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Summary of Efforts 

Closed-Form 2D Angle Estimation with Rectangular Arrays 

UCA-ESPRIT is a recently developed closed form algorithm for use in conjunction with a 

uniform circular array (UCA) that provides automatically paired source azimuth and elevation 

angle estimates. 2D Unitary ESPRIT is presented as an algorithm providing the same capabil- 

ities for a uniform rectangular array (URA). In the final stage of the algorithm, the real and 

imaginary parts of the i — th eigenvalue of a matrix are one-to-one related to the respective 

direction cosines of the i — th source relative to the two major array axes. 2D Unitary ESPRIT 

offers a number of advantages over other recently proposed ESPRIT based closed-form 2D an- 

gle estimation techniques. First, except for the final eigenvalue decomposition of dimension 

equal to the number of sources, it is efficiently formulated in terms of real-valued computation 

throughout. Second, it is amenable to efficient beamspace implementations that will be pre- 

sented. Third, it is applicable to array configurations that do not exhibit identical subarrays, e. 

g., two orthogonal linear arrays. Finally, 2D Unitary ESPRIT easily handles sources having one 

member of the spatial frequency coordinate pair in common. Simulation results are presented 

verifying the efficacy of the method. 
Beamspace DOA Estimation Featuring Multirate Eigenvector Processing 

A novel approach to angle of arrival estimation in beamspace has been developed. Beamspace 

noise eigenvectors may be transformed to vectors in the element-space noise subspace. The 

transformed noise eigenvectors are bandpass, facilitating multirate processing involving modu- 

lation to baseband, filtering, and decimation. As these operations are linear, a matrix transfor- 

mation applied to the eigenvectors may be constructed a priori. Incorporation of the technique 

into either the Root-MUSIC or ESPRIT prescriptions provides a computationally efficient pro- 

cedure. Compared to past efforts to adapt Root-MUSIC and ESPRIT to beamspace, this 

approach circumvents the need for restrictive requirements on the form of the beamforming 

transformation. An asymptotic theoretical performance analysis is also included to provide an 

alternative to computationally intensive Monte-Carlo simulations. Simulation studies show the 

validity of the performance predictive expressions and verify that the procedure, when incor- 

porated into the Root-MUSIC/ESPRIT formulations, produces a direction finding technique 

that nearly attains the Cramer-Rao bound. 
Multidimensional Multirate DOA Estimation in Beamspace 

The ID multirate approach was extended to the more general case of 2D angle estimation 

with a uniform rectangular array (URA) of sensors. Multidimensional multirate processing is 

employed to ultimately yield a small order polynomial in two variables. Again, due to the 

linearity of the 2D filtering and 2D decimation operations, the actual algorithm merely premul- 

tiplies each beam space noise eigenvector by a precomputed transformation matrix. To avoid 

the spectral search, despite the fact that the fundamental theorem of algebra does not hold 

in 2D, we propose taking the orthogonal complement of the resulting transformed noise eigen- 

vectors and applying a novel version of ESPRIT facilitating closed-form 2D angle estimation. 

Simulations demonstrating the efficacy of the approach are presented along with theoretical 

performance analysis. 



Real-Time Frequency And 2-D Angle Estimation With Sub-Nyquist Spatio-Temporal Sampling 
An algorithm has been developed for real-time estimation of the frequency and azimuth and 

elevation angles of each signal incident upon an airborne antenna array system over a very wide 
frequency band, 2-18 GHz, commensurate with electronic signal warfare. The algorithm pro- 
vides unambiguous frequency estimation despite severe temporal undersampling necessitated 
by cost/complexity of hardware considerations. The 2-18 GHz spectrum is decomposed into 
1 GHz bands. The baseband output of each antenna is sent through two 250 MHz sampled 
channels where one is delayed relative to the other (prior to sampling) by .5 ns, the Nyquist 
interval for a 1 GHz bandwidth. Due to the high variance of the Direct ESPRIT frequency 
estimator, aliased frequencies are estimated via a simple formula and translated to the proper 
aliasing zone utilizing eigenvector information generated by PRO-ESPRIT. The algorithm also 
provides unambiguous 2-D angle estimation over the entire 2-18 GHz bandwidth despite se- 
vere spatial undersampling at the higher end of this band necessitated by mutual coupling 
considerations and resolving power requirements at the lower end of the band. Eigenvector 
information generated by PRO-ESPRIT is used to facilitate computationally simple estimation 
of azimuth and elevation angles automatically paired with corresponding frequency estimates 
despite aliasing. Simulations are presented demonstrating the capabilities of the algorithm. 
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1     Closed-Form 2D Angle Estimation with Rectangular 
Arrays 

UCA-ESPRIT is a recently developed closed form algorithm for use in conjunction with a uni- 

form circular array (UCA) that provides automatically paired source azimuth and elevation 

angle estimates. 2D Unitary ESPRIT is presented as an algorithm providing the same capabil- 

ities for a uniform rectangular array (URA). In the final stage of the algorithm, the real and 

imaginary parts of the i — th eigenvalue of a matrix are one-to-one related to the respective 

direction cosines of the i — th source relative to the two major array axes. 2D Unitary ESPRIT 

offers a number of advantages over other recently proposed ESPRIT based closed-form 2D an- 

gle estimation techniques. First, except for the final eigenvalue decomposition of dimension 

equal to the number of sources, it is efficiently formulated in terms of real-valued computation 

throughout. Second, it is amenable to efficient beamspace implementations that will be pre- 

sented. Third, it is applicable to array configurations that do not exhibit identical subarrays, e. 

g., two orthogonal linear arrays. Finally, 2D Unitary ESPRIT easily handles sources having one 

member of the spatial frequency coordinate pair in common. Simulation results are presented 

verifying the efficacy of the method. 

1.1 Introduction 

1.2 Real-Valued Processing with Uniform Linear Array 

1.3 Unitary ESPRIT for Uniform Linear Array 

1.4 DFT Beamspace ESPRIT for Uniform Linear Array 

1.4.1 Relationship Between Unitary ESPRIT and DFT Beamspace ESPRIT 

1.4.2 Relationship Between DFT Beamspace ESPRIT and Beamspace ESPRIT 

1.5 2D Unitary ESPRIT for Uniform Rectangular Array 

1.5.1 2D Unitary ESPRIT vs. ACMP 

1.6 2D DFT Beamspace ESPRIT for Uniform Rectangular Array 

1.6.1 Reduced Dimension Example 

1.6.2 Comparison with UCA-ESPRIT 

1.7 2D DFT Beamspace ESPRIT for Cross Array 

1.8 Simulations 

1.9 Conclusions 

1.10 References 

1.11 Figures 



1     Introduction 

For ID arrays, if the elements are uniformly-spaced, Root-MUSICand ESPRIT1 [1] avert a spectral 

search in determining the direction of arrival (DOA) of each incident signal. Instead, the DOA of 

each signal is determined from the roots of a polynomial. For either Root-MUSIC or ESPRIT2, the 

roots of interest ideally lie on the unit circle and are related one-to-one with each source as shown 

in Figure 1. 

For 2D (planar) arrays, the fact that the fundamental theorem of algebra does not hold in two 

dimensions typically precludes a rooting type of formulation. Even for the highly regular uniform 

rectangular array (URA), 2D MUSIC requires a spectral search of a multimodal two-dimensional 

surface, while both Multiple Invariance ESPRIT [2, 3] and Clark & Scharf's 2D IQML [4] algorithm 

involve nonlinear optimization. Now, it should be pointed out that a URA lends itself to separable 

processing allowing one to decompose the 2D problem into two ID problems. That is, one can 

estimate the DOA's with respect to one array axis via one set of calculations involving a MUSIC or 

ESPRIT based polynomial formulation, and also do the same with respect to another array axis. 

Coupling information may be employed to subsequently pair the respective members of the two sets 

of ID angle estimates [5]. 

