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• Auto-compensation by isolated native point defects is not responsible 

for the p-type doping limitations in ZnSe-based materials. 

• Excess generation of Frenkel defects at stacking faults is responsible for 

the operational degradation of ZnSe-based LEDs and lasers. 
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1.   NATIVE DEFECTS IN HgCdTe 

1.1 POINT DEFECTS 

We have developed an ab initio method to predict absolute densities of native 

point defects in semiconductors. At the heart of the calculation is a first-principles 

method used to predict electronic contribution to the native point defect free ener- 

gies. This first-principles method is based on the local density approximation (LDA) 

to the many-body Schrödinger equation. We have also included the gradient correc- 

tions (GC) to the LDA, which we have shown are essential to obtaining quantitative 

agreement with the experimental results (see Section 4 below). 

We use a more classical approach based on a valence force field model (VFF) to 

describe the vibrational contributions to the defect free energies. The VFF model 

has two independent elastic constants corresponding to bond length and bond angle 

distortions. We have demonstrated that in zincblende solids the three unique elastic 

constants permitted by symmetry (e.g. Cn, C12, and C44) are functionally related; 

thus, to a good approximation, only two independent constants exist. The magni- 

tude of the effective constants that appear in the VFF can be expressed as linear 

combinations of Cn, C12, and C44, predicted from our first-principles theory. The 

agreement between the VFF parameters determined from fits to experiments and 

those calculated is excellent, differing by ~10% or less. Our procedure therefore has 

a firm theoretical base. 

We have used a quasichemical analysis to deduce the defect concentrations, in- 

cluding full Fermi-Dirac statistics for the electron-hole populations. Eight classes of 

defects are included (simultaneously) in the analysis of Hgo.7sCdo.22Te: 

• ^kg) the mercury vacancy 

• Vje, the tellurium vacancy 

• HgTe, the mercury antisite 

• TeHg, the tellurium antisite 

• Hg7   , the mercury interstitial at a tetrahedral interstitial site, with 

mercury as the nearest neighbors 

• Hg7   , the mercury interstitial at a tetrahedral interstitial site, with 

tellurium as the nearest neighbors 
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• Te/Hg, the tellurium interstitial at a tetrahedral interstitial site, with 

mercury as the nearest neighbors 

• Te/Te, the tellurium interstitial at a tetrahedral interstitial site, with 

tellurium as the nearest neighbors. 

Although we have not included the cadmium antisite and cadmium interstitial (Cdxe 

and Cd/ respectively) in the analysis, they are expected to be minority species and 

not affect device characteristics.  The cadmium and mercury vacancies are indistin- 

guishable and are both included in the analysis. 

Our findings are summarized as follows: 

• Mercury vacancies are the dominant defects at all temperatures and 

pressures, in agreement with experiment. 

• Mercury vacancies are double acceptors, in agreement with experiment. 

• Predicted carrier concentrations in nominally undoped material are in 

quantitative agreement with experiment. 

• The tellurium antisite, a donor, is found to be an important, relatively 

plentiful, defect; moreover it 

- is a relatively slow diffuser (see Section 1.2 below), 

- may be the residual donor in liquid phase epitaxial (LPE) grown 

material, 

- may be a Shockley-Read recombination center, and 

- can be reduced in densities through multiple step anneals. 

• The tellurium antisite mercury vacancy complex is well bound and, 

depending on processing details, can be present in concentrations high 

enough to affect devices. 

We have proposed a series of experiments to test our predictions on the tellurium 

antisite. We have also examined how the defect densities are modified in the presence 

of second-phase tellurium. For additional details of this work, see the papers included 

as Appendices A, B, and C. 



1.2 TELLURIUM-ANTISITE MERCURY-VACANCY PAIRS 

We have predicted that the mercury vacancy and the tellurium antisite are, re- 

spectively, the first and second most plentiful defects in Hgo.7sCdo.22Te. If equilib- 

rium is truly achieved during the low-temperature (~ 250°C) anneals to which LWIR 

HgCdTe is subjected during processing, the equilibrium tellurium antisite densities 

obtained will be insignificant and will have no impact on device performance nor on 

subsequent processing. In fact, equilibrium densities of tellurium antisites may not be 

achieved during low-temperature anneals because of the antisite's low diffusion rates. 

While the diffusion mechanism of the mercury vacancy is simple (via the migration of 

an adjacent second-neighbor cation into the vacancy), the diffusion of the tellurium 

antisite will necessarily be more complex and involve another defect (for example, a 

cation vacancy) or a consorted exchange mechanism (whereby the tellurium antisite 

and an adjacent second-neighbor cation exchange positions). 

Because of the more complex mechanism, we expect that the diffusion rates of 

tellurium antisites may be low. For liquid phase epitaxial (LPE) material, tellurium 

antisite densities may be frozen in at the high growth temperatures. The frozen- 

in tellurium antisite densities should be different for LPE material grown from the 

mercury and tellurium melt, primarily because they correspond to opposite sides of 

the existence region, but also because the two growths are done at slightly different 

temperatures. 

We have considered the various means by which the tellurium antisite might diffuse 

and have determined that the mechanism involving the mercury vacancy is dominant. 

In this diffusion mechanism, motion of a tellurium antisite occurs by its migrating 

into an adjacent (second-neighbor) cation vacancy. The diffusion of the tellurium 

antisite will be proportional to 

D TeHf 
f^J (VHg - TeHg)paJ • (1) 

Our calculations predict a very large binding energy of nearly 2 eV for this defect 

complex. We predict a substantial density of (VHg - ^eES)pair present in equilibrated 

material. The pair is an additional source of tellurium antisites and mercury vacancies 

in the material. The density of the pairs will differ in LPE material grown from the 

mercury- and tellurium-rich melts, and will account for different rates of tellurium 

antisite diffusion of the two types of LPE material. We have proposed means by which 



to manipulate the tellurium antisite densities via controlled cooling from the growth 

temperatures and through subsequent multiple step anneals. We have examined how 

tellurium antisites might contribute to precipitation of second-phase tellurium and 

have proposed a mechanism by which tellurium antisite diffusion is enhanced in a 

direction towards a tellurium precipitate. For additional discussion and details, see 

the paper that is included as Appendix A. 

1.3 LINE DEFECTS: DISLOCATIONS 

We have calculated the impact on junction performance of electric and strain fields 

associated with a 60° dislocation in HgCdTe. We find that the fields associated with 

core charges alone are not likely to account for the observed degradation of junction 

performance, except perhaps at very low dislocation densities and at cryogenic tem- 

peratures. The longer range piezoelectronic potentials, arising from strain fields, are 

likely to have a larger effect, especially on RoA, through the tunneling leakage current. 

We propose that the nonlinear dependence of junction leakage current on junction 

potential is responsible for the observed nonlinearity of performance degradation with 

dislocation density as measured by etch pit density. Further details can be found in 

Appendices D and  E. 

2.   NATIVE POINT DEFECTS IN CdTe 

CdTe is important both as a substrate (along with Cdi_xZnxTe *) and passivating 

material for epitaxial layers of LWIR HgCdTe, making it an important material to 

successful manufacturing of HgCdTe FPAs. Native point defects are of interest in 

CdTe in that they relate to its stoichiometry (which in turn has been shown to affect 

the minority carrier lifetimes in HgCdTe devices), the formation and annihilation of 

tellurium precipitates, and the self- and inter-diffusion coefficients that affect material 

stability during growth, during subsequent processing, and over the device's lifetime. 

Using our first-principles methods, we have predicted the density of native point 

defects in CdTe as a function of temperature and cadmium partial pressure. We 

predict that, unlike Hgo.7sCdo.22Te, CdTe solid can exist in both cation- and anion- 

rich forms. We find that the cadmium interstitial is the dominant defect for high 

cadmium pressures, and the cadmium vacancy is most important at mid and low 

1Because of the low zinc concentrations, our results should be applicable to x = 0.04 
Cdi-jjZna-Te. which is the more recent substrate of choice for LWIR Hgo.78Cdo.22Te 
devices. 



cadmium pressures. For further details, see Appendix A. 

3.   ELECTRONIC AND TRANSPORT PROPERTIES OF BULK HgCdTe 

Most electronic property calculations on HgCdTe are done for zero temperature. 

We have included the electron-phonon interactions and predicted the temperature- 

dependent band gap in HgCdTe. These calculations are done using a semi-empirical 

hybrid pseudopotential tight-binding (HPTB) method. Our theory agrees with ex- 

periment to better than 10%. We have also used this theory to deduce the tem- 

perature variations of the valence band offsets and the electron effective masses of 

various semiconductor systems. The properties of Ino.33Tlo.e7P with a band gap in 

the LWIR spectrum were also calculated and compared to those of Hgo.7sCdo.22Te. 

Further details are included in Appendices F and G. 

We have used our temperature-dependent HPTB method to predict the absorp- 

tion edge and its temperature dependence. Calculations include the effects of the Ur- 

bach absorption tail, which is found experimentally to be more complex in HgCdTe 

than the simple exponential form usually assumed. The non-parabolicity of the 

conduction band edge is essential to the interpretation of the experimental results. 

Additional information is included in Appendix H. 

Transport-related properties, including electron mobility, Hall coefficient, and the 

fundamental energy gap have been calculated using our semi-empirical HPTB band 

structures, and including full Fermi-Dirac statistics in the solution of the Boltzmann 

transport equation. Our results differ substantially from those obtained using k.p 

band structures. We have used our results to reinterpret absorption data and to 

extract the temperature variation of the band gap. Our calculated electron mobilities 

are in excellent agreement with experiment. For additional details, see Appendices G, 

I,   J,   and   K. 

4. GRADIENT CORRECTIONS TO LDA 

An essential ingredient to a quantitative prediction of native point defect densities 

in solids is an accurate evaluation of the energy to create the defect in the solid. It 

is often convenient to use the vapor phase as the reference phase, establishing the 

chemical potential of the constituents in the solids. In HgCdTe we have found the 

vapor phase to be the most natural reference phase because the mercury pressure 



(Png) is often used as a control parameter during processing. In ZnSe the vapor 

phase is also a convenient reference because the pressures over the ZnSe solid at high 

temperatures have been measured and because the beam fluxes in molecular beam 

epitaxy (MBE) can be related to the partial pressures of zinc and selenium. 

Unfortunately, a significant overbinding is found for all of the semiconductors 

when the LDA is used. We have found (Appendix L) that the addition of gradient 

corrections to the LDA dramatically improves of the calculations, in particular when 

the energy of the solid is referenced to the vapor phase as is done in determining the 

cohesive energy, for example: 

Hgffa, + \(Te2)gas - HgTe (2) 

or 

Znfl<M + -(Se2)gas -» ZnSe, (3) 

or when determining the energy to form a native defect where the vapor phase of one 

or more of the constituents is used as a reference phase, for example for a mercury 

vacancy in HgCdTe via the reaction 

HgHg -» Vag + Hgffa, (4) 

or a zinc antisite in ZnSe via the reaction 

2Zn5as -*• ZnZnZnSe- (5) 

We have performed extensive tests of the gradient corrections on a wide range of 

solids, examining the changes made (relative to the LDA) in the predicted lattice con- 

stants, cohesive energy, and various elastic properties. These studies demonstrated 

systematic improvements in the predicted properties that are relevant to accurate 

prediction of the point defect formation energies. The gradient corrections were in- 

corporated into the calculations of the native point defect densities of HgCdTe, CdTe, 

and ZnSe presented in the report. The results of our examination of 58 elemental and 

compound solids are being written for publication; a draft of this paper is included 

as Appendix L. 



5.   NATIVE POINT DEFECTS AND OPERATIONAL DEGRADATION IN 

ZnSe OPTICAL DEVICES 

We have predicted the absolute defect concentrations of eight native point defects 

in ZnSe as a function of temperature and zinc partial pressure. The eight defects 

included in the analysis are: 

• Vzn, the zinc vacancy 

• Vse, the selenium vacancy 

• ZnSe, the zinc antisite 

• Sezn, the selenium antisite 

• Znr, , the zinc interstitial at a tetrahedral interstitial site, with zinc as 

the nearest neighbors 

• Zn/Se, the zinc interstitial at a tetrahedral interstitial site, with selenium 

as the nearest neighbors 

• Se/Zn, the selenium interstitial at a tetrahedral interstitial site, with 

zinc as the nearest neighbors 

• Serc , the selenium interstitial at a tetrahedral interstitial site, with 

selenium as the nearest neighbors. 

We have used our state-of-the-art first-principles code based on the LDA to 

calculate the total electronic contribution to the defect formation free energy. We 

have also included the gradient corrections (GC) to the LDA, which we have shown 

are essential to obtaining quantitative agreement with the experimental results (see 

Section 4.) A classical approach based on a valence force field model is used to 

describe the vibrational contributions to the defect free energies. A quasichemical 

analysis was used to deduce the defect concentrations, including full Fermi-Dirac 

statistics for the electron-hole populations. Our results demonstrated that isolated 

native point defects are not responsible for the limitation in the p-type doping limits 

experimentally observed in ZnSe. 

To investigate the operational optical degradation of ZnSe-based devices, we have 

looked at the total energy to form a zinc Frenkel defect.  The zinc Frenkel defect is 



a zinc-interstitial zinc-vacancy pair. The Frenkel defect is a particularly interesting 

defect (really a defect-generating process) in that it can form in the bulk of the 

solid, without the need for an external source or sink for atoms (as was needed for 

the reactions enumerated at the beginning of this section). We have found that the 

energy to form a Frenkel defect in the bulk zincblende crystal is slightly larger than 

the electron-hole recombination energy. We have reexamined the formation energy 

at a stacking fault and found a reduction of 0.3 eV in the energy to form the Frenkel 

defect. The reduction in energy at the stacking fault is large enough so that a Frenkel 

defect can be formed in a single nonradiative recombination event at a stacking fault. 

Our results also indicate that the zinc interstitial (part of a Frenkel defect) has a 

mid-gap state, both when trapped at a stacking fault and when in the bulk material, 

and should be an effective non-radiative recombination site. 

Based on our findings, we propose a degradation mechanism in which excessive 

Frenkel defect pairs are generated at stacking faults present in a quantum well struc- 

ture via the energy available through nonradiative recombination events. The zinc 

interstitials generated in these events serve as additional nonradiative recombina- 

tion centers, thus amplifying the Frenkel defect generation rate. The thermal energy 

made available from nonradiative recombination events at the Frenkel-defect-dressed 

stacking faults produce temperature gradients that could also contribute to disloca- 

tion motion and multiplication. 

This model may also provide the basis of an explanation for the so-called dark line 

defects. Some of the zinc interstitials that are formed at the stacking fault should 

be trapped there in potential wells, but others may diffuse away. In the presence 

of all of the dislocation motion and multiplication, one may have an ordering of the 

interstitials along the <100> directions. Although we have not completed this portion 

of our modeling, certainly our model of Frenkel defect generation at the stacking fault 

explanations a source of very mobile point defects thatmay be correlated with these 

dark line defects. A draft paper on our work is included as Appendix M. 
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Defect Modeling Studies in HgCdTe and CdTe 

M.A. BERDING, A. SHER, and M. VAN SCHILFGAARDE 

SRI International, Menlo Park, CA 94025 

We have used a quasichemical formalism to calculate the native point defect 
densities in x = 0.22 Hg^Cd^e and CdTe. The linearized muffin-tin orbital 
method, based on the local density approximation and including gradient 
corrections, has been used to calculate the electronic contribution to the defect 
reaction free energies, and a valence force field model has been used to calculate 
the changes to the vibration free energy when a defect is created. We find the 
double acceptor mercury vacancy is the dominant defect, in agreement with 
previous interpretations of experiments. The tellurium antisite, which is a 
donor, is also found to be an important defect in this material. The mercury 
vacancy tellurium antisite pair is predicted to be well bound and is expected to 
be important for tellurium antisite diffusion. We consider the possibilities that 
the tellurium antisite is the residual donor and a Shockley-Read recombination 
center in HgCdTe and suggestions for further experimental work are made. We 
predict that the cadmium vacancy, a double acceptor, is the dominant defect for 
low cadmium pressures, while the cadmium interstitial, a double donor, domi- 
nates at high cadmium pressures. 

Key words: CdTe, defect complexes, defects, HgCdTe 

INTRODUCTION 

The pseudobinary semiconductor alloy Hg^Cd^Te 
with x = 0.22 is currently the material of choice for 
high-performance detectors in the long-wavelength 
infrared (LWIR) (8-14 am). Unlike most other II-VI 
systems, both extrinsic p- and n-type doping can be 
achieved in HgCdTe, although in as-grown material 
the electrical characteristics are often determined by 
native point defect concentrations. Understanding 
the properties of point defects and manipulation of 
their densities duringgrowth and processingis essen- 
tial to high-yield manufacturing of focal plane arrays 
(FPAs). As in other semiconductors, it is difficult to 
establish the presence and identity of all the im- 
portant neutral and compensating point defects dur- 
ing growth and processing, much less to determine 
their concentrations. CdTe is important both as a 
substrate and passivating material for epitaxial lay- 

(Received October 4,1994; revised January 20, 1995) 

ers of LWIR HgCdTe./Native point defects are of 
interest in CdTe in that they relate to its stoichiom- 
etry (which in turn lias been shown to impact the 
minority carrier lifetimes1 in HgCdTe devices), the 
formation and annihilation of tellurium precipitates,2 

and the self- and ifciter-diffusion coefficients that im- 
pact materials stability duringgrowth, during subse- 
quent processing, and over the device lifetime. 

Our goal in this paper is to theoretically identify the 
important native defects in HgCdTe and CdTe, to 
calculate their densities as a function of growth and 
processing conditions, to validate our predictions by 
comparison with experimentally deduced properties 
of the native defects, and to suggest new experiments 
to begin to unravel the remaining mysteries in these 
materials. We have included in our analysis ofHgCdTe 
both neutral and ionized states of eight native point 
defects and one defect pair. Ourfocqs is on x = 0.2 (for 
comparison to annealing data),3 x = 0.22 (for LWIR 
applications), and x = 1 (for substrate and passivating 
layers) Hg^Cd^Te. As we will show, we have at- 
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tempted to incorporate all of the important contribu- 
tions to the defect formation free energies and adopt 
a first-principles approach for most of the quantities 
we calculate. 

METHODOLOGY 
To calculate the concentration of the native point 

defects in HgCdTe, we employ a quasichemical for- 
malism* in which the formation of independent crys- 
talline defects is expressed as chemical reactions. For 
example, for the formation of the neutral mercury 
vacancy in HgTe with the mercury vapor as the 
reference phase, we have the reaction 

HgTe-^V^Te + Hg^ (1) 

Our notation is that of Kroger4 in which the primary 
symbol is the defect species and the subscript indi- 
cates the site the defect occupies; V indicates the 
vacancy, and I the interstitial, and no subscript indi- 
cates the species is occupying its normal lattice posi- 
tion; x indicates the neutral defect species. Although 
we have chosen the mercury in the vapor phase as our 
reference and thereby will choose a mercury pressure 
to determine the chemical potential of mercury in the 
system, one could have chosen some other reference 
state for the mercury or tellurium (for example, by 
specifying a binary solution of HgwTe at some tem- 
perature T in coexistence with the HgTe solid, as is 
essentially done during liquid phase epitaxy [LPE] 
growth). For our equilibrium calculations, the limits 
of mercury pressures within the existence region of 
Hg^CdjTe are taken from experiment* 

~] In a similar manner, reactions can be written for the 
other point defects of the system. In our analysis, we 
have included eight native point defects (plus their 
ionized species and the electron and hole): the mer- 
cury and tellurium vacancies (V^ and VTj), the mer- 
cury and tellurium antisites (Hg,,, and Te^), and two 
types_j>f mercury and tellurium tetrahedral 
intergtitials—one surrounded by four cation near- 
neignbors (Hg,^ and Te,  ) and the other surrounded 
by four anion near-neighbors (Hg,   and Ter  ). We 
have also included the bound mercury vacancy tellu- 
rium antisite pair (V^-Teg^,, in which the vacancy 
and antisite occupy near-neighbor cations sites, via 
the reaction 

Vufc + Te^rV^ + Te^ (2) 

For low densities of noninteracting defects, the law of 
mass action can be used to determine the neutral 
defect concentrations. For the mercury vacancy, this 
corresponds to 

K^ =8exp 
F    N 

kBT -HI (3) 

where F^ is the reaction free energy for the neutral 
mercury vacancy, kB is Boltzmann's constant, T is the 
temperature in kelvin, and 9 is the number of unit 
cells per volume. Thus, once the reaction free energy 

is known, it is straightforward to calculate the defect 
concentrations. Of course, all the work is involved in 
the calculation of the reaction free energies. 

We have attempted to calculate all of the important 
contributions to the defect reaction free energies. An 
electronic contribution to the free energy results from 
the change in the total electron energy of the solid 
when a neutral defect is created; included in this 
energy is the electronic energy of free mercury atoms 
generated or consumed in the defect reaction. To 
calculate the electronic contribution, we employ the 
self-consistent first-principles full-potential linear- 
ized muffin-tin orbital method8 and the local-density 
approximation (LDA), including gradient corrections 
of the Langreth-Mehl-Hu type7 (which greatly im- 
proves the overbinding found in the LDA).*9 The 
vibrational modes of the system are also changed 
when a defect is created; we calculate this change to 
the formation free energy (both the enthalpy and 
entropy) using a Green's function formalism within a 
valence force model plus point-charge ionic model. An 
entropy contribution to the formation free energy also 
arises from the partial occupation of degenerate lev- 
els associated with the defect and from the introduc- 
tion of a preferred direction via a symmetry-lowering 
Jahn-Teller distortion.10 The combination of the elec- 
tronic, vibrational, degeneracy, and translational (for 
the calculation of the chemical potential of the mer- 
cury atom in the vapor phase) free energies en- 
compasses the .primary contributions to the total 
defect formation free energies when referenced to a 
mercury vapor. Details of the results for these ener- 
gies are given in Ref. 9. We have completed only 
preliminary calculations for the binding energy of the 
mercury vacancy tellurium antisite pair indicated in 
Eq. (3), using a 32-atom supercell and with overall 
lattice constant relaxation only. We expect that this 
defect may showfurther relaxation, which could lower 
the defect pair binding energy and therefore increase 
their density. 

Although we are interested in studying the prop- 
erties of point defects in HgCdTe, the neutral defect 
reaction free energies are calculated for HgTe; be- 
cause we predict that the defects with highest concen- 
trations (the mercury vacancy and the tellurium 
antisite) reside on the cation sublattice and therefore 
have four tellurium atoms for first nearest neighbors, 
we expect that the presence of cadmium will intro- 
duce a minor modification to the formation free ener- 
gies, and of the order of other approximations made in 
the calculation (for example, using supercells). The 
presence of cadmium may have a larger impact on 
interstitial formation free energies, which can occupy 
sites with cations as near-neighbors. Although we 
find the density of interstitials to be relatively low,9 

the cation interstitial in particular is very important 
in annealing of HgCdTe.12 For the present, we have 
included the effects of the cadmium only by adjusting 
the number of sites available for mercury vacancies 
and in calculating of the band structure used in 
predicting the ionized point defect concentrations. 
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For further discussion and details of the calculation of 
the reaction free energies, see Ref. 9. 

Because the native point defects will in general 
have localized levels in the band gap, we need to 
calculate the concentration of the ionized defects in 
addition to the neutral defects discussed above. Once 
the density of the neutral defects is determined, the 
concentration of ionized defects can be calculated 
from 

M. •*„/&=£ [x-]   s,. 
for an acceptor defect X and 

kBT 

E3-.SE. 
<*& 

(4) 

(5) 

for a donor defect Y. Once again, we have adopted the 
notation of Kroger: the bullet superscript indicates a 
positive charge and a prime, a negative charge. Et and 
Ed are the one-electron acceptor and donor levefs; n, 
is the Fermi energy, which is determined by demand- 
ing charge neutrality; and g, is the degeneracy of the 
state, including both spin and Jahn-Teller10 splitting. 
Generalizations of these expressions are used for 
multiple ionized defects. The calculation of the elec- 
tron and hole populations demands a knowledge of 
the temperature-dependent band structure and use 
of Fermi-Dirac statistics. The only significant empiri- 
cal data we employ in this calculation are those 
needed to obtain the temperature-dependent band 
structure, which is extrapolated to high temperatures 
at which equilibration and annealing take place and 
for which we are going to predict defect concentra- 
tions. Further details are in Ref. 9. 

DEFECTS IN HgCdTe 

Equilibrium Native Point Defect 
Concentrations: Annealing Studies 

Gibbs' phase rule tells us that for a system of three 
components (in our case mercury, cadmium, and 
tellurium) and two phases (zinc-blende solid and 
vapor), there are three degrees of freedom. In evalu- 
ating the equilibrium defect concentrations in 
HgoaCd^Te, we have chosen the temperature, the 
mercury pressure P^ and the alloy composition x as 
these specified variables; the tellurium and cadmium 
pressures, the crystal stoichiometry, and the density 
of the various native point defects are determined by 
these parameters. 

In Fig. 1, we show our results for the 77K hole 
concentrations in x = 0.2 Hg^Cd^Te as a function of 
mercury partial pressure for various high-tempera- 
ture annealing conditions and compare them to the 
results of Vydyanath.3-13 We have assumed that the 
high-temperature defect structure is frozen in during 
a quench to 77K. All eight point defects discussed 
above have been included in our analysis. The agree- 
ment with experiment is quite good, given that the 

only empirical data used were of the temperature 
dependence of the band structure used to calculate 
the intrinsic reaction constant To demonstrate the 
sensitivity of our results to the free energies we are 
calculating from first principles, we have also shown 
in Fig. 1 the results of a calculation using a mercury 
vacancy formation energy that has been increased 
roughly 10%, plus a constant multiplicative constant 
of the low-temperature hole concentrations at all 
pressures and temperatures; as one can see, such 
minor modifications to our calculated parameters 
yield low-temperature hole concentrations that are in 
very good agreement with experiment. Certainly 
refinements to our theory (for example, including a 
more accurate high-temperature band structure, more 
precise incorporation of alloy effects on formation free 
energies, anharmonic effects in the vibrational free 
energies, and going beyond the local density 
approximation) could account for discrepancies of 
this magnitude. In addition, the experimental data 
may be impacted by re-equilibration duringthe quench 
from high temperature. 

At all temperatures, we predicted that equilibrated 
material will be p-type and that the dominant defect 
is the doubly ionized mercury vacancy, in agreement 
with mobility data.3 Our predictions differ from the 
analysis in Ref. 3 in several ways, though. First, 
although the data indicate that the material is intrin- 
sic at all annealing temperatures, we predict that the 
material will be extrinsic for the higher annealing 
temperatures with [h*] ~ P-f, while at the lower 
annealing temperatures, the material will be intrin- 

Rg. 1. Hole concentrations at 77K as a function of mercury partial 
pressure for matenai annealed at high temperatures, as indcated 
Experimental data were taken from Vydyanath.* Results of our theory 
are shown as solid lines. To demonstrate the sensitivity of our 
predictions to small changes in the calculated formation free energies, 
we show the dashed lines, which are the theoretical results, but with 
the mercury vacancy formation energy increased by 10% and includ- 
ing a ngtd upward shift of the hole concentrations by a factor of 5 5 
Note thatthe results shown here differ from those in Ref. 9 because the 
inclusion of the additional degeneracy factor for the singly ionized 
tellurium antiste."» 
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sic with [h •] - P^ (for details see Re£ 9). This may be 
due to either a vacancy formation energy that is too 
small in our calculation (as demonstrated by the 
dashed line in Fig. 1) or errors in the high-tempera- 
ture band structure, which we have extrapolated 
from the low-temperature formulas.1**15 Second, we 
find at higher temperatures and lower pressures, that 
the hole concentrations increase with increasingpres- 
sure, contrary to what would be expected due to 
mercury vacancy acceptors alone. In our theoretical 
predictions, this is due to compensation from tellu- 
rium antisites, which we predict are donors, and 
which are the second most dominant native point 

Figure 2 
BoxFPO 

Fig. 2. Total mercury vacancy (solid line) and tellurium antisite (dashed 
line) densities as a function of mercury partial pressures (atm). Full      '- 
equilibration of all defects is assumed at all temperatures (see text for ^ 
further discussion). ■ 

defect in Hg^Cd^Te. Because the equilibrium antisite 
density varies roughly as P^, compared to P^J to 
Pj^3 for the mercury vacancy, it is most important at 
low mercury pressures. At the highest temperatures, 
there does appear to be a correspondingrole-off in the 
experimental data at the lower pressures, which may 
be indicative of compensation by tellurium antisites, 
but it could also be an experimental artifact caused by 
quenching inefficiencies for the higher temperatures. 

Low-temperature mercury-saturated anneals are 
of technological importance to reducing the as-grown 
p-type carrier concentrations or to convert the mate- 
rial to n-type in nominally undoped material. In Fig. 
2, we have plotted the concentrations of mercury 
vacancies and tellurium antisites as a function of 
inverse temperature for constant pressures within 
the existence region; neither of these concentrations 
include the defects that are bound into mercury va- 
cancy tellurium antisite pairs. The lower boundaries 
correspond to the defect densities for mercury-satu- 
rated anneals, the upper boundary to tellurium-satu- 
rated anneals. As one can see, at a given pressure and 
temperature, the mercury vacancy concentrations 
are always in excess of the tellurium antisite pop- 
ulation, and in equilibrium the material should al- 
ways be p-type. As discussed in the following section, 
we expect that full equilibration of the tellurium 
antisite density may not take place at lower anneal- 
ing temperatures, so that the equilibrium concentra- 
tions predicted /or this defect may not always be 
realized. 

Annealing schedules are also of technological im- 
portance in forming p-n junctions in as-grown p-type 
material via mercury in diffusion.1S-17 The results of 
these experiments depend on the mechanism by which 
mercury diffuses and are related to the identity of the 
residual donor, both of which will be discussed further 
below. 

The Tellurium Antisite in Hg^Cd^Te 

Havingpredicted that the tellurium antisite will be 

Figure 3a 
Box FPO 

Figure 3b 
Box FPO 

Figure 3c 
Box FPO 

Fig. 3. The concentration of native points as a function of mercury pressure within the phase stability region at (a) 500°C, corresponding to the LPE 
growth temperature, (b) 185°C, the growth temperature for MBE, and (c) 220°C, a typical temperature for mercury-saturated anneals. A range of 
concentrations for the mercury vacancy tellurium antisite pair is shown, based on our preliminary results, as discussed in the text 
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present in substantial densities, we now address the 
evidence for their existence in LWIR HgCdTe. We 
have predicted that the tellurium antisite is a donor, 
although we have not yet extended our theory to 
predict whether it is a single or double donor, nor the 
precise location of the defect levels in the gap. This is 
perhaps the most difficult part of our calculation 
because of the LDA band gap errors intrinsic to our 
method and the dispersion arising from the use of 
supercells that give defect-level widths larger than 
the Hg^gCd^Te band gap. To establish the presence 
of tellurium antisites without a prediction of the 
donor level(s) in the gap, we must consider the possi- 
bility that there are resonant level(s), shallow level(s), 
deep level(s), or some combination of these, associ- 
ated with the tellurium antisite, and look for evidence 
supporting the presence of the antisite. 

One of the outstanding questions in the properties 
of HgCdTe is the identification and elimination of the 
residual donor that controls the carrier concentration 
in material annealed at low temperatures under mer- 
cury-saturated conditions. Although purification of 
startingmaterials has led to a lowering of the residual 
donor density, a lower limit of -10" cm-3 seems to 
have been reached. To examine the possibility that 
the tellurium antisite is the residual donor, we have 
calculated the defect densities at 500°C, roughly the 
£Pp growth temperature from both the mercury- and 
tellurium-rich melts, at 185°C, the typical molecular 
beam epitaxy (MBE) growth temperature, and at 

*„ia       220°C, roughly where low-temperature mercury-rich 
' anneals are done; results are shown in Fig. 3a-3c. It 

is clear that the material is expected to be p-type for 
h-kM*1- both MBE- and LPE- grown material, and that al- 

though postgrowth, mercury-saturated anneals (the 
right side of Fig. 3c) will lower the vacancy density 
below the 10u cmJ level, the material is still predicted 
to be mercury-vacancy-doped p-type. We thus con- 
clude that the residual donor is not due to an equilib- 
rium concentration of native point defects. 

The possibility remains that the residual donor is 
associated with a nonequilibrium defect concentration 
of tellurium antisites. We expect that the diffusion 
coefficient of the tellurium antisite is relatively small 
because the diffusion of an antisite will necessarily 
involve at least one additional point defect, such as 
the mercury vacancy or the tellurium interstitial 
(diffusion via a consorted exchange of a tellurium 
antisite with a mercury atom on an adjacent cation 
lattice site is unlikely). As such, the tellurium antisite 
may not reach equilibrium densities for the times and 
temperatures corresponding to the low-temperature 
mercury-saturated anneals typically employed to 
equilibrate the mercury vacancy density (Fig. 3c). If 
tellurium antisite densities are in fact equilibrated at 
a temperature at which the antisite diffusion effec- 
tively stops during cooldown from the growth tem- 
perature, then the antisites may be frozen in at 
higher, nonequilibrium concentrations correspond- 
ing to the residual donor density. 

Addressing the question as to why the antisite 

avid 

density might be frozen in at roughly the same con- 
centration for LPE material grown from both the 
mercury and tellurium melt, we return to the means 
by which tellurium antisite diffuses in the material, 
and assume it diffuses by a mercury vacancy mecha- 
nism. This assumption is motivated by several fac- 
tors. First, this mechanism involves only one point 
defect in addition to the tellurium antisite and in- 
volves a simple migration mechanism between the 
two defects. Second, it involves the mercury vacancy, 
whose density is fairly high, and therefore the prob- 
ability of tellurium antisite mercury vacancy pairs is 
expected to be fairly high. In addition, the mercury 
vacancy is an acceptor and the tellurium antisite is a 
donor so they are expected to form a bound pair based 
on Coulombic attraction, and the mercury vacancy is 
too small for the lattice, while the tellurium antisite 
is too large, so that there is a mechanical attraction 
between them as well. Finally, the migration mecha- 
nism involving an interstitial—for example, via a 
kickout mechanism whereby a mercury interstitial 
kicks out the tellurium antisite to form a tellurium 
interstitial—is unlikely since it involves defects that 
are all too large for the lattice and are donors and 
therefore are unlikely to form pairs. The kickout 
mechanism may be important when mercury in- 
terstitials are injected into the material, and is dis- 
cussed later in this paper. The likelihood of the tellu- 
rium antisite diffusion proceeding by the mercury 
vacancy mechanism is further supported by our pre- 
liminary prediction of the mercury vacancy tellurium 
antisite binding energy of 1.1 eV; the corresponding 
densities are shown in Fig. 3. We show our predictions 
for the pair density as a range in which the lower limit 
corresponds to the defect pair being neutral, as our 
preliminary predictions indicate, and the upper limit 
corresponding to the pair having a donor state at the 
valence band edge and an acceptor level at the con- 
duction band edge. Unlike the native point defects, we 
expect that these pair defect concentrations may 
change as we refine the free energy calculations. If 
tellurium antisite diffusion is via the mercury va- 
cancy, the diffusion coefficient will be proportional to 
the density of the mercury vacancy tellurium antisite 
pairs, that is 

DT.,~[(V»<+Te4j- (6) 

From Fig. 3a for LPE growth, one can see that the 
density of defect pairs for low mercury pressures, 
corresponding to material grown from the tellurium- 
rich melt, is four orders of magnitude higher than for 
that grown from the mercury-rich melt. This implies 
that although material grown from the tellurium 
melt will contain higher densities of tellurium 
antisites, in the cooldown from the growth tempera- 
ture the tellurium antisites will re-equilibrate much 
more rapidly due to the large pair density than will 
material grown from the mercury-rich melt In con- 
trast, for material grown from the mercury melt, the 
tellurium antisites present at the growth tempera- 
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ture, although lower, may be frozen in because the 
pair density is also lower. 

We now turn to growth by MBE, which takes place 
at 185CC under mercury-poor conditions, correspond- 
ing to the left side of Fig. 3b. At the phase stability 
boundary, we predict that the material will be mer- 
cury-vacancy doped p-type, with a carrier concentra- 
tion of-1015 cm-3. Experimentally as-grown material 
is found to be either n- or p-type with carrier concen- 
trations in the 1018 cm-3 range.u Because MBE growth 
is a nonequilibrium process, it is possible that growth 
may take place beyond the existence region; for ex- 
ample, if the equivalent pressure were of the order of 
10-7 atm at 185°C, the materials would be tellurium 
antisite doped. While this provides a possible expla- 
nation of how the material could be n- or p-type as- 
grown based on equilibrium concentrations of defects, 
extending this argument, one would expect under 
some growth conditions to be able to obtain highly 
compensated material with very low carrier concen- 
trations; this is never seen, to our knowledge. A more 
likely possibility is that nonequilibrium densities of 

,—point defects are frozen into-äIe^S|Pmaterial result- 
/    ing from details of the surface kinetics. 

/   i     There is substantial experimental evidence of deep 
n0\ev>[i levels in LWIR HgCdTe, which have not yet been 

definitively associated with any particular defect. 
i«*^^ The minority carrier lifetimes in vacancy-doped ma- 
ef>'    J terial are limited by Shockley-Read recombination; 

deep-level transient spectroscopy (DLTS) measure- 
ments1*-21 have identified two donor-like defect levels 
at 0.4EW and Q.ISE^. The densities of these levels 
roughly track the mercury vacancy concentration, 
although substantial scatter in the correlation is 
observed.19 Neither of these levels is believed to be 
associated with the mercury vacancy itself, nor do 
they appear to be associated with the same defect 
because they do not track one another. In equilibrium, 
the tellurium antisite density will track with the 
mercury vacancy concentration, although it will show 
a sharper dependence on the mercury pressure. In 
addition, as discussed above, we do not expect that 
equilibrium concentrations of tellurium antisites will 
be present except at very high temperatures corre- 
sponding to liquid-phase growth, and thus the ratio of 
tellurium antisites to mercury vacancies expected in 
equilibrium may not be experimentally realized, lead- 
ing to substantial deviations from the equilibrium 
ratio and scattering in their concentrations. Thus, it 
is plausible that one of the Shockley-Read recombina- 
tion centers is associated with the tellurium antisite, 
although to confirm this possibility a more quantita- 
tive prediction of the ionization levels of the antisite 
is needed. Deep levels associated with the tellurium 
antisite may also be responsible for the 1/f noise, 
which is found to be roughly proportional to the 
mercury vacancy concentration22 or they may en- 
hance interband tunneling and thereby contribute to 
dark currents. 

The Role of Native Point Defects in Self- 

|    Diffusion 

I        Self-diffusion of mercury is important for the an- 
|    nealing of as-grown mercury-vacancy doped p-type 
J    material to n-type, to form p-n junctions,18 and for 
I    understanding junction stability in HgCdTe devices. 

/    Although both the mercury vacancies and interstitials 
/     are mobile and contribute to mercury diffusion,23 it is 

the interstitial diffusion that is found to dominate in 
the modeling of low-temperature anneals.12-17 Thus, 
although we find equilibrium mercury interstitial 
concentrations that are negligible in terms of their 
contribution to the net carrier densities,9 they will be 
important to mercury transport in the material,, and 
therefore their properties are of interest. For both 
mercury vacancy and interstitial diffusion, more than 
just defect concentrations enter into the determina- 
tion of the diffusion coefficients; for the present dis- 
cussion, we will address only how our defect concen- 
trations relate to the measured diffusion coefficients. 

We predict that mercury interstitials are donors 
and in equilibrium are present in concentrations that 
are less than 10« cnr* at 250°C.' We have compared 
our results with those of annealing simulations by the 
Stanford group" and find that the concentration of 
interstitials we have predicted at - 200°C are several 
orders of magnitude too small to account for their 
modeling of the formation of p-n junctions. Although 
a number of approximations in our calculation of the 
formation energies will affect our interstitial forma- 
tion free energy (for example, the use of supercells 
and approximations of the ionization energies), we do 
not expect these to account for this large a discrep- 
ancy. As discussed in the Methodology section above, 
we have completed the calculation of the electronic 
contribution to the formation free energies usingpure 
HgTe. For the mercury vacancy and the tellurium 
antisite that are the major defects in HgCdTe and 
that occupy the cation sublattice and therefore are 
surrounded by four tellurium atoms, this is probably 
not such a bad assumption. Corrections to the elec- 
tronic energy due to the presence of cadmium maybe 
larger for the interstitials that see four cations as 
their first nearest neighbors in one tetrahedral site 
and six cations as near second neighbors in the other 
tetrahedral site. We are currently calculating the 
correction to our electronic energies, taking explicit 
account of cadmium in the lattice to see if it will 
eliminate the discrepancy with the Stanford model 
predictions.12 

There has been a recent investigation24 in x = 0.22 
and 0.24 Hg^CclTe on samples in which high concen- 
trations of nonequilibrium mercury interstitials have 
been introduced. The observed deep levels near 45 
and 60 meVabove the valence-band edge were argued 
to be associated with the mercury interstitials. As 
discussed above, at this point our calculations are not 
able to determine the precise positions of the defect 
levels in the gap, but rather have predicted only that 
the mercury interstitials will be donor-like. If in fact 
there are donor levels associated with the mercury 
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interstitials that are near midgap, we would expect 
them to exhibit a series of levels corresponding to the 
different alloy environments about an interstitial. In 
addition, there are two classes of interstitials that we 
expect to have relatively high equilibrium densities, 
both of which occupy tetrahedral sites; the first is 
surrounded by four cation nearest neighbors, and the 
second is surrounded by four anion nearest neigh- 
bors. Although it is tempting to associate the two 
defect levels experimentally observed with these two 
classes of interstitial sites, there is no apparent rea- 
son why two levels are seen in the x = 0.22 material 
and only one level in for x = 0.24. 

