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Abstract 

This report documents our study of active legged systems that balance actively and move 
dynamically. The purpose of this research is to build a foundation of knowledge that can 
lead both to the construction of useful legged vehicles and to a better understanding of how 
animal locomotion works. In this report we provide an update on progress during the past 
year. Here are the topics covered in this report: 

• Is Cockroach Locomotion Dynamic? —To address this question we created three models 
of cockroaches, each abstracted at a different level. We provided each model with a 
control system and computer simulation. One set of results suggests that "Groucho 
Running," a type of dynamic walking, seems feasible at cockroach scale. 

• How Do Bipeds Shift Weight Between the Legs? — We built a simple planar biped 
robot specifically to explore this question. It shifts its weight from one curved foot to 
the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. 

• 3D Biped Gymnastics—The 3D biped robot has done front somersaults in the labora- 
tory. The robot changes its leg length in flight to control rotation rate. This in turn 
provides a mechanism for controlling the landing attitude of the robot once airborne. 

• Passively Stabilized Layout Somersault—We have found that the passive structure of a 
gymnast, the configuration of masses and compliances, can stabilize inherently unstable 
maneuvers. This means that body biomechanics could play a larger role in controlling 
behavior than is generally thought. We used a physical "doll" model and computer 
simulation to illustrate the point. 

• Twisting—Some gymnastic maneuvers require twisting. We are studying how to cou- 
ple the biomechanics of the system to its control to produce efficient, stable twisting 
maneuvers. 

• Automatic Tuning of Control Systems—We have developed a computer program that 
automatically adjusts the control parameters of a simulated legged creature to ac- 
commodate changes in mass, geometry, or desired behavior. The program has been 
successfully tested on a simulated planar quadruped. 
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Chapter 1 

Introduction and Summary 

This report documents our recent research on the dynamics of legged locomotion. The 
work was done in the Leg Laboratory, part of the MIT Artificial Intelligence Laboratory. A 
premise for this research is that active balance and dynamics are important for the control 
of legged systems, robots and animals alike. Systems that balance actively can use footholds 
that are widely separated, they can move along narrow paths where a broad base of support 
is not available, and they can use their kinetic energy as a bridge to increase their effective 
size. Dynamics is a key ingredient in the behavior of animals and it will weigh heavily in 
the development of useful legged vehicles. A second premise is that the mechanical design 
of a legged system (or its biomechanics) can be just as important to its behavior as is the 
computer that controls it. Mechanics and control will work together to produce behavior 
in the best systems. 

A dynamic treatment need not be an intractable treatment. We have found that simple 
algorithms can provide balance and control for a variety of dynamic legged systems. The 
machines we have studied include a planar one-legged hopping machine, a three-dimensional 
one-legged hopping machine, a planar biped running machine, a three-dimensional biped 
running machine, a quadruped, a planar monopod with rotary hip and ankle joints, a planar 
kangaroo-like monopod with tail and rotary joints, and a machine that runs in zero-gravity. 
The techniques used to control each of these machines derive from a single set of control 
algorithms, modified in various ways. These algorithms have been adapted for hopping, 
pronking, biped running, fast running, trotting, pacing, bounding, and simple gymnastic 
maneuvers. The ability of simple algorithms to operate under these diverse circumstances 
suggests the algorithm's fundamental nature. 

In addition to work on legged machines, we have begun to apply techniques from 
robotics to computer simulation and animation of animal behavior. This includes auto- 
matic generation of simulation programs and graphics, task-level control of behavior, and 
automatic tuning of control parameters. The remainder of this report is a collection of 
papers that describes these projects. They are summarized in the following paragraphs. 



INTRODUCTION AND SUMMARY 

Table 1-1:   Milestones of the Leg Laboratory. 

1982 Planar one-legged machine hops in place, travels at a specified rate, keeps its 

balance when disturbed, and jumps over small obstacles. 

1983 Three-dimensional one-legged machine runs and balances on an open floor. 

Simulations reveal passively stabilized bounding gait for quadruped-like model. 

1984 Quadruped runs with trotting gait using generalization of one-leg algorithms. 
Data from cat and human found to exhibit symmetries like those used to control 

running machines. 

1985 Planar biped runs with one- and two-legged gaits and changes between gaits. 

1986 Planar biped does flips, aerials, and runs at 11.5 mph. 
Monopod runs using leg with rotary joint and leaf-spring foot. 

1987 Quadruped runs with trotting, pacing, and bounding gaits. 

1988 Planar biped uses selected footholds and climbs short stairway. 

Quadruped does rudimentary transitions between running gaits. 

Reentrant trajectories found for simulated passive dynamic running. 
Computer simulation shows running in zero-g by bouncing between two floors. 

Simple physical model of zero-g running demonstrated. 

1989 Planar biped jumps through hoop and runs with top speed of 13.1 mph. 
Simulated planar biped gallops. 
Hoof added to monopod improves performance of leafspring foot. 

Three-dimensional biped does simple running. 

1990 Planar biped robot walks, gallops, and changes between walking and running. 
Simulation of passive dynamic running with knees. 

1991 Kangaroo-like robot, with articulated leg and tail, takes first steps (hops). 

Computer simulations of simplified kangaroos and ostriches. 

1992 3D biped robot does somersault. 

Kangaroo-like robot runs at 1.8 m/s. 
Simulated quadruped control system adjusts automatically for variations 

in body mass and leg length. 

1993 3D Biped and Kangaroo appear with Sean Connery and Wesley Snipes 
in Rising Sun. 
Passive stability achieved for layout somersault in laboratory "doll". 

1994 Cockroach simulations runs using kinematic motion data from animal. 
Stable Groucho running in simulated spherical cockroach (Hexahopper). 
Weight-shifting robot rocks with stability. 

Figure 1—1: The Leg Laboratory was located at Carnegie-Mellon University from 1981— 
1986, and at the Massachusetts Institute of Technology from 1987-present. 



Figure 1-2: Hexahopper, Hexabug, and Playback Cockroach, three models used for simu- 
lation of cockroach locomotion. 

Dynamic Cockroach Locomotion 

Because cockroaches have small size and a broad base of support, it is commonly assumed 
that they use static techniques for locomotion. This assumption is based on the idea that 
inertial forces at cockroach scale are small and overwhelmed by frictional and surface ten- 
sion forces. We are interested exploring this assumption. We were motivated by Robert 
Full's suggestion, based on laboratory observations, that cockroaches frequently move dy- 
namically. To address the issue we created several physics-based computer simulations of 
six-legged creatures at cockroach scale and experimented with making them run. One sim- 
ulation, the Hexahopper, is significantly abstracted from the animal cockroach design: it 
has telescoping legs that are attached to a hemispherical body at the center of mass. A 
second simulation, the Hexabug uses articulated legs that are attached to an elongated body 
at physiologically motivated positions. A third computer simulation, called the Playback 
Cockroach, is based on two kinds of data obtained (by Full) from animal cockroaches: data 
describing the geometry of each leg link was obtained from histology, and data for kinematic 
motion of the limbs during locomotion was obtained from high-speed film. Results from 
these simulations suggest that it is feasible for cockroaches to locomote dynamically, but 
they do not need to actively balance. 
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Figure 1-3: Biped Robot used for studying transfer of support from one foot to the other. 
It stands approximately 1.1 m tall and weights about 7 Kg. The four actuators are electric 
motors located at the various joints. Computing and electrical power is off board. The 
machine walks by rocking from side to side. 

Weight-Shifting Biped 

A truly graceful walking robot does not yet exist. We believe that a key ingredient for 
graceful walking is the smooth transfer of support, from one leg to the other. This project 
begins address what's required for a smooth step and graceful walk. The goal is to study the 
transfer of support between the feet during a dynamic walking gait. We built a biped robot 
apparatus for the work. It consists of five links: a pelvis, two legs, and two feet. The links 

are connected by revolute joints which in turn are actuated by electric motors. This robot 

walks by rocking from side to side, transferring support from one foot to the other. We 
developed a closed-loop method for controlling dynamic rocking. The controller's aim is to 

regulate the energies during the different states of the rocking cycle. Some initial steps have 
been taken towards smoothing the exchange of support, and the results look promising. 

Biped Somersault in 3D 

Making a legged robot perform a somersault requires us to focus on balance and control 
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Figure 1-4: 3D Biped Doing a Somersault. The amount of leg tuck (telescopic shortening) 
is servoed during the flight phase of the maneuver to control rotation rate. The legs are 
spread slightly on landing to help control roll. Hydraulic accumulators were added to the 
machine to give it high-enough instantaneous power to do the trick. The photographs are 
arranged in sequence left to right, starting at the upper left. 
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Figure 1-5: Layout Somersault Experiment. Strobed images of two separate experiments 
with a mechanical "doll". The doll has two "arms" that have spring-driven shoulder joints. 
A launching mechanism rotate's the doll about its pitching (somersaulting) axis and throws 
it upward. The photo on the left show the doll's behavior with arms clamped in place: it 
exhibits the twist instability. The photo on the right shows the doll with the arms free to 
flap, and thereby passively stabilized against twisting. 

at a higher level of detail than for constant running. To learn something of these de- 
tails we programmed a 3D Biped robot to perform forward somersaults in the laboratory. 
The control employs a feedback mechanism to regulate rotation rate while the robot is 
airborne. In flight, the robot extends or retracts its legs to change its rotation rate in 
order to produce a desired landing attitude. To compensate for uncertainty in the exact 
time of landing, the robot continuously adjust its configuration to be prepared for land- 
ing any time before, during, and after the estimated landing time. Using this control 
strategy the 3D biped robot has performed a number of successful somersaults in the lab- 
oratory. On the best day so far the robot executed seven successful somersaults out of ten 
attempts. 



Figure 1-6: Simulated 3D Biped Somersault with One Half Twist. Twisting was initiated 
by scissoring the legs just before takeoff. A weight was added to the trunk (shown above 
the trunk) to increase the aspect ratio of the moment of inertia. 

Passively Stabilized Layout Somersault 

The layout or straight body somersault is considered to be inherently unstable because it 
requires rotation about the middle principal axis of inertia, an unstable equilibrium for a 
rigid body. Despite this fact, athletes regularly perform this maneuver with apparent ease. 
Previously, biomechanics researchers have assumed that the athlete senses the instability 
of the maneuver and actively compensates for it with movements of the arms and body. 
I show that the layout somersault can be a passive, neutrally stable maneuver. Passive 
stabilization of the layout somersault results from the natural dynamic interaction of the 
limbs and body during movement. I verify this result with linear stability analysis, non- 
linear dynamic simulation, and experiments on a human-like doll built and tested in the 
laboratory. The doll has spring-driven arms but has no other control system, sensors, or 
actuators. The doll routinely exhibits triple somersaults about its middle principal axis 
without twisting. 

Twisting Maneuvers 

While twisting is to be avoided in the layout somersault, it is a feature in other tricks. We 
present results from dynamic simulation of a human performing a front somersault with one 
and a half twists. The twisting maneuver is started from a front somersault by reconfiguring 
the body mid-maneuver. While a sequence of prescribed limb movements can be found to 
produce a twisting maneuver, simulation results show that the performance is sensitive 
to small variations in initial conditions. Reliability of the maneuver can be significantly 
improved by using open loop torque control with a compliant passive dynamic model of the 
human, rather than the prescribed movements. 

We also present results from computer simulation of a front somersault with one half 
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twist performed by the 3D Biped. We found that to make the simulated 3D Biped perform 
a satisfactory front somersault with one half twist we had to add weight to the robot to 
make its inertia more like that of a human. 

Tuning Control for Model Variations 

Elephants, giraffes, horses and dogs have similar topology but widely varied scales and 
proportions. A single well constructed control system might be able to control all of them, 

given the proper control parameters. We have developed a computer program which tunes 

the control parameters for a complex dynamic system automatically to adapt it to different 

physical characteristics or to a new behavior. In simulation tests, the tuning algorithm has 

successfully re-tuned a simulation of a planar quadruped to accommodate an increase in 

body mass by a factor of three, a reduction in leg length by a factor of two, and an increase 
in foot weight by a factor of ten. 
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Chapter 2 

Dynamic Cockroach Locomotion 

Karl Leeser and Robert Ringrose 

2.1     Introduction 

This paper investigates cockroach locomotion. Cockroaches have six legs that provide a 
broad base of support and, compared to humans, they are small. For these reasons, people 
tend to think of cockroach locomotion as being static. Full and Tu, however, suggest 
that cockroaches move dynamically (Full & Tu 1990). This conclusion was motivated by 
observed phase relationships between horizontal kinetic energy and gravitational potential 
energy of the center of mass. Based on these energy phase measurements, Full suggests 
that cockroaches locomote dynamically, using essentially the same techniques as humans 
and other larger animals. A goal of this research is to test the idea that cockroach locomotion 
is dynamic. It is part of the larger goal of understanding the general principles of legged 
locomotion, especially locomotion that is dynamic. 

The approach used in this paper is to create models of cockroaches that capture various 
elements of their design, to build control systems that regulate locomotion behavior, and to 
simulate the controlled models using numerical methods. Using these tools we demonstrate 
some viable techniques for cockroach locomotion, and apply them to explore the feasibility 
of Full's suggestions. 

We created three models of the cockroach and built control systems that made them 
walk and run. We call these models the Hexahopper, Hexabug, and Playback Cockroach. 
The control systems for the Hexahopper and Hexabug use finite state machines and algo- 
rithms for support, balance, and posture to produce a six-legged alternating tripod gait. 
They build on previous work done in the Leg Lab based on algorithms for regulating sup- 
port, balance, and posture. This previous work resulted in a series of laboratory robots, 
including one-legged hoppers, biped runners, a quadruped, and two kangaroo-like robots. 
The robots traversed simple paths, ran with several different gaits (hop, run, trot, pace, 
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bound), ran fast (13 mph), jumped over obstacles, climbed a simplified stairway, and did 
front somersaults(Raibert 1986)(Raibert 1990)(J. Hodgins 1986)(Hodgins & Raibert 1991). 
Although no single machine performed all these tasks, the machines all use a common set 

of balance and control principles. 

The Hexahopper and Hexabug use a dynamic flightless running gait that McMahon 
calls groucho running when performed by humans (McMahon, Valiant, & Frederick 1987). 
The controller we built implements groucho running in the two cockroach models. There is 
no guarantee that animals use a control system like the ones we built, but study of these 
systems gives us an understanding of the broad issues relevant to the control, stability, and 
dynamics of locomotion at cockroach scale. 

The Playback Cockroach model attempts to model the animals more directly. Data 
describing the geometry of a cockroach animal's legs were used to create leg models with 
good fidelity to the anatomy and structure of a real cockroach animal. Data showing the 
kinematic motion of a cockroach animal walking was used as the basis for locomotion con- 

trol. The recorded motion data were played back through the control system and simulated 
dynamic model to see what would happen. The Playback Cockroach controller uses the 

recorded motion data to drive servos at each hip and leg joint, applying torques to approxi- 
mate the desired joint motion. We used the Playback Cockroach to investigate the dynamic 
properties of cockroach locomotion. 

These simulations of cockroach-sized creatures succeeded in mimicking some of the dy- 
namic behavior of cockroaches. The Hexabug controller produced groucho-running over a 
wide spectrum of running speeds, up to 52 cm/sec. We combined several control techniques 
to simplify the coordination of multiple legs, resolving issues of force distribution and po- 
sition control. The Playback Cockroach produced stable dynamic running over a range of 
playback speeds up to 44 cm/sec. The Playback Cockroach's gait remained stable over a 
wide range of playback speeds, (from 0 to 4 times the recorded speed) without adjustment 
of other parameters. Therefore, we believe that the Playback Cockroach's running gait, 
while dynamic in the energy sense, may not be dynamic in the balance sense. The stability 
of the Playback Cockroach simulation suggests a mechanism for dynamically stable running 
over a wide range of speeds without complex control. 

In the sections that follow we describe the three simulations, their control systems, and 
present some data from their use. Then we return to the question of how best to model 
cockroach locomotion, as a static or dynamic problem. 

2.2     Hexahopper and Hexabug Simulations 

We are exploring the potential for dynamic locomotion in a cockroach. We developed 
two cockroach-sized simulations, both with broad bases of support similar to a cockroach. 
In these simulations, we did not attempt to do more than approximate the shape of an 
actual cockroach, although the simulations do obey the laws of Newtonian physics. The 
controllers are based on previous legged locomotion control systems we have previously 
built (Raibert et al. 1992) (Raibert, Chepponis, & Brown 1986) (Raibert 1985) (J. Hodgins 
1986) (M. H. Raibert 1984). 
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Figure 2-1: Schematic of simulated Hexahopper. 

2.2.1     Hexahopper Simulation 

We developed the Hexahopper as a test platform for six-legged dynamic locomotion. The 
Hexahopper bears little physical resemblance to a cockroach. However, its simple dynamics 
retain the essential elements necessary to study dynamic locomotion in a cockroach-sized, 
six-legged creature. The simulated creature has a hemispherical body with six legs attached 
to the center of the lower surface of the body. Each leg has a 3 degree-of-freedom, spherical, 
ball joint at the hip and a telescoping lower section. Because the hips are close to the 
center of mass, we assumed that axial leg forces produced negligible resultant body torques, 
simplifying control of the legs. Figure 2-1 depicts the creature model used in the Hexahopper 
simulations. Simulation parameters for the Hexahopper model are in Appendix 2.A. 

The simplified dynamics of the Hexahopper facilitated rapid development of a prelimi- 
nary hierarchical controller. The initial task of static walking verified the controller structure 
and the abstracted leg coordination scheme. Next, dynamic running based on the three-part 
controller used in previous Leg Lab robots was added to the suite of possible gaits. The 
results demonstrated that dynamic locomotion was possible in a six-legged, cockroach-sized 
creature. Finally, the running controller structure was modified to generate a slow (1.9 
cm/sec) groucho running gait. 

The Hexahopper's controller has the same global structure as the Hexabug, but uses 
simpler methods of force distribution and leg control. 
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Figure 2-2: Hexabug schematic. 

2.2.2    Hexabug Simulation 

The Hexabug incorporates more complex dynamics than the Hexahopper, with anatom- 
ical features approaching that of a cockroach. Figure 2-2 depicts the creature model used 
in the Hexabug simulations. The Hexabug has 2-part, articulated legs and a hemiellip- 
soidal body, with body mass properties and leg attachment points taken from B. discoidalis 
anatomical data. Simulation parameters for the Hexabug model are in Appendix 2.B. 

The Hexahopper and Hexabug were modeled as collections of rigid bodies with ap- 
propriate masses and moments of inertia, connected by joints. The creatures are free 
to move relative to the ground. Revolute joints have pure torque sources that can pro- 
vide arbitrarily large specified torques or attempt to achieve a desired position using a 
proportional-derivative servomechanism. The telescoping joints in the Hexahopper's legs 
are controlled in the same way, but they have force, rather than torque, sources. Foot 
contacts with the ground are modeled as a spring-damper system that opposes penetration 
into the ground and prevents sliding on the surface. The simulations deactivate this spring- 
damper system if it would pull the foot into the ground. We produced the Hexahopper and 
Hexabug simulations using the Creature Library, a tool for creating dynamic computer sim- 
ulations (Ringrose 1992). The simulations consist of equations of motion, ground contact 
models, a numerical integrator, a 3D computer graphics program, and user interface. 

2.2.3    Groucho Running 

Running is characterized by bouncing on legs as if they were springs, much like a pogo stick 
or bouncing ball.  Cavagna described running this way some time ago (Cavagna, Thys, & 
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Figure 2-3: The three level hierarchical controller common to both the Hexahopper and 
Hexabug simulations. 

Zamboni 1976). Full and Tu observed this type of bouncing behavior in their cockroaches, 
despite the fact that there is no flight phase (Full k Tu 1990). In normal running a human 
can decrease the flight phase by flexing his or her legs to increase leg compliance. Running 
without a flight phase is a gait that McMahon calls groucho running, named after the actor 
who could be seen moving this way (McMahon, Valiant, k Frederick 1987). McMahon has 
shown that alternative methods of running exist that reduce or even eliminate the aerial 
phase. Examples include running in enhanced gravity, running in circles under centripetal 

acceleration, and running on a compliant surface (McMahon 1985). 

