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Summary of Efforts

Closed-Form 2D Angle Estimation with Rectangular Arrays

UCA-ESPRIT is a recently developed closed form algorithm for use in conjunction with a
uniform circular array (UCA) that provides automatically paired source azimuth and elevation
angle estimates. 2D Unitary ESPRIT is presented as an algorithm providing the same capabil-
ities for a uniform rectangular array (URA). In the final stage of the algorithm, the real and
imaginary parts of the i — th eigenvalue of a matrix are one-to-one related to the respective
direction cosines of the 7 — th source relative to the two major array axes. 2D Unitary ESPRIT
offers a number of advantages over other recently proposed ESPRIT based closed-form 2D an-
gle estimation techniques. First, except for the final eigenvalue decomposition of dimension
equal to the number of sources, it is efficiently formulated in terms of real-valued computation
throughout. Second, it is amenable to efficient beamspace implementations that will be pre-
sented. Third, it is applicable to array configurations that do not exhibit identical subarrays, e.
g., two orthogonal linear arrays. Finally, 2D Unitary ESPRIT easily handles sources having one
member of the spatial frequency coordinate pair in common. Simulation results are presen{:ed
verifying the efficacy of the method.

Beamspace DOA Estimation Featuring Multirate Eigenvector Processing

A novel approach to angle of arrival estimation in beamspace has been developed. Beamspace
noise eigenvectors may be transformed to vectors in the element-space noise subspace. The
transformed noise eigenvectors are bandpass, facilitating multirate processing involving modu-
lation to baseband, filtering, and decimation. As these operations are linear, a matrix transfor-
mation applied to the eigenvectors may be constructed a priori. Incorporation of the technique
into either the Root-MUSIC or ESPRIT prescriptions provides a computationally efficient pro-
cedure. Compared to past efforts to adapt Root-MUSIC and ESPRIT to beamspace, this
approach circumvents the need for restrictive requirements on the form of the beamforming
transformation. An asymptotic theoretical performance analysis is also included to provide an
alternative to computationally intensive Monte-Carlo simulations. Simulation studies show the
validity of the performance predictive expressions and verify that the procedure, when ncor-
porated into the Root-MUSIC/ESPRIT formulations, produces a direction finding technique
that nearly attains the Cramer-Rao bound.

g Multidimensional Multirate DOA FEstimation in Beamspace

The 1D multirate approach was extended to the more general case of 2D angle estimation
with a uniform rectangular array (URA) of sensors. Multidimensional multirate processing is
employed to ultimately yield a small order polynomial in two variables. Again, due to the
linearity of the 2D filtering and 2D decimation operations, the actual algorithm merely premul-
tiplies each beam space noise eigenvector by a precomputed transformation matrix. To avoid
the spectral search, despite the fact that the fundamental theorem of algebra does not hold
in 2D, we propose taking the orthogonal complement of the resulting transformed noise eigen-
vectors and applying a novel version of ESPRIT facilitating closed-form 2D angle estimation.
Simulations demonstrating the efficacy of the approach are presented along with theoretical
performance analysis.




-

Real-Time Frequency And 2-D Angle Estimation With Sub-Nyquist Spatio-Temporal Sampling
An algorithm has been developed for real-time estimation of the frequency and azimuth and
elevation angles of each signal incident upon an airborne antenna array system over a very wide
frequency band, 2-18 GHz, commensurate with electronic signal warfare. The algorithm pro-
vides unambiguous frequency estimation despite severe temporal undersampling necessitated
by cost/complexity of hardware considerations. The 2-18 GHz spectrum is decomposed into
1 GHz bands. The baseband output of each antenna is sent through two 250 MHz sampled
channels where one is delayed relative to the other (prior to sampling) by .5 ns, the Nyquist
interval for a 1 GHz bandwidth. Due to the high variance of the Direct ESPRIT frequency
estimator, aliased frequencies are estimated via a simple formula and translated to the proper
aliasing zone utilizing eigenvector information generated by PRO-ESPRIT. The algorithm also
provides unambiguous 2-D angle estimation over the entire 2-18 GHz bandwidth despite se-
vere spatial undersampling at the higher end of this band necessitated by mutual coupling
considerations and resolving power requirements at the lower end of the band. Eigenvector
information generated by PRO-ESPRIT is used to facilitate computationally simple estimation
of azimuth and elevation angles automatically paired with corresponding frequency estimates
despite aliasing. Simulations are presented demonstrating the capabilities of the algorithm.
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1 Closed-Form 2D Angle Estimation with Rectangular
Arrays

UCA-ESPRIT is a recently developed closed form algorithm for use in conjunction with a uni-
form circular array (UCA) that provides automatically paired source azimuth and elevation
angle estimates. 2D Unitary ESPRIT is presented as an algorithm providing the same capabil-
ities for a uniform rectangular array (URA). In the final stage of the algorithm, the real and
imaginary parts of the ¢ — th eigenvalue of a matrix are one-to-one related to the respective
direction cosines of the ¢ — th source relative to the two major array axes. 2D Unitary ESPRIT
offers a number of advantages over other recently proposed ESPRIT based closed-form 2D an-
gle estimation techniques. First, except for the final eigenvalue decomposition of dimension
equal to the number of sources, it is efficiently formulated in terms of real-valued computation
throughout. Second, it is amenable to efficient beamspace implementations that will be pre-
sented. Third, it is applicable to array configurations that do not exhibit identical subarrays, e.
g., two orthogonal linear arrays. Finally, 2D Unitary ESPRIT easily handles sources having one
member of the spatial frequency coordinate pair in common. Simulation results are presented
verifying the efficacy of the method.

1.1 Introduction
1.2 Real-Valued Processing with Uniform Linear Array
1.3 Unitary ESPRIT for Uniform Linear Array

1.4 DFT Beamspace ESPRIT for Uniform Linear Array
1.4.1 Relationship Between Unitary ESPRIT and DFT Beamspace ESPRIT
1.4.2 Relationship Between DFT Beamspace ESPRIT and Beamspace ESPRIT

1.5 2D Unitary ESPRIT for Uniform Rectangular Array
1.5.1 2D Unitary ESPRIT vs. ACMP

1.6 2D DFT Beamspace ESPRIT for Uniform Rectangular Array

1.6.1 Reduced Dimension Example

1.6’.2 Comparison with UCA-ESPRIT

1.7 2D DFT Beamspace ESPRIT for Cross Array
1.8 Simulations

1.9 Conclusions

1.10 References
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1 Introduction

For 1D arrays, if the elements are uniformly-spaced, Root-MUSIC and ESPRIT" [1] avert a spectral
search in determining the direction of arrival (DOA) of each incident signal. Instead, the DOA of
each signal is determined from the roots of a polynomial. For either Root-M USIC or ESPRIT?, the
roots of interest ideally lie on the unit circle and are related one-to-one with each source as shown
in Figure 1.

For 2D (planar) arrays, the fact that the fundamental theorem of algebra does not hold in two
dimensions typically precludes a rooting type of formulation. Even for the highly regular uniform
rectangular array (URA), 2D MUSIC requires a spectral search of a multimodal two-dimensional
surface, while both Multiple Invariance ESPRIT [2, 3] and Clark & Scharf’s 2D IQML [4] algorithm
involve nonlinear optimization. Now, it should be pointed out that a URA lends itself to separable
processing allowing one to decompose the 2D problem into two 1D problems. That is, one can
estimate the DOA’s with respect to one array axis via one set of calculations involving a MUSIC or
ESPRIT based polynomial formulation, and also do the same with respect to another array axis.
Coupling information may be employed to subsequently pair the respective members of the two sets
of 1D angle estimates [5].

In the Algebraically Coupled Matrix Pencil (ACMP) method of van der Veen et al® [6], eigen-
vector information is employed to pair the respective members of the two sets of 1D angle esfimates.
However, ACMP breaks down if two sources have the same arrival angle relative to either the z-axis
or the y-axis, assuming the URA to lie in the z-y plane.

In contrast, for a uniform circular array (UCA) the recently developed UCA-ESPRIT [T, 8}
algorithm provides closed-form, automatically paired 2D angle estimates as long as the azimuth
and elevation angle of each signal arrival is unique. As illustrgted in Figure 2, in the final stage
of UCA-ESPRIT, the i-th eigenvalue of a matrix is of the form sin 6; e’% where ¢; and 6; are the
azimgth and elevation angles of the i-th source. Note that sin 6; e/® = u; + jv;, where u; and v; are

the direction cosines of the i-th source relative to the z and y axes, respectively. The eigenvalue

for each source is thus unique such that UCA-ESPRIT does not have the aforementioned problem

1 ESPRIT may also be employed in the case of an array composed of at least two translationally invariant subarrays.

2In ESPRIT the DOA’s are extracted from eigenvalues which are roots of the characteristic polynomial of a
matrix.

3van der Veen et al do not actually give their method a name. In a later paper Vanpoucke et al label their method
ACMP.
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ACMP has when two sources have the same u; or the same v;. We here develop a closed-form 2D
angle estimation algorithm for a URA that provides automatic pairing in a similar fashion. That
is, in the final stage of new algorithm, referred to as 2D Unitary ESPRIT, the real and imaginary
parts of the i-th eigenvalue of a matrix are one-to-one related to u; and v;, respectively.

2D Unitary ESPRIT is developed as an extension of the recently proposed Unitary ESPRIT
[9, 10] algorithm for a uniform linear array (ULA). Unitary ESPRIT exploits the conjugate centro-
symmetry of the array manifold for a ULA to formulate each of the three primary stages of ESPRIT
in terms of real-valued computations: (1) the computation of the signal eigenvectors, (2) the solution
to the system of equations derived from these signal eigenvectors, and (3) the computation of the
eigenvalues of the solution to the system of equations formed in stage 2. Note that Huarng &
Yeh [11] and Linebarger et al [12] previously exploited the conjugate centro-symmetry of the ULA
manifold to formulate the determination of the noise eigenvectors and subsequent spectral search
required by MUSIC in terms of real-valued computation. The ability to formulate an ESPRIT-
like algorithm for a ULA that only requires real-valued computations from start to finish, after an
initial sparse unitary transformation, is critically important in developing a closed-form 2D angle
estimation algorithm for a URA similar to UCA-ESPRIT for a UCA. Unitary ESPRIT is thus
reviewed in Section 3 after a brief overview in Section 2 of CV to RV transformations facilitated by
the conjugate centro-symmetry of the ULA manifold.

A reduced dimension beamspace version of Unitary ESPRIT is developed in Section 4. There are
a number of advantages to working in beamspace: reduced computational complexity [13], decreased
sensitivity to array imperfections [14], and lower SNR resolution thresholds [15]. In contrast to the
Beamspace ESPRIT [16] algorithm of Xu et al, the beamspace version of Unitary ESPRIT exploits
the real-valued nature of the beamspace manifold to formulate each of the three primary stages of
ESPRIT in terms of real-valued computations as in Unitary ESPRIT, but in a reduced dimension
space. Although the respective developments of Unitary ESPRIT and its beamspace counterpart
procéed along markedly different lines, there is an interesting relationship between the two presented
in Section 4.1. The relationship between Beamspace ESPRIT and the new beamspace version of
Unitary ESPRIT is examined in Section 4.2.

2D Unitary ESPRIT is developed in Section 5. In addition to the ability to handle sources
having the same arrival angle relative to either the z-axis or the y-axis, 2D Unitary ESPRIT ofters

a number of advantages over other recently proposed ESPRIT based closed-form 2D angle estimation




techniques including A CMP. First, except for the final eigenvalue decomposition of dimension equal .

to the number of sources, it is efficiently formulated in terms of real-valued computation throughout.
Second, it is amenable to a reduced dimension beamspace implementation. In Section 6, we develop
a beamspace version of 2D Unitary ESPRIT as an extension of the beamspace version of Unitary
ESPRIT presented in Section 4.

Another advantage of 2D Unitary ESPRIT over ACMP is that the former is applicable to array
configurations that do not exhibit identical subarrays, e. g., two noncollinear ULA’s. In contrast,
ACMP requires an array of sensor triplets so that one can extract three identical subarrays from the
overall array. 2D Unitary ESPRIT only requires that the array exhibit invariances in two distinct
directions. In Section 7, we show how 2D Unitary ESPRIT may be simply adapted for the case of
two orthogonal ULA’s having a common phase center. ACMP is not applicable with such an array
geometry.

Simulation results are presented in Section 8 verifying the efficacy of 2D Unitary ESPRIT and its
beamspace counterpart, and comparing their respective performances with the Cramer-Rao Lower

Bound.

2 Real-Valued Processing with a ULA

All of the developments in this paper rely on some well known aspects of real-valued processing
with a ULA which are quickly reviewed here [9, 10, 11, 12, 17]. Employing the center of the ULA as
the phase reference, the array manifold is conjugate centro-symmetric. For example, if the number
of elements comprising the ULA, N, is odd, there is a sensor located at the array center and the

array manifold is
T

aN(:u) = e—j(#)“,---ve—j#,laeju"'aej(iz_i)“ ’ (1)

where u = %\EAzu with A equal to the wavelength, A, is equal to the interelement spacing, and u
equal to the direction cosine relative to the array axis. The conjugate centro-symmetry of an(p) is
mathematically stated as IIyan(p) = ajy(p), where

1

Iy = ) e RV, (2) |

1

As the inner product between any two conjugate centro-symmetric vectors is real-valued, any matrix

whose rows are each conjugate centro-symmetric may be employed to transform the complex-valued

4
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element space manifold, ay(u), into a real-valued manifold. As noted by a numerous authors

[9, 11, 12], the simplest matrices for accomplishing such are

_ 1 Ik gk
QZI\ - \/5 l: HK _] HK } 3 (3)
if N is even, or
) Ir 0 jIg
Qzr41 = —\/——5 oT v2 of ) (4)

if N is odd. Q¥ is a sparse unitary matrix that transforms ay(g) into an N x 1 real-valued manifold,
dy(p) = Qffan(p). For example, if the number of elements comprising the ULA is odd, the form

in (4) is used and

N-1 N-1

- dy(p) = QRan(p) = V2 x [cos (T-p> ey cos(),1/v/2, —sin <—2— > oo —sin(u)]T. - (5)

Let R, denote the N x N complex-valued element space sample covariance matrix. Since the
transformed manifold is real-valued, the signal eigenvectors required at the front end of ESPRIT
may be computed as the “largest” eigenvectors of Re{Qﬁf{mQN}. Note that in addition to
the obvious computational reduction, taking the real part of the correlation matrix effects signal
decorrelation [17] in the case of highly correlated or coherent sources. Alternatively, if X denotes the
N x N, element space data matrix containing N, snapshots as columns, the signal eigenvectors may
be computed as the “largest” left singular vectors of the real-valued matrix Q& (X, IINyX*|May,,

where

_ 1 1 In, gln, _ .
M2N5 = \/5 [ IN, _jIN, } . (6)

Since IINnQn = QY it follows that QF[X, IyX*My, = V2[Re{Y},~Im{Y}], where Y =
QXX. From a numerical point of view, the latter is preferable due to computational efficiency and
robustness to dynamic range, especially if one employs an algorithm like the rank revealing URV
decomposition [18].

l\iote that pre-multiplication of an N x 1 vector by Q¥ involves very little computation. In fact, it
involves no multiplications (the scaling by v/2 is unnecessary in computing the signal eigenvectors)
and only N additions. In Section 4, we also consider the use of the N pt. DFT matrix, with
appropriate scaling of the rows to make them each conjugate centro-symmetric [17], to transform
the data into a real-valued beamspace. Although FFT’s are fast, this approach ostensibly involves

significantly more computation than the use of Q. The utility of transforming to beamspace comes




into play when there is a-priori information on the general angular locations of the signal arrivals, as
in a radar application, for example. In this case, one may only apply those rows of the DF'T matrix
that form beams encompassing the sector of interest. This yields a reduced dimension beamspace
and leads to reduced computational complexity [13, 14, 15, 17]. This is possible due to the physical
interpretation that the rows of the DFT matrix form beams pointed to different angles. There is
no such physical interpretation for the rows of Q¥ thereby precluding the possibility to work in a

reduced dimension space.

Note that in this paper we do not address the problem of estimating the number of sources. We
will assume an estimate is available via a procedure such as that described by Xu et al in [19] which

explicitly exploits the conjugate centro-symmetry of the array manifold for a ULA.

3 Review of Unitary ESPRIT for ULA

As a precursor to developing an ESPRIT [1] based closed-form 2D angle estimation scheme for a
URA, we first briefly review the recently proposed Unitary ESPRIT [9] algorithm for a uniform
linear array (ULA) that only requires real-valued computations from start to finish after an initial
sparse unitary transformation by Q. As discussed above, if X denotes the N x N; element space
data matrix containing N, snapshots as columns, the signal eigenvectors for Unitary ESPRIT may
be computed as the “largest” left singular vectors of the real-valued matrix [Re{Y},Im{Y}],
where Y = QFX. Assume that there are d < N signal arrivals. Asymptotically, the N x d
real-valued matrix of signal eigenvectors, Eg, is related to the real-valued N x d DOA matrix,
D = [d(y1),d(g2), -, d(pa)], as Es = DT, where T is an unknown d X d real-valued matrix.
Since Q¥ is unitary, it follows that asymptotically (as the number of snapshots becomes infinitely
large)
QnEs = AT, ‘ (7)

where A = [a(p1),a(p2), .-, a(pa)], the N x d complex-valued element space DOA matrix. For a

ULA, A satisfies the so-called invariance property [1]

J,A®, = J,A  where: P, = dia,g{ej”l,ej”z, “.’ej#-d}, (8)




and J; and J, are the (N — 1) x N matrices

100 .. 007
o= |0 e ®
000 .. 10
0010 .. 00
A R T (19
(000 .. 01

J, and J, select the first and last N — 1 components of an N x 1 vector, respectively. Note that
Iy 1Ny = Jy. (11)
From (7), we have A = QyEsT~! which when substituted in (8) yields the relation
(J.QNEs) ¥ = J,QNEs, where: ¥ =T7'®,T. (12)

Thus, the eigenvalues of the d x d solution ¥ to the above (N — 1) X d matrix equation are e’#i, i =
1,....,d , where p; = ZA,u;. At this point, we have an ESPRIT based method for estimating
the arrival angles of plane waves incident at a ULA for which the first stage of determining signal
eigenvectors may be efficiently formulated in terms of real-valued computations. We now show that
the second and third stages, computing the solution to (J;QnEs) ¥ = J2,QnEs and the eigenvalues
of ¥, respectively, may also be efficiently formulated in terms of real-valued computations.

For the second stage, note that IIyQn = Q} so that Iy-1J2:Qn =IIn-1 I IINIINQN =J1Q,
where we have invoked (11). Since Eg is real-valued, it follows that the system.of equations in (12)
may be expressed as

C¥ = Iy, C;], where: C; =J,QnEs. (13)

The TLS * solution to (13) is ¥ = —W;, W3, where [ w is a complex-valued 2d x d matrix

12
W,
containing the “smallest” right singular vectors of [Cy,IIn-1C7]. To reformulate this step in terms
of real-valued computations, we exploit the special structure of [Cy, IIn-1C}] to convert it to a real-

valued matrix of the same dimension through pre- and post-multiplication by the unitary matrices

Qn-1 and My, respectively, where My, is defined by (6) with N, replaced by d. This yields

Z = QE_[CyiTIN-1C| M. (14)

*When range{B} C range{A}, the TLS solution to AX=B is the same as the LS solution, assuming infinite
precision.
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The fact that 7 is real-valued is verified by alternatively expressing it as Z = v2[Re{G}, ~Im{G}],

where G = Q¥_,C;. Tt is easily shown that the right singular vectors of Z are simply related to those

V12

of [Cy,HIN-1C}] through the unitary transformation Maq. Specifically, if [ v
22

} is a real-valued

2d x d matrix containing the “smallest” right singular vectors of Z, then

Wi, =_1_ L L Vi :_1_ Viz+7Va (15)
W V2| 1s —jla || Va V2| Vi2—JjVa

This shows how the TLS solution ¥ = — W, W5} may be computed in terms of the right singular
vectors of the real-valued matrix Z in (14).

To formulate the final stage of ESPRIT in terms of real-valued computation, observe that

U = -W,Wy
= —(Via45Ve) (Via = jVa) ™!
= —((~vuvy) - L) ((-VeVy) +iL)”
= f(-=VuVy). (16)

where f(z) denotes the linear fractional transformation

f@) = -2 a7

It follows from the Cayley-Hamilton theorem, that if w is an eigenvalue of the real-valued matrix
—V1,V3, then f(w) = —(w — j)/(w + 7) is an eigenvalue of —W 1, W3, and the associated eigen-
vectors are the same. This shows how the desired complex eigenvalues of ¥ = —W1, W3, may be
determined in terms of the eigenvalues of a real-valued matrix.

Now, asymptotically, the eigenvalues of ¥ = ~W, W3} are e#,i = 1,...,d. Let w; be an

eigenvalie of —V12V3,. It follows from the above development that e = —(w; — 1)/ (wi + 7).
Solving for w; yields .
1eiti —1 i
w; = —]Tej“*' 1= tan (—2—> . (18)

This reveals a spatial frequency warping identical to the temporal frequency warping incurred in

designing a digital filter from an analog filter via the bilinear transformation! Consider d = A2

so that p = 3:\’5Axu = wu. In this case, there is a one-to-one mapping between —1 < u; < 1,
corresponding to the range of possible values for a direction cosine, and —co < w; < co. Unitary

ESPRIT is summarized below.

-~




Summary of Unitary ESPRIT

1. Compute E, via the d “largest” left singular vectors of [Re{Y},Zm{Y}], where Y =
QRX.

Vu via the d “smallest” right singular vectors of Z = [Re{G}, -Zm{G}],
22
where G = (Q¥_,J,Qn)Es.

2. Compute [V

3. Compute w;j, @ = 1,...,d, as the eigenvalues of the d x d real-valued matrix —V,V3;.

4. Compute the spatial frequency estimates as p; = 2tan™'(w;), 1 = 1,...,d.

4 DFT Beamspace ESPRIT for ULA

As an alternative to Unitary ESPRIT, we here develop a version of ESPRIT for a ULA that works in
DFT beamspace. Similar to Unitary ESPRIT, and in contrast to the Beamspace ESPRIT algorithm
of Xu et al [16], the algorithm to be developed, referred to as DFT Beamspace ESPRIT, involves
only real-valued computation from start to finish after the initial transformation to Beamspace.

Reduced dimension processing in beamspace is facilitated when one has a-priori information on
the general angular locations of the signal arrivals, as in a radar application, for example. In this
case, one may only apply those rows of the DFT matrix that form beams encompassing the sector
of interest, thereby yielding reduced computational complexity. If there is no a-priori information,
one may examine the DFT spectrum and apply the algorithm to be developed to a small set of
DFT values around each spectral peak above a particular threshold. In a more general setting, one
may simply apply DFT Beamspace ESPRIT via parallel processing to each of a number of sets of
successive DFT values corresponding to overlapped sectors. Note, though, that in the development
to follow, we will employ all N DFT beams for the sake of nota,tlional simplicity and so that we can
relate DFT Beamspace ESPRIT to Unitary ESPRIT.

Applying the conjugate centro-symmetrized version of the m —th row of the N pt. DFT matrix

~H _ _(E=l\m2Z —im3E _j2m3T -3 (N=-1)m3Z
Wm—e( = )m% 1,e7"% e ¥ ..., e dN-UmFL (19)

the m — th component of the DFT beamspace manifold is

OO o ki )

s (=)

(20)




€

Note that we can perform a front end FFT (effectively implementing the Vandermonde form of -
the rows of the DFT matrix) and achieve conjugate symmetrized beamforming a-posteriori through

simple scaling of the DFT values (see (19)). The N x 1 real-valued beamspace manifold is then

b (k) = WHan () = [bo(p)  bi () s, ba(w)]” (21)

where Wﬁ denotes the conjugate centro-symmetrized N pt. DF'T matrix whose rows are given by

(19).
sin[ & (p—(m s . . .
Comparing bp41(p) = sin[[; ((: — ((mill))%%l with b, () in (20), the numerator of by,+1(x) is observed

to be the negative of that of b, (x). Thus, two successive components of the beamspace manifold

are related as

sin [% <y - m%)] bm(p) + sin [% (,u - (m+1)%v7£)] bm+1(p) = 0. (22)
Trigonometric manipulations lead to
tan (g) {cos (m%) bm (@) + cos <(m—|—l)[—7\r/:> bm.H(/,l.)} = sin (m—}%) b (pt)+sin <(m+1)—]7:7) b1 (1)

| (23)
Compiling all N — 1 equations in vector form yields an invariance relationship for the beamspace

manifold similar to that for the element space manifold:

tan (g) I'1b(x) = T2b(x) (24)
where
1 cos gjlvg 0 0
0 0 0 | cos ((ﬁ—Q);%) cos ((1\}'1)%)
0 sin Eﬁg 0
e P
0 0 0 ﬁn((ﬁ&)%) sm((ﬁ-l)%)

With d sources, the beamspace DOA matrix is B = [b(u1), b(42), ..., b(#4)]. The beamspace

manifold relation in (24) translates into the beamspace DOA matrix relation

IBQ, =T';B, where: Q, = diag {tan <%) s .oy tan (%)} . (27)

L
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Now, the appropriate signal eigenvectors for the algorithm presently under development may be
computed as the “largest” left singular vectors of the real-valued matrix WH[X, Iy X*|M,y, =
V2[Re{Y}, -Im{Y}], where Y = WHX. Asymptotically, the N x d matrix of signal eigenvectors,
Eg, satisfies Eg = BT, where T is an unknown d x d real-valued matrix. Substituting B = EgT™!
into (27) yields

I'Es® =T;Es, where: ¥ =T7'Q,T. (28)

Thus, the eigenvalues of the d x d solution ¥ to the (N — 1) x d matrix equation above are
tan(u;/2), ¢ = 1,...,d. The algorithm based on this development, DFT Beamspace ESPRIT, is

summarized below.

Summary of DFT Beamspace ESPRIT

1. Compute E, via the d “largest” left singular vectors of [Re{Y},Im{Y}], where Y =
WEX.

2. Compute ¥ as the solution to the (N — 1) x d matrix equation (I''Eg) ¥ = (I';Es).
3. Compute w;, ¢ = 1,...,d, as the eigenvalues of the d x d real-valued matrix W.

4. Compute spatial frequency estimates as u; = 2tan™ (w;), ¢ = 1,...,d.

4.1 Relationship Between Unitary ESPRIT and DFT Beamspace ES-
PRIT

To relate Unitary ESPRIT and DFT Beamspace ESPRIT, consider the following sequence of ma-

nipulations:
by(p) = WRan(p) = WEQnQRan (1) = WHQndn (). (29)

Substituting (29) into (24), we find that dn(p), defined in (5), satisfies a relation similar to (24):
tan <g—) Yidn(p) = Yodn(p) (30)
Whef; Y; and Y, are the (N — 1) X d real-valued matrices
YT, = I‘1V~V11\§QN and Y, = I‘QW%QN- (31)

Thus, the second stage of the Unitary ESPRIT algorithm summarized at the end of Section 2
could be alternatively posed as finding ¥ as the solution to the (N — 1) x d matrix equation

(Y1Es)¥ = Y;Es. Employing the TLS method of solution, one would compute [ Vi ] via the

1
Vo
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d “smallest” right singular vectors of the real-valued matrix [X;Es, Y2Es]|, and the rest of the - )
algorithm would be the same. Note, though, that Y, and Y, are not sparse like either J; and J,

or I'; and T'y. For example, for N = 4 elements,

13 -1 -1 -1 1 -1 -1
Y= -11 -1 -1 and Y,=|-1 1 1 -3
-11 1 1 1 -1 1 =3

This concurs with the previous assertion that because there is no physical interpretation of the rows
of Q¥ in terms of forming beams pointed to different angles, one cannot work with a subset of the
rows of Q.