Finally, we return to the discussion of the mecha- 
nism for tellurium antisite diffusion and re-address 
the kickout mechanism that proceeds via the reaction 

HgI + TeHf-^TeI (7) 

Our calculations predict that this is an exothermic 
reaction, with an energy of - 0.8 eV (the entropy 
gained in having two point defects rather than just 
one must also be considered in establishing the equi- 
librium- concentrations of these defects). In 
non^gujlibrium situations in which mercury 
interstitials are introduced into the material—for 
example, during ion-beam milling or oxide baking35— 
this reaction will be pushed to the right, and excess 
tellurium interstitial will be produced. Thus, in such 
situations, one might expect tellurium antisite diffu- 
sion via the kickout mechanism to be a stronger 
competitor to the mercury vacancy mechanism, al- 
though the barriers to the formation of Hgi-Te^ pairs 
still exist, as discussed above. 

In presenting the tellurium antisite as a candidate 
for the residual donor, we argued why its density 
might be fixed in the n-type material. On the other 
hand, when discussingthe possibility that it is related 
to a Shockley-Read recombination center in vacancy- 
doped p-type material, we argued why its density 
might vary, depending on the cooldown rate and so 
forth. These two arguments are somewhat inconsis- 
tent. Although the possibility still exists that the 
tellurium antisite is both the residual donor (via a 
first ionization level that resonates in the gap) and a 
Shockley-Read center (via a midgap second ionization 
level), to be convincing a firmer correlation between 
the two would have to be established. 

The Mercury Vacancy Tellurium Antisite Pair 

Several additional consequences of the presence of 
the mercury vacancy tellurium antisite pairs should 
be discussed. As one can see from Fig. 3, we are 
predicting a very large concentration of the defect 
pairs, which may even exceed the mercury vacancy 
concentrations for LPE material grown from the tel- 
lurium-rich melts. If the pair is electrically inactive, 
as our preliminary calculations predict, it will not 
impact the carrier concentrations or mobility. Such a 
large density of pairs does imply that the 
nonstoichiometry of the material is larger than that 
due to the vacancy concentrations, particularly at 

lower temperatures where we predict that the equi- 
librium concentrations of neutral pairs will approach 
that of the mercury vacancy. 

Note that the large binding energy of the mercury 
vacancy tellurium antisite pair suggests that other 
bound pairs may be present in the material. For 
example, a bound Frenkel defect (involving the mer- 
cury vacancy-mercury interstitial pair) that involves 
an acceptor and a donor defect with opposite lattice 
strains may be important and will impact diffusion of 
mercury in the lattice. The most likely consequences 
will be to increase the annihilation capture cross 
section of mercury interstitials into mercury vacan- 
cies and to present a barrier to the formation of free 
Frenkel defects through a geminate process. These 
phenomena will be important to understanding diffu- 
sion in HgCdTe.12 Evidence for the mercury vacancy 
substitutional indium pair has been seen using a 
nuclear hyperfine technique.28 This defect is similar 
to the mercury vacancy tellurium antisite pair, and 
thus we expect it may be well bound. Both of these 
pairs merit further investigation. 

DEFECTS IN CdTe 

Like HgCdTe, CdTe has a wide stability region and 
can be doped both p- and n-type. Its use as both a 
substrate (along with CdjJZn Te)27 and a passivant 
make it an important material in the manufacturing 
of HgCdTe LWIR FPAs. 

We have predicted the density of neutral native 
point defects in CdTe as a function of temperature and 
pressure; results for 700°C are shown in Fig; 4. We 
predict the same electrical type (donor vs acceptor) for 
the native point defects as in HgCdTe; for example, 
we find that the cadmium vacancy is an acceptor and 
the cadmium interstitial and tellurium antisite are 

Fig. 4. Neutral native point defect densities of CdTe within the stability 
region at 70O°C. 
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donors. Based on the neutral native point defects, we 
expect that CdTe solid can exist with both excess 
cadmium and excess tellurium. We find that the 
cadmium interstitial is the dominant defect for high 
cadmium pressures, and the cadmium vacancy is 
most important at mid and low cadmium pressures. 

Because the native point defects may have energy 
levels in the gap associated with them, it is important 
to include these in the analysis. We have begun to 
calculate the ionization levels associated with the 
native point defects but have not yet included the 
Jahn-Teller distortions,28 which can significantly al- 
ter the localized energy levels. For this discussion, we 
shall assume that the cadmium vacancy has a first 
ionization level near the valence-band edge and a 
second level near midgap29 and assume that the 
cadmium interstitial is a double shallow donor.2 In 
this case, we predict a p- to n-type conversion at 700°C 
at relatively high cadmium pressures, in agreement 
with experiment2 

From Fig. 4, we see that the tellurium antisite 
becomes more important as the cadmium pressure is 
lowered. Depending on the energies associated with 
the tellurium antisite donor levels, the material may 
be highly compensated at the lowest pressures, or 
another p- to n-type conversion may even occur. 
Experiments designed to equilibrate on the cadmium- 
poor side of the stability region can be used to test for 
the presence of tellurium antisites through both their 
impact on electrical activities and the presence of 
localized levels. 

CONCLUSIONS AND SUGGESTED 
EXPERIMENTS 

The theory developed here clearly indicates that in 
HgggCdgjTe equilibrated at typical annealing tem- 
peratures and pressures (the right side of Fig. 3c), the 
tellurium antisite and mercury vacancy tellurium 
antisite pair densities are well below levels that can 
impact device performance. The primary outstanding 
question is whether or not tellurium antisite diffusion 
rates are high enough that normally processed samples 
fully equilibrate. Experiments are needed to modify 
these defect populations in a controlled manner so 
their impact on carrier concentrations, lifetimes, and 
other device properties can be determined. The basic 
idea is to modify the tellurium antisite concentration 
by choosing annealing temperatures, mercury pres- 
sures, and times that are long enough to permit a 
measurable portion of samples to equilibrate. 

First, we consider annealing experiments to test for 
the possibility that the antisite is the residual donor. 
If tellurium antisite diffusion is so slow that it is not 
equilibrated during low-temperature mercury-satu- 
rated anneals, one must first anneal at higher tem- 
peratures and lower mercury pressures to introduce 
tellurium antisite mercury vacancy pairs (this step 
could be eliminated for LPE material grown from the 
tellurium melt), followed by a lower-temperature, 
low-mercury-pressure anneal to reduce the antisite 
density, while still maintaining a relatively high 

density of pairs, concluded by a low-temperature, 
mercury-saturated anneal to reduce the mercury va- 
cancy concentration even further. A series of ex- 
periments in which the conditions of the first two 
anneals were varied could be designed to test for the 
effect they have on the residual donor concentration. 
A similar experiment could be performed to correlate 
the Shockley-Read center in mercury-vacancy-doped 
material with nonequilibrium tellurium antisite den- 
sities. 

Although we have proposed a series of experiments 
to establish whether the tellurium antisite is the 
residual donor or a Shockley-Read recombination 
center based on nonequilibrium densities, one may be 
able to design a series of experiments in which equi- 
librium populations of tellurium antisites are ob- 
tained by choosing high enough temperatures, thin 
enough samples, and long enough annealing times. 
One could choose annealing conditions to manipulate 
the mercury vacancy and tellurium antisite popula- 
tions independently. For example, a 300°C anneal to 
reduce the hole concentration to -1018 will result in an 
order-of-magnitude more tellurium antisites than an 
anneal at 400°C to achieve the same hole con- 
centration; Fig. 2 can be used in guiding such a study. 
The correlation of the tellurium antisite densities 
with the Shockley-Read center should be possible by 
doing minority carrier lifetime and/or DLTS mea- 
surements on materials with the same mercury va- 
cancy hole concentrations achieved by anneals at 
different temperatures. Although a study of this type 
was recently presented,1 and for a given hole concen- 
tration a correlation of lifetimes with the annealing 
temperature was observed, the effective annealing 
conditions there were set by the stoichiometry of 
CdTe cap layers and thus were more complicated than 
a simple anneal with a controlled mercury over- 
pressure. 

Experiments to test the presence of the mercury 
vacancy tellurium antisite pair are similar to those 
proposed above for the isolated tellurium antisite. 
Our preliminary calculations indicate that the pair 
will be electrically inactive and have no states in the 
band gap. As such, we do not expect their presence to 
have a direct impact on the electrical properties, but 
their presence will be manifested in their impact on 
tellurium antisite diffusion. Note that these experi- 
ments proposed to test for the presence of the tellu- 
rium antisite cannot discriminate between the iso- 
lated tellurium antisite and the mercury vacancy 
tellurium antisite pair. 
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We use a quasichemical formalism to make quantitative predictions of the native point defect 
densities in Hg0.sCd0.2Te. The electronic contribution to the defect-formation free energy is calcu- 
lated using the self-consistent first-principles full-potential linearized muffin-tin orbital method and 
the local-density approximation (LDA). A gradient correction is added to the LDA result so that 
absolute reference to the chemical potential of the mercury vapor phase can be made. A Green's 
function approach based on a valence force field plus a point Coulomb model is used to calculate the 
vibrational contributions to the defect free energy (both energy and entropy). We find the double 
acceptor mercury vacancy is the dominant defect, in agreement with previous interpretations of 
experiments. The tellurium antisite is also found to be an important defect in this material. Predic- 
tions of the low-temperature hole concentrations Eire made as a function of annealing temperature 
and compared with available experiments. The order of magnitude of our predictions agrees well 
with experimental results, and discrepancies can be attributed to contributions to the free energy 
that we have neglected or to inaccuracies in the intrinsic reaction constant used. Suggestions for 
further experimental work are made. 

I. INTRODUCTION 

The pseudobinary semiconductor alloy Hgi-^Cd^Te 
with a;=0.22 is currently the material of choice for high- 
performance detectors in the long-wavelength infrared 
(8-14 jim). Unlike other II-VI systems, both extrinsic 
p- and n-type doping can be achieved in Hgo.8Cdo.2Te, 
although in as-grown material the electrical proper- 
ties are often determined by native point defect con- 
centrations. The dominant defect is believed to be 
a double-acceptor mercury vacancy;1 post-growth low- 
temperature mercury-saturated anneals are routine for 
the reduction of the mercury vacancy concentration. As 
in other semiconductors, it is more difficult to establish 
the presence and identity of neutral and compensating 
point defects, much less to determine their concentra- 
tions. Diffusion measurements2 indicate the presence of 
mercury vacancies and mercury interstitials, as well as 
tellurium interstitials, although no unambiguous deter- 
mination of their densities can be made from these ex- 
periments. 

Although extended defects such as dislocations often 
appear to be the performance limiter in current state-of- 
the-art Hgo.8Cdo.2Te devices,3-5 a number of mysteries 
still persist that may relate to native point defects. (1) 
For operation at 40 K, there is a variation in RQAJ and 
lifetime among pixels with no etch pits,3 indicative of 
spatial nonuniformity in the material that is unrelated 
to dislocations. (2) An as yet unidentified donor lim- 
its the minimum n-type carrier concentrations obtain- 
able during a mercury-saturated low-temperature anneal 
of the material. While the pressure and temperature de- 
pendence of this residual donor does not appear to cor- 
relate with the equilibrium dependences of any native 
point defect,6 the nearly universell presence of the donor 

in liquid phase epitaxy (LPE), solid-state recrystalized, 
and molecular beam epitaxy (MBE) materials and its 
elusive nature do suggest that a native point defect is 
responsible. (3) Undoped LPE material that has been 
subjected to a low-temperature mercury-saturated an- 
neal and nominally converted to n type shows an anoma- 
lously low mobility. One interpretation is that it is a con- 
sequence of interpenetrating p- and n-type regions, with 
the high effective-mass holes lowering the measured Hall 
mobilities.7 If this model proves to be correct, it may 
well be a native point defect that causes nonuniform an- 
nealing of the material. To overcome this low mobility, 
a donor impurity is added in concentrations above that 
of the unknown residual donor. Thus, to lower the n 
doping to desirable levels, an understanding of the origin 
of the doping, and the low mobility and a recipe for its 
elimination are neeeded. (4) The identity of the primary 
Shockley-Reed-Hall (SRH) recombination centers has not 
been established; if they can be correlated with native 
point defects, strategies for their elimination can be de- 
veloped. (5) MBE material is often n type as grown8 and 
may be related to a nonequilibrium population of native 
point defects. 

Unraveling the matrix of usually indirect and often 
contradictory experimental data on the native point de- 
fects in semiconductors is a complicated task, especially 
when the defects may be spatially varying. Numerous 
theoretical efforts have utilized first-principles methods 
to elucidate the properties of native point defects in the 
group IV, III-V, and II-VI semiconductors (see, for ex- 
ample, Refs. 9-12). While these studies have led to much 
insight into the properties of the point defects, no quanti- 
tative predictions of the defect densities were made. Sev- 
eral earlier theoretical studies have looked at the prop- 
erties of defects in HgCdTe,13-16 although once again no 
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quantitative predictions of defect densities were given. 
Our goal in this paper is to theoretically identify the 

important native defects in HgCdTe, to calculate their 
densities as a function of growth and processing condi- 
tions, to substantiate the experimentally deduced prop- 
erties of the native defects, and to begin to unravel the 
remaining mysteries in this material. To express the 
concentration of the native point defects in terms of 
their formation free energies, we employ the quasichem- 
ical formalism. In addition to the electron and hole, we 
have included eight native point defects (and their ion- 
ized species) in the analysis: the mercury and tellurium 
vacancies, the mercury and tellurium antisites, and two 
types of mercury and tellurium tetrahedral interstitials— 
one surrounded by four cation near neighbors and one 
surrounded by four anion near neighbors. As we will 
show, we have attempted to incorporate all of the impor- 
tant contributions to the free energy and adopt a first- 
principles approach for most of the quantities we calcu- 
late. The only significant empirical data we employ are 
those needed to obtain the temperature-dependent in- 
trinsic reaction constant. Our calculated native defect 
concentrations are in quantitative agreement with the 
available experiment data. Preliminary results of this 
work have been published previously.17 

A number of features make our study of defects in 
Hgo.8Cdo.2Te unique and permit us to calculate absolute 
defect concentrations. 

(i) To calculate the electronic contribution to the de- 
fect formation free energies we employ the self-consistent 
first-principles full-potential (FP) linearized muffin-tin 
orbital (LMTO) method18 and the local-density approx- 
imation (LDA). The LMTO method is well suited for 
compounds containing d electrons, such as Hgi_j.Cdj.Te. 

(ii) Because the LDA overbinds, we have also employed 
gradient corrections to the LDA of the Langreth-Mehl-Hu 
type.19 These corrections greatly improve the overbind- 
ing found in the LDA.20 We believe the calculated en- 
ergies are precise enough that we may make comparison 
with atoms referenced to the free atom, and therefore by 
combining these energies with the translational energy of 
the atoms in the vapor phase, we are able to calculate the 
chemical potential for a monoatomic mercury vapor. 

(iii) A Green's function formalism within a valence 
force model plus point-charge ionic model is used to 
calculate the vibrational contribution to the defect- 
formation free energy, both the enthalpy and entropy. 

(iv) The combination of the electronic, translational, 
and vibrational free energies calculated in (i)-(iii) en- 
compass the primary contributions to the total defect- 
formation free energies when referenced to a mercury 
vapor. The total defect-formation free energy is then 
incorporated into a quasichemical formalism,21 and pre- 
dictions of absolute defect concentrations as a function of 
the thermodynamic variables temperature and pressure 
can be made. 

The remainder of the paper is organized as follows. 
In Sec. II we describe the quasichemical formalism used 
to calculate the neutral native defect concentrations and 
its extension for ionized defects and alloys. The calcula- 
tions of the defect-formation free energies are discussed 

in Sees. Ill and IV for the electronic and vibrational con- 
tributions, respectively. In Sec. V we present the results 
of our calculations and a comparison with available ex- 
perimental results. We end with a brief summary and 
conclusions of our work in Sec. VI. 

II. DEFECT CONCENTRATIONS 

A. Quasichemical formalism in compounds 

We begin by outlining the formalism employed to cal- 
culate the defect concentrations in a compound as a func- 
tion of external parameters. In Sec. IIC we discuss ex- 
tensions of the formalism necessary to treat the low-i 
alloy Hg1_ICdxTe. 

The defect reactions for the compound AC to be con- 
sidered in this paper are listed in Table I. We have chosen 
the AC unit cell and A in the phase R as our reference 
states for the calculation of the reactions' free energies. 
From Gibbs's phase rule we know that for a system of two 
components (A and C) and two phases (one of which is 
the AC zinc blende solid) there are two degrees of free- 
dom. For this paper we shall assume that temperature is 
one degree and that the chemical potential of an external 
reservoir of A or C atoms is the other. The chemical po- 
tential is chosen to be consistent with the experimental 
situation to be modeled. We shall choose our reference 
state to be the mercury vapor and therefore choose to 
reference our reaction energies to the AC solid and AR, 
which will be taken as the monoatomic mercury vapor 
(extensions of this analysis to the alloys are discussed in 
Sec. V). 

Reference to other reservoirs can be obtained by con- 

TABLE I. Defect reactions considered for compound AC. 
The notation is as follows: The primary symbol refers to the 
species, the subscript refers to the site that the species occu- 
pies, with no subscript indicating that the species is occupying 
its usual lattice site. V corresponds to a vacancy, I an inter- 
stitial, R some external reference state, and X a generic de- 
fect. Two types of interstitials are considered, both occupying 
tetrahedral sites, the first surrounded by four cation nearest 
neighbors Ic, the second surrounded by four anion nearest 
neighbors IA. Following the notation of Kroger (Ref. 21), 
an x superscript corresponds to a neutral species, a prime to 
a negatively charged species, a bullet to a positively charged 
species, and e and h' are an electron and a hole, respectively. 

— —_ 

AR —► 
2AR —+ 
2AC —► 

AR —> 
AR —> 
AC —► 
AC —► 
Xx —> 
Xx —► 

e' + h* —> 

VfC + AR (1) 
AV£ (2) 
AA* (3) 
C^C + 2AR (4) 
AU (5) 

K (5'] 
C?A+AR (6) 
C?C+AR (6') 
X" + zh' (7) 
X" + ze' (8) 
0 (9) 
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sideling the additional reaction 

AC -► AR + CR 

or for molecular species as the reference 

AC 
nA nc 

(la) 

(lb) 

where n; is the appropriate integer, and by taking linear 
combinations of these with the reactions in Table I. 

We are not restricted to specifying the temperature 
and a chemical potential of one of the species as the two 
degrees of freedom, but could choose instead another par- 
ticular set, including, for example, the stoichiometry of 
the system.10 While other choices are possible, usually 
one does not know a priori the material's stoichiometry. 

Assuming that the defect densities are small and that 
they are noninteracting, from the law of mass action we 
can write the reaction constant for each of the neutral 
defect reactions in Table I as21'22 

*,.S*xp (-§£)=[**], (2) 

where [X*] is the density of the neutral defect X, 8 is 
the number of unit cells per volume and converts [Xx] 
from site fraction to defects per unit volume, and Fx» is 
the free energy for the neutral defect reaction. The free 
energy for any defect X can be written as the sum 

Fx = Fx
ib + F^ect + F%— + kBT ln(G), (3) 

where kB is Boltzmann's constant, and Fx
,b is the vibra- 

tional, Fylect is the electronic, and F£ans is the trans- 
lations! energy contribution to the reaction free energy, 
and G accounts for the degeneracies of the reactants. In 
the quasichemical approximation, G = (5CP£>)/(<7A5B) 

for the reaction A + B -+ C + D, where gt is the de- 
generacy of reactant i. Once Fx« is know for a given 
reaction, Kx* can be evaluated and the defect concen- 
tration can be determined. The difficulty, of course, is 
in the evaluation of Fx * , which is discussed in Sees. Ill 
andlV. 

B. Ionized defects and the intrinsic reaction constant 

The above discussion applies to the neutral defect den- 
sities. In most semiconductors the native point defect 
will have one or more localized levels in the band gap, al- 
lowing for multiple ionization states of the defect. We 
thus need to calculate the concentration of these ion- 
ized defects, in addition to the neutral concentrations 
discussed above, to obtain the total defect populations. 
Once the energies of the localized levels are determined 
(Sec. Ill E) their populations can be calculated via 

1*1 
[X-] 

9x> 

9x* 
exp 

'ßF-Ea-Fx
ib + FVh 

kBT ~ 
(4) 

for an acceptor and 

[XX] 9x* 

'vib 
9x*        ( Ed- PF - Fx'. + Fx 

-exp  
kBT 

(5) 

for a donor state of the defect X. A bullet superscript 
indicates a positive charge and a prime a negative charge, 
Ea and Ed are the acceptor and donor one-electron ion- 
ization energies with respect to the valence and conduc- 
tion band (both defined as positive for states in the gap), 
and up is the Fermi energy. Although the last term in 
the exponential, ~Fx

lb + Fx
lb, should rightly be there, 

and corresponds to the difference in the vibrational free 
energy of the neutral and ionized defect, it has never been 
considered previously and for the present we shall neglect 
it too. 

For multiply ionized defects with positive Hubbard E/'s 
[reactions (7) and (8) in Table I], the above expression 
for the number of ionized acceptors generalizes to 

[X"}       gx„ . x 

[XTT = —exp W _ E« gx* 
El-Fx

xb,+Fx
lh) 

(6) 

where z is an integer and E\ is the ionization energy of 
the ith ionization level. A similar generalization applies 
for the donor levels. 

For each ionized defect concentration, we introduced 
one equation. In addition, though, we have two new 
unknowns, the Fermi energy and either the electron or 
hole concentration. Thus two additional equations are 
needed. 

First, we have the additional reaction for the genera- 
tion of electron-hole pairs across the band gap, reaction 
(9) in Table I, and the corresponding intrinsic reaction 
constant 

K„ [h')[e'}=pn, (7) 

where p = [hm] and n = [e']. In general, Kpn depends 
on the shapes of the conduction and valence bands, the 
band gap energy, the Fermi energy (for degenerate statis- 
tics), and the temperature variation of these quantities. 
Several limits are often encountered in the evaluation of 
Kpn. First, when the conduction and valence bands are 
parabolic, although not necessarily isotropic, E tx k2, 
and the reaction constant can be written in terms of the 
Fermi-Dirac integrals as 

,f2nkBT\3 3/2 
Kpn = 4 I      h2      I   (mhme) 

vTT      (ßF-Ec\ (Ev-pF\ 
(8) 

where ^1/2 is the Fermi-Dirac function; Ec, Ev, and HF 

are the conduction band, valence band, and Fermi ener- 
gies, respectively; mj, and me are the hole and electron 
density-of-states effective masses, respectively; and h is 
Planck's constant. In the nondegenerate limit, this re- 
duces to the familiar expression 

^-(^)'(W^P(^) (9) 
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which is independent of the Fermi energy. For the general 
case, which will apply even at moderate temperatures 
for narrow-gap HgCdTe, Kpn depends on the extrinsic 
carrier densities through its dependence on ßp. More- 
over, the conduction band in this narrow-gap material is 
not well represented by a parabola, but is rather more 
hyperbolic.23 Because the hyperbolic dispersion relation 
approaches a linear dependence away from the band edge, 
we will for the present assume a linear dispersion rela- 
tionship of the form E = ak. In this case the intrinsic 
reaction constant becomes 

*, = 2(^)3/2A(^)3 

kBT kBT 
(10) 

where Ti is the Fermi-Dirac integral of order 2. 
The requirement of charge neutrality leads to a second 

additional equation: 

£ £ z[xn + [e'\ = Y,Y, «•] + [ft'i ■   (") 

where i sums over the various defects and z sums over 
the various ionization states of the defect X{. 

C. Quasichemical formalism in alloys 

We wish to generalize the above formalism to the ideal 
cation substituted pseudobinary alloy A\-XBXC. It is 
perhaps easiest to demonstrate the generalization with a 
specific defect reaction, for example, a neutral vacancy on 
the cation sublattice. In the compound AC the formation 
reaction is given by reaction (1), Table I: 

AC-». V*C + AR (12) 

where Va indicates a vacancy on the cation sublattice. In 
the alloy a neutral vacancy on the a sublattice can form 
via the same reaction. The only difference comes in the 
evaluation of the reaction constant. In the compound the 
vacancy density is given by 

[V*} = 9exp ( 
-Fva* 

and in the alloy it is given by 

[FQ*] = 0(l-x)exp 
kBT 

(13) 

(14) 

where —F'vx is the reaction free energy corresponding to 

Eq. (12) in the alloy. The factor of (1 - x) results from 
the configurational entropy contribution to the chemical 
potential of A on a lattice site (Is), kBTln([Ai,]/[ls}) ~ 
kBT1n(x). Because we have assumed that the defect con- 
centrations are small, the configurational entropy contri- 
bution to the chemical potential a£*A in the compound 
AC is kBThi([Ai,]/[ls]) ~ 0. In both the compound and 

the alloy 9 is the same. 
In addition to Eq.   (12), in the alloy the vacancy on 

the a sublattice can also form via the reaction 

BC^V*C + Bi 

with 

[v:\ 
'-F"x 

0(x)exp '       v" 
kBT 

(15) 

(16) 

where FyX is the reaction free energy corresponding to 

Eq. (15) in the alloy. Now the vacancy concentrations 
predicted by Eqs. (14) and (16) must be equal and thus 

(1 — x)exp 
kBT 

= (xjexp 'ilk 
kBT 

(17) 

It is apparent that this simply corresponds to the differ- 
ence of Eqs. (12) and (15) 

AR + BC -> AC + BR (18) 

that is, the exchange of an A and B on a lattice site, 
which is a reaction in the alloy in equilibrium with AR 

and BR. An analysis similar to the above applies for the 
anion antisite CQ, which also substitutes on the cation 
sublattice. 

In the pseudobinary alloy, the vacancy free energies 
Fvx and FyX appearing in Eqs. (13) and (14) may be 

different. The energy of a vacancy depends on the lo- 
cal configuration of the surrounding lattice; this changes 
in the second and more distant neighbor shells for the 
cation vacancy and the anion antisite in the cation sub- 
stituted alloys. A completely rigorous approach would 
treat each kind of vacancy uniquely; indeed in a previ- 
ous work15 we found a configuration dependence of the 
vacancy in the A0.5B0.sC lattice of several tenths of an 
eV, varying approximately linearly in the number of A 
atoms in the second neighbor shell. Here we have ig- 
nored this refinement and assumed the A vacancy and 
C antisite surroundings are totally of species A. This is 
justified to some extent because we are interested in low 
x compositions of Hgi-xCdj-Te. 

For defects on the C sublattice (e.g., the anion vacancy 
and the cation antisites) as well as interstitial atoms in 
certain tetrahedral sites, one must more carefully con- 
sider the complications from the alloy because disorder 
is found already for nearest neighbors. For systems in 
which these classes of defects are important, the configu- 
ration dependence of the surrounding sublattice must be 
taken into account. For low x Hgi-^Cd^Te we find the 
densities of these defects to be quite low and thus the 
error incurred in using the electronic energies calculated 
for the pure AC compound will not impact the major 
conclusions of our work. 

Finally, the band gap is one other important consider- 
ation when comparing the alloy to the pure compound. 
This is of particular importance for the intrinsic reaction 
constant and we employed an empirical fit to the tem- 
perature dependence of the alloy band gap and intrinsic 
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carrier concentration that are used to calculate Kp„. This 
is presented in detail in Sec. Ill G. 

III. CALCULATION OF DEFECT FORMATION 
FREE ENERGY: ELECTRONIC CONTRIBUTION 

A. Full-potential LMTO calculations 

Total energy calculations for the defect reactions were 
all obtained with a full-potential version24 of the LMTO 
method in the local-density functional approximation of 
von Barth and Hedin.25 This method has been tested 
extensively for most of the elemental sp and d bonded 
solids, the II-VI, III-V, and column IV semiconductors, 
and a host of other solids. Our results, which will be 
reported elsewhere,20 show good agreement with experi- 
ments for all systems studied, with small and systematic 
errors in structural and mechanical properties. The most 
prominent error, particularly for the present purposes, is 
the overbinding of the solid. 

In the FP LMTO method, the only important approx- 
imation we make beyond the local-density approxima- 
tion lies in the treatment of the interstitial matrix ele- 
ments. The LMTO method employs an atom-centered 
basis, represented by Hankel functions in the intersti- 
tial. For the calculations presented here, the basis con- 
sisted of a "triple kappa" basis 22 orbitals per atom, with 
energies -0.01, -1, and -2.3 Ry for the s and p or- 
bitals and -0.01 and -1 Ry for the d orbital. Inside 
the muffin-tin (MT) spheres, wave functions are repre- 
sented by spherical harmonics and numerically tabulated 
radial functions. The electron density and potential can 
be similarly represented since the density generated by 
a Hamiltonian is obtained by summing over the eigen- 
vectors. Outside the MT spheres, another treatment is 
necessary. Methfessel26 developed a simple, efficient way 
to represent the density and potential in the interstitial 
by extrapolation from the edges of MT spheres, where the 
value is well known. The electron density is represented 
in the interstitial as a linear combination of Hankel func- 
tions that are chosen to match the value and slope of the 
function at each MT sphere. Two Hankels per site and 
Im are enough to match the values and slopes at all MT 
spheres. This representation of the density throughout 
the interstitial is approximate, although it becomes ex- 
act near any MT sphere. Extensive tests show that the 
approximation works very well for close-packed systems, 
but the errors can become significant when the packing is 
poor. To ensure a good fit to the charge density and po- 
tential in the interstitial region of the zinc blende solids, 
we include empty spheres at each tetrahedral intersti- 
tial site (rendering the sphere packing bcc for the ideal 
lattice). In addition, we added orbitals to the basis by 
centering them on the empty spheres. The addition of 
2s and 2p orbitals changed the energy by approximately 
0.1 mRy/atom, showing that the basis is nearly complete. 

To assess the validity of the interstitial approxima- 
tion for the representation of the charga-density and in- 
terstitial matrix elements, an alternative approach was 
developed,24 which is similar to a procedure described by 

Jones and Sayyesh.27 When calculated in this way the 
total energies changed by approximately 1 mRy/atom, 
showing that the approximation is a good one. 

Both the charge density inside the spheres and the 
tails of Hankel functions centered on a neighboring sphere 
were expanded to I = 6. We estimate that the error intro- 
duced by truncation at I = 6 to be about 1 mRy/atom, 
in line with other errors in the method. The core was 
allowed to relax during the self-consistency cycle. The 
semicore d electrons in the tellurium were treated explic- 
itly as valence states in a second panel; explicit treat- 
ment of these states was found to introduce a small but 
significant correction to the total energy. For the 16- 
atom cells, the Brillouin zone integrals were done by a 
sampling method for the charge density and the linear 
tetrahedron method for the band-structure energy, aug- 
mented by Blöchl weights, and a mesh of four divisions 
was used (six k points). Checks showed that this was 
sufficient to converge the energy to 1 mRy/cell. 

B.   Supercell approximation 

Supercells are used in which a periodic array of defects 
is constructed. Defect formation energies are calculated 
from a difference in total energies of the compound with 
and without the defect. For example, if we denote £j(VA) 
as the energy of a supercell containing j lattice sites and 
one A vacancy, the energy for defect reaction (1) in Ta- 
ble I is given by 

E(VA) = £j(VA) + E(AR) - Ej(AB) (19) 

where E(AR) is the energy of an A atom in the reference 
state R and £j(AB) = jE(AB), where EAB is the energy 
of an ideal AB unit cell. For some defects the number of 
lattice sites changes in the reaction; for example, for the 
formation of the B antisite via reaction 4 in Table I, the 
formation energy is given by 

E(BA) = Ej{BA) + 2E{AR) - £i+2(AB). (20) 

Because we wish to calculate the formation energies 
in the dilute limit, we use the largest supercell compu- 
tationally feasible. For this paper, all calculations were 
done using 16-atom supercells. 

C. Gradient corrections to the local density 

The local-density approximation generally overbinds 
the solids. Several systematic extensions of the local- 
density function have been proposed that are based on 
generalized gradient approximation for the exchange and 
correlation energies. We have considered one of these 
extensions, that proposed by Langreth and Mehl,19 and 
have examined the systematics in the gradient corrections 
to the lattice constants, cohesive energies, bulk modulus, 
and other elastic constants for a wide array of solids;20 

preliminary results of that work for the zinc blende semi- 
conductors are shown in Table H. With few exceptions, 
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TABLE II. Bulk cohesive energies with and without the 
gradient corrections (GC) to the local density (LD), and com- 
parison with experiment. 

Compound LD 
Cohesive energy 

GC 
(eV/bond) 

Experiment 
Si 
Ge 

2.58 
2.22 

2.31 
1.88 

2.32 
1.94 

AIP 
AlAs 
AlSb 

2.35 
2.17 
1.91 

2.05 
1.85 
1.61 

2.13 
1.89 
1.76 

GaP 
GaAs 
GaSb 

2.08 
1.91 
1.70 

1.76 
1.56 
1.36 

1.78 
1.63 
1.48 

InP 
InAs 
InSb 

1.89 
1.77 
1.60 

1.56 
1.42 
1.26 

1.74 
1.55 
1.40 

ZnS 
ZnSe 
ZnTe 

1.82 
1.64 
1.43 

1.53 
1.35 
1.15 

1.59 
1.29 
1.20 

CdTe 1.33 1.04 1.10 

HgS 
HgSe 
HgTe 

1.29 
1.19 
1.09 

0.94 
0.84 
0.76 

1.02 
0.85 
0.81 

the gradient correction systematically improves the pre- 
diction of the cohesive energy, although the prediction of 
the elastic constants often worsens slightly. The improve- 
ment in the cohesive energy is largely due to improvement 
in the calculation of the total energy of the free atoms, 
rather than the solid. 

Here we are interested in calculating total energies for 
reactions in which a constituent is exchanged between 
the solid and the vapor, and thus the errors inherent 
in the local-density calculation of the cohesive energy 
will be present in these energies also. Because the re- 
laxations do not change significantly when gradient cor- 
rections are added, we have completed the majority of 
the calculation, including the relaxation, within the FP 
LMTO. The gradient correction energy, calculated at the 
LDA-determined relaxed positions, is then added to the 
LDA energy. 

D. Relaxation 

In general the lattice relaxes in the presence of a de- 
fect, thereby lowering the lattice energy. In the dilute 
defect limit, the radial relaxation of the lattice extends to 
infinity.28 In the supercells we account for this relaxation 
by allowing the overall lattice constant of the supercell 
to relax to minimize the supercell total energy. Because 
HgTe and CdTe are nearly lattice matched and their elas- 

• tic constants are the same, the defect relaxations in pure 
HgTe should be comparable to those in the HgCdTe al- 
loys. Second, for the most important defects, we permit 

the radial relaxation of the defect near-neighbor atoms. 
For the on-site defects (the vacancies and antisites) we 
permit only the nearest-neighbor atoms to relax. Esti- 
mates of these relaxation energies are given in Sec. V. 

Relaxation energies are calculated only for the neu- 
tral defects and are assumed comparable in the ionized 
defects. Nonradial relaxations such as the trigonal and 
tetragonal distortions that split the degeneracy of the 
triply degenerate T2 states may be important and may 
differ substantially for the different charge states of the 
system. Because the symmetry of the distortion depends 
on the charge state of the defect, distortions and charge 
states must be treated simultaneously. These distortions 
have not been considered in this paper. 

E.   Localized defect levels 

The calculation of the ionization states of the defects 
is perhaps the most difficult part of the calculation of the 
native defect concentrations, in a large part because of 
the inadequacies of the LDA in predicting the band gap of 
the semiconductors. This is additionally complicated by 
the fact that our calculations were done for HgTe, which 
is known experimentally to be a semimetal with a nega- 
tive band gap of -0.3 eV, so that even if the LDA band 
gap were correct, we would still have a zero-gap material. 
Furthermore, because the Coulomb fields associated with 
a defect may be extended, we expect that very large su- 
percells will be needed to isolate the localized levels of an 
individual defect. 

We have developed a method to calculate the loca- 
tion of localized defect levels in the band gap and have 
applied it to the arsenic antisite defect in GaAs. This de- 
fect was chosen because of its technological importance 
and because these levels have been determined experi- 
mentally by Weber et al.29 Calculations were done within 
the atomic-spheres approximation so that we could ex- 
amine the convergence of our results going to large (128- 
atom) supercells. Our approach is similar to that dis- 
cussed by Van de Walle et al.30 in which the shift in the 
Fermi level is examined as electrons are added to (or re- 
moved from) the defect, with a compensating uniform 
background charge added so as to maintain charge neu- 
trality. We find good agreement with experiments of the 
two antisite donor levels. We also have found these en- 
ergies agreed closely with the positions of peaks in the 
density of states, when referenced to the top of the va- 
lence band. Details of the calculation will been given 
elsewhere. 

Because the compositions of HgCdTe of interest here 
have narrow band gaps, the determination of the exact 
location of the defect levels in the band gap is not as im- 
portant for the purpose of calculating the defect concen- 
trations as in a wider-gap semiconductor such as GaAs, 
although the identification of the position of defect lev- 
els is useful in understanding mechanisms limiting carrier 
lifetimes. We have used the 54-atom supercells of HgTe 
to determine the type (acceptor or donor) of the various 
native defects based on the position of the Fermi level 
with respect to the states that he within ~ 0.1 eV above 
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the valence band edge. In addition, an assessment of 
whether the state is a single or double donor or acceptor 
and whether the state is shallow or deep has been made 
based on the position of the density of states peaks. For 
the mercury vacancy, we follow the arguments of Cooper 
and Harrison31 and assume that it is a negative-?/ cen- 
ter, with the neutral and double acceptor states being 
the only observable states; this assumption is consistent 
with the observation that the mercury vacancies are al- 
ways found to be doubly ionized acceptors.1 

F. Ionization state degeneracy 

The degeneracy of the various ionization states of each 
defect may differ and must be determined32 to complete 
the calculation of the density of ionized defects. As an ex- 
ample, we consider the A vacancy in a II-VI material and 
use tight-binding language for the purpose of discussing 
the defect states. There are four dangling anion hybrids, 
each donating 1.5 electrons to the system, for a total 
of six electrons at the vacancy site. Although we have 
not explicitly calculated it, for the purpose of computing 
state degeneracy, we assume that a symmetry lowering 
Jahn-Teller distortion will take place whenever there is a 
state degeneracy beyond two (for spin) and a partial oc- 
cupancy of that state. Thus we assume that the highest 
filled vacancy level in the neutral state is doubly occu- 
pied with one electron spin up and one spin down, and 
that the level can accept no other electron. Because there 
is only one unique configuration for this state, the state 
has a degeneracy of one. For the single acceptor state 
in which one electron has been added to the vacancy, 
the extra electron can either go in spin up or spin down, 
with equivalent energies. The degeneracy of the state is 
therefore two. Finally, if the vacancy is a doubly ionized 
acceptor, the lowest energy configuration for the two ad- 
ditional electrons is with one spin up and one spin down, 
with a net state degeneracy of one. This assignment of 
degeneracies—one, two, and one for the neutral, singly 
ionized, and doubly ionized acceptor, respectively—will 
hold even if the state is a Hubbard negative-f/ state, al- 
though in this case, the singly ionized state will not be 
occupied. 

A similar argument follows for the other donor and 
acceptor defect levels. In general, for the II-VI materials 
we find a degeneracy of one for the neutral defect state, 
two for the singly ionized state, and one for the doubly 
ionized state. 

G. Intrinsic reaction constant 

We are interested in calculating native point defect 
densities at the relatively high temperatures at which 
equilibration occurs. It is difficult to calculate Kpn theo- 
retically because of the difficulty in calculating the finite- 
temperature band structure; in general the band gap and 
the conduction and valence band shapertrre all tempera- 
ture dependent. An additional complexity in calculating 
Kpn in low x Hgi-sCd^Te is the nonparabolicity of the 

conduction and light-hole bands near their extrema.23 

For the purposes of evaluating the defect concentra- 
tions, we have calculated Kpn using Eq. (10) with mn = 
0.443;33 an empirical relationship for the dependency of 
the band gap on composition x and temperature34 

Ea{x,T) = Ee - E„ 

= -0.302 + 1.93i - 0.810x2 + 0.832i3 

+5.35 x 10~4T(1 - 2x), (21) 

which was fit for 4.2 < T < 300 K; and a linear disper- 
sion relationship for the conduction band with a chosen 
to yield good agreement with experimental values of the 
intrinsic carrier concentrations33 for T < 400 K. We as- 
sume that the intrinsic reaction constant thus computed 
is valid at temperatures up to 655 °C, although there have 
been no measurements above ~400 K to substantiate this 
extrapolation.35 

IV. CALCULATION OF DEFECT-FORMATION 
FREE ENERGY: VIBRATIONAL 

CONTRIBUTION 

When a defect is introduced into the lattice, the vi- 
brational modes of the system are modified. We must 
include in our calculation of the defect formation free en- 
ergy a term that comes from modifications of the vibra- 
tional spectrum. Most authors neglect this contribution 
to the formation free energy. As we will see in Sec. V, 
although the electronic contribution to the free energy 
is dominant, the vibrational changes can be significant 
and they make a substantial impact on the calculated 
magnitude of the defect concentrations. 