2.2.4    Controller 

We divided the Hexahopper and Hexabug controllers into a three-level hierarchy: the physi- 
cal leg level (lowest), the virtual leg level, and the task control level (highest). The controller 
at the physical leg level uses the Jacobian relationship between the hip and foot to convert 
a desired external force vector at the foot into a set of leg joint torques. The controller at 
the virtual leg level coordinates the actions of three physical forming a tripod to emulate 
a single leg. The controller at the task level uses a variant of the three-part control used 
previously in the Leg Laboratory to provide the overall behavior of the system. 
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Physical Leg Controller 

Each physical leg applies a desired force at the foot as determined by the Jacobian tensor 
relationship 

f = JTF 

relating desired force to required joint torques. Here 

f is the vector of joint torques, 
J is the 2-link leg manipulator Jacobian, and 

F is the desired force vector. 

The Hexahopper's legs are kinematically straightforward. However, the Hexabug legs 
are 2-link serial manipulators with a 2 degree-of-freedom universal hip joint followed by a 
distal revolute knee joint in a z-x-x rotation configuration. To simplify control, we treat the 
links as massless, rigid links and ignore inertial effects. Leg joint servos are implemented 
as ideal force or torque sources. As such, we can apply arbitrary forces at the foot of any 

physical leg. This has the advantage of abstracting the actual leg structure from the next 
layer of the controller. 

Desired forces are either of two types: pure force or positioning. A positioning force 
drives the foot of the leg towards a desired Cartesian position. A sequence of positions 
defines a trajectory. We used a proportional-derivative control law to describe the desired 
positioning force: 

Fv = Kp(x - Sd) + Kdx 

where 

Fp is the positioning force vector, 
x is the Cartesian virtual foot position vector, 
Xd is the Cartesian desired position vector, 

x is the Cartesian velocity vector, and 
Kv,Kd are proportional and derivative gains respectively. 

Hogan refers to this method of tracking a desired position in Cartesian space as opposed to 
joint space as one implementation of impedance control  (Hogan 1985). 

Virtual Leg Controller 

The virtual leg control layer determines the contributions of each of three physical legs 
necessary to imitate a single telescoping leg with spherical hip joint. The virtual leg con- 
troller position controls elevated physical legs and force controls physical legs which are 
firmly planted on the ground. For simplicity, the virtual leg controller ignores the negligi- 
ble inertial effects of the physical legs, letting feedback compensate for the resulting small 
errors. 

Sutherland first introduced the virtual leg concept in his one-ton hexapod where passive 
hydraulic circuits equalized the force distribution in pairs of legs (Sutherland & Ullner 
1984). Thus, two legs acted as one. The Leg Lab's quadruped made use of this same 
construct to control of three quadruped gaits  (Raibert, Chepponis, & Brown 1986). These 



simple gaits, pacing, bounding, and trotting, utilized pairs of legs to generate motion. The 
quadruped was controlled by assigning pairs of legs to a functionally equivalent virtual leg 
such that the overall gait was transformed to an equivalent virtual biped gait. 

Position Control Legs not in contact with the ground are position controlled. In this 
situation, a spatial kinematic transformation relates the actual physical foot positions to 
the position of the virtual foot. This transformation consists of denning a polygon with the 
actual feet at the vertices and the virtual foot at some location with respect to the polygon. 
For the Hexahopper and Hexabug, a time-invariant equilateral triangle defines this polygon 
spanned by a fore, middle, and hind foot, corresponding to foot positions 1-3 as shown in 
Figure 2-4. The virtual foot is in the geometric center of the support triangle. 

The vector «,• from the virtual foot to the foot of physical leg i closes the kinematic chain 
for leg i and determines the desired position of the physical foot. The desired physical foot 

position is: 
Xdi = Zdv + Ui 

where 

Sd, is the desired foot position of leg i, 
Sdv is the desired foot position of the virtual leg, and 
Ui is the vector from the desired virtual foot position to 

corner i of the tripod base triangle. 

For a given desired virtual foot position, the virtual leg controller calculates the three 
desired physical foot positions and passes them to the physical leg controllers. We fixed the 
width of the Hexabug's base triangle to 2 cm. The Hexahopper's base width was somewhat 
smaller. Conceptually, the shape of the base polygon can be variable as well, but we have 
not implemented this capability. 

Force Control When planted in the ground, a leg is force controlled. In this situation, a 
single virtual leg receives from the task controller a desired resultant force and torque to 
be applied to the body. However, a virtual leg consists of three physical legs. Distributing 
the forces between the physical legs to create the desired resultant forces and torques is 
an underconstrained problem. We need to introduce constraints to the force distribution 
which allow us to choose and calculate one of the possible solutions. 

The Hexahopper's simple geometry simplifies the coupling between applied and resultant 
forces and torques to the following 'triangular' form: 

Td =   -/^nQi, 
i=l 

where Fd and fd are desired force and torque vectors applied to the body, F;, and r,- are 
scalar axial leg forces and hip torques for leg i, 0 is the axis of rotation, and ^ is leg i's 
position vector. 
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Figure 2-4: Diagram of the Hexabug tripod base triangle illustrating the spatial relationship 
between the virtual foot position and the position of the physical feet. The numbered circles 
correspond to the locations of the three feet comprising the tripod of the virtual leg centered 
at v. U{ are the displacement vectors from the virtual foot position, v, to the physical foot 
positions, 1-3. The shaded circles correspond to the physical foot positions of the other 
virtual leg during a typical stance. 
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The Hexahopper's ball joint hips allowed decoupling of x and y torques.  Thus, the x 
and y torques could be determined separately. For example, in the x direction, we chose 

nx = -ardx, 

where a is a weighting term equal to 

a = Xil'YjXi, 
i=i 

and 
rix    tirix/Tdx < 0 
0      otherwise. 

Above, Tdx and T{x are the x components of fj. and r,-, respectively. The hip torques in the 
y direction are determined similarly. In the z direction, 

Tiz = -TdjZ. 

If TiOi X fi « 0, that is, if the hip torques or projections of r,- on the ground are negligible, 
then the axial leg forces can be approximated by 

[FhF2lF3l]
T = -[nr2r3)-

lFd. 

For the Hexahopper, the legs do not sweep very far and the projections of n on the ground 
remain small over a wide range of speeds. 

For the more complex Hexabug geometry, we use the method documented by Song and 
Waldron for the Adaptive Suspension Vehicle to distribute the forces (Song & Waldron 
1989). The results, simplified to three legs, are reproduced in Appendix 2.D. Song and 
Waldron's method introduces the constraint that no two feet can work against each other. 
This constraint is inconsistent with the force patterns observed in actual cockroaches. Full 
has documented the fact that frequently the front legs will push back while the rear legs 
are pushing forward. More appropriate, but harder to calculate, constraints exist, such as 
minimizing the torques applied at the joints. We plan on using a different force distribution 
method at a later date. 

Spring Simulation and Thrusting A virtual leg contains a Hooke's law spring that acts 
along the length of the virtual leg. The spring defection is calculated as the difference 
between the leg length at touchdown and the current length. The spring acts as a pas- 
sive virtual element whose rest length moves instantaneously during the transition from 
COMPRESSION to THRUST states. This action changes the energy state of the spring, 
passively introducing energy as necessary to compensate for system losses experienced over 
the previous bounce cycle. 
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Task Controller 

The task controller uses a cyclic state machine to coordinate the two virtual legs. Similar to 
the three-part controller used for hopping in previous Leg Lab robots, it specifies when each 
of the three primary control actions are applied by the virtual legs during the locomotion 
cycle. These control actions are regulation of hopping height, speed, and posture. Table 2-1 
outlines the state transition sequence used in task level control. 

Groucho running differs from regular bipedal running in that at least one leg is in contact 
with the ground at all times. Normally, this would be called walking. The double support 
phase absent in running exists in groucho running, which requires the coordination of legs 
when support is transferred from one foot to another. The groucho-running controller 
extends the 3-part controller concept developed for running to accommodate the double 
support phase. 

Hopping Height Humans and kangaroos store energy in their leg springs when they run 
and hop, as do the hopping machines we have built. In all of these cases, hopping is a 
resonant oscillation of the body mass on springy legs. This oscillation would normally 
decays, but thrust is provided once per cycle to force the oscillation. In the robots, the 
amount of thrust is fixed and the magnitude of the hopping oscillation converges to a 
steady state altitude. In the control systems we built for the Hexahopper and Hexabug, 
the thrust is actively controlled. The hopping height is actively controlled by adjusting the 
energy state of the leg spring. Moving the rest position of the leg spring by an amount e, 
changes the energy state of the spring as determined by the following expression: 

The addition of thrust to the virtual spring force in the THRUST through UNLOADING 
states adequately controls the hopping height. The derivation of the above equation is in 
Appendix 2.F. 

Body Attitude Maintenance of body attitude is crucial to good robot hopping perfor- 
mance. For hopping, regulation of body attitude occurs once per bounce cycle within 
stance, while the body provides a sufficient normal force to the ground to prevent the foot 
from slipping in response to a torque applied about the hip. In groucho running, at least 
one virtual leg remains in contact with the ground at all times, so for the Hexahopper and 
Hexabug the virtual leg with the largest load regulates body attitude. A virtual leg applies 
a corrective torque, r,-, in response to an angular error about axis i according to the control 
law: 

T{ = -Kp(<f>i - <f>di) - Kd4>i 

where 

Ti is the virtual hip torque about axis i, 
4>i is the current body angle about axis i, 
4>dt is the desired body angle about axis i, 
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State Trigger Event Actions 

DECOMPRESSION^ Leg B touches down Control attitude with leg A 

(double support) Zero hip torques on leg B 
Simulate virtual spring in leg B 

• Apply thrust force in leg A 

UNLOADINGA- Leg A transfers Control attitude with leg B 

LOADINGß support to leg B Zero hip torques on leg A 

(double support) Simulate virtual spring in leg B 
Apply thrust force in leg A 

• COMPRESSION^ Leg A leaves ground Control attitude with leg B 

(support on leg B) Leg A mirrors leg B 
Shorten leg A 
Raise leg A 
Adjust the base size of leg A 

• 
Simulate virtual spring in leg B 

THRUSTB Leg B reaches Control attitude with leg B 

(support on leg B) maximum compression Position leg A for touchdown 
Shorten leg A 
Leg A mirrors leg B 
Apply thrust force in leg B 

• 
EXTENSION^ Leg B reaches Control attitude with leg B 

(support on leg B) negative support Position leg A for touchdown 
Extend and lower leg A 

• 

Apply thrust force in leg B 

Table 2-1:   Finite state machine for groucho running.   The, state shown in the left col- 
umn is entered when the event listed in the middle column occurs.   The states advance 
in the listed order continuing on to similar states for the other virtual leg, beginning with 
DECOMPRESSIONS and ending with EXTENSION B. 

• 

• 

+ 
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(f>t is the current body angular velocity about axis i, 
Kp.Kd are proportional and derivative gains respectively, and 
i — {1,2,3} corresponds to roll, pitch, and yaw respectively. 

In addition to regulating posture during stance with the above control law designed for 
single-legged hopping, we used mirroring to minimize attitude disturbances. The idle leg 
mirrors that of the stance leg, decreasing the net change in angular momentum, and thus 
the net torque about the body center of mass. Because the Hexahopper and Hexabug do 
not experience a ballistic phase and the leg inertias are small, the value of mirroring is not 
as significant as in running. However, we expect that when we increase the leg inertias to 
values consistent with a real cockroach mirroring will produce greater benefit. 

Forward Running Speed For a running biped, accurate foot placement governs the for- 
ward running speed. Foot placement occurs during flight just prior to touchdown. If you 
treat the leg as a spring, there is a neutral point such that if the leg touches down on the 
neutral point the leg will be at greatest compression when it is vertical. By symmetry, 
assuming a lossless spring, the biped will take off with the same speed as it landed. Addi- 
tionally, if the foot falls short of the neutral point the biped will gain speed at the expense 
of hopping height, and if the foot overshoots the neutral point the biped will gain height at 
the expense of forward speed. 

The groucho-running Hexahopper and Hexabug use the neutral point principle to control 
their speeds, although they calculate foot positions for two virtual legs rather than six 
individual legs. The task controller calculates desired foot positions with a simple feedback 
loop: 

xdxy = xTc + Kx(x - xd) 

where 

Xdxy is the planar displacement of the foot 
from the projection of the center of mass, 

Tc is the time from touchdown to maximum spring compression, 
x is the current average forward speed, 
Xd is the desired forward speed, and 
Kx is a speed gain. 

Comparison of the above equation with former Leg Lab foot placement controllers reveals 
a subtle difference in the calculation of the position of the neutral point xTc. Previously, 
the neutral point was determined to be ^j8-, where Ts is the estimated duration of next 
stance phase. For a symmetric stance phase, as in running, Tc = ^f. However, the stance 
phases for the Hexahopper and Hexabug are asymmetric, with Tc less than the time from 
maximum compression to liftoff. 

The timing of touchdown is of greater importance to groucho running than running. 
When running, the support leg begins storing elastic potential energy at touchdown. When 
groucho running, in order for a leg in to begin storing energy at touchdown, the leg must 
not contact the ground before top of stance, the point where the body is at maximum 
gravitational potential.   At the point that the body altitude z is at maximum, its time 



derivative z is zero. Since the profiles of both z and z are smooth, once scaled, z is suitable 
for use as a trajectory for smoothly leading the foot to the ground at top of stance. The 
trajectory, specified during EXTENSION as the complement to xdxy above, that fulfills this 

task is 

xdz = Kz 

Xdz is the desired vertical foot position in the inertial frame, 
z is the vertical speed, and 
K is a gain. 

2.2.5    Results 

We performed simulations and recorded data at various speeds. After setting a desired 
speed, we allowed the simulation to run until the transients had died out before we recorded 
data. It generally took less than ten step cycles before the variations in data values were 
small between successive steps. 

Figure 2-5 contains data for the Hexabug simulation at steady speeds of approximately 
4, 25, and 52 cm/sec. At all speeds, both virtual legs are on the ground when transferring 
support from one foot to the other. There is no flight phase. At higher speeds, however, 
some feet briefly lose ground contact just prior to double support. This can be attributed 
to body reactions created by motions in the other virtual leg just prior to touchdown. 
Fluctuations in horizontal velocity and height correspond to running behavior. Therefore 
the Hexabug is groucho running. 

Over all speeds, footfalls occur just after maximum height is attained. The force profiles 
are nearly symmetric, with a small peak due to height control thrusting. At higher speeds, 
the Hexabug's bounce frequency increased, while the bounce amplitude and average height 
diminished. The amplitude of speed oscillations remained fairly constant regardless of 
speed. The virtual leg length profiles suggest that much longer physical legs were required 
at higher speeds. The leg length at toe-off is greater than at touchdown, with the difference 
increasing dramatically as speed increases. 

As speed increases, the Hexabug has decreasing control of its body height. Leg excursion 
increases, resulting in more coupling between vertical and horizontal motion as the leg 
sweeps. The amount of thrust added to control body height is determined assuming it will 
be essentially applied vertically, yet the thrust vector moves during the support phase. As 
a result, at higher speeds the thrust which is supposed to control body height gains an 
increasing horizontal component. 

Figure 2-6 illustrates the response of the Hexabug to a step in desired velocity. The 
Hexabug controller maintains a stable bounce height independent of the changing velocity. 
The velocity profile reaches a steady state value after approximately eight bounce cycles. 
At higher velocities, the settling time is lower. Even though the position-control law as 
implemented does not include an anticipatory, error-derivative term, the tracking error is 
small. The Hexabug controller produces the desired groucho-running behavior over a wide 
spectrum of running speeds. 
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Figure 2-5: Data from the Hexabug at speeds of 4, 25, and 52 cm/sec. Solid lines indicate 
data for Virtual Leg 1. Dashed lines indicate data for Virtual Leg 2. From top to bottom: 
horizontal velocity, the number of feet in contact with the ground for each virtual leg, 
vertical force, virtual leg lengths, and body height (the dotted line is the desired height). 
The oscillations in speed are characteristic of a running creature. The force and leg length 
profiles are symmetric between the two virtual legs. At higher speeds, the legs extend much 
more than at lower speeds. 
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Figure 2-6: Hexabug response to a step in desired velocity. From top to bottom: times 
when virtual leg 1 is on the ground, two graphs with the trajectory following capability of 
virtual leg 1 (the dotted line represents the desired trajectory), convergence of the horizontal 
velocity, and body height. The lower peak in the desired z position indicates the switch to 
tracking the time rate of change of z position. 
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2.2.6 Limitations 

The Hexabug simulation, although closer to a cockroach than the Hexahopper. has a few 
limitations on its applicability. First, it does not correspond directly with a cockroach. 
It is of approximately the same size, but the leg mass properties are different. We plan 
to change the mass properties and configurations of the legs to correspond to a cockroach 
in the future. Second, the Hexabug does not have any passive energy storage elements. 
There is a virtual "spring", but it is implemented by torques at the joints which are not 
acting as springs. The dependence on active elements would limit the efficiency of an actual 
machine using the Hexabug's controller. Third, the Hexabug's force distribution scheme 
prevents legs from acting against each other. In contrast, a cockroach's legs do interact. In 
addition, allowance offeree interaction between legs can result in lower overall required joint 

torques or power consumption. Finally, as in any simulation, there may be effects which are 
unanticipated, and therefore not simulated. For example, aerodynamics and surface tension 
may be important for a creature the size of a Hexabug. 

Experiments indicate that these limitations are unlikely to cause problems for a while. 
Initial experiments involving attaching cockroach-like legs to the Hexabug have had positive 
results. The Hexabug's lack of explicit spring storage won't become a problem until we limit 
the amount of energy it uses. Interacting forces on the feet could be achieved by applying 
additional forces at the feet, calculated to cancel each other and have no net affect on the 
Hexabug. Finally, unanticipated effects can only be seen when an actual creature exists. 
However, if we continue our work on the Hexabug and make it more like a cockroach, we 
can examine the differences in their behavior to find possible important unsimulated forces. 

2.2.7 Conclusion 

We developed inherently dynamic, groucho-running controllers that made a pair of 
cockroach-like, simulated creatures run, one of them at 52 cm/sec. The hierarchical con- 
troller based in part on the Leg Lab's successful, three-part controller demonstrated that 
Leg Lab algorithms could be extended to produce a groucho running gait. The virtual leg 
construct resulted in simultaneous touchdown and toe-off over all speeds as well as precise 
force control while reducing the control of six legs to the task of coordinating the behavior 
of two virtual legs. The Hexabug simulation models a creature much smaller than those 
previously modeled or built in the Leg Lab and may potentially be the first artificial, grou- 
cho running creature in existence. The simulations provided information that would be 
potentially useful in developing six-legged, dynamic robots. 

2.3    Playback Cockroach Simulation 

The Playback Cockroach is a physics-based simulation modeled off a cockroach (B. dis- 
coidalis). The simulation has sizes and mass properties measured from an actual cockroach. 
The controller plays back data from a digitized B. discoidalis running cycle as desired leg po- 
sitions, and proportional-derivative servomechanisms at joints attempt to track the desired 
leg positions. The result is a groucho-running gait approximating that of a cockroach. 
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Figure 2-7: Playback Cockroach schematic. 

2.3.1    Simulation 

We created the Playback Cockroach creature model using physiological specifications 
which Full supplied (Appendix 2.C). The Playback Cockroach's legs are generated from 
digitized leg scans of B. discoidalis. We represent the body in simulation as a hemiellip- 
soidal body with axes corresponding to the measured dimensions of the cockroach. We use 
the measured cockroach body mass, but since the body inertia properties have not been 
measured they are taken from the hemiellipsoid, assuming uniform density. The leg attach- 
ment positions correspond to measurements from a cockroach. For each leg, a gimbal joint 
attaches the body to the coxa. Pin joints connect the remaining leg segments. 

We eliminated the tarsus from the simulation for two reasons. Visual inspection of 
cockroaches on videotape seems to indicate that the tarsus plays a small role in cockroach 
locomotion. Also, the tarsus has an extremely small mass relative to the rest of the body. 
This small mass at the far end of the leg makes the simulation numerically less stable. We 
plan to reintroduce the tarsus at a later date to verify this decision. 

