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1.   EXECUTIVE SUMMARY 

Three major subsystems were developed for a klystron expert system, those for monitoring and 
controlling the cathode temperature, the rf input response, and the rf output response. 

For the temperature-controlled cathode subsystem, a Fortran code was developed successfully to 
predict the steady-state cathode temperature from a given transient heater voltage vs. time plot. 
This code modifies a Litton-proprietary Quickbasic program by adding features that can automate 
the program with an expert system and by adding highly descriptive two-dimensional variables 
that quickly identify the gun assembly parts whose heat transmission histories are being 
calculated.    Copious program comments made the code easy to read and easy to modify. 

The program includes the temperature dependence of thermal emissivities and thermal 
conductances of the gun-assembly materials as well as geometry factors that simplify complex 
thermal-resistance calculations. The program is easy to use, very fast to run, and does not require 
large computer memory. 

For the input-cavity subsystem, the design, development and tests of an adjustable transformer 
resulted in a practical configuration. Tests showed that the input transformer circuit, a 
combination of a bandpass filter and impedance transformer which is simply referred to as a 
"transformer," broadens the bandwidth of the input cavity by enhancing the edges of the 
passband. The transformer has two continuously and simultaneously adjustable controls that are 
linked to the expert system commands. These controls are useful both for hot test and cold test. 
The settings of the new transformer are changed by a stepper motor which is driven by an expert 
system. The new input transformer and its drive fit inside the existing envelope of the klystron. 

The expert system software developed in this program (TIPTOE) successfully demonstrated that 
a software system can perform the function of adjusting a matching transformer in an input cavity 
circuit. The matching transformer contained two adjustments resulting in a nontrivial system. 
The formalism was developed, and the software written to easily allow expansion to several 
variables and several different subsystems. For demonstration purposes, the actual circuit 
structure was replaced by a lumped-element circuit model simulated with the commercial 
SUPERSTAR program. 

A lumped-element model of a two-cavity extended interaction output cavity (EIOC) was 
developed with sufficient accuracy to predict measurements on a cold-test model. The EIOC 
model is ready for use in a large-signal interaction program. 

A program which models large-signal klystron interaction at a single gap was developed. With 
residual discrepancy levels not exceeding 1%, the 1670-line Fortran code includes relativistic 
effects, velocity and density modulations, space charge effects, potential energy changes and 
dynamic beam loading, all under large-signal conditions. Other existing klystron programs 
include some but not all of these effects. 
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2.  INTRODUCTION 

2.1   Background on Smart Systems 

2.1.1   Other smart systems 

Over the past 30 years, computer technology has maintained an ever-increasing influence on the 
operation of all types of systems both large and small. Among the more interesting developments 
in this area are "expert" or "smart" computer systems that control complex or time-consuming 
tasks which normally require highly trained personnel. These expert computer systems are 
typically based on a computer module equipped with the following: 

1) sensors to measure the state of a system 
2) a database to determine the expected behavior of the system 
3) decision-making algorithms 
4) adaptive controls that modify operation of the system. 

Appendix 2A describes three operating smart systems that exemplify the following 

1) troubleshooting in a system that has many independent coupled variables 
2) enhancing performance of a millimeter wave linear amplifier 
3) testing TWTs during manufacturing. 

2.1.2  Microwave-tube smart systems 

Still to be realized is an expert system to monitor and control vacuum-device performance while 
the device is in end-use operation. Such a system would continuously "watch" and adjust the 
tube after it is placed in service. An expert system, after detecting conditions that lead to 
performance degradation or permanent damage, can adjust the operating parameters to prevent 
or lessen the impact of the undesirable condition. Also, besides monitoring for fault protection 
(avoiding sudden degradation), and for ongoing performance optimization (avoiding gradual 
degradation), the system is constantly building a useful database. The system, which records, 
minute by minute, the tube's condition, identifies unusual happenings that might be correlated 
with performance difficulties and consequently provides critical data to facilitate failure analyses, 
to quickly rework the tube, or to adjust the design for performance improvement. 

Implementation of a tube smart system is expected to be facilitated by the following: 

1) existing technology of practical, mission-oriented expert systems 
2) miniaturized sensors 
3) miniaturized controls and actuators 
4) miniaturized special purpose computers 
5) reliable, adaptive and fast software. 
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2.2  Purpose - A Klystron Expert System 

The purpose of this work was to develop three major subsystems of a klystron expert system such 
as that schematically illustrated in Fig. 2.2-1. In this figure, ten subsystems are linking a klystron 
to monitor-and-control software. Each subsystem is responsible for sensing the conditions of a 
particular tube component in order to enable the master software program to control the 
component's functions. Subsystems, sensors and controls provided by an idealized master system 
are summarized in Table I. 

Since the expert system intended for the klystron is a "model-based" system, the subsystem 
development includes modeling. In the subsystem, models are used to obtain predictions and 
expected information which are used in the decision algorithms for making adjustments or for 
evaluating measurement data. In this system the models can also be adjusted. Resulting 
discrepancies or errors between the model and measurements can be used to provide adjustments 
of the model parameters that results in new more accurate predictions. This adjustment process 
can be repeated until the errors are below specifications. 

In this work the three subsystems are those shown in the figure as cathode temperature, rf input 
response and rf output response. 

The cathode-temperature subsystem controls a thermionic electron source which represents a key 
feature of the device. To minimize malfunctions of (both oxide and dispenser) cathodes, the 
cathode-temperature subsystem must maintain operating temperatures over a narrow range. This 
subsystem gives "best guesses" on each of the internal components of the gun assembly to 
provide continually optimized emission. 

The rf-input-response subsystem optimizes the signal entering the klystron by utilizing a circuit 
of distributed inductances, capacitances and line segments that together symmetrize the bandwidth 
and match the impedance of the input cavity with the signal generator. The circuit functions as 
a combination of a bandpass filter and an impedance transformer, the latter part being the more 
sensitive portion of the circuit. The subsystem contains a variable-geometry circuit, a model to 
predict expected input responses, and software to control the circuit geometries. 

The rf-output-response subsystem optimizes the signal leaving the klystron's output circuit. This 
output circuit contains a double cavity where the beam converts into rf power a substantial 
portion of its kinetic energy in a highly nonlinear process. Control of this nonlinear interaction 
and power extraction requires special computer codes to accompany the adjustment in the output 
circuit. This subsystem utilizes special codes developed to determine the equivalent lumped- 
element shunt resistance of the multicavity output system during nonlinear operation. 
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2.3  Scope  -  Subsystems for Major Components 

The scope of this program was limited to the implementation of three subsystems that control the 
cathode temperature, the response of the rf input, and the response of the rf output. These were 
zero-order implementations for which refinements and next-order improvements were beyond the 
scope of the work. 

For example, in the cathode-temperature work, there are still temperature gradients in some 
nodes of the model used for predicting temperatures of the gun assembly components. 
Refining the temperature predictions by restructuring the nodes was outside the scope of the 
work. Other examples of out-of-scope work include (1) writing the code to accommodate a 
generic gun assembly instead of only a specific assembly, (2) incorporating facilitating features 
into the code such as inputing data interactively instead of by modifying either the code or the 
input data file and (3) adding subroutines that allow the code output to interface immediately with 
voltage and current controls. 

Similarly, for the rf-input-response subsystem, some refinements necessary for a working expert 
system were outside the scope of this work including (1) adding either mechanical or electrical 
stops to both the axial and azimuthal drives, (2) removing backlash from both drives, (3) reducing 
rotational compression in the flexible cable, (4) adding locks to both adjustments, (5) adding 
searching software to find the best of all possible maximum-performance settings instead of 
finding a local-maximum setting, and (6) adding subroutines to interface with actual hardware. 

For the klystron program, interaction beyond that of a single cavity, e.g., interaction with a multi- 
gap cavity or with a multi-cavity output, was outside the scope of the work. 

2-4 



RF INPUT- 
TRANSFORMER" 

ANODE 

d 
: SOLENOID: 

I 1     I  
WERMEDIATE CAVITIES 

IV/NDCW 

RF OUTPUT 

/"' 
FLOATING COLLECTOR 

V/S//S 

m 
s * s' 

VACUUM 

CATHODE 
TEMPERATURE 

RF  INPUT 
RESPONSE 

MAGNETIC 
FIELD 

PROFILE 

BODY 
CURRENT 

DISSIPATION 

CAVITY 
TUNINGS 

RF  OUTPUT 
RESPONSE 

MONITOR   -   CONTROL 
SOFTWARE 

COOLING 
SYSTEM 

BEAM 
COLLECTION 

OUTPUT 
WINDOW 

FIGURE 2.2-1 
A KLYSTRON EXPERT SYSTEM 

2-5 



APPENDIX 2A 
EXAMPLES OF EXPERT SYSTEMS 

The following give examples of "expert" or "smart" computer systems that control complex or 
time-consuming tasks that normally require highly trained personnel. 

1) Troubleshooting in systems that have many independent, coupled variables. 

The expert system at the Stanford Linear Accelerator Center (SLAC) uses sensors for monitoring 
the position of charged particle beams that drift inside tunnels. When the beam wanders from 
a desired position, steering-coil currents that form magnetic fields to guide the particles must be 
re-set. The expert system achieves this complex task by recording beam location changes that 
result from combinations of experimental coil-current changes. After comparing the measured 
position shifts with the shifts predicted by a computer model of the beam-magnet system, the 
expert system can make final steering-coil adjustments that return the beam to its desired 
position. 

2) Enhancing product performance. 

An expert system that extends the linearized bandwidth of a high-power millimeter-wave 
amplifier exemplifies product performance enhancement. Typically, without an expert system, 
an amplifier's bandwidth is determined by design features that fix beam voltage, cathode current, 
rf drive and maximum allowable gain ripple. With the expert system, flat output power is 
obtained even with less-than-ideal gain ripple by programming each frequency with its own beam 
voltage, beam current and rf input level. The expert system can change these parameters in less 
than a microsecond to generate flat frequency sweeps having bandwidths far in excess of the 
typical amplifier. 

3) Testing products during manufacturing. 

The expert system that automates TWT tests at Litton EDD exemplifies product testing. After 
technicians bake out, hipot, and focus the beam of the TWT, an expert system takes over. 
Measurements, data reduction and plots are made for multiple tests including small signal gain, 
drive for constant power output, saturated power, transfer functions, Miram curves, standard roll- 
off curves, cut-off values, and tube aging both with and without rf. Despite appearances, the 
above tasks represent a small fraction of the expert system's program. The large portion of the 
program concerns decisions the expert system is expected to make during tests. (For example, 
while aging the TWT with rf, if the TWT becomes gassy, the system may reduce the rf drive and 
repeat the previous command. Or, if an arc shuts down the power supply, the expert system will 
check prescribed conditions then replace voltages in a prescribed order, then check TWT 
conditions, then resume tests.) Such automated testing is a standard part of TWT manufacturing 
at Litton EDD. 
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3.  CATHODE TEMPERATURE SUBSYSTEM 

The expert system for any thermionic device such as a klystron must necessarily include 
temperature control of the electron emission surface. Too high temperatures can often be 
associated with heater or cathode malfunctions and too low temperatures can often be associated 
with degradation in rf gain and power. Minute-by-minute control of the cathode temperature 
assures optimal rf performance and maximizes the tube's MTBF. 

One goal for this expert system is to design a model-based subsystem to control the cathode 
temperature. As described below for this case, the subsystem is the cathode-heater assembly. 
The model-base approach compares predictions of the heater-cathode model with experimental 
data then adjusts parameters in the model. Comparisons are repeated until any resulting 
discrepancy or error between the model prediction and the experimental measurement is reduced 
below required specifications. 

After model predictions become satisfactory, the subsystem will be integrated into the overall 
expert system. As a result, the output from the computer model will control switches which 
change the heater voltage and current such that the heater power maintains the desired cathode 
temperature. 

3.1   Description of Program 

To achieve control of the cathode temperature, a Fortran-language code CATHTEMP was 
developed to predict the cathode temperature for a given heater power. This code is an 
automated version of a QuickBasic program (see Litton technical report "A Better Method for 
Controlling the Cathode Temperature", R.M. Rogers, Litton Systems Inc., Electron Devices 
Division, 960 Industrial Road, San Carlos, CA 94070) developed for a klystron gun assembly 
similar to that used in this program. A listing of the program is given in Appendix 3-C and the 
programming steps are outlined in Appendix 3-A. The program uses an approach that greatly 
simplifies a complex geometry problem. 

In general, for a given heater power, the cathode temperature is a function of (1) the thermal 
emissivities of the emitting surfaces of the cathode and heater, and (2) the conductivities and the 
emissivities of various cathode support parts. Although, in general, each part has cylindrical 
symmetry, each of the 43 gun-assembly parts radiates and conducts to the other parts from 
portions of conical, cylindrical, or disk-type (end plate) surfaces. 

In the model, the geometry is simplified by grouping individual parts into "nodes" that have 
conduction and radiation linkages to each other (Fig. 3.1-1). The fundamental assumption of this 
nodal approach is that all parts of a node have the same temperature at a given time. 

The inner diameters, outer diameters and lengths of parts are still needed to calculate the 
radiating and the conducting surface areas of the nodes.   The input data to CATHTEMP are 
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managed by an input data file CATHIN which is explained in detail in Section 3.3. For each part 
of the gun assembly, CATHIN requires the following input parameters: 

— inner diameter 
— outer diameter 
— length 
— density 
— specific heat 
— thermal conductivity 
— emissivity 

CATHTEMP also requires the heater voltage and the heater coil electrical resistivity. 

The program begins calculations at a time t = 0 which corresponds to the application of power 
to the heater. The heater current, which when multiplied with the heater voltage provides the 
power generated during each time increment, is computed by dividing the heater voltage by 
heater resistance. 

Over each of the following time increments, the program calculates the heat transmitted to each 
node from all of the others. Typically the program runs for 1800 time steps, the first 60 being 
each 1 second and the remaining being 2 sec. The program stops when a steady state solution 
is achieved. 

The net power flow to the k-th node from all other nodes is given by 

Here Pltk represents the net power flow to k-th node from node 1. The power flow from node 1 
to node 2 at a given time t is given by 

P^PS^M+Pg™"® & 

where 

pC£duction(t)=T(l)-T(2) (3) 

Mr2 

Here  Rlt2 = thermal resistance between node 1 and node 2 at time t (deg.K/watts) 
T(l) = temperature of node 1 at time t (deg.K) 
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T(2) = temperature of node 2 at time t (deg.K) 

The second term in equation (2) represents the power flow due to radiation from node 1 to node 
2 at time t and is given by 

PJ2r,w,(0=e(7)oF/(7ri)4-7t2)4) (4) 

Here 
s(T) = thermal emissivity of a radiating surface at temperature T 
a = Stefan-Boltzmann constant (watts/inch2/K4) 
Fy = view factor, fraction of radiation from surface i reaching surface     j 
A = area of the radiating surface 
T(l) = temperature of node 1 at time t (deg. Kelvin) 
T(2) = temperature of node 2 at time t (deg. Kelvin) 

Once the net power flow to a node at a given time is known, the updated   temperature of the 
node is given by 

Here 
Tn = temperature of node k at time step n (deg.K) 
Tn.] = temperature of node k at time step n-1 (deg.K) 
h = time step (sec) 
Ct = thermal capacitance of node k (joules/kg/deg.K) 
Pk = net heat flow to node k at previous time step (watts) 

The thermal capacitance of node k is given by 

C,=2>A (6) 

Here 
i = index of all parts belonging to node k 
ni; = mass of i-th part 
C; = specific heat of i-th part. 
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3.2  Uncertainties 

The following parameters are not known exactly: 

Fjj = View factor 
e(T)    =    thermal     emissivity    of    a    radiating    surface    as    a    function    of 

temperature 
Rktk+1 = thermal resistance between node k and k+1. 

The view factor F^, the fraction of radiation leaving surface i which is intercepted by surface j, 
is given by (Fig. 3.2.-1) (see "Fundamentals of Heat and Mass Transfer", F.P. Incropera, D.P. 
Dewitt, John Wiley & Sons, 1985.) 

1  rrCOsQfiOsd; 
F..=—\\ '—^LdAdi. (7) 

The above factor is unity when (1) two surfaces of equal area are parallel to each other, or (2) 
the intercepting surface completely surrounds the radiating surface. Otherwise, in general, the 
above integral is not easy to evaluate. 

The temperature dependence of the thermal emissivity e(T) is only approximately known for 
most gun assembly surfaces. For example, the oxide cathode, one of the main radiating surfaces 
in a gun assembly has a granular BaO-on-Nickel surface that results from several chemical 
processes. The complex nature of this composite surface makes its thermal emissivity impractical 
to know. Similarly the radiation between heater and cathode surface is not known exactly due 
to imprecise knowledge of the thermal emissivity of the heater coil. 

The thermal resistance Rktk+I required for conduction calculations between two adjacent constant- 
temperature nodes is given by thermal resistances of parts located on the node boundary. The 
thickness of the interface between two nodes is the combined thicknesses of the two parts 
adjacent to the boundary. Besides various geometry factors, the thermal conduction calculations 
depend upon (a) the type of joints (spot weld, TIG weld or braze joint) used to join two adjacent 
parts, (b) the direction of heat conduction in the interface, and (c) the temperature variation of 
thermal conductivity of the interface. Since the thermal conductivities of different types of joints 
are unknown, the exact variations of thermal conductivities with temperature of different materials 
involved are unknown. 

3.3  Description of the Input Data File 

As shown by the sample file in Appendix 3B, the input data file uses namelist statements to 
represent a group of variables by one name. Each namelist starts with a '$' sign and ends with 
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'Send*. Typically, as with the first namelist 'Sheatcoil,' four variables (id(l,l), od(l,l), length(l,l) 
and MatType(l,l)) represent the inner diameter (id), outer diameter (od), length and material type 
for a given part. For variables cast as two dimensional arrays, the value of first dimension gives 
the node index and the value of the second dimension gives the part index. 

The namelist names have both descriptive and numerical portions. For example, 
'cath_support_466' stands for cathode support having Litton part number 372466. This report 
only uses the last three digits since the first three are common to all parts. The namelists Spartl, 
$part2, etc. represent the variable jpart(i) (1 < i < 10; node index). The variable jpart(i) gives the 
total number of parts belonging to a given node. 

The sixty-six namelist statements of the input file are separated by blank lines to form ten groups 
corresponding to ten nodes. Fig. 3.3-1A shows the part belonging to node 1 in the gun assembly 
drawing. Node 1 consists of the heater coil (part # 481) alone. Fig. 3.3-1B shows the heater coil 
in detail. The heater coil consists of 0.02875 inch tungsten wire which is 55 inches long. 
Tungsten is numbered as material type 1 in the code (see table below). 

The second node includes the heater tab, the heat shields (part # 487, 488, 484), the cathode head 
(part # 474) and the cathode support (part # 473). Fig. 3.3-2A shows these parts (except the 
heater tab) in the gun assembly drawing. The heater tab is a portion of the heater coil which 
joins the coil to the cathode support. The individual part drawings for parts belonging to node 
2 are shown in Figs. 3.3-2B through 3.3-2F. Notice that the lengths (compare the dimensions 
in the input file with those in the drawings) of some parts are obtained by averaging some 
relevant dimensions due to the bends in the cylindrical surfaces. 

The third node consists of the cathode support (part # 466), the heat trap (part # 649), the shadow 
grid support (part # 425, 426) and a portion of part # 469. These parts are shown in Fig. 3.3-3A 
in the gun assembly drawing and detailed drawings are shown in Figs. 3.3-3B through 3.3-3F. 
Notice that part # 469 was divided into four separate sections (A,B,C, and D) for convenience 
of calculations of cross-sectional areas for conduction and radiation (Fig. 3.3-3C). Note also that 
the outer and inner diameters of part # 466 were obtained by weighted average of the dimensions 
shown in the drawing due to bends in the cylindrical surface. 

The parts # 469 and 442 belong to node 4 and are shown in Figs. 3.3-4A, 3.3-4B and 3.3-3C. 
Figs. 3.3-5 shows the locations for nodes 5, 6, and 7. Fig. 3.3-6A shows part # 470 belonging 
to node 5 and Fig. 3.3-6B shows part # 496 belonging to node 6. The part drawings for the 
parts belonging to node 7 are shown in Fig. 3.3-7A and 3.3-7B. All parts (# 441, 440, 439, 437) 
belonging to node 8 are shown in Fig. 3.3-8A in the gun assembly drawing. The individual part 
drawings are shown in Figs. 3.3-8B through Fig. 3.3-8E. Notice that the part # 439 repeats 
twice. 

Fig. 3.3-9 shows parts (# 435, 432, 431) belonging to node 9 in the assembly drawing and the 
individual parts are shown in Figs. 3.3-9B through Fig 3.3-9D. Fig. 3.3-10 includes all parts (# 
651-654, 452, 448, 450, 446, 455, 454, 445, 457, 456, 029, 406, 409, 407, 414, 413) belonging 
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to node 10.  The individual part drawings are shown in Figs. 3.3-10A through Fig. 3.3-10S. 

The materials from which the different parts of the gun assembly are made, are numbered in the 
code as  follows: 

Name of Material # for Material Type 

Tungsten 1 

Molybdenum 2 

Nickel 3 

Stainless Steel 4 

Kovar 5 

Alumina 6 

3.4   Output 

Figure 3.4-1 is a plot of output from a preliminary version of the Fortran code. The two curves 
show the variation of temperature with time for nodes 1 and 2. Node 1 consists of the heater coil 
alone (Fig. 3.3-1). Node 2 includes heater tab, part of the cathode support, insulators and cathode 
head (Fig. 3.3-2). The heater voltage was assumed to be 14 volts for the first 10 minutes of 
operation then 13 volts thereafter. 

The temperature of node 1 (heater) is higher than that of node 2 and the rise time of node 1 is 
much shorter than that of node 2 because the thermal capacitance of node 1 is much smaller than 
that of node 2. The small step shown in curve 1 is due to the change in heater voltage from 14 
volts to 13 volts 10 minutes after heater turn-on. 
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APPENDIX 3A: Programming Steps 

STEP 1: 

Enter id, od, length, material type, node number for each part. 
Enter specific heat and density for each material type. 
Enter initial temperature in degree C. 

STEP 2: 

Calculate thermal capacitance of each part using following equation: 

C, = mc = A*L*p*c 

Here 
m = mass (kg) 
A = cross-sectional area  (inch**2) 
L = length (inch) 
p = density (kg/inch**3) 
c = specific heat (Joules/kg/deg.C) 

STEP 3: 

Compute thermal capacitance of each node by adding thermal capacitances of all parts 
belonging to that node. 

STEP 4: 

Calculate the thermal resistance of each part of the gun for the starting temperature using 
following equation: 

R, = L/(k(T)*A) 

Here k(T) represents the thermal conductivity at temperature T (watts/inch/deg.C). 

STEP 5: 

Compute thermal time constant of each part of the gun assembly using: 

Tt =CtRt 
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STEP 6: 

Loop through each time step: 

-- Compute time in sec. 
— Enter heater voltage at that time (Volts). 
— Compute electrical resistance of heater element using following formula: 

Rheater =  P(T)L/A 

Here p(T) is resistivity of heater element at temperature T (ohm-inch). 
L is the length of heater coil (inch), A is the cross-sectional area of the heater coil 
(inch**2). 

~ Compute heater power from: 

P = V*V/Rheater 

— Calculate the thermal resistance of each part of the gun for the starting temperature 
using following equation: 

Rt = L/(k(T)*A) 

Here     k(T)     represents     the     thermal     conductivity     at     temperature     T 
(watts/inch/deg.C). 

-- Compute thermal resistances between nodes by adding with a proper weighting factor 
the thermal resistances of parts located adjacent to the boundary between two nodes. 

-- Compute net power flow to a node from all other nodes. 

~ Compute the updated temperature of each node at the next time step. 

