NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

DISTRIBUTED HARD REAL-TIME SCHEDULING
FOR
A
SOFTWARE PROTOTYPING ENVIRONMENT

by
Mauricio de Menezes Cordeiro
March 1995
Dissertation Supervisor: Man-Tak Shing

Approved for public release; distribution is unlimited.

19950814 070 e

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188
Pubﬁc npomng den for this collection of inf s oot d to ag 1hourpor response, including the time reviewing instructions, searching existing data sources , gathering and
mair g the data ”md pleting and reviewing the collection of ir Send s reg ‘..thns rd L or any other aspect of this collection of information,
incuding suggesti for reducing this burden to Washi Headquarters Services, Di ate for i 1 Operati and Reports, 1215 Jetierson Davis Highway, Suite 1204,
Ardington, VA 222024302, and to (ho Office of Management l.nd Budqel Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Doctoral Dissertation
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DISTRIBUTED HARD REAL-TIME SCHEDULING FOR A
SOFTWARE PROTOTYPING ENVIRONMENT

6. AUTHOR(S)

CORDEIRO, MAURICIO de MENEZES

7. PERFORMING ORGANIZATION NAME(S) AND ADRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Postgraduate School

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) . 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Scheduling analysis is one of the most important activities in hard real-time systems development
since the correctness of hard real-time systems depends not only on the logical results of computation, but
also on the time at which the results are produced. This dissertation aimed at the development of both
fundamental theory and software tools to support efficiently and reliably the scheduling of distributed hard
real-time systems. The major work of this dissertation focuses on non-preemptive hard real-time
scheduling, for periodic and sporadic task sets, although some of the results are also applicable to the
preemptive case.

Several theorems for checking the schedulability of non-preemptive task sets are developed.
Previous results on necessary and sufficient conditions for scheduling non-preemptive task sets are
extended to cover the case when the task deadlines can be smaller or equal to their periods. The concept of
transient and cyclic schedules is introduced to overcome the weakness of the traditional methods, which
restrict the construction of a cyclic schedule to a fixed interval of length equal to the least common multple
of the periods.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Real-time, Hard Real-time, Real-time Scheduling, Hard Real-time Scheduling, 181

Scheduling, Static Scheduling, Distributed Scheduling, Non-preemptive, 16. PRICE CODE
Synchronization, Distributed Systems, Prototyping

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

UNCLASSIFIED

13. ABSTRACT (Continuation)

An algorithm for reducing the schedule length of periodic task sets is developed to further enhance
the schedulability of the hard real-time systems. Preliminary study on randomly graphs shows that the
algorithm do produce near-optimal solution.

To ease the problem of synchronization among tasks in distributed hard real-time systems, we
introduce the Fundamental Synchronization Theorem and a novel model for designing distributed hard
real-time systems without explicit synchronization, and develop an Ada95 software architecture to support
such a model. The application of this theorem will allow us to treat each set of tasks allocated to a
particular processor, as a totally independent set, if the tasks satisfy the conditions described in the
theorem. This approach will greatly decrease the difficulties in scheduling large distributed real-time
systems.

One of the necessary steps in distributed hard real-time scheduling is the allocation of tasks to
different processors in the distributed system. Algorithms for task allocation which minimize the inter-
module communication costs are developed and implemented.

Finally, a timing model for handling different time references in rapid prototyping systems is
introduced, to support the reuse of real-time components.

Standard Form 298, (Reverse) UNCLASSIFIED

/ Associate Professor of Physic Assistant Professor of ferte
Approved by: %ﬂé R I

Approved for public release; distribution is unlimited.

DISTRIBUTED HARD REAL-TIME SCHEDULING
FOR A SOFTWARE PROTOTYPING ENVIRONMENT

by
MAURICIO DE MENEZES CORDEIRO
Commander, Brazilian Navy
B.S., Brazilian Naval Academy, 1976
M.S., Naval Postgraduate School, 1987

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 1995

Author: / M#&b Q/w’\/

Mauricig/de Me()ézcs Cordeiro

W
Man-Tak Shiig
Assocfate Professor of Computer Science
Dissertation Supervisor

¢‘~1 ~ ‘Sw
V" Lugi V Sherif Michael

Associate Professor of Computer Science Associate Professor of Electrical and
Computer Engineerin

D A e

James Vincent Sanders ' Amr M. Zaky '

Approved by:

Tcd%i:. Chaixmany;n/h/ﬂt of Computer Science
Approved by:) M[) \e /ia :

V" Richard S. Elster, Dean of Instruction T

ABSTRACT

Scheduling analysis is one of the most important activities in hard real-time
systems development since the correctness of hard real-time systems depends not only on
the logical results of computation, but also on the time at which the results are produced.
This dissertation aimed at the development of both fundamental theory and software tools
to support efficiently and reliably the scheduling of distributed hard real-time systems. The
major work of this dissertation focuses on non-preemptive hard real-time scheduling, for
periodic and sporadic task sets, although some of the results are also applicable to the
preemptive case.

Several theorems for checking the schedulability of non-preemptive task sets are
developed. Previous results on necessary and sufficient conditions for scheduling non-
preemptive task sets are extended to cover the case when the task deadlines can be smaller
or equal to their periods. The concept of transient and cyclic schedules is introduced to
overcome the weakness of the traditional methods, which restrict the construction of a
cyclic schedule to a fixed interval of length equal to the least common multiple of the
periods. An algorithm for reducing the schedule length of periodic task sets is developed
to further enhance the schedulability of the hard real-time systems. Preliminary study on
randomly graphs shows that the algorithm do produce near-optimal solution.

To ease the problem of synchronization among tasks in distributed hard real-time
systems, we introduce the Fundamental Synchronization Theorem and a novel model for
designing distributed hard real-time systems without explicit synchronization, and develop
an Ada95 software architecture to support such a model. The application of this theorem
will allow us to treat each set of tasks allocated to a particular processor, as a totally
independent set, if the tasks satisfy the conditions described in the theorem. This approach
will greatly decrease the difficulties in scheduling large distributed real-time systems.

One of the necessary steps in distributed hard real-time scheduling is the allocation
of tasks to different processors in the distributed system. Algorithms for task allocation
which minimize the inter-module communication costs are developed and implemented.

Finally, a iming model for handling different time references in rapid prototyping
systems is introduced, to support the reuse of real-time components.

TABLE OF CONTENTS

1. INTRODUCTION TO HARD REAL-TIME SYSTEMS.ocoevierrereeeeeeeeevesennes 1
A.INTRODUCTIONcceeerecercrecuecnessesssssnsssassessassssasssssasssassasassessasssssssessaesses 1
B. REVIEW OF PREVIOUS WORKccoceerinvrseessssercurscecaesaessessassarsnsssessassens 3

1. Preemptive Static SCheduling.........ccocceeveeerrerrrereseccrersreensenesseecssnesnneesens 5
2. Non-Preemptive Static Scheduling..........cccceeveererrcnervenseeseesnecsaesseesnessees 6
3. Summary of Scheduling COmPIEXILYccceerrerreerrersrerecrsesvesessseseeanes 6
4. A Brief Note about the Periodic Task Complex1ty 9
5. Complexity Results for Message Routing in Distributed Systems 10

II. CAPS AND PSDL OVERVIEWcccirinirrerrenrensersessessessessessessessssssessesssssssssssonnsns 13
A. MOTIVATIONcuuuiiriiniisisnsenassnecsssasssessesasssesasssanssssseseesessssssessassassasaens 13
B. THE WATERFALL MODELcccciniiiinnniereeneessesnesreessessesseessasssessnens 14
C. THE SPIRAL MODELcooieemirrerereenesseresseressessessssassesaessesessessessesessennes 15
D. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS).................. 19

1. CAPS Tools......ccccceueue. teeeseeetesatssbt e ase st s s aesntaesanaseas 22
2. The PSDL EdQtorccccoieceiiinneennnencreeneneeneeeseceaeseesneeneenns 22

b. The Text EItOrccviireenreneeneesssenseensseesesessseessnessesssesssenes 22

C. The Interface Editorccccceereecerreenrereereereeneesseseessessesseeneneas 23

d. The Requirements Editor creseeeatesstsesaasasnsessasassnnaaesnnnan 23

¢. The Change Request Editor........cccoeereereeerecrernesrerneeeseenenennens 23

f. The TIanSIAtorcoccvieieccreraereeereereesessessssessessesessessescsseseseoses 24

g. The Scheduler teesteteessssentiesesssssnatnasessennasanaeessssrarenneseses 24

h. The COMPIIET......cccieieintenrerrereererernerresneseesesessessessssssesseseene 24

i. The Evolution Control System.........c.ccoceeuveuneee .. 24

J- The METEE ... eeceinennenicccnensanannasessanssssassesessessasssesesseseasnenses 25

k. The Software Base......cccccceeeneerreenrreeeeseeesecsesnesessassessesssssees 25

E. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL)................ 25
1. PSDL Computational MOdEL..........cceeeerrereeeereesnesssscenssnecnsenseseessosnens 26
. OPCTALOTS....cucerecriensasasssccsaseseeseassesesesnessssssessesesessesersssasosssses 26

b. Data Streams .27

¢. State Streams ... 28

G TYPES.nereencernresnensscsnenssnncassensssaseesessssesesessessssossssasssessrsesssanes 28

¢. Exceptions .28

f. Timers . .29

2. CONLIOl ADSITACHONSc.cererenererersrnesesssesesesssssssssesssesssssssnsssssnsssassssnns 29
a. Periodic and Sporadic Operators . reesssesasnsns 29

b. Data Triggers sesssessetesssseanensatsntassnanssanes 29

C. EXECUtion GUATS......cceeueerernenserrenrernnsaessessessesensesseesessesssssnenne 30

d. Conditional OULPULc.cecerrenceaeecerrresnersanseassesesnesernenersneseans 31

3. Timing CONSITAINEScccoverrrereereneressassersessessessessesseesessssnsessessessesssssnens 31
4. A PSDL Prototype EXample........cceeeeveeverrenreenreeseeseeeeresseesesseneenss 36

A. THE SCHEDULING MODEL AND SOME DEFINITIONS..........cooouun..... 39
B. CONDITIONS FOR SCHEDULABILITY OF NON-PREEMPTIVE TASKS .. 42
1. The Maximum Execution Time Theorem..........c.cceueueueeeeerererererenennes. 42

2. The Finish-Within ThEOTEMcccceuemeeerereencerseeseeeeseeeesesesesesensssenns 45

3. The Minimum Period ThEOrems...........c.cueueuereeereeeeeesseemssessessssssones 45

4. The Load Factor TREOTEM.........ceueverrececucecneneenecsseccesesesssssssssssnsns 47

5. The Task Demand ThEOTeM............ceeeeeverineeeneeeeereeeeseseneesenssssnss 48

C. THE HARMONIC BLOCK DILEMMAcoteeemeeeereeeereseseeeenssssseesesonn 53
D. A NOTE ABOUT PRECEDENCE CONSTRAINTS......eouoveereeeeeeeeennn 57
E. COPING WITH APERIODIC TASKS.......ceteeeeeeeeeeerererenseesssseressesnssnsnn. 59
1. The Conversion . seesssnsesusessanesanssssesssessssssnsasnasassrsssanassae 60

2. Important Remarks about the Conversion............cceeeeeeeseverererenennnn. 65

3. Implementation Issues about the Conversion...............coueveveveremnenn... 67

IV. DISTRIBUTED SCHEDULING........coovuerruemmeinercmenecnemessessesessesseses s es e 69
A.INTRODUCTION.... aestresssessessessssasusassisstaanasanssnresasessusannasnsesnsssses 69
B. ARCHITECTURAL ISSUES.........ooueiueuerncncnemeceseeeseesesseesesssseeeessss e 70
1. Different CIOCKSccceceeeenereererereeessesenesesessesecessessssnssse e 70

2. SPEEA Of CPUS......cceeeveecenererrrererenesenssesecssesscesessasssssssessesssesssssenenes 71

3. Memory .. Sestessentensanesssresssntessestessantesesrassssranesnrressnees 71

4. The Communication Media..........cevueveeuemmeueeeemeceenseeseneseeesee s, 71

S. INETCONMECHVILY....eueeccernarenererereserecscsessaesenesessssasssssesesessessssenesenss 71

C. THE PROBLEM STATEMENTuouteemeeeeeeeresesee s 71
D. SYNCHRONIZATION IN PSDL eeeerresaesssentesatsaessteenaessnensenes 73
E. DEALING WITH SPECIAL CASES ... oeeeeeeeeeeeeeeeeeeeeoe oo 74
F. TACKLING THE SYNCHRONIZATION PROBLEMooooeoeoooo. 81
1. Additional Restrictions Imposed on the Timing Constraints 89

G. THE TASK ALLOCATION MODEL.......e.eeeeeemeeeeeeeeeeeeeseeeeeeeeoeoeoesen 91
1. Some Basic Definitions94

2. The Approach .96

3. The Current Implementation.........ceeeeeveeeseeeeseseeseneseneeeenen, . 100

V. ARCHITECTURAL ISSUES OF THE CAPS SCHEDULER ..o, 103
A. THE CURRENT SCHEDULER - UNIPROCESSOR ARCHITECTURE... 103
1. Data THGEETS «.ucueecrecseecrusensansrennesessesessssssssmssssassesnssssnssesssssssenensens 105

2. EXCCULON TTZEETS «.coverurrerrnererereresnesessessonesessessessssesesssssssssssmenensnnns 107

3. OUIPUL GUATDS......eceermrrnrrnrrsrereseesesnsesseseesesessassessssssssessssenessenensnnn 108

B. THE PROPOSED DISTRIBUTED ARCHITECTURE.......oooeooeoooo 110
C. IMPLEMENTATION ISSUES OF THE COMMUNICATION SUBSYSTEM... 114
1. The RPC Model . reeeeneeentesseeeeaaesannennseeaans 115

2. The FArst APPIOACH.....ceeceeuereerenerereceerenseemeceseesnsessesssseessssses s, 115

3. The Ada95 APPIoachccccceeeerininicsnnsinnesucssesnessessenssssessessssnneas 118

a. The Package Sreamsccccuveieenirenecninneessssneeccsssnenecssnnaees 120

D. CONCIUSIONScccureeurencncrersernsuinsesseesssnesineessnesssesssesssnssssassens 122

D. CPU SPEEDRATIOISSUESINA PROTOTYPING ENVIRONMENT 124

1. Choosing @ REference.......couievsvenrenineeserennessneesnecneesessnnecssnessnsenans 125

2. CAPS Timing Modelcccoveiicnrnsriricssecsenscssnissenssenssissssssnessessesnes 126

a. Building the PrOtOtYPecccoveecrearisceecssncssncecsnsecssencsssensne 127

b. Installing Components in the Software Base........cccccecereuirnnen. 127

3. Relations between CPU Speed Ratio and Timing Errorsccceeeeeene 128

4. How the CPU Speed Ratio affects Schedulingccoceeuevucevccucancnne. 130

5. Handling Unwanted Interactions during Prototype Scheduling.......... 131

VI. EXPERIMENTAL RESULTSccociniericmscnssnnssnssssssassossssssaesssssssssasssssssassssossees 133
A.INTRODUCTIONccccrreneesoresssssesisssssssasesassasessssssssassssesssssssssasssssssessaesaes 133

B. THE RANDOM GRAPH GENERATOR.........ccovteeuiirirnninicainsacnniseesaesnnes 133

C. FIRST FINDINGS AFTER USING THE RANDOM GRAPH GENERATOR.... 135

D. MINIMIZING THE HARMONIC BLOCKuccovinversinnercreencnsacssesssncnees 137

E. THE NEW DISTRIBUTED SCHEDULING ALGORITHM - SOME RESULTS 140

VII. CONCLUSIONS AND RECOMMENDATIONS.......cccccerinirsnierrinssssncasiossensacas 143
A. SUMMARY OF THE DISSERTATION reressesasesniessesnsssesssesenoses 143

B. POSSIBLE CAPS MODIFICATIONS........ccoeioenrerinaneseraseesaneeecscesaesasans 146

1. Enhancing the CAPS Syntax Directed Editor (SDE)........cccceceeeeee. 146

2. Tasks with Soft Deadlinesccecceeeeeerreesireccenrsccescsesareseesaeesenesneanee 146

3. Preemptive Static SCheduling......cccccceeeeeeeiecceerernecesceeecsnenesrenecssnnen 147

4. Triggering Conditions versus Stream Types resessssnsensisssnses 147

5. Estimating the Execution Timecccccccveeerecrseecsecessacnsnsenanessnessananns 148

6. The Uninitialized Sampled Stream Problem cesessssssssesassnens 149

7. State Stream versus Data Flow.......... ceeessessnssssnees 149

C. CONCLUSIONS . . 150

LIST OF REFERENCES ceeeeenes 153
BIBLIOGRAPHY . 159
INITIAL DISTRIBUTION LISTccccrieesesaesnescissessssencassssnssonssonsanssassasasasssassassssessans 161

Figure
Figure
Table

Table

Table

Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Figure
Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Table

Figure
Figure
Figure
Figure
Figure
Figure

TABLE OF FIGURES AND TABLES

L1. Types of Task Deadlines.........ccoerererrercruensnensnecsuensncesssnssnissssnssesssnnssnnonss 2
1.2. Scheduling TaXONOMYccocceveessesuesnesresnnasasssassanssessnnassscstsssssssessnssssssssons 4
1.1. Major Results in Scheduling AlOTithmsccoueereeninieiisiennnseennesesssensacns 7
1.2. Summary of Non-Preemptive Scheduling Complexityccceveeeeercceuencenee. 8
1.3. Complexity of The Scheduling Problem with Several Resources 8
1.4. Complexity for Non-Preemptive TranSmissions.........cceeereeressesesecressencans 10
2.1. The Waterfall Model ceesesesassasesasessessasas 14
2.2. The Prototyping PrOCESS.....ccocesinrueraersesrecsnesaesanssasssnssassseessacssnsssssasasases 17
2.3. The Spiral MOdEL......ccoceieririnnsursesunsunsesassnsnssessesnssesnsssssanssasssasesnssnsaces 18
2.4. The CAPS SIIUCIUTE......ccoeererresrsessesurscssessessessessassassassasssessassassessassassens 20
2.5. Sporadic Timing CONSIAINLS........ccereruerernersensrassssnssssssssesnsseonssnsssssnessacsace 33
2.6. Periodic Timing CONSIAINLS.....cccccrrecessresssessaeessasssnessanassnessnessnssssasesaasness 34
2.7. The Scheduling Interval..........ccoeicnnnrerenrnnrecsrnnenesssneeneinnneecsessesseessanees 35
2.1. Main PSDL Timing CONStraints.....ccoceeseecsecesacsssncssacssansssnessssessnasansssssases 35
2.8. Prototype of an AUtOpPilot......cuuieieeerinieriunicsreecrsneennnieineessnesssenessneennee 37
3.1. Summary of our Scheduling Model........ccceieerereennnneireerieeececcnnee 41
3.1. Theorem 1 for the Sporadic Case........cccececerrerersueensneccrneessenressuenasnnennnns 43
3.2. Pipelining OPEIatOrS....cocceecsueiesecsssnesssnessssnesssnessanssssssessssnasssnsassnsssssnnaases 44
3.3. The Minimum Period Sliding Window.ccceeereeeiverieesrencnrcenrneesnnenens 46
3.4. Different Task Release Time for Task X........ccovveecvvensninirvencnerccennnnne. 50
3.5. The Transient and Cyclic Schedules........cccooveeiveirvsrinssnecssnensinsesnnennnee. 54
3.6. Determining the Start Time t. of the Cyclic Schedule...........ccccevuenencen... 56
3.7. The Sporadic Conversion when MCP<MRT-METcccccervirreennenee. 60
3.8. The Sporadic Conversion when MCP2ZMRT-METccccecuvvuerucsunsaenne 61
3.9. Worst Case SitUAtOMN..ccucecrescressnscsssesnsssasssssssssssssessassasssssessassssnssnssesansss 63
3.10. Effects of TP on the Load Factor.......c.cccceneeeescnnssencirencssncccsanenssnescssanee. 65
3.11. Restrictions in the Producer Imposed by the Consumcr sMCP............... 66
4.1. Typical Radar Data.........cueeecienecsnscsesonsoresssssssarssnnsssssssassssnsssssssssssonsases 73
4.2. Producers with Different Periods ... 75
4.3. Potendal Overflow Situation....... cesssssesssssassnnas 76
4.4. Different Stream Types CombInation........ccceceeeecesscssssnssanssscsssscsnsessnesaacs 76
4.5. Period Incompatibility among OpeTators........cceccerscesecsaeseersassseessessossassnes 77
4.1. PSDL Data Triggering Semantic Table .. 78
4.2. PSDL Timing Constraints Semantic Table 80
4.6. Reason for No Synch when PERprop 2 PERcons (Umproccssor Case).... 82
4.7. Reason for No Synch when PERprop < PERcons (Distributed Case)....... 83
4.8. Reason for No Synch when PERpop 2 PERcons (Distributed Case)....... 83
4.9. Synchronization among Periodic Operators when FW, = METa............. 84
4.10. The Consumer-Producer Paradigmcoccceevviennernssncsnsuncssnressntncsenenane 87
4.11. Seeking for an Upper-Bound.......ceeeeevecninninvennensiinecsesnecnneneessncnens 88

Figure
Figure
Table

Table

Table

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Table

Figure
Figure
Figure
Figure
Table

Figure

4.12.
4.13.

4.3.
44.
4.5.

4.14.
4.15.
4.16.

5.1
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9

5.1

6.1.
6.2.
6.3.
7.1
7.1.

5.10.
5.11.
5.12.
5.13.
5.14.

5.15.

New Timing Constraints for the Sporadic Operatoroceueusemruersisans 90

The SAturation EffECtcceerreereereescirninsaessnissassessssssssssnennssusssssesasaseaes 93
Placement COst MATIX ...c.vcereeerreresssossecsssasssnsassnsssasosssssssaessanassanssnsssssssses 95
IMC COSt MALTIX . uveeeeereessaressaneccssnssssasssssssassaansssssssssssssssssansssssasasassassass 95
DiStance COSt MatTiX......ceeeereecesesesssressssnsessanasssssssssssissssnssssasnssssaasesssessss 95
The Data Dependency Graph.....coceceecsesisesssssasmesssasssensacscsiasnsisnsasnsnanes 96
Algorithm for Calculating the IMC Cost FUnCtON......ccuoveuecuruecinsinsenaene. 98
Partial View of the Allocation PrOSramceceeeeccsccsssnissssnnecsnneeccnnnes 100
Partial View Of Patriot.a ...cceeecreecsceecssniessneessnnsssssssssssssessssnssssanassoasess 104
TRIGGERED BY SOME Implementation........ccoceeereceserssesnasansnasnenses 106
TRIGGERED BY ALL Implementationccceeecessescesissessessssnsensassnnanc 107
TRIGGERING IF Implementation........cceeeseeusscsnisnsnesnsnnsnsnesnoscssscneas 108
Output Guards IMmplementation........ccovuecernmisnsmmrscsssnsesccasacssscnisnnses 108
CAPS Supervisory Program StrUCIUTEccececuemsmsssussssscusassssssasussasacases 109
The New PSDL_Streams Ada Package Specification..........coceeeeeeeeenn. 112
Body of the Network Stream Taskccoeuiiimnesiissisnsiscniscsnsnsssinnns 113
Justification for the Header InfOormation.......covveiiceeeeseiesiiniiscsnnenisacnenes 114
The RPC Programs for the New Scheduler........cooiiiinmnniiisennccinsnen. 117
Package System.RPC (Specification)cececeueremininsnniencecisesccssennnanees 119
Package Ada.Streams (Specification)......ccocoveueucmsenmsnenesienineecesnssensnnen. 121
SHream ATIDULES ...cceeerererrrnreeccsasssssneesesessssssssssaaassssssssssstesresasssasssssssanas 122
Architecture for the Distributed CAPS Schedulercccueeveiniiiniiininnnnnns 123
Default Values for the Timing Model.......coorrieiinicicnnninniiiininnncnnincaeen. 127
Effect of the CPU Speed Ratio on the Schedule......ccooceviinieniniicnncnee. 131
Partial View of the Data Structure Used to Build the Random Graph.... 134
Algorithm for Optimizing the LCM eeveeesseseessssssssastensanae 139
OpHimization RESUILSc.cevererrereeescesscsmsenisnsnscsnsnisasanansnsnsassesacenssnnes 140
Triggering Condition and Stream Type Combinations........oceeueusssuenscs 148
The Uninitialized Sampled Stream Problemccoceeicecisiniisnnesnennne 149

ACKNOWLEDGMENTS

First and foremost, I am grateful to my friend, lover and wife Cristina, and our
children Igor and Lucas, for enduring throughout the course of this longer-than-planned
journey. Their love, support and encouragement helped make this dissertation possible.

Next I would like to thank my parents Franklin and Helena for their unconditional
love and support throughout my life.

To my dissertation advisor, Man-Tak Shing, I would like to express my deepest
gratitude for all confidence, guidance and support. I will never forget the night before my
defense, after that strong rain that isolated his house, when he kept trying by all means,
and finally succeeded, to meet me to rehearse my presentation.

I would like also to thank the other members of my committee, Lugi, Amr Zaky,
Sherif Michael and Jim Sanders for helping me in various ways during the course of this
research. To Yutaka Kanayama, who was the Ph.D. Committee Chairman during most of
my tour as the Ph.D. Student Representative, my special thanks for his patience and
assistance. Many thanks to my fellow Ph.D. students, whose friendship and support were
very important to my success. Thanks also to the staff of the Computer Science
Department, especially Russell Whallen, Mike Williams and Walter Landaker for their
unrestricted and unremitting support.

Finally, I would like to thank God for helping me overcome one more stage in my

life journey.

I INTRODUCTION TO HARD REAL-TIME SYSTEMS

A. INTRODUCTION
Traditionally, most real-time systems have been built for military purposes. As

computers become faster, more inexpensive, and more reliable, a tendency towards
automation is emerging in virally every field of activity. Areas in which real time
systems are being more widely employed include manufacturing, communications,
defense, transportation, aerospace, energy, and health care.

“Hard real-time systems” are defined as those systems in which the correctness of
the system depends not only on the logical results of computation, but also on the time at
which the results are produced. They are also characterized by the fact that severe
consequences will result if logical as well as timing correctness properties of the system
are not satisfied. [SR88]

To put it briefly, real-time systems differ from traditional systems in that deadlines
or other explicit timing constraints are attached to the tasks or processes.

Audsley and Burns presented a very interesting approach [AB93], where the tme
taken to complete a task is mapped against the value this task has to the system,
developing the so called time-value functions. This work proposes an adaptation of their
approach to be used by CAPS, where the time critical tasks could have several kinds of
deadlines, as shown in Figure 1.1. Tasks with hard deadlines may cause damage to the
system if they start early or finish late. Tasks with soft deadlines convey the main idea of
“better late than never”, and the tasks with hybrid deadlines can be assumed to have a soft
deadline behavior until certain point in time, but then they become hard deadline tasks,
generating damage to the system. Using this approach, it is possible to determine whether
it is more convenient to preempt a task that has not finished within its deadline or keep it
running. This approach provides a much better representation for a task deadline, than
that achieved by merely calling it a soft or a hard deadline.

In general it can be said that there are three types of tasks, depending upon their
deadline characteristics. The periodic tasks that execute on a regular basis, and usually
have a period and a required execution time. The aperiodic tasks (also known as non-
periodic) which are essentially random tasks triggered by some external event. Aperiodic
tasks may also have some timing constraints that limit their maximum start or finish time.
However, if aperiodic tasks are allowed to have hard deadlines (in other words, if they are
allowed to have negative values once the deadline is missed) worst case analysis cannot be
further discussed without further restricting their timing behavior. This is the rationale
behind the third type of task, the sporadic task, in which a minimum period between any
two aperiodic events is required. [AB93]

Hard
value Deadline Hybrid
Deadline
Soft
Deadline
J/
damage

Figure 1.1. Types of Task Deadlines

In addition to timing constraints, a task can have other constraints, such as [SR88]:

1) resource constraints - which note the resources required during the execution
of the task

2) precedence constraints - that specify a partial (perhaps total) ordering on the
execution of the tasks

3) concurrency constraints - that describe which tasks can run concurrently, to

share, for example, a resource

4) placement constraints - which note whether a given task is to run in a specific
processor
5) criticalness - which is the relative value to the system that is associated with
some specific task when it meets its deadline
6) preemptiveness - determining whether a task can be interrupted by other tasks
and resume execution afterwards
7) communication requirements - that note issues, such as acceptable delays, for
inter-task communications and synchronization protocols
Task scheduling in hard real-time systems can be either static or dynamic. In static
scheduling it is assumed that all information about the tasks is known a priori, and the
schedule is usually generated off-line. In dynamic scheduling, although all information
about the tasks may be known a priori, they are allowed to be dynamically invoked, and
the schedule is calculated “on the fly”. There has been a great deal of debate about the
appropriateness of dynamic algorithms for hard real-time systems. Many people are in
favor of static scheduling because it seems reasonable to assume that for safety-critical

applications all the schedulability should be guaranteed before execution [AB93].

B. REVIEW OF PREVIOUS WORK

According to Baker [Bak74], scheduling is the allocation of resources over time to
perform a collection of tasks. This rather general definition conveys the basic idea of
scheduling theory, which is a collection of principles, models, techniques and logical
conclusions that provide insight into the scheduling function.

Many of the early developments in the field of scheduling were motivated by
problems arising in manufacturing. Today, even though scheduling is used in many
different areas, there are still references that deal with machines instead of processors, and
with jobs instead of tasks.

In order to have a better understanding of the context in which scheduling issues

are found, it is reasonable to begin by proposing a taxonomy for the scheduling function.

This taxonomy is an enhancement of that proposed by Cheng, et al. [CSR87] and is
illustrated in Figure 1.2.

As shown in the figure, classical scheduling can be divided into four major areas:
single-machine problems, parallel-machine, flow shop, and job shop scheduling. Most of
these areas make use of objective functions, such as minimizing flowtime, minimizing
mean tardiness, and minimizing completion time (makespan), which does not convey much
of the important information needed by real-time systems. In most of these problem areas,
the deadline concept is not even considered. Nevertheless, some of these results can
provide very fruitful insights into real-time scheduling problems. Another issue that is not
considered in many of the problems associated with classical scheduling is the idea of
periodic tasks, meaning tasks that run forever. For further reading on classical scheduling
the reader is directed to the work of Baker [Bak74] and Stankovic, et al. [SSN93]. The
latter reference presents a concise survey on the implications of classical scheduling results

for real-time systems.

[2
Classical | | Reatmime |
1
1
Single Machine | Hard |i Sott |
- Paraliel Machines | . I] _ 1
Static i i Dynamic |

-th Flow Shop] [h 1 - r - 1 .

Unlllmkbromaorl Unvwmprom’ Unmmnlpmuunor] UNMJlupmcusor'

Distributed | Distributed | Distributed | Distributed |

Figure 1.2. Scheduling Taxonomy

Tasks can also be distinguished as preemptable or non-preemptable. A task is
preemptable if it can be interrupted by other tasks and can resume execution afterwards.

