
REPORT DOCUMENTATION PAGE
form Approved

OMB No. 0704-0188

?f5^!!5Är!!S^^S^n?^5^»SnSuS3 »^bur5«v7o w»««^o» H*,dgu.nw, i«fwe«. »r«t<«tc&infomw*» ftw.«« »nd Rjporo. 1J15 Jcftmen

1. AGENCT USE ONLY (leave bitnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

EXPERT SYSTEM FOR CONTROL OF PLASMA, BEAM
AND WAVE DYNAMICS IN MICROWAVE TUBES

(.AUTHORtS)

H. Bacher, R. Begum, T.A. Hargreaves, R. Rogers,
J. Siambis, A. Theiss, and R. Vaughan

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Litton Industries, Inc.,
Electron Devices Division
960 Industrial Road
San Carlos, CA 94070

5. FUNDING NUMBERS

F49620 93 C 0019

8. PERFORMING naß»«'»"—•

AFOSR-TR-95

OS^
9. SPONSORING/MONITORING AGENCY MAME<S> AND ADDRESS(ES)

Air Force Office of Scientific Research "Ns

Department of the Air Force
Boiling Air Force Base, DC. 2033:

... »lunllUMIWl
AGENCY REPORT NUMBER

Cqqip'Jb- T3-C-OÖ >9

b. DISTRIBUTTON CODE

13. A1STRACT (Maximum 200 words)

Three major subsystems were developed for a klystron expert system. These subsystems
monitor and control the cathode temperature, the rf input response, and the if output response.
For the temperature-controlled-cathode subsystem, a Fortran code was developed to predict
the steady state cathode temperature from transient heater voltage data. For the rf-input
subsystem, a circuit having two simultaneously variable geometry adjustments was developed.
This circuit symmetrizes the frequencies of and maintains the amplitude of the rf signal at the
input cavity. A newly developed expert-system software package successfully demonstrated-

adjustments of this circuit. A lumped-element model of a two-cavity extended interaction
output cavity was developed and used to successfully predict the measurements on a two-
cavity cold-test model. This circuit model is ready for use in a large-signal two-gap
interaction code. A one-gap large-signal interaction code was written. The code includes
relativistic effects, velocity and density modulations, space charge effects, potential energy
changes and dynamic beam loading. un.9 QUALITY INSPECTED 8

14. SUBJECT TERMS

Expert system, smart klystron

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF AESTRACT

15. NUMBER OF PAGES

16. PRICE COOE

20. LIMITATION OF ABSTRACT

NSN 75A0-O1-?Sn-«;«ivi

Litton
Electron Devices

DTTf QUALITY INSPECTED 8

19950828 001

EXPERT SYSTEM FOR CONTROL OF
PLASMA, BEAM AND WAVE DYNAMICS

IN MICROWAVE TUBES

Prepared for

DR. ROBERT BARKER

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
DEPARTMENT OF THE AIR FORCE

BOLLING AIR FORCE BASE, DC 20332-6558

July 20, 1995

BY

LITTON SYSTEMS, INC.
ELECTRON DEVICES DIVISION

960 INDUSTRIAL ROAD
SAN CARLOS, CA 94070

Accesion For

NTfS CRA&I
DTIC TAB
Unannounced
Justification

By _
Distribution/

D
D

Availability Codes

Dist

m
Avail and/or

Special

,-~,li
crelease,

mu ■'■■■ '■]
apPrt''"

Joan Bt-:..-
ST1HF0 V-'vj. iü; Ü;iÜ*ä»ViUä

i,.">YH»d and Is

:R190-U

DIM QUÄLTE* INSPECTS

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 1-1

2 INTRODUCTION 2-1

2.1 Background on Smart Systems 2-1

2.1.1 Other smart systems 2-1
2.1.2 Microwave-tube smart systems 2-1

2.2 Purpose - A Klystron Expert System 2-2

2.3. Scope - Subsystems for Major Components 2-4

3. CATHODE TEMPERATURE SUBSYSTEM 3-1

3.1 Description of Program 3-1

3.2 Uncertainties 3-4

3.3 Description of the Input Data File 3-4

3.4 Output 3-6

4. INPUT CAVITY SUBSYSTEM 4-1

4.1 First and Second Generation Designs 4-1

4.1.1 General descriptions 4-1
4.1.2 First generation "transformer" test results 4-2
4.1.3 Circuit modeling results 4-3
4.1.4 Second generation transformer test results 4-3

4.2 Third Generation Transformer 4-4

4.2.1 Eccentric coax line approach for impedance changes 4-4
4.2.2 Mechanical drive 4-6

4.2.2.1 Coax line 4-6
4.2.2.2 Rotational adjustment 4-6
4.2.2.3 Axial adjustment 4-7
4.2.2.4 Common drive components 4-7

4.3 Modeling and Cold Test 4-8

4.3.1 Computer model 4-8
4.3.2 Cold-test measurements 4-9

4.4 System Tuning of the Transformer 4-10

4.4.1 Introduction 4-10
4.4.2 Expert procedure 4-10
4.4.3 TIPTOE1A 4-11
4.4.4 TIPTOE2A 4-12

5. OUTPUT CAVITY SUBSYSTEM 5-1

5.1 Two-Cavity EIOC Equivalent Circuit 5-1

5.2 Klystron Large-Signal Program 5-4
5.2.1 Beam model 5-4
5.2.2 Induced current and voltage 5-5
5.2.3 Space-charge model 5-6
5.2.4 Relativistic motion of the disc 5-7
5.2.5 The interaction 5-8

6. CONCLUSION 6-1

APPENDIX 2A Examples of Expert Systems 2-6
APPENDIX 3A Programming Steps 3-27
APPENDLX 3B Input Data File 3-29
APPENDLX 3C Source Code for CATHTEMP.FOR 3-33
APPENDIX 3D Output Data File 3-51
APPENDIX 4A TIPTOE1A Source Code Listing 4-46
APPENDIX 4B TIPTOE2A Source Code Listing 4-70

u

1. EXECUTIVE SUMMARY

Three major subsystems were developed for a klystron expert system, those for monitoring and
controlling the cathode temperature, the rf input response, and the rf output response.

For the temperature-controlled cathode subsystem, a Fortran code was developed successfully to
predict the steady-state cathode temperature from a given transient heater voltage vs. time plot.
This code modifies a Litton-proprietary Quickbasic program by adding features that can automate
the program with an expert system and by adding highly descriptive two-dimensional variables
that quickly identify the gun assembly parts whose heat transmission histories are being
calculated. Copious program comments made the code easy to read and easy to modify.

The program includes the temperature dependence of thermal emissivities and thermal
conductances of the gun-assembly materials as well as geometry factors that simplify complex
thermal-resistance calculations. The program is easy to use, very fast to run, and does not require
large computer memory.

For the input-cavity subsystem, the design, development and tests of an adjustable transformer
resulted in a practical configuration. Tests showed that the input transformer circuit, a
combination of a bandpass filter and impedance transformer which is simply referred to as a
"transformer," broadens the bandwidth of the input cavity by enhancing the edges of the
passband. The transformer has two continuously and simultaneously adjustable controls that are
linked to the expert system commands. These controls are useful both for hot test and cold test.
The settings of the new transformer are changed by a stepper motor which is driven by an expert
system. The new input transformer and its drive fit inside the existing envelope of the klystron.

The expert system software developed in this program (TIPTOE) successfully demonstrated that
a software system can perform the function of adjusting a matching transformer in an input cavity
circuit. The matching transformer contained two adjustments resulting in a nontrivial system.
The formalism was developed, and the software written to easily allow expansion to several
variables and several different subsystems. For demonstration purposes, the actual circuit
structure was replaced by a lumped-element circuit model simulated with the commercial
SUPERSTAR program.

A lumped-element model of a two-cavity extended interaction output cavity (EIOC) was
developed with sufficient accuracy to predict measurements on a cold-test model. The EIOC
model is ready for use in a large-signal interaction program.

A program which models large-signal klystron interaction at a single gap was developed. With
residual discrepancy levels not exceeding 1%, the 1670-line Fortran code includes relativistic
effects, velocity and density modulations, space charge effects, potential energy changes and
dynamic beam loading, all under large-signal conditions. Other existing klystron programs
include some but not all of these effects.

1-1

2. INTRODUCTION

2.1 Background on Smart Systems

2.1.1 Other smart systems

Over the past 30 years, computer technology has maintained an ever-increasing influence on the
operation of all types of systems both large and small. Among the more interesting developments
in this area are "expert" or "smart" computer systems that control complex or time-consuming
tasks which normally require highly trained personnel. These expert computer systems are
typically based on a computer module equipped with the following:

1) sensors to measure the state of a system
2) a database to determine the expected behavior of the system
3) decision-making algorithms
4) adaptive controls that modify operation of the system.

Appendix 2A describes three operating smart systems that exemplify the following

1) troubleshooting in a system that has many independent coupled variables
2) enhancing performance of a millimeter wave linear amplifier
3) testing TWTs during manufacturing.

2.1.2 Microwave-tube smart systems

Still to be realized is an expert system to monitor and control vacuum-device performance while
the device is in end-use operation. Such a system would continuously "watch" and adjust the
tube after it is placed in service. An expert system, after detecting conditions that lead to
performance degradation or permanent damage, can adjust the operating parameters to prevent
or lessen the impact of the undesirable condition. Also, besides monitoring for fault protection
(avoiding sudden degradation), and for ongoing performance optimization (avoiding gradual
degradation), the system is constantly building a useful database. The system, which records,
minute by minute, the tube's condition, identifies unusual happenings that might be correlated
with performance difficulties and consequently provides critical data to facilitate failure analyses,
to quickly rework the tube, or to adjust the design for performance improvement.

Implementation of a tube smart system is expected to be facilitated by the following:

1) existing technology of practical, mission-oriented expert systems
2) miniaturized sensors
3) miniaturized controls and actuators
4) miniaturized special purpose computers
5) reliable, adaptive and fast software.

2-1

2.2 Purpose - A Klystron Expert System

The purpose of this work was to develop three major subsystems of a klystron expert system such
as that schematically illustrated in Fig. 2.2-1. In this figure, ten subsystems are linking a klystron
to monitor-and-control software. Each subsystem is responsible for sensing the conditions of a
particular tube component in order to enable the master software program to control the
component's functions. Subsystems, sensors and controls provided by an idealized master system
are summarized in Table I.

Since the expert system intended for the klystron is a "model-based" system, the subsystem
development includes modeling. In the subsystem, models are used to obtain predictions and
expected information which are used in the decision algorithms for making adjustments or for
evaluating measurement data. In this system the models can also be adjusted. Resulting
discrepancies or errors between the model and measurements can be used to provide adjustments
of the model parameters that results in new more accurate predictions. This adjustment process
can be repeated until the errors are below specifications.

In this work the three subsystems are those shown in the figure as cathode temperature, rf input
response and rf output response.

The cathode-temperature subsystem controls a thermionic electron source which represents a key
feature of the device. To minimize malfunctions of (both oxide and dispenser) cathodes, the
cathode-temperature subsystem must maintain operating temperatures over a narrow range. This
subsystem gives "best guesses" on each of the internal components of the gun assembly to
provide continually optimized emission.

The rf-input-response subsystem optimizes the signal entering the klystron by utilizing a circuit
of distributed inductances, capacitances and line segments that together symmetrize the bandwidth
and match the impedance of the input cavity with the signal generator. The circuit functions as
a combination of a bandpass filter and an impedance transformer, the latter part being the more
sensitive portion of the circuit. The subsystem contains a variable-geometry circuit, a model to
predict expected input responses, and software to control the circuit geometries.

The rf-output-response subsystem optimizes the signal leaving the klystron's output circuit. This
output circuit contains a double cavity where the beam converts into rf power a substantial
portion of its kinetic energy in a highly nonlinear process. Control of this nonlinear interaction
and power extraction requires special computer codes to accompany the adjustment in the output
circuit. This subsystem utilizes special codes developed to determine the equivalent lumped-
element shunt resistance of the multicavity output system during nonlinear operation.

2-2

C/3
>-
!/3
SO
fa
(/3

Cd

fa
«

w
oo

<
z
D
Ü

w
u
<
OH
00

Q
Z
<
fa

1—4

H
z
><
fa
Q
O

Q
fa
S E
u
H
fa
Z

O
H
U
fa
fa
fa
o
u
uS
fa
O

H
<

w
Ü
z
<
ac
u
o
H
oo
<
O
oo

O
Z
w
fa

ü s
S z
w a 00 2
Z Ü
w w
00 00

H
fa
Z
Ü
<

Ü
z
I—I
oo
fa
U
O
fa

oo
OS"
fa
H
fa
s
<

<
OH

w

H
H
fa
2
Q

Q
<
O
fa
H
D
fa
z
I—I

Q
Z
<

H
Q
i—i

Q
Z
<

z
Z
fa
H
>-
H
>
<
U
H
fa
OH

Z

H
oo

5
Q
<
Q
Z
<
fa
oo
Z
fa
oo

Pi
O
fa
00
Pi
fa
Z
fa
H
Z
fa
>
2
Q
>
fa
fa
<
U
z
<
a o w
S

w
oo
Z

a
H
Q

Q
Z
<
oa
Q
Z
<
w
Z
fa
fa
fa
oo
Z
fa
oo U

u
<

Q
<
O
fa
<%
K
H
Q
i—i

Q
Z
<
OH

fa OH

>

U
H
D
OH

H
fa
O

00
OH
W
fa
fa

<
OH

<
fa
CQ

Pi
W

H
O
H
oo
5
Q
<

O
Z
fa
o
o
u
H
oo

5
<

fa
H
<
Pi
fa

fa
H 05

fa fa
00 oo
Z Z
fa fa
00 00

O
Q
Z

H
D
OH

H
D
O

Q
fa
W
►—i

fa
u
H
fa z
Ü
<

O
z
fa
o
o
u
H
oo

Q

fa

<

w

w

z
<
Z
o
oo

O
OH
OO

fa
U
z
<
z
o
oo

fa
H
fa fa
oo oo
Z Z
fa fa
OO 00

ÖH
O
H
U
fa
fa
fa
O

■u

<
w
CQ

fa
H
oo
><
00

Ü
Z
fa
o
o u

<
Pi
H
oo
oo
oo

S
H
oo

Z
O
i—i
H
<

OH

H
Z
fa

z
a
fa
<

w
H
oo
><
oo
fa
<

<

U
fa

OH

fa
OH

z
o

>

fa"
Ü
<

p
D
U
<
>

w
H
oo

oo

s
D
fa
U
<
>

2-3

2.3 Scope - Subsystems for Major Components

The scope of this program was limited to the implementation of three subsystems that control the
cathode temperature, the response of the rf input, and the response of the rf output. These were
zero-order implementations for which refinements and next-order improvements were beyond the
scope of the work.

For example, in the cathode-temperature work, there are still temperature gradients in some
nodes of the model used for predicting temperatures of the gun assembly components.
Refining the temperature predictions by restructuring the nodes was outside the scope of the
work. Other examples of out-of-scope work include (1) writing the code to accommodate a
generic gun assembly instead of only a specific assembly, (2) incorporating facilitating features
into the code such as inputing data interactively instead of by modifying either the code or the
input data file and (3) adding subroutines that allow the code output to interface immediately with
voltage and current controls.

Similarly, for the rf-input-response subsystem, some refinements necessary for a working expert
system were outside the scope of this work including (1) adding either mechanical or electrical
stops to both the axial and azimuthal drives, (2) removing backlash from both drives, (3) reducing
rotational compression in the flexible cable, (4) adding locks to both adjustments, (5) adding
searching software to find the best of all possible maximum-performance settings instead of
finding a local-maximum setting, and (6) adding subroutines to interface with actual hardware.

For the klystron program, interaction beyond that of a single cavity, e.g., interaction with a multi-
gap cavity or with a multi-cavity output, was outside the scope of the work.

2-4

RF INPUT-
TRANSFORMER"

ANODE

d
: SOLENOID:

I 1 I
WERMEDIATE CAVITIES

IV/NDCW

RF OUTPUT

/"'
FLOATING COLLECTOR

V/S//S

m
s * s'

VACUUM

CATHODE
TEMPERATURE

RF INPUT
RESPONSE

MAGNETIC
FIELD

PROFILE

BODY
CURRENT

DISSIPATION

CAVITY
TUNINGS

RF OUTPUT
RESPONSE

MONITOR - CONTROL
SOFTWARE

COOLING
SYSTEM

BEAM
COLLECTION

OUTPUT
WINDOW

FIGURE 2.2-1
A KLYSTRON EXPERT SYSTEM

2-5

APPENDIX 2A
EXAMPLES OF EXPERT SYSTEMS

The following give examples of "expert" or "smart" computer systems that control complex or
time-consuming tasks that normally require highly trained personnel.

1) Troubleshooting in systems that have many independent, coupled variables.

The expert system at the Stanford Linear Accelerator Center (SLAC) uses sensors for monitoring
the position of charged particle beams that drift inside tunnels. When the beam wanders from
a desired position, steering-coil currents that form magnetic fields to guide the particles must be
re-set. The expert system achieves this complex task by recording beam location changes that
result from combinations of experimental coil-current changes. After comparing the measured
position shifts with the shifts predicted by a computer model of the beam-magnet system, the
expert system can make final steering-coil adjustments that return the beam to its desired
position.

2) Enhancing product performance.

An expert system that extends the linearized bandwidth of a high-power millimeter-wave
amplifier exemplifies product performance enhancement. Typically, without an expert system,
an amplifier's bandwidth is determined by design features that fix beam voltage, cathode current,
rf drive and maximum allowable gain ripple. With the expert system, flat output power is
obtained even with less-than-ideal gain ripple by programming each frequency with its own beam
voltage, beam current and rf input level. The expert system can change these parameters in less
than a microsecond to generate flat frequency sweeps having bandwidths far in excess of the
typical amplifier.

3) Testing products during manufacturing.

The expert system that automates TWT tests at Litton EDD exemplifies product testing. After
technicians bake out, hipot, and focus the beam of the TWT, an expert system takes over.
Measurements, data reduction and plots are made for multiple tests including small signal gain,
drive for constant power output, saturated power, transfer functions, Miram curves, standard roll-
off curves, cut-off values, and tube aging both with and without rf. Despite appearances, the
above tasks represent a small fraction of the expert system's program. The large portion of the
program concerns decisions the expert system is expected to make during tests. (For example,
while aging the TWT with rf, if the TWT becomes gassy, the system may reduce the rf drive and
repeat the previous command. Or, if an arc shuts down the power supply, the expert system will
check prescribed conditions then replace voltages in a prescribed order, then check TWT
conditions, then resume tests.) Such automated testing is a standard part of TWT manufacturing
at Litton EDD.

2-6

3. CATHODE TEMPERATURE SUBSYSTEM

The expert system for any thermionic device such as a klystron must necessarily include
temperature control of the electron emission surface. Too high temperatures can often be
associated with heater or cathode malfunctions and too low temperatures can often be associated
with degradation in rf gain and power. Minute-by-minute control of the cathode temperature
assures optimal rf performance and maximizes the tube's MTBF.

One goal for this expert system is to design a model-based subsystem to control the cathode
temperature. As described below for this case, the subsystem is the cathode-heater assembly.
The model-base approach compares predictions of the heater-cathode model with experimental
data then adjusts parameters in the model. Comparisons are repeated until any resulting
discrepancy or error between the model prediction and the experimental measurement is reduced
below required specifications.

After model predictions become satisfactory, the subsystem will be integrated into the overall
expert system. As a result, the output from the computer model will control switches which
change the heater voltage and current such that the heater power maintains the desired cathode
temperature.

3.1 Description of Program

To achieve control of the cathode temperature, a Fortran-language code CATHTEMP was
developed to predict the cathode temperature for a given heater power. This code is an
automated version of a QuickBasic program (see Litton technical report "A Better Method for
Controlling the Cathode Temperature", R.M. Rogers, Litton Systems Inc., Electron Devices
Division, 960 Industrial Road, San Carlos, CA 94070) developed for a klystron gun assembly
similar to that used in this program. A listing of the program is given in Appendix 3-C and the
programming steps are outlined in Appendix 3-A. The program uses an approach that greatly
simplifies a complex geometry problem.

In general, for a given heater power, the cathode temperature is a function of (1) the thermal
emissivities of the emitting surfaces of the cathode and heater, and (2) the conductivities and the
emissivities of various cathode support parts. Although, in general, each part has cylindrical
symmetry, each of the 43 gun-assembly parts radiates and conducts to the other parts from
portions of conical, cylindrical, or disk-type (end plate) surfaces.

In the model, the geometry is simplified by grouping individual parts into "nodes" that have
conduction and radiation linkages to each other (Fig. 3.1-1). The fundamental assumption of this
nodal approach is that all parts of a node have the same temperature at a given time.

The inner diameters, outer diameters and lengths of parts are still needed to calculate the
radiating and the conducting surface areas of the nodes. The input data to CATHTEMP are

3-1

managed by an input data file CATHIN which is explained in detail in Section 3.3. For each part
of the gun assembly, CATHIN requires the following input parameters:

— inner diameter
— outer diameter
— length
— density
— specific heat
— thermal conductivity
— emissivity

CATHTEMP also requires the heater voltage and the heater coil electrical resistivity.

The program begins calculations at a time t = 0 which corresponds to the application of power
to the heater. The heater current, which when multiplied with the heater voltage provides the
power generated during each time increment, is computed by dividing the heater voltage by
heater resistance.

Over each of the following time increments, the program calculates the heat transmitted to each
node from all of the others. Typically the program runs for 1800 time steps, the first 60 being
each 1 second and the remaining being 2 sec. The program stops when a steady state solution
is achieved.

The net power flow to the k-th node from all other nodes is given by

Here Pltk represents the net power flow to k-th node from node 1. The power flow from node 1
to node 2 at a given time t is given by

P^PS^M+Pg™"® &

where

pC£duction(t)=T(l)-T(2) (3)

Mr2

Here Rlt2 = thermal resistance between node 1 and node 2 at time t (deg.K/watts)
T(l) = temperature of node 1 at time t (deg.K)

3-2

T(2) = temperature of node 2 at time t (deg.K)

The second term in equation (2) represents the power flow due to radiation from node 1 to node
2 at time t and is given by

PJ2r,w,(0=e(7)oF/(7ri)4-7t2)4) (4)

Here
s(T) = thermal emissivity of a radiating surface at temperature T
a = Stefan-Boltzmann constant (watts/inch2/K4)
Fy = view factor, fraction of radiation from surface i reaching surface j
A = area of the radiating surface
T(l) = temperature of node 1 at time t (deg. Kelvin)
T(2) = temperature of node 2 at time t (deg. Kelvin)

Once the net power flow to a node at a given time is known, the updated temperature of the
node is given by

Here
Tn = temperature of node k at time step n (deg.K)
Tn.] = temperature of node k at time step n-1 (deg.K)
h = time step (sec)
Ct = thermal capacitance of node k (joules/kg/deg.K)
Pk = net heat flow to node k at previous time step (watts)

The thermal capacitance of node k is given by

C,=2>A (6)

Here
i = index of all parts belonging to node k
ni; = mass of i-th part
C; = specific heat of i-th part.

3-3

3.2 Uncertainties

The following parameters are not known exactly:

Fjj = View factor
e(T) = thermal emissivity of a radiating surface as a function of

temperature
Rktk+1 = thermal resistance between node k and k+1.

The view factor F^, the fraction of radiation leaving surface i which is intercepted by surface j,
is given by (Fig. 3.2.-1) (see "Fundamentals of Heat and Mass Transfer", F.P. Incropera, D.P.
Dewitt, John Wiley & Sons, 1985.)

1 rrCOsQfiOsd;
F..=—\\ '—^LdAdi. (7)

The above factor is unity when (1) two surfaces of equal area are parallel to each other, or (2)
the intercepting surface completely surrounds the radiating surface. Otherwise, in general, the
above integral is not easy to evaluate.

The temperature dependence of the thermal emissivity e(T) is only approximately known for
most gun assembly surfaces. For example, the oxide cathode, one of the main radiating surfaces
in a gun assembly has a granular BaO-on-Nickel surface that results from several chemical
processes. The complex nature of this composite surface makes its thermal emissivity impractical
to know. Similarly the radiation between heater and cathode surface is not known exactly due
to imprecise knowledge of the thermal emissivity of the heater coil.

The thermal resistance Rktk+I required for conduction calculations between two adjacent constant-
temperature nodes is given by thermal resistances of parts located on the node boundary. The
thickness of the interface between two nodes is the combined thicknesses of the two parts
adjacent to the boundary. Besides various geometry factors, the thermal conduction calculations
depend upon (a) the type of joints (spot weld, TIG weld or braze joint) used to join two adjacent
parts, (b) the direction of heat conduction in the interface, and (c) the temperature variation of
thermal conductivity of the interface. Since the thermal conductivities of different types of joints
are unknown, the exact variations of thermal conductivities with temperature of different materials
involved are unknown.

3.3 Description of the Input Data File

As shown by the sample file in Appendix 3B, the input data file uses namelist statements to
represent a group of variables by one name. Each namelist starts with a '$' sign and ends with

3-4

'Send*. Typically, as with the first namelist 'Sheatcoil,' four variables (id(l,l), od(l,l), length(l,l)
and MatType(l,l)) represent the inner diameter (id), outer diameter (od), length and material type
for a given part. For variables cast as two dimensional arrays, the value of first dimension gives
the node index and the value of the second dimension gives the part index.

The namelist names have both descriptive and numerical portions. For example,
'cath_support_466' stands for cathode support having Litton part number 372466. This report
only uses the last three digits since the first three are common to all parts. The namelists Spartl,
$part2, etc. represent the variable jpart(i) (1 < i < 10; node index). The variable jpart(i) gives the
total number of parts belonging to a given node.

The sixty-six namelist statements of the input file are separated by blank lines to form ten groups
corresponding to ten nodes. Fig. 3.3-1A shows the part belonging to node 1 in the gun assembly
drawing. Node 1 consists of the heater coil (part # 481) alone. Fig. 3.3-1B shows the heater coil
in detail. The heater coil consists of 0.02875 inch tungsten wire which is 55 inches long.
Tungsten is numbered as material type 1 in the code (see table below).

The second node includes the heater tab, the heat shields (part # 487, 488, 484), the cathode head
(part # 474) and the cathode support (part # 473). Fig. 3.3-2A shows these parts (except the
heater tab) in the gun assembly drawing. The heater tab is a portion of the heater coil which
joins the coil to the cathode support. The individual part drawings for parts belonging to node
2 are shown in Figs. 3.3-2B through 3.3-2F. Notice that the lengths (compare the dimensions
in the input file with those in the drawings) of some parts are obtained by averaging some
relevant dimensions due to the bends in the cylindrical surfaces.

The third node consists of the cathode support (part # 466), the heat trap (part # 649), the shadow
grid support (part # 425, 426) and a portion of part # 469. These parts are shown in Fig. 3.3-3A
in the gun assembly drawing and detailed drawings are shown in Figs. 3.3-3B through 3.3-3F.
Notice that part # 469 was divided into four separate sections (A,B,C, and D) for convenience
of calculations of cross-sectional areas for conduction and radiation (Fig. 3.3-3C). Note also that
the outer and inner diameters of part # 466 were obtained by weighted average of the dimensions
shown in the drawing due to bends in the cylindrical surface.

The parts # 469 and 442 belong to node 4 and are shown in Figs. 3.3-4A, 3.3-4B and 3.3-3C.
Figs. 3.3-5 shows the locations for nodes 5, 6, and 7. Fig. 3.3-6A shows part # 470 belonging
to node 5 and Fig. 3.3-6B shows part # 496 belonging to node 6. The part drawings for the
parts belonging to node 7 are shown in Fig. 3.3-7A and 3.3-7B. All parts (# 441, 440, 439, 437)
belonging to node 8 are shown in Fig. 3.3-8A in the gun assembly drawing. The individual part
drawings are shown in Figs. 3.3-8B through Fig. 3.3-8E. Notice that the part # 439 repeats
twice.

Fig. 3.3-9 shows parts (# 435, 432, 431) belonging to node 9 in the assembly drawing and the
individual parts are shown in Figs. 3.3-9B through Fig 3.3-9D. Fig. 3.3-10 includes all parts (#
651-654, 452, 448, 450, 446, 455, 454, 445, 457, 456, 029, 406, 409, 407, 414, 413) belonging

3-5

to node 10. The individual part drawings are shown in Figs. 3.3-10A through Fig. 3.3-10S.

The materials from which the different parts of the gun assembly are made, are numbered in the
code as follows:

Name of Material # for Material Type

Tungsten 1

Molybdenum 2

Nickel 3

Stainless Steel 4

Kovar 5

Alumina 6

3.4 Output

Figure 3.4-1 is a plot of output from a preliminary version of the Fortran code. The two curves
show the variation of temperature with time for nodes 1 and 2. Node 1 consists of the heater coil
alone (Fig. 3.3-1). Node 2 includes heater tab, part of the cathode support, insulators and cathode
head (Fig. 3.3-2). The heater voltage was assumed to be 14 volts for the first 10 minutes of
operation then 13 volts thereafter.

The temperature of node 1 (heater) is higher than that of node 2 and the rise time of node 1 is
much shorter than that of node 2 because the thermal capacitance of node 1 is much smaller than
that of node 2. The small step shown in curve 1 is due to the change in heater voltage from 14
volts to 13 volts 10 minutes after heater turn-on.

3-6

■=- SINK
Figure 3.1-1

NODAL DIAGRAM

3-7

2
c
u
E

JJ
u
c u u

"5
4>
60
c
es

JC u
u
c
O

.S
•o
es

u

.2 *o
o .
V> A,

«3

.es w

o
U

es
4>

3

3-8

(NODE 1)

B

DEV. LENGTH = 55" APPROX

HEATER 372481
.02875 TUNGSTEN WIRE

Figure 3.3-1
NODE 1

3-9

473

NODE 2

B

02.085 ->ee

HEAT SHIELD
.010 MOLY

372487 SHIELD, HEATER HEAT
MAKE FROM 436069

372488

Figure 3.3-2
NODE 2

3-10

i r7s
D

I :

i ,
j&r

, i

/ •118^JL

\

- 02.(D75 02.088 -I 02.111

\
i

1 1 1 NXV. ' 1

.80

CUP-HEATER ASSY 372484
.010 MOLY

CATHODE HEAD 372474

. F

■

i i

 . -- 02.