In the Algebraically Coupled Matrix Pencil (ACMP) method of van der Veen et al3 [6], eigen- 

vector information is employed to pair the respective members of the two sets of ID angle estimates. 

However, ACMP breaks down if two sources have the same arrival angle relative to either the z-axis 

or the y-axis, assuming the URA to lie in the x-y plane. 

In contrast, for a uniform circular array (UCA) the recently developed UCA-ESPRIT [7, 8] 

algorithm provides closed-form, automatically paired 2D angle estimates as long as the azimuth 

and elevation angle of each signal arrival is unique.  As illustrated in Figure 2, in the final stage 

of UCA-ESPRIT, the i-th eigenvalue of a matrix is of the form sin#t- ej0i, where fa and 0t- are the 

azimuth and elevation angles of the i-th source. Note that sin/?,- e^{ = ut- + jvi, where u* and u,- are 

the direction cosines of the i-th source relative to the x and y axes, respectively.  The eigenvalue 

for each source is thus unique such that UCA-ESPRIT does not have the aforementioned problem 

1 ESPRIT may also be employed in the case of an array composed of at least two translationally invariant subarrays. 
2In ESPRIT the DOA's are extracted from eigenvalues which are roots of the characteristic polynomial of a 

matrix. 
3van der Veen et al do not actually give their method a name. In a later paper Vanpoucke et al label their method 

ACMP. 



' A CMP has when two sources have the same u, or the same u;. We here develop a closed-form 2D 

angle estimation algorithm for a URA that provides automatic pairing in a similar fashion. That 

is, in the final stage of new algorithm, referred to as 2D Unitary ESPRIT, the real and imaginary 

parts of the i-th eigenvalue of a matrix are one-to-one related to «,• and ut-, respectively. 

2D Unitary ESPRIT is developed as an extension of the recently proposed Unitary ESPRIT 

[9, 10] algorithm for a uniform linear array (ULA). Unitary ESPRIT exploits the conjugate centro- 

symmetry of the array manifold for a ULA to formulate each of the three primary stages of ESPRIT 

in terms of real-valued computations: (1) the computation of the signal eigenvectors, (2) the solution 

to the system of equations derived from these signal eigenvectors, and (3) the computation of the 

eigenvalues of the solution to the system of equations formed in stage 2. Note that Huarng k 

Yeh [11] and Linebarger et al [12] previously exploited the conjugate centro-symmetry of the ULA 

manifold to formulate the determination of the noise eigenvectors and subsequent spectral search 

required by MUSIC in terms of real-valued computation. The ability to formulate an ESPRIT- 

like algorithm for a ULA that only requires real-valued computations from start to finish, after an 

initial sparse unitary transformation, is critically important in developing a closed-form 2D angle 

estimation algorithm for a URA similar to UCA-ESPRIT for a UCA. Unitary ESPRIT is thus 

reviewed in Section 3 after a brief overview in Section 2 of CN to $N transformations facilitated by 

the conjugate centro-symmetry of the ULA manifold. 

A reduced dimension beamspace version of Unitary ESPRIT is developed in Section 4. There are 

a number of advantages to working in beamspace: reduced computational complexity [13], decreased 

sensitivity to array imperfections [14], and lower SNR resolution thresholds [15]. In contrast to the 

Beamspace ESPRIT [16] algorithm of Xu et al, the beamspace version of Unitary ESPRIT exploits 

the real-valued nature of the beamspace manifold to formulate each of the three primary stages of 

ESPRIT in terms of real-valued computations as in Unitary ESPRIT, but in a reduced dimension 

space. Although the respective developments of Unitary ESPRIT and its beamspace counterpart 

proceed along markedly different lines, there is an interesting relationship between the two presented 

in Section 4.1. The relationship between Beamspace ESPRIT and the new beamspace version of 

Unitary ESPRIT is examined in Section 4.2. 

2D Unitary ESPRIT is developed in Section 5. In addition to the ability to handle sources 

having the same arrival angle relative to either the x-axis or the y-axis, 2D Unitary ESPRIT offers 

a number of advantages over other recently proposed ESPRITb&sed closed-form 2D angle estimation 



techniques including ACMP. First, except for the final eigenvalue decomposition of dimension equal 

to the number of sources, it is efficiently formulated in terms of real-valued computation throughout. 

Second, it is amenable to a reduced dimension beamspace implementation. In Section 6, we develop 

a beamspace version of 2D Unitary ESPRIT as an extension of the beamspace version of Unitary 

ESPRIT presented in Section 4. 

Another advantage of 2D Unitary ESPRIT over ACMP is that the former is applicable to array 

configurations that do not exhibit identical subarrays, e. g., two noncollinear ULA's. In contrast, 

A CMP requires an array of sensor triplets so that one can extract three identical subarrays from the 

overall array. 2D Unitary ESPRIT only requires that the array exhibit invariances in two distinct 

directions. In Section 7, we show how 2D Unitary ESPRIT may be simply adapted for the case of 

two orthogonal ULA's having a common phase center. A CMP is not applicable with such an array 

geometry. 

Simulation results are presented in Section 8 verifying the efficacy of 2D Unitary ESPRIT and its 

beamspace counterpart, and comparing their respective performances with the Cramer-Rao Lower 

Bound. 

2    Real-Valued Processing with a ULA 

All of the developments in this paper rely on some well known aspects of real-valued processing 

with a ULA which are quickly reviewed here [9, 10, 11, 12, 17]. Employing the center of the ULA as 

the phase reference, the array manifold is conjugate centro-symmetric. For example, if the number 

of elements comprising the ULA, N, is odd, there is a sensor located at the array center and the 

array manifold is 

V 

3LN(/J,) ^(^i>,...,e-^,l,e^...,e^(^1HT, (1) 

where \i = ^&xu with A equal to the wavelength, Ar is equal to the interelement spacing, and u 

equal to the direction cosine relative to the array axis. The conjugate centro-symmetry of a^(^) is 

mathematically stated as UN&N{P) = aÄr(/*)> wnere 

1 

UN = 
1 

€ %NxN. (2) 

1 

As the inner product between any two conjugate centro-symmetric vectors is real-valued, any matrix 

whose rows are each conjugate centro-symmetric may be employed to transform the complex-valued 



element space manifold, ajv(/j), into a real-valued manifold.    As noted by a numerous authors 

[9, 11, 12], the simplest matrices for accomplishing such are 

Q2A' = ^ 

if N is even, or 

Q 2/r+i 
1 

V2 

IK      j h< 

IK     0      jIK 

UK    0     -j UK 

(3) 

(4) 

if TV is odd. Q$ is a sparse unitary matrix that transforms a^(/i) into an N x 1 real-valued manifold, 

dj\r(/i) = Q^ajv(/i). For example, if the number of elements comprising the ULA is odd, the form 

in (4) is used and 

dN(p) = Q%3LN(H) = y/2 x   cos (-J-M » -i cos(/i), l/\/2, - sin ^—/xj ,..., sin(/i) (5) 

Let Rra; denote the N x N complex-valued element space sample covariance matrix. Since the 

transformed manifold is real-valued, the signal eigenvectors required at the front end of ESPRIT 

may be computed as the "largest" eigenvectors of TZe{Q^'R.xxQN}.    Note that in addition to 

the obvious computational reduction, taking the real part of the correlation matrix effects signal 

decorrelation [17] in the case of highly correlated or coherent sources. Alternatively, if X denotes the 

N xNs element space data matrix containing N3 snapshots as columns, the signal eigenvectors may 

be computed as the "largest" left singular vectors of the real-valued matrix Q$[X, nwX*]M2jvs, 

where 
I/va    JIN, M2Ns = -L 
T VT • (6) 

Since IIjvQiv = Q*Ni ^ follows that Q^[X,nNX*]M2JVs = V2[fte{Y},-Jm{Y}], where Y = 

Q$X. From a numerical point of view, the latter is preferable due to computational efficiency and 

robustness to dynamic range, especially if one employs an algorithm like the rank revealing URV 

decomposition [18]. 