We generated the Playback Cockroach simulation using the Creature Library, as de- 
scribed in section 2.2.2. Ground contacts are located on the end of the tibia and other 
locations which tend to touch the ground, such as the posterior end of the creature's ab- 
domen and the femur-tibia joints of the front legs. The cockroach simulation has 5 degrees 
of freedom in each leg and 6 more to give the body free motion in three-dimensional space. 

In our simulations, the links connecting the joints are absolutely rigid. However, there 
is some possibility that in an actual cockroach the exoskeleton connecting the joints flexes 
slightly during running. We have assumed that such flexion of the links in a real cockroach 
is small enough to be included with the joint motion of the simulation. 
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2.3.2    Playback Cockroach Controller 

Full provided us with Cartesian joint and foot positions for a complete cockroach stride 
digitized from slow motion videotape. We chose a segment of the motion data which would 
loop well and contains one complete cycle of an alternating tripod gait. We smoothed the 
motion data to eliminate discontinuities at the loop point. 

Using the physiological, cockroach-leg kinematics, we calculated a sequence of leg joint 
angles which corresponded to the motion data. Proportional-derivative servomechanisms at 
the joints track the replayed joint position trajectories to produce the simulated cockroach's 
motion. Looping the data produces a continuing running gait. Changing the rate of motion 
data playback makes the simulation run at different speeds. 

The motion data represents data taken from a cockroach running at 23.7 cm/sec. At 
normal playback speed, the simulated cockroach runs at 17.8 cm/sec, a bit slower than the 
original cockroach. The stride is 0.096 seconds long. 

Tuning 

The proportional-derivative servomechanisms have spring and damping coefficients. We 
determined the coefficients based on a selected frequency (identical for each joint) and the 
inertias the joint would see if the rest of the cockroach were rigidly locked in a configuration 
corresponding to part way through a stride. Let I\ and I2 be the inertias on each side of the 
joint and let u be the frequency. The spring coefficient (which is multiplied by the position 

error) is k = u2IiI2l{I\ + h) and the damping coefficient is b = l.4uilil2/(h + h)- This 
formula corresponds to critically damped oscillation between two bodies, both of which are 
free to move. We experimented with different frequencies and dampings when the leg is in 
the air and on the ground, but did not find any worthwhile improvements. 

Improving trajectories 

Ideally, we want our simulated cockroach's joints to follow the trajectories traced out by 
the original cockroach. However, proportional-derivative servomechanisms do not perfectly 
follow a given trajectory. We can improve trajectory following by increasing the gains in 
the servomechanisms. Unfortunately, a high gain proportional-derivative servomechanism 
will accurately trace any errors that may exist in the recorded data, and will also result in 
a simulation which is extremely stiff. 

We used a simple learning algorithm to improve the simulated cockroach's trajectories. 
We started with a target trajectory which was the same as the recorded trajectory. We then 
ran the simulation and used a fraction of the error between current position and recorded 
trajectory to update the target trajectory. This type of learning has the same effect as 
learning a feed forward torque at the joints. 

This type of learning is only partially effective. It does not address the problem of errors 
in the recorded data. More importantly this learning method has problems dealing with feet 
striking the ground. When a foot hits the ground and takes the weight of the cockroach, the 
torques used in that leg increase dramatically. The learning algorithm learns this increase 
in torques. If, on a later cycle, that leg touches down a little later, the increased torques will 
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slam the foot into the ground. This action can result in body attitude oscillations which 
alter the timing of other footfalls, leading to eventual instability. 

2.3.3 Results 

We performed simulations and recorded data over a range of playback speeds, up to three 
times the recorded frequency. After setting a playback speed, we allowed the simulation to 
run until the transients had died out before we recorded data. It generally took less than 
1.75 seconds for the transients to settle, after which we recorded 0.25 seconds of data. 

Figure 2-8 contains data from the playback cockroach running at three speeds. It ran 
successfully at all tested speeds, although at higher speeds the springs in the proportional- 
derivative servomechanisms were unable to track the trajectories effectively, and as a result 
the performance began to degrade. 

As trajectory frequency increases there is a qualitative change in the oscillation associ- 
ated with the cockroach's locomotion. We believe the change happens because the interac- 
tion between servo spring-like forces and the cockroach body inertias results in different low 
and high frequency vibrational modes. As the step frequency increases, the oscillatory be- 
havior of the cockroach becomes increasingly dominated by the high frequency vibrational 
mode. We are still investigating this mode change. Figure 2-9 graphically demonstrates 
the nature of the mode change. 

The most striking feature of the playback cockroach performance is that over all playback 
speeds, the cockroach runs in a stable manner. This result was not at all obvious before we 
attempted the simulation and varied playback speed. The upper limit to speed is mainly 
limited by the leg's ability to track the desired trajectories. Longer legs should allow it to 
run faster, since the resulting longer strides would permit a lower step frequency for any 
given speed. For speeds below approximately 44 cm/sec, the simulation produces acceptable 
dynamic locomotion. 

2.3.4 Limitations 

The Playback Cockroach has a few limitations, some of which it shares with the Hexabug. 
It, too, has some physical departures from an actual cockroach. For example, the body is 
not shaped right, and it is missing the tarsus on each leg. The ground contact model we use 
is appropriate for a foot pad, like most mammals, but not necessarily for a cockroach's foot. 
Modeling the possible flexion in the chitinous legs by additional joint motion may not be 
sufficient, or accurate enough. The controller is not very flexible: we have a set of joint paths 
that work, but no information on how to modify them. Finally, the Playback Cockroach 
suffers from the same problems with unsimulated aspects of reality as the Hexabug. 

2.3.5 Conclusion 

The development of a six-legged, cockroach-like, physics-based simulation has been detailed. 
The Playback Cockroach utilizes playback data from one complete B. discoidalis running 
cycle as desired trajectories for the joints of a physically realistic, rigid body simulation 
with mass properties measured from an actual cockroach.   By changing the rate of data 
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Figure 2-8: Data from the simulated cockroach at speeds of 10, 18, and 31 cm/sec (left to 
right). The middle set of graphs corresponds to playing back the desired trajectories at the 
same rate as the original recording. From top to bottom: horizontal velocity, phase shift 
between gravitational potential energy and horizontal kinetic energy, pitch, roll, and body 
height above the ground. In the phase graph, the dashed line indicates a phase shift of 180 
degrees, corresponding to a walking gait. 
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Figure 2-9: Phase plot of Playback Cockroach height and roll. The upper graph shows a 
typical low frequency phase relationship between body height and roll. For high frequencies, 
the Playback Cockroach experiences a mode change resulting in the phase relationship 
indicated in the lower graph. The low frequency data corresponds to the data in the left 
hand graphs of figure 2-8, while the high frequency data corresponds to the right hand 
graphs. 
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playback, the Playback Cockroach simulation results in stable running over a wide range of 
playback speeds up to 44 cm/sec. The upper speed limit is determined only by limitations 
in achievable leg configuration, indicating robustness with simple pattern-based control. 

2.4    Is Cockroach Locomotion Dynamic? 

We are investigating whether a dynamic treatment is necessary for a running cockroach. 
In order to ask this question, we must first define "dynamic" within the context of legged 
locomotion. One possible definition involves evaluating the static stability of the creature 
and observing that if it is not statically stable it will either fall or recover dynamically. 
Another definition of dynamic locomotion depends on the importance of the creature's 

kinetic energy. Still another definition considers energy storage in elastic elements. We 
use a physically realistic simulation to evaluate cockroach locomotion according to all three 

criteria, comparing it with measured cockroach data where possible, and find that it is only 
dynamic according to some of them. 

Cockroaches use an alternating tripod gait at most speeds. They have at least three 
legs on the ground, and the center of mass is directly above the polygon of support defined 
by those legs.1 For a creature moving slowly, this would indicate static stability. However, 
there are portions of the running cycle where the cockroach has sufficient momentum to fall 
despite that fact that it is statically stable. 

The second definition is more intuitive: something is dynamic if the fact that it moves 
quickly is important. A creature which is locomoting dynamically would fall if it suddenly 
lost its kinetic energy. On the other hand, static locomotion does not depend on kinetic 
or elastic energy. Instead, static locomotion requires that all the work comes immediately 
from the muscles. Therefore, if the muscles are capable of quickly restoring the creature's 
kinetic energy to its usual level, the kinetic energy is unimportant and the motion is not 
dynamic. 

Finally, a more restrictive definition of dynamic locomotion involves the use of elastic 
energy storage. When running, animals use their legs as springs, like a pogo stick or a 
bouncing ball. In contrast, most walking animals use an inverted pendulum gait in which 
they fall from one leg into a double support phase, then use the momentum from the fall to 
rise up onto the next leg. Most people dealing with "dynamic locomotion" consider running, 
not walking, to be dynamic. Although cockroaches do not have a flight phase, they run as 
if they store energy. 

2.4.1     Cockroach Simulation 

We used a physically realistic simulation of Blaberus discoidalis, a South American cock- 
roach. We describe the simulation elsewhere in this report, so only an overview is presented 
here. Full supplied physiological specifications which we used with the Creature Library to 
create a rigid-body simulation with appropriate masses and moments of inertia. 

Cockroaches have been observed to use fewer legs at extremely high speeds. We are not considering that 
extreme case. 



Full also provided us with motion data for a complete cockroach stride digitized from 
slow motion videotape. From this data, we calculated the corresponding leg angles in the 
simulation over the same stride. To control the cockroach's motion, we replay the calculated 
leg angles as desired leg positions, looping the data to allow multiple strides. Proportional- 
derivative servomechanisms at the joints attempt to track the replayed leg trajectories 

The stride is 0.096 seconds long. The original cockroach was in an alternating tripod 
gait, and the data contains two tripod steps. We carefully chose a section of the recorded 
data which would loop well and then smoothed it to eliminate the discontinuities at the 
loop point. The cockroach was running at 23.7 cm/sec when Full recorded the data. The 
motion data represents data taken from a cockroach running at 23.7 cm/sec. At normal 
playback speed, the simulated cockroach runs at 17.8 cm/sec, a bit slower than the original 

cockroach. 
In the simulation, the connections between joints are absolutely rigid. In an actual 

cockroach the exoskeleton connecting the joints flexes slightly during running, possibly 
storing energy. We assume that such flexion of the links in a real cockroach is small enough 
to be included in the simulation's joint motion. Because the simulation's joint are essentially 
springs with controllable rest lengths, including exoskeletal flexion in the joint motion still 
allows energy storage. 

2.4.2    Static Support 

A classic definition of dynamic is "not static". We evaluated the possibility that our sim- 
ulated cockroach, running at speeds and frequencies comparable to a real cockroach, was 
statically stable. 

We evaluated static stability in two ways. Because the simulated cockroach runs in an 
alternating tripod gait, we checked each tripod to see if the center of mass remained directly 
above the triangle designated by the ground contact points, also known as the polygon of 
support (Figure 2-10). Ignoring velocities, if the center of mass is within the polygon of 
support for the legs which are on the ground, then the cockroach is statically stable. We 
found that the center of mass was always above the polygon of support for a tripod in 
contact with the ground; that is, neglecting velocities, the cockroach remained statically 

stable. 
Next, we included velocity. At each moment in time we calculated the energy, beyond 

its current kinetic energy, required for the center of mass to flip up and out of the triangle of 
support if the body were to become completely rigid (Figure 2-11). This calculation is an 
approximation—the simulated cockroach's legs would bend somewhat if it stopped suddenly, 
absorbing energy. We found that when the cockroach data was played back at the recorded 
data rate, there was a small period when the cockroach simulation had sufficient energy 
to flip out of the polygon of support. This time occurred when a new tripod contacted 
the ground, and was of negligible duration. Increasing the playback speed produced higher 
frequency motion from the simulated cockroach, but the gait became less stable according 

to this measure. 
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Statically Stable 

Statically unstable 

Figure 2-10: Illustration of a simplified cockroach in and out of its polygon of support. The 
top figure demonstrates statically stable support. The bottom figure demonstrates statically 
unstable support. 

High horizontal velocity 

Figure 2-11: Momentum changes the stable positions of the center of mass. With enough 
momentum, the cockroach is able to tip over and may be unstable, even though it is statically 
stable. 
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Figure 2-12: As the cockroach runs, its center of mass remains within the polygon of support 
for one leg or the other. The solid line is high when one tripod can provide static support 
for the simulated cockroach, while the dashed line is high when the other can provide static 

support. 
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Figure 2-13: The amount of excess energy which needs to be removed in order for the 
cockroach to be stable despite its momentum. At the frequency at which the physical 
cockroach data was recorded the simulated cockroach is stable, as indicated by negative 
values for excess energy. The positive peaks occur when legs lift off the ground. 
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2.4.3 Kinetic Energy 

Another definition of dynamic considers the significance of the creature's speed and associ- 
ated kinetic energy. A dynamically moving object would be unable to proceed if it suddenly 
lost its kinetic energy. On the other hand, static locomotion requires that all the work comes 
immediately from the muscles. Therefore, if the muscles are capable of quickly restoring 
the creature's kinetic energy to its usual level, the kinetic energy is unimportant because it 
can be quickly replenished. 

The "muscles" in our simulated cockroach are proportional-derivative servomechanisms 
at the joints. Currently, there is no limit to the amount of torque they produce. However, 
a real cockroach experiences biological and mechanical limitations to the amount of torque 

a joint can exert. We have yet to verify that the range of joint torques developed in 
simulation accurately reflect the mechanical capability of an actual cockroach. One way 

to do this will be to compare the forces generated by an actual cockroach leg with the 
forces generated by the simulation. By equating the force applied by the simulation to the 

force applied by a physical cockroach, we may be able to calculate a set of approximate 
maximum torques for each individual joint. Using these values for maximum torque at the 
joints will let us examine how easily the muscles can achieve the kinetic energy observed in 
the running simulation. Another means of evaluation would be to investigate the number 
and locations of muscle fibers around the cockroach joints. Future work might center on 
similar studies aimed at determining time constants for the joints to infuse energy into 
the system. Comparison of these time constants with typical stride periods will indicate if 
cockroach muscles can quickly restore cockroach kinetic energy to typical running levels. 

2.4.4 Elastic energy 

Many people studying legged locomotion use "dynamic" to mean the difference between 
running and walking. Running animals use their legs as springs, like a pogo stick or a 
bouncing ball. In contrast, most walking animals use an inverted pendulum gait in which 
they fall from one leg into a double support phase, relying on the momentum from the fall 
to rise up onto the next leg. The essential difference between running and walking is the 
use of elastic energy, not presence of a flight phase (Figure 2-14). 

Running uses elastic energy storage, which is difficult to measure in an actual animal. 
You can approximate the amount of elastic energy storage if you assume locomotion is a 
sustained oscillation in which energy transfers largely between horizontal kinetic energy and 
gravitational potential energy and elastic energy storage. This approximation requires the 
assumption that other forms of energy storage, such as vertical kinetic energy, are negligible 
and that muscles actually perform very little work. Conceivably, since the contributions of 
muscle-induced and elastically-stored energy in external motions are indistinguishable, mus- 
cular energy could specify the system behavior. However, active, muscular-energy supply 
is inefficient compared to passive energy storage. 

Both gravitational potential and horizontal kinetic energy are easily measured. Because 
the total energy is approximately constant under our assumptions, we can determine the use 
of elastic energy storage by noting the phase relationship between these energies. If they are 
in phase or of different magnitudes, then there must be substantial elastic energy storage 
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Figure 2-14: Energy fluctuations in walking and running. KE is the horizontal kinetic 
energy, PE is the gravitational potential energy, and EE is the stored elastic energy. While 
walking, the kinetic and potential energies oscillate in phase, but while running they are 
out of phase. For convenience, in the graphs on the right zero is set to the middle of the 
oscillation. The changes in value are important for gait classification; the baseline is not. 

in order to conserve energy. Conversely, if the energies are out of phase their changes will 
cancel each other and elastic energy storage is less significant. 

Full's experiments with actual cockroaches indicates that their gravitational potential 
energy and horizontal kinetic energy are in phase, corresponding to a running gait. As 
shown in Figure 2-16, our cockroach simulation had a phase shift varying from zero to 100 
degrees over a wide range of speeds, all of which are indicative of elastic energy storage, 

and therefore a dynamic, running gait. 

2.4.5     Conclusion 

We examined the locomotion of a cockroach under various definitions of dynamic utilizing 
a physics-based simulation of a cockroach as a test platform. Although the gravitational 
potential energy is not precisely in phase with the horizontal kinetic over the spectrum of 
speeds tested, the phase difference is sufficiently small that elastic energy storage appears 
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Figure 2-15: Kinetic and gravitational potential energies of the creature's center of mass. 
The top graph displays simulation energy data at an average speed of 26.1 cm/sec. The 
bottom graph displays energy data from an actual cockroach at an average speed of 24.5 
cm/sec (Full k, Tu 1990). The solid line represents the horizontal kinetic energy and the 
dashed line represents the gravitational potential energy. The potential energy plots have 
been shifted onto the kinetic energy plots to highlight the phase differences between the 
two. 
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Figure 2-16: Phase shift between horizontal kinetic and gravitational potential energies 
of the creature's center of mass. Playback Cockroach simulation data (x) is plotted with 
phase data from an actual cockroach (o) (Full & Tu 1990). The dashed line at ±180 degrees 
indicates the point at which elastic energy storage becomes unnecessary. 



■II 

important. Therefore, the locomotion of our simulated cockroach is dynamic: the simulation 

runs rather than walks. 
However, our simulation is not dynamically stabilized. It remains statically stable, even 

when momentum effects are considered, except for brief moments at foot touchdown. If 
it were dynamically stabilized, we would expect that the cockroach simulation would be 
unable to run at such a variety of speeds without altering its stride patterns. To the extent 
that the simulation accurately reflects the locomotion behavior of a real cockroach, the 
simulation's stability suggests that an actual cockroach might be able to run dynamically 
over a wide range of speeds without a complex control system. 

Our understanding of cockroach neuromotor control is limited and confined to guesses 
based on observed behavior. Also, we have neglected or only approximated certain phenom- 
ena that may be significant to cockroach locomotion, including cockroach leg link compliance 
and aerodynamic effects. Despite these shortcomings, our simulation's behavior is consis- 
tent with previously gathered cockroach data and we only suggest that pattern playback 
could be used to produce dynamic, stable cockroach running over a range of speeds. 

The combined result of a dynamic, yet passively stable gait is interesting. It may 
mean that running, even with fewer than six legs, could be produced more simply than 
has been tried previously in existing, running, robotic systems. This result is significant 
because running allows higher speeds and potentially greater obstacle-crossing capability 
than walking. However, questions regarding the applicability of passively stable, dynamic 
gaits as well as implementation issues in a real robot control system remain for future study. 