1

389

•

— 1.105

CYLINDER
.008

BUTTON 372473
NICKEL

Figure 3.3-2 (CONT)
NODE 2

3-11

NODE 3

1
.625 \

02.332

/

02.109

B

SUPPORT, BOTTOM CYL ASSY 372466
220 NICKEL

D

211 BITJ

02.675

02.173 02.639

E

8X .030

.270

SHADOW GRID SUPPORT
MOLY

372425 SHADOW GRID SUPPORT CYLINDER
KOVAR

Figure 3.3-3
NODE 3

3-12

372426

.040 - - —.809

—j22!~-

.125—j

.125— c
.

~7/~

- d
"■-= m -

02.405 c —
+-b-

02.220

02.350 — c] — 02.253

03. 60 02.34T '

02.334
 02.283

03 04 02.555

-

"- »'

■

' i

_
-j —.030

—.155

H .433 —

- .575-

l"" - .870—

- .934—

BUSHING 372469
304 SST

02.251 i
.406

T
HEAT TRAP

200 NICKEL
372649

Figure 3.3-3 (CONT)
NODE 3

3-13

NODE 4

i_t
_J n^n —J .1 IS —' .050

03.160

02.735

B

CEB.

,150 J
CONTROL GRID SUPPORT 372442

KOVAR

(Node 4 also includes part in Fig. 3.3-3C)

Figure 3.3-4
NODE 4

3-14

o

ID
O
>-

Q
O

m
o

<: o

1.430

02.288 02.348

JL

NODE 5
SUPPORT , BUSHING 372470

304L SST

B
u/s///////J/S/S/Jj;S//JJJJJ/f?S//>//>)>>/>>S//;;//S

02.160 -

1/^;^^^^^^;^^//;;^^^^

- 02.300

4.668

NODE 6
LOWER CATHODE SUPPORT SLEEVE 372496

304L SST

Figure 3.3-6
NODES 5 and 6

3-16

1.500

02.306 —■ — 02.380

.024 1
CYLINDER 372658
304L SST

— 1.195 -H

02.380 —

B

CORONA SHIELD
304L SST

029—'

372657

Figure 3.3-7
NODE 7

3-17

2X 439

■Q-

02.875

02.905

B f .219 02.905

02.875
.219 I

FLANGE CONTROL GRID INSULATOR 37244'
KOVAR

FLANGE UPPER GRID SUPPORT 372440
KOVAR

I

- 03.250

- 03.000

.156

D

BACK-UP CERAMIC 372439
AL-300

03.250

02.876

INSULATOR 372437
AL-300

Figure 3.3-8
NODE 8

3-18

.438 J

435

120i— .050 j— . izui— 02.875

n S

02.912

B

.150 J
CONTROL GRID SUPPORT RING 372435

KOVAR

(2 ^>

— R 1.392-H

.042 CÜ
.086 -J

CORONA SHIELD 372432
.25 THK. MOLY SHT. D

03.000
02.232

m s™

02.135
02.500

CONTROL GRID SUPPORT 37243'
MOLY

3-19

Figure 3.3-9
NODE 9

.SfZ

3-20

02.500 —

.250

a
L_@

«.875

_1
04.065 02.092 02.437

.020
J~=3 k- ,187

PLATE, HEADER 372651
304L SST

SUPPORT
304L SST

.094

03.187 —

— 1.196-H

INNER 732654
304L SST

Figure 3.3-10
(CONT)
NODE 10

3-21

•— 03.312 03.812

£m

BEB

RING, SPRT PLT ASSY 372653
304L SST

E

T
~7
01.0 01.5

1
1

.187

i
0.750 — -

r

.250

T
1
01.0 01.5

1
I

.062

01.250 0.750 01.500

BACK UP INSULATOR
AL 300 372452

INSULATOR
AL-300 372448

INSULATOR
AL-300 372450

H

.187

0.750 01.250 02.25

7777*
i- 485

YTZm

1.

02.395 01.56

02.50

 -f- 0.437 0.688

INSULATOR
kL-300 372446

HEATER TERMINAL
304 SST 372455

Figure 3.3-10 (CONT)
NODE 10

SEAL
K0VAR 372454

3-22

K

01.500 —

i-.020 c

-I U-

0.870 01.250

-1 L
m

M

.470

.22

± L 0.435 0.250-§§§£-I
■-0.437 0.688

.107 '

r^
.532

.400
-.13

3
0.500

i.125-1 I

.032

SEAL 372445
KOVAR

SEAL 372457
KOVAR

CONTACT 372456
304 SST

04.425

PLATE, SUPPORT 372029
304L SST

WELD FLANGE, CATH SEAL 372406
KOVAR

Figure 3.3-10 (CONT)
NODE 10

3-23

5.455

 04.562 05.062

INSULATOR, CATHODE
AL-300

372409

05.062

04.582

BACK UP CERAMIC
AL-300

.375 1
372407 Figure 3.3-10 (CONT)

NODE 10

3-24

.225

.187 3.188

:HV ^'-l'^'^'-i'-'-iii'-^vv

— 05.100 05.032

^''^^^'^'■'■■■'■^'■^^^■■-^-i

.250

BOTTOM RING, SEALING ASSY
304L SST 372414

SEALING CYLINDER
304 SST 372413

Figure 3.3-10 (CONT)
NODE 10

3-25

o

6-JUN-95 14.30
 1 1 1 1

0.00 12.00 24.00 36 00 45.00
-> t i me (minutes)

6"[«1 r\

Figure 3.4-1
TEMPERATURE VS. TIME

3-26

APPENDIX 3A: Programming Steps

STEP 1:

Enter id, od, length, material type, node number for each part.
Enter specific heat and density for each material type.
Enter initial temperature in degree C.

STEP 2:

Calculate thermal capacitance of each part using following equation:

C, = mc = A*L*p*c

Here
m = mass (kg)
A = cross-sectional area (inch**2)
L = length (inch)
p = density (kg/inch**3)
c = specific heat (Joules/kg/deg.C)

STEP 3:

Compute thermal capacitance of each node by adding thermal capacitances of all parts
belonging to that node.

STEP 4:

Calculate the thermal resistance of each part of the gun for the starting temperature using
following equation:

R, = L/(k(T)*A)

Here k(T) represents the thermal conductivity at temperature T (watts/inch/deg.C).

STEP 5:

Compute thermal time constant of each part of the gun assembly using:

Tt =CtRt

3-27

STEP 6:

Loop through each time step:

-- Compute time in sec.
— Enter heater voltage at that time (Volts).
— Compute electrical resistance of heater element using following formula:

Rheater = P(T)L/A

Here p(T) is resistivity of heater element at temperature T (ohm-inch).
L is the length of heater coil (inch), A is the cross-sectional area of the heater coil
(inch**2).

~ Compute heater power from:

P = V*V/Rheater

— Calculate the thermal resistance of each part of the gun for the starting temperature
using following equation:

Rt = L/(k(T)*A)

Here k(T) represents the thermal conductivity at temperature T
(watts/inch/deg.C).

-- Compute thermal resistances between nodes by adding with a proper weighting factor
the thermal resistances of parts located adjacent to the boundary between two nodes.

-- Compute net power flow to a node from all other nodes.

~ Compute the updated temperature of each node at the next time step.

~ Repeat all the above steps (under step 6) for each incremental time step until steady
state is reached.

3-28

APPENDIX 3B: Input Data File

Sheatcoil
id(l,l)=0.;0,od(l,l)=0.02875,length(l,l)=54.47,MatType(l,l)=l Send
Spartl jpart(l)=l Send

$heater_tab
id(2,l)=0.0,od(2,l)=0.02875,length(2,l)=0.65,MatType(2,l)=l Send
$heat_shield_487
id(2,2)=0.0,od(2,2)=2.085,length(2,2)=0.118,MatType(2,2)=2 Send
$heat_shield_484
id(2,3)=0.0,od(2,3)=2.075,length(2,3)=0.4,MatType(2,3)=2 Send
$heat_shield_488
id(2,4)=0.0,od(2,4)=1.935,Iength(2,4)=0.028,MatType(2,4)=2 Send
SCathode
id(2,5)=0.0,od(2,5)=2.2,length(2,5)=0.118,MatType(2,5)=2 Send
$Cath_support_473
id(2,6)=2.089,od(2,6)=2.105,length(2,6)=l. 105,MatType(2,6)=3 Send
Spart2 jpart(2)=6 Send

$Cath_support_466
id(3,l)=2.2,od(3,l)=2.22,length(3)l)=0.65,MatType(3,l)=3 Send
$ss_469_a
id(3,2)=2.253,od(3,2)=2.555,length(3,2)=0.225,MatType(3,2)=4 Send
$ss_469_b
id(3,3)=2.283,od(3,3)=2.405,length(3,3)=0.208,MatType(3,3)=4 Send
$ss_469_c
id(3,4)=2.344,od(3)4)=2.405,length(3,4)=0.267,MatType(3,4)=4 Send
$heat_trap_649
id(3,5)=2.231,od(3,5)=2.251,length(3,5)=0.406,MatType(3,5)=2 Send
$Sgrid_support_425
id(3,6)=2.173,od(3,6)=2.675,length(3,6)=0.211,MatType(3,6)=2 Send
$Sgrid_support_426
id(3,7)=2.579,od(3,7)=2.639,length(3)7)=0.27,MatType(3,7)=5 Send
Spart3 jpart(3)=7 Send

$ss_469_d
id(4,l)=2.344,od(4,l)=3.04,length(4,l)=0.234,MatType(4,l)=4 Send
$kovar_442
id(4,2)=2.735,od(4,2)=3.16,Iength(4,2)=0.15,MatType(4,2)=5 Send
$part4 jpart(4)=2 Send

$ss_470
id(5,l)=2.288,od(5,l)=2.348,length(5,l)=1.43,MatType(5,l)=3 Send

3-29

$part5 jpart(5)=l Send

$sleeve_496

id(6,l)=2.16,od(6,l)=2.3,length(6,l)=4.668,MatType(6,l)=4 Send
Spart6 jpart(6)=l Send

$cylinder_658

id(7,l)=2.295,od(7,l)=2.343,length(7,l)=1.5,MatType(7,l)=4 Send
$shield_657

id(7,2)=2.818,od(7,2)=2.878)length(7,2)=l. 195,MatType(7,2)=4 Send
$part7 jpart(7)=2 Send

$kovar_441

id(8,l)=2.875,od(8,l)=2.905,length(8)l)=0.219,MatType(8)l)=5 Send
$kovar_440

id(8,2)=2.875,od(8,2)=2.905,Iength(8,2)=0.219,MatType(8,2)=5 Send
$ceramic_439_a

id(8,3)=3.0,od(8)3)=3.25)length(8,3)=0.156,MatType(8,3)=6 Send
$ceramic_437

id(8,4)=2.876,od(8,4)=3.25)length(8,4)=0.438,MatType(8,4)=6 Send
$ceramic_439_b

id(8,5)=3.0)od(8,5)=3.25)length(8,5)=0.156,MatType(8,5)=6 Send
$part8 jpart(8)=5 Send

$kovar_435

id(9,l)=2.875,od(9,l)=2.905,Iength(9,l)=0.15,MatType(9,l)=5 Send
$corona_432

id(9,2)=1.342,od(9,2)=1.392,length(9,2)=2.039,MatType(9,2)=2 Send
$cgrid_support_a_431

id(9,3)=2.2320,od(9,3)=3.0,length(9,3)=0.042,MatType(9,3)=2 Send
$cgrid_support_b_431

id(9,4)=2.135,od(9,4)=2.5,length(9)4)=0.086)MatType(9,4)=2 Send
Spart9 jpart(9)=4 Send

$plate_651

id(10,l)=0.875,od(10,l)=2.5,length(10,l)=0.25,MatType(10,l)=4 Send
$support_652_a

id(10,2)=4.0)od(10,2)=4.065,length(10)2)=0.187)MatType(10,2)=3 Send
$support_652_b

•d(10,3)=3.059,od(10,3)=3.098,length(10,3)=1.093,MatType(10,3)=4 Send
$support_654

id(10,4)=3.059,od(10,4)=3.098,length(10,4)=1.093,MatType(10,4)=4 Send
$ring_653

id(10,5)=3.25,od(10,5)=3.812,length(10,5)=0.219,MatType(10)5)=4 Send

3-30

$insulator_452
id(10,6)=1.0,od(10,6)=1.5,length(10,6)=0.187,MatType(10,6)=6 Send
$insulator_448
id(10,7)=0.8,od(10,7)=l.'5,length(10,7)=0.25,MatType(10,7)=6 Send
$insulator_450
id(10,8)=0.75,od(10,8)=1.375,length(10,8)=0.562,MatType(10,8)=6 Send
$insulator_446
id(10,9)=0.75,od(10,9)=1.25,length(10,9)=0.187,MatType(10,9)=6 Send
$heater_terminal_455
id(10,10)=2.25,od(10,10)=2.5)length(10,10)=0.485,MatType(10,10)=4 Send
$seal_454_a
id(10,ll)=0.543,od(10,ll)=0.583,length(10,l l)=0.25,MatType(10,l 1)=5 Send
$seal_454_b
id(10,12)=1.502,od(10,12)=1.541,length(10,12)=0.45,MatType(10,12)=5 Send
$seal_445
id(10,13)=1.145,od(10,13)=1.185,length(10,13)=0.47,MatType(10,13)=5 Send
$seal_457_a
id(10,14)=0.437,od(10,14)=0.477,length(10,14)=0.117,MatType(10,14)=5 Send
$seal_457_b
id(10,15)=0.543,od(10,15)=0.583,length(10,15)=0.107,MatType(10,15)=5 Send
$seal_457_c
id(10,16)=0.688)od(10,16)=1.25,length(10,16)=0.020,MatType(10,16)=5 Send
$contact_456_a
id(10517)=0.125,od(10,17)=0.468,length(10,17)=0.13,MatType(10,17)=4 Send
$contact_456_b
id(10,18)=0.0,od(10,18)=0.435,length(10)18)=0.034,MatType(10,18)=4 Send
$contact_456_c
id(10,19)=0.0,od(10)19)=0.250,length(10)19)=0.4,MatType(10,19)=4 Send
$support_029_l
id(10,20)=3.187,od(10,20)=5.12,length(10,20)=0.132,MatType(10,20)=4 Send
$seal_406_l
id(10,21)=4.5,od(10,21)=5.046,length(10,21)=0.02,MatType(10,21)=5 Send
$seal_406_2
id(10,22)=4.265,od(10,22)=4.305,length(10)22)=0.197,MatType(10,22)=5 Send
$seal_406_3
id(10,23)=4.07,od(10,23)=4.11,length(10,23)=0.128,MatType(10,23)=5 Send
$ceramic_407
id(10,24)=4.582,od(10,24)=5.062,length(10,24)=0.375,MatType(10,24)=6 Send
$ring_409
id(10,25)=4.562,od(10,25)=5.062,length(10,25)=5.455,MatType(10,25)=4 Send
$ring_414
id(10,26)=4.442,od(10,26)=5.094,length(10,26)=0.22)MatType(10,26)=4 Send
$cylinder_413
id(lQ,2.7)=5l032,od(10,27)=5.1,length(10,27)=3.188,MatType(10,27)=4 Send

3-31

SpartlO jpart(10)=27 Send

3-32

APPENDIX 3C: Source Code for CATHTEMP.FOR

PROGRAM CATHTEMP

C File Name: CATHTEMP.FOR
C Descrpt. : This program calculates the temperature of a cathode
c of a gun vs heater voltage where the different dimensions
c of different parts of the gun are to be entered as input.
c
c Unit : MKS except lengths; lengths are in inches.
C
C Input
c File: "cathin.dat"
c contains dimensions of different parts of the
c gun read by the program.
c ID = inner dia. of a part (inch)
c OD = outer dia. of a part (inch)
C length = length of a part (inch)
c spheat = specific heat of a material (Joules/kg/C)
c dens = density of a material (kg/inch**3)
c k = thermal conductivity (watts/inch/C)
c Tamb = ambient temperature in deg.K
c Temp(i) = temp of i-th node in degree Kelvin.
c timeO = time in minutes over which heater voltage is
c "VhO" volts
c jtrans = total # of time steps for transient calculations
c jtmax = total # of time steps
c hO = duration of a time step during transient calculation
c (sec)
c hi = duration of a time step after transient calculation
c and until steady state is reached.
c ampmax = maximum allowable heater current (Amps).
C
c Intermediate
c variables: mc(ij) = thermal capacitance of j-th part in
c i-th node (Joules/deg.C)
c mcn(i) = thermal capacitance of i-th node
c Rt(ij) = thermal resistance of j-th part in
c i-th node (deg.C/watt)
c Rn(i,i+1) = thermal resistance between nodes i and i+1.
c Pout(i,i+l) = net power flow from node i to node i+1
c PoutT(i) = net power out from i-th node
c Pin(i) = net power in to i-th node
c

3-33

C Output : Files = "input.dat" contains all input data written by
c the program.
c "cathout.dat" contains intermediate results from
c the program e.g. disk areas, cylindrical
c areas, thermal resistances of different
c parts.
c "node.dat" contains thermal capacitance of each node.
c "temp.dat" contains cathode temperature vs time
c and heater temperature vs time.
c Temp(jtime,inode) = temp, of node index 'inode'
c at time step 'jtime'.
c
C
C Rev. History: Oct. 26, 1993 (SRB)
c Nov. 16, 1993 Calculation of thermal time constants
c for each part added.
c Dec 29, 1993 Stepping thru time increment added
c to update the nodal temperature (do 56)
f~^>t« **

implicit integer (i-n)
implicit real*8 (a-h,o-z)
real*8 id(10,50),length(10,50),mc(10,50),mcn(10),L,k
dimension od(10,50), acyl(10,50), adisk(10,50), MatType(10,50),

+ dens(6),spheat(6)jpart(10),Rt(10,50), Time_const(10,50),
+ Temp(1800,10),Rn(10,10),Pout(10,10),Pin(10),PoutT(10)

c
c Constants:

pi = 3.141592654
c = 3.0e08

c Stefan-Boltzmann constant (watts/inch*2/K**4)
sigma = 3.658e-ll

c Input:
write(5,*)'Dimensions: length = inch, sp.ht. = Joules/kg/C
write(5,*)'density = kg/inch**3, k= watts/inch/C

c write(5,*)'Enter total # of nodes'
c read(5,*)inode

inode=10
write(5,*)'enter 1 if diagnostic checks are desired else enter 0'
read(5,*)idiag
Tamb = 26.8 + 273.0
do 10 iT = 1, inode

Temp(l,iT) = Tamb
10 continue
c Enter voltage and time steps:

3-34

timeO = 10.0
VhO = = 14.0
Vhl = = 13.0
j trans = 60
jtmax = 1800
hO = 1.0
hi = 2.0
ampmax = 15.0

namel ist/heatcoil/id,od,length,MatType
name! ist/partl/jpart
name! ist/heater_tab/id,od,length,MatType
name! isMeat_shield_487/id,od,length,MatType
namel ist/heat_shield_484/id,od,length,MatType
name! ist/heat_shield_488/id,od,length,MatType
name! ist/Cathode/id,od,length,MatType
name! ist/Cath_support_473/id,od,length,MatType
name! ist/part2/jpart
name] ist/Cath_support_466/id,od,length,MatType
name] ist/ss_469_a/id,od,length,MatType
name! ist/ss_469_b/id,od,length,MatType
namel ist/ss_469_c/id,od,length,MatType
namel ist/heat_trap_649/id,od,length,MatType
namel ist/Sgrid_support_425/id,od,length,MatType
namel ist/Sgrid_support_426/id,od,length,MatType
namel ist/part3/jpart
namel ist/ss_469_d/id,od,length,MatType s

namel ist/kovar_442/id,od,length,MatType
namel ist/part4/jpart
name! ist/ss_470/id,od,length,MatType
namel ist/part5/jpart
name! ist/sleeve_496/id,od,length,MatType
namel ist/part6/jpart
namel ist/cylinder_658/id,od,length,MatType
namel ist/shield_657/id,od,length,MatType
namel ist/part7/jpart
namel ist/kovar_441/id,od,length,MatType
namel ist/kovar_440/id,od,length,MatType
namel ist/ceramic_439_a/id,od,length,MatType
namel ist/ceramic_437/id,od,length,MatType
namel ist/ceramic_439_b/id,od,length,MatType
namel ist/part8/jpart
namel ist/kovar_435/id,od,length,MatType
namel ist/corona_432/id,od,length,MatType

3-35

namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel
namel

st/cgrid_support_a_431/id,od,length,MatType
st/cgrid_support_b_431/id,od,length,MatType
st/part9/jpart
st/plate_651/id,od,length,MatType
st/support_652_a/id,od,Iength,MatType
st/support_652_b/id,od,length,MatType
st/support_654/id,od,length,MatType
st/ring_653/id,od,length,MatType
st/insulator_452/id,od,Iength,MatType
st/insulator_448/id,od,length,MatType
st/insulator_450/id,od,length,MatType
st/insulator_446/id,od,length,MatType
st/heater_terminal_455/id,od,length,MatType
st/seal_454_a/id,od,length,MatType
st/seal_454_b/id,od,length,MatType
st/seal_445/id,od,length,MatType
st/seal_457_a/id,od,length,MatType
st/seal_457_b/id,od,length,MatType
st/seal_457_c/id,od,length,MatType
st/contact_456_a/id,od,length,MatType
st/contact_456_b/id,od,length,MatType
st/contact_456_c/id,od,length,MatType
st/support_029_l/id,od,length,MatType
st/seal_406_l/id,od,length,MatType
st/seal_406_2/id,od,length,MatType
st/seal_406_3/id,od,length,MatType
st/ceramic_407/id,od,length,MatType
st/ring_409/id,od,length,MatType
st/ring_414/id,od,length,MatType
st/cylinder_413/id,od,length,MatType
st/p art 10/j part

open (unit=l 5,file- cathin.dat'.status-old')
open (unit=16,file='input.dat',status='new')
open (unit=17,file='cathout.dat',status='new')
open (unit=18,file='node.dat',status-new')
open (unit=19,file-check.dat',status='new')
open (unit=20,file-temp.dat',status-new')

c Read data:
read(15,heatcoil)
read(15, parti)
read(15,heater_tab)
read(15,heat_shield_487)

3-36

(15,heat_shield_484)
(15,heat_shield_488)
(15,Cathode)
(15,Cath_support_473)
(15,part2)
(15,Cath_support_466)
(15,ss_469_a)
(15,ss_469_b)
(15,ss_469_c)
(15,heat_trap_649)
(15,Sgrid_support_425)
(15,Sgrid_support_426)
(15,part3)
(15,ss_469_d)
(15,kovar_442)
(15,part4)
(15,ss_470)
(15,part5)
(15,sleeve_496)
(15,part6)
(15, cylinder_658)
(15,shield_657)
(15,part7)
(15,kovar_441)
(15,kovar_440)
(15,ceramic_439_a)
(15,ceramic_437)
(15,ceramic_439_b)
(15,part8)
(15,kovar_435)
(15,corona_432)
(15,cgrid_support_a_431)
(15,cgrid_support_b_431)
(15,part9)
(15,plate_651)
(15,support_652_a)
(15,support_652_b)
(15,support_654)
(15,ring_653)
(15,insulator_452)
(15,insulator_448)
(15,insulator_450)
(15,insulator_446)

read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read(15,heater_terminal_455)

3-37

c
c
c
c
c
c
c
c
c
c

read(15,seal_454_a)
read(l 5,seal_454_b)
read(15,seal_445)
read(15,seal_457_a)
read(15,seal_457_b)
read(15,seal_457_c)
read(l 5,contact_456_a)
read(l 5,contact_456_b)
read(l 5,contact_456_c)
read(15,support_029_l)
read(15,seal_406_l)
read(15,seal_406_2)
read(15,seal_406_3)
read(l 5,ceramic_407)
read(15,ring_409)
read(15,ring_414)
read(15,cylinder_413)
read(15,partlO)

Enter density and specific heat for different material:
(array dimension indicates 'MatType')
MatType=l => tungsten
MatType=2 => moly
MatType=3 => Nickel
MatType=4 => stainless steel
MatType=5 => kovar
MatType=6 => alumina

dens(l)= 316.27e-03
dens(2)= 167.47e-03
dens(3)= 145.98e-03
dens(4)= 129.95e-03
dens(5)= 117.0e-03
dens(6)= 64.9e-03
spheat(l) = 142.8
spheat(2) = 253.96
spheat(3) = 600.0
spheat(4) = 490.0
spheat(5) = 450.0
spheat(6) = 1273.08

c Write input data to a file called 'input.dat':
write(16,*)'group-name7 id ',' od','

+' Material'
write(16,*)'

length',

3-38

write(L6,*)'heatcoil'
write(16,166)id(l,l),od(U).length(l,l),MatType(l,l)
write(I6,*)'heater_tab'
write(L6,166)id(2,l),od(2,l),length(2,l),MatType(2,l)
write(I6,*)'heat_shield_487'
write(l6,166)id(2,2),od(2,2),length(2,2),MatType(2,2)
write(I6,*)'heat_shield_484'
write(l6,166)id(2,3),od(2,3),length(2,3),MatType(2,3)
write(L6,*)'heat_shieId-488'
write(l6,166)id(2,4),od(2,4),length(2,4),MatType(2,4)
write(l6,*)'cathode'
write(l6,166)id(2,5),od(2,5),length(2,5),MatType(2,5)
write([6,*)'cath_support_473'
write(l6,166)id(2,6),od(2,6),length(2,6),MatType(2,6)
write(6,*)'cath support 466'
write(l6,166)id(3,l),od(3,l),length(3,l),MatType(3,l)
write(I6,*)'ss_469_a'
write(l6,166)id(3,2),od(3,2),length(3,2),MatType(3,2)
write(I6,*)'ss_469_b*
write(l6,166)id(3,3),od(3,3),length(3,3),MatType(3,3)
write(] I6,*)'ss_469_c'
write(L6,166)id(3,4),od(3,4),length(3,4 (,MatType(3,4)
write(I6,*)'heat_trap_649'
write(] l6,166)id(3,5),od(3,5),length(3,5),MatType(3,5)
write(16,*)'sgrid_support_425'
write(l6,166)id(3,6),od(3,6),length(3,6),MatType(3,6)
write(I6,*)'sgrid support 426'
write(l6,166)id(3,7),od(3,7),Iength(3,7),MatType(3,7)
write(L6,166)id(4,l),od(4,l),length(4,l,),MatType(4,l)
write(i6,*)'kovar_442'
write(l6,166)id(4,2),od(4,2),length(4,2;),MatType(4,2)
write(6,*)'ss 470'
write(6,166)id(5,l),od(5,l),Iength(5,i:),MatType(5,l)
write(6,*)'sleeve_496'
write(6,166)id(6,l),od(6,l),length(6,i; ,MatType(6,l)
write(6,*)'cylinder 658'
write(6,166)id(7,l),od(7,l),length(7,i; |,MatType(7,l)
write(6,*)'shield 657
write(' 6,166)id(7,2),od(7,2),length(7,2; ,MatType(7,2)
write(: 6,*)'kovar_441'
write(! 6,166)id(8,l),od(8,l),length(8,l) ,MatType(8,l)
write(: 6,*)'kovar_440'
write(:
write(:

6,166)id(8,2),od(8,2),length(8,2)
6,*)'ceramic_439_a'

,MatType(8,2)

3-39

write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(16,
write(6,
write(6,
write(16,
write(6,
write(] 6,
write(6,
write(6,

166)id(8,3),od(8,3),length(8,3),MatType(8,3)
*)'ceramic_437'
166)id(8,4),od(8,4),length(8,4),MatType(8,4)
*)'ceramic_439_b'
166)id(8,5),od(8,5),length(8,5),MatType(8,5)
*)'kovar_435'
166)id(9,l),od(9,l),Iength(9,l),MatType(9,l)
*)'corona_432'
166)id(9,2),od(9,2),length(9,2),MatType(9,2)
*)'cgrid_support_a_431'
166)id(9,3),od(9)3),length(9,3),MatType(9,3)
*)'cgrid_support_b_431'
166)id(9,4),od(9,4),length(9,4),MatType(9,4)
*)'plate_651'
166)id(10,l),od(10,l),length(10,l),MatType(10,l)
*)'support_652_a'
166)id(10,2),od(10,2),length(10,2),MatType(10,2)
*)'support_652_b'
166)id(10,3),od(10,3),length(10,3),MatType(10,3)
*)'support_654'
166)id(10,4),od(10,4),length(10,4),MatType(10,4)
*)'ring_653'
166)id(10,5),od(10,5),length(10,5),MatType(10,5)
*)'insulator_452'
166)id(10,6),od(10,6),length(10,6),MatType(10,6)
*)'insulator_448'
I66)id(10,7),od(10,7),Iength(10,7),MatType(10,7)
*)'insulator_450'
166)id(10,8),od(10,8),length(10,8),MatType(10,8)
*)'insu!ator_446'
166)id(10,9),od(10,9),length(10,9),MatType(10,9)
*)'heater_terminal_455'
166)id(10,10),od(10,10),length(10,10),MatType(10,10)
*)'seal_454_a'
166)id(10,ll),od(10,ll),Iength(10,ll),MatType(10,ll)
*)'seal_454_b'
166)id(10,12),od(10,12),length(10,12),MatType(10,12)
*)'seal_445'
166)id(10,13),od(10,13),length(10,13),MatType(10,13)
*)'seal_457_a'
166)id(10,14),od(10,14),length(10,14),MatType(10,14)
*)'seal_457_b'
166)id(10,15),od(10,15),length(10,15),MatType(10,15)
*)'seal_457_c'

3-40

c
c
c
c
c

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write*
writei
writei
writei
write
write
write
write
write
write

(16
(16.
(16
(16.
(16
(16
(16
(16.
(16
(16
(16
(16
(16
(16
(16
(16.
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16
(16

