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The self impedance of a doubly periodic phased antenna array is a 

necessary quantity for the calculation of the scattering and 

transmitting behavior of the phased array. Previous work has shown a 

straightforward method of performing this impedance calculation when all 

the elements lie within the plane of the array. For nonplanar elements, 

this procedure produces complex and computationally undesirable 

equations. By introducing a three-dimensional array and using symmetry 

considerations, the nonplanar problem may be changed to a simpler planar 

one. This method enables the calculation of mutual and self impedances 

for a wide class of complex current distribution. 
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CHAPTER I 

INTRODUCTION 

A.  BACKGROUND 

The analysis of doubly periodic phased antenna arrays has been well 

documented over the years. However, these studies have generally been 

limited to elements which lie completely within the plane of the array, 

referred to here as a totally planar array. There is a good reason for 

this. The nonplanar array, or a two-dimensional array with elements not 

wtihin the plane of the array, is much more difficult to analyze due to 

the complexity of the self/mutual impedance terms. The need for greater 

flexibility in design has resulted in the recent study of arbitrarily 

oriented dipoles by English [1], nonplanar loop antennas by Kent [2], 

"V" dipoles by Lin [3], and the Clavin element by Ng [4]. 

The difficulties involved can be seen by considering a single 

nonplanar array in free space shown in Figure 1.1. A side view is shown 

in Figure 1.2. English identifies three regions of space: Region 1 

contains only left going plane waves, Region 2 contains both left and 

right going waves, and Region 3 contains only right going plane waves. 

The induced voltage measured at the terminals of an antenna element (2) 

due to the field E   generated by the antenna array (!) is given by 



\ \ 
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Figure 1.1. Standard form of rectangular lattice of antenna elements, 

REGION I      REGION 2 REGI0N3 
Az 

—»y 

Figure 1.2.    The field generated by this nonplanar array takes a 
different form in each of these three  regions. 



V2,1--7?U / I(2)t (R')-E(1)(R')dR' (i.i) 
T(2)t 
*    element 2 

where l(2)t(R') is the surface current distribution on antenna (2) under 

transmitting conditions, l(2)t iS the current magnitude at the 

terminals, and E(*)(R) is the field generated by the array. The mutal 

impedance between the antenna array (1) and test element (2) is 

v2,l 
z2,1-"7m- (1-2) 

When the test element (2) and the reference element (1) of the array are 

the same, Equation (1.2) gives the self impedance of the phased array. 

In order to find this self impedance, the field next to the elements, in 

Region 2, must be known. Region 2 fields contain left and right-going 

waves which depend on both the source point and observation point. The 

impedance calculation involves one integration over the current sources 

to produce the field En)(R) and another integration over the test 

element current distribution l(2H(R) of Equation (1.1). The resulting 

expressions for a nonplanar array involve tedious iterated integrals. 

With a totally planar array, the integrals are independent and may be 

separated. 

Besides the complexity, these self impedance equations no longer 

have the rapidly decaying exponential term which guarantees fast 

convergence of the doubly infinite summation. This means longer 

computer run time. 



With dielectric layers added, English showed that the self 

impedance of an array may be decomposed into five modes, 

Zself = Zl + lZ  + Z3 + Z4 + h    ' f1'3) 

Modes two thru five are the four bounce modes which exist because of the 

dielectric boundaries. These modes use the same pattern factors and 

have the same form for nonplanar as for planar arrays. Mode one is the 

direct mode and is the self impedance of the array embedded in a 

homogeneous space with dielectric constants er and ur. This report 

presents a method for finding the self impedance of a nonplanar array in 

a homogeneous space which can be combined with the four bounce mode 

impedances to find the total impedance of a nonplanar array in a 

stratified dielectric medium. Dielectric layers will no longer be 

considered here; all arrays will reside in a homogeneous medium. 

B.  OVERVIEW 

The typical geometry for a single nonplanar array, as shown in 

Figure 1.1, consists of a rectangular lattice in the x-z plane with 

interelement spacings Dx and Dz. Skewed grids in the x-z plane have 

also been examined by Kornbau [5]. As an example, consider the array of 

y oriented dipoles in Figure 1.3 and denote the self impedance of this 

array by Z0(DX,0Z). We wish to find this self impedance. This example 

will show the intuitive concepts of the method to be presented in the 

following chapters and provide a first look at the specialized notation 

involved. 
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Figure 1.3. Side view of y oriented nonplanar dipole array with 
interelement spacing D , D 

E*i E-, 

-**y 

A TEST   ELEMENT MAY 
BE PLACED IN THIS  REGION 

Figure 1.4. Volume array formed by adding an infinite number of 
identical dipole arrays with interplanar spacing Dy. 



We begin by adding an infinite number of identical  nonplanar arrays 

with interplanar spacing Dy so as to form a volume array as shown in 

Figure 1.4.    The spacing Dy should be larger than the total  dipole 

length. The field around our original  two-dimensional  dipole array can 

be divided into three parts:    E0 due to the original  array, E+y due to 

the left half-infinite volume of dipoles, and E_y due to the right 

half-infinite volume of dipoles.    E+y and E_y are right going and left 

going plane waves respectively.    This field may be integrated over a 

test element in Equation (1.1) to find the volume Impedance, 

Zvolume = VDx'Dz> + W^V + W^V' 

(1.4) 

ZQ(DX,DZ) is still unknown. However, Z  and Z  may be easily 
J J 

calculated because the test element is not withJn the regions which 
■+• ■*■ 

generate E.^ and E w. There is another way of calculating Z , +y    -y J v    volume 
This volume array is equivalent to an infinite number of planar arrays, 

all parallel to the x-y plane, extending into the z direction. In the 
A        A A 

x-y plane, our y directed dipoles form a totally planar array with a 

self impedance ZQ(DX,D) which may be readily evaluated by standard 

methods.    Also, Z+z and Z_z can be calculated to form 

Zvolume = VDx>V + Z
+Z(

Dx'Dy lDz> + Z-2(
Dx*Dy1Dz>- 

(1.5) 