Note that pre-multiplication of an N x 1 vector by Q^ involves very little computation. In fact, it 

involves no multiplications (the scaling by y/2 is unnecessary in computing the signal eigenvectors) 

and only N additions. In Section 4, we also consider the use of the N pt. DFT matrix, with 

appropriate scaling of the rows to make them each conjugate centro-symmetric [17], to transform 

the data into a real-valued beamspace. Although FFT's are fast, this approach ostensibly involves 

significantly more computation than the use of Q$. The utility of transforming to beamspace comes 



into play when there is a-priori information on the general angular locations of the signal arrivals, as 

in a radar application, for example. In this case, one may only apply those rows of the DFT matrix 

that form beams encompassing the sector of interest. This yields a reduced dimension beamspace 

and leads to reduced computational complexity [13, 14, 15, 17]. This is possible due to the physical 

interpretation that the rows of the DFT matrix form beams pointed to different angles. There is 

no such physical interpretation for the rows of Q$ thereby precluding the possibility to work in a 

reduced dimension space. 

Note that in this paper we do not address the problem of estimating the number of sources. We 

will assume an estimate is available via a procedure such as that described by Xu et al in [19] which 

explicitly exploits the conjugate centro-symmetry of the array manifold for a ULA. 

3    Review of Unitary ESPRIT for ULA 

As a precursor to developing an ESPRIT [1] based closed-form 2D angle estimation scheme for a 

URA, we first briefly review the recently proposed Unitary ESPRIT [9] algorithm for a uniform 

linear array (ULA) that only requires real-valued computations from start to finish after an initial 

sparse unitary transformation by Q$. As discussed above, if X denotes the N x Ns element space 

data matrix containing Ns snapshots as columns, the signal eigenvectors for Unitary ESPRIT may 

be computed as the "largest" left singular vectors of the real-valued matrix [Jle{Y},Im{Y}], 

where Y = Q$X. Assume that there are d < N signal arrivals. Asymptotically, the N x d 

real-valued matrix of signal eigenvectors, E5, is related to the real-valued N x d DOA matrix, 

D = [d(^i),d(/x2), ...,d(/id)], as Es = DT, where T is an unknown dx d real-valued matrix. 

Since Q$ is unitary, it follows that asymptotically (as the number of snapshots becomes infinitely 

large) 

Q^E5 = AT, ' (7) 

where. A = [a(/Ji),a(/*2), •••, »(/*<*)], the N x d complex-valued element space DOA matrix. For a 

ULA, A satisfies the so-called invariance property [1] 

JaA$M = J2A     where:  $„ = diag{eJ'"1, e^\ ..., e'""}, (8) 



and Ji and J2 are the (N - 1) x N matrices 

Ji    = 

1 0 0    .. .    0 0 
0 1 0    .. .    0 0 

0 0 0    .. .   1 0 

0 1 0    .. .    0 0 
0 0 1   .. .    0 0 

0 0 0    .. .    0 1 

<E &(*-V*N 
(9) 

6 &N-V*N. (10) 

Ji and J2 select the first and last N - 1 components of an N x 1 vector, respectively. Note that 

IIN-I^II/V = Ji- (11) 

From (7), we have A = QATEST
-1
 which when substituted in (8) yields the relation 

(J1Q^ES)* = J2QTVES,     where:   * = T_1$MT. (12) 

Thus, the eigenvalues of the dxd solution * to the above (N -l)xd matrix equation are ew, i = 

1,...,d , where m = ^A^u,-.   At this point, we have an ESPRIT based method for estimating 

the arrival angles of plane waves incident at a ULA for which the first stage of determining signal 

eigenvectors may be efficiently formulated in terms of real-valued computations. We now show that 

the second and third stages, computing the solution to (JjQ^Es) * = J2Q;vEs and the eigenvalues 

of \P, respectively, may also be efficiently formulated in terms of real-valued computations. 

For the second stage, note that HNQN = Qjv so ^^ ^-N-I^^QN =n7v-1J2Il2vnArQjv =JIQAT> 

where we have invoked (11). Since Es is real-valued, it follows that the system of equations in (12) 

may be expressed as 

d* = IIJV-IC*,     where:   C^ = JaQjvEs. (13) 

W12 

W22 
is a complex-valued 2d x d matrix The TLS 4 solution to (13) is * = -Wi2Wj2\ where 

containing the "smallest" right singular vectors of [C^IIjv-iCi]. To reformulate this step in terms 

of real-valued computations, we exploit the special structure of [Cx, II^-iC*] to convert it to a real- 

valued matrix of the same dimension through pre- and post-multiplication by the unitary matrices 

Qjv-i and M2d, respectively, where M2(* is defined by (6) with Ns replaced by d. This yields 

z = QjJ-i[c1iniv-1c;]M2d. (14) 

4When range{B} C range{A}, the TLS solution to AX=B is the same as the LS solution, assuming infinite 
precision. 



The fact that Z is real-valued is verified by alternatively expressing it as Z = V^[^e{G},-Im{G}], 

where G = Qjv-ici- ft is easily shown that the right singular vectors of Z are simply related to those 

of [CI,IIJV-IC;] through the unitary transformation M2d-  Specifically, if 

2d x d matrix containing the "smallest" right singular vectors of Z, then 

V12 

V22 
is a real-valued 

W12 

w22 

1 

72 
Id 
Id 

jld 
-ßä 

v12 
v22 

_L_ 

72 
V12+jV22 

V12 - jV22 
(15) 

This shows how the TLS solution * = -W^W^1 may be computed in terms of the right singular 

vectors of the real-valued matrix Z in (14). 

To formulate the final stage of ESPRIT in terms of real-valued computation, observe that 

*   =   -WuWä1 

=   -(V12+jV22)(V12-iV22)-
1 

= - ((-v^) -fr) ((-v^v^1) +jidy
1 

=   /(-Vx.V-1). (16) 

where f(x) denotes the linear fractional transformation 

x - j 
/(*) = x+j 

(17) 

It follows from the Cay ley-Hamilton theorem, that if u is an eigenvalue of the real-valued matrix 

-V12VJ21, then f{u) - -(u-j)/(u+j) is an eigenvalue of -W^W^1 and the associated eigen- 

vectors are the same. This shows how the desired complex eigenvalues of * = -Wi2Wj2 may be 

determined in terms of the eigenvalues of a real-valued matrix. 

Now, asymptotically, the eigenvalues of * = -W^W^1 are eJW, i = l,...,d. Let a;,- be an 

eigenvalue of -V^V^1. It follows from the above development that eJW = -(w; - j)/{u>i + j). 

Solving for u;,- yields 

This reveals a spatial frequency warping identical to the temporal frequency warping incurred in 

designing a digital filter from an analog filter via the bilinear transformation! Consider d = A/2 

so that (i = ~/\xu = iru. In this case, there is a one-to-one mapping between -1 < m < 1, 

corresponding to the range of possible values for a direction cosine, and -00 < w,- < 00. Unitary 

ESPRIT is summarized below. 



Summary of Unitary ESPRIT 

1. Compute Es via the d' "largest" left singular vectors of [7?.e{Y},lm{Y}], where Y = 

2. Compute 
V12 

V22 

where G = (Q# .1J1Qjv)Es 

via the d "smallest" right singular vectors of Z = [Jle{G}, —Jm{G}], 

3. Compute w,-, i = 1, ...,d, as the eigenvalues of the d x d real-valued matrix — V^V^1. 

4. Compute the spatial frequency estimates as //,- = 2tan-1(u;{), i = l,...,d. 

4    DFT Beamspace ESPRIT for ULA 

As an alternative to Unitary ESPRIT, we here develop a version of ESPRIT for a ULA that works in 

DFT beamspace. Similar to Unitary ESPRIT, and in contrast to the Beamspace ESPRIT algorithm 

of Xu et al [16], the algorithm to be developed, referred to as DFT Beams-pace ESPRIT, involves 

only real-valued computation from start to finish after the initial transformation to beamspace. 