Again, the utility of DFT Beamspace ESPRIT over Unitary ESPRIT is in scenarios where one
employs a subset of the rows of Wﬁ, the number of which depends on the width of the sector
of interest and may be substantially less than NN, to transform from element space to beamspace.
Employing the appropriate subblocks of I'; and I'; as selection matrices, the algorithm is the same
as that summarized previously except for the reduced dimensionality. For example, if one employed
three successive rows of Wﬁ associated with the DFT bin indices, m, m+1, and m+2, respectively,
to form three beams in estimating the angles of two closely-spaced signal arrivals, as in the low-angle
radar tracking scheme described by Zoltowski and Lee [20], the appropriate 3 x 2 selection matrices
are

I, = [ cos (m]—'(,-) cos é(m+l)—1§ 0
N

sin ((m +2)-

2] 2

0 } &T, = [ sin (m%) sin g(m-I—l)
0 cos ((m+1)

Cos ((m + 2)—]’\'—,) 0 sin {(m+1)

In this case, one would compute the d = 2 “largest” eigenvectors of a 3 x 3 real-valued matrix, solve
a 2 x 2 real-valued system of equations, and compute the 2 eigenvalues of the resulting 2 x 2 matrix

solution.

4.2 Relationship Between DFT Beamspace ESPRIT and Beamspace
ESPRIT

In [16], Xu et al develop a beamspace version of ESPRIT that is applicable whenever the Ny x N
beamforming matrix, F¥, exhibits an invariance property similar to that exhibited by the element
spaée DOA matrix in (8). Here N, denotes the number of beams. That is, if F' satisfies J,FO =
J,F, where ® is an N, x N, diagonal matrix, then Xu et al provide prescriptions for constructing
(Ny — 1) x N, matrices T; and 3, satisfying e*3,b(p) = Byb(p), where b(u) is the Ny x 1
beamspace manifold b(z) = F#a(u). This facilitates the use of ESPRIT in beamspace ultimately

12
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yielding as eigenvalues the quantities e’*, i = 1,...,d as in standard ESPRIT, except via processing
in a reduced dimensional space.

Xu et al note that a beamforming matrix F¥ composed of N rows of the N pt. DFT matrix
satisfies a relationship of the form J;F® = J,F thereby facilitating the use of Beamspace ESPRIT.
To see the relationship between DFT Beamspace ESPRIT and Beamspace ESPRIT, substitute the
expression for tan(x/2) in (18) into the invariance relationship for b(x) in (24). This yields, after

some manipulation,
(e — )Dib(k) = j(e™ + )Tob(n). = (T3 = jTa)b(y) = (L1 +T2)b(x).

Thus, in the case where F¥ is composed of conjugate centro-symmetrized rows of the N pt. DFT
matrix, the appropriate matrices ¥y and ¥, required in the execution of Beamspace ESPRIT are
3, =I'1—jT; and 2, = 3%, For this case then, this provides an alternative method for constructing
¥, and X as opposed to the method prescribed by Xu et al in [16] which involves a singular value
decomposition.

Note, though, that even if through centro-symmetrization one determines the signal eigenvectors
via real-valued computation as discussed previously, the second and third stages of Beamspace
ESPRIT require complex-valued computation ultimately yielding as eigenvalues e 1 =1,..,d.
Aside from the increased computation complexity relative to DFT Beamspace ESPRIT, this does
not facilitate an extension for the URA yielding automatically paired azimuth and elevation angle

estimates.

5 2D Unitary ESPRIT for URA

We now.develop an extension of Unitary ESPRIT for a uniform rectangular array (URA) of N x M
elements lying in the z-y plane and equi-spaced by A in the z direction and A, in the y direction.
In addition to y = %Axu, where u is the direction cosine variable relative to the x-axis, we define
the épatial frequency variable v = 2T"Ayv, where v is the direction cosine variable relative to the
y-axis.

In this development, in addition to representing the array manifold as an NM x 1 vector,
denoted a(u, v), it will be convenient to represent it as an N x M matrix, denoted A(y, v), as well.
The two forms are related through the operators vec(-) and mat(-) as a(u,v) = vec(A(u,v)) and
A(p,v) = mat(a(u,v)). The operator vec(-) maps an N x M matrix to an NM x 1 vector by

13




stacking the columns of the matrix. The operator mat(-) performs the inverse mapping, mapping -
an NM x 1 vector into an N x M matrix such that that mat(vec(X)) = X. An important property

of the vec operator that will prove useful throughout the development is
vec(ABC) = (CT ® A) vec(B), (32)

where ® denotes the Kronecker matrix product.

In matrix form, the array manifold may be expressed as
Alp,v) = an(p)ag(v), (33)

where ap(v) is defined by (1) with N replaced by M and p replaced by v. Recall that an(p)
satisfies e/*J1an(p) = Joan(u), where J; and J; are the (N —1) x N selection matrices defined in

(9) and (10), respectively. It follows that A(g, ) in (33) satisfies the invariance relation
el 3 A(p, v) = T2 A(p, v). (34)

Using the property of the vec operator in (32), we find that the NM x 1 array manifold in vector

form satisfies

e’ Jma(p, v) = Jnalp, v) _ (35)
where J,; and J 2 are the (N — 1)M x NM selection matrices:

Ju.l :IM®J1 and J“2=IM®J2. (36)

This represents (N — 1)M equations obtained by comparing the respective phases of each adjacent

pair of elements parallel to the z-axis.

Similarly, to set up the invariance relation relative to the y-axis, observe that
e’ A(p, V)Jg = Ay, V)JZ’ (37)

where the (M —1) x M matrices J3 and J, select the first and last M — 1 components of an M x 1
vector, respectively, such that e*Jsan(v) = Jsap(v). J3 and J4 are defined similar to (9) and
(10), except that they are (M — 1) x M. Using the property of the vec operator in (32), we find

that the NM x 1 array manifold in vector form satisfies the following invariance with respect to v:
P Joaa(p,v) = Jaa(y,v), (38)

14
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where J,; and J,; are the N(M — 1) x NM selection matrices:
Ji=J330Ly and J,=Js®Iy. (39)

This represents all possible N(M — 1) equations obtained by comparing the respective phases of
each adjacent pair of elements parallel to the y-axis.

Since ay(y) and apy(v) are both conjugate centro-symmetric, IIn A(u, v)IIpr = A*(p,v). Ap-
plying the vec operator to both sides of this relation and using the property in (32), we obtain
(Tp ® Myn)a(u, v) = a*(u, v). Recognizing that IIy @ Iy = Iy, it follows that a(y,v) is con-
jugate centro-symmetric. We may thus pre-multiply by the sparse unitary matrix Qun to obtain

the NM x 1 real-valued manifold

d(/‘v V) = Qf/INa(tuv V)' : (40)

Let X be an NM x N, matrix composed of N, snapshots of data as columns. Viewing the
array output at a given snapshot as a matrix, we effectively apply the vec operator to form an
NM x 1 vector and place it as a column of X. Similar to the 1D case, the NM x d matrix of
signal eigenvectors, Eg, may be computed as the é‘largest” left singular vectors of the real-valued
matrix Q¥ [X, MyyX* My, = V2[Re{Y},—Im{Y}], where Y = QF;X. Asymptotically,
Es, is related to the real-valued NM x d DOA matrix, D = [d(p1, 1), d(p2, v2), ..., d(pa, va)], as
Es = DT, where T is an unknown d x d real-valued matrix. Since Q¥,, is unitary, it follows that
asymptotically

QvmEs = AT, (41)

where A = [a(u1, 1), a(p2, V2), ..., 244, va)], the NM x d complex-valued element space DOA ma-
trix. From (35), it follows that

J A®, =J A, where: &, = diag{e’™, e, ..., e/} (42)
Substituting A = QnaEsT™! into (42) yields the relation

(J:QNvmEs) ¥, =J,,QvmEs, where: ¥, = T '®,T. (43)

Continuing the development similar to the 1D case, note that J,; and J,; satisfy a property

similar to (11): I v-1ymd pellvy = J,1. Invoking this relationship and the property IInpQnar =

15




Qiar, we have I noyad 2 Quar =Hv-1)md e I Iy Qs =31 Qivay- Since Es is real-valued,

it follows that the system of equations in (43) may be expressed as

Cu¥, =I(N-1yuC;,;, where: Cui =JuQnuEs. (44)
Let [ 312 } be the 2d x d matrix containing the “smallest” right® singular vectors of the real-valued
22
matrix

Z, = Qu-yumlCurilv-1ymCiyMaq (45)
V2[Re{G,} — Im{G,}], where: G, = (Q{N-1)sJu1 Qnm)Es.

It follows from previous developments that the d x d real-valued matrix —U1,UZ; may be spectrally
decomposed as

—UpUs =T7'Q,T, where: Q, = diag {ta,n <%> ) ooy baNL (%)} . (46)

A similar development relative to estimating v, ¢ = 1,...,d, ultimately yields the following
result. Let [ :/;12 } denote the 2d x d matrix containing the “smallest” right singular vectors of the
22- :

real-valued matrix

Z,

QN -1y [Cor T v-1)mr G} M2 | (47)
= V2[Re{G,}} = Im{G.,}], where: G, = (QN(r-1)1Qnm)Es

and C,i = J,1QnmEs. The d x d real-valued matrix —V12V2"21 may be spectrally decomposed as

—VVy =T7'Q,T, where: Q, = diag {tan (%) y ey tan <K2‘-i->} . (48)

Now, to achieve automatic pairing of u and v spatial frequencies, the following critical observa-
tions are made. First, the d x d matrix of eigenvectors T in the slpectra,l decomposition of —U;;Us;
in (46) is the same as that appearing in the spectral decomposition of —V12 V3, in (48). Second, this
is th:a same real-valued matrix T appearing in (41) which is unique as long as no two sources have
exactly the same azimuth and elevation angles. Finally, —U,U;} and =V, V3, are real-valued,

as are the diagonal matrices £, and £2,. These observations lead to the main result, namely

- U12U2—21 + j(“V12V;21) =T {Qu + Jﬂu} T. (49)

5We depart from the convention of using U to denote the matrix of left singular vectors here since the right
singular vectors of Z, are associated with the estimation of u;, 2 =1,..., d. V is used to denote the matrix of right
singular vectors of Z, since these are associated with the estimation of v;, ¢ = 1, ..., d.

16

L XY




Thus, the eigenvalues of —U,Ugy + j(—V12V3, ) are tan(ui/2) + jtan(vi/2), 7 = 1,...,d. The
algorithm based on this development is referred to as 2D Unitary ESPRIT and is summarized

below.

Summary of 2D Unitary ESPRIT

1. Compute E, via the d “largest” left singular vectors of Re{Y},Im{Y}], where Y =
QNmX.
2. Compute { 312 via the d  “smallest” right singular  vectors of
22
Z, = [Re{G,},—Im{G,}], where G,, = (Qfj-1)3J 1 Qnrm)Es.

3. Compute { v via the d “smallest” right singular vectors of Z, = [Re{G,}, -Im{G,}],

12
Va2
where G, = (Q%(M-I)JLAQNM)ES- ,
4. Compute A, ¢ = 1,...,d, as the eigenvalues of the d x d matrix —U3, Uz, + (= V12 V3).

5. Compute spatial frequency estimates: p; = 2tan™'(Re{A:}), v = 2tan ™ (Im{\;}), i =
1 .d.

Note that the maximum number of sources 2D Unitary ESPRIT can handle is minimum{M (N —
1), N(M — 1)}, assuming that at least d + 1 snapshots are available. If only a single snapshot is
available, one can extract d + 1 or more identical rectangular subarrays out of the overall array to

get the effect of multiple snapshots, thereby decreasing the maximum number of sources that can

be handled.

5.1 2D Unitary ESPRIT vs. ACMP

Note that 2D Unitary ESPRIT provides closed-form, automatically paired 2D angle estimates as
long as the spatial frequency coordinate pairs (u:, v;),1 = 1, ..., d, are distinct. That is, no additional
effort is needed if a pair or more of sources have the same yu; or ;. This is in contrast to the
Algebraically Coupled Matrix Pencil (ACMP) method of van der Veen et al which also provides
closed-form, automatically paired 2D angle estimates but breaks down if two sources have either -
the same u or v spatial frequency coordinate. Note that in order to avoid the same problem as
ACMP in this regard, one must solve the complex eigenvalue problem signified by (49). If one
attempts to compute the real eigenvalues of —U;,U3, alone, for example, there is a degeneracy in
the eigenvectors when two sources have the same y spatial frequency coordinate thereby precluding

the ability to determine T.
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Note that Vanpoucke et al propose a form of subarray averaging to overcome the problem of - .
ACMP occurring when two sources have either the same p or v spatial frequency coordinate, but
this decreases the maximum number of sources that can be handled and increases the computational
complexity significantly.

Note that ACMP requires an array of sensor triplets so that one can extract three identical
subarrays from the overall array. 2D Unitary ESPRIT only requires that the array exhibit invari-
ances in two distinct directions, as would be the case with two uniform linear arrays (ULA’s), for
example. In Section 7, we show how 2D Unitary ESPRIT may be simply adapted for the case of
two orthogonal ULA’s having a common phase center. ACMP is not applicable with such an array
geometry. Another advantage of 2D Unitary ESPRIT over ACMP is that 2D Unitary ESPRIT is
efficiently formulated in terms of real-valued computations, except for the final d x d eigenvalue

decomposition, while ACMP requires complex-valued computations throughout.

6 2D DFT Beamspace ESPRIT for URA

With 2D DFT beamforming (and attendant conjugate centro-symmetrization through simple scal-

ing), the components of the beamspace array manifold are separable real-valued patterns of the

sn[¥ (3= %) sin [ (v = n37)]
s [ {u =) sn (=)

Note that the matrix form of the beamspace manifold, denoted B(x, ), is related to the matrix form

form

(50)

bl v) =

of the array manifold via a 2D DFT as B(y,v) = WEH A, v)W s, where WE denotes the conjugate
centro-symmetrized N pt. DFT matrix whose rows are given by (19) and WE is defined similarly
with N replaced by M. Substituting the form of A(g,v) in (33) into B(x,v) = WEH A, v) W
vields :

B(s,») = b ()b (v), (51)

where b n{(p) is defined in (21) and bas(v) is defined similarly with V replaced by M and p replaced
by v. Given that by(u) satisfies the invariance relationship in (24), it follows that B(g, v) satisfies

f)

“

tan (ﬁ> [1B(y,v) = I2B(g,v). (52)

13




where I'; and Ty are defined in (25) and (26). Using the property of the vec operator in (32), we
find that the NM x 1 beamspace manifold in vector form, b(y, ) = vec[B(g, )], satisfies

tan (g) Tub(g, v) = Tusb(g, ), (53)
where T',; and T2 are the (N — 1)M x NM matrices:
Fa=Iy®l: and T,=Iy®T,. (54)

(53) represents (N — 1) M equations obtained by comparing each pair of adjacent beams having the
same 4 pointing angle coordinate.

Similarly, the 1D beamspace manifold bps(v) satisfies tan(v/2) I'sbar(v) = T4bp(v), where I's
and Ty are defined similar to (25) and (26) with N replaced by M such that they are (M —1) x M.
It follows that |

tan (%) B(g, v)IT = B(u, »)TT. (55)

Again, using the vec operator, we find that b(y, v) satisfies
‘tan (%) T,ib(g,v) = Luab(u,v), (56)
where IT',; and T',, are the N(M — 1) x NM matrices:
Fi=T3@Iy and T,,=T:QIy. (57)

(56) represents N(M — 1) equations obtained by comparing each pair of adjacent beams having the
same v pointing angle coordinate.
Consider the NM x d real-valued beamspace DOA matrix B = [b(y1,21), ..., b(pta, va)]- (53)
dictates-that B satisfies .
r,BQ,=r,B (58)

where 2, is defined in (46). In turn, (56) dictates that B satisfies
rulBQu = I‘u2B (59)

where 2, is defined in (48).

Now, viewing the array output at a given snapshot as an N x M matrix, we compute a 2D
DFT, apply the vec operator, and place the resulting NM x 1 vector as a column of an NM x N;
data matrix Y. Recall that X denotes the NM x N, data matrix prior to the 2D DFT. Using
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the vec operator, the relationship between Y and X may be expressed as Y = (VV%} ® Wﬁ)X o

The appropriate NM x d matrix of signal eigenvectors, Es, for the algorithm presently under
development may be computed as the d “largest” left singular vectors of the real-valued matrix
[Re{Y},Im{Y}]. Asymptotically, Es = BT, where T is an unknown d x d real-valued matrix.
Substituting B = EsT™! into (58) and (59) yields the signal eigenvector relations

[.Es¥, =T,,Es where: ¥, =T"'Q,T (60)

T ,Es®, = [,,Es where: ¥, =T"'Q,T. (61)

As in the extension of Unitary ESPRIT for a URA, automatic pairing of y and v spatial frequency
estimates is facilitated by the fact that all of the quantities in (60) and (61) are real-valued. Thus,

¥, + j¥, may be spectrally decomposed as
U, + %, =T {Q, + ) T (62)

The algorithm based on this development, 2D DFT Beamspace ESPRIT, is summarized below.

Summary of 2D DFT Beamspace ESPRIT

1. Compute a 2D DFT of the N x M matrix of array outputs at each snapshot (scale for
conjugate centro-symmetrization), apply the vec operator, and place the result as a column

of Y.
2. Compute E, via the d “largest” left singular vectors of [Re{Y},Im{Y}].
Compute ¥, as the solution to the (N — 1)M x d matrix equation I',1Es¥®, = I',sEs.

Compute ¥, as the solution to the N(M — 1) x d matrix equation T Es¥, =T,E;s.

=W

5. Compute A;, ¢ = 1,...,d, as the eigenvalues of the d x d matrix ¥, + j¥,.

6. Compute spatial frequency estimates: u; = 2tan™'(Re{\:}), vi = 2tan™"(Im{\}), 1 =
1..d '

4

6.1 Reduced Dimension Example

As in the 1D case, the utility of 2D DFT Beamspace ESPRIT over 2D Unitary ESPRIT is in

scenarios where one works with a subset of 2D DFT beams that encompass some volume of space |
of interest. In fact, the ability to work in a reduced dimension beamspace is even of more value in
the case of a URA since the total number of elements may be quite high. As an example, consider

a scenario, similar to the low-angle radar tracking problem, in which we desire to estimate the
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respective azimuth and elevation angles of each of two closely-spaced sources. To this end, we form
four 2D DFT beams steered to the spatial frequency coordinate pairs (m2%,n3%), ((m +1)%F, n2%),
(mZ,(n +1)3), and ((m + 1)%F, (n + 1)3F), respectively, as depicted in Figure 3. Recalling that
the components of the beamspace manifold have the form in (50), the 4 x 1 beamspace manifold

for this case is

b(”? I/) = [bm,n(#7 V) ’ bm+1,n(#7 V) ’ bm,ﬂ+1(/'1'7 V) ) bm+1,n+1 (:u’v V)]T . (63)

In this case, Eg is 4 x 2 and may be constructed from the two “largest” eigenvectors of the real
part of the 4 x 4 matrix formed from the inter-beam correlations. The 2 x 2 matrices ¥, and

¥, would be computed as the corresponding solutions to the 4 x 2 respective matrix equations

I ,Es®,=T,Esand I',;Es¥, =T ,;Es, where

m:[cos(gn%) cos((n;m%) ((:n D) o ((T:H)%)}
m:[sin(g%) sm(<n;+1>%>. N (?n o (<n?+1>,%)_
- [ (i) (07) os((ne0) ((ni be) |
. -sin((;z—lfz) Sin((; o sin ((n;l)%) o ((nil)%)]

In the final stage of the algorithm, tan(u;/2) + jtan(v;/2), 1 = 1,2, would be computed as the

eigenvalues of a 2 x 2 matrix.

6.2 Comparison with UCA-ESPRIT

As discussed in Section 1, UCA-ESPRIT [7, §] is a recently developed closed-form 2D angle esti-
mation scheme for a uniform circular array (UCA). As indicated in Figure 2, in the final stage of
U C’A-ESPRI T, the i-th eigenvalue of a matrix has the form u; + jv;, where u; and v; are the direc-
tion cosines of the i-th source relative to the z and y axes, respectively, assuming the UCA to lie in
the z-y plane. This is in contrast to 2D DFT Beamspace ESPRIT where there is spatial frequency
warping such that the final eigenvalues are of the form tan(u;/2)+7 tan(»;/2),¢ = 1,...,d. A notable
difference between the development of UCA-ESPRIT and that of 2D DFT Beamspace ESPRIT is

that in the former the sampled aperture pattern was assumed to be approximately equal to the
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continuous aperture pattern [7, 8], while no such approximation was made in the latter case. We
here briefly show that if a similar approximation is made in the development of 2D DFT Beamspace
ESPRIT, the final eigenvalues yielded by the resulting approximate 2D DFT Beamsémce ESPRIT
algorithm are identical in form to those yielded by UCA-ESPRIT.

Aside from averting spatial frequency warping, this form of the eigenvalue has a nice geometrical
interpretation in that it may be expressed as u; + jv; = sin e’ where ¢; and 6; are the azimuth
and elevation angles of the i-th source, respectively. This is illustrated in Figure 2. f; varies between
0° and 90° so that sin ; varies between 0 and 1, while ¢; varies between 0° and 360°. Thus, one can
immediately glean the azimuth angle of the i-th source from the polar angle of the i-th eigenvalue.
The corresponding elevation angle is the arcsine of the magnitude of the i-th eigenvalue. If the
eigenvalue is at the origin, the source is at boresite. If the eigenvalue is on the unit circle, the
source is in the same plane as the array. Also, we may use the fact that an eigenvalue should be
located on or within the unit circle to screen out false alarms.

Assume the interelement spécing in either direction to be less than or equal to a half—wavelength

snl & (s3] s 4 (v-ni)]

In this case, in the vicinity of the mainlobe and first few sidelobes, by, (1, V) & — - z)
’ e TR

Substituting g = 3 Azu and v = 2L Ayv, define

sin [¥ (% 8.u = m)] sin [¥ (58,0 - n3)]

V(A mE) 3 (2Am-nk) (64

b;,n (u’ 'U) =
2

This is the far field pattern that would result with a continuous rectangular aperture of dimension
NA, by MA,. The superscript a denotes approximate pattern. Similar to the development for the

sampled aperture pattern, observe that %, ,(u,v) and b3, ., ,(u,v) are related as

(= mZ )t + (B o= (4 D3 ) Braan) =0, (63)
which II;ay be rearranged as
w (B (1y0) v n(100)) = o Il (,0) F (o DBy a(w0)}. (66)
Similarly, b2, ,(u,v) and b%, ., (u,v) are related as
(QT”AW - n%) b2, (u,v) + (2—;&3,1] —(n+ 1)2]\%) b, () =0, (67)
which may be rearranged as
0 Fnli9) + a0} = o 18 00) 4 (04 Dlpa(0))- (69

3]
o




For the sake of brevity, consider again the case of four 2D DFT beams to estimate the respective
azimuth and elevation angles of each of two closely-spaced sources. In this case, the 4 x 1 beamspace
manifold is b%(u,v) = [b;,n(u,v) 0% g v) 08 (s ), b‘,‘n+1’n+1(u,v)]T. Given the relations
above, it is readily deduced that uI'2;b%(u,v) = I'¢;b%(u,v) and vT'5 b%(u,v) = T'5,b%(u,v), where

7[5 70 )

1100

I‘ul-—-[o 01 1] and T, =

. 1010 . A [no0 (n+1) 0
rvl“[0101] and Fv?“MAy[on 0 (n+1)]'

Asymptotically, the 4 x 2 real-valued matrix of signal eigenvectors, Es, satisfies Es = BT, where
B = [b(u1,v1), b(uz,v)] and T is an unknown 2 x 2 real-valued matrix. Expediting the development,
it follows that I's, EsW¥, = I'},Es, where ¥, = T-'1Q,T and Q, = diag{u;,us}. Also, I'?, Eg¥, =
I,Eg, where ¥, = T-'Q,T and 2, = diag{vi,v2}. Thus, u; + jv; and uy + jv, are the two
eigenvalues of ¥, 4+ ;W,.

The point is that with d < A/2 the sampled aperture pattern is very well approximated by the

continuous aperture pattern in the vicinity of the mainlobe and first few sidelobes. Thus, if only a

relatively small number of beams is selected, the modified version of 2D DFT Beamspace ESPRIT

sketched above yields the direction cosines directly without spatial warping.

7 2D DFT Beamspace ESPRIT for Cross Array

Consider an array composed of an N element ULA aligned with the x-axis and an M element ULA
aligned with the y-axis. The center of each leg is assumed to be at the origin so that they have
a common phase center. To ease the development and for the sake of notational simplicity, we
will assume M and N are both even so that the two legs do not share a common element at the
origin. iIowever, with slight modification, the adaptation of 2D DFT Beamspace ESPRIT for a
cross array developed subsequently may also be employed when M and/or N are odd. Also, due to
spacé limitations, we here only present the appropriate adaptation of 2D DFT Beamspace ESPRIT.
2D Unitary ESPRIT may also be suitably adapted but would require a slightly more complicated
development.

Let x(£) and y(£) be the N x 1 and M x 1 snapshot vectors output by the two respective legs

at time £. The (N + M) x 1 composite snapshot vector is formed as z({) = [ ;Eg ] These are
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stacked as the columns of an (IV + M) x N, matrix Z. The array manifold for such an array is

a(y,v) = { an(p)

) (69)

where ay(z) and ap(v) are each conjugate centro-symmetric as defined previously. Note that it
is only because the two legs have a common phase center that we are able to express the array
manifold in this form. If this is not the case, as with an L-shaped array, for example, either the
upper N x 1 or lower M x 1 block of a(u, v) would not be conjugate centro-symmetric and it would
not be possible to convert a(u, v) to a real-valued manifold through a simple matrix transformation.

Transformation to beamspace is accomplished via

Wy O _
F_[ o WM}' (70)
The beamspace manifold is
b
b(p,v) = Fa(p,v) = [ bi’[((ﬁ% ] : (71)

where by(z) and bps(v) are as defined previously. In practice, transformation to beamspace is
accomplished via an N pt. DFT of the z-axis leg and an M pt. DFT of the y-axis leg, with
a-posteriori conjugate centro-symmetrization via simple scaling of each DFT value.

Let Es be the (N 4+ M) x d matrix of signal eigenvectors computed as the d “largest” left sin-
gular vectors of [Re{H},Zm{H}], where H = F#Z. (Alternatively, Es may be determined as the d
"largest” eigenvectors of Re{FH#ZZF}.) Asymptotically, Es = BT, where B = [b(u1, 1), ..., b(p4, 4)]

and T is an unknown d x d real-valued matrix. Define the following matrices:

Ay = G‘}/ : \(L] Iv-r and Ay = @ : \O/] }N-1 (72)
N M N M

A =[O i) ws and Ay, =[0.F Ty] e (73)
N M N M

where I'; and Ty are defined similar to (25) and (26) with IV replaced by M. The following signal

eigexivector relations follow quite readily from previous developments:
ALEsP, = A Es where: ¥, = T'Q,T (74)

ALEs¥, = A,Es where: ¥, = T71Q,T. (75)

As with 2D DFT Beamspace ESPRIT, automatic pairing of x4 and v spatial frequency estimates is
facilitated by the fact that all of the quantities in (74) and (75) are real-valued. Thus, ¥, + ¥,
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may be spectrally decomposed as
U, 49, =T"{Q, +;2}7T (76)

The algorithm based on these observations is similar in form to 2D DFT Beamspace ESPRIT for a
URA.

