k)Wr,Z(k)(Y^) 

+ Q36(k)Ur!iJY(
Y.-+D = 0 

Q44(k)Vr,Z(k)(Y.^)+Q45
(k)ur>z^(Y,il) 

♦C44
(k,«r-lV.il)--0 

Q45
(k)Vr.2(k)(Y^)+Q55(kVz(k)(Y^) 

+ (J45(Vlk!v^)=0 

(2.38) 

r > 1 

Thus, the interior region problem is redefined by the infinite 

sets of equations with respect to the order of e. 

The Zeroth Order Problem: 

Equations (2.29), (2.32), (2.33), (2.36) and (2.37), (n = 0) 

constitute the zeroth order problem for the interior region. 

The solutions to Equations'(2.29) have the form 

U0
(k) = AQ

(k)(Y)Z + B0
(k)(Y) 

V0
(k) - C0

(k>(Y)Z + D0<
k)(Y) (2.39) 

«o(k) =Eo00(Y)Z + Fo(
k>(Y) 

k = l,2,...,m 

where AQ
(k,(Y) through F0'

k'(Y) are unknown functions. It may be 
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noted that the form of Solution (2.39) is similar to Pagano's approxi- 

mate solution of Reference [17]. 

From Equations (2.36) with n = 0, it may be shown that 

to tot 00, (Y) = C0
V*'(Y) = FQ^'(Y) = 0 (2.40) 

The first of Equation (2.37) then leads to 

to. 
(k) (Y) = 

'13  cxn 

v33 

hence 

W( 
(k) '13 

00« 

^JkT Z = 
'13 

(k). 

TkT 
'33' '       C33( 

The last two of Equations (2.37) are identically satisfied. 

From Equations (2.32) with n = 0 

Bo
(k)(0) = D0

(k) =0    k = 1,2,....ra 

(2.41) 

(2.42) 

Also, from Equations (2.36) with n = 0 

B0(k)(_Y) = . B0
(k)(Y) 

D0
(k)(-Y) = - D0

(k)(Y) k = l,2,...,m 
(2.43] 

Equations  (2.26) and (2.27) may now be expressed in the form 

z[fc 12 

C23C13i(k)] 

'33 i 
Vxb    + j, C22

(k)hkD0'
(k)(Y) 

m 
T. 

k=l 
M*.   n   'to +    *    C26    Vo (Y)  = 0 (2.44) 



fc 

f 33 

l^-W%^l^w^ k= 

+k:, "66  "kBo  *ITJ -0 . (2.45) 
1 ^C66HkBo'

(k,(V)=0 

where B0
,^)(Y, and D0'^)(Y) are the first derivatives of the cor- 

responding functions. Note that the higher order terms were neglected 

in these equations. 

Equation (2.41) implies that continuity in the displacement 

W(Y,Z) can be insured only when higher order terms are included since 

Qij   (k = l,2,...,m) are  different in general. 

Enforcing displacement continuity in U(Y,Z) and V(Y,2) results 

in 

Bo0)(V) = B0^(Y) = Bo(m)(y) (246) 

Do0)(V) - D0(
2>(Y) -   = D(W(y) (247) 

Integrating Equations (2.44) and (2.45), making use of Equations 

(2.42) and combining f.e resulting Equations with Equations (2.46) and 

(2.47) lead to 

0     ^T-^aV x 

k = l,2,...,m    (2.48) 

D Wm -  (q»q5 " q3q4)  hv 
H2H5 " H3V3t 

where 
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m r c23C13]^k^ 
c33 J 

m 
.OOi q2 = .LV  /hk 

k=l 

k=l 
<*3 = .E,C26  hk 

% 
m r    C26C13](k) 

|c1fi - 
k=l 
i    C 16 "  C33 

m  (k) 
q5 = k^

C66  hk 

„a- 

(2.49) 

As mentioned in the preceding section, higher-order approxima- 

tions are not pursued in this thesis for simplicity. Hence, the 

interior region solutions are found to be 

y(k) = BO(I0(Y) + o(c) 

vCO = D0
(k)(Y) + 0(E) 

w(k) , - C13  cxh z + Q(e)   k= 1,2,....n 

(2.50) 

-33 

(k), where BQ '(Y) and D * '(Y) are given by Equations (2.48), and 0(t.) 

represents the highest order term truncated in the asymptotic expan- 

sion. 

2.3.2 MODIFIED ZEROTH ORDER INTERIOR REGION SOLUTION 

Solution (2.50) does not completely satisfy the vanishing stress 

condition (2.35) to the proper order of z.    This can be seen 

from Equation (2.38) where the zeroth order displacements UQ
V '(Y,Z) 
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and Vo00(Y,/) were related to the undetermined first order displace- 

ment w/k)(Y./). It has been described (Section 1.3) that solving 

higher order i-roblems requires more complex mathematical procedures 

such as Van H/ke's matching principle. Also in Section 2.2, it 

was shown th.if the uniform stress distribution on the central xz - 

plane (Y = 0). a numerical result, is utilized as an important tool 

to reduce maH.-matical complexity for the boundary layer region. 

Therefore, an improved zeroth order interior region solution to evalu- 

ate better si-vss intensity near the central plane is certainly quite 

demanding. 

To seek Mich an improvement, Equation (2.39) along with Equation 

(2.40) are no, required to satisfy the stress conditions (2.35) 

exactly. EqttfMons (2.32), (2.33) and (2.36) remain satisfied. The 

following eqt.v-ions are  obtained. 

w 00 _ F (k)7 Wo    Eo  Z (2.51) 

u (k> = B 00m Uo Bo  W                 (2.52) 

V 00 a o 00 m 
o Do  00                 (2.53) 

(2.54) 

».here EQ'
k) ncv becomes an unknown constant for the kth layer. 

Again er -cing conti.-jity in displacements UQ
(k)(Y,Z) and 

%.0^(Y,Z), re- actively, yields 
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and (Di (Y) = D0(2)(Y) = .... = Djk)(Y) = D0(Y) (2.56) 

Hence, Equation (2.54) may be written as 

ci3  £x +  b 

(k) 00 00 
D0'(y)+J3 ^(k) + _36 Bo'(y) = o  (2.57) 

(k) 
Continuity in the displacement W  (Y,Z), as developed in Sub- 

section 2.3.1 (Equation (2.41)), will be insured only by higher order 

considerations, hence it is not imposed as a physical requirement in 

the present modification. 

Finally, recalling Equations (2.26) and (2.27) gives 

m 
Z 

k=l 

c?3 
ci2+ -r Eo 

(k). '« - (kWi 
^x + 

J k=l 

and 

B0'(Y) = 0 

m 

k=l 
CIS + -f ^o 

lOO 
cx + 

m C 
z 

k=l 

23 
(k)t 

<]*• D0'(Y) 

(2.58) 

m c 

k=l 
66 

(k) \1 Bn'(Y) = 0 
J° 

(2.59) 

Since there are m + 2 simultaneous equations ((2.57) - (2.59)) 

for the m + 2 unknowns B0'(Y), D0'(Y), and E0
V ', the modified zeroth 

order interior solution can be readily determined. 

To show the improvement made in the present modified interior 

region solution, two numerical examples are given in Tables 1 and 2. 
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TABLE 1* ! 