~ Repeat all the above steps (under step 6) for each incremental time step until steady 
state is reached. 
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APPENDIX 3B:  Input Data File 

Sheatcoil 
id(l,l)=0.;0,od(l,l)=0.02875,length(l,l)=54.47,MatType(l,l)=l Send 
Spartl jpart(l)=l Send 

$heater_tab 
id(2,l)=0.0,od(2,l)=0.02875,length(2,l)=0.65,MatType(2,l)=l Send 
$heat_shield_487 
id(2,2)=0.0,od(2,2)=2.085,length(2,2)=0.118,MatType(2,2)=2  Send 
$heat_shield_484 
id(2,3)=0.0,od(2,3)=2.075,length(2,3)=0.4,MatType(2,3)=2   Send 
$heat_shield_488 
id(2,4)=0.0,od(2,4)=1.935,Iength(2,4)=0.028,MatType(2,4)=2  Send 
SCathode 
id(2,5)=0.0,od(2,5)=2.2,length(2,5)=0.118,MatType(2,5)=2   Send 
$Cath_support_473 
id(2,6)=2.089,od(2,6)=2.105,length(2,6)=l. 105,MatType(2,6)=3   Send 
Spart2 jpart(2)=6 Send 

$Cath_support_466 
id(3,l)=2.2,od(3,l)=2.22,length(3)l)=0.65,MatType(3,l)=3   Send 
$ss_469_a 
id(3,2)=2.253,od(3,2)=2.555,length(3,2)=0.225,MatType(3,2)=4  Send 
$ss_469_b 
id(3,3)=2.283,od(3,3)=2.405,length(3,3)=0.208,MatType(3,3)=4  Send 
$ss_469_c 
id(3,4)=2.344,od(3)4)=2.405,length(3,4)=0.267,MatType(3,4)=4   Send 
$heat_trap_649 
id(3,5)=2.231,od(3,5)=2.251,length(3,5)=0.406,MatType(3,5)=2  Send 
$Sgrid_support_425 
id(3,6)=2.173,od(3,6)=2.675,length(3,6)=0.211,MatType(3,6)=2   Send 
$Sgrid_support_426 
id(3,7)=2.579,od(3,7)=2.639,length(3)7)=0.27,MatType(3,7)=5   Send 
Spart3 jpart(3)=7 Send 

$ss_469_d 
id(4,l)=2.344,od(4,l)=3.04,length(4,l)=0.234,MatType(4,l)=4   Send 
$kovar_442 
id(4,2)=2.735,od(4,2)=3.16,Iength(4,2)=0.15,MatType(4,2)=5   Send 
$part4 jpart(4)=2 Send 

$ss_470 
id(5,l)=2.288,od(5,l)=2.348,length(5,l)=1.43,MatType(5,l)=3   Send 

3-29 



$part5 jpart(5)=l Send 

$sleeve_496 

id(6,l)=2.16,od(6,l)=2.3,length(6,l)=4.668,MatType(6,l)=4   Send 
Spart6 jpart(6)=l Send 

$cylinder_658 

id(7,l)=2.295,od(7,l)=2.343,length(7,l)=1.5,MatType(7,l)=4  Send 
$shield_657 

id(7,2)=2.818,od(7,2)=2.878)length(7,2)=l. 195,MatType(7,2)=4   Send 
$part7 jpart(7)=2 Send 

$kovar_441 

id(8,l)=2.875,od(8,l)=2.905,length(8)l)=0.219,MatType(8)l)=5   Send 
$kovar_440 

id(8,2)=2.875,od(8,2)=2.905,Iength(8,2)=0.219,MatType(8,2)=5   Send 
$ceramic_439_a 

id(8,3)=3.0,od(8)3)=3.25)length(8,3)=0.156,MatType(8,3)=6   Send 
$ceramic_437 

id(8,4)=2.876,od(8,4)=3.25)length(8,4)=0.438,MatType(8,4)=6   Send 
$ceramic_439_b 

id(8,5)=3.0)od(8,5)=3.25)length(8,5)=0.156,MatType(8,5)=6   Send 
$part8 jpart(8)=5 Send 

$kovar_435 

id(9,l)=2.875,od(9,l)=2.905,Iength(9,l)=0.15,MatType(9,l)=5   Send 
$corona_432 

id(9,2)=1.342,od(9,2)=1.392,length(9,2)=2.039,MatType(9,2)=2   Send 
$cgrid_support_a_431 

id(9,3)=2.2320,od(9,3)=3.0,length(9,3)=0.042,MatType(9,3)=2   Send 
$cgrid_support_b_431 

id(9,4)=2.135,od(9,4)=2.5,length(9)4)=0.086)MatType(9,4)=2   Send 
Spart9 jpart(9)=4 Send 

$plate_651 

id(10,l)=0.875,od(10,l)=2.5,length(10,l)=0.25,MatType(10,l)=4   Send 
$support_652_a 

id(10,2)=4.0)od(10,2)=4.065,length(10)2)=0.187)MatType(10,2)=3   Send 
$support_652_b 

•d(10,3)=3.059,od(10,3)=3.098,length(10,3)=1.093,MatType(10,3)=4   Send 
$support_654 

id(10,4)=3.059,od(10,4)=3.098,length(10,4)=1.093,MatType(10,4)=4  Send 
$ring_653 

id(10,5)=3.25,od(10,5)=3.812,length(10,5)=0.219,MatType(10)5)=4   Send 
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$insulator_452 
id(10,6)=1.0,od(10,6)=1.5,length(10,6)=0.187,MatType(10,6)=6  Send 
$insulator_448 
id(10,7)=0.8,od(10,7)=l.'5,length(10,7)=0.25,MatType(10,7)=6   Send 
$insulator_450 
id(10,8)=0.75,od(10,8)=1.375,length(10,8)=0.562,MatType(10,8)=6   Send 
$insulator_446 
id(10,9)=0.75,od(10,9)=1.25,length(10,9)=0.187,MatType(10,9)=6   Send 
$heater_terminal_455 
id(10,10)=2.25,od(10,10)=2.5)length(10,10)=0.485,MatType(10,10)=4   Send 
$seal_454_a 
id(10,ll)=0.543,od(10,ll)=0.583,length(10,l l)=0.25,MatType(10,l 1)=5   Send 
$seal_454_b 
id(10,12)=1.502,od(10,12)=1.541,length(10,12)=0.45,MatType(10,12)=5   Send 
$seal_445 
id(10,13)=1.145,od(10,13)=1.185,length(10,13)=0.47,MatType(10,13)=5   Send 
$seal_457_a 
id(10,14)=0.437,od(10,14)=0.477,length(10,14)=0.117,MatType(10,14)=5   Send 
$seal_457_b 
id(10,15)=0.543,od(10,15)=0.583,length(10,15)=0.107,MatType(10,15)=5   Send 
$seal_457_c 
id(10,16)=0.688)od(10,16)=1.25,length(10,16)=0.020,MatType(10,16)=5   Send 
$contact_456_a 
id(10517)=0.125,od(10,17)=0.468,length(10,17)=0.13,MatType(10,17)=4   Send 
$contact_456_b 
id(10,18)=0.0,od(10,18)=0.435,length(10)18)=0.034,MatType(10,18)=4   Send 
$contact_456_c 
id(10,19)=0.0,od(10)19)=0.250,length(10)19)=0.4,MatType(10,19)=4  Send 
$support_029_l 
id(10,20)=3.187,od(10,20)=5.12,length(10,20)=0.132,MatType(10,20)=4  Send 
$seal_406_l 
id(10,21)=4.5,od(10,21)=5.046,length(10,21)=0.02,MatType(10,21)=5   Send 
$seal_406_2 
id(10,22)=4.265,od(10,22)=4.305,length(10)22)=0.197,MatType(10,22)=5   Send 
$seal_406_3 
id(10,23)=4.07,od(10,23)=4.11,length(10,23)=0.128,MatType(10,23)=5   Send 
$ceramic_407 
id(10,24)=4.582,od(10,24)=5.062,length(10,24)=0.375,MatType(10,24)=6  Send 
$ring_409 
id(10,25)=4.562,od(10,25)=5.062,length(10,25)=5.455,MatType(10,25)=4   Send 
$ring_414 
id(10,26)=4.442,od(10,26)=5.094,length(10,26)=0.22)MatType(10,26)=4  Send 
$cylinder_413 
id(lQ,2.7)=5l032,od(10,27)=5.1,length(10,27)=3.188,MatType(10,27)=4  Send 
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SpartlO jpart(10)=27 Send 
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APPENDIX 3C:  Source Code for CATHTEMP.FOR 

PROGRAM CATHTEMP 

C File Name: CATHTEMP.FOR 
C Descrpt. : This program calculates the temperature of a cathode 
c of a gun vs heater voltage where the different dimensions 
c of different parts of the gun are to be entered as input. 
c 
c Unit : MKS except lengths; lengths are in inches. 
C 
C Input 
c File: "cathin.dat" 
c contains dimensions of different parts of the 
c gun read by the program. 
c ID = inner dia. of a part (inch) 
c OD = outer dia. of a part (inch) 
C length  = length of a part (inch) 
c spheat = specific heat of a material (Joules/kg/C) 
c dens = density of a material (kg/inch**3) 
c k = thermal conductivity (watts/inch/C) 
c Tamb = ambient temperature in deg.K 
c Temp(i) = temp of i-th node in degree Kelvin. 
c timeO = time in minutes over which heater voltage is 
c "VhO" volts 
c jtrans = total # of time steps for transient calculations 
c jtmax = total # of time steps 
c hO = duration of a time step during transient calculation 
c (sec) 
c hi = duration of a time step after transient calculation 
c and until steady state is reached. 
c ampmax = maximum allowable heater current (Amps). 
C 
c Intermediate 
c variables:   mc(ij) = thermal capacitance of j-th part in 
c i-th node  (Joules/deg.C) 
c mcn(i)  = thermal capacitance of i-th node 
c Rt(ij) = thermal resistance of j-th part in 
c i-th node (deg.C/watt) 
c Rn(i,i+1) = thermal resistance between nodes i and i+1. 
c Pout(i,i+l) = net power flow from node i to node i+1 
c PoutT(i) = net power out from i-th node 
c Pin(i)    = net power in to i-th node 
c 
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C Output    :   Files = "input.dat" contains all input data written by 
c the program. 
c "cathout.dat" contains intermediate results from 
c the program e.g. disk areas, cylindrical 
c areas, thermal resistances of different 
c parts. 
c "node.dat" contains thermal capacitance of each node. 
c "temp.dat" contains cathode temperature vs time 
c and heater temperature vs time. 
c Temp(jtime,inode) = temp, of node  index 'inode' 
c at time step 'jtime'. 
c 
C 
C Rev. History: Oct. 26, 1993 (SRB) 
c Nov. 16, 1993    Calculation of thermal time constants 
c for each part added. 
c Dec 29, 1993      Stepping thru time increment added 
c to update the nodal temperature (do 56) 
f~^>t« **************************************************************** 

implicit integer (i-n) 
implicit real*8 (a-h,o-z) 
real*8 id(10,50),length(10,50),mc(10,50),mcn(10),L,k 
dimension od(10,50), acyl(10,50), adisk(10,50), MatType( 10,50), 

+ dens(6),spheat(6)jpart(10),Rt( 10,50), Time_const(10,50), 
+ Temp(1800,10),Rn(10,10),Pout(10,10),Pin(10),PoutT(10) 

c 
c Constants: 

pi = 3.141592654 
c = 3.0e08 

c        Stefan-Boltzmann constant (watts/inch*2/K**4) 
sigma = 3.658e-ll 

c Input: 
write(5,*)'Dimensions: length = inch, sp.ht. = Joules/kg/C 
write(5,*)'density = kg/inch**3, k= watts/inch/C 

c write(5,*)'Enter total # of nodes' 
c read(5,*)inode 

inode=10 
write(5,*)'enter 1 if diagnostic checks are desired else enter 0' 
read(5,*)idiag 
Tamb = 26.8 + 273.0 
do 10 iT = 1, inode 

Temp(l,iT) = Tamb 
10      continue 
c       Enter voltage and time steps: 
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timeO = 10.0 
VhO = = 14.0 
Vhl = = 13.0 
j trans = 60 
jtmax = 1800 
hO = 1.0 
hi = 2.0 
ampmax = 15.0 

namel ist/heatcoil/id,od,length,MatType 
name! ist/partl/jpart 
name! ist/heater_tab/id,od,length,MatType 
name! isMeat_shield_487/id,od,length,MatType 
namel ist/heat_shield_484/id,od,length,MatType 
name! ist/heat_shield_488/id,od,length,MatType 
name! ist/Cathode/id,od,length,MatType 
name! ist/Cath_support_473/id,od,length,MatType 
name! ist/part2/jpart 
name] ist/Cath_support_466/id,od,length,MatType 
name] ist/ss_469_a/id,od,length,MatType 
name! ist/ss_469_b/id,od,length,MatType 
namel ist/ss_469_c/id,od,length,MatType 
namel ist/heat_trap_649/id,od,length,MatType 
namel ist/Sgrid_support_425/id,od,length,MatType 
namel ist/Sgrid_support_426/id,od,length,MatType 
namel ist/part3/jpart 
namel ist/ss_469_d/id,od,length,MatType       s 

namel ist/kovar_442/id,od,length,MatType 
namel ist/part4/jpart 
name! ist/ss_470/id,od,length,MatType 
namel ist/part5/jpart 
name! ist/sleeve_496/id,od,length,MatType 
namel ist/part6/jpart 
namel ist/cylinder_658/id,od,length,MatType 
namel ist/shield_657/id,od,length,MatType 
namel ist/part7/jpart 
namel ist/kovar_441/id,od,length,MatType 
namel ist/kovar_440/id,od,length,MatType 
namel ist/ceramic_439_a/id,od,length,MatType 
namel ist/ceramic_437/id,od,length,MatType 
namel ist/ceramic_439_b/id,od,length,MatType 
namel ist/part8/jpart 
namel ist/kovar_435/id,od,length,MatType 
namel ist/corona_432/id,od,length,MatType 
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namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 
namel 

st/cgrid_support_a_431/id,od,length,MatType 
st/cgrid_support_b_431/id,od,length,MatType 
st/part9/jpart 
st/plate_651/id,od,length,MatType 
st/support_652_a/id,od,Iength,MatType 
st/support_652_b/id,od,length,MatType 
st/support_654/id,od,length,MatType 
st/ring_653/id,od,length,MatType 
st/insulator_452/id,od,Iength,MatType 
st/insulator_448/id,od,length,MatType 
st/insulator_450/id,od,length,MatType 
st/insulator_446/id,od,length,MatType 
st/heater_terminal_455/id,od,length,MatType 
st/seal_454_a/id,od,length,MatType 
st/seal_454_b/id,od,length,MatType 
st/seal_445/id,od,length,MatType 
st/seal_457_a/id,od,length,MatType 
st/seal_457_b/id,od,length,MatType 
st/seal_457_c/id,od,length,MatType 
st/contact_456_a/id,od,length,MatType 
st/contact_456_b/id,od,length,MatType 
st/contact_456_c/id,od,length,MatType 
st/support_029_l/id,od,length,MatType 
st/seal_406_l/id,od,length,MatType 
st/seal_406_2/id,od,length,MatType 
st/seal_406_3/id,od,length,MatType 
st/ceramic_407/id,od,length,MatType 
st/ring_409/id,od,length,MatType 
st/ring_414/id,od,length,MatType 
st/cylinder_413/id,od,length,MatType 
st/p art 10/j part 

open (unit=l 5,file- cathin.dat'.status-old') 
open (unit=16,file='input.dat',status='new') 
open (unit=17,file='cathout.dat',status='new') 
open (unit=18,file='node.dat',status-new') 
open (unit=19,file-check.dat',status='new') 
open (unit=20,file-temp.dat',status-new') 

c Read data: 
read(15,heatcoil) 
read( 15, parti) 
read(15,heater_tab) 
read(15,heat_shield_487) 
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(15,heat_shield_484) 
(15,heat_shield_488) 
(15,Cathode) 
(15,Cath_support_473) 
(15,part2) 
(15,Cath_support_466) 
(15,ss_469_a) 
(15,ss_469_b) 
(15,ss_469_c) 
(15,heat_trap_649) 
(15,Sgrid_support_425) 
(15,Sgrid_support_426) 
(15,part3) 
(15,ss_469_d) 
(15,kovar_442) 
(15,part4) 
(15,ss_470) 
(15,part5) 
(15,sleeve_496) 
(15,part6) 
(15, cylinder_658) 
(15,shield_657) 
(15,part7) 
(15,kovar_441) 
(15,kovar_440) 
(15,ceramic_439_a) 
(15,ceramic_437) 
(15,ceramic_439_b) 
(15,part8) 
(15,kovar_435) 
(15,corona_432) 
(15,cgrid_support_a_431) 
(15,cgrid_support_b_431) 
(15,part9) 
(15,plate_651) 
(15,support_652_a) 
(15,support_652_b) 
(15,support_654) 
(15,ring_653) 
(15,insulator_452) 
(15,insulator_448) 
(15,insulator_450) 
(15,insulator_446) 

read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read 
read(15,heater_terminal_455) 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

read(15,seal_454_a) 
read(l 5,seal_454_b) 
read(15,seal_445) 
read(15,seal_457_a) 
read(15,seal_457_b) 
read(15,seal_457_c) 
read(l 5,contact_456_a) 
read(l 5,contact_456_b) 
read(l 5,contact_456_c) 
read(15,support_029_l) 
read(15,seal_406_l) 
read(15,seal_406_2) 
read(15,seal_406_3) 
read(l 5,ceramic_407) 
read(15,ring_409) 
read(15,ring_414) 
read(15,cylinder_413) 
read(15,partlO) 

Enter density and specific heat for different material: 
(array dimension indicates 'MatType') 
MatType=l => tungsten 
MatType=2 => moly 
MatType=3 => Nickel 
MatType=4 => stainless steel 
MatType=5 => kovar 
MatType=6 => alumina 

dens(l)= 316.27e-03 
dens(2)= 167.47e-03 
dens(3)= 145.98e-03 
dens(4)= 129.95e-03 
dens(5)= 117.0e-03 
dens(6)= 64.9e-03 
spheat(l) = 142.8 
spheat(2) = 253.96 
spheat(3) = 600.0 
spheat(4) = 490.0 
spheat(5) = 450.0 
spheat(6) = 1273.08 

c Write input data to a file called 'input.dat': 
write(16,*)'group-name7     id ','      od',' 

+'      Material' 
write(16,*)'  

length', 
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write( L6,*)'heatcoil' 
write( 16,166)id(l,l),od(U).length(l,l ),MatType(l,l) 
write( I6,*)'heater_tab' 
write( L6,166)id(2,l),od(2,l),length(2,l ),MatType(2,l) 
write( I6,*)'heat_shield_487' 
write( l6,166)id(2,2),od(2,2),length(2,2 ),MatType(2,2) 
write( I6,*)'heat_shield_484' 
write( l6,166)id(2,3),od(2,3),length(2,3 ),MatType(2,3) 
write( L6,*)'heat_shieId-488' 
write( l6,166)id(2,4),od(2,4),length(2,4 ),MatType(2,4) 
write( l6,*)'cathode' 
write( l6,166)id(2,5),od(2,5),length(2,5 ),MatType(2,5) 
write( [6,*)'cath_support_473' 
write( l6,166)id(2,6),od(2,6),length(2,6 ),MatType(2,6) 
write( 6,*)'cath support 466' 
write( l6,166)id(3,l),od(3,l),length(3,l ),MatType(3,l) 
write( I6,*)'ss_469_a' 
write( l6,166)id(3,2),od(3,2),length(3,2 ),MatType(3,2) 
write( I6,*)'ss_469_b* 
write( l6,166)id(3,3),od(3,3),length(3,3 ),MatType(3,3) 
write(] I6,*)'ss_469_c' 
write( L6,166)id(3,4),od(3,4),length(3,4 (,MatType(3,4) 
write( I6,*)'heat_trap_649' 
write(] l6,166)id(3,5),od(3,5),length(3,5 ),MatType(3,5) 
write( 16,*)'sgrid_support_425' 
write( l6,166)id(3,6),od(3,6),length(3,6 ),MatType(3,6) 
write( I6,*)'sgrid support 426' 
write( l6,166)id(3,7),od(3,7),Iength(3,7 ),MatType(3,7) 
write( L6,166)id(4,l),od(4,l),length(4,l, ),MatType(4,l) 
write( i6,*)'kovar_442' 
write( l6,166)id(4,2),od(4,2),length(4,2; ),MatType(4,2) 
write( 6,*)'ss 470' 
write( 6,166)id(5,l),od(5,l),Iength(5,i: ),MatType(5,l) 
write( 6,*)'sleeve_496' 
write( 6,166)id(6,l),od(6,l),length(6,i; ,MatType(6,l) 
write( 6,*)'cylinder 658' 
write( 6,166)id(7,l),od(7,l),length(7,i; |,MatType(7,l) 
write( 6,*)'shield 657 
write(' 6,166)id(7,2),od(7,2),length(7,2; ,MatType(7,2) 
write(: 6,*)'kovar_441' 
write(! 6,166)id(8,l),od(8,l),length(8,l) ,MatType(8,l) 
write(: 6,*)'kovar_440' 
write(: 
write(: 

6,166)id(8,2),od(8,2),length(8,2) 
6,*)'ceramic_439_a' 

,MatType(8,2) 
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write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 16, 
write( 6, 
write( 6, 
write( 16, 
write( 6, 
write(] 6, 
write( 6, 
write( 6, 

166)id(8,3),od(8,3),length(8,3),MatType(8,3) 
*)'ceramic_437' 
166)id(8,4),od(8,4),length(8,4),MatType(8,4) 
*)'ceramic_439_b' 
166)id(8,5),od(8,5),length(8,5),MatType(8,5) 
*)'kovar_435' 
166)id(9,l),od(9,l),Iength(9,l),MatType(9,l) 
*)'corona_432' 
166)id(9,2),od(9,2),length(9,2),MatType(9,2) 
*)'cgrid_support_a_431' 
166)id(9,3),od(9)3),length(9,3),MatType(9,3) 
*)'cgrid_support_b_431' 
166)id(9,4),od(9,4),length(9,4),MatType(9,4) 
*)'plate_651' 
166)id(10,l),od(10,l),length(10,l),MatType(10,l) 
*)'support_652_a' 
166)id(10,2),od(10,2),length(10,2),MatType(10,2) 
*)'support_652_b' 
166)id(10,3),od(10,3),length(10,3),MatType(10,3) 
*)'support_654' 
166)id(10,4),od(10,4),length(10,4),MatType(10,4) 
*)'ring_653' 
166)id(10,5),od(10,5),length(10,5),MatType(10,5) 
*)'insulator_452' 
166)id(10,6),od(10,6),length(10,6),MatType(10,6) 
*)'insulator_448' 
I66)id(10,7),od(10,7),Iength(10,7),MatType(10,7) 
*)'insulator_450' 
166)id(10,8),od(10,8),length(10,8),MatType(10,8) 
*)'insu!ator_446' 
166)id(10,9),od(10,9),length(10,9),MatType(10,9) 
*)'heater_terminal_455' 
166)id(10,10),od(10,10),length(10,10),MatType(10,10) 
*)'seal_454_a' 
166)id(10,ll),od(10,ll),Iength(10,ll),MatType(10,ll) 
*)'seal_454_b' 
166)id(10,12),od(10,12),length(10,12),MatType(10,12) 
*)'seal_445' 
166)id(10,13),od(10,13),length(10,13),MatType(10,13) 
*)'seal_457_a' 
166)id(10,14),od(10,14),length(10,14),MatType(10,14) 
*)'seal_457_b' 
166)id(10,15),od(10,15),length(10,15),MatType(10,15) 
*)'seal_457_c' 
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c 
c 
c 
c 
c 

write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write 
write* 
writei 
writei 
writei 
write 
write 
write 
write 
write 
write 

(16 
(16. 
(16 
(16. 
(16 
(16 
(16 
(16. 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16. 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 
(16 

166)id(10,16),od(10,16 
*)'seal_457_d' 
166)id(10,17),od(10,17 
*)'contact_456_a' 
166)id(10,18),od(10,18 
*)'contact_456_b' 
166)id(10,19),od(10,19 
*)'contact_456_c' 
166)id(10,20),od(10,20 
*)'supportt_029_l' 
166)id(10,21),od(10,21 
*)'seal_406_l' 
166)id(10,22),od(10,22 
*)'seal_406_2' 
166)id(10,23),od(10,23 
*)'seal_406_3' 
166)id(10,24),od(10,24 
*)'ceramic_407' 
166)id(10,25),od(10,25 
*)'ring_409' 
166)id(10,26),od(10,26 
*),ring_414' 
166)id(10,28),od(10,28 
*)'cylinder_413' 
166)id(10,29),od(10,29 
♦yjpartO) = 'jpart(l 
*)'jpart(2) = 'jpart(2 
*)'jpart(3) = •jpart(3 
*)'jpart(4) = 'jpart(4 
*)'jpart(5) = 'Jpart(5 
*)'jpart(6) = 'jpart(6 
*)'jpart(7) = ,jpart(7 
*)'jpart(8) = 'Jpart(8 
*)'spart(9) = 'jpart(9 
*)'jpart(10) = 'jpart( 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

),length 

(10,16),MatType(10,16) 

(10,17),MatType(10,17) 

(10,18))MatType(10,18) 

(10,19),MatType(10,19) 

(10,20),MatType(10,20) 

(10,2 l),MatType( 10,21) 

(10,22),MatType(10,22) 

(10,23),MatType(10,23) 

(10,24),MatType(10,24) 

(10,25),MatType(10,25) 

(10,26),MatType( 10,26) 

(10)28),MatType(10,28) 

(10,29),MatType( 10,29) 

0) 

Compute cylindrical surface area, disk area and mass*sp.ht. 
for each part: 
Loop thru different nodes: 
do 55 i = 1, inode 
mcn(i) = 0.0 
write(17,*)'node = \i 
write(17,*)'part# Vacyl(inch**2) ','  adisk(inch**2) ', 
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+ '   mass*sp.ht.(Joules/C)7   Rtherm(C/watt).', 
+  ' thermal time const' 

C Loop thru different parts in each node: 
do 55 j = ljpart(i) 

acyl(ij) = pi*length(ij)*od(ij) 
adisk(ij) = pi*(od(ij)**2 - id(ij)**2) /4.0 

c mass = density*volume 
mc(i j) = dens(MatType(ij))*length(ij)*adisk(ij)* 

+ spheat(MatType(ij)) 
itype = mattype(i j) 
call thermres(mattype(ij),Temp(l,i),length(ij), 

+ Adisk(ij),Rt(ij)) 
Time_const(ij) = mc(ij)*Rt(ij) 
write(17,167)j,acyI(i,j),adisk(ij),mc(ij),Rt(ij), 

+     Time_const(i,j) 
c Compute total mass*sp.ht. for each node: 

mcn(i) = mcn(i) + mc(ij) 
55       continue 
c          
c          
c       Loop thru time steps: 

do 56 jtime = 1, jtmax 
write(19,*)' ,--■ 
write(19,*)Time iteration # = ', jtime 
if (jtime.gt.jtrans) then 

h = hl 
else 

h = hO 
endif 
Time_minutes = (Float(jtime-l))*h/60.0 
if ((Time_minutes.ge.timeO).and.(Time_minutes.lt.600.0)) 

+ volt = Vhl 
if (Time_minutes.lt.timeO) volt = VhO 

c 
c Compute heater resistance and heater power: 

Rheater = (resis(Temp(jtime,l))*1.0e-06*length(l,l)J|'2.54)/ 
+ (pi*(od(l,l)*2.54)**2) 

amp = voIt/Rheater 
if (amp.gt.ampmax) amp = ampmax 
Pinput = volt*amp 
if (idiag.eq.l) then 

write(19,*)'Rheater(ohms) = ',Rheater,'Volts = ',volt, 
+ 'amp = ',amp,' Pinput(watts) = ', Pinput 

endif 
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c 
c Compute thermal resistance of each part: 

if (idiag.eq.l) then 
write(19,*)Thermal resistance of each part(deg.K/watt)' 
writeOV)' Node index (i)',' Part index (j)',' Rt(iJ)' 

endif 
do 561 i = 1, inode 
do 561 j = 1, jpart(i) 

call thermres(mattype(ij),Temp(jtime,i),length(ij), 
+ Adisk(ij),Rt(ij)) 

if (idiag.eq.l) then 
write(19,171) ij.Rt(ij) 

endif 
561 continue 
c 
c Compute thermal resistance between two successive nodes 
c (where there will be conduction between nodes): 
c Initialization: 

do 562 in = 1, inode 
do 562 jn = 1, inode 

Rn(injn) = 0.0 
562 continue 
c Here Rt(ij) = thermal resistance of j-th part in i-th node 
c Rn(i,i+1) = thermal resistance between node i and i+1 

Rn(l,2) = Rt(2,l) 
Rn(2,3) = Rt(3,l) + 0.25*Rt(2,6) 
Rn(3,4) = Rt(4,l) 
Rn(4,5) = 0.5*Rt(5,l) 
Rn(5,6) = 0.5*(Rt(5,l) + Rt(6,l)) 
Rn(6,7) = Rt(7,l) + Rt(7,2) 
Rn(6,10) = Rt(6,l) 
Rn(4,8) = 0.5*(Rt(8,l) + Rt(8,2) + Rt(8,4)) 
Rn(8,9) = Rn(4,8) + Rt(9,2) 
if (idiag.eq.l) then 

write(19,*)Thermal resistance between two adjacent nodes 
+ (deg. K/watt)' 

write(19,*)'Ist node (i) ', '2nd node (j) ',' Rn(ij)' 
do 560 i = 1, inode 
do 560 j = 1, inode 

write(19,171)i,j, Rn(ij) 
560 continue 

endif 
c 
c AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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c Compute thermal power flow from one node to the other: 
c Initialization: 

do 563 in = 1, inode 
do 563 jn = 0, inode 

Pout(injn) = 0.0 
563 continue 
c 
c Calculate radiation from heater to cathode: 