Reduced dimension processing in beamspace is facilitated when one has a-priori information on 

the general angular locations of the signal arrivals, as in a radar application, for example. In this 

case, one may only apply those rows of the DFT matrix that form beams encompassing the sector 

of interest, thereby yielding reduced computational complexity. If there is no a-priori information, 

one may examine the DFT spectrum and apply the algorithm to be developed to a small set of 

DFT values around each spectral peak above a particular threshold. In a more general setting, one 

may simply apply DFT Beamspace ESPRIT via parallel processing to each of a number of sets of 

successive DFT values corresponding to overlapped sectors. Note, though, that in the development 

to follow, we will employ all N DFT beams for the sake of notational simplicity and so that we can 

relate DFT Beamspace ESPRIT to Unitary ESPRIT. 

Applying the conjugate centro-symmetrized version of the m — th row of the N pt. DFT matrix 

6vH = As-rir w; l,e" -''m$,e- ■j2mi 

■ ,e 
-j(JV-l)m# (19) 

the m — th component of the DFT beamspace manifold is 

sin [f [fJ,-mN 
bm(/i) = w^aiV(/i) 

sin 

 I (20) 



Note that we can perform a front end FFT (effectively implementing the Vandermonde form of 

the rows of the DFT matrix) and achieve conjugate symmetrized beamforming a-posteriori through 

simple scaling of the DFT values (see (19)). The iV x 1 real-valued beamspace manifold is then 

bff(n) = W%3LN{fi) = [bo(ii), 6i(/x),... , &JV-I (/*)]' (21) 

where W$ denotes the conjugate centro-symmetrized N pt. DFT matrix whose rows are given by 

(19). 

Comparing bm+1 (/i) = ^1(^(1+1)1)] with bM in (20)'the numerator of WAO
is observed 

to be the negative of that of bm(p). Thus, two successive components of the beamspace manifold 

are related as 

sm 
2TT\ 

2 l" ~ mU) 
bm(n) + sin 

,2TT 
bm+i{/i) - 0. (22) 

Trigonometric manipulations lead to 

tan (|)  {cos (m^j bm{jj,) + cos ((m+1)-^) WO*)} = sin (m^) U/O+sm (W1)^) WiM- 

(23) 

Compiling all N - 1 equations in vector form yields an invariance relationship for the beamspace 

manifold similar to that for the element space manifold: 

tan (0 rxb(/x) = rab(f0 (24) 

where 

Ti = 

1    cos U 

0   cos   £ 

0 

cos (f) 

0 

0 

0 

0 

0 

cos ((N-2)f)   cos ((N-l)i) _ 

e &N-v*N       (25) 

To = 

0   sinf^ 

0   sin(i)    sin(f) 
0 

0 

0 

0 
€ &N-V*N (26) 

0        0 0 ...    sin((N-2)$)   sin ((N-l)f) 

With d sources, the beamspace DOA matrix is B = [b(/ii),b(/i2),...,b(^)].  The beamspace 

manifold relation in (24) translates into the beamspace DOA matrix relation 

r!BOM = r2B,   where: fi„ = diag {tan \^-j ,..., tan (^j J . (27) 
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Now, the appropriate signal eigenvectors for the algorithm presently under development may be 

computed as the "largest" left singular vectors of the real-valued matrix W$[X, II/VX*]M2JVS = 

y/2[R.e{Y}i —Jm{Y}], where Y = W$X. Asymptotically, the N x d matrix of signal eigenvectors, 

Es, satisfies Es = BT, where T is an unknown d x d real-valued matrix. Substituting B = EsT-1 

into (27) yields 

r!Es* = r2Es,     where:   # = T_11^T. (28) 

Thus, the eigenvalues of the d x d solution * to the (N — 1) x d matrix equation above are 

tan(/*;/2), i = l,...,d. The algorithm based on this development, DFT Beamspace ESPRIT, is 

summarized below. 

Summary of DFT Beamspace ESPRIT 

1. Compute Es via the d "largest" left singular vectors of [Re{Y}, Jm{Y}], where Y = 

W#X. 

2. Compute * as the solution to the (N - 1) x d matrix equation (I\Es) * = (r2E5). 

3. Compute Ui, i = 1,..., d, as the eigenvalues of the d x d real-valued matrix *&. 

4. Compute spatial frequency estimates as m = 2tan-1(u;;), i — 1, ...,d. 

4.1     Relationship Between Unitary ESPRIT and DFT Beamspace ES- 
PRIT 

To relate Unitary ESPRIT and DFT Beamspace ESPRIT, consider the following sequence of ma- 

nipulations: 

bN(ii) = W§aN(n) = WNQNQNMP) = W#Q;vd,v(/i). (29) 

Substituting (29) into (24), we find that d^(^), defined in (5), satisfies a relation similar to (24): 

tan f -J YidiV(/u) = T2djv(^) 

where Ti and T2 are the (JV — 1) x d real-valued matrices 

Ti^WJjQtf    and    T2 = T2W%QN. 

(30) 

(31) 

Thus, the second stage of the Unitary ESPRIT algorithm summarized at the end of Section 2 

could be alternatively posed as finding *& as the solution to the (N — 1) x d matrix equation 
r v121 

(TiEs)1^ = T2Es- Employing the TLS method of solution, one would compute    ^r       via the 
V 22 

11 



d "smallest" right singular vectors of the real-valued matrix [YiEs, Y2Es], and the rest of the 

algorithm would be the same. Note, though, that Yi and Y2 are not sparse like either Ji and J2 

or Ti and T2. For example, for N = 4 elements, 

T1 = 

1   3   -1 
-1   1   -1 
-1   1      1 

and     To = 

-1 
-1 

1 

1    -1   -1 
1      1   -3 

-1      1   -3 

Ti 
cos &r2 = sm 

This concurs with the previous assertion that because there is no physical interpretation of the rows 

of Q$ in terms of forming beams pointed to different angles, one cannot work with a subset of the 

rows of Q$. 

Again, the utility of DFT Beamspace ESPRIT over Unitary ESPRIT is in scenarios where one 

employs a subset of the rows of W$, the number of which depends on the width of the sector 

of interest and may be substantially less than N, to transform from element space to beamspace. 

Employing the appropriate subblocks of T1 and T2 as selection matrices, the algorithm is the same 

as that summarized previously except for the reduced dimensionality. For example, if one employed 

three successive rows of W$ associated with the DFT bin indices, m, m +1, and m + 2, respectively, 

to form three beams in estimating the angles of two closely-spaced signal arrivals, as in the low-angle 

radar tracking scheme described by Zoltowski and Lee [20], the appropriate 3x2 selection matrices 

are 

(m§)    cosf(m+l)^ 0 

0 cos ((m+l)$)    cos ((m 4- 2)#) _ 

In this case, one would compute the d = 2 "largest" eigenvectors of a 3 x 3 real-valued matrix, solve 

a 2 x 2 real-valued system of equations, and compute the 2 eigenvalues of the resulting 2x2 matrix 

solution. 

4.2     Relationship Between DFT Beamspace ESPRIT and Beamspace 
ESPRIT 

■s 

In [16], Xu etal develop a beamspace version of ESPRIT that is applicable whenever the Nb x N 

beamforming matrix, FH, exhibits an invariance property similar to that exhibited by the element 

space DO A matrix in (8). Here Nb denotes the number of beams. That is, if F satisfies JiF0 = 

J2F, where 0 is an Nb x Nb diagonal matrix, then Xu etal provide prescriptions for constructing 

(Nb - 1) x Nb matrices X^ and S2 satisfying eJ'"Sib(^) = S2b(/i), where b(/i) is the Nb x 1 

beamspace manifold b(/x) = Fi7a(/i). This facilitates the use of ESPRIT in beamspace ultimately 

(mff)   sm({m+l)%) 0 

0 sin((m+l)^)    sin((m + 2): 
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yielding as eigenvalues the quantities eJß\ i = 1,..., d as in standard ESPRIT, except via processing 

in a reduced dimensional space. 