Subtracting Equation (1.4) from Equation (1.5) gives 

VDx'Dz> - VW = ZA(DX'W (1'6) 

with 

ZA(Dx|Dz.Dy)  = Z+z(Dx,Dy|Dz) + Z.z(Dx,Dy|Dz) 

Z+y(Dx,Dz|Dy)   -Z.y(Dx,Dz|Dy). (1.7) 

Equation (1.6) shows how to find the nonplanar self impedance ZQ(DX,DZ); 

we calculate the planar self impedance Z (D ,D ) and the difference 
\j        A   Jf 

impedance Z (D  |D +D ) and add.    The critical  point in this procedure is 
u   A   £   Jf 

A 

that the dipole has maintained the same y orientation throughout. This 

means that the vector pattern functions 

J(r) =~T(7y- / KR') eJP   dR1 (1.8) 
I(R  ) element 

which find their way into the impedance equations and which depend only 

upon element orientation, are the same in every impedance term. The 
A 

changing lattices have their effect on the argument r and not on the 

pattern function. 

For this example of a y directed dipole, we transformed the planar 

lattice from the x-z plane in which the element is nonplanar to the x-y 

plane where the element is planar and related the two self impedances 
A 

by Equation  (1.6).    For an arbitrarily oriented dipole with direction p, 



we would like to be able to transform our lattice from the x-z plane to 
A   A 

the z-p plane since this plane allows us to easily calculate the self 
A 

impedance of the totally planar p directed dlpoles. In order to relate 

the self Impedance of the dipoles 1n the x-z lattice to the self 

impedance in the z-p lattice, we form a three-dimensional x-z-p volume 
A      A A 

lattice (x, z, and p are assumed to be linearly independent). This 

intermediate volume array enables us to write 

VW = Zo(Dz'P> + WVP). (i-9) 

in which the terms on the right are easily evaluated by methods which 

will be developed in Chapter II. Chapter III will examine this example 

in more detail. By changing the lattice, we shall see how to find the 

self and mutual impedances of much more complex structures. 

C  THE END OF COORDINATES 

The plane wave expansion of the fields from a periodic surface 

began with a rectangular lattice. A rectangular coordinate system of 
A   A   A 

unit vectors x,y,z was therefore the natural basis for expanding 

vectors. With the introduction of skewed lattices, the same rectangular 

coordinates were used with little difficulty even though they are not 

the most natural basis vectors. Using the method in this report, 

however, an antenna element may only be planar in a skewed plane which 

does not contain any of the three coordinate axes x,y, or z. In order 

to calculate the planar impedance required by Equation (1.6), we must 



A   A 

either rotate the elements into the x-z plane where we are most 

comfortable in calculating impedances, or adopt a different set of basis 

vectors for the plane wave expansion. The first alternative means 

giving up the invariance of the pattern function under a change in 

lattice while the second means adopting a more general theory of 

periodic structures. The choice is clear. By dropping the rectangular 

coordinate system we are able to see directly how a change in the 

lattice structure affects the physics of the plane wave expansion. 

Coordinate systems will only be used when it is necessary to consider 

specific examples in Chapter III. 

Chapter II examines the coordinate free plane wave expansions in 

both two and three-dimensional lattices. The notation to be used for 

the direct and reciprocal lattices is chosen to remain consistent with 

the classic work by Leon Brillouin [6], Wave Propagation in Periodic 

Structures. This book is recommended for its practical insight into the 

mathematics of periodic structures. 



CHAPTER II 

THE COORDINATE FREE PLANE WAVE EXPANSION 

A.  TWO-DIMENSIONAL ARRAYS 

The Region 1 and Region 3 fields from a periodic two-dimensional 

array of current sources is derived in Appendix A. The array lattice, 

often referred to as the direct lattice, is defined by the two vectors 

di and d£ shown in Figure 2.1. The reference point or terminals for the 

q,m current source is located at 

Rqm = qdl + md2 + R  ' (2.1) 

We assume that the current* at each lattice point are identical  except 

for a linear phase difference of the form e 

gives the electric field, 

J*6S»R\ qm 
.    Equation  (A.40) 

EU><S) - 

,,(1)^(1), 

2>cT1x?2l n=-oo     |<s_o 

-je(R-Ru;)-r+ 

(PU,(r+) x r+) x r+ (2.2) 

10 



Figure 2.1. An array of antenna elements defined by the direct lattice 

vectors d. and d«. 

with 

Zc =V E (2.3) 

P^(r) - 
*■ +fu +  jsR' »r ■»■ 
Try-   J    I(1)(R')eJP   dR1 . 

I  (R  ) element 1 
(2.4] 

+(1) 
R' is a vector from R   to the integration point. The propagation 

"M 
vector r is expanded on the special basis {bJ} which forms the 

reciprocal lattice, 

*    "^l    *2 *3 
r+ = r,b + r^b ± rJj (2.5) 

11 



rj = Sj + kx    Sj = s.d1 (2.6) 

r2 = s2 + nx    s2 = s-d2 (2.7) 

r3 ■/1 - ir.b1 + r2b
2i2  evaluated in the (2.8) 

fourth quadrant. 

Equations (2.2) - (2.8) have some features not found in the usual 

rectangular coordinate plane wave expansion which we will now examine. 

Our original lattice provided us with only two vectors to describe 

three-dimensional space. Therefore, we may arbitrarily choose a third 

vector d3 to form a three-dimensional basis (d1.d2.d3). The simplest 

choice is the unit vector 

d3 = dl x d2/ldl x d2° * (2'9) 

-► 

The {dj} vectors of the direct lattice are also known as contravariant 

vectors and are a natural basis for expanding other contravariant 

vectors such as the positon vector R. 

+1 -»-2 -»-3 
In periodic structures, there is another basis (b ,b ,b ) 

associated with the direct lattice and defined by 

^ • &  = &\ (2.10) 

i "M 
where 6^ is the Kronecker delta. The {bJ} vectors are the corresponding 

covariant vectors and are the most natural basis for expanding 

propagation vectors such as r in Equations (2.5) - (2.8) and the 

incident vector direction s, 

12 



&l &2 *3 s = s,b + s2b + s3b (2.11) 

si = s4i 
(2.12) 

The lattice defined by b1 and b is the reciprocal lattice and is 

usually referred to as k-n space because of Equations (2.5) - (2.7). 