Facl2 = 1.52 
Plt2rad = Facl2*acyl(l,l)*emis(temp(jtime,l))*sigma* 

+ (Temp(jtime,l)**4 - Temp(jtime,2)**4) 
Pout(l,2) = Plt2rad + (Temp(jtime,l) - Temp(jtime,2))/Rn(l,2) 
em = 0.32 
Pout(2,0) = adisk(2,5)*sigma*em*(TempGtime,2)**4 - Tamb**4) 

c write(19,*)'emissiv. of heater','  Plt2rad ',' Pout(2,0)' 
c write(19,170)emis(temp(jtime,l)),Plt2rad,Pout(l,2) 
c 
c Calculate radiation from cathode support (473) to node 3: 

em = 0.2 
P2t3rad = em*acyl(2,6)*sigma* 

+ (temp(jtime,2)**4 - temp(jtime,3)**4) 
fac23 = 3.0 
Pout(2,3) = P2t3rad+fac23* 

+ (temp(jtime,2)-temp(jtime,3))/Rn(2,3) 
c 
c Calculate emissivity of cathode surface: 

em = 0.0522 + 0.000041 *temp(jtime,2) + 
+ 1.87e-08*temp(jtime,2)**2 

vf =0.333 
Pout(2,5) = adisk(2,5)*em*vf*sigma* 

+ (temp(jtime,2)**4 - temp(jtime,5)**4) 
Pout(3,4) = (temp(jtime,3) - temp(jtime,4))/Rn(3,4) 

c write(19,*)'emissivity of cathode surface = ',em 
c 
c Calculate radiation from shadow grid support to gun ceramic: 

em = 0.07 
Pout(3,8) = (acyl(3,3)+acyl(3,6))*em*sigma* 

+ (temp(jtime,3)**4 - temp(jtime,8)**4) 

c 
c Calculate radiation from shadow grid support to control grid support: 

em = 0.0522 + 0.000041 *temp(jtime,3) + 
+ 1.87e-08*temp(jtime,3)**2 

Pout(3,9) = adisk(3,6)*em,|<sigma* 

3-44 



+ (temp(jtime,3)**4 - temp(jtime,9)**4) 
c write(19,*)'emissivity of shadow grid support (to eg) = ',em 
c 

Pout(4,5) = (temp(jtime,4)-temp(jtime,5))/Rn(4,5) 
Pout(4,8) = (temp(jtime,4)-temp(jtime,8))/Rn(4,8) 
Pout(5,6) = (temp(jtime,5)-temp(jtime,6))/Rn(5,6) 

c 
emvf = 0.07 
P6tl0rad = acyl(6,l)*emvf*sigma* 

+ (temp(jtime,6)**4-temp(jtirne,10)**4) 
fac610 = 0.3 
Pout(6,10) = P6tl0rad + (temp(jtime,6)-temp(jtime,10))/fac610 

c 
Pout(6,7) = (temp(jtime,6) - temp(jtime)7))/Rn(6,7) 

c 
em = 0.07 
Pout(7,0) = (acyl(7,l)+acyl(7,2))*em*sigma* 

+ (temp(jtime,7)**4 - 13010**4) 
c 

em = 1.0322 + 7.5763e-05*temp(jtime,8) - 
+     1.0828e-06*temp(jtime,8)**2 + 4.514e-10*temp0'time)8)**3 

c write(19,*)'emissivity of ceramic parallel to SG 
c      +     support = ',em 

Pout(8,7) = em*sigma*(acyl(8,3)+adisk(8,3))* 
+ (temp0'time,8)**4 - temp(jtime,7)**4) 

P8t9rad = em*sigma*(acyl(8,3)+adisk(8,3))* 
+ (temp(jtime,8)**4 - temp(jtime,9)**4) 

Pout(8,9) = P8t9rad + (temp0'time,8) - tempG'time,9))/Rn(8,9) 
Pout(8,10) = em*sigma*acyl(8,4)* 

+ (temp(jtime,8)**4 - temp(jtime,10)**4) 
c 

em = 0.0522 + 0.000041 *temp(jtime,9) + 
+ 1.87e-08*temp(jtime,9)**2 

c write(19,*)'emissivity of control grid support = ',em 
Pout(9,0) = em*sigma*acyl(9,2)*(temp(jtime,9)**4 - tamb**4) 

c 
Pout(10,0) = (temp(jtime,10) - tamb)/0.5 

c 
Q AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

c Compute net power flow into each node: 
do 564 i = 1, inode 

if (i.eq.l) then 
Pin(i) = Pinput 

else 
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Pin(i) = 0.0 
endif 
jmax = i - 1 
do 564 j = 1, jmax 

Pin(i) = PoutO'j) + Pin(i) 
564 continue 
c 
c Compute net power out from each node: 

do 565 i = 1, inode 
PoutT(i) = 0.0 
do 565 j = 0, inode 

PoutT(i) = Pout(i j) + PoutT(i) 
565 continue 
C 

c Compute updated temperature of each node: 
if (jtime.lt.jtmax) then 

do 566 i = 1, inode 
temp(jtime+l,i)=temp(jtime,i)+h*(Pin(i)-PoutT(i))/mcn(i) 

566 continue 
endif 

c 
c writes: 

if (idiag.eq.l) then 
write(19,*)'Node # ',' Net Power input(watts)' 
do 567 i = 1, inode 

write(19,*) i, Pin(i) 
567 continue 

write(19,*)'Node # ',' Net Power out(watts)' 
do 568 i = 1, inode 

write(19,*) i, PoutT(i) 
568 continue 

write(19,*)'Node # ',' Temperature(deg.K)' 
do 569 i = 1, inode 

write(19,*) i, temp(jtime+l,i) 
569 continue 

endif 
56       continue 

write(18,*)'node#  V  mass*sp.ht.' 
do 57 ii = 1, inode 

write(18,168)ii,mcn(ii) 
57      continue 
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c        Write temperature (deg.C) of cathode (tempc.dat) and 
c       heater (temph.dat) in every 10th time step: 

temp(l,2) = temp(l,2) - 273.0 
write(20,*)0.0,temp(l,2) 
do 58 jtime = 10, jtmax, 10 

c Cathode temp: 
temp(jtime,2)= temp(jtime,2) - 273.0 
Time_minutes = (float(jtime-l))*h/60.0 
write(20,*)Time_minutes,temp(jtime,2) 

58 continue 
c write(20,*)9999., 0. 

write(20,200) 
200     format(/) 

temp(l,l) = temp(l,l) - 273.0 
write(20,*)0.0,temp(l,l) 
do 59 jtime = 10, jtmax, 10 

c Heater temp: 
temp(jtime,l)= temp(jtime,l) - 273.0 
Time_minutes = (floatGtime-l))*h/60.0 
write(20,*)Time_minutes,temp(jtime,l) 

59 continue 
c 
166 format (Ix,3(el3.6,3x),i2) 
167 format (Ix,i2,3x,3(el3.6,4x),3x,el3.6,3x,el3.6) 
168 format (Ix,i2,4x,el3.6) 
169 format (lx,el3.6) 
170 format (lx,3(el3.6,3x)) 
171 format (Ix,2(i2,4x),el3.6) 

close(unit=15) 
close(unit=16) 
close(unit=17) 
close(unit=18) 
close(unit=19) 
close(unit=20) 
stop 
end 
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c 
c 

subroutine thermres(itype,T,L,Area,Rtherm) 
Q      ********************************************************************* 

c This subroutine computes thermal resistance of a part for given 
c temperature (T) and thermal conductivity (k). 
c 
c Input: iType = material type 
c T      = temperature (deg.K) 
c L      = length of a part (inch) 
c Area  = area of a part (inch**2) 
c 
c Output:k        = thermal conductivity (watts/inch/deg.C) 
c or (watts/inch/deg.K) 
c Rtherm = thermal resistance  (deg.C/watt) 
«,*********************************************************************** 

implicit integer (i-n) 
implicit real*8 (a-h,o-z) 
real*8 L, k 
if (itype.eq.l) then 

k = (1.34688 - 0.0001629*T + 1.0e-09*T**2)*2.54 
elseif (itype.eq.5) then 

k = (0.148 + 0.0000198*T + 1.35e-07*T**2)*2.54 
elseif (itype.eq.2) then 

k = (1.76 - 0.000575*T)*2.54 
elseif (itype.eq.3) then 

if (T.gt.631.0) then 
k = (0.426 + 0.00025*T)*2.54 

else 
k = (1.19 - 0.00096*T)*2.54 

endif 
elseif (itype.eq.6) then 

k = (0.64 - 0.00116*T + 7.34e-07*T**2)*2.54 
elseif (itype.eq.4) then 

k = (0.0651 + 0.000183T + 3.69e-08*T**2)*2.54 
endif 
Rtherm = L/(k*Area) 
return 
end 
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c 
function resis(T) 

c ************************************************* 

c This subroutine computes electrical resistivity of heater for 
c a given temperature (T). 
c 
c Input: 
c T       = temperature (deg.K) 
c 
c Output: resis(T) = electrical resistivity 
c 

implicit integer (i-n) 
implicit real*8 (a-h,o-z) 
if (T.gt.2600.0) then 

resis = 85.0 
else 

resis = -2.12 + 0.0241*T + 3.11e-06*T*T - 2.36e-10*T**3 
endif 
return 
end 
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c 
function emis(T) 

c *************************************************************** 

c This subroutine computes thermal emissivity of heater coil at 
c a given temperature (T). 
c 
c Input: 
c T temperature (deg.K) 
c 
c Output: emis(T) = thermal emissivity 
c 
c Rev. History: Dec 30, 1993 (SRB) 
g*********************************************************************** 

implicit integer (i-n) 
implicit real*8 (a-h,o-z) 
if (T.gt.2600.0) then 

emis = 0.37 
else 

emis = -0.0144 + 0.0000734T + 6.58e-08*T*T - 1.68e-ll*T**3 
endif 
return 
end 
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APPENDIX 3D: Output Data File 

O.OOOOOOOE+00 26.79998779296875 

0.3000000000000000 29.31898263500668 

0.6333333333333333 47.55459741616106 

0.9666666666666667 66.75569499779976 

1.300000000000000 85.18700454694306 

1.633333333333333 102.9149830475758 

1.966666666666667 120.0001762787521 

2.300000000000000 150.9224415617416 

2.633333333333333 181.4929230793582 

2.966666666666667 210.3136579309904 

3.300000000000000 237.6163543733053 

3.633333333333333 263.5884191434148 

3.966666666666667 288.3824575757636 

4.300000000000000 312.1233732321649 

4.633333333333333 334.9138184897735 

4.966666666666667 356.8384623799327 

5.300000000000000 377.8474785444233 

5.633333333333333 397.8343341868486 

5.966666666666667 416.8806600483463 

6.300000000000000 435.0588636008560 

6.633333333333333 452.4327029421935 

6.966666666666667 469.0587511079895 
7.300000000000000 484.9874777438392 
7.633333333333333 500.2641021845019 
7.966666666666667 514.9292935537624 

8.300000000000000 529.0197597784422 

8.633333333333333 542.5687503114555 

8.966666666666667 555.6064884986511 

9.300000000000000 568.1605447857408 

9.633333333333333 580.2561592919421 

9.966666666666667 591.9165206536326 

10.30000000000000 600.9169315968364 

10.63333333333333 609.2403230561918 

10.96666666666667 617.4529974241267 

11.30000000000000 625.5355244003309 

11.63333333333333 633.4737127309710 

11.96666666666667 641.2573112675518 

12.30000000000000 648.8777740571761 
12.63333333333333 656.2091796686925 
12.96666666666667 663.2047553480657 
13.30000000000000 669.8959401277021 

13.63333333333333 676.3098946891682 
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13.96666666666667 

14.30000000000000 

14.63333333333333 

14.96666666666667 

15.30000000000000 

15.63333333333333 

15.96666666666667 

16.30000000000000 

16.63333333333333 

16.96666666666667 

17.30000000000000 

17.63333333333333 

17.96666666666667 

18.30000000000000 

18.63333333333333 

18.96666666666667 

19.30000000000000 

19.63333333333333 

19.96666666666667 

20.30000000000000 

20.63333333333333 

20.96666666666667 

21.30000000000000 

21.63333333333333 

21.96666666666667 

22.30000000000000 

22.63333333333333 

22.96666666666667 

23.30000000000000 

23.63333333333333 

23.96666666666667 

24.30000000000000 

24.63333333333333 

24.96666666666667 

25.30000000000000 

25.63333333333333 

25.96666666666667 

26.30000000000000 

26.63333333333333 

26.96666666666667 

27.30000000000000 

27.63333333333333 

27.96666666666667 

28.30000000000000 

682.4703280920418 

688.3980565540503 

694.1114273196522 

699.6266549994558 

704.9580089347375 

710.1165353027911 

715.1112565502786 

719.9511038596462 

724.6446639914762 

729.1999810588728 

733.6244718576074 

737.9249082020815 

742.1074371593422 

746.1776212495630 

750.1404877428753 

754.0005806180037 

757.7620115126342 

761.4285077000786 

765.0034561621129 

768.4899434427406 

771.8907913203190 

775.2085885262438 

778.4457188305466 

781.6043858481192 

784.6866349186880 

787.6943723945372 

790.6293826417341 

793.4933430289134 

796.2878371458356 

799.0143664637881 

801.6743606223719 

804.2691865027042 

806.8001562256029 

809.2685341947836 

811.6755432892382 

814.0223702955049 

816.3101706591727 

818.5400726254103 

820.7131808302846 

822.8305793979000 

824.8933345927202 

826.9024970716393 

828.8591037762824 

830.7641795025028 
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28.63333333333333 

28.96666666666667 

29.30000000000000 

29.63333333333333 

29.96666666666667 

30.30000000000000 

30.63333333333333 

30.96666666666667 

31.30000000000000 

31.63333333333333 

31.96666666666667 

32.30000000000000 

32.63333333333333 

32.96666666666667 

33.30000000000000 

33.63333333333333 

33.96666666666667 

34.30000000000000 

34.63333333333333 

34.96666666666667 

35.30000000000000 

35.63333333333333 

35.96666666666667 

36.30000000000000 

36.63333333333333 

36.96666666666667 

37.30000000000000 

37.63333333333333 

37.96666666666667 

38.30000000000000 

38.63333333333333 

38.96666666666667 

39.30000000000000 

39.63333333333333 

39.96666666666667 

40.30000000000000 

40.63333333333333 

40.96666666666667 

41.30000000000000 

41.63333333333333 

41.96666666666667 

42.30000000000000 

42.63333333333333 

42.96666666666667 

832.6187381809791 

834.4237839001148 

836.1803117000247 

837.8893081641943 

839.5517518333801 

841.1686134644368 

842.7408561549923 

844.2694353532193 

845.7552987703667 

847.1993862121971 

848.6026293440366 

849.9659514027637 

851.2902668677546 

852.5764811015611 

853.8254899699179 

855.0381794495695 

856.2154252313703 

857.3580923251381 

858.4670346718418 

859.5430947678747 

860.5871033053964 

861.5998788320300 

862.5822274325686 

863.5349424347673 

864.4588041407897 

865.3545795854150 

866.2230223217079 

867.0648722345006 

867.8808553817221 

868.6716838633472 

869.4380557175060 

870.1806548431069 

870.9001509481614 

871.5971995228748 

872.2724418364581 

872.9265049565398 

873.5600017899961 

874.1735311439771 

874.7676778058823 

875.3430126410297 

875.9000927067614 

876.4394613817436 

876.9616485092384 

877.4671705531516 
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43.30000000000000 . 877.9565307656960 

43.63333333333333 878.4302193655474 

43.96666666666667 878.8887137254140 

44.30000000000000 879.3324785679823 

44.63333333333333 879.7619661692536 

44.96666666666667 880.1776165683307 

45.30000000000000 880.5798577827643 

45.63333333333333 880.9691060286194 

45.96666666666667 881.3457659444707 

46.30000000000000 881.7102308185826 

46.63333333333333 882.0628828185820 

46.96666666666667 882.4040932229732 

47.30000000000000 882.7342226538941 

47.63333333333333 883.0536213105553 

47.96666666666667 883.3626292028438 

48.30000000000000 883.6615763846184 

48.63333333333333 883.9507831862574 

48.96666666666667 884.2305604460605 

49.30000000000000 884.5012097401386 

49.63333333333333 884.7630236104618 

49.96666666666667 885.0162857907642 

50.30000000000000 885.2612714300358 

50.63333333333333 

50.96666666666667 

51.30000000000000 

51.63333333333333 

51.96666666666667 

52.30000000000000 

52.63333333333333 

52.96666666666667 

53.30000000000000 

53.63333333333333 

53.96666666666667 

54.30000000000000 

54.63333333333333 

54.96666666666667 

55.30000000000000 

55.63333333333333 

55.96666666666667 

56.30000000000000 

56.63333333333333 

56.96666666666667 

57.30000000000000 

57.63333333333333 

885.4982473133605 

885.7274720798819 

885.9491964377078 

886.1636633755840 

886.3711083711909 

886.5717595959357 

886.7658381161322 

886.9535580904771 

887.1351269637483 

887.3107456566624 

887.4806087518486 

887.6449046759003 

887.8038158774851 

887.9575190014983 

888.1061850592582 

888.2499795947492 

888.3890628469258 

888.5235899080985 

888.6537108784305 

888.7795710165761 

888.9013108865012 

889.0190665005282 
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57.96666666666667 

58.30000000000000 

58.63333333333333 

58.96666666666667 

59.30000000000000 

59.63333333333333 

59.96666666666667 

889.1329694586526 

889.2431470841828 

889.3497225557559 

889.4528150357882 

889.5525397954183 

889.6490083360041 

889.7423285072380 

O.OOOOOOOE+00 26.79998779296875 

0.3000000000000000 

0.6333333333333333 

0.9666666666666667 

1.300000000000000 

1.633333333333333 

1.966666666666667 

2.300000000000000 

2.633333333333333 

2.966666666666667 

3.300000000000000 

3.633333333333333 

3.966666666666667 

4.300000000000000 

4.633333333333333 

4.966666666666667 

5.300000000000000 

5.633333333333333 

5.966666666666667 

6.300000000000000 

6.633333333333333 

6.966666666666667 

7.300000000000000 

7.633333333333333 

7.966666666666667 

8.300000000000000 

8.633333333333333 

8.966666666666667 

9.300000000000000 

9.633333333333333 

9.966666666666667 

10.30000000000000 

10.63333333333333 

10.96666666666667 

11.30000000000000 

11.63333333333333 

1047.878376322195 

1164.058287736979 

1164.565826284483 

1164.850838908240 

1165.155140213939 

1165.479641357076 

1166.154055516540 

1166.947060298625 

1167.826188377395 

1168.792095911000 

1169.844926679084 

1170.984412098801 

1172.209914213049 

1173.520436619469 

1174.914619629299 

1176.383876838241 

1177.909307504554 

1179.485228915545 

1181.106574305963 

1182.768468117486 

1184.466249685231 

1186.195480681939 

1187.951944406480 

1189.731641024003 

1191.530781137601 

1193.345778991585 

1195.173245942028 

1197.009984435099 

1198.852982510700 

1200.699408734373 

1183.546075426721 

1184.998867567045 

1186.470041758996 

1187.954928737595 

1189.449499590420 
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11.96666666666667 

12.30000000000000 

12.63333333333333 

12.96666666666667 

13.30000000000000 

13.63333333333333 

13.96666666666667 

14.30000000000000 

14.63333333333333 

14.96666666666667 

15.30000000000000 

15.63333333333333 

15.96666666666667 

16.30000000000000 

16.63333333333333 

16.96666666666667 

17.30000000000000 

17.63333333333333 

17.96666666666667 

18.30000000000000 

18.63333333333333 

18.96666666666667 

19.30000000000000 

19.63333333333333 

19.96666666666667 

20.30000000000000 

20.63333333333333 

20.96666666666667 

21.30000000000000 

21.63333333333333 

21.96666666666667 

22.30000000000000 

22.63333333333333 

22.96666666666667 

23.30000000000000 

23.63333333333333 

23.96666666666667 

24.30000000000000 

24.63333333333333 

24.96666666666667 

25.30000000000000 

25.63333333333333 

25.96666666666667 

26.30000000000000 

1190.950228351736 

1192.454082823521 

1193.936770272771 

1195.381069038265 

1196.789810276023 

1198.165485588561 

1199.510326419741 

1200.826340719542 

1202.115336894063 

1203.378941279234 

1204.618601073382 

1205.835269923252 

1207.029523281206 

1208.202054988908 

1209.353621400804 

1210.484978307905 

1211.596844665470 

1212.689883402695 

1213.764692922407 

1214.821805144378 

1215.861687421597 

1216.884746625209 

1217.891334323983 

1218.881752393192 

1219.856258651611 

1220.815072294282 

1221.758378995692 

1222.686335624735 

1223.599074553587 

1224.496707566561 

1225.379329388333 

1226.247020857455 

1227.099851773543 

1227.937883446426 

1228.761170974113 

1229.569765274243 

1230.363714891256 

1231.143067599055 

1231.907871816629 

1232.658177852041 

1233.394038988350 

1234.115512423550 

1234.822660075301 

1235.515549260218 
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26.63333333333333 

26.96666666666667 

27.30000000000000 

27.63333333333333 

27.96666666666667 

28.30000000000000 

28.63333333333333 

28.96666666666667 

29.30000000000000 

29.63333333333333 

29.96666666666667 

30.30000000000000 

30.63333333333333 

30.96666666666667 

31.30000000000000 

31.63333333333333 

31.96666666666667 

32.30000000000000 

32.63333333333333 

32.96666666666667 

33.30000000000000 

33.63333333333333 

33.96666666666667 

34.30000000000000 

34.63333333333333 

34.96666666666667 

35.30000000000000 

35.63333333333333 

35.96666666666667 

36.30000000000000 

36.63333333333333 

36.96666666666667 

37.30000000000000 

37.63333333333333 

37.96666666666667 

38.30000000000000 

38.63333333333333 

38.96666666666667 

39.30000000000000 

39.63333333333333 

39.96666666666667 

40.30000000000000 

40.63333333333333 

40.96666666666667 

1236.194253256661 

1236.858851759327 

1237.509431233422 

1238.146085175842 

1238.768914290444 

1239.378026584282 

1239.973537391452 

1240.555569331030 

1241.124252205391 

1241.679722845045 

1242.222124905918 

1242.751608624830 

1243.268330538673 

1243.772453172596 

1244.264144702202 

1244.743578594541 

1245.210933232359 

1245.666391525786 

1246.110140515340 

1246.542370969819 

1246.963276982329 

1247.373055567412 

1247.771906261917 

1248.160030731976 

1248.537632388150 

1248.904916010554 

1249.262087385493 

1249.609352954915 

1249.946919479754 

1250.274993718000 

1250.593782118193 

1250.903490528789 

1251.204323923753 

1251.496486144520 

1251.780179658408 

1252.055605333370 

1252.322962228951 

1252.582447403157 

1252.834255734917 

1253.078579761733 

1253.315609532058 

1253.545532471903 

1253.768533265148 

1253.984793746985 
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41.30000000000000 

41.63333333333333 

41.96666666666667 

42.30000000000000 

42.63333333333333 

42.96666666666667 

43.30000000000000 

43.63333333333333 

43.96666666666667 

44.30000000000000 

44.63333333333333 

44.96666666666667 

45.30000000000000 

45.63333333333333 

45.96666666666667 

46.30000000000000 

46.63333333333333 

46.96666666666667 

47.30000000000000 

47.63333333333333 

47.96666666666667 

48.30000000000000 

48.63333333333333 

48.96666666666667 

49.30000000000000 

49.63333333333333 

49.96666666666667 

50.30000000000000 

50.63333333333333 

50.96666666666667 

51.30000000000000 

51.63333333333333 

51.96666666666667 

52.30000000000000 

52.63333333333333 

52.96666666666667 

53.30000000000000 

53.63333333333333 

53.96666666666667 

54.30000000000000 

54.63333333333333 

54.96666666666667 

55.30000000000000 

55.63333333333333 

1254.194492809913 

1254.397806321704 

1254.594907054724 

1254.785964626012 

1254.971145447525 

1255.150612685930 

1255.324526231389 

1255.493042674741 

1255.656315292520 

1255.814494039292 

1255.967725546749 

1256.116153129087 

1256.259916794160 

1256.399153259948 

1256.533995975908 

1256.664575148759 

1256.791017772322 

1256.913447661013 

1257.031985486649 

1257.146748818198 

1257.257852164182 

1257.365407017404 

1257.469521901736 

1257.570302420690 

1257.667851307535 

1257.762268476713 

1257.853651076361 

1257.942093541721 

1258.027687649262 

1258.110522571341 

1258.190684931246 

1258.268258858477 

1258.343326044128 

1258.415965796252 

1258.486255095095 

1258.554268648097 

1258.620078944574 

1258.683756309982 

1258.745368959710 

1258.804983052314 

1258.862662742142 

1258.918470231295 

1258.972465820870 

1259.024707961456 
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55.96666666666667 

56.30000000000000 

56.63333333333333 

56.96666666666667 

57.30000000000000 

57.63333333333333 

57.96666666666667 

58.30000000000000 

58.63333333333333 

58.96666666666667 

59.30000000000000 

59.63333333333333 

59.96666666666667 

1259.075253302831 

1259.124156742842 

1259.171471475428 

1259.217249037774 

1259.261539356576 

1259.304390793393 

1259.345850189082 

1259.385962907308 

1259.424772877116 

1259.462322634565 

1259.498653363429 

1259.533804934953 

1259.567815946679 
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4.  INPUT CAVITY SUBSYSTEM 

The input cavity subsystem consists of a variable-dimension circuit that symmetrizes the rf signal 
at the input cavity and a software program to control the circuit. The circuit consists of a 
bandpass filter to tailor the signal's frequency response and an impedance transformer to maintain 
the rf amplitude between the 50 Q. seen at the type-N input connector and the 12000Q beam seen 
at the input cavity. The enhanced input signal near the half-power points provided by the 
transformer results in increased bandwidth in both cold test and hot test. 

Figure 4.0-1 illustrates the layout of the input cavity circuit on the klystron. Located outside the 
vacuum envelope but just in front of the input window, the input circuit is inserted within the 
solenoidal magnet along with the tube body. Control of the circuit by the stepper motor is 
achieved by threading a cable along the tube body then out of the magnet at the rf output end 
of the tube. The expert system steps through the circuit configurations and thereby shapes the 
input cavity response curve. 

Figure 4.0-2 illustrates the three input circuit designs of this program. Each of these combines 
properties of a band-pass filter and an impedance transformer but is designated simply as first, 
second and third generation "transformers." The first and second generation designs achieved the 
main objective of getting maximum power to the electron beam over a given frequency band by 
externally tuning a circuit in front of the input cavity. However the designs were less than ideal 
in that the first generation had no practical way to vary the circuit parameters and the second had 
a convenient way of varying only one circuit parameter. By contrast, the third generation design 
provides a convenient way to continuously vary two parameters simultaneously. 