166)id(10,16),od(10,16
*)'seal_457_d'
166)id(10,17),od(10,17
*)'contact_456_a'
166)id(10,18),od(10,18
*)'contact_456_b'
166)id(10,19),od(10,19
*)'contact_456_c'
166)id(10,20),od(10,20
*)'supportt_029_l'
166)id(10,21),od(10,21
*)'seal_406_l'
166)id(10,22),od(10,22
*)'seal_406_2'
166)id(10,23),od(10,23
*)'seal_406_3'
166)id(10,24),od(10,24
*)'ceramic_407'
166)id(10,25),od(10,25
*)'ring_409'
166)id(10,26),od(10,26
*),ring_414'
166)id(10,28),od(10,28
*)'cylinder_413'
166)id(10,29),od(10,29
♦yjpartO) = 'jpart(l
*)'jpart(2) = 'jpart(2
*)'jpart(3) = •jpart(3
*)'jpart(4) = 'jpart(4
*)'jpart(5) = 'Jpart(5
*)'jpart(6) = 'jpart(6
*)'jpart(7) = ,jpart(7
*)'jpart(8) = 'Jpart(8
*)'spart(9) = 'jpart(9
*)'jpart(10) = 'jpart(

),length

),length

),length

),length

),length

),length

),length

),length

),length

),length

),length

),length

),length

(10,16),MatType(10,16)

(10,17),MatType(10,17)

(10,18))MatType(10,18)

(10,19),MatType(10,19)

(10,20),MatType(10,20)

(10,2 l),MatType(10,21)

(10,22),MatType(10,22)

(10,23),MatType(10,23)

(10,24),MatType(10,24)

(10,25),MatType(10,25)

(10,26),MatType(10,26)

(10)28),MatType(10,28)

(10,29),MatType(10,29)

0)

Compute cylindrical surface area, disk area and mass*sp.ht.
for each part:
Loop thru different nodes:
do 55 i = 1, inode
mcn(i) = 0.0
write(17,*)'node = \i
write(17,*)'part# Vacyl(inch**2) ',' adisk(inch**2) ',

3-41

+ ' mass*sp.ht.(Joules/C)7 Rtherm(C/watt).',
+ ' thermal time const'

C Loop thru different parts in each node:
do 55 j = ljpart(i)

acyl(ij) = pi*length(ij)*od(ij)
adisk(ij) = pi*(od(ij)**2 - id(ij)**2) /4.0

c mass = density*volume
mc(i j) = dens(MatType(ij))*length(ij)*adisk(ij)*

+ spheat(MatType(ij))
itype = mattype(i j)
call thermres(mattype(ij),Temp(l,i),length(ij),

+ Adisk(ij),Rt(ij))
Time_const(ij) = mc(ij)*Rt(ij)
write(17,167)j,acyI(i,j),adisk(ij),mc(ij),Rt(ij),

+ Time_const(i,j)
c Compute total mass*sp.ht. for each node:

mcn(i) = mcn(i) + mc(ij)
55 continue
c
c
c Loop thru time steps:

do 56 jtime = 1, jtmax
write(19,*)' ,--■
write(19,*)Time iteration # = ', jtime
if (jtime.gt.jtrans) then

h = hl
else

h = hO
endif
Time_minutes = (Float(jtime-l))*h/60.0
if ((Time_minutes.ge.timeO).and.(Time_minutes.lt.600.0))

+ volt = Vhl
if (Time_minutes.lt.timeO) volt = VhO

c
c Compute heater resistance and heater power:

Rheater = (resis(Temp(jtime,l))*1.0e-06*length(l,l)J|'2.54)/
+ (pi*(od(l,l)*2.54)**2)

amp = voIt/Rheater
if (amp.gt.ampmax) amp = ampmax
Pinput = volt*amp
if (idiag.eq.l) then

write(19,*)'Rheater(ohms) = ',Rheater,'Volts = ',volt,
+ 'amp = ',amp,' Pinput(watts) = ', Pinput

endif

3-42

c
c Compute thermal resistance of each part:

if (idiag.eq.l) then
write(19,*)Thermal resistance of each part(deg.K/watt)'
writeOV)' Node index (i)',' Part index (j)',' Rt(iJ)'

endif
do 561 i = 1, inode
do 561 j = 1, jpart(i)

call thermres(mattype(ij),Temp(jtime,i),length(ij),
+ Adisk(ij),Rt(ij))

if (idiag.eq.l) then
write(19,171) ij.Rt(ij)

endif
561 continue
c
c Compute thermal resistance between two successive nodes
c (where there will be conduction between nodes):
c Initialization:

do 562 in = 1, inode
do 562 jn = 1, inode

Rn(injn) = 0.0
562 continue
c Here Rt(ij) = thermal resistance of j-th part in i-th node
c Rn(i,i+1) = thermal resistance between node i and i+1

Rn(l,2) = Rt(2,l)
Rn(2,3) = Rt(3,l) + 0.25*Rt(2,6)
Rn(3,4) = Rt(4,l)
Rn(4,5) = 0.5*Rt(5,l)
Rn(5,6) = 0.5*(Rt(5,l) + Rt(6,l))
Rn(6,7) = Rt(7,l) + Rt(7,2)
Rn(6,10) = Rt(6,l)
Rn(4,8) = 0.5*(Rt(8,l) + Rt(8,2) + Rt(8,4))
Rn(8,9) = Rn(4,8) + Rt(9,2)
if (idiag.eq.l) then

write(19,*)Thermal resistance between two adjacent nodes
+ (deg. K/watt)'

write(19,*)'Ist node (i) ', '2nd node (j) ',' Rn(ij)'
do 560 i = 1, inode
do 560 j = 1, inode

write(19,171)i,j, Rn(ij)
560 continue

endif
c
c AAA

3-43

c Compute thermal power flow from one node to the other:
c Initialization:

do 563 in = 1, inode
do 563 jn = 0, inode

Pout(injn) = 0.0
563 continue
c
c Calculate radiation from heater to cathode:

Facl2 = 1.52
Plt2rad = Facl2*acyl(l,l)*emis(temp(jtime,l))*sigma*

+ (Temp(jtime,l)**4 - Temp(jtime,2)**4)
Pout(l,2) = Plt2rad + (Temp(jtime,l) - Temp(jtime,2))/Rn(l,2)
em = 0.32
Pout(2,0) = adisk(2,5)*sigma*em*(TempGtime,2)**4 - Tamb**4)

c write(19,*)'emissiv. of heater',' Plt2rad ',' Pout(2,0)'
c write(19,170)emis(temp(jtime,l)),Plt2rad,Pout(l,2)
c
c Calculate radiation from cathode support (473) to node 3:

em = 0.2
P2t3rad = em*acyl(2,6)*sigma*

+ (temp(jtime,2)**4 - temp(jtime,3)**4)
fac23 = 3.0
Pout(2,3) = P2t3rad+fac23*

+ (temp(jtime,2)-temp(jtime,3))/Rn(2,3)
c
c Calculate emissivity of cathode surface:

em = 0.0522 + 0.000041 *temp(jtime,2) +
+ 1.87e-08*temp(jtime,2)**2

vf =0.333
Pout(2,5) = adisk(2,5)*em*vf*sigma*

+ (temp(jtime,2)**4 - temp(jtime,5)**4)
Pout(3,4) = (temp(jtime,3) - temp(jtime,4))/Rn(3,4)

c write(19,*)'emissivity of cathode surface = ',em
c
c Calculate radiation from shadow grid support to gun ceramic:

em = 0.07
Pout(3,8) = (acyl(3,3)+acyl(3,6))*em*sigma*

+ (temp(jtime,3)**4 - temp(jtime,8)**4)

c
c Calculate radiation from shadow grid support to control grid support:

em = 0.0522 + 0.000041 *temp(jtime,3) +
+ 1.87e-08*temp(jtime,3)**2

Pout(3,9) = adisk(3,6)*em,|<sigma*

3-44

+ (temp(jtime,3)**4 - temp(jtime,9)**4)
c write(19,*)'emissivity of shadow grid support (to eg) = ',em
c

Pout(4,5) = (temp(jtime,4)-temp(jtime,5))/Rn(4,5)
Pout(4,8) = (temp(jtime,4)-temp(jtime,8))/Rn(4,8)
Pout(5,6) = (temp(jtime,5)-temp(jtime,6))/Rn(5,6)

c
emvf = 0.07
P6tl0rad = acyl(6,l)*emvf*sigma*

+ (temp(jtime,6)**4-temp(jtirne,10)**4)
fac610 = 0.3
Pout(6,10) = P6tl0rad + (temp(jtime,6)-temp(jtime,10))/fac610

c
Pout(6,7) = (temp(jtime,6) - temp(jtime)7))/Rn(6,7)

c
em = 0.07
Pout(7,0) = (acyl(7,l)+acyl(7,2))*em*sigma*

+ (temp(jtime,7)**4 - 13010**4)
c

em = 1.0322 + 7.5763e-05*temp(jtime,8) -
+ 1.0828e-06*temp(jtime,8)**2 + 4.514e-10*temp0'time)8)**3

c write(19,*)'emissivity of ceramic parallel to SG
c + support = ',em

Pout(8,7) = em*sigma*(acyl(8,3)+adisk(8,3))*
+ (temp0'time,8)**4 - temp(jtime,7)**4)

P8t9rad = em*sigma*(acyl(8,3)+adisk(8,3))*
+ (temp(jtime,8)**4 - temp(jtime,9)**4)

Pout(8,9) = P8t9rad + (temp0'time,8) - tempG'time,9))/Rn(8,9)
Pout(8,10) = em*sigma*acyl(8,4)*

+ (temp(jtime,8)**4 - temp(jtime,10)**4)
c

em = 0.0522 + 0.000041 *temp(jtime,9) +
+ 1.87e-08*temp(jtime,9)**2

c write(19,*)'emissivity of control grid support = ',em
Pout(9,0) = em*sigma*acyl(9,2)*(temp(jtime,9)**4 - tamb**4)

c
Pout(10,0) = (temp(jtime,10) - tamb)/0.5

c
Q AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

c Compute net power flow into each node:
do 564 i = 1, inode

if (i.eq.l) then
Pin(i) = Pinput

else

3-45

Pin(i) = 0.0
endif
jmax = i - 1
do 564 j = 1, jmax

Pin(i) = PoutO'j) + Pin(i)
564 continue
c
c Compute net power out from each node:

do 565 i = 1, inode
PoutT(i) = 0.0
do 565 j = 0, inode

PoutT(i) = Pout(i j) + PoutT(i)
565 continue
C

c Compute updated temperature of each node:
if (jtime.lt.jtmax) then

do 566 i = 1, inode
temp(jtime+l,i)=temp(jtime,i)+h*(Pin(i)-PoutT(i))/mcn(i)

566 continue
endif

c
c writes:

if (idiag.eq.l) then
write(19,*)'Node # ',' Net Power input(watts)'
do 567 i = 1, inode

write(19,*) i, Pin(i)
567 continue

write(19,*)'Node # ',' Net Power out(watts)'
do 568 i = 1, inode

write(19,*) i, PoutT(i)
568 continue

write(19,*)'Node # ',' Temperature(deg.K)'
do 569 i = 1, inode

write(19,*) i, temp(jtime+l,i)
569 continue

endif
56 continue

write(18,*)'node# V mass*sp.ht.'
do 57 ii = 1, inode

write(18,168)ii,mcn(ii)
57 continue

3-46

c Write temperature (deg.C) of cathode (tempc.dat) and
c heater (temph.dat) in every 10th time step:

temp(l,2) = temp(l,2) - 273.0
write(20,*)0.0,temp(l,2)
do 58 jtime = 10, jtmax, 10

c Cathode temp:
temp(jtime,2)= temp(jtime,2) - 273.0
Time_minutes = (float(jtime-l))*h/60.0
write(20,*)Time_minutes,temp(jtime,2)

58 continue
c write(20,*)9999., 0.

write(20,200)
200 format(/)

temp(l,l) = temp(l,l) - 273.0
write(20,*)0.0,temp(l,l)
do 59 jtime = 10, jtmax, 10

c Heater temp:
temp(jtime,l)= temp(jtime,l) - 273.0
Time_minutes = (floatGtime-l))*h/60.0
write(20,*)Time_minutes,temp(jtime,l)

59 continue
c
166 format (Ix,3(el3.6,3x),i2)
167 format (Ix,i2,3x,3(el3.6,4x),3x,el3.6,3x,el3.6)
168 format (Ix,i2,4x,el3.6)
169 format (lx,el3.6)
170 format (lx,3(el3.6,3x))
171 format (Ix,2(i2,4x),el3.6)

close(unit=15)
close(unit=16)
close(unit=17)
close(unit=18)
close(unit=19)
close(unit=20)
stop
end

3-47

c
c

subroutine thermres(itype,T,L,Area,Rtherm)
Q ***

c This subroutine computes thermal resistance of a part for given
c temperature (T) and thermal conductivity (k).
c
c Input: iType = material type
c T = temperature (deg.K)
c L = length of a part (inch)
c Area = area of a part (inch**2)
c
c Output:k = thermal conductivity (watts/inch/deg.C)
c or (watts/inch/deg.K)
c Rtherm = thermal resistance (deg.C/watt)
«,***

implicit integer (i-n)
implicit real*8 (a-h,o-z)
real*8 L, k
if (itype.eq.l) then

k = (1.34688 - 0.0001629*T + 1.0e-09*T**2)*2.54
elseif (itype.eq.5) then

k = (0.148 + 0.0000198*T + 1.35e-07*T**2)*2.54
elseif (itype.eq.2) then

k = (1.76 - 0.000575*T)*2.54
elseif (itype.eq.3) then

if (T.gt.631.0) then
k = (0.426 + 0.00025*T)*2.54

else
k = (1.19 - 0.00096*T)*2.54

endif
elseif (itype.eq.6) then

k = (0.64 - 0.00116*T + 7.34e-07*T**2)*2.54
elseif (itype.eq.4) then

k = (0.0651 + 0.000183T + 3.69e-08*T**2)*2.54
endif
Rtherm = L/(k*Area)
return
end

3-48

c
function resis(T)

c ***

c This subroutine computes electrical resistivity of heater for
c a given temperature (T).
c
c Input:
c T = temperature (deg.K)
c
c Output: resis(T) = electrical resistivity
c

implicit integer (i-n)
implicit real*8 (a-h,o-z)
if (T.gt.2600.0) then

resis = 85.0
else

resis = -2.12 + 0.0241*T + 3.11e-06*T*T - 2.36e-10*T**3
endif
return
end

3-49

c
function emis(T)

c ***

c This subroutine computes thermal emissivity of heater coil at
c a given temperature (T).
c
c Input:
c T temperature (deg.K)
c
c Output: emis(T) = thermal emissivity
c
c Rev. History: Dec 30, 1993 (SRB)
g***

implicit integer (i-n)
implicit real*8 (a-h,o-z)
if (T.gt.2600.0) then

emis = 0.37
else

emis = -0.0144 + 0.0000734T + 6.58e-08*T*T - 1.68e-ll*T**3
endif
return
end

3-50

APPENDIX 3D: Output Data File

O.OOOOOOOE+00 26.79998779296875

0.3000000000000000 29.31898263500668

0.6333333333333333 47.55459741616106

0.9666666666666667 66.75569499779976

1.300000000000000 85.18700454694306

1.633333333333333 102.9149830475758

1.966666666666667 120.0001762787521

2.300000000000000 150.9224415617416

2.633333333333333 181.4929230793582

2.966666666666667 210.3136579309904

3.300000000000000 237.6163543733053

3.633333333333333 263.5884191434148

3.966666666666667 288.3824575757636

4.300000000000000 312.1233732321649

4.633333333333333 334.9138184897735

4.966666666666667 356.8384623799327

5.300000000000000 377.8474785444233

5.633333333333333 397.8343341868486

5.966666666666667 416.8806600483463

6.300000000000000 435.0588636008560

6.633333333333333 452.4327029421935

6.966666666666667 469.0587511079895
7.300000000000000 484.9874777438392
7.633333333333333 500.2641021845019
7.966666666666667 514.9292935537624

8.300000000000000 529.0197597784422

8.633333333333333 542.5687503114555

8.966666666666667 555.6064884986511

9.300000000000000 568.1605447857408

9.633333333333333 580.2561592919421

9.966666666666667 591.9165206536326

10.30000000000000 600.9169315968364

10.63333333333333 609.2403230561918

10.96666666666667 617.4529974241267

11.30000000000000 625.5355244003309

11.63333333333333 633.4737127309710

11.96666666666667 641.2573112675518

12.30000000000000 648.8777740571761
12.63333333333333 656.2091796686925
12.96666666666667 663.2047553480657
13.30000000000000 669.8959401277021

13.63333333333333 676.3098946891682

3-51

13.96666666666667

14.30000000000000

14.63333333333333

14.96666666666667

15.30000000000000

15.63333333333333

15.96666666666667

16.30000000000000

16.63333333333333

16.96666666666667

17.30000000000000

17.63333333333333

17.96666666666667

18.30000000000000

18.63333333333333

18.96666666666667

19.30000000000000

19.63333333333333

19.96666666666667

20.30000000000000

20.63333333333333

20.96666666666667

21.30000000000000

21.63333333333333

21.96666666666667

22.30000000000000

22.63333333333333

22.96666666666667

23.30000000000000

23.63333333333333

23.96666666666667

24.30000000000000

24.63333333333333

24.96666666666667

25.30000000000000

25.63333333333333

25.96666666666667

26.30000000000000

26.63333333333333

26.96666666666667

27.30000000000000

27.63333333333333

27.96666666666667

28.30000000000000

682.4703280920418

688.3980565540503

694.1114273196522

699.6266549994558

704.9580089347375

710.1165353027911

715.1112565502786

719.9511038596462

724.6446639914762

729.1999810588728

733.6244718576074

737.9249082020815

742.1074371593422

746.1776212495630

750.1404877428753

754.0005806180037

757.7620115126342

761.4285077000786

765.0034561621129

768.4899434427406

771.8907913203190

775.2085885262438

778.4457188305466

781.6043858481192

784.6866349186880

787.6943723945372

790.6293826417341

793.4933430289134

796.2878371458356

799.0143664637881

801.6743606223719

804.2691865027042

806.8001562256029

809.2685341947836

811.6755432892382

814.0223702955049

816.3101706591727

818.5400726254103

820.7131808302846

822.8305793979000

824.8933345927202

826.9024970716393

828.8591037762824

830.7641795025028

3-52

28.63333333333333

28.96666666666667

29.30000000000000

29.63333333333333

29.96666666666667

30.30000000000000

30.63333333333333

30.96666666666667

31.30000000000000

31.63333333333333

31.96666666666667

32.30000000000000

32.63333333333333

32.96666666666667

33.30000000000000

33.63333333333333

33.96666666666667

34.30000000000000

34.63333333333333

34.96666666666667

35.30000000000000

35.63333333333333

35.96666666666667

36.30000000000000

36.63333333333333

36.96666666666667

37.30000000000000

37.63333333333333

37.96666666666667

38.30000000000000

38.63333333333333

38.96666666666667

39.30000000000000

39.63333333333333

39.96666666666667

40.30000000000000

40.63333333333333

40.96666666666667

41.30000000000000

41.63333333333333

41.96666666666667

42.30000000000000

42.63333333333333

42.96666666666667

832.6187381809791

834.4237839001148

836.1803117000247

837.8893081641943

839.5517518333801

841.1686134644368

842.7408561549923

844.2694353532193

845.7552987703667

847.1993862121971

848.6026293440366

849.9659514027637

851.2902668677546

852.5764811015611

853.8254899699179

855.0381794495695

856.2154252313703

857.3580923251381

858.4670346718418

859.5430947678747

860.5871033053964

861.5998788320300

862.5822274325686

863.5349424347673

864.4588041407897

865.3545795854150

866.2230223217079

867.0648722345006

867.8808553817221

868.6716838633472

869.4380557175060

870.1806548431069

870.9001509481614

871.5971995228748

872.2724418364581

872.9265049565398

873.5600017899961

874.1735311439771

874.7676778058823

875.3430126410297

875.9000927067614

876.4394613817436

876.9616485092384

877.4671705531516

3-53

43.30000000000000 . 877.9565307656960

43.63333333333333 878.4302193655474

43.96666666666667 878.8887137254140

44.30000000000000 879.3324785679823

44.63333333333333 879.7619661692536

44.96666666666667 880.1776165683307

45.30000000000000 880.5798577827643

45.63333333333333 880.9691060286194

45.96666666666667 881.3457659444707

46.30000000000000 881.7102308185826

46.63333333333333 882.0628828185820

46.96666666666667 882.4040932229732

47.30000000000000 882.7342226538941

47.63333333333333 883.0536213105553

47.96666666666667 883.3626292028438

48.30000000000000 883.6615763846184

48.63333333333333 883.9507831862574

48.96666666666667 884.2305604460605

49.30000000000000 884.5012097401386

49.63333333333333 884.7630236104618

49.96666666666667 885.0162857907642

50.30000000000000 885.2612714300358

50.63333333333333

50.96666666666667

51.30000000000000

51.63333333333333

51.96666666666667

52.30000000000000

52.63333333333333

52.96666666666667

53.30000000000000

53.63333333333333

53.96666666666667

54.30000000000000

54.63333333333333

54.96666666666667

55.30000000000000

55.63333333333333

55.96666666666667

56.30000000000000

56.63333333333333

56.96666666666667

57.30000000000000

57.63333333333333

885.4982473133605

885.7274720798819

885.9491964377078

886.1636633755840

886.3711083711909

886.5717595959357

886.7658381161322

886.9535580904771

887.1351269637483

887.3107456566624

887.4806087518486

887.6449046759003

887.8038158774851

887.9575190014983

888.1061850592582

888.2499795947492

888.3890628469258

888.5235899080985

888.6537108784305

888.7795710165761

888.9013108865012

889.0190665005282

3-54

57.96666666666667

58.30000000000000

58.63333333333333

58.96666666666667

59.30000000000000

59.63333333333333

59.96666666666667

889.1329694586526

889.2431470841828

889.3497225557559

889.4528150357882

889.5525397954183

889.6490083360041

889.7423285072380

O.OOOOOOOE+00 26.79998779296875

0.3000000000000000

0.6333333333333333

0.9666666666666667

1.300000000000000

1.633333333333333

1.966666666666667

2.300000000000000

2.633333333333333

2.966666666666667

3.300000000000000

3.633333333333333

3.966666666666667

4.300000000000000

4.633333333333333

4.966666666666667

5.300000000000000

5.633333333333333

5.966666666666667

6.300000000000000

6.633333333333333

6.966666666666667

7.300000000000000

7.633333333333333

7.966666666666667

8.300000000000000

8.633333333333333

8.966666666666667

9.300000000000000

9.633333333333333

9.966666666666667

10.30000000000000

10.63333333333333

10.96666666666667

11.30000000000000

11.63333333333333

1047.878376322195

1164.058287736979

1164.565826284483

1164.850838908240

1165.155140213939

1165.479641357076

1166.154055516540

1166.947060298625

1167.826188377395

1168.792095911000

1169.844926679084

1170.984412098801

1172.209914213049

1173.520436619469

1174.914619629299

1176.383876838241

1177.909307504554

1179.485228915545

1181.106574305963

1182.768468117486

1184.466249685231

1186.195480681939

1187.951944406480

1189.731641024003

1191.530781137601

1193.345778991585

1195.173245942028

1197.009984435099

1198.852982510700

1200.699408734373

1183.546075426721

1184.998867567045

1186.470041758996

1187.954928737595

1189.449499590420

3-55

11.96666666666667

12.30000000000000

12.63333333333333

12.96666666666667

13.30000000000000

13.63333333333333

13.96666666666667

14.30000000000000

14.63333333333333

14.96666666666667

15.30000000000000

15.63333333333333

15.96666666666667

16.30000000000000

16.63333333333333

16.96666666666667

17.30000000000000

17.63333333333333

17.96666666666667

18.30000000000000

18.63333333333333

18.96666666666667

19.30000000000000

19.63333333333333

19.96666666666667

20.30000000000000

20.63333333333333

20.96666666666667

21.30000000000000

21.63333333333333

21.96666666666667

22.30000000000000

22.63333333333333

22.96666666666667

23.30000000000000

23.63333333333333

23.96666666666667

24.30000000000000

24.63333333333333

24.96666666666667

25.30000000000000

25.63333333333333

25.96666666666667

26.30000000000000

1190.950228351736

1192.454082823521

1193.936770272771

1195.381069038265

1196.789810276023

1198.165485588561

1199.510326419741

1200.826340719542

1202.115336894063

1203.378941279234

1204.618601073382

1205.835269923252

1207.029523281206

1208.202054988908

1209.353621400804

1210.484978307905

1211.596844665470

1212.689883402695

1213.764692922407

1214.821805144378

1215.861687421597

1216.884746625209

1217.891334323983

1218.881752393192

1219.856258651611

1220.815072294282

1221.758378995692

1222.686335624735

1223.599074553587

1224.496707566561

1225.379329388333

1226.247020857455

1227.099851773543

1227.937883446426

1228.761170974113

1229.569765274243

1230.363714891256

1231.143067599055

1231.907871816629

1232.658177852041

1233.394038988350

1234.115512423550

1234.822660075301

1235.515549260218

3-56

26.63333333333333

26.96666666666667

27.30000000000000

27.63333333333333

27.96666666666667

28.30000000000000

28.63333333333333

28.96666666666667

29.30000000000000

29.63333333333333

29.96666666666667

30.30000000000000

30.63333333333333

30.96666666666667

31.30000000000000

31.63333333333333

31.96666666666667

32.30000000000000

32.63333333333333

32.96666666666667

33.30000000000000

33.63333333333333

33.96666666666667

34.30000000000000

34.63333333333333

34.96666666666667

35.30000000000000

35.63333333333333

35.96666666666667

36.30000000000000

36.63333333333333

36.96666666666667

37.30000000000000

37.63333333333333

37.96666666666667

38.30000000000000

38.63333333333333

38.96666666666667

39.30000000000000

39.63333333333333

39.96666666666667

40.30000000000000

40.63333333333333

40.96666666666667

1236.194253256661

1236.858851759327

1237.509431233422

1238.146085175842

1238.768914290444

1239.378026584282

1239.973537391452

1240.555569331030

1241.124252205391

1241.679722845045

1242.222124905918

1242.751608624830

1243.268330538673

1243.772453172596

1244.264144702202

1244.743578594541

1245.210933232359

1245.666391525786

1246.110140515340

1246.542370969819

1246.963276982329

1247.373055567412

1247.771906261917

1248.160030731976

1248.537632388150

1248.904916010554

1249.262087385493

1249.609352954915

1249.946919479754

1250.274993718000

1250.593782118193

1250.903490528789

1251.204323923753

1251.496486144520

1251.780179658408

1252.055605333370

1252.322962228951

1252.582447403157

1252.834255734917

1253.078579761733

1253.315609532058

1253.545532471903

1253.768533265148

1253.984793746985

3-57

41.30000000000000

41.63333333333333

41.96666666666667

42.30000000000000

42.63333333333333

42.96666666666667

43.30000000000000

43.63333333333333

43.96666666666667

44.30000000000000

44.63333333333333

44.96666666666667

45.30000000000000

45.63333333333333

45.96666666666667

46.30000000000000

46.63333333333333

46.96666666666667

47.30000000000000

47.63333333333333

47.96666666666667

48.30000000000000

48.63333333333333

48.96666666666667

49.30000000000000

49.63333333333333

49.96666666666667

50.30000000000000

50.63333333333333

50.96666666666667

51.30000000000000

51.63333333333333

51.96666666666667

52.30000000000000

52.63333333333333

52.96666666666667

53.30000000000000

53.63333333333333

53.96666666666667

54.30000000000000

54.63333333333333

54.96666666666667

55.30000000000000

55.63333333333333

1254.194492809913

1254.397806321704

1254.594907054724

1254.785964626012

1254.971145447525

1255.150612685930

1255.324526231389

1255.493042674741

1255.656315292520

1255.814494039292

1255.967725546749

1256.116153129087

1256.259916794160

1256.399153259948

1256.533995975908

1256.664575148759

1256.791017772322

1256.913447661013

1257.031985486649

1257.146748818198

1257.257852164182

1257.365407017404

1257.469521901736

1257.570302420690

1257.667851307535

1257.762268476713

1257.853651076361

1257.942093541721

1258.027687649262

1258.110522571341

1258.190684931246

1258.268258858477

1258.343326044128

1258.415965796252

1258.486255095095

1258.554268648097

1258.620078944574

1258.683756309982

1258.745368959710

1258.804983052314

1258.862662742142

1258.918470231295

1258.972465820870

1259.024707961456

3-58

55.96666666666667

56.30000000000000

56.63333333333333

56.96666666666667

57.30000000000000

57.63333333333333

57.96666666666667

58.30000000000000

58.63333333333333

58.96666666666667

59.30000000000000

59.63333333333333

59.96666666666667

1259.075253302831

1259.124156742842

1259.171471475428

1259.217249037774

1259.261539356576

1259.304390793393

1259.345850189082

1259.385962907308

1259.424772877116

1259.462322634565

1259.498653363429

1259.533804934953

1259.567815946679

3-59

4. INPUT CAVITY SUBSYSTEM

The input cavity subsystem consists of a variable-dimension circuit that symmetrizes the rf signal
at the input cavity and a software program to control the circuit. The circuit consists of a
bandpass filter to tailor the signal's frequency response and an impedance transformer to maintain
the rf amplitude between the 50 Q. seen at the type-N input connector and the 12000Q beam seen
at the input cavity. The enhanced input signal near the half-power points provided by the
transformer results in increased bandwidth in both cold test and hot test.

Figure 4.0-1 illustrates the layout of the input cavity circuit on the klystron. Located outside the
vacuum envelope but just in front of the input window, the input circuit is inserted within the
solenoidal magnet along with the tube body. Control of the circuit by the stepper motor is
achieved by threading a cable along the tube body then out of the magnet at the rf output end
of the tube. The expert system steps through the circuit configurations and thereby shapes the
input cavity response curve.

Figure 4.0-2 illustrates the three input circuit designs of this program. Each of these combines
properties of a band-pass filter and an impedance transformer but is designated simply as first,
second and third generation "transformers." The first and second generation designs achieved the
main objective of getting maximum power to the electron beam over a given frequency band by
externally tuning a circuit in front of the input cavity. However the designs were less than ideal
in that the first generation had no practical way to vary the circuit parameters and the second had
a convenient way of varying only one circuit parameter. By contrast, the third generation design
provides a convenient way to continuously vary two parameters simultaneously.