[0/90]s (c = 0.133) 
5 

Modified 
1 

Displacement Finite Difference ZIR** Solution ZIR Solution 
i 

U<k)/(exbY) 0 0 0 

v(k)/(exbY) -0.0397 -0.0391 -0.0396 

W^V(exhZ) -0.2467 -0.2534 -0.2448 

w(2)/(exhZ) -0.2055 -0.2172 -0.2072 

* Material: graphite-epoxy laminate with constant ply 
thickness. 

** Zero*-" order interior region. 

TABLE 2 

[45/-45]s (c = 0.133) 

Modified 

Displacement Finite Difference ZIR Solution ZIR Solution 

lj(k)/(exbY) 0 0 0 

V<k)/(exbY) -0.7409 -0.7298 -0.7433 

W^)/(exhZ) -0.0607 -0.2354 -0.0604 

W(2)/(cxhZ) -0.0613 -0.2354 -0.0604 

As expected, the Modified ZIR solution yields wore reliable 

results than the ZIR solution. 
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(I) -(2) COUPLE OF Ry (Y=0) 
(3)- (4) COUPLE OF Rxy(Y=0) 
(5)- (6)   COUPLE OF Rxy 

(7)-(8) COUPLE OF Rxy 
(9)-(10) COUPLE OF Rm 
(!!)-(12) COUPLE OF Ri 

NOTE: RESULTANTS OF ay AND a* ARE ONLY SHOWN 
IN YZ-PLANE 

FIGURE    5.   FREE BODY DIAGRAM OF FIRST QUADRANT 
OF TYPICAL SECTION 



39 

Hence the former will be employed throughout the present thesis 

to evaluate the central plane stress intensity for the determination 

of the unknown coefficients in the boundary layer region solution. 

2.3.3 THE BOUNDARY LAYER REGION 

Consider the first quadrant of the yz - plane as shown in 

Figure 5. Introducing the stretching transformation 

n = L-—^ (2-60) 

near the free edge Y = 1  to the governing equations  (2.16) results in 

the following equations for this quarter plane of the laminate. 

<Q66U'nn + W'ZZ + W'nn + %V'ZZ -  (Q36 + Q45>H.nZ>(k) = ° 

{Q26U,nri + Q45U,ZZ + Q22V>nn + W>H '  (^23 + Q44)W>nZ>(k) = 0 

(k) r 
{-(Q45 + Q36)U'nZ "  (Q44 + ^'nZ + Q44W'nn + ^33'^ZZ}        = ° 

(2.61) 

To satisfy Prandtl's matching principle (Section 1.3), assume the 

following composite expansions 

U(k) = [B0(Y) + P0e
X°n cos a0 Z]

(k) + 0(c) 

V(k) = [D0(Y) + R0e
A°n cos a0 Z]

(k) + 0(0   k = 1,2,....m (2.62) 

wW = [E0Z + S0e
A°n sin ,0 Z]

(k) + 0(c) 

where B ^(Y), D0^(Y) and E0^ are the Modified ZIR solution 

given by Equations (2.57) - (2.59), P0
(k\ RQ

(k) and S0
(  are un- 

(k) - - 
determined coefficients, and u0

v  are undetermined positive quantities 
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in radians. The subscript o implies the zeroth order solution for the 

boundary layer region. 

Substituting Equations (2.62) into Equations (2.61) and neglect- 

ing the 0(c) terms results in the following set of three simultaneous 

algebraic equations corresponding to the z° order: 

«Q66xo2 " <W)Po + (Q26*o2 " °45«o2>Ro " <Q36 + ^45) VoV^ = ° 

«Wo* "'«W^o + (Q22xo2 " ^K " ^23 + W Wo^' = ° 

{(Q45 + Q36)Vopo + (Q44 + <WVoRo + ^Q44xo2 " Q33ao2)So}(k) = ° 

k = 1,2,...,m       (2.63) 

For each nontrivial term of Solution (2.62) to exist the 

determinants of these algebraic equations must vanish individually. 

Thus, 

Q66
Xo2 - Q55ao2  Q26Ao2 - %"o2  "«36 + <W Vo 

Q26
xo2 " ^45ao2  Q22xo2 " Q44*o2  "^23 + <WVo 

(Q45 + Q36)Vo  (Q44 + Q23>Vo   Wo*  " Q33aQ2 

k = 1,2,... ,m 

These sixth order equations may be regarded as third-order equa- 

tions by the classical treatment [25] and the method of complex 

variables [26]. 

The six roots are found to be in the form 

(k) 

2.64) 

(X0(l,2) = ± a rx0}
(k) 

(X0(3,4) = ± b a0} 
(k) (2.65) 

U0(5,6) = ± c a0}
fk) 
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_/(,> _/|<) _/k) 
where ax ', W  ',  c 'are three positive constants in terms of 

material constants of the kth layer (see Section 3.2). For matching 

consideration, however, the positive roots must be dropped since they 

lead to exponential growths of the displacements for large n (or small 

Y). 

Upon determining the characteristic roots from Equations (2.65), 

Solution (2.62) takes the following general form. 

U(k) - <B0(Y) + (P1e-
5"a«>n + P2ib<W + P3i^on, cos ^ Z}00 + Q(e) 

V(k) - (D0(Y) + (R/V + R/°0n + ^n, CQS ^ Z}(k) + Q(c) 

W<k> - {E0Z + (Sie"^on + sj/'on + ^o^ sin ^ Z}(k) + Q(cJ  (? ßß) 

where ?JkK are replaced by p/k), ?z^\ P3^k), etc. 

With the above solution, the stress boundary conditions (2.17a), 

(2.17b) and (2.17c) transform to 

{[Q26(ä"pi + bPj, + cP3) + Q22(FR1 + bP.2 + cR3) 

+ 023(5!  + S2 + S3)]a0 cos(«0 Zk) 

= - C(Ql2 +¥^o)cx^D0'(il) +^6    B0'(il)]h}(k) 

(2.67) 

t[Q66(äP] + b"P2 + cP3) + Q^^ + bR2 + cR3) 

+ Q36(Sl + S2 + S3)]a0 cos (a0 Zk) 

(2.68) 
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{Q44KR1  + R2 + R3) "  (S]ä +. S25" + S3c)] + Q45(P!  + P2 + p3)}(
k) = 0 

k = l,2,...,m (2.69) 

Note that the right hand sides of Equations (2.67) and (2.68) are all 

known quantities from the interior problem. Since there are ten un- 

known coefficients in the ktn layer, solving simultaneously three 

equations from the boundary conditions (2.67) through (2.69), and six 

equations from Equations (2.63) leads to the determination of the nine 

unknown coefficients in terms of a0. The accuracy of the coefficients 

thus obtained can be readily checked by the self-equilibrating condi- 

tion of the stress resultant, 

rb 

SF2 = I
0 a2

(k)dV . 0 (2.70) 

for any level of Z (Fig. 2). 

Finally, imposing the moment equilibrium conditions (2.24) and 

the force equilibrium conditions (2.23) and (2.25) determines the 

(k) 
values of a0* >  and tan (a0

(k>Zk) to their orders of accuracy. 

In summary, the zeroth order interior solution (ZIR) was ob- 

tained by letting h/b go to zero. The Modified ZIR solution improved 

the ZIR solution by satisfying the vanishing stress boundary condi- 

tions (2.35) exactly. The zeroth order boundary layer solution was 

obtained by transforming the governing equations and the boundary con- 

ditions (2.17) at the free edge. The matching principle was satisfied 

by the composite solution, and the self-equilibrating condition of the 

interlaminar normal stress resultant was employed to check the 

accuracy of the calculated coefficients. The continuity conditions 
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in both displacements and tractions were imposed. And the force and 

moment equilibrium of the composite solution with the central plane 

stress resultants were satisfied for the k*h interface plane 

Z = Zk (Figs. 3, 4). 