A non-preemptable task, once started, must run to completion.

Another concept that requires introduction is the difference between
multiprocessor systems and distributed systems. In multiprocessor systems, the cost of
interprocessor communications is negligible, as the different processors usually have some
kind of shared memory and a global clock. In distributed systems, the cost of
interprocessor communications is not negligible, as the processors do not share any
memory space and each processor has its own clock. It is now appropriate to make a brief
review of some previous work done in hard real-time scheduling, with an emphasis on the

results related to static scheduling.

| Preemptive Static Scheduling

In cases where the tasks are periodic, which is the most common case in

real-time systems, it can be said that the most important result for the uniprocessor case
was provided by Liu and Layland [LL73). They proved that the Earliest Deadline First
(EDF) algorithm is optimal for any set of independent periodic tasks where optimality is
defined by the statement, “if a set of tasks can be scheduled by any algorithm, then it can
be scheduled by the EDF algorithm™. They also demonstrated some bounds on processor
utilization when using this algorithm. Their results were extended to cover cases where
the release times are arbitrary by Jeffay [Jef89a]. Also based on Liu and Layland’s work,
a more claborate schedulability test was proposed by Lehoczky, et al. [LSD89]. This test
employed the concept of processor time demand for handling cases where the deadlines
were smaller than the periods. Sha and Lehoczky [LS86] described a technique of
splitting the periods so that better processor utilization could be achieved.
Horn [Hor74] developed an optimal O(n?) algorithm that was also based

on the earliest deadline first principle. Originally formulated for non-periodic tasks, this
algorithm proved capable of handling independent tasks with arbitrary deadlines and
release times in a uniprocessor environment. For the same type of tasks, he also
introduced an algorithm for the multiprocessor case that was based on the network flow
method. Martel [Mar82] extended the work of Homn by allowing for processors with
different speeds.

For multiprocessor scheduling of periodic tasks, most of researchers have
adopted a partition approach, where some kind of bin-packing algorithm is used to

determine the sub-optimal partitions. Examples can be found in the work of Davari and
Dhall [DD86], Bannister and Trivedi [BT83], and in that of Dhall and Liu [DL78].

2 Non-Preemptive Static Scheduling

There has been a great deal of research in the area of preemptive real-time
scheduling. For the non-preemptive case, however, most problems have been shown to be
NP-hard, even in the uniprocessor case. Hence, the majority of the work that has been
done in this area covers very specific cases, such as when unit computation times are
involved, or when release times are the same. Moore [Moo68] showed that the earliest
deadline algorithm is optimal for scheduling a set of independent tasks that have the same
release time. Bratley, Florian and Robillard [BFR71] developed an implicit enumeration
algorithm to determine scheduling for non-preemptive tasks with arbitrary release times
and deadlines. Baker and Su [BS74] used a similar approach to minimize the maximum
tardiness of tasks. Erschler, et al. [EFM83] developed a necessary condition for
scheduling tasks with arbitrary release times and deadlines. When utilizing periodic task
sets, which are definitely the major area of focus for this study, the major results can be
found in the work of Mok [Mok83], Xu [XP90], Jeffay [JSM91] and Zhu [ZLC9%4).

3. Summary of Scheduling Complexity

In dealing with scheduling problems where most of the input instances have been
proven to be NP-hard, it is very important and beneficial to know in which class a
particular instance belongs, so that the problem can be addressed appropriately. However,
when one looks into the huge amount of research in this area, it becomes apparent that the
various studies are very difficult to compare. While it is undesirable to limit the creativity
of researchers, it is increasingly apparent that some kind of standard is needed, so that

individual research efforts at least speak in the same language.

Nevertheless, this section offers a summary of the major results achieved in the
area of time complexity of scheduling algorithms, for both the preemptive and non-
preemptive cases. Whenever the result is applicable to periodic task sets, it will be briefly
mentioned.

In Table 1.1, it has been listed, for each case, the number of processors (m), the
precedence relation (<) among the tasks (if one exists), the valid domain for the release
time (r;), the deadline (d;), the computation time (c), whether it is preemptive or non-
preemptive, the time complexity of the problem, the reference paper, and, finally, some
additional remarks. Note that in this table most of the results are for non-periodic task
sets. In the following section, the problem of how to apply these results to the periodic
case is addressed.

Preemptive

arb arbitrary 0 | arb | arb NPC GJ77a
arb forest k oo | arb | O(nlogm) GJ7T7b
arb tree 0 | o | ab O(n?) MC70
arb tree 0 | o | arb | O(nlogm) GJ77b
arb empty |arb| e [arb o(n* Hor74 Network Flow
Same Speed Processors
arb empty |am | o | ab | O(m*n*+n’) Mar82 Network Flow
Different Processors
arb empty arb | o | arb O(nlogn) DD86 EDF (d;=piJorRM +
O(n) Next-Fit
1 arbitrary | arb | arb [arb O(n?) Bla76 EDF based
empty |ab| e | arb o(n’) Hor74 EDF based
1 empty 0 | ab | arb on®) LL73 rale-monotonic

periodic tasks (d; = p)

Non-Preemptive

arb tree 0| | 1 O(nlogn) Hu61
arb empty |ab | ab | 1 | O(m’loglogn) Sim83 Barrier's Alg.
2 arbitrary | arb | arb | 1 o(n®) GJ77a
1 arbitrary | 0 | e | arb O (n®) Law73 Backward EDF
1 arbitrary | arb | arb | 1 O(nlogn) GJs8l1 Forbidden Regions Alg.
(Vaycomplex data structures
1 empty arb | arb | 1 O(nlogn) Jac55 EDF (Minimizes Completion
Time)
1 empty 0 |arb | ab O(n?) Moo68 EDF

Table 1.1. Major Results in Scheduling Algorithms

Table 1.2 summarizes the complexity boundaries of various non-preemptive

problems with respect to the number of processors, computation time, and type of partial

order.
k>m>2 | arbitrary 0 k 1 OPEN
arb arbitrary 0 k 1 Ull75
arb empty 0 k | arb ULl75
2 arbitrary 0 k 112 NPC UL75
2 empty 0 k | arb NPC Un75
1 empty arb | arb | arb NP-hard GJ77a
k<m<2 | arbitrary 0 k 1 CGT72
arb tree 0 k 1 Hu61
arb empty 0 k 1 Ul75

Table 1.2. Summary of Non-Preemptive Scheduling Complexity

Table 1.3 is very interesting in the sense that it delimits the boundaries between
NP-completeness and polynomial solvability for the more constrained non-preemptive
scheduling problem, where resources (Rsrc) other than processors are being requested by
the tasks. As can be seen, by having no precedence relations, or for values of m less than
2 in the first case, or by making m less than three in the second case, the resulting
problems can be solved in polynomial time. [GJ75]

m | Preced. - p, 1 d; { ¢ | Complexity Reference Remark
"1 Relations :

m 22 forest 0 k 1 NPC GJ75 Rsrc2 1

m 23 empty 0 k 1 NPC GJ75 Rsrc 21

Table 1.3. Complexity of the Scheduling Problem with Several Resources
Other important results are:

“It is impossible to find a totally optimal run-time scheduler even if
any ready process is permitted to preempt any other process in
progress”.[Mok76]

“When there are mutual exclusion constraints, it is impossible to
find a totally on-line optimal run-time scheduler”.[Mok83]

“The problem of deciding whether it is possible to schedule a set of
periodic processes which use semaphores only to enforce mutual exclusion
is NP-hard”.[Mok83]

“The problem of computing a static schedule for a set of periodic
timing constraints is NP-hard”.[Mok83]

“Non-preemptive scheduling of periodic tasks when release times
are taken into consideration is NP-hard in the strong sense”.[JSM91]

“The processor allocation problem is NP-complete even for the
case where only two processors are available and the processor scheduling
problem resulting from any partition is easy”.[Mok83]

“The problem of finding an optimal schedule is NP-hard for a single
processor even if all tasks have the same ready time and deadline”.[L W90]

4. A Brief Note about the Periodic Task Complexity

It is very common for authors of papers that deal with the scheduling of non-
periodic tasks, i.e., tasks that are executed only once, to infer that their algorithms or
methods can also be applicable to periodic tasks by simply applying the same algorithm to
the set of tasks occurring within a time period that is equal to the least common multiple
of their periods.

Although this assertion is true in most of cases, one must note that a polynomial
time algorithm for scheduling non-periodic tasks may take exponential time to schedule a
set of periodic tasks using the same algorithm. To see this, consider an algorithm A that
schedules a set T of n non-periodic tasks in time O(/ I P), where 11 | is equal to the size of
the input instance. Clearly, by using a binary encoding, O(n + Zlog r; + Zlog ¢; + Zlog d;)
bits are needed to encode such an instance. Now, assume a set T'of n periodic tasks with
periods py, P2, ... , Ps Whose input size is O(n + Zlog r; + Zlog c; + Zlog d; + Zlog pi).
Note that in the worst case an LCM of p; X p; X ... X p, exists. So, in order to use
algorithm A to schedule the periodic task set T, one must first transform T’ into an
equivalent set T” of non-periodic tasks with p,X ps...x p, instances of task T, , pyX ps...x

P. instances of task T, piX p;...X p, instances of task Ts, and so on.

Clearly, the size 1"l of the input instance T” is equal to

| XPyX.. XD,

O(n+ 3 [(log r, + log c; + log di) x = 1,

and algorithm A will take O(II"1’) time to schedule all task instances in T". But, since 1”7l
£Cx([n+ ‘g (log 1; + log c; + log d; + log p;) 1*) for any constants C and k, O(II"P)
is exponential with respect to IIl.

s. Complexity Results for Message Routing in Distributed Systems

This section presents some very interesting results from Leung [LTW89] regarding
the possibility or impossibility of sending a set of messages in a distributed real-time
system on-time. Each message M is represented by the quintuple (s;,e;.li,ri,d;) where s;
denotes the origin node for M, €; denotes the destination node,], is the length of M, 1 is
the release time, and d; denotes the deadline of M;. The problem was studied for both
preemptive and non-preemptive cases, but this discussion will be restricted to the latter. It
is also assumed that the processors are connected by an uni-directional ring. Table 1.4
shows the complexity results for the non-preemptive transmission. An entry marked k
denotes that the parameter is the same for all messages, while a V entry denotes that it can

vary according to the message.

& | & | n | di- Complexity
v k k k P
k Vv k k P
k k v k P
k k k Vv P
k k 3 \ NP
k A\ k \% NP
k \ 3 k NP
\ k k \Y NP
\ k \ k NP
v 3 k k NP

Table 1.4. Complexity for Non-Preemptive Transmissions

10

As shown in Table 1.4, the message routing problem becomes NP whenever two
or more parameters are allowed to be arbitrary. These and other results had a great

influence on the manner in which this dissertation will treat distributed scheduling.

11

12

II. CAPS AND PSDL OVERVIEW

A. MOTIVATION

The United States Department of Defense (DoD) is currently the world's largest
user of computers. Each year, billions of dollars are allocated for the development and
maintenance of progressively more complex weapons and communications, and
information systems. These systems increasingly rely on information processing, utilizing
embedded computer systems, and are often characterized by time periods or deadlines
within which some event must occur. Such periods or deadlines are known as “hard real-
time constraints”. Satellite control systems, missile guidance systems, and communications
networks are examples of embedded systems with hard real-time constraints. The
correctness and reliability of these software systems is critical, making software
development of these systems an immense task with increasingly high costs and potential
for design errors [Boo87].

Over the past twenty years, technological advances in computer hardware
technology have reduced the hardware portion of total system cost from 85 percent to
about 15 percent. In the early 1970s, studies showed that computer software alone
comprised approximately 46 percent of the total estimated DoD computer costs. Of this
cost, 56 percent was devoted specifically to embedded systems. In spite of the
tremendous expense, most large software systems were characterized as not providing the
functionality that was desired, taking too long to develop, costing too much time or taking
too much space to use, and lacking the ability to evolve to meet the user's changing needs
[Boo87].

Software engineering evolved in response to the need to more efficiently design,
implement, test, install, and maintain larger and more complex software systems. The
term “software engineering” was coined in 1967 by a NATO study group, and endorsed
by the 1968 NATO Software Engineering Conference [Sch90). The conference
concluded that software engineering should use the philosophies and paradigms of

13

traditional engineering disciplines. Numerous methodologies have been introduced to
support software engineering. The major approaches which underlie these different
methodologies are the waterfall model [Lam88], the spiral model [Boe86], and the
prototyping methods of development [Luq89].

B. THE WATERFALL MODEL

The waterfall model describes a sequential approach to software development as
shown in Figure 2.1. The requirements are completely determined before the system is
designed, implemented and tested. The cost of systems developed using this model is very
high. Required modifications that are realized late in the development of a system, such as
during the testing phase, have a much greater impact on the cost of the system than they
would have if they had been determined during the requirements analysis stage of
development. Requirements analysis may be considered the most critical stage of software

development, since this is when the system is defined.
SYSTEM
SYSTEM REQMTS.
ENGINEERING \
ANALYSIS m
DOC.
SYSTEMREQ.
{ DESIGN DESIGN DOC.
REQMTS. 3

PROBLEMS
PROBLEMS
%\\ CODING souncecone
DESION .
PROBLEMS D

B

TESTING MAINTENANCE
m 3 MAaNUA
& .& ,,,.,,,,, MAINTENANCE
CONDITIONS
coco00oNoocooNoooo cooo

Figure 2.1. The Waterfall Model

14

Requirements are often incompletely or erroneously specified, due to the often vast
difference in the technical backgrounds of the user and the analyst. It is often the case that
the user understands his application area but does not have the technical background to
communicate his needs to the analyst, while the analyst is not familiar enough with the
application to detect a misunderstanding between himself and the user. The successful
development of a software system is strictly dependent upon this process. The analyst
must understand the needs and desires of the user and the performance constraints of the
intended software system in order to specify a complete and correct software system.

Requirements specifications are still most widely written using the English
language, which is an ambiguous and non-specific mode of communication.

Another difficulty of the classical life cycle is that communication between a
software development team and the customer or the system's users is weak. Most of the
time the customer does not know what he or she wants. In that case it is hard to
determine the exact requirements, since the software developer is also unfamiliar with the
problem domain of the system. Formal specification languages are used to formalize
customer needs to a certain extent. Another disadvantage of the classical project life cycle
is that a working model of the software system is not available until late in the project time
span. This may cause two things:

1) A major bug that remains undetected until the working program is reviewed,

which can be disastrous [Pre87];

2) The customer will not a have an idea of what the system will look like until it is

complete.

C. THE SPIRAL MODEL

Large real-time systems and systems which have hard real-time constraints are not
well supported by traditional software development methods because the designer of this
type of system would not know if the system can be built with the timing and control

constraints required until after much time and effort has been spent on implementation. A

15

hard real-time constraint imposes a time-bound on the response time of a process which
must be satisfied under all operating conditions.

To solve the problems raised in requirements analysis for large, parallel,
distributed, real-time, or knowledge-based systems, current research suggests an
alternative paradigm for software development and evolution based on rapid prototyping
[LB88]. The purpose of prototyping is to ensure that proposed requirements and system
concepts adequately match the needs of the prospective client(s) before detailed
optimization and implementation efforts begin. As a software methodology, rapid
prototyping provides the user with increasingly refined systems to test and the designer
with ever better user feedback between each refinement. The result is more user
involvement throughout the development/specification process, and consequently, better
engineered software.

The prototyping method shown in Figure 2.2 has recently become popular. “It is a
method for extracting, presenting, and refining a user's needs by building a working model
of the ultimate system — quickly and in context” [Boa84]. This approach captures an
initial set of needs, and quickly implements those needs with the stated intent of iteratively
expanding and refining them as the user's and designer's understanding of the system
grows. The prototype is only to be used to model the system's requirements, rather than

as an operational system [You89].

16

Initial Goals

Requirements

Validated

NOK Requirements

CONSTRUCT
PRODUCTION
SYSTEM

Modularization and Objects

New Goals USE

PRODUCTION I

Figure 2.2. The Prototyping Process

This iterative prototyping process is also known as the “Spiral Model of Software
Development” and is illustrated in Figure 2.3. In the prototyping cycle, the system
designer and the user work together at the beginning of the project to determine the
critical parts of the proposed system. The designer then implements a prototype of the
system based on these critical requirements by using a prototype description language
[Luq89]. The resulting system is presented to the user for evaluation. During these
demonstrations, the user determines whether the prototype behaves as it is supposed to
do, examines user interface options, and, most importantly, verifies understanding of the
problem and solution. If errors are found at this point, the user and the designer work
together again on the specified requirements to correct them. Concurrently, a risk analysis
is initiated to decide whether or not to move on to the next cycle of the spiral. This
process continues until the user determines that the prototype successfully captures the
critical aspects of the proposed system. This is the point where precision and accuracy are
obtained for the proposed system. The designer then uses the prototype as a basis for

designing the production software.

17

DEFINE / REVISE INCREMENTAL
REQUII;‘EMENTS DESIGN
RISK ANALYSIS
CUSTOMER INCREMENTAL
EVALUATION IMPLEMENTATION

TOWARDS THE FINAL SYSTEM

Figure 2.3. The Spiral Model

Some advantages and disadvantages of iterative development methodology are
listed below:

Advantages:

1) There is constant customer involvement (revising requirements).

2) Software development time is greatly reduced.

3) Methodology maps to reality.

4) It allows use of off-the-shelf tools.

Disadvantages:

1) There are configuration control complexities.

2) The developer is compelled to manage customer enthusiasm.

3) There are uncertainties in contracting the iterative development.

Manually construction of the prototype still takes too much time, and can
introduce many errors. Also, it may not accurately reflect the timing constraints placed

upon the system. What is needed is an automated method of rapidly prototyping a hard

18

real-time system that reflects those constraints and requires minimal development time.
Such a system should exploit reusable components and validate timing constraints.

If Ada software that is reliable, affordable, and adaptable is to be produced and
maintained, the characteristics of Ada may not be the only important matter to consider, as
the characteristics of Ada software development environments may well be critical
[BLO1].

The rapid, iterative construction of prototypes within a computer aided
environment automates the prototyping method of software development, and is called
rapid prototyping. Rapid prototyping provides an efficient and precise means to determine
the requirements for the software system, and greatly improves the likelihood that the
software system developed from the requirements will be complete, correct, and
satisfactory to the user. The potential benefits of prototyping depend critically on the
ability to modify the behavior of the prototype with less effort than that required to modify
the production software. Computer aided and object-based rapid prototyping provides a

solution to this problem.
D. THE COMPUTER AIDED PROTOTYPING SYSTEM (CAPS)
The Computer-Aided Prototyping System (CAPS) [LK88] is a software

engineering tool for developing prototypes of real-time systems. It is useful for
requirements analysis, feasibility studies, and the design of large embedded systems.
CAPS is based on the Prototype System Description Language (PSDL) [LBY88], which
provides facilities for modeling timing and control constraints within a software system.
An overview of PSDL will be presented in the following section. CAPS is a development
environment, implemented in the form of an integrated collection of tools, linked together
by a user-interface, and provides the following kinds of support to the prototype designer:
e timing feasibility checking via the scheduler,
e consistency checking and some automated assistance for project planning,
scheduling, designer task assignment, and project completion date estimation

via the Evolution Control System,

19

e design completion via the editors,

e computer-aided software reuse via the software base.

A CAPS prototype is initially built as an augmented data flow diagram and a
corresponding PSDL program. The CAPS data flow diagram and PSDL program are

augmented with timing and control constraint information, which is used to model the

functional and real-time aspects of the prototype. The CAPS environment provides all of
the necessary tools for engineers to quickly develop, analyze, and refine real-time software
systems.

The general structure of CAPS is shown in Figure 2.4. The CAPS User-Interface
provides access to all of the CAPS tools, and facilitates communication between tools
when necessary. The tools in Figure 2.4 are grouped into four sections: Editors,
Execution Support, Project Control and Software Base. Each CAPS tool is associated

with a different aspect of the CAPS prototyping process.

Editors

S <3
£ g
) 1z
O| IE
3] Interface /- H»
-“o-i Merger Compiler {.&
: g

Software Base

Figure 2.4. The CAPS Structure (from Bro[94])

CAPS is specifically designed to assist and partially automate development efforts
which lie in the shaded regions of the prototyping process (Figure 2.2). Specifically, based

20

on a set of initial requirements, CAPS allows the engineer to design, modify, demonstrate
and validate a software system. Through this process, system requirements can be refined
and modified as necessary.
The CAPS prototyping process is more specific, and it could be said that it is a
refinement of what is shown in Figure 2.2, and is outlined below. [Bro94]
1) Based on requirements, design (or modify) the data flow diagram for the system
2) Assign all appropriate timing and control constraints to the prototype operators.
Assign latencies to data streams (if required)
3) Assign data types to all data streams
4) Find (in the software base) or build an implementation module for each user-
defined data type and each atomic operator. Modules taken from the software
base can be modified after retrieval to suit individual needs
5) Build the prototype's user-interface (if required)
6) Translate the CAPS-generated (and user-augmented) PSDL program into (a
portion of) the Ada supervisor module
7) Run the CAPS scheduler to generate the static and dynamic schedules. This
completes the prototype's Ada supervisor module
8) Compile the prototype. (Note: for successful compilation, particular attention
must be paid to the formal parameters of atomic operator implementation
procedures created in step 4)
9) Execute, evaluate and modify (if appropriate) the prototype and/or the
requirements
10)Retumn to Step 1 if prototype modification is required
The correlation between these 10 steps and Figure 2.2 is obvious. Note that the
basic 10 steps are a bit more detailed than the preceding prototyping process diagram.
This highlights the real-time requirements, and associated design considerations of typical
CAPS prototypes.

21

The remainder of this introduction briefly introduces the CAPS tools used to
perform the basic 10 steps. Note, also, that two of the CAPS tools are outside the
purview of the prototyping process diagram. These tools perform ancillary functions
which are not seen in either the prototyping process diagram or the 10 basic CAPS steps.
These advanced feature tools are the Evolution Control System and the Merger.

The purpose of the Evolution Control System is to provide automated support for
coordinating the concurrent efforts of a team of prototype designers, and to manage
multiple versions of the designs they produce [Bad93]. The purpose of the Merger is to
combine the effects of two or more enhancements to a prototype that have been
independently developed [Dam94].

CAPS can be executed in either the designer mode or the manager mode. The
manager mode provides access to CAPS advanced features, including modification of the
designer pool, creation of project work steps, and prototype change-merging. CAPS
supports distributed prototype development, and the manager interface provides facilities
for such efforts. For simple, single-designer prototype building, the designer mode should
be used.

1. CAPS Tools

This section provides a brief description of each CAPS tool.

a. The PSDL Editor

The PSDL Editor is the heart of CAPS prototype design. This editor
consists of 3 separate pans:' the Syntax Directed Editor, the Graph Viewer, and the
Graphic Editor. This tool allows the designer to create the CAPS data flow diagram and
the PSDL program, and assign all timing and control constraints to prototype components

(operators and data streams).

b. The Text Editor

Although the text editor is not exclusively a CAPS tool, CAPS does

provide fluid integration of text editing facilities. Designers can select from vi, emacs and

22

the Verdix Ada Syntax Directed Editor (if available) for editing Ada programs. Use the
“CAPS Defaults” selection under the “CAPS Edit” pull-down menu to make this
selection. The CAPS User-Interface provides convenient file selection lists, based on the

currently selected prototype.
c. The Interface Editor

CAPS integrates TAE+ [Tae93] for creation of window-based user-
interfaces for prototypes. When using the TAE Workbench for creation of such user-
interfaces, the designer must use the “single file” Ada code generation option from within
TAE+. The automatically generated TAE code is placed in the prototype directory in a
file called

<prototype_name>RAW_TAE_INTERFACE.a.

For details about how to integrate this file into a prototype, see Chapter

VII of the CAPS Tutorial by Brockett [Bro94].

d The Requirements Editor

The current version of CAPS does not have a sophisticated requirements
tracking or editing tool. Simple text editor integration is provided for editing
requirements documents associated with a prototype. CAPS will automatically present
the user with a list of all files with a “req” suffix when “Requirements” is selected from
the “Edit” pull-down menu. After a file is selected, the default text editor will be invoked
on that file.

e. The Change Request Editor

As with requirements, the current version of CAPS does not have a
sophisticated change request tracking or editing tool. Simple text editor integration is
provided for editing change request documents associated with a prototype. CAPS will
automatically present the user with a list of all files with a “.cr” suffix when “Change
Request” is selected from the “Edit” pull-down menu. After a file is selected, the default
text editor will be invoked on that file.

23

f The Translator

The CAPS translator converts a PSDL program into compilable Ada
packages which implement supervisory aspects of the prototype. The translator expects a
complete PSDL program as input, and creates several packages which make up, in part,
the supervisor module of the prototype. It is important to note that the translator does not
create Ada implementation packages for atomic operators or user-defined data types.
These must be either extracted from the software base, or custom-made by the designer.

g The Scheduler

The scheduler determines schedule feasibility for CAPS prototypes.
Information is provided to the scheduler via timing constraints from the prototype's PSDL
program. A prototype must be translated before it can be scheduled, and scheduled before
it can be compiled. Upon scheduling a prototype, CAPS provides schedule diagnostic
information which can be analyzed and used to direct timing constraint modifications.

h. The Compiler

CAPS uses the SunAda Ada compiler. The compilation process is
completely automated via the “Compile” command provided in the “Exec Support” pull-
down menu in the CAPS User-Interface. Successful prototype compilation requires the
formal parameter lists of atomic operator implementation modules to conform to CAPS

interface conventions.
i The Evolution Control System

The CAPS Evolution Control System (ECS) [Bad93] is a system that
supports distributed prototype development in a team environment. The ECS makes use
of a design database (DDB) for persistent storage of prototype development data. The
ECS supports maintenance of a designer pool from which to draw for prototype
development tasks. Within the ECS, prototype development is modeled as a series of

24

steps that are created by the project manager. These steps are automatically scheduled

and assigned to available designers.

J. The Merger

The CAPS Merger [Dam94] provides automated prototype change-
merging. Based on slicing theory, as applied to PSDL programs, the Merger automates
the combination of two separate modifications to a base prototype. The Merger detects
and warns of conflicts between the two changes to be merged. If no conflicts occur, or if
they are overridden, the Merger creates a PSDL program for the newly created prototype

which incorporates the changes of each of the modified prototypes.

k. The Software Base

The CAPS software base and its associated retrieval mechanism [Dol93]
provide access to a repository of reusable Ada and PSDL components. The software base
allows a designer to browse as well as query its components. Queries to the software base
can be in the form of keywords or PSDL specifications. In the current release of CAPS,
the software base matching mechanism is based on parameter matching.

E. THE PROTOTYPING SYSTEM DESIGN LANGUAGE (PSDL)

PSDL is a partially graphical specification language developed for designing real-
time systems. It has several facilities for modeling timing and control constraints, but is
also useful for requirements analysis and feasibility studies. It was designed as a
prototyping language specifically for CAPS, to provide the designer with a simple way to
specify software systems [LBY88]. PSDL places strong emphasis on modularity,
simplicity, reuse, adaptability, abstraction, and requirements tracing.

A PSDL prototype is built as an hierarchical structure of components, graphically
represented as data flow diagrams, and augmented with timing and control information.
Each component may contain zero or more definitions for OPERATORS and TYPES,

where each definition has two parts:

25

° Specification part. Defines the external interfaces of the operator or the
type through a series of interface declarations, provides timing constraints, and describes
functionality by using informal descriptions and axioms.

. Implementation part: Denotes what the implementation of the component
is going to be, either in Ada or PSDL. Ada implementations point to Ada modules, which
provide the functionality required by the component's specification. PSDL
implementations are data flow diagrams augmented with a set of data stream definitions
and a set of control constraints.

L PSDL Computational Model

PSDL is based on a computational model containing OPERATORS that
communicate via DATA STREAMS, where each stream carries values of a fixed abstract
data type. There are several ADTs already built into PSDL; the PSDL_EXCEPTION is
one of them. Modularity is supported through the use of independent operators that can
only gain access to other operators when they are connected via data streams.

The PSDL computational model is formally represented as an augmented graph
[LBY88]

G = (V.E,T),Cv)

where:

° Vis a set of vertices

] E is a set of edges

° Tv) is the set of timing constraints for each vertex v
J Civ) is the set of control constraints for each vertex v

Each vertex represents an operator and each edge represents a data stream.

a Operators

An operator represents either a function or a state machine. When it fires,
an operator reads one data object from each of its input data streams and writes ar most

one data object on each of its output streams. If the output depends only on the current

26

set of input values, then the operator represents a function. In other words, the same
response is given each time they are triggered. If, on the other hand, the output of the
operator depends upon the input values and on internal state values representing some part
of the history of the computation, then the operator represents a state machine.

A PSDL operator can be either atomic or composite. Operators that are
decomposed into lower levels are called composite operators, and they represent networks
of components. This decomposition is always functional. An operator that is not
decomposed is called atomic, and in the current version of CAPS, they are implemented in
Ada, but any language could be used for that purpose. According to the PSDL grammar,
it is in the implementation part of the operator that we can declare an operator to be

atomic or composite.

b. Data Streams

Data streams represent sequential data flow mechanisms which move data
between operators. There are two kinds of data streams: sampled streams and data flow
streams.

In PSDL the data trigger of a consumer operator determines the type of a
data stream. If the stream is declared in the “TRIGGERED BY ALL” clause of the
consumer operator, then the stream is a data flow stream. In all other cases it is a sampled
stream.

Data-flow streams in the current implementation are similar to FIFO
queues with a length of one. Any value placed into the queue must be read by another
operator before any other data value may be placed into the queue, or it will overflow.
Values read from the queue are removed from the queue, and if any attempt is made to
read from an empty queue, it will underflow. Sampled data streams may be considered as
a programming variable which may be written to or read from at any time and as often as
desired. A value is on the stream until it is replaced by another value. Some values may
never be read, because they are replaced before the stream is sampled. As can be seen,
care must be taken when reading values from uninitialized sampled streams. All PSDL

27

data streams contain, at most, one data item at any given time. In summary, it could be
said that a data flow stream guarantees that none of the data values are lost or replicated,

while a sampled stream does not make such a guarantee.

c. State Streams
A CAPS prototype is a well-formed PSDL program if its graph
representation (excluding all state streams) is a directed acyclic graph (DAG). This
restriction may not seem to make sense at first glance. However, when a prototype graph
contains a cycle, this indicates the presence of state information, and states must be
explicitly declared and initialized. PSDL fully supports the integration of states in its
prototypes.
| When a state is introduced into an atomic operator, it must be implemented
within the Ada code for that operator, and shouldn't appear in the graph as a self loop

state edge.

d. Types

PSDL user-defined data types are abstract data types (ADTs) which can be
used in CAPS prototypes. PSDL types, like PSDL operators, can be implemented in
cither PSDL or Ada. Types can be associated with a set of operators. Types implemented
in Ada are realized by an Ada package that defines a private type and a subprogram for
cach operator on that type.

e. Exceptions

Exceptions in PSDL are values that can be transmitted on data streams of
the type “PSDL_EXCEPTION™. During prototype execution, undeclared exceptions are
transformed into PSDL exceptions of the type PSDL_EXCEPTION, which is a subtype of
UNDECLARED_ADA_EXCEPTION. Exceptions can also be raised by explicitly
declaring them in the control constraints part of the PSDL program for the prototype.