8 Simulations

Simulations were conducted employing an 8 x8 URA (i.e. ,N =M = 8) with Ay = Ay = A/2. The
source scenario consisted of d = 3 equi-powered, uncorrelated sources located at (uy,v1) = (0,0),
(ug,v2) = (1/8,0), and (us, v3) = (0,1/8), where u; and v; are the direction cosines of the i-th source
relative to the = and y axes, respectively. Sources 1 and 2 were separated by a half-beamwidth,
i. e., half the Rayleigh resolution limit, as were sources 2 and 3. Sources 1 and 2 have the same v
coordinate, while sources 2 and 3 have the same u coordinate. If the ACM P algorithm of van der
Veen et al was applied in this scenario, it would provide a faulty estimate of the number of sources
as well as faulty source direction esfimates.

A given trial run at a given SNR level (per source per element) involved N; = 64 snapshots.

The noise was 7..d. from element to element and from snapshot to snapshot. RMS error defined as

RMSE; = \/E{('&I - ui)z} + E{('f), - v,-)z}, 1=1,2,3, | (77)

was employed as the performance metric. Let (i, 9;,) denote the coordinate estimates of the i-th
source obtained from a particular algorithm at the k-th run. Sample performance statistics were

computed from K = 500 independent trials as

K
RMSE; = \lfl{- Z {(’&,‘k — u,-)z —+ (’flik - Uz')z} , 1=1,2,3. (78)

k=1
The bias of 2D Unitary ESPRIT for N, = 64 snapshots over the range of SNR’s simulated was
found to be negligible, as was the bias of 2D DFT Beamspace ESPRIT. This facilitated comparison
with the Cramer Rao Lower Bound (CRLB). The performance of 2D Unitary ESPRIT relative to

2D MUSIC was also compared, as was the relative performance of 2D DFT Beamspace ESPRIT. |

The CRLB and the theoretically predicted performance of 2D MUSIC were computed according
to formulas provided in [8] and are plotted in Figures 4(a), 4(b), and 4(c) for sources 1, 2, and 3,

respectively.




Note that 2D MUSIC essentially achieved the CRLB over the range of SNR’s simulated so that
its theoretically predicted RMSE curve is coincident with the CRLB curve. Of course, 2D MUSIC
requires the localization of 3 peaks of a 2D spectrum. In element space, determining the value of
the 2D MUSIC spectrum at a given point involves the calculation of an inner product of the form
af (u,v)Pta(u,v), where P+ is 64 x 64. This kind of calculation has to be done repeatedly in
performing a localized Newton-Raphson search around each spectral peak.

The respective RMSE’s of 2D Unitary ESPRIT and 2D DFT Beamspace ESPRIT for sources 1,
2, and 3 are plotted in Figures 4(a), 4(b), and 4(c), respectively. In accordance with the summary
of 2D Unitary ESPRIT at the end of Section 3.0, the computatiohs required for a single run were:
(i) 64 additions per each of 64 snapshots to transform from complex-valued space to real-valued
space, (ii) calculation of the 3 “largest” left singular vectors of a 64 x 128 real-valued matrix, (iii)
calculation of the solution to two systems of equations of the form AX = B where A and B are
both 64 x 3 and real-valued, and (iv) calculation of the eigenvalues of a 3 X 3 complex-valued matrix.
The performance of 2D Unitary ESPRIT is observed to be very close to the CRLB for SNR’s greater
than or equal to -6 dB, although it does not achieve the CRLB even at the rather high SNR level of
12 dB. (Keep in mind that there are 64 elements and that the SNR is that per element.) Observe
that on a logarithmic scale, the small gap between the performance of 2D Unitary ESPRIT and
the CRLB is fairly constant as a function of SNR for SNR’s above -6 dB.

To demonstrate the efficacy of working in a reduced dimension beamspace, 2D DFT Beamspace
ESPRIT employed a 3 x 3 set of 9 beams with mainlobes rectangularly spaced in the u-v plane and
centered at (u,v) = (0,0). In accordance with the summary of 2D DFT Beamspace ESPRIT at the
end of Section 4.0, the computations required for a single run were: (i) 9 sets of 64 multiplications
and 63 additions for each of 64 snapshots to transform from element space to beamspace, (ii)
calcula,ti:)n of the 3 “largest” left singular vectors of a 9 x 128 real-valued matrix, (iii) calculation
of the solution to two systems of equations of the form AX = B where A and B are both 9 x 3
and real-valued, and (iv) calculation of the eigenvalues of a 3 x 3 complex-valued matrix. A scatter

plot of the 3 eigenvalues obtained from 2D DFT Beamspace ESPRIT for each of 200 independent

runs at an SNR of 3 dB is displayed in Figure 4(d). For SNR’s greater than or equal to -6 dB, -

the performance of 2D DFT Beamspace ESPRIT is observed to be only slightly worse than that of
2D Unitary ESPRIT despite the dramatic reduction in computational complexity. Similar to 2D
Unitary ESPRIT, the gap between the performance of 2D DFT Beamspace ESPRI T and the CRLB
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is fairly constant as a function of SNR over the range of SNR’s simulated.

An interesting observation is that for SNR’s lower than -9 dB, 2D DFT Beamspace ESPRIT
outperformed 2D Unitary ESPRIT. This is in accordance with observations made by Xu et. al.
[16] in comparing the performance of their version of Beamspace ESPRIT with that of ESPRIT in
element space. At low SNR’s Xu et. al. argued that the better performance of the former over that
latter is due to fact that Beamspace ESPRIT exploits a-priori information on the source locations
by forming beams pointed in the general directions of the sources. This argument is applicable here
as well.

The difference in performance between 2D Unitary ESPRIT or 2D DFT Beamspace ESPRIT
and the CRLB, and the fact that 2D MUSIC achieves the CRLB for the range of SNR’s simulated,
suggests a strategy wherein the 2D angle estimates provided by either 2D Unitary ESPRIT or 2D
DFT Beamspace ESPRIT are used as starting points for localized Newton searches of the 2D MUSIC
spectrum to achieve uniformly minimum variance unbiased estimates (UMVUE?’s). Note that the
computational burden of performing these localized searches of the 2D MUSIC spectrum may be
reduced substantially by operating in beamspace and exploiting the conjugate centro-symmetry of

the URA manifold.

9 Conclusions

2D Unitary ESPRIT is a closed form 2D angle estimation algorithm for use in conjunction with
a URA and is easily adapted for other dual invariance arrays including a cross array. 2D DFT
Beamspace ESPRIT is an efficient beamspace implementation of 2D Unitary ESPRIT facilitating
reduced dimension processing and attendant reduction in computational complexity. The 2D angle
estimates provided by either 2D Unitary ESPRIT or 2D DFT Beamspace ESPRIT may be used as
starting points for localized Newton searches of the 2D MUSIC spectrum, the M L algorithm, or the
Multiple Invariance ESPRIT algorithm. Due to space limitations, performance analysis of either
2D &nitary ESPRIT or 2D DFT Beamspace ESPRIT is not included here, but would follow in the
same vein as the performance analysis of UCA-ESPRIT in [22]. Note that 2D Unitary ESPRIT
may also be employed in a variety of applications other than 2D angle estimation including 2D

harmonic retrieval for image analysis, for example.
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2 Beamspace DOA Estimation Featuring Multirate Eigen-. :
vector Processing

A novel approach to angle of arrival estimation in beamspace is developed. Beamspace noise
eigenvectors may be transformed to vectors in the element-space noise subspace. The trans-
formed noise eigenvectors are bandpass, facilitating multirate processing involving modulation
to baseband, filtering, and decimation. As these operations are linear, a matrix transformation
applied to the eigenvectors may be constructed a priori. Incorporation of the technique into ei-
ther the Root-MUSIC or ESPRIT prescriptions provides a computationally efficient procedure.
Compared to past efforts to adapt Root-MUSIC and ESPRIT to beamspace, this approach cir-
cumvents the need for restrictive requirements on the form of the beamforming transformation.
An asymptotic theoretical performance analysis is also included to provide an alternative to
computationally intensive Monte-Carlo simulations. Simulation studies show the validity of the
performance predictive expressions and verify that the procedure, when incorporated into the
Root-MUSIC/ESPRIT formulations, produces a direction finding technique that nearly attains
the Cramer-Rao bound.

2.1 Introduction
2.2 Array Signal Model

2.3 Development of DOA Estimators Featuring Multirate Eigen-
vector Processing

2.3.1 Multirate Noise Eigenvector Processing

2.3.2 Incorporation of Filter Deconvolution

2.3.3 Root-MUSIC Incorporating Multirate Eigenvector Processing
2.3.4 TLS-ESPRIT Incorporating Multirate Eigenvector Processing
2.3.5 Location of Extraneous Roots Created by Filtering

2.4 _.Theoretical Performance Analysis

2.4.1 Performance Analysis of Root-MUSIC Formula‘tion

2.4.2 Performance Analysis of ESPRIT Formulation

2.5 Computer Simulations

2.6 Conclusions/Remarks

2.7 References

2.8 Appendix: Asymptotic Variance of ESPRIT Formulation

34




.

1. Introduction

Beamspace formulations of the eigenstructure class of direction finding sensor array processing algo-
rithms offer a number of advantages over their element space counterparts. First, there is a computational
benefit realized in the processing of data of a much smaller dimension. Second, a practical implemen-
tation to current phased array technology is allowed. Third, beamspace formulations exhibit a reduced
sensitivity to sensor position perturbations and noise non-idealities [1]. Fourth, although suboptimal in
high SNR situations, the inherent concentration over a specific spatial region of interest leads to noise
reduction and, hence, enhanced ability for localization in the more critical case of low SNR 2, 3].

In the case of the Spectral MUSIC algorithm proposed by Schmidt [4], which is applicable to arbitrary
array geometries, the Vandermonde nature of the element space array response to a plane wave signal for
the common uniform linear-spaced array geometry facilitates a root-finding procedure for e;ngle estimation
[5] as a computationally attractive alternative to the spectral search. The beamspace formulation of
Spectral MUSIC, however, does not directly offer a polynomial root-finding capability. By relating the
beamspace manifold to the element space direction vector, a beamspace Root-MUSIC capability can be
realized but the order of the resulting polynomial to be rooted is related to the number of sensors, N,
as 2N — 2. This represents such a considerable computationally intensive task for large arrays so as to
preclude its use for the associated performance gains as noted in [6].

Recently, an efficient algorithm was proposed in [7] as a means of reducing the Root-MUSIC polyno-
mial to order 2N, — 2, where N, is the number of beams. This represents a tremendous computational
savings if only a relatively few number of beams are formed to probe a spatial subband (sector) for sources.
The approach in [7] was accomplished by requiring that the beamforming vectors possess common spatial
nulls. We point out that, like the beamspace Root-MUSIC formulation in [7], an adaptation of ES-
PRIT to beamspace in [8] also required significant restrictions on the form of the beamforming vectors.
Aside from this possibly over-restrictive requirement, two other problems associated with the beamspace
Root-MUSIC algorithm were observed. First, the technique didn’t exploit the spafia.lly-conﬁned region
of operation in the rooting stage of the algorithm. That is, as the number of sensors comprising the array
increases, the spatial extent of the beamforming window decreases with constant NV, but, yet, the rooting
algorithm is still capable of localizing signals over all of visible space. Second, the approach involved the

use of an Ny x N, matrix transformation Q which was found to be highly ill-conditioned. For example,
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the condition number of Q for an N = 128 element array operated upon by a spatial Discrete Fourier
Transform (DFT) beamformer was computed for a varying number of beams and plotted in Figure 1. In
contrast, the other curve in the figure (Z transformation) corresponds to an alternative approach that is
the key result of this paper, having a similar implementation for the MUSIC setting but fundamentally
different to the approach in [7]. Whereas the condition number associated with the Z transformation is
relatively constant at a value near 3 for all beamspace dimensions, the corresponding value for the Q
transformation is large for even a small number of beams, e.g., for a beamformer comprised of Ny =8
spatial DFT beams, the condition number is approximately 8 - 10°.

The main purpose of this paper is to develop a processing methodology that is based on the trans-
formability of a beamspace noise eigenvector to an element-space counterpart as noted in passing in (3, 9].
In the intended application of beamspace processing, a spatial subband is probed so that the transformed
beamspace noise eigenvectors are naturally bandlimited in a spatial sense. This banded characteristic
allows for the application of classical multirate digital signal processing to isolate and spatially enlarge
the spatial subband of interest. Note that this methodology departs from classical multirate processing in
that the pertinent information lies in the-in—band signal nulls instead of signal peaks. In the conventional
mode of multirate processing, one has to be concerned with spectral peaks outside the “basebanded” sub-
band being aliased into the subband thereby causing ambiguities. Lowpass filtering is implemented prior
to decimation to avoid this condition. However, in array processing at fhe sensor level, this pre-filtering
operation destroys the Vandermonde nature of the manifold thereby precluding rooting based DOA es-
timation techniques such as Root-MUSIC or ESPRIT. Here the goal is to preserve in-band signal nulls
and the development will show that the ability to root is easily maintained. In addition, with respect
to aliasing artifacts, out-of-band signals not sufficiently de-emphasized by the front-end beamforming
give rise to out-of-band signal nulls which actually serve to suppresé aliasing contributions resulting from
decimation (see Figure 2 to be discussed shortly).

An importa.nt feature of this approach is that there are no restrictive requirements on the form of
the beamforming vectors. Another advantage of this technique is that the angular separation between
“in-band” signal roots is increased by the decimation factor, thereby easing the job of rooting. Another
major advantage is that the technique is computationally robust as the Z matrix transformation applied

to the beamspace noise eigenvectors is well conditioned, e.g., refer to Figure 1 where the condition number
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of a Z transformation is shown for the same array length and a suitable decimation procedure.

As the eigenvector transformation-decimation procedure is general in nature, the technique may be
applied to any eigenstructure direction finding algorithm. We here consider the Root-MUSIC and ES-
PRIT [10] formulations as these techniques are fairly representative of the eigenstructure class of angle
estimators; application to other algorithms is straightforward.

The contents of this paper are as follows. Following a description of the data model, the beamspace
noise eigenvector transformation-decimation technique is developed and applied to Root-MUSIC and
ESPRIT ideology in Section 3. The theoretical performance of the MUSIC/ESPRIT formulations is de-
veloped, in terms of the estimation variance, in Section 4. Finally, the theoretical performance expressions
are validated in simulations and the optimality of the technique is observed through a comparison study

with the stochastic Cramer-Rao bound in a variety of experiments in Section 5.

2. Array Signal Model

The DOA estimation methodology described herein assumes a uniform linear array of sensoré. An
extension to the two-dimensional array geometry composed of a rectangular lattice of sensors is readily
clear.

Assuming that K narrowband plane-wave signals, residing at a common center frequency, impinge
upon an N-sensor array, the complex basebanded data snapshot vector at the m’th sampling instant,
x(m), is expressed as a superposition of signals embedded in additive noise as

K
x(m) = ;; se(m)an(px) + n(m) m=1,.,M (1)
In the a,boye equation, the amplitudes of the K signals, si(-), k¥ = 1,..., K, are modelled as zero-mean
jointly Gaussian random variables with non-singular covariance P,, and n(-) is a zero-mean complex
gaussial} noise vector with assumed covariance € [n(m)nH (m)] = 02 1Iy. The array response to a unit-
a,mplitl;lde signal arriving from the spatial location p is represented by an(y), where p = 2% d sin(d),

d is the sensor spacing, A is the wavelength, and 8 is the conical angle of arrival. In accordance with a

uniform sensor placement, the structure of the array manifold vector has the form
aN(/"’) = [17 eju: ej2u7 T ej(N—l)u] : (2)

The associated sensor covariance matrix, assuming that the noise is uncorrelated with the signal set, is
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simply
R, = AP, A" + o1y, (3

where A is the matrix of element-space manifold vectors, A = |an(p1):an(g2): ... EaN(,uK)]. In the
event that the noise exhibits a colored character, we assume that the noise correlation matrix is known.

The benefits of beamforming as a pre-processing operation prior to DOA estimation is well known in
the literature [1, 2, 3, 7]. Here we transform the element-space data to an NN, dimensional beamspace in

a digital or analog fashion. This operation is mathematically modelled as
y(m) = WH x(m) m=1,..M (4)

where the columns of the Nx N, beamforming matrix are orthonormalized so that WHW = Iy,. De-
noting the Ny-dimensional beamspace manifold vector as b(u), the associated beamspace covariance, R,
1s

R, = £ [y(m)y(m)| = W'R,W = BP, B + olly, (5)
where B = | b(u1):b(p2): ... fb(,uK)] and b(g) = WH ay(p).

As the ideal covariance matrix is not accessible in .practice, an M-sample estimate is employed as

M
R, = Y y(m)y"(m), | (6)
m=1
where we assume that M > K. We also assume that N, > K for proper operation of the DOA es-
timators. As the beamspace dimension, N, is usually chosen to be small in relation to NV, to yield a
computationally attractive algorithm displaying enhanced localization performance of low SNR signals
[7, 9], the assumption K < N, may seem too restrictive. However, through judicious selection of beam-
forming veétors, we merely assume that fewer than N, signals are effectively present in the beamspace
data; signals that are not located within the spatial sector of interest are sufficiently de-emphasized by
the beamforming operation.

The eigendecomposition of f{y provides the signal and noise subspace descriptors as necessitated by
the DOA architectures considered in this paper. Notationally, lfv'.y is decomposed as (3\;, é{) where A,
i=1,...,N,, are the eigenvalues arranged in decreasing order, o> g > > :\Nb > 0, with associated
eigenvectors &;. Thus {&;,7 = 1,..., K } span a K-dimensional (signal) subspace used as an estimate of the

true subspace spanned by the columns of B, and the remaining N, — K eigenvectors span an estimate of
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the orthogonal (noise) subspace. The number of signals, K, is assumed to be available, possibly estimated
via a procedure such as that described in [11].

An alternative procedure for the estimation of the noise or signal subspace is the decomposition of the
real part of ﬁy as discussed in [7, 9]. By simply referencing the phase of the beamforming vectors and
the element space manifold to the array center, i.e., through the scaling of (2) by the multiplicative factor
exp (— 7 u—"\—’;—1>, and requiring a symmetric magnitude taper in the beamforming vectors, the beamspace
manifold b(u) is real-valued. Thus Re{R,} = BRe{P,} BT + ¢2Iy,. The advantages of processing
only the real part of fly are a computational savings and a signal decorrelation effect to improve the
angle estimation accuracy in correlated signal scenes [9]. Note that the forthcoming discussion of DOA
estimation employing eigenvector decimation places no restrictions on how the signal or noise eigenvectors

are estimated.

3. Dévelopment of DOA Estimators Featuring Multirate Eigenvector Pro-

cessing

In this section, we develop the beamspace Root-MUSIC and TLS-ESPRIT DOA estimators incorpo-
rating multirate eigenvector processing. In Section A, we discuss the basis of the multirate processing
technique of beamspace noise eigenvectors and present some computational reductions in Section B. Fi-
nally the techniques are applied to obtain Root-MUSIC and TLS-ESPRIT DOA estimation algorithms

in Sections C and D, respectively.
A. Multirate Noise Eigenvector Processing

The critical relation motivating the development of the algorithms presented in this paper is that a
beamspace noise eigenvector can be transformed to a noise eigenvector in element space as noted in 3, 9].
Defining

K v; = We,, (7)

where e;, ¢« > K, is a noise eigenvector of the ideal beamspace covariance, we see that v; is indeed an

eigenvector lying in the noise subspace of R, as evidenced by
0 = Bfe; = (WHA) e; = A (We;)) = Afv;, > K. (8)

Since A is an NxX matrix composed of the element space direction vectors which collectively span the

signal subspace, v; = W e;, i=K+1,..., N, lies in the element space noise subspace. Also, given that e; is
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unit-length, v; is unit-length as guaranteed by the orthonormality of the columns of W. Note, however,
that no direct relationship exists between the beamspace and element-space signal subspace eigenvectors
and that the N, — K transformed noise eigenvectors only partially describe the N-dimensional element-
space noise subspace.

We now focus the development of the multirate eigenvector prescription to the MUSIC algorithm.
Employing the transformed noise eigenvectors which partially describe the element-space noise subspace,

the associated MUSIC null spectrum [4] is appropriately described as

Ny
Suo(w) = 3 lall(wvl. —m<u<r )
k=K+1

For the structure of the array manifold given in (2), it is observed that each term in (9) simply has the

form of an N-point spatial Discrete Time Fourier Transform (DTFT) of a transformed noise eigenvector,
N
Vi) = afi(p)vi = 2 w(n)*®)  —r <p<m (10)
n=1
where vi(n) represents the n’th entry in the vector vi.

By selecting the set of beamforming vectors to interrogate some sector of space while attenuating
signals that lie elsewhere, the spectrum of the transformed eigenvectors are naturally spatially band-
limited. This can be seen by viewing the null spectrum of a single transformed noise eigenvector as shown
in Figure 2. The parameters associated with the figure are as follows. N=128 half-wavelength spaced
sensors were employed in conjunction with a spatial DFT beamformer consisting of eight consecutive
beams centered in space at sind = 25/N. For reference purposes, the spatial responses of the N, =8
beams are plotted in Figure 3. There were two equi-powered signals located near mid-band at 10.6° and
11.5°; the locations are labelled on the figure. In addition, a high-strength signal was placed at a distant
location of sind = 69/N. A single beamspace noise eigenvector of the ideal covariance was employed to
generateJthe plot in Figure 2. Note that the “extraneous” null within the band will fill in when all of the
transfor;ned noise eigenvectors are employed. Although in-band nulls are of interest, the main point of
the figure is that the spectrum exhibits an elevated response in the spatial region where the beams are
directed and a suppressed response in the region neighboring the distant signal. |

The bandpass nature of the null spectra suggests a multirate procedure wherein the spatial band

surrounding sin§ = 25/N is spatially basebanded and the corresponding spatial sequence is decimated.

Consider decimation by an integer factor D that is less than or equal to the maximum allowable value.
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For the example employing N, spatial DFT beams, the maximum decimation factor is Dmer = N/N,.2

The sequence associated with the k’th decimated eigenvector is (recall v, = Wey)
oG +1) = w(Di+1) i=0,1,..,N/D—1.
From classical multirate theory, the spatial spectrum associated with the k’th decimated eigenvector is

W = 3 (5. (1)
Keep in mind the periodicity in the variable p, i.e., V(g + 27n) = V(u) for integer n. Assuming that
the spectrum has negligible amplitude outside of the region of interest, i.e., Vi(x) = 0, [u| > 7/D, only
the £ = 0 term contributes to the sum leading to Vék)(,u) ~ Vi(p/D) for - < p < 7.

In the usual application of multirate processing, one must be concerned with the aliasing of signals
into the band of interest; here we must insure that aliasing does not result in the “filling in” of signal
nulls within the band of interest. Note that signals that lie outside of the spatial band of interest do not
affect the spectrum, i.e., in fact, the reduced amplitude in the neighboring region as seen in Figure 2 will
result in a smaller aliasing contribution. However, the presence of the large distant signals may increase
the perceived dimension of the signal subspace, K, in the decomposition of the sample covariance matrix
so that their presence is undesired.

If the front-end beamformers have high sidelobes, a spatial filter prior to decimation might be necessary
to insure that the null spectrum is not distorted due to aliasing, i.e., the “signal” nulls are not lostlor
shifted appreciably. The filter should incorporate a sufficient stopband attenuation to limit the degree of
aliasing. However, a larger stopband attenuation requires a larger filter length. As the ultimate intention
of multirate processing is to reduce the dimension of the transformed/decimated noise eigenvectors, a
shorter—lenéth filter is desired. Note that the length of the noise eigenvectors after decimation is fﬁiDL;l 1,
where L.is the filter length, D is the decimation factor which is less than or equal to Do = N/N, and
[z] refiers to the smallest integer greater than or equal to z.

As there is no need for a linear phase requirement, an IIR filter may be employed. The absence of
a linear phase requirement in IIR designs should result in a smaller filter length, L, where L is takeﬁ
as some appropriate effective length of the associated impulse response. Note, however, that the classic

IIR low-pass filter designs such as Butterworth, Chebyshev, Elliptic, etc., yield poles that are very near

2Although the terminology “sampling rate alteration” applies for non-integer Dmaz, we will still refer to the rate
conversion operation as decimation.
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the unit circle so that the associated impulse responses are relatively long. It was determined that these .
classic IIR designs offer little or no advantages in terms of lengths vs. band specifications as compared
to such FIR techniques as the Hamming, Hanning, or Blackman windowed low-pass filters (LPF). Also
note that a high degree of passband ripple may not pose a significant problem as there is a procedure, to
be discussed shortly, for the removal of the residual ripple after decimation.

A major factor in determining an appropriate filter length is the width of the transition band. The
simplest means of increasing the width of the transition band, and, hence, shortening the filter length,
is to decimate by a factor that is less than the maximum allowable limit Dpoz. This would increase the
distance between the edges of the beamforming sector, i.e., the region encompassed by the mainlobes of
the N, beams, and the spatial location u = 7/D, i.e., the location that is scaled-up to the spectral edge
(1 = =) after decimation. Thus, by designing a filter with a transition band that lies within a spatial zone
that is exterior to the passband of the beamforming sector, the aliasing effects are essentially confined to
this region which is disregarded in the end. |

Another approach is to simply allow the passband edge to extend within the beamforming sector as
it has been shown in [7, 9] that beamspace DOA architectures tend to perform rather poorly in terms
of estimation bias/variance at the edges of the beamforming sector. This effect is attributable to the
reduction in the total signal power, proportional to b¥(u) b(x), as the signal nears the edge of the spatial
subband. Thus the transition band of the filter may be designed to encompass perhaps 25-50% of the total
beamforming sector in which case one would have to allow a corresponding overlap appropriate amongst
subbands probed in succession or in parallel. Due to the characteristic shape of the noise eigenvector
spectra, the aliasing effects primarily originate just outside of the pre-decimation subband defined over
u € [—=n/D, /D). Thus, specifying that the transition band of the filter be centered at 7 /D, the
aliasing will be primarily present in the edges of the beamforming window and this is disregarded.

Returning to the N = 8 beam example, an N = 128 element Hamming-windowed LPF with a
transition band defined over the region x € [6.57/N,9.57/N|, where u = 87 /N is both the edge of the
beamforming window and the edge of the pre-decimation subband, proved to be a reasonable design.
A sketch of the passband associated with this low pass filter design can be found in Figure 4. The
filter response is superimposed over the MUSIC null spectrum associated with the use of all spatially

basebanded transformed noise eigenvectors to show another feature of this filter selection: the interlacing




of the nulls which results in a dramatical reduction in the effects of aliasing. As the out-of-band nulls
of the basebanded beamspace MUSIC null spectrum are at known data-independent spatial positions
corresponding to the common null locations of the beam set of Figure 3, the filter parameters can be
selected to produce the null interlacing effect as seen in Figure 4. Also note that the use of all beamspace
noise eigenvectors in a MUSIC formulation resulted in the removal of the non-signal in-band spatial null
that was present in the single transformed noise eigenvector spectrum of Figure 2. The resulting filtered
eigenvector MUSIC null spectrum is shown in Figure 5 and the corresponding decimated MUSIC null
spectrum is shown in Figure 6.