Descriptions of the designs, the tests and the modeling of the earlier generations appear in
Section 4.1 and those of the third generation appear in Sections 4.2 and 4.3. The software that
interfaces with and controls the circuit is described in Section 4.4.

4.1 First and Second Generation Designs

The first and second generation designs achieved the main objective of getting maximum power
to the electron beam over a given frequency band but used an approach that was inconvenient.
The following sections describe the external tuning approach and typical test results.

4.1.1 General descriptions

The first generation input transformer utilized in tests is shown in Figure 4.1-1. It consists of a
center conductor incorporated into a standard type-N input connector onto which a fixed length
slug (choke) of various diameter options is attached with set screws at various axial positions.
Changing the transformer's Configuration required shutting down the test, removing the klystron
from both the socket and focusing solenoid, unscrewing both the outer and inner conductors,
loosening the two set screws from the choke, readjusting the axial position of the choke as
needed and changing to a slug with different outer diameter. This first concept and procedure

4-1

was found to be useful but extremely costly and time consuming in both cold test and hot test.

The second generation input "transformer" is shown in Figure 4.1-2. The low-impedance-section
slug lies on an axially sliding contact inside the coax outer conductor instead of on the outside
of the inner conductor. The slug's sleeves are plated, heat-treated beryllium copper to assure
good microwave contact at all positions.

This slug attaches to a right-angled drive mechanism that protrudes through a slit in the coax
outer wall. This allows axial repositioning of the slug without having appreciable leakage. The
right-angled drive mechanism links to a flexible cable that contains a rotatable center conductor.
The cable passes through the focusing solenoid, exists the tube at the collector end, extends out
of the x-ray shielded test area and enters a control box that can be manipulated by the test
technician. Once adjusted in test, the sleeve can be locked in position.

4.1.2 First generation "transformer" test results

The following results show the effect of three variables (loop coupling, transformer diameter and
position of transformer) on the frequency response.

The measurement results shown in Fig. 4.1-3A were made with a slug outer diameter of 0.470
inches. Curve (a) shows a desired input-cavity response profile when the transformer is set with
a nominal inductive loop position, referred to as LP, and a slug axial position of 0.346 inches.
This response curve has a 3 dB bandwidth of 86 MHz symmetrically positioned about the center
frequency. The power variation between the low end and high end response peaks is approxi-
mately 0.5 dB. When the slug's axial position is increased 0.015 inches to 0.361 inches, the low
frequency response is enhanced and the high frequency response is lowered as shown by curve
(b). Conversely, a decrease of 0.015 in the slug's axial position skews the response towards the
high frequencies (curve (c)). In both cases where the slug is moved from the reference position,
the cavity bandwidth is decreased.

Figure 4.1-3B shows the effect of varying the coupling loop depth while holding constant the
slug axial position. Curve (a) is taken for the same reference settings as was done for curve (a)
in Fig. 4.1-3 A. Curves (d) and (e) show the result of decreasing the loop depth by 0.015 inches
and 0.030 inches respectively. In both cases, the reduced coupling raises the circuit Q thereby
decreasing the bandwidths to 78 MHz and 69 MHz respectively.

The sets of measurements in Fig. 4.1-4 were made after the transformer slug outer diameter was
increased 0.010 inches to 0.480 inches. Curve (a) of Fig. 4.1-4 again corresponds to a nominal
loop position of LP. Comparison of curves (a) of Figures 4.1-3 and 4.1-4 shows the larger slug
diameter increases the bandwidth from 86 to 89 MHz and increases the response variation across
the band from 0.5 dB to 1.2 dB. The curves in Fig. 4.1-4A show that as the axial position is
increased (or decreased) from the reference point, as was done for the curves in Fig. 4.1-3 A, the
high frequency end (or low frequency end) is enhanced. The bandwidth reduction for the larger
diameter slug was slightly less.

4-2

Figure 4.1-4B shows that the effect of decreasing the coupling loop depth with the larger
diameter slug is similar to that for the smaller diameter slug. Curves (d) and (e) show that
decreases of 0.015 inches and 0.030 inches reduced the coupling, raised the circuit Q, and thereby
decreased the bandwidths.

4.1.3 Circuit modeling results

The discussion that follows concerns work on the first generation design. However, since the
circuit model is the same for the second generation, the results apply equally to the second
generation design also. An input cavity and input transformer were modeled on the computer
using commercial software named "Superstar." Model details are described in Section 4.3 below.

Figure 4.1-5 shows results of modeling the 0.470 diameter slug set at the reference position.
Note that the agreement with curve (a) of Fig. 4.1-3A is excellent. The center frequency is
attenuated approximately 0.5 dB below the peaks and both 3 dB frequencies appear the same as
with the measured data.

Figure 4.1-6 shows results of modeling the 0.470 diameter slug offset by ±0.015 inches from the
reference position. As with the measurements, the curves become skewed but the amount of
skewing is calculated to be less than what is measured.

Figure 4.1-7 shows results of modeling the 0.480" diameter slug set at the reference position.
The curves compare well with curve (e) of Fig. 4.1-4B. The calculated response variation is 1.0
dB compared to the measured 1.5 dB.

Figure 4.1-8 shows results of modeling the 0.480 diameter slug offset by ± 0.015 inches from the
reference position. As with the measurements, the curves become skewed but the amount of
skewing is calculated to be less than what is measured.

Discrepancies between calculated and measured responses likely originate from (1) not including
the fringing capacity of the transformer in the model and (2) using theoretical scattering
parameters to model the klystron coaxial input window. However, the created model correlates
well enough to predict how to modify the transformer geometry to achieve the desired cavity
response function.

4.1.4 Second generation transformer test results

A prototype of the design in Fig. 4.1-2 A was constructed without a drive mechanism for cold test
evaluation. Shown in Fig. 4.1-9 is the measured input cavity response for slug axial position
changes of ± 0.015 inch. The response is nearly equivalent to that shown in Fig. 4.1-3 for the
center slug transformer. In both figures the labels (a), (b) and (c) correspond to the same
displacements. Although the prototype dimensions are not optimized and may still present an
impedance discontinuity, the concept validity has been demonstrated.

4-3

4.2 Third Generation Transformer

4.2.1 Eccentric coax line approach for impedance changes

For the third generation transformer, the slug-section characteristic impedance was made
continuously adjustable by utilizing variable eccentricity. Any eccentricity change resulted in an
impedance change. This improved the first and second generation transformers where the
impedance was adjusted in steps by replacing inserts in a very time consuming manner. The
third generation approach had the following features

a) The new adjustment was continuous.
b) The new and old adjustments were independent of each other.
c) The adjustment was non-erratic.
d) The adjustment had enough range.
e) The design fits the available space.
f) The section was designed for low leakage.
g) The adjustment had reasonable sensitivity.
h) The responses included one within acceptable limits.

Other approaches, such as slide screw tuners, double-stub tuners and double-bead tuners were
investigated but were not found suitable for this application.

Figure 4.2-1 illustrates the variable-eccentricity coaxial line. The key element of the eccentric
transformer is a hollow eccentric cylindrical slug whose outer radius (R3 in Fig. 4.2-1A) rotates
about an axis that is off center from the center-conductor axis. The offset distance is given by
I/2emax in Fig 4.2-IB. When the eccentric slug rotates, the distance 'e* between the center of the
slug inner radius (R2 in Fig. 4.2-1A) and the center-conductor axis varies between zero and emax

as shown by the two views in Fig. 4.2-1B and Fig. 4.2-1C. For given values of R, and R2, the
distance e is sufficient to define eccentricity. The variation of eccentricity between 0 < e < emax

results in variation of the characteristic impedance of the eccentric coax line as given by

Z
ECC - Zcom COsh"1(Z> ~d2m ^ > Eq- (1)

Where Zecc = characteristic impedance of an eccentric line
ZConc = characteristic impedance of a concentric line
D = inner diameter of eccentric slug (=2R2)
d = outer diameter of inner conductor (=2R,)
e = eccentricity of coaxial line

The relationship between eccentricity increase and characteristic impedance decrease is shown
in Table 4.2-1. As expected from the cosh'1 dependence in equation (1), the incremental changes
in impedance become larger for large eccentricities. For a typical eccentric slug design, the

4-4

Eccentricity
Equivalent Diameter of First

Impedance Generation Transformer

0.000 inches 28.858 Ohms 0.371 inches
0.002 28.838 0.371
0.004 28.776 0.371

0.006 28.673 0.372

0.008 28.528 0.373

0.010 28.340 0.374

0.012 28.108 0.376

0.014 27.832 0.377
0.016 27.510 0.379
0.018 27.139 0.382
0.020 26.719 0.384
0.022 26.246 0.387
0.024 25.717 0.391

0.026 25.129 0.395
0.028 24.477 0.399

0.030 23.756 0.404

1 0.032 22.959 0.409

' 0.034 22.077 0.415

0.036 21.099 0.422
0.038 20.012 0.430
0.040 18.795 0.439
0.042 17.421 * 0.449
0.044 15.849 0.461
0.046 14.011 0.475

10.048 11.784 0.493

Parameters: D
d

0.275 inches
0.170 inches

Table 4.2-1
ECCENTRICITY vs.IMPEDANCE

4-5

impedance varied between 12 Q and 30 Q for an eccentricity e variation between 0.12 cm and
0 cm.

As shown in Fig. 4.2-1 the eccentric slug can simultaneously rotate (azimuthally) and translate
(axially) because the slug is joined to the coax-line outer conductor by an axial-motion support
structure with springy ends. This support structure, while minimizing internal rf current paths,
maintains non-erratic, defined, microwave contact points throughout the adjustments because of
air gaps between the springy ends. Fig. 4.2-1 A indicates the location of these air gaps.

Also, the eccentric slug has slots that act as a spring to maintain electrical contact with the axial
motion support structure and the outer casing of the input transformer (not shown in the figure).
The eccentric slug has eight narrow axial slots, four slots originating at one end of the slug, 90
degrees apart, and four slots originating at the other end of the slug also 90 degrees apart but
offset from the first group by 45 degrees. Since the EM fields propagate as TEM modes, the
axial RF currents are not interrupted by the slots.

4.2.2 Mechanical drive

For the expert system to axially and azimuthally adjust the eccentric slug, the slug was coupled
to two gear assemblies that were installed beside the input transformer outer casing. These gear
assemblies were rotated by two captured screws which were driven by flexible cables originating
from system-controlled stepper motors located outside the tube.

The mechanical drive layout shown in Fig. 4.2-2 illustrates four topics of interest, the coax line,
the rotational adjustment, the axial adjustment, and the common drive components. These are
described in detail below.

4.2.2.1 Coax line

The coaxial line begins at the coupling loop, bends 90 degrees, passes through the vacuum
window, passes through the eccentric slug, then ends forming an N-type connector. The loop,
90° bend, and window sections together comprise the input coax assembly (# 372386) which is
an integral part of the tube. The rigid support given by this assembly to the center conductor
permits joining new parts with sufficient tolerance control to assure that the resulting dimensions
of the N connector satisfy MIL-SPEC. 39012.

Assembly of the coax line after exhaust continues by screwing a threaded end of the center pin
(# 444422) into the center conductor of the input coax assembly. The opposite end is centered
in the outer part of the coax line (coax sleeve (# 444401)) with center pin support (# 444424).
The angular orientation of the coax sleeve is fixed by tightening nut (# 444402) and coax nut
retainer (# 444403). The combination of these components represent the transmission line
between input connector and coupling loop.

4.2.2.2 Rotational adjustment

The rotational adjustment, which varies the impedance of the eccentric slug region consists of

4-6

the slug (center transformer (# 444417)), a modified gear (# 444411) that rotates the slug, and
a control rod (# 444414) that rotates the gear. A stepper motor drives the rod at the rotational
positioning input shown in Fig. 4.2.2. The rotary control rod has to be coupled to the center
transformer in such a way that the independence of rotational adjustment and axial adjustment
is accomplished.

Fig. 4.2.3 shows the original approach to the rotational adjustment. The rotary control rod (#
444414) was keyed to the pinion modified (# 444410) according to standard mechanical
procedures. The pinion modified (# 444410) was allowed to slide on key rotary control (#
444415) and rotary control rod (# 444414) axially. The pinion modified (# 444410) then drives
gear modified (# 444411) which is rigidly attached to the center transformer (# 444417). The
transformer (# 444416) was slotted to allow a certain range of circular motion of the center trans-
former (# 444417) for rotary adjustment. However this approach was too complicated and
expensive.

Fig. 4.2.2 shows the approach whereby the rotary control road (# 444414), key rotary control (#
444415) and pinion modified (# 444410) were integrated into one piece. This one piece is called
gear rod rotary control (# 444411-1). The axial sliding now happens along the teeth of gear rod
rotary control (# 444411-1) rather than along the key rotary control (# 444415) illustrated in Fie
4.2.3. &'

4.2.2.3 Axial adjustment

The axial adjustment, which moves the above-mentioned rotational adjustment, consists of three
components, a control rod (# 444413), a control block (# 444406), and a transformer segment (#
444416). The transformer is rigidly attached to the drive adapter. The combination is then
driven by the threaded spindle (called control rod #444413).

The input of the adjustment is shown in Fig. 4.2.2 under "axial positioning." The adaption from
the flexible cable to the linear control rod (# 444406) uses the same components as for the
rotational adjustment, coupler (# 444418) and nut (# 444412). The rotational motion has to be
converted into a linear motion. This conversion was accomplished by a drive which has high
resolution and is uni-directional. The rod linear control (# 444413) has a male thread on the
outside while the block linear control (# 444406) has the same female thread on the inside. If
the rod turns, since the block is prevented from turning, the block will move linearly. In order
for the transformer (# 444417) to move along with the block (# 444406) it was rigidly attached
to the block. The axial adjustment is now complete.

4.2.2.4 Common drive components

There are two common support blocks for both of the above mentioned adjustments. The support
block control (# 444404), shown in both Fig. 4.2.2 and 4.2.3, serves as one set of bearings for
rod, linear control (# 444413) and rod, rotary control (# 444414). The support block (# 444405)
serves as the second set of bearings on the opposite end. In addition this block also
accommodates the components (coupler, # 444418) (nut, # 444412) which mechanically adapt
standard flexible cable to the two rods (rotary and linear).

4-7

4.3 Modeling and Cold Test

4.3.1 Computer model

The model-based input-cavity subsystem uses an equivalent circuit model of the "transformer" -
the combination impedance transformer and bandpass filter - to generate predictions. The filter
is comprised of the fixed-geometry input cavity inside the vacuum and the variable-geometry
eccentric slug outside the vacuum. The impedance transformer is comprised of the same
eccentric slug which forms a quarter-wave transformer and a loop transformer inside the vacuum.

The entire circuit was modeled using the equivalent elements shown in Fig. 4.3-1 and the circuit
response was found using the commercial software "Superstar" (now called Eagleware), from
which the file RD3.CKT listed in Fig. 4.3-2 was derived. Below is identification of the
transmission line elements between the type "N" connector and the electron beam.

aa 75 Q transmission line between connector and slug
bb Fringing capacitor of eccentric slug
cc Transmission line for eccentric slug section
dd Fringing capacitor of eccentric slug
ee 75 Q transmission line between slug and window
ff 50 Q transmission line for window
gg 75 H transmission line between window and loop
hh Loop transformer
ii Beam impedance and gap capacitor
jj Coupling capacitor for Si2 measurements

In the model, to represent the axial movement of the eccentric slug, only the lengths of
transmission lines aa and ee can be adjusted and only in a way that keeps the sum of the line
lengths constant. To represent rotation of the eccentric slug, the characteristic impedance of the
fixed-length transmission line cc can be varied. Both the axial and rotational positions of the
slug can be varied independently as in the actual device.

Capacitors bb and dd represent the fringe fields on the sides of the eccentric slug, ee and gg
represent the coax lines on the sides of the window, and transmission line ff represents the
vacuum window, a window consisting of three lifesaver-shaped pieces of alumina brazed between
kovar rings.

The window data in the model result from estimates obtained from having used the same window
on a separate program in a matched 50-ohm line. Although preliminary S„ measurements
confirmed the expected large reflections, additional window-matching work was considered
outside the scope of the program.

The capacitor jj represents a small coupling capacitor that is added by the sampling probe when
being used for cold test insertion loss (S21) measurements. It is not part of the cavity and has no
significant impact on Su measurements.

4-8

4.3.2 Cold-test measurements

The cold-test measurement assembly, shown in Fig. 4.3-3, consists of a signal source, a bridge,
the input cavity system and the sealer analyzer which measures the reflected power. The input
cavity is loaded with lossy Teledeltos paper to simulate the beam loading resistance of 12,000
Q. The coupling capacitor jj indicates that a probe was used inside the cavity to measure the
insertion loss S12 defined by

Insertion Loss = 20 log10}512j

Such insertion loss measurements, which were presented earlier in Figs. 4.1-4 and 4.1-5, also
represent a measure of the transfer function of the input cavity system to the beam. In cold test
insertion loss measurements are convenient for setting the circuit positions.

However, in hot test, such insertion loss measurements can be impractical. More convenient are
measurements of return loss defined by

Return Loss = 20 log10|S„|

When there are no lossy elements in the input transformer circuit, the insertion loss is only from
mismatches and is related to the return loss by

P121 =p-\Sn\2)

Clearly, return loss can be used by the expert system in both cold and hot test. The return loss
cold tests on the third generation transformer can represent hot test conditions.

Two eccentric input transformers were designed, built and cold tested. Results for one of these
is shown in Fig. 4.3-4, where the cavity return loss is given for a series of axial (Z) and
azimuthal (6) positions of the eccentric slug. The optimum position is defined arbitrarily for Z
- 0, 9 = 0. The range of variations conveniently and quickly obtained from the eccentric slug
variations is similar to the range and variations shown in the sections on the first and second
generation designs which were inconvenient and time consuming.

4-9

4.4 System Tuning of the Transformer

4.4.1 Introduction

Expert system software can be applied to any adjustable portion of a microwave tube. For the
input cavity subsystem, software called TIPTOE measures and adjusts the coax eccentricity and
the slug axial position in order to achieve a balanced input cavity response.

Software development for input transformer adjustments began before any transformer hardware
became available. Consequently, software was first developed to interact, not with an actual
microwave tube, but with an equivalent-circuit approximation of the tube. The response of the
equivalent circuit was obtained by a separate, commercial, software application SUPERSTAR,
(ref: SUPERSTAR, Eagleware Corp., 1750 Mountain Glen, Stone Mountain, GA 30087) The
version to interact only with software, TIPTOE 1 A, was conveniently developed offsite by Dr.
Martin Lee, (ref: Dr. Martin Lee, GO AI, 1088 Dartmouth Lane, Los Altos, CA 94024) an expert
in the field.

TIPTOE2A, the second generation of the expert system software, incorporated much more
stringent requirements of the data for acceptance. Although the expert system software again
interacted with the equivalent circuit model analyzed in SUPERSTAR, TIPTOE2A was developed
to control hardware. The hardware necessary to connect the computer to the input cavity was
either purchased or was already available at Litton, but, since the system was never assembled,
the software interface with the hardware drivers was not developed.

TIPTOE1A controlled two adjustable parameters, the equivalent circuit parameters of the slug
diameter and the slug axial position, until a response curve was accepted according two criteria.
The first criterion was that for curves having two peaks, the ratio of the peaks had to be less than
1 dB. The second criterion was that at the 3 dB points on the side of the response curve exceed
the bandwidth specification. TIPTOE2A controlled the eccentricity of the coax plug and the slug
axial position. A response curve was accepted according the two criteria above as well as a third,
that the ratio of a side peak to the center low point was less than 1.7 dB.

4.4.2 Expert procedure

The purpose of the expert system software is to mimic automatically the actions of a true expert.
The true expert takes data, analyzes that data and then decides what changes to make to the
system before repeating the sequence. Programming a computer to take data and make the
adjustments is a straightforward task. The difficult task is to teach the computer to properly
analyze the data and make the proper decisions.

A block diagram of the expert system software to accomplish these tasks is shown in Figure 4.4-
1. After setting each of the adjustments to their initial positions, the first step is to take a set of
data. This set includes all the data necessary to compare to the acceptance criteria. The raw data
is transferred into the computer and any needed data reduction is performed. The reduced data
is compared to the acceptance criteria, and if the criteria is met, the expert process is complete

4-10

In the general (and most likely) case, the acceptance criteria is not met with the initial settings.
In this case, one of the adjustments is incremented by a small amount and the resultant change
in the data is measured. This adjustment is then returned to its initial state and the next
adjustment is incremented. The change in the data is again measured and this procedure is
repeated until each of the adjustments has been incremented and its response measured.

Once the responses to the incremental adjustments are known, the settings for all of the
adjustments to bring the device operation into acceptance may be calculated. One method is to
cast the adjustments and responses in the form of a matrix equation:

{ Adjustment Settings } x { Response Matrix } = { Response }.

To find the desired adjustment settings, one need only invert the response matrix and multiply
it by the desired response. However, for code stability reasons, the full adjustments are not made
in one step. Instead, the adjustments are made to bring the new response half way to the
acceptance criteria. This prevents overshooting the desired response, which may happen if the
microwave tube response is nonlinear. By measuring the responses to only small increments, we
have essentially linearized the microwave tube response.

At this point, the data is taken again and compared to the original data to ensure that the current
adjustment settings are indeed better than the original settings. If they are not, the process is to
return to the original settings and reduce the calculated step size by another factor of two. This
continues until positive progress is made toward the acceptance criteria. Once this happens, the
process of measuring the response of the microwave tube to small incremental adjustments is
repeated, then the response matrix is inverted and new settings are calculated, etc. This total
process is repeated until the acceptance criteria is met.

4.4.3 TIPTOE1A

The expert system software was developed incrementally. The first implementation, TIPTOE1 A,
was limited to two simple rules to govern the microwave match into the input cavity of the
klystron. The microwave match was altered through two adjustments in the matching
transformer. A further simplification made was that the actual klystron input cavity and matching
transformer were modelled as lumped circuit elements and analyzed with a separate software
package (SUPERSTAR). The two programs interacted by reading and writing files on the
computer's hard disk drive.

The TIPTOE1A program is written in fortran and was compiled with Microsoft Fortran 5.0
operating under Microsoft DOS 5.0. A complete listing of the well-commented code may be
found in Appendix 4A.

The microwave match into the input cavity may be obtained by measuring either of the S
parameters, Sn (reflection) or S12 (transmission). The S12 parameter was chosen to be modelled
in the lumped element circuit model (SUPERSTAR) and to be interpreted by the expert system
software. An example of the S12 data is shown in Figure 4.4-2. There are two goals for the
expert system software. The first is that the amplitudes of the two peaks be equal. Therefore,

4-11

the acceptance criterion for this goal is that the ratio of the amplitudes of the two peaks be
sufficiently close to unity. The second goal is that the width of the SI2 trace be equal to a
prespecified width. Again, the acceptance criterion is specified as a ratio — the ratio of the
measured width to the desired width — must be sufficiently close to unity. This relatively simple
set of goals was chosen for the first implementation since it requires a nontrivial solution to the
matrix equation described above.

Use of the TIPTOE1A and SUPERSTAR programs may be accomplished by running each in a
DOS window under Microsoft Windows on an IBM-compatible personal computer. Version 5.0
of DOS and version 3.1 of Windows were used. It is necessary to have the two programs
running simultaneously and continually switch between the two. An example of this operation
is given here.

It is convenient to install the SUPERSTAR software into the default \EAGLE subdirectory.
Further, it is convenient to place the TIPTOE files and the START.CKT file in the
\EAGLE\TIPTOE subdirectory. Next, start the SUPERSTAR program and open the START.CKT
file through the Open *.CKT (Text) file... command under the File pulldown menu. This circuit
provides a convenient starting point. Figure 4.4-4 shows what should appear on the screen. The
TIPTOE1A program utilizes the amplitude of the SI2 scattering parameter which is the double
peaked curve plotted in the graph on the left side of the figure. The phase of S12 is plotted in
the same graph, and the amplitude and phase of the Su scattering parameter are plotted in the
graph on the right side of the figure. This file must now be saved as DEMO.CKT in the
YEAGLEYITPTOE subdirectory by using the Save Circuit As... command under the File pulldown
menu. The S parameters calculated by the SUPERSTAR program must also be saved now by
using the Write S-Data... command under the File pulldown menu. This data should be saved
in the file \EAGLE\TIPTOE\SIGNAL.OUT, which will be read by the TIPTOE1A program.

Now switch to the Windows Program Manager without exiting the SUPERSTAR program. This
may be done by holding down the <ALT> key and pressing the <Tab> key until the Program
Manager prompt is reached. Next, open a full-screen DOS window and change to the
\EAGLE\TIPTOE directory. Typing TIPTOE1A at the command prompt will start the
TIPTOE1A program. Figures 4.4-3(A-D) show an example of the output from the TIPTOE1A
program. The user is immediately prompted for the desired width. This is the frequency width,
in megahertz, of the response curve generated by the SUPERSTAR program and is the only
variable input into the program.

After the width is entered, the TIPTOE 1A program prints out several parameters. sParameterl
and sParameter2 are the two adjustable circuit parameters read in from the DEMO.CKT file. The
TIPTOE1A program modifies these parameters to obtain the desired output signal. Next, several
parameters calculated from the SIGNAL.OUT file are printed. The Itr and SI parameters are
iteration numbers within the TIPTOE1A program. Ampl and Amp2 are the amplitudes (in dB)
of the two peaks and the first Ratio is their ratio. If TIPTOE 1A fails to find two distinct peaks,
the ratio of the amplitudes is set to zero. Finally, Width is the frequency width (3 dB down from
the highest peak) measured from the SIGNAL.OUT file and the second Ratio is the ratio of
Width and the desired frequency width. This is followed by the new circuit parameters SI (=
sParameterl) and S2 (= sParameter2) written into the DEMO.CKT file and finally by the prompt:

4-12

Press <retum> after new signal has been generated by Eagle Software

Every time this prompt appears, the user must switch to the SUPERSTAR program, open the
DEMO.CKT file by using the Open *.CKT (Text) file... command under the File pulldown menu,
save the newly generated data in the SIGNAL.OUT file by using the Write S-Data... command
under the File pulldown menu, and then switch back to the TIPTOE 1A program.

The TIPTOE1A program informs the user of the progress being made by the program. If the new
circuit parameters calculated by the TIPTOE1A program result in a signal further from the
desired result, the step size is halved and new circuit parameters are calculated. An example of
this occurrence is shown in Figure 4.4-3 A, beginning with the line: Convergence Criteria Failure:.

At the completion of a full (converging) iteration, the current circuit parameters, iteration
numbers, amplitudes, width, and ratios are printed out. An example of this is shown at the top
of Figure 4.4-3B.

The Convergence Criteria Failure line will also appear if the TIPTOE1A program fails to find
two distinct peaks in the data from the SIGNAL.OUT file. In this case, the TIPTOE1A program
again halves the step size and calculates new circuit parameters. An example of this is shown
near the bottom of Figure 4.4-3B.

At the bottom of Figure 4.4-3D, five iterations have been completed. As can be seen from the
previous iterations, both ratios are approaching unity. Further iterations will continue the
progression of both ratios toward unity. The TIPTOE1A program does not have a convergence
test built into it, so it will continue the iterations until the built-in maximum of 20 iterations is
reached.

4.4.4 TIPTOE2A

The TIPTOE2A program (actually named DEM02A) utilizes the basic TIPTOE1A
formulation and algorithms. There are two goals and two adjustable circuit parameters that
are solved for by inverting the response matrix, exactly as was done in TIPTOE 1 A. Again,
DEM02A interacts with the SUPERSTAR program rather than with actual hardware. The
main features added to the TIPTOE1A program include convergence criterion for the ratio of
the amplitudes of the two peaks and the ratio of the actual and desired frequency widths, and
the addition of several more constraints on the response of the circuit.

The added constraints on the circuit response are shown in Figure 4.4-5. As in TIPTOE1A,
the two amplitude peaks must be sufficiently close to each other and the frequency width
(measured 3 dB down from the highest peak) must be within certain limits. In addition, all
points above the high frequency limit (or below the low frequency limit) must be more than 3
dB below the highest peak, and the circuit response must be above the points shown at those
specific frequencies.

A flow chart for the TIPTOE2A (DEM02A) program is shown in Figure 4.4-6. The goals for
the circuit response are hardwired into the code through the use of data and parameter

4-13

Statements. The basic TIPTOEIA algorithm is used to find the circuit parameters that give a
response satisfying the amplitude peaks and frequency width goals. Once this solution has
been found, the circuit response is checked against the rest of the acceptance criteria. At this
point, the program terminates whether the circuit response meets all the goals or not. A
simple addition to this code would be to alter the amplitude peaks and frequency width
criterion (since they both have ranges of acceptability) and return to the TIPTOEIA
algorithm. The source listings for the TIPTOE2A (DEM02A) program is given in Appendix
B along with the command used to create the program using the Microsoft fortran compiler
(version 5.0). This program was created under Microsoft DOS version 5.0.

As with the TIPTOEIA program, use of the TIPTOE2A and SUPERSTAR programs may be
accomplished by running each in a DOS window under Microsoft Windows on an IBM-
compatible personal computer. Version 5.0 of DOS and version 3.1 of Windows were used.
It is necessary to have the two programs running simultaneously and continually switch
between the two. An example of this operation is given here.

It is convenient to place the TIPTOE2A (DEM02A) files and a copy of the START.CKT file
(from the \EAGLE\TIPTOE subdirectory) in the \EAGLE\TIPTOE2 subdirectory. Next, start
the SUPERSTAR program and open the START.CKT file through the Open *.CKT (Text)
file... command under the File pulldown menu. This circuit provides a convenient starting
point. Figure 4.4-4 shows what should appear on the screen. As with the TIPTOEIA
program, the TIPTOE2A (DEM02A) program utilizes the amplitude of the S12 scattering
parameter which is the double peaked curve plotted in the graph on the left side of the figure.
This file must now be saved as DEMO.CKT in the \EAGLE\TIPTOE2 subdirectory by using
the Save Circuit As... command under the File pulldown menu. The S parameters calculated
by the SUPERSTAR program must also be saved now by using the Write S-Data... command
under the File pulldown menu. This data should be saved in the file
\EAGLE\TIPTOE2\SIGNAL.OUT, which will be read by the TIPTOE2A (DEM02A)
program. N

Now switch to the Windows Program Manager without exiting the SUPERSTAR program.
This may be done by holding down the <ALT> key and pressing the <Tab> key until the
Program Manager prompt is reached. Next, open a full-screen DOS window and change to
the \EAGLE\TIPTOE2 subdirectory. Typing TIPTOE2A at the command prompt will start
the TIPTOE2A (DEM02A) program. Figures 4.4-7(A-B) show an example of the output
from the TIPTOE2A program. Note that there are no parameters entered by the user in this
program.