42 DYNAMIC COCKROACH LOCOMOTION' 

2.A    Appendix: Hexahopper Simulation Parameters 

Parameter Metric Units English Units 

Overall length .92 cm .36 in 
Overall height .90 cm .35 in 
Overall width .80 cm .32 in 

Hip height (max) .62 cm .24 in 
Hip spacing (x) 0 cm 0 in 
Hip spacing (y) 0 cm 0 in 
Body mass •262 g 9.34e-3 oz 
Body inertia (a;) .017 g-cm2 9.41e-5 oz-in2 

Body inertia (j/) .017 g-cm2 9.41e-5 oz-in2 

Body inertia (z) .026 g-cm2 1.45e-4 oz-in2 

Upper leg length .500 cm .195 in 
Lower leg length .500 cm .197 in 
Upper leg mass .0039 g 1.4e-4 oz 
Lower leg mass .0038 g 1.4e-4 oz 
Leg total mass .0077 g 2.8e-4 oz 

Virtual spring stiffness 5000 mN/cm 904.2 ozf/in 



2.B    Appendix: Hexabug Simulation Parameters 

Parameter Metric Units English Units  | 

Overall length 4.3 cm 1.7 in 

Overall height .90 cm .35 in 

Overall width 2.0 cm .79 in 

Hip height (max) 1.2 cm .47 in 

Hip spacing (xforward) 1.51 cm .596 in 

Hip spacing (xrearward) 1.30 cm .510 in 

Hip spacing (yfront) .512 cm .202 in 

Hip spacing (ymiddie) .670 cm .264 in 

Hip spacing (yrear) .784 cm .309 in 

Body mass 1.245 g .0445 oz 

Body inertia (x) 1.2385 g-cnr* .006856 oz-hV1 

Body inertia (y) .0938 g-cm2 .000519 oz-in^ 

Body inertia (z) 1.1817 g-cm* .006542 oz-in2 

Front femur length .6 cm .236 in 
Front tibia length .600 cm .236 in 

Front femur mass .0017 g 6.07e-5 oz 

Front tibia mass .0017 g 6.07e-5 oz 

Front total mass .0034 g 1.21e-4oz 

Middle femur length .750 cm .295 in 

Middle tibia length .75 cm .295 in 

Middle femur mass .0021 g 7.5e-5 oz 

Middle tibia mass .0021 g 7.5e-5 oz 
Middle total mass .0042 g 1.5e-4 oz 

Rear femur length .9 cm .354 in 
Rear tibia length .900 cm .354 in 

Rear femur mass .0025 g 8.93e-5 oz 

Rear tibia mass .0025 g 8.93e-5 oz 

Rear total mass .0050 g 1.79e-4oz 

Virtual spring stiffness 50000 mN/cm 9042.0 ozf/in 
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2.C    Appendix: Cockroach Simulation Parameters 

Parameter Metric Units English Units 

Overall length 4.3 cm 1.7 in 
Overall height .912 cm .359 in 
Overall width 2.452 cm .965 in 
Hip height (max) .73 cm .29 in 
Hip spacing (xfront) 1.514 cm .596 in 
Hip spacing (xrear) 1.30 cm .510 in 

Hip spacing {yfront) .512 cm .202 in 
Hip spacing (ymiddie) .670 cm .264 in 
Hip spacing (yrear) .784 cm .309 in 
Body mass 2.2256 g .0795 oz 
Body inertia (x) 2.2142 g-cm2 .0123 oz-in2 

Body inertia (y) .1677 g-cm2 9.28e-4 oz-in2 

Body inertia (z) 2.1126 g-cm2 .0169 oz-in2 

Front coxa length .629 cm .248 in 
Front femur length .689 cm .271 in 
Front tibia length .409 cm .161 in 
Front coxa mass .0192 g 6.86e-4 oz 
Front femur mass .0094 g 3.36e-4 oz 
Front tibia mass .0029 g 1.04e-4 oz 
Front total mass .0315 g 1.13e-3 oz 
Middle coxa length .447 cm .180 in 
Middle femur length .727 cm .286 in 
Middle tibia length .744 cm .293 in 
Middle coxa mass .0396 g 1.41e-3 oz 
Middle femur mass .0153 g 5.46e-4 oz 
Middle tibia mass .0076 g 2.71e-4 oz 
Middle total mass .0625 g 2.23e-3 oz 

Rear coxa length .541 cm .213 in 
Rear femur length .898 cm .354 in 
Rear tibia length 1.313 cm .517 in 
Rear coxa mass .0502 g 1.79e-3 oz 
Rear femur mass .0200 g 7.14e-4 oz 
Rear tibia mass .0120 g 4.29e-4 oz 
Rear total mass .0822 g 2.94e-3 oz 



2.D     Appendix: Force Distribution 

Song and Waldron, for the Adaptive Suspension Vehicle, developed a method of distributing 
forces over multiple legs in contact with the ground (Song k Waldron 1989). A single virtual 
leg has a resultant force R to be applied to the body and a torque T to be applied to the 
body. However, the virtual leg consists of three physical legs, each of which needs a force 
Fi to be applied at its endpoint X,-. We use Song and Waldron's algorithm to divide 
these forces. Using their notation, we present their method here simplified for the case of 
three legs. Appendix E2.E contains an extension of Song and Waldron's force distribution 
algorithm which we have not yet implemented. 

Their algorithm has two parts. First, you determine the horizontal forces to apply at 
each foot, under the constraint that the feet cannot work against each other in the ground 
plane. Second, you calculate a set of vertical forces. For simplicity, we will define the origin 
as the center of mass of the robot. 

Constraining the legs not to work against each other is roughly equivalent to the con- 
straint on the velocities of points in a rigid body. Regardless of the object's total motion, 
the velocity vectors of individual points cannot bring the points any closer together. If you 
spin a disk with the correct center of rotation p and rotational velocity L, you can take the 
velocity vectors of points on the disk corresponding to the leg endpoints X{ and use them 
for foot forces. Once we calculate the disk's center of rotation and rotational velocity, the 
horizontal forces given by the feet are Fxyi = Lz x (Xxyi - p). L and p can be calculated 
from f, R, and X{. Calculate the centroid in the ground plane C and the mean squared 
distance between the centroid and the feet /. 

1   3 

C   -   n 2_^ xxyi 

I    3       _ 
I = -   2_^{XXyi   -   C) 

1 = 1 

fz, C, Rxy, and / uniquely determine the disk's center of rotation p and rotational velocity 
L. 

lz           OX   tixy   *  Z 
=  ^7^ 

The second step is to resolve the vertical forces F2, for each foot. Song and Waldron 
assume that the distribution of forces Fz{ is planar with respect to the foot positions on 
the ground. In our case, the fact that the distribution is only among three legs makes this 
constraint meaningless since any three points will designate a plane. We have included the 
constraint in our calculations so that the comparison to Song and Waldron's work is easier. 

Let X{, yi, and Z{ be the x, y, and z components of X;. We have already calculated Fxyi, 



46 DYNAMIC COCKROACH LOOOMOTUC 

and need to calculate a F-; such that: 

y^ Fzl    =    Rz   Resultant vertical forces 

3 

^2(ViFzi - ZiFyi)    =    Tx   X axis torques 

3 

2^(ziFxi — XiFzi)    =    Tx    Y axis torques 
«=i 

Aa;,- + ßj/j- + Ä"    =    Fzi   Planar force distribution 

where the first three equations ensure we get the desired forces and torques. 

Algebraic manipulation eventually leads to 

Ix 

ly = X>?-c2) 
»=1 

xy 

3 
=      / X^iVi ~~ C'XCj/J 

i=l 

u =   k«. 3 
3 

V —     J- x   \    / j %i £ yi 

i=l 

w 
3 

i—1 

A 
{V -WCy)Ixy-(W -WCX)IX 

I2 - I I Lxy       Lx>-y 

B 
(W-WCx)Ixy-{V-WCy)Ix 

I2  - I I Lxy       1x1y 

K   =    U- ACX - By 

F2i    =    Axi + Byt + K. 

We avoid the singular case IxIy = I2
y by making sure the legs are not collinear. It is 

possible to get negative values for Fz{ if the legs are extremely poorly positioned, or Txy is 
large. This corresponds to the cockroach attempting to pull itself down. We try to avoid 
this case as well, but if it happens we set the negative vertical forces to zero and rely on 
higher levels of control to correct the error. 



2.E    Appendix: Force Distribution Extension 

Song and Waldron, for the Adaptive Suspension Vehicle, developed a method of distributing 
forces over multiple legs in contact with the ground (Song & Waldron 1989) (Appendix 2.D). 
Their method divides forces and torques into those parallel to the ground and those per- 
pendicular to the ground, calculates forces parallel to the ground, and then calculates forces 
perpendicular to the ground. However, it only enforces the non-interaction force constraint 
on forces which are parallel to the ground. In a situation where a robot has incorrectly 
determined the vertical direction, the robot could assign forces in what it thinks is the 
vertical direction and have the legs interfere with each other. Additionally, if the ground is 
irregular, there is no well-defined "perpendicular to the ground." 

We propose an extension to their method where the non-interaction force constraint is 
expanded to include all three dimensions. As before, let the resultant force to be applied to 
the center of mass be Fr and let the torque to be appüed to the body be Tr. The virtual 
leg has n physical legs, each of which needs a force F{ to be applied at its endpoint X{. 
Again, define the origin as the center of mass of the robot. 

Divide F{ into the portion due to resultant forces F- and the portion due to torques 
F[. Divide the resultant forces evenly among the legs P{ = Fr/n. There are no interaction 
forces among the leg forces due to resultant forces, because they are^all parallel and equal 
magnitude. Calculate the torques resulting from the divided forces F{ . 

ft = ^XiXF/ 
i=l 

Using a variation of Song and Waldron's non-interaction method divide the forces nec- 
essary to create the torque f = fT - T* among the feet. Constrain the forces to sum to 
zero, the torques to sum to T, and the forces to be in a non-interacting vector field. 

n 

o = E# 
i=\ 

n 
f   =   ^XiXFf 

FT    =   Vx(xi-p) 

Designate v as the unit vector in the V direction, so £,• = X, - v(X{ • v), and solve for the 
central force field vector V and the central force field location p. Substituting the third of 
the above equations into the first, gives: 

n 

v x ^ £i    =   nv x p 
8 = 1 

1   n 

p = -5> 
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Substituting the third equation into the second, you get a more complex result. 
n 

f   =   £X8x(Fx (£,-/?)) 

n n 

~ E *x (^x (E ^)) + ^ E *■ * (? * (XX*, • *))) 
t=i i=i       n «=i j=i 

This equation simplifies because 1? is parallel to £, so their cross product is zero. 

f = ^iix(V'xi1)--^iIx(.x^iJ) 
t = l n i=\ j=l 

f   =   £xjX(Fx(Xt--£j = r%)) 
i=i n 

For convenience, define d = X; - \ YTj=\ Xj- 

n 

1=1 

n n 

f   =   £(£• • C,-)V - J2(Xi ■ V)Ci 
1=1 1=1 

This leads to the following three by three matrix equation. Note that the vectors are 
considered column vectors, the prime notation indicates transposition, and I is the three 
by three identity matrix. 

f   =   (kI-M)V 

M   =    ^Ci-X'i 
t=i 

By inverting the matrix (fcl - M), we can calculate V. We already have p-\ £"=i x*, 
so we can now use the central force field equation to determine the forces needed for torques 
FT = Vx (xt - p). 

This force distribution guarantees that no two legs will work against each other in any 
direction, even on sloped, irregular, or poorly measured ground. 

2.F    Appendix: Height Control 

Thrusting can be likened to instantaneously moving the rest position of the virtual spring 
at maximum compression, increasing or decreasing the amount of stored elastic energy as 



■If) 

ie needed.   Height control consists of determining the amount of energy to be added to t 
system every bounce cycle such that the Hexabug achieves a desired height on the next 

bounce. 
Consider a single dimensional, vertical hopper. At maximum compression, the spring is 

compressed by a vertical displacement 6. If the rest position of the spring was moved by a 
distance e, the amount of elastic potential energy stored in the spring would be: 

Ee = ±K(8 + ef. 

The point of least gravitational potential energy occurs at maximum spring compression. 
Assuming no dissipation, the energy required to bounce Ah higher than the altitude at 
maximum compression is: 

Epe = mgAh. 

Since the spring must supply the necessary Epe, we set Epe = Es and expand.   For 
an increase in elevation, Epe must be positive and we create a height error Ah = zd - z 
where zd is the desired height.  Solving for e gives the following expression for the spring 
displacement increment: 

Ah    [2      ~~7,     . 
:mg\Ah\ — o. 

\Ah\ V K 

For the Hexabug, we constrain the problem to a single dimension by projecting the vir- 
tual spring displacement onto the vertical axis. The spring displacement increment actually 
applied is then the leg-axis component of the vertical a calculated above. 

2.G    Appendix: Hybrid Control of 3-Link Legs 

During the development of the Hexabug simulation, control of a more realistic, 3-link, 
articulated, leg was considered. This serial manipulator contained a 2 degree-of-freedom 
universal hip joint followed by a distal revolute knee and ankle joint in a z-x-x-x rotation 
configuration. 

A Jacobian tensor relationship relates desired foot force, Ff, to required joint torques. 
However, for a supplied 3-dimensional force vector, a 4-joint leg system remains configu- 
rationally unconstrained. We chose to maintain a desired angle, 9d, between the final link 
and the inertial z vector as an additional kinematic constraint. As shown in Figure 2-17, 
9 is the angle whose magnitude is to be regulated. Since the four, joint degrees-of-freedom 
of the leg manipulator are used to control three degrees of force applied at the foot and 
one degree of spatial configuration, a hybrid control scheme is employed (Raibert & Craig 

1981). 
A positioning vector force, Fv, applied normal to the leg link l3 drives 9 to 9d as de- 

termined by a 2-link manipulator Jacobian, calculated for k and l2. The positioning force 
takes the form, 

Fp = [Kp(9 - 9d) + Kd9\Fp 
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Figure 2-17: Schematic of the hybrid control scheme used to control the four degree-of- 
freedom, 3-link leg. A 3-dimensional desired force vector, Ff, is applied at the end of the 
manipulator. A desired angle, 64, is supplied as an additional, kinematic constraint. 

where Kp and Kj are gains and the direction of Fv is determined by 

F - — 
Is X ankle 

I/3 x ankle\ 

This action specifies a set of positioning torques, TS, T^, and rfc -   . An equal and opposite 

force, -Fp is applied at the foot by an ankle torque of 

iklt = ankle • (I3 X Fp 

resulting in no net acceleration of the foot. Thus, by this application of internal forces, the 
beginning (hip) and end (foot) of the kinematic chain remains unmoved and I3 effectively 
rotates about the foot, creating the regulated virtual joint angle 6. Since application of 
Ft determines a set of joint torques, superposition of these and rj, T$, T.~    and r   -,, , J KTI&& Q7XK16 

specified by Fp, results in the required hybrid control scheme that effectively applies Fj at 
the foot while regulating 6. 

Figure 2-18 shows the results of application of the hybrid control scheme. One foreleg of 
the Hexabug has been replaced with a 3-link leg. The rest remain as the original, two-link 
legs. A desired angle of Oj, = .6 rad was specified as shown by the dotted line. The solid 
line indicates the achieved angle. As shown in the top graph, two instances of deviation 
periodically occur. A major deviation occurs, followed sequentially by a minor deviation, 
two cycles later, at which time the body height falters. These deviations are causes as the 
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Figure 2-18: Hexabug leg data at a horizontal speed of approximately 27 cm/sec where leg 
1 has been replaced with a 3-link leg. The top figure shows typical values for the virtual 
angle, 9, compared to the desired value indicated by the dotted line. The second figure 
illustrates the resulting period-4 variation in body height. 

leg approaches a workspace boundary singularity in which the leg is physically unable satisfy 
both 6d and maintain the current foot position. Since the Hexabug runs with an alternating 
tripod gait and only one leg has been replaced with the 3-link leg, even periodicity results 
as one tripod corrects for the other. A different choice of 0d or link lengths could remedy 

this problem. 
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Chapter 3 

Design and Control of a Planar Biped Rocker 

David Bailey 

3.1    Introduction 

A truely graceful walking robot does not yet exist. We believe that a key ingredient for 
graceful walking is the smooth transfer of support, from one leg to the other. This paper 
describes the beginning of a project aimed at achieving a smooth step and a graceful walk. 

The goal of this project is to study the transfer of support between the feet during a dy- 
namic walking gait en route to smooth dynamic walking. We are not only interested in the 
impulsive forces that occur when a foot strikes the ground, but also how the center of pres- 
sure moves along the foot during a step cycle. More than just measuring this information, 
we are interested in discovering what, if anything, can be done to apply this information 
towards development of a control law. We are also interested in the preparations needed 
just before a foot touches the ground, in order to get a smooth exchange of support. 

The GeekBot is a simple prototype robot. In designing the GeekBot, the goal was to 
create a very straightforward robot that could be built quickly, but was still capable of a 
rich set of behavior. 

3.2    Background 

Previous experiments with walking have concentrated on static stable locomotion. 
McGhee's group at the Ohio State University built an insectlike hexapod that would walk 
with a number of gaits, turn, walk sideways, and negotiate simple obstacles. Gurfmkel and 
his co-workers in the USSR built a machine with characteristics and performance quite sim- 
ilar to McGhee's (Okhotsimski et al. 1977)(Gurfinkel et al. 1981)(Devjanin et al. 1983). 
Hirose's work led to a leg with a special mechanical structure that simplified the control of 

53 
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locomotion and improved its efficiency (Hirose k Umetani 1980)(Hirose 1984). 

In order for machines to exhibit the speed and grace of natural walkers, they must 
move with a dynamic gait and be actively balanced. Kato and his co-workers built a biped 
that walked with a quasi-dynamic gait (Ogo, Ganse, k Kato 1980)(Kato et al. 1983). 
This machine walked using a statically stable gait except for brief dynamic periods when 
it destabilized itself to tip forward so that support would be transferred quickly from one 
foot to the other. (Miura k Shimoyama 1984) built a walking machine that may have 
been the first to balanced itself actively. Their stilt biped was patterned after a human 
walking on stilts. (Furusho k Masubuchi 1987a) and (Furusho k Masubuchi 1987b) used 
an inverted pendulum model in conjunction with an hierarchical control scheme. (McGeer 

1990) designed dynamic walking machines that travel downhill using no sensors, actuators, 
or computers. They rely on appropriate choices of machine geometry—link lengths, link 

masses, joint damping, walking surface slope, foot shape—to do the computing. Takanishi, 
Kato and their colleagues (Takanishi et al. 1990) built several robots that walk dynamically 
on simple rough terrain. Kajita and Tani (Kajita k Tani 1991) used a linear inverted 
pendulum model, where the body would move at a constant height above the ground. They 
also used ankle torques to help control walking cycle. Yoneda (Yoneda 1991) has created 
an interesting 3Dbiped that can walk both statically and dynamically, and can climb stairs. 

To move with greater speeds, machines must begin to truly utilize their dynamics and 
to manage their energy better. One way of doing this is by having a ballistic motion, 
and transferring some portion of the machine's kinetic energy into potential energy, either 
gravitational during the flight phase or elastically stored in the legs during stance. Both two 
and three dimensional bipeds with such characteristics have been created at Marc Raibert's 
Leg Lab. Koechling (Hodgins, Koechling, k Raibert 1986) researched the parameters that 
limit the maximum speed of a legged system. Hodgins (Hodgins k Raibert 1991) found 
several methods of controling step length for rough terrain locomotiom. Raibert, Hodgins, 
and Playter (Hodgins k Raibert 1989)(Playter k Raibert 1992) have made their two and 
three dimensional bipeds perform somersaults. 

For the most part, all of the previous work has been concerned soley with stabilizing the 
walking or running cycle. With the GeekBot, we are looking towards making improvements 
in how the feet are loaded, and how support is transferred between the legs. If this transfer 
can happen smoothly, the walking motion will become more efficient, as more energy is 
carried through each step. 

3.3     Robot Design 

Four major decisions were made early to guide the GeekBot's design: 

1. The machine will be planar. 

The dominant behavior of walking can acceptably be reduced to the planar case. Also, 
a planar machine simplifies both the actuation and control required since out of plane 
effects can be ignored. 



Figure 3-1: Schematic of GeekBot. The GeekBot stands approximately 1.09 meters tall and 
has a weight of around 7 kg. The four actuators are electric motors located at the various 
joints. There are potentiometers at each joint to measure relative angles and the mechanical 
gyro measures the inertial orientation of the pelvis. The feet have force sensing resistors to 
measure foot ground contact. Computing and electrical power is off board. 
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2. The machine will have two legs and actuated ankles. 
A minimum of two legs is necessary for walking, and additional legs would only add 
to the robots complexity, without a substantial increase in its capabilities. We need 
the actuated feet to allow us to control the load transfer dynamics. 

3. The machine will be powered by electric motors. 
Electric motors were chosen basically for their controllability, and the ease of using 
them in a revolute joint. 

4. The machine will not carry its own power supplies nor its own computing resources. 
Removing the weight of the power supplies and computing power greatly reduces the 
power requirements of the actuators. Again, the goal is to study smooth walking, not 
to develop an autonomous walker. 

As shown in Figure 3-1, the robot consists of five links: a pelvis, two legs, and two feet. 

The legs are connected to the pelvis through revolute hips, and the feet are connected to 
the legs through revolute ankles. The axes of all of the joints are parallel, and are powered 
by collocated electric motors. The legs and pelvis are made of carbon fiber tubing, with 
aluminum lugs and brackets to connect to the motors. The feet are circular aluminum arcs 
with rubber pads on the soles. The pads serve both to cushion landing, and to provide 
some traction with the ground. The center of the arc is beyond the ankle. During initial 
trials, the GeekBot would inevitably end up rocking on the edges of the feet. By having 
curved feet, we can control the point on the foot that the robot is resting on. Since the 
point of contact is in actuality the center-of-pressure, the curved feet allow us to control 
around a link position, instead of around force information. The motors are powered by 
Copley current amplifiers, which in turn are controlled by our standard Leg Lab interface 
hardware. 