While the (d.,d2) vectors correspond to lattice points, the (b ,b ) 

vectors correspond to lattice rows as shown in Figure 2.2 where one 

reciprocal lattice vector b and its lattice rows are given. The vector 

b1 has a direction orthoganol to the rows and a magnitude inversely 

proportional to the separation between the rows. It is this 

correspondence with lattice rows which makes the reciprocal basis so 

appropriate for expanding propagation vectors. 

Figure 2.2. Lattice rows corresponding to the covariant reciprocal 
♦I 

lattice vector b . Each vector in the reciprocal lattice 

has a corresponding row structure in the direct lattice. 

13 



Because of the simple geometry of the array, the convention of 

contravariant and covariant vectors 1s not really needed. The important 

concept is the way the plane wave spectrum of Equation (2.2) depends on 
A 

the reciprocal lattice through r in Equations (2.5) - (2.8). 

The choice of cl3 in Equation (2.9) and the condition given in 

Equation (2.10) allows us to write 

b = d9 x d.j/Jd, x d. a2 A 3' 1 A u2 

b2 = d3 x dj/idj x d2i (2.13) 

"•"3  * 
b3 = d3 . 

As an example, consider the usual rectangular lattice 

dl = Dxx       d2 * Dzz 

A A 

s = sxx + V + SzZ ' (2,14) 

Then Equation (2.9) gives 

idx x d2n = DXDZ (2.15) 

d3 = -y • (2.16) 

The reciprocal lattice becomes, 

14 



b1 = 1/DX x 

b* = 1/DZ z (2.17) 

+3 
b3 = -y . 

Equations (2.5) - (2.8) then give 

sl " sxDx s2 = szDz 
(2.18) 

rl = sxDx + kX    r2 s SzDz + nX 

fjb1 + r2b^ = 
s* + ki x + 

\   ~ 
Sz + nD~ 

(2.19) 

(2.20) 

r3 = 
sz + nb" (2.21) 

r+  = 

X 
+ k TT- x ± r 3* + sz + nF z . (2.22) 

It is interesting to note that the switch to a coordinate free 

representation has replaced the D D term normally found in the 

denominator of Equation (2.2) with »dj x d2« which is the area of the 
-►    -► 

parallelogram formed by the vectors d. and d„. 

Equation (2.4) for the vector pattern function has the standard 

form since it is independent of the lattice. 

15 



B.  THREE-DIMENSIONAL VOLUME ARRAYS 

Now consider a volume distribution of current sources defined by 

the direct lattice vectors D^ D2 and De shown in Figure 2.3. The 

reference pont is chosen to be at the origin for now. The field from 

the volume array will be found by summing the fields produced by the 

elements in the Di,D2 planes. The reason for using the notation De 
-► 

instead of D3 for the third lattice vector is because the formulation 

will be based on the expansion of the previous section with 

■*■ ■¥■ 

d2 = D2 (2.23) 

-f  -► 
d3 = Dj x D2/aD1 x D2« 

*j The Di,D2, and De vectors define the array while the dj and b vectors 

act as local variables of the equations. Assume the currents have a 

plane wave type of phase difference but are otherwise periodic, 

qm£v '   ooov  qmfc' v   ' 

where 

Km = lSi ^2 + lK (2-25) 

*(l) * and IQ0Q(R) is the current distribution of the reference element. 

16 



EQUATIONS VALID    IN 
THIS   REGION   ONLY 

-*•-►-♦• 

Figure 2.3. Volume array formed by the three lattice vectors Di,D2,De. 
*3 "*■■*" 

The reciprocal lattice vector b is orthoganol to the Di,D2 

plane and is of unit length. 

17 



The volume array can be considered as an inf inity of pa rallel 

planes with Dj and D2 as the planar lattice vectors and 

"00* - *°e (2.26) 

as the reference point of the *tn plane.    The fie Id from the *=0 plane 

from Equation  (2.2) is 

Vo 
-jßR«r+ 

00                    OS           g                        - 

c(f(1)( 
A                                    A 

x r±) x r±] c
0        \K>     -          ■¥       -*■ 

2lD1xD2l 
I          I            r 

(2.27) 

use + for R'CDj x D2)  > 0 

- for R-CDj x D2)  < 0 . 

The field from the *tn plane is, 

EA(R)  = EQ(R-£De)e 
JßÄDg-s 

* (2.28) 

Therefore the total  field is 

£=-00   u             e 

+ E^(R) 

1     ° '(R-iDe)e 

18 

(2.29) 



with 

so = s.De . (2.30) 
e    e 

We restrict R to the region of validity between the ä=-1 and t=l planes; 

see Figure 2.3. Define 

a  = sgn(De-b
3) (2.31) 

= sgn(De.(D1 x D2)) . (2.32) 

Then Equation (2.29) may be written as 

j0Ase -jß(R-*De)-ra 
-1   ZcI0e       «  »  e  

*=-»   2BD1xD2n   k=-» n=-»     3 
f(i)(i) - i   ^^-+— i   i 

[(P(1)(ra) x r0) x ro] 

+ Ii1)(R) 

-jWse -jß(R-*De)'
r_a 

»  ZcI0e       *  »  e 

+ I     -S^T-Z  I       1      r  
*=1    2lD1xD2n   k=-» n=-»      3 

C(P(1)(r.J x r ) x r ] ■a'   -a'        -a 

(2.33) 

19 



Rearranging summations gives terms of the form 

*--e 

■jß*(se - DeT0)" 
(2.34) 

I  e 
-jß£(se - DeT_0)" 

(2.35) 

Using the properties of the geometric series 

I   e 
£=1 

-JMx _ 
■j3x 

1-e ■jßx    ' (2.36) 

Equation (2.33) may be simplified into the form 

E(1)(R) = fj^R) + E^1}(R) + l[l)(h   • (2.37) 

+(D 
Moving the reference point to R   gives 

♦ m .  ZCI
(1)(R(1)) -  .  e 

E^'dO - — — I      I    ~ 
2lDj x D2l !(=_„ „=.„ 

+ -(1) * 
■Jß(R-R  )«r0 

-Jß(ra'De-se) 