The TIPTOE2A (DEM02A) program immediately prints out several parameters. sParameterl
and sParameter2 are the two adjustable circuit parameters read in from the DEMO.CKT file.
The TIPTOE2A (DEM02A) program modifies these parameters to obtain the desired output
signal. Next, several parameters calculated from the SIGNAL.OUT file are printed. The Itr
and SI parameters are iteration numbers within the TIPTOE2A (DEM02A) program. Ampl
and Amp2 are the amplitudes (in dB) of the two peaks and the first Ratio is their ratio. If
TIPTOE2A (DEM02A) fails to find two distinct peaks, the ratio of the amplitudes is set to
zero. Finally, Width is the frequency width (3 dB down from the highest peak) measured

4-14

from the SIGNAL.OUT file and the second Ratio is the ratio of Width and the desired
frequency width. This is followed by the new circuit parameters SI (= sParameterl) and S2
(= sParameter2) written into the DEMO.CKT file and finally by the prompt: Press <return>
after new signal has been generated by Eagle Software

Every time this prompt appears, the user must switch to the SUPERSTAR program, open the
DEMO.CKT file by using the Open *.CKT (Text) file... command under the File pulldown
menu, save the newly generated data in the SIGNAL.OUT file by using the Write S-Data...
command under the File pulldown menu, and then switch back to the TIPTOE2A (DEM02A)
program.

The TIPTOE2A (DEM02A) program informs the user of the progress being made by the
program exactly as was done in the TIPTOE1A program. If the new circuit parameters
calculated by the TIPTOE2A (DEM02A) program result in a signal further from the desired
result, the step size is halved and new circuit parameters are calculated.

At the completion of a full (converging) iteration, the current circuit parameters, iteration
numbers, amplitudes, width, and ratios are printed out. An example of this is shown in the
middle of Figure 4.4-7A. The convergence criteria built into the TIPTOE2A (DEM02A)
program requires that both of the ratios (amplitude and width) be between 0.995 and 1.005.
When this occurs (as it does near the bottom of Figure 4.4-7B), the circuit response is
checked against each of the criteria described above and shown if Figure 4.4-5. The results
of these checks are printed out, and the program stops whether or not the data satisfies all of
the checks. A straightforward addition to this code would be to alter the amplitude and width
convergence criteria (since there is an acceptable range for each) and return to the TIPTOE
algorithm to search for another acceptable set of circuit parameters.

4-15

3

u
tf

CO

D

a

z
o

u
o

4-16

o|-o
_c
o
co
u

O|"0
c
o
CO
II

IM

c .°" "55
a>
Q

£

CO c
o

r
I L
3
Q.
C

0)
c
V
O
x»
c
o
o a>
to

c
o»

"55 «>
a

4)
E
v. ,2
en
c
o

3 a. c

.g
"3
o c
0)
O

Z
2
Q
H

.Sfä
CQ

Q
<

4-17

-e

CHOKE

CENTER
CONDUCTOR INPUT CONNECTOR

HOUSING

Design Drawing for First Generation Input Transformer

B

INPUT TRANSFORMER IS A FIXED LENGTH SLUG SCREWED ON
CENTER CONDUCTOR. -

2.
w/w//////#/////mmrm ^CENTERCQNDUCTOR

OUTER CONDUCTOR OF COAXIAL LINE u
Detail of Slug for First Generation Input Transformer.

Figure 4.1-1
FIRST-GENERATION DESIGN

4-18

EXTERNAL MECHANICAL
TUNING BY FLEX CABLE

TO CONTROL PANEL TEST AREA

INPUT CONNECTOR-
HOUSING W/ SLOT

CENTER
CONDUCTOR

CHOKE

Design Drawing for Second Generation Input Transformer

B

INPUT TRANSFORMER IS A SLUG THAT CAN SLIDE AXIALLY ON A
SLIDING CONTACT.

L^>? WMMJ/W^/WJ/M

V
VWWMHMMMMM

CENTER CONDUCTOR

OUTER CONDUCTOR OF COAXIAL UNE

Detail of Slug for Second Generation Input Transformer.

Figure 4.1-2
SECOND-GENERATION DESIGN

4-19

- TRANSFORMER DIAMETER. ..0A70 iacbes

LOOP
POSITION

(Loches)

0-3'«6
(SLUG POS.

(inches)

LP
.346

.361

.331

PL
-3d0 low cad

(MHz)

fo - 4S

fo - 41

fo - 40

PH ,
-3dtJ high end

(MHz) "

fo + 41

fo + 4 0

fo + 33.4

LOW END

PEAX
MHz)

HIGH END
PEAK

(MHz).

fo-26.S

fo-24.S

fo+16.5

fo+13.5

PICURE
NO.

3

3

3

CURVE

(a)

(b)

(c)

LP -.015

LP -.030

.346

.346

fo

fo

39.5

34.8.

fo ■(• 38

fo + 3 4.2

fo-20.5

fo-ll.S

£c*4-l.S

f o+5.5

4

4

CM?. e/K-M - .oa <a
i. o ear «£r - . oc <aa

PASS

ft«quency [20MHz/DIV]
A

PASS.

>
Q

-a

(N
CO

(d)

(e)

CKZi B/B-M - .CO o*

NfCK- !*■<>< AVJtr HOLI

(«1,
k» i

i rJ/

^ 1
i ■
i

/ . .
-!

/ / > f l>

W
1

ll 1 1 i

frequency l.20MHz/DIV)

Figure 4.1-3
FIRST-GENERATION TEST RESULTS

Slug O.D. = 0.470 inches

4-20

TRANSFORMER JIAäETER... 0.480 laches

1.0 «flX «£jf

5
.O

</5

c PASS

I I

KJ.

1
1 /

■ 1
1

<a)

rP
-~._J f I \ \ (b)

1 / ■

4—4-

-ÜLL_ |

CK2. 0/«-«

PASS

frequency l20MHz/DlV]

A

>
b
.o

C/J

1IO« IA»0 O^i-Y MJ. t ■

1 r?J
*-1

(ajU///^
i / /'^ '

^

i\\

1/$ 1 \\\
l
!

" I
i /: ! 1 \\\ l

1; i I "
// '
Li J 1 IDLU

_

frequency [70MHy/niV]

Figure 4.1-4
FIRST-GENERATION TEST RESULTS

Slug O.D. = 0.480 inches

4-21

Eaqleuare Jun 24 18:37:33 1995 RD2.CKT iW50>

-38

-43

-4?
3305 3380

S21
3230 3274 3334 3380
-52.0539 -40.0897 -41.4579 -54.7385
Ü000

Model calculated response, slug diameter = 0.470 inches

Figure 4.1-5

4-22

Eaqleuar e

■3E

Jun 24 18:50:40 1995 RD2.CKT AAC5D)

-43

-48

■+- -H + + + +

 (

-+■ H- -+-

■+- +■ + +S^~* s. -+- -+■ H- +-

-t-

•+-

■+■

I -+-

+-

-+- /

/ -+-

/ -+-

-+-

+

-t-

+

-t-

\ A \ \

X
A

-t-

-4-

+-

+-

+-

-+-/ ■+- / + + + + \ -+- -f-

■+- / - -t- -+- -t- -+-

/ ■+- + + •+- -+- -+■ \ +-

"3230 3305 338D'
S21

3230 3274 3334 3380
-50.3481 -41.3636 -45.3984 -57.8568
0 0 0 0

Model calculated response, slug diameter = 0.470 ± 0.015 inches

Figure 4.1-6

4-23

Eaqleuare Jun 24 18:40:41 1995 RD2.CKT

-38

AAC5D)

-43

-48
3305 3380

S21
3230 3274 3334 3380
-53.6132 -40.4426 -42.9908 -56.3319
0 0 0 0

Model calculated response, slug diameter = 0.480 inches

Figure 4.1-7

4-24

Jun 24 18:53; 25 1995 RD2.CKT AAC5D)

3305 3380
521

3230 3274 3334 3380
-49.9114 -40.8687 -42.7411 -55.7900
0 0 0 0

- Model calculated response, slug diameter = 0.480 ± 0.015 inches

Figure 4.1-8

4-25

 SPECJRCATiONS-

>
5
2
■o

Frequency- [20MHz/DIV]

Figure 4.1-9
SECOND-GENERATION TEST RESULTS

4-26

rxDi

to

Z] \ Of 1 \
3 1 \
1— 1 \
U 1 \
3 \
(T >— ; ez
W 1 oo
i— 1
OS 1 mi o 1 o = °- 1
3
"* 1

o" n
t— 1 Q.O
O 1 vtac
2 ' 1
*t\
5i I / ^

O

<J
<u
CO
CO
o
l_
o ZÜ
r*J Z

'mm
^J J
c
o X
en «<
c
o O

CJ> u
^-^ > .a ^ H

■ IBM

<N tj

15
3.Z

.Sf>Bd
b U

c U
o Ed !_. i
O Cd
cu
to
CO
o <
o £

^
O >

c
a -*_*
CO
c
o o

13

4-27

s a
L±J m

l

F^ ^r

Z
J
x
«< o pu

o t
2
Z
Ed

2U
S Ü

.5* a

aa

5
>

4-28

I

O
O
J
o
z

fi.

c u
c
z

at
O

^ z
es:

Ls.
o
z
o
U
VI
C/5

o

4-29

X
(On
K) U If)

rv -\ <

r^?;;;;;;//A

O
• O

a
z
13
a,
O^
U =
a £

-*r & w>
« o .S
3 & *

< c

O 4)

Z w

H
U
cd

1

03
O
Co
U

4-30

,

o
o

" it

Hh ■■ s

"~

| } 1 —I«! __

o
o

 (, » — —

•HI—■ ► s H 11 T5

• — — , 1— — —, > —

<D a
<D cc

—' 4 t— — —< » —

M—

* ' "■ " i) ^—. —
ff> -

0> ^r'H
C7>

fiR
» —— —— s U

toG
JZ

tu
o

r\^v~\^\ -c s
««:
fit
Ü

i i Q
(i Hh
o -AW-

— n „ — —

--1 -_. — —

4-31

CIRCUIT OLD
tri aa ke 75 a 1
cap bb pa 71
tri cc ke z 22.5 1
equ dd bb
tri ee ke 75.60698 b 1
triff ke?50?19 1
tri gg ke 75 20 1
mui hh ** 72.222553 4.936216 70.06302119
prcii** 18256.68 70.4711922
capjj** 70.0006346164
con hh ** 1 0 0 3
con ii ** 0 3
con jj ** 3 2
nodhh**
caxaa hh
WINDOW
aa(50)
gph s21 -48 -38
gphs11 -20 0
freq
swd 3230 3430 1
equation
a=?8.180956
b=45.93252
l=a+b
l=53/l
a=a*l
b=b*l
d= 0.480
z=60*LN(0.6/d)
opt
3254 3256 s21=43
3279 3281 s21=-40.2
3324 3326 s21=-40
3344 3346 s21=-43

Figure 4.3-2
FILE RD3.CKT

4-32

_
CSJ

c n
o

V Ld

o o
11

00
z

>- <

^ cc W LO
I—

00

1—
3

üh<n 1- > Q_
W^ZS: 3 00 Z

ZI< X Q_
z UJ

X
1—

o
z
z
Z3 A A
1—

o
u.

■r- < >-
—I *— o _J
<
z.
o
oo

00

R
ID

G
E

8
5
0
2
i

OD

oo 32
OQ 00 LÜ

i i

Q_
X

< 1—
00

I/O

2 oo

A A

SU
R

E
CA

VI
"

1-
l-Z
OO
Ld LÜ a: o •— X ÜJ LO |—

Q_ ro
UJ oo

Q

LÜ O —
^0- • O
oo x

Z
W

OS

rr ^
u 2
WDu.
u, en

H
Q
J
O u

4-33

o V)

o
*'
4- <D

o

no
tio

n
of

Io

n
 P

ar
am

ap

e
 a

s
 a

Fu

sf

o
rm

e
r

P
os

it

a:
H
en

o

>—
O

UJ th

Sh

T
ra

n

•
H
Z
o O «■=? u

s
u.

B
an

dw

nd

In
p

w O Z
OT
o >* - -go

fed
a ■

c 2-o Q
3 cr c

o es
■*- © MM
<D J_

o: u. r^ s
H

o
o

ssoi Nani3H

4-34

Start

Set uner

Measure Data

Reduce Data

Not
Closer

Check Goal

Meets
Goal

Closer

Stop

Calculate
New Settings

Measure Responses
to Small Changes in

Each Adjustment

Figure 4.4-1
EXPERT-SYSTEM PROGRAM FLOW CHART

4-35

CO

Frequency

>u

Figure 4.4-2
CURVE ANALYZED BY TIPTOE1A

4-36

D:\EAGLBH PT0E>tiptoe1a
Please enter VWdth Criterion:
90

AA

sParameterl = 301.02 sParameter2 = 2.1464
AA

Itr SI Amp1 Amp2 Ratio Width Ratio
0 0 -39.33 -39.80 .988 100.88 1.121

AA

Updated .CKT file with: S1 => 304.0252 S2=> 2.1464

Press <return> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 301.0150 S2=> 2.1679

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 285.3625 S2=> 2.1470

Press <retum> after new signal has been generated by Eagle Software

AA

sParameterl = 285.36 sParameter2 = 2.1470
AA

Itr SI Amp1 Amp2 Ratio Width Ratio
1 1 -40.40 -39.04 1.035 102.45 1.138

AA

Convergence Criteria Failure:
AmpRatio= 1.0348
Old Distance = .1215
New Distance = .1427

MaxStepSize => 2

Updated .CKT file with: S1 => 293.1888 S2=> 2.1467

Press <return> after new signal has been generated by Eagle Software

Figure 4.4-3
TIPTOE1A PRINTOUT

4-37

B

sParameterl = 293.19 sParameter2 = 2.1467
AA

Itr SI Amp1 Amp2 Ratio Wdth Ratio
1 2 -39.79 -39.37 1.011 99.71 1.108

»»m»»»i»»»»»tmimi>im»»iimii

Rnished with 1 iterations.
Hit <return> to continue...

Updated .CKT file with: S1 => 296.1206 S2=> 2.1467

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 293.1888 S2=> 2.1682

Press <retum> after new signal has been generated by Eagle Software.

Updated .CKT file with: S1 => 293.0186 S2=> 1.7722

Press <return> after new signal has been generated by Eagle Software.

AA

sParameterl = 293.02 sParameter2 = 1.7722
AA

Itr SI Amp1 Amp2 Ratio Wdth Ratio
2 1 -39.88 -39.30 .000 100.60 .000

AA

Convergence Criteria Failure:
AmpRatio = .0000
ad Distance = .1084
New Distance = 1.4142

MaxStepSize => 2

Updated .CKT file with: S1 => 293.1037 S2=> 1.9595

Press <return> after new signal has been generated by Eagle Software

Figure 4.4-3 (CON'T)
TIPTOE1A PRINTOUT

4-38

AA

sParameterl = 293.10 sParameter2 = 1.9595
AA

Itr SI Amp1 Amp2 Ratio Wdth Ratio
2 2 -39.15 -40.12 .976 97.74 1.086

AA

Finished with 2 iterations.
Hit <retum> to continue...

Updated .CKT file with: S1 => 296.0347 S2=> 1.9595

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 293.1037 S2=> 1.9791

Press <return> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 279.8101 S2=> 1.8817

Press <retum> after new signal has been generated by Eagle Software.

AA

sParameterl = 279.81 sParameter2 = 1.8817
AAA*

Itr SI Amp1 Amp2 Ratio Wdth Ratio
3 1 -39.65 -39.49 1.004 91.67 1.019

AA

Finished with 3 iterations.
Hit <return> to continue...

Updated .CKT file with: S1 => 282.6082 S2=> 1.8817

Press <return> after new signal has been generated by Eagle Software.

Updated .CKT file with: S1 => 279.8101 S2=> 1.9005

Press <return> after new signal has been generated by Eagle Software.

Updated .CKT file with: S1 => 279.0865 S2=> 1.8463

Press <return> after new signal has been generated by Eagle Software.

Figure 4.4-3 (CON'T)
TIPTOE1A PRINTOUT

4-39

D

kkkktkkkkkkkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkk

sParameterl = 279.09 sParameter2 = 1.8463
kkkt

Itr SI Amp1 Amp2 Ratio Wdth Ratio
4 1 -39.56 -39.56 1.000 90.32 1.004

kk

Finished with 4 iterations.
Hit <return> to continue...

Updated .CKT file with: S1 => 281.8774 S2=> 1.8463

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 279.0865 S2=> 1.8647

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 278.8526 S2=> 1.8416

Press <return> after new signal has been generated by Eagle Software.

kkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

sParameterl = 278.85 sParameter2 = 1.8416
kkkkkkkkkkkkkkkkkktkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Itr SI Amp1 Amp2 Ratio Wdth Ratio
5 1 -39.56 -39.56 1.000 90.17 1.002

kk

Rnishedwith 5 iterations.
Hit <return> to continue...

Figure 4.4-3 (CONT)
TIPTOE1A PRINTOUT

4-40

Eaglepuare Jun 15 13; 16:36 1995 INPUT_COUPL(50)

-I- +■ +

■I- 4- +/

3200 3300 3400 3200 3300 3400

S21
3200

P21
3339

911
3200

PI 1
3333 3259 3339 3400 3200 3259 3339 3400

59.2189 -41.4372 -41.2947 -56.685 -.057342 -3.67688 -3.60746 -.082784
59.3195 -124.563 24.7555 -43.4939 -60.552 -147.957 86.2156 -16.2815

program.
The response of the START.CKT file calculated by the SUPERSTAR

Figure 4.4-4
START.CKT RESPONSE

4-41

es

Frequency

Sample dreuit response showing acceptance criteria.

Figure 4.4-5
SAMPLE CIRCUIT RESPONSE

4-42

Start

} '

Set TIPTOE

Goals

1 Mrt
TIPTOE

Algorithm

Convergence
Stop

<

Conv ergence

Check All

Criteria

i
Stop

Row chart for the T1PTOE2A (DEM02A) program.

Figure 4.4-6
TIPTOE2A FLOW CHART

4-43

D:\EAGLBHPTOE2xtemo2a

AA

sParameterl = 293.84 sParameter2 = 2.0995
AA

Itr SI Amp1 Amp2 Ratio Wdth Ratio
0 0 -39.33 -39.80 1.012 1.94 1.146

AA

Updated .CKT file with: S1 => 296.7774 S2=> 2.0995

Press <retum> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 293.8390 S2=> 2.1205

Press <return> after new signal has been generated by Eagle Software,

Updated .CKT file with: S1 => 297.4802 S2=> 2.0997

Press <retum> after new signal has been generated by Eagle Software.

AA

sParameterl = 297.48 sParameter2 = 2.0997
«AAA

Itr SI Amp1 Amp2 Ratio Wdth Ratio
1 1 -39.35 -39.78 1.011 1.77 1.045

AA

Tiptoe finished with 1 iterations.
Hit <retum> to continue...

Updated .CKT file with: S1 => 300.4550 S2=> 2.0997

Press <return> after new signal has been generated by Eagle Software...

Updated .CKT file with: S1 => 297.4802 S2 => 2.1207

Press <return> after new signal has been generated by Eagle Software...

Updated .CKT file with: S1 => 294.2722 S2=> 2.1078

Press <return> after new signal has been generated by Eagle Software...

Figure 4.4-7
TIPTOE2A (DEM02A) PRINTOUT

4-44

B

**

sParameterl = 294.27 sParameter2 = 2.1078
**********AAAA***AA*****************************

Itr SI Amp1 Amp2 Ratio Wdth Ratio
2 1 -39.57 -39.56 1.000 1.72 1.016

******AAA**A*AA********AAAAAAAAAAAAAAAAA*******A

Tiptoe finished with 2 iterations.
Hit <retum> to continue...

Updated .CKT file with: S1 => 297.2149 S2=> 2.1078

Press <return> after new signal has been generated by Eagle Software

Updated .CKT file with: S1 => 294.2722 S2=> 2.1289

Press <return> after new signal has been generated by Eagle Software.

Updated .CKT file with: S1 => 293.8499 S2=> 2.1000

Press <retum> after new signal has been generated by Eagle Software.

**************************************AAAAAAAAAA

sParameteii = 293.85 sParameter2 = 2.1000
**

Itr SI Amp1 Amp2 Ratio VMdth Ratio
3 1 -39.56 -39.56 1.000 1.70 1.002

*****AAAA*******************AAAAAAAAA****A*AAAAA

Tiptoe finished with 3 iterations.
Hit <retum> to continue...

Tiptoe converged for wide configuration ...
SP1= 293.8499 SP2= 2.1000

S'gnal Passed Amplitude Checks...
Signal Passed Outer Bounds Checks...
Signal Passed Interior Bounds Checks...

Signal passed all checks!

Demo2a... Normal Completion

Q\EAGLBTlPTOE2>

Figure 4.4-7 (CON'T)
TIPTOE2A (DEM02A) PRINTOUT

4-45

APPENDIX 4A
TIPTOEIA Source Code Listing

program tiptoe 1 a
c

c
c ... Program to calculate S-parameters utilizing Martin Lee's famous
c tiptoe algorithm.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Subroutines called:
c
c ratios
c sParamlO
c
c ... Comments:
c

c ... Parameters:
c

parameter (WIDTH_TOLORANCE=135.)
parameter (MAX_ITER=20)

c
c ... Variables:
c

character* 1 adum
character* 128 sName, oName
logical rescale

loName
numlter, sublter
maxStepSize
read_mode, write_mode

sParmlOld, sParmlNew, dSParml
sParm201d, sParm2New, dSParm2
ampl, amp2, width
ampRatioOld, ampRatioNew, dAmpRatio
widthRatioOld, widthRatioNew, dWidthRatio
dAdSl, dAdS2, dWdSl, dWdS2
deltaAmp, deltaWidth, deltaSPl, deltaSP2
detlnv, distOld, distNew
width_param

4-46

integer" 4
integer* 4
integer* 4
integer* 4
real* 4
real* 4
real* 4
real*4
real* 4
real* 4
real* 4
real* 4
real* 4

c
c ... Data:

c
c ... Define name of file containing signal amplitudes
c

data sName(l:) /'signal.out'/
c
c ... Define name of diagnostic output file
c

data oName(l:) /'tiptoe.out'/
c
c ... Define read/write modes
c

data read_mode /0/
data write_mode III

c

c
c ... Initialize counters
c

maxStepSize = 1
numlter = 0
sublter = 0
rescale = .false.

c
c ... Ask user for desired signal width
c

write(*. '("SPlease enter Width Criterion: ")')
read(*, *) width_param

c
c ... Open file for diagnostic output
c

loName = length(oName)
open(6, file=oName(l:loName), status-unknown', form-formatted',

> err=10)
c
c ... Read in current values for S parameters
c

call signalGen(read_mode, sParmlNew, sParm2New)
c
c ... Calculate Amplitude and Width Ratios
c

call ratios(sName, width_param,
> ampRatioNew, widthRatioNew, ampl, amp2, width)

c
c ... Output amplitude and width ratio values
c

call print_params(0, sParmlNew, sParm2New, numlter, sublter,

4-47

> ampl, amp2, ampRatioNew, width, widthRatioNew)
call print_params(6, sParmlNew, sParm2New, numlter, sublter,

> ampl, amp2, ampRatioNew, width, widthRatioNew)
c
c ... Start of iterative loop
c

do while (numlter .lt. MAXJTER)
c
c ... Increment iteration counter
c

numlter = numlter + 1
sublter = 0

c
c ... Store current S parameter values as "previous" values
c

sParmlOld = sParmlNew
sParm201d = sParm2New

c
c ... Store current Amplitude and Width ratios as "previous" values
c

ampRatioOld = ampRatioNew
widthRatioOld = widthRatioNew

c
c ... Perturb current values of S parameters for next signal
c

dSParml = 0.01*sParmlOld
dSParm2 = 0.01*sParm2Old

c
sParmlNew = sParml Old + dSParml
sParm2New = sParm201d + dSParm2

c
c ... Generate new signal
c

call signalGen(write_mode, sParmlNew, sParm201d)
c
c ... Calculate Amplitude and Width Ratios for dSl signal vector
c

call ratios(sName, width_param, ampRatioNew, widthRatioNew,
> ampl, amp2, width)

write(6, *)
writefö '(" ********* ********************************** ,,\,\
write(6, '(" sParmlPrime = ", f6.2,

> " sParameter2 = ", f6.4)') sParmlNew, sParm201d
write(6 '(" ***"y\
write(6, '(" Iter Ampl Amp2 Ratio Width Ratio")')
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')

4-48

> numlter, ampl, amp2, ampRatioNew, width, widthRatioNew
writefö Y" ******************************** ***********l,y,\

c
c ... Calculate dSl partial derivatives
c

dAmpRatio = ampRatioNew - ampRatioOld
dWidthRatio = widthRatioNew - widthRatioOld

c
dAdSl = dAmpRatio/dSParml
dWdSl = dWidthRatio/dSParml

c
c ... Generate new signal
c

call signalGen(write_mode, sParmlOld, sParm2New)
c
c ... Calculate Amplitude and Width Ratios for dS2 signal vector
c

call ratios(sName, width_param, ampRatioNew, widthRatioNew,
> ampl, amp2, width)

write(6, *)
wnte(6, ())
write(6, '(" sParameterl = ", f6.2,

> " sParm2Prime = ", f6.4)') sParmlOld, sParm2New

write(6, '(" Iter Ampl Amp2 Ratio Width Ratio")')
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')

> numlter, ampl, amp2, ampRatioNew, width, widthRatioNew
write(6 '(" ***"Y~\

c
c ... Calculate dS2 partial derivatives
c

dAmpRatio = ampRatioNew - ampRatioOld
dWidthRatio = widthRatioNew - widthRatioOld

c
dAdS2 = dAmpRatio/dSParm2
dWdS2 = dWidthRatio/dSParm2

c
write(6, *)
write(6, *) ' Iteration #: ', numlter
write(6, *) ' dAdSl: ', dAdSl
write(6, *)' dWdSl:', dWdSl
write(6, *) ' dAdS2: ', dAdS2
write(6, *) ' dWdS2: ', dWdS2
write(6, *)

c
c ... Calculate reciprical determinant of partial derivative matrix

4-49

c
detlnv = 1.0/(dAdSl*dWdS2 - dAdS2*dWdSl)

c
100 sublter = sublter + 1

c
c ... Estimate needed change in amplitude and width ratios
c

deltaAmp = (1.0 - ampRatio01d)/float(maxStepSize)
deltaWidth = (1.0 - widthRatio01d)/float(maxStepSize)

c
c ... Calculate corresponding change in S parameter values
c

deltaSPl = detInv*(dWdS2*deltaAmp - dAdS2*deltaWidth)
deltaSP2 = detInv*(dAdSl*deltaWidth - dWdSl*deltaAmp)

c
c ... Calculate new S parmeter values
c

sParmlNew = sParmlOld + deltaSPl
sParm2New = sParm201d + deltaSP2

c
c ... Generate new signal
c

call signalGen(write_mode, sParmlNew, sParm2New)
c
c ... Calculate Amplitude and Width Ratios
c

call ratios(sName, width_param,
> ampRatioNew, widthRatioNew, ampl, amp2, width)

c
c ... Output amplitude and width ratio values
c

call print_params(0, sParmlNew, sParm2New, numlter, sublter,
> ampl, amp2, ampRatioNew, width, widthRatioNew)

call print_params(6, sParmlNew, sParm2New, numlter, sublter,
> ampl, amp2, ampRatioNew, width, widthRatioNew)

c
c ... Check for convergence
c

distOld = sqrt((l.-ampRatio01d)**2 + (l.-widthRatio01d)**2)
distNew = sqrt((l.-ampRatioNew)**2 + (L-widthRatioNew)**2)

if (ampRatioNew .eq. 0. .or. distNew .gt. distOld) then
maxStepSize = 2*maxStepSize
rescale = .true.
write(*, *)
write(*, '(" Convergence Criteria Failure:")')

4-50

write(*, '(" AmpRatio = ", flO.4)') ampRatioNew
write(*, '(" Old Distance = ", flO.4)') distOld
write(*, '(" New Distance = ", flO.4)') distNew
write(*, *)
write(*, '(" MaxStepSize => ", i3)') maxStepSize
goto 100

else
if (rescale .and. maxStepSize .gt. 1)

> maxStepSize = maxStepSize/2
rescale = .false,

endif
c
c ... Completed with entire iteration
c

write(*, *)
write(*, '(" Finished with ", i2, " iterations.")') numlter
write(*, '(" Hit <return> to continue ...")')
read(*, '(a)') adum

enddo
stop ' Normal program termination'

10 stop ' Unable to open diagnostic output file'
end

4-51

subroutine print_params(lU, sParaml, sParam2, numlter, sublter,
> ampl, amp2, ampRatio, width, widthRatio)

c
c
c
c ... Subroutine to print out S parameters and corresponding signal
c features
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

real*4 sParaml, sParam2
real*4 ampl, amp2, ampRatio
real*4 width, widthRatio

c
integer*4 1U, numlter, sublter

c
c ... Return Arguments:
c
c ... Comments:
c
„***

c
c ... Check for screen output
c

if (1U .eq. 0) then
write(*, *)
write(*,

write(*,'(" sParameterl = ", f6.2, 5x,
> " sParameter2 = ", f6.4)')
> sParaml, sParam2

write(*,
> i/ii **ny\

write(*,
> '(" Itr SI Ampl Amp2 Ratio Width Ratio")')

write(*,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio

write(*,
> l/H **||\|\

else
write(lU, *)

4-52

write(lU,

write(lU,
> '(" sParameterl = ", {6.2, 5x,
> " sParameter2 = ", f6.4)')
> sParaml, sParam2

write(lU,

write(lU,
> '(" Itr SI Ampl Amp2 Ratio Width Ratio")')

write(lU,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio

write(lU,

endif
return
end

4-53

subroutine ratios (fName, width_goal, ampRatio, widRatio,
> ampl, amp2, width)

c

C

c ... Subroutine to calculate amplitude and width ratios based on
c width requirement and values in current signal vector file.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

character*(*) fName
real*4 width_goal

c
c ... Return Arguments:
c

real*4 ampRatio, widRatio
real*4 ampl, amp2, width

c
c ... Subroutines called:
c
c sRead
c peakNdcs
c sigWidth

\ c
c ... Comments:
c

c
c ... Local Variables:
c

parameter (MAXPT=300)
c

integer*4 nPtSVec
integer*4 pklNdx, pk2Ndx, wdlNdx, wd2Ndx
logical perror
real*4 sVector(2,MAXPT)

c

c
c ... Read in signal vector
c

4-54

call sRead (fName, MAXPT, sVector, nPtSVec)
c
c ... Locate positions of peaks
c

call peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, perror)
c
c ... Check for error finding peaks
c

if (perror) then
ampRatio = 0.
widRatio = 0.
return

endif
c
c ... Locate width indicies and interpolated width
c

call sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx,
> wdlNdx, wd2Ndx, width)

c
c ... Calculate current ratios
c

ampl = sVector(2, pklNdx)
amp2 = sVector(2, pk2Ndx)

c
ampRatio = ampl/amp2
widRatio = width/width_goal

c
return
end

4-55

subroutine sRead (fName, MAXPT, sVector, nPtSVec)
c

c
c ... Subroutine to read in the signal file output by the signal
c generating program.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

character*(*) fName
integer*4 MAXPT

c
c ... Return Arguments:
c

real*4 sVector(2,MAXPT)
integer*4 nPtSVec

c
c ... Comments:
c
g***

c
c ... Local Variables:
c

integer*4 lfName, i N

real*4 sdum
c
g* *********** ***,|(1|(,|(1|I

c
lfName = length(fName)

c
c ... Open signal file
c

open(2, file=fName(l:lfName), status='old', form=,formatted',
> err=10)

c
c ... Read in signal values
c

do i=l,MAXPT+l
read(2, err=20, end=30, fmt=*)

> sVector(l,i), sdum, sdum, sVector(2,i)
enddo

4-56

write(6, *) ' Signal file: ', fName(l:lfName)
write(6, *) ' Contains too many records for current array size,
stop ' Program terminating ...'