The instrumentation of the robot is simple and includes: 

• Potentiometers to measure relative joint angles 

• A mechanical gyroscope to measure the inertial orientation of the pelvis 

• Fprce sensing resistors to measure foot ground contact 

By combining the relative joint angles with the inertial orientation obtained from the gyro, 
the inertial orientation of every link can be obtained. 

3.4     Current Status 

Limited static walking has been achieved, but this was mostly to verify the kinematic analy- 
sis. After experimenting with several open-loop control strategies, a closed-loop method for 
dynamic rocking has been developed. A finite state machine regulates the rocking motion. 
The state transition diagram is shown in Figure 3-2. The robot falls from single support 
on one foot, through a double support phase, and Lifts off onto single support on the other 



Single Support 
Left Foot 

Single Support 
Right Foot 

Figure 3-2: State Transition Diagram. The rocking control cycle is governed by the finite 
state machine described above. The action during each state is explained in the circles, and 
the transition condition is shown by the arrows. 

foot. The trajectory of the center of mass of the robot is shown in Figure 3-3. By alter- 
nately increasing and then decreasing the stance width while the robot is in single support, 
a type of walking can be produced. Actually, it is more of a shuffle, as one foot is placed 
farther away, and then the other foot is brought back to the nominal stance width during 

the second part of the step. 
Control of the rocking cycle has two basic concerns: 

• Adding sufficient energy during double support so that the robot will rock into a single 

support phase 

• Controlling the kinetic energy during single support so that the robot does not over- 

rotate, and returns to double support 

The first concern is handled by shifting the robot's hips towards the striking foot, and by 
kicking, or toeing-off, with the previous stance foot. Both of these actions add energy by 
getting the machine kinematically moving in the right direction for the next single support 
phase. The hip is just driven to a 90° angle. The toe-off is done by driving the ankle to an 

open-loop position, which can be controlled by the operator. 
The second concern is addressed by comparing the the robot's rotational kinetic energy 

and the remaining gravitational potential energy available to store the kinetic energy. If 
there is too much kinetic energy, the robot's control system moves to dissipate the excess 
kinetic energy. When the robot flairs its hips, as shown in Figure 3-4, the center-of-mass 
moves away from the foot, and the moment of inertia increases. To develop a control law 
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Figure 3-3: Center of Mass Trajectory. The center of mass rocks up and to the left or 
right during the first part single support. At the apex, the robot reconfigures itself, and the 
center of mass moves outward. The robot then falls back to double support, which is the 
flat portion in the middle of the plot. 
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Figure 3-4: GeekBot with Flaired Hips. The figure on the left indicates the GeekBot 
configuration prior to flairing. The right-hand side depicts the GeekBot in "spread-eagle" 
configuration, with the hips flaired 

that utilizes this movement, we modelled the robot's movement during single support as a 

simple inverted pendulum, shown in Figure 3-5. 
The first step of the control is to compare the rotational kinetic energy to the work that 

gravity will do before the pendulum is totally inverted. This work is the difference between 
the potential energy when the pendulum is upright, and the potential energy at its current 
state. If there is more available potential energy than there is kinetic, the pendulum will not 
over-rotate, and no action needs to be taken. However, if there is more kinetic energy, than 
some action needs to be taken. If you assume that the robot can change its configuration 
instantaneously, then increasing the length and inertia of the pendulum will happen with 
conservation of momentum. Initially, if the pendulum has moment of inertia h, mass m at 
a radius of T\, is at angle 9 and angular velocity uu subject to gravity g, then 

Ti = 
(Zi + mrj)w? 

and 
V\ = mgr\{\ - sin0) 

where T\ is the kinetic energy and V\ is the remaining potential energy. Through the 
configuration change, momentum is conserved, so we can determine T2 from a momentum 

(H) balance. 

Hi = Ei 

(Zi f mrl)üJi = (Z2 + mrl)oj2 
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Figure 3-5: Inverted Pendulum Model of GeekBot in Single Support. The left diagram 
indicates the true robot configuration, while on the right the robot has been reduced to a 
simple rigid body model. 

= (A + mr\)2ul 
2        2(/2 + mrl) 

also, 

V2 = m<7r2(l - sin 9) > V\ 

since r2 > rx and I2 > h, two things happen. Since T2 < 2\, the kinetic energy decreases. 
With V2 > Vi, the available potential energy increases. What this means is that flairing 
the hips both decreases the kinetic energy and increases the available potential energy and 
therefore improves things on both fronts. 

This control strategy was implemented successfully on the robot, but not with out 
several modifications. First, when the robot flairs its hips, the center of mass must move in 
a straight along the original angle 9. The robot then rotates inertially to compensate for this. 
This movement creates a lot of low frequency noise into the angular velocity measurement. 
This signal is therefore put through a low pass filter. However, to adequately filter out the 
noise, the break frequency of the filter is quite low, and this introduces a substantial time 
delay. As added protection to stop an over-rotation, when calculating the robot's kinetic 
energy is given an additional feedforward value. This makes the robot flair its hips a least 
a little. Lastly, the configuration change is not instantaneous, as assumed early. In spite of 
theses limitations, the control strategy works adequately. 

3.5     Looking Ahead 

Looking towards the project's future, there are two major tasks. The first is to finalize the 
control methods that will produce a smooth rocking motion. The current idea about solving 



this problem is based on the concept presented in (Dunn & Howe 1994). The idea is to 
lengthen the stance leg while shortening the striking leg. If these actions are done correctly. 
a smooth exchange of support can be obtained, because the velocity of the center of mass 
before and after exchange-of-support will be the same. As an initial step towards this, the 
robot currently performs an open-loop "toe-down," where the striking foot is collapsing the 
same amount that the stance foot is toeing-off. The toe-down had a noticeable benefit in the 
conservation of energy through double support. We are currently looking at the mechanics 
of the touchdown, so that we can put a closed loop control around it. The toe-down could 
be shortening the strike leg, which would seem to agree with Dunn's method. It may also 

be doing a form of ground speed matching. 
The second task is to develop a way of quantifying smooth walking. By developing 

this metric, we will be able to compare the affects of different strategies. Current thoughts 
on this include obtaining force plate measurements of the rocking motion, or using the 

maximum stance width that the robot will rock with. 
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Chapter 4 

Robot Tucked Somersaults 

Robert Playter, Marc Raibert 

4.1    Introduction 

The somersault is a maneuver in which a performer jumps into the air and rotates once 
about a side-to-side axis before landing on the ground. The main requirement of a success- 
ful somersault is a balanced landing which in turn requires that the performer finish the 
somersault with a pre-specified body attitude. In this chapter, I explore attitude control 
techniques for producing stable landing configurations for the tucked somersault of a 3D 
biped running robot. 

The tucked somersault is distinguished by maintaining the tuck position during most 
of the maneuver. Humans 'tuck' by holding their knees close to the chest with the knee 
joints flexed to fold the lower legs under the body. An important dynamic feature of the 
tuck somersault is that in most humans it involves rotation about the major principal axis 
of inertia. Since a rigid body rotating about its major principal axis is directionally stable, 
we might expect the tuck somersault to be stable in the sense that the axis of rotation will 
tend to maintain its inertial orientation. This stability in turn simplifies the control of body 
attitude at landing in the tuck somersault. 

Directional stability of the spin axis during a tucked somersault means that a somersault 
control strategy need deal primarily with avoiding over-rotation or under-rotation about 
the somersault axis. Rotation rate about the somersault axis can be controlled by changing 
rotational inertia. Since angular momentum must be conserved during flight, increasing 
inertia will slow down the somersault rate while decreasing inertia will increase somersault 
rate. If the performer knows the time of flight, then control of somersault rate provides a 
means of controlling the somersault angle at landing. 

In this chapter, I discuss somersault experiments with a 3D biped robot, (Figure 4- 
1).   Figure 4-2 shows a sequence of photographs of the 3D Biped taken while the robot 
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Figure 4-1: Photograph of the 3D Biped used for experiments. The body is an aluminum 
frame on which are mounted hip actuators and computer electronics. Each ball and socket 
hip joint has three low friction hydraulic actuators that can position the leg forward and aft, 
side-to-side, and can rotate the leg along the axis of the leg. A hydraulic actuator within 
each leg changes its length, while an air spring makes the leg springy in the axial direction. 
Sensors measure the lengths of the legs, the positions of the hip actuators, pressure in the 
hip actuators and contact between the foot and the floor. Gyroscopes measure the inertial 
attitude of the body. An umbilical cable connects the machine to hydraulic, pneumatic, and 
electrical power supplies. Control computations are done my microprocessors, some located 
on board and some nearby in the laboratory. Communications cables connect all processors. 

performed a successful somersault. The somersault axis of the robot is coincident with the 
maximum principal axis of inertia making the robot somersault dynamically similar to the 
tuck somersault in humans. To initiate the somersault the biped runs forward, jumps to 
attain a double stance phase, then thrusts with both legs while pitching its body forward. 
Once airborne, the robot shortens its legs (tucks) to accelerate the forward rotation and 
swings its legs to a predetermined position with respect to the body. During flight the 
robot uses a feedback algorithm that changes the leg length to produce a rotation rate that 
will yield the desired somersault angle at landing. To accommodate errors in the estimated 
time of landing, the robot moves its feet to track the desired landing configuration as the 
system approaches the ground. The robot does not use any active control of out-of-plane 
rotation during flight. Rather it uses a broad stance during takeoff to minimize tilt rotation 
at the beginning of flight and it uses a broad stance during landing to minimize the effect of 
landing tilt errors. The robot has successfully performed the somersault in the laboratory. 
On its best day, the robot regained balance on landing to continue stable running on seven 
out of ten somersault attempts. 
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Figure 4-2: A sequence of photographs (arranged in left-right order starting upper left) taken 
during the execution of a somersault. The robot is running from left to right. Approximate 
relative time of each image: upper left-0.0 s, upper right-0.15 s, middle left-0.33 s, middle 
right-0.66 s, lower left-0.80 s, lower right-1.02 s. 
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4.2    The Mechanics of the Somersault 

The most basic requirement of a somersault is that the performer neither over-rotate nor 
under-rotate the landing. Accurate control of the landing attitude allows careful placement 
of the foot relative to the center of mass of the robot which is a requirement for stable 
dynamic running (Raibert 84). Considering only the somersault degree of freedom, the 
attitude requirement is expressed by equating the time of flight and the time to rotate 
through the desired change in somersault attitude, 

A$ = i0 + sjzl + 2g{z0 - z^d) 

$0 9 { ' ' 

where 

A$ is the change in somersault angle required during flight 
<I>0 is the somersault rate of the body at lift-off 
z0 is the height of the center of mass (c.o.m.) at lift-off 
z0 is the vertical velocity of the c.o.m. at lift-off 
ztd is estimated height of the c.o.m. at touchdown 
g is the acceleration of gravity 

Equation 4.1 relies on several simplifying assumptions: 1) the somersault dynamics are 
governed by the planar equation /$ = 0, implying that the external torques due to supply 
cables or wind resistance are negligible, and 2) only the rotation in somersault is significant 
and the somersault axis is a maximum principal axis of inertia so that tilt and twist angles 
will stay small if they start small thus allowing us to ignore them, and 3) the legs do not 
swing with respect to the body during the flight phase, so $0 represents the angular rates 
of both the body and the legs. 

When the 3D Biped robot somersaults it rotates about its major principal axis. Figure 4- 
3 shows that the region of stable rotation about the somersault axis is large. We may then 
expect that as long as the somersault is initialized with the angular momentum vector 
close to the major principal axis then it will remain close to that axis. This in turn means 
that the tilt and twist angles of the robot at landing will be small and the somersault 
dynamics simplify as indicated above. In the remainder of this chapter we assume that this 
simplification is valid in computations involving rotational dynamics of the robot. 

4.3     Somersault Control Strategies 

The goal of the somersault control strategy is to produce a landing attitude that allows the 
robot to maintain balance. To regain balance on the landing, it is important that the robot 
achieve a desired horizontal displacement of the foot relative to the center of mass. In the 
plane of the somersault this horizontal displacement is given by 

d = lsmß (4.2) 



Figure 4-3: The somersault axis of the 3D Biped is coincident with the major principal axis 
of inertia. With the legs in the fully extended position, as shown here, the minor principal 
axis is the 'head-to-toe' axis. 
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Figure 4-4: In order to maintain balance at landing the leg inclination angle, /?, must be 
near the desired value, ß is the angle the leg makes with the local vertical. It is a function 
of the the hip angle, a and the body attitude, $. 

where / is the leg length and ß is the leg inclination angle, the angle the leg makes with 
vertical in the plane of rotation (Figure 4-4). If the legs are held fixed relative to the body, 
then the desired landing attitude, or equivalently A$, can be found from d. If the initial 
conditions of flight, <fr0, i0, and z0, are established accurately so that for a desired zti and A$ 
Equation 4.1 is satisfied, then the desired landing attitude will be achieved. More generally, 
one approach for generating somersaults is to establish accurately the initial conditions of 
flight to a state that is empirically determined, then to execute an open loop pattern of 
actuator signals to produce components of the desired behavior. Hodgins and Raibert used 
this approach in programming a planar biped robot to perform front somersaults with a 
90% success rate. The success of such an approach depends upon how precisely one can 
reproduce the state of the robot and how sensitive the desired movement is to variations in 
the state. 

For a running robot with less regular and repeatable motion, such as the 3D Biped, 
precise initialization is more difficult. Therefore, reliable production of a desired landing 
attitude might be improved with an in-flight feedback strategy that modifies the perfor- 
mance of the somersault based on the state of the robot in flight. 

To the extent a system with non-zero angular momentum can change its inertia, it can 
also change its rotation rate. For a somersault, if the time until landing is known then 
control over rotation rate amounts to control over the landing attitude. The basis of the 
somersault control strategy is to change the robot somersault inertia to produce a rotation 
rate that will yield the desired body attitude at the time of landing. 

The robot can change its inertia by extending or retracting (untucking or tucking) its 
prismatic legs. In flight, if the angular rate and moment of inertia of the robot in one 
configuration are $i and I\ then with constant angular momentum the angular rate in a 
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configuration with inertia I2 is $2 = {hlh)$\- Joint limits restrict the range of inertia 
and thus limit control over the rotation rate. For the 3D Biped robot, the inertia about 
the somersault axis ranges from 1.22 kg m2 with legs retracted to 1.50% m2 with legs fully 
extended. In moving from a fully retracted to a fully extended position the robot can reduce 
its somersault rate to 81% of its initial value. We will refer to the regulation of somersault 
rate and landing attitude via leg length as the tuck servo. 

4.3.1    Control of Somersault Angle 

To implement the tuck servo with state feedback, we first pose the requirement of Equa- 
tion 4.1 as a function of the state during flight rather than at lift-off. 

$td-$ _ to + y/% + 2g(*0 ~ cosßtd hd) _,t_    v /43) 

$ 9 

where 

$td is the desired somersault attitude at touch down, 
$ is the current somersault attitude, 
4> is the current somersault rate, 
ßtd is the desired leg inclination angle at touch down, 
ltd is the leg length at touch down, 
t is the current time, 
t0 is the lift off time. 

The robot inertia and thus $ are functions of ltd, so we solve for the ltd that will make 
Equation 4.3 an equality. 

We nominally require the hip angle to be zero on landing. If this is the case then 
ßtd = $td and the landing attitude and leg length determine the height of the hip. The 
center of mass is coincident with the hip, so ztd is given by 

ztd = cos$tdhd (4-4) 

We have also assumed that the tilt angle at touchdown is zero. 
Define a function, /, as the difference between the left and right hand sides of (4.3). 

f = k° + ^*° + 2g(z° ~ COS $id ^ - (* - t0) - 
$td.~$ (4.5) 

9 ° $ 

If the desired landing attitude is to be achieved then / = 0. Otherwise, the pitch rate needs 
to be increased or decreased depending on the sign of /. The control algorithm we use 
changes the leg to a length that will make / = 0. The function, /, is a non-linear function 
of the leg length, so we use a Newton search (Strang 86) to recursively solve for the desired 
leg length. The recursion uses the first order, Taylor series expansion of / = 0, 

0 = /(/) + fA/ (4.6) 
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This yields the following equation for Al 

Ideally, once the desired leg length is achieved, / remains zero for the rest of the somersault 
and the desired leg length becomes the leg length at touch down, / —> ltd. 

During each control cycle the tuck servo executes the following process 

1. measure the state of the robot 

2. compute / and df/dltd 

3. compute Altd 

4. estimate the next value of / using ltd — hd + &hd- 

5. if / « 0 go to (6), else go to (2) using new values of / and ltd 

6. servo the leg length to ltd- 

To perform step 2 above we need to solve for df'/dltd- Taking the derivative of (4.5) with 
respect to ltd results in 

df/dltd =    . + —jr— d$/dltd (4.8) 
y/z* + 2g(z0 - cos $td ltd) $2 

To obtain d$/dltd we use the fact that the angular momentum is a constant so that 

h 
* _ (/0 + 2m,r2) (4l9) 

where 

h angular momentum 
r distance from the lower leg c.o.m. to the robot c.o.m. 
mi lower leg mass 
I0 robot pitch inertia about c.o.m. when r — 0. 

The total inertia of the robot as a function of leg length is (70 + 2m/r2). The 2m/r2 term 
represents that inertia due to the distance of the lower legs from the robot c.o.m. This is 
the component of inertia that we control as the legs change length. From (4.9) we get 

d^/dhd = -,r
2™'r  2,2 dr/dltd (4.10) 

(I0 + mir2)2 

The robot center of mass moves very little when the legs are extended or retracted so we 
assume dr/dltd — 1. Substituting for h from (4.9) results in 

,• ... 2m/r$ 
d$dltd=~—— ^ (4.11) 

(I0 + mir2) 
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d- Now by substituting (4.11), (4.8), and (4.5) into (4.7), we can compute the required A/, 

The computation of the desired leg length depends upon knowledge of robot parameters 
such as inertia and leg mass. However, since the process is repeated each control cycle based 
upon the sensed state of the robot, sensitivity to precise knowledge of these parameters is 
reduced. In exchange for this robustness to uncertainty we give up the ability to pre-specify 
both the landing attitude and the leg length at touchdown. 

4.3.2    Accommodating Landing Time Errors 

A limitation of the tuck servo strategy is its dependence upon accurate knowledge of the 
time until landing. With somersault rates on the order of 500 deg/s, small errors in the 
predicted landing time can result in intolerable landing attitude errors. Because we have no 
measurement of the vertical position or speed while airborne these quantities must be de- 
rived from estimates of the lift-off conditions. To accommodate errors in these estimates, we 
have modified the landing strategy to allow the robot to land with the desired configuration 
anywhere within a 'window' of the predicted landing time. 

The leg inclination angle in (4.2) is the difference between the somersault angle and the 
hip angle, ß = $ - a. By changing the hip angle the control algorithm makes the foot 
track the desired displacement for a short time just prior to or after the expected landing 
time. In this way, the robot maintains the desired landing configuration during a 'landing 
window' that is centered about the nominal landing attitude. In order to maximize the 
landing window the legs are moved 'back' relative to the body (a > 0) early in the flip. 
Prior to landing, the foot is swept forward in order to track the desired foot position until 
touchdown. 