Chapter III 

SPECIAL LAMINATES 

The solution method developed in the preceding chapter applies 

to balanced, symmetric laminates with variable-thickness plies. For 

certain special cases the field equations are greatly simplified by 

the vanishing of some elements in the stiffness matrix. Among the 

various laminates studied in the literature (Section 1.1) are the bi- 

directional laminates [0/90]s and [90/0]s, and the angle-ply laminates 

[e/-e]s and [-e/e]s. These two laminates will be considered in this 

chapter. 

3.1 BIDIRECTIONAL LAMINATES WITH CONSTANT PLY THICKNESS 

When the orientation of the fibrous layer is either 0" or 90° 

with respect to the x axis, the constitutive equation reduces to 

■00 

°z 

Txz 

-Txy. 

cll c12 c13 ° 

c12 c22 c23 0 

C13 C23 c33 ° 

0   0 0 C44 

0   0 0 0 

0   0 0 0 

0 " (k) cx 

0 r-y 

0 c2 

0 Vyz 

0 YXZ 

c66. -Yxy- 

0 

0 

0 

0 

:55 

k = 1,2,...,m. 

00 

(3.1) 

Consider the laminate consisting of 2m layers with the stacking 

sequence [0/90/0/90/0/90...]s as shown in Fig. 6a. 
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(a) BIDIRECTIONAL   LAMINATE 

-0 
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0 
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-fe»j 

(b)ANGLEPLY  LAMINATE 

FIGURE   6. BIDIRECTIONAL AND  ANGLE-PLY 
LAMINATES 
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Equations (2.16) reduce to 

'%6  [EJ    U'YY + Q55 U.ZZ>(k) » 0 

2 
fül u     ,00 V,YY + Q44 V,zz + (Q23 + Q44)!F!  W,yz)

v,w  = 0 (3.2) <Q22  I 

{(Q44 + Q23)[bj  V,YZ 
+ Q44  [B]  W>YY + ^33 W,ZZ}

(k) = 0 

Note that the first equation is an independent equation whose complete 

solution may be assumed in the form 

|00 = 
00 A Y 
r   an e n   cos an Z 

n=0 
00 (3.3) 

(k) where an        (n = 0,1,2 ) are unknown coefficients. 

Substituting Equation (3.3)  into the first of Equations  (3.2) 

yield 

,  (k) (    l%5b     l(k) 

'(1,2) 

/    fe b     \0 
n = 0,1,2  (3.4) 

Hence 

,(k) .     " 
h=o 

an sinh ffilk 
VQ66 ' 

)(k) 
£an  Yj   COS  an  Z (3.5) 

Solution (3.5) automatically satisfies the first of the displace- 

ment symmetry conditions (2.19) and (2.20). The second equation of the 

free edge stress boundary conditions (2.17)  reduces to 

f?66U,y (♦l.ZjjW-O (3.6) 
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Substituting Solution (3.5) into Equation (3.6) results in 

an(
k)=0   n = 0,1,2  (3.7) 

hence, U(k) = 0 (3.8) 

everywhere in this laminate. 
00    (k) 

This leads to the vanishing of the shear stresses txy and i^ 

throughout the bidirectional laminate as may be physically expected. 

(k) (k) 
The modified ZIR solution (Subsection 2.3.2) for Vv '  and Wv 

may be determined by solving Equations (2.57) - (2.59) simultaneously 

with B0'(Y) vanishing identically. For the simplest case of the four 

layer symmetric [0/90]s laminate, the displacements are found to be 

v(k) = D()(k)(Y) 

,0) E(DZ 
■■o '- 

(3.9) 

U(2) - E0<
2>Z 

where 

E 

(2) (1) 
Co-5 C-30      V ' I r-  (2)   ^23 U33  r 

'23 "33 

r
(2) P(Dr(2)l c13 . c13 c23 

~ 7GT cJr^r2T 
L33 L23 33 J 

L(D. 
(k) (Y) 

C« b  (1) + C1
(J)cx b 

L23 

'33 

L23 

(3.10) 

(3.11) 

(3.12) 

Introducing the stretching transformation 
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(1 - Y) 
I =  'hl (3.13) 

into the remaining coupled equations of (3.2) results in the boundary 

layer equation in the form 

™22  v'nn + ^44 V.ZZ - (Q23 
+ Q44) W,nZ}

(l° = 0 

{-(Q44 
+ Q23) v,nZ + Q44 w,nn + Q33 w,zz}00 = 0 

(3.14) 

Following Subsection 2.3.3, the displacements are assumed to be 

An vfk'-D0W(v)t[Roeo"COSc,o2](k)to(i) 

(3.15) 

»(k)-E„(k)Z*[Soe'°ns,„aoz]Wt0(,) 

where D0  (Y), E0   are known quantities from the modified ZIR solu- 

tion. For the four ply [0/90]s laminate, they are given by Equations 

(3.10) - (3.12). R^) and S^) are unknown coefficients. 

Substituting Equations (3.15) into Equations (3.14) results in 

the algebraic equations for the zeroth order boundary layer problem as 

follows 

«Q22 
A02 - Q44 -OX - (Q23 + 044)Ao a0 SQ}

(k) = 0 

««44 + Qz3)»o -0 R0 
+ (Q44 *„* - Q33 «0

2)s0>
(k) = 0 

(3.16) 

For a nontrivial solution, the determinant of these equations 

must vanish. Thus, 

^22 *o " Q44 ao2   -(Q23 + Wo  "0 

(Q44 + 023)>o "0     044 >0
2 - 033 u0

2 

00 
-  0 (3.17) 
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whence 
P   * ,2 -ASM 

17?] 
(k) 

00 s ♦ . '22 I 00 (3.18) 

,00 = Q33     Q23Q23_+_i52354ij 
Q44 " °22Q44 j 

(■0 
(3.19) 

Note that the 2 x 2 determinant is only a principal minor of the 

determinant in Equations (2.64). For conventional composites, such as 

graphite-epoxy and boron-epoxy laminates, 

(k) 
> 0 P2-4 Ü33.1 

O22J 
(3.20) 

Hence Equation (3.18) yields two pairs of real roots. For match- 

ing considerations, the positive roots are dropped, and the zeroth 

order composite solution (Section 1.3) takes the following form 

-So (inHi 
V (k) = D0W(Y) ♦ {(R, e"61 a°n + R2 e 2 °°n)cos a0 7.) 

(k) 

W W = E0
(k)Z + {(S, e"3l a°n + S2 &  a0U)sin <0 Z} 

-00 

(k) 

where 

(k) = 

ß2 
(k) 

(3.21) 

(3.22) 

and Prandtl's matching principle (Section 1.3) is satisfied. 
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The first and third of boundary conditions (2.17) lead to 

{[Q22(^1R1 + ß2R2) + Q23(S1S2K cos  («o zk) 

= - cxh(Q12 + Q22 Do'(Y) + Q23Eo)>(k) 

{Q44 (Ri + R2 - sißi - s2ö2)}
(k) = 0 

(3.23) 

From Equations (3.16), additional relations between R^ and S1 

R2 and S2, are obtained as follows 

C(Q22
ßl2 - Q44>R1 " ^23 + Q44)^lsl3(k) = 0       (3.24) 

[(Q22ß2
2 - Q44)R2 - (Q23 + Q44)ß2S2]

(k) = 0        (3.25) 

Solving Equations (3.23) - (3.25) simultaneously results in 

R/k), R2^, s/k) and S2^ in terms, of hcx/(«0 cos «0(Zk + c)) 

where 0 < z,  <« 1 and Zk is defined in Equation (2.24) and (2.25). 