1-e 
■jß(ra.De-se) 

[(P(1)(rJ x r ) x r ] 
a a' a" 

(2.38) 

20 



with 

*(1, *  ^.(1)(R(1)) -  - e-Je(^(1))-;-° 
E^'fR)-—; —I      I     T  

%Jß(r_0-De-se) 

 C(P(1)(r.a) x;_0) x?.a] 
, J&(r_a«De-se) 1-e 

+(1) ♦  ^(1)<8(1)) ?  ?  e-J^1)),?* 
EW(R)-— 7—1  I  T  
u       2lDj x D2l k=-» n»—      3 

C(P(1)(r+) x r+) x ?+] 

(2.39) 

(2.40) 

r±a = rjb
1 + r2b

2 ± a^b3 (2.41) 

*1 
Equations (2.23), (2.13), (2.5) - (2.8) are used to find r1,r2,b. 

Notice that E0 (R) does not depend on De. 

21 



C.  IMPEDANCE EQUATIONS FOR WIRE ANTENNAS 

Place another antenna element with transmitting current 
(2)t -► +(2) 

distribution I   (R) and terminal point R   in the region of the 

volume array. The induced voltage in antenna (2) due to a unit current 

in antenna array (1) will be the mutual impedance given by 

zvoLe A-w - il'^'W+ zo2,1(srDV 

+ llA(üvü2\de) (2.42) 

and is obtained by combining Equations  (1.1)  - (1.2) with Equations 

(2.37)  - (2.40).    When  I(2)t(R)  = I(1)t(R) and R(2) = R(1), Equation 

(2.42) yields the self impedance of antenna  (1). 
2,1 *    * + 

Consider first the term due to the 1=0 plane, Z0    (D^^).    If Dj 
■*■ 

and D2 are the initial lattice vectors of the nonplanar array, then 
2,1 > * 

calculation of Z0 (Di,D2) leads to iterated integrals which we are 

trying to avoid. In order to find the nonplanar impedance, we need only 

calculate the impedance once for the element in some two-dimensional 

lattice in which it is totally planar. We will assume for this 
2,1 +• ■»■      ■*■ -»• 

calculation of Z0 (D^^) that Dj and D2 fulfills this condition. In 
2,1    2,1 

Chapter III, we will use the Z+' and Z_' terms to transform the 
2,1 > -► 

impedance Z0 (Di,D2) from the planar lattice to the original nonplanar 

lattice. 

If both antenna elements lie completely within the plane of the 
2,1 -► * 

array, then the self/mutual impedance Z0 (Di,D2) is evaluated using the 
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Standard method developed by Munk [7]. In this procedure, the induced 

voltage is found by integrating the field from antenna array (1) due to 

a filamentary current distribution at Rv ' over the filamentary 
+(Z)        (2)*3 

transmitting current distribution of antenna (2) at Rv  + av 'b . This 

point is one wire radius a' ' of antenna (2) above the plane of the 
+3 

array in the evanescent direction b . This method is an approximation 

of Equation (1.1) which has been shown to produce excellent results by 

Munk et. al. 

For a linear antenna in the direction p, Appendix B shows how the 

filamentary pattern factor P^(r) is related to the vector pattern 

function Pv 7(r) by, 

W(?) = P Jn(M<Vl-(?.p(1))2 ) P(1)(r) (2.43) P  ...  . -0 

where 

jßA(r«pv ) 

1 \*      I    element 

J (x) is the Bessel function of order zero and a^  is the radius of 
ox ' 

antenna (1). Equation (2.43) is derived by averaging pP(1)(r) around a 
(1) 

circle orthoganol to p and of radius a  . 

Replacing P(1)(r) with p(1)P(1)(r) in Equation (2.40) and 

performing the integration gives 
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o i ■¥   + -Zc •       oe   e 
fc'ltn     r\   \   _  - 

-ja(R(2)
+a

(2)b3.R(1)).r± 

zo   (W =7^—~   I     I 
2,D1 x D2"    k— n— '3 

[(?(1)x ?t) x ;ypvih;y*H±) 
(2.45) 

with the filamentary transmitting pattern factor defined by 

*  "(2) 
p(2)t,;\ 1     ,      T(2)tm o -JM(r.p      ) 
P        (r) * T(2)trJ(2),    '      !        U) e d*'      (2.46) 1        ^      )    element 

Equation (2.45) is also valid if antenna (2) is outside Region 2 of 

antenna (1). 

2,1 ■»•■»■   + 2,1 +    -»•   + 
The terms Z+    (Di,D2|De) and Z.    (D1,D2|De) are a straightforward 

application of Equation  (1.1) and Equations  (2.38)  - (2.39)  and are 

valid for any element orientation within the region of validity 

indicated in Figure 2.3, 

-JS(R(2)-R(1V;0 — Lr oo eo g 

ll1—^-    1      I 
2lD1xD,l    ._      „ r3 1    Z      k=-oo n=-"» 

•¥ 

e 
-jß(ra.De-se) 

[(P(1)(r Jxr JxrJ.P(2)t(rJ '   a'     a'     a v   a 

1-e °   e    e 
jß(r^»Da-sa) 

(2.47) 
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-►(2) +(1).  * 

9i ~zc »       •     e zM = -rV   I     I    ;  
2'VD2"    k—n— 3 

JS(r_a.De-se) 

♦ C(P(1)(r.JxP.Jx? J-P(2)t(?.J 

1-e o   e    e 

(2.48) 

where 

•»• A 

1        vK      ;      element 

is the vector transmitting pattern function.    It is similarly related to 

the filamentary transmitting pattern factor by 

?<*>* - J<2> J0 (ea(2Vl - (r.p<2>)2) P*2^)  . (2.50) 

Equations (2.43) and (2.50) may be easily extended to a piecewise 

combination of linear antenna sections. 
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D.  THE EXCITATION VECTOR s 

When using the volume impedance Equations (2.47) - (2.48) to 

calculate the nonplanar self/mutual impedance of an array defined by 

direct lattice vectors Dj and D2, the vector Dg is a dummy vector which 

is usually chosen in the same plane as the antenna elements but 1s 

otherwise arbitrary. Likewise, s1 = s»Dj and s« = s-D« are fixed by the 

scan angle (e.g., Equation (2.18)) while s = s-Da is arbitrary. A 

logical choice for sg would appear to be the one which makes s a unit 

vector s. But when s=s, either (r -s)=0 or (r_ -s)=0 in the k=0,n=0 

term in Equations (2.47) - (2.48). This produces a pole in the Z2',1 

volume 

Impedance which is unacceptable for our purposes. A safe choice is 

se=0. 