28

J A Timers

PSDL timers are software stopwatches that are used to record the length of
time between events, or to control the duration the system spends in some particular state.
They are declared in the implementation part of a root operator, and are governed by the
control constraints “START TIMER”, “STOP TIMER” and “RESET TIMER".

2. Control Abstractions

As a major property of real-time systems, periodic execution, as well as other
timing related attributes, is supported explicitly. The order of execution is only partially
specified, and is determined from the data flow relations given in the enhanced data flow
diagrams, but also affected by the types of data triggers among operators.

There are several control aspects to be specified, such as whether the operator is
periodic or sporadic, the triggering conditions, and the output guards.

a Periodic and Sporadic Operators

PSDL supports both periodic and sporadic operators. Periodic operators
are triggered by the scheduler at approximately regular time intervals, so that they start
execution somewhere after the beginning of the period, and complete by some deadline,
which defaults to the end of the period. Sporadic operators are triggered by the arrival of

new data, and possibly at irregular time intervals.

b. Data Triggers

Any PSDL operator can have a data trigger, of which there are two kinds,
as illustrated by the following examples:

OPERATOR P TRIGGERED BY ALLX,Y,Z

OPERATOR Q TRIGGERED BY SOME A, B

In the first example, the operator P is ready to fire whenever new data
values have arrived on all three streams X, Y and Z (triggering set), although there may be

other streams coming into the operator P, in which case the data values do not need to be

29

new. This means that the data streams associated with X, Y and Z are data flow streams.
This kind of trigger should be used when the items in a stream represent discrete events
(e.g., transactions on a bank account) rather than samples from a continuous source of
data (e.g., a temperature sensor). This kind of trigger also ensures that the output of the
operator is always based on fresh data for all of the inputs in the triggering set.

The most important design consideration when “BY ALL” triggers are
used is management of the firing frequencies of the producing and consuming operators.
The period of the consuming operator must be smaller or equal to the period of the
producing operator, or stream buffer overflow errors will result (i.e., the consuming
operator must fire at least as often as the producing operator). This is because the data
streams in CAPS can hold a maximum of one data item. CAPS ensures that if the
consuming operator's period is less than that of the producing operator, the actual firing
rate of the two will be the same (i.e., “BY ALL” trigger data streams are tested for new
information prior to the actual firing of the consuming operator).

In the second example, the operator Q is ready to fire whenever new data
arrives on at least one of the inputs A or B. This kind of activation condition guarantees
that the output of operator Q is based on the most recent data from at least one of its
critical inputs A and B, mentioned after the TRIGGERED BY SOME clause. This is also
a very constrained condition, since the scheduler must guarantee that a new data in A or B
will not be lost.

If a periodic operator has a data trigger, the operator is conditionally
executed with the data trigger serving as input guard.

If a data trigger is not satisfied, the values are not read and, consequently,
not consumed from any of the input streams.

c. Execution Guards

The firing of a PSDL operator can be regulated by an execution guard.
Execution guards are conditional statements which are evaluated prior to firing the

associated operator. Execution guards can depend on data from any incoming data stream

30

and they can be combined with the “BY ALL” and “BY SOME” data triggers mentioned
above. Even if an execution guard is not satisfied, the values are read and consumed from
all the input streams, without firing the operator. Examples are:

OPERATOR R TRIGGERED BY SOME X, Y IF X > 20.0

OPERATOR S TRIGGERED IF X: EXCEPTION

d Conditional Output

PSDL conditional output is implemented in CAPS as guarded execution of
code that writes values to data streams. Conditional output does not affect the firing of an
operator, which will fire in accordance with the CAPS schedule regardless of whether or
not its output is written to an output data stream. The condition of an output guard may
depend on the output values of the operator, on the values read from the input streams,

and on the values of timers.

3. Timing Constraints

Operators can be time-critical or non time-critical, depending on whether or not
they are assigned a value for the maximum execution time (MET) by the designer. If
time-critical, they can be further subdivided into periodic or sporadic operators. Periodic
operators are explicitly assigned a frequency (PERIOD) of execution, meaning that they
will fire within regular periods, exactly once, but not necessarily at regular intervals of
time. Sporadic operators are not explicitly assigned a period, but they fire whenever there
is new data on a set of input data streams, having, however, a minimum interval of time
between successive firings. Periodic operators can also be triggered by the arrival of data.
However, this trigger will behave like a condition to be checked during periodic firing.
Every sporadic operator has an MRT and MCP in addition to an MET.

Timing constraints are an essential part of specifying real-time systems, and in
PSDL the following timing constraints are supported:

. Maximum Execution Time (MET)

L Period (PER)

31

o Finish Within (FW)

o Maximum Response Time (MRT)

. Minimum Calling Period (MCP)

] Latency (LAT)

. Minimum Output Period (MOP)

The MET reflects the amount of CPU time that an operator may use for execution,
and is applicable to both periodic and sporadic operators. Note that for atomic operators
the MET complies with the above definition. For the composite operator, however, the
MET is the maximum CPU time needed along any thread of control. Within CAPS, the
MET is assumed to account for the following: data triggering checks, stream reads,
execution guards checks, the execution itself, output guards checks, stream writes, and
exception handling.

This parameter is by itself one of the most difficult to quantify. It is, therefore,
unfortunate that it is also one of the most important parameters employed during the
scheduling process. Two alternatives can be taken: to use the worst-case execution times,
which can result in a poor processor utilization, or to use some value smaller than the
worst-case, which introduces the possibility of an overload. For reasons of safety, CAPS
uses the first approach by defining the MET as an upper-bound on the execution time.
For further reading about execution time issues refer to Leinbaugh [Lei80, LY82] and
Mok [Mok83].

Actually, due to the critical nature of the systems that CAPS was intended to
prototype, the worst-case approach has been used throughout its design. This approach is
observable even in the scheduling model, where the non-preemption option was chosen.
This is because, while it is true that if a non-preemptive schedule can be devised for a set

of tasks, then, it is possible to devise a preemptive one, but the opposite is not always true
[Bla76).

32

The MRT defines an upper-bound on the time between the arrival of new data that
satisfies all data triggering conditions of a sporadic operator and the time when the last
value is written onto the output stream. The MRT applies only to sporadic operators.

The MCP also applies only to sporadic operators, and represents a lower-bound on
the time between two consecutive triggerings of a sporadic operator. It constrains the
behavior of the producers of the triggering data values, rather than constraining the
behavior of the operator itself. Both timing constraints are illustrated in Figure 2.5.

As shall be seen later, each sporadic operator is going to be converted into an
equivalent periodic one, whose period is called the triggering period (TP).

Scheduling delay for a sporadic operator is the interval of time between the writing
into an output data stream by the producer and the corresponding reading of the input

values by the consumer.

MCP

Figure 2.5. Sporadic Timing Constraints

Periodic operators are triggered by temporal events which must occur at regular
intervals. For each operator, these activation times are determined by the specified period

(PER), which is the time interval between two successive activations. The period applies

only to periodic operators. Note, however, that there is a distinction between activation

time and the actual start time of a periodic operator as shown in Figure 2.6.

Tmeor T
SI
MET
Schedulin : v
1
ifation ' finish time

data tnigger zunﬁ

FW

PER

Figure 2.6. Periodic Timing Constraints

Finish within (FW) defines an upper bound on the finish time for a periodic
operator. The difference between the activation time and its deadline is called the
scheduling interval (SI) and it is equal to FW.

Scheduling intervals of a periodic operator can be viewed as fixed windows of a
size equal to FW, evenly separated by the period PER, and whose absolute position on the
time axis is determined by the start time ¢ of its first execution. For the first instance this
time may vary within the closed interval [0,PER] of the operator, and is called the phase
of the operator (Figure 2.7). Scheduling intervals for sporadic operators will be covered
in the next chapter, after we discuss how to deal with this type of operator.

Figure 2.7. The Scheduling Interval

The difference between FW and MET is called the slack of the operator. Table
2.1 summarizes the timing constraints for periodic and sporadic operators.

Maximum Execution Time (MET) Maximum Execution Time (MET)
Period (PER) Minimum Calling Period (MCP)
Finish Within (FW) Maximum Response Time (MRT)

Table 2.1. Main PSDL Timing Constraints

To express the behavior of distributed systems, PSDL provides two timing
constraints, Latency (LAT) and the Minimum Output Period (MOP). The latency of a
stream is an upper-bound on the duration of the time interval between the instant a data
value is written into a stream and the instant that data value becomes available for reading
from the stream. In other words, the latency attribute for a stream is meant to specify an
upper-bound on the allowable time spent by that stream in the network. This information
should be used by the scheduler to simulate the worst case behavior for the delay in the

network. Note, however, that this attribute does not explicitly require that the data

35

carried by the stream should be consumed, within the time interval, by the consumer
operator on the other side of the network. The notation LAT,y, will be used to denote the
latency associated with the stream between operators T, and T,

The minimum output period is a lower-bound on the duration of the interval
between two successive write events on the stream. In the absence of explicit
synchronization, both the latency and minimum output period of a stream have the default
value of zero (no delay, unbounded data rate). The purpose of these additional constraints
is to declare communication constraints that arise from hardware Limitations imposed by
external constraints on how the software functions must be allocated to different physical
nodes of a distributed system. Explicit modeling of these constraints is also sometimes
required to ensure feasibility, because latency affects calculations of time budgets, as well
as maximum execution times for composite operators. The effect of these constraints on
static scheduling is that data cannot be read from a stream until a delay equal to the
latency has elapsed, and that data cannot be written into a stream until the minimum

period has elapsed.
4. A PSDL Prototype Example

Figure 2.8 shows a simple autopilot system that illustrates some of the typical
features of PSDL. The example has a minimal specification part with an informal
description. The implementation part contains a graph, making the operator Autopilot a
“composite” operator. The figure also indicates maximum execution times, 170 ms for
operator display, S0 ms for operators compass and altimeter, and 75 ms for the remaining
operators. All operators are periodic with a period of 500 ms, except for the operator
control_surfaces, which is sporadic, with an MRT and MCP of 900 ms, as it is shown in
the control constraints part of the PSDL program.

Concluding, it can be said that the operator control_surfaces will be triggered
whenever there is new data in either the course_command or the altitude_command
streams. The operators correct_altitude and correct_course will be triggered whenever

there is new data in the actual_altitude and actual_course streams, respectively.

36

OPERATOR autopilat
SPECIFICATION
STATES delta_course:
STATES delta_altitude:
STATES desired_course:
STATES desired_altimde:
END

IMPLEMENTATION
GRAPH

170 ms

INTEGER INITIALLY 0
INTEGER INITIALLY 0
INTEGER INITIALLY 0
INTEGER INITIALLY 0

7Sms

DATA STREAM

actual_altitude: INTEGER,

actal_ooumse: INTEGER,

altitude _command: altiude_cammmand |

course_ocommand: oourse_caxnmand_type,

elevator_saus: elevalor_suats |

mdder_stats: rudder_status_type

CONTROL CONSTRAINTS

OPERATOR altimeter
PERIOD 500 MS

OPERATOR compess
PERIOD 500 MS

OPERATOR control_surfaces TRIGGERED BY SOME course_ d, altimude_¢
MAXIMUM RESPONSE TIME 900 MS
MINIMUM CALLING PERIOD 900 MS

OPERATOR correcy_altitude TRIGGERED BY ALL actual_skimde
PERIOD 500 MS

OPERATOR caxrect_course TRIGGERED BY ALL actual_course
PERIOD 500 MS

OPERATOR display
PERIOD 500 MS

END

Figure 2.8. Prototype of an Autopilot

37

38

III. FUNDAMENTAL ISSUES IN REAL-TIME SCHEDULING

A. THE SCHEDULING MODEL AND SOME DEFINITIONS

An instance of a prototype T can be thought of as the union of three disjoint finite
sets, namely the set P of periodic operators, the set S of sporadic operators and the set N
of non-time critical operators. Within CAPS, each periodic operator can be described, for
scheduling purposes, as a three-tuple (MET,, PER,, FW,), where MET is the maximum
execution time used by each instance of operator X, PER, is its period and FW; is the
length of its scheduling interval. Likewise, each sporadic operator can be described as a
three-tuple (MET , MCP,, MRT;)*, where MCP is the minimum period between two
consecutive instances of operator X, and MRT is the upper bound on the time between
the triggering of operator X by some new data arrival, and the completion of writing to all
of its output streams. The superscript SP is used in the sporadic case, only to distinguish
from the three-tuple of the periodic operator. Given any static schedule for a prototype T,
we shall use s, fx and di to denote the actual starting time, completion time and deadline

of the i® instance of operator X in the schedule. In any feasible schedule, we must have

0 <s)x PER;
and

dix = six + (i - 1) X PER; + FW, Eq. (1)
for every periodic operator X, where sy, is called the phase of operator X as defined in
Chapter I1. Note also from Eq. 1 that the deadline for the first instance of any operator is
calculated relative to its start time rather than from time zero'. This condition will release
the scheduler from enforcing the condition that the first instance of operator X should
finish by the time PER,. Whenever possible, it is going to be used the letters X and Y to

denote operators, leaving the letters i and j to denote their corresponding instances.

LTime zero is defined as the time when prototype starts execution. In reality it is the start time of the
first operator according to the topological sort.

39

Since, in general, the release time does not affect the complexity of the scheduling
problem [Mok83], it will be assumed that all first instances are released at time zero, but
may be constrained by the precedence relationship between the operators, if one exists.

By definition, every periodic operator must start and finish execution within its
period of activation.

The following restriction is also imposed on the model, where the maximum
execution time must be smaller or equal to the finish-within, which in turn must be smaller
or equal to the period:

MET <FW <PER

Clearly, the first inequality is needed, otherwise there is no way to execute such an
operator within the specified amount of time (FW).

One may want to argue that there is a need to relax the second inequality to PER <
MET < FW. Since PER < MET, such processor demand can only be satisfied using
pipelining in a multiprocessor environment [Lug93, LSB93], which will be discussed in the
next section.

Note that for the sporadic operator all of the above assumptions are also
applicable, since they will be converted into equivalent periodic operators, as can be seen
later in this chapter.

The Harmonic Block (HB) of a periodic task set P is the least common multiple
(LCM) of all the periods in P. It is the interval upon which the task set will be tested for
schedulability. If a feasible schedule can be found within 2xHB, in the case where
latencies are not allowed in the schedule, or in at most 3XLCM if latencies are allowed,
then it is possible to say that the same pattern can be repeated forever. This topic will be
further discussed in Section C.

A prototype T is said to be schedulable if there exists a schedule such that the
completion time for the execution of instance i of operator X (fi) is less than or equal to
its corresponding deadline dy, for all i and X, and the precedence constraints of the
prototype T are satisfied.

The precedence constraint between operators X and Y, written as X < Y, where <
denotes a partial ordering on the execution of tasks X and Y, is satisfied if

V instances i,j (i-1) X PER; + s1x < (j-1) X PERy + 51y

and
(G-1XPER, +s1y + A <i X PERx + 51x
where (i-1) X PER, = (j-1) x PERy ? and A equal the maximum time to read input by
operator Y.

Operators from either the periodic set P or from the sporadic set S are non-
preemptable, which means that once they start execution they will run to completion. The
only operators that can be preempted are those belonging to the set N.

No idle time is inserted into the static schedule, unless there are no operators ready
to execute.

All timing information is assumed to be an integral multiple of a basic unit of time,
which within CAPS is assumed to be the millisecond. Table 3.1 presents a summary of the

major assumptions of the scheduling model.

For all periodic operators MET £ FW < PER
All time-critical operators are non-preemptable
Time is discrete
A periodic operator is completely specified by the tuple
(MET, PER, FW)
A sporadic operator is completely specified by the tuple
(MET, MCP, MRT)*"
Static Scheduling is assumed

Table 3.1. Summary of our Scheduling Model

In the next section, a series of theorems on schedulability for a set of independent
non-preemptive periodic task sets will be presented. They will provide the necessary
background to build a framework upon which the later sections of this chapter will be
based.

2 This condition will be relaxed after we present our new synchronization model in Chapter IV.

41

B. CONDITIONS FOR SCHEDULABILITY OF NON-PREEMPTIVE TASKS

In this section, a series of schedulability checks are introduced for a periodic task
set P that has no precedence constraints. These results will be also applied to a set of
periodic tasks with precedence constraints in Section D of this chapter.

1. The Maximum Execution Time Theorem

When dealing with non-preemptive uniprocessor static scheduling a sufficient
condition for unfeasibility occurs whenever a task requires more computation time than
the period of any other task, or more specifically, more than the minimum period among
all tasks. Formally:

Theorem 1:

“For an independent periodic task set P, if 3 some tasks X and Y e P, such that
MET; 2PER; then P is not schedulable in the uniprocessor case by any non-preemptive
algorithm. Furthermore, if X = Y then neither the preemptive nor the non-preemptive
algorithms can find a feasible schedule.”

Proof:

Clearly, whenever task X executes, task Y, which happens to have a smaller
period, will be blocked for an interval of time bigger than its period, which is contradictory
with the definition of a periodic task. a

Note that the Theorem still holds if precedence relationship exists among the tasks
in P. This same result is also valid for a sporadic task set when MET, > MCP, forX =Y
(trivial case). However, for X # Y the situation is slightly more complex, and there are
two cases to consider. The first is when MRT, < MCP,, and it is clearly not schedulable.
The second case is when MRT, 2 MCP,, and the set is not schedulable if MET, + MET, >
MRT,, as shown in Figure 3.1.

42

- ’ .

M,

Figure 3.1. Theorem 1 for the Sporadic Case

Corollary: (for the distributed case)

“For an independent periodic task set P, if 3 some tasks X and Y € P, such that
MET, 2PER,, then in order for P to be schedulable in the multiprocessor case, tasks X
and Y must be placed in different processors, and if X = Y, then it must be pipelined.” O

The conditions imposed on a task X for it to be pipelineable as well as a detailed
description of pipelining in this context, can be found in the work of Luqi [Luq93] and
Lugi, Shing and Brockett [LSB93].

There are two ways to handle pipelining. The first is to use task migration at run-
time, which involves sending a copy of the code and data to be executed in the other
processor. This presents the following problems:

1) It increases the context switching overhead, with direct impact on the timing

constraints

2) There is a need to create an additional task to handle the dispatching of tasks

3) Itis not well suited for static scheduling

43

The second approach is to replace the tasks to be pipelined in the other processors
in a pre-processing step. For example, consider a periodic operator OPA(150,100,150)
with inputs D1, D2 and output D3 as shown in Figure 3.2. As shown in Figure 3.2b, we
can replace operator OP, with two identical operators, OPy(150,200,150) and
OP¢(150,200,150), with twice the original period and a state stream syn, whose latency
equals the time taken by the non-overlappable segment of the code implementing operator
OPa. The operators OPg and OPc will be triggered alternately on the value of syn.

PART A PART B

D1 D2

D3

Figure 3.2. Pipelining Operators

The replication of tasks throughout the system presents the followin g problems:
1) It increases the memory requirements for the processors
2) It demands highly sophisticated mechanisms for implementing tight
synchronized schedules among the processors, which restricts this approach to
the shared memory models with a global clock
Both of the above discussed methods, however, suffer from the very serious
problem of having to quantify the timing parameters of the segments of code that cannot
be overlapped, which is by itself one of the hardest ones. If those timing parameters could
be known in advance, then the operator could be separated into independent parts, and
pipelining would not be needed.

The validity of pipelining in a hard real-time environment is therefore questionable,
and, furthermore, it is impossible to implement in a distributed system where there is no

inexpensive method by which to assure tight synchronization among tasks.
2, The Finish-Within Theorem

Theorem 2:

“For an independent periodic task set P if 3 some indivisible task X € P such that
MET; > FW, then P is not schedulable under any scheduling algorithm, not even in a
multiprocessor environment.”

Proof:

Clearly, if MET, > FW,, the only way to handle this casé is if we could split task X
into two or more data independent partitions, so that they could run in parallel on different
processors, but, as stated in the theorem, X is indivisible. Q

Note that this theorem can be easily extended to cover the sporadic case when
MET; > MRT.;. It is also applicable to the case where we have precedence constraints in
the set P.

3. The Minimum Period Theorems

In the other extreme of Theorem 1, there is a sufficient but not necessary condition
to guarantee schedulability of an independent periodic task set, as stated in Theorem 3:
Theorem 3:

n
“For a periodic task set P, if V tasks X € P, FW, 2 PER, and 3 MET, < PER,
x=]

where PER, denotes the minimum period in P, then P is schedulable.” *

Proof:

The minimum period is certainly a divisor of the least common multiple of the
periods (LCM), and, as such, it can span the entire LCM within an integral number of

3Similar result was achieved independently by Zhu, et al. [ZL.C94) using the concept of critical time
section.

45

steps. It is a kind of sliding bin-packing where a sliding window of size equal to the
minimum period is present and, always large enough to fit all tasks present in that window.
Of course, depending on the periods, all instances may not be active simultaneously in that
specific window. However, in the event that it does happen, the instances will always fit
in there. a

As shall be seen later, this theorem is valid even when precedence constraints are

taken into consideration.

OP 1 (-’3 wo—)
OP5(-,200,-)
OP3(~400,-)
OP4(~,600,-)

Figure 3.3. The Minimum Period Sliding Window

It is possible to use a counter example to show that the above condition is a
sufficient but not necessary condition. Consider two periodic tasks with the following
timing constraints: (5,10,10) and (2.5,5,5). The sum of METs is bigger than the minimum
period, but this task set is still schedulable.

What happens if all deadlines are restricted to be less than or equal to their
corresponding periods? In this case it could be said that Theorem 3 is not applicable, as
illustrated by the following example: (3,5,3), (1,10,3).

46

Theorem 4:

n
“For a periodic task set P, if V tasks X € P,):1 MET, £ FW,, where FW, denotes
X=

the minimum FW in P, then P is schedulable.”

Proof:

The same idea of sliding bin-packing applies here. Now, however, the size of the
bin must be decreased. In other words, the “bin” now should be understood to be the
least value among all periods and FW, among the tasks from P. a

The next theorem to be presented is the Load Factor Theorem, which is very well
known in the field of scheduling. It defines a necessary condition for the schedulability of
a periodic task set, and it basically stipulates that if the summation of all individual load
factors (MET,/PER;) is bigger than the number of available processors, then the set is not
schedulable [LL73].

4. The Load Factor Theorem

Theorem 5:

. . .. 9 MET: . .

‘For a periodic task set P, if Y “PER. > k, where k is the number of available
x=1 X

processors, then the set is not schedulable.”

Proof:

A very simple proof is given independently by Zhu [Z1.C94] and Jeffay [JSM91]
for the case where k equals 1. Basically, if both sides of the inequality are multiplied by
the least common multiple (LCM) of their periods, it does not affect the inequality, but

now

n LCM
3 METxxpep—>LCM Eq. (2)

Clearly, the ratio LCM/PER; defines an integer that represents the number of
instances for each task X within the LCM. If the number of instances of each task is

multplied by its maximumn execution time and the results are then added, the result is the

47

total computation time needed by the entire task set. According to Eq. 2, however, the
total computation time needed is bigger than the LCM. In other words, even if all
instances are executed one after another, they would not be able to finish within LCM.
The case for k greater than one follows automatically. a

It should also be clear from the proof of Theorem 5 that it is valid to both
preemptive and non-preemptive algorithms [ZL.C94].

5. The Task Demand Theorem

The following theorem is based upon the previous work of Jeffay, et al. [JSM91]
which established necessary and sufficient conditions for schedulability of an independent
periodic task set in a non-preemptable uniprocessor environment. The theorem to be
introduced next is an adaptation for the scheduling model used in this dissertation. It
differs from the original theorem in that Jeffay’s model accounts for, tasks that are
independent, there was no explicit deadline for the tasks other than their own period, and
his definition for a schedulable set of tasks required that both conditions in the theorem
should be valid for every concrete task set generated from P, where a concrete task set can
be viewed as the original independent periodic task set P with specific release times for the
first instance of every operator in P.

The inclusion of the deadline which differs from the corresponding period into the
problem made it a lot more complex, since tasks can now finish as early as their MET.
The new results are presented in the following theorems:

Theorem 6:

“For an independent periodic task set P, where the tasks are sorted in non-
decreasing order by finish-within (i.e., for any pair of tasks X and Y, if X < Y, then FW, <
FW,), if there exists a feasible schedule for every concrete task set in P, then the following
conditions hold: ”

3 METx
<
D x§l PERx <1,

48

. LCM .
2) Vx,1<x<n; Vk,0_<_k<PERx ;

n
y);lN(y, k x PER, +FW,) x MET, <k X PER, +FW,

3) Vx,1<x<n; VL, FW;<L<FWx;

x—1
L2MET, + El N(y, L-1)XxMETy
y=

lpé-R J if Lmod PER, < FW,
where N@y,L)= [Y

L .
PER, J+1 if Lmod PI:'.Ry 2 PWy

and LCM is the least common multiple of all the periods of the periodic task set.

Proof:

Condition 1) is basically Theorem 5 for the uniprocessor case. Conditions 2) and
3) together say that for the set to be schedulable, the processor demand in the interval
[0,L] (i.e., the sum of computation times from all instances that must finish in the interval
[O,L]), must always be less than or equal to the length of L. As in Jeffay’s work [JSM91],
the contrapositive of Conditions 2) and 3) will be proven. To prove the contrapositive of
Condition 2), consider a concrete set of periodic tasks {Tj, Ta, ..., Ta} where for 1 X <
n, the release time of the first instance of Task Tx = 0. Then, forevery X,1<X <n, and

everyk,0<k< L1CM , the processor demand, dojo@er 47w from all task instances that

PER,
must finish in the interval [0, kxPER+FW,] is given by
n
do,bdnzn{pw‘ - le(y'k X PERx + wa) X NfETy
y=
So if Condition 2) does not hold, then there exist an X and a k such that
do OPER_+FW, > kxXPER,+FW, and P has an unschedulable concrete set.

To prove the contrapositive of Condition 3), consider a concrete set of periodic

tasks {T), T2, ..., To} where for some task T;, the release time of its first instance is T; =

49

0, and for all Y # X, the release time of the first instance of task T, = 1, as shown in

Figure 3.4.
Tl l 1 l 1 l 1 l 1
Tz l 1 l 2 | 1 l 4 I 1 I
-]
T e, |
| |]
. (-]
\ (-]
T, L. °
I 2 1 j'
0 1MET, FWq time

Figure 3.4. Different Task Release Time for Task X

Since neither preemption nor inserted idle time are allowed, the first instance of
task Ty must execute in the interval [0,MET,]. For all L, FW, < L < FWx, in the interval
[O,L] the processor demand do;, from all task instances that must finish by time L, is given

by
-1
dor = MET, + le N(y.L-1)xMET,
y=

So, if Condition 3) does not hold, then doy > L, and P has an unschedulable concrete set.CJ

Note also that the function N(y,L) can also be expressed in closed form as follows:

NU,L)=[FEI-§—J+mn L 1
d FW, +[FEL}{—JxPERy
y

50

The left hand side of the addition operator specifies how many full periods there
exist for task y within L, while the right hand side specifies whether the remaining fraction
of a whole period is large enough for a scheduling interval (i.e., FWy) of task Y. The
minimum comes into play because if FWy < L/2 < PER, , it would contribute more than
once for the processor demand in the first period, which cannot occur.

As an example consider the task set T1(8,45,20), T»(9,40,30), and T3(10,100,100),
already sorted by FW.

Clearly, n = 3 and the interval of interest is 20 < L < 100.

Leti=1, then L = 20, which is the trivial case.

Leti=2,then20<L <30

for20<L <30, Lmustbe=>9+8
Leti=3,then20<L <100

for20<L <30, Lmustbe>10+8

for30<L <65 Lmustbe210+8+9

for65<L <70, Lmustbe>210+8+8+9

for70<L <100, Lmustbe210+8+8+9+9

If the task set was not approved in all conditions, it could be said that there exist at
least one concrete task, that could not be scheduled. Alternatively, if all conditions were
satisfied, then nothing else could be stated before Theorem 7 is introduced.

Theorem 7:

“If an independent periodic task set P is schedulable according to Theorem 6, then
the non-preemptive Earliest Deadline First (EDF) algorithm will be able to find a feasible
schedule for P.”

Proof:

As in Jeffay’s work [JSM91] this theorem shall be proved by contradiction.
Assume that a task in P misses a deadline at some point in time when P is scheduled by the
EDF algorithm. Let t4 be the earliest point in time at which a deadline is missed. All

instances of P can be partitioned into three disjoint sets S;, S, and S; where:

51

S, is the set of task instances with a deadline at ty;

S, is the set of task instances with an invocation before ty and deadlines after t,
and

S; is the set of task instances not in S; or S,.

Let to be the end of the last period prior to ty , in which the processor was idle. If
the processor has never been idle, then to = 0. Since neither preemption, nor inserted idle
time are allowed, all task instances which are executed in the interval [to, t3] must be
activated at or after to . Depending on whether the interval [to, ts] contains any task from
the set S,, the following two cases exist:

Case 1: None of the tasks in S; are scheduled in the interval [to, tg].

This case only happens if to = 0. Otherwise, we either have an instance that misses
its deadline in the interval [0, to] if to -0 > t4 - to , or the processor has an idling period in
the interval [to , t4], if -0 < t4 - to. Furthermore, ty S LCM. Otherwise, we must have
another instance that misses its deadline prior to t,.

Let Tix be the task instance that misses the deadline at time ta. Then, ty - 0 =

kxXPER,+FW, for some k, 0 <k < FLECRLA- . The processor demand, d, JoPER W, from all
X

instances which must finish in the interval [0, kxPER,+FW,] equals
n
N(y,k x PER, + FW,) x MI:‘.Ty
y=1

and it is greater than kxPER,+FW, , a contradiction.
Case 2: Some of the task instances of S, are scheduled to run in the interval [to, t]).
Let T be the last instance in S, scheduled to run prior to ty in the interval [to, ty)
and let t; be the starting time of T. The invocation time of all task instances scheduled to
start in the interval [t,+1, ts] must be at or after t,+1 and with deadline at or before t4,
otherwise the EDF algorithm will not schedule T to start at t.. Hence, the process

demand for the interval [t;, tJ], dy,, 1, » must be bounded from above by the inequality

52

-1
di, 1, <MET; + x):l N, ta - (1)) X MET,
y=

Since there is no idle time in [t;s, tq], and since a task missed a deadline at tg, it
follows thatdyg, ¢, > ta - tix.
LetL =t4 - tx. Then
FW; <L <FW;

and

x-1
L <dy, g SMET,+ 3, NG, L1)XMET,

contradicting condition 3 of Theorem 6. O

Note that Condition 3 in Theorem 6 is a sufficient but not necessary condition for
schedulability of a particular concrete task set, as illustrated by the following example.
Consider the task set T;(100,150,150) and T»(100,300,200). Clearly it does not satisfy
Condition 2, a feasible schedule may still be found if their release times are zero.
However, if the release time of T is changed by only one unit of time, then the set is no
longer schedulable.