Equations (2.23) and (2.24) then lead to the determination of 

a0' ' and tan (a0^ ' Z|< - <;) to their orders of accuracy. 

Thus the complete solution for the zeroth order displacement 

function lKk), v'*), w' ' are obtained and the interlaminar stresses 

between the ktn layer and the (k+1)tn layer, Zk = 1 - z  tr , may be 
r=l 

readily calculated from the strain-displacement equations (2.2) and the 

constitutive equations (3.1). 

3.1.1 [0/90]s GRAPHITE-EPOXY LAMINATE 

As a numerical example, the four-ply [0/90]s graphite-epoxy lami- 

nate with constant ply thicknesses (Fiq. 7a) is considered. The stiff- 

ness coefficients (after transformation) are listed below. 
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A 
0 

0    (I) 
90 (2) M 

(a.) [0/90] LAMINATE 

0    (I) 
A ->> 

AE 

(b) QUARTER Y-Z PLANE 
OF TOP LAYER 

-   A Al <Q- 

-o f 
o<C<«i 
(c)FBD 0FZ=|/2£ 

*z 

90  (I) 

0     (2)    IftT 

(d)  [90/o]s LAMINATE 

90(1 
A     **- T 
(e) QUARTER Y-Z PLANE 

OF TOP LAYER 

Al      J» -L^3j£ 

o<C<«i 
(?)FBD 0FZ = I/2C 

FIGURE   7.    FOUR PLY BIDIRECTIONAL LAMINATES 
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zxi 

0 (x IQ"6 psi) 

c(1 hl 
( = 20.2 

1 = 0.56 

L22 
1 = 2.21 

® > = 0.56 

23 
' = 0.48 

U33 
► = 2.21 

C44 
* = 0.85 

L55 
= 0.85 

C<! * = 0.85 

90 (x IQ'6 psi) 

'66 

c<2> = 2.21 

c(2) 
L12 

= 0.56 

c(2) 
L22 

= 20.2 

cß) = 0.48 

c(2) 
23 

= 0.56 

c(2) 
C33 

= 2.21 

C(Z) L44 
= 0.8S 

c(2) 
U55 

= 0.85 

r(2) = 0.85 

(3.26) 

'66 

From Equation (3.8), the axial displacement function U vanishes 

everywhere in the laminate. 

The interior region solutions (3.9) are found to be 

V^]) = Vn^
2) = -0.0396 cxbY 0       0 A 

(1) Wr -0.2448 £xhZ 

W^2* = -0.2072 cxhZ 

(3.27) 

(3.28) 

(3.29) 

From Equations (2.2), (3.1), and (3.27) - (3.29), the central 

plane (Y = 0) stresses are found to be 

!    » 

ov
(1)(0,Z) = 0.3552 ex(10

6 psi) (3.30) 
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(2) 
V     (°'Z)  = -0.3552 ex(106 psi)                               (3.31) 

■ 

i 
\yhoj)   «   T^(0sZ)   «  0 

. Equation (3.22) gives 

j 

f                        i 
ß/1' = 1.10899 

ß2
fl) = 0.90172 

1 
6,<

2> ■ 1.57550                                               <3-32) 

B2^ - 0.20994 

Considering continuity of Equations (3.28) and (3.29) at the 
1 

interfaces Z = ± - and the exponents given by Equations  (3.32),  it may 

be postulated that the boundary layer effect in the 90°-ply (Layer 2) 

penetrates deeper into the interior of the laminate than that in the 

0°-ply (Layer 1). 

Hence the zeroth order composite solution (3.21)  is in the form 

VCH) - -0.0396 exbY + [(R,  e^ + ^ ^)C0S ÜQ z]0) 

Wc
(1> - -0.2448 cxhZ + [(Sl  i

ßia°n + S2 e^Jsin c0 Z](l> 

Vc
(2) = -0.0396 ,xbY + [(Rl eßTaon + R2 e^cos a0 Z](2> 

« 

Wc
(2) - -0.2072 ExhZ + [(S,  e"ßla°n + S2 e^Jsin a0 Z]<2> 

The unknown coefficients are found (setting Z = -) to be 
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where 

R2 

(1) _ - 

(1) = 

0) - 

0.8385 *1 

-1.1776 ♦l 

-1.0619 *1 

0.9298 *1 

cxh 

R2(2) = 

c (2) _ 

♦l "«*Ol"c0S(«oU)(l.+ r.)) 

exh 

*2 = ao(2)cos(ao(2)a-c)) 

-0.0028 «2 

0.0984 <fr? 
(3.34) 

0.0625 *2 

-0.0134 ^2 

(3.35) 

(3.36) 

0 < r, <« 1 

The self-equilibrating condition r.  Fz = 0, Equation (2.70), can 

be written in the form 

-f a2
(k)(n, \±  c)hdn = 0   0 < c <« 1 (3.37) 

Substituting the coefficients of Equations (3.34) into Equations 

(3.21) and the constitutive equation (3.1) determines the stresses on 

either side of the interface Z = j.    It may be shown that Equation 

(3.37) is satisfied identically. This further confirms the correct- 

ness of the calculated coefficients of Equations (3.34). 

Equations (2.23) and (2.24) now become 

| - Tyz
(1>(n, 1+ Ohdn = - 0J|i?-hfx(10

6)       (3.38) 

j - ryz
(2)(n, \ - Ohdn = - ^Y1 hc-x(10

6)       (3.39) 
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|° - oz
(1)(n, \ + c)bh(l - cn)dn = - ^f2" hcx(10

6)^   (3.40) 

|° - a2
(2)(n, g- - 0bh(l - en)dn = ^p hr.x(10

6)|     (3.41) 

0 < e -« 1 

where v is the approximate distance of the resultants Ry  , Ry 

from the interfacia1 plane. 

To compare with the numerical results of Pipes and Pagano [7], 

the interlaminar stresses are calculated based on the 90° ply (the 

lower layer). Equation (3.39) leads to 

f«n(2) 
tan «o(2) c w = 0.5 0 <   Q   <«   1 

whence a, (2) - 0.180, 8.9868, 15.4505, ..., 

Equation (3.41) gives 

(2) 2.8284 

(3.42) 

(3.43) 

(3.44) 

From Equations (3.38) - (3.41), it is clear that the stress resultant 
r or 

is of order 0(hex10
D) v,hile the couple moment is of order 0(h cx10°). 

Hence, requiring exact satisfaction of Equation (3.39) and approximate 

(2) 
satisfaction of Equation (3.41) fixes the value of a0  at 

a0
(2) = 8.9868 (3.45) 

While TXy and TX vanish throughout the laminate, the other 

stress components are  obtained in the following zeroth order form 

„(2)(ri,l_0 = [2.08837 + (0.0275 e
1-88680 

(3.46) + 0.0051 a14-158n)]f:x(10
6 psi). 
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o/2)(n,2 - ?) = - (0.3552 + 0.0546 £14'158r> 

- 0.4098 i1-887n)ex(l0
6psi) (3.47) 

xyz
(2)(n I- c) - O.aSSSfi1-887- - i14-15*»,^,,,* psi)    (3.48) 

c2
(2)(n 1 - O - (0.1356 i14-158^ - 0.0185 J'887«)^*  psi)  (3.49) 

where 0 < c <'<■ 1 

The last two components of stress, the interlaminar stresses, 

are plotted and compared with numerical results in Figs. 8-11. 