Xu etal note that a beamforming matrix FH composed of Nb rows of the N pt. DFT matrix 

satisfies a relationship of the form JiFQ = J2F thereby facilitating the use of Beamspace ESPRIT. 

To see the relationship between DFT Beamspace ESPRIT and Beamspace ESPRIT, substitute the 

expression for tan(/f/2) in (18) into the invariance relationship for b(/i) in (24). This yields, after 

some manipulation, 

(e^ - l^bOO = j(e^ + l)r2b(/i).    =»    e^(rx - jT2)b(/i) = (rx + jT2)b(fi). 

Thus, in the case where FH is composed of conjugate centro-symmetrized rows of the N pt. DFT 

matrix, the appropriate matrices Si and £2 required in the execution of Beamspace ESPRIT are 

Sx = Tt— jT2 and E2 = X^. For this case then, this provides an alternative method for constructing 

Sa and S2 as opposed to the method prescribed by Xu et al in [16] which involves a singular value 

decomposition. 

Note, though, that even if through centro-symmetrization one determines the signal eigenvectors 

via real-valued computation as discussed previously, the second and third stages of Beamspace 

ESPRIT require complex-valued computation ultimately yielding as eigenvalues eJMi, i = l,...,d. 

Aside from the increased computation complexity relative to DFT Beamspace ESPRIT, this does 

not facilitate an extension for the URA yielding automatically paired azimuth and elevation angle 

estimates. 

5    2D Unitary ESPRIT for URA 

We now-develop an extension of Unitary ESPRIT'for a uniform rectangular array (URA) of N x M 

elements lying in the x-y plane and equi-spaced by &x in the x direction and Ay in the y direction. 

In addition to \i = ^A^u, where u is the direction cosine variable relative to the x-axis, we define 

the spatial frequency variable v = x^vu> where v is the direction cosine variable relative to the 

y-axis. 

In this development, in addition to representing the array manifold as an NM x 1 vector, 

denoted a(^f, v), it will be convenient to represent it as an N x M matrix, denoted A(fJ., v), as well. 

The two forms are related through the operators vec(-) and mat(-) as a(/i, v) = vec(A(fJ,,v)) and 

A{p,v) = moi(a(/i, v)).   The operator uec(-) maps anJVxM matrix to an NM x 1 vector by 

13 



stacking the columns of the matrix. The operator mat(-) performs the inverse mapping, mapping 

an NM x 1 vector into an iV x M matrix such that that mat(vec(X)) = X. An important property 

of the vec operator that will prove useful throughout the development is 

vec(ABC) = (CT <g> A) vec(B), (32) 

where ® denotes the Kronecker matrix product. 

In matrix form, the array manifold may be expressed as 

A(ii,!/) = 3LN(ii)a^{u), (33) 

where aM(j/) is defined by (1) with N replaced by M and \i replaced by v. Recall that ajv(/x) 

satisfies ejßJia.N(/j,) = J2ajv(/z), where Ji and J2 are the (N - 1) x N selection matrices defined in 

(9) and (10), respectively. It follows that A{ß, v) in (33) satisfies the invariance relation 

e^J1A(^u) = J2A(fi,u). (34) 

Using the property of the vec operator in (32), we find that the NM x 1 array manifold in vector 

form satisfies 

e^JMla(^f/) = JM2a(Ai,z/) (35) 

where JMl and Jß2 are the (iV - \)M x NM selection matrices: 

J„i = IM ® Ji    and    3ß2 =IM® 
J2- (36) 

This represents (N - \)M equations obtained by comparing the respective phases of each adjacent 

pair of elements parallel to the x-axis. 

Similarly, to set up the invariance relation relative to the y-axis, observe that 

e>"A(w)3l=A{w)3l, (37) 

where the (M — l)xM matrices J3 and J4 select the first and last M — 1 components of an M x 1 

vector, respectively, such that ej"J3a.M{v) = J4&M(V)- J3 and J4 are defined similar to (9) and 

(10), except that they are (M - 1) x M. Using the property of the vec operator in (32), we find 

that the NM x 1 array manifold in vector form satisfies the following invariance with respect to v. 

e3V 3vl&(fi, v) = J„2a(/J, u), (38) 
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where J„i and J„2 are the N(M — 1) x NM selection matrices: 

Jj/i = J3 ® Iiv    and    JI,2 = J4®IJV- (39) 

This represents all possible N(M — 1) equations obtained by comparing the respective phases of 

each adjacent pair of elements parallel to the y-axis. 

Since ajv(/j) and &M{V) are both conjugate centro-symmetric, TLNA(H, V)HM = A*((i,v). Ap- 

plying the vec operator to both sides of this relation and using the property in (32), we obtain 

(UM ® IIjv)a(/j, v) = a*(/j, u). Recognizing that IIM ®TLN = TLNM, it follows that a(/x, v) is con- 

jugate centro-symmetric. We may thus pre-multiply by the sparse unitary matrix QMN to obtain 

the NM x 1 real-valued manifold 

d(/x,I/) = Q^a(/x,i/). (40) 

Let X be an NM x iVs matrix composed of Ns snapshots of data as columns. Viewing the 

array output at a given snapshot as a matrix, we effectively apply the vec operator to form an 

NM x 1 vector and place it as a column of X. Similar to the ID case, the NM x d matrix of 

signal eigenvectors, Es, may be computed as the "largest" left singular vectors of the real-valued 

matrix Q%M[X,nNMX*]M2N, = y/2[Re{Y},-Im{Y}], where Y = Q#MX. Asymptotically, 

Es, is related to the real-valued NM x d DOA matrix, D = [d(^, z/i),d(/z2, u2), ...,d(fid,Vd)], as 

Es = DT, where T is an unknown d x d real-valued matrix. Since QJVM 
1S unitary, it follows that 

asymptotically 

QJVMES = AT, (41) 

where A = [a(/Ji, vi), a(/j2, ^2), ■■■, a(/Jd, */<*)], the NM x d complex-valued element space DOA ma- 

trix. From (35), it follows that 

JMlA*„ = J„2A,    where:  $„ = diag{e^\ e^\ ..., e?»*}. (42) 

Substituting A = QJVA/EST
-1
 into (42) yields the relation 

(JMiQiVMEs)^ = J^QjvMEs,    where:  *M = T"X$MT. (43) 

Continuing the development similar to the ID case, note that JMl and Jß2 satisfy a property 

similar to (11): H.(N-\)M^U.2^-NM = J/ii- Invoking this relationship and the property UNMQNM = 
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Q'NM, we have U^.^MJ^QNM =11(N-I)MJ^TINM^NMQNM =JMiQiVM- Since Es is real-valued, 

it follows that the system of equations in (43) may be expressed as 

Let 
U12 

U22 

matrix 

ClllVli = n{N-1)MCl1,    where:  C^ = JMlQ^MEs- (44) 

be the 2dxd matrix containing the "smallest" right5 singular vectors of the real-valued 

=     Q(AT-l)M[CMl:n(iV-l)MC*1]M2Ii 

=   ^e{G,}:-Im{GM}],   where: GM = (Q^.1)MJ^IQ^M)E5. 