Jeffay, et al. [JSM91], have shown that the problem of determining whether a

feasible schedule exists for a particular concrete task set is NP-Hard.

C. THE HARMONIC BLOCK DILEMMA

It is a well known and accepted result that the least common multiple (LCM) of
the periods of a periodic task set provides a finite interval of time, for which a cyclic
schedule can be calculated, if one exists, and repeated forever [Mok83].

Many interpret the above statement to mean that a cyclic feasible schedule must
only exist in the closed interval [0,LCM], i.c., a feasible schedule for all tasks instances
that must start in the interval [0,LCM] and complete execution by time LCM. Such an
interpretation holds only if the first instance of every task T is restricted to complete its

execution by time PER,. But what if such a restriction is not desirable? It seems very

53

reasonable to allow the first instance of a periodic task to start within its period of
activation but finish up to the end of the period plus its computation time, and actually this
would be a very desirable property, if it could somehow improve the already difficult
problem of non-preemptive scheduling.

Consider the task set T;(190,600,600) and T2(20,200,200) with the precedence
relation T; < T, as illustrated in Figure 3.5.

OP, (190,600,600) < OP,(20,200,200)

Figure 3.5. The Transient and Cyclic Schedules

Clearly, no feasible schedule exists if the first instance of every task Ty is restricted
to complete its execution by time PER,. However, if it is allowed to the first instance of
every task T, to start by time PER, and complete its execution by time PER, + MET,,
then a feasible schedule exists. Note also that the cyclic schedule no longer starts at time
zero, but starts instead at time t., and furthermore, there can be more than one task
instance that does not finish by time 2xLCM, as can be illustrated by the task set
T:(4,100,100), T2(2,5,5), T3(2,100,100) and T«(3,10,10), with precedence relations T; <
To<Ts<Ta.

Here is where a novel approach on how to determine what is a suitable cyclic

schedule comes into play. The fundamental concept is that a feasible static schedule

54

consists of two parts: a transient part, which may be empty, followed by a cyclic part,
which repeats forever.

The next theorem, the Harmonic Block Theorem, although different from the one
introduced by Zhu, et al. [ZL.C94], was created after a careful analysis of their work,
which does not correctly solve the problem. The general direction of the proof will
consist in showing that if the premises of Theorem 8 are satisfied, then there exists some
time t. where a part of the schedule can be divided, with exactly the size of one LCM,
where it is guaranteed that the correct number of task instances are present, and most
importantly, that they all start and finish within that time interval, characterizing the cyclic
part of the new schedule.

Theorem 8: The Harmonic Block Theorem

“If 3 an infinite feasible schedule S without any inserted idle time for a periodic
task set P with precedence constraints, such that the first instance of every task, Tx in P
must start by time PER,, then there exists an infinite feasible schedule S’ consisting of a
transient portion of length at most LCM, followed by a cyclic portion of length LCM that
repeats forever.”

Proof:

If there is no idling time period in the intervals [0,LCM] or [LCM,2xLCM], then
the given set of periodic tasks P must have a load factor of 1, and the first instance of
every task T, must finish its execution at or before time P, in any feasible schedule.
Hence, the segment of S in the interval [0,LCM] forms the cyclic portion of an infinite
feasible schedule satisfying the Theorem.

Suppose now that idling time exists in the intervals [0,LCM] and [LCM,2xLCM].
Let t. be the end of the last period prior to time LCM in which the processor was idling in
S, and let t, be the end of the last period prior to time t.+LCM in which the processor was
also idling in S as shown in Figure 3.6.

55

Wﬂ

T T ' 1
t-LoM 1. LoM 1] te+LoM

F
0

Figure 3.6. Determining the Start Time t. of the Cyclic Schedule

Assertion (1)

Since no unnecessary idle time is inserted in our schedule S, it should be clear that
there cannot be any first instances of tasks being activated after time t., because otherwise
they could have started execution before time te.

Assertion (2)

Another important point to be made is that all tasks which start after time t, could
not be activated before time t;, for the same reasons of non-inserted idle time in our
schedule S.

Assertion (3)

Every task instance that is activated in the interval [t;,t.+LCM) must finish its
execution at or before t.+LCM. Suppose this claim is not true. Then there must exist
some instances which are activated before t.+LCM and cannot finish at or before t.+LCM.
Denote the collection of all instances which are activated in the interval [, , t. + LCM) by
T. It follows from assertion (2) that every instance in T must be activated in the interval
[ti,t+LCM). This implies that

Tuze‘tmu> t.+LCM-1, (i)

Let v denote the set of task instances that are activated in the interval [1,-LCM,t,).
It follows from assertion (1) that every task instance in T must have a corresponding

instance in . Thus ltl € 7], and YMETixS Y METjy (i)
Tixe‘t TiyET’

56

Note that all instances in " must finish within the interval [t;-LCM,t.], because t, is

the end of an idling period. Hence,

2 METy <t - (t-LCM) = t+LCM-y, (i)
TiyET'

From inequalities (i), (ii), and (iii),
t+LCM-t; < Y METjx <t+LCM-t;,

Tix€T
which is a contradiction.
Assertion (4)
All instances after t. are at least second instance and hence, for all tasks T, within

LCM
PERx

finish within this same interval. The segment of S in the interval [t. ,t.+LCM) contains the

the interval [t. ,t.+LCM), there must exist activations. By assertion (3) they all

correct number of instances.
Concluding the proof, it can be said that the intervals [0,t] and [t.,t.+LCM] of S
form respectively the transient portion and the cyclic portion of the new schedule S’,
satisfying the consequence of the Theorem. O
As can be seen, by a proper choice of the start time of the cyclic portion of the
schedule, one can increase the schedulability of tasks sets which were previously assumed
to have no feasible schedule, when the cyclic schedule was restricted to always start at

time zero. Note also that the same approach is valid for preemptive task sets.
D. A NOTE ABOUT PRECEDENCE CONSTRAINTS

Every reference to the word precedence constraints between tasks is usually
artached to the meaning of synchronization, in other words, if two tasks have some kind of
precedence relation, then they must be synchronized. Furthermore, if their periods are
different, then they should be synchronized at intervals corresponding to the least common
multiple of their periods. But then, what is the real need for synchronization if there are
cases where some data may well be lost? Does it exist only to enforce a fixed pattern on

how data are lost, e.g., instances three from task X and two from task Y, six and four and

57

so forth will synchronize? These and other questions will be much further discussed in
Chapter I'V.

We shall argue in Chapter IV that the major reason for synchronization is to
guarantee timely processing of triggering data. We shall show that, by relaxing the upper
bound on the delay in processing each instance of triggering data, we can guarantee that,
even without explicit synchronization, each instance of the trigger data will be processed
within an interval equal to two times the period of the consumer operator. The removal of
the need for synchronization is particularly important in distributed systems, where
synchronization mechanisms are very costly if not impossible. It is also desirable not to
have synchronization in uni-processor systems, because now, we can treat each
topological ordering of the tasks satisfying the precedence relationships as a concrete set
of periodic tasks, where the starting time of task Ty is greater than or equal to the sum of
the MET), of all tasks T, that are ancestors of Ty in the task graph.

Note that if non-zero latency is present in the edges of the precedence graph, then
we must further delay the starting time of the first instances of every task Y, so that Sy 2
max {S,+MET:+LAT,, , Vparent operator T, of T,}, where LAT,, denotes the latency
associated with the edge (T, Ty).

In order for the arguments in the proof of Theorem 8 to hold, we need to choose t.
to be the end of the first idling period after time LCM, resulting in a Modified Harmonic
Block Theorem that reads:

Theorem 9:

“If 3 an infinite feasible schedule S for a periodic task set P with precedence
constraints, such that the first instance of every task, T, in P must start by time PER,, then
there exists an infinite feasible schedule S’ consisting of a transient portion of length at
most 2xXLCM, followed by a cyclic portion of length LCM that repeats forever.”

Proof:

The main difference when dealing with latencies, is that idling periods may exist
before the starting time of the first instance of some task T, in the schedule. Theorem 8

58

still holds for this case, because the presence of idling time only affects the release time of
the tasks, as long as PER, 2 S;, 2 max{ Six+METx+LATy }. However, for Theorem 8 in
Section C, the cyclic portion of the schedule may now start after time LCM. The reason is
because the schedule S may contain first instances in the interval [t;, t.+L.CM], which was
the key in our previous proof of Theorem 8. After these considerations, the same proof

used for Theorem 8 can be applied to this case. O

E. COPING WITH APERIODIC TASKS
Generally speaking, a sporadic task is defined as an aperiodic task that has a

minimum duration between two consecutive activations. If that was not so, neither the
static nor the dynamic approach could be used to guarantee schédulability.

If interrupts are used to detect the occurrence of aperiodic events at run-time, then
a dynamic approach should be used. However, in the static scheduling framework, where
all the tasks requests must be known a priori, so that a fixed and static schedule can be
generated, the only way to handle sporadic tasks where we do not know exactly when
they are going to happen, is by using a periodic process to function as a polling device. Its
main role is to check for requests of sporadic tasks and to serve them during its allocated
time slot. However, due to the random nature of aperiodic processes, we may not be able
to handle a concentrated set of arrivals or even worse, not catch them at all with the
sporadic server approach. To overcome this difficulty, several bandwidth preserving
algorithms have been proposed. Among them could be mentioned the Priority Exchange,
Deferrable Server and the Sporadic Server. [AB93]

The CAPS approach was to use one sporadic server for each time-critical sporadic
operator. This approach, although very restrictive, is the only way to guarantee that all
time-critical sporadic tasks would be serviced in a timely fashion under the worst case
situation.

Therefore, the next step is to convert the sporadic operator into a periodic one so

that all the original timing constraints from the sporadic operator are still satisfied.

59

1. The Conversion

The term triggering period (TP) will be used for the period of the converted
sporadic operator and the usual term FW for its finish-within. As shown in Figures 3.7
and 3.8, basically two cases can occur:

The first is when MCP < MRT - MET and the equivalent periodic operator must
have TP < MCP in order to satisfy the original timing constraints. Also, must enforce that
FW = MRT - MCP, so that in the critical case shown in Figure 3.7, the data that was
missed by the previous triggering period can be consumed by the next TP and still finish
within the original MRT.

MRT

Figure 3.7. The Sporadic Conversion when MCP < MRT-MET
The second case, shown in Figure 3.8, occurs when MRT - MET < MCP. This

more constrained situation forces a further reduction in the triggering period. Thus, the
new TP should be TP < MRT - MET and the FW should be equal to MET.

Case B
MCP > MRT - MET

TP SMRT - MET
FW = MET

MRT

New

Den

I Triggering Period
I

L4

MCP

Figure 3.8. The Sporadic Conversion when MCP > MRT-MET

In general, the triggering period should be
MET < TP < min(MRT - MET, MCP).

Nevertheless, in order to minimize the impact on the load factor of the prototype,

it is desirable that TP be as large as possible, meaning that

TP = min(MRT - MET, MCP).

Now, assuming that the values for TP and FW have been established, so that the
original timing constraints of the sporadic operator are satisfied, let's see what kind of

relations should exist between the original values, so that we could validate them.

Clearly:

] MET < MRT (by Theorem 2)
] MET < MCP (by Theorem 1)
L MET < TP (by Theorem 1)

61

Eq. (1)

. TP < MCP (for static scheduling)*
. MET<FW<TP (Scheduling Model) Eq. (2)
For case A: MCP < MRT-MET

TP = MCP Eq. (3)
and
FW = MRT - MCP Eq. (4)
Plugging (3) and (4) into (2),
MET < MRT - MCP < MCP Eq. (5)
From the right inequality of (5),
MRT <2 x MCP
Plugging (1) into the left inequality of (5),
MRT 2 2 x MET
For case B: MRT-MET < MCP
TP = MRT - MET Eq. (6)
and
FW = MET Eq. (7)
Plugging (6) and (7) into (2),
MET < MET < MRT - MET Eq. (8)
From the right inequality of (8),
| MRT 2 2 x MET
Also,

MRT-MET<MCP or MRT-MCP<MET
Plugging (1) into the above inequality,
MRT-MCP<sMCP or MRT<2xMCP
Therefore the MRT for a sporadic operator must be upper bounded by twice its
MCP and lower bounded by twice its MET, as follows:

“ Otherwise we would have 1o be able to detect at run-time when new data had arrived, only possible
with dynamic scheduling.

62

2xMET <MRT <2 x MCP
Note that when MRT assumes its lowest possible value, which is 2 x MET, the
triggering period TP will also reflect its lowest possible value, which is MET, with FW
still being equal to MET. This case is illustrated in Figure 3.9.

Worst Case
MRT =2 x MET
TP = MET
FW = MET
New New
Data Daa
MET

A
TP FW J
[MRT !

r MCP -

Figure 3.9. Worst Case Situation

Note that in both cases the conversion of a sporadic operator results in very
stringent timing constraints to the equivalent periodic operator. This will definitely have a
great impact on the schedulability of the prototype. In the second case, for example, there
is no slack time for the converted operator, since FW = MET. This forces us to remove
out portions of MET from the schedule, where no other operator could be scheduled.

Of course, the amount of slack time for this operator can be increased by
decreasing its TP, but this will also increase the entire load factor. Basically, there exists a
trade-off between load factor and slack time. How much to increase one in detriment of

the other to increase schedulability is a very difficult question.

63

While this question does not have an answer, it does offer suggestions to help
designers in finding solutions that best fit their needs.

When converting a sporadic operator into an equivalent periodic one, the
triggering period (TP) can range from a minimum of MRT/2, where the slack time is equal
to MRT/2 — MET, up to a maximum value equal to min(MRT-MET, MCP), implying that
the slack time is max((MRT-MET-TP), 0).

First, define load factor contribution as LFC = ——
TP TPau

, i.e., the difference

between the corresponding LF for a specific triggering period TP, and the load factor if
TP were set to its maximum value. Within the interval MRT/2 < TP< min(MRT-MET,
MCP), the slack time ST, which is the scheduling interval for the sporadic task minus its
computation time, is defined as ST = MRT - MET - TP, as can be derived from Figures
3.7 and 3.8.

Clearly, when TP is maximum, the load factor contribution (LFC) is zero, in the
sense that it cannot be increased any further. For the other values of TP, including those
enforced in the conversions for the previous cases A and B, some considerations must be
taken into account. Assume that MCP > MRT-MET. Although it may appear at first that
LFC varies with MRT, since TP is lower bounded by MRT/2, that is not the case, in other
words, MRT only limits the valid range for TP. Figure 3.10 shows a family of curves for
different values of MCP, and for a fixed value of MET and MRT. As explained earlier,

LFC is insensitive to changes in MRT.

The load factor contribution LFC, as previously defined, is a function inversely
proportional to the triggering period TP, and that it will decrease faster for periods less
than TP, =+/MET , where its first derivative with respect to TP is equal to -1%, Note,
however, that TP cannot be smaller than MET, meaning that TP, will always be located

5 Care must be taken to the fact that the derivative at some point being equal to -1, does not imply
that the slope equals 135° at that point, since both axes may have different scales, as shown in Figure 3.10.

64

to the left of any valid value for TP. The main conclusion is that different values of MCP
have very small effect in the variation of LFC. Similar conclusion can also be drawn for
the case where MCP < MRT-MET. Therefore, in any case, the consequence is that we
always have the full range of TP, from MRT/ 2, up to min (MRT-MET, MCP) to change

TP, without causing any harm to the load factor of the system.

05
045

04
0.35
0.3

02

0.15

0.1

005 |
0

150 200 250 300 350 400 450 500 S50 600
Triggering Period

Figure 3.10. Effects of TP on the Load Factor

Note that the very first question remains unanswered, but now, the effects in the
total load factor are more clearly understood when the triggering period is changed.

2. Important Remarks about the Conversion

This first idea of conversion of sporadic operators was introduced by Mok
[Mok83] in his Lemma 2.3 which stated

“Let M = M, UM, be an instance of a process model. Suppose we
replace every sporadic process T; = (c;,pi,di) € M, by a periodic process T’;
= (¢’,,p’id"i) With ¢’i=¢;, p’i = min(di-c;+1, p;) and d’; = ¢;. If the resulting
set of all periodic processes M'can be successfully scheduled, then the
original set of processes M can be scheduled without a priori knowledge of
the request times of the sporadic processes in M,.”

65

Note, however, that although the idea of the transformation is valid, care must be
taken to see the context in which that sporadic operator appears, since some of its
attributes, such as minimum calling period, are totally dependent upon the producer of the
triggering data and not on the sporadic operator itself. In other words, if the producer of
data for some sporadic task is an external event that will be handled by some kind of
interrupt handler, then there will be no influence whatsoever in the generation of the data,
and the minimum period will be obeyed by the external device. However, if the producer
is another task that will be included in our static schedule, it must be assured that two
consecutive instances of the producer operator will not be scheduled closer than the
minimum period specified for the sporadic consumer. In this case, the transformation
alone is not enough, and an additional restriction must be imposed on the producer of the
data. This situation is depicted in Figure 3.11.

In conclusion, it can be said that Mok’s lemma by itself does not guarantee that a
schedule really exists for the original set, even if the resulting set of all periodic processes
M’ can be successfully scheduled, unless as explained earlier, a restriction is imposed on

the producers as well.

©—

(40,600,400) (50,550,1000)

Figure 3.11. Restrictions on the Producer Imposed by the Consumer’s MCP

3. Implementations Issues about the Conversion

When implementing this conversion it is strongly recommended that a careful
analysis of the task graph be made to determine reasonable bounds for the period of the
transformed sporadic operator. At first glance, an obvious upper-bound is the value of its
MCP. However, for lower-bounds this choice is not so clear. Nonetheless, it is assumed
that after this pre-processing there will be an interval of possible values for the period of
the transformed sporadic task. The reason for these bounds is to provide us with some
margin for making the conversion, so that the final harmonic block of the entire set is not
increased significantly.

Given a set of sporadic operators, the following steps are suggested for the final
choice of their periods:

1) Set the period of every sporadic task to its upper-bound, so that the total load

factor is minimized

2) Try to find a feasible schedule for the entire prototype (if this is not possible

pick one sporadic task)

3) Start decreasing its period;

4) For each new period check for schedulability;

5) Proceed until its lower-bound is reached. If no schedule is found reset its period

to the upper-bound, pick another task and go back to step 3;

Another possible heuristic is to assign the smallest period among the periodic
operators which is closest to but smaller than the upper-bound of the sporadic operator,
and then proceed with the schedulability tests. One could also try to minimize the
harmonic block. As can be seen, there are several possible heuristics, but there is no
optimal solution. Nevertheless, it is understood that, due to the very stringent timing

constraints resulting from the conversion, every possible attention should be given to this

step.

67

68

IV. DISTRIBUTED SCHEDULING

A. INTRODUCTION

For uniprocessor systems, most scheduling problems involving precedence
constraints can be solved in polynomial time. Lawler [Law73] showed that scheduling
non-preemptable tasks with unit computation times, deadlines, and arbitrary precedence
constraints can be accomplished using the Latest Deadline First Algorithm in O(n?) time.
Similar results were obtained by Lageweg, Lenstra, and Kan, even for tasks with an
arbitrary computation time, if the release times were assumed to be zero for all tasks.
Blazewicz [Bla76] proved that, for this scheduling problem, a preemptive schedule exists
if and only if a non-preemptive schedule exists. Therefore, in this case, preemption need
not be considered. Blazewicz also demonstrated that the Earliest Deadline First al gorithm
can also be used to schedule preemptable tasks. The only scheduling problem involving
precedence relations that has been proven to be NP-complete is the non-preemptable case,
where no restrictions are placed on the release times nor on the computation times. The
non-preemptable case is also NP-complete if there are no precedence relations among the
tasks [GJ77a].

Scheduling tasks with precedence constraints in multiprocessor systems is much
more difficult than doing so in uniprocessor systems. For example, scheduling tasks with
arbitrary precedence constraints and unit computation time is NP-hard both for the
preemptive and the non-preemptive cases [Ul175, ULI76].

Many researchers have attempted to develop efficient heuristics algorithms to
solve the general problem, but with limited success. In most cases, the researcher ended
up restricting the solution space for specific cases, such as when the task graph is a forest,
or when there are no precedence constraints.

In general, two different approaches to handling distributed computation can be
identified. In the first, the distributed system is coordinated by a single system clock,

which synchronizes all tasks so that computation progresses in a lock-step fashion, and

69

communication between tasks can only occur at specific times. In the second approach,
tasks are synchronized only when necessary, and do so by executing appropriate hand-
shake protocols. The former approach requires less inter-processor communication, but is
rigid, and relies on a global clock whose implementation is by itself another very difficult
problem to solve. The latter approach, although more flexible, dramatically increases the
complexity of the synchronization problem, and may be very costly in terms of
communication, since many acknowledge signals must be exchanged in order to maintain
proper synchronization. The use of rigorous and more constrained timing requirements
allows for the establishment of a weak form of synchronization among the tasks of the
distributed system, and represents an alternative in the middle [Mok83].

B. ARCHITECTURAL ISSUES

This section is not intended to present an in-depth analysis of the effects of the
architecture on distributed scheduling, but merely to introduce some of the problems so
that the reader may be aware of their existence and importance.

In a distributed environment, it is very likely that one will have to deal with
heterogeneous computers, each one with a different clock, different memory systems, and

so forth. It is therefore important to realize how these attributes can affect scheduling.

1. Different Clocks

The precision of a clock is directly related to its granularity, the minimum number
of ticks it can handle, and the quality of its time reference, which is usually based on some
kind of crystal. The first limiting factor imposed by the clock, therefore, is the minimum
acceptable period. This is not, however, an actual limitation, since typical clocks range
from tens to hundreds of megahertz, providing an order of nanoseconds for the minimum
allowable period. The real problem is that clocks can drift among themselves, causing a
variety of synchronization problems. Maintaining an accurate global clock is one of the
most challenging tasks in the distributed processing arena. Usually this is achieved at the

cost of substantial overhead in communications.

70

2. Speed of CPUs

The net result when different processors are present is a different execution time
for the same piece of code when running in the various processors. This factor
necessitates previous knowledge of allocation by the scheduler, so that it can be taken into
account. Within CAPS, this is accomplished automatically, because a kind of simulated
time is used for scheduling, which is scaled according to the speed of the machine on

which it runs.

3. Memory

Issues like cache size, paging, number of pipelining stages, etc., can affect the
overall throughput of the system, and consequently the timing requirements, but hopefully
all of these different delays are already taken into account by the specified maximum

execution time of the task.

4, The Communication Media

This is one of the most important factors in dealing with distributed systems, and
can greatly affect final timing requirements for the application. Note also that the timing
requirements are affected not only by the actual transmission delay, but also by the
operating systems functions invoked on behalf of the applications. In CAPS, for example,
although there is a time-bounded protocol (FDDI) it is still necessary to make calls to the

underlying Unix operating system, which has no support for real-time applications.
s, Interconnectivity

The number of processors, the distance by which they are separated, there abilities
to communicate with one another, etc., are issues that should be raised before tackling the

scheduling problem.

C. THE PROBLEM STATEMENT

To reiterate, the original objective of this research was to find better methods of

supporting efficient and reliable scheduling of distributed hard real-time systems.

71

It is unquestionable that the ideal real-time distributed system should be able to
support groups of tasks running asynchronously in different processors, each processor
having its own internal clock. An additional goal, despite the precedence relations among
the tasks, would be to eliminate the need for enforcement of any kind of synchronization
required for communication. An even more important goal would be that all the deadlines
and other requirements (such as no loss of data, etc.) could be met.

Being aware of the complexity of the message routing problem described in
Chapter I and reviewing the alternatives presented in Section A, it appears to be that the
best available option to achieve the ideal system is the very last alternative, i.e., to sacrifice
timing constraints in order to decrease scheduling complexity.. Unfortunately, that is not
the current trend in most researches in the field of distributed scheduling today.
Researchers are still trying to find better heuristics to scheduling algorithms so that the
timing complexity for a sub-optimal case is decreased by some constant factor. But, due
to the NP-Hard nature of the problem, it is most likely that some restrictions will be
imposed on the initial problem.

This work moves in the other direction, in other words, investigating ways of
restricting or relaxing the timing requirements so as to increase the chances of finding a
feasible schedule. It is understood, however, that, depending on the application, this
approach may not be practicable. It may well be that most of the timing requirements
cannot be changed at all. However, this is most likely untrue for most cases. Especially in
this applications framework, where the user is prototyping the intended system in the early
stages of its life cycle, there is an opportunity to validate and change the system's
requirements, which makes this approach very attractive. Note, however, that this
discussion is not about missing deadlines or employing imprecise computations [L1S91],
but focuses simply on relaxing timing constraints so that no synchronization is needed, and
consequently decreasing substantially the complexity of the distributed scheduling
problem.

72

The next section addresses the underlying semantics behind all possible
combinations of triggering conditions, stream types and operator types within a valid
PSDL program, so that later, when discussing the major synchronization issues, it is

certain that all cases have been covered.

D. SYNCHRONIZATION IN PSDL

There are two kinds of streams in PSDL, Sampled Streams (SS) and Data Flow
Streams (DF). Note, however, that within the former are two semantically different sub-
types of streams, depending on the triggering condition of the consumer operator. If the
consumer operator is not triggered (NT) by any data, then it should be understood that a
specific data value can be lost or overwritten, or even read dver and over again by the
consumer, without any harm to the system. This type of behavior is very useful when
reading sensor data. In most cases, the sensors will be able to generate data in a much
higher rate than the consumer will read it, but the most recent data is of primary interest.
Even for tracking systems, where the history of data values is very important, this kind of
stream is still very useful. Note in Figure 4.1 that a specific value at some previous time ¢
is not relevant, because the consumer is only interested in the average behavior, so that the
filter algorithm can predict the future position of the target. In this kind of situation, no
synchronization is needed, releasing the producer and consumer operators from any

constraints on their periods.

RANGE
8 dats produced by the Radar Extaction Unit

8@ data read by the synem
-]

Figure 4.1. Typical Radar Data

73

The second type of Sampled Stream exists when the consumer operator is
TRIGGERED BY SOME (TBS) data value. By definition, the consumer with this
riggering condition should always catch a new piece of data if it is from one of the
streams specified in the TRIGGERED BY SOME clause. For example, if some operator
OP1 is TRIGGERED BY SOME X, Y, then, if new data is coming from either X or Y, it
should be guaranteed to be read, and not lost or overwritten.

Although buffer overflow or underflow is not an issue, due to the way sampled
streams are defined, the only way to avoid loss of data in this case is to enforce the

condition that PER__. 2> PER , and, consequently, the synchronization problem

will have to be handled accordingly.

Finally, in the case of Data Flow Streams, where the consumer is TRIGGERED
BY ALL, the inputs specified in the TRIGGERED BY ALL clause for new data should be
examined, and if all of them happen to have new data in their buffer, they should be
consumed, firing the operator. The TRIGGERED BY ALL condition can be thought of
as being a logical AND among the streams declared in the TRIGGERED BY ALL clause.

Clearly, in this case, there is also a need to enforce PER 2 PER so that no data

producer
is lost, and once again the synchronization problem must be handled explicitly.

The basic semantic difference between the TRIGGERED BY ALL data flow
streams and the TRIGGERED BY SOME sampled streams is that if for any reason the
data is not consumed and another piece of new data arrives, in the former it will raise a

buffer overflow exception, while in the latter the data will be simply overwritten.

E. DEALING WITH SPECIAL CASES

Data flow streams are currently implemented in CAPS as a FIFO queue of buffer
size one. This imposes an important restriction on the PSDL program, that is, all
producers of data flow streams to some unique consumer should have the same period, or
a FIFO buffer overflow may occur in one of the streams, even if the condition

PERproducer > PERconsumer is satisfied (Figure 4.2). This happens because OP1 may

74

write twice before OP2 outputs some value so that the triggering condition can be
satisfied. This problem usually reflects a possible design error, because it makes no sense
to have an operator being triggered simultaneously by two data events that are produced
with different rates. A possible and recommended solution is to force all producers of

data flow streams to a unique consumer to have the same period.

Figure 4.2. Producers with Different Periods

Another important issue is that, although it is semantically correct in PSDL to have
several operators writing to the same data flow stream, or even to the same TRIGGERED
BY SOME sampled stream, as illustrated in Figure 4.3, this case cannot be handled unless
an upper-bound is placed on the number of concurrent copies of a stream in a PSDL
program. This restriction is due to the fact that streams have limited buffer size, and if the
number of copies is very large there is no way to guarantee that one operator will not
write to the stream right after the other, and therefore cause an overflow. In the
uniprocessor case, the only way to handle this problem is by imposing very hard
restrictions on the period of the consumers, so that it will be limited to, at most, half of the
minimum MET of the producers. This result may be seen as an extrapolation to this case
of Nyquist’s well known sampling period theorem. Currently, CAPS does not enforce this

condition.

75

Figure 4.3. Potential Overflow Situation

Still, due to the powerful semantics of PSDL, there is another problem to solve,
which is the possibility of the same stream being data flow for some consumers and
sampled stream for others, as illustrated in Figure 4.4. To make things worse, these

streams can even have different latencies.

Figure 4.4. Different Stream Types Combination

Actually, there are some other cases that could also be cleverly checked, so that
users could receive some suggestions and warnings about their design, like for example in
the case illustrated in Figure 4.5, where OP; could have its period increased and
consequently lowering the load factor, since it will not do any good to keep its period
smaller than OP;.

76

(-,1000,-)

X

@ (-2000,-)

Figure 4.5. Period Incompatibility among Operators

As one can expect, the above cases make the validation process of a PSDL
program very complex. For the sake of completeness, the semantic checks and stream
type derivations for all possible combinations of operator types and data triggering
conditions in PSDL are listed in Table 4.1. The actions which should be taken by the
scheduler for each one of those possible combinations will also be presented.