The fact that the equations blow up when s is a unit vector may at 

first be disturbing but is actually related to the nature of a spac* 

filled by a volume array. The presence of the array changes the 

effective constitutive parameters of the space in a manner similar to a 

dielectric. The application of this principle to metallic delay lenses 

was first demonstrated by Koch [8]. 

The effective vector wave number k of this artificial medium at a 

given frequency üIQ is determined by the condition of a zero tangential 

electric field along the antenna elements without an external voltage 

excitation. This corresponds to an eigenfunction of the periodic 

structure and is equivalent to the requirement 

Zvolume (V = ° * (2.51) 
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kQ = 0SO . (2.52) 

With these conditions fulfilled, the total self induced voltage is 

zero with a nonzero current distribution given by Equations (2.24) and 

(2.52), 

I„m.(R) = Innn(R-RnmJe  
qm* ° . (2.53) qm£v '   ooov  qmÄ.' 

This current is a plane wave propagating through the periodic structure 

with phase velocity w0/|k | and group velocity dtüo/d|k0|. We would 

expect the presence of the array to change the effective parameters of 

the medium so that |kQ|*ß in Equation (2.52). In this case, sQ is not a 

unit vector. 

Without the array, a plane wave would propagate through the medium 

at frequency u with s=s a unit vector. We have seen before how the 

self impedance goes to infinity when the volume array in the medium is 

excited in this manner. This gives the interesting result that a volume 

array in a medium with wave number ß can not support a plane wave with 

wave number Ik I -  $. The exception to this rule occurs when there is a 
-»■ 

null in the pattern function in the direction of propagation k . 

The periodic volume array as an artificial dielectric is not 

relevant to the main objective of this report. The preceding discussion 

is only meant to illustrate the nature of the vector s and why the 

arbitrary component s =s«D may be chosen to be almost any value except 

the one which makes s=s a unit vector. As mentioned before, s =0 is 

usually a safe choice. 
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CHAPTER III 

THE NONPLANAR IMPEDANCE 

A.  GENERAL CONSIDERATIONS 

A planar array in a homogeneous space is uniquely defined by its 

reference position R  , the orientation and dimensions of the elements 
+(1) ♦    -► 

relative to R  , and the lattice vectors Dj and D2. When the elements 

are tipped out of the plane of the array, the calculation of the 

self/mutual impedances becomes very difficult because of the iterated 

integration. However, the use of volume impedances allows one to 

transform the problem from the Di,D2 lattice to the 03,04 lattice where 

impedances are more easily evaluated. In doing this transformation, the 

element s position R   and orientation remain the same; only the 

lattice vectors change. 

For a volume distribution of elements defined by the direct lattice 
-*■   +   + 

vectors Dj,02,03, the self/mutual impedance has been derived in Chapter 

II as 

ZvoLe " Zo2,1(Sl'DV + ZJ*1(D1.D2|D3) + Z^fD»^ ' 

(3.1) 
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Or by symmetry, 

2vo!ume ■ Z2,1<V3>  + ^AK'W  + Z?'1(D2,53|D1). 

(3.2) 

The evanescent direction De has been chosen as D3 in the first case and 

D\ in the second case. Combining Equations (3.1) - (3.2) gives 

Zo'^l'V = ll'll*Z*fy  + ZA'1(S2IVS3> (3'3) 

with 

Z|»1(D2|D1-D3) = ZJ'1(D2,D3|D1) + Z*'
1^,^) 

- Z^1(D1,D2|D3) - Z?'1(D1,D2|D3). (3.4) 

Equation  (3.3) is the basic formula for calculating nonplanar 

impedances.    As long as the intermediate step of forming a volume array 

is valid, the impedance terms in Equation  (3.4) are always calculable 

and have a strong exponential  convergence. 

If the array is still  nonplanar in the D2,Ö3 lattice but planar in 

the D3.D4 lattice, another transform may be possible. 

Zo2,1(S2'53>  " Zo'S'V + Zifl<S3lVV   ' (3'5) 

Combining with Equation  (3.3) gives 
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(3.6) 

The same vector pattern functions P'
1
'^), P^2^(r) and filamentary 

pattern factors P(1'(r), P^2^(r) are used throughout these transforms 

since the elements maintain the same orientation. 

B.  DIPOLE ARRAY 

Consider an array of linear dipole antennas with arbitrary 

orientation p in a rectangular grid with interelement spacings D and D 

as shown in Figures 1.1 and 3.1. Equation (3.3) will be used to find 

the self impedance. For this geometry 

D2 = zDz . 
(3.7) 

Figure 3.1.    Single dipole used in the example. 
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We will assume a linear phase difference between elements characterized 

*   -jes-R 
by a plane wave E0e     excitation; 

sx = s.x 

sz = w (3.8) 

and therefore, 

sl = sxDx 

s2 = szDz . (3.9) 

The antenna elements have a half length l  and radius a. We will 

choose, 

D3 = 2.5 Z  p 

s3 = 0 . (3.10) 

This choice insures a valid volume array and insures the dipole array 

will  be totally planar in the D2'
D3 lattice (Z"P plane).    A larger iDgi 

-♦■•♦••>■ 

means a faster converging Z±(D1,D2|D3) term but a slower converging 

Z (52,53) term.    Equation (2.45) is now used to calculate the planar 

Z (D2,D3)  impedance and Equations  (2.47),  (2.48) and  (3.4) are used to 
■¥■■■*■       ■¥■ 

find the difference Z (D2|D1-»-D3) impedance. Adding gives the self 

impedance of the nonplanar dipole array. Figure 3.3 shows the scan 

impedance for the case, 

31 



PLANE OF   INCIDENCE 

Figure 3.2.    Incident angle parameters a and n. 