Although ideally the vibrational contribution to the 
formation energy should be calculated within LDA on 
the same footing as the static electronic contribution, 
including all of the anharmonic terms, this is a diffi- 
cult and computationally demanding task. Instead, we 
take an alternative approach and calculate the vibra- 
tional spectrum of the zinc blende lattice using Keat- 
ing's valence force-field model for the short-range elas- 
tic interactions.36 Although experimental elastic con- 
stants were used, LDA theory actually predicts the elas- 
tic constants within 10% for HgTe and CdTe, so we 
could equally well have used the calculated values. Be- 
cause we are dealing with an ionic crystal, we have in- 
cluded a point-charge model to account for the Coulom- 
bic interactions.37 Unlike the valence force-field contri- 
butions to the dynamical matrix, the Coulomb contri- 
butions are long range in nature and induce a macro- 
scopic electromagnetic field, which results in a screening 
of the transverse optical phonons. The ionic charge is 
chosen to yield agreement with experiments for the zone 
center splitting of the transverse and longitudinal opti- 
cal phonons. A Green's function approach is used to 
evaluate the lattice-defect-induced modifications to the 
phonon spectrum; from the perturbed phonon density of 
states the change in the vibrational free energy can be 
calculated. Like the electronic energies, the calculations 
were done for pure HgTe and are assumed applicable to 
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TABLE III. Neutral native defect formation energies for HgTe corresponding to reactions in 
Table I, where A is mercury, B is tellurium, and the free atom is used as the reference state 
AR. Local-density (LD) calculations were done using a 16-atom supercell, unless otherwise noted. 
Gradient correction (GC) energies are discussed in the text. The most important ionization states 
of the native point defects are also given. 

Energy (eV) 
  

Defect LD Relaxation GC Total Ionization 
state 

Vng 2.83 -0.05 -0.69 2.09 double acceptor3 

VT« 0.99 -0.01 0.49 1.47 shallow donor 
HgT. -1.00 0 1.46 0.46 deep acceptor 
TeHg 4.85 -0.19 -1.54 3.12 shallow donor 
HS'Hg 

0.75 -0.24 0.70 1.21 shallow donor 

»*/„ 0.81 -0.31 0.62 1.12 shallow donor 
Te/„8 4.78 -0.57 -0.83 3.38 shallow donor 
Te/T, 5.17 -0.84 -0.96 3.37 shallow donor 

"Assumed to be a negative-f/ center. 

defect calculations in Hg0.8Cdo.2Te. We expect that this 
is a reasonable assumption because the elastic constants 
for HgTe and CdTe are nearly identical. In this paper we 
only consider the vibrational free energy of the neutral 
defects and assume 

(22) 

for all ionization states. Details of the calculations are 
given in the Appendix. Preliminary results of this model 
were given previously.14,17 

V. RESULTS AND DISCUSSION 

A. Formation free energies in HgTe 

Calculated defect-formation electronic energies in 
HgTe for the defect reactions listed in Table I and with 
AR as the free mercury atom are listed in Table III. For 
all defects, the gradient correction for the 16-atom super- 
cell is calculated for the relaxed configuration, as deter- 
mined by the LDA calculation. 

Although the total electronic formation energies listed 
in Table III are important contributions to the formation 
free energy, these energies alone cannot be used to assess 
the relative importance of the various defects in the solid. 
This is mostly due to the free energy of the atom in the 
reference state (in excess of its free atom electronic en- 
ergy) that is not included in these electronic energies, and 
which is discussed in the Sec.VB. This point should be 
obvious because we could have just as well defined our 
defect reactions with respect to the tellurium molecule 
in the vapor phase and the HgTe solid and obtained the 
corresponding reaction energies that would be quite dif- 
ferent from those in Table III. 

The calculated phonon dispersion curve for HgTe is 
given in Fig. 1 and is in fair agreement with the experi- 
mental results. The discrepancies_with the experimental 
curves, in particular near the Brillbuin zone boundary, 
can be attributed for the most part to our neglect of 

long-range elastic interactions in the near-neighbor va- 
lence force-field model.38 The vibrational entropy and 
energy contribution to the defect formation free energy 
are calculated from the density of phonon states; results 
at 500 °C are given in Table IV. Equation (A20) can be 
used to estimate the values at other (high) temperatures. 

B. Defect reaction constants in Hgo.sCdo.aTe 

The reaction constants for each of the defect reac- 
tions listed in Table I are calculated as a function of 
temperature, where the reference state was taken as the 
monoatomic mercury vapor at pressure PHg. Electronic 
energies for the neutral defect formation energies are 
taken from Table III. Vibrational free energies are cal- 
culated using the general temperature expression, as dis- 
cussed in the Appendix, although for the purpose of ob- 
taining an analytical expression for the reaction constants 
with the primary temperature dependency explicitly dis- 
played, we have fit our results for 500 °C to the high- 
temperature expression, Eq. (A20). 

A third contribution to the formation free energy 
comes from the free energy of the mercury in the refer- 
ence state, less the electronic energy of the free mercury 
atom that is contained in the electronic defect formation 
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FIG. 1. Calculated phonon dispersion curve for HgTe. 
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TABLE IV. Entropy (5vib) and energy (Uvih) contribu- 
tions to the vibrational free energy in HgTe at 500 °C, for the 
defect reactions listed in Table I. 

Defect Sv,b(kB) Uv,b(eV) 
VHg 
VT. 
HgT« 
TeHg 

Hg, 
Te, 

-8.9 
9.7 

18.7 
-18.7 

9.5 
-9.5 

-0.20 
0.19 
0.39 

-0.39 
0.20 
0.20 

energies. For the vapor, we must include the transla- 
tion free energy of the atoms. The chemical potential 
for monoatomic mercury in the gas phase is given by the 
standard expression from statistical mechanics 

MHg = kT In 
kT  \2nmjigkT 

3/2 

(23) 

Combining these three contributions to the reaction 
free energy we obtain the reaction constants for each of 
the defect reactions. For example, for the neutral mer- 
cury vacancy in HgTe, we obtain 

r,.x,      ..,       , kT  /27rmHKA;T\3/2 

x(1.27xl0T-)«p(=^), (24) 

Z7>elect 
-FVn. -2.09, where  we  have  taken  gvx    =   1, 

0 = 1.48 x 1022 cm-3, and replaced exp(-Fvib/A:ßr) by 
exp[-(-0.2 eV+8.9kBT)/kBT}\Soo"C ^ 1-27 x 106 T~3. 
Reaction constants for the eight native point defects con- 
sidered in this paper are listed in Table V. 

TABLE V. Reaction constants for neutral defects in 
Hgo.8Cdo.2Te, corresponding to the defect reactions in Ta- 
ble I. The vibrational contribution is calculated at 500 °C 
and fit to the high-temperature power-law dependence [Eq. 
(A19)j so as to show the explicit temperature dependence. 
All calculations in the paper were done using reaction con- 
stants with the more exact expression for the vibrational free 
energies. 

Defect Reaction constant 

'Hg 

V£ 
Hg£ 

Te£g 

Kv*   = NT,]  = I-" x 1080T-iP„-,lexp(^§?) 

Kv*   = \Y£]  = 4.55 x l014T5ftgexp(-^) 
Kmi' = [

R
6TJ = 4-47 x lOT^expf-^) 

*iw5* = ITeHg] = 3.80 x lO^T-'p-^expC-l^) 
1.21 ■> 
kBT> *H«7    = P87H.1= 3.03 x 10"TiPHgexp(- 

*Hg"' = tH^X
TJ= 303 * 1014T^PHgexp(-^) S'T. 

X Te/H.        Ki.*    = [Te/„,1 = 7-23 x 1029 T-1P^exp(- D 
Te 

'T. 
Ä™- 

C'T. 
= [Te*1= 7.23 x WM2rlp£e*p(-ffi 

The reaction constants for the ionized defects are cal- 
culated using Eq. (6) for acceptors and its generalization 
for donors. We define 

Kx' 

and 

Kx*' 

[Xz>] = [Xx]f^exp(ZMF -El-- -E'a) 

= Kx*yuLeXp{zVLF-El--Ei)     (25) 

[X"] = Kx* —exp(i^ + ... + E5- zßF). 
9x* 

C. Defect concentrations in Hg0.sCd0.2Te 

(26) 

Gibbs's phase rule tells us that for a system of three 
components (A, B, and C) and two phases (zinc blende 
solid and vapor) there are three degrees of freedom. In 
evaluating the defect concentrations in Hgo.8Cdo.2Te we 
have chosen the temperature, the mercury pressure Pns, 
and the alloy composition x as these specified variables; 
the tellurium and cadmium pressures, the crystal stoi- 
chiometry, and the density of the various native point 
defects are determined by these conditions. 

The reaction constants in Table V are evaluated to de- 
termine the concentrations of the various native point 
defects as a function of temperature and pressure. The 
Fermi energy is determined by requiring charge neutral- 
ity. The activation energies for the shallow donor and 
acceptor states are taken to be zero; the sensitivity of 
our results to this assumption is discussed further below. 

Figure 2(a)-2(c) show the defect concentrations at var- 
ious equilibration temperatures. Pressure ranges are 
chosen so as to stay within the stability region of the 
material.6 At all temperatures and pressures considered, 
the dominant defect is found to be the doubly ionized 
mercury vacancy, in agreement with previous interpreta- 
tions of experiments;1 our result confirms the generally 
accepted experimental observation that the mercury va- 
cancy is responsible for the p-type behavior of undoped 
HgCdTe equilibrated at high temperatures. 

At all temperatures, the second most dominant defect 
is found to be the tellurium antisite. The antisite con- 
centration decreases more rapidly with Png than does 
the mercury vacancy, and thus is most important at low 
mercury pressures. As does the mercury vacancy, the tel- 
lurium antisite defect accommodates excess tellurium in 
the lattice, and therefore its presence also shifts the sto- 
ichiometry towards the tellurium-rich side of the phase 
diagram. 

The reason the tellurium antisite concentrations is so 
high deserves comment. The tellurium antisite formation 
energy is larger than that for the mercury vacancy by 1 
eV (Table III). However, as can be seen from Table V, 
the pre-exponential factor of the reaction constant for the 
tellurium antisite is enormous. The large pre-exponential 
factor results from the large phase space factor (entropy) 
gained by creating two free mercury atoms compared to 
that lost by elimination of a formula unit. In contrast, 
the mercury antisite density is low, despite the fact that 
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FIG. 2. Defect concentrations at annealing temperature for material annealed at (a) 250°C, (b) 500 °C, and (c) 655 °C. 

its formation energy is quite small; this again is a result of 
the pre-exponential factor that in this case is very small. 
Thus it is clear that one must be cautious in deducing the 
relative populations of the various defects based on the 
electronic contributions to the defect formation energies 
alone. 

While the tellurium antisite is never found to be the 
dominant defect controlling the doping under equilibrium 
conditions, it can introduce significant compensation at 
low mercury pressures. Moreover, the diffusion coeffi- 
cient of the antisite is expected to be quite small be- 
cause the diffusion of an antisite will necessarily involve 
at least one additional point defect, such as the mercury 
vacancy or the tellurium interstitial. Thus the tellurium 
antisite may not reach equilibrium densities for the times 
and temperatures corresponding to the low-temperature 
(~250°C), high-mercury-pressure anneals typically em- 
ployed to reduce the mercury vacancy density. If tel- 
lurium antisite densities are in fact equilibrated at a tem- 
perature at which the antisite diffusion effectively stops 
during cool down from the growth temperature, then the 
antisites may be frozen in at higher, nonequilibrium con- 
centrations. If such a freezing in of nonequilibrium anti- 
sites does occur, the tellurium antisit«nay in fact be the 
"universal" residual donor observed in densities of ~ 1014 

cm-3 in material subjected to a low-mercury-pressure, 

high-temperature anneal, although it is not clear why, for 
example, the frozen-in density of antisites would be the 
same for LPE material grown from both mercury- and 
tellurium-rich melts. The tellurium antisite may also be 
the defect responsible for the n-type carrier concentra- 
tions in as-grown MBE material,8 which is believed to 
be grown on the tellurium-rich side of the phase diagram 
where antisite populations are highest. 

Annealing strategies for reduction of the tellurium an- 
tisite densities can be developed and may be important if 
the antisite is the residual donor. Consider, for example, 
a two-temperature annealing process in which a first an- 
neal is done under mercury-saturated conditions, but at 
the lowest temperature for which the antisite is able to 
equilibrate in reasonable times. This anneal would serve 
to lower the antisite densities as much as possible. A sec- 
ond anneal would be much like that currently employed, 
that is, at ~250°C under mercury-saturated conditions 
and would serve to anneal out the mercury vacancies, 
leaving the antisite densities effectively unchanged. 

At 500 °C mercury interstitials are present at levels 
~ 1010 cm-3 and at no temperatures are present at lev- 
els high enough to significantly compensate the mercury 
vacancies, much less to turn the material n-type under 
equilibrium conditions. Unlike the tellurium antisites, 
the mercury interstitials are relatively fast diffusers,2 and 
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thus it is unlikely that nonequilibrium densities of inter- 
stitials will be frozen in. The mercury interstitial densi- 
ties that we predict are in quantitative agreement with 
those needed to explain the diffusion in Hgi_xCdxTe 
in the process simulator developed by Melendez and 
Helms.39 There is some uncertainty in the quantitative 
predictions of the mercury interstitial densities reported 
here because of the neglect of the alloy effects that we ex- 
pect to be more significant than for the mercury vacancy 
and tellurium antisite. Although this correction will be 
largest for the mercury interstitial surrounded by four 
mercury first neighbors, it should also be significant for 
the interstitial surrounded by four tellurium first neigh- 
bors because of the six cation second-nearest neighbors, 
which are only slightly more distant than the first neigh- 
bors. 

The mercury antisite and the tellurium vacancy and 
interstitial densities are all quite low, never exceeding 
~ 108 cm-3 at 500 °C. The corrections to these predicted 
densities may be sizable because of alloy effects, but such 
corrections should not significantly impact the densities 
of the mercury vacancy and tellurium antisite. 

Figure 2 shows the defect concentrations at the tem- 
peratures at which equilibration takes place; in Fig. 3 we 
show the defect concentrations for material equilibrated 
at 500 °C, then quench cooled to 77 K. We have assumed 
that the total defect concentrations are frozen in during 
the quench, for example, [VHg]total - [V&] + [Vfa] + {V£g} 
is constant, but that the electrons and holes are allowed 
to reach a new equilibrium corresponding to the low tem- 
perature. Figure 4 shows the low-temperature hole con- 
centrations for such quench-cooled materials as a func- 
tion of Pjjg and Tanneai, compared with the experimen- 
tal results of Vydyanath.1 The agreement of our theo- 
retical results with the experiments is remarkably good 
considering that our calculated results are obtained al- 
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FIG. 4. Hole concentrations at 77 K for material equili- 
brated at various high-temperature annealing conditions. Ex- 
perimental results taken from Ref. 1. 

most entirely from first principles. Moreover, there is a 
significant uncertainty in the quenching efficiency of the 
experiments; thus exact agreement with the experiments 
is not a valid criterion for testing the accuracy of the 
theory. 

From Fig. 4 one can see that for the higher anneal- 
ing temperatures our calculations predict a different de- 
pendence of hole concentration on the mercury pressure 
than is experimentally observed. The lower slopes for 
the theory result from our finding that the material is 
extrinsic at the higher temperatures. If the material is 
intrinsic when equilibrated as the experiments indicate, 
then [Vjjg]/,t oc P^g, 

as can De obtained from Table V, 
with up independent of [VH8]. However, if the material is 
extrinsic when equilibrated, that is, with [h'\ = 2[VJJ ], 
then from the reaction 

Hg^V^ + 2/^+Hg, (27) 

FIG. 3.  Defect concentrations for the 500 °C anneal after 
quench cooling to 77 K. 

we see that [V£g][h')2 oc [V£g]3 oc P^. 
The discrepancies between theory and experiments 

may be due to a number of factors. First, both uncer- 
tainty in the quenching efficiencies and analysis of the 
Hall data may account for some of the discrepancy. There 
are also a number of uncertainties in the theoretical cal- 
culation that may account for the discrepancies. These 
include uncertainties in the electronic and vibrational de- 
fect formation free energy, the ionization energies of the 
defects (which were assumed to be zero in the above cal- 
culations), alloy effects, and finally the uncertainties in 
the intrinsic reaction constant. These are discussed in 
turn below. 

First it is interesting to examine the sensitivity of our 
predictions to the accuracy of electronic and vibrational 
defect formation free energy. In Fig. 5 we have recalcu- 
lated the 77 K hole concentrations as a function of the 
annealing temperature with the electronic contribution 
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FIG. 5. Hole concentrations at 77 K for material equili- 
brated at various high-temperature annealing conditions, cal- 
culated with the electronic formation energy for the mercury 
vacancy increased by 10% and a rigid upward shift of the 
hole concentrations by a factor of 2.2. This figure is meant to 
demonstrate the sensitivity of our results to small changes in 
our calculated parameters. As discussed in the text, similar 
qualitative changes in our results can be seen by modifying 
the intrinsic reaction constant. 

to the mercury vacancy formation energy increased by 
10% and a rigid shift upward in our results by a factor of 
2.5; such small changes result in better agreement with 
experiments. The corrections to our calculated mercury 
vacancy and tellurium antisite formation energies due to 
alloy effects have not yet been included in these calcu- 
lations and are expected to be in the range of tenths of 
an eV, as discussed in Sec. IIC, and thus may account 
for the magnitude of correction used in this example. 
Preliminary estimates for the corrections for going from 
the 16-atom to the 32-atom supercell are ~0.1 eV for the 
cation vacancy and the tellurium antisite as well. Finally, 
Jahn-Teller relaxation energies have not been included 
in the present work and they may modify the electronic 
formation free energies. An increase in the effective vi- 
brational frequencies [w in Eq. (A20)] can account for 
an upward shift in the densities. Such an increase may 
arise from differences between the neutral and ionized de- 
fect vibrational free energies and, perhaps, anharmonic 
effects that may be large at defects such as the vacancy 
where an atom is missing from the lattice. Thus we see 
that our calculations agree with the experimental data 
approximately to within the known uncertainties of the 
theory. 

Our results are also very sensitive to the intrinsic reac- 
tion constant, which in turn depends sensitively on the 
band structure and its temperature dependence. HgCdTe 
is known to be anomalous in that its band gap is found 
to increase with temperature at room temperature and 
below, and although there is no experimental informa- 
tion on the temperature dependence of the gap at higher 

temperatures, we have assumed that Eq. (21) extrapo- 
lates to higher temperatures. In addition, as discussed 
above, we have assumed a parabolic valence band, but a 
linear variation of the conduction band, with the slope 
chosen to agree with the intrinsic carrier concentrations 
[with the energy gap given by Eq. (21) at temperatures 
below 400 °C]. While this fit is quite good for the temper- 
ature range over which it is fit (from 77 K to 400 K), the 
reliability of K^ at 250 °C and above for which we have 
presented our defect density predictions is unknown. To 
demonstrate the sensitivity of our results to the intrin- 
sic reaction constant we have calculated the 77 K tem- 
perature hole concentrations with the conduction band 
density of states increased a factor of 10 and have found, 
except at the very highest temperatures, that the cal- 
culated hole concentrations vary as P^, indicating in- 
trinsic behavior at the annealing temperature and result- 
ing in better agreement with experiments. Because our 
results depend sensitively on the intrinsic reaction con- 
stant, it is essential to establish a reliable prediction of 
its value at the annealing and growth temperatures where 
equilibration of the defect densities takes place.35 

We have suggested that nonequilibrium densities of tel- 
lurium antisites may be the residual donor, but they may 
also be important SRH recombination centers. It is ex- 
perimentally observed that the residual donor does not 
freeze out even for samples cooled to 4 K, and therefore 
its first ionization state must resonate in the conduction 
band. A SRH recombination center in Hgi_xCdj.Te with 
x = 0.22 lies ~25 meV below the conduction band edge, 
has a larger capture cross section for electrons than holes, 
and typically has a density smaller than, but compara- 
ble to, the residual donor density. The properties of the 
antisite are consistent with such a level: it is a donor; 
although we have assumed here it is a single donor, it is 
likely that a second donor level is present in the gap and 
may be ionized at the high processing temperatures; and 
the first ionization level may be resonant in the conduc- 
tion band, although we are unable to resolve this in our 
present calculations with certainty. A more quantitative 
prediction of the ionization levels of the antisite is needed 
to correlate it with a SRH center. 

A technologically important step in making ir detec- 
tors from Hgi_j.Cdj.Te is a low-temperature mercury- 
saturated anneal that is done to reduce the mercury va- 
cancy concentrations. In Fig. 6 we show the defect con- 
centrations for material annealed at various temperatures 
along the mercury-saturated side of the phase diagram. 
In such mercury-saturated anneals, if equilibrium can 
truely be reached, then the mercury vacancies will cer- 
tainly be the dominant defect, with the tellurium antisite 
density being negligible. However, as discussed above, it 
is unlikely that equilibrium densities of antisites will be 
achieved at these relatively low temperatures. 

The above analysis of defect concentrations can be re- 
peated for a number of different situations. For example, 
we can calculate the native defect densities with a donor 
or acceptor impurity present. At the high growth tem- 
peratures, the impurity concentrations would have to be 
comparable to the vacancy concentrations to modify the 
high-temperature vacancy concentration. We can also re- 
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peat the above calculations for reference state other than 
the mercury vapor. For example, in HgCdTe tellurium 
precipitates are known to form as a metastable state upon 
cooling from high growth temperatures.40 In the vicinity 
of a precipitate, the native defect populations will be 
in local equilibrium with the tellurium solid and defect 
concentrations for this reference state can be calculated. 
Because this constitutes a nonequilibrium situation, on 
must address diffusion rates to assess the extent of the 
modified defect atmosphere about a precipitate. 
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FIG. 6. Defect concentrations for material annealed along 
the mercury-rich side of the stability regiaa.at (a) the anneal- 
ing temperature and (b) after quenching to 77 K. 

VI.   SUMMARY AND CONCLUSIONS 

We have made quantitative predictions of the native 
point defect densities in Hgo.8Cdo.2Te as a function of 
temperature and pressure and find good agreement with 
the available experiments. We have substantiated the 
claim that the primary defect is the mercury vacancy 
and have identified the tellurium antisite as an impor- 
tant secondary defect. A first-principles approach was 
used for most of the quantities calculated, with the only 
significant empirical data being those needed to obtain 
the temperature-dependent intrinsic reaction constant. 

Although we predict the undoped material to be always 
p type, refinements in our calculations may show that the 
antisite may dominate in the low-mercury-pressure re- 
gion and turn the material n type by a native defect; our 
current accuracy is not sufficient to establish this. While 
most anneals of technological importance are done under 
mercury-saturated conditions to reduce mercury vacancy 
concentrations, exploration of the tellurium-saturated re- 
gion where we predict the tellurium antisite densities be- 
come comparable to those of those of the mercury va- 
cancy may help confirm the presence of tellurium anti- 
sites. 

A second means to explore the presence of tellurium 
antisites and their relationship to the residual donor is 
through a careful set of experiments using two temper- 
ature anneals, as discussed above. Because we do not 
know the temperature at which diffusion of tellurium ef- 
fectively stops, the temperature of the first anneal would 
have to be varied, as would the annealing time; the mer- 
cury pressure could also be varied, although mercury- 
saturated conditions are those one would eventually want 
to employ. The identification of the tellurium antisite 
as the residual donor can be made if the donor densi- 
ties in identically grown material were found to differ af- 
ter the second anneal (using the standard conditions for 
a mercury-saturated low-temperature anneal) depending 
on the conditions of the first anneal. A quantitative anal- 
ysis of this experiment would be quite difficult because, 
in addition to uncertainties in the temperature at which 
the tellurium antisite equilibration stops, if the tellurium 
antisite diffuses via a vacancy mechanism, the diffusion of 
the antisite will depend on the concentration of mercury 
vacancies present during the first anneal. 

It would also be useful to perform high-temperature 
annealing as was done by Vydyanath,1 but instead of 
quenching to 77 K and having to address the issue of 
quenching efficiency, follow the anneals by Hall analysis 
at the anneal temperature. Recently, an attempt at such 
an experiment was made by Wienecke et ai.,35 although 
an analysis of such an experiment requires knowledge of 
the high-temperature intrinsic reaction constant. 
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APPENDIX: VIBRATIONAL ENTROPY 
OF POINT DEFECTS IN SEMICONDUCTORS 

As discussed by Keating,36 we assume the elastic en- 
ergy for a zinc blende structure can be written as 

v = & £ lA(^)]2 + H £ [*m>)]7,   (Ai) 
1 i>V 

TiTi'-f-f^,, where i and i'sum over all bonds, A (7\7v) 
with f and f° the bond vectors connecting adjacent atoms 
in the distorted and equilibrium lattices, respectively. 
For first-neighbor interactions, the sum in the second 

For a nonionic material, the normal modes for the dis- 
placement of the atoms are determined by solving the 
equation of motion for the lattice cast in the usual man- 
ner in terms of the three-dimensional eigenvalue equation 

u;2w = De(k)u. (A2) 

Here De(k) is the (elastic) dynamical matrix and 

■U-2 
(A3) 

is the polarization vector of the normal modes, where -u; 
is the displacement vector of the ith atom. For the zinc 
blende lattice there are two atoms per unit cell, so i = 1 
or 2. 

In terms of the elastic constants, Cu and C12, the dy- 
namical matrix for the valence force field model is given 
by 

SdC 

-v/3i 
^1 

De(k)= V3mr 
1      _2dC12      O./LN    ,     2d(CI1-C13)«'(fc)j 

lTTl2 

2d<Zia^s(ife) + 2<*(cii-ci2)«(fc)i' 
v3mini] v3mim2 

2dCi2     S*(k) 4-  2d(Cll~Cl: 
. \/3mimj        V    '    ' V3mlr 

BdC 

v3m2 
Ü.J 

(A4) 

7henlZ 5e
t,
eqfibriUm bond length, rn, and rn2 are       The j m the vectors connecting atom 1 to atom 2 in 

the masses of the two atoms m the unit cell, 11S the 3 x 3       the ^ ceU ^ ^   iven b   d  1 f[m]   d   = a[ „, 
umt matrix, and S is cnvpn hv , _,^.^, .    .°       _ .J- .l       4li-LiJ> "2       4L-1-J-XJ' unit matrix, and S is given by 

with 

and 

*i(A) 

*a(*) 

' Si     S4     s3 

S =   I   S4      Si      S2 

\ S3      S2       Si 

: eikdl + eikdl + eikd~3 + eikd* 

: e
ifc'dl + eikd2 . e

ikd3 — eikd* 

,•*•<?! s3(k) = e 

s4{k) = eikd 

. g*kd?   _|_ g**d3 Jkdt 

— eik'dl — eikds + eikd* 

(A5) 

(A6a) 

(A6b) 

(A6c) 

(A6d) 

d3  =  \fill], and d4  =  f [111], where a is the lattice 
constant. 

While short-range elastic forces are described within 
the valence force field model, in crystal with an ionic con- 
tribution to the bonding, Coulomb interaction must also 
be included in the dynamical matrix. The long-range na- 
ture of the Coulomb interaction complicates the problem 
considerably. Using a pairwise point-charge model of the 
Coulomb interaction, the Coulomb dynamical matrix is 
given by37 

De
aa.(K,K'\k)=     _f=*L£yaa,(/sle»|0) 

K" 

1    =4>aa>(>™'\k) , (A7) + y/mKmK 

where 

<f>aa,(K,K'\k) = -SsSaLp*/* x Y,Haa.{VP[x{l,K) -£(/',#c')]}e*[*('.«)-*(',.«')l 
4ne0 

qKqK> y^(G + £)a(G + k)c 

voe0 4^ 
G 

|G + Jfc|2 
exp 

4P 
exp{iG[x(«;) - £(«')]}■ (A8) 

In the above equation I and K label the unit cell and the reciprocal lattice vectors, v0 is the unit cell volume, 
basis atoms, a refers to the Cartesian component, qK is e0 is the permitivity constant, and P is a (numerically 
the effective charge, x(n,l) = X(K) + x{l) is the posti- determined) measure of the Gaussian charge distribution 
tion vector of the /cth atom in the Ith unit cell, G are used in the Ewald summation. Haylx> (y) is given by the 
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integro-differential expression 

2     d 
Ha,a.(y) = 

yftdy, , %/3   \y Jy 
exp(—x2)dx (A9) 

The full dynamical matrix is given by the sum of the 
Coulomb and elastic contributions 

D(fc) = Dc(£) + De(fc). (A10) 

In the present problem we are interested in calculating 
the change in the vibrational free energy of the crystal 
lattice due to the creation of a defect. This is done using 
the Green's function, which is most conveniently calcu- 
lated in terms of the density of states of the phonon sys- 
tem. For the ideal crystal without a defect, a Brillouin 
zone integration is done to calculate the phonon density- 
of-states matrix 0, from which the Green's function can 
be calculated via 

wmin 

+©(^)in(:;::^),     <AH) 

where the singularity in the integral has been explicitly 
removed. The change in the total density of states when 
a defect is introduced into the crystal can be deduced 
from Dyson's equation to obtain 

A0(u2) = ilm-^ln{det[l - G°(w2)V]} , (A12) 

where V is the perturbation potential. In the present 
case we use a strictly site-diagonal perturbation potential 
corresponding to the mass change due to the introduction 
of an isolated defect. 

The partition function for the phonon system in the 
zinc blende lattice is given by 

z = U 
exp \2kjr) 

,l-exp(^) 
(A13) 

where u»j are the normal modes of the system. The to- 
tal vibrational entropy of the system is obtained from 
Ä = Ä(fcßTlnZ), which gives 

Qvib 
°total = ]T   Mn Ismh-i ( ** 

2 \2kBT 

hu>. 

2T 
fcoth(^l (A14) 

2kBT)y 

We convert the sum to an integral by the replacement 

p(u)du =  /     2p(u)2)udu (A15) 

where p(o>2) = Tr0(a;2). We are interested in the change 
in the vibrational entropy upon formation of a defect, in 
which case we replace p by Ap to obtain 

S- = 2fcB^°Ap(W
2)|^coth( 

hw 

ksT 

-ln|2sinM2Är) uidu). (A16) 

Similarly for the vibrational energy, we use the relation- 
ship IT vib a 

d(l/kBT) 

U vib 

JO 
Ap(w2 

hxZ to obtain 

hu     ,  / hu2 \ 
—coth   -—- 
2 \2kBT 

udw,   (A17) 

with the change in the vibrational free energy jFvlb = 
rrvib  T^ cvib 

While the calculation of the vibrational terms in this 
paper was done using the general expressions above, it 
is interesting to examine the expression for the free en- 
ergy in the high-temperature limit, which is appropriate 
for high growth and processing temperatures, and to ex- 
amine the explicit temperature dependence of this term. 
In the high-temperature limit fUumax <C kBT and Fvlb 

reduces to 

Tivib 2kBT IX kgT 
p(u)üjdw. 

This integral can be shown to be equal to 

Fvib « keTr^ln ( 
hw 

\kB~T 

(A18) 

(A19) 

where nm is the number of phonon modes created or 
destroyed in the defect reaction of interest and Q is an 
appropriately weighted frequency. What enters the cal- 
culation of the defect concentrations is exp(—Fvlh/kBT), 
which reduces to 

exp (SHE)""-05- (A20) 

in the high-temperature limit.  For the defect reactions 
in Table I we obtain 

"3  VHg 

3   VTe 

6 HgTe 

-6  TeHg 

+3  Hg/ 

I -3  Te/ . 

(A21) 

We will use this simple power-law dependence of Eq. 
(A20) to extract a simple power-law temperature depen- 
dence of the reaction constants. 

B-16 



1534 M. A. BERDING, M. VAN SCHILFGAARDE, AND A. SHER 50 

1 H. R. Vydyanath, J. Electrochem. Soc. 128, 2609 (1981). 
2 D. A. Stevenson and M-F. S. Tang, J. Vac. Sei. Technol. B 

9, 1615 (1991), and references therein. 
3 S. M. Johnson, D. R. Rhiger, J. P. Rosbeck, J. M. Peterson, 

S. M. Taylor, and M. E. Boyd, J. Vac. Sei. Technol. B 10, 

1499 (1992). 
4 S. H. Shin, J. M. Arias, D. D. Edwall, M. Sandian, J. G. 

Pasko, and R. E. DeWames, J. Vac. Sei. Technol. B 10, 
1492 (1992). 

5 R. S. List, J. Electron. Mater. 22, 1017 (1993). 
a H. R. Vydyanath, J. Appl. Phys 65, 3080 (1989). 
7 M. C. Chen, S. G. Parker, and D. F. Weirauch, J. Appl. 

Phys. 58, 3150 (1985). 
8 R. Sporken, M. D. Lange, S. Sivanathan, and J. P. Faurie, 

Appl. Phys. Lett. 59, 81 (1991). 
9 G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 55, 1327 

(1985); Phys. Rev. B 30, 1853 (1984); G. A. Baraff, E. O. 
Kane, and M. Schlüter, ibid. 21, 5662 (1980). 

10 D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. 
T. Pantelides, Phys. Rev. Lett. 66, 648 (1991); D. B. Laks, 
CG. Van de Walle, G. F. Neumark, P.E. Blöchl, and S. T. 
Pantelides, Phys. Rev. B 45, 10 965 (1992). 

11 J. Bernholc N. O. Lipari, and S. T. Pantelides, Phys. Rev. 
B 21, 3545 (1980); J. Bernholc and S. T. Pantelides, ibid. 
18, 1780 (1978); J. Bernholc, N. O. Lipari, and S. T. Pan- 
telides, Phys. Rev. Lett. 41, 895 (1978). 

12 S. B. Zhang and D. J. Chadi, Phys. Rev. Lett. 64, 1789 
(1990). 

13 M. A. Berding, M. van Schilfgaarde, A. T. Paxton, and A. 
Sher, J. Vac. Sei. Technol. A 8, 1103 (1990). 

14 M. A. Berding, M. van Schilfgaarde, and A. Sher, J. Vac. 
Sei. Technol. B 10, 1471 (1992). 

15 M. A. Berding, A. Sher, and A.-B. Chen, J. Appl. Phys. 
68, 5064 (1990); J. Vac. Sei. Technol. A 5, 3009 (1987). 

16 J. T. Schick and C. G. Morgan-Pond, J. Vac. Sei. Technol. 
A 8, 1108 (1990); C. G. Morgan-Pond and R. Raghavan, 
Phys. Rev. B 31, 6616 (1985). 

17 M. A. Berding, M. van Schilfgaarde, and A. Sher, J. Elec- 
tron. Mater. 22, 1005 (1993). 

18 O. K. Andersen, O. Jepsen, and D. Glotzel, Highlights 
of Condensed Matter Theory, edited by F. Bassani et al. 
(North-Holland, Amsterdam, 1985), p. 59. 

19 D. Langreth and D. Mehl, Phys. Rev. B 28, 1809 (1983). 
20 M. van Schilfgaarde, A.T. Paxton, M. A. Berding, and M. 

Methfessel (unpublished). 
21 F. A. Kroger, The Chemistry of Imperfect Crystals (J. Wi- 

ley & Sons, Inc., New York, 1964). 
22 F. A. Kroger and H. J. Vink, in Solid State Physics Vol. 3, 

edited by F. Seitz and D. Turnbull (Academic Press, New 
York, 1956), p. 307. 

23 S. Krishnamurthy and A. Sher (unpublished). 
24 M. Methfessel and M van Schilfgaarde (unpublished). 
25 U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972). 
26 M. Methfessel, Phys. Rev. B 38, 1537 (1988). 
27 R. Jones and A. Sayyesh, J. Phys. C 19, L653 (1986). 
28 J. P. Hirth and J. Lothe, Theory of Dislocations (J. Wiley 

& Sons, Inc., New York, 1982), p. 49. 
29 E. R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. 

Schneider, and T. Wosinski, J. Appl. Phys. 53, 6140 (1982). 
30 C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and 

S. T. Pantelides, Phys. Rev. B 39, 10791 (1989). 
31 D. E. Cooper and W. A. Harrison, J. Vac. Sei. Technol. A 

8, 1112 (1990). 
32 For a general discussion of the calculation of state degener- 

acy in semiconductors, see E. A. Guggenheim, Proc. Phys. 
Soc. London Sect. A 66, 121 (1953), and references therein. 

33 G. L. Hansen and J. L. Schmit, J. Appl. Phys. 54, 1639 
(1983). 

34 G. L. Hansen, J. L. Schmit, and T. N. Casselman, J. Appl. 
Phys. 53 7099, (1982). 

35 There has been a recent attempt to predict the intrinsic 
carrier concentrations at temperatures up to 600 CC by M. 
Wienecke, M. Schenk, and H. Berger, Semicond. Sei. Tech- 
nol. 8, 299 (1993), although their analysis is suspect be- 
cause of the temperature dependences they have assumed 
for the high-temperature mobility. 

36 P. N. Keating, Phys. Rev. 145, 637 (1966). 
37 A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. 

Ipatova, in Solid State Physics, edited by H. Ehrenreich, F. 
Seitz, and D. Turnbull (Academic Press, New York, 1971), 
Suppl. 3, p. 1. 

38 W. A. Harrison, Electronic Structure and the Properties 
of Solids (W. H. Freeman and Company, San Francisco, 
1980). 

39 J. L. Melendez and C. R. Helms (unpublished). 
40 H. F. Schaake and J. H. Tregilgas, J. Electron. Mater. 12, 

931 (1983). 

B-17 



APPENDIX C 

Hg0.sCd0.2Te native defects: densities and dopant properties 

M. A. Berding, M. van Schilfgaarde, and A. Sher 

J. Electron. Mater.   22, 1005 (1993) 

C-l 



Journal of Electronic Materials, Vol. 22, No. 8, 1993 Special Issue Paper 

Hg08Cd02Te Native Defects: Densities and 
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We examine the native defect equilibrium in HgCdTe, including cation and 
anion vacancies, interstitials, and antisites in the analysis. A gradient correction 
to the local density functional has been added to the defect formation enthalpies 
calculated within the local density approximation, and preliminary predictions 
of the dominant ionization states are made. Temperature-dependent defect 
formation entropies and the temperature dependence of the pre-exponentials 
are incorporated into the calculation of the defect densities. Degenerate Fermi- 
Dirac statistics are used for the electronic equilibration, and the intrinsic 
reaction constant as a function of composition and temperature is calculated. We 
theoretically substantiate the doubly ionized mercury vacancy as the dominant 
defect in HgCdTe, and expect the doubly ionized mercury vacancy densities to 
be comparable in HgZnTe. We predict that tellurium antisites are donors and 
will be present for some annealing conditions in sufficient quantities to be 
measured and possibly to affect device performance. 

Key words: Calculation of defect densities, HgCdTe, HgZnTe, native 
defects, Te antisites as donors 

INTRODUCTION 

The importance of native defects in HgCdTe is 
undisputed, with the dominant defect believed to be 
the double acceptor Hg vacancy.1 The evidence for 
these defects is largely indirect and depends on their 
being ionized for observation. Neutral defects and 
compensating defects are more difficult to measure, 
and neither their densities nor even their presence is 
well established. 

Our goal is to identify the important native defects 
in HgCdTe as a function of temperature and mercury 
pressure. Predictions of the absolute defect concen- 
trations are difficult because of the accuracy required 
for reaction enthalpies and entropies that enter in 
exponentials. Our calculations although using a state- 
of-the-art method, are subject to a number of limita- 
tions, such as the supercell approximation that is 
used to calculate defect formation enthalpies. Despite 
these limitations, for which error bars can be esti- 

(Received October 12, 1992; revised January 13, 1993) 

mated, we find good agreement with experiment for 
the defect densities in narrow-gap HgCdTe. While 
there are some fitted parameters in the theory—for 
example, the temperature variation of the band gap— 
none have been chosen to fit the measured defect 
densities we are predicting. Thus, deviations must be 
ascribed to deficiencies in our approximations or to 
physical mechanisms that have not yet been incorpo- 
rated. 