Descriptions of the designs, the tests and the modeling of the earlier generations appear in 
Section 4.1 and those of the third generation appear in Sections 4.2 and 4.3. The software that 
interfaces with and controls the circuit is described in Section 4.4. 

4.1   First and Second Generation Designs 

The first and second generation designs achieved the main objective of getting maximum power 
to the electron beam over a given frequency band but used an approach that was inconvenient. 
The following sections describe the external tuning approach and typical test results. 

4.1.1   General descriptions 

The first generation input transformer utilized in tests is shown in Figure 4.1-1. It consists of a 
center conductor incorporated into a standard type-N input connector onto which a fixed length 
slug (choke) of various diameter options is attached with set screws at various axial positions. 
Changing the transformer's Configuration required shutting down the test, removing the klystron 
from both the socket and focusing solenoid, unscrewing both the outer and inner conductors, 
loosening the two set screws from the choke, readjusting the axial position of the choke as 
needed and changing to a slug with different outer diameter.   This first concept and procedure 
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was found to be useful but extremely costly and time consuming in both cold test and hot test. 

The second generation input "transformer" is shown in Figure 4.1-2. The low-impedance-section 
slug lies on an axially sliding contact inside the coax outer conductor instead of on the outside 
of the inner conductor. The slug's sleeves are plated, heat-treated beryllium copper to assure 
good microwave contact at all positions. 

This slug attaches to a right-angled drive mechanism that protrudes through a slit in the coax 
outer wall. This allows axial repositioning of the slug without having appreciable leakage. The 
right-angled drive mechanism links to a flexible cable that contains a rotatable center conductor. 
The cable passes through the focusing solenoid, exists the tube at the collector end, extends out 
of the x-ray shielded test area and enters a control box that can be manipulated by the test 
technician.    Once adjusted in test, the sleeve can be locked in position. 

4.1.2  First generation "transformer" test results 

The following results show the effect of three variables (loop coupling, transformer diameter and 
position of transformer) on the frequency response. 

The measurement results shown in Fig. 4.1-3A were made with a slug outer diameter of 0.470 
inches. Curve (a) shows a desired input-cavity response profile when the transformer is set with 
a nominal inductive loop position, referred to as LP, and a slug axial position of 0.346 inches. 
This response curve has a 3 dB bandwidth of 86 MHz symmetrically positioned about the center 
frequency. The power variation between the low end and high end response peaks is approxi- 
mately 0.5 dB. When the slug's axial position is increased 0.015 inches to 0.361 inches, the low 
frequency response is enhanced and the high frequency response is lowered as shown by curve 
(b). Conversely, a decrease of 0.015 in the slug's axial position skews the response towards the 
high frequencies (curve (c)). In both cases where the slug is moved from the reference position, 
the cavity bandwidth is decreased. 

Figure 4.1-3B shows the effect of varying the coupling loop depth while holding constant the 
slug axial position. Curve (a) is taken for the same reference settings as was done for curve (a) 
in Fig. 4.1-3 A. Curves (d) and (e) show the result of decreasing the loop depth by 0.015 inches 
and 0.030 inches respectively. In both cases, the reduced coupling raises the circuit Q thereby 
decreasing the bandwidths to 78 MHz and 69 MHz respectively. 

The sets of measurements in Fig. 4.1-4 were made after the transformer slug outer diameter was 
increased 0.010 inches to 0.480 inches. Curve (a) of Fig. 4.1-4 again corresponds to a nominal 
loop position of LP. Comparison of curves (a) of Figures 4.1-3 and 4.1-4 shows the larger slug 
diameter increases the bandwidth from 86 to 89 MHz and increases the response variation across 
the band from 0.5 dB to 1.2 dB. The curves in Fig. 4.1-4A show that as the axial position is 
increased (or decreased) from the reference point, as was done for the curves in Fig. 4.1-3 A, the 
high frequency end (or low frequency end) is enhanced. The bandwidth reduction for the larger 
diameter slug was slightly less. 
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Figure 4.1-4B shows that the effect of decreasing the coupling loop depth with the larger 
diameter slug is similar to that for the smaller diameter slug. Curves (d) and (e) show that 
decreases of 0.015 inches and 0.030 inches reduced the coupling, raised the circuit Q, and thereby 
decreased the bandwidths. 

4.1.3   Circuit modeling results 

The discussion that follows concerns work on the first generation design. However, since the 
circuit model is the same for the second generation, the results apply equally to the second 
generation design also. An input cavity and input transformer were modeled on the computer 
using commercial software named "Superstar." Model details are described in Section 4.3 below. 

Figure 4.1-5 shows results of modeling the 0.470 diameter slug set at the reference position. 
Note that the agreement with curve (a) of Fig. 4.1-3A is excellent. The center frequency is 
attenuated approximately 0.5 dB below the peaks and both 3 dB frequencies appear the same as 
with the measured data. 

Figure 4.1-6 shows results of modeling the 0.470 diameter slug offset by ±0.015 inches from the 
reference position. As with the measurements, the curves become skewed but the amount of 
skewing is calculated to be less than what is measured. 

Figure 4.1-7 shows results of modeling the 0.480" diameter slug set at the reference position. 
The curves compare well with curve (e) of Fig. 4.1-4B. The calculated response variation is 1.0 
dB compared to the measured 1.5 dB. 

Figure 4.1-8 shows results of modeling the 0.480 diameter slug offset by ± 0.015 inches from the 
reference position. As with the measurements, the curves become skewed but the amount of 
skewing is calculated to be less than what is measured. 

Discrepancies between calculated and measured responses likely originate from (1) not including 
the fringing capacity of the transformer in the model and (2) using theoretical scattering 
parameters to model the klystron coaxial input window. However, the created model correlates 
well enough to predict how to modify the transformer geometry to achieve the desired cavity 
response function. 

4.1.4  Second generation transformer test results 

A prototype of the design in Fig. 4.1-2 A was constructed without a drive mechanism for cold test 
evaluation. Shown in Fig. 4.1-9 is the measured input cavity response for slug axial position 
changes of ± 0.015 inch. The response is nearly equivalent to that shown in Fig. 4.1-3 for the 
center slug transformer. In both figures the labels (a), (b) and (c) correspond to the same 
displacements. Although the prototype dimensions are not optimized and may still present an 
impedance discontinuity,  the concept validity has been demonstrated. 
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4.2   Third Generation Transformer 

4.2.1   Eccentric coax line approach for impedance changes 

For the third generation transformer, the slug-section characteristic impedance was made 
continuously adjustable by utilizing variable eccentricity. Any eccentricity change resulted in an 
impedance change. This improved the first and second generation transformers where the 
impedance was adjusted in steps by replacing inserts in a very time consuming manner. The 
third generation approach had the following features 

a) The new adjustment was continuous. 
b) The new and old adjustments were independent of each other. 
c) The adjustment was non-erratic. 
d) The adjustment had enough range. 
e) The design fits the available space. 
f) The section was designed for low leakage. 
g) The adjustment had reasonable sensitivity. 
h)        The responses included one within acceptable limits. 

Other approaches, such as slide screw tuners, double-stub tuners and double-bead tuners were 
investigated but were not found suitable for this application. 

Figure 4.2-1 illustrates the variable-eccentricity coaxial line. The key element of the eccentric 
transformer is a hollow eccentric cylindrical slug whose outer radius (R3 in Fig. 4.2-1A) rotates 
about an axis that is off center from the center-conductor axis. The offset distance is given by 
I/2emax in Fig 4.2-IB. When the eccentric slug rotates, the distance 'e* between the center of the 
slug inner radius (R2 in Fig. 4.2-1A) and the center-conductor axis varies between zero and emax 

as shown by the two views in Fig. 4.2-1B and Fig. 4.2-1C. For given values of R, and R2, the 
distance e is sufficient to define eccentricity. The variation of eccentricity between 0 < e < emax 

results in variation of the characteristic impedance of the eccentric coax line as given by 

Z
ECC - Zcom COsh"1(Z>   ~d2m ^ > Eq- (1) 

Where            Zecc = characteristic impedance of an eccentric line 
ZConc = characteristic impedance of a concentric line 
D = inner diameter of eccentric slug (=2R2) 
d = outer diameter of inner conductor (=2R,) 
e = eccentricity of coaxial line 

The relationship between eccentricity increase and characteristic impedance decrease is shown 
in Table 4.2-1. As expected from the cosh'1 dependence in equation (1), the incremental changes 
in impedance become larger for large eccentricities.   For a typical eccentric slug design, the 
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Eccentricity 
Equivalent Diameter of First 

Impedance                                      Generation Transformer 

0.000 inches 28.858 Ohms                                 0.371 inches 
0.002 28.838                                           0.371 
0.004 28.776                                           0.371 

0.006 28.673                                         0.372 

0.008 28.528                                         0.373 

0.010 28.340                                         0.374 

0.012 28.108                                         0.376 

0.014 27.832                                         0.377 
0.016 27.510                                         0.379 
0.018 27.139                                         0.382 
0.020 26.719                                         0.384 
0.022 26.246                                         0.387 
0.024 25.717                                         0.391 

0.026 25.129                                         0.395 
0.028 24.477                                           0.399 

0.030 23.756                                         0.404 

1 0.032 22.959                                         0.409 

' 0.034 22.077                                         0.415 

0.036 21.099                                         0.422 
0.038 20.012                                         0.430 
0.040 18.795                                         0.439 
0.042 17.421 *                                      0.449 
0.044 15.849                                         0.461 
0.046 14.011                                         0.475 

10.048 11.784                                         0.493 

Parameters:       D 
d 

0.275 inches 
0.170 inches 

Table 4.2-1 
ECCENTRICITY vs.IMPEDANCE 
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impedance varied between 12 Q and 30 Q for an eccentricity e variation between 0.12 cm and 
0 cm. 

As shown in Fig. 4.2-1 the eccentric slug can simultaneously rotate (azimuthally) and translate 
(axially) because the slug is joined to the coax-line outer conductor by an axial-motion support 
structure with springy ends. This support structure, while minimizing internal rf current paths, 
maintains non-erratic, defined, microwave contact points throughout the adjustments because of 
air gaps between the springy ends.  Fig. 4.2-1 A indicates the location of these air gaps. 

Also, the eccentric slug has slots that act as a spring to maintain electrical contact with the axial 
motion support structure and the outer casing of the input transformer (not shown in the figure). 
The eccentric slug has eight narrow axial slots, four slots originating at one end of the slug, 90 
degrees apart, and four slots originating at the other end of the slug also 90 degrees apart but 
offset from the first group by 45 degrees. Since the EM fields propagate as TEM modes, the 
axial RF currents are not interrupted by the slots. 

4.2.2  Mechanical drive 

For the expert system to axially and azimuthally adjust the eccentric slug, the slug was coupled 
to two gear assemblies that were installed beside the input transformer outer casing. These gear 
assemblies were rotated by two captured screws which were driven by flexible cables originating 
from system-controlled stepper motors located outside the tube. 

The mechanical drive layout shown in Fig. 4.2-2 illustrates four topics of interest, the coax line, 
the rotational adjustment, the axial adjustment, and the common drive components. These are 
described in detail below. 

4.2.2.1 Coax line 

The coaxial line begins at the coupling loop, bends 90 degrees, passes through the vacuum 
window, passes through the eccentric slug, then ends forming an N-type connector. The loop, 
90° bend, and window sections together comprise the input coax assembly (# 372386) which is 
an integral part of the tube. The rigid support given by this assembly to the center conductor 
permits joining new parts with sufficient tolerance control to assure that the resulting dimensions 
of the N connector satisfy MIL-SPEC. 39012. 

Assembly of the coax line after exhaust continues by screwing a threaded end of the center pin 
(# 444422) into the center conductor of the input coax assembly. The opposite end is centered 
in the outer part of the coax line ( coax sleeve (# 444401)) with center pin support (# 444424). 
The angular orientation of the coax sleeve is fixed by tightening nut (# 444402) and coax nut 
retainer (# 444403). The combination of these components represent the transmission line 
between input connector and coupling loop. 

4.2.2.2 Rotational  adjustment 

The rotational adjustment, which varies the impedance of the eccentric slug region consists of 
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the slug (center transformer (# 444417)), a modified gear (# 444411) that rotates the slug, and 
a control rod (# 444414) that rotates the gear. A stepper motor drives the rod at the rotational 
positioning input shown in Fig. 4.2.2. The rotary control rod has to be coupled to the center 
transformer in such a way that the independence of rotational adjustment and axial adjustment 
is accomplished. 

Fig. 4.2.3 shows the original approach to the rotational adjustment.   The rotary control rod (# 
444414) was keyed to the pinion modified (# 444410) according to standard mechanical 
procedures.   The pinion modified (# 444410) was allowed to slide on key rotary control (# 
444415) and rotary control rod (# 444414) axially. The pinion modified (# 444410) then drives 
gear modified (# 444411) which is rigidly attached to the center transformer (# 444417). The 
transformer (# 444416) was slotted to allow a certain range of circular motion of the center trans- 
former (# 444417) for rotary adjustment. However this approach was too complicated and 
expensive. 

Fig. 4.2.2 shows the approach whereby the rotary control road (# 444414), key rotary control (# 
444415) and pinion modified (# 444410) were integrated into one piece. This one piece is called 
gear rod rotary control (# 444411-1). The axial sliding now happens along the teeth of gear rod 
rotary control (# 444411-1) rather than along the key rotary control (# 444415) illustrated in Fie 
4.2.3. &' 

4.2.2.3 Axial adjustment 

The axial adjustment, which moves the above-mentioned rotational adjustment, consists of three 
components, a control rod (# 444413), a control block (# 444406), and a transformer segment (# 
444416). The transformer is rigidly attached to the drive adapter. The combination is then 
driven by the threaded spindle (called control rod #444413). 

The input of the adjustment is shown in Fig. 4.2.2 under "axial positioning." The adaption from 
the flexible cable to the linear control rod (# 444406) uses the same components as for the 
rotational adjustment, coupler (# 444418) and nut (# 444412). The rotational motion has to be 
converted into a linear motion. This conversion was accomplished by a drive which has high 
resolution and is uni-directional. The rod linear control (# 444413) has a male thread on the 
outside while the block linear control (# 444406) has the same female thread on the inside. If 
the rod turns, since the block is prevented from turning, the block will move linearly. In order 
for the transformer (# 444417) to move along with the block (# 444406) it was rigidly attached 
to the block.  The axial adjustment is now complete. 

4.2.2.4 Common drive components 

There are two common support blocks for both of the above mentioned adjustments. The support 
block control (# 444404), shown in both Fig. 4.2.2 and 4.2.3, serves as one set of bearings for 
rod, linear control (# 444413) and rod, rotary control (# 444414). The support block (# 444405) 
serves as the second set of bearings on the opposite end. In addition this block also 
accommodates the components (coupler, # 444418) (nut, # 444412) which mechanically adapt 
standard flexible cable to the two rods (rotary and linear). 
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4.3  Modeling and Cold Test 

4.3.1   Computer model 

The model-based input-cavity subsystem uses an equivalent circuit model of the "transformer" - 
the combination impedance transformer and bandpass filter - to generate predictions. The filter 
is comprised of the fixed-geometry input cavity inside the vacuum and the variable-geometry 
eccentric slug outside the vacuum. The impedance transformer is comprised of the same 
eccentric slug which forms a quarter-wave transformer and a loop transformer inside the vacuum. 

The entire circuit was modeled using the equivalent elements shown in Fig. 4.3-1 and the circuit 
response was found using the commercial software "Superstar" (now called Eagleware), from 
which the file RD3.CKT listed in Fig. 4.3-2 was derived. Below is identification of the 
transmission line elements between the type "N" connector and the electron beam. 

aa 75 Q transmission line between connector and slug 
bb Fringing capacitor of eccentric slug 
cc Transmission line for eccentric slug section 
dd Fringing capacitor of eccentric slug 
ee 75 Q transmission line between slug and window 
ff 50 Q transmission line for window 
gg 75 H transmission line between window and loop 
hh Loop transformer 
ii Beam impedance and gap capacitor 
jj Coupling capacitor for Si2 measurements 

In the model, to represent the axial movement of the eccentric slug, only the lengths of 
transmission lines aa and ee can be adjusted and only in a way that keeps the sum of the line 
lengths constant. To represent rotation of the eccentric slug, the characteristic impedance of the 
fixed-length transmission line cc can be varied. Both the axial and rotational positions of the 
slug can be varied independently as in the actual device. 

Capacitors bb and dd represent the fringe fields on the sides of the eccentric slug, ee and gg 
represent the coax lines on the sides of the window, and transmission line ff represents the 
vacuum window, a window consisting of three lifesaver-shaped pieces of alumina brazed between 
kovar rings. 

The window data in the model result from estimates obtained from having used the same window 
on a separate program in a matched 50-ohm line. Although preliminary S„ measurements 
confirmed the expected large reflections, additional window-matching work was considered 
outside the scope of the program. 

The capacitor jj represents a small coupling capacitor that is added by the sampling probe when 
being used for cold test insertion loss (S21) measurements. It is not part of the cavity and has no 
significant impact on  Su measurements. 
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4.3.2   Cold-test measurements 

The cold-test measurement assembly, shown in Fig. 4.3-3, consists of a signal source, a bridge, 
the input cavity system and the sealer analyzer which measures the reflected power. The input 
cavity is loaded with lossy Teledeltos paper to simulate the beam loading resistance of 12,000 
Q. The coupling capacitor jj indicates that a probe was used inside the cavity to measure the 
insertion loss S12 defined by 

Insertion Loss = 20 log10}512j 

Such insertion loss measurements, which were presented earlier in Figs. 4.1-4 and 4.1-5, also 
represent a measure of the transfer function of the input cavity system to the beam. In cold test 
insertion loss measurements are convenient for setting the circuit positions. 

However, in hot test, such insertion loss measurements can be impractical. More convenient are 
measurements of return loss defined by 

Return Loss = 20 log10|S„| 

When there are no lossy elements in the input transformer circuit, the insertion loss is only from 
mismatches and is related to the return loss by 

P121 =p-\Sn\2) 

Clearly, return loss can be used by the expert system in both cold and hot test. The return loss 
cold tests on the third generation transformer can represent hot test conditions. 

Two eccentric input transformers were designed, built and cold tested. Results for one of these 
is shown in Fig. 4.3-4, where the cavity return loss is given for a series of axial (Z) and 
azimuthal (6) positions of the eccentric slug. The optimum position is defined arbitrarily for Z 
- 0, 9 = 0. The range of variations conveniently and quickly obtained from the eccentric slug 
variations is similar to the range and variations shown in the sections on the first and second 
generation designs which were inconvenient and time consuming. 
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4.4   System Tuning of the Transformer 

4.4.1   Introduction 

Expert system software can be applied to any adjustable portion of a microwave tube. For the 
input cavity subsystem, software called TIPTOE measures and adjusts the coax eccentricity and 
the slug axial position in order to achieve a balanced input cavity response. 

Software development for input transformer adjustments began before any transformer hardware 
became available. Consequently, software was first developed to interact, not with an actual 
microwave tube, but with an equivalent-circuit approximation of the tube. The response of the 
equivalent circuit was obtained by a separate, commercial, software application SUPERSTAR, 
(ref: SUPERSTAR, Eagleware Corp., 1750 Mountain Glen, Stone Mountain, GA 30087) The 
version to interact only with software, TIPTOE 1 A, was conveniently developed offsite by Dr. 
Martin Lee, (ref: Dr. Martin Lee, GO AI, 1088 Dartmouth Lane, Los Altos, CA 94024) an expert 
in the field. 

TIPTOE2A, the second generation of the expert system software, incorporated much more 
stringent requirements of the data for acceptance. Although the expert system software again 
interacted with the equivalent circuit model analyzed in SUPERSTAR, TIPTOE2A was developed 
to control hardware. The hardware necessary to connect the computer to the input cavity was 
either purchased or was already available at Litton, but, since the system was never assembled, 
the software interface with the hardware drivers was not developed. 

TIPTOE1A controlled two adjustable parameters, the equivalent circuit parameters of the slug 
diameter and the slug axial position, until a response curve was accepted according two criteria. 
The first criterion was that for curves having two peaks, the ratio of the peaks had to be less than 
1 dB. The second criterion was that at the 3 dB points on the side of the response curve exceed 
the bandwidth specification. TIPTOE2A controlled the eccentricity of the coax plug and the slug 
axial position. A response curve was accepted according the two criteria above as well as a third, 
that the ratio of a side peak to the center low point was less than 1.7 dB. 

4.4.2  Expert procedure 

The purpose of the expert system software is to mimic automatically the actions of a true expert. 
The true expert takes data, analyzes that data and then decides what changes to make to the 
system before repeating the sequence. Programming a computer to take data and make the 
adjustments is a straightforward task. The difficult task is to teach the computer to properly 
analyze the data and make the proper decisions. 

A block diagram of the expert system software to accomplish these tasks is shown in Figure 4.4- 
1. After setting each of the adjustments to their initial positions, the first step is to take a set of 
data. This set includes all the data necessary to compare to the acceptance criteria. The raw data 
is transferred into the computer and any needed data reduction is performed. The reduced data 
is compared to the acceptance criteria, and if the criteria is met, the expert process is complete 

4-10 



In the general (and most likely) case, the acceptance criteria is not met with the initial settings. 
In this case, one of the adjustments is incremented by a small amount and the resultant change 
in the data is measured. This adjustment is then returned to its initial state and the next 
adjustment is incremented. The change in the data is again measured and this procedure is 
repeated until each of the adjustments has been incremented and its response measured. 

Once the responses to the incremental adjustments are known, the settings for all of the 
adjustments to bring the device operation into acceptance may be calculated. One method is to 
cast the adjustments and responses in the form of a matrix equation: 

{ Adjustment Settings } x { Response Matrix } = { Response }. 

To find the desired adjustment settings, one need only invert the response matrix and multiply 
it by the desired response. However, for code stability reasons, the full adjustments are not made 
in one step. Instead, the adjustments are made to bring the new response half way to the 
acceptance criteria. This prevents overshooting the desired response, which may happen if the 
microwave tube response is nonlinear. By measuring the responses to only small increments, we 
have essentially linearized the microwave tube response. 

At this point, the data is taken again and compared to the original data to ensure that the current 
adjustment settings are indeed better than the original settings. If they are not, the process is to 
return to the original settings and reduce the calculated step size by another factor of two. This 
continues until positive progress is made toward the acceptance criteria. Once this happens, the 
process of measuring the response of the microwave tube to small incremental adjustments is 
repeated, then the response matrix is inverted and new settings are calculated, etc. This total 
process is repeated until the acceptance criteria is met. 

4.4.3   TIPTOE1A 

The expert system software was developed incrementally. The first implementation, TIPTOE1 A, 
was limited to two simple rules to govern the microwave match into the input cavity of the 
klystron. The microwave match was altered through two adjustments in the matching 
transformer. A further simplification made was that the actual klystron input cavity and matching 
transformer were modelled as lumped circuit elements and analyzed with a separate software 
package (SUPERSTAR). The two programs interacted by reading and writing files on the 
computer's hard disk drive. 

The TIPTOE1A program is written in fortran and was compiled with Microsoft Fortran 5.0 
operating under Microsoft DOS 5.0. A complete listing of the well-commented code may be 
found in Appendix 4A. 

The microwave match into the input cavity may be obtained by measuring either of the S 
parameters, Sn (reflection) or S12 (transmission). The S12 parameter was chosen to be modelled 
in the lumped element circuit model (SUPERSTAR) and to be interpreted by the expert system 
software. An example of the S12 data is shown in Figure 4.4-2. There are two goals for the 
expert system software.   The first is that the amplitudes of the two peaks be equal.  Therefore, 
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the acceptance criterion for this goal is that the ratio of the amplitudes of the two peaks be 
sufficiently close to unity. The second goal is that the width of the SI2 trace be equal to a 
prespecified width. Again, the acceptance criterion is specified as a ratio — the ratio of the 
measured width to the desired width — must be sufficiently close to unity. This relatively simple 
set of goals was chosen for the first implementation since it requires a nontrivial solution to the 
matrix equation described above. 

Use of the TIPTOE1A and SUPERSTAR programs may be accomplished by running each in a 
DOS window under Microsoft Windows on an IBM-compatible personal computer. Version 5.0 
of DOS and version 3.1 of Windows were used. It is necessary to have the two programs 
running simultaneously and continually switch between the two. An example of this operation 
is given here. 

It is convenient to install the SUPERSTAR software into the default \EAGLE subdirectory. 
Further, it is convenient to place the TIPTOE files and the START.CKT file in the 
\EAGLE\TIPTOE subdirectory. Next, start the SUPERSTAR program and open the START.CKT 
file through the Open *.CKT (Text) file... command under the File pulldown menu. This circuit 
provides a convenient starting point. Figure 4.4-4 shows what should appear on the screen. The 
TIPTOE1A program utilizes the amplitude of the SI2 scattering parameter which is the double 
peaked curve plotted in the graph on the left side of the figure. The phase of S12 is plotted in 
the same graph, and the amplitude and phase of the Su scattering parameter are plotted in the 
graph on the right side of the figure. This file must now be saved as DEMO.CKT in the 
YEAGLEYITPTOE subdirectory by using the Save Circuit As... command under the File pulldown 
menu. The S parameters calculated by the SUPERSTAR program must also be saved now by 
using the Write S-Data... command under the File pulldown menu. This data should be saved 
in the file \EAGLE\TIPTOE\SIGNAL.OUT, which will be read by the TIPTOE1A program. 

Now switch to the Windows Program Manager without exiting the SUPERSTAR program. This 
may be done by holding down the <ALT> key and pressing the <Tab> key until the Program 
Manager prompt is reached. Next, open a full-screen DOS window and change to the 
\EAGLE\TIPTOE directory. Typing TIPTOE1A at the command prompt will start the 
TIPTOE1A program. Figures 4.4-3(A-D) show an example of the output from the TIPTOE1A 
program. The user is immediately prompted for the desired width. This is the frequency width, 
in megahertz, of the response curve generated by the SUPERSTAR program and is the only 
variable input into the program. 

After the width is entered, the TIPTOE 1A program prints out several parameters. sParameterl 
and sParameter2 are the two adjustable circuit parameters read in from the DEMO.CKT file. The 
TIPTOE1A program modifies these parameters to obtain the desired output signal. Next, several 
parameters calculated from the SIGNAL.OUT file are printed. The Itr and SI parameters are 
iteration numbers within the TIPTOE1A program. Ampl and Amp2 are the amplitudes (in dB) 
of the two peaks and the first Ratio is their ratio. If TIPTOE 1A fails to find two distinct peaks, 
the ratio of the amplitudes is set to zero. Finally, Width is the frequency width (3 dB down from 
the highest peak) measured from the SIGNAL.OUT file and the second Ratio is the ratio of 
Width and the desired frequency width. This is followed by the new circuit parameters SI (= 
sParameterl) and S2 (= sParameter2) written into the DEMO.CKT file and finally by the prompt: 
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Press <retum> after new signal has been generated by Eagle Software ... . 