77

P :
P P If Ppyp,, < Pgpythen Erro
P P {BySomeX)Y | SS | SS | SS If Pop, < Poppthen Error 2
P P | None SS | SS | SS Popy = max(Pep, Popy)
P S {ByAlXY DF | DF | SS | OP2.upper = min(OP2.upper,P) 1,3
P S | BySomeX)Y | SS SS | SS | OP2.upper = min(OP2.upper,P) | 2.3
P S None SS SS SS Error: Cannot be Sporadic 5
TC-TC S P | ByAlX)Y DF | DF | SS OPl.lower = 1,3
max(OP1.lower,P)
S P |BySomeX)Y | SS | SS | SS OPl.lower = 2,3
max(OP1.lower,P)
S P | None SS | SS | SS 5
S S By Al X)Y DF | DF SS OP1.actual > OP2.actual 14
S S | BySomeX,Y| SS | SS | SS OP1.actual 2 OP2.actual 24
S S None SS SS SS Error: Cannot be Sporadic 5
P | NTC | By Al XY DF | DF | SS | Error: Cannot be Data Flow 1
P | NTC | By Some X,Y | SS SS | SS | Error: Possible Data Loss 2
P | NTC | None SS | SS | SS
S | NTC| ByAllXY DF { DF { SS | Error: Cannot be Data Flow 1
S NTC | By Some XY | SS SS SS | Error: Possible Data Loss
S NTC | None SS SS | SS
NTC| P | ByAlXY DF | DF | SS [Waming: Possible Overflow 1,6
NTC| P By Some X,Y | SS SS SS | Waming: Possible Data Loss 2
NTC| P | None SS | SS | SS
NTC-TC [NTC| S By Al XY DF | DF | SS | Wamning: Possible Overflow 1,6
NTC S By Some X,)Y | SS SS SS | Waming: Possible Data Loss 2
NTC| S None SS | SS | SS Error: Cannot be Sporadic 5
; NTC | NTC | By Al XY DF | DF | SS 1,7
NTC-NTC{ NTC | NTC | BySome X,Y | SS | SS | SS 2,7
’ NTC | NTC | None SS | SS | S§S

Table 4.1. PSDL Data Triggering Semantic Table

LEGEND
TC = Time-Crincal Operstar P = Penadic Operatar/Panod SS = Sampied Steam
NTC = Non-Tane-Critical Operstar S = Sparadic Opersior DF = Daws Flow Stream

In Table 4.1, "upper” and "lower" represent, respectively, the maximum and the
minimum values the equivalent period of the sporadic operator can assume. They are

initally set, respectively, to infinite and zero. "Actual” is the value of the triggering period

78

of the sporadic operator after the conversion is done. As can be seen in Table 4.1, in all
TRIGGERED BY ALL cases it is necessary to prevent, or at least give wamings,
whenever the producer operator is faster than the consumer, so that no loss of data or
overflow will be incurred [Table 4.1(1)]. Similarly, in the TRIGGERED BY SOME
cases, this constraint must also be enforced, but in this case the motivation is to prevent
loss of data, since Sampled Streams, by definition, do not overflow [Table 4.1(2)].

When dealing with sporadic operators upper and lower bounds are defined for
their triggering periods, so that later, when conversion of the sporadic operators to
equivalent periodic operators takes place, it is certain that all of these constraints are taken
into consideration [see Table 4.1(3)]. The sporadic to sporadic case (S-S) cannot yet be
handled with upper and lower bounds, since there can be up to five different possible
overlapping patterns for their period interval. Hence, final checking of this case will be
delayed until the equivalent periods have been calculated [Table 4.1(4)].

Another important point to mention is that consumers with no data triggering
condition must be periodic, or an error will be raised [Table 4.1(5)].

Finally, although very unlikely to happen, it should be pointed out that it may
happen, for unexpected reasons, such as a lot of slack time left over from the static
scheduler, that some non-time-critical operator may be fired more than once in the same
Harmonic Block, leading to a possible overflow if they are connected by data flow streams
to time-critical operators [Table 4.1(6)]. This is not a concern among NTCs, since all of
them will be executed consecutively, in other words, between two consecutive instances
of any NTC operator is guaranteed to have an instance of all the remaining ones [Table
4.1(7)].

Table 4.2 presents all possible combinations of the PSDL timing constraints and
the resulting actions and checks to be performed by the scheduler.

79

N N NTC
- G " N s ERROR
- " " S N ERROR
- - " S s ERROR
" N s N N ERROR
- - - N s ERROR
- " " s N ERROR
" - - s s ERROR
" S N N N ERROR
" - " N s ERROR
- - " s N ERROR
- - s s ERROR
" s s N N ERROR
- - . N s ERROR
" " " s N ERROR
- - - s s ERROR
s N N N SPORADIC Auto-Pick MRT and MCP
" - - N s ERROR
- - - s N PERIODIC FW = PER
" - - s s PERIODIC MET < FW < PER
- s N N SPORADIC MCP>MET; MRT=MET+MCP
- - - N s ERROR
- " " s N ERROR
- - - s s ERROR
- s N N N SPORADIC MRT2MET; MCP=MRT
- - - N s ERROR
- - - s N ERROR
- - - s s ERROR
- s s N N SPORADIC METSMCP; MET<MRT
- - - N s ERROR
- - - s N ERROR
- - - s s ERROR

Table 4.2. PSDL Timing Constraints Semantic Table

LEGEND
N = Not Supplied
S = Supplied

Table 4.2 shows that very few combinations of PSDL timing constraints are
semantically acceptable. The only one that deserves some explanation is the case where
only the MET is supplied. In this case, the scheduler picks up a pair of values for MCP
and MRT, so that the individual load factor of the sporadic operator is equal to

max((0.75- 3 LFpgg), 0.1)
of sporadic operators

80

This approach relieves the designer from having to define timing constraints for
sporadic operators, which might not be clear yet, at that stage of the prototyping, and it
also tries to decrease the timing requirements for that sporadic operator. However, it is
dangerous, in the sense that it will always increase the load factor of the prototype to at
least 0.75, even if the total load factor for all periodic operators was very low.

As is apparent, most of the semantic checks, mainly those related to the control
constraints part of the PSDL program, such as data triggering checks and timing
constraints checks, are left up to the scheduler to implement. It is proposed that in the
future CAPS releases some of these checks are taken from the scheduler and inserted into
the Syntax Directed Editor (SDE), so that the user is not allowed to proceed to the
translation step until he has a valid PSDL program. In doing so, the designer will not have

to come all the way back to SDE if a semantic error is found.
F. TACKLING THE SYNCHRONIZATION PROBLEM

It is clear that the most important issues in dealing with synchronization are the
periods of producer and consumer tasks. However, even in the uniprocessor case, with the
period of the consumer being smaller than the period of the producer, it can be easily
shown that the synchronization is not always a good alternative. Figure 4.6 shows an
example where no feasible schedule exist if synchronization is enforced, but it does exist
otherwise. Three outcomes are possible if the synchronization is not required. First, if the
consumer operator is TRIGGERED BY ALL X,Y , the proposed schedule is valid but X
and Y will be consumed one instance later. If it is TRIGGERED BY SOME X,Y , then
the schedule is always valid, becausc X and Y do not need to be consumed together.
Finally, if there is no trigger, then the relative order is not important anyhow.

81

(50,500,500) &

() (10,100,10)

(50,500,500) @~ Y
with synch
nn f . !
1 1 1 ! 1 |
0 100 200 300 400 500 600 700
w/o synch
o !'I

100 200 300 400

S00 600 700

Figure 4.6. Reason for No Synch when PER o4 2 PER oo (Uniprocessor Case)

From another perspective, if PER__.__ <PER , then the streams connecting

them should be sampled streams, because otherwise the data flow streams would
overflow. Since the loss of data is possible(“possible” because the data might well not be
produced at all) the consumer cannot be TRIGGERED BY SOME either.

The only case in which PER

trigger at all. In this situation, synchronization is not needed, since it would place one
additional burden on the scheduler, and would not solve the problem of loosing data. The

< PER can be allowed is when there is no

only advantage to having synchronization points in this case is the fact that there would be
a fixed pattern for losing data. Furthermore, by not having explicit synchronization, the
most that could happen is that the consumer operator would read either the previous or
the next instance of the data output by the producer, in other words, at most one producer

period apart.

82

(70,200,70) (70,500,200)

lost
i
ROC1) 0
synch
oP2
PROC2)

Figure 4.7. Reason for No Synch when PER s < PER s (Distr. Case)
The second possibility is PER . 2 PER . In this case, the synchronization
also does not solve the problem, since it is possible to have two instances of the producer

operator being scheduled, one after the other, causing overflow or loss of data depending
on the triggering condition. This case is illustrated in Figure 4.8.

(70,500,500) (70,200,200)

OVERFLOW

OP1
omocy)

or2
omoCD

Figure 4.8. Reason for No Synch when PER o 2 PER o, (Distr. Case)

At first, one may conjecture that no synchronization is needed when PER 2

PER , since it would be possible to catch every single occurrence of data ever

83

produced. However, this conjecture is untrue, due to the fact that the periodic input is not
periodic in the common sense that is understood in electrical engineering and other related

fields, as a pulse that occurs every ¢ units of time!

Figure 4.9. Synchronization among Periodic Operators when FW, = MET,,

If that was so, the period ratio among producer and consumer would be a
necessary and sufficient condition for guaranteeing synchronization, according to the
following argument:

Assuming that PERg < PER 5 (Eq. (1)) and that the phase of operator A is zero,
there could be two cases:

Ist case: start of second instance of B is less than finish of second instance of A

S,5 <f,,- Eq. (2)

In this case B just lost A, and therefore it is necessary to prove that the third
instance of B will certainly catch the second instance of A. Formally

s33<fa

By the definition of periodic operator, and from Eq. (1),

§28 <S3a

But also,

S, =S,3-+ PER Eq. (3)
and
s:M=sz,‘+PERA or sz=fM+PERA Eq. (4)

84

Plugging equations (1) and (2) into (3),
s3p <f2a + PER, Eq. (5)
Finally, combining (4) and (5),
s3 <f3a)

2nd. case: S, > f2A Trivial case where the second instance of B will catch the

second instance of A. a
In general, s, < S implies s, 5 < Se1)B and hence, neither loss of data or buffer

overflow can happen.

However, as explained before, this periodic definition is slightly different, in the
- sense that it may occur anywhere inside the period slot, invalidating our previous
argument.

Within this framework, things are made much more complex, and the
synchronization approach needs to change considerably.

The key question to be answered is: What is the real need for synchronization
berween two operators, and when is it applicable? As shown in the previous examples,
the synchronization is not solving the problem and it is placing an additional burden on the
scheduler.

Other question to be asked is:

Can every single piece of data coming from both data flow streams and Jrom
TRIGGERED BY SOME sampled streams be guaranieed to be consumed in a timely
Jashion, so that no overflow or loss of data occurs?

The answer is clearly yes, if after scheduling each producer of a data flow or
TRIGGERED BY SOME sample stream, the consumer of that data flow stream, or of
that sampled stream, is scheduled before the next instance of the producer.

In a uniprocessor case, or even in a shared memory multiprocessor model, this
approach is acceptable and easy to implement and guarantee. This, by the way, is how it

is implemented right now in CAPS. However, in a truly distributed case, besides the

85

difficulty in implementing this approach, the lack of a master clock might cause a feasible
schedule to become unfeasible. This assertion may be illustrated with a simple example.
Assume a schedule for a two-processor system that meets all deadlines and
synchronization requirements among their tasks, and that no buffer overflow occurs with
respect to the data flow streams. Now, if clock drift occurs in processor 2, so that one of
its consumers gets shifted more than twice the period of its correspondent data flow
producer, the consumer is guaranteed to lose data, and the schedule will fail.

Therefore, although the uniprocessor and the shared-memory multiprocessor cases
can be handled appropriately, a new approach must be developed for the distributed case.
Ideally, several sets of communicating processes would run independently in each
processor, but with the guarantee that no data would be lost and no deadlines missed.

It will be useful to review the synchronization problem between producers and
consumers. What is the real meaning of missing a deadline within the context of a real-
time system? It means that some process did not generate its output within the specified
amount of time, and therefore the consumer could not consume the data, and so on. What
is important here is that missing deadlines are always attached to data not being generated
or consumed in the proper timing, and this is going to be the key-point in the approach,
i.c., attempting to guarantee that all data being generated is consumed in a timely fashion.

Clearly, the very first condition that must be satisfied is that PER 2
PER so that no data is lost. It also seems obvious at first, that the worst case that

can ever happen is when two consecutive instances of the producer are fired one after the
other, and the consumer is scheduled about two periods apart. Unfortunately this is not
true, as illustrated by the following Figure 4.9.

86

PRODUCER A

CONSUMER B

Figure 4.10. The Consumer-Producer Paradigm

the following additional questions:
1) Under what conditions could that happen?

consecutive instances of the consumer? What would it be?
To answer these questions, analyze carefully Figure 4.10.
By construction:
PER, + 2 X META <2 X PERp
and
PERg S PERA
By definition of periodic operator
0 SMETA SPER,
By re-arranging Eg. (1)

PERA
2

META SPERg -

87

Figure 4.10 shows that even with a faster consumer (PERg < PER,) one cannot
discard the possibility of having more than one, actually even three occurrences of the

slower producer between two consecutive instances of the consumer. This finding raises

2) Is there an upper-bound on the number of instances of producers between two

Eq. (1)

(Inital Assumption)

R
Thus, PERg must be 2 PERA

or otherwise MET, would have to be negative.

2
Therefore we end up with the following solution interval for PERp:
F EZR" <PER; <PER,
and consequently
0 < MET, < 2204

The above inequality answers the first question by showing under what conditions

PERA
2

To answer the second question, let us assume the situation presented in Figure

the situation depicted in Figure 4.10 can happen, i.e., whenever MET, <

4.11, where four instances of the producer are attempting to exist in between the same

two instances of the consumer.

PRODUCER A

-

CONSUMER B

Figure 4.11. Seeking for an Upper-Bound

Eq. (1) now becomes
2x PER, +2 x META <2 x PERg

88

Now let MET, = 0, which is the best case possible. This results in PERg > PER,.
But then there is no solution for the set of inequalities, i.e., three is actually the upper-
bound.

Based on these results the following lemmas can be stated:

Lemma 1:

“Given a pair of operators, where one is a producer and the other is a consumer,
and assuming that the period of the producer is bigger than the period of the consumer,
there can exist at most three instances of produced data waiting to be consumed at any
instant of time”.

Lemma 2:

“Any produced data will be consumed within at most two periods of the
consumer’.

Finally, these lemmas allow the Fundamental Synchronization Theorem, that
will be most useful in the distributed case, but that can be applied as well in the
uniprocessor case.

Theorem 9:

"If there exists a feasible schedule that runs without buffer overflow or loss of data
in a shared memory multiprocessor model, then there can be a distributed and totally
independent schedule, without any kind of explicit synchronization, if the buffer size of the
data flow streams, as well as for the sampled streams with a triggered by some condition

have a size of three.”
1. Additional Restrictions Imposed on the Timing Constraints

Obviously, a price is paid for getting rid of the synchronization, and it is reflected
in a more stringent set of timing constraints for tasks.

Looking back at Figure 4.10 it can be seen that the worst case that can happen is
to have some data from a producer consumed after 2 x PERg — METj units of time.

Currently, in PSDL, contrary from the sporadic case, there is no upper-bound on

the time an input data for a periodic operator should be consumed. So, if the consumer is

89

a periodic operator that receives data from network streams, the fact of not using
synchronization, will not impose any additional constraints on their timing requirements.

In the sporadic case however, the explicit upper-bound for consuming the
incoming data is its MRT, which is assumed to be greater than or equal to the latency plus
the MET of the consumer operator for the incoming data. Therefore, an additional
restriction on the triggering period of a sporadic operator must be imposed when it has
any data coming from network streams.

PRODUCER A

CONSUMER B

* MRT

Figure 4.12. New Timing Constraints for the Sporadic Operator

From Figure 4.12
2XTP3+LATW <MRTs
or
TPs < MIZTB _ LA'I;MAX

which is the new upper-bound for the triggering period of a sporadic operator.
From Chapter III, Section E, it is also know that TP 2 MET. Hence,

MRTg _ LATMAx
2 2

which is the new formula for calculating the triggering period of a sporadic operator,

METz <TPg <

under the no synchronization assumption.

G. THE TASK ALLOCATION MODEL
Two basic and unavoidable steps when designing distributed software systems are

the decomposition of the system functions into software processes during the early stages
of the design and, later on, the allocation of these processes to the several processors.
Although sometimes these two steps are used interchangeably, they are very different
activities. ’

Given the software requirements, the designer must first identify a set of logical
interrelated modules and perform its functional decomposition. This can be done with the
aid of traditional design methods, such as structured and object oriented design. For real-
time systems, such decomposition will require consideration of critical timing constraints
and may require introduction of special modules for synchronization [SW89).

The first major activity is partitioning, which is the mapping of these logical
modules into a set of physical processes. The second is allocation (sometimes called
assignment) which is the mapping of each process to one or more processors. The focus
of this chapter is on allocation; for further reading on partitioning see Shatz and Wang
[SW89].

As shall be seen, task allocation dramatically complicates the already complex
problem of distributed software design, because assigning m processes onto n processors,
there are n™ different possible assignments. Optimal allocation is a problem of exponential
complexity, and it was proven to be NP-complete by Mok [Mok83].

The key to process allocation is to establish an allocation model in terms of a cost
function and additional constraints that match the application requirements as far as logical
and tming correctness. The goal is to minimize the cost function under the constraints.

91

Most of the cost functions found in available literature deal with performance. Others,
such as those relating to reliability and fault-tolerance, are only now emerging [SW89].

The most widely used performance cost functions are:

1) Interprocessor communication cost (IPC) which is a function of the amount of
data transferred, the network topology and link capacity;

2) Load balancing, which is a measure of how uniform the workload among the
processors is. A good load balancing will maximize the system stability, which
is the capability of busy hosts to receive bursty arrivals of processes without
compromising their deadlines.

3) Completion time, the total execution time including interprocessor
communication incurred by that processor.

The most frequent constraints found in typical real-time systems are due to
hardware limitations of some processors, dependence of some processes on certain
processors, and number of available processors.

The choice of a cost function obviously depends on the application, on the
underlying hardware, and on several other characteristics.

Although distributed processing seems very attractive, one should be aware of the
saturation effect (Figure 4.13) that is sometimes forgotten by many developers. The basic
consequence of this effect is that, contrary to expectations, the throughput doesn’t
increase linearly as the number of processors is increased. Actually, at some point (which
can be as few as three or four processors) throughput actually starts to decrease.
Examples of this phenomenon are documented by Chu, et al. [CHL80] and by Jenny
[Jen77). The decrease in throughput is due to the excessive interprocessor
communication, which is similar to the trashing problem in the early memory paging

systems.

92

THROUGHPUT

IDEAL

ACTUAL

>

of PROCESSORS

Figure 4.13. The Saturation Effect

Basically, all of the different approaches to solve the allocation problem fall into
one of the three major classification areas: graph theoretic, mathematical programming, or
heuristic methods, which are by no means mutually exclusive.

The first of these represents the processes to be allocated as nodes in a graph,
where each edge has a weight that is proportional to its inter-module communication cost
(IMC), with the following remarks: an IMC of zero means that no communication takes
place between those two modules and an IMC of infinity means that they should be
assigned to the same processor. If a minimal-cut algorithm is performed on the graph one
ends up with the minimum allocation cost for those modules between two processors. In
general, however, an extension of this method to an arbitrary number of processors
requires an n-dimensional min-cut flow algorithm, which quickly becomes
computationally intractable.

The mathematical programming approach uses, in most cases, the non-linear
integer programming technique, where the above problem is formulated as a set of
equations. It is very flexible in the sense that additional constraints can be included in the
model very easily, however it has two short-comings. First, it fails to accurately represent
real-time constraints and precedence relations among the tasks, because both factors

introduce queuing delays into the system in a complex manner [DSWES3].

93

Finally, the heuristic methods, unlike the first two, try to find sub-optimal solutions
for the assignment problem, which are in general faster, more extendible and simpler.
1 Some Basic Definitions

Defining several metrics will provide a better insight into the problem.
Average Task MET - given n tasks, it is a lower-bound in the response time;
2 MET

METAVG =

Average Load Factor - it is a kind of schedulability index that shows how tight the
system is. The bigger it is the harder is to find a schedule. It is independent of the number
of processors, €.g., LFav = 0.8 means that almost every operator is very CPU-intensive.
A more precise insight could be obtained by the standard deviation of the load factor.

MET

LFm:zPER

LFAVG =

Average Processor Load Factor - given the number of processors p, it specifies

the ideal share of processing so that a perfect load balancing is achieved.
PLFavG = Z—p“

Maximum Processor Load Factor - it specifies the maximum load factor each

processor can sustain using the minimum number of processors.

PLEy = LT

[1Fror |
Placement Cost Marrix - it basically shows the cost incurred when operator X is
allocated to processor k. If some task must be placed in some specific processor, its
placement cost should be zero. Otherwise it should be infinity. Other values reflecting the
user’s desires can also be used so that the scheduler will have more options when deciding

upon the allocation.

94

F Cost | Processor 1 | Processor 2 | Processor 3
Operator A oo 0 4
Operator B 0 oo 7
Operator C 5 8 5

Table 4.3. Placement Cost Matrix

Inter-Module Communication Cost Matrix - it basically shows the cost incurred
when operator X wants to communicate with operator Y, or vice-versa, using the
network. Note that it should be symmetric, since it doesn’t depend on the way the
communication is carried out. It simply states that if those two operators are allocated in
different processors, that will be the amount of communication they will have to exchange.

In this case it will also account for the state streams.

IMC Cos: Operator A | Operator B | Operator C
Operator A - 7 13
Operator B 7 - 8
Operator C 13 8 -

Table 4.4. IMC Cost Matrix

Distance Cost Marrix - it takes into account the geographic distance between
processors. For all distances within a local area network, index 1 is assumed. When not
connected, the distance is assumed to be infinite. If passage through additional networks
is required, there will be an increase of 0.1 for each additional level of networking. Note
that the basic purpose of this matrix is to see if the specified latencies and network delays

are compatible with the underlying hardware architecture.

Distance Cost | Processor 1 | Processor 2 | Processor 3
Processor 1 0 1 o
Processor 2 1 0 1.2
Processor 3 oo 1.2 0

Table 4.5. Distance Cost Matrix

95

1 Note that we will be using interchangeably the term IMC and IPC.

2, The Approach

The first attempt was to separate tasks according to their data dependency, which
was determined by calculating the several slices of the prototype. Informally, a slice is
defined as the set of possible paths from a sink node (nodes with no output) to a root node
(nodes with no input edges), i.e., a slice contains all ancestors of a sink node. For a formal

definition see Dampier [Dam94]. Clearly, an operator can belong to more than one slice.

-
- - -
- N .

Figure 4.14. The Data Dependency Graph

After all slices are calculated the operators that belong to the same slices are
grouped into equivalent classes, such as Ga, Gas, GooE €tC., meaning that they belong to
slice A, slices A and B, or slices C, D, and E, respectively. The resulting graph is the Data
Dependency Graph, which is shown in Figure 4.14. The following algorithm can then be
applied:

1) Pick those operators that belong to two slices. At least one operator must exist

in this equivalence class that has two edges, one for each of the slices it belongs
to. Pick the least expensive edge, i.e., the one with the least IMC cost, and add

the operator to this group. This may later prove to be something less than the

96

best choice, but for now it is the best option available without resorting to the
expensive method of checking the entire slice. The final partition is illustrated
by the dotted line in Figure 4.14, and presents a cost of 117 IMC units. To get
rid of this problem, instead of trying to join in a bottom-up fashion, the most
expensive edge not yet included in any group may be added, and an attempt can
be made to unite both groups, resulting in the following partition: {G, , Gasp ,
Gas), {Gasc , Gc}, {Goe , Gp), {Gs} and {Gg), which has a cost of 56 IMC
units;

2) Keep doing this for the operators belonging to three slices, four, etc., until all
operators have been processed.

3) If the load factor in some set exceeds one or some specified threshold then the
set should be split into two by recursively applying the two-dimensional
minimal-cut algorithm, until all sets have a load factor less than one. Note that
since the min-cut algorithm is trying to minimize the cost of the edge, it may
well not be an optimal choice for minimizing load factor. Checking for load
factor is left until the end because the relative costs of those edges could not be
determined prior to completing the first two steps..

The intended result was to have several fairly data independent sub-graphs that
could be assigned to different processors, having a minimum IPC cost, and, most
importantly, providing a very nice modularization for the system with direct effects on
reliability. For example, if some processor had a problem, only those modules allocated in
that processor would fail. Of course, this approach did not take into account load
balancing, but at least provided a starting point.

Unfortunately, after running a partial implementation of this algorithm with several
random generated prototypes, its computation cost proved to be very high and most of the

prototypes ended up having very few slices to start with.

97

After analyzing the advantages and disadvantages of the initial attempt and several
other alternatives, it was decided to use the inter-module communication cost (IMC) as
the main cost function, without taking into consideration any data dependency.

Now it is necessary to come up with a consistent way of assigning the IMC cost to
each pair of operators in a PSDL graph.

Clearly, in the PSDL context, where complex ADTs can travel through the
streams, the amount of data transferred by a stream is variable, and its actual size can only
be known at run-time when the actual prototype is executing. Therefore it is necessary to
use some kind of average or normalized value, so that the deviations are diminished.
Another assumption to be made (it is actually already part of the PSDL model) is that
every operator, when fired, outputs one and only one value per firing for each of its output
streams. Furthermore, the worst case is assumed, where, once activated, the operator will
always produce an output, even if the data triggering conditions or the output guards are
not satisfied.

The IMC cost, represented as IMC_INDEX, and the actual amount of data to be
transmitted between two operators, denoted as IMC_PER_SEC, are calculated according
to the algorithm described in Figure 4.15.

for each pair of operators loop
if parent operator is TC then
IMC_PER_SEC := CONNECTIVITY x AVG_PROC_TIME x 1000 / PERIOD_PRODUCER;
elsif parent is NTC then
IMC_PER_SEC := CONNECTIVITY x AVG_PROC_TIME x 1000 / HARMONIC_BLOCK;
end if;
IMC_INDEX := IMC_PER_SEC / NORMALIZED_LOAD_FACTOR
end loop;

Figure 4.15. Algorithm for Calculating the IMC Cost Function

Note that in order to quantify and compare IMCs it was necessary to fix the time
window for measurement and the second was chosen.
AVG_PROC_TIME is the estimated average time in microseconds taken for that

system to output a typical PSDL stream to some buffer, which will be later transmitted to

98

the network. Note that this parameter is innocuous, since it is a constant for every stream.
The only reason to maintain the parameter is to make the resulting index more realistic.

CONNECTIVITY is defined as the number of streams connecting two operators
including the state streams.

The ratio 1000 ms/ PERIOD (ms) for the time-critical operator specifies the
number of periods that occurs in one second, that is, the number of times the producer will
fire. For the non-time-critical operator the HARMONIC BLOCK (HB) is used as if there
was only one occurrence of the NTC operator in each HB.

Finally, for the IMC_INDEX the NORMALIZED_LOAD_FACTOR is

introduced, defined as:
(LOAD_FACTOR PARENT + LOAD_FACTOR CHILD) / MAX_LF PER_PROC

Note that the above formula is valid for any case except when both operators are

NTCs. In this case the formula is changed to:
((1.0 - MAX_LF_PER_PROC) + (1.0 - MAX_LF_PER_PROC))/ MAX_LF_PER_PROC
or
(2.0/ MAX_LF_PER_PROC)-2.0

The rational behind these formulas is that if there are two small LF operators
connected by a stream with some IMC_PER_SEC, the IMC_INDEX or, rather, the
relative cost for placing them in different processors should be much higher than if they
had big load factors, for a same IMC_PER_SEC value. For streams connecting two NTC
operators that don’t have an explicit load factor, since they don’t have periods nor METs,
the remaining load factor will be used. In other words, 1.0 - TOTAL_LF, as if it was the
load factor. If the load factor is bigger than one, then there must be more than one
processor, so that the maximum average load factor per processor is used instead,
assuming that the minimum number of processors is available.

Although it is not used in the current implementation, it seems to be a good idea to
divide the remaining LF among all NTCs operators. This way it would be less costly to
split two NTCs, where the total load factor of the prototype is 0.8, than to split two TC

operators both with load factors 0.2. In the current implementation, both cases have the

same cost.

3. The Current Implementation

As the very first step, the allocation algorithm builds a priority queue of edges in
decreasing order of inter-module communication cost (IMC_INDEX), which were
previously calculated. Note that it will contain all edges in the prototype and not only
those connecting time-critical operators.

Once the priority queue exists, each operator is allowed to form a set by itself.
Next a union-find algorithm is applied, so that if the origin and destination operators of the
edge being examined belong to different sets, they are united (as long as their combined
load factor is still under some threshold previously established by the user).

begin -- allocate

- Build a priority queue of edges in decreasing order of IMC_INDEX

BUILD_PRI_QUEUE(COUNT);

- Let each operator form a distinct set by itself.

for Iin 1..NEW_GRAPH_PKG.ARRAY_SIZE loop
OP := NEW_GRAPH_PKG.RETURN_OP(I);
OP_UNION_FIND_PKG.CREATE(OP_LINK(I),OP);

end loop;

while IMC_PRIORITY_QUEUE.NON_EMPTY (PRI_QUEUE) loop
EDGE := IMC_PRIORITY_QUEUE.READ_BEST(PRI_QUEUE);
ROOT_A := OP_UNION_FIND_PKG.FIND(OP_LINK (EDGE.ORIGIN));
ROOT_B := OP_UNION_FIND_PKG FIND(OP_LINK (EDGE.DEST));
if not OP_UNION_FIND_PKG.eq (ROOT_A, ROOT_B) then

if ROOT_A.LF + ROOT_B.LF < ALLOCATION_FACTOR then
ROOT_C := OP_UNION_FIND_PKG.UNION(ROOT_A, ROOT_B,
ALLOCATION_FACTOR);
end if;

end if;
IMC_PRIORITY_QUEUEREMOVE_BEST(PRI_QUEUE);

end loop;

end allocate;

Figure 4.16. Partial View of the Allocation Program

As can be seen, the current approach is a kind of first-fit bin-packing, where the
size of the bin is dictated by the ALLOCATION FACTOR specified by the user. A very

100

simple modification which would allow a better load balancing is to substitute the
ALLOCATION FACTOR by the AVERAGE PROCESSOR LOAD FACTOR of the
prototype, multiplied by some number, for example, 1.1, to allow some variation around
the average. In doing this, it is being enforced that all processors will get an even load,
despite of an increase in the communication cost. Other checks could be applied as well,
such as checking the requirements or the placement cost matrix to see if the operators
could be allocated to the same processor, or if they needed to be in a specific processor.
The slices they belong to could also be examined, so that even if the load balancing rule is
not completely satisfied they could still be assigned to the same processor if they were in
the same slice. As can be seen, there are an enormous number of possibilities for cost
functions. However, finding the one that best fits the application requires a great deal of
fine tuning.

The union-find data structure has been implemented as an in-tree, where the nodes
can have many children, therefore, after all the sets have been formed, we need an O(n?)
worst case algorithm in order to retrieve their members. Another way to implement it that
would make the retrieve operation much cheaper is by using a double linked list, but then
the insert operation would be a little bit more expensive. In both cases, the union-find
algorithm could be enhanced by adding path compression and balancing into the
implementation, resulting in an O(mlog n) time algorithm, where m is the number of edges
in the graph.

Finally, the allocation algorithm outputs a set of sets, i.c., a set where each of the
components is another set containing the nodes in that partition. Although not included in
the current implementation, it should ultimately output a map instead of a set, where each

of the partitions would be mapped to a specific processor, according to the requirements.