With the modulation (spatial basebanding), filtering, and decimation operations notated by M, F,
and D, respectively, the decimated/transformed noise eigenvectors are thenv; = DF M {We; },1 > K.
As decimation, filtering, and modulation are linear operations, these may be performed a priori on the

N, columns of W as evidenced in

N N,
v, =DFM {Z Wkei(k)} Z DFM {w;}] ek Z zrei(k) = Ze, (12)

where

7 = [ZISZQE...SZM] - DFM{W}. (13)

Hence, a matrix Z of dimension NzxN;, where Nz = [N—*;‘Dr‘—'—l— 1, may be computed a priori and applied
to the beamspace noise eigenvectors e;, = = K + 1,..., NVy. In the more general case of sampling rate
conversion where the desired “decimation” factor is not an integer but can be expressed as a ratio of two

integers D = Mp/Mj, the corresponding matrix Z is computed as
Z=DMD-FIMIM{W}7 (14)

where Dy, represents a decimation operation by a factor of Mp and Zys, refers to an interpolation
opera.tii;n by a factor of M;. Note that the filter frequency design specifications are appropriately modified
to reflect the positioning following the interpolator. Also, due to the modulation operation, the matrix
Z can be employed for a common beam set steered to any sector of space. In this mode of operation, the
estimates of the signal  locations provided by the algorithm are relative to the center of the beamforming

sector.

B. Incorporation of Filter Deconvolution
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As the inclusion of a properly designed filter will result in negligible aliasing effects, it is possible to
reduce the row-dimension of the matrix Z, and hence the order of the polynomial that ultimately need's
to be rooted. This computational advantage is accomplished through the deconvolution of the decimated
filter sequence from each column of Z as substantiated in this section.

Denoting the spatial DTFT of the 7’th transformed and decimated beamspace noise eigenvector v;

defined in (12) as s V) (), we find, as similar to the form in Equation (10),
Nz )
_ 3 gy (15
k=1

The above form offers an alternative view of the decimation procedure where the spatial spectrum
v FM( ) is expressed in terms of the respective DTFT’s of the filter and the ¢’th modulated-transformed

eigenvector. Defining the DTFT’s

k)1 § > K | (16)
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where VM = M {We;} = M {v;}and h = [R(1), ..., h(L)]T is an L x 1 vector composed of the
entries of the filter impulse response. One can express VS}M( ©) as

i ID -1 u—2rl o =27t :
VTSI)’M - Z < ) VA(/I)( D . (18)
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Notice that the form of (18) implies an integer-valued decimation factor D. Modifications for the more

general cases where the sampling rate alteration is expressible as a non-reducible ratio of two integers,

D = Mp /M 1, are readily incorporated into the pxocedure and will be addressed later in this section.
Assummg that aliasing effects are negligible, the £ = 0 term (region surrounding baseband) dominates

so that the following approximations hold

V(s %H(%) v (5)
[ZH( Zﬂf”vy(%). (19)

Notice that the bracketted term in the latter approximation is simply the DTFT of the decimated impulse

Q

response of the filter sequence, hp(k) = h(Dk). Acceptance of the above approximations suggests

that one is capable of removing the effects of the filter from the decimated null spectrum. Thus, we
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may acquire the pertinent (signal) information associated with the eigenvector spectrum by viewing an

alternate spectrum, denoted VG(i_)l prm( i), given as

(5 7

Vo) = Z&‘fl’;‘?ﬁ%) - (20)
Equivalently, the spectral division can be accomplished by deconvolving the decimated filter sequence
out of the 1’th decimated eigenvector, Ze;. As the deconvolution operation is also linear, one can simply
deconvolve the decimated filter impulse response out from each column of Z in (13) to form a matrix Z'.
Denote the deconvolution operator as G~ so that Z' = G DF M { W }. Recall that Z is an NzxN,
matrix where Nz = [—NLII;'—‘l] Assuming that the deconvolution is exact, the size of Z’ is NzxN,,
where Nz» = [M2L=17 — 1L7 4 1. As the imperfect filtering introduces a small degree of aliasing, the
deconvolution is not exact. Therefore, there exists a remainder term that must be considered such that
the resultant process may not be causal. Numerically it is better to carry out the deconvolution by way of
spectral division. In this case, the DTFT of a given column of Z is divided, point-wise, by the DTFT of
the decimated filter sequence so that the inverse DTFT of the result provides the associated deconvolved
column of Z'. Depending upon the values of N and N, simulatioﬁs have shown that possibly one or
two extra points on either side of the Nz points should be appended to each column of Z'. A suitable
criterion employed in simulation studies is that all points whose magnitudes greater than 5-10% of the
maximum value should be included in Z’.

Returning to the example cited earlier where the beamforming matrix corresponding to an N = 128
element ULA with d = A/2 and N, = 8 beams is operated on by an L = 128 length Hamming-windowed
LPF and then maximally decimated, the dimensionality of the Z matrixis NzxNy, Nz = [ NiD["—l] = 16.
Assuming perfect deconvolution, the associated value of Nz is 9. Adopting the 10% criteria in the
selection of the row-dimension of Z’, it was found that one extra‘row was needed. By way of spectral
division employing the FFT /IFFT algorithms, the extra values were the last samples of the IFFT, which
were wfapped-around to form the first row of Z'.

In the case of non-integer decimation where the factor D is expressible as a ratio of two integers as
D = Mp/M, a similar procedure can be implemented. Referring to Equation (18), the spectrum VAE;)(-)
is replaced by the pre-filtered spectrum VI(;\,)I() defined by the DTFT of the ¢’th transformed, modulated,
and interpolated (M) noise eigenvector. The applicable decimation factor in (18) is then Mp. Note that

the filter frequency-band specifications are selected to reflect the presence of the interpolation stage. As
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a result, for the matrix Z defined by Z = Dy, F Iy, M { W }, the N, columns of the matrix Z' are

found by deconvolving the decimated filter impulse response (decimated by the factor Mp) out from the

corresponding columns of Z.

The reduced row dimension of Z relative to that of Z ultimately results in a computational savings for
DOA estimation at the expense of a slight degradation in performance as will be shown in a subsequent
section. The application of multirate eigenvector processing to the MUSIC algorithm is analyzed in
Section C while an application to the TLS-ESPRIT algorithm is considered in Section D. The two
algorithms are considered as representative of the class of eigenstructure DOA estimators. Extensions to

other DOA estimation algorithms are easily accomplished.

C. Root-MUSIC Incorporating Multirate Eigenvector Processing

The multirate eigenvector technique is simply incorporated into the MUSIC algorithm of Schmidt [4].
As the transformed beamspace eigenvectors, We;, ¢ > K, are orthogonal to the element-space manifold

vectors corresponding to a signal arrival angle, an(ue), £ < K, the following condition holds
Ze; = DFM {We;} L DFM {an(ue)} > K, k<K (21)

Assuming that the filter is ideal with a cutoff at the spatial location u = w/D, it is easily observed that

the in-band signal nulls are preserved through the decimation operation such that
(DFM {We; D (DF M {an(ur)}) = (Ze)” an,(Due) =0 i>K, k<K (22)

I the filter is properly designed to limit aliasing yet pass all in-band signals, Equation (22) is a reasonably

accurate approximation. Thus a suitable MUSIC null spectrum can be defined as

Ny 2 .
Nuo(p) = 3 |af,(Dp) (2&)| = afl, (D) ZE.E; Z"an, (Dp), (23)
k=K+1
where the estimated noise eigenvectors comprise E, = [éK+1 ‘g4zt ... ey, | and an,(Dp) is an
Nz-dimensional element space manifold vector, where Nz = |'-N—+1§—'—1] Due to the Vandermonde

structure of ay,(Dp), the spectral search for the estimation of the DOA angles can be converted
to the rooting of polynomial a la Root-MUSIC. The true angles, Oy, are then computed from Z; via
O = sin™!(arg{%})/27dD), k < K. The resulting algorithm is summarized below. Note that the
Root-MUSIC algorithm employing the deconvolved version of Z, Z' = G-1DF M { W}, is defined in

a similar way where Z’ and Nz are substituted for Z and Nz, respectively.
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Summary of Root-MUSIC Application Algorithm

1. form the Nz x N, decimated-filtered-modulated beamforming matrix a-priori: Z = DF M {W }
2. EVD of R, = TM_ y(m)yf(m)/M, where y(m) = WHx(m) m=1,... M.
3. estimate number of sources, K, and place Ny-K “smallest” eigenvectors as columns of E,

4. with pr = X5 P(Nz — k+1¢,i+ 1), k=0,1,...,Nz-1, where P = Z Enﬁlf Z¥ . and construct
p(z) = Po+piz + oo+ Pvg12 2T A+ Pl 4N
5. toot p(z), select K signal roots: O = sin~Y(arg{2x}\/27dD) k=1,2,... K

Comparing the above prescription to that delineated in [7}], the Nz x N transformation Z replaceés
an N, X N, matrix Q. The only disadvantage is a slight increase in computation as the polynomial to be
rooted is slightly higher in order. Hox}vever, the dimension Nz can be selected to be only slightly larger
than N, if the deconvolution operation, ¢!, is incorporated. The advantages of using the Z approach
over that of Q are robustness to the computational accuracy of the rooting algorithm (due to the increase
in angular separation between signal roots) and removal of the over-restrictive structural requirements of
the type of beamformer employed. In addition, the condition number of Q is astronomical, between 10°
and 10% for the array parameters employed in generating Figure 1 while Z is extremely well-conditioned.

The accuracy of the Z and Z’ transformations was assessed by observing the signal root locations when
the ideal sample covariance is decomposed for use in the Root-MUSIC algorithm. The parameters of the
array, beamformer, and decimator are those presented earlier in the example of Figures 2-6. The resulting
root locations are shown in Figure 7 and the actual signal root locations for the two transformation types
are included in the figure. The extremely accurate signal-root placement associated with the use of Z
suggests'that the orthogonality criterion Ze; L an,(Dur),? > K, k < K, is valid. Also note that the
effects of the filter can be removed via deconvolution without appreciably affecting the performance of
the algorithm as indicated by the locations of the roots associated with the use of Z'.

To visualize the removal of the passband ripple as induced by the filter when deconvolution is em-
ployed, an example involving an FIR filter designed via the Parks-McClellan [12] algorithm with a “large”

passband ripple was analyzed. In addition, to verify the validity of the general multirate procedure, an
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N = 90 sensor array with V, = 6 beams was used in a scenario involving decimation by a non-integer
fraction D = 11.25 = 45/4 which is less than the maximum allowable value of Do = N/Ny = 15..
The filter was designed to be of length 270; note that the filtering is accomplished at the output of the
interpolator stage (D; = 4). .The sub-maximal decimation factor allowed for a wide filter transition
band, (1/4)(5/N)x < u < (1/4)(11/N)=, which, combined with a frequency band weighting favoring

a high stopband attenuation, resulted in a 67dB stopband attenuation with a 1.8dB passband ripple.
Plots of the spatial responses of the filter (dashed line) and interpolated beamformers (solid lines) are
presented in Figure 8. The beamforming weight vectors were interpolated, by a factor of 4, to allow a
visual comparison with the filter response curve.

Figure 9 shows the response of the N, = 6 transformed, filtered, and decimated beamforming vectors
along with the spectrum of the decimated filter. Note that the decimated filter magnitude spectrum
(dashed curve) appears to follow the shape of the beam peaks.

The spectral MUSIC algorithm was employed with an ideal noise-only beamspace covariance matrix to
compare the effects of using Z or Z’. As this situation is effected using E,.Ef = I, the MUSIC spectrum
characterizes the imparted distortion to a white noise input spectrum by the inclusion éf filtering or
filtering followed by deconvolution. Figure 10 shows the MUSIC spatial spectra for a poise-only input
employing the Z and Z' techniques. The results show that the deconvolution operation was effective
in removing the filter shape from the spectrum leaving only a slight ripple that is representative of the
finite spatial window associated with the beamformer. Again, the deviation at the edges of the spatial
spectrum from the anticipated constant level is expected: the beamforming sector does not extend to the

edge of the band at p = w/D.

D. TLS-ESPRIT Incorporating Multirate Eigenvector Processing

As w}th a previous beamspace Root-MUSIC algorithm [7], the beamspace ESPRIT formulation of
Xu, et.a:l. (8] requires a rather restrictive specification on the form of the beamforming vectors. As we
will see in this section, the ULA geometry allows an ESPRIT application of the transformed-decimated
beamspace eigenvector approach of section B. |

Given the Np-K transformed and decimated noise eigenvectors, define an Nz x ([Nz — M) + K)
matrix Ez, whose columns form a subspace that is orthogonal to that formed from the vectors Ze;,

i > K. An efficient means of computing Ez, is by way of a QR decomposition of ZE,. Note that the
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standard ESPRIT approach employs a matrix whose K columns span an estimate of the signal subspace;
here we have a set of vectors in Ez, whose span encompasses the (decimated element-space) subspace,

since Nz > N,. Assuming aliasing effects to be negligible, we have
span { an,(Dur), k=1,...,K} C range{Ez,}. (24)

Although beamspace signal eigenvectors are not transformable to their element space counterparts,
there is an alternative means of finding a set of vectors that are related to the beamspace signal eigenvec-
tors and also span the orthogonal subspace of span {Ze;,i = K +1,..., Ny}. The NzxN, matrix trans-
formation Z has full column rank so that the orthogonal subspace of span {Ze;,7 = K +1,..., Ny} is
expressible as a collection of Nz — N, spanning vectors which are orthogonal to the columns of Z as well
as K vectors lying in the column space of Z. A permissable set of vectors which span the orthogonal

subspace are the columns of
Eg, = [Z(ZHZ)“‘elf L Z(ZFT) ek Byt ngz_Nb] , (25)

where { By - B NZ"Nb} is a set of vectors that span the subspace orthogonal to the column space of
Z. Notice that the set of vectors in (25) are not orthogonal but still are adequate for use in ESPRIT.
In addition to the computational savings in avoiding a QR-decomposition, construction of Ez, according
to (25) also allows one to derive the theoretical angle estimation performance using available asymptotic
expressions for the beamspace eigenvector statistics as we shall see in Section 4.

We will return to the “over-specification” issue of the decimated signal subspace in this section and
show that judicious beamforming and filter design alloWs for proper operation of a suitably defined
ESPRIT algorithm. Assuming that the beamforming and filtering operations produce little aliasing effects
so that Eq;ation (24) is a reasonably accurate approximation, we may define a TLS-ESPRIT procedure
to estimate the directions of the K signal arrivals based upon the Vandermonde form of an,(-). The

algorithm is summarized as follows.

Summary of TLS-ESPRIT Application Algorithm

1. form Nz x N, decimated-filtered-modulated beamforming matrix a priori: Z = DF M {W}.

Form a set of vectors, 3;, ¢ = 1,..., Nz — Ny, that span a subspace orthogonal to range{ Z }.
2. EVDof R, = TM_ y(m)y#(m)/M, where y(m) = WHx(m), m =1,..., M.
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3. estimate number of sources, K, and form the matrix Ez, composed of vectors which span the :

estimated decimated signal subspace: Ez, = [Z(ZHZ)‘lel L TZ(ZRZ)er 1Byt B, | -

4. form (Nz—1) x 2(NZ—N1,+K') matrix Exy = [El IEQ] where E; and E, are the first and last
Nz-1 rows of Ez,, and compute the Q(NZ-—Nb-}-IA() x 2Nz—Ny+K) EVD EZ E,, = ESEH
}?11 13312 ]

5. partition E into (NZ—N;,-}-K) X (NZ—NI,-{—K) submatrices: E = [ 5B
21 Koo

6. compute the (NZ—-NZ,—}-K) X (NZ—N;,-’;-IA() EVD —E12E'21 = T®T!

7. for those K nearly unit-magnitude eigenvalues A; = ®;, estimate the corresponding signal arrival

directions as 0 = sin~Y(angle{\;})\/27dD)

Location of Extraneous Roots Created by Filtering

A major concern is that the extra column dimension of Ez, over the K-dimensional signal subspace will
result in the declaration of ambiguous signals. First of all, note that we’ve already at this point estimated
the number of signal arrivals. Here, an argument is presented that suggests that the extraneous roots
will not lie near the unit circle. This claim is also verified via a simulation example presented in Section
4.

First, note that in the case of ideal decimation where the filter exhibits a perfect low-pass nature,
Equation (24) applies. From the summary above, recall that the k’th diagonal element of @ has unit
magnitude, P = ¢iDex . Now consider the inclusion of a linear filter in the decimation operation. The
aliasing effects caused by decimation will result in an ESPRIT signal eigenvalue that will not have a unit
magnitude eharacteristic, even if the ideal beamspace covariance maﬁrix is available. However, a judicious
filter and beamformer design will result in an approximate unit-magnitude eigenvalue characteristic.

In addition to ESPRIT eigenvalues directly corresponding to signals, assume that there is an extra-

neous unit magnitude eigenvalue, A,, i.e.,
I'Ez, — LMT2Ez = 0.

This suggests that, in addition to the Vandermonde components arising from the true signals, a Vander-

monde vector corresponding to the angle Dy, also lies in the decimated signal subspace. Equivalently,




x

this implies a]P\I,Z(D,u,) is orthogonal to the range of ZEz,, so that
afl, (D) [ZE.E¥Z7] ay,(Dp.) = 0.

Thus the spectrum of every transformed and decimated beamspace noise eigenvector exhibits a null at the
spatial location Dy.. By design, there are no common in-band beamformer nulls and the filter response
is also non-zero across the spatial sector of interest so that A. must be an ESPRIT eigenvalue associated
with a signal arrival.

Refer to Figure 6 where a Hamming-weighted LPF was employed as the decimation filter applied
to noise eigenvectors generated from an N, = 8 spatial DFT beamformer. The filter has an associated
spatial response that is relatively flat across the subband and there are no common in-band nulls in the
set of beamforming vectors. Note that the only nulls in the MUSIC null spectrum correspond to signal
arrival angles. The behavior at the edges of the band is expected from the presence of a root near 7 at a
radius of 0.9 as shown in Figure 7. As a result of the relationship between the ESPRIT eigenvalues and
the roots generated from Root-MUSIC, it is anticipated that an extraneous ESPRIT eigenvalue will lie
in the complex plane near the unit circle at = and that all other non-signal eigenvalues will be sﬁfﬁciently
displaced from the unit circle. This is acceptable since these eigenvalues are discarded anyway as a result
of previous discussion. In summary, an ESPRIT eigenvalue with a nearly unit magnitude suggests the
presence of a signal at an associated spatial angle as long as the filter and beamforming vectors are

judiciously designed.

4. Theoretical Performance Analysis

As noted‘ in Section 2, the use of conjugate centro-symmetric beamforming architectures in conjunction
with uniformly-spaced linear arrays with phase referencing at the array center results in a purely real-
valued b?amspace manifold. The real-valued property of the manifold allows one to decompose only the
real part; of the sample covariance matrix to determine the signal or noise subspaces as noted in [7, 9]. In
addition to the obvious computational advantages of a real-valued decomposition, a performance benefit
is realized through the decorrelation of correlated signals as taking the real part of the beamspace samplé
covariance matrix is equivalent to applying a single forward/backward average in element-space prior to
beamforming [7, 9]. In uncorrelated signal environments, the real and complex-valued procedures result in

similar performances in terms of estimation variance; however, the bias is, in general, smaller with the use
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of real covariance processing. As a result of these advantages as well as the applicability of either approach
with regard to the Root-MUSIC and ESPRIT based procedures incorporating eigenvector decimatiori,
we derive the theoretical performance of the two algorithmic approaches for the case of real-covariance
processing. Extension for the case of complex processing is readily determined.

Define Ae; = &; — e;, it = 1,..., K, as the error in the i’th eigenvector due to the use of a sample
estimate of the covariance matrix where &; and e; are the i’th eigenvectors obtained from the beamspace
sample covariance matrix and the ideal covariance, respectively, under some common uniqueness criterion.
The distribution of Ae; was shown to be asymptotically Gaussian with zero mean and covariance [9]

Ny N

Ttk
E{MAerpel} = 3 (Ak_Am)&_An)emef, kl=1,..,K (26)

m=1 n=1

ik ngt
1 .
Ponee = 3 {)\k/\e5mz5nk + Medmbmnbie + (eZRrer)(efRren)(1 — 6me)(1 — 6kn)

+ (eZRyeq)(ef Rres)(1 ~ 8mn)(1 = bke) | (27)

Il

R; Im{R}=BIm{Ps}B”. (28)

To allow for the use of previous MUSIC [6, 9] and ESPRIT [15] performance analyses, it is assumed
that the aliasing effects are negligible. As noted earlier, the assumption is valid when the decimation
operation includes a judiciously designed filter or the use of front-end beamformers with very low out-
of-band responses. The condition may be verified by observing the placement of the (signal) MUSIC
roots/ESPRIT eigenvalues in the case of a known ideal covariance. Once again, the Root-MUSIC sig-
nal locations for the motivational example shown in Figure 7 confirm the validity of the assumption,

particularly in the case where deconvolution is not employed.

A. Performance Analysis of Root-MUSIC Formulation

The asymptotic variance of the Root-MUSIC estimator is readily obtained using available results
when aésuming orthogonality between the transformed-filtered-decimated beamspace noise eigenvectors
and the decimated element-space manifold, i.e., Ze; L an,(6r) k=1,.,K ¢ =K+1,...,N.
By observing that the spectral and Root-MUSIC formulations offer the same asymptotic performance in
terms of the variance as shown in [6], the expression for the spectral MUSIC estimate variance employing

real-covariance processing in [9] can be easily amended to the case at hand. Specifically, the null spectrum




can be written as

Ny
Nuu(0) = aﬁz(ﬂ){ > (Zéi)(Zéi)H} an,(0)

=K+1

= afy (0)Z {IN,, - ;l é; ‘T} ZH ap, (9). (29)

Observing the results in [9], the asymptotic variance of the Root-MUSIC estimator is easily shown to be

expressed as

1

K
A Ak0p TrH
AVarlli} = 303 T (0,)ZE,EIZFay, (9)5; (% — 02)? e 2", (6)

i=1,..,K,  (30)

where M is the number of snapshots, an,(6;) is the derivative of ay,(#) with respect to § evaluated at
6 = 6;,and (Mg, ex), k=1,...,K, are the signal eigenvalues and corresponding eigenvectors of the real part

of the ideal beamspace covariance matrix.

B. Performance Analysis ovf‘ESPRIT Formulation

The alternate expression in Equation (25) for the decimated signal subspace involving the transformed
beamspace signal eigenvectors and a non-random basis for the orthogonal subspace of the columns of Z
allows for an asymptotic analysis of the ESPRIT formulation. The error in the matrix whose columns

form a basis for the decimated signal subspace, AEz,, is simply
AEz, = |Z(Z7Z) " Aey} .. i Z(ZFZ)  Nek i Onyx(vy-y) | - (31)

In this form, the error is only a function of the error in the eigenvectors associated with signal eigenvalues
of the beamspace covariance. This allows for an asymptotic variance analysis similar to that found in
[15]. The analysis in [15] is valid for the Least-Squares (LS) and Total Least-Squares (TLS) versions of
ESPRIT. ’i"he variance analysis, for real beamspace covariance processing, is included in Appendix A.

The asymptotic variance associated with the 2’th angle estimate in the case of uncorrelated sources is

A 9 a2\ 2
Y2 G- __Inlk T
E{(A6)} [27rdD cos 9;} 2M [ - (A — (A — 02)2 'Im{ k)E a,}

+ f} 3 —-—/\k——)\—l—l——(lm{m(Z)eTa-}z — Im {z:(£)e] or;} Im { ~(k)eTa-}) (32)
£ L ()\k—/\e)z i PRS2 m 1 e G p IM T4 Qs s
£k
o = (272)727 [0, - Z T (Ez ) 4, (33)
E, = [eKHE...fer], (34)
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where t denotes pseudoinverse, x; and q; are the right and left eigenvectors associated with the 7’th %
(signal) eigenvalue of F = (I Ejz,)'T:Ez,, and I'; and I'; are (N7 — 1) x Nz matrices that select the
first and last Nz — 1 rows of a matrix with Nz rows, respectively. Note that the expressions contained
in Appendix A may be applied to the more general case of correlated signals; only the result for the

uncorrelated signal scenario is summarized here due to its simpler form.

5. Computer Simulations

A number of computer simulations were conducted to assess the validity of the noise eigenvector
transformation/decimation techniques with regard to angle estimation. Specifically, the theoretical and
¢mpirical standard deviations of the Root-MUSIC and TLS-ESPRIT estimators were compared in a
variety of source/processing scenarios. Also, the performance of the decimation approach was compared
to the stochastic Cramer-Rao Lower Bound [4, 16].

Common to all experiments, 600 trials were empioyed to derive the empirical results and only M = 16
snapshots were used to estimate the beamspace covariance matrix. Although this situation can hardly
be classified as asymptotic in the number of snapshots, the theoretical performance curves were observed
to compare rather closely to the derived experimental results.

The empirical standard deviations were computed in a variety of scenarios involVing one or two
uncorrelated, cIosely—spaced signals. A MUSIC root or ESPRIT eigenvalue was classified as arising from
a signal if the root/eigenvalue location was within a 0.15 radial distance from the unit circle and lying in
an angular (decimated) region encompassing 85% of the unit circle, i.e., in the region [—0.857, 0.857]. All
trial runs, including those unresolved situations where only one signal was observed in the neighborhood
of a signal pair, were used to compute the location statistics.

Experiment 1: The simulation parameters of this experiment associated with the array, beamformer,
and dechrnaJtion components are similar to those outlined in the example of Section 3, namely, an N =
128 elément ULA with half-wavelength spacing was operated on with an iV, = 8 channel spatial DFT
beamformer. The spatial window was centered at broadside so that the spatial region —N,/N < sin 0 <
N,/N was probed. An L = 128 length Hamming-weighted low-pass filter was employed in the decimatién
procedure configured for maximal decimation, i.e., D = N/Nj.

Two half-Rayleigh spaced signals of equal power were embedded in additive complex Gaussian noise

so that a sensor level 10 dB SNR was achieved. To assess the effects of signal placement within the spatial
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beamforming sector on the estimation variance, the center of the signal set was shifted from baseband
(sinf = 0) to the edge of the window (sind = 8/N). The empirical standard deviation of the two Root-
MUSIC angle estimators, i.e., those formed using the matrix Z as well as the deconvolved version YA
were computed. Note that the dimension of Z was 16 x 8 while Z’ was formed by adding one additional
(remainder) row to the required (Ny + 1) x N, matrix to form a 10 x 8 eigenvector transformation. The
results are shown, along with the theoretical prediction as obtained from Equation (30) and the stochastic
Cramer-Rao Lower bound [4, 16] in Figure 11.

Several comments relating to Figure 11 are in order. Although the number of snapshots is relatively
small, the theoretical performance curve is still a reasonably accurate representation of the empirically
derived result. The rippled nature of the variance curves is due to the limited number of beams that are
implemented in the approach. This characteristic is the result of a varying spatial power gain as similar
to that depicted in Figure 10. As noted in [7, 9], the degradation in performance near the band edge
éuggests the need for sub-band overlap if one is interested in the detection and localization of all signals
across the visible spatial spectrum. The variance of the estimate at the extreme right edge is not shown
as the experimental and theoretical curves exhibit an exponential rise. In the central region of the band,
however, the eigenvector transformation-decimation technique is seen to produce an accurate estimate
in this Root-MUSIC formulation as evidenced by the closeness of the results to thé Crainer-Ra,o Bound.
Note that the curves related to the theoretical variance associated with the use of Z and the Cramer-Rao
Bound overlap.

Experiment 2: Employing the same decimation transformations as in Experiment 1, the variance of
the Root-MUSIC estimators were observed for a varying SNR for two signals located at 10.6° and 11.5°,
as used in the motivational example of Figures 2 through 7. The empirical and theoretical standard
deviations were computed and are depicted in Figure 12. .