Every time this prompt appears, the user must switch to the SUPERSTAR program, open the 
DEMO.CKT file by using the Open *.CKT (Text) file... command under the File pulldown menu, 
save the newly generated data in the SIGNAL.OUT file by using the Write S-Data... command 
under the File pulldown menu, and then switch back to the TIPTOE 1A program. 

The TIPTOE1A program informs the user of the progress being made by the program. If the new 
circuit parameters calculated by the TIPTOE1A program result in a signal further from the 
desired result, the step size is halved and new circuit parameters are calculated. An example of 
this occurrence is shown in Figure 4.4-3 A, beginning with the line: Convergence Criteria Failure:. 

At the completion of a full (converging) iteration, the current circuit parameters, iteration 
numbers, amplitudes, width, and ratios are printed out. An example of this is shown at the top 
of Figure 4.4-3B. 

The Convergence Criteria Failure line will also appear if the TIPTOE1A program fails to find 
two distinct peaks in the data from the SIGNAL.OUT file. In this case, the TIPTOE1A program 
again halves the step size and calculates new circuit parameters. An example of this is shown 
near the bottom of Figure 4.4-3B. 

At the bottom of Figure 4.4-3D, five iterations have been completed. As can be seen from the 
previous iterations, both ratios are approaching unity. Further iterations will continue the 
progression of both ratios toward unity. The TIPTOE1A program does not have a convergence 
test built into it, so it will continue the iterations until the built-in maximum of 20 iterations is 
reached. 

4.4.4  TIPTOE2A 

The TIPTOE2A program (actually named DEM02A) utilizes the basic TIPTOE1A 
formulation and algorithms.   There are two goals and two adjustable circuit parameters that 
are solved for by inverting the response matrix, exactly as was done in TIPTOE 1 A.   Again, 
DEM02A interacts with the SUPERSTAR program rather than with actual hardware.   The 
main features added to the TIPTOE1A program include convergence criterion for the ratio of 
the amplitudes of the two peaks and the ratio of the actual and desired frequency widths, and 
the addition of several more constraints on the response of the circuit. 

The added constraints on the circuit response are shown in Figure 4.4-5.   As in TIPTOE1A, 
the two amplitude peaks must be sufficiently close to each other and the frequency width 
(measured 3 dB down from the highest peak) must be within certain limits.  In addition, all 
points above the high frequency limit (or below the low frequency limit) must be more than 3 
dB below the highest peak, and the circuit response must be above the points shown at those 
specific frequencies. 

A flow chart for the TIPTOE2A (DEM02A) program is shown in Figure 4.4-6. The goals for 
the circuit response are hardwired into the code through the use of data and parameter 
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Statements.   The basic TIPTOEIA algorithm is used to find the circuit parameters that give a 
response satisfying the amplitude peaks and frequency width goals.   Once this solution has 
been found, the circuit response is checked against the rest of the acceptance criteria.   At this 
point, the program terminates whether the circuit response meets all the goals or not.   A 
simple addition to this code would be to alter the amplitude peaks and frequency width 
criterion (since they both have ranges of acceptability) and return to the TIPTOEIA 
algorithm.  The source listings for the TIPTOE2A (DEM02A) program is given in Appendix 
B along with the command used to create the program using the Microsoft fortran compiler 
(version 5.0).  This program was created under Microsoft DOS version 5.0. 

As with the TIPTOEIA program, use of the TIPTOE2A and SUPERSTAR programs may be 
accomplished by running each in a DOS window under Microsoft Windows on an IBM- 
compatible personal computer.   Version 5.0 of DOS and version 3.1 of Windows were used. 
It is necessary to have the two programs running simultaneously and continually switch 
between the two.   An example of this operation is given here. 

It is convenient to place the TIPTOE2A (DEM02A) files and a copy of the START.CKT file 
(from the \EAGLE\TIPTOE subdirectory) in the \EAGLE\TIPTOE2 subdirectory.   Next, start 
the SUPERSTAR program and open the START.CKT file through the Open *.CKT (Text) 
file... command under the File pulldown menu.   This circuit provides a convenient starting 
point.  Figure 4.4-4 shows what should appear on the screen.   As with the TIPTOEIA 
program, the TIPTOE2A (DEM02A) program utilizes the amplitude of the S12 scattering 
parameter which is the double peaked curve plotted in the graph on the left side of the figure. 
This file must now be saved as DEMO.CKT in the \EAGLE\TIPTOE2 subdirectory by using 
the Save Circuit As... command under the File pulldown menu.  The S parameters calculated 
by the SUPERSTAR program must also be saved now by using the Write S-Data... command 
under the File pulldown menu.   This data should be saved in the file 
\EAGLE\TIPTOE2\SIGNAL.OUT, which will be read by the TIPTOE2A (DEM02A) 
program. N 

Now switch to the Windows Program Manager without exiting the SUPERSTAR program. 
This may be done by holding down the <ALT> key and pressing the <Tab> key until the 
Program Manager prompt is reached.  Next, open a full-screen DOS window and change to 
the \EAGLE\TIPTOE2 subdirectory.  Typing TIPTOE2A at the command prompt will start 
the TIPTOE2A (DEM02A) program.  Figures 4.4-7(A-B) show an example of the output 
from the TIPTOE2A program.  Note that there are no parameters entered by the user in this 
program. 

The TIPTOE2A (DEM02A) program immediately prints out several parameters.   sParameterl 
and sParameter2 are the two adjustable circuit parameters read in from the DEMO.CKT file. 
The TIPTOE2A (DEM02A) program modifies these parameters to obtain the desired output 
signal.  Next, several parameters calculated from the SIGNAL.OUT file are printed.  The Itr 
and SI parameters are iteration numbers within the TIPTOE2A (DEM02A) program.   Ampl 
and Amp2 are the amplitudes (in dB) of the two peaks and the first Ratio is their ratio.  If 
TIPTOE2A (DEM02A) fails to find two distinct peaks, the ratio of the amplitudes is set to 
zero.  Finally, Width is the frequency width (3 dB down from the highest peak) measured 
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from the SIGNAL.OUT file and the second Ratio is the ratio of Width and the desired 
frequency width.  This is followed by the new circuit parameters SI (= sParameterl) and S2 
(= sParameter2) written into the DEMO.CKT file and finally by the prompt: Press <return> 
after new signal has been generated by Eagle Software ... . 

Every time this prompt appears, the user must switch to the SUPERSTAR program, open the 
DEMO.CKT file by using the Open *.CKT (Text) file... command under the File pulldown 
menu, save the newly generated data in the SIGNAL.OUT file by using the Write S-Data... 
command under the File pulldown menu, and then switch back to the TIPTOE2A (DEM02A) 
program. 

The TIPTOE2A (DEM02A) program informs the user of the progress being made by the 
program exactly as was done in the TIPTOE1A program.  If the new circuit parameters 
calculated by the TIPTOE2A (DEM02A) program result in a signal further from the desired 
result, the step size is halved and new circuit parameters are calculated. 

At the completion of a full (converging) iteration, the current circuit parameters, iteration 
numbers, amplitudes, width, and ratios are printed out.   An example of this is shown in the 
middle of Figure 4.4-7A.   The convergence criteria built into the TIPTOE2A (DEM02A) 
program requires that both of the ratios (amplitude and width) be between 0.995 and 1.005. 
When this occurs (as it does near the bottom of Figure 4.4-7B), the circuit response is 
checked against each of the criteria described above and shown if Figure 4.4-5.   The results 
of these checks are printed out, and the program stops whether or not the data satisfies all of 
the checks.   A straightforward addition to this code would be to alter the amplitude and width 
convergence criteria (since there is an acceptable range for each) and return to the TIPTOE 
algorithm to search for another acceptable set of circuit parameters. 
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Figure 4.4-1 
EXPERT-SYSTEM PROGRAM FLOW CHART 
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Figure 4.4-2 
CURVE ANALYZED BY TIPTOE1A 

4-36 



D:\EAGLBH PT0E>tiptoe1a 
Please enter VWdth Criterion: 
90 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 301.02      sParameter2 = 2.1464 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio   Width Ratio 
0   0 -39.33 -39.80   .988   100.88 1.121 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Updated .CKT file with:   S1 =>   304.0252   S2=>     2.1464 

Press <return> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   301.0150   S2=>     2.1679 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   285.3625   S2=>     2.1470 

Press <retum> after new signal has been generated by Eagle Software 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 285.36      sParameter2 = 2.1470 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio    Width Ratio 
1    1  -40.40 -39.04 1.035   102.45 1.138 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Convergence Criteria Failure: 
AmpRatio=     1.0348 
Old Distance =      .1215 
New Distance =      .1427 

MaxStepSize =>   2 

Updated .CKT file with:   S1 =>   293.1888   S2=>     2.1467 

Press <return> after new signal has been generated by Eagle Software 

Figure 4.4-3 
TIPTOE1A PRINTOUT 
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B 

sParameterl = 293.19     sParameter2 = 2.1467 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
1   2 -39.79 -39.37 1.011    99.71  1.108 

»»m»»»i»»»»»tmimi>im»»iimii 

Rnished with 1 iterations. 
Hit <return> to continue... 

Updated .CKT file with:   S1 =>  296.1206  S2=>    2.1467 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>  293.1888  S2=>    2.1682 

Press <retum> after new signal has been generated by Eagle Software. 

Updated .CKT file with:   S1 =>   293.0186   S2=>     1.7722 

Press <return> after new signal has been generated by Eagle Software. 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 293.02     sParameter2 = 1.7722 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
2   1 -39.88 -39.30   .000   100.60   .000 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Convergence Criteria Failure: 
AmpRatio =      .0000 
ad Distance =      .1084 
New Distance =     1.4142 

MaxStepSize =>  2 

Updated .CKT file with:   S1 =>  293.1037  S2=>     1.9595 

Press <return> after new signal has been generated by Eagle Software 

Figure 4.4-3 (CON'T) 
TIPTOE1A PRINTOUT 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 293.10     sParameter2 = 1.9595 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
2   2 -39.15 -40.12   .976    97.74 1.086 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Finished with 2 iterations. 
Hit <retum> to continue... 

Updated .CKT file with:   S1 =>  296.0347  S2=>     1.9595 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   293.1037   S2=>     1.9791 

Press <return> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   279.8101   S2=>     1.8817 

Press <retum> after new signal has been generated by Eagle Software. 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 279.81      sParameter2 = 1.8817 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA* 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
3   1 -39.65 -39.49 1.004    91.67 1.019 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Finished with 3 iterations. 
Hit <return> to continue... 

Updated .CKT file with:   S1 =>   282.6082   S2=>     1.8817 

Press <return> after new signal has been generated by Eagle Software. 

Updated .CKT file with:   S1 =>  279.8101   S2=>     1.9005 

Press <return> after new signal has been generated by Eagle Software. 

Updated .CKT file with:   S1 =>   279.0865   S2=>     1.8463 

Press <return> after new signal has been generated by Eagle Software. 

Figure 4.4-3 (CON'T) 
TIPTOE1A PRINTOUT 
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D 

kkkktkkkkkkkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkk 

sParameterl = 279.09     sParameter2 = 1.8463 
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkt 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
4   1 -39.56 -39.56 1.000    90.32 1.004 

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 

Finished with 4 iterations. 
Hit <return> to continue... 

Updated .CKT file with:   S1 =>  281.8774  S2=>     1.8463 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   279.0865   S2=>     1.8647 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   278.8526   S2=>     1.8416 

Press <return> after new signal has been generated by Eagle Software. 

kkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 

sParameterl = 278.85     sParameter2 = 1.8416 
kkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
5   1 -39.56 -39.56 1.000    90.17 1.002 

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 

Rnishedwith 5 iterations. 
Hit <return> to continue... 

Figure 4.4-3 (CONT) 
TIPTOE1A PRINTOUT 
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Eaglepuare    Jun 15 13; 16:36 1995 INPUT_COUPL(50) 

-I-   +■    + 

■I-    4-    +/ 

3200 3300 3400 3200 3300 3400 

S21 
3200 

P21 
3339 

911 
3200 

PI 1 
3333 3259    3339    3400    3200    3259     3339     3400 

59.2189 -41.4372 -41.2947 -56.685  -.057342 -3.67688 -3.60746 -.082784 
59.3195 -124.563 24.7555  -43.4939 -60.552  -147.957 86.2156  -16.2815 

program. 
The response of the START.CKT file calculated by the SUPERSTAR 

Figure 4.4-4 
START.CKT RESPONSE 
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es 

Frequency 

Sample dreuit response showing acceptance criteria. 

Figure 4.4-5 
SAMPLE CIRCUIT RESPONSE 
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Row chart for the T1PTOE2A (DEM02A) program. 

Figure 4.4-6 
TIPTOE2A FLOW CHART 
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D:\EAGLBHPTOE2xtemo2a 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 293.84     sParameter2 = 2.0995 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
0   0 -39.33 -39.80 1.012     1.94 1.146 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Updated .CKT file with:   S1 =>   296.7774   S2=>     2.0995 

Press <retum> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>  293.8390  S2=>    2.1205 

Press <return> after new signal has been generated by Eagle Software, 

Updated .CKT file with:   S1 =>   297.4802   S2=>     2.0997 

Press <retum> after new signal has been generated by Eagle Software. 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

sParameterl = 297.48     sParameter2 = 2.0997 
«AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Itr SI  Amp1    Amp2  Ratio   Wdth Ratio 
1   1 -39.35 -39.78 1.011      1.77 1.045 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Tiptoe finished with 1 iterations. 
Hit <retum> to continue... 

Updated .CKT file with:   S1 =>   300.4550   S2=>     2.0997 

Press <return> after new signal has been generated by Eagle Software... 

Updated .CKT file with:   S1 =>  297.4802  S2 =>    2.1207 

Press <return> after new signal has been generated by Eagle Software... 

Updated .CKT file with:   S1 =>  294.2722  S2=>    2.1078 

Press <return> after new signal has been generated by Eagle Software... 

Figure 4.4-7 
TIPTOE2A (DEM02A) PRINTOUT 
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************************************************ 

sParameterl = 294.27     sParameter2 = 2.1078 
**********AAAA***AA***************************** 

Itr SI   Amp1    Amp2   Ratio   Wdth Ratio 
2   1 -39.57 -39.56 1.000     1.72 1.016 

******AAA**A*AA********AAAAAAAAAAAAAAAAA*******A 

Tiptoe finished with 2 iterations. 
Hit <retum> to continue... 

Updated .CKT file with:   S1 =>  297.2149  S2=>    2.1078 

Press <return> after new signal has been generated by Eagle Software 

Updated .CKT file with:   S1 =>   294.2722   S2=>     2.1289 

Press <return> after new signal has been generated by Eagle Software. 

Updated .CKT file with:   S1 =>  293.8499  S2=>    2.1000 

Press <retum> after new signal has been generated by Eagle Software. 

**************************************AAAAAAAAAA 

sParameteii = 293.85     sParameter2 = 2.1000 
************************************************ 

Itr SI   Amp1    Amp2   Ratio   VMdth Ratio 
3   1 -39.56 -39.56 1.000     1.70 1.002 

*****AAAA*******************AAAAAAAAA****A*AAAAA 

Tiptoe finished with 3 iterations. 
Hit <retum> to continue... 

Tiptoe converged for wide configuration ... 
SP1= 293.8499 SP2=     2.1000 

S'gnal Passed Amplitude Checks... 
Signal Passed Outer Bounds Checks... 
Signal Passed Interior Bounds Checks... 

Signal passed all checks! 

Demo2a... Normal Completion 

Q\EAGLBTlPTOE2> 

Figure 4.4-7 (CON'T) 
TIPTOE2A (DEM02A) PRINTOUT 
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APPENDIX 4A 
TIPTOEIA Source Code Listing 

program tiptoe 1 a 
c 

c 
c ... Program to calculate S-parameters utilizing Martin Lee's famous 
c      tiptoe algorithm. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Subroutines called: 
c 
c ratios 
c sParamlO 
c 
c ... Comments: 
c 

c ... Parameters: 
c 

parameter (WIDTH_TOLORANCE=135.) 
parameter (MAX_ITER=20) 

c 
c ... Variables: 
c 

character* 1       adum 
character* 128    sName, oName 
logical rescale 

loName 
numlter, sublter 
maxStepSize 
read_mode, write_mode 

sParmlOld, sParmlNew, dSParml 
sParm201d, sParm2New, dSParm2 
ampl, amp2, width 
ampRatioOld, ampRatioNew, dAmpRatio 
widthRatioOld, widthRatioNew, dWidthRatio 
dAdSl, dAdS2, dWdSl, dWdS2 
deltaAmp, deltaWidth, deltaSPl, deltaSP2 
detlnv, distOld, distNew 
width_param 
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integer" 4 
integer* 4 
integer* 4 
integer* 4 
real* 4 
real* 4 
real* 4 
real*4 
real* 4 
real* 4 
real* 4 
real* 4 
real* 4 

c 
c ... Data: 



c 
c ...    Define name of file containing signal amplitudes 
c 

data sName(l:) /'signal.out'/ 
c 
c ...    Define name of diagnostic output file 
c 

data oName(l:) /'tiptoe.out'/ 
c 
c ...    Define read/write modes 
c 

data read_mode  /0/ 
data write_mode III 

c 

c 
c ... Initialize counters 
c 

maxStepSize = 1 
numlter = 0 
sublter = 0 
rescale = .false. 

c 
c ... Ask user for desired signal width 
c 

write(*. '("SPlease enter Width Criterion: ")') 
read(*, *) width_param 

c 
c ... Open file for diagnostic output 
c 

loName = length(oName) 
open(6, file=oName(l:loName), status-unknown', form-formatted', 

> err=10) 
c 
c ... Read in current values for S parameters 
c 

call signalGen(read_mode, sParmlNew, sParm2New) 
c 
c ... Calculate Amplitude and Width Ratios 
c 

call ratios(sName, width_param, 
> ampRatioNew, widthRatioNew, ampl, amp2, width) 

c 
c ... Output amplitude and width ratio values 
c 

call print_params(0, sParmlNew, sParm2New, numlter, sublter, 
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> ampl, amp2, ampRatioNew, width, widthRatioNew) 
call print_params(6, sParmlNew, sParm2New, numlter, sublter, 

> ampl, amp2, ampRatioNew, width, widthRatioNew) 
c 
c ... Start of iterative loop 
c 

do while (numlter .lt. MAXJTER) 
c 
c ...    Increment iteration counter 
c 

numlter = numlter + 1 
sublter = 0 

c 
c ...    Store current S parameter values as "previous" values 
c 

sParmlOld = sParmlNew 
sParm201d = sParm2New 

c 
c ...    Store current Amplitude and Width ratios as "previous" values 
c 

ampRatioOld    = ampRatioNew 
widthRatioOld = widthRatioNew 

c 
c ...    Perturb current values of S parameters for next signal 
c 

dSParml    = 0.01*sParmlOld 
dSParm2    = 0.01*sParm2Old 

c 
sParmlNew = sParml Old + dSParml 
sParm2New = sParm201d + dSParm2 

c 
c ...    Generate new signal 
c 

call signalGen(write_mode, sParmlNew, sParm201d) 
c 
c ...    Calculate Amplitude and Width Ratios for dSl signal vector 
c 

call ratios(sName, width_param, ampRatioNew, widthRatioNew, 
> ampl, amp2, width) 

write(6, *) 
writefö '(" ********* ********************************** ,,\,\ 
write(6, '(" sParmlPrime = ", f6.2, 

> " sParameter2 = ", f6.4)') sParmlNew, sParm201d 
write(6 '(" *******************************************"y\ 
write(6, '(" Iter    Ampl     Amp2    Ratio     Width  Ratio")') 
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 
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> numlter, ampl, amp2, ampRatioNew, width, widthRatioNew 
writefö Y" ******************************** ***********l,y,\ 

c 
c ...    Calculate dSl partial derivatives 
c 

dAmpRatio    = ampRatioNew - ampRatioOld 
dWidthRatio = widthRatioNew - widthRatioOld 

c 
dAdSl = dAmpRatio/dSParml 
dWdSl = dWidthRatio/dSParml 

c 
c ...    Generate new signal 
c 

call signalGen(write_mode, sParmlOld, sParm2New) 
c 
c ...    Calculate Amplitude and Width Ratios for dS2 signal vector 
c 

call ratios(sName, width_param, ampRatioNew, widthRatioNew, 
> ampl, amp2, width) 

write(6, *) 
wnte(6, ( )) 
write(6, '(" sParameterl = ", f6.2, 

> " sParm2Prime = ", f6.4)') sParmlOld, sParm2New 

write(6, '(" Iter    Ampl     Amp2    Ratio     Width  Ratio")') 
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 

> numlter, ampl, amp2, ampRatioNew, width, widthRatioNew 
write(6 '(" *******************************************"Y~\ 

c 
c ...    Calculate dS2 partial derivatives 
c 

dAmpRatio    = ampRatioNew - ampRatioOld 
dWidthRatio = widthRatioNew - widthRatioOld 

c 
dAdS2 = dAmpRatio/dSParm2 
dWdS2 = dWidthRatio/dSParm2 

c 
write(6, *) 
write(6, *) ' Iteration #: ', numlter 
write(6, *) ' dAdSl: ', dAdSl 
write(6, *)' dWdSl:', dWdSl 
write(6, *) ' dAdS2: ', dAdS2 
write(6, *) ' dWdS2: ', dWdS2 
write(6, *) 

c 
c ...    Calculate reciprical determinant of partial derivative matrix 
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c 
detlnv = 1.0/(dAdSl*dWdS2 - dAdS2*dWdSl) 

c 
100    sublter = sublter + 1 

c 
c ...    Estimate needed change in amplitude and width ratios 
c 

deltaAmp    = (1.0 -    ampRatio01d)/float(maxStepSize) 
deltaWidth = (1.0 - widthRatio01d)/float(maxStepSize) 

c 
c ...    Calculate corresponding change in S parameter values 
c 

deltaSPl = detInv*(dWdS2*deltaAmp - dAdS2*deltaWidth) 
deltaSP2 = detInv*(dAdSl*deltaWidth - dWdSl*deltaAmp) 

c 
c ...    Calculate new S parmeter values 
c 

sParmlNew = sParmlOld + deltaSPl 
sParm2New = sParm201d + deltaSP2 

c 
c ...    Generate new signal 
c 

call signalGen(write_mode, sParmlNew, sParm2New) 
c 
c ...    Calculate Amplitude and Width Ratios 
c 

call ratios(sName, width_param, 
> ampRatioNew, widthRatioNew, ampl, amp2, width) 

c 
c ...    Output amplitude and width ratio values 
c 

call print_params(0, sParmlNew, sParm2New, numlter, sublter, 
> ampl, amp2, ampRatioNew, width, widthRatioNew) 

call print_params(6, sParmlNew, sParm2New, numlter, sublter, 
> ampl, amp2, ampRatioNew, width, widthRatioNew) 

c 
c ...    Check for convergence 
c 

distOld = sqrt( (l.-ampRatio01d)**2 + (l.-widthRatio01d)**2 ) 
distNew = sqrt( (l.-ampRatioNew)**2 + (L-widthRatioNew)**2 ) 

if (ampRatioNew .eq. 0. .or.   distNew .gt. distOld) then 
maxStepSize = 2*maxStepSize 
rescale = .true. 
write(*, *) 
write(*, '(" Convergence Criteria Failure:")') 

4-50 



write(*, '("    AmpRatio = ", flO.4)') ampRatioNew 
write(*, '("    Old Distance = ", flO.4)') distOld 
write(*, '("    New Distance = ", flO.4)') distNew 
write(*, *) 
write(*, '(" MaxStepSize => ", i3)') maxStepSize 
goto 100 

else 
if (rescale .and. maxStepSize .gt. 1) 

>        maxStepSize = maxStepSize/2 
rescale = .false, 

endif 
c 
c ...    Completed with entire iteration 
c 

write(*, *) 
write(*, '(" Finished with ", i2, " iterations.")') numlter 
write(*, '(" Hit <return> to continue ...")') 
read(*, '(a)') adum 

enddo 
stop ' Normal program termination' 

10 stop ' Unable to open diagnostic output file' 
end 
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subroutine print_params(lU, sParaml, sParam2, numlter, sublter, 
> ampl, amp2, ampRatio, width, widthRatio) 

c 
c 
c 
c ... Subroutine to print out S parameters and corresponding signal 
c      features 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

real*4     sParaml, sParam2 
real*4     ampl, amp2, ampRatio 
real*4     width, widthRatio 

c 
integer*4 1U, numlter, sublter 

c 
c ... Return Arguments: 
c 
c ... Comments: 
c 
„*********************************************************************** 

c 
c ... Check for screen output 
c 

if (1U .eq. 0) then 
write(*, *) 
write(*, 

write(*,'("  sParameterl = ", f6.2, 5x, 
> " sParameter2 = ", f6.4)') 
> sParaml, sParam2 

write(*, 
> i/ii ************************************************ny\ 

write(*, 
> '("  Itr  SI    Ampl     Amp2    Ratio     Width  Ratio")') 

write(*,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio 

write(*, 
> l/H     ************************************************||\|\ 

else 
write(lU, *) 
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write(lU, 

write(lU, 
> '(" sParameterl = ", {6.2, 5x, 
> " sParameter2 = ", f6.4)') 
> sParaml, sParam2 

write(lU, 

write(lU, 
> '("  Itr  SI    Ampl     Amp2    Ratio     Width  Ratio")') 

write(lU,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio 

write(lU, 

endif 
return 
end 
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subroutine ratios (fName, width_goal, ampRatio, widRatio, 
> ampl, amp2, width) 

c 

C 

c ... Subroutine to calculate amplitude and width ratios based on 
c      width requirement and values in current signal vector file. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

character*(*)    fName 
real*4 width_goal 

c 
c ... Return Arguments: 
c 

real*4 ampRatio, widRatio 
real*4 ampl, amp2, width 

c 
c ... Subroutines called: 
c 
c        sRead 
c        peakNdcs 
c sigWidth 

\ c 
c ... Comments: 
c 

c 
c ... Local Variables: 
c 

parameter (MAXPT=300) 
c 

integer*4 nPtSVec 
integer*4 pklNdx, pk2Ndx, wdlNdx, wd2Ndx 
logical perror 
real*4 sVector(2,MAXPT) 

c 

c 
c ... Read in signal vector 
c 
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call sRead (fName, MAXPT, sVector, nPtSVec) 
c 
c ... Locate positions of peaks 
c 

call peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, perror) 
c 
c ... Check for error finding peaks 
c 

if (perror) then 
ampRatio = 0. 
widRatio = 0. 
return 

endif 
c 
c ... Locate width indicies and interpolated width 
c 

call sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx, 
> wdlNdx, wd2Ndx, width) 

c 
c ... Calculate current ratios 
c 

ampl   = sVector(2, pklNdx) 
amp2  = sVector(2, pk2Ndx) 

c 
ampRatio = ampl/amp2 
widRatio = width/width_goal 

c 
return 
end 
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subroutine sRead (fName, MAXPT, sVector, nPtSVec) 
c 

c 
c ... Subroutine to read in the signal file output by the signal 
c      generating program. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

character*(*)    fName 
integer*4 MAXPT 

c 
c ... Return Arguments: 
c 

real*4 sVector(2,MAXPT) 
integer*4 nPtSVec 

c 
c ... Comments: 
c 
g*********************************************************************** 

c 
c ... Local Variables: 
c 

integer*4 lfName, i N 

real*4     sdum 
c 
g* *********** *******************************************************,|(1|(,|(1|I 

c 
lfName = length(fName) 

c 
c ... Open signal file 
c 

open(2, file=fName(l:lfName), status='old', form=,formatted', 
> err=10) 

c 
c ... Read in signal values 
c 

do i=l,MAXPT+l 
read(2, err=20, end=30, fmt=*) 

> sVector(l,i), sdum, sdum, sVector(2,i) 
enddo 
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write(6, *) ' Signal file: ', fName(l:lfName) 
write(6, *) ' Contains too many records for current array size, 
stop ' Program terminating ...' 