4.3.3    Control of Tilt and Twist Angles 

Achieving a takeoff attitude with no tilt and twist is challenging with the 3D Biped. As 
the robot runs its body somersault angle stays close to zero but its body tilts and twists 
in phase with the stepping cycle as it runs. During a normal running cycle, the robot uses 
hip actuators during stance to apply torques to the body in order to control body attitude. 
However, we found that it was difficult to achieve small tilt and twist angles and rates at 
takeoff using only the hip servos. We found that the best method for keeping tilt and twist 
angles and angular rates small during takeoff was to use a wide double stance during the 
flip initiation in combination with the normal attitude control used during stance ((Raibert 
84)). This wide double stance helps stabilize the robot's tipping motion during takeoff. An 
important component of this approach was to achieve simultaneous touch down of both 
feet at the beginning of the double stance phase. Similarly, a wide double stance during 
somersault landing and simultaneous touchdown of both feet were observed to minimize the 
effect of tilt and twist errors on the somersault recovery. 
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Table 4-1 
3D Biped Parameters 

Symbol Description Quantity 

m total mass 31.44 (kg) 
mi lower leg mass 0.652 (kg) 
Io somersault inertia 1.02 (kgm2) 
^min min. lower leg radius 0.404 (m) 
''min min. leg length 0.647 (TO) 

'"max max. leg length 0.862 (m) 

4.4    Experiments with 3D Biped Somersaults 

The 3D Biped is a two-legged robot that is free to translate and rotate in 3D space. Each 
leg is mounted adjacent to the center of gravity of the body with a ball and socket hip joint. 
The hip joint allows leg rotation about the x, y, and z axes (±20°, ±60°, ±15° see Fig. 1). 
Hydraulic actuators control each of these degrees of freedom. The robot's telescoping legs 
contain a fourth hydraulic actuator that acts in series with a pneumatic compression spring. 
Mass properties of the 3D Biped are included in Table 3.1 Some of the kinetic energy of 
the machine is stored in compression of the air spring during each bounce, and returned to 
power the subsequent flight phase. Energy is added to the hopping oscillation by actively 
compressing the air spring with the hydraulic piston during stance. The 3D Biped maintains 
balance while running by performing three control tasks (Raibert 84): 

1. during stance, the robot maintains body posture by applying hip torques between the 
legs and the body, 

2. during stance, the robot adds energy to the air spring to maintain the hopping oscil- 
lation, and 

3. during flight, the robot positions the foot in anticipation of the next stance phase in 
order to control forward velocity. 

To execute a somersault, the 3D Biped modifies three steps in an otherwise normal 
running sequence. The robot performs a hurdle step during which it hops higher than 
normal as it prepares to land on both feet for the flip step. The flip step is initiated by 
thrusting with both legs while pitching the body forward. During the landing step the robot 
lands on both feet then resumes a normal running gait. The control actions used to execute 
the flip are summarized in Table 3.2. 

In laboratory experiments, the 3D Biped has successfully performed the forward som- 
ersault and regained a stable running cycle afterwards (Figure 4-2). 



Table 4-2 
Control Summary for the Somersault 

Step Action 

Approach Run forward (« lm/s) with alternating gait 

Hurdle Pitch up slightly 
Hop with increased leg thrust 
Prepare to land simultaneously on both feet 

Flip Jump with maximum thrust 
Pitch body forward with maximum torque 
Shorten legs once airborne 
Servo hips to feet back position 
Engage tuck servo 
Prepare to land simultaneously on both feet 
Track desired foot position 

Landing Dissipate energy on landing 
Return somersault rate to zero, restore posture 
Adjust nominal leg length based on ltd 

Following Resume running with alternating gait 
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Three sets of data from a successful somersault and a nearly successful somersault 
are shown in Figures 4-5, 4-6, and 4-7. Figure 4-5 shows data for the approach, flip, 
landing, and continuation of running for a successful somersault. The nominal desired 

landing attitude was set to 350°. The robot ran steadily until the hurdle step at which time 
it hopped higher than normal as it prepared to land on both feet. During the flip step the 
body is thrust upwards and accelerated in somersault. The desired leg inclination angle 
was set to —5.7° based on the forward speed in flight. The robot lands 0.080s earlier than 
anticipated with a somersault attitude of 325° and with a leg inclination angle of —11°. The 
actual leg inclination angle is much closer to its desired value than the corresponding values 
in somersault because of the feet-back position in flight. The foot positioning servo was not 
used in this somersault because the desired foot position was always slightly in back of the 

actual foot position, and the legs were already in a swept back configuration. Balance is 
regained on landing, but since the robot lands with a slight backward lean, forward speed 
is lost. Forward speed and posture are quickly restored during the following steps. 

Note the oscillation in tilt angle during flight. This oscillation occurs because the robot 
took off with a non-zero tilt rate. Since rotation about the somersault axis is passively 
stable, the oscillation does not grow. We found that in order to regain balance after the 
somersault, the tilt angle on landing must be kept moderately small, |0| < 15°. To do 
this we increased the stance width during the flip step, thereby providing a passively stable 
stance configuration in tilt during initiation. 

The data in Fig. 4 shows the somersault action on a larger scale to illustrate the function 
of the tuck servo. Between the beginning of the flip step and lift off, the magnitude of the 
somersault rate, hip angle rate, and leg length all increase. At lift off, the somersault rate 
of the body declines rapidly as the legs are accelerated to the rotation rate of the body. 
The conservation of momentum constraint produces the symmetry between the absolute 
angular rate of the body and the relative angular rate of the hips. During this time, the 
legs are tucked to the shortest possible length. 

The tuck servo is engaged as the hips reach the desired feet-back position and come to 
rest relative to the body. The robot has a somersault rate of 606 deg/s at the time the tuck 
servo is engaged. At this somersault rate, it is estimated that the robot will over-rotate by 
84°. This error is illustrated by the third graph of Fig. 4 which compares the estimated time 
until touchdown and the estimated time until the desired somersault attitude is achieved. 
The tuck servo extends the legs to the maximum possible length to slow down the somersault 
rotation to 463 deg/s at which point it is estimated that the robot will land at nearly the 
desired attitude. The robot maintains this configuration until landing. 

Data from another nearly successful somersault is shown in Fig. 5. In this somersault, 
the robot uses the foot positioning servo to keep from over-rotating. Once again the desired 
somersault landing attitude was 350°. The desired leg inclination angle was set to —5.9°. 
The robot lands 0.065s later than anticipated with a somersault attitude of 391° and with 
a leg inclination angle of —3.2°. As the robot detected that it was over-rotating it swept 
the feet forward quickly to track the desired foot position. This increased the somersault 
rate because of the conservation of angular momentum and contributed to the somersault 
attitude error on landing. A velocity measurement error during stance after landing led to 
the loss of forward speed of the robot so that it was momentarily supported by safety ropes 



Table 4-3 
3D Biped Flip Attempts 

File Outcome ßtd $td $ io (est) ZQ (meas) z0%err speed/o 

deg deg deg/s m/s m/s m/s 

92.346.4 success 0.12 -10.8 547 3.08 3.04 -1.2 1.04 

92.346.5 success -0.14 -6.29 529 3.48 3.33 -4.3 0.77 

92.346.6 success 0.33 -8.47 524 3.41 3.32 -2.8 0.89 

92.346.7 success -0.31 -13.7 549 3.53 3.48 -1.4 1.10 

92.346.8 6 steps -1.95 -18.9 553 3.69 3.70 1.6 1.02 

92.346.9 success -0.39 -12.7 551 3.45 3.47 0.7 1.04 

92.346.10 success -0.04 -11.6 545 3.54 3.48 - 1.7 0.96 

92.346.11 success -0.28 -15.3 541 3.15 3.13 - 0.5 0.90 

92.346.12 fall -3.42 -1.04 529 3.28 3.04 - 7.4 0.89 

92.346.13 fall -1.87 -17.7 503 3.33 3.20 -3.9 0.88 

before resuming running and therefore not considered a complete success. 

Table 3.3 shows data compiled for ten somersault attempts performed by the 3D Biped 
in the laboratory. The robot successfully regained balanced running on seven of these 
attempts. 

4.5    Summary 

In this chapter, I discuss a strategy for robot somersaults that combines elements of feed 
forward control, feedback control, and passive dynamic stability. I also presented results 
from somersault experiments done in the laboratory on a 3D biped running robot. The 
somersault is initialized using pre-programmed patterns of action. In flight, a feedback 
strategy changes robot inertia to control the landing attitude of the somersault. The robot 
actively positions its feet to maintain a desired landing configuration during an interval 
surrounding the predicted landing time. The passive tilt stability inherent in a wide double 
stance is used to reduce tilt angle and rate on takeoff. The passive stability of a rigid body 
rotating about its maximum principle axis of inertia accounts for moderate tilt angles on 
touch down given moderate tilt angles and rates on lift-off. 
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Figure 4-5: Hip height, somersault, and tilt angles, and forward speed of the 3D-Biped 
during a somersault. Vertical lines indicate initiation of flip, lift-off and landing. Data file 
B92.181.3 
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Figure 4-6: Somersault angle, absolute somersault rate (solid) and relative hip rate (dashed). 
The third graph shows the estimated time until touch down (solid) and estimated time until 
desired somersault attitude is achieved (dashed). The last graph is the measured leg length 
(solid) and desired leg length(dashed) for one leg. Vertical lines indicate initiation of flip, 
lift-off, tuck servo initiation, and landing. Data file B92.181.3. 
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Figure 4-7: This somersault was over-rotating so the feet were swept forward at the end to 
track a desired foot position. Data shows absolute somersault rate (solid) and relative hip 
rate (dashed) and estimated time until touch down (solid) and estimated time until desired 
somersault attitude is achieved (dashed). Vertical lines indicate initiation of flip, lift-off, 
tuck servo initiation, and landing. Data file B92.181.4. 
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Chapter 5 

Passively Stable Layout Somersaults 

Robert Playter 

5.1    Introduction 

The layout or straight body somersault is considered to be inherently unstable because it 
requires rotation about the middle principal axis of inertia, an unstable equilibrium for a 
rigid body. Despite this instability, athletes perform this maneuver with apparent ease. 
Previously, biomechanics researchers have assumed that the athlete actively stabilizes the 
maneuver by making compensatory movements of the arms and body (0; 0; 0). Could 
it be that passive arm movement, movement that arises from body rotation and spring 
torques at the shoulder joints, stabilize the layout somersault with no active sensing or 
control? A passive stabilization technique is appealing because it potentially relieves the 
human performer of sensing small variations in movement and responding quickly enough 
to prevent instability. Instead, the athlete needs only to initialize the maneuver with a 
suitable shoulder spring constant tuned to the rotation rate and let the maneuver "unfold". 

In this paper we verify the stability of the passive layout somersault in simple models 
with linear stability analysis, non-linear dynamic computer simulation, and laboratory ex- 
periments using a passive, human-like doll. The doll has spring-driven arms but has no 
other control system, sensors, or actuators. The doll routinely exhibits triple somersaults 
about its middle principal axis without twisting. 

Passive dynamic stability is routinely designed into aircraft and spacecraft. However, 
the relevance of passive dynamics to the control of movement in biology and robotics is 
only beginning to be explored. The idea that relatively complex human movement could be 
governed largely by passive dynamics is demonstrated in ballistic walking. First proposed by 
Mochon and McMahon (0), a ballistic walker uses only gravity and the dynamic interaction 
of the swing and stance legs to produce a repetitive walking pattern. McGeer (0) showed 
the viability of ballistic walking by building passive, planar, anthropomorphic linkages that 
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demonstrated stable walking down an incline. 
In the following sections we review relevant background material from the field of biome- 

chanics. Then we introduce the simple model used to study this problem. Next we examine 
the stability properties of the layout somersault. Finally, we present results from somersault 
experiments done in the laboratory on a human-like doll. 

5.2     Background 

Several biomechanics researchers have questioned how people control the layout somer- 
sault. Nigg recognized that the layout somersault may be unstable since it involved rotation 
about the middle principal axis (0). Hinrichs (0) measured the orientation of a performer's 
principal axes during a layout somersault to confirm that the athlete was rotating about the 
middle principal axes. He hypothesized that the athlete made small corrective movements 
of the arms and torso in flight to stabilize the somersault. When Yeadon (0) used body con- 
figuration data from a filmed double layout somersault as input to a dynamic simulation, he 
found that the maneuver appeared to be inherently unstable. He designed a linear feedback 
controller that used the sensed twist rate to manipulate (asymmetric) arm velocity in order 
to stabilize the layout somersault. Using a linear model of the dynamics he showed that an 
athlete would have to react to a growing twist instability within one quarter of a somersault 
in order to maintain stability. In the next section we introduce the dynamic model used to 
study the layout somersault. 

5.3    Dynamic Model 

Figure 5-1 shows a simple human model used to study the dynamic stability of somersaulting 
motion. The model has two shoulder pin joints that allow the arms to be raised and lowered. 
The head, torso, and legs are modeled as a single rigid body. Torques at the shoulder joints 
are provided by torsional springs. Fifteen parameters are required to describe this general 
model, but, by analyzing a linearized model of the dynamics, we reduce the stability analysis 
to the study of five dimensionless parameters that govern the behavior of the system. 
We Linearize the equations of motion for the case of steady somersaulting with the arms 
held symmetrically at a nominal angle of $o from the side. The resulting equations have 
the following form. 

ü2(Mz + Gz + (K + K'/Q?) z) = 0 

where z is the state vector comprised of three Euler angles describing body attitude (som- 
ersault, tilt and twist angles) and two arm angles. The somersault angle describes the body 
rotation about the '2' axis. The tilt angle describes the inclination of the body relative 
to the somersault plane and the twist angle describes rotation about the long body axis. 
Q is the nominal somersault rate. The state derivatives, z and z, have been made non- 
dimensional through scaling by Q and Cl2 respectively. With the equations of motion in this 
form, one can see that the nominal somersault rate only affects the magnitude of K' which 
contains the shoulder spring terms. 



Figure 5-1: Three body model used to study layout somersaults. The model has pin joint 
shoulders with shoulder torques provided by springs. 
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The linearized five degree of freedom model decouples into two distinct subsystems. One 
subsystem is comprised of the somersault rotation and the symmetric motion of both arms. 
The other subsystem is comprised of the tilt and twist Euler angles and the asymmetric 
movement of the two arms. The twist stability of the five d.o.f. model can be studied by 
considering only the three d.o.f. subsystem of tilt, twist, and asymmetric arm movement. 
Further simplification of the equations of motion reveal that five non-dimensional param- 
eters are important in determining the behavior of this system. They are the rigid body 
inertia ratios, k\ and £3, the relative size of the arm inertia, Irei, the non-dimensional shoul- 
der spring constant, Kah, and an arm inertia ratio analogous to k^ that we call k\arm. To 
determine specific values of these parameters we use the estimated inertial data from the 
1982 World Trampoline Champion, Carl Furrer (0). 

The inertia ratios k\ and £3 represent the inertia of the equivalent rigid body, the rigid 
body that would result with the shoulder joints clamped in place. 

kx    =    ^-^,    -1< h < 1 
h 

k3   =    ^fA     -1<*3<1 
-13 

where I\,Ii, and I3 are the principal moments of inertia about the 1,2 and 3 axes of the 
whole body. For Furrer's data, with arms held straight out to the side, k\ = 0.65 and 
A3 = -0.87. 
The relative inertia of an arm is given by Irei = Ish/h where Ish is the inertia of the 
arm about the shoulder. For Furrer ITe\ « 0.06. The larger this number, the easier it is 
to stabilize the layout somersault. The non-dimensional shoulder spring constant is given 
by Ksh = k/(Isk Q2) where k is the (dimensional) torsional shoulder spring constant in 
Nm/rad. Picking Ksh = 1.0 tunes the shoulder oscillatory mode to the rotation rate. The 
arm inertia ratio, k\aTm is very nearly equal to one for arms that are long and thin like 
those on a human. In the following section we use human inertial properties in the given 
model to study the stability of the layout somersault. 

5.4    Stability Analysis 

In this section, we present a linear stability analysis of the layout somersault. The goal is 
to determine the shoulder spring constants and arm angles that produce stable somersaults 
when the remaining body parameters are fixed. As a reference, we present the stability of 
the equivalent rigid body, that is the rigid body that would result if the arms were rigidly 
fixed to the body. Then we proceed to an analysis of the three-body system. A root locus 
plot shows that under some conditions, all poles of the linear system are simultaneously on 
the imaginary axis, implying stability. The results of the root locus are also presented in 
the form of stability diagrams that show which values of shoulder spring and nominal arm 
angle stabilize the layout somersault. These data were gathered using a search over the 
Ksh — $0 parameter space. 

A rigid body rotating about its intermediate principal axis is unstable.   A linearized 
analysis shows that the growth of the unstable mode is approximately governed by the 
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Figure 5-2: Root locus plot for the 3-by-3 subsystem of tilt, twist, and asymmetric arm 
movement. $o = 1.3rad. Light dots indicate root locations for K,h « -2.0. Dots get 
progressively darker as K,h increases to K,h « 4.0. 

following equation 
z = zQea where s = {-kikzf^flt 

Since the product of time and the nominal somersault rate, fit, is simply the nominal 
somersault angle, the somersault angle required for the unstable mode to grow by a factor 
of N is given by 

~     ~ ln(N) 

Using the data for Furrer, if N = 10 then 0 = 3.1 rad or the unstable mode will grow by a 
factor of 10 in less than one half somersault. 

Figure 5-2 is a root locus plot that shows how the location of the linear system poles 
of the three d.o.f. subsystem of tilt, twist, and asymmetric arm move as the shoulder 
spring constant is systematically varied for a fixed nominal symmetric arm angle. For 
some values of shoulder spring all of the roots of this system are located on the imaginary 
axis. These marginally stable conditions suggest that for these values of the parameters the 
physical system may be stable. No asymptotically stable points were found in this search 
as may be expected since energy is conserved in this model. Furthermore, adding shoulder 
damping tends to destabilize the system. This observation corroborates Hughes statement 
that damping tends to destabilize gyrically stabilized systems (0).  Figure 5-3 shows the 
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Figure 5-3: Theoretical stabilizing values of the non-dimensional shoulder spring, K,h, as 
a function of the nominal shoulder angle for human data. 

values of K„h that stabilize the three d.o.f. system as a function of the nominal symmetric 
arm angle, $o- 

Neutral stability (i.e. all poles on the imaginary axis) implies that we can not conclude 
stability for the non-linear system. However, using representative values of Ksh from the 
linear analysis, non-linear computer simulations of the layout somersault starting with tilt 
deviations of 5° remain stable for as many as 105 full somersaults. To prove to ourselves 
that this behavior could exist in a physical system, we built a human-like doll for laboratory 
experiments. These experiments are described in the next section. 

5.5     Experiments 

The goal of somersault experiments with the human-like doll were to determine if passive 
layout stability was physically possible, and to empirically determine the shoulder spring 
constants that best stabilized the motion. The doll was built to be dynamically similar to the 
five d.o.f. model of the human performer studied in the last section. We built a mechanical 
launcher so that we could initialize the somersaults with consistency and with minimum 
direct human influence. The launcher functioned by accelerating the doll in rotation around 
a horizontally fixed bar then releasing the doll at a predetermined angle. 



Figure 5-4: Strobed images of two separate experiments with the mechanical doll. The 
photo on the left show the rigid doll with arms clamped in place. This doll exhibits the 
twist instability. The photo on the right shows the doll with flexible arms performing a 
stable layout somersault. 

The experiments consisted of a sequence of launches to determine which spring best 
stabilized the doll. During experiments the tilt and twist angles at launch were kept as 
close to zero as possible. The laboratory experiments showed that a human-like doll fitted 
with a carefully selected shoulder spring can consistently perform at least three stable layout 
somersaults. The doll had insufficient flight time for more somersaults. 

The doll was sized to have approximately the same non-dimensional inertial parameters 
as a typical human performer. These parameters for the doll are fci = 0.45, fc3 = -0.9, Irel = 
0.10. Figure 5-5 shows the theoretically determined values of Ksh that stabilize the layout 
somersault for the doll. 

Figure 5-6 shows the average number of stable somersaults performed as a function 
of the non-dimensional shoulder spring. The average is computed over twenty sequential 
launches for a single shoulder spring. Five different spring constants were tested. To test the 
stability of the effective rigid body, we clamped the arms in place. The standard deviation 
for each condition is shown with error bars. The average somersault rate was 16.6 rad/sec, 
and Ish = 3.021 • 10~4kg m2. 