Dx = Dz = 1 cm 

p = -y 

i = .68 cm 

a = .05 cm 

e = 2.17    . 

The incident angle parameters a and n are illustrated in Figure 3.2. 

As another simple example, the mutual impedance is calculated for 

two y directed dipole arrays having the same parameters as the first 

example as a function of their separation in the z-y plane. The 

positions of the two reference elements are 
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Figure 3.3. Scan impedance for an array of y directed dipoles for 
various angles of incidence and frequencies. 
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Rv ' = origin 

*(2) = V + V (3.11) 

where the offsets Oy and 0Z are measured in cm. Figure 3.4 shows the 

geometry of the problem and figures 3.5 through 3.9 show the scan 

impedance for various offsets and angles of incidence with a=90°. In 
-»■ 

this case, D3 was chosen as 

°3 = -4Ä* (3.12) 

which was sufficient for the examples treated. 

C.  LOOP ARRAY 

A common method for constructing nonplanar phased arrays is to etch 

one row of elements on printed circuit boards as in Figure 3.10 and then 

stack the boards to form the Di,D2 planar lattice shown in Figure 3.11. 

"** ■*■■*■ 

By choosing D3 in the plane of the pc boards, the Di,D3 plane may be 
2,1 ♦ > 

used to calculate Z0 (0^03) for all self and mutual impedances between 

antenna elements. As before, this planar impedance is readily 
2,1 -v + 

transformed into Z0 (Di.Dg) for the nonplanar lattice. This is perhaps 

the most useful application of this method because of the ease with 

which complex current distributions and modes may be intermixed. 
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Figure 3.4. Example of mutual impedance calculations. 
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Figure 3.5. Mutual impedance between y  directed dipole arrays with 
separation 0 =0.0, 0Z=0.2. 
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Figure 3.6. Mutual impedance between y directed dipole arrays with 
separation 0 =0.0, 0 =0.35. 
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Figure 3.7. Mutual impedance between y directed dipole arrays with 
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Figure 3.8. Mutual Impedance between y directed dipole arrays with 
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Figure 3.9. Mutual impedance between y directed dipole arrays with 
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COPPER ANTENNA 
ELEMENT 

TERMINALS   FOR 
FEED   NETWORK 

Figure 3.10. Single row of loop antennas etched on a copper clad pc 

board with interelement spacing JD.i. Rotation angle e is 

used in the example. 

• • 

Figure 3.11. Nonplanar array formed by stacking pc boards, 
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We will consider as an example an array of square loop antennas 

arranged in a hexagonal lattice in the x-z plane. The loops will be 

rotated in an angle e in the plane of the pc boards as shown in Figure 

3.10. The pc boards will be stacked so that they are rotated by an 

angle <|> relative to the plane of the array. Figure 3.12 is an edge on 

view of the pc boards and the plane of the array with D. pointing Into 

the page. The hexagonal lattice with 6=0 and <j>=0 is shown in Figure 

3.13; only the edge of the loops are visible. By definition, BD.H = 

ID2I and the angel between Dj and D2 is ir/3 for this lattice. An 

examination of the reciprocal lattice would show that it is also 

hexagonal. 

We will assume the same symmetrical cosine current distribution for 

transmitting and receiving as used by Kent. 

The planar self imipedance will be evaluated in the (D,,!)-) plane 

and then transformed to the (Dj,D2) plane. A convenient choice for D3 

is 

D3 = 2Ä(sin<j.x - cos*y) (3.13) 

and s., is chosen to be zero as usual. 

Figures 3.14 - 3.17 show the self impedance of this array in a 

homogeneous e=2.17 space with the following parameters: 

■ Dill = 1.07 cm 
I  = .68 cm 
a = .05 cm 
E = 2.17 cm 
6 = 0°, 45° 
<fr = 0°, 45° . 
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A. 

y 

A 
X 

Figure 3.12. Stacked pc boards seen edge on and rotated by the angl< 
♦ . 

A 
z 

A 
X 

Figure 3.13. With 9=0 and 4>=0, only the edge of the loops can be seen 
looking down onto the hexagonal lattice. 
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Figure 3.14.    Self impedance for a loop array with 6=0° and $=0°. 
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Figure 3.15. Self impedance for a loop array with e=45° and <|»=0o. 
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Figure 3.16. Self impedance for a loop array with 9=0° and 4>=45°. 
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Figure 3.17.    Self impedance for a loop array with 6=45° and +=15°. 
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CHAPTER IV 

CONCLUSION 

The method of transforming the impedance between different lattices 

as presented in the previous chapters can be a very useful tool for 

analyzing nonplanar arrays. Its value depends heavily on the 

application. For unusual current distributions with several overlapping 

modes all confined to the same plane outside the plane of the array, 

this method would be the only practical approach. However, for elements 

with a three-dimensional structure, the iterated integral approach may 

provide the only solution. Either way, the researcher must pay careful 

attention to the geometry of the problem. Given a choice, the transform 

method can provide an exponentially convergng double summation in all 

its terms as opposed to the algebraic convergence obtained using 

iterated integrals. 

Only analysis has been considered so far. Equally important for a 

model is its design potential or the ease with which the equations can 

be broken down into simpler, more manageable form. Both the transform 

method because of its dummy lattice vectors and the interated integral 

method because of its cumbersome complexity fail miserably. The power 

of the plane wave expansion comes from the simple cause and effect form 

which it takes for a totally planar array. Future research in nonplanar 

arrays should address this issue. 
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APPENDIX A 

DERIVATION OF THE FIELDS FROM A PLANAR ARRAY 

In this appendix, the field from an infinite planar lattice of 

current sources will be derived. The geometry is shown in Figure 2.1 

+(1) ♦    * 
with R   = origin. The lattice 1s defined by the two vectors di  and d; 

and the current Iqm(R) associated with the q,m
tn lattice point Rqm will 

be 
■*• 

qm     oo   qm 

with 

R„m ■ qd, + md0 (A2) qm  n 1    c 

* -»■ 

-j0s»R 
upon excitation by a plane wave E e    . Equation (Al) is simply a 

statement of Floquet's theorem. Alternatively, this current may be 

impressed on the elements by an external generator. I00(R) is the 

current distribution of the q=0, m=0 element relative to the origin. 