10 write(6, *) ' Error opening signal file: ', fName(l:lfName) 
stop ' Program terminating ..." 

20 write(6, *) ' Error reading record: ', i 
write(6, *) ' in signal file: ', fName 
stop ' Program terminating ..." 

30 close(2) 
nPtSVec = i-1 

c 
c ... Convert signal to correct units 
c 

do i=l,NptSVec 
sVector(2,i) = 20.*alogl0(sVector(2,i)) 
write(6, *) i, '    x= ', sVector(l,i), '    y= ', sVector(2,i) 

enddo 
return 
end 
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subroutine signal Gen (ioMode, sParaml, sParam2) 
c 
„********************************************************************** 

c 
c ... Subroutine to generate a new signal given passed values of S 
c      parameters.  If i/o mode is set to "read" then the values of the 
c      S parameters in the current signal file are passed back to the 
c      calling routine. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

integer*4 ioMode 
real*4 sParaml, sParam2 

c 
c ... Return Arguments: 
c 
c real*4 sParaml, sParam2 
c 
c ... Subroutines Called: 
c 
c sParamlO 
c 
c ... Comments: 
c 
c Arguments sParaml, sParam2 are used as return values when 
c "READ" mode is used. 
c 
g********************************************************************** 

c 
c ... Local Variables: 
c 

parameter (READ=0) 
parameter (WRITE=1) 

c 
character* 1     adum 
character* 128  pName 

c 
c ...    Define name of file containing active S parameter values 
c 

data pName(l:) /'demo.ckt'/ 
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c 
c ... Access .CKT file for read/write of S parameters 
c 

call sParamlO (pName, ioMode, sParaml, sParam2) 
c 
c ... Notify user to generate new signal using Eagle software 
c      if in "write" mode, 
c 

if (ioMode .eq. WRITE) then 
write(*, '(/, " Updated .CKT file with:    SI => ", fl0.4, 

> "    S2 => ", flO.4)') sParaml, sParam2 
write(*, *) 
write(*, '(" Press <return> after new signal", 

> " has been generated by Eagle Software ...")') 
read(*, '(a)') adum 

endif 
c 

return 
end 
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subroutine sParamIO (pName, ioMode, sParaml, sParam2) 
c 
„it********************************************************************* 

c 
c ... Subroutine to read in the S parameter file (*.CKT) and 
c      read/write the S parameters from/to the file.  The parameter 
c      "ioMode" determines whether the S parameters are being read from or 
c      written to the file "pName". 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

character* 128    pName 
integer*4 ioMode 
real*4 sParaml, sParam2 

c 
c ... Return Arguments: 
c 
c real*4 sParaml, sParam2 
c 
c ... Comments: 
c 
Q************************************************ *********************** 

c 
c ... Local Variables: 
c 

parameter (READ=0) 
parameter (WRITE=1) 
parameter (NUM_REC_MAX=200) 

c 
integer*4 lpName, lenRec(NUM_REC_MAX) 

c 
character* 128 record(NUM_REC_MAX) 

c 
Q*********************************************************************** 

c 
c ... Open S parameter file 
c 

lpName = length(pName) 
open(2, file=pName(l:lpName), status-old', form='formatted', 

>      err=10) 
c 
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c ... Read records from S Parameter file, 
c 

numRec = 0 
if (ioMode .eq. READ) then 

do while(numRec .It. NUM_REC_MAX) 
record(l)(l:) = ' ' 
read(2, err=20, end=30, fmt='(a)') record(l)(l:) 
lenRec(l) = length(record(l)) 
numRec = numRec + 1 
if (numRec .eq. 2) read(record(l)(17:lenRec(l)), fmt='(f7.5)', 

> err=25) sParam2 
if (numRec .eq. 46) read(record(l)(4:lenRec(l)), fmt='(f7.3)', 

> err=25) sParaml 
enddo 

else 
do while(numRec .It. NUM_REC_MAX) 

numRec = numRec + 1 
record(numRec)(l:) = ' ' 
read(2, err=20, end=30, fmt='(a)') record(numRec)(l:) 
lenRec(numRec) = length(record(numRec)) 
if (numRec .eq. 2) then 

write(record(numRec)( 17:23), fmt='(f7.5)', err=25) sParam2 
if (sParam2 .It. 1.0) record(numRec)(17:17) = '0' 

elseif (numRec .eq. 46) then 
write(record(numRec)(4:), fmt=,(f7.3)', err=25) sParaml 

endif 
enddo 

endif 
c 

write(6, *) ' S Parameter file: 7/pName(l:lpName) 
write(6, *) ' Contains too many records for current array size.1 

stop ' Program terminating ...' 
10 write(6, *) ' Error opening S Parameter file: 7/pName(l:lpName) 

stop ' Program terminating ...' 
20 write(6, *) ' Error reading record: ', numRec 

write(6, *) ' in S Parameter file: 7/pName 
stop ' Program terminating ..." 

25 write(6, *) ' Error parsing information from record: ', numRec 
write(6, *) ' in file: ', pName(l.lpName) 
stop ' Program terminating ...' 

30 if (ioMode .eq. WRITE) then 
numRec = numRec - 1 
rewind(2) 
do i = 1, numRec 

write(2, '(a)') record(i)(l:lenRec(i)) 
enddo 
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endif 
dose(2) 

return 
end 
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function length(string) 
c 
c 
c 
c ... Utility function to determine the length of a character string. 
c      The length of the string is determined by finding the last 
c      "non-blank" character in the passed string, 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

character* (*)    string 
c 
c ... Return Arguments: 
c 
c integer*4 length 
c 
c ... Comments: 
c 
„it********************************************************************** 

c 
length = len(string) 
do while(string(length:length) .eq. ' ' .and. length .gt. 0) 

length = length - 1 
enddo 
return 
end 
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subroutine peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, error) 
c 
c 
c 
c ... Subroutine to pick off the indicies of the 2 large peaks in 
c      the signal.   An error is returned if 2 unique peaks are not found. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

integer*4 nPtSVec 
real*4 sVector(2,nPtSVec) 

c 
c ... Return Arguments: 
c 

integer*4 pklNdx 
integer*4 pk2Ndx 
logical error 

c 
c ... Comments: 
c 
~*********************************************************************** 

c 
c ... Local Parameter 
c 

parameter (DOWNTRIG=4) 
c 
c ... Local Variables: 
c 

integer*4 ndxMax, downCnt, minNdx 
logical*2 negSlope, pklFnd 
real*4 valMax, valOld 

c 
g* *************************************************************** 

c 
c ... Initialize values 
c 

valMax    =-l.e32 
valOld    = -l.e32 
ndxMax   = -1 
pklFnd    = .false. 
negSlope = .false. 
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downCnt = 0 
pklNdx = -1 
pk2Ndx = -1 
minNdx = -1 

c 
c ... Initialize Error Flag 
c 

error = .false, 
c 
c ... Start search for 1st peak 
c 

do i=l, nPtSVec 
if (sVector(2,i) .It. valOld) then 

negSlope = .true, 
if (downCnt .eq. 0) then 

valMax = valOld 
ndxMax = i-1 

endif 
downCnt  = downCnt + 1 
if (downCnt .ge. DOWNTRIG .and. .not. pklFnd) then 

pklNdx = ndxMax 
pklFnd = .true, 

endif 
else 

negSlope = .false. 
downCnt = 0 
if (pklFnd) then 

minNdx = i-1 
goto 10 

endif 
endif 

c 
valOld = sVector(2,i) 

enddo 
10 continue 

c 
if (pklFnd) then 

c 
c ...    Write diagnostics to output screen & output file 
c 

write(6, *) 
write(6, *) ' 1st Peak located at     index: ', pklNdx 
write(6, *) ' frequency: ',sVector(l,pklNdx) 
write(6, *) ' amplitude: ',sVector(2,pklNdx) 

else 
error = .true. 
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write(6, *) 
write(6, *) ' Could not locate 1st Peak!' 
return 

endif 
c 

if (pklFnd .and. minNdx .gt. 0) then 
c 
c ...    Locate 2nd peak 
c 

valMax = -l.e32 
ndxMax = -1 
do i=minNdx, nPtSVec 

if (sVector(2,i) .gt. valMax) then 
valMax = sVector(2,i) 
ndxMax = i 

endif 
enddo 

c 
c ...    Set index for 2nd peak 
c 

pk2Ndx = ndxMax 
c 

write(6, *) ' ' 
write(6, *) ' 2nd Peak located at      index: ', pk2Ndx 
write(6, *) ' frequency: \sVector(l,pk2Ndx) 
write(6, *) ' amplitude: \sVector(2,pk2Ndx) 

c 
else 

error = .true. 
write(6, *) * ' 
write(6, *) ' Error in Peak Search: Couldn"t locate 2nd peak, 

endif 
c 

return 
end 
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subroutine sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx, 
> wdlNdx, wd2Ndx, width) 

c 
g*********************************************************************** 

c 
c ... Subroutine to calculate the width of the signal. 
c      Currently the signal width is defined as the FWHM 
c      locations spanning over the range of the 2 amplitude peaks. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/01/93 
c 
c ... Input Arguments: 
c 

integer*4 nPtSVec, pklNdx, pk2Ndx 
real*4 sVector(2,nPtSVec) 

c 
c ... Return Arguments: 
c 

integer*4 wdlNdx 
integer*4 wd2Ndx 
real* 4 width 

c 
c ... Comments: 
c 
p***************************************************************,!,,!,,!,,!,,!,,),*,!, 

c 
c ... Local Variables: 
c 

integer*4 minNdx 
real*4 valHalfMax, valMin 
real*4 slope, frql, frq2 

c 
c*************************************************************** 

c 
c ... Initialize values 
c 

valMin    = l.e32 
minNdx    = -1 

c 
c ... Find minimum amplitude 
c 

do i=l, nPtSVec 
if (sVector(2,i) .It. valMin) then 

4-67 



Minimum amplitude index: ', minNdx 
frequency: ', sVector(l, minNdx) 

amplitude (Db): ', sVector(2, minNdx) 

valMin = sVector(2,i) 
minNdx = i 

endif 
enddo 

c 
c ... Output minimum amplitude (in DB scale) 
c 

write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 

c 
c ... Find maximum amplitude 
c 

if (sVector(2, pklNdx) .It. sVector(2, pk2Ndx)) then 
valMax = sVector(2, pklNdx) 

else 
valMax = sVector(2, pk2Ndx) 

endif 
c 
c ... Convert from Db scale 
c 

valMin = 10**(valMin/20.) 
valMax = 10**(valMax/20.) 

c 
c ... Calculate Half maximum 
c 

valHalfMax = valMin + (valMax - valMin)/2. 
c 
c ... Convert back to Db scale 
c 

valHalfMax = 20.*aloglO(valHalfMax) 
c 
c ... Output half maximum value 
c 

write(6, *) ' • 
write(6, *) ' Half Maximum amplitude in signal: ', valHalfMax 
write(6, *) ' ' 

c 
c ... Determine width indicies 
c 

do i=pklNdx, 1,-1 
if (sVector(2,i) .It. valHalfMax) goto 10 

enddo 
10 wdlNdx = i 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

do i=pk2Ndx, nPtSVec 
if (sVector(2,i) .It. valHalfMax) goto 20 

enddo 
20 wd2Ndx = i 

... Interpolate (linear) to get half-maximum channel boundaries 

slope = (sVector(l, wdlNdx+1) - sVector(l, wdlNdx))/ 
> (sVector(2, wdlNdx+1) - sVector(2, wdlNdx)) 
frql = sVector(l, wdlNdx) + slope*(valHalfMax - sVector(2,wdlNdx)) 
slope = (sVector(l, wd2Ndx-l) - sVector(l, wd2Ndx))/ 

> (sVector(2, wd2Ndx-l) - sVector(2, wd2Ndx)) 
frq2 = sVector(l, wd2Ndx) + slope*(valHalfMax - sVector(2,wd2Ndx)) 

... Calculate width 

width = frq2 - frql 

... Output width indicies and amplitudes 

write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 
write(6, * 

' Width index 1: ', wdlNdx 
1      frequency: ', sVector(l,wdlNdx) 
'      amplitude: ', sVector(2,wdlNdx) 

' Width index 2: ', wd2Ndx 
'       frequency: ', sVector(l,wd2Ndx) 

amplitude: ', sVector(2,wd2Ndx) 

' Interpl Width; ', width 

return 
end 
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APPENDIX 4B 
TIPT0E2A Source Code Listings 

DEMO.BAT 

This program creates the DEM02A.EXE code from several components using the Microsoft 
fortran (version 5.0) compiler. 

fl /G2 demo2a.for tiptoe.for siggen.for sigfeat.for check.for 
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DEM02A.F0R 

program demo2a 
c 

c 
c ... Program to demonstrate a tuning method utilizing the Tiptoe 
c      algorithm. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 04/10/94 
c 
c ... Input Arguments: 
c 
c ... Return Arguments: 
c 
c ... Subroutines called: 
c 
c      tiptoe 
c      checkParms 
c 
c ... Comments: 
c 

c 
c ... Local Variables: s 

c 

parameter ( DELTA_MAX_THRESH=1.0, DELTA_MIN_THRESH=1.7 ) 
parameter ( NUM_OUTER_LIM=2, NUM_INNER_LIM=8 ) 

c 
parameter ( CNVRG_LIM = 0.005 ) 
parameter ( WIDE_AMP_RATIO=l., WIDE_WID_OFF=0., 

> WIDE_WID_GOAL=DELTA_MIN_THRESH ) 
c 

real*4  outer_lim(2, NUM_OUTER_LIM) 
real*4  innerJim(2,NUM_INNER_LIM) 
logical    tiptoe, checkParms, cwide, cnarr 
integer*4 failMode 

c 
data outerjim / 3240., 3., 3360., 3. / 

c 
data innerjim / 3265., 3., 3270., 1.5, 3275., 1.2, 3280., 1.2, 

> 3320., 1., 3325., 1.,   3330., 1.3, 3335., 3. / 
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c 
c ... Initialize logicals 
c 

cwide = .false. 
cnarr = .false, 

c 
c ... Look for Widest configuration 
c 

if (tiptoe( WIDE_AMP_RATIO, WIDE_WID_OFF, 
> (WIDE_WID_GOAL-CNVRG_LIM), CNVRG_LIM, 
> sPlWide, sP2Wide ) ) then 

cwide = .true. 
write( *, '( " Tiptoe converged for wide configuration ...", 

> /, "    SP1=", flO.4, " SP2= ", fl0.4, / )' ) 
> sPlWide, sP2Wide 
else 

write( *, '( " Tiptoe could not converge for wide ", 
> " configuration ...", / )' ) 
endif 

c 
c ... Check if finished. 
c 

if ( checkParmst DELTA_MAX_THRESH, DELTA_MIN_THRESH, 
> NUM_OUTER_LIM, outerjim, NUM_INNER_LIM, 
> innerjim, failMode ) ) then 

write( *, '( /, " Signal passed all checks!","/)' ) 
write( 6, '(/, " Signal passed all checks!", /)' ) 

else 
write( *, '(" Signal failed check ...", / 

> "    Mode of failure: ", i2)' ) failMode 
write( 6, '(" Signal failed check ...", / 

> "    Mode of failure: ", i2)' ) failMode 
endif 

c 
stop 'Demo2a ... Normal Completion' 
end 
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TIPTOE.FOR 

logical function tiptoe ( ampRatio, widLocOff, widthMag, ratioLim, 
> sParaml, sParam2 ) 

c 
g*********************************************************************** 

c 
c ... Function to calculate S-parameters utilizing Martin Lee's famous 
c      tiptoe algorithm.  Inputs to this routine are the desired amplitude 
c      ratio, the amplitude offset at which the width is to be calculated, 
c      the desired magnitude of the width, and the ratio convergence 
c      limit.  The funtion returns a boolean indicating whether or not 
c      a solution was obtained.  If this function returns true, the valid 
c      values of the S Parameters are passed back to the calling routine. 
c      If the function returns false the S Parameter values contain the 
c      last values attempted prior to failure. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 02/25/93 
c 
c 
c ... Input Arguments: 
c 

real*4  ampRatio 
real*4  widLocOff 
real*4  widthMag 
real*4  ratioLim 

c 
c ... Return Arguments 
c 

real*4  sParaml 
real*4  sParam2 

c 
c ... Subroutines called: 
c 
c signalGen 
c signalFeats 
c printParams 
c 
c ... Comments: 
c 
c Tiptoe-1A main routine converted to a function for use 
c in the 2A phase, 
c 
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c ... Parameters: 
c 

parameter ( MAX_ITER=20, MAX_SUB_ITER=5 ) 
c 
c ... Variables: 
c 

character* 1       adum 
character* 128    oName 
logical rescale, converged 
integer*4 loName 
integer*4 numlter, sublter 
integer*4 maxStepSize 
integer*4 read_mode, write_mode 
real*4 sParmlOld, sParmlNew, dSParml 
real*4 sParm201d, sParm2New, dSParm2 
real*4 sAmpl, sAmp2, sAmpMin 
real*4 wChanl, wChan2, sWidth 
real*4 ampRatioOld, ampRatioNew, dAmpRatio 
real*4 widthRatioOld, widthRatioNew, dWidthRatio 
real*4 kickSl, kickS2 
real*4 dAdS 1, dAdS2, dWdS 1, dWdS2 
real*4 deltaAmp, deltaWidth, deltaSPl, deltaSP2 
real*4 detlnv, distOld, distNew 

c 
c ... Data: 
c 
c ...    Define name of diagnostic output file 
c 

data oName(l:) /'tiptoe.out'/ 
c 
c ...    Define read/write modes 
c 

data read_mode  101 
data write_mode III 

c 

c 
c ... Initialize counters 
c 

maxStepSize = 1 
numlter      = 0 
sublter      = 0 
rescale      = .false. 
converged    = .false, 

c 
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c ... Ask user for desired signal width 
c 
c        write(*, '("SPlease enter Width Criterion: ")') 
c        read(*, *) widthMag 
c 
c ... Open file for diagnostic output 
c 

loName = length(oName) 
open(6, file=oName(l:loName), status-unknown', form-formatted', 

> err=10) 
c 
c ... Read in current values for S parameters 
c 

call signalGen(read_mode, sParmlNew, sParm2New) 
c 
c ... Calculate Amplitude and Width Ratios 
c 

call signalFeats( ampRatio, widLocOff, widthMag, 
> ampRatioNew, widthRatioNew, sAmpl, sAmp2, 
> sAmpMin, wChanl, wChan2, sWidth ) 

c 
c ... Output amplitude and width ratio values 
c 

call printParams( 0, sParmlNew, sParm2New, numlter, sublter, 
> sAmpl, sAmp2, ampRatioNew, sWidth, 
> widthRatioNew) 

call printParams( 6, sParmlNew, sParm2New, numlter, sublter, 
> sAmpl, sAmp2, ampRatioNew, sWidth, 
> widthRatioNew) 

c 
c ... Check that features were located 
c 

if ( sWidth .eq. 0 )   then 
tiptoe = .false. 
sParaml = sParmlNew 
sParam2 = sParm2New 
return 
endif 

c 
c ... Start of iterative loop 
c 

do while ( ( .not. converged ) .and. numlter .le. MAX_ITER) 
c 
c ...    Increment iteration counter 
c 

numlter = numlter + 1 
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sublter = 0 
c 
c ...    Calculate perturbation for S parameters 
c 

kickSl =0.01 
kickS2 = 0.01 

c 
c ...    Store current S parameter values as "previous" values 
c 

sParmlOld = sParmlNew 
sParm201d = sParm2New 

c 
c ...    Store current Amplitude and Width ratios as "previous" values 
c 

ampRatioOld    = ampRatioNew 
widthRatioOld = widthRatioNew 

c 
c ...    Perturb current value of SI parameter for next signal 
c 

25    dSParml    = kickSl*sParml01d 
c 

sParmlNew = sParmlOld + dSParml 
c 
c ...    Generate new signal 
c 

call signalGen(write_mode, sParmlNew, sParm201d) 
c 
c ...    Calculate Amplitude and Width Ratios for dSl signal vector 
c 

call signalFeats( ampRatio, widLocOff, widthMag, 
> ampRatioNew, widthRatioNew, sAmpl, sAmp2, 
> sAmpMin, wChanl, wChan2, sWidth ) 

write(6, *) 

write(6, '(" sParmlPrime = ", f6.2, 
> " sParameter2 = ", f6.4)') sParmlNew, sParm201d 

write(6, '(" Iter    Ampl      Amp2    Ratio     Width  Ratio")') 
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 

> numlter, sAmpl, sAmp2, ampRatioNew, sWidth, widthRatioNew 

c 
c ...    Check that features were located 
c 

if ( sWidth .eq. 0 )  then 
kickSl = kickSl/2. 

4-76 



goto 25 
endif 

c 
c ...    Calculate dSI partial derivatives 
c 

dAmpRatio    = ampRatioNew - ampRatioOld 
dWidthRatio = widthRatioNew - widthRatioOld 

c 
dAdSl = dAmpRatio/dSParml 
dWdSl = dWidthRatio/dSParml 

c 
c ...    Perturb current value of S2 parameter for next signal 
c 

50    dSParm2    = kickS2*sParm201d 
c 

sParm2New = sParm201d + dSParm2 
c 
c ...    Generate new signal 
c 

call signalGen(write_mode, sParmlOld, sParm2New) 
c 
c ...    Calculate Amplitude and Width Ratios for dS2 signal vector 
c 

call signalFeats( ampRatio, widLocOff, widthMag, 
> ampRatioNew, widthRatioNew, sAmpl, sAmp2, 
> sAmpMin, wChanl, wChan2, sWidth ) 

write(6, *) 
write(6 '(" *******************************************iiy'\ 
write(6, '(" sParameterl = ", f6.2, 

> " sParm2Prime = ", f6.4)') sParmlOld, sParm2New 
write(6  '(" *******************************************"\'\ 
write(6, '(" Iter    Ampl     Amp2    Ratio     Width  Ratio")') 
write(6, *(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 

> numlter, sAmpl, sAmp2, ampRatioNew, sWidth, widthRatioNew 
writefö '(" *******************************************,,y\ 

c 
c ...    Check that features were located 
c 

if ( sWidth .eq. 0 )  then 
kickS2 = kickS2/2. 
goto 50 

endif 
c 
c ...    Calculate dS2 partial derivatives 
c 

dAmpRatio    = ampRatioNew - ampRatioOld 
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dWidthRatio = widthRatioNew - widthRatioOld 

dAdS2 = dAmpRatio/dSParm2 
dWdS2 = dWidthRatio/dSParm2 

Iteration #: ', numlter 
dAdSl: *, dAdSl 
dWdSl: ', dWdSl 
dAdS2: ', dAdS2 
dWdS2: ', dWdS2 

write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 
write(6, *) 

c 
c ...    Calculate reciprical determinant of partial derivative matrix 
c 

detlnv = 1.0/(dAdSl*dWdS2 - dAdS2*dWdSl) 
c 

100    sublter = sublter + 1 
c 

if ( sublter .gt. MAX_SUB_ITER ) then 
c 
c ...      Maximum number of allowed sub-iterations exceeded without 
c convergence.  Return FALSE to the calling program, 
c 

write( 6, '( /, " Maximum # of sub-iterations reached in ", 
> "tiptoe algorithm.", /, 
> " Retuning to calling program ...", // )' ) 

tiptoe  = .FALSE. 
sParaml = sParmlNew 
sParam2 = sParm2New 
return 

endif 
c 
c ...    Estimate needed change in amplitude and width ratios 
c 

deltaAmp    = (ampRatio - ampRatio01d)/float(maxStepSize) 
deltaWidth = (1.0 - widthRatio01d)/float(maxStepSize) 

c 
c ...    Calculate corresponding change in S parameter values 
c 

deltaSPl = detInv*(dWdS2*deItaAmp - dAdS2*deltaWidth) 
deltaSP2 = detInv*(dAdSl*deltaWidth - dWdSl ""deltaAmp) 

c 
c ...    Calculate new S parmeter values 
c 

sParmlNew = sParmlOld + deltaSPl 
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sParm2New = sParm201d + deltaSP2 
c 
c ...    Generate new signal 
c 

call signalGen( write_mode, sParmlNew, sParm2New ) 
c 
c ...    Calculate Amplitude and Width Ratios 
c 

call signaIFeats( ampRatio, widLocOff, widthMag, 
> ampRatioNew, widthRatioNew, sAmpl, sAmp2, 
> sAmpMin, wChanl, wChan2, sWidth ) 

c 
c ...    Output amplitude and width ratio values 
c 

call printParams( 0, sParmlNew, sParm2New, numlter, sublter, 
> sAmpl, sAmp2, ampRatioNew, sWidth, 
> widthRatioNew) 

call printParams( 6, sParmlNew, sParm2New, numlter, sublter, 
> sAmpl, sAmp2, ampRatioNew, sWidth, 
> widthRatioNew ) 

c 
c ...    Check for convergence 
c 

distOld = sqrt( (ampRatio - ampRatioOId)**2 + 
> (1. - widthRatio01d)**2 ) 

distNew = sqrt( (ampRatio - ampRatioNew)**2 + 
> (1. - widthRatioNew)**2 ) 

c 
if (sWidth .eq. 0. .or.   distNew .gt. distOld) then 

maxStepSize = 2*maxStepSize 
rescale = .true. 
write(*, *) 
write(*, '(" Convergence Criteria Failure:")') 
write(*, '("    AmpRatio = ", flO.4)') ampRatioNew 
write(*, '("    Old Distance = ", flO.4)') distOld 
write(*, '("    New Distance = ", flO.4)') distNew 
write(*, *) 
write(*, '(" MaxStepSize => ", i3)') maxStepSize 
goto 100 

else 
if (rescale .and. maxStepSize .gt. 1) 

> maxStepSize = maxStepSize/2 
rescale = .false. 