101

102

V. ARCHITECTURAL ISSUES OF THE CAPS SCHEDULER

Section A of this chapter describes several issues related to the architecture of the
CAPS scheduler in its current uniprocessor implementation. Section B presents a novel
architecture for dealing with the distributed scheduling case. The remaining sections of
this chapter contain a proposed implementation, first using the current available
technology and then using the upcoming facilities offered by Ada95. It is important to
note, however, that while implementing the distributed system in Ada provides a uniform
environment for building prototypes, it suffers from the disadvantage that tasking and the
new distributed systems support in Ada95 are not time-bounded. Hence, in order for the
distributed Ada prototype to satisfy the timing constraints as specified, the average
behavior of the underlying host operating system and the network communication sub-

system must be relied upon.
A. THE CURRENT SCHEDULER - UNIPROCESSOR ARCHITECTURE

Currently, CAPS is a development environment, implemented in the form of a
collection of tools, that are linked together by a user interface. The prototyping process is
accomplished by running several tools independently, one after the other, so that their
output taken together make up the final Ada program, which will implement the
supervisory control of the prototype.

More specifically, the translator converts the PSDL program defined by the user
into compilable Ada units. During this process, it creates the following five major
packages: exceptions, instantiations, timers, streams, and drivers, all preceded by the name
of the prototype followed by an underscore. Ultimately each of these will become part of
the prototype supervisory Ada program.

The first three of these packages contain all of the user declared exceptions,
generic packages and timer instantiations defined in the PSDL program. The package
streams contains the instantiations of all the streams used by the prototype, which are

implemented as Ada generic tasks contained in the generic package PSDL_STREAMS,

103

which contains all stream types supported by PSDL. A partial view of the supervisory
program for the Patriot Missile prototype is shown in Figure 5.1.

package PATRIOT_EXCEPTIONS is

— PSDL exception type declaration

type PSDL_EXCEPTION is (UNDECLARED_ADA_EXCEPTION);
end PATRIOT_EXCEPTIONS;

package PATRIOT_INSTANTIATIONS is
-- Ada Generic package instantiations
end PATRIOT_INSTANTIATIONS;

with PSDL_TIMERS;
package PATRIOT_TIMERS is
-- Timer instantiations
end PATRIOT_TIMERS;

- with/use clauses for atomic type packages

- with/use clauses for generated packages.

with PATRIOT_EXCEPTIONS; use PATRIOT_EXCEPTIONS;

with PATRIOT_INSTANTIATIONS; use PATRIOT_INSTANTIATIONS;

- with/use clauses for CAPS library packages.

with PSDL_STREAMS; use PSDL_STREAMS;

package PATRIOT_STREAMS is

— Local stream instantiations

package DS_INTERCEPT_ANGLE_CONTROL_PATRIOT is new
PSDL_STREAMS.FIFO_BUFFER(FLOAT);

package DS_LAUNCH_ANGLE_LAUNCH_PATRIOT is new
PSDL_STREAMS FIFO_BUFFER(FLOAT);

package DS_LAUNCH_STATUS_SCUD_RADAR is new
PSDL_STREAMS.SAMPLED_BUFFER(LAUNCH_STATUS_RECORD),

package DS_LAUNCH_STATUS_DISPLAY_SCUD is new
PSDL_STREAMS.SAMPLED_BUFFER(LAUNCH_STATUS_RECORD);

package DS_LAUNCHER_POSITION_SCUD_RADAR |is new
PSDL_STREAMS.SAMPLED_BUFFER(FLOAT);

package DS_MISSILE_TRACK_CHECK_THREAT is new
PSDL_STREAMS.SAMPLED_BUFFER(TRACK);

package DS_SCUD_STATUS_DISPLAY_SCUD is new
PSDL_STREAMS.SAMPLED_BUFFER(MISSILE_STATUS);

package DS_SCUD_TRACK_DISPLAY_SCUD is new
PSDL_STREAMS.SAMPLED_BUFFER(TRACK),

package DS_TACTICAL_STATUS_DISPLAY_TACTICAL is new
PSDL_STREAMS.SAMPLED_BUFFERMISSILE_STATUS_RECORD);

package DS_TARGET_RANGE_CONTROL_PATRIOT is new
PSDL_STREAMS FIFO_BUFFER(FLOAT);

- State stream instantiations

end PATRIOT_STREAMS;

Figure 5.1. Partial View of Patriot.a

104

Currently, CAPS implementation supports only the sampled streams where data
can always be written and read, the state streams, which are basically a sampled stream
with an initial value, and the data flow streams, which are implemented as a FIFO buffer
with size one. The streams are implemented as individual Ada tasks with entries such as
READ, WRITE and CHECK, whose implementation will vary according to the type of
stream.

Finally, the package drivers basically contains all of the data declarations, the data
trigger checks that control whether a stream should or should not be read, the execution
trigger checks that decide whether or not to fire the operator, and the output guard
checks, which will allow whether or not an output is to be written to the output streams.

Each of these checks are implemented in the following way:

1. Data Triggers

If an operator has no triggering condition at all, its input streams will be read
whenever the operator is fired, but they will never generate any overflow or underflow
exceptions. Similar situation happens when the streams are state streams.

If at least one of the incoming streams is a TRIGGERED BY SOME sampled
stream, then the streams will be read whenever one or more of the streams in the
TRIGGERED BY SOME set has new data, but again, they will never generate an
underflow exception. Because of this, care must be taken with respect to the very first

reading of data from sampled streams, since garbage may be consumed.

105

IMPLEMENTATION GRAPH
DATA STREAM

OPERATOR Updax_track TRIGGERED BY SOME
altitude range
OPERATOR Radar
OPERATOR Track_databaso
OPERATOR Altimowr
END

procsdure UPDATE_TRACK_DRIVER Is
LV_ALTITUDE : FLOAT;
LV_RANGE : FLOAT;
LV_TARGET_ID : INTEGER;
EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;
begin
= Data rigger chocks.
if not (DS_ALTITUDE_UPDATE_TRACK.NEW_DATA cr cise DS_RANGE_UPDATE_TRACK.NEW_DATA) then

end if;
= Data stream roads.

begin
DS_ALTITUDE_UPDATE_TRACK BUFFERREAIXLV_ALTITUDE).
«xception
when BUFFER_UNDERFLOW =
m,mwcmmummawrumm_mmm_mur, “UPDATE_TRACK"),

begin
m_RANCE_U'PDATB_TRACILBUFPBR_READ(LV_RANGZ);
exception

Whea BUFFER_UNDERFLOW =>
NDEBUGW_UNDERHDWMCB_UPDAE_M. "UPDATE_TRACK");
ond;
begin
DS_TARGBT_D_UPDATB_MBUFFMLV_TAR&ET_D);
exception

when BUPFER_UNDERFLOW s>
DS_DEBUG.BUPFER_UNDERFLOW(*T. ARGET_ID_UPDATE_TRACK", "UPDATE_TRACK™);

oad,
—E L fition choch
ey . :.“ . e

-

-Qh;mq:mm
L o
ond UPDATE_TRACK_DRIVER;

Figure 5.2. TRIGGERED BY SOME Implementation

If at least one of the incoming streams is a data flow stream, in other words, has a
TRIGGERED BY ALL condition, the streams will only be read if the data flow stream
has a new value in its buffer, and any attempt to read an old value from a data flow
stream, will generate an underflow exception. As shown in Figures 5.2 and 5.3, the read
operation is actually a call to rendezvous with the READ entry of the incoming stream
task.

106

OPERATOR triggerod_by_all
SPECIFICATION
END

IMPLEMENTATION GRAPH
DATA STREAM

waperstare : FLOAT
OONTROL CONSTRAINTS
OPERATOR Oven_Control TRIGGERED BY ALL
emperatwre, alarm
OPERATOR Temp_Alarm
OPERATOR Temp_Sensor
OPERATOR Input_Keypad

f mot (DS_TEMPERATURE_OVEN_CONTROL.NEW_DATA and then
DS_ALARM_OVEN_CONTROL.NEW_DATA) then
return;
end it
~ Data stroam reads.

begin
DS_ALARM_OVEN_CONTROL.BUFFERREAIXLV_ALARM);
axeption

when BUFFER_UNDERFLOW =>
DS_DEBUG.BUFFPER_UNDERFLOW(*ALARM_OVEN_CONTROL®, “OVEN_CONTROL");
end;
begin
DS_COMMAND_OVEN_CONTROL.BUFFERREADXLV_COMMAND),
enception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW(*COMMAND_OVEN_CONTROL",
*OVEN_CONTROL®);
-d;

begin
DS_TEMPERATURE_OVEN_CONTROL.BUFPERREAIXLV_TEMPERATURE);
anception

‘when BUFFER_UNDERFLOW =
DS_DEBUG.BUFFER_UNDERFLOW("TEMPERATURE_OVEN_CONTROL®,
“OVEN_CONTROL");
ond;
« Enocation trigger conditian chock.
-E 300 C P 1ath

~Unconditional outpat i
= PSDL Excoptian bandier.
ead OVEN_CONTROL _DRIVER;

Figure 5.3. TRIGGERED BY ALL Implementation

2. Execution Triggers

The execution trigger is where the actual program that implements the
functionality of that operator, which is provided by the user, will be called if the conditions
are satisfied. These conditions come from the TRIGGERING IF part of the PSDL
program. Note that even if they are not satisfied, the data has already been consumed, and

is therefore marked as old data.

107

OPERATOR triggernd_if
SPECIFICATION
END
command

alerm
(emparahere

9 mpersm, slaan
TP smperatures >= 1000 OR Al = TRUE
OPERATOR Texp_Alexn

OPERATOR Taxp_Sanecr
OPERATOR kypxx Kayped
B0

~ Buscsttion wrigger canditisn check
¥ (OLV_TEMPERATURE >= 100.0) or (LV_ALARM = txpe)) than

EXCEPTION. _OCCURRED = tmae;
EXCEPTION_ID = UNDBCIARED_ADA_EXCHPTION,
ad;
wlos sasurn;
-y,

Figure 5.4. TRIGGERING IF Implementation

3. Output Guards
Finally, the output guards are checked. If the conditions are satisfied, a

rendezvous with the output stream tasks is requested by calling their WRITE entry.

Bl s —
¥ ast EXCEPTION_HAS_OCCURRED thun
¥ OLV_COMMAND = 1) am

Sagln
DS_VOLTAGE HEAT_BUSMENT SUFFER WRITR(LY_VOLTAGE.
nesptien
wiua BUFFER_OVERFLOW «>
D8_DEBUG BUFFER_OVERFLOW{"VOLTAGE_HEAT _ELEMENT", "OVEN_CONTROL").
-

d";
-d¥,

Figure 5.5. Output Guards Implementation

108

Besides these packages that are generated by the Translator, there are another two
packages generated by the Static Scheduler and by the Dynamic Scheduler. When
consolidated by one of the CAPS scripts, they will form the so called prototype

supervisory program, receiving the name of the prototype followed by a “.a” extension,

which stands for an Ada program.
Exception Declarations
Generic Instantiations
Timer Instantiations S CAPS K
Data Stream Instantiations upport Fackages
Operator Drivers
while true loop .
call non-time-critical operator drivers; Dynamic Schedule
end loop; Task Package
while true loop Static Schedule
call time-critical operator drivers ; Task Package
end loop; g
procedure prototype_name is
begin
init_hardware_model; 3 gram
start static schedule; Main Pro
start dynamic schedule;
end prototype_name ;

Figure 5.6. CAPS Supervisory Program Structure

CAPS is composed of four major Ada tasks with the following priorities, as
defined in the package PRIORITY_DEFINITIONS:
1) Debugger Task - it handles all CAPS debugging tools used during prototype
execution, and has the highest priority within CAPS, which is 4

2) Stream Tasks - each stream is implemented as one Ada task with priority 3

109

3) Static Scheduler Task - it is responsible for calling all the timing critical
operators, according to the static schedule. The TC operators will be called in
a non-preemptive way, so that each instance of an operator will execute to
completion; being preempted only by the debugger task, or during operations
with the stream tasks. It has a priority of 2. Note that, although the stream
tasks have higher priority, they are called (synchronized) by this task, so that
there will be no problems such as another stream from another operator trying
to gain control of the CPU.

4) Dynamic Scheduler Task - it is assigned the lowest priority (priority 1) within
CAPS, and it handles all the non-time critical operators of the prototype. They
will run in a pre-defined order established by the dynamic schedule, whenever
there is idle time in the static schedule. The NTC operators, due to their low
priority, can be preempted by any other task and, as a matter of fact, they are
not even guaranteed to run at all. This problem of unbounded blocking will be
addressed later on.

B. THE PROPOSED DISTRIBUTED ARCHITECTURE

In the uniprocessor case, the translator had no information about the output of the
scheduler. For the distributed case, however, this information is crucial, since it will have
to generate different Ada units for each of the processors involved in the prototyping.

Once the scheduler has generated the different partitions, defining which operator
belongs to which partition, the translator will have to be called, so that it can generate as
many supervisory files as the number of partitions. It is suggested that the prototype name
followed by the partition number be used as the naming convention for the supervisory
files, e.g.. PATRIOT_l.a, PATRIOT_2.a, and so on.

The following information should be passed by the scheduler to the translator, so
that it can perform its job:

1) Number of partitions and a list with the operator names belonging to each

partition

110

2) Mapping from partitions to processors according to the requirements

For the sake of simplicity, it is assumed that there is a homogenous cluster of
processors, so that a configuration of partitions is not needed. The process of mapping
the partitions of a program to the nodes in a distributed system is called configuring the
partitions. Note, however, that even after having abolished condition 2, there is still a
need to provide the translator with the name of the processors. It is suggested that this
information come from the CAPS interface.

Once this information is available to the translator, it should generate a supervisory
file for each partition, exactly as it did for the uniprocessor case, except for the following
differences:

1) In the new package streams, where the streams are instantiated, if a specific
stream is going to some operator external to that partition, and only in that
case, it should be hard-coded as an instantiation of a special and newly created
kind of stream, i.e., the network stream. Note that this stream has only one
entry, which is write_external, considering that all reads will be to local
streams. Certainly, the package PSDL_STREAMS will have to be totally
changed to conform with the new model for distributed scheduling without
synchronization, which requires a buffer size of three for the network streams.
Another modification made in this package relates to the sampled streams,
which are now divided into two groups, non-triggering (NT) and TRIGGERED
BY SOME (TBS), since they have quite different semantic behaviors. Figure

5.7 shows the specification of the new package containing the stream tasks.

111

with PRIORITY_DEFINITIONS;

use PRIORITY_DEFINITIONS;

package PSDL_STREAMS is
BUFFER_OVERFLOW : exception;
BUFFER_UNDERFLOW: exception;

~ Implements a buffer with size 1, for sampled
- streams with no triggering condition (NT)
generic
type ELEMENT_TYPE is private;
package NT_SAMPLED_BUFFER is
task BUFFER is
pragma PRIORITY(BUFFER_PRIORITY);
entry READ(VALUE: out ELEMENT_TYPE);
entry WRITE(VALUE: in ELEMENT_TYPE);
end BUFFER;
end NT_SAMPLED_BUFFER;

~ Implements a buffer with size 3, for sampled
— streams that have triggering "BY SOME"
— condition (TBS)
generic
type ELEMENT_TYPE is private;
package TBS_SAMPLED_BUFFER is
task BUFFER s
pragma PRIORITY(BUFFER_PRIORITY);
entry CHECK(NEW_DATA: out BOOLEAN);
entry READ(VALUE: out ELEMENT _TYPE);
entry WRITE(VALUE: in ELEMENT_TYPE);
end BUFFER;
function NEW_DATA retum BOOLEAN;
end TBS_SAMPLED_BUFFER;

— Implements a buffer with size 1, for state streams
- that have no triggering condition (NT)
generic
type ELEMENT_TYPE is private;
INITIAL_VALUE: ELEMENT_TYPE;
package NT_STATE_BUFFERIs
task BUFFERIs
pragma PRIORITY(BUFFER_PRIORITY);
entry READ(VALUE: ow ELEMENT_TYPE);
entry WRITE(VALUE: mELEMENT_TYPE);
end BUFFER:
end NT_STATE_BUFFER;

- Implements a buffer with size 3, for states streamns
— that have triggering "BY SOME" condition (TBS)
generic
type ELEMENT_TYPE is private;
INITIAL_VALUE: ELEMENT_TYPE;
package TBS_STATE_BUFFERIs
task BUFFERIs
pragma PRIORITY(BUFFER_PRIORITY);
entry CHECK(NEW_DATA: out BOOLEAN);
eatry READ(VALUE: out ELEMENT_TYPE);
entry WRITE(VALUE: inELEMENT_TYPE);
end BUFFER;
function NEW_DATA return BOOLEAN;
end TBS_STATE_BUFFER;

~ Implements a buffer with size 3, for dataflow
~ streams, that is, those that have the triggering
- "BY ALL" condition
generic
type ELEMENT_TYPE is private;
package FIFO_BUFFER is
task BUFFER is
pragma PRIORITY(BUFFER_PRIORITY);
entry CHECK(NEW_DATA: out BOOLEAN);
entry WRITE(VALUE: in ELEMENT_TYPE);
entry READ(VALUE: out ELEMENT_TYPE);
end BUFFER;
function NEW_DATA reum BOOLEAN;
end FIFO_BUFFER;

— Implements a buffer with size 1, for networked
— stream, no matter what kind of streams they are
with A_STRINGS; use A_STRINGS;
with ADA_STREAMS;
with SYSTEM_RPC;
generic
type ELEMENT_TYPE is private;
PROC : SYSTEM_RPC.PARTITION_ID;
STREAM_NAME : in A_STRING;
package NETWORK_BUFFER is
task BUFFER &5
pragma PRIORITY(BUFFER_PRIORITY);
entry WRITE_EXTERNAL(
VALUE: in ELEMENT_TYPE;
PROC : in SYSTEM_RPCPARTITION_ID;
STREAM_NAME : in A_STRING);
end BUFFER;
end NETWORK _BUFFER;
end PSDL_STREAMS;

Figure 5.7. The New PSDL_Streams Ada Package Specification

2) The new drivers package should contain only the driver procedures related to
the operators belonging to that partition. It is very important to notice that the

distributed scheduling model assumes that a stream resides, ie., it is

112

instantiated, in the same processor or partition of its consumer opc:rator.l
Therefore, for the consumer operator, it is irrelevant where the data came from,
and, furthermore, no changes will be needed for the individual driver
procedures within this package, since all the reads will be to local streams. The
only change would occur if it was necessary to perform a write to an external
operator. In this case, the write operation should be hard-coded by the
translator as a call to write_external, an entry of the special network stream
task. In Figure 5.8, which presents the network stream task body, it is apparent
that, after this rendezvous is accepted, there should be a call to some inter-
processor communication routine, e.g., DO_APC, that would deliver the
message. It is also at this point where most of the problems are going to

appear, as shall be seen.

with A_STRINGS; use A_STRINGS
with ADA_STREAMS;
with SYSTEM_RPC;
package body NETWORK_BUFFER is
task body BUFFER is
PARAMETERS : SYSTEM_RPC.PARAMS_STREAM_TYPEQ3);
- This type allows multiple stream elements within the
- same stream, depending on its declaration
begin
loop
accept WRITE_EXTERNAL(VALUE: in ELEMENT_TYPE;
PROCESSOR : in SYSTEM_RPC.PARTITION_ID;
STREAM_NAME : in A_STRING) do
SYSTEM_RPC.DO_APC(PROCESSOR,PARAMETERS);
-- parameters will include the remote procedure name,
- the psdl_stream_name and value
end WRITE_EXTERNAL,;
end loop;
end BUFFER;
end NETWORK_BUFFER;

Figure 5.8. Body of the Network Stream Task

! This assumption will require that all exceptions from external streams should be treated and
consequently hard-coded in the consumer's side.

113

The changes made so far are very minor, since most of the burden is being put on
the write operation to external streams. In fact, the most difficult part of this
implementation is finding a way to receive the incoming messages from the different
processors and operators. Some kind of communications server, that will have the duty of
receiving and routing all the incoming messages to its final destination, will be needed.
Due to the semantics of PSDL, in order to reliably implement this communication, it will
be necessary to send some kind of header containing the consumer operator, the name of
the stream and the name of the destination processor along with the data.

These requirements for the header come from situations such as when the same
operator is trying to write to the same stream into different operators in different
partitions. This case is illustrated in Figure 5.9. In the next section the different options

available for implementing this communication sub-system are described.

DIFFERENT

PARTITIONS

Figure 5.9. Justification for the Header Information

C. IMPLEMENTATION ISSUES OF THE COMMUNICATION SUBSYSTEM

One of the most important design issues is the choice of the communication
subsystem. It is recommended to use the remote procedure call (RPC) paradigm as
opposed to the traditional message passing mechanism. The reasons for this choice is that
RPC is widely implemented for interprocess communication between computers across a

network, being supported by most of the emerging distributed operating systems. Several

114

standards have been initiated by organizations, such as ISO and OSF. This method also
provides an asynchronous form, relaxing the original synchronous semantics of RPC.
Finally, the Annex E (Distributed Systems) of the Ada95 Reference Manual makes it the
choice, though not mandatory, for future implementations of this Annex.[Ada95]

L The RPC Model

The remote procedure call model is similar to the local procedure call model. In
the local case, the caller places arguments to a procedure in some well-specified location.
It then transfers control to the procedure, and eventually gains back control. At that
point, the results of the procedure are extracted from the well-specified location and the
caller continues execution.[Sun90] |

The remote procedure call is similar. That is, the caller process sends a call
message to the server process and waits (blocks) for a reply message. The call message
contains the procedure's parameters, among other things. The reply message contains the
procedure's results, among other things. Once the reply message is received, the results of
the procedure are extracted, and the caller's execution is resumed.[Sun90]

Note that in this model, only one of the two processes is active at any given time.
The RPC protocol, however, makes no restriction if the implementation allows the calling

routine to do some useful work while waiting for the reply (asynchronous mode).

2. The First Approach

The first idea was to implement the RPC paradigm by using the standard RPC
libraries. However, in order to do that within CAPS, it would be necessary to call from
inside an Ada task, more specifically from inside the network tasks, a C routine that would
implement the RPC calls (see Figure 5.8). The reason for a C routine is that there is no
library support or existing bindings for implementing RPC from inside Ada83. It would
not be difficult to write an Ada wrapper to the C routine. However, the biggest problem
to be dealt with is how to pass the Ada parameters to the C routine, which could be very
complicated abstract data types from the PSDL prototype. Assuming that this problem

115

could somehow be solved, there is an additional problem: How could this C routine pass
the complex ADTs through the streams? In the Unix/C world, there currently exists a
great deal of support for these kinds of operations.

For example, the rcpgen utility is basically a compiler that accepts a remote
program interface definition written in the RPC language, which is very similar to C, and
outputs a C program, containing all the client routines, the server routine, and most
importantly, all the XDR filter routines. An XDR routine converts procedure arguments
and results in the network format (sequential streams) and vice-versa.

The External Data Representation (XDR) standard comprises a set of library
routines that allow a C programmer to describe arbitrary data structures in a machine-
independent fashion. XDR is the backbone of Sun's RPC package, in the sense that data
for remote procedure calls is transmitted using this standard. It was designed to work
across different languages, operating systems, and machine architectures.

It is important to note, however, that most of the time required to prepare a data
structure for transfer is not spent in conversion but in traversing the elements of the data
structure. To transmit a tree, for example, each leaf must be visited and each element in a
leaf record must be copied to a buffer and aligned there. Storage for the leaf may have to
be deallocated after the data is sent. Similarly, to receive a tree, storage must be allocated
for each leaf, data must be moved from the buffer to the leaf and properly aligned, and
pointers must be constructed to link the leaves together. [Sun90]

In this case what is needed is a remote procedure called receive, running in all the
machines, ready to intercept any incoming messages, and another routine, namely send,
that will also run in all machines and will remotely call the receive routine. In Figure 5.10
both routines which were successfully tested in the “C” environment are presented. Note

that the send routine is not sending anything, but merely passing parameters to the remote

procedure receive.

116

RPC_REC.C
/* receiver.c - remote procedures; called by server
stub. */

#include <stdio.h>

/* standard RPC include file */
#include <rpc/rpc.h>

/* this file is generated by rpcgen */
#include "RPC_receive.h”

/* Receive a string of chars and reply with a status
*/

char ok
receive_l(message)
char ** message;
{
static char status{20] = "OK";
static char ptr[100];
static char *ptr1;

printf("Received message = %s\n", *message);
fflush(stdout);

ptrl = &status[0];

strepy (ptr,*message);

ptrl = &ptr[0]; */

return(&ptrl);

RPC_SEND.C
/* RPC_send.c - client program for remote receive
service.*/

#include <string.h>

#include <stdio.h>

/* standard RPC include file */
#include <rpc/rpc.h>

/* this file is generated by rpcgen */
#include "RPC_receive.h”

main(argc, argv)

{

int argc;
char *argv[];

CLIENT *cl; /*RPC handle ¥/
char *receiver_name;

char **status;

char *message;

if (arge 1= 3) {
fprintf(stderr, "usage: %s hostname
message\n”, argv([0]);
exit(1);
}
receiver_name = argv[1];
message = argv[2];
/* Create the client "handle” */
if ((cl = cInt_create(receiver_name,
DISTR_SCHEDULE, CAPS95, "udp"))
==NULL) {
/* Can't establish connection with receiver */
cint_pcreateerror(receiver_name);
exit(2);

)

/* call the remote procedure "receive_1" */
printf("Message 1o be transmited = %s\n",
message);
fflush(stdout);
if ((status = receive_1(&message, cl)) ==
NULL) {

cint_perror(cl, receiver_name);

exit(3);
)
printf("Status from remote receiver %s is

%s\n", receiver_name,*status);

clnt_destroy(cl); /* done with the handie */
exit(0);

Figure 5.10. The RPC Programs for the New Scheduler

Finally, if both problems have been solved, i.e., the parameter passing between C
and Ada in the sender side and the Ada bindings for the XDR routines, there is stll an

117

additional problem in the receiver side due to the way RPC is now implemented in C. The
receiving, or the server, routine, is implemented as a forever loop by calling the Unix
system call svc_run(). To overcome this problem one would need to be able to call an
Ada procedure from inside a C routine, and again the same problem of passing parameters
would be present.

Another approach, such as using files to exchange data between C and Ada, could
be used, but then other problems, such as file locking, and internal synchronization
between C and Ada tasking (so that no data could be overwritten before being consumed)
would come into play.

Because of all these problems, it seems that a better solution is needed, and just

such a solution is present in the Ada95 implementation, which will be described next.

3. The Ada95 Approach

Annex E defines facilities for supporting the implementation of distributed systems
using multiple partitions working cooperatively as part of a single Ada program. These
facilities include pragmas for categorizing library units according to the role they play in
the distributed system, such as Shared_Passive, Remote_Types and
Remote_Call_Interface, and other mechanisms for supporting communication and access
to shared data. [Ada95]

The Partition Communication Subsystem (PCS), as defined in Annex E, provides
facilities for supporting communication between the active partitions of a distributed
program by using the remote procedure call interface (RPC). The annex also proposes a
specification for the RPC interface between active partitions within the PCS, which will be
contained in the package System.RPC. Figure 5.11 introduces the proposed specification
for the package System.RPC.

118

with Ada.Streams;
package System.RPC is
type Partition_ID is range O .. implementation-defined
Communication_Error : exception;
type Params_Stream_Type (Initial_size : Ada.Streams.Stream_Element_Count) is new
Ada.Streams.Root_Stream_Type with private;

procedure Read(Stream : in out Params_Stream_Type;
Item : out Ada.Streams.Stream_Element_Array;
Last : out Ada.Streams.Stream_Element_Offset);

procedure Write(Stream : in out Params_Stream_Type;
Item : in Ada.Streams.Stream_Element_Array);

-- Synchronous call

procedure Do_RPC(Partition : in Partition_ID;
Params : access Params_Stream_Type
Result : access Params_Stream_Type);

— Asynchronous call
procedure Do_APC(Partition : in Partition_ID;
Params : access Params_Stream_Type);

— The handler for incoming RPCs
type RPC_Receiver is acess procedure(Params : access Params_Stream_Type
Result : access Params_Stream_Type);
procedure Establish RPC_Receiver(Receiver : in RPC_Receiver);

private
— not specified by the language
end System RPC;

Figure 5.11. Package System.RPC (Specification)

As noted in Figure 5.11, during the execution of a remote subprogram call, most
of the parameters (and later results, if any) are passed using a stream oriented
representation which is suitable for transmission between partitions. The annex calls this
action marshalling. Unmarshalling is the reverse action of reconstructing the parameters
or results from the stream-oriented representation. Note that there is not any defined
standard for transformation, but nevertheless the XDR standard seems to be the choice for

most of the Ada compiler vendors.

119

The type Partition_ID is used to identify a partition, and Params_Stream_Type is
used for identifying the particular remote subprogram that is being called, as well as
marshalling and unmarshalling the parameters or result of a remote subprogram call, as
part of sending them between partitions. The Read and Write procedures override the
corresponding abstract operations for the type Params_Stream_Type.

Both synchronous and asynchronous communication are supported, and are
implemented by the procedures Do_RPC and Do_APC, respectively. Both procedures
send a message to the active partition identified by the Partition parameter. The first one
blocks the calling task until a reply message comes from the called partition, or some error
is detected by the PCS, in which case Communication_Error is raised at the point of the
call to Do_RPC. Do_APC operates in the same way as Do_RPC, except that it is allowed
to return immediately after sending the message.

Finally, the procedure Establish_RPC_Receiver is called only once, immediately
after elaborating the library units of an active partition, but prior to invoking the main
subprogram, if any. The Receiver parameter designates an implementation-provided
procedure called the RPC_Receiver which will handle all RPCs received by the partition.
Establish_ RPC_Receiver saves a reference to the RPC-receiver. When a message is
received at the called partition, the RPC-receiver is called with the Params stream
containing the message. When the RPC-receiver returns, the contents of the stream
designated by Result is placed in a message and sent back to the calling partition.

The implementation of the RPC-receiver shall be reentrant, thereby allowing
concurrent calls on it from the PCS to service concurrent remote subprogram calls into the
partition.

a The Package Streams

A Stream is a sequence of elements comprising values from possibly
different types, and allowing sequential access to these values. A stream type is a type in
the class whose root type is Streams. Root_Stream_Type. [Ada95]

120

The types in this class represent different kinds of streams. The pre-defined
stream-oriented attributes like T'Read and T'Write make dispatching calls on the Read and

Write procedures of the Root_Stream_Type.

package Ada.Streams is
pragma Pure(Streams);
type Root_Stream_Type is abstract tagged limited private;
type Stream_Element is mod implementation-defined;
type Stream_Element_Offset is range implementation-defined;
subtype Stream_Element_Count is
Stream_Element_Offset range 0 .. Stream_Element_OffsetLast;
type Stream_Element_Array is
array(Stream_Element_Offset range <>) of Stream_Element;

procedure Read(Stream : in out Root_Stream_Type;
Item : out Stream_Element_Array;
Last : out Stream_Element_Offset) is abstract;

procedure Write(Stream : in out Root_Stream_Type;
Item : in Stream_Element_Array) is abstract;

private
-- not specified by the language
end Ada.Streams;

Figure 5.12. Package Ada.Streams (Specification)

Read operations transfer ItemLength stream elements from the specified
stream to fill the array Item. The index of the last stream element transferred is returned in
Last. Last is less than Item'Last only if the end of the stream is reached.