The total current is 

I(R) - I      I     lqm(R) (A3) 
q=_oo m=-«° 

00   "-►-►■►   _jgs»Ram 

■ l       l   'oo<«-Ve (M) 

q=_oo m=-««> 
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KR) -/    I00(R') { I       l   eJßSR«mS(R-Rqm-R')}dR' 
element      q=-c» m=-«> 

(A5) 

using the properties of the delta function. 

The scattered field will be found by solving the differential 

equation for the vector potential A(R): 

V2A + (52A = - uI(R) (A6) 

02 « Ae . (A7) 

The problem is simplified by considering the scalar equation, 

(vV)G(R") = »{  I        I    e"JeS'Rqmfi(R"-Rqm)} •       (A8) 
q=_oo m=-<» 

Integrating both sides of this equation by /I    (R') with 

R" = R-R* (A9) 

gives 

A(R)  = J ?00(R')G(R-R')dR' (A10) 

element 

■*■ 

where 6(R")  is the scalar Green's function. 
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Evaluating G(R) 

The primes in Equation (A8) will be dropped. Let the Fourier 
■¥ 

transform of G(R) be defined by 

F U) = /// e"J$R#5G(R)dR . (All) 

Applying the transform to Equation  (A8) and substituting Equation  (A2) 

gives 

62(1.|.!)F(|) -Ml        I   e-J6«S^VB«^>|     (A12, 
q=.oo m=-ao 

where 

s,  = s«d. s2 = s-d2 

■*■    ■¥■ 

Cx = 5'dx 52 = S*d2  . (A13) 

Using the identify 

-     jnu0t     
2ir     -      ,        2\ 

o   „ o 

with the substitutions 

co   = B, t^-Sj, and u»o=ß, t=52-s2 (A15) 

gives, 
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(A16) 

I eJ w ^ = X J, 6(52-(s2+nX)) . 

m=-<» n=-«»> 

Substituting Equations (A16) into Equation (A12) we obtain 

♦   -yX2 -   .  «(^-(s^kX) 6U2-(s2+nX)) 

F(0--p- I   I   —+  

Applying the inverse transform to Equation (A17): 

•\\l OO     00       OS •-D t    6(5r(si+kM«(?p-(s?+nX)) 

GOO ■ 4^ /// X   I e "^ s  ^ dl 
-oe k=-» n=-«° i~5*5 

(A18) 

So far, only two vector directions have been chosen d. and d?. A 

third independent vector is needed to completely specify any direction 

in space as a linear combination of these three vectors. We will 

choose 

d3 = dj x d2 / idj x d2i . (A19) 

This choice provides the greatest simplicity in the resulting equations. 
+   •*■•*■ 

With the three (contravariant) vectors dj.dg.d, specified, we can form 
-M +o   +■* 

the corresponding covectors b ,b ,b according to the formula 
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* tJ _ *J d^b3 = 5} (A20) 

6j = Kronecker delta. 

Equations  (A19) and  (A20) yield the following equivalent forms: 

+■>+■*■+       + 

b1 = d2 x d3 / id1 x d2« 

b^ = d3 x dj / Jdj x d2» 

b3 = d3 . (A21) 

Now form a transformation of the integral to the Uj,^,^) svstem of 

coordinates where 

5 - Sjb1 + ^b + 53tT (A22) 

51 - 5-d, . (A23) 

This definition of C-j  is consistent with Equations  (A13).    Under this 

transform, Equation (A18) becomes, 

5(51-(s1+kx))6(c2-s2+nx)) 

•+• -»■ 

1 - 5-5 
*h*h6h 

(A24) 
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rl*.             Xw            -       -      -Jß(R1n+R2ro)   - 
G(R) =        +   +        lie                          I 

4Tr2ld1xd2B     k»_„ n=.„ 

-jßR35, 
e           •* 

4 - d-r^r/'2) ^                                         (A25) 

with 

R = Rxdx + R^d2 + ITdg               IT-R.b1                                     (A26) 

rj = s,  + kX 

(A27) 

r„ = s« + nX  . 

The integral  in Equation  (A25)  is a standard integral  often found in 

oscillating mechanical  systems and can be easily evaluated by residues. 

3 

e                                         -TTj      +jßR% 

J       2       ,           -M       -2 ?    d?3 =    r      e                                        (A28) 

3      - +3 
use - if R    = R»b    > 0 

3      ♦ *3 
+ if R    = R«b    < 0 

and 

/              *1      *2 2 
r3 = V 1 - irjb +r2b  I      evaluated in 4th quadrant.          (A29) 
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Substituting Equation  (A28) into Equation  (A25) we obtain, 

-jßRT± 
+ -jXy oo oo      e 

G(R) = 7T~T~   I     l   —rT— <A3°) 

r = TjS1 + r2S2 + r3^
3 . (A31) 

Equations  (A10) and  (A30) now combine to give us the vector potential 

A(R) for the planar array: 

■*• 

.    T,  . -jßR-r± 
♦ +       -jXuI(o) •       -     e + Ä 

A(R)=——— I        I     — P(r+) (A32) 

4*»VV n— k— 3 

elements 

-»•     jßr»R'  ■*■ 
I(R')e dR'   . (A33) 

The subscripts have been dropped from the current and I(o) refers to the 

magnitude of the reference current at the origin; this is usually the 

terminal current. Equation (A33) is the definition of the vector 

pattern function P(r). 