(45) 

It follows from previous developments that the d x d real-valued matrix -Ui2U22 may be spectrally 

decomposed as 

UnU^1 = T-^T,     where: «M = diag {tan (^j ,..., tan (^) } (46) 

A similar development relative to estimating i/t-, i = l,...,d, ultimately yields the following 

denote the 2d x d matrix containing the "smallest" right singular vectors of the result. Let     _, 
»22 

real-valued matrix 

Z„   =   Q^(Af-i)[Cvi:n(jv-i)AfC^]M2d 

=   V2[Re{Gu}\ - lm{Gu}},   where: G„ = (Q#(M-I)J,IQJVM)ES 

(47) 

and C„i = J^IQJVWES- The </xd real-valued matrix -V12VM may be spectrally decomposed as 

_ V12V2-2
X = T-^.T,     where: fl„ = diag {tan (y) ,..., tan (y J j. (48) 

Nowj to achieve automatic pairing of /x and z/ spatial frequencies, the following critical observa- 

tions are made. First, the d x d matrix of eigenvectors T in the spectral decomposition of -U^U^ 

in (46) is the same as that appearing in the spectral decomposition of -V^V^1 in (48). Second, this 

is the same real-valued matrix T appearing in (41) which is unique as long as no two sources have 

exactly the same azimuth and elevation angles. Finally, -U^U^1 and -V^V^1 are real-valued, 

as are the diagonal matrices £lß and $V These observations lead to the main result, namely 

UuUj.,1 +;(-Vi2V-2
1) = T-1 {0„ +Ä}T. (49) 

5We depart from the convention of using U to denote the matrix of left singular vectors here since the right 
singular vectors of Z„ are associated with the estimation of u,-, i = 1, ...,d. V is used to denote the matrix of right 
singular vectors of Z„ since these are associated with the estimation of vt, i = l,...,d. 
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Thus, the eigenvalues of -U^U^1 +j(-Vi2V
22

1) are tan(/z;/2) + j tan(i/,-/2), i - l,...,d. The 

algorithm based on this development is referred to as 2D Unitary ESPRIT and is summarized 

below. 

Summary of 2D Unitary ESPRIT 

1. Compute Es via the d "largest" left singular vectors of [Re{Y},Im{Y}], where Y = 

2. Compute 
U12 

U22 

via      the      d      "smallest"      right      singular      vectors      of 

Zß = [Re{Gß},-lm{Gß}}, where Gß = (QfN_1)MJßlQNM)Es- 

3. Compute    _,12    via the d "smallest" right singular vectors of Z„ = [7£e{G„}, — Jm{G„}], 
L     22 J 

where G^ = (Q^(M.1)JI/1Q^JW)ES. 

4. Compute A,-, i = 1, ...,d, as the eigenvalues of the d x J matrix -U^U^1 + j(—V^V^1). 

5. Compute spatial frequency estimates: //,- = 2tan_1(7?.e{At}), ^- = 2tan_1(Jm{A,}), i = 

l,...,d. 

Note that the maximum number of sources 2D Unitary ESPRIT can handle is minimum{M(iV — 

1),N(M - 1)}, assuming that at least d + 1 snapshots are available. If only a single snapshot is 

available, one can extract d + 1 or more identical rectangular subarrays out of the overall array to 

get the effect of multiple snapshots, thereby decreasing the maximum number of sources that can 

be handled. 

5.1     2D Unitary ESPRIT vs. ACMP 

Note that 2D Unitary ESPRIT provides closed-form, automatically paired 2D angle estimates as 

long as the spatial frequency coordinate pairs (/x,-, Vi),i — 1,..., d, are distinct. That is, no additional 

effort is needed if a pair or more of sources have the same m or V{. This is in contrast to the 

Algebraically Coupled Matrix Pencil (ACMP) method of van der Veen et al which also provides 

closed-form, automatically paired 2D angle estimates but breaks down if two sources have either 

the same \i or v spatial frequency coordinate. Note that in order to avoid the same problem as 

ACMP in this regard, one must solve the complex eigenvalue problem signified by (49). If one 

attempts to compute the real eigenvalues of -U^U^1 alone, for example, there is a degeneracy in 

the eigenvectors when two sources have the same fi spatial frequency coordinate thereby precluding 

the ability to determine T. 
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Note that Vanpoucke et al propose a form of subarray averaging to overcome the problem of 

ACMP occurring when two sources have either the same fj, or v spatial frequency coordinate, but 

this decreases the maximum number of sources that can be handled and increases the computational 

complexity significantly. 

Note that ACMP requires an array of sensor triplets so that one can extract three identical 

subarrays from the overall array. 2D Unitary ESPRIT only requires that the array exhibit invari- 

ances in two distinct directions, as would be the case with two uniform linear arrays (ULA's), for 

example. In Section 7, we show how 2D Unitary ESPRIT may be simply adapted for the case of 

two orthogonal ULA's having a common phase center. ACMP is not applicable with such an array 

geometry. Another advantage of 2D Unitary ESPRIT over ACMP is that 2D Unitary ESPRIT is 

efficiently formulated in terms of real-valued computations, except for the final d x d eigenvalue 

decomposition, while ACMP requires complex-valued computations throughout. 

6     2D DFT Beamspace ESPRIT for URA 

With 2D DFT beamforming (and attendant conjugate centro-symmetrization through simple scal- 

ing), the components of the beamspace array manifold are separable real-valued patterns of the 

form .     . . ,        ,     . N, 
sing  „-m»     sinf  , - ng) 

fc»,.(e.") = —m OT-   .  r, /—~zw■ (50> 
sin j(^-mf)] Sin[l(,-nff)]' 

Note that the matrix form of the beamspace manifold, denoted B(p, v), is related to the matrix form 

of the array manifold via a 2D DFT as B(n, v) = W%A(n, v)WM, where W# denotes the conjugate 

centro-symmetrized N pt. DFT matrix whose rows are given by (19) and W^ is defined similarly 

with N replaced by M. Substituting the form of A(p,v) in (33) into B{n,v) = W%A(n,v)WM 

yields 

B{^u) = bN{ß)bJi(u)i (51) 

where bN((j,) is defined in (21) and hM{v) is defined similarly with N replaced by M and \i replaced 

by v. Given that bjv(^) satisfies the invariance relationship in (24), it follows that B((i, v) satisfies 

tan (|) YlB{li,v) = Y2B{^v). (52) 
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where I\ and T2 are defined in (25) and (26). Using the property of the vec operator in (32), we 

find that the NM x 1 beamspace manifold in vector form, b(fi,u) = vec[B(fi,i/)], satisfies 

tan (£) IVb(/z, u) = Tß2h{n, v), (53) 

where TßX and T/i2 are the (N - l)M x NM matrices: 

IVi = Ijif <8> Ti     and    rM2 = IM<8>r2. (54) 

(53) represents (N -1)M equations obtained by comparing each pair of adjacent beams having the 

same fj, pointing angle coordinate. 

Similarly, the ID beamspace manifold bjv/(v) satisfies tan(i//2) T3bM(z/) = r4b]^(i/), where T3 

and T4 are defined similar to (25) and (26) with N replaced by M such that they are (M -1) x M. 

It follows that 

tan (|) B{^u)Tl = B{^u)Tl. (55) 

Again, using the vec operator, we find that b(fl, v) satisfies 

tan(0 rvlb(/i,p) = rv2b(/x,i/), (56) 

where TvX and Tv2 are the N(M - 1) x NM matrices: 

Tul = T3 0 Ijv    and    T^ = T4 ® Ijv- (57) 

(56) represents N(M — 1) equations obtained by comparing each pair of adjacent beams having the 

same v pointing angle coordinate. 

Consider the NM x d real-valued beamspace DOA matrix B = [b(jui, ut), ...,b(p,d, Vd)]. (53) 

dictates .-that B satisfies 

rMlBßM = r^B (58) 

where Clß is defined in (46). In turn, (56) dictates that B satisfies 

r.iBfi, = r„2B (59) 

where Clv is defined in (48). 