endif 
c 
c ...    Completed with entire tiptoe iteration 
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write( *, '( /, " Tiptoe finished with ", 
> i2, " iterations." )' ) numlter 

write(*, '(" Hit <return> to continue ...")') 
read(*, '(a)') adum 

c 
c ...    Check for convergence 
c 

if ( abs( ampRatio - ampRatioNew ) .le. ratioLim .and. 
> abs( 1. - widthRatioNew ) .le. ratioLim ) 
> converged = .true, 

c 
enddo 

c 
if ( converged ) then 

c 
c ...    Convergence achieved so set return value to TRUE 
c 

tiptoe = .true. 
c 

else 
c 
c ...    Maximum number of allowed iterations exceeded without 
c convergence.  Return FALSE to the calling program, 
c 

write( 6, '( /, " Maximum # of sub-iterations reached in ", 
> "tiptoe algorithm.", /, 
> " Retuning to calling program ...", // )' ) 

tiptoe = .false. 
c 

endif 
c 
c ... Set current S Parameter values 
c 

sParaml = sParmlNew 
sParam2 = sParm2New 

c 
return 

c 
10 stop ' Unable to open diagnostic output file in Tiptoe function.1 

end 

4-80 



subroutine printParams( 1U, sParaml, sParam2, numlter, sublter, 
> ampl, amp2, ampRatio, width, widthRatio ) 

c 

c 
c ... Subroutine to print out S parameters and corresponding signal 
c      features 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

real*4     sParaml, sParam2 
real*4     ampl, amp2, ampRatio 
real*4     width, widthRatio 

c 
integer*4 1U, numlter, sublter 

c 
c ... Return Arguments: 
c 
c ... Comments: 
c 

c 
c ... Check for screen output 
c 

if (1U .eq. 0) then 
write(*, *) 
write(*, 

> Y"   *****************************##H>**#jK##j|ei|ej|c**i|tj|c###ll\l\ 

write(*,'("  sParameterl = ", f6.2, 5x, 
> " sParameter2 = ", f6.4)') 
> sParaml, sParam2 

write(*, 

write(*, 
> '("  Itr  SI    Ampl     Amp2    Ratio     Width  Ratio")') 

write(*,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)') 
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio 

write(*, 
> Y" *******************************i|c***************H"'y\ 

else 
write(lU, *) 
write(lU, 
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> l/ll   * ** >|t * Jit******* * ***** ** ************* *** =4<:*>)c********"\'\ 

write(lU, 
> '(" sParameterl = ", f6.2, 5x, 
> " sParameter2 = ", f6.4)') 
> sParaml, sParam2 

write(IU, 
-> i/H ************************************************im\ 

write(lU, 
> '("  Itr  SI    Ampl     Amp2    Ratio     Width  Ratio")') 

write(lU,'(lx, 2i4, 2f8.2, Ix, f6.3, lx, f8.2, lx, f6.3)') 
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio 

write(lU, 
> I/» ************************************************im\ 

endif 
return 
end 
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SIGGEN.FOR 

subroutine signalGen( ioMode, sParaml, sParam2 ) 
c 
-********************************************************************** 

c 
c ... Subroutine to generate a new signal given passed values of S 
c      parameters.  If i/o mode is set to "read" then the values of the 
c      S parameters in the current signal file are passed back to the 
c      calling routine. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

integer*4 ioMode 
real*4 sParaml, sParam2 

c 
c ... Return Arguments: 
c 
c real*4 sParaml, sParam2 
c 
c ... Subroutines Called: 
c 
c sParamlO 
c 
c ... Comments: 
c 
c Arguments sParaml, sParam2 are used as return values when 
c "READ" mode is used. 
c 
^* ********************************************************************** 

c 
c ... Local Variables: 
c 

parameter (READ=0) 
parameter (WRITE=1) 

c 
character* 1     adum 
character* 128  pName 

c 
c ...    Define name of file containing active S parameter values 
c 

data pName(l:) /'demo.ckt'/ 

4-83 



c 
c 
c ... Access .CKT file for read/write of S parameters 
c 

call sParamIO( pName, ioMode, sParaml, sParam2 ) 
c 
c ... Notify user to generate new signal using Eagle software 
c       if in "write" mode, 
c 

if (ioMode .eq. WRITE) then 
write(*, '(/, " Updated .CKT file with:    SI => ", fl0.4, 

> "    S2 => ", flO.4)') sParaml, sParam2 
write(*, *) 
write(*, '(" Press <return> after new signal", 

> " has been generated by Eagle Software ...")') 
read(*, '(a)') adum 

endif 
c 

return 
end 
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subroutine sParamIO( pName, ioMode, sParaml, sParam2 ) 
c 
c 
c 
c ... Subroutine to read in the S parameter file (*.CKT) and 
c      read/write the S parameters from/to the file.  The parameter 
c      "ioMode" determines whether the S parameters are being read from or 
c      written to the file "pName". 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

character* 128    pName 
integer*4 ioMode 
real*4 sParaml, sParam2 

c 
c ... Return Arguments: 
c 
c real*4 sParaml, sParam2 
c 
c ... Comments: 
c 

C 

c ... Local Variables: 
c 

parameter (READ=0) 
parameter (WPJTE=1) 
parameter (NUM_REC_MAX=200) 

c 
integer*4 lpName, lenRec(NUM_REC_MAX) 

c 
character* 128 record(NUM_REC_MAX) 

c 
£j|l    ************************************************************* 

c 
c ... Open S parameter file 
c 

lpName = length(pName) 
open(2, file=pName(l:lpName), status-old', form-formatted', 

>      err=10) 
c 
c ... Read records from S Parameter file. 
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numRec = 0 
if (ioMode .eq. READ) then 

do while(numRec .It. NUM_REC_MAX) 
record(l)(l:) = " 
read(2, err=20, end=30, fmt='(a)') record(l)(l:) 
lenRec(l) = length(record(l)) 
numRec = numRec + 1 
if (numRec .eq. 2) read(record(l)(17:lenRec(l)), fmt='(f7.5)', 

> err=25) sParam2 
if (numRec .eq. 46) read(record(l)(4:lenRec(l)), fmt='(f7.3)', 

> err=25) sParaml 
enddo 

else 
do while(numRec .It. NUM_REC_MAX) 

numRec = numRec + 1 
record(numRec)(l:) = ' ' 
read(2, err=20, end=30, fmt=*(a)') record(numRec)(l:) 
lenRec(numRec) = length(record(numRec)) 
if (numRec .eq. 2) then 

write(record(numRec)(17:23), fmt='(f7.5)', err=25) sParam2 
if (sParam2 .It. 1.0) record(numRec)(17:17) = '0' 

elseif (numRec .eq. 46) then 
write(record(numRec)(4:), fmt='(f7.3)\ err=25) sParaml 

endif 
enddo 

endif 

write(6, *) ' S Parameter file: 7/pName(l:lpName) 
write(6, *) ' Contains too many records for current array size.' 
stop ' Program terminating ...' 

10 write(6, *) ' Error opening S Parameter file: 7/pName(l:lpName) 
stop ' Program terminating ..." 

20 write(6, *) ' Error reading record: ', numRec 
write(6, *) ' in S Parameter file: 7/pName 
stop ' Program terminating ...' 

25 write(6, *) ' Error parsing information from record: ', numRec 
write(6, *) ' in file: ', pName(l:lpName) 
stop ' Program terminating ..." 

30 if (ioMode .eq. WRITE) then 
numRec = numRec - 1 
rewind(2) 
do i = 1, numRec 

write(2, '(a)') record(i)(l:lenRec(i)) 
enddo 

endif 
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close(2) 
c 

return 
end 
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SIGFEAT.FOR 

subroutine signalFeats( ampRatioGoal, widLocOff, refWidth, 
> ampRatio, widRatio, sAmpl, sAmp2, sAmpMin, 
> wChanl, wChan2, sWidth ) 

c 

c 
c ... Subroutine to measure and evaluate the features of the current 
c      signal.  Inputs include the desired amplitude ratio, 
c      the amplitude offset at which the signal 
c      width is to be evaluated and the reference width from which 
c      to calculate the width ratio.  The returned feature values include 
c      the amplitude of both  principal maxima, the amplitude of the 
c      principal minimum, the fractional channel boundaries that 
c      determine the signal width, the sinal width, the ratio of the 
c      two principal maxima, and the ratio of the measured width to the 
c       supplied reference width. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 03/05/93 
c 
c 
c ... Input Arguments: 
c 

real*4 ampRatioGoal 
real*4 widLocOff 
real*4 refWidth 

c 
c ... Return Arguments: 
c 

real*4 ampRatio, widRatio 
real*4 sAmpl, sAmp2, sAmpMin 
real*4 wChanl, wChan2, sWidth 

c 
c ... Subroutines called: 
c 
c sRead 
c peakNdcs 
c sigWidth 
c 
c ... Comments: 
c 

c 
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c ... Local Variables: 
c 

parameter (MAXPT=300) 
c x 

character* 128    sName 
integer*4 nPtSVec 
integer*4 pklNdx, pk2Ndx, minNdx 
logical perror 
real*4 sVector(2,MAXPT), sAmpMax, widthLoc, deltaMax 

c 
c ... Data: 
c 
c ...    Define name of file containing signal amplitudes 
c 

data sName(l:) /'signal.out'/ 
c 

C 

c ... Read in signal vector 
c 

call sRead (sName, MAXPT, sVector, nPtSVec) 
c 
c ... Locate positions of peaks 
c 

call peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, minNdx, perror) 
c 
c ... Check for error finding peaks 
c 

if (perror) then 
ampRatio = 0. 
widRatio = 0. 
return 

endif 
c 
c ... Set maxima and minimum amplitude values 
c 

sAmpl    = sVector(2, pklNdx) 
sAmp2    = sVector(2, pk2Ndx) 
sAmpMin = sVector(2, minNdx) 

c 
c ... Use an average to describe the maximum from which to measure 
c      relative offsets, 
c 

if ( ampRatioGoal .ge. 1.0 ) then 
deltaMax = ( 1.0 - ampRatioGoal )*sAmpl 

else 
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deltaMax-- ( ampRatioGoal - 1.0 )*sAmp2 
endif 
sAmpMax = ( sAmpl + sAmp2 + deltaMax )/2.0 

c 
e ... Check "widLocOff value to determine which width feature to use. 
c      Define the width to be the amplitude difference between the maximum 
c      and the minimum if the width location offset is zero.   Otherwise 
c      define the width to be the distance across the signal at the 
c      relative offset distance below the maximum peak. 
c 

if ( widLocOff .le. 0. ) then 
wChanl = sVector(l, minNdx) 
wChan2 = wChanl 
sWidth = sAmpMax - sAmpMin 

else 
c 
c ...    Set relative width location 
c 

widthLoc = sAmpMax - widLocOff 
c 
c ...    Locate width indicies and interpolated width 
c 

call sigWidth( sVector, nPtSVec, pklNdx, pk2Ndx, widthLoc, 
> wChanl, wChan2, sWidth) 
endif 

c 
c ... Calculate current ratios 
c 

ampRatio = sAmp2/sAmpl 
widRatio = sWidth/refWidth 

c 
return 
end 
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subroutine sRead (fName, MAXPT, sVector, nPtSVec) 
c 
c 
c 
c ... Subroutine to read in the signal file output by the signal 
c      generating program. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Input Arguments: 
c 

character* (*)    fName 
integer*4 MAXPT 

c 
c ... Return Arguments: 
c 

real*4 sVector(2,MAXPT) 
integer*4 nPtSVec 

c 
c ... Comments: 
c 

c 
c ... Local Variables: 
c 

integer*4 lfName, i 
real*4     sdum 

c 

c 
lfName = length(fName) 

c 
c ... Open signal file 
c 

open(2, file=fName(l:lfName), status-old', form-formatted', 
> err=10) 

c 
c ... Read in signal values 
c 

do i=l,MAXPT+l 
read(2, err=20, end=30, fmt=*) 

> sVector(l,i), sdum, sdum, sVector(2,i) 
enddo 

c 
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write(6, *) ' Signal file: ', fName(l.ifName) 
write(6, *) ' Contains too many records for current array size.1 

stop ' Program terminating ..." 
10 write(6, *) ' Error opening signal file: ', fName(l:lfName) 

stop ' Program terminating ...' 
20 write(6, *) ' Error reading record: ', i 

write(6, *) ' in signal file: ', fName(l:lfName) 
stop ' Program terminating ..." 

30 close(2) 
nPtSVec = i-1 

c 
c ... Convert signal to DB 
c 

do i=l,NptSVec 
sVector(2,i) = 20.*aloglO(sVector(2,i)) 
write(6, *) i, '    x= ', sVector(l,i), '    y= ', sVector(2,i) 

enddo 
return 
end 
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subroutine peakNdcs( sVector, nPtSVec, pklNdx, pk2Ndx, minNdx, 
> error) 

c 
c 
c 
c ... Subroutine to pick off the indicies of the 2 large peaks and the 
c      minimum in the signal.   An error is returned if 2 unique peaks are 
c      not found. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 11/13/93 
c 
c ... Updated: 03/03/94 
c 
c ... Input Arguments: 
c 

integer*4 nPtSVec 
real*4 sVector(2,nPtSVec) 

c 
c ... Return Arguments: 
c 

integer*4 pklNdx 
integer*4 pk2Ndx 
integer*4 minNdx 
logical error 

c 
c ... Comments: 
c 

c 
c ... Local Parameter 
c 

parameter (DOWNTRIG=4) 
c 
c ... Local Variables: 
c 

integer*4 ndxMax, downCnt 
logical*2 negSlope, pklFnd 
real*4 valMax, valMin, valOld 

c 

c 
c ... Initialize values 
c 

valMax    = -l.e32 
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valOld    = -l.e32 
valMin    =   l.e32 
ndxMax    = -1 
pklFnd    = .false. 
negSlope = .false. 
downCnt  = 0 
pklNdx    = -1 
pk2Ndx    = -1 
minNdx    = -1 

c 
c ... Initialize Error Flag 
c 

error = .false. 
c 
c ... Start search for 1st peak 
c 

do i=l, nPtSVec 
if (sVector(2,i) .It. valOld) then 

negSlope = .true. 
if (downCnt .eq. 0) then 

valMax = valOld 
ndxMax = i-1 

endif 
downCnt  = downCnt + 1 
if (downCnt .ge. DOWNTRIG .and. .not. pklFnd) then 

pklNdx = ndxMax 
pklFnd = .true, 

endif 
else s 

negSlope = .false. 
downCnt = 0 
if (pklFnd) then 

minNdx = i-1 
goto 10 

endif 
endif 

c 
valOld = sVector(2,i) 

enddo 
10 continue 

c 
if (pklFnd) then 

c 
c ...    Write diagnostics to output screen & output file 
c 

write(6, *) 
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write(6, *) ' 1st Peak located at     index: ', pklNdx 
write(6, *) ' frequency: ',sVector(l,pklNdx) 
write(6, *) ' amplitude: ',sVector(2,pklNdx) 

else 
error = .true. 
write(6, *) 
write(6, *) ' Could not locate 1st Peak!' 
return 

endif 
c 

if (pklFnd .and. minNdx .gt. 0) then 
c 
c ...    Locate 2nd peak 
c 

valMax = -l.e32 
ndxMax = -1 
do i=minNdx, nPtSVec 

if (sVector(2,i) .gt. valMax) then 
valMax = sVector(2,i) 
ndxMax = i 

endif 
enddo 

c 
c ...    Set index for 2nd peak 
c 

pk2Ndx = ndxMax 
c 

write(6, *) ' ' 
write(6, *) ' 2nd Peak located at      index: ', pk2Ndx 
write(6, *) ' frequency: ',sVector(l,pk2Ndx) 
write(6, *) ' amplitude: ',sVector(2,pk2Ndx) 

c 
c ...    Locate minimum amplitude between principal maxima 
c 

do i=pklNdx, pk2Ndx 
if (sVector(2,i) .It. valMin) then 

valMin = sVector(2,i) 
minNdx = i 

endif 
enddo 

c 
write(6, *) ' ' 
write(6, *) ' Minimum located at        index: ', minNdx 
write(6, *) ' frequency: ',sVector(l,minNdx) 
write(6, *) ' amplitude: ',sVector(2,minNdx) 
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else 
error = .true. 
write(6, *) ' ' 
write(6, *) ' Error in Peak Search: Couldn"t locate 2nd peak.1 

endif 

return 
end 
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subroutine sigWidth( sVector, nPtSVec, pklNdx, pk2Ndx, widthLoc, 
> wChanl, wChan2, width ) 

c 
-■fr***************** * * lie************************************************** 

c 
c ... Subroutine to calculate the width of the signal at the DB level 
c      specified by the input parameter "widthLoc".  Linear interpolation 
c       is performed to find the fractional channel corresponding to the 
c       specified amplitude "widthLoc". 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/01/93 
c 
c ... Updated: 03/10/94 
c 
c ... Input Arguments: 
c 

integer*4 nPtSVec, pklNdx, pk2Ndx 
real*4 sVector(2,nPtSVec) 

c 
c ... Return Arguments: 
c 

real*4 wChanl 
real*4 wChan2 
real*4 width 

c 
c ... Comments: 
c 

c 
c ... Local Variables: 
c 

integer*4 wdlNdx, wd2Ndx 
real*4 valMinl, valMin2, valMin 
real*4 slope 

c 
£*   **************************************************************** 

c 
c ... Calcuate validity regions for width 
c 
c ... Find minimum amplitude on front side of 1st peak 
c 

valMinl = l.e32 
do i=l, pklNdx 

if ( sVector(2,i) .It. valMinl ) valMinl = sVector(2,i) 
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enddo 
c 
c ... Find minimum amplitude on back side of 2nd peak 
c 

valMin2 = l.e32 
do i=pk2Ndx, nPtSVec 

if ( sVector(2,i) .It. valMin2 ) valMin2 = sVector(2,i) 
enddo 

c 
c ... Set Minimum acceptable amplitude 
c 

if ( valMinl .It. valMin2 ) then 
valMin = valMin2 

else 
valMax = valMinl 

endif 
c 
c ... Set Maximum acceptable amplitude 
c 

if (sVector(2, pklNdx) .It. sVector(2, pk2Ndx)) then 
valMax = sVector(2, pklNdx) 

else 
valMax = sVector(2, pk2Ndx) 

endif 
c 
c ... Check if requested amplitude for width measurement is within 
c      the acceptable range, 
c 

if ( widthLoc .It. valMin .or. widthLoc .gt. valMax ) then 
write(6, *) ' ' 
write(6, *) ' ERROR determining signal width...' 
write(6, *) ' Amplitude for width measurement outside of limit.' 
write(6, *) ' Width requested at amplitude (DB): ', widthLoc 
write(6, *) ' Minimum width amplitude (DB)       : ', valMin 
write(6, *) ' Maximum width amplitude (DB)      : ', valMax 
write(6, *) ' ' 

c 
c ...    Set width to Zero and return 
c 

width = 0. 
return 

c 
endif 

c 
c ... Output amplitude at which to measure width 
c 
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write(6, *) ' ' 
write(6, *) ' Measure width at amplitude (Db): ', widthLoc 
write(6, *) ' ' 

c 
c ... Determine width indicies 
c 

do i=pklNdx, 1,-1 
if (sVector(2,i) .It. widthLoc) goto 10 

enddo 
10 wdlNdx = i 

do i=pk2Ndx, nPtSVec 
if (sVector(2,i) .It. widthLoc) goto 20 

enddo 
20 wd2Ndx = i 

c 
c ... Interpolate (linear) to get fractional channel boundaries 
c 

slope = (sVector(l, wdlNdx+1) - sVector(l, wdlNdx))/ 
> (sVector(2, wdlNdx+1) - sVector(2, wdlNdx)) 
wChanl = sVector(l, wdlNdx) + slope*(widthLoc - sVector(2,wdlNdx)) 
slope = (sVector(l, wd2Ndx-l) - sVector(l, wd2Ndx))/ 

> (sVector(2, wd2Ndx-l) - sVector(2, wd2Ndx)) 
wChan2 = sVector(l, wd2Ndx) + slope*(widthLoc - sVector(2,wd2Ndx)) 

c 
c ... Calculate width 
c 

width = wChan2 - wChanl 
c 
c ... Output fractional channels and width 
c 

write(6, *) 
write(6, *) ' Signal Width-Channel 1: ', wChanl 
write(6, *) ' Signal Width-Channel 2: ', wChan2 
write(6, *) '      Interpolated Width: ', width 

c 
return 
end 
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function length( string ) 
c 
c" 
c 
c ... Utility function to determine the length of a character string. 
c      The length of the string is determined by finding the last 
c      "non-blank" character in the passed string. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 12/24/93 
c 
c ... Input Arguments: 
c 

character*(*)    string 
c 
c ... Return Arguments: 
c 
c integer*4 length 
c 
c ... Comments: 
c 

c 
length = len( string ) 
do while ( string(length:length) .eq. ' ' .and. length .gt. 0 ) 

length = length - 1 
enddo 
return 
end 
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CHECK.FOR 

logical function 
> checkParms( deltaMaxThresh, deltaMinThresh, NOL, outer_lim, 
> NIL, innerjim, failMode ) 

c 

c 
c ... Function to check if current signal meets the spec requirements. 
c      Returns TRUE if requirements are met, otherwise returns FALSE. 
c      The parameter "failMode" is used to signal the cause of failure. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 04/24/94 
c 
c ... Input Arguments: 
c 

integer*4 NOL, NIL, failMode 
real*4 deltaMaxThresh, deltaMinThresh 
real*4 outer_lim(2,NOL), innerjim(2,NOL) 

c 
c ... Return Arguments: 
c 
c boolean value of true or false 
c 
c ... Subroutines called 
c 
c sRead 
c peakNdcs 

real*4     relSigVal 
c 
c ... Comments: 
c 

c 
c ... Local Variables: 
c 

parameter (MAXPT=300) 
parameter ( CHN=1, AMP=2 ) 

c 
real*4 sAmpl, sAmp2, sAmpMin 
real*4 sVector(2,MAXPT), sAmpMax, relVal 
character* 128    sName 
integer*4 nPtSVec 

4-101 



integer*4 pklNdx, pk2Ndx, minNdx 
logical perror 

c 
c ... Data: 
c 
c ...    Define name of file containing signal amplitudes 
c 

data sName(l:) /'signal.out'/ 
c 
c* 
c 
c ... Initialize return value. 
c 

checkParms = .false. 
c 
c ... Read in signal vector 
c 

call sRead (sName, MAXPT, sVector, nPtSVec) 
c 
c ... Locate positions of peaks 
c 

call peakNdcs( sVector, nPtSVec, pklNdx, pk2Ndx, minNdx, perror ) 
c 
c ... Check for error finding peaks 
c 

if ( perror ) return 
c 
c ... Set maxima and minimum amplitude values 
c 

sAmpl = sVector(AMP, pklNdx) 
sAmp2 = sVector(AMP, pk2Ndx) 
sAmpMax = amaxO( sAmpl, sAmp2 ) 
sAmpMin = sVector(AMP, minNdx) 

c 
c ... Check feature limits 
c 

if ( ( abs( sAmpl - sAmp2 ) .gt. deltaMaxThresh ) .or. 
>      ( abs( sAmpMax - sAmpMin ) ) .gt. deltaMinThresh ) then 

failMode = 1 
return 

endif 
c 

write( *, '(" Signal Passed Amplitude Checks ... ")' ) 
write( 6, '(" Signal Passed Amplitude Checks ...'")' ) 

c 
c ... Check outer limits 
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do i = 1, NOL 
relVal = 

>     relSigVal( sAmpMax, outer_lim(CHN, i), sVector, nPtSVec ) 
if ( relVal .It. outer_lim(AMP, i) ) then 

failMode = 2 
return 

endif 
enddo 

c 
write( *, '(" Signal Passed Outer Bounds Checks ... ")' ) 
write( 6, '(" Signal Passed Outer Bounds Checks ... ")' ) 

c 
c ... Check inner limits 
c 

do i = 1, NIL 
relVal = 

>     relSigVal( sAmpMax, inner_lim(CHN, i), sVector, nPtSVec ) 
if ( relVal .gt. inner_lim(AMP, i) ) then 

failMode = 3 
return 

endif 
enddo 

write( *, '(" Signal Passed Interior Bounds Checks ... ")' ) 
write( 6, '(" Signal Passed Interior Bounds Checks ... ")' ) 

checkParms = .true. 

return 
end 
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real*4 function 
>  relSigVal( refAmp, chanNum, sVector, nPtSVec ) 

c 

c 
c ... Function to calculate and return the signal amplitude corresponding 
c      to the supplied channel frequency.  Linear interpolation between 
c      signal values is used.   Returned value is defined as the abosulute 
c      value of the distance between the supplied reference amplitude 
c      and the amplitude of the signal at the supplied frequency. 
c 
c ... Programmer: G.L. Kolte 
c 
c ... Created: 04/24/94 
c 
c ... Input Arguments: 
c 

integer*4 nPtSVec 
real*4     refAmp, chanNum, sVector(2, nPtSVec) 

c 
c ... Return Arguments: 
c 
c real*4        relSigVal 
c 
c ... Comments: 
c 

C 

c ... Local Variables: 
c 

parameter ( CHN=1, AMP=2 ) 
c 

real*4 ampHi, ampLo, chanHi, chanLo, slope, sigVal 
integer*4 i 

c 
£*    ************************************************************ 

c 
relSigVal = 0. 

c 
c ... Do not allow extrapolation.   Return boundary values if frequency 
c      is outside of table limits. 
c 

if ( chanNum .le. sVector(CHN, 1) ) then 
relSigVal = sVector(CHN, 1) 
return 

endif 
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c 
if ( chanNum .ge. sVector(CHN, nPtSVec) ) then 

relSigVal = sVector(CHN, nPtSVec) 
return 

endif 

i = 1 
do while ( i .le. nPtSVec .and. sVector(CHN, i) .le. chanNum ) 

i = i + 1 
enddo 

chanLo = sVector(CHN, i-1) 
chanHi = sVector(CHN, i) 
ampLo  = sVector(AMP, i-1) 
ampHi  = sVector(AMP, i) 

slope = (ampHi - ampLo)/(chanHi - chanLo) 
sigVal = ampLo + slope*(chanNum - chanLo) 
relSigVal = abs( refAmp - sigVal ) 

return 
end 
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5.0 OUTPUT CAVITY SUBSYSTEM 

The klystron's rf output signal can be expert controlled by having adjustable-dimension output 
cavities and accurate large-signal predictions, i.e., predictions of interactions between output- 
cavity electromagnetic fields and non-linearly modulated electron beams. Clearly, modeling 
large-signal interactions introduces new difficulties for the expert subsystem, but much of this 
difficulty results from using costly and time-consuming field solvers. 

In this work, expected subsystem difficulties were reduced by avoiding field-solvers and by using 
the rf voltages and rf currents of the cavity to model the interaction. The reduced accuracy 
resulting from loss of field information is not significant and is compensated for by greater speed 
and ease of implementation in the expert system. 

Voltages and currents are easily obtained using a lumped-element circuit model that predicts a 
complex impedance at each gap. For a lossless circuit, these complex impedances determine the 
magnitudes of and phases between the voltages and currents across the gaps. 