In addition to recording the number of stable somersaults exhibited during each launch 
we recorded whether or not the doll still appeared stable at the end of the maneuver. If the 
doll had not exhibited a quarter twist by the end of the maneuver then it was considered 
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Figure 5-5: The points in this plot indicate the values of K,h that theoretically will stabi- 
lize layout somersaults in the doll. The cross-hairs indicate the spring constant that best 
stabilized the doll during experiments. 
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Figure 5-6: Plot of the average number of stable somersaults performed during twenty 
sequential launches of the doll as a function of the shoulder spring constant, K,h- The 
standard deviation is indicated by error bars. The data for the effective rigid body is 
indicated by K,h = oo. The nominal symmetric arm angle was approximately 1.3 radians. 
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Figure 5-7: Plot of the percentage (of twenty) of completely stable dismounts as a function 
of the non-dimensional shoulder spring constant, K,h- The two test conditions on the right 
side of the plot exhibited no completely stable somersaults. 

to be a completely stable dismount.  The percentage of completely stable dismounts as a 
function of K3h is shown in Figure 5-7. 

Of the six conditions tested, (five springs plus rigidly fixed arms) one shoulder spring 
value clearly outperformed the rest. The shoulder spring, Ksh = 0.82, performed 18/20 
dismounts without exhibiting the twist instability. This high percentage of completely 
stable dismounts led to the very small variance of this condition as shown in Figure 5-6. If 
we could have observed more somersaults, the doll may have exhibited a variance more in 
accordance with the remaining data. The variance in number of stable somersaults appears 
to increase with softer shoulder springs. At the other extreme, the doll with fixed arms 
reliably exhibited the twist instability at about one complete somersault from release. 

5.6    Discussion 

In this paper, we discuss the control of the layout somersault. We show that the layout 
somersault can be passively stabilized for at least the two or three somersaults that are 
typical of human performances. This result suggests that passive dynamic behavior can 
play a role in aerial maneuvers that was previously attributed to active control by the 
athlete. It can compensate for errors in initial conditions or imprecise movement in flight 
and can stabilize maneuvers that were considered to be inherently unstable. We show that 
passive dynamic behavior can be tuned by the athlete through selection of nominal body 
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configuration and passive mechanical parameters like joint spring constants. 
The goal of this research is to develop a theory of passive dynamic aerial maneuvers. By 

showing that passive dynamics can play a significant role in the performance of reliable aerial 
maneuvers we argue that they reduce the need for active control from the athlete. This 
may in turn suggest that rather than focus on active control of each maneuver, athletes may 
choose a performance strategy that optimizes the use of passive dynamic behavior. Such 
a strategy might involve finding combinations of nominal aerial trajectories and passive 
mechanical parameters of the body that together produce the most reliable performances. 
Despite showing that passive dynamics could play a role in human aerial maneuvers we 
have not shown that they do. 
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Chapter 6 

Twisting Somersaults 

Robert Playter, David Bailey 

6.1    Introduction 

The twisting somersault is a maneuver in which the performer simultaneously rotates about 
the somersault and twist axes of the body. Multiple twisting, multiple somersaulting ma- 
neuvers are among the most exciting and complex aerial maneuvers performed by gymnasts 
and other athletes. Unlike the pure somersault, the twisting somersault must include non- 
linear rotational coupling between the different body axes. One effect of this non-linearity 
is that the effect of the performer's control actions will change during a maneuver making 
cause and effect relationships more complex than in the pure somersault. Navigation and 
feedback control of twisting maneuvers are challenging tasks. Does the accurate, reliable 
performance of this maneuver necessitate a feedback control strategy? 

In this chapter we briefly discuss the open loop control of twisting somersaults. Open 
loop control means the performer's control actions are simply replayed from memory. We 
would like to know if twisting somersaults could exhibit passive dynamic stability when 
performed with an open loop control strategy. We discuss one test we performed to look 
for evidence of passive dynamic stability in the twisting somersault. 

We present results from the non-linear dynamic simulation of a 1 1/2 twisting front 
somersault. This maneuver requires that the performer execute a sequence of limb motions 
during flight. We found that when a simulated performer used a prescribed set of motions 
for executing this maneuver, the landing attitude of the performer was sensitive to initial 
conditions leading to poor landing attitudes. However, when the performer's control move- 
ments were compliant, the reliability of the landing attitude was significantly improved. 
There appears to be an optimal choice for the performer's compliance that leads to the 
most reliable landings. 

We also discuss the control of twisting somersaults by the 3D Biped robot.  We pro- 
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grammed a simulated 3D Biped robot to perform a front somersault with half twist. We 
found that in order to make the robot maneuver look like a front somersault with twist as 
performed by a human, we had to add weight to the robot to make its moments of inertia 
more like those of a human. We also had to use stronger actuators than available for the 
physical robot. Our experiments to make the real 3D Biped robot perform the maneuver 
in the laboratory were unsuccessful. The physical robot actuators had insufficient actuator 
power to perform the maneuver. 

6.2     The Tilt of Twisting Somersaults 

Fröhlich (Fröhlich 80) described two techniques for performing twisting somersaults. In the 
torque twist the athlete derives rotation about the somersault and twist axes from external 
forces as he or she leaves the ground, diving board or other apparatus. In the torque-free 
twist with angular momentum the athlete initiates twist from an airborne somersault 
with an asymmetric movement of the limbs (Figure 6-1). The net effect of either technique 
is to tilt the principal axes of the body relative to the angular momentum vector. Even a 
small amount of tilt of the principal axes from the layout somersault position will result in 
twisting. (This is what makes layout somersaults challenging.) The greater the tilt angle, 
the greater will be the twist rate. 

Figure 6-2 shows a sample map for the possible rotational trajectories of a 'rigid' human 
body. Each trajectory shown on the sphere corresponds to a different kinetic energy of 
rotation. The sphere rotates with the body so that its axes remain parallel to the principal 
axes of the body. The angular momentum vector is shown protruding from the sphere. 
The sphere (and body) must move so that the (inertially fixed) angular momentum vector 
remains in the 'slot' that is appropriate for the given kinetic energy. 

The stable and unstable axes of rotation are obvious from this map. The stable principal 
axes are surrounded by trajectories that enclose the axes while the unstable middle principal 
axis shows trajectories that converge then diverge from that axis. The body motion that 
results when following one of these diverging trajectories is a twisting somersault maneuver. 
It is easy to see that when rotating about the middle principal axis, a small amount of 
principal axis tilt will put the body on a twisting somersault trajectory. 

6.3    One and One Half Twisting Front Somersault 

Yeadon (Yeadon 84) discusses a "torque-free" twist technique based on the hula movement 
for initiating twist from a piked front somersault. The hula movement involves a swiveling 
of the hips not unlike that required to swing a hula hoop about the hips. A quarter cycle of 
hula movement performed during a pike front somersault will tilt the performer's principal 
axes relative to the angular momentum vector. This effect is increased if the arms are held 
in an abducted position during the movement. After the hula movement the performer 
extends from the pike and the arms are adducted to decrease the inertia about the twist 
axis. The extension from the hula movement should happen between the 1/4 and 3/4 twist 



95 

•    Change inertia 

about an axis 

•    Zero momentum 

reorientation ^ 

•    Reorient principal axes 

From Fröhlich 1980. 

Figure 6-1: A limited ability to influence the outcome of a ballistic maneuver arises from the 
relative movement of the limbs and torso during flight. One way to influence the outcome is 
to change the moment of inertia about an axis in order to change the rotation rate about that 
axis. The standard being the ice-skater's spin. A second way to influence the outcome is to 
use momentum-free rotations (Smith 67; Fröhlich 79). This technique allows a structure to 
be reoriented while maintaining zero angular momentum by performing a sequence of limb 
movements. A third way is to reconfigure the system so that the principle axes of inertia 
are reoriented relative to the inertially fixed angular momentum vector. This allows sharing 
of momentum between principal axes. This procedure is frequently used to introduce or 
remove twist in somersaults (Batterman 68; Fröhlich 79; Yeadon 84). The existence of these 
mechanisms makes it possible to actively adjust the outcome of an aerial maneuver once it 
has been initiated. 



96 TWISTING SOMERSACI.T: 

Figure 6-2: A map of rigid body rotation for a human in the layout position. The axes of the 
sphere and the principal axes of the body remain parallel as the body rotates. The inertially 
fixed angular momentum vector (black) paints trajectories onto the surface of the sphere 
as the sphere rotates. Each trajectory on the sphere corresponds to a different rotational 
energy. The trajectories indicate the tilt and twist angles of the body as it rotates. This 
map does not include somersault angle and does not show the time dependence of the tilt 
and twist Euler angles. 



positions to maximize the net tilt of the body. However, between these limits, Yeadon 
claims the timing of the extension is not critical to the final tilt angle. 

6.3.1 The Nominal Case 

We created a simulation of a human performing a one and one half twisting front somersault. 
The simulated athlete used the technique described in the previous paragraph to perform 
the maneuver in a weightless environment (Figure 6-3). The human model has thirteen 
joint degrees of freedom, including three in each shoulder, one at each elbow, two in each 
hip, and one in the torso allowing the upper body to twist relative to the lower body. The 
maneuver was initialized from an upright piked somersault position with the arms held 
straight out from the side of the body. The maneuver finished in a layout body position 
with the arms held straight out from the sides. 

The control movements used to produce this maneuver were hand programmed so that 
the model looked natural during the movement and finished with the desired attitude and 
body configuration. The control movements consisted of a sequence of desired positions 
of the joints written as functions of time. The purpose of designing this maneuver was to 
empirically find a sequence of body configurations and joint torques that would produce the 
desired maneuver under nominal conditions. The nominal somersault rate at the beginning 
of the maneuver was 12.6 rad/sec and the maximum twist rate during the maneuver is 
40.2 rad/sec. 

6.3.2 Off-Nominal Performance, Prescribed Motion 

If the simulated performer uses the prescribed set of control movements from a different 
set of initial conditions than the nominal case then the trajectory of the maneuver will 
change. How sensitive the maneuver is to variation in the initial conditions is important 
to the reliability of the maneuver. We tested the sensitivity of this maneuver to initial 
conditions by running a series of simulations, each starting from a different set of initial tilt 
(0O) and twist (*0) angles of the body. We evaluated the reliability of the maneuvers by 
comparing the landing attitude of the off-nominal simulations to that of the nominal case. 
(The landing attitude was considered to be the attitude at a fixed time after the start of 
the maneuver.) The error, e in landing attitude was computed as follows: 

njoints 

e2 = l/4((*d - $)2 + (0* - ©)2 + (*d - *)2 + 1/13   £  (qdi - qi)2) 

where $,0, and * are the body attitude at landing qi refers to the ith joint position and 
the subscript d refers to the desired value. This equation for the error emphasizes the body 
attitude over body configuration. An error of 1.0 is large; it could mean the twist angle or 
somersault angle was off by 4.0 radians or about 270°. 

The results of a series of simulations that varied the initial tilt and twist attitude of 
the body over a range, -0.1 rod < ©o < 0.1 rad, -0.1 rad < *o < 0.1 rod are shown in 
Figure 6-4. 

The nominal maneuver, 0O = 0, *0 = 0, corresponds to the center grid point of this 
figure. The height of the surface there is zero. Away from the nominal the landing attitude 
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Figure 6-3: Images arranged in right-to-left, top-to-bottom order from a dynamic 
simulation of a 1 1/2 twisting front somersault. The maneuver was initialized from somer- 
sault rotation in the piked position. The control movements for this maneuver are a hand 
programmed Sequence of joint angles written as functions of time. 
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Figure 6-4: This figure shows the accuracy of a 1 1/2 twisting somersault in the presence of 
off-nominal initial conditions. The simulated performer used a prescribed set of joint angles 
to perform the maneuver. The two grid axes correspond to initial tilt and twist angles of the 
body, -0.1 rod < 0O < 0.1 rod, -0.1 rad < *o < 0.1 rod. The height of the grid indicates 
the accuracy of the landing attitude of the simulation starting from the corresponding set 
of initial conditions. 
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error increases except for a narrow valley of initial tilt and twist attitudes along which 
the landing error remains small. It appears that a prescribed motion strategy would not 
produce reliable 1 1/2 twisting somersaults. Is there a simple open loop strategy that can 
improve this performance? 

6.3.3    Off-Nominal Performance, Compliant Motion 

It seems unlikely that people could accurately reproduce prescribed motions in a dynamic 
movement like the 1 1/2 twisting somersault. People use springy muscles and tendons to 
position their limbs. It seems likely that the change in environmental forces that would 
accompany a change in maneuver trajectory would mean that the limb movements change 
even if the athlete tried to execute the exact same motions. This idea is the basis for the 
following set of simulation experiments. 

We ran a series of simulations of the 1 1/2 twisting front somersault that used the joint 
torques from the nominal maneuver as feed forward commands. We also used the prescribed 
joint motion from the nominal maneuver as the commanded positions for a set of compliant, 
position plus derivative (pd) servos at the joints. In this open loop strategy, the net joint 
torques would be a combination of the feed forward torques plus pd servo torques. Since 
the pd servos use a prescribed set of positions as desired values, they act like passive springs 
and dampers at the joints. If the maneuver started from the nominal initial conditions then 
the joints would follow the prescribed trajectories. Then the torques from the pd servos 
would remain zero and the nominal maneuver would be reproduced. 

Our goal in this part of the experiment was to find a set of pd servo gains (spring 
constants and damping coefficients) that produced the most reliable performances. Rather 
than search over the gain parameters of pd servos at thirteen joints, we chose to search over 
one parameter. Therefore, we compute the gains of all joint servos according to a single 
parameter, the body clamped natural frequency, u„. The intent behind this choice is that 
all body joints have a similar compliance or natural frequency of operation. We will then 
look for a body natural frequency that produces reliable 1 1/2 twisting somersaults. 

To compute the servo gains at a given joint as a function of un, we assume that the 
body inboard (towards the torso) from the joint is inertially fixed and all out-board joints 
are immobilized. This way the model simplifies to a single d.o.f. joint between the limb in 
question and ground. The equations reduce to a simple second order system of equations 
as follows 

I x + c(x — id) + k(x — Xd) = 0 

where / is the apparent inertia of the limb at the joint, c is the damping coefficient, and 
k is the spring constant of the joint. This simple system can be rewritten in the canonical 
form 

X + 2(,Un(i - Xd) + Lol(x - Xd) = 0 

therefore c/I = 2(un and k/I = u%- We choose ( = 0.7 to achieve a well damped sys- 
tem response (Ogata). Then choosing un allows us to compute the stiffness and damping 
constants in a consistent manner. 

We systematically varied the value of u>n between 150 rad/s and 20 rad/s. At each of 
these values of the body natural frequency we performed a series of simulations starting 
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Figure 6-5: This figure shows the accuracy of a 1 1/2 twisting somersault in the presence 
of off-nominal conditions. The simulated performer used feed forward torques plus passive 
pd servos at the joints to perform the maneuver. Pd servo gains were chosen according to 
w„ = ZQrad/s. The pd servos used the prescribed joint angles from the nominal maneuver 
as desired values. The two grid axes correspond to initial tilt and twist angles of the body, 
-0.1 rad < 0o < 0.1 rad, -0.1 rad < *o < O.lrad. The height of the grid indicates the 
accuracy of the landing attitude of the simulation starting from the corresponding set of 
initial conditions. 

from initial conditions just as in the case of prescribed motion at the joints. We plotted the 
results in the form of the 3D plot shown in Figure 6-4 for each frequency and subjectively 
evaluated them. There was a clear choice for the best natural frequency. Figure 6-5 shows 
the simulation results for the case of un = 30 rad/s. This plot shows that the reliability 
of the 1 1/2 twisting somersault performed with the open loop strategy shows marked 
improvement over the prescribed motion case. Now, nearly half the set of initial conditions 
results in small final attitude errors. Furthermore, the landing attitude errors were worse 
for either smaller or larger values of un. These basic results held true for variations in the 
angular momentum, h, of the maneuver as well (0.9 h < h < 1.1 h). 

Figures 6-6 and 6-7 show data from two simulations using the nominal value of angular 
momentum and with 0O = -0.1, and tf0 = -0.1. The data of figure 6-6 shows that 
when prescribed joint motion is used for an off-nominal maneuver, the body attitude error 
becomes large at the end of the maneuver. In contrast, the data of figure 6-7 shows that 
while the joint angles incur some error during the maneuver the body attitude is close to 

the desired value at the end of the maneuver. 
Since the timing of this maneuver will scale with somersault rate it is instructive to 

show how the body clamped natural frequency compares to the nominal somersault rate, 
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Figure 6-6: Simulation data from a 1 1/2 twisting somersault that used prescribed control 
motions for initial conditions 0o = -0.1, and $0 = -0.1 are shown with solid lines. The 
body attitude and joint angles of the nominal maneuver are shown with dashed lines. While 
the prescribed joint positions are accurate for the off-nominal case (bottom three graphs), 
the body landing attitude error is large. (The traces stop at the landing time.) 
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Figure 6-7: Simulation data from a 1 1/2 twisting somersault with w„ = 30,9o = -0.1, 
and *o = -0.1 are shown with solid lines. The desired values of the body attitude and 
joint angles are shown with dashed lines. Joint angles incur significant tracking errors but 
the landing attitude closely follows that of the nominal maneuver. (The traces stop at the 
landing time.) 
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LOn    _       30 
$0 12.6 2.38. It appeared in simulations that the compliance that allowed the arms 
to open prematurely, thus increasing the body inertia about the twist axis, was important 
in off-nominal simulations. For this reason, one might consider scaling the body clamped 
natural frequency by the maximum twist rate of the nominal maneuver, -^- = ^^ = 0.746. 

The body clamped natural frequency was chosen to be a simple parameter that described 
the natural frequency of the whole body. However, since the computation of this parameter 
assumed that parts of the body were inertially fixed, the actual eigenfrequencies of the 
system will differ from this body clamped frequency. The actual eigenfrequencies of the 
body for the initial configuration (pike) and the twisting configuration (wrap) of the Rudi, 
are shown in Table 6.3.3. 

6.4    Twisting Somersault of the 3D Biped 

We programmed a simulated 3D Biped robot to use the "torque twist" method to initiate 
a twisting somersault. To use this technique the simulated 3D Biped robot accelerated its 
torso in somersault and twist during the stance phase just prior to take-off. These two 
components of momentum should result in an angular momentum vector that is tilted with 
respect to the principal axes of the robot. 

Figure 6-8 shows the map of rotational motion of the 3D Biped. When compared to 
the map for the layout somersault in the human (Figure 6-2) we see that the robot requires 
significantly more tilt of the principal axes (relative to the angular momentum vector) to 
achieve a twisting somersault. This is partly due to the fact that the robot somersault axis 
is the major principal axis but also due to the significantly different shape of the regions 
on the two maps. The qualitative difference in shape of the maps is due to the difference 
in rigid body inertia ratios of the robot and of the human. To put it simply the human is 
long and skinny and the robot is short and fat. This difference makes the twist harder to 
achieve (more tilt required), and it means the maneuver will not look much like that of a 
human. 

In its current configuration, the twisting somersault mode of the 3D Biped would force 
the robot today on its side some time during flight. This body orientation is not what 
we identify with a twisting somersault in a human. The human's long axis stays closer 
to the vertical during a twisting somersault. In addition, this inertial orientation of the 
robot is undesirable from a practical standpoint because this orientation is coincident with 
gimbal lock in the gyros used to measure body attitude. During laboratory experiments, the 
physical robot achieved this horizontal position which resulted in damage to the gyroscopes. 
To correct this situation we changed the robot inertia, and thus its rotational modes, to 
look more like that of a human. 

To change the robot inertia we added weight to increase the major and intermediate 
principal inertias without increasing the minor principal inertia. We did this by adding 
weight along the '3' axis of the robot. Figure 6-9 shows the new map of rotation for the 3D 
Biped with a 4.0 kg weight added 0.8 m above the hips of the robot. This map looks much 
more like that of a human now and the twisting somersault should bear this resemblance 
as well. Figure 6-10 shows a sequence of computer graphic images of a simulated 3D Biped 
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Pike Wrap 
un rad/sec c u>n rad/sec c 

921.0 0 210.0 0 
709.2 0 188.3 0 
359.4 0 159.2 0 
161.2 0 107.7 0 
160.6 0 93.1 0 
88.0 0 39.7 0.92 
69.0 0 39.7 0.92 
36.7 0.85 38.9 0.90 
36.7 0.85 38.9 0.90 
31.3 0.73 30.1 0.70 
31.3 0.73 30.1 0.70 
31.0 0 30.0 0.70 
30.1 0.70 30.0 0.70 
30.1 0.70 27.8 0 
30.0 0.70 26.8 0.62 
30.0 0.70 26.8 0.62 
28.3 0 26.7 0 
24.7 0 26.5 0.62 
24.7 0 26.5 0.62 
22.9 0.53 24.9 0.58 
22.9 0.53 24.9 0.58 
22.7 0 24.8 0.58 
22.0 0 24.8 0.58 
21.9 0 24.7 0 
16.0 0.37 24.1 0 
16.0 0.37 23.8 o 
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Figure 6-8: The somersault axis of the 3D Biped is coincident with the major principal axis 
of inertia. With the legs in the fully extended position, as shown here, the minor principal 
axis is the 'head-to-toe' axis. 

with added weight (and strong actuators) performing a front somersault with one half twist. 
Notice that the simulated robot lands the twisting somersault facing the opposite direction 
it started from. Data from the simulation is included in Figure 6-11. The simulated running 
robot regained balance on landing to continue stable dynamic running. 