If the stacking sequence of the laminate is reversed to [90/0] 

(Fig. 7d), the derivation of these interlaminar stresses is as indi- 

cated in the following subsection. 

3.1.2 [90/0]s GRAPHITE-EPOXY LAMINATE 

While U<k) vanishes everywhere in the laminates, the modified ZIR 

solution for V<k) and \lM  can be obtained by interchanging the 

superscripts in Equations (3.27) through (3.41). 

To compare with the numerical results [7], the 0° ply is now 

used as the reference layer for the interlaminar stresses. 

The stress components in zeroth order forms are obtained as 

ox
(2>(n,l - c) = [20.04 - C.074(e9-96- + e

8-10^)]tx(10
6 psi) (3.50) 

°y
(2)(n,l- 0 = (0.3552 + 1.5452 i9"966n 

- 1.9004 i8-10^)cx(10
6 psi) (3.51) 

V [n,Z      ?' ~  7-6995(e     - e    hx(10
b psi)    (3.52) 

(3.53) 

where the last two are the interlaminar stresses. 

*2<2>(n 1- O -  (-1.9004 i9"966\  1.5452 i8'104")^!«,6 psi) 
0 < c «-« 1 
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These stresses are plotted in Figs. 12 - 15. 

3.2 ANGLE PLY LAMINATES WITH CONSTANT PLY THICKNESS 

For contemporary fiber-reinforced composites havinq three mutual- 

ly perpendicular planes of elastic symmetry, C45
vk' vanishes. If the 

laminate consists of one material with symmetric [e/-e]s or [-o/o]s 

orientations (Fig. 6b), it is called an angle ply laminate and the 

following relations between material constants are found, 

Cij  = Cij     »  1 = 1'2*3 and j = ]'2'3 

ckk1} = ckk2)   »  k = 4'5»6 (3-54) 

r (1) -  C    & n - 1 ? T cn6  " " cn6   »  n _ '»2»3 

The modified ZIR solution gives 

U00)=Uo(2) = o 

V (1) = V<
2> - - (C12C33 - C13C23>  ;xb_ y      (3>55) 

0     °       (C22C33 - C23C23)l') 

WoO) = WQ(2) = . (C13C22 - C12C23> Jxh_ ? 
(c22c33 - c23c23) 

On the central plane (Y = 0), the stresses are obtained from 

Equations (3.55), (2.2), and (3.1) as 

CT, ,(1)(0,Z) = - o <2)(0,Z) = 0 (3.56) 
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Txy(1)(0,Z) - - Txy(2)(0,Z) 

=    K - WC12C33 - C13C23> * C„.(CnC„ - CC^MQ 
L (C22C33 - C23C27J J      £x 

(3.57) 

The first equation indicates that the zeroth order solution 

(3.55) contributes no transverse normal stress throughout the angle-ply 

laminate. For the laminate to be in equilibrium, two self-equilibrat- 

ing conditions in addition to Equation (2.70) should be expected to 

hold (Fig. 16). Recalling Equations (3.3S) through (3.41), the follow- 

ing equations may be established. 

(3.58) 

(3.59) 

L  W^^'F* c)hdn = °   k = 1.2 
o < c <« l 

"]» °z  (n,2" ±  c)bh'] ~ cr>)di1 = °   k = 1,2 

Furthermore, the shear stress resultants Rx W and Ry 
(2> must 

also be in equilibrium (Fig. 3 with m - 2) as indicated in the follow- 

ing equations. 

"f «„("h.I)lKh + Rxy") - 0 „here 1^0> . j]  ,„/'>(„,;!)»,« (,_M) 

2 

■/I Txz(2)^ j)ndn + R^2> - 0 where Rxy<
2> . |^ rxy

{2)(0,Z)hdZ (3.61) 

The characteristic equation (2.64) leads to two identical sixth ' 

order algebraic equations for both layers. Three positive roots to 

this equation must be dropped for matching considerations. The compos- 

ite solution will be in the form of Equation (2.66) with 0(c) 
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truncated. A numerical example is presented in the following sub- 

section. 

3.2.1 [45/-45]s GRAPHITE-EPOXY LAMINATE 

Consider the [45/-45]s graphite-epoxy laminate of constant ply 

thickness h/2 (Fig. 17a). The stiffness coefficients (after transfor- 

mation) are 

'13 

"22 

"23 

'33 

'16 

"36 

"44 

-66 

L45 

45(x 10"6 psi) -45 (x 10-5 psi) 

* = 6.745 c (2> - hi 6.745 

) = 5.045 c(2) = H2 5.045 

= 0.521 c(2) - U13 
0.521 

= 6.745 c(2) = c22 6.745 

' = 0.521 c(2) = L23 
0.521 

= 2.213 c(2) = L33 2.213 

> - C™  - -4.506 c(2) = L16 
C2^ = 4.50 

) = -0.04387 c (2) = L36 0.04387 

] - c£]  - 0.85 u44 

= 5.33 c(2) = L66 5.33 

) = 0 c(2) = L45 
0 

The modified ZIR solution (3.55) gives 

u0
(1) = u0(

2> = o 

V (1) = V (2) 
'o    vo -0.7433 txbY 

w0^ = wo^ = -0-0604 rxhZ 

(3.62) 
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Equation (3.57) yields ^^(O.Z) = -T^2)(0,Z) = l.l54ex(10
6 psi; 

The boundary layer equations (2.61) through (2.64) yield the 

algebraic equation for both layers 

X0
6 - 2.5460 A0

4a0
2 + 1.6337 A0

2aQ
4 - 0.1202 aQ

6 = 0   (3.63) 

which is readily transformed to 

w3 - 2.5460 J  + 1.6337 u - 0.1202 = 0 (3.64) 

1/2 
by letting x0 - ± a0u (3.65) 

Furthermore, setting  u - y  - l/3(-2.5460) = y  + 0.8487     (3.66) 

results in       Y
3 - 0.5269 y  + 0.0438 = 0 (3.67) 

Let y = P0 
+ % (3.68) 

and substitute it into Equation (3.67). The resulting set of algebraic 

equations are 

P«3 + <*,?  = -0.0438 
(3.69) 

Poqo = 0.1756 

which give 

3 P0
J = (0.0736){cos(2kTr + 107.3°) + i sin(2kn + 107.3°)} 
1      , % (3.70) 

q0
J = (0.0736){cos(2k^ + 252.7°) + i sin(2kTi + 252.7°)} 

k = 0,1,2 

By applying DeMoivre's formula [26] and recalling Equation 
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(3.68), (3.66) and (3.65), the six roots for Equation (3.63) are 

found to be 

A0(l,2) = ± 1.2364 a0 

X0(3,4) = i 0.2903 a0 (3.71) 

A0(5,6) = ± 0.9659 a0 

Hence the zeroth order composite solution (Section 1.3) takes 

the form 

ti,\ "ßia,Ji   "ßoa«n   "ß^ann      (k) 
Uc

(k) = {(Pie 
1 ° + P2e 

2 ° + P3e 
3 ° )cos a0l)

W 

Vc
w = - 0.7433 exbY + {(fye ' ° + R2e 

d  ° 

+ R3e 
3 ° )cos «0Z}

V ; 

Wc
l ; = - 0.0604 exhZ + {{S}e + S2e 

6  ° 

"ß3annv      CO 
+ S3e 

6  ° )sin a0Z} 
; 

(k) 
where   &1   = 1.2364 

ß2*
k) = 0.2903 

ß3^ = 0.9659 

Satisfying the governing equations and the boundary conditions 

leads to the following equations: 
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-._,!. ,^„ 

where 

'1 
0) 0.5871 * 

P2^ =  0.170/ <(. 