The Electric and Magnetic Fields 

The magnetic field is derived from Equation (A32) by 

-»■1   ■»■ 
H = ~ V x A (A34) 

p 
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with the vector Identity, 

A A A 

•   V x (pf) = vf x p (p is a constant vector) (A35) 

which gives 

.,  .                             -jBr±.R 
-»• ->•          I(o)         »       oo     e + A 

H(R)  =-T-T-     I        I      1  (P(r+)  x r+)   . (A36) 
2id.xd,i    „_     . '3 " 1    2      n=-«> K=-«> 

Applying Ampere's equation 

♦       1 
E = J^ V x H (A37) 

and Equation (A35) to Equation (A36) gives 

+ +   Zc^o)   oo  oo  e       + Ä 

E(R) =  «, »   I   I   :  [(P(r+) x r+) x r+] (A38) 

1 2  n=-» k--<» 

with, 

Zc = /£7e • (A39) 

♦(1) 
when the reference point is located at R  , 

7 rrp(l)^ -jßr±.(R-R  ) +   ZCI(R
V ')  »   » e ■>   A A A 

E(R)=7^~T~T l        l    7:  [(P(r±) x r±) x r±; 
(A40) 

2'Vd2»  n—k—     3 

■*■(i\ «     1        -♦■->•  ißr«R' -»■ 

'   ir)"71WJ       I(*')e      dR' ; (MI) 
UK  / element 

R' is a vector from R   to the integration point. 
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APPENDIX B 

PATTERN FACTORS FOR DIPOLES AND LOOPS 

In this appendix, pattern factors, vector pattern functions, and 

current distributions used in the examples will be considered. 

For the case of i i linear round wire with a current distribution 
A 

I(jt') and direction p shown in Figure B.l, the vector pattern function 

is defined to be, 

A 

+   -              P 
P(r) = Ko) 

jßR'T    -*• 
j           I(f')eJ           dR' 

element 

(Bl) 

from Equation  (2.4). Therefore, 

A 

*    ~                   P 
P(P)    =      f,    , 

1       2lr    h   f         JßR 
A 

"rd£'  d<fr' (B2) 
IT(o) o     t 

*1 

R 
A                               A                                                        A 

= t'p + a(t. cos* + t« sin$) (B3) 

A        A             A 

where  (p.tj.t«) form an orthonormal  basis, a is the wire radius, and If 

stands for the filamentary current distribution .    Separating the 

integrals gives 

♦ •    '   -    *     1      2w   jBa(r\    cos<|> + 
P(r) - pP(r)  f^-/     e         ri 

0 

rt    sin*) 
t2             d*} (B4) 
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!(*') 

A 
P 

TERMINALS 

Figure B.l.    A linear round wire with a current distribution pl(l'). 

\ - r'h 

r     = r.t2 

rp    - p.p (B5) 

and 

p(?)--r- J 2 iV)eJM'rPdf 
If(o) 

*1 

(B6) 

is the filamentary pattern factor. 

It can be shown from the properties of the Bessel function that 

jo(/^2) mL   ^(xcos^ + ysln*) d$ . (B7) 
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Therefore, 

P(r) = Jp(?) J0
(6a/rt? + rtz V * (B8) 

Since r is a unit vector, 

r 2 + r 2  + r 2 = 1 (B9) 
ti   t2   P 

and so 

P(r) - pP(r)J0(ßa/l-r 
2) (BIO) 

P 

which is Equation (2.43). Similarly, 

P(r)  = pV^Ua/l-r 2) . (Bll) 

Dipole Current 

The filamentary current distribution on a dipole under scattering 

conditions is given by 

If(£') = (A + Bcos(ß*')) |i'|<l (B12) 

illustrated in Figure B.2. The constants A and B are determined by the 

conditions 

Ko) = 1 

IfUe) - 0 

l « £ + A* (B13) 
e 
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I(i') 

I I, 

Figure B.2. Scattering (cosine) current distribution on a dipole. 

in which A«, is a correction due to end effect capacitances and is set 

equal to zero in the examples of Chapter III. Equations (B12) and (B13) 

yield, 

A = 

cos(ß*e) 

cos(fUe)-l 
(B14) 

B = 
l-cos(M ) * !B15) 

The scattering current pattern factor is then found to be, 
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P(rp) = 2A* 

sin(ßr i) 

v 
2B r cos(ß£)sin($r 0 - sin(ß*)cos(ßr t) 

_ fr 

(B16) 

This expression combined with Equation (BIO) gives the vector pattern 

function for a scattering current distribution. 

The filamentary current distribution on a dipole under transmitting 

conditions is, 

If(*') = s1n(ß(4 -|*'|))  for \i'\<t (B17) 

illustrated in Figur-* B.3. The transmitting pattern factor is obtained 

using Equation (2.46) and yields, 

Px(r ) = ;  {-cos(ß* ) + cos(ßAJt)cos(ßrn*) p   ß(l<)sin(ßO      e P 

r sin(ßA*)sin(ßr i)}   . (B18) 

The vector transmitting pattern function is found from Equation (Bll). 
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If(i') 

Figure B.3.    Transmitting (sine) current distribution on a dipole. 

Loop Current 

The cosine current distribution used by Kent for a rectangular loop 

is 

IfU') = 
COS(ß*') 

cos2ß(a+b) (B19) 

and is shown in Figure B.4. Each side contributes the following terms 

to the pattern factor: 

Pl(r) ßcos(ßc)(l-r 2) {sin(ßc)-cos(ßrbb)sinß(c-b) 

- rbsin(ßrbb)cos(ß(c-b))} (B20) 
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SIDE 4 

ä 
2b -^ 

SIDEI SIDE3 

SIDE 2 

r-o 

2a 
—^ 

Figure B.4.    Rectangular loop antenna, 

P3(r)  ecos(ec)(l-r 2)  {sin(Bb)cos(erbb) - rbsin(erbb)cos(ßb)} 

(B21) 

2sin(ßbrD) 
p
2(r>+fVr> = ßcos(ßc)(l-r 2)  {-racos(e(c-b)) - jsin(ß(c-b)) 

+ rej2ßaracos(ßb) + j eJ2ßarasin(ßb)} (B22) 

where 

c = 2a + 2b 

ra = r * Pa 

Pb   =    r    •    Pb (B23) 
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The vector pattern function 1s therefore, 

P(r) - {pa J0(^TT^)lP2(r)  + P4(r)] 

+ Pb J^Ba/lTF^CP^r) + P3(r)]} .        (B24) 

The transmitting vector pattern function is 

P*(r) - P(-r) . (B25) 
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