Note':‘f that the theoretically derived curve, defined for the 16 x 8 transformation Z, closely tracks
the corresponding empirical counterpart at moderate to high SNR values. The deviation at the lower
SNR values is attributed to the signal-merging effects in the resolution threshold regime of operation as
noted in [9]. Although the stochastic Cramer-Rao Bound is based upon the statistics of the available
beamspace data and does not assume the presence of any sub-optimal techniques such as decimation,

the Root-MUSIC procedure incorporating decimation is readily observed to essentially offer the optimum
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performance associated with un-biased estimators. Also, the similarity between the empirical variance ¢
curves corresponding to the competing approaches (Z versus Z’) suggests that the computational saving;
associated with the smaller Root-MUSIC polynomial via the use of Z' is not obtained at the expense
of a higher estimation variance. In fact, simulations have shown that the estimation variance is usually
smaller for decimation architectures incorporating deconvolution. However, the imperfect deconvolution
usually results in an induced estimate bias as will be observed in Experiment 3.

Experiment 3: The main purpose of this experiment is to show that the filtering operation in the
decimator may not be warranted in certain situations. A single signal was positioned at 1° and the
bias performance was studied for the use of two beamforming architectures. In one situation, Ny = 6
DFT beams were formed from an N = 36 element ULA. The beamspace to element-space eigenvector
transformation was configured for maximal decimation, D = 6, with and without the use of a Parks-
McClellan equiripple FIR filter exhibiting approximately 50 dB attenuation in the stopband region. In the
other beamforming scenario, a practical application of N, = 6 Taylor weighted beams [17], exhibiting a
50 dB sidelobe level, were spaced at the half-power points and employed in a similar scheme involving the
use/absence of additional filtering in the decimation operation. Note that the latter approach will produce
an angle estimate exhibiting a substandard resolution ability due to the attendant wider maiqlobes relative
to DFT beams. However, this methodology is often required in practice to reduce the deleterious effects
of sidelobe clutter, i.e., the masking of signals within a given beam by a strong clutter signal in the
sidelobes of the beam. The beam spacing/aperture weighting associated with this case results in no
common spatial nulls amongst the beam set so that the application of past beamspace MUSIC [7] and
ESPRIT (8] formulations is precluded.

The empirically derived mean location estimates were determined for a varying SNR for various
schemes incorporating the two beamforming architectures and al“e plotted in Figure 13. Again, the
purpose _here is not to compare the two beamforming approaches, rather, it is to observe the effects on
performance of the inclusion of a filter in the decimation operation. Also, the inclusion of a filter increases
the order of the polynomial to be rooted thereby increasing computation and creating extraneous roots.
With reference to Figure 13, note that the use of a filtering operation in the decimator with no additional

deconvolution stage results in essentially an unbiased estimator for both beamforming architectures.

As observed in the results, the Taylor-based sensor weighting provides sufficient attenuation so that a
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negligible aliasing effect is incurred, i.e., the induced estimation bias is small. However, with the filter
incorporated into the decimation operation, the imperfect deconvolution stage imparts a small bias of
—0.02°. Thus the filtering operation is unnecessary as evidenced in the bias plot and a smaller standard
deviation should be realized on account of the smaller dimension of the resulting Root-MUSIC polynomial.

Essentially the opposite is observed for the case of unweighted spatial DFT beamforming. Here the
sidelobe levels are large so that aliasing effects are present as evidenced by the top curve indicating a
0.05° bias in the unfiltered mode of operation. With filtering as well as a deconvolution stage included
in the decimation operation, a smaller bias of 0.025° is realized. The need for filtering is evident from
observing the required dimension of the transformation Z'. Comparing the necessary row dimension
of the decimation transformation incorporating deconvolution, Z’, for the unweighted DFT and Taylor
beamformers, the required sizes were 10 x 6 and 7 X 6, respectively. These required sizes were determined
according to the criteria discussed in Section 3.

Experiment 4: In this experiment, we test the validity of the TLS-ESPRIT formulation of the noise
eigenvector transformation-decimation procedure and verify the theoretical variance expression of Section
4i, Equation (32). The source/processing parameters are the same as those of Experiment 2.

The theoretical and empirical standard deviation were computed over a varying SNR and the results
are depicted in Figure 14. The results show that the performance predictor of Section 4 accurately
tracks the empirical results. Also, the variance associated with the decimation architecture incorporating
a filter deconvolution stage outperforms the “undeconvolved” counterpart. To verify the conjecture
that the quiescent locations of the extraneous eigenvalues are sufficiently away from the unit circle, the
ESPRIT eigenvalues were calculated in the absence of noise and plotted in Figure 15. Note that only the
eigenvalues. interior to the unit circle are plotted as the closest exterior eigenvalue is located at a radius
of 5.4 (associated with the Z transformation). Referring to Figur(;, 15, in the absence of deconvolution,
two “signa. ” eigenvalues appear at the correct location and the eigenvalue closest to the unit circle of the
remaining is located at a radius of 0.62 and an angle very near 7. When deconvolution is incorporated,
the closest non-signal eigenvalue is located at 7 at a radius of 0.09. However, the signal eigenvalues

exhibit a small bias at the perceived (translated) angular locations of 10.587° and 11.465°.

6. Conclusions/Remarks

We have developed a novel approach to angle estimation in the beamspace domain. The approach
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offers a computationally attractive and non-restrictive procedure relative to the type of beamformer -
#*

employed that is easily implemented in the MUSIC and ESPRIT algorithms. Theoretical expressions
for the estimate variance were obtained in an asymptotical analysis and confirmed in a variety of sim-
ulations. Although the technique was applied to the uniform linear array geometry, an extension to a

two-dimensional array to provide simultaneous azimuth/elevation angle estimates is evident and currently

under investigation.

Appendix: Asymptotic Variance of ESPRIT Formulation

Given that z; is a (signal) unit-magnitude eigenvalue of the matrix
F = (I1Ez){([:Ez,) = [(T:Ez,)" (T1Ez,))'(T:Ez.)" (T2Ez,), (35)
with x; and q; the corresponding right and left eigenvectors, Rao and Hari [15] showed that, té o(M™1),
Az = qf AFx,. (36)
The error in F, AF, due to the finite sample estir_natipn of the beamspace covariance matrix is
AF = (I‘IEZ,)Tv(I‘ZAEZ,) — (T1Ez,)' (T1AEg,) F, (37)

which is applicable to either the Least Squares (LS) or Total Least Squares (TLS) versions of ESPRIT.

Substituting the form of AEz, in Equation (31) into Equation (36), one obtains

K K
E{ 1Az} " {ZZ z;(k) 27 () E{Aes Aef}] o; (38)

EPE(ar) = af [R5 a)n( lae ae) | o )

where o and the signal eigenvector error statistics were stated in Equations (33) and (26), respectively.

Following [15], these quantities are then substituted into

£L(A0:)7) = [%de\cosoir [5{ [Azif*} — Re{2(22‘)25{ (m,-)?}}]. (40)

to yield the desired theoretical asymptotic estimation variance.

In the case of uncorrelated signals, the asymptotic error in the signal subspace eigenvectors become

Okt AkAm (I —=6bke)  ArAe T
oM mZ-: Or = M) m8m = 7O D — AR Tk

m#k

(41)

E{Aer Ael} =
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After substituting and simplifying (the algebraic details are omitted here due to space limitations), the

asymptotic variance of the ESPRIT angle estimate for uncorrelated sources reduces to

2

5 A P [& a2\
E{(A6:)*} = [Qﬂ‘chosGJ o [Z —'—(Ak—;g)z |t { i (k) ET ox: }

k=1

K K 2
+ 3> E)\—kf\—ii-j\-e—)—i (Im{xi(f)efcxi} - Im{xi(f)egai} Im {m;(k)efai}> ,  (42)

k=1 =1
s

where E, is an N, x (N, — K) matrix composed of the noise eigenvectors associated with the ideal

beamspace covariance.
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3 Multidimensional Multirate DOA Estimation in Beamspace

TThe 1D multirate approach developed in the previous section is extended to the more general
case of 2D angle estimation with a uniform rectangular array (URA) of sensors. Multidimen-
sional multirate processing is employed to ultimately yield a small order polynomial in two
variables. Again, due to the linearity of the 2D filtering and 2D decimation operations, the
actual algorithm merely premultiplies each beam space noise eigenvector by a precomputed
transformation matrix. To avoid the spectral search, despite the fact that the fundamental
theorem of algebra does not hold in 2D, we propose taking the orthogonal complement of the
resulting transformed noise eigenvectors and applying a novel version of ESPRIT facilitating
closed-form 2D angle estimation. Simulations demonstrating the efficacy of the approach are
presented along with theoretical performance analysis.

3.1 Introduction

3.2 Array Geometry

3.3 Beamforming

3.4 Eigenanalysis

3.5 TLS-ESPRIT

3.6 Bandlimiting the Response

3.7 Further Reductions in Complexity

3.8 Algorithm Summary

3.9 Performance Analysis

3.10 Computer Simulations

3.11 Conclusions

3.12 . Appendix: Characterizing the Asymptotic Error

3.13 References

3.14 Figures

66




1 Introduction

The eigenstructure based Spectral Music Algorithm of Schmidt [1] has become the standard for
estimating the Direction of Arrival (DOA) of narrowband plane waves impinging upon a sensor array.
Unfortunately the required spectral search is a burdensome task for 1D arrays and computationally
pohibitive for 2D arrays. Two well developed methods for reducing this complexity are beamforming
techniques [5] and Esprit [4] [6]. Beam space methods reduce the complexity from the number of
array sensor elements to the number of beams used to probe a given sector or subband. Furthermore,
in the case of a uniform linear array (ULA), beam space techniques yield an implementation (Beam
space Root-Music) that allows one to solve for the arrival angles by rooting a small order polynomial.
Alternatively, Esprit places a minor restriction on the array geometery and then determines the
arrival angles from the eigenvalues of a rotation matrix.

For maximum computational savings, a beam space formulation of Esprit has been de-
sired, but previous attempts have resulted in restrictive requirements on the beamformer. Recently
Zoltowski and Kautz [2] [3] developed a beam space formulation of Esprit for 1D ULA’s that works
with any type of front end beamformer. The new approach is based on the observation that beam
space noise eigenvectors may be transformed to vectors in the element space noise subspace, which
are bandpass and exhibit nulls at the location of inband sources. This facilitates multirate pro-
cessing involving modulation to baseband, filtering, and decimation. From the linearity of these
operations, the actual algorithm need only need premultiply each beam space noise eigenvector by
a simple transformation matrix that is computed apriori. The resulting “telescoped” noise eigen-
vectors yield a small dimensional element space noise subspace which is used to obtain a small'
dimensional signal subspace where the Esprit algorthm can be applied.

With the combined advantages of beam space processing and Esprit, multidimensional DOA
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estimation becomes computationally feasible. This paper extends the beam space approach to the
more general case of 2D angle estimation with a uniform rectangular array (URA). Multidimensional
multirate processing is employed to ultimately yield a small dimensional signal subspace. Again,
due to the linearity of the 2D filtering and 2D decimation operations, a simple transformation
matrix is computed apriori so that the actual algorithm need only premultiply each beam space
noise eigenvector by this matrix.

Directly applying the 1D Esprit algorithm to the URA would require two separate appli-
cations of Esprit, one for each direction. This estimates the two direction angles independently
and leads to the problem of how they can be paired. Alternatively, a novel version of Esprit is
developed that estimates the two directions .frorn a singal eigenvalue eigenvector pair. Hence they
are automatically coupled.

The paper is organized as follows. The a.fray geometry and data model are described in
Section 2 and the beamforming process is briefly reviewed in Section 3. The eigen characteristics
of the system are developed in Section 4 and multirate processing techniques are applied to the
eigenvectors in Section 5. The applicability of the Esprit algorithm is verified in Section 6. Section
7 addresses the issue of bandlimiting the beamformer response and Section 8 describes some further
reductions in computational complexity. Finally in Section 9 the proposed 2D Multirate Esprit
Algoritﬁm is presented. A theoretical performance analysis is presented in Section 10 and computer
simqlations are examined in Section 11. A few concluding remarks are included as Section 12.
The notation used in this paper indicates vectors by lower case bold letters and matrices by upper
case bold letters. The Hermitian, conjugate transpose, will be denoted by a superscript H and the

conjugate will be denoted by a superscript *.
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2 Array Geometry

The array geometry considered in this paper is a rectangular array comprised of M elements in the
% direction and N elements in the § direction uniformly spaced by A, = A, = A, /2 (see Figure 1).

To specify the source directions, define Z, g, and 2 to be unit vectors along the coordinate axes and

Figure 1: Array Geometry

g, 4y, ¢, to be the angles between a vector and the respective coordinate axis. If p; is a unit vector
normal to a plane wave emanating from the i** source, then p; = cos(az;)E + cos(ay, )j + cos(ay;)Z.
These direction cosines are converted to azimuth, 8, and elevation, ¢, angles as cos a;; = cos §; siﬁ b;
and cos a,; = sin f;sin ¢; (see Figure 2).

Define an arbitrary reference point to be r 2 (Zr,yr,0) = (ke Az, 1:Ay,0) and let 7%, be a
vector from r to the k, [** sensor. Then 7, = (k — k) A2+ (I — I+) Ayy. Assuming that the signals

lth

are narrowband with common center frequency w,, the response of the k, I** sensor to the ¢** source

at tirﬁe t can be written as

le:,l(t) _ S,;(t)ejw°(%1?k'l.ﬁ‘) = Si(t)ej%%[(k—kr)Axcos@,-sin¢i+(l—-lr)Aysina,'sind;,-]. (1)

Because sin(4) = sin(r — ¢), a signal with direction angles (8, ¢) and a signal with direction angles
(8, ™ — #) will have the same array response. This produces a directional ambiguity that is inherent
to uniform rectangular arrays (URA). To see how this ambiguity manifests itself notice that if ¢
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Figure 2: Angle Definitions

corresponds to a direction from above the array, ¢ € [0,%], then 7 — ¢ corresponds to a direction
frorﬁ below the array, 7 — ¢ € [%,w]. Therefore, the direction of arrival (DOA) of a signal can only
be resolved to two possibilities, one from above the array and one from below the array. This is a
significant reduction from the directional ambiguity of a uniform linear array (ULA) which consists
of a cone encircling the array. Since the sensor array will generally be mounted on a platform or the
body of a plane, the ambiguity can be removed by assuming that all signals impinge from above
the array. To facilitate this assumption, the angles are restricted to the ranges § € [—m, ] and

¢ € [0,%], and the spatial frequency variables 4 and v are defined as

p = EA cosfsing = wcosfsing € [, 7] (
o 2)
v = %\’:'Ay sinfsing = nsinfsing € [-m,7].

The azimuth and elevation angles can be recovered from the spatial frequencies by noticing that

6 = arctan (%) and ¢ = arcsin (1+/p2 + v2). Where the full four quadrant inverse tangent is used.
“ T g

With these spatial frequency variables, equation (1) becomes

Xlil(t) = Si(t)eﬁ[(k‘kr)“i+(1‘1r)"=‘] - si(t)e—J(krui-Hrui)eJ(kui+{ui). (3)

For notational convenience X(m) will be used to denote the matrix obtained by sampling
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the array at time t,, and X'(m) will denote the array response due to the :** signal at time t,,

where m is the snapshot index. Using equation (3) X*(m) is given by

1 e e eI(N=1)v;
. eIt eHmitvi) ... elpi+(N=1)v]
X’(m) — Si(tm)e—y(kru&lrw) ) (4)
I M=Vui  [(M=Dpitwi] . @l (M-1)pi+(N-1)vi]

The term e~?(kr#i+ir%) i3 an arbitrary phase common to all sensors, that is determined by the
reference point. Choosing the origin as reference point (k. = [, = 0), yields an element space
array manifold, i.e. the array response viewed as a function of p and v, of the form Ayn(p,v) =

ap(p)ak(v). Where ap(p) and an(v) are defined to be the one dimensional uniform linear array

(ULA) manifold vectors.

T
) 2 [1,e%, ..., 0

an(v) [l, e’ ..., eJ(N—l)u]T

The m®* snapshot of the array due to all d impinging signals can now be written as
X(m) = ) si(m)Anmn(pi,vi) + N(m) (6)

Where Ny i(m) is measurement noise associated with the m®* snapshot of the k, I sensor, and
N(m) isﬁthe M x N noise matrix.

) It is useful to view the array response as an M N x 1 vector as well as an M x N matrix.
To facilitate conversions between these forms, consider the operator vec that maps an M x N
matrix to an M N x 1 vector by concatenating its columns, and the inverse operator, mat, that -
maps an MN x 1 vector to an M X N matrix by using M consecutive elements of the vector for

each column of the resulting matrix. If Q is an arbitrary matrix with columns denoted qi, then

T
vec(Q) = [qflr, af, ..., qk | .If qis an arbitrary vector and q(k : [) denotes its k** through I**
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Table 1: Properties

P1: vN @xy = vec(Xpvk)

P2: xMV%} = mat(vy ® Xum)
P3: vec(ADB) = (BT ® A)vec(D)
P4: (A®B)T = (AT®BT)

P5: (A®B)(C®D) = (AC)® (BD)

elements, then mat(q) = [q(0: M —1) | ... | q(MN — M : MN —1)]. The following example

illustrates these operators:

135 ;
vec = [1,2,3,4,5,6]
2 4 6
135
mat ([1,2, 3, 4, 5, 6,17) =
24 6

Some important properties of vec, mat, and the Kronecker product, ®, are listed in Table 1 (see

also [9]). Most notably, Property 1 allows the array response to be written in vector form as

d-1
x(m) £ vec(X(m)) = 3 si(m)amn (i, i) +n(m) = Ayns(m) + n(m). (1)
=0
Where s(m) is the vector of signal amplitudes, apn (g, v) is the array manifold in vector form, and

the columns of Apy are the signal steering vectors, i.e., the array manifold evaluated at the spatial

frequencies corresponding to the signal directions.

s(m) £ [so(m), ..., sasa(m)]” ®)
aun(p,v) 2 vec(Aun(,v)) = an(v) ® an(y) 9)
Aun = [amn(po, vo) ‘| oo | apn (a1, va-1) ] (10)

The element space signal subspace is defined to be the column-space of A, S SR {Amn}, and
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the element space noise subspace is defined to be the orthogonal complement of S,. Since Ay is

MN x d, S, is a d dimensional subspace of M N dimensional space.

3 Beamforming

Now consider the class of separable two dimensional beamformers. Let W, be an arbitrary M x M,
beamforming matrix (with M, < M) for the u spatial frequency. The k™ row of Wf denoted Wfk

forms a beam for a specific frequency in the desired range. W, is defined in a similar fashion for

H

the v spatial frequency. Using wj;

in conjunction with w} a beam is generated for a specific 2D
frequency in the subband of interest. Therefore, the M, x N, beam space snapshot matrix is formed

as Y(m) = WHX(m)W7;, and the M, N, x 1 beam space snapshot vector is given by y = vec(Y).

Using Property 3 from Table 1 these can be written as

Y(m) = WEIX(m)W; = %s;(m)WfAMN(m,V,-)W; + WEN(m)W; )
i=0 11
y(m) = vee(Y(m)) = [WH@WH| Ayys(m)+ [WH @ WH| n(m).

Therefore, the beam space array manifold is described by

B(g,v) = WEHAun(p,v)W; (12)
bu,v) = [WI@ WL amn(py) = [Wan(v)] @ [Wan(u) (13)
B 2 [buo,o) | - | Blpact,va1)]- | (14)

Finaliy the beam space signal subspace, Sy, is defined to be the d dimensional subspace of My[V,
dimensional space that is spanned by the columns of B, and the M N, — d dimensional beam space
noise subspace is defined to be the orthogonal complement of S;.

At this time it should be noted that the beamformer need not be separable. This assumption

was made because the separable nature of the array structure leads directly to separable beamform-
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ers. In vector form, nonseparable beamformers modify equation (11) by replacing W, @ W, with

an arbitrary M N x M,N, matrix Wj.

4 Eigenanalysis

Using equation (7) and assuming that the measurement noise is zero mean, uncorrelated between

sensors, and has equal power o2, the MN X MN element space autocorrelation matrix is
R, = E{x(n)x(n)7} = AR, A" + oL (15)

It has been observed [4] that the eigenvectors of R, corresponding to the d largest eigenvalues form
a basis for S, and the remaining eigenvectors of R, form a basis for S;. Under the assumption of

orthonormal beams, the My Ny, x My Ny beam space autocorrelation matrix has the form
R, = [WHo@ W] ARAY (W, @ W,]+0°T = BR.B" + oL (16)

The eigenvectors of R, are also divided into two sets, the “beam space signal eigenvectors” {f; :
i = 0,...d — 1} that form a basis for Sy, and the “beam space noise eigenvectors” {f; : j =
d,...MyNy — 1} that form a basis for ;.
If the number of signals, d, is unknown it can be estimated at this time using the AIC or
MDL methods of [10]. Therefore, in all further developments, it.will be assumed that d is known.
Since the “beam space noise eigenvectors” lie in Si-, they are orthogonal to the beam space
signal: steering vectors, i.e., b¥ (u;, v;)f; = 0 foralli =0, . .. d‘—l and j =d,... M, Ny — 1. Recalling

equation (13) yields the following important result.
H
0 = b (i, ) = [(WH@WH) ayw (i, )| £ = afgn(p, i) (W, @ W)E] (17

This shows that the matrix W, ® W, maps the beam space noise eigenvectors, f;, to the element
space noise subspace, S+ [3]. However, there are only MV, — d beam space noise eigenvectors, so
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this mapping does not yield a complete basis for St.
The general Music algorithm exploits the orthogonality between the beam space noise eigen-

vectors and the signal steering vectors, by forming the beam space Music null spectrum Sg(g, v).

MyNy—1 9 MyNy—1 2
Sp(p,v) = Y b = 3 |afi(wW.EWlay(v)| (18)
j=d j=d

Where F; is defined to be the beam space noise eigenvector written in matrix form (F; = mat(f;)).
Signal directions are then estimated from values of 4 and v corresponding to nulls in Sp(g,r). Two
well established problems with this method [4] are that the array manifold must be known and

stored, and the search over a two dimensional space can be computationally prohibitive.

5 Multirate Processing of Beam Space Noise Eigenvectors

In an effort to circumvent these problems, notice that the crux of the beam space Music null
spectrum are the M x N telescoped [3] beam space noise eigenvectors G; 2 W, F,WT (5 =
d,...,MyNy — 1) and G;(p,v) = all (1)G;ay(v) is the two dimensional Discrete Space Fourier

Transform of G;. Letting F;(k,[) denote the k, (" element of F; yields

Mp—1 Np—1

Gy(m,v) = al(WWE W az(v) = S O Filk D) [alh(w)w,, wlag(v)] - (19)

k=0 [=0

T

Since w,, and w,, form a beam in the desired subband, aff(x)w,, wTax(v) is a bandpass function

of u and v for all k,I. Consequently G;(u,v) is a bandpass function of pu and v. Without loss
of generality, assume that the M, N, beams encompass the spatial subband defined by —« (MMh) <
p<T (%) and —7 (%’}) <v<rw (%’Vﬁ) and have sufficiently low out of band sidelobes. Then the
beamformer response is negligible outside this subband, i.e., Gj(u,v) = 0 for MMW < |p| <7 and
Nﬁhw < |v| < 7, so G; can be decimated by d, = AA/{: and d, = 7\% without incurring a significant
amount of aliasing. (Note: G, can always be modulated to baseband and filtered to make this

assumption valid. See section 7).
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The decimation process can be modeled mathematically as premultiplying G; by D, and -
postmultiplying by DZ where D, and D, are the M x M and Ny x N decimation matrices. For
example if M, =2 and M =6

100000
D, =

000100

Therefore the decimated telescoped beam space noise eigenvectors are given by

H; = D,G;DI (D, W,)F; (D,W,)” (M, x Ny)

(20)
h; = vec(H;) = [(D,W,)® (D W,)If; (MyN, x 1)
for j=4d,..., MyNy — 1.

It is important to note that since decimation is a linear operation it can be performed apriori
on the telescoping matrices. Furthermore, fractional sampling rate alterations can be effected by
replacing D, with D F.I;, where I, represents an interpolation matrix and F, represents filtering.
The space spanned by the decimated telescoped beam space noise eigenvectors, h;, will be referred
to as as Sj".

Since H; is M, x Ny, it has a 2D-DSFT given by H;(u,v) = afl (p)Hjay, (v) where ay, (1)

and ay,(v) are defined analogously to equation (5). By standard Multirate analysis [13] the rela-

tionship between H;(u,v) and Gj(g,v) is

dz=1dy1 tp v —2r% ‘
H(,v) = ddZZG( - d:q). (21)

Y p=0 ¢=0

Since the beamformer response is negligible outside the subband, H;(y,v) ~ d: ™ G; (i, é) for all
-7 < u,v < 7 and therefore

1 1
d:z:dy Gj(/"‘h Vi) - d:z:dy

Hj(dz,u;,dyu,-) = bH(/Li,I/i)fj = 0. (22)

This shows that the decimation process preserves the in band source nulls and increases their
separation by a factor of d, and d,. Hence, the beam space Music null spectrum (18) could be
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reformulated as

MyNy—1 MpNp—1 .
Sp(p,v) = Zd | Hi(p,v)|° = }; | aff, () Hjay, (v) | (23)

thereby reducing the computational intensity of each evaluation of Sp(x,v).

In the one dimensional case, this search can be removed by defining z = e’* and writing Sp
as a polynomial in z. Signal directions are then obtained from the roots of Sp. This procedure,
refered to as Root-Music [5], has always been theoretically possible for the two dimensional case,
but the lack of 2D rooting algorithms has precluded its use in practice. However the efficient 2D
rooting algorithm recently proposed by someone [15] has made 2D Root-Music a viable option.

It is well known that the Esprit algorithm [4] offers another alternative to the spectral search

of Music. In an effort to apply Esprit, notice that
Hj(dppi, dyvi) = ajy, (dops)Hjaky, (dyi) = apg, (dopsi, dyvi)h;. (24)
Comparing equations (22) and (24), it is seen that
agy. n, (doppi, dyvi)h; = 0 V :=0,....,d—1land j=d,...,MyN, —1. (25)

This shows that the decimated telescoped noise eigenvectors form a complete basis for a lower
dimensional element space noise subspace S;. Therefore, the orthogonal complement, Sy, is a
lower di;nensional element space signal subspace. This space will be refered to as the decimated
signa,vl_ subspace, even though it is not obtained by decimating the signal subspace.

| Before showing that S; has the Esprit structure, it is useful to summarize the preceding
results. The original array response resided in the element space signal subspace which is a d di- -
mensional subspace of M N dimensional space defined as S. = span {apyn(pi,v) 1 =0,...,d—1}.

Due to the array geometry, this space has the Esprit structure, however, the array response is an

M x N matrix (or MN x 1 vector) which can make computations unwieldy. Since the signals are
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known to be in a certain subband, a beamformer is applied that imposes a bandpass characteristic
on the array response, which can then be decimated without incurring aliasing. This reduces the
signal space to a d dimensional subspace of an M,V dimensional space and yields matrices that
are only M, x Ny. However in the beamforming process the Esprit structure is lost. This structure
can be restored by decimating and telescoping in the noise subspace, then converting back to the

orthogonal complement (see Figure 3). It is important to notice that the element space signal eigen-

Figure 3: Subspace Relations

vectors which are obtained directly from the element space correlation matrix cannot be decimated
because they are not bandlimited. The beam space signal eigenvectors are not telescoped because
this does not yield vectors in the element space signal subspace. Hence they will not have not have
the Esprit structure. However telescoping and decimating thé beam space noise eigenvectors yields

a spz;ce that is the orthogonal complement to a smaller dimensional element space signal space.