P3
(1> =  1.2021 * 

Rlo> - 0.6309 * 

M = - 0.1813 $ 

*3 (1) 

ß) - 

1.1897 * 

1.1358 * 

0.0347 <j> 

1.0736 « 

p/2) =      0.5871  *2 

P2^ = - 0.1707 $2 

(2) - 1.2021  *2 

Rl   = -0.6309 *2 

R2(2) = - 0.1813 «2 

Ro(2) = K3 1.1897 *2 

c (2) _ 
bl 1.1358 42 

S2^
2^ »  0.0347 42 

S3(
2) = - 1.0736 i2 

EX' 

1  ^tcos(«0(')(l+d) 

<f>2 
exh 

(21 "(2T7T 

(3.73) 

(3.74) 

«o^'cos^'^- ?)) 

0 < c <« 1 

It can be shown that these coefficients lead to identical satis- 

faction of Equations (2.70), (3.54) and (3.55). Hence the correctness 

of these coefficients is confirmed. 

Equation (3.61) then leads to 

tan k
(2-> 
T c ao 

(2) 

W 0.5 (3.75) 

0 < T,   <«   1 

which is identical to Equation (3.42). 
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Now consider Equations (3.69). It is clear that Layer 1 

(+ 45°) and Layer 2 (- 45°) are antisyirmetric in U and symmetric in 

V and W with respect to the infinitesimal thin slice (Fig. 17d). 

1 
Upon enforcing exact continuity in displacements at Z - |- , the 

(2) 
following equation is obtained 

(1) 

lim cos ♦ J'»c = lim cos 
(2), 

I 

(3.76) 

which gives 

a0
(1) = (2n + 1)*  ,  n = 0,1,2,... 

a <2) = (2n + l)ir  ,  n = 0,1,2,... 
o 

(3.77) 

Hence, 

cos 
(1) 

^o x   (1) 
-y- + C a^ 

r (2) 
cos £ a0 

(2) - 0 

for 0 < t, <«  1 

(3.78) 

where aJ1) and a_^2^ are given in Equations (3.77), 

Thereby 

and 

tan 

r   (k)               1 
ao       ,      (k)_ 

1 llll 2      l uo     ? 

c-o 
I                          J 

tan 
ao         ,       (k) 

2      X "0      C 

' 

= K 

(3.79) 

(3.80) 

0 < 5 <<< 1 

where K is a finite large posicive value. 
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At this stage, assigning any large value for K determines the 

corresponding a0' '  and tan 
and hence the interlaminar 

stresses. It may be shown that the only stresses related to 

faJk)   n\  1 are T^(k) and T z(
k). However, the latter 

tan . «„'^ xz 

vanishes identically at the free edge as required by the stress free 

boundary conditions (2.17). Hence the singular behavior is found in 

xxz
(k) at the intersection of the free edge and the interfacial plane 

Z = 1 . This provides a definite mathematical evidence for the pre- 

dicted singularity in Reference [7] and will be further discussed in 

the following chapter. 

The interlaminar stressea re plotted in Figures 18 - 20. 

3.2.2 [-45/45]s GRAPHITE-EPOXY LAMINATE 

Consider the laminate of Fig. 17e. Interchanging the super- 

scripts 1 and 2 in Equations (3.62) through (3.73) gives a composite 

solution identical to (3.72). The corresponding interlaminar stresses 

are shown in Figures 21 - 23. 
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Chapter IV 

RESULTS AND DISCUSSION 

In t!,e preceding chapter, the general method of solution of 

Chapter II was applied to the special graphite-epoxy laminates [0/90L, 

[90/0]s, [45/-45]s and [-45/45J$. To demonstrate the capability of 

the solution the results for these laminates are presented and dis- 

cussed in this chapter. 

4.1 THE FOUR LAYER UNIDIRECTIONAL LAMINATES 

It has been stated in Section 1.3 that the accuracy of the pertur- 

bation solution depends upon the perturbation parameter z.    That is, 

the smaller e, the better the result. This will be demonstrated in 

what follows. 

The interlaminar shear stress T„Z and the interlaminar normal 

stress az  (the peel stress) as functions of the perturbation parameter 

e are presented, respectively, in Figures 8 and 9 for the [f-'?0]s 

laminate. From the figures, it is clear that the boundary layer width 

becomes smaller as e decreases in magnitude. (Asymptotic recovery of 

the lamination theory is implied by the incomplete domain of ^.) It 

should be noted that the relative extreme values of the stresses are 

finite and remain unchanged as c decreases. This indicates that the 

present theory is capable of approximating the maximum value of the 

interlaminar stress intensities for intermediate as well as small 

values of e. Also, the difference between the cases I  = 0.133 and 

81 
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e = 0.050 is much more than that between £ = 0.050 and c = 0.033. 

While the curve of e = 0.033 serves as the most accurate of the three 

stress results for their corresponding E, it lends confidence to say 

that for this [0/90]s graphite-epoxy laminate, a geometric ratio of 

0.050 (= 20") or smaller is sufficiently small to lead to good results 

using the present method of solution. 

Numerical results obtained by this author using the finite dif- 

ference program of Pipes [12] indicate that the smallest geometric 

ratio for which that program gives physically admissible result is 

o 
c = 0.133 (*^r-). Below this ratio, the instability in the solution 

15 

does not yield satisfaction of the force equilibrium 5: Fy = 0 (Fig. 2 

and Equation (2.26)). This may be attributed to the inherent sensi- 

tivity of the finite difference approximation to the ratio of the grid 

spacings for partial differential equations [27]. 

Comparisons between the results of the finite difference solution 

and the present theory are presented in Figures 10 and 11 for the case 

e = 0.133. From Figure 10 it is clear that the present theory tends to 

predict a higher maximum intensity for the interlaminar shear stress 

Ty2. The boundary layer width is approximately the same for both 

solutions. Figure 11 shows that the present theory predicts a smooth, 

continuous distribution for az which identically satisfies the self- 

equilibrating condition z  Fz = 0 (Equation (2.7C)) whereas the finite 

difference solution yields unstable results near the free edge which 

obviously do not satisfy this equilibrium condition. In regions 

removed from the free edge, both solutions indicate asymptotic recovery 
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of the lamination theory. 

Figures 12 and 13 show the interlaminar stresses for the [90/0]s 

laminate--the reversed stacking sequence from the previous example. 

From the figures, the physical validity of the present theory is con- 

firmed by the sign reversals in both Tyz and az  as a result of force 

and moment equilibrium (Fig. 7). Again, boundary layer shifts due to 

the reduction in e are observed. The maximum stress intensities of 

Ty2 and az in the [90/0]s laminate are found to be finite but higher 

than those in the [0/90]s laminate (Figs. 8 and 9). This is due to 

the fact that in the calculation for the [90/0]s laminate, the 0° layer 

was employed as the reference layer. On the other hand, in the calcu- 

lation for tiie [0/90]s laminate, the 90° layer was employed as the 

reference layer. 