In our previous work, we used the linearized muf- 
fin-tin orbital (LMTO) method within the atomic 
spheres approximation (ASA),2 and later the full- 
potential (FP) Harris Foulkes approximation.3 The 
ASA substitutes a spheridized density for the true 
Honenberg-Kohn density functional in the local den- 
sity approximation. While the ASAis computationally 
fast, it cannot reliably predict atomic forces, and 
therefore lattice relaxations. Because of the elimina- 
tion of the ASA shape approximation, in the FP 
calculations, we have predicted the breathing mode 
relaxations about the defect sites. Using the resulting 
defect formation enthalpies, in Ref. 3, we predicted 
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Table I. Formation Energies and Ionization States 
of the Native Point Defects 

Defect 

v- 
TeHg 

HgTe 

Hg, 

ZnTe 
CdTe 
HgTe 

Formation Energy 
(eV) 

1.93 
2.39 
2.68 
0.75 
4.47 
1.75 

4.66 (4.8)* 
4.17 (4.4)* 
3.37 (3.3)* 

Ionization 
State 

shallow acceptor 
donor 
shallow donor 
deep acceptor 
shallow donor 
shallow donor 

Note: Formation energies refer to the neutral defect reactions in 
Eqs. 1-6 in text. See text for discussion of shallow and 
deep. *Experimental cohesive energies. 

ratios of neutral native defects. In the present paper, 
we have made several important improvements to 
this previous work: 

• A gradient correction to the local density func- 
tional4 has been included, which we find has a 
significant impact on the defect formation en- 
thalpies; 

• Absolute defect densities are predicted; 
• The reaction constant for electron-hole pair pro- 

duction as a function of temperature and cad- 
mium composition for degenerate Fermi-Dirac 
statistics is predicted; and 

• The primary ionization states of the native de- 
fects have been tentatively identified and incor- 
porated into the defect equilibrium. 

The problem of predicting the defect concentrations 
is complicated by the fact that we are dealing with an 
alloy. The defect formation energies were calculated 
for HgTe, the primary component of the pseudobinary 
alloys HgCdTe and HgZnTe. Using a tight-binding 
model we have shown5 that the vacancy formation 
energy has a nonlinear dependence on the constitu- 
ents in the near alloy environment, with the 
nonlinearity being most dramatic for the removal of 
the common-lattice atom (i.e. tellurium for HgCdTe 
and HgZnTe). The variation of the mercury vacancy 
formation energy, while less dramatic because the 
first-nearest neighbors are always tellurium, is as 
much as ~0.1 eV (depending on the constituents in the 
second-neighbor shell). We have not yet incorporated 
this level of detail into our first-principles calcu- 
lations. Additionally, we have not included cadmium- 
or zinc-based defects (such as the cadmium antisite); 
because HgTe is the dominant constituent for compo- 
sitions of technological importance, we believe this 
exclusion is justified. The alloy effects have been 
included in the present calculations via the composi- 
tion dependence of the band gap which, because of its 
temperature dependence, has been extracted from 
experiment and the shape of the conduction and 
valence bands. 

REACTION ENTHALPIES 

We consider the following native defects: mercury 
vacancy VHg, tellurium vacancy VTe, mercury antisite 
HgTe, tellurium antisite TeH , mercury interstitial 
Hg,, and tellurium interstitialTe,. A couple of correc- 
tions have been added to the reaction enthalpies 
calculated within the Harris-Foulkes approximation 
to the FP-LMTO. First, the ASA is used to determine 
the ionization state of the defect—that is, whether it 
is a donor or acceptor. We have not yet determined the 
ionization energies of the defect, but we do indicate 
whether the state appears to be "deep" or "shallow." 
We assume that only the shallow states are elec- 
trically active. Because we have not yet determined 
the ionization energies, we will for the present as- 
sume that they are zero for the shallow states—that 
is, that the donor and acceptor levels lie close to the 
conduction and valence band edges, respectively. We 
assume that the deep states are not electrically ac- 
tive. This approximation is likely to be good because, 
at high temperatures where the defect concentrations 
are equilibrated, carrier concentrations are high 
enough so that free carrier screening may effectively 
reduce the shallow-state activation energies. Details 
of the calculational method used to determine the 
ionization states of the various defects will be re- 
ported elsewhere. 

The second correction to results involves the in- 
corporation of ß gradient correction to the local den- 
sity functional. This correction has not yet been imple- 
mented in the FP-LMTO, and thus was done within 
the ASA. We expect that the FP gradient correction 
will be nearly equal to that from the ASA, because the 
density gradient is predominantly radial, the 
nonspherical components eliminated in the ASA be- 
ing small. In Table I, we summarize the formation 
energies including the gradient correction for the 
neutral defect reactions in Eqs. 1-6 below. Also shown 
are the cohesive energies of the constituent com- 
pounds HgTe, CdTe, and ZnTe from a gradient-cor- 
rected self-consistent FP calculation; one can see that 
the agreement with experiments is quite good. The 
tentative identification of defect ionization states is 
also given in Table I. 

DEFECT CONCENTRATIONS 

Defect concentrations are determined using a quasi- 
chemical analysis of the defect formation reactions.6 

We consider the following defect reactions 

HgTe^VHgTe + Hgg 

Hgg -» HgVTe 

2Hgg->HgHgTe 

2HgTe -» TeHgTe + 2Hgg 

Hgg -> Hg, 

HgTe -> Te, + Hgg 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where we have chosen the HgTe unit cell and free 
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atomic mercury, Hgg, as the reference states. Other 
reactions of interest can be obtained by taking linear 
combinations of these equations. For example, the 
neutral Schottky defect reaction is obtained by add- 
ing Eqs. 1 and 2 to obtain 

HgTe -> VHgTe + HgVTe 

or, as it is more commonly written, 

0-» V + V V Hg ^   V Te 

(7) 

(8) 

The concentrations of the defects in Eqs. 1-6 can be 
obtained from the evaluation of the corresponding 
reaction constants: 

KvT,=[VTe]/pHg 
KHgT,=[HgTe]/p|g 

KTeHg=[TeHg]p|s 

KHgl=[Hgl]/pHg 

KTei=[Tei]p Hg 

(9) 

(10) 

(ID 
(12) 

(13) 

(14) 

In these expressions, pHg is the mercury pressure in 
atmospheres and square brackets refer to con- 
centrations per cubic centimeter. The evaluation of 
these reaction constants was discussed in our previ- 
ous paper3 as well as in many standard texts.7 

In the present calculations, we have used the forma- 
tion energies from Table I and temperature-depen- 
dent entropies given in Ref. 3. 

Ionized defect concentrations can be determined 
from the concentration of neutral defects from 

[D-] = (gD./gD.)exp((ED.-EF)/kBT)[D»]       (15) 

for donors and 

[A'] = (gA./gA.)exp((EF-EA.)/kBT)[A«]        (16) 

for acceptors. The dot and prime superscripts cor- 
respond to a positively and negatively charged spe- 
cies, respectively; gx is the degeneracy of the state X; 
ED.and E.. are the positions of the first ionization 
levels for the donor and acceptor, respectively, in the 
one-electron picture; EF is the Fermi energy; kB is 
Boltzmann's constant; and T is the temperature in 
Kelvin. Similar expressions are obtained for the sec- 
ond ionization state. 

In addition to the above equations for the deter- 
mination of the native defect populations, we have the 
reaction for the generation of electron-hole pairs 

0->e'+h\ (17) 

The corresponding reaction constant is 

Kpn=[h'][e'] = pn (18) 

where p = [h'jand n = [e'], as in the usual notation. 
In general, Kpn depends on the structure of the 

conduction and valence bands, the band gap energy, 
the Fermi energy, and the temperature variation of 

these quantities. Several limits are often encountered 
in the evaluation of K  . First, when the conduction pn ' 
and valence bands are parabolic, although not neces- 
sarily isotropic, E ~ k2, and the reaction constant can 
be written in terms of the Fermi-Dirac integrals as 

K_ 
.4(2*ksT 

I    h2 (mhme)      F, V2 
EF-EC 

kBT •V2 
(Et^r 

where Fy2 is the Fermi-Dirac function; Ec, Ev, and EF 
are the conduction-band, valence-band, and Fermi 
energy, respectively; mh and me are the hole and 
electron density-of-states effective masses, respec- 
tively; and h is Planck's constant. In the nondegenerate 
limit, this reduces to the familiar expression 

K,.= 
,f2pk, 
\— £)'(. )   exp 

kBT 
(20) 

which is independent of the Fermi energy. For the 
general degenerate case, which will apply even at 
moderate temperatures for narrow-gap HgCdTe, K^ 
will depend on EF and therefore in general will not be 
independent of the presence of extrinsic carriers. 
Additionally, the assumption of parabolic bands may 
be poor for the narrow-gap materials, where the 
dispersion near the conduction band edge is rather 
more linear than parabolic,8 i.e. E = ak. This case 
obtains with the Fermi-Dirac integral function of 
order 2 and 

K. 

=2 
27ikBTmh 

h2 

3/2 
kgT 
a 

pn 
3     ( 
F 

V 

EF-EC 

kBT V2 ̂

E"-EFL](21) 
kBT 

In the present program, we have used Eq. 21 to 
evaluate K  , with m.r= 0.43, pn' n ' 

E g,x,T) = Ec-Ev = 
-0.313 +1.787x + 0.444x2 - L237x3 + 0.932x4 

+ (0.667- L714x+0.760x2)T/1000 (22) 

taken from Ref. 9, and a chosen to yield good agree- 
ment with experimental values of the intrinsic carrier 
concentrations.10 

The calculation of the intrinsic reaction constant for 
narrow-gap HgZnTe is more difficult to evaluate, 
given the more limited data base for evaluation of the 
high-temperature band gap, effective masses, and 
intrinsic carrier concentration. 

From the zero-temperature band structures, the 
valence-band effective masses are found to be compa- 
rable for HgCdTe and HgZnTe with equal band gaps, 
while the conduction-band effective mass for HgZnTe 
is slightly larger than for HgCdTe.11 Overall, though, 
we expect Kpn for the two materials to be comparable. 

To calculate the native defect concentrations at a 
given temperature and mercury pressure, we have to 
determine the Fermi energy which satisfies the neu- 
trality condition 
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2S[D"] + 2[Dr] + [h-] + 2l[A:] + I[A;] + [e'](23) 
i i i i 

The concentrations of neutral defects which are inde- 
pendent of the Fermi energy can be solved for directly 
for a given pHg and T. 

RESULTS 

The low-temperature (77K) hole concentrations as 
a function of mercury pressure for various equilibra- 
tion temperatures are shown in Fig. 1 for x = 0.2 
HgxCdlxTe. Shown for comparison are the experi- 
mental data from Vydyanath.1 In the calculations, we 
allowed both atomic and electronic equilibrations at 
the high temperature at which the annealing takes 
place; we then assume the total defect concentrations 
are frozen-in upon quenching, and that at 77K only 
the electronic equilibrium is reestablished. In agree- 
ment with Vydyanath,1 we conclude that the mercury 
vacancy is the dominant defect in HgCdTe; and it 
behaves as a double acceptor, although we have not 
yet determined the activation energy. We find the 
tellurium antisite, which is a donor, is also an impor- 
tant defect. 

In Fig. 2, we show a breakdown of the concentra- 
tions of various defects as a function of mercury 
pressure for the lowest and highest annealing tem- 
peratures of Fig. 1. The defect densities are those 
present at the annealing temperature, not at 77K, so 
as to show the atomic and electronic defects present 
during equilibration. Although the total number of 
each class of defects remains unchanged upon quench- 
ing, the relative concentrations of the neutral and 
ionized defects will be affected. From Fig. 2a, one can 
see that the material is intrinsic at the higher mer- 
cury pressures, and becomes extrinsic as the pressure 
is reduced and then highly compensated at the lowest 
mercury pressures. If the doubly ionized mercury 

10 19 

102 

Mercury pressure, Atm 

1. Hole concentrations at 77K as a function of mercury pressure 
for material annealed at high temperatures. Experimental data were 
taken from Vydyanath.1 Theory is shown as solid lines for pressures 
within the stability region at a given temperature. 

Fig 

vacancy is the dominant defect, the intrinsic regime is 
characterized by [h] ~ P~*, while the extrinsic, uncom- 
pensated, limit is characterized by [h] - P^3. It is the 
conversion to extrinsic behavior and the compensat- 
ing tellurium antisite donors that are responsible for 
the roll-off on the low-pressure side of the hole concen- 
tration curves in Fig. 1. For the material annealed at 
655°C, shown in Fig. 2b, the material is nearly extrin- 
sic (dominated by the doubly ionized mercury va- 
cancy) for mercury pressures throughout the stability 
region, although compensation by the tellurium 
antisites becomes more important at the lower mer- 
cury pressures. The extrinsic behavior is evident in 
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Fig. 2. Predicted defect densities present at the anneal temperature, 
as a function of mercury pressure for annealing temperatures of (a) 
400°C and (b) 655°C. 
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Fig. 1 by the [h] - P-^3 behavior. As is evident in Fig. 
1, the pressure at which the material goes from 
intrinsic to extrinsic shifts to higher mercury pres- 
sure as the annealing temperature is increased. 

The discrepancies between our results and ex- 
periment can be attributed to a number of factors. 
First, we have calculated the formation energies for 
HgTe and applied them directly to HgCdTe, with the 
alloy taken into account in the calculation of the 
reaction constant for electron-hole pairs, and in the 
assumption that the defect ionization levels are at the 
band edges. Although this should be a reasonable 
approximation, we have shown that the vacancy for- 
mation energies are sensitive to the near-neighbor 
environment.5 The removal of this approximation will 
lead to a raising of the vacancy formation energy by as 
much as ~ 0.1 eV and, from examination of Fig. 1, will 
yield better agreement with experiment. Next, we 
have not taken into account the nonradial relaxation 
about the vacancy site and its effect on both the 
formation energy and entropy, nor have we yet in- 
cluded the effect of the entropy of local-mode soften- 
ing of the ionized vacancy relative to the neutral 
vacancy. Additionally, the correct ionization energy 
must be incorporated into the calculation. Finally, we 
have used a band structure in calculating the reaction 
constant for electron-hole pairs which yields agree- 
ment with the intrinsic carrier concentrations and 
band gap at T < 400K; the band structure at higher 
temperatures is speculative, and we need further 
experiments or theory to confirm its validity. 

At the annealing temperature, the material is in- 
trinsic and all of the native defects are nearly com- 
pletely ionized. While the total numbers of defects are 
frozen-in upon quenching from high temperature, the 
ratio of ionized to nonionized defects does change. At 
77K, the material is extrinsic and, for material an- 
nealed at high temperatures (T > 400°C), is domi- 
nated by the acceptor level of the mercury vacancy. 
Consequently, upon quenching, the ratio of ionized to 
nonionized defects decreases for acceptor defects and 
increases for donor defects. 

Defect densities present after a low temperature 
(~250°C) annealing under mercury-saturated condi- 
tions are of technological interest. Our predictions for 
defect concentration as a function of 1/T for mercury 
pressures corresponding to mercury saturated condi- 
tions are shown in Fig. 3. At T < 300°C, a mercury- 
saturated annealing step is effective in reducing the 
vacancy concentration to less than 1015 cnr3. Because 
the density of tellurium antisites varies as P^j, com- 
pared to PHg for the mercury vacancy, the antisites are 
most important on the tellurium-rich side of the 
stability region, and thus are less important for these 
mercury-saturated annealing. 

While the mercury vacancy and tellurium antisite 
are the primary defects that will affect the electrical 
activity in Hg08Cd02Te, several other defects are of 
interest because of their role in diffusion, for example 
the mercury and tellurium interstitials. In Fig. 2, we 
see that the densities of mercury antisites and mer- 

u 
as 

'55 
c 
a> 
Q 
o 
£ "3 
Q 
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Fig. 3. Defect densities as a function of temperature for mercury- 
saturated annealing conditions. 

cury interstitials are less than 1011 cm-1, while the 
densities of tellurium vacancies and interstitials are 
completely negligible. The defect formation energies 
used for the calculation of the interstitial densities 
were from our ASA calculations without lattice relax- 
ations, and therefore carry a larger uncertainty than 
the antisite and vacancy formation energies. We ex- 
pect that improvement of the defect total-energy 
calculations will result in a potentially significant 
lowering of the formation energy, and consequently 
an increase in the interstitial defect concentrations. 
Even so, it is doubtful that we will find tellurium 
interstitials at densities large enough to account for 
the tellurium diffusion, which was believed to be via 
the tellurium interstitials. 

While the tellurium antisites are donors and are 
predicted to be present in significant densities in 
HgCdTe, we do not predict that equilibrated tel- 
lurium antisites are responsible for the experimentally 
observed p-to-n conversion. Even if such a p-to-n 
conversion were to occur as a consequence of refine- 
ments in our calculations, the conversion would occur 
on the tellurium-rich side of the stability region. 
Because antisites are likely to be immobile, relatively 
high densities of tellurium antisites introduced at 
high temperatures during growth may persist through 
low-temperature annealings undertaken to remove 
mercury vacancies. In this case, the tellurium antisites 
could be responsible for the p-to-n conversion. A 
careful correlation of the n-type character with the 
high-temperature preparation conditions would help 
to confirm or negate this possibility. 

Because of the similar magnitude for the electron 
and hole effective masses in narrow-gap HgCdTe and 
HgZnTe, we expect that the intrinsic reaction con- 
stants will be similar in the two materials. In addi- 
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tion, the mercury vacancy formation energy will be 
similar in the two materials for compositions low in 
cadmium or zinc, and therefore we expect the defect 
concentrations to be similar in the low-x materials 
with comparable band gaps. The tellurium antisite 
was found to be strained in the HgTe lattice2-3 and 
produced a compressive strain in the surrounding 
lattice. Because of the shorter bond lengths in the 
HgZnTe alloy, the strain associated with the tellu- 
rium antisite is larger than in HgCdTe with a compa- 
rable band gap; consequently, the formation energy is 
expected to be larger in HgZnTe. Thus, we expect the 
tellurium antisites to be less important in HgZnTe 
than in HgCdTe. If the tellurium antisite is respon- 
sible for the residual n-type character in low-tem- 
perature annealed material, lower n-type carrier con- 
centrations will be realizable in HgZnTe. 

CONCLUSIONS 

We have calculated the low-temperature hole con- 
centration as a function of annealing temperature 
and pressure for HgCdTe. We find good agreement 
with the fit to the experimental data. Remaining 
discrepancies can be attributed to relaxation and 
finite ionization energies in the vacancy formation 
energies, and uncertainties in Kpn at high tempera- 
tures. We conclude, in agreement with experiment, 
that the dominant defect is the doubly ionized mer- 
cury vacancy. We do not make any conclusions about 
the presence of the singly ionized Hg vacancy; we will 
examine the activation energies for both the singly 
and doubly ionized states in future work. We find that 
tellurium antisites are donors and are present in 
significant densities for low mercury pressures at 
temperatures above 350K. At lower temperatures 

and high mercury pressures, at which annealing 
typically takes place, tellurium antisite equilibrium 
densities are negligible. However if their density 
remains at levels corresponding to high temperature 
because their low temperature diffusivities are low, 
then such antisites could affect mobilities and even be 
the residual donor. None of the other native defects 
are present in sufficient quantity to influence device 
characteristics. 
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Dislocations crossing a junction in HgCdTe have little effect on detector 
responsivity, but are known to reduce the zero bias impedance R,A and increase 
the leakage current, especially at low temperatures where R,A is dominated by 
tunneling and generation/recombination processes. We have calculated the 
Coulomb and piezoelectric fields associated with dislocations in an attempt to 
interpret their effect on the junction's transport properties. Dislocation electric 
fields can affect transport since they are superimposed on the built-in and 
applied junction fields which control the currents. The screening of the fields in 
the neutral region is consistent with the dislocations' small effect on responsiv- 
ity. Their impact in the space charge region is found to be significant and 
consistent with the nonlinear dependence of performance on dislocation density. 
The piezoelectric potential of the typical 60° dislocation in a sphalerite crystal, 
and the Coulomb potential of a dislocation crossing the junction plane other than 
normally, are angularly varying in the junction plane. Angular variation of the 
potentials can be qualitatively interpreted as an angular modulation of the 
potential barrier. Because of the nonlinear dependence of junction currents on 
the barrier (or the junction potential), the angular variation of the currents does 
not vanish upon averaging. We find that the range of the Coulomb potential is 
too small to account for a major portion of the experimentally reported perfor- 
mance degradation but may be responsible for the reduction of RgA at cryogenic 
temperatures and low dislocation density, and that the longer range piezoelec- 
tric potential may be important. We also find that superposing the potentials of 
neighboring dislocations, because of the nonlinear dependence of junction 
leakage currents on junction potentials may account for the observed nonlinearity 
of performance degradation with dislocation density as measured by etch pit 
density. 

Key words: Dislocations, HgCdTe, piezoelectric, transport properties 

T*rnjr»r»TTr"TTr»Tvr by liquid-phase epitaxy (LPE) on lattice-matched 
UN l KUJJ utl 1UXN CdZnTe substrates. Typical values of active (n layer) 

The p-on-n Hg^Cd/Te (MCT) double layer and cap (p layer) compositions are x = 0.2241 and x > 
heterojunction (DLHJ) mesa-diode-based focal plane 0.28, respectively. The n layers are typically indium- 
arrays (FPAs) shown in Fig. 1 are currently leading doped in the growth process, with carrier concen- 
the art in long-wave infrared (LWIR) applications. trations as low as permitted by series resistance and 
The most effective structures to date are those grown capacitance concerns, but usually realized at > 2 x 1015 

  cnr3. The cap p+ layers are typically arsenic doped 
(Received December 21,1993; revised August 15, 1994) with p = 2 x 1017 cm-3. The metallurgical p-n junction 
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Fig. 1. Cross-sectional view of DLHJ mesa diode. 

is positioned on the narrowgap side of the hetero- 
junction, and the grading width is chosen to minimize 
the barrier in the valence band that occurs in such 
structures, as the barrier reduces the collection effi- 
ciency of photon-induced minority carriers (holes) in 
the n-layer from the back-lit array. 

The virtues of the DLHJ are that the major ab- 
sorption occurs in the n-type base layer where the 
photon-induced minority carriers are holes. The mi- 
nority carrier lifetimes of holes in n-type materials 
are much longer than those of electrons in p-type 
material, which compensates for the mobility differ- 
ence between electrons and holes. As a result, high 
quantum efficiencies are possible, and lower n-type 
carrier concentrations can be obtained. In addition, at 
least in principle, the generation-recombination (G- 
R) and tunneling dark currents are decreased in the 
heterojunction compared with those ofhomojunctions, 
and therefore the device noise is less. However, even 
if there is no tunneling current reduction, the wider 
bandgap still prevents interface-assisted recom- 
binations from occurring at the metal contact with the 
p-cap layer. 

There is ample experimental evidence2-5 that dislo- 
cations degrade the performance of MCT IR detec- 
tors; dislocations may be the most deleterious of the 
defects limiting the capabilities of the material. The 
measurements that lead to these conclusions relate 
various material parameters pertinent to detector 
performance to dislocation density. The important, 
interrelated parameters in the thin epitaxial layers 
suitable for the fabrication of LWIR photovoltaic 
devices are minority carrier lifetime, zero-bias junc- 
tion impedance (R„A product), and 1/f noise. 

Dislocations are thought to influence the electronic 
properties of semiconductors primarily through their 
electric field. In this paper, we report the results of 
analyses of the space charge (Coulomb) and of the 
piezoelectric fields associated with dislocations in an 

attempt to understand the mechanism through which 
they affect the responsivity and dark currents at low 
temperature. 

SUMMARY OF EXPERIMENTAL RESULTS 

In the work to be discussed, dislocation densities 
are measured by etch pit densities (EPDs). The etch 
pits on the film surface are associated with threading 
dislocations that are assumed to penetrate the films. 

Shin et al.2 have studied the relationship between 
dislocation density and minority carrier lifetime in 
epitaxial MCT films grown by LPE, metalorganic 
chemical vapor deposition (MOCVD), and molecular 
beam epitaxy (MBE). At small dislocation densities, 
minority carrier lifetime is not affected by the pres- 
ence of dislocations, and the temperature and carrier 
concentration dependence of the lifetime suggests 
Auger recombination at high temperature (above 
150K) and Shockley-Read recombination for T<150K 
However, even in samples with very low EPDs (down 
to pixels with no etch pits), the lifetime and the R^ 
product exhibit great variability, sometimes exceed- 
ing an order of magnitude. 

In these high-quality samples, the transition from 
Auger to trap-assisted recombination can occur a T as 
low as 60K3. We take this observation as evidence that 
the ultimate device performance limits are imposed 
by recombination centers not associated with thread- 
ing dislocations. In the low temperature range of 
interest for IR detectors, for EPD densities above the 
mid-105 range •minority carrier lifetime decreases 
with dislocation density at an EPD"273 to EPD"3'4 rate. 
The observed behavior is consistent with dislocations 
acting as Shockley-Read recombination centers with 
a trap level 60 meV above the valence band edge and 
a trap density proportional to EPD"*4. Although not 
explicitly stated, the results reported suggest that 
dislocations active as recombination centers are likely 
to carry a core charge. Similar results have been 
reported by Baranskii et al.4 who find that mobile 
dislocations introduced in bulk MCT by indentation 
give rise to a trapping level at Ev + 50 meV and act as 
impurity getters. Johnson et al.5 have measured the 
dependence of R^A in arrays of photovoltaic (PV) 
diodes on dislocation density by deliberately using 
plastic deformation to introduce dislocations in local- 
ized regions and carrying out the measurement on 
both high and low EPD diodes of the same array. They 
find that the resistance is relatively insensitive to 
EPD or decreases linearly at low densities, and qua- 
dratically at high densities. The nonlinear behavior 
sets in at small dislocation densities (mid-105 cnr2 or 
less) at low temperature (40K), at higher densities 
(>106 cm-2) at 78 and 120K. 

Measurements of the temperature dependence of 
the leakage current of diodes with different disloca- 
tion densities show that the high temperature (diffu- 
sion regime) R,A is not affected by the presence of 
dislocations, but that as the temperature is reduced 
below 150K, the RQA values diverge, differing by 
several orders of magnitude at 40K and below. The 
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authors interpret the low temperature leakage cur- 
rent as G-R current. They adopt a model6 for estimat- 
ing the reduction of the minority carrier diffusion 
length by recombination at dislocations, and then 
account for the inverse quadratic increase of the dark 
current at high dislocation densities by the ad hoc 
assumption that closely spaced dislocation pairs con- 
tribute a conductance that exceeds the sum of the 
conductances of two individual dislocations. We shall 
point out below that such nonlinear behavior may be 
a feature of tunneling currents associated with dislo- 
cations. 

CHARGED DISLOCATIONS 

The Coulomb fields associated with electrically 
charged dislocation cores can act as scattering and 
recombination centers and may attract or repel 
charged point defects. The presence and amount of 
charge on a dislocation core depends on the distribu- 
tion of localized levels in the bandgap in the core and 
on the Fermi level in the semiconductor. Once the core 
structure of the dislocation has been determined, we 
can take a phenomenological view and consider only 
the electric field and potential generated by a given 
core charge. The effective radius of the field is taken 
to be that distance from the dislocation core within 
which the field is large enough to move a carrier the 
distance between dislocations in a minority-carrier 
lifetime as measured in dislocation-free material. In 
this way, we define a volume within which the life- 
time and mobility are affected by the presence of a 
charged dislocation. If the affected volume surround- 
ing all the dislocations is a significant fraction of the 
total volume, then their presence can affect lifetime 
and mobility and hence RoA. This relates the deple- 
tion radius R or screening radius I to a threshold 
dislocation density nD. The results of the calculation 
to follow, relating dislocation density, effective vol- 
ume, and temperature, are summarized in Fig. 2. 

The bandgap of the material sets the boundary 
condition for the potential at the core radius. We 
assume, conservatively, a core radius of 5A and a core 
edge potential of 0.1 eV. The core edge potential is 
limited to the bandgap by free carrier accumulation. 
It may of course be smaller, in which case the volume 
over which the dislocation's Coulomb potential can 
affect performance is reduced. We shall find that, 
except in the vicinity of the metallurgical junction as 
discussed below, the Coulomb potential is not a major 
factor affecting performance. Therefore, this con- 
servative assumption is justified for providing a limit. 
We represent the dislocation core by a cylindrical 
charge density -p in a cylinder of radius a in n-type 
material with donor density ND. 

We calculate the Coulomb field both using the 
depletion approximation and the exact space charge 
equation, which takes into account the thermal agita- 
tion of the carriers. The exact equation must be used 
if the screening radius is larger than the depletion 
radius. In the depletion approximation, the charge 
density is assumed to be equal to the donor density out 

to a depletion radius R and zero outside. The poten- 
tial, depletion radius, and core charge are determined 
by integrating the Poisson equation with the core 
edge potential as boundary condition. Using the val- 
ues given above results in a plot of R as a function of 
carrier density shown in Fig. 2. It turns out that the 
radius is close enough to the Debye length to make the 
depletion approximation questionable at low tem- 
peratures, where the intrinsic carrier density is small. 

The exact space charge equation is 

r d7r if=h Isinh^" 9F) "sinh ^ 
where 

e<|>  T2    ekT E. 
kT e2n. kT 

l^inh.N^ 
n. 

For q> small this is 

1 d    dcp    (2      ,     >       2 

with the extrinsic Debye length 

Ii- 
ekT     2.77 x10s 

coshcpj.    e2ND Nr 
■, ND in cm-3. 

Then with x = r/LD ,we have (1/x) (d/dx) x (dcp/dx) = (p, 
the zero order modified Bessel equation. The solution 
of interest is the decreasing Hankel function K^x). 

The depletion approximation is only valid for 
r < R - LD. Since R and LD are comparable, the exact 
expression must be used. We let <p = CK„(x) and 
evaluate C from <(>(a) at x = a/LD. 

The electric field is 

E==di=kTdcp=^T_dcp= &TCKi(x) 

dr      e   dr    eLD dx    v   e 

where n is the carrier density. 
During its lifetime T a carrier moves a distance I, the 

"otcnt"1) 

100%   100%     100% 

100%   100%     100% 

30%      100%      100% 

0.3%    3%        30% 

<0.1% <0.1%    <0J% 

ixi0-is mo-'« 

Fig. 2. Depletion radius R and screening radius /(meters) at 40, 70, 
and 300K as functions of carrier density in cnr3. The table to the right 
of the figure converts the screening radius of the left-hand-axis to the 
percent volume of the material which is within the screening volume of 
a dislocation of various dislocation densities. 
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Table I. Mobility and Lifetime Values for 
Screening Radius I as a Function of n 

T, K 

40 
78 

300 

\X, cmWs 

1.9 x 105 

9x10" 
lxlO4 

T,S 

1x10-« 
3xl0-7 

1 x 10-7 

mean free path in the Coulomb field, given by 

C ur _ fi dr _ r' 
JO   v        Jo JJJH] ~ Jo 
r'dr 

v 
dr 

nkT„„ 
\ij CK 

'r ^ 

vLDy 

where v is the carrier's velocity and \i its mobility. 
Given the lifetime and mobility, this expression can 
be solved for the free path I, that is to say, the distance 
the carrier drifts before recombining. We equate this 
distance with the effective range of the dislocation's 
field, which we identify with the screening radius. 
The screening radius should be distinguished from 
the smaller diffusion length an electron travels in a 
field free region in a lifetime. We show a plot of the 
screening radius I as a function of n for T = 40, 77, and 
300K in Fig. 2. To compute this plot, we have used the 
values of mobility and lifetime in Table I. 

As expected, I turns out to be larger than the 
depletion radius, confirming the need for the more 
accurate screening theory. With the parameters we 
use, the calculation of the screening radius over five 
orders of magnitude of the carrier density, and over 
the temperature range from 40 to 300K, results in 
values of I that range from about 5 Lp at n = lO^cnr3 

to 10 LD at n = 1015 cm-3, resulting in a rate of decrease 
of I with carrier density at a rate slightly slower than 
LD~U2. At the higher temperatures, the intrinsic car- 
rier densities exceed ND and the screening radius 
would be smaller. 

The carrier density in the neutral region of the 
device material generally equals or exceeds 1014 cm4. 
The screening length at this carrier density, even at 
room temperature, is less than 6 (J.m, and it is only 
about 3 |im at 40K. Therefore, we can conclude that in 
the presence of mobile carriers, especially at cryo- 
genic temperatures, the core charge fields have a 
limited range. This is also consistent with the obser- 
vations of Johnson et al.5 that the responsivity of p on 
n heterojunction devices (dependent on diffusion in 
the neutral region) is little affected even by high 
dislocation densities. 

The situation is less clear in the vicinity of the 
metallurgical junction of the p-n diode detector. In 
this region, the carrier density is reduced to the 
intrinsic value n under zero bias, and below that with 
reverse bias. We estimate a value of n; about 5 x 1011 

cm-3 for Hg08Cd02Te at 40K, with a decrease of about 
a factor of two for every 5 mV of reverse bias. This 
reduction of the carrier density is confined to a small 

region, and an assessment of its quantitative effect 
will require detailed computation. Nonetheless, it is 
worth observing that we estimate a screening radius 
of 45 ^m for this carrier density. This is consistent 
with the experimental finding5 that R„A at this 
temperature is already decreasing with dislocation 
densities in the 105 cnr2 range, corresponding to this 
order of separation between dislocation lines. The 
literature values of n = 1.2 x 1014 cm"3 at 77 K and n; 
= 4.0 x 1016 cm-3 at 300K7 correspond to progressively 
shorter screening lengths, which is also consistent 
with the experimental observation that the decrease 
in R(A with dislocation density has a higher threshold 
at the higher temperature. 

Because its form is geometrically simpler and more 
readily visualizable in this context, we have discussed 
screening entirely in connection with the effect of core 
charges. It should be kept in mind that similar, 
although quantitatively different, considerations ap- 
ply to the screening of the piezoelecitrically induced 
potentials, to be discussed next. 

DISLOCATION STRAIN FIELDS AND 
PDEZOELECTRIC POTENTIALS 

The MCT crystal structure lacks inversion symme- 
try and it, therefore, is piezoelectric. In a piezoelectric 
crystal, the strain field around a dislocation may 
generate an electric field. Conversely, an electric field 
applied to a piezoelectric crystal can produce a stress 
that may deform the crystal. This self-consistent field 
problem has been treated rigorously for a straight 
dislocation in a homogeneous insulating crystal (in- 
trinsic wide gap semiconductor) by Saada.8 The gen- 
eral analysis was extended by Faivre and Saada9 to 
include the effects of screening by free carriers. Sev- 
eral qualitatively significant conclusions can be drawn 
from this work: 

• The strains are only slightly affected by the 
electric field; that is, the inverse piezoelectric 
effect is small, and the electric field can be calcu- 
lated directly without imposing the requirement 
of self-consistency. 

• The electric field in the vicinity of the dislocation 
core can be quite large, and the dislocation can 
interact strongly with charges (point defects or 
mobile carriers) in its vicinity. 

• In a semiconductor, the dislocation preferentially 
traps carriers of a particular sign. 

• The estimated screening distance is of the order 
of several Debye lengths. 

Booyens and Vermaak10 have applied Saada's analy- 
sis to (110)/(111) dislocations in zinc-blende III-V 
semiconductors and Booyens and Basson11 to CdTe 
and MCT. They do not explicitly include the effects of 
screening as analyzed by Faivre and Saada8 in these 
calculations. As a result, they find that an uncharged 
dislocation, in the absence of screening, generates a 
net radial field. They then suggest that the disloca- 
tion core is likely to acquire a charge that compen- 
sates for the radial field and so minimizes the total 
energy of the dislocation. 
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We have extended the analysis to the commonly 
observed 60° dislocations in intrinsic MCT. The dislo- 
cation lies along 
60° to the disloca 

lOll and has a Burgers vector b at 
ion line £. The edge component b of 

the Burgers vector is chosen as xx; x2 is the normal to 
the slip plane; and X3 is £. The transformation matrix 
from principal axis coordinates is 

T = — ij     V6 

( 1     -2     O 
V2    V2    V2 

ö/3     0     V3y 

The transformation of the piezoelectric tensor is 

^■k=TlpTjqTkrdp,r. 

In cubic symmetry and principal axis coordinates, 
all the nonzero components of the piezoelectric tensor 
are equal: d123 = d132 = d231 = d213 = d312 = d321 = d. The 
nonzero components of the transformed tensor (d') 
are 

A'     — A'     — A'     — —A'    — Q 133 — Q 313 ~ Q 331 — —tl 111 T7! > V6: 

A'      — A'      — A'      — A*      — A'      — A'      _  u 

Q 112 ~ Q 121 ~ U 211 ~" Q 233 ~ U 323 ~ Q 332 ~ fK  » 

A'   -M 
a 222"   ^3- 

_d_ 
V3: 

(1) 

The piezoelectrically induced bound charge density 
is1 

P(r) = ~ dükejk,i with ejk,i = 97 ejk <2) 

where e is the isotropic dielectric constant, ejk is the jk 
component of the strain tensor, and summation over 
repeated indexes is implied. 

For a screw dislocation in linear anisotropic theory, 
the displacements are 

(„ \ 
11 - n - 0 11 =  tan-1 A ux - Uj, - u, Ug -     2 

where b3 is the screw component of the Burgers 
vector, and 

_ VC44C55   .    „,    =c      __1- 

3' 

C55 = C44 - g H; H = 2C44 + c12 - cu. 

Here cy and c'.. are the components of the elastic tensor 
in the principal axis and transformed coordinate 
systems, respectively. The nonzero components of the 
strain tensor are, using 

eü = 9 (ui.j + ui,i): ei3 = e3i ^d e23 = e32; 

all others zero. 
Using Eq. (1) and Eq. (2) shows immediately that for 

this case p = 0. 
Even in anisotropic linear elasticity (assuming the 

dielectric constant isotropic), the screw component of 
the 60° dislocation induces no piezoelectric effect. 
Therefore, pure screw <110> dislocations will also 
show no piezoelectric activity even if they are dissoci- 
ated. We now proceed to consider the edge component. 
In order to arrive at a transparent expression, we will 
make the isotropic elastic approximation. This will 
not affect the order of magnitude calculations that 
follow. 

For an edge dislocation, with v Poisson's ratio 

b 
tan-' X2 1          XlXa 

1    2JI Xl '2(l-v)(xf+xl)_ > 

b 
U2=-2^ 

^"2\ln(x? + x|)+   ,   X\"X'      , 
4(1-v)    v *     2'   4(l-v)(xf+xl) 

u3=0. 
The nonzero strain components are 

en =7 
b (l-2v)X3+(3-2v)x?x2 

in      2(v-l)(x?+x|)2      ' 

e * = - c22        t 
b (l-2v)x3-(l+2v)X2x2 

2TT       2(v-l)(xf + x2)2 

c   _ b       xxxl-xf 

~12    27t2(v-l)(x? + xi)2' 

From Eq. (2) and Eq. (1), 

p(r) = - (d'ulelu + 2d'112e12 x 

+ °- 21ieil.2 + °- 222e22,2-' 

so, substituting the components of the piezoelectric 
tensor from Eq. (1) and evaluating the strain tensor 
gradient, we find 

PK,X2) = -j=-(-V2elu - 2e12 a - elu + 2e^) 

bd (2v - 3)x* - 2V2(2v + l)xtxg 
2(v-l)(xf + xl)3 27tV3e 

30x^x^ + 2V2(3 - 2v)xfe2 - (2v + 7)xj 

2(v-l)(xf+x|)3 

When this expression is converted to polar coor- 
dinates in the x^ plane (xy plane), it becomes a 
somewhat simpler expression with angular terms 
having quadrupole and hexadecapole form: 
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with 

_ (2v-3) cos49-4cos29 + 3 

so 

Hi " 2(v-l) 8r2 

P2 = 
2V2 (2v +1) sin 46-2 sin 29 

2(v-l) 8r2 

30     1- - cos 40 
P3  2(v-l) 8r2      ' 

2V2(3-2v)sin 4e + 2sin29 
P4 - 2(v-l) 8r2 

(2v + 7)cos46 + 4cos26 + 3 
P5 - 2(v-l) 8r2 

bd 
P=           fir,, 

1 

[5 cos 40 - V2 sin 40 + 2(1+v) cos 29 - V2(l - 2v) sin 20] 

Q 
= — X [an cos(n0) + bn sin(n0)] 

r    n=2,4 

which defines a useful constant C, and four parameters 
depending only on Poisson's ratio. 

This simple expression reveals the charge density 
to have an inverse square decay and quadrupole and 
hexadecapole terms only. Note in particular that 
there is no monopole term and hence no net piezoelec- 
tric charge induced on the dislocation line. This rather 
transparent expression has not been revealed in pre- 
vious work (Refs. 10, 11). 