The Write operation appends Item to the specified stream. There are also
the Read, Write, Output and Input attributes that convert values to a stream of elements
and reconstruct values from a stream.

For every subtype S of a type T, some attributes are defined, which denote

cither a procedure or a function call. Figure 5.13 presents such attributes.

121

-- writes the value of Item to Stream
procedure S'Write(Stream : access Ada.Streams. Root_Stream_Type'Class;
Item : T);

-- reads the value of Item from Stream
procedure SRead(Stream : access Ada.Streams. Root_Stream_Type'Class;
Item : out T);

-- writes the value of Item to Stream, including any bounds or discriminants
procedure S'Output(Stream : access Ada.Streams. Root_Stream_Type'Class;
Item:T);

-- reads and returns the value of Item from Stream, using any bounds or

-- discriminants written by a corresponding S'Output

function S'Input(Stream : access Ada.Streams. Root_Stream_Type'Class;
return T);

Figure 5.13. Stream Attributes

b. Conclusions

All of the problems that have been discussed in this section have been
addressed in the Ada95 implementation. Therefore, in order to implement the distributed
scheduling model, it is only necessary to follow the directions introduced in Section B. It
is now apparent that the example given in Figure 5.8 had already considered the packages
(System_RPC and Ada_Streams) and procedures (DO_APC) to be introduced with
Ada95. The only part that is not yet clear, because it is dependent upon implementation,
is the marshalling and unmarshaling operations, which will affect the manner in which the
Ada stream is constructed from the parameters passed during the rendezvous with the
write_external entry of the network stream task.

Figure 5.14 presents a pictorial view of the proposed architecture for the
new Distributed CAPS Scheduler.

122

POME
DD W D124
CPERATOR OP3
ore ALL

DYNAMIC SCHEDULER STATIC SCHEDULER

@nom drivr "\ task sream D1
Dl.wriss accept wrim

precedure OP2_driver accapt read

ADA PARTITION
COMMUNICATION

SUBSYSTEM

&

PROCESSOR 2

DYNAMIC SCHEDULER

Figure 5.14. Architecture for the Distributed CAPS Scheduler

123

D. CPU SPEED RATIO ISSUES IN A PROTOTYPING |
ENVIRONMENT

In a software prototyping environment, where the host machines usually used for
prototyping are not similar to the intended target machines (which may not even be known
a priori), special attention must be taken so that erroneous conclusions due to timing
problems during the prototyping are avoided.

There are two kinds of timing errors that can be foreseen in a real-time system.
Both of them may cause undesirable system behavior, such as deadlocks, buffer overflows,
or data inconsistency. The first kind of error has a relative nature, since it is caused by
computational events that occur in an improper sequence. They are solely dependent on
the relative order in which the computations occur, and can be avoided by proper
scheduling of the system [Mok83].

The second kind of error is more subtle, in the sense that it is caused by violation
of some specified timing constraints, such as missing deadlines. In CAPS, since a static
schedule is used to execute the prototype, this problem can only happen if the MET was
inaccurately specified, or if the MET was specified for running in a faster machine. What,
then, is the real meaning of the MET? Is it an absolute value, or is it dependent upon the
machine in which the module is running? Clearly, this is only the tip of an iceberg, and the
answer is no, it cannot be absolute, since the attribute execution time is a function of the
machine throughput. A module that has an MET of 150 ms for some specific machine
may take longer than that to execute if running in a slower machine.

The problem is even bigger if the CAPS Software Base, which is supposed to be a
collection of reusable components provided by different vendors, is taken into account.
Each component should have a PSDL specification, with all the timing constraints, such as
MET, MRT, MCP, etc. All of this information will be used during the execution phase of
the prototype, in trying to match needs with the available components. The same problem

arises regarding their timing reference, since each vendor may well have their own.

124

This discussion demonstrates the imperative need for assuming a common timing
reference within CAPS. It can be anything, as long as it is consistent and used throughout
the prototype. Care must be taken when choosing this reference, however, since it may
lead to significant differences when dealing with reusable components from different

sources.

1. Choosing a Reference

Standard measures of performance provide a basis for comparison, and time is the
best way to measure computer performance. The computer that performs the same
amount of work in the least time is the fastest. A number of popular measures have been
adopted in the quest for a standard measure of computer perfbrmance, but most of them
were forced into a service for which they were never intended. [HP90]

The MIPS, million instructions per second, is easily understood by a customer, in
that faster machines means bigger MIPS. However, the MIPS measure presents the
following problems:

1) MIPS is dependent on the instruction set, making it difficult to compare

machines with different instruction sets

2) MIPS varies between programs on the same computer

3) MIPS can vary inversely to performance

A classic example to the third of these points is the MIPS rating of a machine with
optional floating-point hardware. If it uses the hardware floating-point unit it will take
less time to execute, but it will also execute fewer and more complex instructions.
Software floating-point executes more but simpler instructions, resulting in a higher MIPS
rating [HP90].

Another popular altemnative is million floating-point operations per second,
abbreviated as MFLOPS. However, MFLOPS is, clearly, highly dependent on the
machine and on the program.

125

Other options are synthetic benchmarks, such as Whetstone and Dhrystone, but the
best choice appears to be to use real programs, such as compilers, text editors, CAD tools,
etc., which have inputs, outputs, and other user-defined options. [HP90]

While having a standard of performance for computers is still beyond the horizon,
for prototyping purposes within CAPS, where many of the figures are still subject to
change during the prototype refinement process, any of these metrics provides a good
starting place. Again, for the sake of simplicity, the MIPS rating will be the reference
model for performance in this work.

2. CAPS Timing Model

It will be useful to define some of the terms used in construction of the model:

CAPS Reference —Specifies the MIPS rating of a hypothetical machine, to which
all of the CAPS timing information should be normalized.

HOST Reference - Specifies the MIPS rating of the host machine where CAPS is
installed. This value will be automatically generated by CAPS at the start of the session,
and it is the result of an Unix system call.

TARGET Reference - Specifies the MIPS rating of the target machine. In the
absence of this value, it is assumed that the host machine for CAPS is identical to the
target machine. This value should be provided by the user at the beginning of the design
of the prototype, and will affect the retrieval of reusable components from the Software
Base.

CPU Speed Ratio - Specifies the MIPS ratio between the target and the host
machine. It can be changed by the user to make temporary simulations and to overcome
possible timing errors. It is important to note that this value will have a very important
role in debugging possible timing errors during prototype execution. Its default value is
given by the formula:

Target Reference

CPUSpe no= Host Reference

126

Table 5.1 specifies the default values which will used throughout this discussion,

unless otherwise stated.

s fere:
10 MIPS 20 MIPS

Table 5.1. Default Values for the Timing Model

1.33

a. Building the Prototype

All timing information, such as MET, PER, FW, MRT, MCP, LAT and
MOP, specified by the user during the design phase of the prototype, which in most cases
come from the Requirements Document, are assumed to be referenced or normalized to
the Target Reference. Therefore, when, for example, defining an operator with MET =
100ms, it should be understood that 100ms would be the maximum execution time
allowed for that operator if running in the target machine. It will default to the host
machine if the Target Reference is not given.

Note that the MET of this operator is equivalent to 200ms with respect to
the CAPS Reference; it is this value of 200ms that will be used in the query to the
Software Base during the search for a matching reusable component. Observe also that
this value will not affect Translation nor Scheduling, since all timing information is
consistently and linearly normalized to the CAPS Reference.

b. Installing Components in the Software Base

When getting reusable components from a specific vendor or supplier, the
timing reference used to classify their components should be specified along with the
component. For example, when a component arrives, it should be labeled as follows:
component X has a certified MET of 100ms under a S MIPS machine.

This information will allow the insertion of the component into the
Software Base as a component with MET equal to 50ms, which is the correct value
normalized with respect to the CAPS Reference. Note that this value will be used during

its retrieval from the software base by the prototypes.

127

3. Relations between CPU Speed Ratio and Timing Errors

Assuming that all timing information from the reusable components is correct with
respect to the supplier's reference, then there should be no timing errors, if the component
matches the prototype specification. For example:

Suppose that a component with an MET of 120ms is needed. Then the correct
query to be performed on the Software Base should be for a component with an MET of
240ms, i.e.,

Target,g.
CAPSger

Therefore, using this component in the prototype, according to the generated static

METcaps = METtarGeT X

schedule, should not cause any timing errors. However, if it does cause a timing error,
then it is possible to conclude that the component timing information was incorrect. To
solve this problem, the following steps can be taken:

a) Increase the CPU Speed Ratio until the error disappears. This means that a
reasonable MET for that component with respect to the Target reference, although it may

not be the tightest one, is equal to:

New CPU Speed Ratio
N MET =
W M5 1« = 014 CPU Speed Ratio

x Original MET,

Target

Note that another side effect in performing step a) is that the entire schedule is
stretched, and, consequently, the slack time available for the dynamic scheduler is
increased, since some of the timing critical operators don’t need more time to execute.

b) Update the Software Base with the correct timing information for that
component.

c) Reset the CPU Speed Ratio to its original value and take either step d), e) or f)
to solve the problem.

d) If requirements permit,change the PSDL specification to allow the bigger MET
found in step a). This in turn will require a whole new CAPS session, starting from a new

128

wranslation until the final compilation. Note that increasing the MET affects the load
factor and may cause an unfeasible schedule.

e) Search the Software Base for another reusable component that matches the
original MET. This new one may well have the correct information.

f) Create another new component or optimize the existing component. Validate its
timing constraints and update the Software Base if succesfull.

g) If it is realized that a faster target processor is needed in order to cope with the
requirements, then the Target Reference should be changed so that those timing errors
disappear. Note that this change will only affect the CPU Speed Ratio, and as explained
earlier, and will not change the schedule. Theoretically, the necessary change for the
Target Reference can be derived very easily from the following formula:

New Target Reference = New CPU Speed Ratio x Original Host Reference

The other source of timing errors is found when dealing with user-created
components. In other words, the component just created takes more time than that
specified. For example, assume the previous situation, where a component with MET of
120ms is required. Since the host machine is slower than the target machine, the
scheduling time will be linearly stretched by a factor of 1.33, that is, 1.33 x 120ms, or
159.6ms, will be allowed for the execution interval of this component. If timing errors
occur, the following steps can be taken to eliminate them:

a) Increase the CPU Speed Ratio until the error disappears. This means that a
reasonable MET for that component with respect to the Target reference, although it may
not be the tightest one, is equal to:

New MET _NcwCPUSpeedRaﬁo « Original MET
ew MET, . = "0l CPU Speed Ratio & Tee=

b) Reset the CPU Speed Ratio for its original value and take either step c) or d) to

solve the problem.
¢) If requirements permits, change the PSDL specification to allow the bigger
MET found in step a). This in turn will require a whole new CAPS session, starting from

129

a new translation until the final compilation. Again, this change may cause an unfeasible
schedule.

d) Rewrite the component trying to speed it up;

e) If it is realized that a faster target processor is needed in order to cope with the
requirements, then the Target Reference should be changed so that those timing errors
disappear. The required change for the Target Reference can be derived from the
following formula:

New Target Reference = New CPU Speed Ratio x Original Host Reference

f) After getting rid of the timing errors, if it is decided to add the user-created
Component to the software base, the component should be associated with an METcps

CAPSgr

equal to METT.gu Xm— .

4. How the CPU Speed Ratio affects Scheduling

The Static Schedule is basically a sequence of pairs of absolute values containing
the start time and stop time for each instance of the time-critical operators within one
harmonic block.

At the beginning, the static scheduler task calls the function TARGET_TO_HOST,
which belongs to the package PSDL_TIMERS, and multiplies all those absolute time
values by the CPU Speed Ratio. The net effect is that the scheduler will stretch or shrink
all of the timing information related to the prototype in a linear fashion.

130

N |

CPU SPEED RATIO =2

Absolute Time

1 v

Simulation Time _

Figure 5.15. Effect of the CPU Speed Ratio on the Schedule

S. Handling Unwanted Interactions during Prototype Scheduling

A software prototyping environment needs to simulate external entities so that the
entire system being prototyped can be exercised. These external entities will in most cases
cither generate inputs or consume outputs from the core of the system being prototyped.
This requires that the timing constraints are taken into consideration during the generation
of the schedule. However, it is during prototype execution that the effects are most
harmful, since they will incorrectly steal CPU time from the host system. It is also
unavoidable that time is spent by the host operating system to serve processes that
sometimes nothing have to do with the prototype.

All these unwanted interactions can dramatically affect timing behavior and overall
confidence in the prototype. The question to ask, then, is how can these timing
interferences be eliminated?

To solve these problems, CAPS introduced the technique of having two different
time lines. One is the absolute time line, and is driven by the real-time clock of the host
machine. The second one, the simulation time, will command all the scheduling actions of

the prototype.

131

What is going to happen is that whenever an external operator, or some operating
system function, is being executed, the scheduling clock will be frozen, so that, for the
prototype, it is as though they do not exist.

Another feature that can be explored with this technique is when an operator
belonging to the prototype exceeds its scheduling interval and causes an exception. It is
very likely that this will interfere with other operators, causing a chain of exceptions, when
in reality, only the very first operator incurred a timing error. Because of the use of a
simulated clock (the scheduling clock) it is possible to remove any excess of time from the
scheduling clock, and then resume the simulation, so that no further operators will be
affected.

132

A.

VI. EXPERIMENTAL RESULTS

INTRODUCTION
Although the full implementation of the new Distributed Model is not complete,

due to software limitations of the current Ada compiler technology that will be solved by
the new Ada95 implementation, much can be said about expectations and also about the

general scheduling capability of CAPS.

One of the biggest problems encountered during this research was the lack of an

adequate set of prototypes to test the scheduler. Up to now, most of the development in

CAPS has been tested with a few prototypes that may be sufficient for the development of

several tools, but not for the scheduler, which requires a huge test set so that all the
critical points can be exercised. This is the reason for building a PSDL random graph

generator, as discussed in the next section of this chapter.

B.

THE RANDOM GRAPH GENERATOR

The random graph generator has the following basic features:

1) builds PSDL prototypes with an arbitrary number of operators

2) allows the user to specify how many different prototypes are to be generated

3) provides an expert mode where the system attempts to reduce the harmonic
block automatically, by changing the periods of the periodic and the
transformed sporadic operators within an user-defined range

4) operates in two randomization modes: unlimited or restricted randomization

5) provides a compression capability, so that an arbitrary number of operators may
be located within a bounded load factor of one. This is very useful for testing
uniprocessor scheduling algorithms

6) allows the user to specify the desired percentage of timing critical operators,
periodic operators, and data flow edges

7) can generate prototypes with different degrees of sparseness

8) the user can specify the maximum number of edges between two operators

133

9) provides a thorough scheduling information for debugging purposes

There are basically two major procedures that build the random graph. The first
one is the Produce_Random_Array and the second one is the Produce_Random_Matrix.
Both routines use the same data structure of the scheduler, so that the simulation is as

close as possible to the real prototype.

type OPERATOR is type EDGE_INFO is

record record
THE_OPERATOR_ID: OPERATOR_ID := A_STRING.cempty; ORIGIN: INTEGER := -];
THE_MET: MET = 0; DEST: INTEGER :=-1;
‘THE_MRT: MRT =0; PARENT: INTBGER = -1;
THE_MCP: MCP :=0; CHILD: INTEGER 2= -1;
THE_PERIOD: PERIOD == 0; THE_LATENCY: LATENCY = 0;
THE_WITHIN: WITHIN := 0; DATAFLOW_EDGR: BOOLEAN := falec;
ACTUAL_PERIOD: PERIOD = 0; OVERLAP_ABLE: BOOLEAN = rwo;
LOWER_PERIOD: PERIOD =0; HAS_STATE_EDGE: BOOLEAN := falsc;
UPPER_PERIOD: FPERIOD :=PERIOD last; IMC_PER_SEC: FLOAT =0.0;
THE_SLKCES: NODE_LIST Jist := mull; IMC_INDEX: PLOAT := 0.0,
LOAD_FACT: PFLOAT :=0.0; PR_INDEX: PLOAT := -99.0;
FAN_IN: INTEGER = 0; CONNECTIVITY: INTEGER = 0;
FAN_OUT: INTEGER = 0; end recerd;

end record;

Figure 6.1. Partial View of the Data Structure Used to Build the Random Graph.

The first procedure, Produce_Random_Array, is the one that actually randomly
assigns the timing constraints to the random prototype. It has two modes of operation.
The first one uses a partial randomization, in the sense that only values from a pre-defined
set are assigned to the timing constraints. The second mode uses a full randomization, so
that any value within a finite range previously specified can be assigned.

It is in this procedure where most of the information provided by the user, such as
number of prototypes to be generated, number of operators in each prototype, percentage
of timing critical operators, mode of randomization, percentage of periodic operators, and
compression factor are used.

In the current implementation, the restricted randomization mode generates five
possible different values for MET (100, 300, 500, 700, and 1000) and four values for each
of the remaining timing constraints PER, FW, MCP and MRT, which are dependent upon
the previous chosen value for the MET. This was done in order to assure semantic

compatibility with a valid PSDL prototype.

134

If one opts for unlimited randomization, then no restriction is imposed on timing
constraints, rather than limiting their values within a reasonable range, which now stands
between 0 and 8000 ms.

The random number generator being used has a period of approximately 2'*, so in
order to achieve better results it is not reset after the generation of each different
prototype.

The expert mode is a facility that allows the user to automatically reduce the final
harmonic block length of the prototype, substantially increasing the schedulability of the
prototype. For more in depth information, refer to Chapter III, Section E.

The compression factor is used so that, if the prototype happens to have a load
factor bigger than one (which would mean that it couldn’t run in a uniprocessor system)
then the timing constraints are going to be compressed accordingly. This feature allow us
to test huge prototypes for uniprocessors that otherwise, due to the random nature of the
graph, would be very hard to achieve.

The second main procedure, Produce_Random_Matrix, is where artificial edges
are randomly generated according to the degree of sparseness and the maximum number

of edges defined by the user. It is also here where the latency for each edges is generated.

C. FIRST FINDINGS AFTER USING THE RANDOM GRAPH GENERATOR

The first finding after using the random graph generator was that the scheduling
capability of the existing CAPS scheduler is very poor. It is not likely that the scheduler
will find a feasible schedule for a moderate size prototype without manual adjustment of
all timing constraints after a long and tedious process of trial and error. But that is not
really bad because, after all, the static scheduling problem is a well known NP-Hard
problem. The interesting thing, however, is that even for very small prototypes, with as
few as 4 or 5 operators, and also a very limited number of edges, it still couldn’t find a
feasible schedule, even through the use of traditional and widely accepted algorithms, such
as earliest start time first and earliest deadline first, modified for the non-preemptive

case. The question to be asked is, “Why does that happen, and how can we improve it?”.

135

After meticulous analysis of several runs, with hundreds of random prototypes, it
was determined that, on average, the earliest deadline first algorithm finds a feasible
schedule for prototypes with load factors less than 0.5. It was also noticeable that the
schedulability of the prototype was affected somehow by the harmonic block length (HB).
There were some cases where, even with load factors over 0.95, after optimizing the HB
to smaller values, it was possible to find a feasible schedule, which could not be achieved
with the bigger HB. The load factor definitely has a strong influence on schedulability.
For the harmonic block, however, it was not thought that the influence would be so great.

There are two readily apparent explanations for the harmonic block syndrome.
The first is because of the higher number of instances that can fit in a bigger HB, the
probability of having two or more tasks fighting for the same time slot increases. The
second explanation is partially supported by Theorem 6 in Chapter ITI, where it is evident
that, by increasing the period of an operator, which might happen when its period is
optimized, it also has an effect of increasing the probability of finding a feasible schedule.

The following problems are now apparent: First, how to decrease the load factor
of our prototype, and; second, how to decrease its associated harmonic block.

The total load factor of the prototype cannot be changed much, since it comes
from the user’s requirements. Splitting them into multiple processors will not do much
good in the current practice for non-preemptive static distributed scheduling, which
requires a global schedule for the entire prototype in order to satisfy all synchronization
requirements.

In order to change the harmonic block, assuming that the METSs cannot be
changed, it is necessary to modify the periods, but recall that they are constrained by the
user's requirements. However, if we take a close look at these problems it is possible to
realize that they are quite different.

Assume that the requirements allow for making little changes in the periods, which
is a fair assumption, since in most of the systems it does not really matter if the period of

some task is 1000 ms or 1010 ms. So the effect of such period change on the load factor

136

is clearly very small, while for the harmonic block it may represent a very big change, since
it may get rid of some prime factor that was driving up the least common multiple (LCM)
of the periods. Following this line of reasoning a novel technique to decrease the

harmonic block was discovered, and will be described in the next section.

D. MINIMIZING THE HARMONIC BLOCK

The need for a harmonic block comes from the fact that, unlike most of the
problems in classical scheduling, this periodic task set contains an infinite number of
instances. Therefore, in order to calculate a static schedule for the task set, it is necessary
to find a time interval which can be repeated forever. When the completion time of the
first instances are restricted to be less than or equal to the periods, it is common for the
harmonic block to be the least common multiple (LCM) of the periods for such an
interval. However, when those restrictions to the deadlines do not apply, it has been
proven in Chapter III Section C that it is sufficient to increase the time interval to twice
the LCM. At any rate, the point to be made is that in both cases the size of the LCM is
critical and, for the reasons explained in the previous section, it is desirable to make it as
small as possible.

Formally, the least common multiple of two natural numbers i and j is the smallest
natural number that is divisible by both i and j. It is also known from Number Theory that
every positive integer can be written uniquely as the product of primes, where the prime
factors are powers of some positive integer.

From the above definitions, it can clearly be seen that the LCM of two natural
numbers i and j will have in its prime factorization all of the prime factors of the original
numbers raised to the maximum exponent, as shown in the following example.

Example:

i=120 =2x3x5
j=100 =2?x 5
LCM (Gj) =2°x3x52=600

137

This same approach can be extrapolated to a case where several numbers are
present, instead of only two. So now the problem is decreasing the LCM of a set of
periods.

There are two basic approaches. The first one is trying to decrease the factor with
the biggest prime, and the other is decreasing the biggest prime factor. Clearly, the second
approach is more expedient, but still leaves the following problem. Suppose all of the
periods which are contributing for the factors in the LCM are identified, and have been
placed into a critical list, with some kind of mapping to the factors they are affecting.
Now, assume that the period which is contributing for the biggest factor is changed. With
luck, that biggest factor may be eliminated. However, the exponent of some other prime
factor from that same period may be increased, now becoming the critical one for the
LCM. In other words, it is necessary to re-evaluate the critical list and the corresponding
mapping after each iteration of the optimization process, or one may end up with a non-
optimal solution.

After this brief description of the problem statement, it is possible to introduce the
algorithm for optimizing the LCM, which is presented in Figure 6.2.

138

Algorithm Optimize_LCM
For every period calculate its prime factors;
Calculate the initial LCM for the periodic task set and its prime factors;
Set the flag LCM is decreasing to false;
While there exists a prime factor of the LCM not yet optimized loop
Insert those tasks whose periods are contributing for the LCM factors into the
Critical List in decreasing order of their contribution. In other words, the head of
the Critical List will be the task with the biggest contribution to the LCM;
‘While the Critical List is non-empty loop
Pick the task which is in the head of the Critical List;
Remove its contribution from the LCM;
For each period within its allowable range loop
Calculate the new LCM;
If LCM is decreasing then record this period as the best one so far;
end loop;
If LCM is decreasing then
Update the new LCM and the task prime factors
end if;
Remove this task from the Critical List;
end loop;
if LCM is decreasing then
It means that come critical task in the Critical List had its period changed
and consequently reduced the LCM. Now is the subtle part, even if we had
some period in the Critical List that couldn’t have its biggest factor
changed, so that the LCM could decrease, it needs to be reconsidered, since
the order in which the Critical List was scanned matters!! In other words,
after all the others in the Critical List have been processed, it may well now
be possible to change that same task so that the LCM will be decreased. So,
we need to calculate the new LCM and start all over again.
else if LCM is not decreasing
Means that none of the critical tasks in the Critical List were able to get rid
of their biggest factor, and so there is nothing else 1o do other than skip to
the second biggest factor, and so forth.
end if;
Set LCM decreasing flag back to false;
end loop;
end Algorithm Optimize_LCM;

Figure 6.2. Algorithm for Optimizing the LCM

Although its optimality has not been formally proven, it is believed that this
algorithm will always lead to near-optimal results. By applying this algorithm to some
random task sets it was possible to tremendously reduce the harmonic block, with some

positive effects in schedulability. It should also be noted, by the examples shown below,

139

that the periods are of critical importance. With very few changes in the periods an

enormous decrease in the LCM can be achieved, with consequently few effects on the load

factor.

100 100
500 500
1 600 600
800 750
1033 1000
LCM 12,396,000 3000 4132 TIMES
SMALLER
1500 1500
1320 1400
1677 1820
500 500
2 700 700
800 875
1000 1000
999 1092
2987 3250
LCM | 5.13763486E+14 | 273,000 | 1,881,917,532 TIMES
SMALLER

Figure 6.3. Optimization Results

E. THE NEW DISTRIBUTED SCHEDULING ALGORITHM - SOME
RESULTS

After running several hundreds prototypes with typical values for the timing
constraints (such as MET, MRT, MCP and PER) it was possible to make several
conclusions in addition to those already cited in the previous sections. One of them, and
acwally the main driving force for directing us to distributed scheduling, was the palpable
necessity for prototypes with load factors bigger than 1.0, specifically in our applications
domain.

Another major point discovered after this research is the real need for supporting
and advising the real-time system designer, mainly with respect to the values for the timing

constraints. Remember that non-preemptive static scheduling is a well known NP-Hard

140

problem, so that unless P=NP, there is not much hope of finding better ways to solve this
problem. That is why, sometimes, in prototypes with only two nodes, it was impossible to
find a feasible schedule.

So, what is really needed is to find better ways to live with this problem. One of
the ways to accomplish this is by providing better support in the area of schedulability
tests, which is also a known NP-Hard problem. That is why several theorems were
presented in Chapter II, which, it is hoped, will help in finding and pin-pointing some of
the problems in the user’s design.

It is possible by making use of those theorems to suggest changes in the timing
constraints of a set of tasks, or even in a specific task, to suggest different partitions so
that some tasks are kept together due to the similarities of their timing constraints, etc.

Now the scheduler can handle prototypes with load factors bigger than one, by
applying the allocation algorithm described in Chapter V. The user can either specify the
maximum load factor énowcd per processor, or the number of processors. It is also
capable of generating a schedule, if one can be found, by using a distributed version of the
Earliest Deadline First algorithm. By making use of the Fundamental Synchronization
Theorem it is now possible to divide the schedule into several smaller schedules, so that its
complexity is tremendously decreased.

The robustness of the new scheduler is enhanced due to the large testing that was
made possible by the random graph generator. Several important bugs were found during
these experiments. It was possible to analyze and compare the performance of the
different uniprocessor scheduling algorithms currently implemented in CAPS. The output
generated by the scheduler is now more comprehensive, improving the debugging
capability.

An expert mode is provided to the designer, so that the harmonic block will be
decreased with some effects on the load factor. A possible enhancement for the expert
mode is to combine it with the actual scheduling. In other words, instead of applying the

141

optimization algorithm to the entire task set in only one step, prior to the scheduling, an
attempt should be made to schedule the task set after each optimization iteration.

As can be seen, quite a lot has been accomplished towards a more dependable and
reliable scheduler, but much more needs to be done so that CAPS can become a true

design aid to real-time system designers.

142

VII. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF THE DISSERTATION

This dissertation can be roughly divided into three parts. The first part (Chapters I
through III) presents a review of the most important results in the area of hard real-time
scheduling and introduces several theorems to improve the schedulability analysis of task
sets containing both periodic and sporadic tasks. The effects of precedence relationships
among the tasks on these theorems is also analyzed. Although most of the work was done
for the non-preemptive model, several results are also applicable to the preemptive case,
as highlighted throughout the dissertation. The second part of the dissertation (Chapter
IV) introduces the novel method of hard real-time distributed scheduling without explicit
synchronization. The motivation for this new approach is the complexity of the hard real-
time scheduling problem, where for even small size systems running in a uni-processor
environment, it is extremely hard kto find a feasible schedule. With the addition of one
more variable, such as distributed processing, the general scheduling problem becomes
intractable, and unless P=NP, there is no reason to foresee any solution to this problem. It
was therefore decided to sacrifice timing constraints in order to decrease the complexity of
the scheduling problem. Depending on the application, this approach may not be
applicable. However, this approach should work in most cases, especially in prototyping,
which is usually in the early stages of the life cycle of the system, allowing for the fine
tuning of timing requirements. The third part of the dissertation deals with the
architectural aspects of implementation of a distributed real-time scheduler without
making use of any explicit synchronization. The following paragraphs present a summary
of the salient results found in each chapter.

Chapter I highlights the increasing demand for real-time systems in life-critical
areas that were heretofore unexplored. Some basic definitions for hard real-time systems
are also introduced, and a taxonomy for scheduling is proposed. Past research in real-time

scheduling is reviewed and the major results are listed in tabular form. A brief note shows

143

that the complexity of scheduling algorithms for a non-periodic task set, which are solved
in polynomial time, become exponential when dealing with periodic task sets. Some
complexity results for message routing in hard real-time distributed systems are also
presented.

Chapter II presents a brief discussion of the Computer Aided Prototyping System
(CAPS) which is a software engineering tool for developing prototypes of real-time
systems. The Prototyping System Description Language (PSDL) and its facilities for
modeling real-time systems are also described in this chapter.

Chapter III formalizes the real-time scheduling problem for periodic and sporadic
task sets. It starts by introducing the scheduling model that will be used throughout the
dissertation, and proceeds with the presentation of several theorems for improving the
schedulability analysis of tasks with hard deadlines. The three most important results in
this chapter are established by Theorems 6, 7, and 8. The Task Demand Theorem
(Theorem 6), specifies necessary conditions for task sets with arbitrary deadline and
release times to be schedulable. It is also shown that if release times are taken into
consideration, due to precedence relations, for example, the conditions are no longer
necessary, but only sufficient. Theorem 7 extends this result, and proves that any periodic
or sporadic task set satisfying the conditions of Theorem 6 can be scheduled with the
Earliest Deadline First (EDF) algorithm, thus making the conditions specified in Theorem
6 necessary and sufficient. The Harmonic Block Theorem (Theorem 8) introduces the
novel concept of transient and cyclic schedules, which is an enhancement of the traditional
method for calculating a cyclic schedule, if one exists. It is shown by example that this
latter method improves the schedulability of task sets which were found to have no
feasible schedule by the traditional method. Later in the chapter all previous results are re-
analyzed for the case where precedence relationships exist among the tasks. Theorem 8 is
also extended to handle the situation where latencies are involved in the scheduling. Note
that the net effect of introducing latencies in the problem is that the schedule can no longer

be assumed to have no inserted idling time in the interval [0LCM]. Finally, a

144

methodology to convert sporadic operators into equivalent periodic ones is presented,
along with some important considerations about this conversion.