We tried this maneuver with the physical 3D Biped robot in the laboratory. The added 
weight and inertia were too large for the robot to achieve sufficient flight time or angular 
momentum to produce the maneuver. 

6.5    Summary 

In this chapter we presented simulation results of a 1 1/2 twisting front somersault performed 
by a model gymnast with thirteen joint degrees of freedom. The maneuver is initiated from 
a piked front somersault. The twisting maneuver results from a sequence of movements 
of the limbs and torso made during flight. We found that prescribed limb movements 
could produce reliable 11/2 twisting somersaults only for a small set of off-nominal initial 
conditions. In contrast, a control strategy that used feed forward joint torques in a tuned 
passive dynamic model of the performer could produce reliable maneuvers for a much larger 
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Figure 6-9: Spherical coordinate map of the tilt and twist Euler angle trajectories for the 
3D Biped with 4 kg of weight added at a distance of 0.8 m above the hip. 

Figure 6-10: Sequence of images of the simulated 3D Biped somersault with twist. 
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Figure 6-11: Hopping height, somersault, tilt and twist Euler angles of the 3D Biped during 
a simulated front somersault with 1/2 twist. The simulated robot passes through an Euler 
angle singularity at approximately 1.2 sec. causing discontinuties in the data. This singular- 
ity did not affect the dynamic simulation however as a different set of attitude parameters 
were used. 
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set of off-nominal initial conditions. 
We do not yet know the significance of this result. There are many degrees of freedom 

of this model. Too many to easily distinguish between important and unimportant effects. 
Simplification of this model may reveal salient features that can be analytically confirmed. 
These simulation results from the rudi are potentially interesting because it suggests that 
a passive dynamic approach to twisting somersaults may be capable of producing reliable 
maneuvers as was the case with the layout somersault. It is interesting that many of 
the eigenfrequencies of the most reliable, tuned compliant system for the rudi were in the 
neighborhood of the maximum twist rate of the maneuver. This appears to be analogous 
to the ideal choice of arm-body oscillation in the passive layout somersault. In this case 
the best shoulder spring resulted in an eigenfrequency of the arm-body oscillation that was 
equal to the somersault rate. 

In this chapter, we also described simulation experiments with 3D Biped twisting som- 
ersaults. The distribution of mass in the 3D Biped robot makes a twisting somersault 
particularly difficult. In order to enter a rotational mode that could produce the twist an- 
gles desired, the robot had to assume body attitudes unlike those associated with a human 
somersault with twist. This extreme body attitude could lead to mechanical difficulties 
with inertia! instruments on the physical robot. We added weight to the robot so its nat- 
ural rotational modes were more like those of a human. A simulated 3D Biped robot was 
able to perform a 1/2 twisting front somersault. The simulated robot landed the maneuver 
and continued running stably afterwards. The added weight made twisting somersaults of 
the physical 3D Biped robot impossible due at least in part to insufficient actuator power. 
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Chapter 7 

Automatically Tuning Control for Legged 
Creatures 

Robert Ringrose 

7.1    Introduction 

Within the domain of actively balanced legged locomotion, it is necessary to tune control 
systems to reflect physical alterations of the robot. I have designed and implemented a 
tuning algorithm which will tune an existing control system to control a different robot, or 
to exhibit different behavior. This algorithm has successfully tuned the control system of a 
planar quadruped simulation to accommodate a reduction in leg length by a factor of two, 
an increase in body mass by a factor of three, and changes in the commanded speed while 
trotting. J 

Any control system has some set of control parameters, numbers which determine how 
it performs. For example, a parameter might control how rapidly it tries to accelerate to a 
desired speed or how much energy it injects at each step. For a complicated system, the ap- 
propriate values for these control parameters are not obvious. There are several advantages 
to having a computer search for a set of parameters which minimizes an evaluation function 
rather than having a human tune the control system directly. Automatically tuning the 
control system does not require that a human with experience tuning invest a large amount 
of time. One can also specify the desired behavior without considering the interactions 
between any specific input parameters to the control system. Additionally, it is easier for 
a computer to optimize for something which is not obvious to a human, such as minimal 
energy consumption. Properly specifying the desired behavior is not a trivial task, but it 
seems easier than manually tuning the control system. 

'This material is based upon work supported under a National Science Foundation Graduate Research 
Fellowship. Any opinions, findings, conclusions, or recommendations expressed in this publication are those 
of the author and do not necessarily reflect the views of the National Science Foundation. 

Ill 
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Figure 7-1: Illustration of the simulated quadruped and the associated model. The actuators 
at the hips are implemented as torque sources. The leg actuator is implemented as a spring 
with controllable rest length and different constants in compression and extension. The 
simulation is a planar rigid-body model. 

Other work on self-tuning controllers (Helferty, Collins, k Kam 1988), which frequently 
used searching techniques such as spacetime constraints (Witkin & Kass 1988) or genetic 
algorithms (Pearse, Arkin, & Ram 1992), has addressed similar problems. Tuning controllers 
for dynamically balanced legged systems is particularly challenging because there is typically 
only a small "sweet spot" near the global minimum where one can effectively evaluate the 
robot's behavior. A parameter set outside this sweet spot will generally make the robot fall 
over or not take any steps, while a parameter set inside the sweet spot will make the robot 
run well enough that its performance can be evaluated objectively. The vast majority of 
the possible parameter sets for dynamically balanced legged locomotion lie outside of the 
sweet spot. As a consequence, general search methods like genetic algorithms and simulated 
annealing will take a long time to find any working solution, and searches which follow a 
local slope will only find a useful minimum if they start in the sweet spot. A frequently used 
method for getting around this challenging search space is to simplify the problem so as to 
drastically increase the sweet spot's size (for example, one can add constraints to the model 
that prevent the robot from falling over). Instead of modifying the search space to suit my 
algorithm, however, I have attempted to adjust my algorithm to fit the search space. 

In the event that there is a parameter set which is in the sweet spot, a simple gradient 
descent search can find a local minimum. Additionally, most of the time a small change 
in the robot's configuration will result in only a small change in the sweet spot. The 
tuning algorithm presented here uses this characteristic to break the search for a new set of 
parameters into a series of smaller searches for which minima are easier to find. For example, 
assume the control system for a quadruped running simulation has been tuned to run with 
legs of a particular length. To find a set of control parameters for a quadruped running 
with legs half as long, the tuning algorithm gradually reduces the leg length and optimizes 
at several leg lengths between full and half length. As the leg length changes, the location 
of the sweet spot will change. For small changes the sweet spot's motion will usually be 
slight enough that the control parameters for the unchanged leg length will still be within 
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the new sweet spot. The tuning process may fail if gradient descent cannot find a local 
minimum (the sweet spot might not be continuous), if the sweet spot changes dramatically 
with a small alteration in the robot, or if there is no way for the given control system to 
control the robot. 

To find appropriate values for the control parameters, the tuning algorithm described 
in this paper starts with an existing control system, simulation, and parameter set. It finds 
out how far it can modify the simulation and still get acceptable behavior, makes that 
modification, and then uses a gradient descent search to improve the performance of the 
modified simulation. This process of modifying the simulation and re-tuning the control 
system is repeated until you have the desired final simulation. 

7.1.1    The Simulation 

I have used a planar quadruped simulation to test the tuning algorithm. It retains enough 
complexity to illustrate most of the problems that come up, but is simple to visualize and 
easy to explain. The simulation is based on a physical robot described by Raibert (Raibert, 
Chepponis, k Brown 1986)(Raibert 1990). 

The simulation is a rigid body simulation, the dynamics of which are generated using 
a commercial dynamic modeling program (Rosenthal k Sherman 1986)(Ringrose 1992a). 
Simulation creation is automated so that it is possible to change and re-create any simulation 
as part of the tuning process. The planar quadruped which I used is illustrated in figure 7-1. 

The simulated robot is controlled by a planar variation of the finite state controller for 
the Raibert trotting quadruped (Raibert et al. 1992). The control system uses measure- 
ments which could be sensed or calculated on a physical robot, such as position, velocity, 
actuator lengths, and ground contact. The control system's behavior can be modified 
through 20 parameters, including maximum acceleration, desired speed, spring constants, 
and desired leg length during different running phases. Some previous investigations into 
robotic running are described in references (Hodgins k Raibert 1989)(Hodgins k Raibert 
1991)(Playter k Raibert 1992)(Raibert et al. 1992). Further details of the controller and 
model are available in (Ringrose 1992b). 

7.2     Searching for Solutions 

In order to search for an appropriate set of control parameters, you need a way to com- 
pare the behavior generated by different sets of control parameters. I use the results from 
an evaluation function which simulates the creature and returns an objective measure of 
the creature's performance. Most evaluation functions for dynamically stable running mo- 
tions result in a search space whose structure makes global searching algorithms ineffective. 
However, once you have a reasonably good solution, a gradient descent search (Press et al. 
1988) modified to take into account local minima (Ringrose 1992b) will frequently be able 
to find a better solution. 

Most evaluation functions for legged locomotion have a nearly pathological search space 
because if the parameters are out of a small sweet spot around the good solutions the 
simulated creature fails catastrophically, usually by falling over or not taking any steps. 
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Figure 7-2: Graph of evaluation results over changes in leg spring and damping constants 
for the planar quadruped, using the evaluation function described in the text. The noisy, 
high-valued regions are outside the sweet spot. The right graph is the same as the left, with 
a lower maximum value imposed to emphasize the structure of the sweet spot. 

When such a failure occurs, a meaningful evaluation of performance is difficult since the 
causes of the simulation's failure to trot are difficult to determine. The creature could fall 
over if it stubs its toe, the leg springs are not strong enough, the swing legs do not come 

forward fast enough to catch the robot, or some other reason. It is not difficult to make 
an evaluation function which recognizes when it is out of the sweet spot, but it is difficult 
to ensure that when outside the sweet spot the gradient of the evaluation function leads 
towards the sweet spot. 

Because of the inherent difficulty evaluating a catastrophic failure, most evaluation func- 
tions only have a useful section near the global minimum and the rest is noise. Evaluation 
functions usually have more dimensions than can be readily visualized, but cross sections 
can give an idea of the search space's general structure. A two dimensional cross-section of 
the evaluation function is somewhat like a smooth canyon (the sweet spot) in noise, with the 
noise being uniformly higher-valued than the sweet spot. There are many parameter sets 
that do not generate information except to indicate that the creature failed (in the noisy 
section) and there is a smaller number of parameter sets where the creature may actually 
run well. Figure 7-2 illustrates the general shape of evaluation functions, using data from 
the simulated quadruped. 

7.2.1     Evaluating Performance 

In order to evaluate the performance of a set of control parameters, I created an evaluation 
function which reflects the fact that a control algorithm for a trotting quadruped needs 
to do more than propel the quadruped forward. Raibert's experimentation in quadruped 
control suggests that it should (Raibert 1990): 

• control the forward velocity. 

• regulate the body attitude. 

• put reasonable constraints on the forces and torques applied. 
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Figure 7-3: Leg spring constant in compression as weight on the quadruped increases. Note 
how by staying in the minimum as weight is added to the quadruped's trunk it is possible 
to find a spring constant for 50 kg which is within the sweet spot. Parameters other than 
the leg spring constant in compression are optimized for the appropriate weight. 

• limit the vertical motion of the body. 

• keep the running cycle stable. 

The evaluation function I used is the integration of the departures from these goals 
over the course of seven simulated seconds (Ringrose 1992b). Seven seconds, the length of 
time over which the behavioral error is integrated, is several times the length of the step 
cycle, allowing transients to die out. This evaluation function does not guarantee that the 
running cycle is stable beyond the seven seconds of running actually simulated. In practice, 
however, if the simulation successfully trots for that length of time it is stable enough that 

it is unlikely to fail later. 

7.3    Getting a Close Solution 

A goal of this work is to be able to automatically tune the control system when there are 
large changes in the physical characteristics of the creature. When the simulation changes 
by a small amount, a good parameter set may no longer be locally optimal, but it may still 
be within the sweet spot. Figure 7-3 shows a cross section of a sample evaluation function 
and how it changes as the simulation is altered. If the simulation's change is small enough 
that the new location of the sweet spot still overlaps the old set of control parameters, those 
original control parameters can be used with a local search such as gradient descent to find 
a new set of acceptable control parameters. Generally, if there is a large physical change, 
the control parameters which were originally acceptable give poor results because the sweet 
spot moves too far. However, by splitting the large change into a series of smaller changes 
one can follow the motion of the sweet spot as the simulation changes. 

In order to have the tuning process work efficiently, it is desirable to take large steps 
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when possible. I use a divide-and-conquer algorithm which splits large changes in half if 
necessary and recursively solves each half. Set up the simulation with a fraction / which 
goes from 0 to 1, where 0 is the original configuration and 1 is the final configuration. Let 
Fa(P) represent running the simulation with the fraction / = a and the parameter set 
P, applying the evaluation function to the run, and returning the result. Let a and b be 
numbers between 0 and 1. Let Pa be a parameter set such that Fa(Pa) is "acceptable" (less 
than a user-defined constant). The algorithm used to find some p,, a parameter set such 
that Fb(Pb) is acceptable, is: 

t If Fb(Pa) is "good enough" (less than a constant supplied by the user), Pb = Pa. 

• Otherwise, if Fb(Pa) is "acceptable", Pb is the set of parameters arrived at by a 
gradient descent search with Pa as a starting point and using the model with fraction 
b until the result F&(Pj) is "optimized" (less than another user-defined constant). 

• Let c = (a + b)/2. 

• Recursively use this algorithm to find Pc, a parameter set such that FC(PC) is accept- 
able, from Pa, a, and c. 

• Recursively use this algorithm to find Pb from Pc, c, and b. 

Setting the constants "optimized", "good enough" and "acceptable" requires some care. 
If the level at which the simulation is considered "optimized" is too low, the gradient descent 
search will take a long time finding a good parameter set (recall that low evaluation results 
correspond to desired behavior). On the other hand, if "optimized" is too high, the gradient 
descent search could return a parameter set which is close to the edge of the sweet spot, 
reducing efficiency. The constant "good enough" corresponds to the point at which the 
control system performs well and does not need further optimization. This means that 
the conditions for beginning optimization are less rigorous than the conditions for ending 
optimization, so that each time the gradient descent search is used it is required to perform 
a non-trivial amount of work. Finally, "acceptable" corresponds to the edge of the sweet 
spot. If the result of the evaluation is too high, it is considered to be in the area where the 
evaluation function is essentially useless. 

Note that the fractions at which the gradient descent search is used increase monotoni- 
cally from 0, and the only time the parameter set P is modified is when the gradient descent 
search is used. 

There are restrictions to this procedure. It must be possible to gradually change the 
parameter set and configuration from the initial parameter set and configuration to the 
final one, without leaving the sweet spot. Also, the control system must be able to control 
the new configuration. For example, the person designing the control system might neglect 
one of the moments of inertia, and in a new configuration that moment could be extremely 
important for stability. Since this tuning method will not alter the control system, it will 
not be able to address this type of problem. Additionally, the behavior for the initial 
configuration must be similar to the behavior required in the final configuration. If there is 
a drastic change in strategy involved, such as a change in gait, it may not be able to find 
suitable parameters. Finally, if the global minimum is on the edge of the sweet spot, this 
type of tuning will be inefficient, although still functional. 
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Figure 7-4: Height above ground and forward velocity over time, included to illustrate that 
the trotting achieved is stable before and after tuning. Solid lines indicate original leg length 
and original parameter set and dashed lines indicate half leg length and the corresponding 
tuned parameter set. Note that the initial conditions remain the same, so the quadruped 
with shorter legs actually falls to the ground, stops, and begins trotting. 

Parameter Initial Final Units 

Maximum acceleration 0.31284 0.36085 m 

Leg spring constant, compression 7803.57 8731.33 N/m 

Leg damping coefficient, compression 471.971 630.748 Ns/m 

Leg spring constant, extension 21183.7 19637.5 N/m 

Leg damping coefficient, extension 462.931 1071.51 Ns/m 

Stance leg length 0.62217 0.35498 m 

Stance leg length increase 0.08635 0.07645 m 

Swing leg length 0.45252 0.28027 m 

Increase in swing hip torque with speed -0.0042 -0.0058 N/s 

Acceleration rate 0.65024 0.05992 s 

Hip servo 282.093 182.354 Nm 

Hip damping 21.3930 17.0266 Nms 

Desired forward speed 1.50000 0.34164 m/s 

Table 7-1: Parameters modified while decreasing the quadruped leg length. 

7.4    Results 

In order to evaluate the algorithm described in the previous chapters, I applied it to 
adjusting the control of the simulated quadruped running machine shown in figure 7-1. I 
used a planar quadruped simulation because it allowed the solution of interesting problems 
with a reasonable amount of processing time. I tested the algorithm for variations in leg 
length, body weight, and desired speed; it performed well on all of these. Due to space 

considerations, only the data on variations in leg length is included here. 
The tuning algorithm was used to reduce the leg length to half its initial value, while 

maintaining the trotting gait. Interestingly, the problem of getting the quadruped to trot 
with half-length legs was more difficult than expected because of the very short travel 

allowed for the leg actuators. 
The initial configuration was the quadruped simulation and control system mentioned 
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Figure 7-5:   Leg lengths where the tuner tried to optimize (dotted line) and leg lengths 
where it succeeded (solid line). 

earlier. The final configuration was the same quadruped simulation and control system, with 
legs half as long and leg moments of inertia and masses scaled as cylinders. The tuning 
experiment took three and a half days on an IBM RS/6000 model 550 to find the result 
listed in table 7-1. Figure 7-4 illustrates the stable running elicited by the original and 
final parameter sets when used with their respective simulations. Figure 7-5 shows the leg 
lengths at which the optimization occurred. Note that that the original control parameters 
for full length legs will not work on the final quadruped. 

7.5     Conclusions 

The tuning algorithm presented here has successfully solved several optimization problems 
relating to dynamically stable legged locomotion. All of these problems involve a planar 
trotting quadruped simulation and vary the amount of weight on the body, the leg length, or 
how closely it tracks a desired speed. I have also used this tuning algorithm to increase the 
amount of weight on the quadruped's feet and to increase the running speed of a kangaroo- 
like robot. 

Many searching methods fail when dealing with dynamically balanced legged locomotion 
because easily created evaluation functions tend to result in a search space which is only 
tractable near a solution. The tuning algorithm presented here succeeds because it makes 
the simplifying assumption that the tractable area moves slowly as the simulation is altered. 
This simplification allows the use of a fairly simple search within the tractable area. 

Because of the assumptions behind it, there are limitations to the usefulness of this tun- 
ing algorithm. It must be possible to gradually change the parameter set and configuration 
from the initial parameter set and configuration to the final one, without leaving the sweet 
spot. If there is a drastic change in strategy involved, such as a change in gait, it may 
not be possible to gradually change the control parameters. Also, the control system must 
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be capable of controlling the new configuration, as the tuning algorithm will not alter the 
structure of the control system. Finally, if the global minimum is on the edge of the sweet 
spot, this tuning algorithm will be inefficient. Some of these limitations can be overcome 
by carefully constructing the evaluation function. 

Even with its limitations, this tuning method will prove useful for modifying simulations 
and eliciting desired behaviors. I believe that tuning methods such as the one presented 
here will turn the art of tuning a simulation into the art of constructing an evaluation 
function—still an art, but one which is a little easier. 
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