To obtain the piezoelectric potential, we need to 
solve the Poisson equation V2<i> = -47tp/e with this 
charge distribution as the source. In two dimensions, 
the formal solution of the Poisson equation is 

<D(r,0) = 

^Vdrfde' 
rJO Jo 

1    1     v 1 In — + £ — 
r>    m=im 

(~ \ 

vr>y 
cos in (9-9') P(r') 

( 1        2 
- Y — f" d9'[sin(m0) sin(m0') + cos(m9) cos(m9')l 
7t m=1m 

r'dr' 
< X K cos(n9') + bn sin(n9')l V ™ 
Ä* JJ°      T 

( ~   \ 

where r> and r< are the greater and lesser, respectively, 
of r and r'. In analogy with the solution for the elastic 
field, the integral diverges at the origin because of the 
r-2 dependence of p. To deal with this difficulty, we 
adopt the same procedure that is used to avoid the 

divergence of the elastic energy of a dislocation at the 
origin in continuum theory. We set cutoffs at an inner 
radius, Rp and an outer radius, R2. The cutoff at Rt 

removes the core singularity and the cutoff at R;, 
allows p to be expanded in multipoles. Later, we will 
identify Rx as the core radius and we will let R2 -> °°. 
We now have 

<D(r,9) = ^X-- 
1 n=2,4 h 

an cos(n9) + bn(n9)f-^ £ (r'pdr' + r" f2 (r'pV 

= C 

1-if^i 
2    r 

i[a4cos(49) + b4sin(49)] 

+-[a2cos(29) + b2sin(29)] 

for r < R2. For r > R2, we have 

0(r, 9) = C j - [a4 cos(40) + b4 sin(40)] \ 

+^ [a2*cos(29) + b2 sin(29)] - 

1 ifM 1 
2    41 r J     4 

r 

vR2y 

(   ^2 
'  r 

VR2V 

R, R, 

R, R, 

which is a multipole potential. The two solutions are 
matched at R2. We can now let R2-» 00 and neglect the 
terms in Rx, which amount to a small correction near 
the core, to get a potential valid for r » Rx 

<D(r,0) = 

cU[a4 cos(49) + b4 sin(40)] + |[a2 cos(20) + b2 sin(29)] 

which is independent of r. 
This rather surprising behavior is a consequence if 

the inverse square decay of the charge density. In this 
connection, we can pursue the analogy with the well- 
known elastic solution for an edge dislocation by 
pointing out that while the elastic energy per unit 
length is given by 

yfo2 

4?t(l-v) 

(where u is the isotropic shear modulus), the piezo- 
electric energy per unit length is (taking v = 0.3) 

9JC
2
C

2 

1.6 
In 

R2__j. 

Rj    8 

which is six orders of magnitude smaller, justifying 
our neglecting the reverse piezoelectric effect. In both 
cases, the first term comes from the energy in an 
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10 um 10 um 10 um 

a b c 
Fig. 3. Piezoelectric properties of a 60° dislocation in Hg0 8Cd0 2Te: (a) Piezoelectric charge normal to the dislocation line. Solid contours are 1,0.5, 
0.1, and 0.05 x 10'2e/cm3going out radially; dotted contours are the negative of thse; (b) quadrupole component of the piezoelectric potential, and 
(c) hexadecapole component of the piezoelectric potential. 

infinite cylinder integrated to R2 which diverges loga- 
rithmically, and the second term is the effect of the 
cylindrical surface bounding the dislocation in a finite 
crystal (the image term). 

For a good numerical calculation, we would need 
the piezoelectric constant of the alloy, which has not 
been determined. For an order-of-magnitude esti- 
mate, we can use the piezoelectric constant of CdTe, 
3 x ICH5 coul cm-2. The Burgers vector is 4 x ICH cm, 
and Poisson's ratio can be taken as 0.3. Using these 
values, we have computed the charge, potential, and 
field plots of Figs. 3a-3c. 

It should be understood that because of the sym- 
metry of the strain field associated with a straight 
dislocation, several of the possible sources of the 
piezoelectric potential are identically zero. In the 
reduced symmetry of curved dislocations, kinks, and 
jogs, these components of the potential do not vanish 
and may be significant. 

AVERAGING NONLINEAR EFFECTS 
The results we have obtained afford a qualitative 

insight into the effect of the piezoelectric potential on 
the characteristics of a pn junction threaded by a 
dislocation. The angular variation of the potential 
will alternately add to and subtract from the built-in 
potential of the junction, so that the barrier seen by a 
carrier crossing the junction will depend on its trajec- 
tory. The modification of the built-in potential due to 
the angularly varying piezoelectric potential can in- 
crease or lower the barrier seen by a carrier crossing 
the junction in a direction other than perpendicu- 
larly. Because of the strongly nonlinear dependence 
of both diffusion and tunneling currents on the bar- 
rier, the effect of such a barrier variation does not 
average to zero and the currents can be enhanced by 
a large factor. To illustrate the principle, we choose as 
an example the average tunneling probability for 
carriers crossing a narrow semiconductor junction. 

The band-to-band tunneling probability has the 

6/2re 
Fig. 4. Angular variation of the piezoelectric charge and potential 
normal to a 60° dislocation line. 
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form p = exp(-CB3/2) where B is the barrier and where 
C is a constant containing all the other material 
parameters. 

We crudely represent the effect of the dislocation 
potential, which makes the tunneling barrier a func- 
tion of the carrier's trajectory, as an angular variation 
of the barrier of the form B = B0(l + Asin9) (it will be 
apparent presently that the detailed form of the 
angular variation is irrelevant for this argument). It 
is likely that this representation of the piezoelectric 
potential introduced by a dislocation can be justified 
by a WKB calculation. 

If A is small compared with unity, we have B3/2 = 
B0

3/2[l + (3/2)Asin0] (this approximation is taken purely 
to simplify the arithmetic and has no effect on the 
argument). We can now compute an average of p 

1    fin 
-z~    exP 9-rr JO r 
271 J0 

<P>= 

-CB3/21 1+1A sine de = 

Po r2* 
^Jo   eXP — CB^AsinG d.9 = p0I0|-CB0A 

where I0(x) is the modified zero order Bessel function 
and p0 is the tunneling probability in the absence of 
any dislocations. From this last form, it is apparent 
that the average tunneling probability could have 
been written as 

<P>=PoIo| 2Aln|Po 

It is apparent that although the fractional barrier 
"angular modulation" A is small, the argument of the 
Bessel function need not be, and the factor multiply- 
ing the unmodulated barrier transition probability 
can be quite large. It is also evident that any other 
angular variation would lead to very similar results. 
The angular variation A can be estimated from the 
angular potential plots of Fig. 4 to be roughly 0.05- 
0.1. The parameters determining p0 (effective mass, 
doping, temperature, etc.) cover a wide range. For 
typical values of these parameters, the multiplying 

Bessel function ranges from near unity to about ten. 
As another consequence of the type of nonlinearity 

examined here, the effect of overlapping piezoelectric 
potentials of neighboring dislocations is expected to 
be enhanced over what might be expected from linear 
superposition. This may be a possible clue to the 
observed inverse faster than linear falloff of R,A with 
dislocation density. 

CONCLUSIONS 

We have evaluated the electric fields associated 
with dislocation charges and strain fields and esti- 
mated their effects on junction performance. We con- 
clude that the fields associated with core charges 
alone are not likely to account for the observed degra- 
dation of junction performance. The longer range 
piezoelectric potentials, which we have calculated 
explicitly for the common 60° dislocation, are likely to 
have a larger effect, especially on RQA through the 
tunneling leakage current. The effect of the 
nonlinearity of the junction characteristic on RQA is 
examined and is proposed as a mechanism to account 
for observed nonlinear behavior. 
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ABSTRACT 

Dislocations crossing a junction in HgCdTe have little effect on detector 
responsivity, but are known to reduce the zero bias impedance RoA and increase 
the leakage current, especially at low temperatures where RoA is dominated by 
tunneling and GR processes1'2. We have calculated the core charge and 
piezoelectric-induced fields associated with 60° dislocations since they are 
superimposed on the built-in and applied junction fields that control the currents. 
The screening of the dislocation fields in the neutral region is nearly complete and 
is consistent with the dislocations' small effect on responsivity. Their impact in 
the space charge region is found to be significant and consistent with the nonlinear 
dependence of performance on dislocation density, as characterized by RQA. 

1.        INTRODUCTION 

The p-on-n Hgi.xCdxTe (MCT) double-layer heterojunction (DLHJ) focal plane arrays 
(FPAs) shown in Figure 1 are currently leading the art in long-wave infrared (LWIR) 
applications. The most effective structures to date are those grown by liquid-phase epitaxy 
(LPE) on lattice-matched CdZnTe substrates. Typical values of active (n layer) and cap (p layer) 
compositions are x = 0.224 and x > 0.28, respectively. The n layers are typically indium-doped 

*    This work was supported by ARPA Contract MDA972-92-C-0053. 
t    Permanent address: Washington University, St. Louis, MO 63130 
§    Present Address: Department of Materials, University of Oxford, OXI3PH, UK 
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Figure 1. Cross-sectional view of DLHJ mesa diode 

Source: R.E. DeWames et al., An Assessment of HgCdTe and GaAs/GaAIAs Technologies for LWIR 
Infrared Imagers, SPIE, Vol. 1735, p. 6,1992. 

in the growth process, with carrier concentrations as low as permitted by series resistance and 
capacitance concerns, but usually realized at > 2 x 1015 cm-3. The cap p+ layers are typically 
arsenic-doped with p = 2x 1017 cm-3. The metallurgical p-n junction is positioned on the 
narrow-gap side of the heterojunction, and the grading width is chosen to minimize the barrier in 
the valence band that occurs in such structures3, as the barrier reduces the collection efficiency of 
photon-induced minority carriers (holes) in the n layer from the back-lit array. 

There is ample experimental evidence that dislocations degrade the performance of DLHJ 
detectors and may be the defects currently limiting the capabilities of the devices. The 
measurements that relate various material parameters pertinent to detector performance to 
dislocation density have been reported by several groups.1-2 The important, interrelated 
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parameters are minority carrier lifetime, zero-bias junction impedance (RQA. product), and 1/f 
noise. 

Dislocations are thought to influence the electronic properties of semiconductors 
primarily through their electric fields. In this paper we report the results of analyses of the space 
charge and piezoelectric fields associated with dislocations in an attempt to understand the 
mechanism through which they affect the responsivity and dark currents at low temperature. 

2.        SUMMARY OF EXPERIMENTAL RESULTS 

In the work to be discussed, dislocation densities are measured by etch pit densities 
(EPDs). The etch pits on the film surface are associated with threading dislocations that are 
assumed to penetrate the films. The relation of these dislocations to misfit dislocations and loops 
formed at growth interfaces is not fully understood in all cases. 

Shin et al?- have studied the relationship between dislocation density and minority carrier 
lifetime in epitaxial MCT films grown by LPE, metalorganic chemical vapor deposition 
(MOCVD), and molecular beam epitaxy (MBE). At small dislocation densities (as measured by 
etch pit density) the minority carrier lifetime is not affected by the presence of dislocations, and 
the temperature and carrier concentration dependence of the lifetime suggests Auger 
recombination at high temperature (above 150 K) and Shockley-Read recombination for 
T < 150 K.  However, even in samples with very low EPDs (down to pixels with no etch pits), 
the lifetime and the RoA product exhibit great variability, sometimes exceeding an order of 
magnitude. In these high-quality samples, the transition from Auger to trap-assisted 
recombination can occur at temperatures as low as 60 K.4 We take this observation as evidence 
that recombination centers not associated with threading dislocations may be the defects 
imposing the ultimate device performance limits. In the low temperature range of interest for IR 
detectors, for EPD densities above the mid 10"^ range, minority carrier lifetime decreases with 
dislocation density at an EPD"2/3 to EPD-3/4 rate. Shin et al.2 note that the observed behavior is 
consistent with dislocations acting as Shockley-Read recombination centers with a trap level 
60 meV above the valence band edge and a trap density proportional to EPD"3/4. Although not 
explicitly stated in this paper, the results reported suggest that dislocations active as 
recombination centers are likely to carry a core charge. Similar results have been reported by 
Baranskii et al. 5 who find that mobile dislocations introduced in bulk MCT by indentation give 
rise to a trapping level at Ev + 50 meV. 
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Johnson et al} have measured the dependence of RoA in arrays of photovoltaic diodes on 
dislocation density by deliberately using plastic deformation to introduce dislocations in 
localized regions and carrying out the measurement on both high and low EPD diodes of the 
same array. They find that the resistance is relatively insensitive to EPD at the lowest dislocation 
densities, decreases linearly at higher densities, and decreases quadratically at the highest 
densities. The nonlinear behavior sets in at small dislocation densities (mid 105 cnr2 or less) at 
low temperature (40 K) and at higher densities (>106 cm'2) at 78 and 120 K. Measurements of 
the temperature dependence of the leakage current of diodes with different dislocation densities 
show that the high temperature (diffusion regime) RoA is not affected by the presence of 
dislocations, but that as the temperature is reduced below 150 K the RoA values diverge, 
differing by several orders of magnitude at 40 K and below. The authors interpret the low 
temperature leakage current as generation-recombination current. They adopt a model (Zolper 
and Barnett6) for estimating the reduction of the minority carrier diffusion length by 
recombination at dislocations, and then account for the inverse quadratic increase of the short 
circuit current at high dislocation densities by the ad hoc assumption that closely spaced 
dislocation pairs contribute a conductance that exceeds the sum of the conductances of two 
individual dislocations. We shall point out below that such nonlinear behavior may be a feature 
of tunneling currents associated with dislocations. The same work also reports on measurements 
of 1/f noise. The noise current was found to be proportional to the leakage current, leading to the 
conclusion that the dislocations act only as indirect noise sources by increasing the leakage 
current. 

3.        CALCULATION OF DISLOCATION PROPERTIES 

We wish to distinguish between dislocations that intersect the junction and those that do 
not. We shall refer to intersecting dislocations as threading dislocations. Threading dislocations 
eventually intersect the surface of the device, and therefore are observable by etch pits. Such 
dislocations have a number of sources. They can originate in the substrate and propagate through 
the active material during growth; they can be introduced by plastic deformation of the material; 
or they can originate from lattice or thermal mismatch in the structure. 

3.1        DISLOCATION CORES 

Classical elasticity theory works well for the description of long-range strain fields of 
dislocations in real solids, but fails when it comes to a description of the dislocation core. The 
description of dislocation cores necessarily depends on the microscopic properties of the 
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materials. If we view the 60° dislocation as the removal of three {112}-type half-planes of 
atoms, followed by the displacement and rejoining of the crystal across the missing plane, the 
line that describes the termination of the missing plane is the dislocation line. The dislocation 
core is the cylindrical volume centered at the dislocation line; in that core, bonds are broken, 
displacements of atoms are large, and displacements cannot be described by linear elastic theory. 
Because broken bonds are present in the cores, localized states can be introduced in the band gap. 
Although reconstruction may take place to move these states out of the gap, it is not clear 
whether this occurs in MCT. 

For the undissociated 60° dislocation in MCT, the local states of dislocation cores will 
depend on the plane on which the extra half-planes of atoms terminate (i.e., whether they are 
cation or anion terminated), and whether the dislocation belongs to the shuffle or glide set. 
Dislocations of the glide set in the group IV and HI-V semiconductors are frequently found to be 
dissociated into two Shockley partials separated by a stacking fault. One study on GaAs found 
that as many as 80% of the 60° dislocations in plastically deformed GaAs were dissociated7. It is 
not clear whether the majority of the 60° dislocations in MCT are dissociated, but is likely that 
they are. Since the primary effects of the space charge and piezoelectric fields considered here 
occur at the longer range, where classical elasticity is valid, the effects considered in this work 
differ little between an undissociated dislocation and a pair of partials. 

3.2        CHARGED DISLOCATIONS 

The Coulomb fields associated with electrically charged dislocation cores can act as 
scattering and recombination centers and may attract or repel charged point defects. The 
presence and amount of charge on a dislocation core depends on the distribution of localized 
levels in the bandgap in the core and on the Fermi level in the semiconductor. Once the core 
structure of the dislocation has been determined, we can take a phenomenological view and 
consider only the electric field and potential generated by a given core charge. The effective 
radius of the field is taken to be that distance from the dislocation core within which the field is 
large enough to move a minority carrier to the core in a carrier lifetime as measured in the 
dislocation-free material. In this way we define a volume within which the lifetime and mobility 
are affected by the presence of a charged dislocation. Only if the affected volume surrounding 
all the dislocations is a significant fraction of the total volume can we expect their presence to 
affect lifetime and mobility and hence RoA. This then relates the depletion radius R or screening 
radius £ to a threshold of the dislocation density no- 

We represent the dislocation core by a cylindrical charge density -p in a cylinder of 
radius a in n-type material with donor density n. The potential distribution in the depletion 
approximation is given by the Poisson equation with charge density p: 
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p =(-p + n)e 

= ne 

= 0 

r<a 

a<r<R 

R<r 

where R is the depletion radius, related to a by the charge neutrality requirement pa2 = nR2. By 
integrating the Poisson equation we find for the potential 

<Kr) = <J>(a) + ||R2I4 " I(f2 " a2)] 

and taking the potential in the bulk (r > R) as reference, we can evaluate the potential at the core 
radius 

*>-5 i(R2-a2)-R2ln- 2 a 

Using a dislocation core radius of 5 x 10"8 cm and assuming the bands bend by the 

bandgap—that is, by a potential (relative to the bulk) at the core radius of 0.1 V for 8- to 12-|im 
material, we have calculated R as a function of carrier density, as shown in Figure 2. It turns out 
that the radius is close enough to the Debye length to make the depletion approximation 
questionable. 

The exact space charge equation is 

7 dr r dr"= "Ttsinh((P "VF) " sinhcpp] 

where 

e^  .2    £kT Ep-Ej      . U_!ND-NA <P=kT '?nT'<PF=~kT"= ~^~' 
For cp small this is 

1 d  dtp    H \       2 
 ~   —coshcpp b=—(p 
r dr  dr KV 
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to determine C. The effective scattering radius of the dislocation can be obtained from the radius 
at which the field is reduced to the threshold value discussed above, here denoted E. 

F_ fü _ kTd(P _ kT d(p 
- dr ~  e dr ~ eLD dx =^CKl(x) 

where n is the carrier density. Here the argument of the Bessel function corresponds to the 
screening radius, so x is large, and we can use 

KlWa>/I
e"* 

Finally we obtain the screening radius I = LDX from the solution of 

V¥Vlk=E- 
The threshold field E is now determined, as discussed above, from the mobility |i and lifetime x 
in dislocation-free material 

E = £/\iX = Lox/|ix . 

This is substituted in the immediately preceding expression, and the resulting expression solved 
for the normalized screening radius x. The screening radius I as a function of n is plotted for 
T = 40 K, 78 K, and 300 K in Figure 2. In the calculation we have used the exact values of the 
Bessel functions rather than the approximations show above, and the following values of 
mobility and lifetime: 

T,K p., cm2/Vs X, s 

40 

78 

300 

1.9 x 105 

9X104 

lxlO4 

1 x 10-6 

3 x 10-7 

1 x IQ"7 

As expected, £ turns out to be larger than the depletion radius, confirming the need for the 
more accurate screening theory. The figure shows the results of both calculations: the radius R 
of the field region surrounding the positively charged core as a function of carrier density 
calculated on the basis of the depletion approximation, and the screening radius t of the region 
inside which the electric field due to the charged core exceeds the critical value. The threshold is 
consistent with the experimental observations1»4 that the RoA values and minority-carrier 
lifetimes decrease rapidly with the dislocation density no when it exceeds 106 cm"2. The 
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calculation of the screening radius £ is more reliable than the depletion approximation, since it 
takes into account the thermal excitations of the carriers. With the parameters we use, the 
calculation of the screening radius over five orders of magnitude of the carrier density, and over 
the temperature range from 40 to 300 K, results in values of t that range from about 5 LD at 
n = 1010 cm-3 to 10 LD at n = 1015 cm-3, resulting in an overall rate of decrease of t with carrier 

density at a rate slightly slower than LD"
1
/
2
. 

The carrier density in the neutral region of the extrinsic device material generally equals 
or exceeds 1014 cm"3. The screening length at this carrier density, even at room temperature, is 
less than 5 |im, and it is only about 3 |im at 40 K. Since the mobile carrier density in the neutral 

regions generally exceeds 1014 cm-3, we can conclude that in the presence of mobile carriers, 
especially at cryogenic temperatures, the core charge fields have a limited range. This is also 
consistent with the observations of Johnson et a/.1 that the responsivity of p on n heterojunction 
devices (dependent on diffusion in the neutral region) is little affected even by high dislocation 
densities. 

The situation is less clear in the vicinity of the metallurgical junction of the p-n diode 
detector. In this region, the carrier density is reduced to the intrinsic value nj under zero bias, and 
below that with reverse bias. We estimate a value of nj about 5 x 1011 cm-3 for Hgo.8Cdo.2Te at 

40 K, with a decrease of about a factor of 2 for every 5 mV of reverse bias caused by the 
separation of the quasi-Fermi levels. This reduction of the carrier density is confined to a small 
region, and an assessment of its quantitative effect will require detailed computation. 
Nonetheless, it is worth observing that we estimate a screening radius of 27 |im for this carrier 

density. This is consistent with the experimental finding4 that RoA at this temperature is already 
decreasing with dislocation densities in the 105 cm"2 range, corresponding to this order of 
separation between dislocation lines. The literature values of nj = 1.2 x 1014 cnr3 at 77 K and 

nj = 4.0 x 1016 cm"3 at 300 K7 correspond to progressively shorter screening lengths, which is 

also consistent with the experimental observation that the decrease in RoA with dislocation 
density has a higher threshold at the higher temperature. 

The transition from the neutral to the depleted region is not abrupt, so that the screening 
is a function of both the distance from the dislocation core and the distance from the junction 
plane. For a dislocation perpendicular to the junction plane, the geometry has cylindrical 
symmetry, making it effectively two-dimensional. The geometry is more complicated for a 
dislocation inclined relative to the junction plane. 

Because its form is geometrically simpler and more readily visualizable in this context, 
we have discussed screening entirely in connection with the effect of core charges. It should be 
kept in mind that similar, although quantitatively different, considerations apply to the screening 
of the piezoelectrically induced potentials, to be discussed next. 
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3.3        DISLOCATION STRAIN FIELDS AND PIEZOELECTRIC POTENTIALS 

The MCT crystal structure lacks inversion symmetry and is therefore piezoelectric. In a 
piezoelectric crystal the strain field around a dislocation may generate an electric field. 
Conversely, an electric field applied to a piezoelectric crystal can produce a stress that may 
deform the crystal. This self-consistent field problem has been treated rigorously for a straight 
dislocation in a homogeneous insulating crystal by Saada8. The general analysis was extended 
by Faivre and Saada9 to include the effects of screening by free carriers. Several qualitatively 
significant conclusions can be drawn from this work: 

1. The strains are only slightly affected by the electric field; that is, the inverse 
piezoelectric effect is small, and the electric field can be calculated directly without 
imposing the requirement of self-consistency. 

2. The electric field in the vicinity of the dislocation core can be quite large, and the 
dislocation can interact strongly with charges (point defects or mobile carriers) in its 
vicinity. 

3. In a semiconductor, the dislocation preferentially traps carriers of a particular sign. 

4. The estimated screening distance is of the order of several Debye lengths. 

Booyens and Vermaak10 have applied Saada's analysis to (110)/(111) dislocations in zinc blende 
ni-V semiconductors and Booyens and Basson11 to CdTe and MCT. They do not explicitly 
include the effects of screening as analyzed by Faivre and Saada8 in these calculations. As a 
result, they find that an uncharged dislocation, in the absence of screening, generates a net radial 
field. They then suggest that the dislocation core is likely to acquire a charge that compensates 
for the radial field and so minimizes the total energy of the dislocation. 

We have extended the analysis to the commonly observed 60° dislocations in intrinsic 

MCT. The dislocation lies along [101] and has a Burgers vector b at 60° to the dislocation line 
\. xi, is chosen parallel to the edge component of the Burgers vector b; X2 is chosen as the 
normal to the slip plane; and X3 is chosen parallel to £. The transformation matrix from principal 
axis coordinates is 

T-=-L 
y   V6 

M   -2   n 
V2    V2    V2 

~V3     0     V3 

and thus the transformation of the piezoelectric tensor is 

d ijk = MpTjqTiodpqr. 
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In cubic symmetry and principal axis coordinates, all the nonzero components of the 

piezoelectric tensor are equal: di23=di32=d231=d213=d3l2=d32l=d- The nonzero components of 
the transformed tensor are 

i i i i x*      j 
d133 = d313 = d331 = -dlll = ~^d 

_2_ 

d112 = d121 = d211 = d233 = d323 = d332 = "T^" V3" 

_2_ 
V3' 

d222 — ~~r^ "» 

or, using two-index (Voigt) notation, 

(d) 

'22 1    ^ 
-^rd 0 ^=d 0     0 —=d 

V6        <6 VI 

—jLd-^d —^=d 0    0    0 

0     0     0 —]=d -2=d  0 
VI   V6 

The piezoelectrically induced bound charge density is12 

p(r) = - d'ijkejk,i with ejk4 = ^ ejk 

(1) 

(2) 

where e is the isotropic dielectric constant, ejk is the jk component of the strain tensor, and 

summation over repeated indexes is implied. 

For a screw dislocation in linear anisotropic theory, the displacements are 

b«:      -i A u-i= -tan   A 3      2K 

(x ^ 

ui = U2 = 0, 

where bs is the magnitude of the screw component of the Burgers vector and 

A = 
Jd~d 55 1 1 

44 
; c' 44 - c44 - -r-H; c' 55 - c44 - -r¥L; H - 2c44 + c12 - c: x 
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Here cy and c'ij are the components of the elastic tensor in the principal axis and transformed 

coordinate systems respectively. The nonzero components of the strain tensor are [using ey = r 

(uij + Uj4)] 

ei3 = e3iande23=e32. 

Using Eqs. 1 and 2 shows immediately that for this case r = 0. Even in anisotropic linear 
elasticity (assuming the dielectric constant isotropic) the screw component of the 60° dislocation 
induces no piezoelectric effect Therefore, pure screw (110) dislocations will also show no 
piezoelectric activity even if they are dissociated. We now proceed to consider the edge 
component, which we will simply denote b. In order to arrive at a transparent expression, we 
will make the isotropic elastic approximation. This will not affect the order of magnitude 
calculations that follow. 

For an edge dislocation, with v Poisson's ratio 

Ui = 2% tan ■m 
xlx2 

2(l-v)(x2
1+x2

l) 

b 

u3 = 0. 

The nonzero strain components are 

l-2v , ( 2^ 2x _,_ ^I-^ln(x1+x2) + 
2     2 

xl-x2 

4(l-v)(x2
1+x2

l)J 

en = 

e22~ 

e12~ 

b  (l-2v)x|-K3-2v)x2x2 

2lz      2(v-l)(x2
1+xl)2 

b  (l-2v)x|-d+2v)xix2 

2K
      2(V-1)(X

2
1+X

2
,)
2 

2     3 b        x1x2-x1 

2K
 2(v-l)(x2+xl)2 ' 

From Eqs. 2 and 1, 

p(r) - -[d111elu+2d112e12>1+d211elli2+d222e22j2 J 
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so we need the derivatives 

Cii i — 
b   (2v+l)x1x|+(2v-3)x3

1x2 

'1U      IK ,     1V 2^ 2x3 
(v-l)(x1+x2) 

_ b  (2v-l)x2-6x?x|+(3-2v)xJ 

11,2    2K 2(V-1)(X
2
+X2

:
)
3 

b  (2v-l)x2+6x^x|-(2v+l)xJ 

622,2-271 2(v-l)(x2
1+x2,)3 

4   ,22,   4 b     X2-OXJX2+X! 

eiU = S2(v-l)(x2
1+x2)3 

giving 

p(x^2) = ~jf~(~^   ell.l_2e12.1-«llJ+2e2i2) 

bd     (2v-3)xt-2V2 (2v+l)x1x
3

2+30x^xl +2V2(3-2v)x3x2-(2v+7)x? 

27t^e 2(v-l)(x2
1+x2,)3 

When this expression is converted to polar coordinates in the xiX2 plane, it becomes somewhat 
simpler: 

bd      , 
P = 2Wfe      1 + P2+P3 + P4 + Ps 

with 

= (2v-3) y4 _ (2v-3) cos48-4cos29+3 
Pl     2(v-l) r6 ~ 2(v-l) 8r2 

= -2V2(2v-l) xy3 _ -2V2(2v-l) 2sin29 -sin49 
p2 2(v-l)       r6  "      2(v-l) 8r2 

=    30    XV _    30     1-COS49 
p3"2(v-l)   r6    "2(v-l)     8r2 
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so 

_ 2V2(3-2v) x3y _ 2V2(3-2v) sin4e+2sin29 
P4_    2(v-l)      r6   ~    2(v-l) 8r2 

_ -(2v+7) x4 _ -(2v+7) cos49+4cos28+3 
p5 " 2(v-l)  r6 " 2(v-l) 8r2 

bd 1 ,— i— 
p = =^ -U5cos48-V2sm48+2(l+v)cos2e-V2(l-2v)sin2e] 

4;tVTe(l-v) r2 

= — 2li [anCOs(nG) +bnsin(n0)] 
C 

r   n=2,4 

which defines a useful constant C, and four parameters depending only on Poisson's ratio. This 
simple expression reveals the charge density to have an inverse square decay and quadrupole and 
hexadecapole terms only. Note in particular that there is no monopole term and hence no net 
charge induced on the dislocation line. This rather transparent expression has not been revealed 
in previous work10»11. 

To obtain the piezoelectric potential we need to solve the Poisson equation 

e 

with this charge distribution as the source. In two dimensions, the formal solution of the Poisson 
equation is 

<D(r,6) = -f   r'dr'f    dG' In—+ Y—[—|   cosm(9-6') 
m=l 

p(r') 

7t ^mjn 

.271 

d0'[sin(me)sin(me')+cos(m0)cos(me')]x 
m=l 

X 

n=2,4 

Y   [^cosfoe'Kb^sinCne'Mr^T-l- 
r^A Jo   r'2 VT> 

where r> and r< are the greater and lesser, respectively, of r and r\ 

In analogy with the solution for the elastic field, the integrand diverges at the origin and 
is also not normalizable. To deal with this difficulty, we adopt the same procedure that is used to 
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avoid the divergence of the elastic energy of a dislocation at the origin in continuum theory. We 
set cutoffs at an inner radius, R^ and an outer radius, R2. The cutoff at Ri removes the core 
singularity and the cutoff at R2 allows p to be expanded in multipoles. Later, we will identify 
Rias the core radius and we will let R2 —»<*>. We now have 

O(r,0) = § £ -  ancos(n0)+bnsin(ne)|^r   (rfV+rjN/; 
n=?4n . VT        Rl r n=2,4 

)     ctf 

= C  7 [a4cos(46>l-b4sin(4e)] 2     4V r )     4l,R2 

+-? [a2cos(28)+b2sin(2e)] 1- 
2V r )     2\R2 

21 

forr<R2. Forr>R2 

O(r,0) = C\j [a4cos(4e)+b4sin(48)] j 

+- [a2cos(29)+b2sin(20)]- 

which is a multipole potential. The two solutions are matched at R2. We can now let R2 —»°° 
and neglect the terms in Ri, which amount to a small correction near the core, to get a potential 
valid for r » R\ 

f 1 1 
0(r,9) = Cij [a4cos(49)+b4sin(4e)] + ^ [a2cos(29)+b2sin(20)] 

which is independent of r. This rather surprising behavior is a consequence of the inverse square 
decay of the charge density. In this connection, we can pursue the analogy with the well-known 
elastic solution for an edge dislocation by pointing out that while the elastic energy per unit 
length is given by (JI is the isotropic shear modulus) 

nb2 r.%   ^ In-^—0.5 
Ri 4TC(1-V) 

the piezoelectric energy per unit length is (where C was defined earlier, and taking v = 0.3) 

^fln^-O.125' 
1.6 R, 
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which is six orders of magnitude smaller—justifying our neglect of the reverse piezoelectric 
effect. In both cases, the first term comes from the energy in an infinite cylinder integrated to R.2 
and which diverges logarithmically, and the second term is the effect of the cylindrical surface 
bounding this dislocation in a finite crystal (the image term). 

For a good numerical calculation, we would need the piezoelectric constant of the alloy, 
which has not been determined. For an order-of-magnitude estimate, we can use the 
piezoelectric constant of CdTe, 3 x lO"6 C cm"2. The Burgers vector is 4 x 10'8 cm, and 
Poisson's ratio can be taken as 0.3. Using these values we have computed the charge, potential, 
and field, shown in Figure 3. 

It should be understood that because of the symmetry of the strain field associated with a 
straight dislocation, several of the possible sources of the piezoelectric potential are identically 
zero. In the reduced symmetry of curved dislocations (e.g., misfits), kinks, and jogs, these 
components of the potential do not vanish and may be significant 

3.4        AVERAGING NONLINEAR EFFECTS 

The results we have obtained afford a qualitative insight into the effect of the 
piezoelectric potential on the characteristics of a pn junction threaded by a dislocation. The 
angular variation of the potential will alternately add to and subtract from the built-in potential of 
the junction, so that the barrier seen by a carrier crossing the junction will depend on its 
trajectory. Because of the strongly nonlinear dependence of both diffusion and tunneling 
currents on the barrier, the effect of such a barrier variation does not average to zero and the 
currents can be enhanced by a large factor. To illustrate the principle, we choose as an example 
the average tunneling probability for carriers crossing a narrow semiconductor junction. 

The band-to-band tunneling probability has the form 

p = exp(-CEg
3/2) 

where Eg is the bandgap and C is a constant containing all other material parameters. 

We crudely represent the effect of the dislocation potential, which makes the tunneling 
barrier a function of the carrier's trajectory, as an angular variation of the bandgap of the form 
Eg=Ego(l+Asin6) (it will be apparent presently that the detailed form of the angular variation is 
irrelevant for this argument). It is likely that this representation of the piezoelectric potential 
introduced by a dislocation can probably be justified by a WKB calculation. 
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b = 4x10~4nm 

10 (im 

(a) Piezoelectric charge normal to the dislocation line. Solid contours are 1,0.5 

0.1, and 0.05 1012 e/cm3 going out radially; dotted contours are the negative 

of these. 

[in] 

A 

:> b = 4x10^ pm 

10 urn 

(b) Quadrupoie component of the piezoelectric potential. 

Figure 3. Piezoelectric properties of a 60° dislocation in Hg0.ßCd0 2Te 
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b = 4 x 10 "* (im 

10 um 

(c) Hexadecapole component of the piezoelectric potential 

e/2* 

(d) Angular variation of the piezoelectric charge and potential normal to 

the dislocation line 

Figure 3   (continued). Piezoelectric properties of a 60° dislocation in Hg0.aCd0 2Te 
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Figure 2.  Depletion radius R and screening radius I (meters) at 40,78, and 300 K as 
functions of carrier density in cm-3 

with the extrinsic Debye length 

T2       L2         ekT      2.77xl05 XT  . 
LD = ^»chm_ - ~T~" = —N '    D m cm 

-3 

COShCpp       e2N 
D 

_        ., r       ,       1 d    d(p 
Then with X = T—we have - -r- x ■£ = cp, the zero-order modified Bessel equation. The solution 

of interest is the decreasing Hankel function Ko(x). 

The depletion approximation should be valid for r < R - LD- This does not leave much 
room since R and LD are comparable. One way to proceed is to let cp = CKo(x) and to evaluate C 
from <{>(a) at x = a/Lo- Since the value of x here is that at the core radius, x is small and we can 
use 

Ko(x) = ln(7x) = 0.116-lnx, 

so 

Ko^-an«^)-^ 
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If A is small compared with unity we have 

Ef-E^l+fAsine) 

(this approximation is taken purely to simplify the mathematics and has no effect on the 
argument). We can now compute an average of p 

<p>=^J   exp[-CE^(l+|Asine)]d0=^J   exp[-|cEg
3? Asine]de^oIo(|cE^A) 

where Io(x) is the modified zero-order Bessel function and po is the tunneling probability in the 
absence of any dislocations. From this last form it can be seen that the average tunneling 
probability could have been written as 

<P> = PoIol2Aln'po'^ 

It can be seen that although the fractional bandgap "angular modulation" A is small, the argument 
of the Bessel function need not be, and the factor multiplying the unmodulated bandgap 
transition probability can be quite large. It is also evident that any other angular variation would 
lead to very similar results. The angular variation A can be estimated from the angular potential 
plots of Figure 3 to be roughly 0.05 to 0.1. The parameters determining po (e.g., effective mass, 
doping, temperature) cover a wide range. For typical values of these parameters the multiplying 
Bessel function ranges from near unity to about 10, so <p>/Po is in rough agreement with the 
observed1 effect of a single dislocation on RoA of a pixel. 

As another consequence of the type of nonlinearity examined here, the effect of 
overlapping piezoelectric potentials of neighboring dislocations is expected to be enhanced over 
what might be expected from a linear superposition. This may be a possible clue to the observed 
inverse faster than linear falloff of RQA with dislocation density. 

CONCLUSIONS 

We have evaluated the electric fields associated with dislocation charges and strain fields, 
and estimated their effects on junction performance. We conclude that the fields associated with 
core charges alone are not likely to account for the observed degradation of junction 
performance, particularly when the lower carrier concentration is on the n side of the junctions so 
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the principal minority carriers are holes. The longer range piezoelectric potentials, which we 
have calculated explicitly for the common 60° dislocation, are likely to have a larger effect, 
especially on RoA through the tunneling leakage current. The nonlinear dependence of the 
junction characteristics on dislocation density is examined, and is proposed as a natural 
explanation for the observed nonlinear behavior of RQA. 
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Band-edge shifts induced by the electron-phonon interaction are calculated for 
HgCdTe alloys and various semiconductor compounds starting from accurate 
zero-temperature band structures. The calculated temperature variation of gaps 
agrees with experiments to better than 10% in all materials except InAs and 
InSb where the deviation is about 50%. While the simple picture that the intra 
(inter)-band transitions reduce (increase) the gap still holds, we show that both 
the conduction band edge Ec and valence band edge ET move down in energy. 
These shifts in ET affect the valence band offsets in heterojunctions at finite 
temperature. The temperature variations of valence band offset and the electron 
effective mass are also reported. 

Key words: III-V semiconductors, band offset, electron-phonon interactions, 
HgCdTe and alloys, temperature-dependent band structures 

INTRODUCTION 

The temperature (T) dependence of energy gaps of 
semiconductors is of great physical and technological 
interest. The quantities such as band offset and effec- 
tive mass depend sensitively on the temperature 
variation of band edges. Numerous theoretical1-8 and 
experimental1*-19 studies have been undertaken to 
obtain both qualitative and quantitative variations of 
various gaps in semiconductors. The gap decreases 
with increasingtemperature in medium-gap and wide- 
gap semiconductors, and it increases in small-gap 
materials such as HgCdTe, PbS, PbSe, and PbTe. The 
thermal expansion of the lattice and electron-phonon 
interactions are usually considered causes for the 
temperature variation of the band structures. Ther- 
mal expansion always reduces gaps. 

In a perturbation-theory treatment of electron- 
phonon interactions, the intraband transitions re- 
duce the gap whereas interband transitions increase 
it, and the net shift in the gap can be positive or 
negative. Here we calculate the gap variation InHg^ 

(Received October 4,1994; revisded January 8,1995) 

jCd^Te alloys, GaAs, InAs, InSb, InP, and CdTe com- 
pounds, startingfrom accurate band structures, wave 
functions, proper phonon dispersion relations, and 
taking account of matrix elements of the electron- 
phonon interactions. The contributions from each 
phonon branch to each electron band have been ob- 
tained to assist physical understanding of the under- 
lying causes of the variations. We show that both 
conduction and valence band edges move down in 
energy. When the valence band edge moves more than 
the conduction band edge, the gap increases withT, as 
in the case of some Hg^CdjTe alloys with x < 0.5. The 
reverse occurs for all III-V compounds studied and 
Hg^CdjTe with x > 0.5. This observation has an 
important effect on our understanding of the varia- 
tion of band offsets in semiconductor heterojunctions. 
In addition to the gap, other features of the band 
structure change with temperature and will affect the 
spectral variations of the absorption coefficient and 
transport properties. 

METHOD 

Our calculation of the temperature dependence of 
the band gap starts with accurate band structures. 
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Figure 1 
Box FPO 

Fig. 1. Change in the band gap of Hg^Cd^Te with temperature. 

Empirical pseudopotential form factors are used to 
construct a hybrid pseudopotential tight-binding 
(HPTB) Hamiltonian. The pseudopotential part of the 
Hamiltonian is universal—it applies to all group IV, 
III-V, and II-VI compounds. The smaller tight-bind- 
ing part is expressed in a minimum set of sp3 Slater 
Orbitals per atom. This Hamiltonian is then trans- 
formed into an orthonormal basis. A site-diagonal 
spin-orbit Hamiltonian is then added. Parameters in 
the tight-binding perturbation are chosen to fine- 
tune the band structures to agree well with experi- 
ments.20,21 Various results obtained using these band 
structures are found to be quite reliable.21-23 The 
present study subjects the accuracy of the wave func- 
tions as well as the energies to a sensitive test. 