Now, viewing the array output at a given snapshot as an N x M matrix, we compute a 2D 

DFT, apply the vec operator, and place the resulting NM x 1 vector as a column of an NM x Ns 

data matrix Y.   Recall that X denotes the NM x Ns data matrix prior to the 2D DFT. Using 
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the vec operator, the relationship between Y and X may be expressed as Y = (W^- <g> W$)X. 

The appropriate NM x d matrix of signal eigenvectors, Es, for the algorithm presently under 

development may be computed as the d "largest" left singular vectors of the real-valued matrix 

[Jle{Y},Tm{Y}}. Asymptotically, Es = BT, where T is an unknown d x d real-valued matrix. 

Substituting B = EST_1 into (58) and (59) yields the signal eigenvector relations 

rMlEs*M = Tß2Es   where:   Vß = T^fi/T (60) 

rvlEs9u = I\,2Es   where:   ¥„ = T^O/T. (61) 

As in the extension of Unitary ESPRIT for a URA, automatic pairing of y. and v spatial frequency 

estimates is facilitated by the fact that all of the quantities in (60) and (61) are real-valued. Thus, 

*M + i*" may be spectrally decomposed as 

^ß+j^, = T-1{Qß+jÜt/}T (62) 

The algorithm based on this development, 2D DFT Beamspace ESPRIT, is summarized below. 

Summary of 2D DFT Beams-pace ESPRIT 

1. Compute a 2D DFT of the N x M matrix of array outputs at each snapshot (scale for 
conjugate centro-symmetrization), apply the vec operator, and place the result as a column 

of Y. 

2. Compute Es via the d "largest" left singular vectors of [Jle{Y},lm{Y}]. 

3. Compute ^fß as the solution to the (N - l)M x d matrix equation rMiEs*M = Fß2Es- 

4. Compute \P„ as the solution to the N(M - 1) x d matrix equation T^Es^u = T^Es- 

5. Compute A,-, i = 1,..., d, as the eigenvalues of the d x d matrix *M + ;'*„. 

6. Compute spatial frequency estimates: m = 2tan_1(7?.e{At}), i/,- = 2tan_1(Jm{At}), i = 

l,...,d. 

6.1     Reduced Dimension Example 

As in the ID case, the utility of 2D DFT Beamspace ESPRIT over 2D Unitary ESPRIT is in 

scenarios where one works with a subset of 2D DFT beams that encompass some volume of space 

of interest. In fact, the ability to work in a reduced dimension beamspace is even of more value in 

the case of a URA since the total number of elements may be quite high. As an example, consider 

a scenario, similar to the low-angle radar tracking problem, in which we desire to estimate the 
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respective azimuth and elevation angles of each of two closely-spaced sources. To this end, we form 

four 2D DFT beams steered to the spatial frequency coordinate pairs (m|^,n||), ((m + l)^,n||), 

(m^, (n + l)ff), and ((m + 1)^, (n + l)|f), respectively, as depicted in Figure 3. Recalling that 

the components of the beamspace manifold have the form in (50), the 4x1 beamspace manifold 

for this case is 

b(/i, v) = [bm,n(n, u) , &m+i,n(/*, *>) , &m,n+l(A*i ") i &m+l,n+l(A*, ^)]     • (63) 

In this case, Es is 4 x 2 and may be constructed from the two "largest" eigenvectors of the real 

part of the 4x4 matrix formed from the inter-beam correlations. The 2x2 matrices \£ß and 

*BU would be computed as the corresponding solutions to the 4x2 respective matrix equations 

IViEs#M = rM2Es and TulEsV,, = r„2Es, where 

r„i = 

rM2 — 

r„i = 

rv2 

cos (mjj} 

0 

sin (m^) 

0 

cos (n§) 

0 

sin (n^) 

0 

cos 

sin 

(("»+1)$) 
0 

0 

0 0 

0 

cos (n^j 

0 

cos 

cos (mjj)    cos ((m+l)j0 _ 

0 0 

sin (m^)    sin ((m+1)^) _ 

cos ((n+l)§) _ 0 

smltn+1)^) 

0 

0 

sin(n^) '   0 sin((n+l)£) 

In the final stage of the algorithm, tan(^/2) + j tan(j/,-/2), z = 1,2, would be computed as the 

eigenvalues of a 2 x 2 matrix. 

6.2    Comparison with UCA-ESPRIT 

As discussed in Section 1, UCA-ESPRIT [7, S] is a recently developed closed-form 2D angle esti- 

mation scheme for a uniform circular array (UCA). As indicated in Figure 2, in the final stage of 

UCA-ESPRIT, the i-th eigenvalue of a matrix has the form Uj + jvi, where u,- and u; are the direc- 

tion cosines of the i-th source relative to the x and y axes, respectively, assuming the UCA to lie in 

the x-y plane. This is in contrast to 2D DFT Beamspace ESPRIT where there is spatial frequency 

warping such that the final eigenvalues are of the form tan(/f;/2)+j tan(j/,-/2), i — 1,..., d. A notable 

difference between the development of UCA-ESPRIT and that of 2D DFT Beamspace ESPRIT is 

that in the former the sampled aperture pattern was assumed to be approximately equal to the 
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continuous aperture pattern [7, 8], while no such approximation was made in the latter case. We . 

here briefly show that if a similar approximation is made in the development of 2D DFT Beamspace 

ESPRIT, the final eigenvalues yielded by the resulting approximate 2D DFT Beamspace ESPRIT 

algorithm are identical in form to those yielded by UCA-ESPRIT. 

Aside from averting spatial frequency warping, this form of the eigenvalue has a nice geometrical 

interpretation in that it may be expressed as u{ + jv{ = sin0t- e^S where & and 0,- are the azimuth 

and elevation angles of the i-th source, respectively. This is illustrated in Figure 2. 0t- varies between 

0° and 90° so that sin0t- varies between 0 and 1, while fc varies between 0° and 360°. Thus, one can 

immediately glean the azimuth angle of the i-th source from the polar angle of the i-th eigenvalue. 

The corresponding elevation angle is the arcsine of the magnitude of the i-th eigenvalue. If the 

eigenvalue is at the origin, the source is at boresite. If the eigenvalue is on the unit circle, the 

source is in the same plane as the array. Also, we may use the fact that an eigenvalue should be 

located on or within the unit circle to screen out false alarms. 

Assume the interelement spacing in either direction to be less than or equal to a half-wavelength. 
ill     L    i     \    sintf ("-m¥)] sin[f ("-n&)l In this case, in the vicinity of the mainlobe and first few sidelobes, om,n(/z, v) «     \r_m^\     —\/u_n2*\    ■ 

Substituting \i = ^f Axu and v = ^-Ayv, define 

sin[f(fA,u-mf)]si.[f(yA8,-nf)] 

*~M =       i($*,u-m$) *(**.-»»)      ' '    ' 
This is the far field pattern that would result with a continuous rectangular aperture of dimension 

NAX by MAy. The superscript a denotes approximate pattern. Similar to the development for the 

sampled aperture pattern, observe that ba
mn{u,v) and b^+hn(u,v) are related as 

(^ A,« - m%) %,B(«, v) + (^ A„« - (m + l)%) %+1>, v) = 0, (65) 

(66) 

which may be rearranged as 

« {%>,«) + £+!,»(«>»)} = j^-{mba
mJu,v) + (m + l)ba

m+1Ju,v)}. 