6 TLS-Esprit

It remains to show that S; does indeed have the Esprit structure. The Esprit algorithm requires
an array formed by “sensor doublets” that are separated by a constant displacment vector [4]. This
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can be accomplished by viewing the M x N, rectangular array as two overlapping My x (N, — 1)

subarrays with My(N, —2) common elements (see Figure 4a). The resulting subarray manifolds are

R Fo------- 3
| : | : : . e .
s LA T TUTTIT
| |
AT, :. le : .1 AL |: |:
! ! U S
P ; ‘LA
L] I. . o’ ] i 4
_ ________J___] L 24
(a) (b)

Figure 4: Array Partitioning

given by the first and last Ny — 1 columns of A, v, (1, v). Mathematically this can be modeled as
A, (4, v)T1 and Apgn, (1, v)T2, where Ty and Ty are the first and last Ny — 1 columns of the

N, x N identity matrix. For example, if Ny, = 3, I'; and I'; are as follows:

10 0 0
=101 Ta=11 0
00 01

The vector form of the subarray manifolds are obtained by premultiplying by the M, x M, identity
matrix and applying Property 3 of Table 1. It is easily verified that the two subarray manifolds, in

matrix and vector form, are related as follows:

AMbNb(”” U)r2 - eJVAMbNb(:u) V)Fl
(26)
J2aMbNb(ru'7 V) = eJVJlaMbNb(iuv V)'

Where J; = Ff@IMb and J, S I‘g®IMb. Therefore, the signal steering vectors for the subarrays are

related by Joangn, (dopti, dyvi) = €% Jran,n, (dopts, dyvi) for all 7 =0,...,d — 1 and consequently

J2AMbNb = JIAMbNbTU ' (27)

79




where Y, = diag{e’¥*, ..., e"¥-1}. This can be generalized to an arbitrary basis, K = Ap,n, T,
for Sy by postmultiplying both sides by any d x d nonsingular matrix T and premultiplying Y by

I; = TT-L.

JoAp,n, T = JlAMbNbTT"lTT (28)

LK = J,KU. (29)

Where ¥ = T-1Y'T. This relationship is the basis for the TLS-Esprit algorithm [4]. It shows that
the v spatial frequencies can be estimated from thé eigenvalues of the matrix that rotates the first
My(Ny — 1) rows of K into the last My(N, — 1) rows of K.

Alternatively, the array can be viewed as two overlapping (M — 1) x Ny subarrays with
(M, —2)Ny common elements (see Figure 4b). This yields subarray manifolds that are the first and
last My — 1 rows of Apgn, (4, v) and modelled by T'zAag,n, (4, v) and TyAp,n, (4, 7). In this case,

I'; and Ty are the first and last M — 1 rows of the M, x Mj identity matrix and
JiAmn, = J3Amn, Lo | -(30)

where Y, = diag{e=,. .., eldaa-1} Jj = Iy, ® T3, and J4 = Iy, ® Ty

Therefore, if the array is divided in a row-wise fashion, the u spatial frequencies can be
estimated from the eigenvalues of the matrix that rotates J3K into J,K. However, if the y and
v frequencies are obtained independently by applying Esprit to K in a row-wise and column-wise
fashion, there is no apparent way to pair the frequency components corresponding to a specific

signal.

In an effort to circumvent this problem, notice that as long as no two signals have the same y

and v frequencies, J;K and J,K are rank d. Therefore, ¥ always exists and has a full set of eigen-
values and linearly independent eigenvectors. Consider performing an eigenvalue decomposition of
¥ to obtain ¥ = EXE™!.
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If v; is a distinct frequency, then +; is a distinct eigenvalue of ¥ and the associated right
eigenvector is unique (to within a scalar multiple). Therefore, e; is the 7" column of T~! and the

i*h signal steering vector can be obtained as
Ke,- = -AMbe,Tei = a,—aMbNb(dxui,dyz/i). (31)

To estimate the u frequency from the steering vector recall equation (30), let 1; = Ke;, and notice
that (Jsl))7 (J4ly) = (My — 1) Nye?®=#:. Therefore, define p; as

H [IN » ® (I‘gI})]

N 1 H
= LT (30) = 1
(3 ) (4) (Mb—l)Nb

= My - )N,

; = 1Pl = erem, (32)

So y; is obtained as y; = f;arg (pi). An important observation here is that the u and v frequencies
for a signal are estimated from an eigenvalue-eigenvector pair and as such are automatically coupled.

Now consider the case where v; is not a distinct frequency, say v = ... = v,,;l, then ¥
has an eigenvalue of multiplicity p and the associated eigenvectors {ep,...,€,-1}, are not unique.

Therefore, e; is not the :** column of T~! and
Ke; = [am,n, (dopto, dyo) | - - | ammy(dapip-1, dyvp-1)]c; ¥V 2=0,...p—1 (33)

for some arbitrary p x 1 vector c;. In this case the eigenvector will not directly yield the u frequency.

However, the matrix
K [eo | --- | ep-1] = [2rm,N,(dzpto, dyro) | - - . | an, N, (dzftp=1, dyvp-1)] C (34)

has the Esprit structure. Therefore, applying Esprit in a row-wise fashion will yield the x frequen-
cies. Coupling the frequencies is not an issue because all of the corresponding v frequencies are
identical and already known.

Before proceeding, several aspects of the above development need to be emphasized. First,
K, the arbitrary basis for Sy, is obtained as the orthogonal complement of the decimated telescoped
noise eigenvectors h;. Second, the matrix products J;K and J;K are the first and last My(Ny —1)
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rows of K, and can be effected without actually performing any matrix multiplies. Third, the matrix
¥ that rotates J;K into J,K is estimated by applying the Total Least Squares method of Golub
and Van Loan [11] [12] to equation (29) (as in [4]). Finally, equation (29) has a unique solution
for ¥ provided that the number of rows exceéds (or equals) the number of columns in J; K. Since
J.K M,(Ny —1) x d, TLS-Esprit can determine up to M,(V, — 1) signal directions. It is also worth
mentioning that since S; has the Esprit structure any type of Esprit algorithm, such as PRO-Esprit

[6], can be applied to K.

7 Bandlimiting the Response

Thus far it has been assumed that beamformer employed is comprised of My N, beams that encom-
pass the subband defined by —= (%) <u<mw (%'[f) and —7 (TNVJI) <v<mT (LV]\-,'Z) If the beams
are insufficiently bandlimited or not centered at broadside, the beam space noise eigenvectors can
be modulated to baseband and filtered prior to decimation to make the assumption valid. It is
important to realize that the filtering process increases the length of the eigenvectors. In the one
dimensional case Kautz [2] showed that a decimated version of the filter can be deconvolved from
the decimated telescoped eigenvectors‘ to remove most of this extra dimensionality. Furthermore
since filtering and deconvolution are linear operations they can also be performed apriori on the
telescoping matrix. For the 1D case this yields telescoped eigenvectors that are (M, + 1) x 1 and
a resﬁlting decimated signal subspace that is a d + 1 dimensional subspace of M + 1 dimensional
space.

This extra dimensionality does not cause any problems for 2D Music. In fact, if the beam-
former employed has the common out of band nulls property then filter nulls can be positioned

to coincide with out of band peaks thereby effectively eliminating aliasing [5]. For 1D Esprit, this




extra dimensionality produces a ¥ matrix that is (d + 1) x (d + 1) and has an eigenvalue that is
not related to a signal direction. Kautz argued that this extraneous eigenvalue is far removed from
the unit circle, so it is easily identified and ignored. In the case of a rectangular array, the filter-
ing is two dimensional, so after deconvolution the resulting eigenvectors are (M, + 1) x (Ny + 1).
This yields a d + My + Ny + 1 dimensional decimated signal subspace and ¥ has M, + Ny + 1
extra eigenvalues. Kautz’s argument that these additional eigenvalues are far removed from the
unit circle is still valid, but now the eigenvalue decomposition is performed on a matrix that is
(d+ My + Ny +1) x (d+ My + Ny +1) instead of d X d. This is a nonnegligible increase in complexity
that can be easily circumvented by improving the front end beamformer.

An obvious choice for the beamformer is (M —2) x (N, —2) Hamming weighted orthonormal
DFT beams centered at y = —7(My—3)/M ... 7(My—3)/M and v = —7(N,=3)/N ... 7(N,—3)/N
because they have low sidelobes and common out of band nulls [5]. However this yields an even larger
increase in complexity because the eigenvectors have length M, N, but there are only (M, —2)(Ny—2)
of them. Therefore S; is a d + 2M; + 2N, + 4 dimensional subspace and ¥ has 2M, + 2N, + 4 extra
eigenvalues. So the beamformer employed musf have M, x N, beams.

In section 11 several types of beamformers will be investigated to determine which ones
yield the best performance. For the moment, it is sufficient to point out a few properties that need
to be considered when choosing the beamformer. First, for the Esprit formulation no filtering is
performed, so common out of band nulls are unnecessary. Second, larger main lobes are required to
reduc;e the sidelobe ripple, but this yields beams that may extend outside the desired subband (see
Figure 5). This is not a problem, since aliasing caused by these wider main lobes will only effect
signals at the band edge. It is a well established fact that performance decays at the band edge
even without aliaing, so subands should be overlapped. Third, orthogonal beams are required for

equation (16) to be valid, but this increases the ripple, and consequently the estimation error due
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to aliasing. However, nonorthogonal beams introduce error because R, = BR,BT + 0s?WHW,.
One way to reduce the error due to nonorthogonal beams is to “clean” the matrix R,. This is

mentioned in [6] for use in cases where the noise is not spatially white. Notice that nonorthogonal

beams only cause a problem at low SNR.

8 Further Reductions in Complexity

In this section several remarkable computational savings that have been devloped for 1D are ex-
tended to 2D. Since these are direct extensions of the 1D case and are given a thorough treatment

elsewhere, the details will be omitted.

8.1 Real Covariance Processing

It has been observed [5] that for the 1D ULA, placing the reference point in the center of the array
and making appropriate restrictions on the beamformer enables one to replace the EVD of Ry with
the EVD of Re {Ry}. This effects a considerable reduction in complexity and is readily extended
to the uniform rectangular array.

-1

With the reference point in the center of the array, r = (M—z‘—le,——,rAy,O), the array

manifold-vectors have the form Apn(u,v) = ay(p)ak(v) where

av(v) = [y, el >v]T.

These steering vectors have the following conjugate centrosymmetric property:
Tuvarn(p,v) = (Iv©ln) (an(v) @ an(w) = ay(v) ®ais(w) = ajw(wv).  (36)

Where Ip is the M x M reverse permutation matrix, that “fips” the M x 1 column vector. Since
T, is its own inverse and Ipy = Iy @1, applying a conjugate centrosymmetric beamformer yields
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real valued beam space steering vectors.
B=[WiowlA = [WHeW! yniuwvd = [W] @ W[4 = B° (37)
Using this in equation (16) and taking the real part of the beam space correlation matrix yields
Re{R,} = Re{[WF @ WH| ARA" (W, @ W]+ 0’1} = BRe{R,}BT +0°L (38)

Therefore, the real part of the beam space correlation matrix has the desired eigen structure and
the TLS-Esprit algorithm can be applied to the real part, instead of the “full blown”, correlation

matrix.

8.2 Orthogohal Complement

Recall that columns of K form a basis for S; and have thus far been obtained as the orthogonal
complement of H = W,F,. This requires a computationally intensive SVD on W.F, to find
K. Kautz [2] noticed that an alternate basis for Sy can be obtained by applying a simple linear

-1
tranformation to F,. To show this, let Z = W, (Wf’Wt) and notice that

L 1H
(Z£)7 h; = [Wt (WEW,) f,] Wi, = 7 = 0. (39)

Hence the matrix Z maps a beam space signal eigenvector to element space (but not to its element

space counterpart). Therefore K can be determined as
K =1ZF, = [Zf, | ... | Zfi_1]. (40)

In the event that filtering is employed, this transformation yields an insufficient basis for S;. How-

ever the remaining basis vectors can be obtained by precomputing the orthogonal complement of

W,.
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Algorithm

. Precompute the beamforming matrix, W;, and Z = W, (W;U Wt) -
. Store P snapshots of the array as the columns of X, and form Y = W{X.

. Compute the EVD of the real part of the beam space correlation matrix and form K.

1 MyNy—1
m{&}zﬁm{yyff}z PR & K=7Z[f]|...|fi1]
1=0

. Form K;; = [K; | K;], where K; and K, are the first and last M,(N, — 1) rows of K, and

compute the EVD of KEK;; = QAQ™L.

. Partition Q into d x d blocks and estimate ¥ = —Q, (sz)'l.

. Compute the EVD of ¥ to obtain T and estimate the v frequencies.

1
¥ =EYE™! Y = diag{yo0,- -, Vd-1} vi = - arg i
Y

. For distinct v; estimate the u frequencies as p; = t arg p;. Where p; = 17P1;, |; = Ke;, and

P = oo [1v @ (17

. For repeated v; form L = K[e; | ... ]| ep,—1] and estimate the pu frequencies as y; = ;1; arg pi.

Where p; are the eigenvalues of the matrix that rotates the J 3L into J4L (steps 4 - 6).

10 Performance Analysis

A large portion of the 2D performance analysis is identical to the 1D analysis performed by Kautz
[7] and Rao and Hari (8], so their work will be followed as much as possible. The bulk of the error

analysis is included as Appendix A and the major results are presented in this section. To maintain
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a consistent notation, estimated quantities will be denoted with a “hat”, and the error between
estimated and actual quantities will be denoted with a “A” (e.g. Af; = f — f;).

The primary source of error in the proposed algorithm results from the finite snapshot
approximation of the beam space correlation matrix Ry. Let Ry = R+ jR¢ and recall that Ry is
real, symmetric, and positive definite so its eigenvalues, A, are real and the associated eigenvectors,
f, can be chosen to be real. Kautz has shown [7] that the error in the signal eigenvectors is

asymptotically zero mean with with covariance

o A=A (= Aa) T ’ T
m#k n#l

Lot = % MMt + Aehmmnbis + (EERoh) (7 Rafn) (1= 6) (1 = o)
+ (ngan) (fERsz) (1 - 5mn) (1 —_ 5k1)] . (42)

Tt should be noted that the multiplicative factors of the form (1 — §..) can be removed. They are

only included to emphasize the fact that f7 Rfi = 0.

This error propogates through to vy and e, the eigenvalues and right eigenvectors of ¥, as

d—1d-1

E{lav} = off | X3 ek)er(DE {AfAT | c (43)
k=0 [=0
—-1d-1

i [ dz S ei(k)ed(DE {Akaf,T}} al (44)
=0

—0_.

R

%) E{(Ay)’} =

7r

s d-1d-1 v d—-1d-1
oend) - E5 [ty [ (S on o) ot
Fin #J
. d-1d-1 i~y d-1d-1
E{Ae:Ael} = rg};{ 7%7(’7)] = [ (k_()%ez Je; (DE { Af Af] }) }eme }6)
m#i n¢j
a; = 27 (3 -5 T)" (KT)HCIJ (47)

The relationship between Ae; and Ap; is given by
E{|ap’} = efK'PKE{Aeisef }KAPTKe, + e K"PTKE {Ae;re]} KTPKe;
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+2Re {'K'PKE { Ae;Ael } KTPKe; } (48)
E{(Ap)'} = efKFPKE{Aeide] | K'PTK e} + ] K'PTK"E {Ae:rel} K7PKe,

+2Re {TKTPKE {AeiAel’ | K PKe; } (49)
1

P = mmb@(rgn). (50)

It remains to show how Ap; and A+; relate to Ay; and Avy;. This was done by Rao and Hari [8].

E{|Av*} = Re{ () E{(A)”
B{(any) = {1a%]} 2@{;;) {2} 1
E{|an [} = Re{(p) E{(4p)"}}

2(dz)” '

E{(aw)’} = (52)

Combining equations 41 through 52 produces the desired asymptotic error characteristics
of the signal frequency estimates. However, This does not yield any insightful information. For
the case of d uncorrolated sources with equal signal power o, and noise power oy, the resulting

asymptotic error reduces to

11 Simulations

Various computer simulations were performed to verify the efficacy of the proposed 2D Esprit
algorithm. Uﬁless stated otherwise, all experiments simulate a 32 x 32 array with half wavelength
spacing ;md 3 equal power sources, o2. The beam space correlation matrix is estimated from
32 snapshots of the array and 200 trials are executed for each particular point of interest. The
front end beamformer consists of 64 beams centered at broadside, so the subband being probed is
-2 < (p,v) < %, and the maximal decimation rate of d, = d, = 4 is used. To investigate the
effects mentioned in section 7, three separate types of beams are simulated, DFT beams, Hamming
beams, and Ortonormal Hamming beams (see Figure 5 for 1D plots). Finally, it is important to
note that the error criterion used to evaluate the estimator is the average RMS error between the
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d—1 _
actual signal frequencies and their estimates, Tms = %Z\mz,- — jii)* + (v: — )%, and SNR refers

1=0

to the per signal per element signal to noise ratio, SNR = 10log g—;f
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Before simulating Esprit, it is worthwhile to simulate 2D Multirate Spectral Music (Eqn.

23). The three signals simulated had 0 dB SNR and spatial frequencies (o, —a), (—a, —a), and

327

(—a,a), where @ = Z = 0.1963. Since the main lobe width of the Hamming beams is in these

signals are said to have 100% beam width separation (see Figure 6). These plots show that 2D

Multirate processing does indeed work, and the resulting spectral nulls are moved to (£d.a, £dy @) =

(40.7852,4£0.7852). For comparison purposes, Esprit was simulated with the same parameters

and the results displayed as scatter plots (see Figure 7). Notice that the scatter plot verifies the

automatic coupling properties of the proposed Esprit algorithm, but shows that DFT beams have

a slight bias.

89




x4

DFT Beams Hamming Beams

0 0
V Freq 2y Freq
ON Hamming DFT Hamming
g g L g g ®
w w
> .o (- X ) > OO
-2 0 2 -2 0 2
U Freq U Freq
ON Hamming
o 2
o @®
w O
> 5 @@
V Freq 2 2 U Freq -2U [E_) 2
req

Figure 6: Beam Space Music Null Spectrum for 3 sources with 0dB SNR and 32 Array Snapshots

In section 7 it was stated that the orthogonality of the beamformer is only a consideration
at low éNR, and at high SNR the dominant factor is the height of the sidelobes. Figure 6 illustrates
this (point. Hamming weighted beams have the lowest sidelobes and yield the deepest nulls. To
further investigate the SNR dependence of the estimator, the same three signals were simulated and
the SNR was varied from —30dB to 0dB (see Figure 8 first row). This figure shows that for SNR.
values below —10dB measurement noise dominates so DFT beams perform better, but for SNR
values above —10dB aliasing due to high sidelobess dominates so Hamming beams perform better.

In an effort to investigate the performance of 2D Esprit for closely spaced sources, this
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Figure 7: Scatter Plots: Esprit for 3 sources with 0dB SNR and 32 Snapshots

™

simulation was repeated with the signal separation reduced to 50% of the beamwidth (o = 7z =
0.0982) (see Figure 8 second row). The performance actually improved. To understand why this
happened, it is necessary to investigate the beamformer performance with respect to signal location.

It is a well established fact that the performance of 1D beamformers decay near the band
edges. To see how the 2D beamformer performs, one signal was simulated and its position was
varied from the center of the band to the band edge along the u axis. This was repeated, varying
the signal along the u = v diagonal (see Figure 9). The performance does indeed decay, hence
subbands should be overlapped.

Lastly the number of array snapshots was varied. The first row of Figure 10 depicts the

original 3 signals with 0 dB SNR, and the second row depicts the same three signals with -20 dB

SNR.

12 Conclusion

The proposed 2D Multirate Esprit Algorithm has been shown to work well. Let’s submit this paper!
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Figure 8: RMS Error vs SNR: Esprit for 3 sources, 0dB SNR, 32 Snapshots and 200 trials per SNR

value. Row 1 has 100% BW separation, and Row 2 has 50% BW separation.

A Characterizing the Asymptotic Error

A detailed characterization of the asymptotic error in the eigenvectors of the real part of the beam

space correlation matrix can be found in [7], so the current developement will begin by showing
how Af effects the estimate of ¥. Recall that K = [Zfy | ... | Zfs-1] = ZF, and K is divided into

K; = J1K and K; = J,K. The error in these matrices is given By

“AK; = K;-K; = JK-JK = J.ZF, - J,ZF, = J.ZAF, i=1,2. (53)
Using f(l and Kg, W is determined as the solution to f{z = Kllil. Therefore,
K, +AK, = (K;+AK;) (¥ +A¥)
K, +AK, = K, ¥+K,AP +AK, ¥ + AK;AP

AKz ~ KIA‘I’+AK1‘I’
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Figure 9: RMS Error vs Position: Esprit for 1 source, 0dB SNR, 32 Snapshots and 200 trials per
Frequency. Row 1 varies the source frequency along the u axis and Row 2 varies it along the y = v

diagonal.

K;A¥ = AK,-AK;?.

Hence AW is given by
AP = K}{AK, -KFAK,; ¥ = K{J,ZAF, — K}J,ZAF, 0. (54)
Where K = (K{J Kl)_l K¥ is the pseudo-inverse of K;. Rao and Hari (8] have shown that this

error is valid for both Least Squares Esprit and Total Least Squares Esprit.

To find expressions for the error in the eigenvalues and eigenvectors of ¥, recall [14] that if

a matrix has the form A + eB with eigenvalues v;(¢), right eigenvectors e;(¢) and left eigenvectors

qi(€), then
q;' Be; (q] el) €;
vi(e) = vi+e and e;ile) = e;+¢ :
affe; ; (v — ;) (affe)
JFi
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Figure 10: Performance vs Snapshots: Esprit with 3 sources, 32 Snapshots and 200 trials per

Frequency. Row 1 has 0dB SNR and row 2 has -20dB SNR

In this case A = ¥, B = AW, and qfe; = 1, so the eignvalue error is given by

Ay = off [KEAK, - KfAK ] e; = —%qfKf (31 - 4732) AKe: =

—ma{fAFse,-.(SE'))

Where a;; has been defined as a;; = ZF (J; — v I)H (K;‘)qu From (553), it is easily verified

that

Now consider the right eigenvector.

< { —yiaf AF,e; }
= —-——-——-—-—-————ej

RISTE

(A’)’i)z =

d-1 (qu‘Ih—e;) €;

Aeg‘—"z

= (v—)
J#i

af{ [AFseiefIAFﬂ o

™

i=0

I

d-1d-1

= aff Z Z e,-(k)e:-‘(l)AkaflTa,-i

k=0 I=0

d-1d-1

(1) off [AF,eeTAFT| o = (1) ol T3 eiWei(DARAL o,

k=0 =0

(v = ;)
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Therefore

u d-1 d—1 (71.7;_‘) Ly [l o
Ae;Aef = Y Z 7 [aim (Z ei(k)el (DAL AT >a3~n} eme, (H9)

m=0 n=0 a 7m) (A/J - k=0 1=0
m#i n#Ej
d—-1 d-1 (,),.,),_) d-1d-1
AeiAe}‘ = Z Z{ - t /] . [aﬁn (Z Z 61 Akafl ) J,nl emEZ} (60)
m;o n;o ’7 - /m) (7] - 7") k=0 [=0
m#i nEg

Taking the expectation of equations (56, 57, 59, 60) yields equations (43 - 46). With the error in

the eigenvectors of ¥ characterized, the error in p; can now be determined.
p = 1HPI;
pitAp = (L+ALFP (L +AL) = 1#PL +17PAL + AIPPL + AIPAL
Ap; ~ EPAL + AlFPL = efKHPKAe; + AefK”PKe; (61)

Equations (48 - 49) come directly from (61).

It remains to show how A«y; and Ap; effect Aui and Ap;. Recall that ideally v; = e?%*, but
due to errors 4; = F;e/%¥ = f;edy(vi+80%)  Consider v = re’®” and notice that

dy, = 0, +id,re™’d, = %0, 4 3dyy0,

2,
Therefore

%0, + 3dy 70, = % (0r +7dy0.:)

i

| O |2 = (ari)2 + (dyaw)2
(00" = () [(0n)7 = (dy0)" +3(24,8:.0.)]
Re{() (02)°} = [(8:)° = (d0]

and éonsequently

|y P = Re{(0)* (&)}
2(d)”
This results differs slightly from that obtained by Rao and Hari [8]. They were concerned with the

(AI/,~)2 =

direction angle f not the frequency v = sind. Therefore, they had a (cos 9)? in the denominator
due to the fact that 9, = cos83,.
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4 Real-Time Frequency And 2-D Angle Estimation With
Sub-Nyquist Spatio-Temporal Sampling

An algorithm has been developed for real-time estimation of the frequency and azimuth and
elevation angles of each signal incident upon an airborne antenna array system over a very wide
frequency band, 2-18 GHz, commensurate with electronic signal warfare. The algorithm pro-
vides unambiguous frequency estimation despite severe temporal undersampling necessitated
by cost/complexity of hardware considerations. The 2-18 GHz spectrum is decomposed into
1 GHz bands. The baseband output of each antenna is sent through two 250 MHz sampled
channels where one is delayed relative to the other (prior to sampling) by .5 ns, the Nyquist
interval for a 1 GHz bandwidth. Due to the high variance of the Direct ESPRIT frequency
estimator, aliased frequencies are estimated via a simple formula and translated to the proper
aliasing zone utilizing eigenvector information generated by PRO-ESPRIT. The algorithm also
provides unambiguous 2-D angle estimation over the entire 2-18 GHz bandwidth despite se-
vere spatial undersampling at the higher end of this band necessitated by mutual coupling
considerations and resolving power requirements at the lower end of the band. Eigenvector
information generated by PRO-ESPRIT is used to facilitate computationally simple estimation
of azimuth and elevation angles automatically paired with corresponding frequency estimates
despite aliasing. Simulations are presented demonstrating the capabilities of the algorithm.

4.1 Introduction 4
4.2 Spatio-Temporal Sampling and Data Model

4.3 ESPRIT Based Frequency Estimation With Temporal Under-
sampling )

4.4 2-D Angle Estimation With Spatial Undersampling Via PRO-
ESPRIT and Integer Search Formulation

4.4.1 Estimation of the Array Manifold for Each Source

4.4.2 Prescription for Nonuniform Element Spacing Facilitating Nonambiguous
.Angle Estimation

4.4.3 Integer Search Algorithm for Direction Cosine Estimation
4.5 Simulation Examples

4.6 Final Comments

4.7 References

4.8 Computation of Cramer Rao Lower Bound for Frequency and
2D Angle Estimation

4.9 Figures
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1 Introduction

The problem under investigation is that of real-time estimation of the frequency and azimuth and eleva-
tion angles of each signal incident upon an airborne antenna array system over a very wide frequency band,
2-18 GHz, commensurate with electronic warfare. The problem is complicated by severe undersampling in

both the temporal and spatial domains necessitated by cost and complexity of hardware considerations [1].

To reduce the complexity of the overall receiver hardware, the bandwidth at the intermediate frequency
is chosen to be quite large equal to 1 GHz. Correspondingly, the entire 2-18 GHz spectrum is decomposed
into overlapping 1 GHz bands; each band is examined in succession or in parallel. The Nyquist temporal
sampling rate for digitization of a 1 GHz band is 2 GHz. Although A/D converters operating at 2 GHz rate
are available, they are very expensive and processing speed following the converter may limit the overall
operation of the receiver. In the prototype system pictured in Figure 1 [1], the receiver output, after conver-
sion to baseband, is sampled at a rate of 250 MHz, one-eighth of the Nyquist rate. This severe undersam- |
pling leads to aliasing and attendant problems of ambiguity. The aliased frequency as a function of baseband

frequency with a sampling rate of 250 MHz is plotted in Figure 3.