The dilation contribution to the band gap reduction 
is given6-9 by Sa^BdEßP, where the thermal expan- 
sion coefficient of the lattice Op the bulk modulus B, 
and the change in the gap with pressure are obtained 
from the literature.19 The electron-phonon interac- 
tions with all phonon branches that cause the band 
structure changes are treated in perturbation theory. 
The total Hamiltonian is assumed to be a sum of 
potentials from single atoms. The atomic potential in 
the solid is traditionally expanded in a Taylor series, 
with only the leading term retained, and the energy 
shifts it causes are evaluated in second-order pertur- 
bation theory. However, it has been demonstrated by 
a number of researchers3-4-6 that retention of first- 
order perturbation terms with a second term in the 
Taylor series expansion is necessary to preserve sym- 
metry. We retain both terms. The change in the 
energy at a given wave vector k is 

nV        tj.-hj.. 

where V: and V2 are the first two terms in the Taylor 
expansion of the total electron-phonon potential in 
powers of atomic displacements^. In the TB formal- 
ism, Eq. (1) can be written in terms of the matrix 
elements 

< l'j'cxT^llja >= W^(df) • (^,r - g,        (2) 

and    < iy alVjUa >= \[\n ■ (V)s V„(d?) ■ $IT, 

+V(V)X-(dS->4 (3) 

where d„. is the position vector connecting atomic 
sites 1, species (anion or cation) j and site 1', species j", 
and V^/C d$) is a HPTB matrix element between the 
orbitals a and a' located on those atoms. From the 
quantum theory of harmonic crystals, the atomic 
displacements % can be expressed in terms of normal 
modes; that is, phonons. We have 

$« = 

2NM; 
£*<[< a^e 

,{l+Tj)+e^aL,e-i'^)J (4) 

where q and oa are phonon wave vector and frequency, 
X denotes phonon branch, a(a*) is a phonon annihila- 
tion (creation) operator, M is the atomic mass, and e 
is an eigenvector in a diamond or zinc-blende struc- 
ture of the six-dimensional dynamical matrix eigen- 
value problem 

Mci^e = D(q)e (5) 

(1) 

Evaluation of the matrix elements given by Eqs. (2) 
and (3) requires knowledge of spatial variations of the 
interatomic TB matrix elements V^. In Harrison's 
universal TB approach,24 these matrix elements scale 
as d~2. In our generalization, we assume that V^ 
varies as d-"1 and the repulsive first-neighbor pair 
energy, following Harrison's overlap argument, as T|/ 
d2™. The two unknowns m and T) are determined by 
requiring that the calculated equilibrium bond length 
and bulk modulus agree well with experiments. This 
approach, with electrons and phonons treated from 
the same underlying Hamiltonian, has previously 
been used successfully to explain hot electron transis- 
tor characteristics23 and is also in fairly good agree- 
ment with first-principles calculations.25 The dynami- 
cal matrix D is calculated from the valence force field 
model.26 

The calculational procedure is as follows. For a 
chosen material, m and n are evaluated. Then the first 
and second derivatives of all interatomic matrix ele- 
ments are obtained. The dynamical matrix is diago- 
nalized to obtain co and e as a function of q and X. The 
phonon structures and electronic band Structures are 
used [Eqs. (1) through (4)] to obtain the change in the 
band energy at a given k. The polar coupling terms are 
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included in the longitudinal optical phonon con- 
tributions. When we are interested in studying the 
change in the direct gap, k is taken to be zero.. 
However, when the temperature variation of the-h 
effective masses or indirect gap are studied, non&zero 
k values must be used and the Brillouin zone summa- 
tion in Eq. (1) should be carried over the entire zone 
with reduced, or no, symmetry. 

BESULTS 

The calculated band-gap change as a function of T 
in Hg^gCdajjjTe is shown in Fig. 1. With increasing!1, 
the direct gap increases in Hg^gCdg^Te. Notice that 
the calculated values are typically within 10 to 15 
meV of experimental values. "-u The cross (x) at T = 0 
represents the calculated zero-point correction to the 
gap (13.6 meV for Hg^gCd^Te). The zero-tempera- 
ture band gap calculated without electron-phonon 
interactions should have this correction subtracted 
for comparison to experimental values. 

The change in the gap is traditionally explained in 
terms of inter- and intraband interactions. The 
intravalence (conduction) band interactions push the 
valence (conduction) band edge up (down), thus re- 
ducing the gap. Similarly, the valence-conduction 
band interactions increase the gap. Hence, one might 
expect the gap to decrease in wide-gap semiconduc- 
tors and possibly increase in small-gap semiconduc- 
tors. In addition, arguments based only on total den- 
sity of states and ignoring variations in matrix ele- 
ments will predict the valence band edge E, move up 
in energy, because the hole effective mass is one to two 
orders of magnitude larger than the electron mass. As 
seen from Fig. 2, our detailed calculations of band 
edge movements in Hg^jCcl^Te do not support this 
traditional view. We find that both Ee and Ev (solid 
lines) move down in energy. This same trend is ob- 
served in other semiconductor compounds studied 
(GaAs, InP, InAs, InSb, and GaSb). The movement of 
the valence (solid line) and conduction (dashed) band 
edges due to interaction with other bands is also 
shown in Fig. 2. The interaction of the band edges 

with the conduction bands (CBs) is much stronger 
than with valence bands (VBs), and consequently 
both E and Ee move down in energy. ET moves much 
more than Ec and the gap increases. 

We analyze the strength of inter- and intraband 
electron-phonon interactions by presenting the con- 
tributions from each band and from each phonon 
mode. Table I lists the calculated values for 
Hgo-gCd-^Te at 300K Although spin is included in 
our bandstructure calculations, only spin averaged 
values are listed. Band indices 1 to 4 correspond to 
VBs, and the others to CBs. The first two rows show 
changes in ET and Ee due to interactions with various 
bands. Contributions from each phonon mode are 
listed in the remaining rows. The lowest VB is about 
12 eV below Ev and E, and hence the interaction does 
not affect the band edges. We see that the interaction 
with other VBs tends to push the band edges up in 
energy, as expected. Note that the top two valence 

Figure 2 
Box FPO 

r 
ü t 

Fig. 2. Variation of conduction (dashed line) and valence (solid line) 
hand edges of Hg^Cd^gTe with temperature. 

Table L Calculated Change in the Valence (v) and Conduction (c) Band Edge Energies 
(in meV) of Hga„Cd0JBTe Alloy 

Band 

Total 

TA 

LA 

LO 

TO 

v 
c 

V 
c 

V 
c 

V 
c 

V 

c 

5.90 
1.04 

4.03 
0.26 

0.91 
0.56 

0.33 
0.13 

0.63 
0.10 

13.99 
2.84 

56.85 
17.27 

88.51 
34.07 

-80.26 
-23.81 

-92.49 
-25.43 

-97.45 
-43.96 

-102.07 
-42.48 

6.21 
0.65 

30.06 
12.41 

41.52 
27.47 

-49.86 
-3.58 

-62.17 
-14.81 

-61.04 
-24.50 

-49.62 
-15.40 

3.18 
1.29 

3.14 
1.27 

10.53 
1.72 

-10.63 
-14.94 

-5.92 
-3.00 

-11.41 
-2.66 

-20.59 
-7.17 

2.11 
0.63 

6.12 
0.75 

11.22 
0.44 

-9.52 
-3.78 

-4.98 
-2.45 

-11.80 
-1.18 

-17.40 
-7.31 

2.48 
0.27 

17.53 
2.84 

25.24 
4.44 

-10.26 
-1.52 

-19.42 
-5.16 

-13.20 
s-15.62 

-14.45 
-12.59 

Note: Contributions from interaction with various phonon modes are shown in rows 3 to 10. 
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Figure 3 
BoxFPO 

Fig. 3. Derivative of direct gap with temperature for various semi- 
conductor compounds and alloys as a function of zero-temperature 
gap. The vertical lines represent Hg^Cc^ 
GaAs, and CdTe, respectively. 

^Te, InSb, InAs, HgoiCdOJTe, 

Table II. Calculated E [me 
the Effective Mass Ratio oi 

>V],T[eV»],c [eV] ,and 
'Hg._C(L_Te Alloy as 

Functions of Temperature 

m*(TV 
T E t T c m*(0) 

1.00 113.60 47.7656 0.0588 1.0000 
10.00 112.67 47.7553 0.0588 1.0005 
20.00 112.56 47.7169 0.0592 1.0072 
30.00 114.44 47.6421 0.0598 1.0199 
40.00 117.15 47.5582 0.0607 1.0361 
50.00 120.42 47.4461 0.0615 1.0532 
60.00 123.96 47.3310 0.0624 1.0714 
70.00 127.65 47.2091 0.0634 1.0904 
80.00 131.44 47.0821 0.0643 1.1095 
90.00 135.28 46.9418 0.0653 1.1288 

100.00 139.17 46.7964 0.0662 1.1483 
150.00 158.85 46.1544 0.0712 1.2529 
200.00 178.73 45.5930 0.0767 1.3669 
250.00 198.68 -   45.2441 0.0832 1.4938 
300.00 218.66 45.1167 0.0908 1.6342 
350.00 238.65 45.3460 0.1000 1.7913 
400.00 258.66 46.0193 0.1115 1.9672 
450.00 278.67 47.3751 0.1263 2.1657 
500.00 298.69 49.8338 0.1468 2.3919 
550.00 318.71 54.0581 0.1763 2.6491 
600.00 338.74 61.7125 0.2238 2.9445 

Note: m* (0) is 0.008. The zero point correction is 13.6 meV. 

bands contribute the most to the fundamental band- 
edge changes. However, interaction of the band edges 
with CBs is even stronger and negative. Particularly, 
the interaction of E¥ with all conduction bands is 
strong. As Ev moves down more than Ec, the gap 
increases in Hg078Cd0^2Te. To understand the role of 
various phonons, we display the contribution from 

each mode separately. The phonon-induced changes 
in the band edges at 300K in Hg„ „Cd^Te are listed 
in the third through tenth rows ofTable I. We see that 
acoustic phonons account for about 75% of the total 
change in the valence and conduction band-edge ener- 
gies. The selection rules wipe out interband matrix 
elements between electrons and polar longitudinal 
phonons, so in spite of the stronger coupling constant, 
they do not dominate this phenomenon as they do 
with mobilities, which depend on intraband matrix 
elements. 

Our calculations for other compounds show a quali- 
tatively similar role for phonons. In addition to 
Hg^gCdttsjTe, we studied the band-gap variation with 
temperature in GaAs, InAs, InP, InSb, GaSb, and 
CdTe compounds and HgCdTe alloys. The gap changes 
linearly at high temperatures (>150K). The calcu- 
lated dEj/dT values (circle) are compared with experi- 
ments (cross) values in Fig. 3. We see that the calcu- 
lations produced correct trends in all these materials, 
but compare less favorably with experiments in InAs 
and InSb. However, it is important to note that the 
sign of the change is not exclusively determined by 
the magnitude of the zero-temperature gap. For ex- 
ample, although Hg^CdojoTe and InSb have the 
same zero-temperature gap of 0.235 eV, the InSb gap 
decreases with T, whereas the Hg-roCd^oTe gap in- 
creases with T. The combination of gap size, conduc- 
tion band width, and intervalley separations gives 
rise to these interesting variations in the gap with T. 

The observation that both ET and Ec move down in 
energy has an important effect on band offsets in 
heterojunction-based devices. For example, the zero- 
temperature valence band offset between 
Hgo.78Cdo22Te and CdTe is believed to be around 350 
meV. However, we find that at 300K, ET in 
Hgo.78Cdo22Te and m CdTe moves down by 215 ani 30 

meV, respectively. If the dipole contribution remains 
the same, the valence band offset decreases to 165 
meV at 300K The contention that the dipole contribu- 
tion is nearly temperature independent stems from 
the observation that any shift in the average effective 
crystal potential should effectively be screened out, 
since these semiconductors are good dielectrics (e 5 
10). The temperature variation of the bands should be 
taken with respect to a fixed average potential. For 
our Hamiltonian, the valence band edge movements 
in each side of the junction are calculated with refer- 
ence to a fixed average state. Thus, the calculated 
temperature dependence of the difference in the VB 
edge of the constituent heterojunction materials ef- 
fectively governs the temperature dependence of the 
band offset. In addition to the electron-phonon inter- 
actions discussed above, lattice dilation changes the 
band edges differently.9 This effect is not included 
here. In any case, this band offset change has im- 
portant implications for the design of abrupt het- 
erojunction infrared (IR) absorption and confined 
well laser devices. 

In principle, the band structure at any wave vector 
k_yyill change with temperature. With the change in 

F-5 



Temperature Dependence of Band Gaps in 
HgCdTe and Other Semiconductors 

the fundamental gap, the band curvature (or effective 
mass) also changes thus affecting the optical and 
transport properties of the material. The self-energy 
calculated in this method will include the effect of 
scattering due to phonons and the change in the 
temperature-dependent band structure self-consis- 
tently. In the case a of narrow-gap material such as 
Hg^gCdg^Te, the effective mass alone does not ex- 
plain the low-energy portion of the conduction band 
structure. The lowest CB energy at any k is best 
described by a hyperbola,27 (7k2 + c2)"2 - c. The calcu- 
lated band gap, effective mass, y, and c as functions of 
T are given in Table II. The effective mass and c are 
directly proportional to the gap and hence monotoni- 
cally increase with T. This is expected from a k • p 
theory argument, but the magnitudes predicted by 
the two theories differ, y decreases slightly at lower 
temperatures and then starts to increase with T. In a 
previous publication,27 we had simulated these tem- 
perature variations of y and c by adjusting the Hg 
concentration in HgCdTe alloys to produce proper gap 
at each temperature. Those values are in remarkable 
agreement with the values reported in Table II. We 
conclude that y and c (given in Table II) can be 
interpolated to considerable accuracy for any positive 
gap in the HgCdTe alloys. 

CONCLUSIONS 

Although the calculations produced correct trends 
in all materials, the calculated changes in the band 
gap of InAs and InSb were about a factor of two 
smaller than in the experiments. We find that our 
calculated TA phonon frequencies away from zone 
center in these compounds were considerably larger 
than those found in experiments. As noted from Table 
I, a substantial contribution comes from acoustic 
phonons. Consequently, our theoretical values of Eg 
(T) are smaller than in experiments. Betterpredictabil- 
ity should result from improvement in the dynamical 
matrix calculated from the underlying Hamiltonian. 
In addition, at higher temperatures higher-order per- 
turbation terms must be included along with finite- 
temperature "renormalized" bands rather than the 
zero-temperature bands. Such renormalization af- 
fects the monotonic change in the gap and introduces 
nonlinear terms. 

In summary, we have calculated the temperature 
variations of band gaps in various semiconductors. A 
fairly accurate HPTB Hamiltonian is used in the 
calculation of electron and phonon structures. The 
calculations explain the increase in the band gap of 
Hg„ 7gCd022Te, and the decrease in the band gap of all 
III-V compounds studied. We show that acoustic 
phonons make the major contribution. Contrary to 
traditional thinking based on total density of states 
arguments, we find that both the valence and the 
conduction band edges move down in energy. One 

important consequence of this observation will be in 
the band offsets in semiconductor heterojunction de- 
vices. Finally, there is a small and usually negligible 
zero-point motion contribution to low-temperature 
band gaps arising from electron-phonon interactions. 
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ABSTRACT 

Ini.xTlxP is proposed as a promising material for infrared detectors. A number of key 
optical and structural properties are studied within local density-functional theory. Ini_xTlxP 
at x = 0.67 and Ini.xTlxAs at x = 0.85 are estimated to have a gap of 0.1 eV. Their binding 
energies are larger than that of InSb, and they are found to form stable zincblende alloys for 
all x. Ini.xTlxP nearly lattice matches to InP, and offers the potential to integrate detector 
array and read-out circuit. 
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We have proposed that the alloys Ini.xTlxP and Ini.xTlxAs have properties that dis- 
tinguish them as outstanding candidates for IR electro-optic receiver and emitter devices.1 

This paper concentrates on the properties of Ini.xTlxP in the long wavelength infrared (LWIR) 
because it nearly lattice matches to InP substrates and, therefore, offers the prospect of 
integrated laser emitters, focal plane array (FPA) detectors, and read-out integrated circuits 
(ROIC) on the same chip. This capability could enable use of device architectures formerly 
deemed impractical because currently used LWIR materials are incapable of supporting them. 

The properties of TIP, according to our first principals theory, that make it an attractive 
IR material candidate are: 

• It forms in the zincblende structure. 

• Its lattice constant (5.96 Ä) closely matches that of InP (5.83 Ä) (so the pseudo- 
binary Ini-XT1XP liquidus and solidus phase diagrams have simple lens shapes). 

• Its cohesive energy per atom (2.56 eV/atom) is 58% greater than that of HgTe 
(1.62eV/atom). 

• It is a semimetal with a negative gap of -0.27 eV, about the same as HgTe (-0.3 eV). 

Table 1 presents the properties of the alloy with a 0.1 eV band gap that are related to 
LWIR-FPA performance and processing. The salient features are: 

• The alloy concentration is x = 0.67, and the concentration variation of the gap 
IdEg/dxl is 1.42, 16% smaller than Hgo.7sCdo.22Te (1.69). 

• The elastic constants are -33% larger than the LWIR HgCdTe alloy. 

• The transverse optical phonon energy is 34.6 meV, 139% larger than HgCdTe (14.5), 
thereby limiting VLWIR utility to Xc < 36 um (this is the only negative feature 
relative to HgCdTe). 

• The temperature variation of the band gap2 dEg/dT near 77° K is small 
(~ -0.05 meV/°K), about 1/7 as large as HgCdTe (0.36 meV/°K) (dEg/dT for 
Hgi_xCdxTe vanishes near x = 0.5, while that of Ini.xTlxP vanishes close to 
x = 0.67, the LWIR concentration, greatly simplifying designs for variable 
temperature operation and eliminating spatial variation in pixel performance 
caused by temperature gradients over array areas). 

• The electron effective mass is 0.008, almost identical to HgCdTe (-0.008). 

• The hole effective mass is 0.37,43% smaller than HgCdTe (0.65) (which implies 
higher hole mobilities and substantially longer electron Auger recombination 
lifetimes for InTIP). 

• The electron mobility at 80°K (öxl^cn^/V-s) is 44% smaller than HgCdTe, but it 
does not die off as rapidly as temperature increases; consequently, electron mobility 
at 200°K is 4.5x1 O^n^/V-s while the same for HgCdTe is 2.24xl04cm2/V-s, only 
half as large. (This means the high temperature responsivity should not degrade as 
rapidly in InTIP.) 

lM. van Schilfgaard, A.-B. Chen, S. Krishnamurthy, and A. Sher, Appl. Phys. Lett., in Press 1994. 
2S. Krishnamurthy, A.-B. Chen, and A. Sher, submitted to Appl. Phys. Lett., 1994. 
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This collection of properties-plus the extra ease of processing, the lower defect 
densities expected as a consequence of the high cohesive energy, and the superior InP 
substrate (three-inch diameter wafers with average dislocation densities ~104cm-2)3--lends 
support to the contention that Ini.xTlxP will prove to be a striking LWIR-FPA material. 

TABLE 1 
LWIR MCT AND ITP PROPERTIES COMPARISONS 

Property HgO.22Cdo.78Te Ino.33Tlo.67P 

Theory Experiment Theory Experiment 

1 Eg [eV] 0.1 0.1 0.1 — 

2 Eb[eV/atom] 1.66 1.75 2.75 — 

3 ä[Ä] 6.45 6.46 5.92 — 

4 7z6)To[meV] 14.5 14.12 34.6 — 

5 B[1012erg/cm3] 0.46 0.42 0.61 — 

6a dEg/dx [eV] 
@Eg(77°K) = 0.1[eV] 

1.71 1.69 @ 0°K 1.42 

6b dEg/dT [meV/°K] 0.36 0.3 -0.05 — 

7 m;@o°K 0.008 -0.009 0.008 — 

8 m; @ 0° K 0.65 0.38-0.71 0.37 — 

9 |ie[cm2/V-s] 

9a @ 80 K 1.07xl05 0.986xl05 6X104 — 

9b @200K 2.24X104 2-OxlO4 4.5X104 — 

10 Mcm2/V-S] 

10a @77K — 600-1400 — — 

10b @200K — 300-600 — 

11a teAtns] 

@ 1016[cm-3] 

— 10 i(MCT) < x(ITP) 

  

1 lb   ThA[ns] — 40 — -    1 

3D.F. Bliss, R.M. Hilton, and J.A. Adamski, Journal of Crystal Growth, I28_, 451,1993. 
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A Study of the HgCdTe Absorption Edge 
at Various Temperatures 

V. Ariel, V. Garber, G. Bahir 
Department of Electrical Engineering, Technion, Haifa 32000, Israel 

S. Krishnamurthy*, A. Sher* 
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Optical properties of HgCdTe are extensively studied because it is the most important material 
for the detection of infra red radiation1. In particular, the behavior of the absorption 
coefficient in the vicinity of the fundamental absorption edge is important because its spatial 
uniformity has a direct influence on HgCdTe focal plane array performance. In this work we 
present experimental and theoretical studies of the absorption coefficient in bulk and epitaxial 

HgCdTe layers at different temperatures. 

Bulk samples used in this work were fabricated by Caminco and Technion. LPE grown 
samples were from Fermionics and MOCVD samples were from Soreq, NRC. The samples 
were cooled in the temperature range 20-300°K using a closed cycle liquid He refrigerator and 
investigated by FÜR transmission spectroscopy (Fig. 1). The first derivative of the absorption 
coefficient was used to study the band gap dependence on temperature in bulk samples2 

(Fig. 2). The effect of temperature on the band gap grading in epitaxial layers was studied with 

the help of the second derivative (Fig. 3). 

Absorption for photon energies Ha less than the band gap Ev which is known as the Urbach 

absorption tail3, is usually described as an exponential function4-7 of tito. Our experimental 
data demonstrated a more complex dependence in this region of absorption which we were 
able to calculate by considering impurity tails of the conduction and valence bands8. The 
resulting semi-empirical expression, a = aQ • hco x exp[(ftß> - Es) / Et J, demonstrated 

agreement with experimental measurements in the Urbach range (Fig. 4) for all samples and in 

all temperature ranges. 

In the fundamental absorption range, we considered the nonparabolicity of the conduction 
band which may be well represented 9, up to about 0.5 eV from the conduction band edge, by 

Ek = [yk1 + C2f   - C. where C and y are temperature and composition dependent 

parameters. This dispersion relation allows to calculate the absorption coefficient in the 
fundamental absorption range. Currently work is under way to compare this model with 

experimental measurements. 

* Supported by ARPA/AFOSR contract MDA972-92-C-00S3. 
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Transport Studies in Narrow-Gap Semiconductors Revisited 

SRINIVASAN KRISHNAMURTHY and ARDEN SHER 

SRI International, Menlo Park, CA 94025 

Transport-related properties such as electron mobility, Hall coefficient, Fermi 
level, and energy gap are calculated with accurate analytical band structures, 
Fermi-Dirac statistics, and a full solution to the Boltzmann transport equation. 
These calculated values differ substantially from the ones obtained with para- 
bolic or k-p generated band structure approximations for a Hg078Cd022Te alloy. 
A new way to analyze absorption data to extract the temperature variation of the 
band gap is also explained. 

Key words: Band gap, calculation of accurate band structures, electron 
mobility, Fermi level, Hall coefficient, HgCdTe 

INTRODUCTION 

Approximations such as parabolic band structures, 
Maxwell-Boltzmann (MB) statistics for electrons, and 
neglect of the gain term in the Boltzmann transport 
equation (BTE) (commonly known as collision time 
approximation) are often used to compare against 
and interpret experimental results. These approxi- 
mations are often made to both elastic and inelastic 
scattering mechanisms. Even in large-gap materials, 
the constant effective mass approximation is valid 
only very near (within = E710) to the band edge.1'2 

This approximation is particularly poor for narrow 
gap materials, and nonparabolic corrections calcu- 
lated in the k-p formalism are often used.3-3 Although 
this correction is substantial, it still differs consider- 
ably from our more accurately calculated band struc- 
tures. However, our fit of these more accurate conduc- 
tion bands to an analytical function makes many 

(Received October 13, 1993; revised August 15, 1994) 

results transparent and simplifies the calculations. 
As the Fermi energy can easily move into the conduc- 
tion band of lightly doped small-gap materials, the 
form of the Boltzmann equation with Fermi-Dirac 
(FD) (instead of the usual MB) statistics must be used 
to obtain accurate transport coefficients. 

In this paper, we report results from our study of 
absorption coefficients, Fermi energies, and Hall coef- 
ficients calculated with Fermi-Dirac statistics, accu- 
rate pseudopotential band structures fine tuned with 
tight-binding (TB) corrections, and the mobility with 
a full solution to the BTE. 

BAND STRUCTURE 

Quantitatively accurate band structures of most 
semiconductors6-8 can be obtained using a minimum 
set of sp3 orbitals in semi-empirical calculations. First, 
for each alloy constituent, empirical pseudopotential 
form factors are used to calculate a TB Hamiltonian, 
H in the minimum set. This H is then transformed 
into a zeroth order Hamiltonian H0 in an orthonormal 
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hyperbola, 

E, = (yk2 + c2)1 
(1) 

0.04 0.06 

k (2 pi/a) 

Fig. 1. Our approximation to 77K electronic structure of Hg078Cd0p22Te. 

300 

TOO 
Fig. 2. Fermi energy as a function of temperature:hyperbolic bands. 
The dashed (experimental) curve is from Ref. 10. 

basis. Then a perturbative Hamiltonian having a 
first-neighbor TB form is added to H0 to fine tune the 
band structure to fit the measured symmetry point 
energies. Because long-range interactions are included 
in this Hamiltonian, the measured band curvatures 
are correctly reproduced. This procedure is followed 
for both HgTe and CdTe, and then the alloy band 
structures are calculated in the coherent potential 
approximation. 

We focus on the Hg0 78Cd0 22Te alloy with band-gap 
energy ranging around 100 meV at low temperature 
for the studies reported here. We find that the calcu- 
lated conduction band is replicated very well by a 

where y and c are adjusted to fit the calculated band 
structure in the energy range of interest. When y and 
c are treated as constants related to the band gap, Eg 
and the effective mass, this expression reduces to the 
same nonparabolic correction form obtained in the k-p 
method.4 However, the numerical values of y and c are 
not same as ours. For example, in the chosen case, y 
and c are 48.3 and 0.058, respectively, whereas the 
corresponding k • p values are 36.0 and 0.05. The 
differences are found to be large enough to cause a 
noticeable change in the band structure and trans- 
port properties. The band structure calculated by 
diagonalizing the Hamiltonian is shown in Fig. 1 
(thick line). We can see that the fitted hyperbola (thin 
line) agrees quite well up to an energy of 0.5 eV from 
the conduction band edge. Without loss of accuracy, in 
the studies considered here, Eq. (1) is used as the 
energy dispersion relation in transport expressions 
that follow. Also shown in Fig. 1 is the poor reproduc- 
tion of the conduction band obtained with an effective 
mass approximation (long dashed line) and that with 
usual nonparabolic (k-p) correction (short dashed 
line). 

Two qualitative features of the band structure in 
Fig. 1 that impact transport properties should be 
noted. First, for energies E-Ec greater than 50 meV 
where the shape of the conduction band is nearly 
linear in k the group velocity is nearly a constant 
independent of k. Then, the density of states (DOS) 
increases proportional to E rather than EV2 as in the 
case of parabolic bands. Clearly these features modify 
the transport properties of electrons occupying these 
states. As we will show in the following section, at the 
carrier concentration and temperatures often found 
in device structures, the Fermi level falls into the 
region where these features contribute to transport 
properties. 

FERMI LEVEL 
The calculation of the Fermi level, eF as a function 

temperature, T and doping concentration, nD is re- 
quired for all transport calculations. A knowledge of 
temperature-dependent gap E (T) is essential to ob- 
tain accurate values of e F in narrow gap material. 
Ideally, the temperature dependence should be de- 
duced by including electron-phonon terms and lattice 
dilation in the Hamiltonian from which the variation 
of Eg with T can be obtained. We have developed a 
general method to incorporate the phonon and alloy 
effects into the same CPA formalism,9 but such an 
approach is not attempted here. Instead, we use the 
empirically deduced expression10 given by 

Eg = 0.0954 + 0.327T/1000 (2) 

Although the gap has been fitted to a number of 
different analytical functions,10-12 we chose the above 
expression simply to demonstrate the effects of vari- 
ous approximations. After obtaining trends, we in- 
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tend to repeat these calculations with a proper 
treatement by including the electron-phonon interac- 
tion Hamiltonian. 

Here e F is calculated from the condition13 that at a 
given T the number of electrons in the conduction 
band is the sum of electrons excited from the valence 
band and the donor levels. In this study, where the 
modifications caused by the band structures are being 
emphasized, the donor states are assumed to be 
located at the bottom of the conduction band.14 The 
valence and conduction band DOS are calculated 
from our band structure. The valence band DOS 
yields an average hole effective mass of 0.65. The €F 
(relative to the valence band edge) as a function of T 
and nD are given in Fig. 2. We found that the more 
accurate hyperbolic band is substantially different 
from parabolic-band generated values. The impact of 
these differences on the transport properties will be 
large when e F is located near the energy where the 
band changes its character from parabolic to linear. 
Also, when eF is near to or greater than E , the 
absorption cutoff wavelength is strongly influenced 
because the transition cannot take place to filled 
states. A proper account of this effect, called the Moss- 
Bernstein shift, must be included along with these 
accurate band structures. In addition, we note that 
the Fermi level and the measured band gap affect 
each other. The changes in the gap are accompanied 
by band curvature changes. The gap and the curva- 
ture change affect the Fermi energy, which in turn 
affects the apparent measured band gap. Hence, a 
proper interpretation of optical absorption to deduce 
the energy gap has to be done self-consistently to 
include both these effects. 

ENERGY GAP 

In order to emphasize the point that the measured 
value of Eg and its T dependence is sensitively depen- 
dent on the self-consistent determination of the band 
shapes and € F, we carried out a preliminary calcula- 
tion of the absorption coefficient a. The absorption 
coefficient a is proportional to k2 pc (l-fc) pv f, where 
f is a k dependent FD distribution function, p is a k 
dependent DOS, and subscripts c, v represent conduc- 
tion and valence band, respectively. The k2 factor 
arises from the matrix elements that are in the 
expression for a. The temperature and energy-indepen- 
dent proportionality constant, which arises from the 
square of the overlap matrix element, is adjusted to 
agree with an experimental curve at 80K in the 
vicinity of a given value of a(X) at wave length X. A 
nearly linear dependence of log(a) on X was observed15 

for various T between 80 and 300K and Cd concentra- 
tions near 0.22. 

Because the band edges are often broadened by 
impurity and phonon scattering (known as Urbach 
tails), the gap cannot simply be assigned to the energy 
corresponding to the apparent cutoff wavelength X^ 
where these curves project to zero. The procedure 
used by many authors11 is to assign Xco to be the place 
where a is 500 cm-1 or 1000 cm"1. The justification for 

this procedure is that the actual unbroadened shape 
of a(X) is very sharp and if the Urbach tail ends at 500 
cm-1 or 1000 cm-1, then the corresponding X at which 
this occurs will be close to the actual Xm. In the spirit 
of this procedure, we adjust the proportionality con- 
stant to fit the log(a) vs photon energy E curve at 80K. 
As seen from Fig. 3a, we find that this one constant 
fits nearly the entire curve at 80K. The constant is 
chosen such that the calculation and experiment 
agree very well in the vicinity of 500 cm-1. There is 
little, if any, Urbach tail at this temperture. Once the 
constant is determined by this procedure, it is used for 
every temperature. At higher temperatures, the tails 
are present. We then artificially adjust the band gap 

0.24 

300 

T(K) 

Fig. 3. (a) Absorption coefficient as function of photon energy; (b) 
energy gap as a function of temperature. 
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Fig. 4. Hall factor as a function of temperature: hyperbolic bands. 

(with its corresponding band curvature) to mock the 
temperature variation by changing the Cd concentra- 
tion until the calculated a curve fits a point on the 
experimental curve. In the course of this procedure, 
the Fermi energy also changes, which necessitates 
that the calculations be done iteratively until self- 
consistency is reached. The theoretical curve is then 
used to project the effective band gap. Fig. 3a displays 
the curves so obtained. The temperature variations of 
the energy gaps deduced in this way, with two differ- 
ent proportionality constants, are shown in Fig. 3b 
(dashed lines). Also shown in Fig. 3b (solid lines) for 
comparison are effective Eg vs T variations if values 
are taken from the data15 corresponding to a at 500 
cm-1 and at 1000 cm"1. Also, the experimental energy 
gap and its temperature variation measured by dif- 
ferent groups10-12 are plotted (dotted lines) in Fig. 3b 
for comparison. It is clear that various experiments 
differ substantially from each other. Also note that 
our curves are lower than the ones that are normally 
deduced from the same experiments, and the varia- 
tion in T is no longer linear. Once the proportionality 
constant is calculated from our band structures, the 
energy gap is expected to lie between the two dashed 
lines shown here. However, the gap at T = OK pre- 
dicted by our band structure method is in agreement 
with that of Refs. 10-12. The Eg(T) will start with a 
zero slope12 and connect smoothly to our 80K value. A 
nonlinear variation of Eg at much lower T, however, 
has been observed in recent two-phonon experiments.12 

All these results emphasize the need for proper calcu- 
lations of E (T), and cc(T) so that more reliable device 
parameters can be established. 

HALL COEFFICIENT 

The carrier density, n in n-type material, is nor- 
mally deduced from measurements of Hall coeffi- 
cients Rjj, given by re/en, by assuming the Hall factor 

re is unity. If one uses a parabolic approximation for 
the conduction band and MB statistics, re, is approxi- 
mately unity. We set out to examine the effect of 
removing these approximations using the correct band 
structures. It requires generalizing the BTE to in- 
clude FD distribution functions, f(k). We start from 

df (k) _ 
dt 

w(k, k')f (k')(l- f (k)) - w(k',k)f (k)(l- f (k'))' (3) 

The first term of the right side is the gain term and the 
second one is the loss term. As a consequence of 
general statistical mechanics arguments,16 the ratio 
of transition probabilities is such that w(k,k') e~pE|<- = 
w(k',k) e_pE". In equilibrium, the left side of Eq. 3 is 
identically zero and f from Eq. 3 becomes the equilib- 
rium FD distribution function f0 given by 

f0(Ek) = (e^) + l (4) 

where ß is (kgT)-1. In the presence of electric and 
magnetic fields, 

ffi = Ä + vf(k).^(E + vxB) 
dt       at        K ' hK ' 

(5) 

In steady state, the 3f[k)/3t in Eq. (5) vanishes. In the 
small field regime, we can linearize fand write it as a 
sum of f0 and a perturbation fx(k). Discarding the 
derivative of fx(k) and after some algebraic manipula- 
tion, Eq. (5) reduces to17 

Vf0(k).|(E + vxB) = 

l[W(k,k')f1(k')-W(k',k)f1(k)] (6) 

where the renormalized W and the usual transition 
probability per unit time w are related by 

w(k,kO = w(k,kO^ f°(k)l (7) 

Note that for elastic scattering W and w are equal. 
However, for inelastic cases, the effect depends on 
whether the energies at k and k' are larger or smaller 
than e F. If both initial and final energies are larger (or 
smaller) than eF, then only a small correction to w is 
expected. However, if the initial state is above e F and 
the final state is below eF, then that scattering is 
suppressed. 

In the collision time approximation, the gain term 
in Eq. (7) is neglected and the effective collision time, 

x. is 

te)"l=xw(k',k) (8) 
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Using this collision time approximation, it is straight- 
forward to obtain the expression for r . 

:3kBT XkfoIkk2YS(Tk
F)2fo(l-fo) 

(IkkWfo(l-f0))' 
(9) 

where VkEk is yk k. The re value calculated from Eq. (9) 
with parabolic bands is approximately 1 for higher 
temperatures but shows considerable structure with 
a maximum value of about 2 at lower temperatures. 
However, when the more accurate hyperbolic band 
structure is used, the variation at low T is reduced to 
a maximum value of about 1.2, suggesting that re- 
ported intrinsic densities may be smaller in this 
temperature range by approximately 20%. The calcu- 
lated re with hyperbolic band structures are shown for 
various T and doping densities in Fig. 4. The effect of 
removing the collision time approximation and add- 
ing T dependence of band gap on the values of re still 
needs to be studied to extract correct carrier densities 
from Hall measurements. However, our tentative 
conclusion is that approximating re to be 1 is better 
than we had reason to expect. 

DRIFT MOBILITY 

The collision time approximation in the formalism 
developed above is removed, and a full solution to 
BTE with FD statistics17 is used to calculate the 
mobility u. The details of this generalization are being 
published elsewhere and only the results are summa- 
rized here.17 This method is a generalization of the one 
to solve the Boltzmann equation with MB statistics.18 

In Fig. 5, we compare the mobilities calculated in 
various approximations to experiments. The carrier 
concentration in the calculations was set equal to that 
used in the experimental value of 5 x 1014cm-3. Two 
experimental data sets taken on LPE material19-20 are 
shown in Fig. 5 (dashed lines). The latest set exhibits 
higher mobilities for the same Cd content and carrier 
concentration and is presumably a better material. 
Also shown are the mobilities obtained from our 
hyperbolic band structure (thick solid line) and from 
the k-p band structure (thin solid line). For compari- 
son, the mobility obtained in the collision time approx- 
imation with our band structure (dotted line) is also 
shown in Fig. 5. 

It is instructive to compare various curves in Fig. 5. 
All curves are calculated with the same scattering 
parameters. Only ionized impurity and LO phonon 
scattering are included. No correction due to compen- 
sation is included. First, our calculated mobilities are 
higher than those from the k-p band structure. The 
smaller ydeduced from the k-p method means that the 
DOS is larger, resulting in this lower mobility. How- 
ever, both curves predict a hump in the temperature 
variation of mobility near 40K, where phonon scatter- 
ing takes over from the impurity scattering, which 
dominates at lower temperatures. The full solution to 
BTE, in conjunction with the change in the Debye 

screening length and phonon scattering, gives rise to 
this hump. Second, the collision time approximation 
does not produce this hump. We note that the mobility 
calculated with a collision time approximation grossly 
overestimates the scattering rate and wipes out this 
peak in the mobility. A smaller peak near 200K is due 
to changes in the Fermi energy. 

Our predictions fall within ±25% of the latest ex- 
perimental values over the temperature range from 
10 to 300K. Our calculated values are smaller at low 
T and larger at high T than experiments. As we 
demonstrated here, the electron mobility is a sensi- 
tive function of the shape of the band structure; we 
must await our better temperature-dependent band 
structures before improvements will be forthcoming. 
We have already shown from our preliminary studies 
of absorption coefficient that empirical gaps are as 
much as 20% too large. If detailed calculations verify 
these results, then impurity-dominated mobilities 
will increase at low T, and the small neglected scatter- 
ing mechanisms (alloy disorder, transverse optical 
and acoustic phonons) will decrease the mobility 
slightly at high T to bring the predictions into better 
agreement with experiments at all temperatures. 

CONCLUSIONS 

In this paper, we have studied the effect of various 
approximations on electron transport coefficients and 
on ways to extract physical parameters from experi- 
ments. We point out how the values interpreted from 
experiments depend crucially on various approxima- 
tions such as effective mass, MB statistics, and colli- 
sion time. The main results are: 

• Approximating the Hall factor by unity over a 
wide range of carrier concentrations and tem- 
peratures is accurate for most applications. An 
error of about 30% is expected at high T and low 
carrier concentration (1015 cm-3), and about 20% 

■to6 
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Fig. 5. Hall mobility as a function of T with various approximations. 
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is expected at low T and high carrier concentra- 
tion (1018 cm-3). 

• The variation of the band gap with temperature 
for 22% Cd concentration is nonlinear and is 
faster at low temperature. The gap at low T is 
about 20 meV smaller than those usually quoted. 

• The mobility calculated from a full solution to the 
BTE with FD statistics can explain the hump 
near 40K and is in good agreement with experi- 
ments. This result is obtained with no param- 
eters in the theory adjusted to fit measured 
mobility data. Once the other scattering mecha- 
nisms such as acoustic and alloy disorder are 
included, the agreement is expected to be better. 
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ABSTRACT 

Transport-related properties such as electron mobility, Hall coefficient, Fermi 

level, and energy gap are calculated with accurate analytical band structures and 

Fermi-Dirac statistics. Calculated values differ substantially from the ones 

obtained with effective mass or parabolic band structure approximation of 

Hgo.22Cdo.78Te alloy. 

1.        INTRODUCTION 

The experimental results on electron transport properties of semiconductors are often 

compared to theory that rests on three approximations, namely, parabolic band structures for 

those states occupied in the measurement, Maxwell-Boltzmann (MB) statistics, and collision 

time approximation to a full Boltzmann gain-loss equation. These approximations are made to 

all scattering mechanisms, whether they are elastic or inelastic. It is well known that, even in 

large-gap materials, the constant effective mass approximation is valid only very near (= Eg/10) 

to the band edge.1-2 This approximation has been recognized to be particularly poor for narrow- 

gap materials and nonparabolic corrections calculated in the k«p formalism.3"5 This correction 

is substantial, but still differs considerably from our more accurately calculated band structures. 

In addition, our fit of the conduction band to an analytical function makes many results 

Note: This presentation is unclassified in its entirety.      J 2 



transparent and simplifies the calculations. As the Fermi energy can easily move into the 

conduction band of lightly doped small-gap materials, the form of the Boltzmann equation with 

Fermi-Dirac (instead of the usual MB) statistics must be used to obtain accurate transport 

coefficients. 

We report results from our study of absorption coefficient, Fermi energy, Hall coefficient, 

and electron mobility calculated with Fermi-Dirac statistics (FD), and an accurate 

pseudopotential band structure fine-tuned with tight-binding (TB) corrections. 