10 write(6, *) ' Error opening signal file: ', fName(l:lfName)
stop ' Program terminating ..."

20 write(6, *) ' Error reading record: ', i
write(6, *) ' in signal file: ', fName
stop ' Program terminating ..."

30 close(2)
nPtSVec = i-1

c
c ... Convert signal to correct units
c

do i=l,NptSVec
sVector(2,i) = 20.*alogl0(sVector(2,i))
write(6, *) i, ' x= ', sVector(l,i), ' y= ', sVector(2,i)

enddo
return
end

4-57

subroutine signal Gen (ioMode, sParaml, sParam2)
c
„**

c
c ... Subroutine to generate a new signal given passed values of S
c parameters. If i/o mode is set to "read" then the values of the
c S parameters in the current signal file are passed back to the
c calling routine.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

integer*4 ioMode
real*4 sParaml, sParam2

c
c ... Return Arguments:
c
c real*4 sParaml, sParam2
c
c ... Subroutines Called:
c
c sParamlO
c
c ... Comments:
c
c Arguments sParaml, sParam2 are used as return values when
c "READ" mode is used.
c
g**

c
c ... Local Variables:
c

parameter (READ=0)
parameter (WRITE=1)

c
character* 1 adum
character* 128 pName

c
c ... Define name of file containing active S parameter values
c

data pName(l:) /'demo.ckt'/

4-58

c
c ... Access .CKT file for read/write of S parameters
c

call sParamlO (pName, ioMode, sParaml, sParam2)
c
c ... Notify user to generate new signal using Eagle software
c if in "write" mode,
c

if (ioMode .eq. WRITE) then
write(*, '(/, " Updated .CKT file with: SI => ", fl0.4,

> " S2 => ", flO.4)') sParaml, sParam2
write(*, *)
write(*, '(" Press <return> after new signal",

> " has been generated by Eagle Software ...")')
read(*, '(a)') adum

endif
c

return
end

4-59

subroutine sParamIO (pName, ioMode, sParaml, sParam2)
c
„it***

c
c ... Subroutine to read in the S parameter file (*.CKT) and
c read/write the S parameters from/to the file. The parameter
c "ioMode" determines whether the S parameters are being read from or
c written to the file "pName".
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

character* 128 pName
integer*4 ioMode
real*4 sParaml, sParam2

c
c ... Return Arguments:
c
c real*4 sParaml, sParam2
c
c ... Comments:
c
Q** ***********************

c
c ... Local Variables:
c

parameter (READ=0)
parameter (WRITE=1)
parameter (NUM_REC_MAX=200)

c
integer*4 lpName, lenRec(NUM_REC_MAX)

c
character* 128 record(NUM_REC_MAX)

c
Q***

c
c ... Open S parameter file
c

lpName = length(pName)
open(2, file=pName(l:lpName), status-old', form='formatted',

> err=10)
c

4-60

c ... Read records from S Parameter file,
c

numRec = 0
if (ioMode .eq. READ) then

do while(numRec .It. NUM_REC_MAX)
record(l)(l:) = ' '
read(2, err=20, end=30, fmt='(a)') record(l)(l:)
lenRec(l) = length(record(l))
numRec = numRec + 1
if (numRec .eq. 2) read(record(l)(17:lenRec(l)), fmt='(f7.5)',

> err=25) sParam2
if (numRec .eq. 46) read(record(l)(4:lenRec(l)), fmt='(f7.3)',

> err=25) sParaml
enddo

else
do while(numRec .It. NUM_REC_MAX)

numRec = numRec + 1
record(numRec)(l:) = ' '
read(2, err=20, end=30, fmt='(a)') record(numRec)(l:)
lenRec(numRec) = length(record(numRec))
if (numRec .eq. 2) then

write(record(numRec)(17:23), fmt='(f7.5)', err=25) sParam2
if (sParam2 .It. 1.0) record(numRec)(17:17) = '0'

elseif (numRec .eq. 46) then
write(record(numRec)(4:), fmt=,(f7.3)', err=25) sParaml

endif
enddo

endif
c

write(6, *) ' S Parameter file: 7/pName(l:lpName)
write(6, *) ' Contains too many records for current array size.1

stop ' Program terminating ...'
10 write(6, *) ' Error opening S Parameter file: 7/pName(l:lpName)

stop ' Program terminating ...'
20 write(6, *) ' Error reading record: ', numRec

write(6, *) ' in S Parameter file: 7/pName
stop ' Program terminating ..."

25 write(6, *) ' Error parsing information from record: ', numRec
write(6, *) ' in file: ', pName(l.lpName)
stop ' Program terminating ...'

30 if (ioMode .eq. WRITE) then
numRec = numRec - 1
rewind(2)
do i = 1, numRec

write(2, '(a)') record(i)(l:lenRec(i))
enddo

4-61

endif
dose(2)

return
end

4-62

function length(string)
c
c
c
c ... Utility function to determine the length of a character string.
c The length of the string is determined by finding the last
c "non-blank" character in the passed string,
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

character* (*) string
c
c ... Return Arguments:
c
c integer*4 length
c
c ... Comments:
c
„it**

c
length = len(string)
do while(string(length:length) .eq. ' ' .and. length .gt. 0)

length = length - 1
enddo
return
end

4-63

subroutine peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, error)
c
c
c
c ... Subroutine to pick off the indicies of the 2 large peaks in
c the signal. An error is returned if 2 unique peaks are not found.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

integer*4 nPtSVec
real*4 sVector(2,nPtSVec)

c
c ... Return Arguments:
c

integer*4 pklNdx
integer*4 pk2Ndx
logical error

c
c ... Comments:
c
~***

c
c ... Local Parameter
c

parameter (DOWNTRIG=4)
c
c ... Local Variables:
c

integer*4 ndxMax, downCnt, minNdx
logical*2 negSlope, pklFnd
real*4 valMax, valOld

c
g* ***

c
c ... Initialize values
c

valMax =-l.e32
valOld = -l.e32
ndxMax = -1
pklFnd = .false.
negSlope = .false.

4-64

downCnt = 0
pklNdx = -1
pk2Ndx = -1
minNdx = -1

c
c ... Initialize Error Flag
c

error = .false,
c
c ... Start search for 1st peak
c

do i=l, nPtSVec
if (sVector(2,i) .It. valOld) then

negSlope = .true,
if (downCnt .eq. 0) then

valMax = valOld
ndxMax = i-1

endif
downCnt = downCnt + 1
if (downCnt .ge. DOWNTRIG .and. .not. pklFnd) then

pklNdx = ndxMax
pklFnd = .true,

endif
else

negSlope = .false.
downCnt = 0
if (pklFnd) then

minNdx = i-1
goto 10

endif
endif

c
valOld = sVector(2,i)

enddo
10 continue

c
if (pklFnd) then

c
c ... Write diagnostics to output screen & output file
c

write(6, *)
write(6, *) ' 1st Peak located at index: ', pklNdx
write(6, *) ' frequency: ',sVector(l,pklNdx)
write(6, *) ' amplitude: ',sVector(2,pklNdx)

else
error = .true.

4-65

write(6, *)
write(6, *) ' Could not locate 1st Peak!'
return

endif
c

if (pklFnd .and. minNdx .gt. 0) then
c
c ... Locate 2nd peak
c

valMax = -l.e32
ndxMax = -1
do i=minNdx, nPtSVec

if (sVector(2,i) .gt. valMax) then
valMax = sVector(2,i)
ndxMax = i

endif
enddo

c
c ... Set index for 2nd peak
c

pk2Ndx = ndxMax
c

write(6, *) ' '
write(6, *) ' 2nd Peak located at index: ', pk2Ndx
write(6, *) ' frequency: \sVector(l,pk2Ndx)
write(6, *) ' amplitude: \sVector(2,pk2Ndx)

c
else

error = .true.
write(6, *) * '
write(6, *) ' Error in Peak Search: Couldn"t locate 2nd peak,

endif
c

return
end

4-66

subroutine sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx,
> wdlNdx, wd2Ndx, width)

c
g***

c
c ... Subroutine to calculate the width of the signal.
c Currently the signal width is defined as the FWHM
c locations spanning over the range of the 2 amplitude peaks.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/01/93
c
c ... Input Arguments:
c

integer*4 nPtSVec, pklNdx, pk2Ndx
real*4 sVector(2,nPtSVec)

c
c ... Return Arguments:
c

integer*4 wdlNdx
integer*4 wd2Ndx
real* 4 width

c
c ... Comments:
c
p***,!,,!,,!,,!,,!,,),*,!,

c
c ... Local Variables:
c

integer*4 minNdx
real*4 valHalfMax, valMin
real*4 slope, frql, frq2

c
c***

c
c ... Initialize values
c

valMin = l.e32
minNdx = -1

c
c ... Find minimum amplitude
c

do i=l, nPtSVec
if (sVector(2,i) .It. valMin) then

4-67

Minimum amplitude index: ', minNdx
frequency: ', sVector(l, minNdx)

amplitude (Db): ', sVector(2, minNdx)

valMin = sVector(2,i)
minNdx = i

endif
enddo

c
c ... Output minimum amplitude (in DB scale)
c

write(6, *)
write(6, *)
write(6, *)
write(6, *)
write(6, *)

c
c ... Find maximum amplitude
c

if (sVector(2, pklNdx) .It. sVector(2, pk2Ndx)) then
valMax = sVector(2, pklNdx)

else
valMax = sVector(2, pk2Ndx)

endif
c
c ... Convert from Db scale
c

valMin = 10**(valMin/20.)
valMax = 10**(valMax/20.)

c
c ... Calculate Half maximum
c

valHalfMax = valMin + (valMax - valMin)/2.
c
c ... Convert back to Db scale
c

valHalfMax = 20.*aloglO(valHalfMax)
c
c ... Output half maximum value
c

write(6, *) ' •
write(6, *) ' Half Maximum amplitude in signal: ', valHalfMax
write(6, *) ' '

c
c ... Determine width indicies
c

do i=pklNdx, 1,-1
if (sVector(2,i) .It. valHalfMax) goto 10

enddo
10 wdlNdx = i

4-68

c
c
c

c
c
c

c
c
c

do i=pk2Ndx, nPtSVec
if (sVector(2,i) .It. valHalfMax) goto 20

enddo
20 wd2Ndx = i

... Interpolate (linear) to get half-maximum channel boundaries

slope = (sVector(l, wdlNdx+1) - sVector(l, wdlNdx))/
> (sVector(2, wdlNdx+1) - sVector(2, wdlNdx))
frql = sVector(l, wdlNdx) + slope*(valHalfMax - sVector(2,wdlNdx))
slope = (sVector(l, wd2Ndx-l) - sVector(l, wd2Ndx))/

> (sVector(2, wd2Ndx-l) - sVector(2, wd2Ndx))
frq2 = sVector(l, wd2Ndx) + slope*(valHalfMax - sVector(2,wd2Ndx))

... Calculate width

width = frq2 - frql

... Output width indicies and amplitudes

write(6, *
write(6, *
write(6, *
write(6, *
write(6, *
write(6, *
write(6, *
write(6, *
write(6, *
write(6, *

' Width index 1: ', wdlNdx
1 frequency: ', sVector(l,wdlNdx)
' amplitude: ', sVector(2,wdlNdx)

' Width index 2: ', wd2Ndx
' frequency: ', sVector(l,wd2Ndx)

amplitude: ', sVector(2,wd2Ndx)

' Interpl Width; ', width

return
end

4-69

APPENDIX 4B
TIPT0E2A Source Code Listings

DEMO.BAT

This program creates the DEM02A.EXE code from several components using the Microsoft
fortran (version 5.0) compiler.

fl /G2 demo2a.for tiptoe.for siggen.for sigfeat.for check.for

4-70

DEM02A.F0R

program demo2a
c

c
c ... Program to demonstrate a tuning method utilizing the Tiptoe
c algorithm.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 04/10/94
c
c ... Input Arguments:
c
c ... Return Arguments:
c
c ... Subroutines called:
c
c tiptoe
c checkParms
c
c ... Comments:
c

c
c ... Local Variables: s

c

parameter (DELTA_MAX_THRESH=1.0, DELTA_MIN_THRESH=1.7)
parameter (NUM_OUTER_LIM=2, NUM_INNER_LIM=8)

c
parameter (CNVRG_LIM = 0.005)
parameter (WIDE_AMP_RATIO=l., WIDE_WID_OFF=0.,

> WIDE_WID_GOAL=DELTA_MIN_THRESH)
c

real*4 outer_lim(2, NUM_OUTER_LIM)
real*4 innerJim(2,NUM_INNER_LIM)
logical tiptoe, checkParms, cwide, cnarr
integer*4 failMode

c
data outerjim / 3240., 3., 3360., 3. /

c
data innerjim / 3265., 3., 3270., 1.5, 3275., 1.2, 3280., 1.2,

> 3320., 1., 3325., 1., 3330., 1.3, 3335., 3. /

4-71

c
c ... Initialize logicals
c

cwide = .false.
cnarr = .false,

c
c ... Look for Widest configuration
c

if (tiptoe(WIDE_AMP_RATIO, WIDE_WID_OFF,
> (WIDE_WID_GOAL-CNVRG_LIM), CNVRG_LIM,
> sPlWide, sP2Wide)) then

cwide = .true.
write(*, '(" Tiptoe converged for wide configuration ...",

> /, " SP1=", flO.4, " SP2= ", fl0.4, /)')
> sPlWide, sP2Wide
else

write(*, '(" Tiptoe could not converge for wide ",
> " configuration ...", /)')
endif

c
c ... Check if finished.
c

if (checkParmst DELTA_MAX_THRESH, DELTA_MIN_THRESH,
> NUM_OUTER_LIM, outerjim, NUM_INNER_LIM,
> innerjim, failMode)) then

write(*, '(/, " Signal passed all checks!","/)')
write(6, '(/, " Signal passed all checks!", /)')

else
write(*, '(" Signal failed check ...", /

> " Mode of failure: ", i2)') failMode
write(6, '(" Signal failed check ...", /

> " Mode of failure: ", i2)') failMode
endif

c
stop 'Demo2a ... Normal Completion'
end

4-72

TIPTOE.FOR

logical function tiptoe (ampRatio, widLocOff, widthMag, ratioLim,
> sParaml, sParam2)

c
g***

c
c ... Function to calculate S-parameters utilizing Martin Lee's famous
c tiptoe algorithm. Inputs to this routine are the desired amplitude
c ratio, the amplitude offset at which the width is to be calculated,
c the desired magnitude of the width, and the ratio convergence
c limit. The funtion returns a boolean indicating whether or not
c a solution was obtained. If this function returns true, the valid
c values of the S Parameters are passed back to the calling routine.
c If the function returns false the S Parameter values contain the
c last values attempted prior to failure.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 02/25/93
c
c
c ... Input Arguments:
c

real*4 ampRatio
real*4 widLocOff
real*4 widthMag
real*4 ratioLim

c
c ... Return Arguments
c

real*4 sParaml
real*4 sParam2

c
c ... Subroutines called:
c
c signalGen
c signalFeats
c printParams
c
c ... Comments:
c
c Tiptoe-1A main routine converted to a function for use
c in the 2A phase,
c

4-73

c ... Parameters:
c

parameter (MAX_ITER=20, MAX_SUB_ITER=5)
c
c ... Variables:
c

character* 1 adum
character* 128 oName
logical rescale, converged
integer*4 loName
integer*4 numlter, sublter
integer*4 maxStepSize
integer*4 read_mode, write_mode
real*4 sParmlOld, sParmlNew, dSParml
real*4 sParm201d, sParm2New, dSParm2
real*4 sAmpl, sAmp2, sAmpMin
real*4 wChanl, wChan2, sWidth
real*4 ampRatioOld, ampRatioNew, dAmpRatio
real*4 widthRatioOld, widthRatioNew, dWidthRatio
real*4 kickSl, kickS2
real*4 dAdS 1, dAdS2, dWdS 1, dWdS2
real*4 deltaAmp, deltaWidth, deltaSPl, deltaSP2
real*4 detlnv, distOld, distNew

c
c ... Data:
c
c ... Define name of diagnostic output file
c

data oName(l:) /'tiptoe.out'/
c
c ... Define read/write modes
c

data read_mode 101
data write_mode III

c

c
c ... Initialize counters
c

maxStepSize = 1
numlter = 0
sublter = 0
rescale = .false.
converged = .false,

c

4-74

c ... Ask user for desired signal width
c
c write(*, '("SPlease enter Width Criterion: ")')
c read(*, *) widthMag
c
c ... Open file for diagnostic output
c

loName = length(oName)
open(6, file=oName(l:loName), status-unknown', form-formatted',

> err=10)
c
c ... Read in current values for S parameters
c

call signalGen(read_mode, sParmlNew, sParm2New)
c
c ... Calculate Amplitude and Width Ratios
c

call signalFeats(ampRatio, widLocOff, widthMag,
> ampRatioNew, widthRatioNew, sAmpl, sAmp2,
> sAmpMin, wChanl, wChan2, sWidth)

c
c ... Output amplitude and width ratio values
c

call printParams(0, sParmlNew, sParm2New, numlter, sublter,
> sAmpl, sAmp2, ampRatioNew, sWidth,
> widthRatioNew)

call printParams(6, sParmlNew, sParm2New, numlter, sublter,
> sAmpl, sAmp2, ampRatioNew, sWidth,
> widthRatioNew)

c
c ... Check that features were located
c

if (sWidth .eq. 0) then
tiptoe = .false.
sParaml = sParmlNew
sParam2 = sParm2New
return
endif

c
c ... Start of iterative loop
c

do while ((.not. converged) .and. numlter .le. MAX_ITER)
c
c ... Increment iteration counter
c

numlter = numlter + 1

4-75

sublter = 0
c
c ... Calculate perturbation for S parameters
c

kickSl =0.01
kickS2 = 0.01

c
c ... Store current S parameter values as "previous" values
c

sParmlOld = sParmlNew
sParm201d = sParm2New

c
c ... Store current Amplitude and Width ratios as "previous" values
c

ampRatioOld = ampRatioNew
widthRatioOld = widthRatioNew

c
c ... Perturb current value of SI parameter for next signal
c

25 dSParml = kickSl*sParml01d
c

sParmlNew = sParmlOld + dSParml
c
c ... Generate new signal
c

call signalGen(write_mode, sParmlNew, sParm201d)
c
c ... Calculate Amplitude and Width Ratios for dSl signal vector
c

call signalFeats(ampRatio, widLocOff, widthMag,
> ampRatioNew, widthRatioNew, sAmpl, sAmp2,
> sAmpMin, wChanl, wChan2, sWidth)

write(6, *)

write(6, '(" sParmlPrime = ", f6.2,
> " sParameter2 = ", f6.4)') sParmlNew, sParm201d

write(6, '(" Iter Ampl Amp2 Ratio Width Ratio")')
write(6, '(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')

> numlter, sAmpl, sAmp2, ampRatioNew, sWidth, widthRatioNew

c
c ... Check that features were located
c

if (sWidth .eq. 0) then
kickSl = kickSl/2.

4-76

goto 25
endif

c
c ... Calculate dSI partial derivatives
c

dAmpRatio = ampRatioNew - ampRatioOld
dWidthRatio = widthRatioNew - widthRatioOld

c
dAdSl = dAmpRatio/dSParml
dWdSl = dWidthRatio/dSParml

c
c ... Perturb current value of S2 parameter for next signal
c

50 dSParm2 = kickS2*sParm201d
c

sParm2New = sParm201d + dSParm2
c
c ... Generate new signal
c

call signalGen(write_mode, sParmlOld, sParm2New)
c
c ... Calculate Amplitude and Width Ratios for dS2 signal vector
c

call signalFeats(ampRatio, widLocOff, widthMag,
> ampRatioNew, widthRatioNew, sAmpl, sAmp2,
> sAmpMin, wChanl, wChan2, sWidth)

write(6, *)
write(6 '(" ***iiy'\
write(6, '(" sParameterl = ", f6.2,

> " sParm2Prime = ", f6.4)') sParmlOld, sParm2New
write(6 '(" ***"\'\
write(6, '(" Iter Ampl Amp2 Ratio Width Ratio")')
write(6, *(i4, lx, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')

> numlter, sAmpl, sAmp2, ampRatioNew, sWidth, widthRatioNew
writefö '(" ***,,y\

c
c ... Check that features were located
c

if (sWidth .eq. 0) then
kickS2 = kickS2/2.
goto 50

endif
c
c ... Calculate dS2 partial derivatives
c

dAmpRatio = ampRatioNew - ampRatioOld

4-77

dWidthRatio = widthRatioNew - widthRatioOld

dAdS2 = dAmpRatio/dSParm2
dWdS2 = dWidthRatio/dSParm2

Iteration #: ', numlter
dAdSl: *, dAdSl
dWdSl: ', dWdSl
dAdS2: ', dAdS2
dWdS2: ', dWdS2

write(6, *)
write(6, *)
write(6, *)
write(6, *)
write(6, *)
write(6, *)
write(6, *)

c
c ... Calculate reciprical determinant of partial derivative matrix
c

detlnv = 1.0/(dAdSl*dWdS2 - dAdS2*dWdSl)
c

100 sublter = sublter + 1
c

if (sublter .gt. MAX_SUB_ITER) then
c
c ... Maximum number of allowed sub-iterations exceeded without
c convergence. Return FALSE to the calling program,
c

write(6, '(/, " Maximum # of sub-iterations reached in ",
> "tiptoe algorithm.", /,
> " Retuning to calling program ...", //)')

tiptoe = .FALSE.
sParaml = sParmlNew
sParam2 = sParm2New
return

endif
c
c ... Estimate needed change in amplitude and width ratios
c

deltaAmp = (ampRatio - ampRatio01d)/float(maxStepSize)
deltaWidth = (1.0 - widthRatio01d)/float(maxStepSize)

c
c ... Calculate corresponding change in S parameter values
c

deltaSPl = detInv*(dWdS2*deItaAmp - dAdS2*deltaWidth)
deltaSP2 = detInv*(dAdSl*deltaWidth - dWdSl ""deltaAmp)

c
c ... Calculate new S parmeter values
c

sParmlNew = sParmlOld + deltaSPl

4-78

sParm2New = sParm201d + deltaSP2
c
c ... Generate new signal
c

call signalGen(write_mode, sParmlNew, sParm2New)
c
c ... Calculate Amplitude and Width Ratios
c

call signaIFeats(ampRatio, widLocOff, widthMag,
> ampRatioNew, widthRatioNew, sAmpl, sAmp2,
> sAmpMin, wChanl, wChan2, sWidth)

c
c ... Output amplitude and width ratio values
c

call printParams(0, sParmlNew, sParm2New, numlter, sublter,
> sAmpl, sAmp2, ampRatioNew, sWidth,
> widthRatioNew)

call printParams(6, sParmlNew, sParm2New, numlter, sublter,
> sAmpl, sAmp2, ampRatioNew, sWidth,
> widthRatioNew)

c
c ... Check for convergence
c

distOld = sqrt((ampRatio - ampRatioOId)**2 +
> (1. - widthRatio01d)**2)

distNew = sqrt((ampRatio - ampRatioNew)**2 +
> (1. - widthRatioNew)**2)

c
if (sWidth .eq. 0. .or. distNew .gt. distOld) then

maxStepSize = 2*maxStepSize
rescale = .true.
write(*, *)
write(*, '(" Convergence Criteria Failure:")')
write(*, '(" AmpRatio = ", flO.4)') ampRatioNew
write(*, '(" Old Distance = ", flO.4)') distOld
write(*, '(" New Distance = ", flO.4)') distNew
write(*, *)
write(*, '(" MaxStepSize => ", i3)') maxStepSize
goto 100

else
if (rescale .and. maxStepSize .gt. 1)

> maxStepSize = maxStepSize/2
rescale = .false.

endif
c
c ... Completed with entire tiptoe iteration

4-79

write(*, '(/, " Tiptoe finished with ",
> i2, " iterations.")') numlter

write(*, '(" Hit <return> to continue ...")')
read(*, '(a)') adum

c
c ... Check for convergence
c

if (abs(ampRatio - ampRatioNew) .le. ratioLim .and.
> abs(1. - widthRatioNew) .le. ratioLim)
> converged = .true,

c
enddo

c
if (converged) then

c
c ... Convergence achieved so set return value to TRUE
c

tiptoe = .true.
c

else
c
c ... Maximum number of allowed iterations exceeded without
c convergence. Return FALSE to the calling program,
c

write(6, '(/, " Maximum # of sub-iterations reached in ",
> "tiptoe algorithm.", /,
> " Retuning to calling program ...", //)')

tiptoe = .false.
c

endif
c
c ... Set current S Parameter values
c

sParaml = sParmlNew
sParam2 = sParm2New

c
return

c
10 stop ' Unable to open diagnostic output file in Tiptoe function.1

end

4-80

subroutine printParams(1U, sParaml, sParam2, numlter, sublter,
> ampl, amp2, ampRatio, width, widthRatio)

c

c
c ... Subroutine to print out S parameters and corresponding signal
c features
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

real*4 sParaml, sParam2
real*4 ampl, amp2, ampRatio
real*4 width, widthRatio

c
integer*4 1U, numlter, sublter

c
c ... Return Arguments:
c
c ... Comments:
c

c
c ... Check for screen output
c

if (1U .eq. 0) then
write(*, *)
write(*,

> Y" *****************************##H>**#jK##j|ei|ej|c**i|tj|c###ll\l\

write(*,'(" sParameterl = ", f6.2, 5x,
> " sParameter2 = ", f6.4)')
> sParaml, sParam2

write(*,

write(*,
> '(" Itr SI Ampl Amp2 Ratio Width Ratio")')

write(*,'(lx, 2i4, 2f8.2, lx, f6.3, lx, f8.2, lx, f6.3)')
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio

write(*,
> Y" *******************************i|c***************H"'y\

else
write(lU, *)
write(lU,

4-81

> l/ll * ** >|t * Jit******* * ***** ** ************* *** =4<:*>)c********"\'\

write(lU,
> '(" sParameterl = ", f6.2, 5x,
> " sParameter2 = ", f6.4)')
> sParaml, sParam2

write(IU,
-> i/H **im\

write(lU,
> '(" Itr SI Ampl Amp2 Ratio Width Ratio")')

write(lU,'(lx, 2i4, 2f8.2, Ix, f6.3, lx, f8.2, lx, f6.3)')
> numlter, sublter, ampl, amp2, ampRatio, width, widthRatio

write(lU,
> I/» **im\

endif
return
end

4-82

SIGGEN.FOR

subroutine signalGen(ioMode, sParaml, sParam2)
c
-**

c
c ... Subroutine to generate a new signal given passed values of S
c parameters. If i/o mode is set to "read" then the values of the
c S parameters in the current signal file are passed back to the
c calling routine.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

integer*4 ioMode
real*4 sParaml, sParam2

c
c ... Return Arguments:
c
c real*4 sParaml, sParam2
c
c ... Subroutines Called:
c
c sParamlO
c
c ... Comments:
c
c Arguments sParaml, sParam2 are used as return values when
c "READ" mode is used.
c
^* **

c
c ... Local Variables:
c

parameter (READ=0)
parameter (WRITE=1)

c
character* 1 adum
character* 128 pName

c
c ... Define name of file containing active S parameter values
c

data pName(l:) /'demo.ckt'/

4-83

c
c
c ... Access .CKT file for read/write of S parameters
c

call sParamIO(pName, ioMode, sParaml, sParam2)
c
c ... Notify user to generate new signal using Eagle software
c if in "write" mode,
c

if (ioMode .eq. WRITE) then
write(*, '(/, " Updated .CKT file with: SI => ", fl0.4,

> " S2 => ", flO.4)') sParaml, sParam2
write(*, *)
write(*, '(" Press <return> after new signal",

> " has been generated by Eagle Software ...")')
read(*, '(a)') adum

endif
c

return
end

4-84

subroutine sParamIO(pName, ioMode, sParaml, sParam2)
c
c
c
c ... Subroutine to read in the S parameter file (*.CKT) and
c read/write the S parameters from/to the file. The parameter
c "ioMode" determines whether the S parameters are being read from or
c written to the file "pName".
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

character* 128 pName
integer*4 ioMode
real*4 sParaml, sParam2

c
c ... Return Arguments:
c
c real*4 sParaml, sParam2
c
c ... Comments:
c

C

c ... Local Variables:
c

parameter (READ=0)
parameter (WPJTE=1)
parameter (NUM_REC_MAX=200)

c
integer*4 lpName, lenRec(NUM_REC_MAX)

c
character* 128 record(NUM_REC_MAX)

c
£j|l ***

c
c ... Open S parameter file
c

lpName = length(pName)
open(2, file=pName(l:lpName), status-old', form-formatted',

> err=10)
c
c ... Read records from S Parameter file.