Comparisons between the finite difference results and the present 

theory are presented in Figures 14 and 15. The present theory again 

predicts a higher tyZ than the finite difference solution. Also, the 

present theory yields a more acceptable distribution for the inter- 

laminar normal stress oz in view of the zero stress resultant require- 

ment. In regions removed from the free edge, the lamination theory is 

recovered asymptotically in both solutions. 

4.2 THE FOUR LAYER ANGLE-PLY LAMINATES 

Pipes and Pagano [7] pointed out that the incerlaminar shear 

stress TX2 in a [45/-45L laminate tends to grow without bound near 

the. free edge (Section 1.1). Hence the calculated maximum intensity of 

Txz ^ ^ne fin''te difference approximation, though higher than other 
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numerical investigations [6, 8, 11], is still very questionable. It 

was discussed in Section 1.2 that failure to satisfy some stress free 

boundar.' conditions were observed in the finite difference solution. 

Also, these results showed no sign reversals in ov, o, and T  in 

consequence of reversing the stacking sequence. 

In the present theory the mathematical evidence for the singu- 

larity in TXZ can be shown (Subsection 3.2.1) to be in terms of 

the trignometric equation 

tan {—— - J2)?) = K (4.1) 

where 0 < c <« 1 and K is a near-singular large number. The value of 
(2) 

c^ i  must satisfy equation (3.75) 

tan (g^-q(2>c) 
■       TK\ = 0.5 , 0 < c «< 1 

(4.2) 

Obviously, the limiting analysis of the present theory (Fig. I7d, h) 

provides no unique determination of the value of K. It is only through 

experimental investigation that this value may be realistically deter- 

mined. Such an investigation should be considered as a future study. 

For the purpose of comparisons, K is taken to be 20.3713, a value that 

leads to a maximum stress intensity within the elastic limit. 

Comparisons between the results of the finite difference solution 

and the present theory are presented in Figures 18 through 23. Figure 

18 shows the variation of the interlaminar shear stress TX2 along the 
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interface Z = ^ . The near-singular free edge intensity of the present 

theory is much higher than the finite difference result and the 

boundary layer width is much smaller. Figure 19 shows the variation 

o* the interlaminar shear stress TyZ. Both solutions satisfy the 

stress free boundary condition xyz = 0 at the free edge. The negative- 

positive variation of the present theory confirms the additional self- 

equilibrating condition 

fb 
'o 

1 Fy =  ryz öy = ° (4-3) 

(as a result of the zeroth order vanishing of ay  in the interior 

region). The finite difference solution, on the other hand, cannot 

satisfy such a condition. The erroneous o of the finite dif- 

ference solution at the free edge (not shown in the figures), as 

described in Section 1.2, is believed to be caused by inherent errors. 

In Figure 20 the interlaminar normal stress oz of the finite difference 

solution indicates instability near the free edge; hence, no comparison 

can be made between the two solutions in this region. Since the auto- 

matic satisfaction of the self-equilibrating condition 

fb 
Z F2 =  oz dy = 0 (4.4) 

has been demonstrated by the present theory (Chapter III) and can be 

observed from the figure, and since <?z is not proportional* to the 

♦As shown in Equations (3.46) - (3.53). 
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near-singular value of K, the present theory 1s believed to have pre- 

dicted a more accurate maximum finite intensity of the interlaminar 

normal stress. Such a determination is most important in the delami- 

nation failure mode [21, 28] of composites. Although the moment self- 

equilibrating condition (Fig. 16) is not directly observable from 

Figure 20, the magnitude of this couple moment can be determined as 

* - fo »2 y dy = 0.0027 £$^g)        (4.5, 

(2) 
where a* >  equals 2K, a near-singular value from Equations (4.1) and 

(4.2). Hence the self-equilibrating addition of the couple moment is 

confirmed immediately. 

When the stacking sequence is reversed to [-45/45]«. (Figs. 21, 22, 

23), the interlaminar shear stress TXZ experiences a sign change in 

order to balance the central plane shear resultant [J xxy
(1)(0,Z)hdZ 

which also experiences a sign reversal. The sign of both tyz and o2 

remain unchanged. This is in agreement with the finite difference 

results (Figs. 19 and 22, 20'and 23). For c = 0.133, the finite dif- 

ference solution predicts a small uniform oy along the central plane 

(not shown in the figures) which does not change its sign and magnitude 

for the reversed stacking sequence. For c < 0.0133 the finite dif- 

ference solution yields erroneous results for ay due to the instability 

of the solution. The present theory exhibits no such instabilities. 

It is important to note that the interlaminar normal stress az 

is independent of the stacking sequence and always tensile near the 
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free edge. For both the [45/-45]s and the [-45/45]s laminates, a 

finite maximum intensity is predicted at the exact free edge (Figs. 20, 

23). This indicates that the oelamination failure mode [21, 28] should 

always be considered for reliable design of such laminate configura- 

tions. 

It is clear that the present study has obtained improved results 

for the interlaminar behavior of the [45/-45]s and [-45/45]s graphite- 

epoxy laminates. Since the aforementioned self-equilibrating conditions 

were originally considered for the 2m layer angle-ply laminate (Fig. 

16), the interlaminar stress variations in any angle-ply laminate may 

be expected to be similar to those in Figures 18 through 23. 

4.3 ACCURACY AND LIMITATIONS 

As discussed earlier, the accuracy of the present theory depends 

upon the geometric ratio c  = g- . Hence, the relative order of magni- 

tude of the individual terms in the governing equations, in relation to 

r- , should be further discussed. 

4.3.1 BIDIRECTIONAL LAMINATES 

The coupled yoverning differential equations for bidirectional 

laminates (Equations (3.2)) are 

{Q22(5-)
2V,yy + Q44V,ZZ + (Q44 + Q23)({J)W,YZ = 0}(k) 

(4.6) 

{(Q44 + Q23)^)V'YZ + Q44^)Zw'YY + W'ZZ = ^ 

From these dimensionless equations, it is essential that the 

order of magnitude of the coefficients of V,Yy and W>YY, 
V
-YZ 

and 
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W,YZ, V,zz and W>zz be 0(e ) < 0(F) < 0(1)*, respectively, in order to 

properly stretch the boundary layer region with a transformation in the 

form 

„ ■ (1 - Y? (4.7) 

Hence, if the material properties are fixed, the geometric ratio - 
b 

obviously plays the dominant role. For the graphite-epoxy laminate 

with g-= 0.133 (Chapter III), Equations (4.6) may be transformed to 

(0e 

(90°) 

0.046 V.yy + V,zz + 0.208 W,yz = 0 

[0.080 V,YZ + 0.0Ü7 W.yy + W>zz = 0 

0.42 V.yy + V,zz + 0.22 W,YZ = 0 

0.085 V,YZ + 0.007 W,yy + W,zz = 0 

(4.8) 

(4.9) 

It may be observed that, for this geometric ratio, a perturba- 

tion solution using the 0° layer as the reference layer should lead to 

more accurate results. 