2.        BAND STRUCTURE 

Quantitatively accurate band structures of group IV elements,6 III-V compounds,7 and 

II-VI compounds7-8 can be obtained using a minimum set of sp3 orbitals in semiempirical 

calculations. First, empirical pseudopotential form factors are used to calculate a TB 

Hamiltonian, H in the minimum set. H is then transformed into a zeroth order Ho in an 

orthonormal basis. Then, a perturbative Hamiltonian having a first-neighbor TB form is added to 

Ho to fine-tune the band structure. Because long-range interactions are included in this 

Hamiltonian, the measured band curvatures are correctly reproduced. This procedure is followed 

for both HgTe and CdTe, and then the alloy band structures are calculated in the coherent 

potential approximation. 

We focus Hgo.22Cdo.78Te alloy with 100-meV band gap for the studies reported here. 

We find that the calculated conduction band is replicated very well by a hyperbola, 

Ek = (Yk2 + c2)1/2-c (1) 

where y and c are adjusted to fit the calculated band structure in the energy range of interest. 

When Y and c are treated as constants related to the band gap, Eg and the effective mass, this 

expression reduces to the same nonparabolic correction form obtained in the k»p method.4 

However, the numerical value of y and c are not same as ours. For example, in the chosen case, y 

and c are 48.3 and 0.058 respectively, whereas the corresponding k»p values are 36.0 and 0.05. 

The differences are found to be large enough to cause a noticeable change in the band structure. 
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The band structure calculated by diagonalizing the Hamiltonian is shown in Figure 1 (thick, solid 

lines). We can see that the fitted band structure (thin line) agrees quite well up to an energy of 

0.5 eV from the conduction band edge. Without loss of accuracy, in the studies considered here, 

Eq. 1 is used as the energy-dispersion relation in the transport expressions. Also shown in 

Figure 1 is the poor reproduction of the conduction band obtained with an effective mass 

approximation (dashed line). 

Two qualitative features of the band structure in Figure 1 that impact transport properties 

should be noted. First, for energies E-Ec greater than 50 meV where the shape of the conduction 

band is nearly linear in k, the group velocity is a constant independent of the k. Then, the 

density of states (DOS) increases proportional to E rather than E1/2 as in the case of parabolic 

bands. Clearly, these features modify the transport properties of electrons occupying these states. 

As we will show in the following section, at the carrier concentration and temperatures often 

found in device structures, the Fermi level falls into the region where these features contribute. 

FERMI LEVEL 

The calculation of Fermi level EF as a function temperature T and doping concentration 

no is required for all transport calculations. A knowledge of temperature-dependent gap Eg(T) is 

essential to obtain ep. Ideally, temperature dependence should be included in the Hamiltonian 

from which the variation of Eg with T could be obtained. We have developed a general method 

to incorporate phonon and alloy effects into the same CPA formalism,9 but such an approach is 

not attempted here. Instead, we use the expression10 given by 

Eg = 0.0954 + 0.0327 T/1000 (2) 

After studying the effects of various approximations and obtaining trends, the calculations is 

repeated with the temperature-dependent Hamiltonian. 

Then, the eF is calculated from the condition11 that at a given T the number of electrons 

in the conduction band is the sum of electrons excited from the valence band and donor levels. 
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In this study where the modifications caused by the band structures are being emphasized, the 

donor states are assumed to be located at the bottom of the conduction band. The valence and 

conduction band DOS are calculated from our band structure. The valence band DOS yields a 

hole effective mass of 0.65. The eF (measured from valence band edge) as a function of T and 

nD calculated from parabolic and hyperbolic band structures are given in Figure 2, a and b 

respectively. As expected, a hyperbolic band makes a substantial change from parabolic-band- 

generated values. The impact on the transport properties is large when eF is located at energy 

where the band changes its character from parabolic to linear. In addition, when eF is near to or 

greater than Eg, the absorption cutoff wavelength is strongly influenced. A proper account of the 

Moss-Bernstein shift must include these accurate band structures. We also note that the Fermi 

level and the measured band gap affect each other. Hence, a proper data reduction of cutoff 

wavelength determination of the energy gap has to be done self-consistently. 

4.        ENERGY GAP 

To emphasize the point that the measured value of Eg and its T dependence is sensitively 

dependent on the knowledge of eF, we carried out a calculation of absorption coefficient a. The 

absorption coefficient a is proportional to k2 pc (l _ fc) pv fv, where f is the ^ distribution 

function, p is the DOS, and subscripts c, v represent conduction and valence band, respectively. 

The k2 factor arises from the matrix elements that are in the expression for eF. The temperature- 

and energy-independent proportionality constant is adjusted to agree with the experimental curve 

at 80 K in the vicinity of a given value of a. Nearly linear dependence of ln(cc) on photon energy 

was observed^ for T between 80 and 300 K and Hg concentrations near 0.22. 

Because the band edges are broadened by impurity and phonon scattering (Urbach tail or 

broadening), the gap cannot simply be assigned to the energy wave length where these curves 

project to zero. The procedure used by many authors is to assign ^0 to be the place where a is 

500 cm-l or 1000 cm-l. In the spirit of this procedure, we adjust our proportionality constant to 

fit the ln(cc) versus E curve at 80 K. As seen from Figure 3a, one constant fits the entire curve. 
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However, at higher temperatures the tail sets. We then recalculate the band structures and a for 

different band gaps (with corresponding curvature) until the curves at a = 500 cm-1 for all 

temperatures, as shown in Figure 3a. The energy gap, variation with temperature, deduced by 

following this procedure is shown in Figure 3b (a dashed line). Also shown in Figure 3b (solid 

lines) for comparison are effective Eg versus T variations if values are taken from the data 

corresponding to a 500 cm-1 and 1000 crrr1. Finally, because our procedure is ad hoc, we 

repeated our fits by adjusting to a = 100 cm-1 values; the calculated energy gaps are also plotted 

in Figure 3b (a dashed line). We expect that the proper Eg(T) curve lies somewhere between our 

two fit curves. Note that both curves are below the traditional curves and the variation in T is no 

longer linear, emphasizing the need for proper calculation of Eg(T), a(T) so that more reliable 

device parameters can be established. 

HALL COEFFICIENT 

The carrier density, n in n-type material, is normally deduced from measurements of the 

Hall coefficient RH, given by r^en, by assuming the Hall factor re is unity. If one uses parabolic 

approximation and MB statistics, re is approximately unity. We set out to examine the effect of 

removing these approximations, using the correct band structures. This requires generalizing the 

Boltzmann transport equation (BTE) to include the FD distribution function. We have 

^P = I [w(k, k')f(k')(l-f(k)) - w(k\ k)f(k)(l - f(k'))] (3) 
k' 

The first term of the right side of Eq. 3 is the gain term, and the second one is the loss term. In 

equilibrium, the left side of Eq. 3 is identically zero, and f becomes the equilibrium FD 

distribution function fo given by 

f0(Ek) = (cP^-eF)+1)-1 (4) 

where ß is (kßT)-1. In the presence of the electric and magnetic field 
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<ffi) = 5f> + Vf(k).f(E + vxB) (5) 

In steady state, the 3f(k)/3t in Eq. 5 vanishes. In the small-field regime, we can linearize f and 

write it as a sum of fo and a perturbation f*i(k). Disregarding the derivative of fi(k) and after 

some algebraic manipulation, Eq. 5 reduces to 

Vf0(k) .f (E + v x B) = V [W(k, k')fi(k') - W(k\ k)f(k)f!(k)] (6) 

where the renormalized W and the usual transition probability per unit time w are related by 

W(k, k1) = w(k, k')^1:^) (7) 

Note that for elastic scattering W and w are equal. However, for inelastic cases the effect 

depends on whether energies at k and k' are larger or smaller than ep. If both initial and final 

energies are larger (or smaller) than ep, only small correction to w is expected. However, if the 

initial state is above £p and the final state is below EF, that scattering is suppressed. 

In the collision time approximation, the gain term in Eq. 7 is neglected and the effective 
collision time Tk is 

(<)_1 = 2) W(k', k) (8) 

Using this collision time approximation, it is straightforward to obtain the expression for re: 

IkfoIkk^ffoO-fo)" re = 3kBT 
.   (ikk^WFfod-fo))2   . 

(9) 

where V^Ek is "ft k. The calculated re with parabolic and hyperbolic band structures is shown 

for various T and doping densities in Figure 4, a and b respectively. In both cases, the re is 

approximately 1 for higher temperatures. At lower temperatures, it shows considerable structure 

with a maximum value of about 2 obtained in parabolic approximation. However, when more 

accurate hyperbolic band structure is used, the variation with T is reduced to a maximum value 

of about 1.2, suggesting that reported intrinsic densities may be smaller by approximately 20%. 

The effect of collision time approximation and T dependence of band gap on the values of re still 

J-12 



1.8 

1.6 1015 cm-3 
1016 cm-3 
10i7Cm-3 
1018cm-3 

100 200 300 
T(K) 

Figure 4a. Hall factor as a function of temperature: hyperbolic bands 

J-13 



200 

T(K) 

300 

Figure 4b. Hall factor as a function of temperature: parabolic bands 

J-14 



need to be studied to extract correct carrier densities from Hall measurements. However, our 

tentative conclusion is that approximating re to be 1 is better than we had expected. 

6.        DRIFT MOBILITY 

The formalism developed above to find a solution to BTE with FD statistics can be used 

to calculate the mobility, \i. We obtain the following expression in collision time approximation 

Xkk^xfroa-fo) 
tl=—* 

3fi2kBT Ikfo 
(10) 

The mobility calculated by including the scattering due to ionized impurities and polar 

optic phonons as a function of temperature and doping density is shown in Figure 5a. The 

change in the Debye screening length, complicated variation of Fermi level, and phonon 

scattering give raise to a crossover in mobility near 40 K, as seen in Figure 5a. However, it is 

well known that the collision time approximation always overestimates the velocity transition 

rate that determines the mobility. 

For meaningful comparison with experiment, we generalized the above procedure to get 

full solution to BTE.13 Thus, calculated mobility with our hyperbolic band structure, and usual 

k«p band structure is shown along with that obtained in collision time approximation and 

compared with experiments14 in Figure 5b. 

One important feature of Figure 5b is that the hump in mobility near 40 K could be 

explained with competing impurity and phonon scattering rates. Also note that collision time 

approximation grossly underestimates the mobility. Although k»p values are closer to 

experiment, the agreement is expected to be poor once the scattering mechanisms such as 

acoustic and alloy disorder and the effect of temperature-dependent band structures are included. 

These mechansism lower the mobility calculated with hyperbolic band structures and yield an 

excellent agreement with experiment. 
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7.        CONCLUSIONS 

We have studied the effect of various approximations on electron transport coefficients 

and on ways to extract physical parameters from experiments. We point out how the values 

interpreted from experiments depend crucially on various approximations such as effective mass, 

MB statistics, and collision time. The results are 

• Approximating the Hall factor by unity over a wide range of carrier concentrations 

and temperatures is accurate for most applications. An error of about 30% is 

expected at high temperatures and low carrier concentration (1014 cm"3), and about 

20% is expected at low T and high carrier concentration (1018 cm-3). 

• The variation of band gap with temperature is nonlinear and is faster at low 

temperature. The value at 22% Hg concentration is about 20 meV smaller than values 

usually quoted. 

• The mobility calculated from full solution to BTE with FD statistics can explain the 

hump near 40 K and is in good agreement with experiments. Once the other 

scattering mechansisms such as acoustic and alloy disorder are included, the 

agreement is expected to be much better. 
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The electron mobility in Hg„78Cd0 22Te is calculated by solving the Boltzmann transport equation 
with Fermi-Dirac statistics and a full band structure. The calculated values are in excellent 
agreement with experiments, and effects of various traditional approximations are discussed. 

I. INTRODUCTION 

The experimental results on electron transport properties 
of semiconductors are often compared to theory that rests on 
three approximations, namely, parabolic band structures for 
those states occupied in the measurement, Maxwell- 
Boltzmann (MB) statistics, and the collision time approxima- 
tion to full Boltzmann gain-loss equation solutions. These 
approximations are made to all scattering mechanisms 
whether they are elastic or inelastic. It is well known that, 
even in large-gap materials, the constant effective mass ap- 
proximation is valid only very near (within ~£g/10) to the 
band edge.1. This approximation has been recognized to be 
particularly poor for narrow-gap materials, and nonparabolic 
corrections calculated in the kp formalism are often 
used.3"5 This correction is substantial but still differs consid- 
erably from our more accurately calculated band structures. 
In addition, our fit of the conduction band to an analytical 
function makes many results transparent and simplifies the 
calculations. As the Fermi energy can easily move into the 
conduction band of lightly doped narrow-gap materials, the 
form of the Boltzmann equation with Fermi-Dirac (FD)— 
instead of the usual MB—statistics must be used to obtain 
accurate transport coefficients. 

II. FORMALISM 

In the literature, an iterative solution to the Boltzmann 
transport equation (BTE) with FD statistics has been 
derived.6 Although this method can yield nearly exact solu- 
tions by including more terms in the expansion and with 
more iterations, it can be time consuming since the proce- 
dure has to be repeated for every crystal wave vector k. In 
this article, we derive an alternate method that first simplifies 
BTE with FD statistics to the point where the solution for 
full band structures can be obtained by successive substitu- 
tion. This method is applied to the study of electron mobility 
as a function of temperature T and impurity concentration nD 

in a Hgo78Cd022Te alloy. Results are compared with experi- 
ments. 

We start from the BTE of a homogeneous medium obey- 
ing FD statistics. We have 

df(k) 
dt = 2 {w(k,k')/(k')[l-/(k)]-w(k',k)/(k) 

k' 

x[l-/(k')]}. (1) 

The first term of the right-hand side of Eq. (1) is the gain 
term, and the second one is the loss term. In equilibrium, the 

left-hand side is identically zero and because, in general for a 
system of interest interacting with a heat bath7 

w(k,k')e-^£*' = w(k',k)e-^£*, 

/becomes the equilibrium FD distribution function /„ given 
by 

h(Ek) = {e^-^+\)-\ (2) 

where ß is (kBT)~l. In the presence of an electric field, 

df(k)     df(k) 

dt dt 
+ V/(*)--£. (3) 

In steady state, the df(k)/dt in Eq. (3) vanishes. The solution 
/(k) can always be written as a sum of /0(k) and some de- 
viation A(k). That is, 

/(k)=/0(k) + A(k). (4) 

Note that 2k A(k) is zero for a sample with ohmic contacts 
because the number of electrons should remain constant. 
Combining Eqs. (l)-(4), we obtain 

V/(*) £ = 2 {W(k,k')A(k')-W(k',k)A(k) 
k' 

+ [>v(k',k)-w(k,k')]A(k)A(k')},   (5) 

where the renormalized W and the usual transition probabil- 
ity per unit time w are related by 

W(k,k') = w(k,k') 
[l-/o(k)] 

[Wo(k')] 
(6) 

Note that for elastic scattering W and w are equal; how- 
ever, for inelastic cases the relative size of W to w depends 
on whether energies at k and k' are larger or smaller than 
eF. If both initial and final energies are larger (or smaller) 
than eF, then only small corrections to w occur; however, if 
the initial state is above eF and the final state is below eF, 
then for that scattering event W is suppressed. This tends, for 
example, to decrease the contribution of inelastic scattering 
events involving phonon emission. Also notice that if the 
perturbation is small, then the A2 term can be neglected and 
Eq. (5) resembles the traditional MB steady-state BTE where 
W plays the role of w. 

We further expand A(k) in power series of an indexing 
parameter \, which we will eventually set to unity. Thus, 

A(k)=E /.(k)X\ (7) 
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Substituting Eq. (7) in Eq. (5) and noting that /(k) has one 
additional term, we obtain 

2 V/„fk)--£A"+I=   2    [W(k,k')/m(k') 
n = 0 k'.m=l 

-W{k'.k)fJk)]Km 

■x 

+        2 [H>(k\k)-W(kk')] 
k'.m.m' = 1 

x/„,(k)/m<(k')\" (8) 

By equating the coefficients of the same power of X on both 
sides, we get a series of equations: 

V/0(k)- T£ = 2 [W(k,k')/I(k')-W(k',k)/,(k)]J   (9a) 
k' 

V/,(k)- r£=S {W(k,k')/,(k')-iV(k',k)/,(k) 
"       k' 

+ [w(k',k)-w(k,k')]/1(k)/1(k')}, 

(9b) 

and so on. Knowing f0 [from Eq. (2)], Eq. (9a) is solved for 
/, and the solution is used [Eq. (9b)] for f2 and so on. This 
procedure can be continued to the required precision. We 
emphasize that for low electric fields, only the lowest-order 
equation (9a) needs to be solved to obtain accurate answers. 
When hot-electron effects are addressed, iterative solutions 
should be used. 

This procedure reduces the original integro-differential 
equation (5) to that of solving the following integral equa- 
tion, 

C(k)=2 [W(k,k')g(k') 
k' 

■W{k',k)g(k)], (10) 

where C(k) is a known function and g(k) can be any of the 
set {/„}. One of the fastest ways to solve for g(k) is by 
expanding8 it in terms of an orthonormal basis set {<J>(k)}. 
That is. take 

g(k) = 2 fl„<Dn(k). (11) 

Substituting Eq. (11) in Eq. (10), multiplying both sides by 
^(k) and then summing over k yields a matrix equation 
C=AW, where A is a row matrix of the required expansion 
coefficients. We see that A can be easily obtained by multi- 
plying the square matrix W_1 by the row matrix C. The size 
of the matrix W is determined by the number of functions in 
the basis set. If the basis set is complete, the solution is 
exact; however, if the perturbation is small, one can truncate 
the basis set and obtain accurate solutions with only a few 
functions. For applied electric fields up to 7 kV/cm, eight 
basis functions were shown to be sufficient.9 Hence, in prin- 
ciple, following this procedure all /„ and the final distribu- 
tion function can be obtained. 

The formalism developed above to find solutions to BTE 
with FD statistics can be used to calculate the mobility fj. 
from the following expression: 

e I„.kfl„D(k)4>„(k) 

k/(.(k) 
(12) 

where v(k) is the group velocity of an electron in the state k. 
We apply this method to a study of the electron mobility 

in a Hg„ 7SCd0 22Te alloy with 0.1 eV (at 77 K) band gap. We 
use a high-quality band structure in the calculation. Quanti- 
tatively accurate band structures of group-IV elements,10 

III-V compounds," and II-VI compounds"'12 can be ob- 
tained using a minimum set of sp3, orbitals in semiempirical 
calculations. First, empirical pseudopotential form factors 
are used to calculate a tight-binding Hamiltonian, H in the 
minimum set, but with interactions between atoms retained 
to all ranges. H is then transformed into a zeroth-order Hü in 
an orthonormal basis. Then a perturbative Hamiltonian hav- 
ing a first-neighbor tight-binding form is added to H0 to fine 
tune the band structure. Because long-range interactions are 
included in this Hamiltonian, the measured band curvatures 
as well as symmetry point energies are correctly reproduced. 
This procedure is followed for both HgTe and CdTe, and 
then the alloy band structures are calculated in the coherent 
potential approximation. 

III. RESULTS 

We find that the lower part of the calculated conduction 
band needed for the transport calculations is replicated very 
well by a hyperbola, 

Ek={yk2 + c2)m-c, (13) 

where y and c are adjusted to fit the calculated band structure 
in the energy range of interest. When y and c are treated as 
constants related to the band gap Eg and the effective mass, 
this expression reduces to the same nonparabolic correction 
form obtained in the k-p method;4 however, the numerical 
values of y and c are not the same as ours. For example, in 
the chosen case, y and c are 48.3 and 0.058, respectively, 
whereas the corresponding k-p values are 41.2 and 0.05. The 
differences are found to be large enough to cause a notice- 
able change in the band structure and transport coefficients. 
The band structure calculated by diagonalizing the Hamil- 
tonian is shown in Fig. 1 (heavy line). We can see that the 
fitted conduction-band structure (thin line) agrees quite well 
up to an energy level of 0.5 eV from the conduction-band 
edge. In the studies presented here, Eq. (13) can be used as 
the energy dispersion relation without loss of accuracy, in the 
transport expressions that follow. Also shown in Fig. 1 is the 
poor reproduction of the conduction band obtained with 
parabolic approximation (heavy dashed line) and the usual 
nonparabolic correction (thin dashed line). 

Two qualitative features of the band structure in Fig. 1 
that impact transport properties should be noted. First, for 
energies E-Ec greater than 50 meV where the shape of the 
conduction band is nearly linear in k, the group velocity is a 
constant independent of the k. Then, the density of states 
(DOS) increases proportional to E rather than EU2 as in the 
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FIG. 1. Electronic structure of HgCdTe. 

case of parabolic bands. Clearly, these features modify the 
transport properties of electrons occupying these states. The 
first feature, constant group velocity, eliminates increases in 
drift velocity arising from increases in electron temperatures. 
The second feature increases the scattering rates because the 
density of final states, into which the scattering can occur, is 
higher than that in a parabolic band. This effect decreases the 
drift velocity and mobility. 

The calculation of the Fermi level eF as a function tem- 
perature T and doping concentration nD is required for all 
transport calculations. A knowledge of temperature- 
dependent gap Eg(T) is essential to obtain eF. Ideally, tem- 
perature dependence should be included by adding the elec- 
tron phonon interaction to the Hamiltonian from which the 
variation of Eg with T is obtained. We have developed a 
general method to incorporate phonon and alloy effects into 
the same coherent potential approximation (CPA) 
formalism,13 but such an approach is not attempted here. 
Instead, we use an empirical expression first deduced by 
Hansen, Schmidt, and Casstleman14 given by 

Eg=0.0954 + 0.3277/1000. (14) 

After studying the effects of various approximations and ob- 
taining trends, the calculations will be repeated with a proper 
temperature-dependent formalism. 

Then eF is calculated from the condition15 that at a given 
T the number of electrons in the conduction band is the sum 
of electrons excited from the valence band and donor levels. 
The valence- and conduction-band DOS are calculated from 
our band structures. The valence-band DOS yields a hole 
effective mass of 0.65. We treat two cases, one where the 
donor states are assumed to be located at the bottom of the 
conduction band (ED = 0) so they can freeze out at low T, 
and a second where they resonate in the conduction band 30 
meV above its bottom (£D = 30 meV) so the freeze-out is 
impossible until very high donor densities are reached. The 
eF (measured from the valence band edge) as a function of T 
and nD, calculated from the hyperbolic band structures, is 

300 

FIG. 2.  Fermi energy as a function of temperature: (a) £D = 0 eV; (b) 
£D = 30 meV. 

given in Figs. 2(a) and 2(b), respectively, for ED = 0 and 
£D = 30 meV. The dashed line is the empirical band gap 
given by Eq. (2). 

In the calculation of mobility we include the scattering 
due to ionized impurities and polar optic phonons whose 
scattering potentials are, respectively, 

7imp   e0r
e 

e2h 
V   =4m" ep \2£,a),V 

1/2 

2 a*e-^r-aae iqr 

with 
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x = 
4Trnee 

ekRT 

2, 1/2 106 

fr,=4i<^,-e,7,i 

where e„, ex are zero and infinite frequency dielectric con- 
stants, h (x), is the longitudinal optical phonon energy, q is the 
phonon wave vector, and aq is the phonon annihilation op- 
erator. ne is the number of electrons in the conduction band, 
which is, in general, larger than the number of ionized im- 
purities. Note that the coupling constants are determined 
from fundamental properties of the material and we have no 
adjustable parameters to fit the transport data. Hermite poly- 
nomials have proved to be a good basis set for solving BTE 
with FD statistics. However, we find that only the first two 
basis functions are needed to obtain converged results. 
Hence, our basis set is eßEk and k-E eßEk. The resulting 
mobility is plotted in Fig. 3 (heavy solid line). 

Calculated mobilities for various impurity concentra- 
tions and temperature are shown in Figs. 3(a) and 3(b). In 
both cases, a peak in the mobility exists for a low concen- 
tration, in agreement with experiment.16 When the donor 
level is at the bottom of the conduction band, the Fermi 
energy lies well into the gap at low carrier concentration, and 
consequently only a few impurities are ionized. As the tem- 
perature is increased the number of electrons in the conduc- 
tion band increases, and screening becomes more effective. 
The increase in the number of ionized impurities is over- 
whelmed by the increase in screening, and the impurity- 
limited mobility increases with T; however, once'the phonon 
scattering becomes stronger, the mobility decreases. This 
competition between impurity and phonon scattering gives 
rise to a peak in the mobility around 30 K. However, at still 
lower doping concentration, the impurity scattering is not 
effective at all, and the mobility then limited only by 
phonons will continue to increase as T is lowered. At higher 
doping densities the impurity-limited mobility also decreases 
with T because of a large increase in ionized impurities that 
now dominates the improved screening until very low tem- 
peratures are reached, and the peak vanishes. At intermediate 
doping densities a remnant of the peak is seen. At very high 
densities and very low temperatures, the screening once 
again wins, and along with the effects from the Fermi statis- 
tics the mobility increases slightly with nD . This effect may 
be hard to verify experimentally as compensation will tend to 
mask it. Although a previous calculation17 suggests a stron- 
ger dependence of fi on nD at low T, at least one 
experiment18 indicates a weaker dependence and the mea- 
sured values are considerably scattered. 

Such a trend did not reverse even when the donor levels 
are well in the conduction band. In addition, due to the ab- 
sence of carrier freeze-out at low 7", the impurity scattering is 
larger even at low concentration. The peak in mobility is 
obtained at 1 X 1014 cm~~, in Fig. 3(b). Although the impurity 
levels are resonant in conduction band, the line width may 
still be very small due to very small conduction-band DOS 
and, consequently, electrons still spend more time near im- 
purities, giving rise to a screening larger than that considered 
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FIG. 3. Drift mobility as a function of T for various impuritv concentrations: 
(a)£D = 0 eV; (b)£„ = 30 meV. 

in our calculation. If this sort of screening is considered, we 
will need a larger impurity concentration to obtain a peak in 
the mobility, yielding a better agreement with experiment. 
Such calculations are not attempted here. However, if the 
chosen impurity has donor levels near the conduction-band 
edge, the mobilities shown in Fig. 3(a) are appropriate. 

In Fig. 4 we compare the mobilities calculated in various 
approximations to experiments. The carrier concentration in 
the calculations was set equal to that in experiments. Two 
experimental data sets taken on liquid-phase-epitaxy 
material1619 are shown in Fig. 4 (dashed lines). The latest set 
exhibits higher mobilities for the same Hg content and car- 
rier concentration and is presumably a better material. Also 
shown are the mobilities obtained from the hyperbolic band 

J. Appl. Phys., Vol. 75, No. 12, 15 June 1994 S. Krishnamurthy and A. Sher        7907 

K-5 



106 

t   105 

CD 
O 
5 

< 
X 

10* 

1              1           1 

- 

^^^~N "X 

\\\ 

-    -^— calc. » 
  k-p 

   coll. 

" expl. 82 \ 
 expt. 93 

10 100 
T(K) 

(a) 

1000 

1000 

(b) 
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structure (heavy solid line) and from the k-p band structure 
(thin solid line). For comparison, mobility obtained in the 
collision time approximation (dotted line) is also shown. 

It is instructional to compare various curves in Fig. 4. All 
curves are calculated with the same scattering parameters. 
First our calculated mobilities are higher than those from the 
k-p band structure. Smaller yused in the k-p scheme means 
that DOS is larger, resulting in lower mobility. However, 
both curves predict a hump in the temperature variation of 
mobility near 40 K where phonon scattering takes over from 
impurity scattering, which dominates at lower temperatures. 
The full solution to BTE in conjunction with the change in 
the Debye screening length and phonon scattering give rise 
to this hump. Second, the collision time approximation does 
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not produce this hump. We note that the mobility calculated 
with a collision time approximation grossly overestimates 
the scattering rate and wipes out the peak in mobility. A 
smaller peak near 200 K is due to a change in the Fermi 
energy. 

Calculated values of mobility are smaller at low T and 
larger at high T than in experiment. Since the curves in Fig. 
4 clearly demonstrate that the electron mobility is a sensitive 
function in the shape of the band structure, we must await 
our better temperature-dependent band structures before im- 
provements are forthcoming. We have already shown from 
our preliminary studies of absorption coefficient that empiri- 
cal gaps are as much as 20% too large.20 If detailed calcula- 
tions verify these results, then impurity-dominated mobilities 
will increase at low T, and the neglected scattering mecha- 
nisms such as alloy disorder, transverse optical phonons, and 
acoustic phonons will decrease the mobility at high T to 
bring the predictions in better agreement with experiment. 

IV. CONCLUSIONS 

We have described another method to solve the Boltz- 
mann transport equation with a full band structure and 
Fermi-Dirac statistics. This method is particularly useful 
when treating the transport properties of narrow-gap materi- 
als where the band structures are nonparabolic and Fermi 
statistics are essential. The method is applied to the study of 
electron mobility in a 100 meV band gap (at 77 K) 
H&).78C(:1().22Te alloy- The calculated mobility compares well 
with the experimental mobility over a wide range of tem- 
peratures. Calculated values are 20% smaller at low T and 
25% larger at high T than experiment. It appears that the 
calculated values will be smaller than experimental values at 
temperatures lower than 10 K. Most important, the observed 
hump in the mobility (with 7) at low carrier concentration 
and the shape change at higher carrier concentration can be 
explained without resorting to additional scattering mecha- 
nisms or parameters. Further improvements await a proper 
calculation of the band structure and inclusion of alloy, trans- 
verse, and acoustic phonon scattering. 
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PR A FT 
Systematic study of gradient corrections in solids 

M. van Schilfgaarde, M. A. Berding and A. T. Paxton* 
SRI International, Menlo Park, California 94025 

^University of Belfast, Belfast, Ireland 
(September 6, 1995) 

The total energy, lattice constant, bulk modulus, and various elastic contants for 58 elemental and 
compound solids are calculated using the local-density (LD) approximation and gradient corrections 
(GC) for exchange-correlation functional. For all systems, the GC functional of Lengreth and 
Mehl are compared with LDA calculations based on the von Barth-Hedin parameterization of the 
exchange-correlation functional. For a small group of materials, we have also used the Perdew- 
Wang GC functional, and compared the results to LDA calculations based on the Ceperly-Alder 
exchange-correlation functional. We find systematic improvement in the cohesive energies. 

I. INTRODUCTION 

Over the past few years there has been a renewed attention given the the generalized gradient corrections (GC) 
to the local density (LD) approximation. As its name implies, the LD is based on a local approximation for the 
exchange and correlation energies. The GC incorporated a non-local functional based on expansion of the exchange 
and correlation energy in terms of powers of the density gradient. Previous studies have focussed on a small set of 
materials, and no systematic study of a wide range of materials has be presented. That is our goal in this work. 

Several forms of the GC have been proposed. In this paper we have focussed on the GC proposed by Langreth 
and Mehl1. The nonlocal exchange and correlation functionals they developed were based on the random phase 
approximation (RPA) and therefore are used with the RPA values of the corresponding LD functionals2. 

We have systematically examined 58 elemental and compound semiconductors. The calculations done using the 
full-potential linearized muffin-tin orbital method3 in the local density functional approximation of Barth and Hedin.2 

In the FP LMTO method, the only important approximation we make beyond the local-density approximation, lies 
in the treatment of the interstitial matrix elements. The LMTO method employs an atom-centered basis, represented 
by Hankel functions in the interstitial. For the calculations presented here, the basis consisted of a "triple kappa" basis 
22 orbitals per atom, with energies -0.01, -1, and -2.3 Ry for the * and p orbitals, and -0.01 and -1 Ry for the d. 
Inside the muffin-tin (MT) spheres, wave functions are represented by spherical harmonics and numerically tabulated 
radial functions. The electron density and potential can be similarly represented, since the density generated by a 
Hamiltonian is obtained by summing over the eigenvectors. Outside the MT spheres, another treatment is necessary. 
Methfessel4 developed a simple, efficient way to represent the density and potential in the interstitial by extrapolation 
from the edges of MT spheres, where the value is well known. The electron density is represented in the interstitial 
as a linear combination of Hankel functions that are chosen to match the value and slope of the function at each MT 
sphere. Two Hankels per site and Im are enough to match the values and slopes at all MT spheres. This representation 
of the density throughout the interstitial is approximate, although it becomes exact near any MT sphere. Extensive 
tests show that the approximation works very well for close-packed systems, but the errors can become significant 
when the packing is poor. To ensure a good fit to the charge density and potential in the interstitial region of the 
zincblende solids, we include empty spheres at each tetrahedral interstitial site (rendering the sphere packing bcc for 
the ideal lattice). In addition, we added orbitals to the basis by centering them on the empty spheres. Addition of 2s 
and 2p orbitals changed the energy by approximately 0.1 mRy/atom, showing that the basis is nearly complete. 

To assess the validity of the interstitial approximation for the representation of the charge density and interstitial 
matrix elements, an alternative approach was developed,3 which is similar to a procedure described by Jones.5 When 
calculated in this way the total energies changed by approximately lmRy/atom, showing that the approximation is 

a good one. 
Both the charge density inside the spheres and the tails of Hankel functions centered on a neighboring sphere were 

expanded to / = 6. We estimate that the error introduced by truncation at / = 6 to be about lmRy/atom, in line 
with other errors in the method. The core was allowed to relax during the self-consistency cycle. The semicore d 
electrons in of the Group V and VI elemenents in the compound semiconductors were treated explicitly as valence 
states in a second panel; explicit treatment of these states was found to introduce a small but significant correction to 
the total energy. For the semiconductors, the Brillouin zone integrals were done by a sampling method for the charge 
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density, and the linear tetrahedron method for the band -structure energy, augmented by Blöthl weights, and a mesh 
of eight divisions was used (60 k-points). For the second panel six divisions were used corresponding to 28 k points). 
Checks showed that this was sufficient to converge the energy to less than 0.1 mRy/cell. 

We have bench marked our calculations with those of Filippi et. af done using a the highly accurate linear- 
augmented-plaue wave- method. 

II. RESULTS 

In Fig. 1 we show a comparison of the atomic volume calculated using the LDA and GC. For nearly every system 
studied, the GC results predict larger atomic volumes. For systems like the Zn-baring II-VI semiconductors and most 
of the 3d and early 4d and 5c/ transition elements for which LDA predicts atomic volumes that are substantially too 
small, the GC improve the agreement with experiment. 

In Fig. 2 we have plotted the cohesive energy per atom, and have compared the results using the LDA and GC. 
For the semiconductors, the well known over binding of LDA of the order of 0.5 eV, is dramatically reduced using the 
GC. A similar reduction in the over-binding comparing GC to LDA is observed for the tranisiton metals. The nearly 
abrupt shift in the errors in Fig. 2-b around the middle of the transition element series is most likely due to errors 
resulting from the free-atom spin polarization energy, which is quite big for these elements. 

The experimental total energies reported in the top panels of Fig. 2 include contributions that are not included in 
the LDA and GC. in particular the zero point energy. This contribution is especially important for material with low 
atomic weight and large elastic constants. We have calculated the zero point energy using a valence force field model 
previously developed for calculation the vibration free energies of native point defects in semiconductors. In Table I 
we summarize the corrections for the zinc-blende semiconductors. 

All of the solid cohesive energies reported in Fig. 2 are referenece to the atom in its free atomic state. It is interesting 
to examine the impact of the gradient corrections for solid to solid reactions energies or solid to molecule reactions. 
In the Table II we have examined such a set of reactions for solid Al. In, As, and Sb reacting to form zincblende AlAs. 
AlSb. InAs. and InSb. It can be seen that the GC actually result in poorer agreement with experiment in all cases. 
We have examined several solid to molecule reactions and have found the same result, that is that the GC actually do 
more poorly than the LD in predicting reactions energies. We conclude therefore that the main contribution to the 
GC comes from the correction of the free atom energy, thus accounting for the improved agreement with experimental 
cohesive energies, but give poorer agreement in general for reactions among molecules and solids. 

In Figs. 3-5 we have compared the GC and LD results for various elastic constants. For the bulk modulus we 
have done the calculation both at the calculated lattice constant and at the experiment lattice constant at OK. There 
is some difficulty in obtaining reliable elastic constants for all materials, especially at zero temperature for which 
our calculations are done. Where they are available, we have compared to experimental values, extrapolated to 
zero temperature. For all of the elastic constants we see a nearly systematic improvement when the GC results are 
compared with the LD results. We find that in general the GC result in a softening of the bulk modulii relative 
to the LD, when the bulk modulii are evaluated at the calculated lattice constants. This can be attributed to the 
larger atomic volumes predicted by the GC. However if the bulk modulii are recalculated at the experimental atomic 
volumes, we find that the GC results in a systematic improvement over the LD. 

1 D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446 (1981). 
2 U. van Barth adn L. Hedin, J. Phys. C 5, 1629 (1972). 
3 M. Methfessel and M van Schilfgaarde (unpublished). 
4 M. Methfessel, Phys. Rev. B38, 1537 (1988). 
5 R. Jones and A. Sayyesh, J. Phys. C, L653 (1986). 
6 C. Filippi, D. J. Singh, and C. J. Umrigar, Phys. Rev. B 50, 14947 (1994). 
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TABLES 

TABLE I 
field model 

Material 
Si 
Ge 
AIP 
AlAs 
AlSb 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 
ZnS 
ZnSe 
ZnTe 
CdTe 
HgS 
HgSe 
HgTe 

Zero point energies for the tetrahedrally-bonded semiconductors.   Calculation were done using a valence force 
and experimental elastic constants at zero temperature, where available, otherwise at room temperature 

Zero point energy 
0.05875 
0.03311 
0.05103 
0.04213 
0.03378 
0.04321 
0.03161 
0.02551 
0.03398 
0.02395 
0.01981 
0.03606 
0.02745 
0.02291 
0.01731 
0.02710 
0.01871 
0.01565 

(eV) 

TABLE II. Compound binding energy relative to the elemental solid 

Solid Energy (eV) 
LD GC 

AlAs 
AlSb 
InAs 
InSb 

0.516 
0.207 
0.269 
0.165 

0.412 
0.126 
0.233 
0.123 

exp 
0.605 
0.450 
0.360 
0.165 
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FIGURES 

FIG. 1. In the upper panel the experimental volume per atom is plotted. In the middle panel the we have ploted 
(QGC — ^exp)/f2exp, the percent error in the atomic volume when gradient corrections are used. In the lower panel we 
have ploted (QLD — &exp)/Qexp- (a) Elemental and compound semiconductors, (b) Elemental solids. 

FIG. 2. In the upper panel the experimental cohesive energy per atom is plotted. In the middle panel the we have ploted 
difference Ecoh{GC) — Ecoh(ex), in eV, and in the lower panel ECOH{LD) — Ecoh{ex), in eV. (a) Elemental and compound 
semiconductors, (b) Elemental solids. 

FIG. 3. In the upper panel the experimental bulk modulii at zero temperature are plotted. In the middle panel the we have 
ploted difference percent error when gradient corrections are used (BGC — Bexp)/Bexp and in the lower panel {BLD ~Bexp)/BeXp- 
the percent error when local density is used, (a) Elemental and compound semiconductors, (b) Elemental solids. 

FIG. 4. In the upper panel the experimental values for distortions along the (a) < 111 > axis, C44 in the diamond and 
zincblende solids and (b) the c-axis, R are ploted. Units are in ergs/cm3. In the middle panel the we have ploted difference 
percent error when gradient corrections are used and in the lower panel the percent error when local density is used, (a) 
Elemental and compound semiconductors, (b) Elemental solids. 

FIG. 5. In the upper panel the experimental values for the Cu - C12 distortions, in ergs/cm3, are plotted for the diamond 
and zincblende solids In the middle panel the we have ploted difference percent error when gradient corrections are used and 
in the lower panel the percent error when local density is used. 
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DRAF 
Native point defects and degradation of ZnSe-based optical devices * 

M. A. Berding, M. van Schilfgaarde. and A. Sher 
SRI International, Menlo Park, California 94025 

(September 6, 1995) 

We propose a mechanism for the operational degradation of ZnSe-based device based on the 
generation of zinc Frenkel defects at stacking faults in the active layer. A first-principles method 
is used to compare the Frenkel defect formation energy in the bulk zincblende structure and in the 
wurtzite structure that is present at a stacking fault. In the wurtzite structure we find that the 
Frenkel defect formation energy is less than the recombination energy ( Eg) of an electron-hole pair, 
while it is greater than this in the zincblende structure. Mid-gap levels of the zinc-vacancy associated 
with the Frenkel pair serve as additional non-radiative recombination sites; energy relased from non- 
radiative recombination events also feed into the dislocation system, resulting in dislocation motion 
and multiplication. Eventually the supersaturation of zinc-interstitials the the stacking fault create 
metastable defects aligned along < 100 > directions, before being absorbed into the bulk zincblende 
lattice. 

We have calculated the absolute density of native point defects in ZnSe using a self-consistent first- 
principles full-potential linearized muffin-tin orbital method and the local-density approximation 
to calculate the electronic contribution to the defect formation free energy. A gradient correction is 
added to the local-density result so that absolute reference to the chemical potential of the vapor 
phase can be made. Vibrational contributions to the defect free energy are calculated using a 
Green's function approach, based on a valence force field plus a point Coulomb model. Absolute 
equilibrium native defect concentrations as a function of constituent chemical potentials and the 
dopant concentration are predicted using a quasichemical formalism. We conclude that isolated 
native point defects are not responsible for the p-type doping limit found in ZnSe. 