Because the final klystron smart tube was to have a two-cavity extended-interaction output circuit 
(EIOC), a lumped-element model of such a circuit was developed. Model predictions of the 
signal phase at a convenient reference plane were compared to measurements on a cold-test 
structure. Section 5.1 describes the model and compares predictions with measurements. The 
EIOC model was ready for use in an interaction model. 

In the interaction model, assumed rf currents at the gaps are used with complex impedances from 
the EIOC model to calculate gap voltages and power at the load. The new voltages correspond 
to wavelets that remodulate the beam and yield new gap currents. Using new currents, the 
procedure can be iterated until voltages and currents are self-consistent. Development of an 
interaction model was completed for a single output cavity. This work is described in Section 
5.2. 

5.1 Two-Cavity EIOC Equivalent Circuit 

The lumped element network model of a two-interaction-gap output circuit for a high-power 
klystron is shown in Fig. 5.1-1A. The resistances Rl and R2 are included to account for the 
source impedance of the driving currents, resistance paper, or shorting bars. Capacitance C3 is 
included to represent radial electric fields in the coupling iris between the two cavities while C6 
represents the evanescent modes at the output iris. The leakage reactance of the output iris is not 
shown as a separate element but is accounted for by the choice of the reference plane in the 
output waveguide. 

The model provides for the inclusion of an inductive post in the output waveguide, but since 
there is none in this cold test vehicle we set the Post-To-Reference distance equal to zero as 
shown by the data in any of the figures that follow Fig.5.1-1. Note that, in these data, the Iris- 
To-Post offset is 6.331 inches which is a little less than the actual 6.88 inches from the EIOC 
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physical iris to the physical reference. One of the universal problems encountered when 
modeling distributed networks with lumped elements is the location of terminal pairs. The 
random searching technique shows us that the electrical iris is of the order of 0.5 inch toward the 
load from the physical iris. The electric and magnetic fields associated with the evanescent 
modes in the vicinity of the iris are accounted for reasonably well by L6, C6, and this small 
offset distance. 

Figure 5.1-IB shows features of a brass cold test model of a two-gap EIOC. It was constructed 
with provisions to deform the cavity walls in the vicinity of the coupling iris between the two 
cavities. From experience with an experimental klystron using a similar EIOC, it was felt that 
considerable benefit could be derived from having the coupling between the cavities externally 
adjustable. In previous designs, the deformable cavity walls were placed on the cavity walls far 
from the coupling iris. We had long since come to the realization that changes in the geometry 
anywhere in the EIOC had implications for the fields throughout the device, but just what the 
effect might be of having the movable walls adjacent to the coupling iris was not clear. 

We have developed a method of reducing certain complex microwave networks to lumped 
element models (1) which are far more amenable to analysis once the driving functions are 
somehow in hand. We took the required data, which consists of the angle of the reflection 
coefficient taken at some convenient reference plane in the output waveguide where there is only 
one propagating mode in the band of interest, with (a) both gaps shorted, (b) only the first gap 
shorted, and (c) the unperturbed EIOC. This was repeated for three configurations of the tuning 
plugs. In all of these cases, the magnitude of the reflection coefficient is near unity and the 
model is based on that assumption. After the data for each of these three configurations was 
processed to find the elements of the lumped element model, further confirming data was taken 
with the output iris de-tuned by a shorting plug in the output waveguide. The results of this 
sequence of experiments is presented in Table  5.1-1. 

Typical comparisons between model predictions and cold-test measurements are shown for 
configuration A, the configuration where the cold-test plugs are pushed as far as possible into the 
cavities. Figure 5.1-2 shows that when both gaps are open there is no measurable difference 
between measured and predicted phase at the reference plane. Calculations based on the model 
agree with data taken across a 15% bandwidth on the unperturbed EIOC within approximately 
2 degrees rms, which is the reproducibility limit of the raw data. The discrepancies are 
somewhat larger for the cases where one or more gaps are shorted as shown in Figures 5.1-3 and 
5.1-4. In the model, a shorted gap is a 1 ohm resistor across a capacitor which kills nearly all 
of the electric field in the immediate vicinity and almost none of the magnetic field. Contrary 
to the model, shorting the gaps in the EIOC removes most, but not all, of the electric field in a 
cavity while disturbing a small percentage, not zero, of the magnetic field. 

Fig. 5.1-5 shows the magnitude and phase of the impedance calculated at the second gap for the 
case when the first gap is shorted. Values are plotted between 3.1 GHz and 3.6 GHz. When 
these values and an equivalent set of impedances for the first gap are seen by 30 Amp currents 
(assumed), the voltages shown in Fig. 5.1-6 are obtained at gaps one and two. These rf voltages 
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ODEL D/ MA ERROR 

3. 28 3 30 -0.ei% 
3. 50 3. 56 -1.70% 

3. 38 3. 38 0. 00% 

3.42 3. 47 -1.45% 

CONFIGURATION 'A' BOTH PLUGS MAXIMUM IN 

RESONANT FREQUENCIES, GHz 

F_pi  Both Gaps Open 
F_2pi  Both Gaps Open 

F_Gapl ] Gap2 Shorted 

F_Gap2 ! Gapl Shorted 

CONFIGURATION 'B' BOTH PLUGS AT +0.25 INCHES 
■s 

RESONANT FREQUENCIES, GHz MODEL      DATA 

F_pi  Both Gaps Open 3.18     3.20    -0.63% 
F_2pi  Both Gaps Open 3.42     3.48    -1.74% 

F_Gapl ! Gap2 Shorted 3.26     3.27    -0.31% 

F_Gap2 ! Gapl Shorted 3.34     3.40    -1.78% 

CONFIGURATION 'C BOTH PLUGS AT +0.50 INCHES 

RESONANT FREQUENCIES, GHz MODEL      DATA 

F_pi  Both Gaps Open 3.19     3.20    -0.31% 
F_2pi  Both Gaps Open 3.45     3.47    -0.58% 

F_Gapl ! Gap2 Shorted 3.25     3.26 

TABLE 5.1-1 
COMPARISON OF MEASURED AND PREDICTED 

TWO-CAVITY EIOC FREQUENCIES 

-0.31% 

F_Gap2 ! Gapl Shorted 3.39     3.40    -0.29% 

5-3 



have levels comparable to the beam voltage and therefore represent conditions where saturation 
and other nonlinear phenomena are likely to dominate. If nonlinearities are ignored, the EIOC 
model alone can provide an upper bound on the available output power by assuming the 
interaction remains linear. Fig. 5.1-7 shows the output power estimates from using the voltages 
in the EIOC model and the assumed 30 Amp gap currents. 

5.2   Klystron Large-signal Program 

5.2.1   Beam model 

The beam model used in RELMOD9 is a highly stylized model in which any degree of density 
modulation and any degree of velocity modulation, with any phase shift between them, can be 
independently specified. This allows the interaction algorithm to be tested under the widest range 
of input modulations without having to spend time finding prior cavity combinations that would 
produce these modulations. The input beam is effectively defined by specifying the injection 
time and injection velocity for each charged particle over one rf period. The charged particles 
in the model are visualized as discs, each disc being a cloud of actual electrons. Since they are 
not represented as being hard discs, but as clouds, they can pass through each other without giv- 
ing rise to spurious infinities in the computations. The algorithm for the space charge forces cor- 
rectly models the mutual force between two discs as increasing as the discs approach each other, 
up to the point where they just touch, and then decreasing as they interpenetrate, becoming zero 
when the discs are coincident. Hard particle models have problems with infinities when two 
charges coincide, and these problems are purely artifacts of the computation: in the real world 
of electron beams, the distance between electrons is so enormous relative to their size that indi- 
vidual electron-electron collisions essentially never occur. It is only when we try to model the 
108 or so real electrons in one beam wave length by a mere 100 or so charges in the model (to 
keep the problem within the capability of a computer) that the problem appears, and then has to 
be dealt with in the manner described above. 

The number of charges per wavelength (N) is an important parameter: it must be large enough 
to provide a realistic model of the interaction, but no larger, since the running time of a computer 
program will be nearly proportional to N. Prior programs have generally used N = 24 or 32. 
Tests made with a predecessor of RELMOD9 allowed N to vary from 24 to 1024. The results 
(Figure 5.2-1) showed that there were significant changes in going from 24 to 96, a slight further 
change at 128, and no significant further changes on out to N = 1024. As a result of this, we 
have provisionally settled on N = 96 as the most cost-effective value. Professor Onodera, 
working at Stanford earlier in 1993, came independently to the same conclusion. 

The injection times for the charged particles are derived from the equation 

x" + yn = 1 O) 

which, for n > 2, represents a "squared circle" - i.e., for large n it appears like a round-cornered 
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square. By inverting one quadrant and attaching it to the next, we obtain a curve such a Figure 
5.2-2, which allows us to pick equal intervals along the x axis and get corresponding y values 
which are bunched, but still have some outliers. These outliers are useful because we want to 
have most of the charges in a bunch of controlled tightness, with a few in the skirts of the distri- 
bution so that we can see what happens to the unfavorably-phased electrons, of which there will 
always be some in any real klystron. The distribution based on (1) always gives us one charge 
or particle in exactly the wrong phase, so that we get an estimate of the maximum velocity of 
any exiting electron, which is useful information for collector design and x-ray studies. (In 
general, the exactly antiphase electron will not be the most-accelerated electron, but it is a good 
approximation to it.) 

The relation between the exponent n and the equivalent density modulation index dmi is given 
by the empirical equation 

n = 1 + 0.5 dmi + 0.125 dmi4 (2) 

and the corresponding y value is then given by 

y = 0.5 - (0.5" - x")1"1 (0***0.5) 
OR (3) 
y = 0.5 + (0.5" - (l-xYf™    (0.5***1) 

for the two halves of the curve. 

For dmi = 2, this gives a very tight bunch, as shown in Figure 5.2-3. The outliers appear as the 
triangular blips along the baseline. The number of them, for N = 96, is rather minimal for giving 
information on out-of-phase electrons, but this is not an argument for increasing N: no real kly- 
stron is going to produce as nearly-perfect a bunch as is shown in Figure 5.2-3, so there will be 
far more outliers when we get to computation of an actual tube design. 

5.2.2  Induced current and voltage 

If the bunch shown in Figure 5.2-3 were passed through a short-circuited gap (i.e. no rf voltage) 
with no space charge forces, it would emerge unchanged; the induced current in the gap would 
be of the form shown in Figure 5.2-4: the induced current pulse is much wider then the bunch 
because it is being induced as long as the bunch is in the gap. The current pulse shoulders are 
rounded because we have intentionally used a beam model with outliers in it. The effective 
width of the current pulse corresponds to the gap transit angle (in this case approximately 150°). 

If we now remove the short circuit, allowing the gap to form part of a cavity with appropriate 
Q and other parameters (to be discussed later), an rf voltage will be developed as the product of 
the induced current and the gap impedance. By Lenz's law this voltage will be in such a phase 
as to retard the beam. At the high dmi we have considered this voltage will be near or at 
saturation, comparable to or somewhat larger than the beam dc voltage. There will therefore be 
a major reduction of beam velocity, and a corresponding reduction of induced current (since this 
is proportional to the charged particle velocity). The calculation therefore has to be repeated with 
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the new current, and iterated until the voltage and current converge to mutually consistent values. 
When this has been done, we obtain the highly distorted current waveform shown in Figure 5.2-5. 
To extract useable information from this, we need to Fourier-analyze it and select the 
fundamental-frequency component for multiplication into the cavity impedance. Clearly, there 
is a lot of harmonic content in Figure 5.2-5, and the Fourier-analysis routine does provide data 
on the first 5 harmonics, but at present we cannot make any use of the information for higher 
than the fundamental because we have no information on the cavity impedance at these harmonic 
frequencies.  This is a problem for future study. 

Next we can short-circuit the gap again, but allow the space-charge force to be calculated and 
included. The result is shown in Figure 5.2-6: the "step" in the middle of the pulse reflects the 
fact that the bunch of Figure 5.2-3 is now blowing itself apart. The front half of the bunch is 
accelerated, thus inducing more current, and the rear half is retarded, inducing less current. 

Finally, we unshort the gap, still retaining the space-charge forces, and obtain Figure 5.2-7. We 
note that this has much more similarity to Figure 5.2-5 than to Figure 5.2-6, reflecting the fact 
that the rf forces dominate the space charge forces even when the bunch is very tight. Finally, 
Figure 5.2-8 shows the waveform of Figure 5.2-7 broken down into its first five harmonic 
components, together with the resulting rf voltage. The latter appears as a pure sine wave 
because it is derived only from the fundamental component of the induced current. 

Knowing the value of the rf voltage, we can then determine the power dissipated in the cavity, 
and in any load connected to the cavity, by using the normal circuit-theory formulas. Note that 
we do not treat loading due to the beam by Feenberg's or any other formulas. This loading has 
already been taken into account in the process of converging on a self-consistent voltage and 
induced current. 

5.2.3    The space-charge model 

As we have seen, the space-charge effect is relatively small compared to the induced voltage, but 
it tends to take up a major part of the computation time if not done by an efficient method. The 
Green's function approach is an example of a method that is impeccably correct from an 
academic standpoint, but is computationally terribly inefficient: its running time is proportional 
to N2. 

Instead, we use an approximate method which introduced a small error (in what we have shown 
is already a minor component of the forces involved), but has a running time proportional to N 
log N. We further reduce the time by using a 24-nodes-per-wavelength model for the space 
charge while retaining 96 nodes per wavelength for the induced current. At each time step, the 
charge of each disc is apportioned to the two nodes on either side of the actual disc position; the 
proportion is the inverse of the distance of the disc from each node. This converts the space 
charge distribution from one of equal charges at unequal positions into an almost-equivalent one 
of unequal charges at uniformly-spaced positions. We can then use formulas given by Hechtel 
(see J. R. Hechtel, "The Effect of Potential Beam Energy on the Performance of Linear Beam 
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Devices," IEEE Trans. Electron Devices, ED-17 #11, Nov. 1970, pp. 999-1009) or others to 
obtain the voltages at these nodes. Finally, the field strength at the actual position of a disc is 
found by identifying the three nearest nodes, at which the potentials are P,, P2, and P3; the field 
is then 

Esc = to*(P3-Pi) + x (P1-2P2+P3)} / (Xe/24) (4) 

where x is the distance (normalized to the node spacing Xe/24) of the disc from node P2 (-0.5 < 
x < 0.5). 

This algorithm has been in use for many years (see J. R. M. Vaughan, "Calculation of Coupled- 
Cavity TWT Performance," IEEE Trans. Electron Devices, ED-22 #10, October 1975, pp. 880- 
890) and is well tested. The description was included here for completeness. It is an example 
of using the gradient of a potential, rather than an inverse square law, to obtain the force on a 
particle; the potential approach is not only a more elegant method for many physics problems, 
but is commonly much more efficient computationally. 

5.2.4    Relativistic motion of the disc 

The foregoing sections have shown (in somewhat general terms) how the rf field and space- 
charge fields are evaluated. The sum of these is the total electric field acting on the disc. 
Calculation of the resulting disc motion has traditionally been by one of two methods: 

i) Integrate the relativistic equations-of-motion by numerical methods (Runge-Kutte, 
etc.) using a considerable number of sub-steps. 

ii)        Using the Newtonian equations-of-motion with a relativistic mass y3m0. 

Of these two, the first is valid, but abominably slow, the second is fast but inaccurate, since the 
value of y changes during the step (unless the step is very short). 

The following formulation, derived recently at Litton, takes account of the variation of y during 
the step, and is only slightly slower than (ii): 

take a time step At satisfying 

At < 0.5xlO12 vJE (5) 

where v, is the velocity at the start of a step, and E is the electric field (Erf + Esc) evaluated at 
the mid-time and projected mid-point of the step.  Let 

f~±EAt. (6) 
m 

Then the velocity v2 at the end of the step is 
where y, is the y corresponding to the known v,.  The distance traveled is then 
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v2 = v, +f/{y] (Yl + 1.5 vx f/c
2)} (7) 

Az = 0.5 (v, + v2) At (8) 

These formulas are not analytically exact, but they are accurate to better than 0.01% as long as 
(5) is satisfied. In the program a fixed At equal to 1/96 of the rf period is used. This satisfies 
(5) by nearly an order of magnitude, except for a disc which is almost stopped. If this happens, 
the formulas do not become invalid, but the errors might creep up to the 0.1% level for a few 
steps. The limitation (5) is not at all severe: it allows steps in which the velocity change is as 
much as 2.5%. A numerical integration method would require very much shorter steps to achieve 
the same accuracy. 

The formulas are valid up to beam voltages of a few MeV, which more than covers all 
foreseeable klystron designs.  They require rethinking for the many-MeV accelerator region. 

5.2.6  The interaction 

To perform the interaction calculation, we begin with a gap voltage obtained from analytical kly- 
stron theory. The beam motion is calculated by the formulas of section (4) under this voltage. 
The induced currents are summed and Fourier analyzed to find the fundamental component. The 
induced voltage is found by multiplying this current into the cavity impedance at the rf drive 
frequency. The process is iterated with the new voltage until convergence is achieved (typically 
about 10 iterations, taking less than two seconds each on a MicroVax computer, with a 96-disc 
model). 

When convergence has been reached, we know 

a) the power dissipated in the cavity and load 

b) the change in K.E. of the beam, from the differences of entry and exit velocities 

c) the change in P.E. of the beam, from the potential depressions at the nodes of the 
space charge algorithm. 

The last of these has proven to be considerably smaller than we had expected: the decrease in 
P.E. due to space-charge debunching of the beam seems to be about compensated by the increase 
in P.E. that results from the beam slowing down. The net change, in cases run so far, is about 
2 orders of magnitude less than (a) or (b), which may justify ignoring it in most cases. However, 
the mechanism for calculating it is in place in the program. 

Figure 5.2-9 shows the comparison of (a) and (b) across a 10% band for a case corresponding 
approximately to a single-gap output cavity for the L-5792 klystron. The agreement is con- 
siderably closer than we have been able to obtain with any prior program.  Inclusion of (c) does 
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not reduce the remaining discrepancies: it merely shifts them around. Figure 5.2-10 shows part 
of the printout of a typical test case, showing how the rf voltage amplitude and phase, the 
induced current amplitude and phase, and the P.E. change, all converge in 10 iterations to almost- 
constant values. The following lines show the degree of agreement between the generated power 
and the AK.E. of the beam.  Figure 5.2-9 was derived from multiple runs of this kind. 

As noted earlier, the beam loading is being calculated dynamically, not from Feenberg's formulas. 
We find that, at saturation, the beam loading can be as much as 10 times higher than the 
Feenberg value, corresponding to a sharply reduced beam-loading Q. The QBL is no longer con- 
stant, but depends on the degree of modulation. At full intensity, QBL is about half the Feenberg 
QBL. This results in a response curve that passes through a maximum and decreases if the QE 

(external loading) value is too high. This is in agreement with observation, but was not found 
in prior programs. From these observations we have derived a formula for the optimum value 
ofQE: 

<?*=!/ 
N 

\{dmi) (R/Q) (1 - vmi sin \Jr) 

(VIdc) (1.42 0 - 0.112 e2)} 

where 2Af is the bandwidth. 
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SQUARED CIRCLE MODEL FOR INITIAL BUNCHING 
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de transit time:  1.44154E-10 sec;  transit angle:  2.69913 r,  154.6 deg. 

Next estimate o-f induced gap voltage: 
Repeat 10 times (T), Use once (U), Enter 

or Continue with prior value 
Vr-f= 243476.3 © 131.68,  Ir-f (-fund) =  100. 
Vr-f = 193287.5 © 148.77, Irf (fund) =        63. 
Vr-f= 158289.8 © 143.26,  Ir-f (-fund) =   48. 
Vr-f= 159787.5 © 135.62,  Ir-f (-fund)=  66 
Vr-f= 163829.4 © 133.01,  Ir-f(-fund) =  69 
VW= 166017.5 © 132.36,  Ir-f (fund) =  69. 
vW= 166587.1 © 132.33,  Ir-f (-fund)=  69. 
Vr-f= 166693.5 © 132.39,  Ir-f(fund) =  69. 
Vr*= 166657.4 © 132.43,  Ir-f(fund) =   69. 
Vr-f= 166591.6 © 132.44,  Ir-f (-fund)=  68. 
Beam power at entry: 9.06700E+06 Watts: 

at  exit: 3.48393E+06    Cavi 

243476.3 © 
new values 
112528.8 © 

84 © 123.39 
41 © 89.22 
99 © 117.32 
80 © 127.09 
53 © 124.66 
66 © 123.36 
23 © 122.76 
08 © 122.63 
01 © 122.59 
97 © 122.62 

delta: -5 
ty 1oss :  5 

131 .68  deg. 
(E) , 

86.32 deg. (C) 
delta PE= 5 
delta PE= 5 
delta PE= 4 
delta PE= 5 
delta PE= 5 
delta PE= 5 
delta  PE= 

,        delta  PE= 
,        delta  PE= 

delta PE= 
.5S303E+06  Watts 
.55055E+06 

? T 
.3523E+04 
.5519E+04 
.4735E+04 
.4006E+04 
.2758E+04 
.5127E+04 
.7644E+04 
.7903E+04 
.7702E+04 
.6506E+04 

Nej<t estimate o-f induced gap voltage: 166602.4 © 132.46 deg. 
Repeat 10 times (T), Use once (U), Enter new values (E), 

or Continue with prior value 166591.6 © 132.44 deg. (C) 

96 point Fourier analysis (-99.9 is code -for indeterminate) : 

cosine terms: 
sine terms: 
amplitudes: 
phases (deg) : 
dB: 

de      -fund.     2nd 
79.71798 -40.91079 -24.41533 

55.56426 -13.06102 
69.00057 27.68932 

122.61   -159.36 
-1.25     -9.18 

3rd 4th 5th 
6.39699 4.96995 7.96750 
4.18394 -8.23575 . 0.27801 
5.77190 9.61915 7.97235 
-127.18 -73.89 -16.75 
-14.07 -18.37 —20.00 

M = 0.722920  N =  0.829323   Feenberg g/g0 =  0.181991  b/gO =  0.040932 
Max induction =  190.02        Fourier g/gO = -0.596329 b/gO = -0.118022 
Av. delta K.E.:   -58157.       equiv. g/gO = -0.5884   g/gFe =  -3.233 
Vel . range in gap: 0.1484087 to 1.2885508 * U0,   # o-f stopped discs =  0 
Exit vel. range: 0.5029183 to 1.2885508 * U0,   gFourier/gF'berg =  -3.2766,: 

"Convergence of rf voltage and current to consistent 
values.  When converged, their ratio is equal to the (complex) cavity 
impedance.  The near-equality of the delta KE and the Cavity loss 
is an independent check on the accuracy (i.e., it was not used in 
obtaining the convergence).  The Fourier analysis of the final current 
waveform follows; the dc terra 79.71798 should be 80.0 Amp, the beam 
current, if there were no approximations.  The last two lines show 
that a disc was slowed to under 15% of its initial velocity at some 
point in the gap, but was then reaccelerated to just over 50% at 

the exit. The maximum velocity, on the other hand, occurs at the 
exit plane. 

Figure 5.2-10 
CONVERGENCE 
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6.  CONCLUSION 

A generic expert system has been developed and applied to a specific klystron. The heart of the 
expert system, the software, was developed in a general way and applied to an input cavity 
transformer that has two adjustments. It is a straightforward extrapolation to extend the software 
to monitor and control additional subsystems with numerous adjustments. In this work, three 
major subsystems were developed for a klystron expert system, those for monitoring and 
controlling the cathode temperature, the rf input response, and the rf output response. 

The expert system software developed in this program (TIPTOE) was written in Fortran so that 
it would be easily transportable between different computing systems. It successfully 
demonstrated that a software system can perform the function of an expert by adjusting the 
hardware settings, obtaining the resultant data, and converging on the optimum hardware settings. 

The software was applied to the matching transformer in the input cavity circuit of the klystron. 
A new matching transformer was designed for the input cavity having both variable impedance 
and axial position along the coaxial transmission system. The new transformer incorporated an 
axially sliding, eccentric design. Tests showed that the input transformer circuit, a combination 
of a bandpass filter and impedance transformer (simply referred to as a "transformer") broadens 
the bandwidth of the input cavity by enhancing the edges of the passband. The transformer has 
two continuously and simultaneously adjustable controls that are linked to the expert system 
commands. These controls are useful both for hot and cold tests. The settings of the new 
transformer are changed by a stepper motor which is driven by an expert system. The new input 
transformer and its drive fit inside the existing envelope of the klystron. The transformer 
contained two independent adjustments, resulting in a nontrivial system controlled by the expert 
system software. 

The expert system formalism was developed, and the software written to easily allow expansion 
to several variables and several different subsystems. For developmental and initial 
demonstration purposes, the actual circuit hardware was replaced by a lumped-element circuit 
model simulated with the commercial SUPERSTAR program. The lumped-element circuit model 
used was demonstrated to give results equivalent to the actual hardware. 

The temperature of an operating cathode in a microwave tube has a strong effect on the tubes 
operation. If the temperature is too low, the emitted current will be.low; if the temperature is 
too high, the lifetime of the cathode will be reduced. Unfortunately, the cathode temperature 
cannot normally be directly measured in an operating klystron. Therefore, a Fortran code was 
developed to predict the steady-state cathode temperature from a given transient heater voltage 
vs. time plot. 

This code modified a Litton-proprietary Quickbasic program by adding features that can automate 
the program with an expert system and by adding highly descriptive two-dimensional variables 
that quickly identify the gun assembly parts whose heat transmission histories are being 
calculated. Copious program comments made the code easy to read and easy to modify. Before 
the program can be used with a given electron gun, it should be calibrated by measuring the 
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actual cathode temperature, as a function of time, in response to various changes in the heater 
voltage. The different thermal emissivities and thermal conductivities of the elements in the 
model are then adjusted to obtain agreement between the measurements and the code results. 

The code simplifies the actual electron gun geometry into a set of nodes, made up of one or more 
parts, that is represented by a single temperature. Since the number of nodes is relatively small, 
this code can run very quickly on a personal computer. The program includes the temperature 
dependence of thermal emissivities and thermal conductivities of the gun-assembly materials as 
well as geometry factors that simplify complex thermal-resistance calculations. The program is 
easy to use, very fast to run, and does not require large computer memory. 

A lumped-element model of a two-cavity extended interaction output cavity (EIOC) was 
developed with sufficient accuracy to predict measurements on a cold-test model. The EIOC 
model is ready for use in a large-signal interaction program. This type of cavity model is often 
used in large-signal programs to greatly simplify the calculations and produce a code that 
executes rapidly enough to be used as a tube design tool. In addition, such a large-signal code 
may be linked to an expert system to predict the effect of adjusting tuners in the output cavity, 
allowing the optimum settings to be found before moving the tuners in the actual cavity. 

Another program, which models large-signal klystron interaction at a single cavity gap was 
developed as well. With residual discrepancy levels not exceeding 1%, the 1670-line Fortran 
code includes relativistic effects, velocity and density modulations, space charge effects, potential 
energy changes and dynamic beam loading, all under large-signal conditions. Other existing 
klystron programs include some but not all of these effects. 
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