4-85

numRec = 0
if (ioMode .eq. READ) then

do while(numRec .It. NUM_REC_MAX)
record(l)(l:) = "
read(2, err=20, end=30, fmt='(a)') record(l)(l:)
lenRec(l) = length(record(l))
numRec = numRec + 1
if (numRec .eq. 2) read(record(l)(17:lenRec(l)), fmt='(f7.5)',

> err=25) sParam2
if (numRec .eq. 46) read(record(l)(4:lenRec(l)), fmt='(f7.3)',

> err=25) sParaml
enddo

else
do while(numRec .It. NUM_REC_MAX)

numRec = numRec + 1
record(numRec)(l:) = ' '
read(2, err=20, end=30, fmt=*(a)') record(numRec)(l:)
lenRec(numRec) = length(record(numRec))
if (numRec .eq. 2) then

write(record(numRec)(17:23), fmt='(f7.5)', err=25) sParam2
if (sParam2 .It. 1.0) record(numRec)(17:17) = '0'

elseif (numRec .eq. 46) then
write(record(numRec)(4:), fmt='(f7.3)\ err=25) sParaml

endif
enddo

endif

write(6, *) ' S Parameter file: 7/pName(l:lpName)
write(6, *) ' Contains too many records for current array size.'
stop ' Program terminating ...'

10 write(6, *) ' Error opening S Parameter file: 7/pName(l:lpName)
stop ' Program terminating ..."

20 write(6, *) ' Error reading record: ', numRec
write(6, *) ' in S Parameter file: 7/pName
stop ' Program terminating ...'

25 write(6, *) ' Error parsing information from record: ', numRec
write(6, *) ' in file: ', pName(l:lpName)
stop ' Program terminating ..."

30 if (ioMode .eq. WRITE) then
numRec = numRec - 1
rewind(2)
do i = 1, numRec

write(2, '(a)') record(i)(l:lenRec(i))
enddo

endif

4-86

close(2)
c

return
end

4-87

SIGFEAT.FOR

subroutine signalFeats(ampRatioGoal, widLocOff, refWidth,
> ampRatio, widRatio, sAmpl, sAmp2, sAmpMin,
> wChanl, wChan2, sWidth)

c

c
c ... Subroutine to measure and evaluate the features of the current
c signal. Inputs include the desired amplitude ratio,
c the amplitude offset at which the signal
c width is to be evaluated and the reference width from which
c to calculate the width ratio. The returned feature values include
c the amplitude of both principal maxima, the amplitude of the
c principal minimum, the fractional channel boundaries that
c determine the signal width, the sinal width, the ratio of the
c two principal maxima, and the ratio of the measured width to the
c supplied reference width.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 03/05/93
c
c
c ... Input Arguments:
c

real*4 ampRatioGoal
real*4 widLocOff
real*4 refWidth

c
c ... Return Arguments:
c

real*4 ampRatio, widRatio
real*4 sAmpl, sAmp2, sAmpMin
real*4 wChanl, wChan2, sWidth

c
c ... Subroutines called:
c
c sRead
c peakNdcs
c sigWidth
c
c ... Comments:
c

c

4-88

c ... Local Variables:
c

parameter (MAXPT=300)
c x

character* 128 sName
integer*4 nPtSVec
integer*4 pklNdx, pk2Ndx, minNdx
logical perror
real*4 sVector(2,MAXPT), sAmpMax, widthLoc, deltaMax

c
c ... Data:
c
c ... Define name of file containing signal amplitudes
c

data sName(l:) /'signal.out'/
c

C

c ... Read in signal vector
c

call sRead (sName, MAXPT, sVector, nPtSVec)
c
c ... Locate positions of peaks
c

call peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, minNdx, perror)
c
c ... Check for error finding peaks
c

if (perror) then
ampRatio = 0.
widRatio = 0.
return

endif
c
c ... Set maxima and minimum amplitude values
c

sAmpl = sVector(2, pklNdx)
sAmp2 = sVector(2, pk2Ndx)
sAmpMin = sVector(2, minNdx)

c
c ... Use an average to describe the maximum from which to measure
c relative offsets,
c

if (ampRatioGoal .ge. 1.0) then
deltaMax = (1.0 - ampRatioGoal)*sAmpl

else

4-89

deltaMax-- (ampRatioGoal - 1.0)*sAmp2
endif
sAmpMax = (sAmpl + sAmp2 + deltaMax)/2.0

c
e ... Check "widLocOff value to determine which width feature to use.
c Define the width to be the amplitude difference between the maximum
c and the minimum if the width location offset is zero. Otherwise
c define the width to be the distance across the signal at the
c relative offset distance below the maximum peak.
c

if (widLocOff .le. 0.) then
wChanl = sVector(l, minNdx)
wChan2 = wChanl
sWidth = sAmpMax - sAmpMin

else
c
c ... Set relative width location
c

widthLoc = sAmpMax - widLocOff
c
c ... Locate width indicies and interpolated width
c

call sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx, widthLoc,
> wChanl, wChan2, sWidth)
endif

c
c ... Calculate current ratios
c

ampRatio = sAmp2/sAmpl
widRatio = sWidth/refWidth

c
return
end

4-90

subroutine sRead (fName, MAXPT, sVector, nPtSVec)
c
c
c
c ... Subroutine to read in the signal file output by the signal
c generating program.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Input Arguments:
c

character* (*) fName
integer*4 MAXPT

c
c ... Return Arguments:
c

real*4 sVector(2,MAXPT)
integer*4 nPtSVec

c
c ... Comments:
c

c
c ... Local Variables:
c

integer*4 lfName, i
real*4 sdum

c

c
lfName = length(fName)

c
c ... Open signal file
c

open(2, file=fName(l:lfName), status-old', form-formatted',
> err=10)

c
c ... Read in signal values
c

do i=l,MAXPT+l
read(2, err=20, end=30, fmt=*)

> sVector(l,i), sdum, sdum, sVector(2,i)
enddo

c

4-91

write(6, *) ' Signal file: ', fName(l.ifName)
write(6, *) ' Contains too many records for current array size.1

stop ' Program terminating ..."
10 write(6, *) ' Error opening signal file: ', fName(l:lfName)

stop ' Program terminating ...'
20 write(6, *) ' Error reading record: ', i

write(6, *) ' in signal file: ', fName(l:lfName)
stop ' Program terminating ..."

30 close(2)
nPtSVec = i-1

c
c ... Convert signal to DB
c

do i=l,NptSVec
sVector(2,i) = 20.*aloglO(sVector(2,i))
write(6, *) i, ' x= ', sVector(l,i), ' y= ', sVector(2,i)

enddo
return
end

4-92

subroutine peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, minNdx,
> error)

c
c
c
c ... Subroutine to pick off the indicies of the 2 large peaks and the
c minimum in the signal. An error is returned if 2 unique peaks are
c not found.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 11/13/93
c
c ... Updated: 03/03/94
c
c ... Input Arguments:
c

integer*4 nPtSVec
real*4 sVector(2,nPtSVec)

c
c ... Return Arguments:
c

integer*4 pklNdx
integer*4 pk2Ndx
integer*4 minNdx
logical error

c
c ... Comments:
c

c
c ... Local Parameter
c

parameter (DOWNTRIG=4)
c
c ... Local Variables:
c

integer*4 ndxMax, downCnt
logical*2 negSlope, pklFnd
real*4 valMax, valMin, valOld

c

c
c ... Initialize values
c

valMax = -l.e32

4-93

valOld = -l.e32
valMin = l.e32
ndxMax = -1
pklFnd = .false.
negSlope = .false.
downCnt = 0
pklNdx = -1
pk2Ndx = -1
minNdx = -1

c
c ... Initialize Error Flag
c

error = .false.
c
c ... Start search for 1st peak
c

do i=l, nPtSVec
if (sVector(2,i) .It. valOld) then

negSlope = .true.
if (downCnt .eq. 0) then

valMax = valOld
ndxMax = i-1

endif
downCnt = downCnt + 1
if (downCnt .ge. DOWNTRIG .and. .not. pklFnd) then

pklNdx = ndxMax
pklFnd = .true,

endif
else s

negSlope = .false.
downCnt = 0
if (pklFnd) then

minNdx = i-1
goto 10

endif
endif

c
valOld = sVector(2,i)

enddo
10 continue

c
if (pklFnd) then

c
c ... Write diagnostics to output screen & output file
c

write(6, *)

4-94

write(6, *) ' 1st Peak located at index: ', pklNdx
write(6, *) ' frequency: ',sVector(l,pklNdx)
write(6, *) ' amplitude: ',sVector(2,pklNdx)

else
error = .true.
write(6, *)
write(6, *) ' Could not locate 1st Peak!'
return

endif
c

if (pklFnd .and. minNdx .gt. 0) then
c
c ... Locate 2nd peak
c

valMax = -l.e32
ndxMax = -1
do i=minNdx, nPtSVec

if (sVector(2,i) .gt. valMax) then
valMax = sVector(2,i)
ndxMax = i

endif
enddo

c
c ... Set index for 2nd peak
c

pk2Ndx = ndxMax
c

write(6, *) ' '
write(6, *) ' 2nd Peak located at index: ', pk2Ndx
write(6, *) ' frequency: ',sVector(l,pk2Ndx)
write(6, *) ' amplitude: ',sVector(2,pk2Ndx)

c
c ... Locate minimum amplitude between principal maxima
c

do i=pklNdx, pk2Ndx
if (sVector(2,i) .It. valMin) then

valMin = sVector(2,i)
minNdx = i

endif
enddo

c
write(6, *) ' '
write(6, *) ' Minimum located at index: ', minNdx
write(6, *) ' frequency: ',sVector(l,minNdx)
write(6, *) ' amplitude: ',sVector(2,minNdx)

4-95

else
error = .true.
write(6, *) ' '
write(6, *) ' Error in Peak Search: Couldn"t locate 2nd peak.1

endif

return
end

4-96

subroutine sigWidth(sVector, nPtSVec, pklNdx, pk2Ndx, widthLoc,
> wChanl, wChan2, width)

c
-■fr***************** * * lie**

c
c ... Subroutine to calculate the width of the signal at the DB level
c specified by the input parameter "widthLoc". Linear interpolation
c is performed to find the fractional channel corresponding to the
c specified amplitude "widthLoc".
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/01/93
c
c ... Updated: 03/10/94
c
c ... Input Arguments:
c

integer*4 nPtSVec, pklNdx, pk2Ndx
real*4 sVector(2,nPtSVec)

c
c ... Return Arguments:
c

real*4 wChanl
real*4 wChan2
real*4 width

c
c ... Comments:
c

c
c ... Local Variables:
c

integer*4 wdlNdx, wd2Ndx
real*4 valMinl, valMin2, valMin
real*4 slope

c
£* **

c
c ... Calcuate validity regions for width
c
c ... Find minimum amplitude on front side of 1st peak
c

valMinl = l.e32
do i=l, pklNdx

if (sVector(2,i) .It. valMinl) valMinl = sVector(2,i)

4-97

enddo
c
c ... Find minimum amplitude on back side of 2nd peak
c

valMin2 = l.e32
do i=pk2Ndx, nPtSVec

if (sVector(2,i) .It. valMin2) valMin2 = sVector(2,i)
enddo

c
c ... Set Minimum acceptable amplitude
c

if (valMinl .It. valMin2) then
valMin = valMin2

else
valMax = valMinl

endif
c
c ... Set Maximum acceptable amplitude
c

if (sVector(2, pklNdx) .It. sVector(2, pk2Ndx)) then
valMax = sVector(2, pklNdx)

else
valMax = sVector(2, pk2Ndx)

endif
c
c ... Check if requested amplitude for width measurement is within
c the acceptable range,
c

if (widthLoc .It. valMin .or. widthLoc .gt. valMax) then
write(6, *) ' '
write(6, *) ' ERROR determining signal width...'
write(6, *) ' Amplitude for width measurement outside of limit.'
write(6, *) ' Width requested at amplitude (DB): ', widthLoc
write(6, *) ' Minimum width amplitude (DB) : ', valMin
write(6, *) ' Maximum width amplitude (DB) : ', valMax
write(6, *) ' '

c
c ... Set width to Zero and return
c

width = 0.
return

c
endif

c
c ... Output amplitude at which to measure width
c

4-98

write(6, *) ' '
write(6, *) ' Measure width at amplitude (Db): ', widthLoc
write(6, *) ' '

c
c ... Determine width indicies
c

do i=pklNdx, 1,-1
if (sVector(2,i) .It. widthLoc) goto 10

enddo
10 wdlNdx = i

do i=pk2Ndx, nPtSVec
if (sVector(2,i) .It. widthLoc) goto 20

enddo
20 wd2Ndx = i

c
c ... Interpolate (linear) to get fractional channel boundaries
c

slope = (sVector(l, wdlNdx+1) - sVector(l, wdlNdx))/
> (sVector(2, wdlNdx+1) - sVector(2, wdlNdx))
wChanl = sVector(l, wdlNdx) + slope*(widthLoc - sVector(2,wdlNdx))
slope = (sVector(l, wd2Ndx-l) - sVector(l, wd2Ndx))/

> (sVector(2, wd2Ndx-l) - sVector(2, wd2Ndx))
wChan2 = sVector(l, wd2Ndx) + slope*(widthLoc - sVector(2,wd2Ndx))

c
c ... Calculate width
c

width = wChan2 - wChanl
c
c ... Output fractional channels and width
c

write(6, *)
write(6, *) ' Signal Width-Channel 1: ', wChanl
write(6, *) ' Signal Width-Channel 2: ', wChan2
write(6, *) ' Interpolated Width: ', width

c
return
end

4-99

function length(string)
c
c"
c
c ... Utility function to determine the length of a character string.
c The length of the string is determined by finding the last
c "non-blank" character in the passed string.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 12/24/93
c
c ... Input Arguments:
c

character*(*) string
c
c ... Return Arguments:
c
c integer*4 length
c
c ... Comments:
c

c
length = len(string)
do while (string(length:length) .eq. ' ' .and. length .gt. 0)

length = length - 1
enddo
return
end

4-100

CHECK.FOR

logical function
> checkParms(deltaMaxThresh, deltaMinThresh, NOL, outer_lim,
> NIL, innerjim, failMode)

c

c
c ... Function to check if current signal meets the spec requirements.
c Returns TRUE if requirements are met, otherwise returns FALSE.
c The parameter "failMode" is used to signal the cause of failure.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 04/24/94
c
c ... Input Arguments:
c

integer*4 NOL, NIL, failMode
real*4 deltaMaxThresh, deltaMinThresh
real*4 outer_lim(2,NOL), innerjim(2,NOL)

c
c ... Return Arguments:
c
c boolean value of true or false
c
c ... Subroutines called
c
c sRead
c peakNdcs

real*4 relSigVal
c
c ... Comments:
c

c
c ... Local Variables:
c

parameter (MAXPT=300)
parameter (CHN=1, AMP=2)

c
real*4 sAmpl, sAmp2, sAmpMin
real*4 sVector(2,MAXPT), sAmpMax, relVal
character* 128 sName
integer*4 nPtSVec

4-101

integer*4 pklNdx, pk2Ndx, minNdx
logical perror

c
c ... Data:
c
c ... Define name of file containing signal amplitudes
c

data sName(l:) /'signal.out'/
c
c*
c
c ... Initialize return value.
c

checkParms = .false.
c
c ... Read in signal vector
c

call sRead (sName, MAXPT, sVector, nPtSVec)
c
c ... Locate positions of peaks
c

call peakNdcs(sVector, nPtSVec, pklNdx, pk2Ndx, minNdx, perror)
c
c ... Check for error finding peaks
c

if (perror) return
c
c ... Set maxima and minimum amplitude values
c

sAmpl = sVector(AMP, pklNdx)
sAmp2 = sVector(AMP, pk2Ndx)
sAmpMax = amaxO(sAmpl, sAmp2)
sAmpMin = sVector(AMP, minNdx)

c
c ... Check feature limits
c

if ((abs(sAmpl - sAmp2) .gt. deltaMaxThresh) .or.
> (abs(sAmpMax - sAmpMin)) .gt. deltaMinThresh) then

failMode = 1
return

endif
c

write(*, '(" Signal Passed Amplitude Checks ... ")')
write(6, '(" Signal Passed Amplitude Checks ...'")')

c
c ... Check outer limits

4-102

do i = 1, NOL
relVal =

> relSigVal(sAmpMax, outer_lim(CHN, i), sVector, nPtSVec)
if (relVal .It. outer_lim(AMP, i)) then

failMode = 2
return

endif
enddo

c
write(*, '(" Signal Passed Outer Bounds Checks ... ")')
write(6, '(" Signal Passed Outer Bounds Checks ... ")')

c
c ... Check inner limits
c

do i = 1, NIL
relVal =

> relSigVal(sAmpMax, inner_lim(CHN, i), sVector, nPtSVec)
if (relVal .gt. inner_lim(AMP, i)) then

failMode = 3
return

endif
enddo

write(*, '(" Signal Passed Interior Bounds Checks ... ")')
write(6, '(" Signal Passed Interior Bounds Checks ... ")')

checkParms = .true.

return
end

4-103

real*4 function
> relSigVal(refAmp, chanNum, sVector, nPtSVec)

c

c
c ... Function to calculate and return the signal amplitude corresponding
c to the supplied channel frequency. Linear interpolation between
c signal values is used. Returned value is defined as the abosulute
c value of the distance between the supplied reference amplitude
c and the amplitude of the signal at the supplied frequency.
c
c ... Programmer: G.L. Kolte
c
c ... Created: 04/24/94
c
c ... Input Arguments:
c

integer*4 nPtSVec
real*4 refAmp, chanNum, sVector(2, nPtSVec)

c
c ... Return Arguments:
c
c real*4 relSigVal
c
c ... Comments:
c

C

c ... Local Variables:
c

parameter (CHN=1, AMP=2)
c

real*4 ampHi, ampLo, chanHi, chanLo, slope, sigVal
integer*4 i

c
£* **

c
relSigVal = 0.

c
c ... Do not allow extrapolation. Return boundary values if frequency
c is outside of table limits.
c

if (chanNum .le. sVector(CHN, 1)) then
relSigVal = sVector(CHN, 1)
return

endif

4-104

c
if (chanNum .ge. sVector(CHN, nPtSVec)) then

relSigVal = sVector(CHN, nPtSVec)
return

endif

i = 1
do while (i .le. nPtSVec .and. sVector(CHN, i) .le. chanNum)

i = i + 1
enddo

chanLo = sVector(CHN, i-1)
chanHi = sVector(CHN, i)
ampLo = sVector(AMP, i-1)
ampHi = sVector(AMP, i)

slope = (ampHi - ampLo)/(chanHi - chanLo)
sigVal = ampLo + slope*(chanNum - chanLo)
relSigVal = abs(refAmp - sigVal)

return
end

4-105

5.0 OUTPUT CAVITY SUBSYSTEM

The klystron's rf output signal can be expert controlled by having adjustable-dimension output
cavities and accurate large-signal predictions, i.e., predictions of interactions between output-
cavity electromagnetic fields and non-linearly modulated electron beams. Clearly, modeling
large-signal interactions introduces new difficulties for the expert subsystem, but much of this
difficulty results from using costly and time-consuming field solvers.

In this work, expected subsystem difficulties were reduced by avoiding field-solvers and by using
the rf voltages and rf currents of the cavity to model the interaction. The reduced accuracy
resulting from loss of field information is not significant and is compensated for by greater speed
and ease of implementation in the expert system.

Voltages and currents are easily obtained using a lumped-element circuit model that predicts a
complex impedance at each gap. For a lossless circuit, these complex impedances determine the
magnitudes of and phases between the voltages and currents across the gaps.

Because the final klystron smart tube was to have a two-cavity extended-interaction output circuit
(EIOC), a lumped-element model of such a circuit was developed. Model predictions of the
signal phase at a convenient reference plane were compared to measurements on a cold-test
structure. Section 5.1 describes the model and compares predictions with measurements. The
EIOC model was ready for use in an interaction model.

In the interaction model, assumed rf currents at the gaps are used with complex impedances from
the EIOC model to calculate gap voltages and power at the load. The new voltages correspond
to wavelets that remodulate the beam and yield new gap currents. Using new currents, the
procedure can be iterated until voltages and currents are self-consistent. Development of an
interaction model was completed for a single output cavity. This work is described in Section
5.2.

5.1 Two-Cavity EIOC Equivalent Circuit

The lumped element network model of a two-interaction-gap output circuit for a high-power
klystron is shown in Fig. 5.1-1A. The resistances Rl and R2 are included to account for the
source impedance of the driving currents, resistance paper, or shorting bars. Capacitance C3 is
included to represent radial electric fields in the coupling iris between the two cavities while C6
represents the evanescent modes at the output iris. The leakage reactance of the output iris is not
shown as a separate element but is accounted for by the choice of the reference plane in the
output waveguide.

The model provides for the inclusion of an inductive post in the output waveguide, but since
there is none in this cold test vehicle we set the Post-To-Reference distance equal to zero as
shown by the data in any of the figures that follow Fig.5.1-1. Note that, in these data, the Iris-
To-Post offset is 6.331 inches which is a little less than the actual 6.88 inches from the EIOC

5-1

physical iris to the physical reference. One of the universal problems encountered when
modeling distributed networks with lumped elements is the location of terminal pairs. The
random searching technique shows us that the electrical iris is of the order of 0.5 inch toward the
load from the physical iris. The electric and magnetic fields associated with the evanescent
modes in the vicinity of the iris are accounted for reasonably well by L6, C6, and this small
offset distance.

Figure 5.1-IB shows features of a brass cold test model of a two-gap EIOC. It was constructed
with provisions to deform the cavity walls in the vicinity of the coupling iris between the two
cavities. From experience with an experimental klystron using a similar EIOC, it was felt that
considerable benefit could be derived from having the coupling between the cavities externally
adjustable. In previous designs, the deformable cavity walls were placed on the cavity walls far
from the coupling iris. We had long since come to the realization that changes in the geometry
anywhere in the EIOC had implications for the fields throughout the device, but just what the
effect might be of having the movable walls adjacent to the coupling iris was not clear.

We have developed a method of reducing certain complex microwave networks to lumped
element models (1) which are far more amenable to analysis once the driving functions are
somehow in hand. We took the required data, which consists of the angle of the reflection
coefficient taken at some convenient reference plane in the output waveguide where there is only
one propagating mode in the band of interest, with (a) both gaps shorted, (b) only the first gap
shorted, and (c) the unperturbed EIOC. This was repeated for three configurations of the tuning
plugs. In all of these cases, the magnitude of the reflection coefficient is near unity and the
model is based on that assumption. After the data for each of these three configurations was
processed to find the elements of the lumped element model, further confirming data was taken
with the output iris de-tuned by a shorting plug in the output waveguide. The results of this
sequence of experiments is presented in Table 5.1-1.

Typical comparisons between model predictions and cold-test measurements are shown for
configuration A, the configuration where the cold-test plugs are pushed as far as possible into the
cavities. Figure 5.1-2 shows that when both gaps are open there is no measurable difference
between measured and predicted phase at the reference plane. Calculations based on the model
agree with data taken across a 15% bandwidth on the unperturbed EIOC within approximately
2 degrees rms, which is the reproducibility limit of the raw data. The discrepancies are
somewhat larger for the cases where one or more gaps are shorted as shown in Figures 5.1-3 and
5.1-4. In the model, a shorted gap is a 1 ohm resistor across a capacitor which kills nearly all
of the electric field in the immediate vicinity and almost none of the magnetic field. Contrary
to the model, shorting the gaps in the EIOC removes most, but not all, of the electric field in a
cavity while disturbing a small percentage, not zero, of the magnetic field.

Fig. 5.1-5 shows the magnitude and phase of the impedance calculated at the second gap for the
case when the first gap is shorted. Values are plotted between 3.1 GHz and 3.6 GHz. When
these values and an equivalent set of impedances for the first gap are seen by 30 Amp currents
(assumed), the voltages shown in Fig. 5.1-6 are obtained at gaps one and two. These rf voltages

5-2

ODEL D/ MA ERROR

3. 28 3 30 -0.ei%
3. 50 3. 56 -1.70%

3. 38 3. 38 0. 00%

3.42 3. 47 -1.45%

CONFIGURATION 'A' BOTH PLUGS MAXIMUM IN

RESONANT FREQUENCIES, GHz

F_pi Both Gaps Open
F_2pi Both Gaps Open

F_Gapl] Gap2 Shorted

F_Gap2 ! Gapl Shorted

CONFIGURATION 'B' BOTH PLUGS AT +0.25 INCHES
■s

RESONANT FREQUENCIES, GHz MODEL DATA

F_pi Both Gaps Open 3.18 3.20 -0.63%
F_2pi Both Gaps Open 3.42 3.48 -1.74%

F_Gapl ! Gap2 Shorted 3.26 3.27 -0.31%

F_Gap2 ! Gapl Shorted 3.34 3.40 -1.78%

CONFIGURATION 'C BOTH PLUGS AT +0.50 INCHES

RESONANT FREQUENCIES, GHz MODEL DATA

F_pi Both Gaps Open 3.19 3.20 -0.31%
F_2pi Both Gaps Open 3.45 3.47 -0.58%

F_Gapl ! Gap2 Shorted 3.25 3.26

TABLE 5.1-1
COMPARISON OF MEASURED AND PREDICTED

TWO-CAVITY EIOC FREQUENCIES

-0.31%

F_Gap2 ! Gapl Shorted 3.39 3.40 -0.29%

5-3

have levels comparable to the beam voltage and therefore represent conditions where saturation
and other nonlinear phenomena are likely to dominate. If nonlinearities are ignored, the EIOC
model alone can provide an upper bound on the available output power by assuming the
interaction remains linear. Fig. 5.1-7 shows the output power estimates from using the voltages
in the EIOC model and the assumed 30 Amp gap currents.

5.2 Klystron Large-signal Program

5.2.1 Beam model

The beam model used in RELMOD9 is a highly stylized model in which any degree of density
modulation and any degree of velocity modulation, with any phase shift between them, can be
independently specified. This allows the interaction algorithm to be tested under the widest range
of input modulations without having to spend time finding prior cavity combinations that would
produce these modulations. The input beam is effectively defined by specifying the injection
time and injection velocity for each charged particle over one rf period. The charged particles
in the model are visualized as discs, each disc being a cloud of actual electrons. Since they are
not represented as being hard discs, but as clouds, they can pass through each other without giv-
ing rise to spurious infinities in the computations. The algorithm for the space charge forces cor-
rectly models the mutual force between two discs as increasing as the discs approach each other,
up to the point where they just touch, and then decreasing as they interpenetrate, becoming zero
when the discs are coincident. Hard particle models have problems with infinities when two
charges coincide, and these problems are purely artifacts of the computation: in the real world
of electron beams, the distance between electrons is so enormous relative to their size that indi-
vidual electron-electron collisions essentially never occur. It is only when we try to model the
108 or so real electrons in one beam wave length by a mere 100 or so charges in the model (to
keep the problem within the capability of a computer) that the problem appears, and then has to
be dealt with in the manner described above.

The number of charges per wavelength (N) is an important parameter: it must be large enough
to provide a realistic model of the interaction, but no larger, since the running time of a computer
program will be nearly proportional to N. Prior programs have generally used N = 24 or 32.
Tests made with a predecessor of RELMOD9 allowed N to vary from 24 to 1024. The results
(Figure 5.2-1) showed that there were significant changes in going from 24 to 96, a slight further
change at 128, and no significant further changes on out to N = 1024. As a result of this, we
have provisionally settled on N = 96 as the most cost-effective value. Professor Onodera,
working at Stanford earlier in 1993, came independently to the same conclusion.

The injection times for the charged particles are derived from the equation

x" + yn = 1 O)

which, for n > 2, represents a "squared circle" - i.e., for large n it appears like a round-cornered

5-4

square. By inverting one quadrant and attaching it to the next, we obtain a curve such a Figure
5.2-2, which allows us to pick equal intervals along the x axis and get corresponding y values
which are bunched, but still have some outliers. These outliers are useful because we want to
have most of the charges in a bunch of controlled tightness, with a few in the skirts of the distri-
bution so that we can see what happens to the unfavorably-phased electrons, of which there will
always be some in any real klystron. The distribution based on (1) always gives us one charge
or particle in exactly the wrong phase, so that we get an estimate of the maximum velocity of
any exiting electron, which is useful information for collector design and x-ray studies. (In
general, the exactly antiphase electron will not be the most-accelerated electron, but it is a good
approximation to it.)

The relation between the exponent n and the equivalent density modulation index dmi is given
by the empirical equation

n = 1 + 0.5 dmi + 0.125 dmi4 (2)

and the corresponding y value is then given by

y = 0.5 - (0.5" - x")1"1 (0***0.5)
OR (3)
y = 0.5 + (0.5" - (l-xYf™ (0.5***1)

for the two halves of the curve.

For dmi = 2, this gives a very tight bunch, as shown in Figure 5.2-3. The outliers appear as the
triangular blips along the baseline. The number of them, for N = 96, is rather minimal for giving
information on out-of-phase electrons, but this is not an argument for increasing N: no real kly-
stron is going to produce as nearly-perfect a bunch as is shown in Figure 5.2-3, so there will be
far more outliers when we get to computation of an actual tube design.