61:72.J, 61:72.C, 71:55.G, 42:70.K 

00:00.X 

I. INTRODUCTION 

An important issue remaining in the development of a device technology of ZnSe-based light emitting diodes (LEDs) 
and lasers is the device degradation resulting in short operational lifetimes. The degraded devices exhibit large dark 
areas in the active region, where electron-hole recombination is dominated by nonradiative mechanisms1"3. So called 
dark patches have been associated with the operational generation of networks of dislocations nucleated at threading 
dislocations and that penetrate the active region1-3 ; dark spots have been associated with the original threading 
defects; and dark line defects (DLDs) along < 100 > directions that lie in the active region, that remain unidentified, 
but are not directly related to dislocations2. 

While portions of the degradation mechanism are understood, there has only been speculation concerning the 
underlying source of non- radiative sites and the origin of the DLDs. In this paper we propose an originating mechanism 
based on the excess generation of zinc -Frenkel defect pairs at stacking faults, where the formation energy is reduced 
to less than the recombination energy ( E?) of an electron-hole pair. Mid-gap levels of the zinc-interstitial associated 
with the Frenkel defect pair serve as additional non-radiative recombination sites. The energy released during non- 
radiative recombination events both generate additional Frenkel and feed into the dislocation system, resulting in 
dislocation motion and multiplication. 

In Sec. II we outline the method we use to calculated the defect properties and densities in ZnSe. In Sec. Ill we 
summarize our results on the native point defect densities in ideal zincblende ZnSe. Our results on the Frenkel defect 
at the stacking fault are given in Sec. IV. Finally in Sec. V we have some concluding remarks. 

"Submitted to Physical Review B, September 1995 
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II. METHODOLOGY 

Total energy calculations for the defect reactions were all obtained with a full-potential version of the LMTO 
method in the local density functional approximation of yon Barth and Hedin» This method has been tested 
extensively for most of the elemental sp and d bonded solids, the II-VI. III-V and column IV semiconductors, and a 

host of other solids4. .       .      r 
In the FP -LMTO method, the onlv important approximation we make beyond the local-density approximation, lies 

in the treatment of the interstitial matrix elements. For the interstitial matrix elements we have used atom centered 
basis represented by Hankel functions consisting of a "triple kappa"' basis 22 orbitals per atom with energies -0 01. 
-1 and -2 3 Rv for the s and p orbitals, and -0.01 and -1 Ry for the d. The represent the electron density m the 
interstitial two Hankels per site and Im have been used. To ensure a good fit to the charge density and potential m he 
interstitial region of the zincblende solids, we include empty spheres at each tetrahedral interstitial site (rendering the 
sphere packing bcc for the ideal lattice). In addition, we added orbitals to the basis by centering them on the empty 
spheres Both the charge density inside the spheres and the tails of Hankel functions centered on a neighboring sphere 
were expanded to / = 6. The core was allowed to relax during the self-consistency cycle. The semicore d electrons 
in the'selenium were treated explicitly as valence states in a second panel: explicit treatment of these states was 
found to introduce a small but significant correction to the total energy. For the 16-atomic-site cells, the Brilloum 
zone integrals were done by a sampling method for the charge density, and the linear tetrahedron method or he 
bad structure energy, augmented by Blöchl weights, and a mesh of four divisions was used 13 k points for the 
wu tzite structure and 8 k points for the zincblende structure). For the 32- atom eel s. a mesh o three divisions wa 
used (7 k-points for the wurtzite structure and 4 for the zincblende structure). Further details of the method can be 

found in Berding et al.5 and references therein. 
For consistency, unless otherwise noted, we have used the zinc atom m the vapor phase as our referericesta e for 

reporting energies The defects we will consider, and their corresponding reactions are summarized in Table I. lo 
cl"Me th To a energy of a defect, supercells are used in which a periodic array of that defect is constructed De feet 
formation energies are "calculated by differences of cells with and without a defect with the ZnSe solid and.toe■bee 
zinH om ervfng as the atom reservoir. Because we wish to calculate the formation energies m he dilute limit, we 
use the krgest supercell computationally feasible. For this paper, all calculations were done using 16 -atom supercells. 
Tests were done to check the convergence using 32- atom supercells; results are discussed below. 

Tl elocll-density approximation generally overbinds the solids. Several systematic extensions of the foeal-d nsit> 
JctLn W leen'proposed that are based on generalized gradient approximation for the^exchang, and^orrek^on 
energies    We have considered one of these extensions, that proposed by Langreth and Meh ,   and have exmue 

1 e s stematics in the gradient corrections to the lattice constants, cohesive energies   bulk modulus   and othei 
kst      o   fant, for a wile array of solids4.   With few exceptions, the gradient correction systematically improws 
^prediction of the cohesive energy, although the prediction of the elastic constants often worsens slightly    The 
mprovemeiit in the cohesive energy is largely due to improvement in the calculation of the total energy of the free 
atoms rather t lan the solid. Here we are interested in calculating total energies for reactions m which a constituent 
Texäanged be'en the solid and the vapor, and thus the errors inherent in the local-density calculation of   he 
coh^ive energy will be present in these energies also.   Because the relaxations do not change significantly whe 
grid   nt corrections are added, we have completed the majority of the calculation  including the relaxation  w th 
Hie FP-LMTO. The gradient correction energy, calculated at the LDA-determmed relaxed positions, is then added 

t0In gewT kttice relaxes in the presence of a defect, thereby lowering the lattice energy. In the supercells we 
ac o\mXtlrelaxation bv allowing the overall lattice constant of the supercell to relax to minimize the supercell 
total elrgy  Additionally, the nearest and second-nearest (for the 32-atom cell) neighbor atoms are allowed to relax 

r1:Wilter^t
a:e

t;alculatecl only for the neutral defects and are assumed comparable hi the ionized defects. 
XomaSa rtaxations such as the trigonal and tetragonal distortions that split the degeneracy of the triply degenerate 
Clav be important and may differ substantially for the different charge states of the system. Because he 

symmetry of the distortion depends on the charge state of the defect, distortions and charge states must be treated 
simultaneously. These distortions have not been considered m this paper. 
S alculation of the ionization states of the defects is perhaps the most difficult part of the calculation o Hi 

native defect concentrations, in large part because of the inadequacies of the LDA m predicting the band gap of the 
Lm cond ctors. Because the Coulomb fields associated with a defect may be extended, we expect that very large 
sup rcells will be needed to isolate the localized levels of an individual defect. The approach we use is similai to that 
dSeussed by Van de Walle et al.» in which the shift in the Fermi level is examined as electrons are added to (or 
removed from) the defect, with a compensating uniform background charge added so as to maintain charge neutrality. 
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We have included in our calculation of the defect formation free energy a term that comes from modifications of the 
vibrational spectrum when a defect is introduced into the lattice. This change is especially important for reactions in 
which atoms are exchanges with the free zinc atom reservoir. We have used Keatiug's valence force-field model for 
the short-range elastic interactions.7. With a point-charge model to account for the Coulombic interactions.8 with 
a charge chosen to yield agreement with experiments for the zone center splitting of the transverse and longitudinal 
optical phonons. A Green's function approach is used to evaluate the lattice-defect induced modifications to the 
phonon spectrum; from the perturbed phonon density of states the change in the vibrational free energy can be 
calculated. Further details can be found in Berding et al.5 . 

Defect concentrations are calculated using the quasichemical analysis. Both neutral and ionized defects are included 
in the analysis, with the one electron donor and acceptor energies extracted from the LD calculations. Full Fermi 
Dirac statistics are used, and appropriate degeneracies of the neutral and ionized states are included. Zinc free atoms 
are used as the reservoir and thus the zinc chemical potential is fixed by the zinc partial pressure. The free energy of 
this reservior is included in the calculations. The chemical potential of the selenium is determined by the existence 
of the ZnSe in equilibrium with the zinc vapor phase via the relationship 

ßSe +A«Zn = /^ZnSe- (!) 

Further details of the methodology can be found in Ref. 5. 

III. NATIVE POINT DEFECT CONCENTRATIONS IN ZINCBLENDE BULK 

Calculated defect formation energies for ZnSe are listed in Table I. One electron localized energy levels deduced 
from the LDA calculations are also listed in Table I. These energies were incorporated into the quasichemical analysis, 
and total defect concentrations as a function of zinc partial pressures over the existence region for undoped material 
were calculated (Fig. 1). We find the zinc vacancy is the dominant defect, except at the highest zinc pressures, for 
which the selenium vacancy dominates. 

The calculations were redone, but with the an acceptor density of 1018 cm3, and with the acceptor energy level 
at 0.01 eV above the valence band edge. We find that isolated native point, defects do not result in a substantial 
auto-compensation of the acceptor density. We have not addressed the absolute solubility of the acceptor in the host, 
as discussed by Van de Walle et al.14. 

IV. FRENKEL DEFECT PAIR FORMATION ENERGY AT A STACKING FAULT 

If we consider the < 111 > direction in the cubic zincblende crystal, the stacking sequence of the anion-cation 
bilayers is • • • ABC ABC ■ ■ ■ where .4, B. and C indicate unique spatial positions of the bilayers in the ay-plane. The 
hexagonal wurtzite crystal can be interpreted as a simple alteration in the stacking to an • • • AB AB AB ■ - -sequence 
that maintains the four-fold tetrahedral coordination of each atom, but alters the crystal group properties. There 
are two types of simple stacking fault that can occur in the zincblende lattice. An extrinsic stacking fault can be 
interpreted as an extra plane added to the < 111 > stacking, altering the stacking to • ■ ■ ABC ACBC ABC ■ ■ ■ An 
intrinsic stacking fault can be viewed as a bilayer removed from the < 111 > stacking, giving • • • ABC AC ABC ■ ■ ■. 
Both of these classes of stacking faults can be view as a local region of wurtzite in an otherwise zincblende crystal. 

To approximate the Frenkel defect formation energy at a stacking fault we consider the Frenkel defect in the wurtzite 
crystal structure. In the wurtzite crystal and at a stacking fault there are two inequivalent high symmetry interstitial 
positions in which the nearest neighbor atoms are furthest away. We have only considered one class of interstitial, 
that which has the largest volume (defined as the volume of a sphere centered at the high symmetry interstitial site 
and with a radius defined by the distance the first nearest neighbor). The interstitial volume at the stacking fault is 
20% larger than the largest interstitial site in the zincblende lattice and thus we expect a lower interstitial formation 
energy at a stacking fault. The interstitial positions which we are modeling both at the stacking faults (wurtzite) and 
in the zincblende bulk are shown schematically in Fig. 2. 

The formation energy for zinc Frenkel defect pair both in the zincblende and the wurtzite crystals are given in 
Table II. Note that for the neutral defect reactions, the zinc Frenkel defect formation energy is lowered 0.26 eV 
and 0.47 eV with respect the zinc- and selenium- tetrahedral interstitial sites. Although the energy lowering is 
substantial, the Frenkel defect formation energy is still of the order of 6 eV and thus will be a relatively slow process 
for thermally generating zinc interstitials and zinc vacancies in ZnSe, and will not be a likely event as a consequence 
of a non radiative recombination event. 
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Because there are localized levels associated with the zinc interstitial and vacancy, we must include the ionized 
levels in the analysis, as was done in Sec. Ill above. From Table I we see that the zinc vacancy is a double acceptor 
with both ionizatiou levels at the valence band edge. The zinc interstitial (at a Se interstitial site) is a double donor 
with energy levels as 1.7 and 1.4 eV above the valence band edge. For Fermi energies below mid gap, that is in /»-type 
regions, the electrons from the zinc interstitial donor levels will drop into the acceptor levels associated with the zinc 
vacancy. This self compensation mechanism lowers the Frenkel defect pair formation by 3.1 eV for Zn/Sc and to ~ 2.8 
eV for the zinc interstitial in the wurtzite structure. Although the Frenkel defect formation energy in the ziueblende 
is still larger than the band gap. in the wurtzite crystal, and therefore at a stacking fault, the energy is less than that 
released by a non radiative e-h recombination event. Because the binding energy of the zinc interstitial is higher at 
a stacking fault, they will be trapped there. The mid gap levels associated with the zinc interstitial will most likely 
serve as additional non radiative recombination centers. 

Based on our findings, we propose a degradation mechanism in which excessive Frenkel defect pairs are generated 
at stacking faults present in QW structure via the energy available through non radiative recombination events. The 
zinc interstitials generated in these events serve as additional nonradiative recombination centers, thus amplifying the 
Frenkel defect generation rate. The thermal energy made available from non-radiative recombination events at the 
Frenkel defect-dressed stacking faults produce temperature gradients that could also contribute to dislocation motion 
and multiplication. 

This model may also provide the basis of an explanation for the so called dark line defects. Some of the zinc 
interstitials which are formed at the stacking fault should be trapped there in potential wells, but others may diffuse 
away. In the presence of all of the dislocation motion and multiplication, one may have an ordering of the interstitials 
along the < 100 > directions. Although we have not completed this portion of our modeling, certainly our model of 
Frenkel defect generation at the stacking fault provides a explanation of a source of very mobile point defects which 
may be correlated with these dark line defects. 

V. SUMMARY AND CONCLUSIONS 

We have shown that isolated native point defects are not responsible for the observed p-type doping limits in 
ZnSe. Based on the lower zinc Frenkel defect formation energy at a stacking fault, we have propose a mechanism 
for the operational optical degradation of ZnSe devices. In the wurtzite structure we find that the Frenkel defect 
formation energy is less than the recombination energy ( E9) of an electron-hole pair, while it is greater than this in 
the ziueblende structure. Mid gap levels of the zinc vacancy associated with the Frenkel pair serve as additional non- 
radiative recombination sites; energy relased from non-radiative recombination events also feed into the dislocation 
system, resulting in dislocation motion and multiplication. 
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FIG. 1.  Native point defect concentrations over the existence region of ZnSe at 500° C 

FIG. 2. Intrinsic stacking fault and location of interstitial and bulk zincblende interstitials. 
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TABLE I. Defect reactions considered for compound ZnSe. Notation is as follows: The primary symbol refers to the species, 
the subscript refers to the site that the species occupies, with no subscript indicating that the species is occupying its usual 
lattice site. V corresponds to a vacancy, I an interstitial, free is the free atom reference state Two types of interstitials are 
considered, both occupying tetrahedral sites, the first surrounded by four zinc nearest neighbors, 7z„, the second surrounded 
by four selenium nearest neighbors, 7se- All species are neutral. Formation energies are calculated using 16-atom supercells. 
Localized levels are all with respect to the valence band edge, and are calculated using 54-atom supercells and the atomic 

spheres approximation. 

Defect  Reaction  Energy (eV) Ed(eV) Ea (eV) 

 > VznSe + Zn/rce 

—► ZnVse 
—► ZnZnse 
—> SeznSe + 2ZnfTee 

—> Zn'zc 

 > Zn's« 
 * Se/Zn  + Zjlfree 

—> Se/S<. + Zn/ree 

TABLE II.  Frenkel defect reactions 

VZn ZnSe 
Vse Zn/ree 

Znzn 2Zn/ree 
Sezn 2ZnSe 

Zn'z„ Zn/ree 
2n/Sc Zn/ree 
Seiz„ ZnSe 
Se/S. ZnSe 

Energy (eV) 
LD GC Total 

5.09 -0.46 4.63 
0.72 0.32 1.04 

-1.37 1.00 -0.37 
9.57 -1.16 8.42 
1.10 0.32 1.42 
1.36 0.26 1.62 
7.55 -0.75 6.80 
9.10 -0.85 8.24 

Host Reaction Energy (eV) 

ZB Zn^ =, ^+ZnjZn 635 
ZB Znz» - ^+ZnjSc 6.25 

WZ Znz„ - y+Zn/- 5.78 
ZB Znz„ - V— +Zn++ 3.1 

WZ ZnZn - V—+Zn++ 2.8 
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Professor A.-B. Chen contributed to many of the results and publications referred 

to in the main body of this report. Below are several additional contributions made 

under the subcontract to Auburn University. 

N-l. Systematic calculation of band structures of semiconductors and alloys. 

A hybrid empirical tight-binding and pseudo-potential (HPT) method has been 

used for a systematic calculation of band structures of semiconductors and their alloys. 

This method not only produces accurate band structures such as the valence bands, 

the band gaps, the effective masses and the spin-orbit splitting with an accuracy 

comparable to that of the non-local empirical pseudo-potential method, but also en- 

ables the execution of alloy calculation using the multiple-scattering Green function. 

This method has been successfully applied to a collection of III-V and II-VI com- 

pounds and their alloys, especially including ZnTe, CdTe, HgTe, ZnSe, CdSe, HgSe 

and their narrow-gap alloys Hgi-zCd^Te, Hgi-^Zn^Te, HgSe^^Tej;, Hgi-jCd^Se, 

and Hgx^ZnzSe. These results were reported at the 1994 APS March Meeting. De- 

tailed results are available from the book entitled "Semiconductor Alloys: Physics 

and Materials Engineering", by A.-B. Chen and A. Sher, to be published by Plenum 

Press (1995). 

N-2. Molecular Dynamics Study of Disordered Semiconductor Alloys 

To study disordered systems and non-equilibrium processes, we have started our 

molecular dynamics (MD)simulation research. We have carried out MD simulations 

for random semiconductor alloys containing 64 to 1000 atoms per unit cell using a 

valence-force-field (VFF) model to study the dependence of bond lengths and excess 

energies on the number of atoms (N) simulated. We found that the configurational 

fluctuations in both quantities decrease rapidly with an increase in N. For example, 

the first-neighbor bond length fluctuation in Gai_xInj;As at x=0.5 decreases from 

0.014A to 0.004A as N increases from 64 to 512. At the time the excess energy 

fluctuation is reduced from 10 meV to 2 meV. However, the values averaged over a 

number of configurations converge very fast with N. We conclude from this study that 

the structural properties of a random zincblende alloy can be obtained from a small N 

(N=64) and a dozen or so configurations. This result is then used in systematic MD 

simulation of semiconductor alloys. These results are being written for publication. 

N-3. Monte-Carlo Simulation of Phase Diagrams of Semiconductor Alloys 

Directly using the HPT Hamiltonian in Monte-Carlo (MC) simulations, one can 

avoid the uncertainties introduced in conventional phase diagram calculations based 
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on cluster energies and approximate entropy expressions. However, the extrapolation 

from finite sizes to infinite bulk is still not well established. We have tested a simple 

formula that extrapolates the average energy from finite size to infinite for an alloy 

at a given temperature T and concentration x. These extrapolated E(x,T) are then 

used to calculated the Helmholtz free energy F(x,T) and the phase diagram. Our test 

on the exactly solvable Ising model has yielded a reasonably accurate solid solution 

phase diagram (miscibility gaps as function of temperature). This procedure is being 

used in the MC simulation of phase diagrams of ternary semiconductor alloys using 

a tight-binding model. 

N-4. Density Matrix and Order-N Algorithm 

Although the current LDA techniques allow calculations to be formed for a modest 

size with N equal about 100, most practical materials problems required larger cal- 

culations with N at least one or two orders larger than the current limit.The limiting 

factor is in the diagonalization of the single-particle Hamiltonian, which usually takes 

CPU time proportional to cubic power of N. A method based on the density matrix 

has been proposed that reduces the calculational bsteps from the third power of N to 

linear. We have devised a simple and effective iterative method to obtain the density 

matrix. Our test on a tight-binding model has confirmed the validity of this method. 

For example, Table N-l shows the total electronic energies per unit cell for GaAs. 

With a truncation in the density matrix to second neighbors and with 6 iterations, 

the method produces an energy accurate to 1%. We are extending this test to other 

structural properties such as the lattice parameter and elastic constants. 

Table N-l Total electronic energies (in eV) per unit cell calculated from the density 

matrix in the first few iterations. The first and the second rows correspond to density 

matrices that are truncated at the first and second neighbors respectively. 

TRUNCATION 
Iteration 

1 2 3              4 5 6 exact 

1st 
2nd 

-21.637 
-21.637 

-26.531 
-26.530 

-29.916    -29.713 
-30.317    -30.721 

-30.011 
-31.042 

-30.021 
-31.093 

-31.396 
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N-5. Shallow Donor Levels with Anisotropie Masses 

A general method for rinding the energies and wave functions for anisotropic 

masses and potentials has been studied. The method uses wavefunctions expanded 

in spherical harmonics. The coupled differential equations for the radial components 

of each basis are integrated numerically. The energy eigenfunctions and their radial 

derivatives are then matched at a spherical boundary. Using this method, we have 

obtained energy levels for shallow donors with threefold mass anisotropy. The de- 

tailed results have been published in Phys. Rev. B 48, 8541 (1993), R.S. Pfeiffer, 

Y.J. Huang, and A.-B. Chen. This paper is included as Appendix O. 
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A general method for finding the energies and wave functions for anisotropic masses and potentials 
has been studied. This method uses basis wave functions expanded in spherical harmonics. The coupled 
differential equations for the radial components of each basis function are integrated numerically. The 
energy eigenfunctions and their radial derivatives are then matched at a spherical boundary. Special 
treatment is needed to ensure linear independence of the basis functions at the boundary. The applica- 
bility of this method and the speed of convergence are tested on anisotropic harmonic oscillators. The 
method is then applied to the Coulomb potential with anisotropic masses. With a basis of five or fewer 
spherical harmonics, our method produces energies which converge to values lower than those previous- 
ly reported. We have also obtained energy levels for the Coulomb potential with threefold mass anisot- 
ropy. This method should be applicable to other anisotropic problems with a single potential minimum. 
In particular, it should facilitate the employment of full-potential Green-function band theory. 

I. INTRODUCTION 

We here describe a method for calculating the energies 
and wave functions of bound states in anisotropic poten- 
tials and present results for the Coulomb potential with 
three anisotropic masses. Our interest in this problem 
was suggested by two more general problems: donor lev- 
els in complex semiconductors and Green-function band 
theory for nonspherical potentials.' As the structure of 
semiconductors becomes more complicated, the symme- 
try of the state at the conduction-band minima may be 
reduced and the effective-mass tensor becomes more com- 
plex. For example, in SiC, on going from the 3C (cubic 
or zinc blende) and 2H (hexagonal or wurtzite) structures 
to higher a polytypes, such as AH and 6H, the effective- 
mass anisotropy goes from twofold to threefold.2 Calcu- 
lation of donor levels with three unequal masses, even in 
the hydrogenlike potential model, is not a trivial prob- 
lem, and, as far as we know, has not been reported in the 
literature. The problem can be converted into one with 
an isotropic mass but anisotropic potential. We note in 
this connection that treating nonspherical potentials has 
been a central issue in extending the Korringa-Kohn- 
Rostoker3,4 (KKR) Green-function band theory5 beyond 
the muffin-tin approximation. By working on a single po- 
tential, we can isolate one of the important problems in 
the full-potential KKR theory—the construction of the 
basis functions. 

So far, calculations with mass anisotropy have dealt 

only with twofold anisotropy, which can be characterized 
by a single parameter a, ranging from 0 to 1. a=0 is the 
isotropic case, a=l the two-dimensional (circular sym- 
metry) case. The best calculations to date for mass an- 
isotropy in a Coulomb potential for a wide range of 
values of a are those of Faulkner6 for the ground and 
several excited states and of Pollman7 for the ground 
state. Faulkner employed a basis of 18 hydrogen wave 
functions, consisting of 6 radial functions for each of the 
three chosen values of the angular momentum, while 
Pollman employed a parametrized product of the exact 
solutions for a=0 and 1. Both sets of calculations deal 
entirely with twofold anisotropy. More recent reports8-9 

tend to focus on particular semiconductors, and therefore 
single values of a. Our results for three unequal masses 
should assist future experimental analysis of donor levels 
in semiconductors with this type of mass anisotropy. 

The rest of this paper is arranged as follows. Section II 
describes the method. We present the results in Sec. Ill, 
which includes tests of the convergence in an anisotropic 
harmonic oscillator, a comparison of our results with pre- 
vious calculations for the Coulomb potential with two- 
fold mass anisotropy, and our results with threefold mass 
anisotropy. The final section, Sec. IV, is a summary and 
discussion. 

II. METHOD 

We begin by assuming an anisotropic potential V(T). 

For the case of an isotropic potential and anisotropic 
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mass,  the  kinetic  energy  in  k  space  is  taken  to  be 
T — (fi7 /2)(k2 /m! + ky /m2 + k2 /m3).    Transformation 

to new coordinates x'=x\/mi /m , y'=y\/m2/m , and 
z'=z\/m3/m , where \/m =y(l/m]+l/m2), produces 
an isotropic kinetic energy with an anisotropic potential. 

The way the bound states are calculated is similar to 
that widely used for a spherical potential: Draw a sphere 
of radius r0, construct a wave function inside the sphere 
xl>in, and an outside wave function ^out by numerical in- 
tegration, and match the value and derivative of the two 
wave functions at r =r0. Of course ifi-m and ^out have to 
be regular functions for r-*0 and r—>■ oo, respectively. In 
the actual calculation, the eigenfunctions are expanded in 
basis functions: 

(la) 

(lb) 

The basis functions Ur and W^ are further expanded in 
real spherical harmonics Ylm. We describe the procedure 
for constructing the Ur below. A similar procedure is 
used to construct the We. 

We truncate the expansion at a maximum value of /, 
denoted Z^. For a given symmetry, Ua is expanded as 

Ur(T)=2«L(r)Ylm(6,4>) 

where the summation includes all allowed values of / and 
m for / < lmiX. If the total number of allowed values of / 
and m is N, then N independent basis functions UY need 
to be constructed. 

For a specific y, the radial functions ujm are coupled 
through JV (one for each 1m) differential equations: 

1   d 
r1 dr 

2d 
rTr 

,  /(/+1)     „ 
+           2             E 

r 
ujjr) 

+  2   VlmV, 
I'm' 

n-(rWm. (r) = 0, (3) 

where E is an energy parameter and the potential matrix 
elements are defined as 

vlml.mM=JYlm(e,4>)V(r,e,d>)Yrm.(e,<f>)dci.    (4) 

2aruL(r0)=2
bßwL(r^ (5) 

Similarly, continuity of the first derivative i/'ln = ^out at 
r = r0 produces 

2"riJL('o)=2^/l('o) (6) 

for every Im. 
Equations (5) and (6) together constitute a set of 2JV 

linear equations which can only have solutions at allowed 
energies of the total wave function. The determinant or 
nearest-to-zero eigenvalue of the matrix constructed from 
the various u?m(r0) and wfm(r0) and their first derivatives 
is evaluated as a function of the energy E and the roots 
found by a numerical search. 

III. APPLICATION AND RESULTS 

The method just described is applied to the anisotropic 
harmonic oscillator and the Coulomb potential with an- 
isotropic masses in this section. 

In the hydrogenic approximation to the donor prob- 
lem, the wave equation for the donor electron takes the 
form 

(2)       _ 1 
m,  dxJ - + ■ 

*y2 
■+■ 

l 32. + .2 
m? fa       Kr 

f=Ej> ,       (7) 

where the electron mass and the Rydberg are taken to be 
unity, K is the dielectric constant of the bulk semiconduc- 
tor, and m]t m2, and m3 are the effective mass com- 
ponents expressed as multiples of the electron mass. The 
coordinate transformation described at the beginning of 
Sec. II, together with an effective mass m defined by 
1/m =-i-(l/m1 + l/m2) and an energy scaled by 
E =(m /K2

)Z, produces the equation employed in the ac- 
tual calculations: 

-Vfy- 
V(l+a2)x

2 + (\-a2)y
2 + (l-a1)z: 

■r(i=zr[> . 

(8) 

In terms of the original masses, the anisotropy parame- 
ters al and a2 are 

Equation (3) can be treated as a matrix differential equa- 
tion for the vector uy(r), which is integrated outward by 
the matrix Numerov method, with the values of the vec- 
tor being specified at the two initial points. We obtain 
the other basis functions similarly by specifying other ini- 
tial vectors, the entire group of vectors being mutually in- 
dependent. We have found it necessary, however, to 
reorthogonalize the set of N vectors uY at several 
different values of r as we integrate outward whenever 
N > 2. If this is not done, the vectors lose their indepen- 
dence by the time r0 is reached. 

After the radial functions ujm and wfm are obtained, we 
seek to match the total wave functions (i.e., i&in = ifrout) at 
r=r0. For the wave functions to match at all angles, the 
radial term associated with each spherical harmonic must 
match independently. Thus, for every Im, we have 

«1=1- m-. 

■m. 

a, = - 
m-, +m 

(9a) 

(9b) 

The isotropic case corresponds to ax—a2=^i. The 
solutions to Eq. (8) are then the hydrogen wave functions 
and have energies e„ = — 1 /n2. Standard twofold anisot- 
ropy (ml=m2=m;m1>m) corresponds to a2=0 and 
CXü] < 1. Values of a, (or a) in the range — oo <ax <0 
are also physically meaningful, corresponding to the case 
m]—m2 = m and m3<m. However, the same effect can 
be obtained by setting a.^ — a.2, with a, and a2 both posi- 
tive. In that case, m2 = m3 and m, <m3 (or m2). The 
extreme case of a, = l and a2=0 corresponds to a pure 
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TABLE I.  Calculated energies of a harmonic oscillator for the lowest four states for a, = | and 
a2=0 as a function ofthe highest angular momentum Imii and the number of components N. 

N 1 2 3 4 5 6 7 Exact 

'max 

Is 
2s 

'max 

2px 

0 
2.5157 
5.8788 

1 
3.4156 
4.5338 

2 
2.3590 
4.2234 

3 
3.0742 
4.3684 

4 
2.3364 
3.7914 

5 
3.0114 
4.3388 

6 
2.3337 
3.6903 

7 
3.0017 
4.3340 

8 
' 2.3334 
3.6703 

9 
3.0002 
4.3334 

10 

3.6673 

11 
3.0001 

12 

3.6668 
2.3333 
3.6667 

3.0000 
4.3333 

two-dimensional symmetry with exact solutions, the 
ground state having an energy of e= — 4. The other ex- 
treme case a, = a2 — 1 reduces to a one-dimensional prob- 
lem with the ground-state energy collapsing to 
(£—-«). 

To test the method, we have applied it to the aniso- 
tropic harmonic oscillator, with a potential analogous to 
that of Eq. (8): 

V(i) = (l+a2)x
2+(l-a2)y

2+(l-ai)z
2 . 

The eigenenergies have the analytic form 

E=Vl+a2{2n, + l) + Vl-a2(2n, + l) 

(10) 

+ -1/1-0,(2/23 + 1), 

where nun2,nz are nonnegative integers. Table I shows 
the systematic convergence of the lowest four energies for 
a2=0 and a = a1 = %. The calculated energies are listed 
together with the number of components (iV) and the 
maximum angular momentum (/mM) used in a calcula- 
tion. States containing only even / and m =0 com- 
ponents are labeled s states; those with odd / and m =0, 
pz states and those with odd / and m =1, px states. For 
the energy to converge to within 8e=10~4, the Is, 2px, 
2pz, and 2s states require N=5, 5, 6, and 7 (/max = 8, 9, 
11, and 12) components, respectively. While four com- 
ponents are sufficient to allow the ground states of each 
symmetry (Is, 2px, and 2pz) to converge to within 
6e=0.001, the 2s excited state requires six components. 
One important result is the uniform convergence of these 
calculations: Each increase in the number of components 
produces an energy which is both lower and closer to the 
exact value than its predecessors. 

It is worth noting that a = | represents a strong anisot- 
ropy. As one would expect, significantly lower values of 
a require much smaller numbers of components N. For 
threefold anisotropy, the /max required for convergence is 
roughly that needed in a twofold anisotropic problem 
with an a equal to the larger of two threefold anisotropy 
parameters a, and a2. Of course, the total number of 
components N needed for a given l^^ is now consider- 
ably larger, s states would now include components with 
/ even, m even and positive; pz states / odd, m even and 
positive; px states / odd, m odd and positive; and py states 
/ odd, m odd and negative. 

For the anisotropic-mass Coulomb problem, the speed 
of convergence is close to that for the harmonic oscilla- 
tor. Table II shows the convergence of the 2pz and 3pz 

energies for the twofold anisotropies a=0.488 and 0.973. 
For a=0.488, both states converge to within SE=0.001 
or 0.002 with only two components (/mM = 3) included. 
For the strong anisotropy a=0.973, five components are 
sufficient to produce an accuracy of Se < 0.002. Table III 
compares energies we obtained with iV=5 with the best 
previous results.6 The values are nearly equal in most 
cases, while there are a few cases with significant 
differences. In these cases, our calculation yields the 
lower energies. 

The tests and comparisons described above allow us to 
proceed to the Coulomb potential with threefold mass an- 
isotropy with considerable confidence. As was mentioned 
before, the two parameters in the range 0<a,<l and 
0 < a2 < 1 cover the entire domain of threefold anisotro- 
py. By analogy to the previously discussed convergence 
behavior, the energies we present are accurate to within 
about 5E = 0.002. Table IV gives our calculated energies 

TABLE II.   Convergence of the 2pz and 3pz energies E from Eq. (8) in the twofold anisotropic 
Coulomb potential for a=0.488 and 0.973. 

N 

a=0.488 
2pz       -0.36      -0.366        -0.3665      -0.3665 
3/>z       -0.16      -0.1652      -0.1653       -0.1653 

6 
11 

7 
13 15 

2pz       -0.94       -1.16 -1.225 
3pz       -0.42       -0.594 -0.671 

a=0.973 
-1.244 
-0.705 

1.2503 
0.7145 

-1.2520 
-0.7150 

-1.2528 
-0.7155 

-1.2528 
-0.7156 

0-4 
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TABLE III. Calculated energies E in a Coulomb potential with twofold mass anisotropy, comparing 
present values with those of Faulkner (Ref. 6). 

Is 2s IP* 3p2 2p, 3Px 

a = 0.784 
Present -1.553 -0.438 -0.566 -0.269 -0.320 -0.155 
Faulkner -1.553 -0.437 -0.565 

a=0.936 

-0.269 -0.320 -0.155 

Present -2.012 -0.704 -0.965 -0.497 -0.361 -0.210 
Faulkner -2.01 -0.695 -0.933 

a=0.973 

-0.496 -0.361 -0.210 

Present -2.321 -0.952 -1.250 -0.715 -0.384 
Faulkner -2.31 -0.928 -1.24 -0.715 -0.384 

for combined values of Oj and a2 in which the two pa- 
rameters are allowed to range independently over 0.0, 
0.2, 0.4, 0.6, and 0.8. Figure 1 plots the energies of the Is 
state as a function of al for four values of a2. In each of 
Figs. 2(a)-2(e), we plot the calculated energies of the 2s, 
2px, 2py, and 2pz as a function of a j for a given value of 
a2. The magnitudes of the energies increase more than 
quadratically as a function of both parameters for all but 
the 2px state. 2pz is the state most sensitive to variation 
in ai, while 2px is the least. It is the 2py state which is 

most sensitive to variation in a2. The 2py and 2pz states 
cross when ax = a2, as can be predicted from the form of 
the potential. These results should be useful for qualita- 
tive analysis of the donor levels in semiconductors with 
three distinct masses. 

IV. SUMMARY AND DISCUSSION 

In this paper, we presented a general method for solv- 
ing the eigenvalue problem of a Hamiltonian with a non- 

TABLE IV. Calculated energies e of a particle with a threefold anisotropic mass in a Coulomb po- 
tential. 

0.0 0.2 0.4 0.6 0.8 

U 

2s 

2p2 

2Px 

2Py 

0.0 -1.000 -1.010 -1.042 
0.2 -1.076 -1.086 -1.122 
0.4 -1.176 -1.188 -1.228 
0.6 -1.322 -1.337 -1.384 
0.8 -1.581 -1.600 -1.661 

0.0 -0.250 -0.254 -0.267 
0.2 -0.269 -0.273 -0.287 
0.4 -0.298 -0.302 -0.316 
0.6 -0.345 -0.349 -0.363 
0.8 -0.452 -0.456 -0.472 

0.0 -0.250 -0.252 -0.255 
0.2 -0.284 -0.287 -0.292 
0.4 -0.336 -0.338 -0.344 
0.6 -0.417 -0.420 -0.429 
0.8 -0.587 -0.591 -0.605 

0.0 -0.250 -0.233 -0.222 
0.2 -0.261 -0.243 -0.232 
0.4 -0.275 -0.256 -0.243 
0.6 -0.294 -0.273 -0.259 
0.8 -0.323 -0.299 -0.283 

0.0 -0.250 -0.274 -0.311 
0.2 -0.261 -0.287 -0.325 
0.4 -0.275 -0.303 -0.344 
0.6 -0.294 -0.324 -0.370 
0.8 -0.323 -0.357 -0.410 

-1.109 -1.252 
-1.195 -1.354 
-1.311 -1.492 
-1.482 -1.695 
-1.786 -2.063 

-0.297 -0.377 
-0.318 -0.401 
-0.347 -0.434 
-0.396 -0.485 
-0.505 -0.595 

-0.264 -0.281 
-0.302 -0.322 
-0.357 -0.383 
-0.446 -0.482 
0.634 -0.693 

0.216 -0.216 
0.225 -0.225 
0.236 -0.237 
0.249 -0.252 
0.274 -0.276 

0.371 -0.495 
0.390 -0.523 
0.414 -0.560 
0.446 -0.610 
0.499 -0.693 

0-5 
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-0.5 

FIG. 1. Ground-state energy of the Coulomb potential with 
threefold mass anisotropy as a function of a^ for o2=0.0, 0.4, 
0.6, and 0.8. 

spherical potential and/or masses and obtained results 
for a hydrogenic potential with threefold mass anisotro- 
py. Each eigenfunction is represented as a linear com- 
bination of basis functions, each of which is itself expand- 
ed in spherical harmonics. The nonspherical potential 
couples the radial functions for a given basis function, 
generating a set of coupled radial differential equations 
which we solve numerically. The eigenenergies are ob- 
tained by varying the energy to match the value and radi- 
al first derivative of the inner and outer parts of the wave 
function at a chosen radius. 

We test the applicability of this method and its speed 
of convergence against the analytical energies of the an- 
isotropic harmonic oscillator and against previous results 
obtained for the Coulomb potential with twofold mass 
anisotropy.   The results show that the method is fully 
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FIG. 2. Lower excited-state energies of the Coulomb potential with threefold mass anisotropy as a function of at. (a), (b), (c), (d), 
and (e) are for ct2=0.0, 0.2, 0.4, 0.6, and 0.8, respectively. 
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variational, the energy obtained always being higher than 
the exact value for both the ground and excited states. 
Our results also show monotonic convergence, with the 
energy being lowered as the number of independent basis 
functions increases, until the exact energy is reached. On 
the basis of these tests, we are able to find accurate ener- 
gies for the hydrogenic potential with threefold mass an- 
isotropy over a wide range of the anisotropy parameters. 

Although the hydrogenic potential with effective 
masses provides a useful qualitative model for describing 
the energy levels of shallow donors and acceptors in semi- 
conductors, the model and the present method are not 
suitable for detailed study of these impurity states. When 
the impurity state is expanded in terms of the band states 
around the band edge, the effective potential thus gen- 
erated is a product of the bare impurity potential and a 
periodic function derived from the band-edge Bloch func- 
tions. Even when the bare impurity potential has a single 
minimum at the impurity site, the Bloch functions will 
produce many subsidiary minima in the full effective po- 
tential. This would invalidate the present method, which 
is based on an expansion around a single center. Wheth- 
er the present method can be modified to deal with an ex- 
tended impurity potential with multiple minima is not 
clear at the present time. 

One of the most important aspects of this work is in 
the construction of the basis functions, which also plays 
an important part in the full-potential (FP) KKR 
theory.1,s While most of the work done on this theory 
employs integral equations with the free-electron Green 
function as the kernel, the present method solves a set of 
coupled differential equations to obtain the basis func- 
tions. As was mentioned earlier, if one starts with a set of 
independent basis functions at a small radius and in- 
tegrates outward, the basis functions tend to lose their 
linear independence by the time one reaches the match- 
ing radius. This occurs whenever there are three or more 
components in a basis function, for weak as well as strong 

anisotropy, and for the harmonic oscillator as well as for 
the Coulomb potential. Since the harmonic-oscillator po- 
tential is not singular, this behavior is not, or is not sole- 
ly, due to the potential singularity described by Butler, 
Gonis, and Zhang.' 

We speculate that the problem is caused by the fact 
that the spherical component is not dominant at small r. 
This allows strong mixing of all the components of a basis 
function at small radii, which in turn leads to loss of in- 
dependence. This problem has not arisen in previous cal- 
culations testing FP KKR theory, since most of these cal- 
culations used model potentials which were either spheri- 
cal or dominated by the spherical term at small radii. 
Other tests5 have used a small set of basis functions in po- 
tentials with high symmetries, such as cubic harmonics, 
which did not couple more than two radial 
components—a situation in which the loss of linear in- 
dependence also does not occur in our method. We ex- 
pect, however, that the FP KKR method will encounter 
potentials more like the potentials examined here when it 
is applied to open structures, such as most semiconduc- 
tors. One good example is the potential for interstitial 
cells. This problem deserves further investigation. 

As we have shown by our present calculations, howev- 
er, the problem of linear independence of the basis func- 
tions can be circumvented. This is done by orthogonaliz- 
ing the basis functions at several values of r in the small-r 
region during integration outward. We believe our 
method will facilitate the execution of FP KKR theory 
for semiconductors and other open structures. 
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