Chapter IV presents an in-depth discussion covering all possible aspects of the
communication involving two PSDL operators connected by some kind of data stream.
The synchronization problem between producers and consumers is carefully analyzed, as is
the underlying meaning of missing a deadline within the context of a real-time system.
The conclusion reached is that missing deadlines are always attached to data that is not
generated or consumed in the proper timing. This data approach for the synchronization
problem will lead to the new distributed scheduling model with no explicit
synchronization, which is formalized by the Fundamental Synchronization Theorem
(Theorem 9). The application of this theorem allows each set of tasks allocated to a
particular processor to be treated as a totally independent set, provided that some more
stringent timing constraints are satisfied. This approach will greatly decrease the
scheduling complexity of large distributed real-time systems, although it may be applicable
as well to cases involving uni-processors or shared memory multiprocessors. At the end
of this chapter are some considerations about the allocation model implemented for the
distributed scheduler in CAPS.

Chapter V presents the current implementation of the CAPS uni-processor
scheduler and it also proposes an architecture for implementing the full version of the
distributed scheduler. It describes two options for implementing the distributed version.
The first is to use the currently available C libraries for implementing the communication
sub-system. Several problems with this approach are also addressed. The second option
relies on the availability of a full Ada95 compiler, which, according to the Ada95
Reference Manual’s Annex E, will support communications between tasks running in
different processors. In the last section of this chapter several interesting considerations
are presented regarding the timing problems involved in a typical software prototyping
environment. Topics such as simulated time, normalized reference for time information,

timing errors, and why they happen are covered in this section.

145

Chapter VI presents experimental results of the partially implemented distributed
scheduler in CAPS. The random PSDL graph generator, which was one of the important
factors for a better understanding of the scheduling problems in CAPS, is described.
Finally, an important issue is discussed which is not given enough attention by most of
researchers, namely, the least common multiple (LCM) of the periods of a periodic task
set, which ultimately will determine the size of the cyclic schedule for the task set. It is
demonstrated that, by making minor changes in the original periods, the final LCM and,
consequently, the solution space of the corresponding scheduling problem can be
drastically reduced.

Chapter VII is the conclusion, but it also proposes some modifications for CAPS,
so that it can become a more dependable and reliable design tool for building real-time

systems.
B. POSSIBLE CAPS MODIFICATIONS

As a result of this dissertation, several weaknesses and areas requiring
improvement within the entire CAPS and PSDL were identified. Many errors in the static

scheduler were corrected, but others require further effort.
1. Enhancing the CAPS Syntax Directed Editor (SDE)

As discussed in Chapter IV, several semantic checks for the input PSDL program
are currently enforced by the scheduler. It seems reasonable, however, to allow most of
these checks to be enforced by the SDE. This approach would allow the user to detect
and receive warnings about the design in the early stages of prototyping. In doing so, the
designer would not have to go all way back to the SDE when a semantic error was found
by the scheduler.

2. Tasks with Soft Deadlines

In CAPS there are only tasks with hard deadlines (TC), or tasks with no deadlines
at all (NTC). In real-time systems however, there are often a third kind of deadline, but if

it is missed for some reason it does not cause any harm to the system. This is known as a

146

“soft deadline”. Right now for example, an NTC operator can starve for a long time
before its execution. This was certainly not the intention of the designer when the
operator was placed in the prototype. This anomaly happens because the Non-Time
Critical operator (NTC) depends on the time left by the static scheduler, which can be
none if the load factor is 1.0, and all the TC operators use their entire MET.

The implementation of tasks with soft deadlines or some other approach, like the
time-value functions presented in Chapter I, would greatly improve the scheduling
capability of prototypes in CAPS.

3. Preemptive Static Scheduling

So far this option has not been used in CAPS because of the ADA83 tasking
model, which prevents tasks with higher priority to change their relative position in the
FIFO queue of a rendezvous. ADA95 however, allows dynamic changes in the queue
according to their priority and, therefore, the preemptive model again becomes a valid and
reasonable option for the CAPS scheduler. Note that, in general, the preemptive
scheduling problem is easier to deal with than the non-preemptive one, allowing much
better scheduling results. Further research is needed, but it appears that allowing a

mixture of preemptive and non-preemptive tasks is the best approach available.

4. Triggering Conditions versus Stream Types

Currently, in the PSDL model a sampled stream does not guarantee that the data is
not lost or replicated. In the same model, however, the stream type is determined from
the triggering condition of the consumer operator, ¢.g., an operator with a TRIGGERED
BY SOME condition is supposed to guarantee that its output is based on the most recent
value of the input sampled stream, which is to some extent a contradiction. Our
suggestion is to separate triggering conditions from the type of the streams, so that there
can be a more orthogonal grammar for PSDL. A sampled stream should be defined as the
stream where the data can be read zero or more times, whether in a data flow stream it can

be read once and only once. It is understood that this definition better conveys the real

147

meaning of a stream, since a stream by itself should not guarantee whether or not the data
is lost; the stream is simply a mechanism to transfer data.

Once the idea of separating triggering conditions from stream types is accepted, it
is necessary to check which are the valid combinations. These combinations are presented

in Table 7.1, and should be considered valid unless an exception is noted.

OME
OK NOK (2) NOK (3)
NOK (1) OK OK

Table 7.1. Triggering Condition and Stream Type Combinations

(1) Assume an operator A TRIGGERED BY ALL X,Y, where X and Y are
sampled streams. Suppose data arrived only in X. It is necessary to wait for new data in
Y, but after A is fired, both pieces of data are consumed, and the old data cannot be used
again, otherwise it is impossible to know which data is new or old, and therefore the
existence of this case does not make sense. The only situation where this combination
would be needed is if combinations of TRIGGERED BY SOME and TRIGGERED BY
ALL are allowed to exist for the same operator. Note, however, that this combination can
always be implemented in two steps and with one additional operator.

(2) Assume an operator A TRIGGERED BY SOME X,Y, where X and Y are
data flow streams. Suppose only X gets new data. Operator A will fire and consume the
data in X, leaving nothing behind because it is data flow. When new data comes in Y,
there is nothing in X, and an underflow will occur.

(3) It does not make sense, because if there is no trigger, how can the consumer be

guaranteed to always catch new data that comes into the data flow?

S. Estimating the Execution Time

As explained earlier, the MET is an upper-bound on the execution time of an
operator, and it is this value which is used by the scheduler to generate the static schedule.
Therefore, everything that can be done to decrease the MET is going to have a direct
effect on the schedulability of the prototype. It would be nice if it were possible to, at run-

148

time, keep track of the real amount of time needed by each operator, so that feedback

could be given to the user about its real MET for further update of the Software Base.

6. The Uninitialized Sampled Stream Problem

Suppose there is a non-time critical operator (NTC) connected to a time critical
operator (TC) by a sampled stream. Clearly, the TC operator may be fired at least once
before the NTC operator, and therefore it will read garbage from the sampled stream.

This problem is aggravated in distributed scheduling, as shown by the example in

T

Figure 7.1. The Uninitialized Sampled Stream Problem

Figure 7.1.

Note that this example does not cause any problem in the uni-processor case, but
in distributed scheduling, if OP; and OP; are assigned to different processors, OP, may
fire before OP,, and an uninitialized sampled stream will be read. A proposed solution
would be to force the sampled stream to be declared as a state stream whenever an initial
value is needed.

7. State Stream versus Data Flow

It does not make sense to have an operator TRIGGERED BY ALL X, if X is, for
example, a state stream. The reason for this is that values carried by state streams should
always be available, and in a data flow stream the value is consumed after it is read, and no

longer available. A wamning should therefore be given if this happens in a PSDL program.

149

C. CONCLUSIONS

This dissertation shows that hard real-time systems and, more specifically, hard
real-time scheduling, are areas which are far from being totally explored. The next
generation of hard real-time systems will be extremely large, complex, and most certainly
distributed. They will be truly distributed, without any need for synchronization among
Processors.

Most of the work so far in this area has been concentrated on finding better
scheduling algorithms, without concentrating on the real need for synchronization.
Deadlines are always attached to data not being generated or consumed in a timely
fashion. This dissertation is the first work ever done in the area of distributed scheduling
without any explicit synchronization, and it is hoped that it will mark a turning point in the
distributed scheduling field. It is far from being complete, but it does provide a totally
different perspective on the distributed scheduling problem.

Finally, this dissertation offers the following scientific contributions:

1) A new model for distributed scheduling without synchronization;

2) Several theorems on the schedulability of periodic and sporadic task sets,

improving the state of the art in the scheduling field;

3) A general Timing Model for Pototyping Systems, which will enable interaction

with different time references, keeping total consistency throughout the design;

4) A method for optimizing the schedule length of periodic task sets. This

approach will decrease the time spent in scheduling and improve the chances of
finding a feasible schedule;

5) Making use of recent theoretical results in scheduling, they have been adapted

to the model in this work in order to support a systematic and formal method
for the design, synthesis, and validation of timing constraints in hard real-time

systems.

150

More specifically related to CAPS, the following contributions can be listed as
additional results of this dissertation:
1) Enhancement of the existing CAPS Prototyping System with a new Distributed
Scheduler with:
¢ allocation capability
¢ increased reliability
e Dbetter schedulability
¢ and an expert mode
2) A Random PSDL Graph Generator.

151

152

LIST OF REFERENCES

[AB93] N. Audsley and A. Burns, Real-Time System Scheduling, Technical Paper
University of York, UK, 1993.

[Ada95] Ada 95 Reference Manual, Intermetrics, Inc., January 1995.

[Bad93] S. Badr, A Model and Algorithms for a Software Evolution Control System,
Ph.D. Dissertation, Naval Postgraduate School, December 1993.

[Bak74] K. Baker, Introduction to Sequencing and Scheduling, John Wiley & Sons,
Inc., 1974.

[BFR71] P. Bratley, M. Florian and P Robillard, Scheduling with Earliest Start and
Due Date Constraints. Naval Research Logistics Quarterly, 18(4), December 1971.

[BL91] V. Berzins and Lugi, Software Engineering with Abstractions, Addison-
Wesley, Reading, MA, 1991.

[Bla76] J. Blazewicz, Scheduling Dependent Tasks with Different Arrival Times to
Meer Deadlines, Proceedings of the International Workshop on Modelling and
Performance Evaluation of Computer Systems, Amsterdam, North-Holland, pp.57-65,
1976.

[Boa84] B.H. Boar, Application Prototyping: A Requirements Definition Strategy for
the 80's, John Wiley and Sons, Inc., New York, 1984.

[Boe86] B.W. Boehm, A Spiral Model of Software Development and Enhancement,
ACM SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14-26, August 1986.

[Boo87] G. Booch, Software Engineering with Ada, 2nd ed., Benjamin/Cummings
Publishing Co., Inc., Menlo Park, CA, 1987.

[Bro94] J. Brockett, The Computer-Aided Protoryping Sysiem (CAPS) Tutorial, Naval
Postgraduate School, November 1994.

[BS74) K.R. Baker and Z.S. Su, Sequencing With Due-dates And Early Start Times
To Minimize Maximum Tardiness, Naval Research Logistics Quarterly, vol. 21, pp. 171-
176, 1974.

[BT83] J.A. Bannister and K.S. Trivedi, Task Allocation in Fault-Tolerant
Distributed Systems, Acta Informatica, Springer-Verlag, 1983.

153

[CG72] E.G. Coffman and R. Graham, Optimal Scheduling for Two-Processor
Systems, Acta Informatica, 1, 1972.

[CHL80] W.W. Chu, L.Y. Holloway, M.T. Lan and K. Efe, Task Allocation in
Distributed Data Processing, Computer, vol. 13, no. 11, pp. 57-69, November 1980.

[CSR87] S.C. Cheng,, J.A. Stankovic and K. Ramamritham, Scheduling Algorithms for
Hard Real-time Systems - A Brief Survey, COINS Technical Report 87-55, June 10, 1987.

[Dam94] D. Dampier, A Formal Method for Semantics-Based Change-Merging of
Software Prototypes, Ph.D. Dissertation, Naval Postgraduate School, June 1994.

[DD86) S. Davari and S.K. Dhall, An on Line Algorithm for Real-Time Tasks
Allocation, IEEE Real-Time Systems Symposium, December 1986.

[DL78] S.K. Dhall and C.L. Liu, On a Real-Time Scheduling Problem, Operations
Research, vol. 26, no. 1, pp. 127-140, February 1978.

[Dol93] S. Dolgoff, Automated Interface for Retrieving Reusable Software
Components, Master Thesis, Naval Postgraduate School, September 1993.

[EFMS83] J. Erschler, G. Fontan, C. Merce and F. Roubellat, A New Dominance
Concept in Scheduling N Jobs on a Single Machine with Ready Times and Due Dates,
Operations Research, 31(1), 1983.

[GJ75] M.R. Garey and D.S. Johnson, Complexity Results for Multiprocessor
Scheduling Under Resource Constraints, SIAM Journal of Computing, 1975.

[GJ77a] M.R. Garey and D.S. Johnson, Two-processors Scheduling with Start-times
and Deadlines, SIAM Journal on Computing, vol. 6, pp. 416-426, 1977.

[GI77b] T. Gonzalez and D.B. Johnson, A New Algorithm for Preemptive Scheduling
of Trees, Technical Report 222, Computer Science Department, Pennsylvania State
University, 1977.

[GIS81] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, Scheduling Unii-
Time Tasks with Arbitrary Release Times and Deadlines, SIAM Journal Comput., 10(2),
pp- 256-269, May 1981.

[Hor74] W.A. Horn, Some Simple Scheduling Algorithms, Naval Research Logistics
Quarterly, 21, pp. 177-185, 1974.

154

[HP90] J. Hennessy and D. Patterson, Computer Architecture a Quantitative
Approach, Morgan Kaufmann Publishers, Inc., 1990.

[Hu61] T.C. Hu, Parallel Scheduling and Assembly Line Problems, Operations
Research, 9, pp. 841-848, 1961.

[Jac55] J.R.Jackson, Scheduling a Production Line to Minimize Maximum Tardiness,
Research Report 43, Management Science Research Project, University of California, Los

Angeles, 1955.

{Jef89] K. Jeffay, The Real-Time Producer/Consumer Paradigm: Towards Verifiable
Real-Time Computations, PhD. Thesis, University of Washington, Department of
Computer Science, Technical Report #89-09-15, September 1989.

[Jen77] C.J. Jenny, Process Partitioning in Distributed Systems, Digest of Papers
National Telecommunications Conf., 1977.

[JSM91] K. Jeffay, D. Stanat and C. Martel, On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks, Proceedings of Real-Time Systems Symposium, December
1991.

[Lam88] D.A. Lamb, Sofiware Engineering Planning for Change, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[Law73]A E.L. Lawler, Optimal Sequencing of a Single Machine Subject to Precedence
Constraints, Management Science, 19, pp. 544-546, 1973.

(LB88] Lugi and V. Berzins, Rapidly Prototyping Real-Time Systems, IEEE
Software, vol. 5, pp. 25-36, 1988 and Technical Report NPS52-87-005, Naval
Postgraduate School, Monterey, CA, 1987.

[LBY88] Luqgi, V. Berzins and RT. Yeh, A Prototyping Language for Real-time
Software, TEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1409-1423,
October 1988.

[Lei80] D. Leinbaugh, Guaranteed Response Times in a Hard Real-Time
Environment, IEEE Trans. on Software Engineering, vol. SE-6, pp. 85-91, 1980.

[LK88] Lugi and M. Ketabchi, A Computer Aided Prototyping System, IEEE

Transactions on Software Engineering, March 1988 and IEEE Software, vol. 5, pp. 66-
72, March 1988.

155

{LL73] C.L. Liu and J.W. Layland, Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment, Journal of the ACM, vol. 20, no. 1, pp. 46-61, January
1973.

[LLK76] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Minimizing Maximum
Lateness on One Machine: Computational Experience and Some Applications, Statistica
Neerlandica 30, pp. 25-41, 1976.

[LLS91] J.W.S. Liu, KJ. Lin, WK. Shih, A.C. Yu, J.Y. Chung and W. Zhao,
Algorithms for Scheduling Imprecise Computations, TEEE Computer, pp. 58-68, May
1991.

[LS86] J.P. Lehoczky and L. Sha, Performance of Real-Time Bus Scheduling
Algorithms, ACM Performance Evaluation Review, Special Issue, vol. 14, no. 1, May
1986.

[LSB93] Lugi, M. Shing and J. Brockett, Real-Time Scheduling in System Prototyping,
Proc. Fourth International Workshop on Rapid System Prototyping, Research Triangle
Park, NC, pp. 28-30, June 1993.

[LSD89] J.P. Lehoczky, L. Sha and Y. Ding, The Rate Monotone Scheduling
Algorithm: Exact charactherization and average case behavior, Proceedings of IEEE 10®
Real-Time Systems Symposium, pp. 166-171, December 1989.

[LTW89] J.Y. Leung, T.W. Tam, C.S. Wong and G.H. Young, Routing Messages with
Release Time and Deadline Constraints, Proc. of Euromicro Workshop on Real Time,
Como, Italy, pp. 168-177, 1989.

[Lug89] Luqi, Software Evolution Through Rapid Protoryping, IEEE Computer, pp.
13-25, May 1989.

[Lug93) Luqi, Real-Time Constraints in a Rapid Prototyping Language, Computer
Language, vol. 18, no. 2, pp. 77-103, 1993.

[LW90] J.Y. Leung and C.S. Wong, Minimizing the Number of Late Tasks with Error
Constraint, Proc. of the 11® IEEE Real-Time Systems Symposium, pp. 32-40, 1990.

[LY82]) D.W. Leinbaugh and M.R. Yamini, Guaranteed Response Times in a
Distributed Hard Real-Time Environmen:. Proc. IEEE Real-Time Systems Symp.,
December 1982.

[Mar82] C. Martel, Preemptive Scheduling with Release Times, Deadlines, and Due
Times, J. ACM, 29(3), 1982.

156

[MC70] R.R. Muntz and E.G. Coffman, Preemptive Scheduling of Real-Time Tasks
on Multiprocessor Systems, J. ACM, 17(2), pp. 324-338, April 1970.

[Mok76] A.XK. Mok, Task Scheduling in the Control Robotics Environment, TM-717,
Laboratory for Computer Science, MIT, September 1976.

[Mok83] AK. Mok, Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment, PhD. Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, May 1983.

[Moo68] J. Moore, An n Job, One Machine Sequencing Algorithm for Minimizing the
Number of Late Jobs, Management Science, vol. 15, no. 1, pp. 102-109, September 1968.

[Pre87] R.S. Pressman, Software Engineering: A Practitioners Approach, 2nd. ed.,
McGraw-Hill, Inc., New York, NY, 1987.

[Sch90] S.R. Schach, Software Engineering, Aksen Associates, 1990.

[Sim83] B. Simons, Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary
Release Times and Deadlines, SIAM Journal for Computing, 12(2), pp. 294-299, May
1983.

[SR88] J.A. Stankovic and K. Ramamritham. Tutorial on Hard Real-Time Systems,
IEEE Computer Society Press, Washington, DC, 1988.

[SSN93] J.A. Stankovic, M. Spuri, M. Di Natale and G. Buttazzo, Implications of
Classical Scheduling Results for Real-Time Systems, CMPSCI Technical Report 93-23,
March 1993.

[Sun90] Nerwork Programming Guide, Sun Microsystems, Inc., 1990.

[SW89] S.M. Shatz and J. Wang, Tutorial: Distributed Sofiware Engineering, IEEE
Computer Society Press, 1989.

[Tac93] TAE+ Reference Manual, Century Computing, Inc., September 1993.

[Un75] 1.D. Ullman, NP-Complete Scheduling Problem, Journal of Computer and
System Sciences, vol. 10, pp. 384-393, 1975.

[U1176) 1.D. Ullman, Complexity of Sequence Problem, in E.G. Coffman, Computer
and Job-Shop Scheduling Theory, John Wiley & Sons, NY, 1976.

157

[XP90] J. Xu and D. Parnas, Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations, IEEE Transactions on Software Engineering, vol.
16, no. 3, pp. 360-369, March 1990.

[You89] E. Yourdon, Modern Structured Analysis, Yourdon Press, Englewood Cliffs,
NI, pp. 80-95, 1989.

[ZL.C94] J. Zhu, T.G. Lewis and J. Colin, Scheduling Hard Real-Time Constrained
Tasks on One Processor, To be published.

158

BIBLIOGRAPHY

[BDW86] J. Blazewicz, M. Drabowski, and J. Weglarz, Scheduling Multiprocessor
Tasks to Minimize Schedule Length, IEEE Transactions on Computer, C-35(5), 1986.

[BS93] G. Buttazzo and J.A. Stankovic, RED: A Robust Earliest Deadline
Scheduling Algorithm, submitted to JEEE Transactions on Computers, March 1993.

[BSR88] S. Biyabani, J.A. Stankovic, and K. Ramamritham, The Integration of
Deadline and Criticalness in Hard Real-Time Scheduling, Proceedings of the Real-Time
Systems Symposium, December 1988 and IEEE Transactions on Software Engineering,

1988.

[CC89] H. Chetto and M. Chetto, Scheduling Periodic and Sporadic Tasks in a Real-
Time System, Information Processing Letters vol. 30, no. 4, pp. 177-184, February 1989.

[Cer89] J.J. Cervantes, An Optimal Static Scheduling Algorithm for Hard Real-Time
Systems Specified in a Prototyping Language, Master's Thesis, Computer Science, Naval
Postgraduate School, Monterey, CA, December 1989.

[Cha92] T.C. Chang, Static Scheduler for Hard Real-Time Tasks on Multiprocessor
Systems, Master's Thesis, Computer Science Department, Naval Postgraduate School,
Monterey, CA, September 1992.

[CSR86] S. Cheng, J. Stankovic, and K. Ramamritham, Dynamic Scheduling of Groups
of Tasks with Precedence Constraints in Distributed Hard Real-Time Systems, IEEE
Real-Time Systems, Symposium, December 1986.

[Efe82] K. Efe, Heuristic Models of Task Assignment Scheduling in Distributed
Systems, IEEE Computer, June 1982.

[Fan90] B. Fan, Evaluations of Some Scheduling Algorithms for Hard Real-Time
Systems, Master's Thesis, Computer Science, Naval Postgraduate School, Monterey, CA,
June 1990.

[GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability; A guide to the
Theory of NP-Completeness, Freeman; San Francisco, 1979.

[Gra76] R. Graham, Bounds on the Performance of Scheduling Algorithms, chapter in
Computer and Job Shop Scheduling Theory, John Wiley and Sons, pp. 165-227, 1976.

159

[HL88] K. Hong and J. Y-T Leung, On-line Scheduling of Real-Time Tasks, IEEE
1988.

[HS91] W. Halang and A. Stoyenko, Constructing Predictable Real-Time Systems,
Kluwer Academic Publishers, 1991.

[Hsu90] L. Hsu, Multiprocessor Scheduling for Hard Real-Time Software, Master's
Thesis, Computer Science, Naval Postgraduate School, Monterey, CA, June 1990.

[JL88] Janson, D.M. and Luqi, A Static Scheduler for the Computer Aided
Prototyping System, Proceedings of the 3rd. Annual COMPASS Conference,
Gaithersburg, MD, pp.92-97, July 1988.

[Lev91] J. Levine, Efficient Static Schedulers JSor the CAPS Systems, Master's Thesis,
Computer Science Department, Naval Postgraduate School, Monterey, CA, June 1991.

[LRD93] J. W.S. Liu,, J.L. Redondo, Z. Deng, T-S. Tia, R. Bettati, A. Silberman, M.
Storch, R. Ha and W-K. Shih, PERTS: A Prototyping Environment for Real-Time
Systems, University of Illinois at Urbana, Technical Report UTUCDCS R-93-1802, May
1993,

[Lug89] Lugi, Handling Timing Constraints in Rapid Prototyping, IEEE Transactions
on Software Engineering, 1989 and in proceedings of the 22nd Annual Hawaii
International Conference on System Science, Kailua-Kona, HI, January 1989.

[Red93] J.L. Redondo, Schedulability Analyser Tool, University of Illinois at Urbana,
Technical Report UTUCDCS R-93-1791, February 1993.

[SHH91] A. Stoyenko, V. Hamacher and R. Holt, Analyzing Hard Real-Time
Programs for Guaranteed Schedulability, IEEE Trans. on Software Engineering, vol. SE-
17, pp. 737-750, 1991.

[Shi91] Man-Tak Shing, Efficient Scheduling Algorithms for Rapid Prototyping of
Hard Real-Time Systems, paper, Naval Postgraduate School, Monterey, CA, May 1991.

[Sil92)] A. Silberman, Task Graph Model, University of Illinois at Urbana, September
1992,

[SRC85] J.A. Stankovic, K. Ramamritham, and S. Cheng, Evaluation of a Flexible

Task Scheduling Algorithm for Distributed Hard Real-Time Systems, IEEE Transactions
on Computers, vol. C-34, no. 12, pp. 1130-1143, December 1985,

160

INITIAL DISTRIBUTION LIST

Defense Technical Information Center......ccceveeceneeseeenearesnens

Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Libraryccceeveecececcsccssnces

Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Department of Computer SCience........coceeeeeecee

Code CS
Naval Postgraduate School
Monterey, CA 93943-5100

Computer Technology Programs

Code 37
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis.......cccceeeesescscsessercacseessnssesesens

4401 Ford Avenue
Alexandria, VA 22302-0268

Prof. Man-Tak Shing

Code CS/Sh
Naval Postgraduate School
Monterey, CA 93943

Prof. Luqi
Code CS/Lq

Naval Postgraduate School
Monterey, CA 93943

Prof. Amr Zaky

Code CS/Za
Naval Postgraduate School
Monterey, CA 93943

161

10.

11.

12.

13.

14,

15.

Prof. Sherif MIChEELccoeuieverieeneeeeeeeeeeeteeeeeeseeseseseesessesses s e e

Code EC/Mi
Naval Postgraduate School
Monterey, CA 93943

Prof. James V. SANAETSc.eueueueereveeeeiteneniieeeneeeeseseseseseesese e

Code PH/Sd
Naval Postgraduate School
Monterey, CA 93943

Prof. Valdis BErzinscuvueeeecusruecnsrnsiesnrssssssssssessssssssnssnsssesssessssssssssssssens

Code CS/Be
Naval Postgraduate School
Monterey, CA 93943

2 LA 1T O

Code CS/Zj
Naval Postgraduate School
Monterey, CA 93943

Colonel Salah EI-Din M. Badr.........cuvueuiueeeeneeeeeeeeeeneseseese e 1

101 El-Tyaran Street
Nasser City, Cairo
EGYPT

Software Technology Branch
Army Research Laboratory

115 OKeefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

Major Ronald B. Bymnes, Jr.........

Software Technology Branch
Army Research Laboratory

115 OKeefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

162

16.

17.

18.

19.

20.

21.

Captain David A. Dampier.

Software Technology Branch
Army Research Laboratory

115 O'Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

Gabinete do Ministro da Marinha.

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Estado Maior da Armada

.. 1

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N'W.
Washington, DC 20016

Instituto de Pesquisas da Marinha
Diretor

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Instituto de Pesquisas da Marinha
Grupo de Sistemas Digitais

Rua Ipiru 2, tha do Governador,
Rio de Janeiro, BRAZIL 21931

Diretoria de Armamento € Comunicacoes da Marinhaccccccceeeeeveccecreccrrccrnneenees 1

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.\W.
Washington, DC 20016

Diretoria de Ensino da Marinha

AJ/C Brazilian Naval Commission
4706 Wisconsin Ave., N.-W,
Washington, DC 20016

Pontificia Universidade Catélica...

Depto. de Informética

R. Marqués de Sdo Vicente 225, Gévea -

Rio de Janeiro, BRAZIL 20000

163

24.

25.

26.

27.

28.

29.

30.

31.

Instituto Militar de Engenharia............cooeeveereneeennnnn..

Depto. de Informética
Praia Vermelha, Urca
Rio de Janeiro, BRAZIL 20000

Centro de Andlises de Sistemas Navais............ouveun.en....

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Diretoria de Informética da Marinha...........ccuvveeueeenennns.

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Centro de Anilises de Sistemas Operativos

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Coordenadoria de Projetos Especiais (COPESP)

A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Instituto Tecnol6gico da Aerondutica...........................

Depto. de Ciéncia da Computagio
Sao Jos€ dos Campos,
Sao Paulo, BRAZIL 11000

Instituto Militar de Engenharia..........cocveueurememnne...

Depto. de Ciéncia da Computagio
Praia Vermelha, Urca
Rio de Janeiro, BRAZIL. 20000

Universidade Federal do Rio de Janeiro

COPPE - Depto. de Ciéncia da Computagio

Fundio, Ilha do Governador
Rio de Janeiro, BRAZIL 20000

164

..

..

--

--

..

--

--

32.

33.

34.

35.

36.

37.

38.

39.

Universidade de S0 Paulo.....cceceeeeeeeeeeeeeeeencccssssens

Depto. de Ciéncia da Computagdo
Cidade Universitaria,
Sdo Paulo, BRAZIL 10000

Universidade de Campinas

Depto. de Ciéncia da Computagio
Campinas,
Sao Paulo, BRAZIL 10000

CDR. Mauricio M. Cordeiro ...

...

...

oooooooooooooooooooooooooooo

Instituto de Pesquisas da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., NW.
Washington, DC 20016

..

CDR. Gilberto F. Mota......cccceeueeene
Instituto de Pesquisas da Marinha
A/C Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Prof. AIMOKcoeeereeenerecranne

University of Texas - Austin
Department of Computer Science
Austin, TX 78712

Prof. Insup Lee.....

...............

University of Pennsylvania
Department of Computer and Information Science
Philadelphia, PA 19104

Prof. A. Bums

University of York

Department of Computer Science
York, YO15DD

United Kingdon

Prof. JOhN StANKOVIC ..eeeeeeeeeeeniceccrsnennecsssesssesseanene

University of Massachussets
Department of Computer Science
Amherst, MA 01003

165

Prof. Alexander StOYENKOccccevieeerirurnrecininienienceeststesecnscneesesesseesacensensasaene 1
New Jersey Institute of Technology

Real-time Computing Lab

University Heights,

Newark, NJ 07102

Prof RODETt Dlciiininiceeennieneannensasneneensesessessessessassessasseossssssssassesssasasssasanes 1
Code OR/De

Naval Postgraduate School

Monterey, CA 93943

JUNE FAVOTILE ...ccooveiiiecernnniiteicsieneennneecseesanssseessasessesssaessssasnsassasesassssssssasssessanes 1
Code OR

Naval Postgraduate School

Monterey, CA 93943

Prof. Craig RaSmMUSSENccocrnrerervesssessresseresnsssenecsesessesssesssassssnessersssssssssessassssans 1
Code MA/Ra

Naval Postgraduate School

Monterey, CA 93943

166