5.2.2 Induced current and voltage

If the bunch shown in Figure 5.2-3 were passed through a short-circuited gap (i.e. no rf voltage)
with no space charge forces, it would emerge unchanged; the induced current in the gap would
be of the form shown in Figure 5.2-4: the induced current pulse is much wider then the bunch
because it is being induced as long as the bunch is in the gap. The current pulse shoulders are
rounded because we have intentionally used a beam model with outliers in it. The effective
width of the current pulse corresponds to the gap transit angle (in this case approximately 150°).

If we now remove the short circuit, allowing the gap to form part of a cavity with appropriate
Q and other parameters (to be discussed later), an rf voltage will be developed as the product of
the induced current and the gap impedance. By Lenz's law this voltage will be in such a phase
as to retard the beam. At the high dmi we have considered this voltage will be near or at
saturation, comparable to or somewhat larger than the beam dc voltage. There will therefore be
a major reduction of beam velocity, and a corresponding reduction of induced current (since this
is proportional to the charged particle velocity). The calculation therefore has to be repeated with

5-5

the new current, and iterated until the voltage and current converge to mutually consistent values.
When this has been done, we obtain the highly distorted current waveform shown in Figure 5.2-5.
To extract useable information from this, we need to Fourier-analyze it and select the
fundamental-frequency component for multiplication into the cavity impedance. Clearly, there
is a lot of harmonic content in Figure 5.2-5, and the Fourier-analysis routine does provide data
on the first 5 harmonics, but at present we cannot make any use of the information for higher
than the fundamental because we have no information on the cavity impedance at these harmonic
frequencies. This is a problem for future study.

Next we can short-circuit the gap again, but allow the space-charge force to be calculated and
included. The result is shown in Figure 5.2-6: the "step" in the middle of the pulse reflects the
fact that the bunch of Figure 5.2-3 is now blowing itself apart. The front half of the bunch is
accelerated, thus inducing more current, and the rear half is retarded, inducing less current.

Finally, we unshort the gap, still retaining the space-charge forces, and obtain Figure 5.2-7. We
note that this has much more similarity to Figure 5.2-5 than to Figure 5.2-6, reflecting the fact
that the rf forces dominate the space charge forces even when the bunch is very tight. Finally,
Figure 5.2-8 shows the waveform of Figure 5.2-7 broken down into its first five harmonic
components, together with the resulting rf voltage. The latter appears as a pure sine wave
because it is derived only from the fundamental component of the induced current.

Knowing the value of the rf voltage, we can then determine the power dissipated in the cavity,
and in any load connected to the cavity, by using the normal circuit-theory formulas. Note that
we do not treat loading due to the beam by Feenberg's or any other formulas. This loading has
already been taken into account in the process of converging on a self-consistent voltage and
induced current.

5.2.3 The space-charge model

As we have seen, the space-charge effect is relatively small compared to the induced voltage, but
it tends to take up a major part of the computation time if not done by an efficient method. The
Green's function approach is an example of a method that is impeccably correct from an
academic standpoint, but is computationally terribly inefficient: its running time is proportional
to N2.

Instead, we use an approximate method which introduced a small error (in what we have shown
is already a minor component of the forces involved), but has a running time proportional to N
log N. We further reduce the time by using a 24-nodes-per-wavelength model for the space
charge while retaining 96 nodes per wavelength for the induced current. At each time step, the
charge of each disc is apportioned to the two nodes on either side of the actual disc position; the
proportion is the inverse of the distance of the disc from each node. This converts the space
charge distribution from one of equal charges at unequal positions into an almost-equivalent one
of unequal charges at uniformly-spaced positions. We can then use formulas given by Hechtel
(see J. R. Hechtel, "The Effect of Potential Beam Energy on the Performance of Linear Beam

5-6

Devices," IEEE Trans. Electron Devices, ED-17 #11, Nov. 1970, pp. 999-1009) or others to
obtain the voltages at these nodes. Finally, the field strength at the actual position of a disc is
found by identifying the three nearest nodes, at which the potentials are P,, P2, and P3; the field
is then

Esc = to*(P3-Pi) + x (P1-2P2+P3)} / (Xe/24) (4)

where x is the distance (normalized to the node spacing Xe/24) of the disc from node P2 (-0.5 <
x < 0.5).

This algorithm has been in use for many years (see J. R. M. Vaughan, "Calculation of Coupled-
Cavity TWT Performance," IEEE Trans. Electron Devices, ED-22 #10, October 1975, pp. 880-
890) and is well tested. The description was included here for completeness. It is an example
of using the gradient of a potential, rather than an inverse square law, to obtain the force on a
particle; the potential approach is not only a more elegant method for many physics problems,
but is commonly much more efficient computationally.

5.2.4 Relativistic motion of the disc

The foregoing sections have shown (in somewhat general terms) how the rf field and space-
charge fields are evaluated. The sum of these is the total electric field acting on the disc.
Calculation of the resulting disc motion has traditionally been by one of two methods:

i) Integrate the relativistic equations-of-motion by numerical methods (Runge-Kutte,
etc.) using a considerable number of sub-steps.

ii) Using the Newtonian equations-of-motion with a relativistic mass y3m0.

Of these two, the first is valid, but abominably slow, the second is fast but inaccurate, since the
value of y changes during the step (unless the step is very short).

The following formulation, derived recently at Litton, takes account of the variation of y during
the step, and is only slightly slower than (ii):

take a time step At satisfying

At < 0.5xlO12 vJE (5)

where v, is the velocity at the start of a step, and E is the electric field (Erf + Esc) evaluated at
the mid-time and projected mid-point of the step. Let

f~±EAt. (6)
m

Then the velocity v2 at the end of the step is
where y, is the y corresponding to the known v,. The distance traveled is then

5-7

v2 = v, +f/{y] (Yl + 1.5 vx f/c
2)} (7)

Az = 0.5 (v, + v2) At (8)

These formulas are not analytically exact, but they are accurate to better than 0.01% as long as
(5) is satisfied. In the program a fixed At equal to 1/96 of the rf period is used. This satisfies
(5) by nearly an order of magnitude, except for a disc which is almost stopped. If this happens,
the formulas do not become invalid, but the errors might creep up to the 0.1% level for a few
steps. The limitation (5) is not at all severe: it allows steps in which the velocity change is as
much as 2.5%. A numerical integration method would require very much shorter steps to achieve
the same accuracy.

The formulas are valid up to beam voltages of a few MeV, which more than covers all
foreseeable klystron designs. They require rethinking for the many-MeV accelerator region.

5.2.6 The interaction

To perform the interaction calculation, we begin with a gap voltage obtained from analytical kly-
stron theory. The beam motion is calculated by the formulas of section (4) under this voltage.
The induced currents are summed and Fourier analyzed to find the fundamental component. The
induced voltage is found by multiplying this current into the cavity impedance at the rf drive
frequency. The process is iterated with the new voltage until convergence is achieved (typically
about 10 iterations, taking less than two seconds each on a MicroVax computer, with a 96-disc
model).

When convergence has been reached, we know

a) the power dissipated in the cavity and load

b) the change in K.E. of the beam, from the differences of entry and exit velocities

c) the change in P.E. of the beam, from the potential depressions at the nodes of the
space charge algorithm.

The last of these has proven to be considerably smaller than we had expected: the decrease in
P.E. due to space-charge debunching of the beam seems to be about compensated by the increase
in P.E. that results from the beam slowing down. The net change, in cases run so far, is about
2 orders of magnitude less than (a) or (b), which may justify ignoring it in most cases. However,
the mechanism for calculating it is in place in the program.

Figure 5.2-9 shows the comparison of (a) and (b) across a 10% band for a case corresponding
approximately to a single-gap output cavity for the L-5792 klystron. The agreement is con-
siderably closer than we have been able to obtain with any prior program. Inclusion of (c) does

5-8

not reduce the remaining discrepancies: it merely shifts them around. Figure 5.2-10 shows part
of the printout of a typical test case, showing how the rf voltage amplitude and phase, the
induced current amplitude and phase, and the P.E. change, all converge in 10 iterations to almost-
constant values. The following lines show the degree of agreement between the generated power
and the AK.E. of the beam. Figure 5.2-9 was derived from multiple runs of this kind.

As noted earlier, the beam loading is being calculated dynamically, not from Feenberg's formulas.
We find that, at saturation, the beam loading can be as much as 10 times higher than the
Feenberg value, corresponding to a sharply reduced beam-loading Q. The QBL is no longer con-
stant, but depends on the degree of modulation. At full intensity, QBL is about half the Feenberg
QBL. This results in a response curve that passes through a maximum and decreases if the QE

(external loading) value is too high. This is in agreement with observation, but was not found
in prior programs. From these observations we have derived a formula for the optimum value
ofQE:

<?*=!/
N

\{dmi) (R/Q) (1 - vmi sin \Jr)

(VIdc) (1.42 0 - 0.112 e2)}

where 2Af is the bandwidth.

5-9

i
in c

 N\r

n
O

a

u

rH

s
U u

e

>
'5

u
o

in

u
3

.Sf U
fa J.

0»

o

V3

2
"©
U
ffl

5-10

CO

e

X
CO o ft s s

31 31 ü CM ^ E r*
z: T. VJO

&)K ft x m
C 5 C •« T3 CO «-•

\
Ä Ä Ä O • E

ft ft ft ft CO ••
• • ft <c r^ ft N N U U U HÄ © -a ^ • ft ©

«JO en ft ft E U
y. = X C J= ff © <H O © I ift ■

En VD cn CM -H ^ "a
• S • en in © m

en • © v CM • © TH
IX) TH ■ ■ © »CO

en ©
TH II ©

*-» *H © © ©
r- ft » IH co /N

' 2l (Si © Fl r

CM © S R 8 8 " * 8 HggögH © © en r> • • • • • • . o* 03 CM II <C « CD 1 II II c\3 CM en co cn so © © \ or

II II II II (S E CM

II II II II (Si
a S S Ü S ö " " II II

x « m n o m
ft n II II II cn

en •» en * >• v *P©°
■—• 03 OJ Ml

p—i ^ j TH
t-i so *H CM cn E -IH
v©r,-cnih©-«ft £ +> I3S8 PS ••"< •** ft ©

O ft ft ft ft 1
CO CM 03 CM © ft a) iu p-j en © • en • •©■+■>&

TH © csi © © en «■« Si O 0) Ü II © K rt F-NH E ©
_ ft ft tf II CM ft &) S5ft <r

ii ii ii it n ii c2 $ v *p Ml 1 ^ O* c s: ft /N co o — CO V ft N. £ II
U •"* CO CO *H Ö)

co <r <r ft CD w
"—" +■> "« •<-* O «-1 |Q IB « *-«

33!3Ö8S££ Ä CO
ft ft

•-« S* O «* CO 3 *H
ft >-« ft ft ft CM ft

X CO S= + ft <E
H* *H CM CO ft ft

z
2z

*? < Ä ^ tf o
irj ö V2

*- 7? ^

ft O O
U£

' H
U
O
2

ft a»
"—' e
5« S3 e «.
s *■*

« "5 -s
■a « j=

H "3 c
t -5 <"
•5 o S

4> U 3J

3 y C
er e ♦*
td 4> a

>"-^ .** ^
«*■ ©

. w M — > "a

SS w

X!
ft

5-11

4>
s

C X S= "Ö 'S
ff MH MH

vX) en o* OH

1/5 SO en evj TH
• vD • en Ln

ff» ,; © V N

© ©
II II

II II II

en * en •» *
v © r» CO LD
0' r^ • ^r En
"HONG©

ii n ii ii ii

13

X

OS!
CO •-*

s " .. <n •« *
—. ft

© in
• © ^H

© • CO
en r>

2
OH N N

* e? CD

CTt © TH
vJ3 *H C\J
evj © TH

u u

*H ©
en ©
en ©

E r-
ä ^

Ä o • s
ü HÄ
C © *H O

©
©
©

II ©
©

CSJ en GO en so © ©

CM II II II II II II II

8^
©■-«&*

© +> a
en •**
.. g 8

«6 *
H-« I—I p.,

u<p to
MO'«

OH &H J*H

I OH
I

CO

CM
QJ

I

~ OH

"£S

II o^ sevj

-p©°

u CM
U II
Id II

PU \ £ II
CO <H ö)

■« CO 3 *H
Q 00 CSJ 00

0)0?
Q OH

so -a:'
m l
CO 00
V CD • a en a
II <E

2»
ö II

z:
oo z:
OH 00 CO

• OH ~

I OH
00 *H
CD m
a © „ a N w z: oo fa
<Eaoi

o

oo

CO*

00

sO
• •
CTi

©

•S
w

00 00

11 II II

i—i m gj

00 ••■*
O PH
— OJ

i-4

&H W HH

in

s
I

frH

'—, '"H ■"* E ©

M

<n oo CD

S + 00
N CD OH

W
hH
<r

fa
0-
o

z°
£° rn < tj

•i tf cd
trJ Ö «3

3 &- fa

fa o öS uo

O o*
3 ^

H
cc
OS
fa

J2

^ c

§ ■=> .2 «J
e8
88 «n

3 &Ä

• MM ^3 «an

^ O C

B S S

88 «g C5

3 ^ £

■^ V TO w > — ««H ©

> "O
" 6B

88
XI
0.

5-12

S= X ff -Ö TS

• 3 ■ en LTJ

in
ii ii

e ©
II

II II n

en ■> en ■» ■»
*H sD <H fsj CT>

© • 01 • •
<H © fsj © ©

II II II II II

T3

X

Ü CJ
OJ \

CO 1-"
AOCL,
£ u ... « •-* * ft
© in

• © iH
© • CD
en r*. •

csj
\

OH N N
a, 3= X

en © *H
»JD rH CNJ
CSJ © T-l

• ■ ■

en oo en

ä ä ä a
u u u
e ff c © a

CO

_X X
tog P5 z:

. . p_^
m «,«, •
m i IPH

*H ©

■ •

O ©

H II rl

II

f\] II II II II II II II

©
©
©

°<^
CO

II K

ID
£ *H

© •"* Ut
• t->.

© +J a
en •-*
.. 2 8

(SJ
b

a
u +* CO co o •w*

£ CO
P* b &H

1
CO

6«
OJ

I

CO
o

P-.

-a © B *H
£ TH
OJ
U II
<d

*§ CO ^H
.-* CO

X
u
or

II

£ CNJ
A PS
o
en <H

CM

II

£ II
Ö»
3 <H
N «

M PQ PQ «H
cd es cp in ■ a a ©
H a o
TH x x
II <C <C C5

A II II II
X

PC ■<■* "H
OhhU
K U ÜNJ pq ^ « ►_
W a »En

CO <E <C PQ
■ -+J "« »H
x co e +
P5 iH CSJ o

©
• •

CSJ
©

CO ••

P3 ©

CO /\
*H W
PQ X
M •"-•
EiH I-*

O •
o m en
II en

i-4
i

M ©
I

en
©

£ o w
o
Pi

4*
s

MM

e
03
O. &>
^ s
c« S

.2 v

z R OS .a «
9S 03 ■a os

H Ä •*-
Ca V)

T 3 O 3 -**
"7! S

HPSS
irl 3 5ß *3 o £

F
ig

ur
e

-
C

O
N

F
IG

T

H
 G

A
P

S

s
"ÖS

*5 c en
cy

 f
or

 m

st
 m

ea
su

re

2 3
<

as
e

vs
.

fr
eq

u
an

d
co

ld
-t

e

5-13

'S
X

B

ii

a

en A
CM v

in *H • ., °
II II

ö
*H vO *H CM
v © r^ m

*H ©" CM ©'
II II II II

U (Sl

T3 C2 '-• fr, ft Ö OH
P* £ ü

*** P.*
H3°.©!ö

• © «00
© fO Ps. .

I. ..SN

vß CM II II

CT> £ *H
m © 2 ^

• © +* oa © ro —«
II i. g 8

H h (H

CT> © ^
sß *H CM
CM © *H

■ • •

n CD co

&H

a

co o —<
ä co -~
OH &H £H

g
OH

I
CO

II II

-+J ©
ff T-i
£ <H

(H ü
DOM

0? «
I ^ o*

+» ft \
CO CO <H

OH ö 05

m <H
*H
CM
II

£ II
Ö>
3 iH

CM K

W I
P5 >fH .FH >—< O
g tu, tu, w &H i
OS »-H (-« I—I T~ <T>
w a O)6H <r

ff ff K /N
CO <E <Z 03 C5 W
►"-■ •*■> T3 "H o I-"
I M C +C<C
HHNÜCHQ

o

ä£
.SPZ b o

u
I

o
3

s
3
C u
im

tfl

Z

ft,
o
ft.

° s > Z ^ „
u 3 S
ö .E ■§

•> *- &
Ö B E
Bd « •=
^. R —J

es £ ä

&. ^ a

< w"3
Ü o
H

£5 g

5-14

ft

o
CO

e
o
GO

'S u
X

•Pl

fan
Sa/

31 PH.-? u CM CM F r*.
ff fi

r3 :° N.
PH pH PC pC Ä

-ff o • F
ft ft o. ft ft N N u u U T-l pff

sO cn ft ft £ u X ff ff ff © »H O
HSS M iH

«C •1-4

ft
* * O UJ PH pH pH

II o •
« ~ IQ © in cn © TH. •H © © o tr» • © v • © T-l vD *H a CD © © II H>> o in -H • • © ■ 03 CM © co © © X ©

ii II n
©
II

©
II

cn
II s CM CO CO* CO sO ©* ©' s 0) CM

II

a v p3
pj ÖS CM

PH
II II II II H II II II

CO
ft £

pff ä
cn - cn *% * OJ +J O

O

■

© 0.
70

6
23

.7
1

•
©

cn

©

© *
©
cn

£
•Pt
l-l

•PH

TH
ft

a a 8
ft

CM

ff

8
IÖ

II

ro
T-|
CM
II

©
©

CM
II II II II II II s (0 to o co

•PH
i

co
i

ft £ II
T-l
PJ 22 ü TH.

id
P?p2
ft ft

pH

ft
PH

•pH

ft

•PH

SH
P-H

CO
O
ft

co
•pH

Q ft

CO

cjjft p5 z:
ft ft PH ft

© <c,«, •
© lift
p- « m *H
cn es es in • a a ©

II <C<CÜ

x n « n
Q II II II

cn
in

pH PH

ft >PH »PH

O ft ft w
K U u 3
w a enft
cn <z <E ft
X CO ff +
H H N W

<r co
« ©
CO* /N
T-l W

SS
ft i-i

o •
o m
II cn

T-l
w I
PJ T-l
P-. o
fero
E ©
<r
ft /\
es ft
O t-H
ft <c
ft ft

V6

z
o
<

.3-.
.sfz ft o

o

ft
«3
Öl)

o

'_
a

PH >»

"*■* «s OS *■

a +* o-
ft 's u o I*
ftp*

< s ii
rj 4) M

"03 2 a .Ei
H 3 >

es w «
1-1

ft
I

■4»
■o o

09

5-15

ft

w
CO <z
X
ft

©
CO

©
CO

m
ii

CSJ
ft

~ /S

-f
I
N
X
CD

-^ ©
©

; ■^^^^^ cn

^ ^X%"^-JL
■ 1

CS3 CM

s £
CM

CM"
cn

31
3 jx 3X3

CO
X

Ü (S3
— u \ *S -Ö CO •—
ft ft ft O ft
ft ft E U

<c *~ *
_ ft © Ä in

© <H

CM
\

1—4

ft N

* CD CD

Ä Ä Ä O
u u u
3 3 3 ©

r^
^

CO

ft
05ft ft X ö ft ft «

■ * 0^
© <E <C, •
© I Ift
r- m m i-i
cn CD CD in

• a a ©

II <C <C CD

ffi
CO

co°- <r co
n ©

X ft ft ft
ft n II

CO

ft
w

o
II II

w
X

in
cn
cn

u u ft I
P-* P-> 3H

cn © ft •PH »PH

*H © S ft ft ft
CSJ © 03 OJ PJ

© s p-* 1—4
II CM 05 tnft

3 3
E II CO <E « ft
3 T-l E (0 c

■pH

+
N ft rH CSJ CD

r* ©
fccn
x ©
<E

ft <E
ft ft

z
o
H

pi 05

«a
3 fa

fa o
u

I

u
o
fa

u
s
3
or*

>

42 £
_ «8 O
Z "3 ft
fa •*» -*•>
<=- 3 2

3 s* "2
o £ .a
_, OS "u
Ä > «
H 3 g
O erf

'■3

ft
I

•o
o

CO

5-16

181

>

ÜJ o
_J
o
>

<x

80

79

78

77

76 h

75 ± ± ± ± j

24 32 64 96 128 192 256 384 512 768 1024
N

Figure 5.2-1
COMPUTED RF VOLTAGE VS. NUMBER OF DISCS

5-17

17-AUC-93 i2 25

0.00 0.20
Pe rLod

0. 40 0.60 0.. 30 1 . 00

Figure 5.2-2
SQUARED CIRCLE MODEL FOR INITIAL BUNCHING

5-18

o
c\i

00

CO
CO

o
CD ^ s
Q_ V)
 v Q
CD »- Ed
£ 3 fr-

1— •5- CJ

. c\i

o
co

o
CM

o

5-19

CO

o
CD

CD
£

Ed
O

<
X
u
Ed

ON

O

<s fcT

SO
?„z
.2f ,

z
Ed

at

Ed

Q
Z

5-20

C\J

oo

CD
CO
-a
o
»
CD a
CD
E

. ^r

. CM

Erf

a
OS
< x
Ed

a.

IT O

Es]
Di

Ü
Q
Erf
u
a
z

CO CM

5-21

•^^^^^^" o
c\i

co

CO
CO

o
CD
Q.

CD

CM

CO CNJ

5-22

Ex.
a
o z
Ed
a
< x u
Ed

CU
05

4*
V.

ä ■
Z
Ed

OS

U

a
Ed
u
p
Q z

en

o

CD
Q.

CD
£

Li.
OS

Q
Z
<
fa
Ü
OS
<
X

fa

Si ■
• MM

fa H
Z
fa
OS
OS

u
a
fa
u
Q
Z

5-23

o
CNJ

CO

CO en
-a
o
J

CD
Q.

CD
.£

C\J

90
i

u
s

i

■
Ü
MB«

Es,
Li.

O
1/5

0Ä ^
• MM (t-t

z
O

öS

CO CNJ

5-24

o
©

RELM0D9 dmi=2. 0 vmi=0

o o
m

o
©

ul

I- =* ©

©

o
©

©

 29-SEP-93 13.35
T II l I I I I I I i i i i i r

Comparison of
power induced in cavity
and load with KE lost by
beam.

(L5792 data)

J I L J I L J I ' '

2 30 2 90 3 00
Frequency - GHz

I o 20

Figure 5.2-9
POWER BALANCE

5-25

de transit time: 1.44154E-10 sec; transit angle: 2.69913 r, 154.6 deg.

Next estimate o-f induced gap voltage:
Repeat 10 times (T), Use once (U), Enter

or Continue with prior value
Vr-f= 243476.3 © 131.68, Ir-f (-fund) = 100.
Vr-f = 193287.5 © 148.77, Irf (fund) = 63.
Vr-f= 158289.8 © 143.26, Ir-f (-fund) = 48.
Vr-f= 159787.5 © 135.62, Ir-f (-fund)= 66
Vr-f= 163829.4 © 133.01, Ir-f(-fund) = 69
VW= 166017.5 © 132.36, Ir-f (fund) = 69.
vW= 166587.1 © 132.33, Ir-f (-fund)= 69.
Vr-f= 166693.5 © 132.39, Ir-f(fund) = 69.
Vr*= 166657.4 © 132.43, Ir-f(fund) = 69.
Vr-f= 166591.6 © 132.44, Ir-f (-fund)= 68.
Beam power at entry: 9.06700E+06 Watts:

at exit: 3.48393E+06 Cavi

243476.3 ©
new values
112528.8 ©

84 © 123.39
41 © 89.22
99 © 117.32
80 © 127.09
53 © 124.66
66 © 123.36
23 © 122.76
08 © 122.63
01 © 122.59
97 © 122.62

delta: -5
ty 1oss : 5

131 .68 deg.
(E) ,

86.32 deg. (C)
delta PE= 5
delta PE= 5
delta PE= 4
delta PE= 5
delta PE= 5
delta PE= 5
delta PE=

, delta PE=
, delta PE=

delta PE=
.5S303E+06 Watts
.55055E+06

? T
.3523E+04
.5519E+04
.4735E+04
.4006E+04
.2758E+04
.5127E+04
.7644E+04
.7903E+04
.7702E+04
.6506E+04

Nej<t estimate o-f induced gap voltage: 166602.4 © 132.46 deg.
Repeat 10 times (T), Use once (U), Enter new values (E),

or Continue with prior value 166591.6 © 132.44 deg. (C)

96 point Fourier analysis (-99.9 is code -for indeterminate) :

cosine terms:
sine terms:
amplitudes:
phases (deg) :
dB:

de -fund. 2nd
79.71798 -40.91079 -24.41533

55.56426 -13.06102
69.00057 27.68932

122.61 -159.36
-1.25 -9.18

3rd 4th 5th
6.39699 4.96995 7.96750
4.18394 -8.23575 . 0.27801
5.77190 9.61915 7.97235
-127.18 -73.89 -16.75
-14.07 -18.37 —20.00

M = 0.722920 N = 0.829323 Feenberg g/g0 = 0.181991 b/gO = 0.040932
Max induction = 190.02 Fourier g/gO = -0.596329 b/gO = -0.118022
Av. delta K.E.: -58157. equiv. g/gO = -0.5884 g/gFe = -3.233
Vel . range in gap: 0.1484087 to 1.2885508 * U0, # o-f stopped discs = 0
Exit vel. range: 0.5029183 to 1.2885508 * U0, gFourier/gF'berg = -3.2766,:

"Convergence of rf voltage and current to consistent
values. When converged, their ratio is equal to the (complex) cavity
impedance. The near-equality of the delta KE and the Cavity loss
is an independent check on the accuracy (i.e., it was not used in
obtaining the convergence). The Fourier analysis of the final current
waveform follows; the dc terra 79.71798 should be 80.0 Amp, the beam
current, if there were no approximations. The last two lines show
that a disc was slowed to under 15% of its initial velocity at some
point in the gap, but was then reaccelerated to just over 50% at

the exit. The maximum velocity, on the other hand, occurs at the
exit plane.

Figure 5.2-10
CONVERGENCE

5-26

6. CONCLUSION

A generic expert system has been developed and applied to a specific klystron. The heart of the
expert system, the software, was developed in a general way and applied to an input cavity
transformer that has two adjustments. It is a straightforward extrapolation to extend the software
to monitor and control additional subsystems with numerous adjustments. In this work, three
major subsystems were developed for a klystron expert system, those for monitoring and
controlling the cathode temperature, the rf input response, and the rf output response.

The expert system software developed in this program (TIPTOE) was written in Fortran so that
it would be easily transportable between different computing systems. It successfully
demonstrated that a software system can perform the function of an expert by adjusting the
hardware settings, obtaining the resultant data, and converging on the optimum hardware settings.

The software was applied to the matching transformer in the input cavity circuit of the klystron.
A new matching transformer was designed for the input cavity having both variable impedance
and axial position along the coaxial transmission system. The new transformer incorporated an
axially sliding, eccentric design. Tests showed that the input transformer circuit, a combination
of a bandpass filter and impedance transformer (simply referred to as a "transformer") broadens
the bandwidth of the input cavity by enhancing the edges of the passband. The transformer has
two continuously and simultaneously adjustable controls that are linked to the expert system
commands. These controls are useful both for hot and cold tests. The settings of the new
transformer are changed by a stepper motor which is driven by an expert system. The new input
transformer and its drive fit inside the existing envelope of the klystron. The transformer
contained two independent adjustments, resulting in a nontrivial system controlled by the expert
system software.

The expert system formalism was developed, and the software written to easily allow expansion
to several variables and several different subsystems. For developmental and initial
demonstration purposes, the actual circuit hardware was replaced by a lumped-element circuit
model simulated with the commercial SUPERSTAR program. The lumped-element circuit model
used was demonstrated to give results equivalent to the actual hardware.

The temperature of an operating cathode in a microwave tube has a strong effect on the tubes
operation. If the temperature is too low, the emitted current will be.low; if the temperature is
too high, the lifetime of the cathode will be reduced. Unfortunately, the cathode temperature
cannot normally be directly measured in an operating klystron. Therefore, a Fortran code was
developed to predict the steady-state cathode temperature from a given transient heater voltage
vs. time plot.

This code modified a Litton-proprietary Quickbasic program by adding features that can automate
the program with an expert system and by adding highly descriptive two-dimensional variables
that quickly identify the gun assembly parts whose heat transmission histories are being
calculated. Copious program comments made the code easy to read and easy to modify. Before
the program can be used with a given electron gun, it should be calibrated by measuring the

6-1

actual cathode temperature, as a function of time, in response to various changes in the heater
voltage. The different thermal emissivities and thermal conductivities of the elements in the
model are then adjusted to obtain agreement between the measurements and the code results.

The code simplifies the actual electron gun geometry into a set of nodes, made up of one or more
parts, that is represented by a single temperature. Since the number of nodes is relatively small,
this code can run very quickly on a personal computer. The program includes the temperature
dependence of thermal emissivities and thermal conductivities of the gun-assembly materials as
well as geometry factors that simplify complex thermal-resistance calculations. The program is
easy to use, very fast to run, and does not require large computer memory.

A lumped-element model of a two-cavity extended interaction output cavity (EIOC) was
developed with sufficient accuracy to predict measurements on a cold-test model. The EIOC
model is ready for use in a large-signal interaction program. This type of cavity model is often
used in large-signal programs to greatly simplify the calculations and produce a code that
executes rapidly enough to be used as a tube design tool. In addition, such a large-signal code
may be linked to an expert system to predict the effect of adjusting tuners in the output cavity,
allowing the optimum settings to be found before moving the tuners in the actual cavity.

Another program, which models large-signal klystron interaction at a single cavity gap was
developed as well. With residual discrepancy levels not exceeding 1%, the 1670-line Fortran
code includes relativistic effects, velocity and density modulations, space charge effects, potential
energy changes and dynamic beam loading, all under large-signal conditions. Other existing
klystron programs include some but not all of these effects.

6-2