Note that the aliasing function plotted in Figure 3 is for the case where only the in-phase channel is .
sampled. Sampling of the quadrature channel represents additional hardware costs and overall doubles the
number of samples to be processed. Thus, in keeping with the overall goal of reduced complexity of
hardware and computation, it is assumed that only the in-phase component, a real-valued signal, is sampled
and input to the system. Note, it is typically necessary to generate the complex analytic signal in a direction
finding application to resolve a 180° ambiguity in the azimuth angle estimates. Again motivated by the
desire to keep the computational complexity low, the complex analytic signal is roughly approximated by
computing the DFT of the output of each antenna and throwing away the negative frequency portion of the
spectrum. This approach averts the need to pass the sampled signal through an FIR digital Hilbert
Transformer which could possibly lead to edge effects or a reduceq number of effective time samples
(depending on whether one includes all output points of the FIR digital Hilbert Transformer or just those out-
put points for which there were no zero entries in the FIR filter window.) The spatio-temporal signal model

is developed in Section 2.

The procedure for frequency estimation with Sub-Nyquist temporal sampling developed within may be easily
adapted for narrowband direction-of-arrival estimation with two identical, collinear uniform linear arrays
(ULA’s). In this application, the displacement between the two arrays should be less than a half-wavelength
but the interelement spacing for either array may be much greater than a half-wavelength to achieve a large
aperture and, hence, increased resolution capability relative to a ULA of the same total number of elements
but with half-wavelength spacing.
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In order to estimate the baseband frequency of each signal despite aliasing, the baseband output of each
antenna is sent through two 250 MHz sampled channels where one is delayed by 7 relative to the other (prior
to sampling) as indicated in Figure 1. The time-delay, 7, is chosen less than or equal to the Nyquist sampling
interval for the baseband bandwidth, W, i. e., T< 1/(2W). In the prototype system depicted in Figure 1, W =
1GHz and t=.5ns=.5x 10~ s. ESPRIT [2,3] may then be applied to estimate the baseband frequencies in
any 1 GHz baseband bandwidth. To facilitate real-time implementation, ESPRIT is applied in DFT space.
In this mode of processing the steps are (i) compute an FFT of a block of samples, (ii) locate peaks via a sim-

ple peak-picking algorithm, and (iii) apply ESPRIT to a small set of DFT values around each peak.

In Section 3, we show that the Direct ESPRIT frequency estimator has a variance several orders of
magnitude greater than the Cramer Rao Lower Bound (CRB). An alterative approach referred to as Indirect
ESPRIT is presented that is computationally simple and achieves performance very close to the CRB.
Indirect ESPRIT makes novel use of eigenvector information generated by the PRO-ESPRIT algorithm [3] |
to estimate the aliased frequency of each source via a simple formula and correctly translate it to the proper
aliasing zone where it is added to or subtracted from the appropriate integer of the sampling rate in accor-

dance with Figure 3.

Once the frequency of each signal is estimated, the next goal is to estimate the corresponding azimuth
and elevation angles. There are two problems here. First, each angle estimate must be correctly paired with
the proper frequency estimate. Second, in general, 2-D angle estimation is significantly more computation-
ally complex than 1-D angle estimation. Again, real-time implementation is an overriding factor. Now, since
the sources are at different frequencies, the filtering inherent in selecting only those DFT values around a
spectral peak should ideally be sufficient to isolate single source contributions and avoid the frequency-angle
pairing problerh. However, aside from sidelobe leakage effects, this is not the case as sources well separated
in analog frequency may be aliased to very nearly the same digital frequency. In Section 4, eigenvector
information generated by PRO-ESPRIT is used to facilitate computationally simple estimation of azimuth

and elevation angles automatically paired with corresponding frequency estimates despite aliasing.

- Inthe case of a uniformly-spaced linear array, half-wavelength spacing between antennas is required to
avoid ambiguities in estimating the arrival angle of a signal. With half-wavelength spacing at the upper end
of the 2-18 GHz spectrum, the elements are too closely spaced at the lower end of the spectrum leading to
problems of mutual coupling and poor resolution. The resolution capability and estimator accuracy of any
arrival angle estimation algorithm is proportional to the aperture length measured in units of wavelengths.
To achieve a high degree of resolution power and estimator accuracy and yet avoid mutual coupling, the ele-

ments must be spaced nonuniformly over a large aperture.
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The prototype system employs an L-shaped antenna array having nonuniformly spaced elements along
each leg as pictured in Figure 2. The interelement spacings along either axis is much greater than a half-
wavelength, particularly at 18 GHz. In Section 4, we develop (i) a prescription for interelement spacings for
nonambiguous angle estimation and (ii) an attendant algorithm for angle estimation that is computationally
simple for real-time implementation. Although there is a plethora of previous work on the design of nonuni-
form linear arrays [6-8], the development in Section 4 assumes a small number of antenna elements due to
cost and space limitations on the antenna platform attached to the aircraft. Also, high sidelobes is not as
much a problem since we are able to isolate the individual contribution of each source. In contrast to previ-
ous work [6-8], the prescription for interelement spacings is developed synergistically with a simple integer
based search algorithm for angle estimation. Section 5 presents simulations that demonstrate the power of

the overall frequency and 2-D angle estimation algorithm summarized in the flowchart presented in Figure §.
2. Spatio-Temporal Sampling and Data Model

The parameters for the prototype sub-Nyquist spatio-temporal sampling system are indicated in Figure
1. We concentrate on signal parameter estimation for a particular 1 GHz baseband bandwidth. For the sake

of simplicity, the signals are modeled as RF pulsed waveforms. The development to follow, though, holds as

long as each signal satisfies the standard narrowband assumption -? % cosf <« 1. For a given signal, B is
C

the bandwidth, f, is the carrier frequency, L is the length of the array, A is the wavelength, and cos9 is the
direction cosine relative to the array axis. Since the carrier frequencies here lie somewhere between 2 and 18
GHz, the narrowband assumption is satisfied almost always except for some extremely wideband signals.
We also assume that no two signals are at exactly the same RF frequency. Even if there is multipath propa-
gation between a given source and the airborne antenna array, the Doppler shift each multipath signal under-

goes is distinct as long as each multipath signal has its own distinct azimuth and elevation coordinates [9].

Let the sampling rate be denoted F;. We are here assuming that F, is well below the Nyquist rate lead-
ing to aliasing. For our prototype system, F; = 250 MHz equal to one—eiéhth of the Nyquist rate (2 GHz fora
1 GHz baseband bandwidth). Consider sampling a single sinusoid of the form cos(2nF;t + ¢), where F; is the

baseband frequency (0 < F; < 1 GHz).

F; F,
cos(2nFjt + Olinr, = COS(ZTCT:i—n +¢) = cos[2rf;n + ¢] for O0<Fj< - 1)

F, F; F
= cos[zn(;j——l)n +0]= cos[21r(l——l—:3—)n —¢]=cos2nf;n-¢]  for —2’— <F; <F,

3
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F F
= cos[2n(1-Z-)n + §] = Cos(2xfin +¢] for F,<Fj<3—
N

F; F; F
= cos[zn(—F-’——z)n +¢]= cos[zn(z—F—’)n - ¢]=cos[2nfn-¢] for 37s <F; < 2F,
s s

For each range of the analog baseband frequency, the corresponding digital frequency f; is between 0 and .5,
i.e.,0<f; <.5. Continuing this development, we obtain the aliasing function g(F) plotted in Figure 3 for the
case of F, = 250 MHz corresponding to our prototype system. With the aliasing function thus defined, the
digital frequency, f;, is related to analog baseband frequency, Fj, as fj = g(F;)/Fs. The analog aliased fre-
quency is defined as F} =f;F, = g(F); F; is the frequency one would obtain if the analog sinusoidal signal
was reconstructed from its samples. An important observatiori is that when F; is in a range where the slope
of the aliasing function g(F) is negative, the constant phase offset of the sampled sinusoid is the negative of

that associated with the continuous-time sinusoid.

In order to estimate the baseband frequency of each signal despite aliasing, the baseband output of each
antenna is sent through two 250 MHz sampled channels where one is delayed by 7 relative to the other (prior
to sampling). We here assume that the time-delay, 7, is less than or equal to the Nyquist sampling interval
for the baseband bandwidth, W, i. e., T< 1/(2W). In the prototype systeni depicted in Figure 1, W =1 GHz

andT=.5ns=.5x107s.

The sampled versions of the reference and time-delayed data sets, referred to as the X and Y data sets,

respectively, (one pair of data sets for each antenna) may be described as

T LA on o) A o
x;(n) = Z {7161"171‘, eJ“i'Yj(l) eIZﬁfjn + _2_1_ oo g L2 A0) e _,znfjn} @
=

3@ = z’:{ﬁe%eWi) G o D) it N0 e a‘zm}
=1
whére, for the moment, we are neglecting the effects of noise. The various quantities in (2) are described
below. J is the total number of signals in a particular 1 GHz baseband bandwidth. A; is the amplitude of the
j-th signal while ;, is the phase of j-th signal at the origin of the antenna array system. Y;(i) is the relative
phase of the j-th signal arrival at the i-th antenna. If the i-th antenna is at the x-y coordinate pair, (X; , ¥i),

and the j-th source is at an azimuth angle of 0; and an elevation angle of ¢;,

-102 -




Y;d) = —i (x;cos0;sing; + y;sing;sing;) i=1,..,.M 3)
j

where A; is the wavelength of the j-th signal arrival and M is the total number of antennas comprising the
array. ¥; is the slope of the aliasing function g(F) at F =F; equal to either +1 or -1. In accordance with (1),
K; takes into account the conjugation that occurs when F; is in an interval where the aliasing function is
downward sloping. Note, in the prototype system the observation interval is Sps=.5x 1078 s yielding

roughly N = 128 samples for each of the M antennas.
As indicated in Figure 1, the first processing step is to compute an FFT of both the X and Y data sets at

each antenna output. Ultimately ESPRIT [2,3] is applied to a small set of DFT values around each spectral
peak in the positive frequency portion of each of the 2M spectra. We are effectively using the DFT as a nar-

rowband passband filter. This is done for two reasons. First, by isolating only positive frequencies we are

able to resolve a 180° ambiguity in azimuth angle. Second, in processing a given peak, the eigenvalue
decompositions (EVD’s) required are done on matrices of dimension equal to the number of DFT values
which is less than the number of antennas. Separate peaks may be processed in parallel. Recall that sources
well separated in baseband frequency may be aliased to very nearly the same digital frequency due to under-
sampling. Thus, several sources may be contributing to a given spectral peak.

The respective N pt. DFT’s of the X and Y data sets for the i-th antenna are denoted X;(k) and Y;(k),

i=1,...,M, and may be expressed as

. A .
Xik) = Z{ ] %l 4O siney, (f; ——) e P L1 sincy, (fj""‘;—.)} @)

1 Aj _
Yi(k)=2{ J 5% 6D ¢TI TGiney (f-———)+ > ¢ KT TN JK2TET sincy, (fi+— )}
P

where N; is the number of samples for which the j-th signal is "turned on" and the periodic sinc function is

. —inN-1) SIN(NT®
defined as sincy(H)=¢e jrN-1f E_ﬁ_fl Note, in contrast to convention, we include the phase term

] sin(rf)
e Im-1f iy the definition of sincy(f) for the sake of notational simplicity.

The next processing step is to locate spectral peaks. We here assume that a simple peak-picking algo-
rithm is employed. Note that only coarse estimates of the peak locations are required for the algorithm to
perform well. The respective DFT spectra for the X and Y data set for each antenna, 2M DFT spectra all
together, should exhibits peaks at the same locations. At this point, we concentrate on a single peak in each

DFT spectrum at the same location located at or near the DFT value k = k, without loss of generality.
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Xi(ko)=[ Xi(ko =L, ..., Xi(Ko) , .. » Xi(ko +L) 1T

L =2L’+1 DFT values around the corresponding peak in each DFT spectrum are collected to construct the

following set of 2M L x 1 vectors: &)

To give a perspective on the computational complexity, in the simulations presented in Section 6 we ran
cases where X;(k,) and Y;(k,) are 4x1 and cases where X;(k,) and Y;(k,) are 5x1. The governing factor is
that the number of DFT values selected around a peak should be at least one greater than the number of

sources making significant contributions to that peak, denoted J'.
Substituting (4) into (5), the Lx1 vector of X DFT values around k, may be expressed as
T LA n e Al o i
Xik,) = Zl {_Z_J_e’xﬂh ejxﬂj(‘) d(fj) + __2_Je JK:I'Yjue %% d("’f])} (6)
J=
where d(f;) is the Lx1 vector

ko L
N

df) = sinch f; - yeee s sinch @)

f}__

N

T
ko +L’
N

e ,sinch [fj—-

As long as the window of DFT values is not either near k=0 or near k=N/2, the DFT acts as a narrowband
bandpass filter such that d(-f;) is small enough relative to d(f;) to be negligible. To simplify the develop-
ment, we will neglect the contribution of d(—fj). If d(-fj) is not negligible then the algorithm to be
developed will indicate a source having a negative aliased frequency which potentially may be screened out.
Y OA: . -

Neglecting the negative frequency contributions, X;(k,)= El —2’—e”97’°e1‘°”“’) d(f;) where ¥’ <] is the
number of sources making a significant contribution to the spectral peak at or near the digital frequency
ko/N. This expression describes the vector of DFT values around a peak in the DFT spectrum of a single

antenna. The DFT vectors from all M antennas are placed as the columns of an LxM matrix as

X = [X; (ko) - Xa(ko) - - - Xm(K,)]. X may be expressed in factored form as
ro,
X= 2{ A; &% d(f) a"(8;,05. %) @L x M) @®)
J=
where A; = A;/2 and a(8;,0;,%;) = (@D | @ L ST i %) defined by (3). a(; ;%) for

K; = 1 is the Mx1 array manifold vector for a signal incident from the (0;,¢;) direction. The dependence on
x;, the slope of the aliasing function at F;, is introduced as a simplistic means of denoting a conjugation; it
allows us to avoid breaking the sum in (8) into terms for which the array manifold is conjugated and those

for which it is not conjugated.
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Similarly, the corresponding DFT outputs from all M antennas for the Y (time-delayed) data is col-
lected as Y=[Y (ko)  Ya(ko): - - : Ym(Ko)]. Neglecting negative frequency components, Y may be
expressed as

o, . »

Y=3 Aj ¥ T ) aT@;,056) L xM) ©)

Fl :
Equations (8) and (9) represent the pure signal component of the spatio-temporal data model assumed
throughout. Again, ¥; is the slope of the aliasing function g(F) in Figure 3 at F=F; equal to either +1 or -1.
K; is a notational tool that takes into account the conjugation that occurs when F; is in an interval where the
aliasing function is downward sloping.
3. ESPRIT Based Frequency Estimation With Temporal Undersampling

Given the data model described by (8) and (9), the applicability of ESPRIT [2,3] is evident.
i . .
Y -pX =3 Aj % (e - ujd(E) a8, 05,1) (10)
= |
The critical observation for estimating F; is that when L = ¢ N ihe rank of Y — X drops from ¥’ to J'~1
since the /-th term drops out of the sum. Thus, W; = ¢ P92ET j=1,...,J', are J/ distinct generalized eigenvalues
of the LxM rectangular matrix pencil {Y,X}.

The argument of the ESPRIT eigenvalue, arg{y;} =—«;2nF;t, is plotted as a function of the baseband
frequency F; for F; =250 MHz in Figure 4. Recall that xj is the slope of the aliasing function at F =F;. Note
that certain ranges of phase within (-, ) are not permissible as the argument of ;. In fact, only half of the
2r interval (-, %) is permissible. For example, under ideal noiseless conditions, no value of phase in the
interval (—rt/8,~27/8) is permissible as the argument of y; = g T

The PRO-ESPRIT [3] variant of ESPRIT is here employed as a "fast" implementation of ESPRIT for

estimating the phase factors, —¥;2nF;t, j=1,....J". PRO-ESPRIT operates on the LxL autocorrelation and

M M
cross-correlation matrices Ry = —I—-ZXi(ko)XiH(ko) = Lxx" and Ry, = —I-ZYi(ko)XiH(ko) = LyxH
M M M5 M

i=1
Noge the number of DFT values selected around the peak at k,, L, may be as small as two if only a single
source is contributing to the peak. The algorithm is first summarized and then briefly justified.

First, compute an EVD of R,,: Ry; u; = A u;, i = 1,...,L, where the eigenvalues are indexed in order of
decreasing magnitude. The number of complex sinusoids with aliased frequency components in the vicinity
of k,, J’<J, may be determined from a number of techniques including statistical tests that examine the
eigenvalues such as AIC or MDL. With the J' <L largest (signal) eigenvalues and corresponding signal

eigenvectors, construct the J’xJ” diagonal matrix g and the LxJ’ matrix Us as
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s = diag{ M ~Amin) 2, Aa=Aain) 2, - - ., Ar—=Amin)'?) (11)

Us=[u up: - tuy] (12)
The smallest eigenvalue, Ani,, is asymptotically equal to the noise power which affects the diagonal ele-
ments of the autocorrelation matrix Ry,. Note for a given antenna output, even if the noise is not white, i. e.,

the noise spectral density is not flat over the entire 1 GHz bandwidth, it can be shown that the noise contam-

inating a small set of successive DFT values is approximately i.i.d. The final major step is an EVD of
P=35' U§ Rz Us Z5' (') (13)

-j)2nET

The eigenvalues of ¥ are estimates of ; =e ) .

PROOF: Let X =UsZsVH be the SVD of X including only the J’ nonzero singular values and correspond-
ing left and right singular vectors; Us is LxJ’, Zg is I'xJ’, and Vg is MxJ’. It follows from (8) and (9), that
range{Us) = range(Y} = span{d(f;), ... , d(fr)} and range{Vs} = range(Y"} = span{a™(8;,01,%1), ...

, a*(@y,0y,xy)} such that Y = USUES{YVSVIg‘ where Ug Ué‘ and VSV§I are projection operators. Thus,

Y - X =UsUY Y Vs VE - pUsZg VE
=UsZs (Z5' U¥ YV — uIp ) VE
=UsZs (Z5' U YV S5 UH UsZ5! — iy} VE

=UsZs (Z5' US YXHUs 5! — ply ) VE (14)

where we have used the fact that SgUYUgZ5! =1. Thus, the J’ nontrivial generalized eigenvalues of the
LxM matrix pencil {Y , X} may be computed as the eigenvalues of the J'xJ’ matrix }:§‘U§{YXHUSZ§1 . The
proof is completed by recognizing that XxH = Usz3ud.

In the prototype system T = .5x107%s such that F; may be estimated from the phase of the j-th ESPRIT
eigenvalue according to F; = |arg{y;}/2n| (2x10%) Hz, j=1....,J, where arg{z} is the phase angle of the com-
plex number z. Any error in arg{p;} due to noise is grossly magnified due to the multiplication by 10%,i.e.,
multiplication by a 1 GHz. Simulations presented in Section 6 reveal that the variance of the baseband fre-
quency estimates obtained from ESPRIT in this manner are on the order of 10 MHz while the Cramer Rao
Lower Bound (CRB) on the variance of any unbiased estimator of frequency is on the order of 10 KHz. This
extreme differential motivates us to see if we can obtain performance closer to the CRB without incurring

too much additional computation.
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The above approach is referred to as the Direct ESPRIT approach. An alternative approach is referred
to as Indirect ESPRIT. The steps in Ind>irect ESPRIT are: (i) estimate the digital frequency fj, (ii) convert f;
to the aliased analog frequency via F} =f; F;, and (jii) translate F} up to the proper aliasing zone using the
phase of the ESPRIT eigenvalue J;, in conjunction with Figure 4, where Fj is either added to or subtracted
from an integer multiple of the sampling rate to estimate the actual baseband frequency. Two computation-
ally efficient, high-resolution algorithms for estimating the aliased frequencies using DFT values as input are
Beamspace Root-MUSIC [4] and Beamspace ESPRIT [5]. Recall high-resolution capability is necessary
since sources well separated in analog frequency may be very closely-spaced in digital frequency due to
aliasing. However, despite their relative computational efficiency, implementing either of these two algo-

rithms represents a substantial increase in computational complexity.

More important, though, is the data association problem wherein the aliased frequency estimates must
be paired with the correct ESPRIT eigenvalue so that it is translated to the proper alias zone. If the aliased
frequencies are estimated independently of the ESPRIT eigenvalues, this pairing problem is very difficult,
insurmountable when sources are closely-spaced in frequency after aliasing. Fortuitously, eigenvector infor-
mation provided by PRO-ESPRIT facilitates automatic pairing of the aliased frequency estimates with the
corresponding ESPRIT eigenvalues. In addition, the eigenvector information generated by PRO-ESPRIT
provides a means for isolating the individual contribution of each source despite aliasing. This facilitates
simple estimation of the aliased frequency associated with each source. It may be done on an individual

basis assuming a single source leading to a simple closed-form formula as shown shortly.

The j-th Mx1 right generalized eigenvector, rj, of the LxM rectangular matrix pencil {Y,X]} is that vec-

tor satisfying {Y — p;X}r; =0. Substituting the noiseless (ideal) forms of the X and Y data matrices:

i . .
, T F
{21 A & (T ) d(f) aT(ej,‘bj,Kj)} r; =0 s)
F
 —j2nF : T T =
When pu=¢ , the I-th term d(f;) a" (8;,4;,x;) drops out of sum such that a’(8;,¢;,x)r;=0 for

I=1,..,J, | #j. Hence, r; can be used to extract d(f;) to within a scalar multiple:
Xrjodf)  (Yrjedf))
A key point is that the estimate of d(f;) obtained in this manner is automatically paired with the ESPRIT

—jk2nF;t

eigenvalue that is an estimate of i; =e since r; is the right generalized eigenvector associated with j;.

Thus, a frequency estimation algorithm that assumes a single source may be applied to a(fj) to estimate f;.

Note, we only desire r; in order to compute X r; as our estimate of d(f;) to within a scalar multiple.

We can bypass the computation of rj and construct Xr; directly from the J’x1 right eigenvectors of ‘¥,
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defined by (13), satisfying ‘¥'B; = p;B;, j=1.....J°. From (14) and (15), it follows that
d(f) = Xr;=Us Zs B;  j=1....7 (16)

where X5 and Ug are constructed from the J* largest eigenvalues and corresponding eigenvectors of Ry

according to (11) and (12), respectively.

Next, we apply Beamspace ESPRIT [5] to &(fj) to estimate fj. After much algebraic manipulation, the

single source assumption leads to the following simple formula for estimating f;:
f= L argdd 5y A* PLAG) b j=l,T 17
= o M8 9] e =l amn

where &(fj) is computed as in (16) and P]L and A are each LxL. matrices defined as

A kL o Ko . ket
P*-_-IL—%HT A=diag{e_ﬂu N e—Jzﬂ—I‘T,...,e_Jz’r N } (18)

‘where 1 is an Lx1 vector composed of all ones. The aliased analog frequency is then estimated asIE: = F,%-,

where F, = 250 MHz in our prototype system. Rather than develop the formula in (17) as a simplification of
the general Beamspace ESPRIT algorithm presented in [5], due to space limitations we here simply present a
proof that it works when d(£;) = d(f;).
PROOF: First, we need to define some quantities. Let W denote an LxN matrix whose rows are L succes-
sive rows of the NxN DFT matrix associated with the DFT indices, k, =L, ... , g , ... , Ko +L’.- Let W; and
W, be composed of the first and last N-1 columns of W, respectively. W; and W, are each Lx(N-1) and
related as W, = AW,. Finally, let wy denote the last column of W; wy = diag(AN’l), where diag (*) con-
verts the LxL diagonal matrix AN"! to an Lx1 column vector. Note, the first column of W is 1 such that
P} W ={0, : P W,] = [0 : P{ AW, ], where 0y is an Lx1 vector composed of all zeroes.

Next, define v(f) as the Nx1 Vandermonde vector v(f)=[1, ™  eid ... i0-D2HT ¢
v1(f) and v,(f) be composed of the first and last N-1 elements of v(f), respectively. vy(f) and v,(f) are each

(N-1)x1 and related as v,(f) = e #™ v, (f). With these definitions and relationships, it follows that

d“(f;) A* Pt d(f) = v"'(§) W A* Pt W v(6)
= () WH A* P} AW, vy () 2™

= (vilc) W + 70V wil) A% PE AW, vy () e
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=vil§) Wi A* Pt AW, vi(£) e’ 4+ 1TP} AW, vl(fj)e‘j(N'z)z"fs

= (vi() WE A* P} AW, vi(f)) ™

where we have used the fact that wil A* = diagh(AN"D)A* = diagh (AN A) = diagh (@ ) =17, where
diag™ (D) is intended to mean convert the diagonal matrix D to a column vector and conjugate transpose (in
that order).
Since vii(f}) Wi A* P{ AW, v, (f;) is real-valued, it follows that arg(d¥(f;) A* Pt d(f)} = 2xf;.
Comparing the Direct and Indirect ESPRIT methods, in the former the phase of the j-th eigenvalue of
¥ is multiplied by x10° while in the latter the phase of &H(fj) A* Pt &(f,-) is multiplied by 250x10°/2x.
The multiplicative factor in the latter is three orders of magnitude lower than that in the former. This is a
heuristic explanation as to why the performance of the Indirect ESPRIT method comes much closer to

achieving the Cramer Rao Lower Bound (CRB) than the Direct ESPRIT method.

The formula for translating F} up to the proper aliasing zone is dictated by Figure 4 wherein the phase
of the ESPRIT eigenvalue jt =72 where T =.5x10"s, is plotted as a function of the analog baseband
frequency, 0 < F< 1 GHz. Within the interval (-, x) are eight disjoint permissible intervals, each having a
width of n/8 and a one-to-one correspondence with each- of the eight aliasing zones depicted in Figure 3. If
the phase of the ESPRIT eigenvalue lies within one of these permissible intervals, F} is translated to the
corresponding aliasing zone accordingly where it is either added to or. subtracted from the appropriate integer
multiple of 250 MHz . If, due to noise, the phase of the ESPRIT eigenvalue lies within one of the impermis-
sible regions, it is projected into the nearest permissible region. This decomposes the interval (-x, ) into
eight distinct intervals, each having a width of n/4, and having a one-to-one correspondence with each of the
eight possible aliasing zones plotted in Figure 3. The baseband frequency of the j-th source, Fj, is ultimately

determined from the aliased frequency estimate, IE;, according to

~

~ AQ 1 + 16
f = [F} -250x10° mund{%—“/——} Hz for -15n/i6<arg{}<x  (19)
F=1x10° -F Hz for ——m<arg(y} <-15n/16

where round[x] is the nearest integer to x as defined previously.

As an example, if arg{y;} is either in the impermissible region 7/ 16 < arg{y;} <= /8, the permissible
region nt/ 8 < arg{j;} <2 /8, or the impermissible region 21/ 8 < arg{p;} <5m/ 16, f’; is subtracted from
250 MHz to obtain I:“j. Simulations presented in Section 6 reveal (19) to be a very robust formula for

translating 13; to the proper aliasing zone. Note, that if we are off by one in selecting the correct aliasing
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zone a very large error may be incurred. Two adjacent aliasing zones differ in that in one F} is added to nF

while in the other it is subtraced from (n+1)F;.