If the geometric ratio is now reduced to 0.050 for the same 

laminate material, Equations (4.6) become 

(0C 

(90°) 

0.0065 V.yy + V,zz + 0.0782 W,yz = 0 

0.030 V,yZ + 0.001 W,yy + W,zz = 0 

0.05    V,YY + V,ZZ + 0.083 W,YZ = 0 

0.032 V,YZ + 0.001 W,yy + W,zz = 0 

(4.10) 

(4.11) 

and 
e represents the approximate order of the products of Q-- 

I 
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It is clear that the order of each term relative to V,zz or 

W,zz shrinks as e diminishes. This means that the degree of accuracy 

of the zeroth order perturbation solution is improved by the diminish- 

ing geometric ratio. Obviously, these equations provide mathematical 

evidence to support the judicious statement made in Section 4.1- 

"A geometric ratio of 0.050 or smaller leads to sufficiently accurate 

results." 

4.3.2 ANGLE-PLY LAMINATES 

The governing differential equations for the ±  45° graphite-epoxy 

laminate with g- = 0.133 are 

(45°) 

(-W) 

0.111 U,yy + U,zz - 0.094 V,yy - 0.007 W,YZ = 0 

-0.094 U.yy + 0.140 V,yy + V,zz + 0.215 W,YZ = 0   (4.12) 

-0.003 U,yz + 0.083 V,YZ + 0.007 W,YY + W,zz = 0 

0.111 U.yy + U,zz + 0.094 V.yy + 0.007 H,YZ = 0 

0.094 U,Yy + 0.140 V.yy + V,zz + 0.215 W,yz = 0   (4.13) 

0.003 U,yz + 0.083 V,yZ + 0.007 W.yy + W,zz = 0 

Again, the order of magnitude of each coefficient relative to 

U»ZZ» V»ZZ and W>ZZ can be observed. From Equations (4.12) and (4.13), 

it can be safely stated that the present theory should lead to suf- 

ficiently accurate results for £ = 0.133 or below. Hence no further ' 

reduction of the geometric ratio needs be elaborated upon. 

From the above discussion, the fact that the boundary layer 

penetration becomes weaker as £ decreases can be detected simply by 
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examining the relative orders of various terms in the governing dif- 

ferential equations. The smaller the coefficients relative to the co- 

efficient one of U,zz, V,zz and W,zz, the weaker the boundary layer 

effect. Hence the uniform stress distribution in the central plane 

(Section 2.2) is justified by the more rapid recovery of the lamina- 

tion solution. 

It must be recalled that in the interior region of the present 

theory the exact satisfaction of the vanishing stress boundary condi- 

tions on the top and bottom surfaces, the continuities in the inter- 

laminar stresses, and the force equilibrium in the central plane were 

inforced. Also in the interior region the exact displacement continuity 

in U and V were satisfied by the modified zeroth order interior 

region (Subsection 2.3.2). For bidirectional laminates, the slight dif- 

ference found in the displacement W (Table 1) for the two layers may 

be reduced or eliminated by higher order considerations. This is 

mainly due to the differences in material properties that constitute 

the governing differential equations. For the angle-ply laminates, 

the exact continuity in this displacement was found to be satisfied 

automatically (Table 2). 

In the boundary layer region, the bidirectional laminates again 

reveal differences in the exponential functions (Equations (3.33)) 

owing to the intractable material dissimilarities. Hence no exact 

displacement continuity in this region may be inforced for the limit- 

ing free body considered in Figure 7. Nevertheless, the satisfaction ■ 

of the symmetry conditions, the stress boundary conditions at tie free 
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edge, the force and moment equilibrium about this free body, and the 

continuity in interlaminar tractions, is believed to have attained a 

solution which is an improvement over previously available solutions. 

On the other hand, the boundary layer region solution for the 

angle-ply laminate exactly satisfies the symmetry conditions, the 

stress boundary conditions at the free edge, the displacement and 

stress continuity conditions, and the force and moment equilibrium re- 

quirements (Figs. 16, 17). This exactness of the present theory is 

entirely due to the favorable parametric relations 

c 0) _ r (2) Hj ~ Lij 

r 0) - r (2) ckk  " ck(f 

(1) _ r (2) un6 n6 

i = 1, 2, 3 and j = 1, 2, 3 

k = 4, 5, 6 

n = 1, 2, 3 

(4.H) 

Moreover, it is this exactness that leads to the mathematical evidence 

for the stress singularity in the interlaminar shear stress TXZ. 

4.4 GENERALITY AND APPLICABILITY 

From the solution method developed in Chapters II and III, it is 

clear that the detailed solution procedures of the present theory can 

be readily programmed for a computer. The simple calculation steps 

require no approximate or iterative techniques. The generality of the 

theory can be directly applied to variable laminate configurations 

(Fig. 1) with more layers than any existing computer program can 

possibly handle. Thermal strains can be readily included through the 

constitutive equations (2.1) to determine the induced thermal stresses 

-v. 
L.:4**<*sM<*!>fci 
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due to the temperature drop from the curing temperature of the laminate 

or for laminates in a high temperature environment. The computer 

program thus developed would be capable of predicting the interlaminar 

stress intensities between any two layers including the midplane Z = 0. 

Failure hypotheses can then be established based on the interfacial 

plane where the stress intensity reaches a relative maximum. 

Finally the generality of the solution procedures in the present 

theory can be directly applied to explore related problems such as a 

laminate with internal free edge in the form of center holes, cracks, 

etc., a laminate subject to pure bending at the ends x = ± L, time- 

depondent boundary layer effects due to cyclic loadings, and so forth. 

The important experimental determination of the material parameter K 

may also be pursued as a future research topic. 
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Chapter V 

CONCLUSIONS 

In the present thesis a general method of solution for a balanced 

symmetric composite laminate subject to a uniaxia'i extension has been 

developed based upon a perturbation analysis of an elastic limiting 

free body containing an interfacial plane. 

In summary of the theoretical achievements of the present study, 

the following conclusions can be made. 

(1) The solution satisfies the symmetry conditions, the stress 

free boundary conditions, most continuity conditions, and 

the force and moment equilibrium of the limiting free b:dy. 

(2) The solution predicts smooth continuous interlaminar 

stresses with no instabilities. 

(3) The solution provides the finite maximum magnitude of the 

interlaminar normal stress oz for all laminate configura- 

tions. 

(4) For given material properties, the solution accuracy depends 

upon the geometric ratio e = J- . For [0/90]5 Gr/E laminate, 

e < 1- leads to satisfactory results while for [±45]s Gr/E 
-20 

laminate, e if^ predicts satisfactory results. 

(5) For all laminates with geometric ratio, 0 < g- « 1, high 

gradient displacement, strain and stress fields are shown 

to exist near the free edge. 
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(6) The above boundary layer effect decays exponentially to 

recover the lamination solution in the interior regions. 

(7) For bidirectional laminates the axial displacement function 

U is identically zero. Hence no xXy or TXZ exist in the 

laminate. 

(8) For bidirectional laminates, the interlaminar normal stress 

oz  is finite with the sign depending upon the stacking 

sequence. For example, for a [0/90]s Gr/E laminate, a 

maximum tensile oz  exists at the free edge while for a 

[90/0]s Gr/E laminate, a maximum compressive cz is predicted. 

(9) For angle-ply laminates, the exactness of the solution leads 

to the mathematical evidence of singular interlaminar shear 

stresses T^ and T.,2 at or near the free edge. 

(10) For angle-ply laminates, the interlaminar normal stress az 

takes on a finite maximum tensile value at the free edge, and 

is independent of the stacking sequence. 

(11) The solution procedure can be readily programmed for a 

computer. Such a generalized computer program would be 

capable of predicting interlaminar stresses between any 

two layers of a general multi-layered laminate. 

(12) The present theory suggests vaiable means for solving 

important related problems of practical interest. 
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