4. 2-D Angle Estimation With Spatial Undersampling Via PRO-ESPRIT and Integer Search

4.1 Estimation of the Array Manifold for Each Source

In Section 3, we saw that use of the right generalized eigenvectors of the LxM matrix pencil {Y,X}
facilitates a simple procedure for estimating the aliased frequency of a source that was automatically paired
with an ESPRIT eigenvalue thereby, in turn, facilitating simple translation up to the proper aliasing zone.
The left generalized eigenvectors of the LxM matrix pencil {Y,X} play a similar role in the problem of
estimating the azimuth and elevation angle of each source contributing to a given peak in the DFT spectrum.
Specifically, the j-th left generalized eigenvector of {Y,X} is used to extract from the X and Y data an esti-
mate of the array manifold for the j-th source, denoted a(;,¢;,%;). Recall the inclusion of x; in the definition
of the array manifold is a notational tool to reflect the fact that the array manifold is conjugated when the

baseband frequency is located on a downward sloping portion of the aliasing function.
The j-th Lx1 left generalized eigenvector, 1, of the LxM rectangular matrix pencil {Y,X} is that vector
satisfying le {Y —;X} =0. Substituting the noiseless (ideal) forms of the X and Y data matrices, we have
I, en o
1# {z A} 9% (T _pyd(6) aT(G,-,%,K,-)}: 0 (20)
=1

When p=e ™ the Ith term d(f)a’(6;,;,%;) drops out of the sum such that 1f d(f)=0 for

1=1,...3,  #j. Hence, I; can be used to extract a(8;,$;,;) to within a scalar multiple:
1 X < aT®,05,5) = XTL* o< a(8;,05,%)) Yo aT(®,05,6) = YTI* o< a(8;,05,1) 1)

Thus, applying the j-th left generalized eigenvector allows us to extract an estimate of the array mani-
fold forthe j-th source which, in turn, may be operated upon to estimate the azimuth and elevation angles of
the j-th source. The latter problem is greatly simplified, specifically in cases where sources are very closely-
spaced in digital frequency due to aliasing, due to the ability to isolate a single source contribution. In addi-

tion, since I; is associated with the ESPRIT eigenvalue ji; = ¢”5"""

, the azimuth and elevation angle esti-
mates obtained by processing the estimate of a(8;,9;,%;) are automatically paired with the estimate of F;
obtained via the algorithm developed in Section 3. Knowledge of F; is tantamount to knowledge of the
proper aliasing zone. This allows us to determine the value of x; enabling us to resolve a 180° ambiguity in

the azimuth angle estimate (flipping the sign of x; introduces a 180° change in azimuth angle).
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Similar to the case with the right generalized eigenvectors, the j-th Lx1 left generalized eigenvector, I;,
of the LxM rectangular matrix pencil {Y,X} may be efficiently computed from the J’x1 j-th left eigenvector,
o, of ¥ in (13) satisfying o' ¥ = afl, j=1,...,J’. From (14) and (20), it follows that

L=UsZs'oy  j=l,..) (22)

Recall ¥ is the number of sources making a nonnegligible contribution to a particular DFT spectral peak

which may be as small as one if sources are well separated in digital frequency.

In general, the problem of 2-D angle estimation is considerably more computationally complex than
the problem of 1-D angle estimation. Fortuitously, the isolation of single source components via PRO-
ESPRIT facilitates separable 2-D angle estimation given an appropriate array geometry. For example, con-
sider a 2-D array consisting of two orthogonal linear arrays, €.g., an L-shaped array. Since we’ve isolated a
single source component, we can determine the direction cosine of a source relative to each axis indepen-
dently. Each leg may be processed independently applying an appropriate 1-D angle estimation algorithm.
The x and y direction cosines are automatically paired with each other as well as with the corresponding fre-
quency estimate. Simple trigonometry may be invoked to convert the x and y direction cosines into azimuth

and elevation angle estimates.

42 Prescription for Nonuniform Element Spacing Facilitating Nonambiguous Angle Estimation

In accordance with the discussion in Section 1, to achieve a high degree of resolution power and esti-
mator accuracy and yet avoid mutual coupling, the elements of each leg of the L-shaped array are spaced
nonuniformly with interelement spacings much greater than a half-wavelength. The design problem is two-
fold: (i) development of a prescription for ‘‘good" interelement spacings for unambiguous angle estimation
relative to each array axis and (ii) development of a computationally simple algorithm for processing the
estimate of the array manifold provided by PRO-ESPRIT to estimate the direction cosine of a source with
respect to each axis. We here assume a small number of antenna elements due to cost and complexity of

hardware considerations and space limitations on the antenna platform attached to the aircraft.

The L-shaped array geometry employed in the simulations presented in Section 6 is depicted in Figure

2. The corresponding array manifold is

a(0;,05,x) = : (23)
2d2 2d1_d! . d2 . dl . dl . d2 . Zdz‘d\ . Zd‘l

in2m——v;  jK2m VIR L K w B L R igmo—y Ry g2y X 2ny
M , € M , € A , € M ,1,¢€ M , € M , € M , € Y

where u; and v; are the direction cosines of the j-th source relative to x-axis and y-axis, respectively, and A;
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. 2 R SO d
Vi =Vjo +ld—2 [ € <ceiling ———x—j—(1+vjo) , floor *ij—(l—vjo) (28)

The objective is to choose d; and d, so that alignment, i. €., v = v{, only occurs for k=1=0.

Equating the expressions for vi and v

Vig + Kot = Vi + == — —d-?'-—i (29)
T TR d, d i
. L d, d r ,
This indicates that ambiguities may possibly arise if I is rational. Express N as 3% where !’ and
1 1 1

K’ are relatively prime, i. e., have no common factors other than unity. The set of ambiguous angles is then

: 2

Va = Vjo +0kK i = Vjo+nl N for any n for which -1 < v, < 1. Consider the case of n=1. If we make
1 2

sure that either vj, + k’di or v, + l’di lies outside the visible region, i. e., is either less than -1 or greater
1 2

than +1, then there is no ambiguity. That is, within the visible region corresponding to direction cosines

with absolute value less than 1 there is only alignment at n=0 or k=I=0.

Part of the design procedure then is to select d; and d, such that the relatively prime factors /” and k’

comply with one of the following conditions. Either

d , . d; d;
X(l—vjo) or I’ ¢ {ceiling —-—%—_(1+ij) , floor —g(l—vjo)

d
k’ ¢ {ceiling [—f(l'*'vjo)

, floor

These conditions depend on the direction cosine of the source. To remove the data dependence, we over-
specify and let vj, =1 for the lower bound limit and vj, = -1 for the upper bound limit. The goal then is to

select d; and d, such that the relatively prime factors {” and k” comply with one of the following conditions.

ool 24, . 2d1] vl [2@} . 2d2} 0
~-ioor | —— 1, Noor { —— or -—{00r | ~— | , 400r|{ ——
A A A A

d ’
With -2 =2

=% where X’ and I’ are relatively prime, if either of the conditions above are satisfied, then
1

within the visible region the ambiguities only align at true source direction cosine, Vo.

Note that satisfying the condition above at 18 GHz guarantees that ambiguities may be resolved at

lower frequencies Since [K'minl = [K'max] = floor{2d; /A;] decreases with decreasing frequency (increasing A;)
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as does |’ min| = 'max| = floor{2d; / A;].
As an illustrative example, for the simulations we chose d; =2.3 in and d; = 5.3 in. Consider the upper

limit of the 2-18 GHz spectrum, 18 GHz, for which the wavelength is A =2/3 in. (30) dictates that at 18
GHz, K¢{—6, 6} and [’¢{~14, 14}. Expressing d»/d; as the ratio of two relatively prime numbers as

d ’
?ai = %-g- = -i-g- = L we see that =23 ¢ (=6, 6} and /=53¢ (-14., 14} 50 that both condicions n (30
1 -

are satisfied and the direction cosine may be uniquely determined over the entire 2-18 GHz spectrum.

4.3 Integer Search Algorithm for Direction Cosine Estimation

We have shown that through judicious selection of the interelement spacings, it is theoretically possible
to uniquely determine the true source direction cosine. We now develop an algorithm to do such. With

d,
j2r—vp
respect to Figure 2, element pairs 1-2 and 4-5 provide two measurements of y; = argfe M }. The candi-

date estimates of vj, in the "visible" region -1<v < 1are

d] A 2 )"J 2n

. . d d
vih = }L—% ik ke < ceiling [-—l.—ﬂ} , floor {—1—-—\&} G
nd; . ]

A

Let k* be that for which vj, = «2—2::1——\4;1 +k* i We will determine k* by stepping through the integers in
1 1

the range of k in (31), evaluating a metric for each corresponding v{D, and selecting that value for which the
metric is minimum. An approprizite metric is developed below. Note, since d; is the smallest interelement
spacing represented in the array, the number of ambiguous angles associated with the corresponding phase
measurement ; is least. This is in line with the overridding goal of keeping the computational load as small

as possible.

d;
L )2y
Element pairs 1-3 and 3-5 provide two measurements of Y3 = arge & }. The candidate estimates

of vj, in the "visible" region are

dy d ¥

Yo M M g |92 Y2 2 V2
v = i W2+ld2 le ceﬂmg{ o , floor 2 (32)

Let I* denote that value of / such that vfg) = Vjo. Equating the expressions for vED and v in (31) and (32),

. . A .
respectively, yields ——x-“—\yl + k}’— =y + l——A—’—. Selecting d; and d, in accordance with the prescrip-
2nd, d] 27Cd2 d,
tion developed previously, v§ = v{? only when k=k* and /=I*. Solving for / yields
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d dyr W

It follows that in stepping through the range of feasible integers k, (33) yields an integer value of / only when
k=k* for which I =1*.

An algorithm for determining k* then is as follows. For each integer k in

. i w Vi . . *
{ceiling _-A—.,-_‘_Z? , floor T 2m }, compute the corresponding ! according to (33). Select k™ as that
for which |/-round[]| is minimum, where round { / ] is the integer closest to /. Although this is a rather
ad-hoc technique, it is computationally simple and simulations reveal that it performs very well with respect

to resolving the ambiguity.

So far we’ve only made use of the relative phase measurements associated with the interelement spac-
o (=)
j2r Vio
ings d; and d,. Element pairs 2-3 and 3-4 provide two measurements of Y3 = arg{e M }. Equating

G) — ___}_"___ A
Vm 2n(d,—dy) ¥a+m d—d,

with the expression for v and solving for m yields

dy—d; do=di y1 W3
.8 4
k d; * dy 2r 2n 34)

. - d—d; 30 _30 _m
Relative to the prototype array in Figure 2, N "23° =

(30) dictates that at 18 GHz

kK'¢{—6, 6} and m’¢ {8 , 8}. Since k’=23 and m’=30, the conditions are satisfied so that (34) only yields an .
integer when k =k*.

. (2d,~dy)
i Vio
Similarly, element pairs 1-4 and 2-5 provide two measurements of y, = arg{e M }. Equating

@) _ Ay A

= +
Vo' = Zrza,—ay T4 T M 2d,

with the expression for v{? and solving for n yields

2,-d;  2dyd
P e o T, L W L1 (35)

= d; d 2 2rm

2d,d /
?il L %%:33-2- = . (30) dictates that at 18 GHz

k'¢{—6, 6} and n'¢ {-22, 22}. Since k’=23 and n’=83, the conditions are satisfied so that (35) only yields

Relative to the prototype array in Figure 2,

an integer when k =k*.

A refined algorithm for determining k* is as follows. For each integer k in

d d
{ceiling {—-—1——2%} , floor [-—1———“’—1} }, compute the corresponding values of /, m, and n, according to (33),

? N o
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(34), and (35), respectively. Select k* as that for which |/-round[/]| + |m—round[m]| + |n—round[n]| is
minimum. Once k* is determined, compute 1*, m*, and n* by substituting k* into (33), (34), and (35),

respectively. Compute the corresponding estimates of the direction cosine according to

- b : :
Y TR, S L, SO, B S, EE VN, B
W=ty gty m S ey P 4y an
vi® ——x’—— +n* Y The direction cosine relative to the vertical axis is estimated as a

= 2@y T 244,
weighted sum of these estimates. Each direction cosine estimate is weighted by the corresponding interele-
ment distance as the accuracy of the estimate increases with increasing distance, provided one can resolve
the ambiguity.
A similar procedure may be used to estimate the direction cosine relative to the horizontal axis. A
flowchart of the overall algorithm, including frequency estimation, is depicted in Figure 5. The computa-
tional simplicity is evident. Note, due to space limitations, the processing of the left eigenvectors indicated

in the flowchart is only relative to a single leg and needs to be repeated for each leg.
5. Simulation Examples

The performance of the frequency and 2-D angle estimation algorithm summarized in the flowchart in
Figure 5 was examined in two simulation examples. Example 1 involves two sources very closely-spaced in
frequency after sampling due to aliasing. Example 2 represents a very stressful signal environment involving
four sources very closely-spaced in frequency after sampling. In both cases simulations were conducted at
the lower and upper ends of the 2-18 GHz spectrum. This was done to show that the algorithm works prop-
erly over a very wide bandwidth using the same physical array, the M=9 element L-shaped array with
geometry depicted in Figure 2. Note, at 18 GHz the wavelength is roughly 2/3 in. such that the smallest
interelement spacing in the L-array, d; = 2.3 in, is roughly 7 times a half-wavelength. In general, both d;
and d are several times greater than a half-wavelength at all frequencies in the band 2-18 GHz.

The simulation parameters indicated in Figures 1 and 2 were cc;mmon to all simulation runs. In all
cases, the signal scenario was composed of equi-powered RF pulsed signals (monochromatic planewaves)
that were "turned on" during the entire .5 ps interval in which 128 samples were collected. White Gaussian
noise was added to the raw data samples output from each channel of each antenna, in accordance with the
raw data model described in Equations (36) and (37) of Appendix A, prior to computing the 128 pt. DFT.
Finally, the Cramer Rao Lower Bound for a particular set of simulation parameters was computed according

to expressions developed in Appendix A.
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Example 1. The parameters describing the two signal arrivals are listed in Table I. In the one set of
simulations the signals were in the 2-3 GHz band and the mixing frequency was 2 GHz, while in the other
the signals were in the 17-18 GHz band and the mixing frequency was 17 GHz. A typical DFT spectrum
representative of any of the 18 sampled channels (two channels for each of M=9 antennas) for either signal
band (2-3 GHz or 17-18 GHz), is plotted in Figure 8. Due to their relative proximity, the two signal arrivals
give rise to a single peak in the positive frequency portion of the spectrum. The frequency and 2-D angle
estimation algorithm was applied to the DFT values in the range 11-14. In each run, the major computations
were a 4x4 EVD followed by a 2x2 EVD. Sample statistics computed from 250 independent runs for each of
a number of different SNR’s are plotted in Figures 6, 7, 9, and 10.

Figures 6 and 9 reveal the high variance of the Direct ESPRIT frequency estimates, three orders of
magnitude greater than the CRB, in accordance with the discussion in Section 3. The sample standard devia-
tions of the Indirect Beamspace ESPRIT frequency estimates are very close to the CRB, particularly for
SNR'’s greater than 4 dB. An important point to note is that despite how closely-spaced the two sources are
in frequency after aliasing, in all céses, i. e., for each source, for each SNR tested, and for each of 250
independent runs, the aliased frequency estimate obtained from Beamspace ESPRIT was translated to the
proper aliasing zone. This demonstrates the robustness of the translation formula in (19). Note that the
biases of the frequency estimates were always less than or equal to 1 MHz which is negligible relative to the
actual RF frequencies which are in the band 2-18 GHz.

Relative to the appropriate CRB, the performance of the angle estimation subroutine is not nearly as
good as that of the frequency estimation subroutine. The sample standard deviations of the angle estimates
obtained from the integer search algorithm are roughly two orders of magnitude greater than the CRB. This
is true for both azimuth and elevation angle estimation as evidenced in Figures 7 and 10, respectively, and
for both ends of the 2-18 GHz spectrum. Better performance may be achieved by using the angle estimates
from the integer search algorithm as starting points for localized Newton searches of a 1-D or 2-D MUSIC
spectrum or for initializing the expectation maximization algorithm, for example. However, imperfections in
the hardware implementation of the algorithm may preclude achieving the CRB which for the case where the
signals are in the 17-18 GHz band is roughly a thousandth of a degree. It may be very difficult to achieve
this kind of accuracy in practice even if it is achieved in simulation. Note, although the sample variances of
the angle estimates were large relative to the CRB, the sample biases were very small. Although not plotted,
the sample biases obtained in the 2-3 GHz range were less 0.1° in all cases, even at 0 dB SNR, while the

sample biases obtained in the 17-18 GHz range were less 0.01° in all cases, even at 0 dB SNR.
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Again, for signals in the 17-18 GHz band, the smallest interelement spacing in the L-array employed is
roughly 7 times greater than a half-wavelength. For a given source in a given run and for a given leg of the
array, the integer search algorithm had to choose which of roughly seven possible angles is the correct one.
For all SNR’s tested, the algorithm chose an angle in the vicinity of the actual angle in all 250 independent

runs despite how closely-spaced the two sources were in frequency after aliasing.

Note, whereas the performance of the frequency estimation phase of the algorithm did not vary
significantly from one end of the 2-18 GHz spectrum to the other, the performance of the angle estimation
phase of the algorithm did. The sample standard deviations of the angle estimates obtained in the 17-18 GHz
range are roughly an order of magnitude smaller than those for the corresponding sources in the 2-3 GHz
range. This is to be expected since the aperture length in terms of wavelengths at 18 GHz is roughly an order

of magnitude greater than that at 2 GHz.

Example 2. This simulation example is presented to demonstrate the power of the algorithm in light of
the stressful nature of the signal scenario. The parameters describing each of the four signal arrivals simu-
lated are listed in Table II. A typical DFT spectrum is plotted in Figure 13. The four signal arrivals give rise
to a single split peak in the positive frequency portion of the spectrum. The frequency and 2-D angle estima-
tion algorithm was applied to the DFT values in the range 24-28. In each run, the major computations are a
5x5 EVD followed by a 4x4 EVD. Sample statistics computed from 250 independent runs for each of a
number of different SNR’s are plotted in Figures 11, 12, 14 and 15.

Despite the fact that the four sources were all aliased to within a 4 MHz range, performance similar to
that obtained in the much less stressful signal scenario of Example 1 was achieved. Relative to the 17-18
GHz simulation, for a given source in a given run and for a given leg of the array, the integer search algo-
rithm had to choose which of roughly seven possible angles is the correct one. For SNR’s greater than or
equal to S dB, the algorithm chose an angle in the vicinity of the actual angle in all 250 independent runs. At
0 dB, an erroneous angle was selected roughly 10% of the time. This yielded a very large sample variance
not plotted in either Figure 12, 14 or 15. Bearing in mind the stressful nature of the signal environment, four

sources aliased to within a 4 MHz range, this is actually remarkable performance.
6. Final Comments

The frequency and 2-D angle estimation algorithm developed within and summarized in Figure Sis not
able to handle sources that are aliased to exactly the same frequency. Examining Figure 3, this will occur if
(i) two sources are separated in frequency by nF; or (ii) one source is at nF; — AF while another source is at
oF, + AF, where n is an integer. The failure of the algorithm in this case is due to a rank deficiency in the X

and Y data matrices similar to the coherent signal problem encountered in array signal processing [9]. At the
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cost of a modest increase in computation, this deficiency may be overcome by working with spatial covari-
ance matrices, as opposed to frequency domain covariance matrices, and performing a single forward-
backward average when processing each leg of the L-array independently. The single forward-backward
average is facilitated by the symmetric placing of elements along an axis. A more general measure would be
to incorporate an additional sampled channel at a different rate, e. g., 225 MHz. This is the subject of ongo-
ing investigation.
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Appendix A. Computation of Cramer Rao Lower Bound for Frequency and 2-D Angle Esti-

mation

The data model used for calculating the CRB is the raw data output from the reference and time-
delayed channels of each of M antennas. By raw data, we mean that prior to any processing including the
FFT (or DFT). Let x(n) denote the Mx1 vector the i-th component of which is the raw data output from the

reference channel of the i-th antenna, i=1,...,M, at the n-th sampling instant, n=0,1,...,.N-1. Let y(n) be
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defined similarly relative to the time-delayed channel at each antenna. From the initial development in Sec-

tion 2, it follows that x(n) and y(n) may be expressed as

x(n) =Re{AQ"c} + n,(n) n=0,1,...,N-1 (36)

y() =Re{AQ"®c} +ny(n) n=0,1,..,N-1 37
The various quantities in (36) and (37) are defined below. A is the MxJ DOA matrix
A=[a®1.01):a(2.02): -~ :a(Br¢n)] (38)
where a(8;,¢;) is defined by (23) with k; = 1. cis the Jx1 vector
c=[c,Cz, ... cy]T =THE (39)
where ¢; = Ajem' is the complex amplitude of the j-th source at time n = 0 at the reference element. Q2 is the
JxJ diagonal matrix
Q=diag(d* T, ..., &) (40)
where @; = 2nF; with F; denoting the baseband analog frequency, and T is the sampling interval e;qual to the
reciprocal of the sampling rate, F;. @ is the JxJ diagonal matrix
® = diag({e™", e, ..., &™) 41)
where 1 is the time delay equal to .5 ns = .5x10™ s in our prototype system. ny(n) and ny(n), n=0,1,...,N-1,
are i.i.d. multivariate Gaussian noise vectors, ny (n) ~ A(0,62Iy) and ny(n) ~ A0,63Iyv).

Given the Gaussian assumption on the respective distributions of n.(n) and ny(n), it follows that

x(n) ~ A(Re{AQ"c},62Iy) and y(n) ~ ARe{AQ"®c},02Ly). The log-likelihood function is

InL(®,0,$,5,&,02) = constant — NM Inc? 42)
1 N-1 2 1 N-1 . 2
-~ ¥ lIx(@) -Re(AQ"c)[P-—— ¥ Ily®m) —Re{AQ @c}|
20r\ n=0 2Gn n=0

Let-'a denote the set of parameters that the log-likelihood function depends on. « contains 5J+1 parameters
which we group as follows: @=[0,,a,,...,010%, 0=[8,,8,...,8/, 0=[01.02.....01)7,
€=[A;COYio, . - - »AJCOSYIL], € = [A;SiMYi0, - - . » Aysimyy, ], and o2 is the unknown noise power. Recall that
J is the total number of sources.

With the (5J+1)x(5J+1) Fisher Information Matrix defined as J=I(a) =E{V,(nL) vIdnL)}, the
CRB on any unbiased estimator of the i-th parameter o5 is [(J7'1;, i. e., the i-th diagonal element of the

inverse of J. Taking into account symmetry, the Fisher Information Matrix may be built up from the the
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(1,1) element E

362 2 , the five 1xJ  blocks, {a 5

s | o e st i e

of which are equal to 0, and the JxJ blocks E[V:V{], E[VzVI] E[V:V§], E[V:V}], E[VVy], E[V:VI],
E[V:V3], E[V:V3§1, EIV: V5], E[VeV§1, E[Ve V4], E[Ve V], ElVe Vel E[V4 V4], and E[V, V], where it

is understood that the function that the gradient is operating upon in each case is the log-likelihood function
in (42). The derivation of each block is straightforward. Due to space limitations, it is not feasible to present

an expression for each of these fifteen JxJ blocks. As an example, though,

N-1
E[V9V$]=BIT T Re(Q"C"AfIRe(442°C) + — z Re(Q™C 0" A§JRe(A,0Q°C}  (43)
n n=0

where C, Ag, and Ag are defined below.

C=diag{c;,c2, ..., Cr} ‘ 44

Ag = ae = a(6,0) =L Ay= a 5 a(8,9) J=1eaJ (45)
(0.0)=(8,,)) (6,6)=(6,.8))
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Figure 1: Receiver module and front end signal processing for i-th antenna in prototype system.

Ve wavelength at 2 GHz = 6 inches
wavelength at 18 GHz = 2/3 inches

®?2
L Array Configuration
®3 di =2.3in.
d2 = 5.3 in.
2
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e o ° o o
5 6 7 8 %(

Figure 2: L-shaped antenna array employed in simulations for azimuth/elevation angle estimation
over 2-18 GHz spectrum. Each leg is symmetric about its center.
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Figure 3: Aliasing function: aliased frequency as a function of baseband frequency after sampling
at 250 MHz with real processing (no I and Q).
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Figure 4: Phase of ESPRIT eigenvalue as a function of analog baseband frequency with 250 MHz
sampling rate.
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With 1<L<6 DFTvalues centered at a DFT

= ’ wl
X i(ko)— {Xi(ko- L )""’Xi(ko)""’Xi(ko+L )]

at i-th antenna, i=1,...,M, construct Lx1 DFT vectors (L’ =

spectral peak in both X and Y data
floor [ (L-1)/2 ] ):

Y i(ko) = Yl (ko- L’),...,Yi(lg),...,Yi'(ko+L’) ]

!

XX i=1

Form LxL covanance and cross-covariance matrices:

Z X. (k)X (k)/M R =

H
El Y (k)X (k) /M

yX

Y

Compute EVD of R

I diag {(& - .), (= Agin

. Determine no. of sources, J, (1<J<L) contributing
to spectral peak at k, by applying statlstlcal test (e.g., AIC) to eigenvalues.
) }IxJ); US- [u ,

wy up ] (LxJ)

eigenvalues, u

eigenvalues, u

U R U Z JxJ) >—
S yx nght eigenvectors, B

VD of
left elgenvectorsl M of ¥=%

A

o

for each source, j=1,...,.J, estimate analog baseband frequency, Fj , and direction cosine, Vj ”

A

!

'

for each interelement spacing, d. , i=1,...,1,

H 1 H H -1
= S o.j/2n
0.= arg {or, = (U X () X (6 JUE o)

m-th and n-th antennas are separated by d;
d, is smallest interelement spacing in leg

represented in leg, estimate corr. phase differential:

a
aliased freq estimate (0 < Fj < 125 MHz):
/\ a

4
arg { BHZ U g PIUSzSpj}.FS

baseband freq. estimate (O < Fj < 1GHz):.

A

v

Aa

. * . -
determine n _ as that integer in range

nld{ceﬂing['dl/ ﬁj *(Pl] ,ﬂoor[dl/a»j - q)l]]

F.=|F.— F . round
J J S

n/4

[arg{uj}+1c/16 ]

1 estimate of wavelength
for which X |1 .- round [ ni] is minimum -~ /7\&1. = C/(F + Fj ) c: speed of light ||
=2 | mixer frequency: 2<F RF < 17 GHz
where:'n, = (d./d ) (n+0@)-¢. i=2,.] ! mix
1 1 1 1 1 |
. Y : :r defined quantities (computed a-priori): ﬂ}
Kj = - sign { arg { u 11} . . i : FS= 250 MHz wN= exp[- j2r/N] E
| A I A AGD A W R kL K Kk +L !
v.= kL v(.l), v(.1)=——J(P_ g N dlag[ w?® w?’ }l
I I i j a1 by | e N
A A : E P'i‘: IL i 1 1 (1: Lx1 composed of ones)
. |

Fj and vj automatically paired--

5. Flowchart of frequency and 2-D angle estimation algorithm.
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Table I. Signal Parameters for Simulation Example 1. 200
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Figure 6: Freqﬁency estimation performance for Example 1
with signals in 2-3 GHz band.
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Figure 7: Azimuth estimation performance for Example 1.
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Figure 8: Sample DFT spectrum of X data for Ex. 1.
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Figure 9: Frequency estimation performance for Example 1
with signals in 17-18 GHz band.
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Figure 10: Elevation estimation performance for Ex. 1.
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Figure 13: Sample DFT spectrum of X data for Ex. 2.
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Figure 11: Frequency estimation performance for Example
2 with signals in 2-3 GHz band.
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Figure 12: Azimuth estimation performance for Example 2.

Figure 14: Frequency estimation performance for Exainple
2 with signals in 17-18 GHz band.
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Figure 15: Elevation estimation performance for Ex. 2.
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