Similarly, ba
mn{u,v) and ba

m^n+1(u,v) are related as 

i^Ayv - n|) b°mJu,v) + (^Ayv - (n + 1)|) £tn+1(«, t,) = 0, (67) 

which may be rearranged as 

v {£>,«) + ba
m<n+l(u,v)} = -^{nba

mJu,v) + (n + l)ba
m^(u,v)}. (68) 

1y 
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For the sake of brevity, consider again the case of four 2D DFT beams to estimate the respective 

azimuth and elevation angles of each of two closely-spaced sources. In this case, the 4x1 beamspace 
r ]T 

manifold is ha{u,v) =  \b^in(u,v), ba
m+hn(u,v), ba^n+l{u,v), ba

m+hn+l(u,v)\   .   Given the relations 

above, it is readily deduced that uTa
ulb

a{u7v) = Ta
u2b

a{u,v) and vTa
vlb

a(u,v) = Ta
v2b

a(u,v), where 

■pa       
1 ul — 

■pa 
L vl 

1 1 0 0 ' 
0 0 1 1 

1 0 1 0 " 
0 1 0 1 

and    Ta
u2 

A 

NAX 

A 
and    r", = 

m   (m+1)    0        0 
0        0m   (m+1) 

n   0    (n+1)        0 
On       0        (n+1) 

Asymptotically, the 4 x 2 real-valued matrix of signal eigenvectors, Es, satisfies Es = BT, where 

B = [b(wi,ui),b(u2,U2)] and T is an unknown 2 x 2 real-valued matrix. Expediting the development, 

it follows that r^E5*u = Ta
u2Es, where #u = T-xfiuT and fiu = diag{ui,u2}. Also, I^Es*« = 

r^2Es, where *„ = T-1ß„T and Qv = diag{u1,u2}- Thus, ux + jvi and u2 + jv2 are the two 

eigenvalues of \PU + j^v. 

The point is that with d < A/2 the sampled aperture pattern is very well approximated by the 

continuous aperture pattern in the vicinity of the mainlobe and first few sidelobes. Thus, if only a 

relatively small number of beams is selected, the modified version of 2D DFT Beamspace ESPRIT 

sketched above yields the direction cosines directly without spatial warping. 

T    2D DFT Beamspace ESPRIT for Cross Array 

Consider an array composed of an N element ULA aligned with the x-axis and an M element ULA 

aligned with the y-axis. The center of each leg is assumed to be at the origin so that they have 

a common phase center. To ease the development and for the sake of notational simplicity, we 

will assume M and N are both even so that the two legs do not share a common element at the 

origin. However, with slight modification, the adaptation of 2D DFT Beamspace ESPRIT for a 

cross array developed subsequently may also be employed when M and/or N are odd. Also, due to 

space limitations, we here only present the appropriate adaptation of 2D DFT Beamspace ESPRIT. 

2D Unitary ESPRIT may also be suitably adapted but would require a slightly more complicated 

development. 

Let x(£) and y(£) be the N x 1 and Mxl snapshot vectors output by the two respective legs 

at time L The (N + M) x 1 composite snapshot vector is formed as z{€) = 
x(*) 

y(4 
These are 
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stacked as the columns of an (vV + M) x Ns matrix Z. The array manifold for such an array is 

a(^,i/) 
aN(n) 

(69) 

where a.pj(p) and B.M{V) are each conjugate centro-symmetric as defined previously. Note that it 

is only because the two legs have a common phase center that we are able to express the array 

manifold in this form. If this is not the case, as with an L-shaped array, for example, either the 

upper N x 1 or lower Mxl block of a(/x, v) would not be conjugate centro-symmetric and it would 

not be possible to convert a(/j, v) to a real-valued manifold through a simple matrix transformation. 

Transformation to beamspace is accomplished via 

WN     O 

o    WM 
(70) 

bN(/j.) 

bM(v) 
(71) 

The beamspace manifold is 

b(/i, v) = F"a(/i, u) = 

where b^(fi) and b^(i/) are as defined previously. In practice, transformation to beamspace is 

accomplished via an N pt. DFT of the x-axis leg and an M pt. DFT of the y-axis leg, with 

a-posteriori conjugate centro-symmetrization via simple scaling of each DFT value. 

Let Es be the (JV + M) x d matrix of signal eigenvectors computed as the d "largest" left sin- 

gular vectors of [R,e{H}, Jm{H}], where H = F^Z. (Alternatively, Es may be determined as the d 

"largest" eigenvectors of Ke{FHZZHF}.) Asymptotically, Es = BT, where B = [ty/n, ^i),-,b(/^,^)] 

and T is an unknown d x d real-valued matrix. Define the following matrices: 

Aßl = [T^ I ^OJ }N-I   and   Aß2 = [T^:.  OJ}N-I 

A„i = [O^ : JjJ }M-I   and   A„2 = [O^ : Tß }M-I 

(72) 

(73) 

where T3 and T4 are defined similar to (25) and (26) with N replaced by M. The following signal 

eigenvector relations follow quite readily from previous developments: 

A^Es^ = A^Es   where:   ¥„ = T^n/T 

A„iEs¥„ = A,*Es   where:   #„ = T^T. 

(74) 

(75) 

As with 2D DFT Beamspace ESPRIT, automatic pairing of JJL and v spatial frequency estimates is 

facilitated by the fact that all of the quantities in (74) and (75) are real-valued. Thus, \&M + j~9u 
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may be spectrally decomposed as 

*M + j*, = T-1{fiM+Ä}T (76) 

The algorithm based on these observations is similar in form to 2D DFT Beamspace ESPRIT for a 

URA. 

8    Simulations 

Simulations were conducted employing an 8 x 8 URA (i. e. , N = M = 8) with Ax = Ay = A/2. The 

source scenario consisted of d = 3 equi-powered, uncorrelated sources located at (ui,Vi) = (0,0), 

(u2, v2) = (1/8,0), and (u3, v3) = (0,1/8), where m and u; are the direction cosines of the i-th source 

relative to the x and y axes, respectively. Sources 1 and 2 were separated by a half-beamwidth, 

i. e., half the Rayleigh resolution limit, as were sources 2 and 3. Sources 1 and 2 have the same v 

coordinate, while sources 2 and 3 have the same u coordinate. If the ACMP algorithm of van der 

Veen et al was applied in this scenario, it would provide a faulty estimate of the number of sources 

as well as faulty source direction estimates. 

A given trial run at a given SNR level (per source per element) involved Ns = 64 snapshots. 

The noise was i.i.d. from element to element and from snapshot to snapshot. RMS error defined as 

RMSEi = ^E{{üi - uif} + E{(vi - Viy} ,   i = 1,2,3, (77) 

was employed as the performance metric. Let (üik,Vik) denote the coordinate estimates of the i-th 

source obtained from a particular algorithm at the k-th run. Sample performance statistics were 

computed from K = 500 independent trials as 

1   K 

RMSEi = . — J2 {(«••* - ui)2 + fa* - ^)2} ,   i = 1,2,3. 
\ Ä fc=i 

(78) 

The bias of 2D Unitary ESPRIT for Ns = 64 snapshots over the range of SNR's simulated was 

found to be negligible, as was the bias of 2D DFT Beamspace ESPRIT. This facilitated comparison 

with the Cramer Rao Lower Bound (CRLB). The performance of 2D Unitary ESPRIT relative to 

2D MUSIC was also compared, as was the relative performance of 2D DFT Beamspace ESPRIT. 

The CRLB and the theoretically predicted performance of 2D MUSIC were computed according 

to formulas provided in [8] and are plotted in Figures 4(a), 4(b), and 4(c) for sources 1, 2, and 3, 

respectively. 
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Note that 2D MUSIC essentially achieved the CRLB over the range of SNR's simulated so that 

its theoretically predicted RMSE curve is coincident with the CRLB curve. Of course, 2D MUSIC 

requires the localization of 3 peaks of a 2D spectrum. In element space, determining the value of 

the 2D MUSIC spectrum at a given point involves the calculation of an inner product of the form 

a-ff(//,^)PJ-a(//,i/), where P1 is 64 x 64. This kind of calculation has to be done repeatedly in 

performing a localized Newton-Raphson search around each spectral peak. 

The respective RMSE's of 2D Unitary ESPRIT and 2D DFT Beamspace ESPRIT for sources 1, 

2, and 3 are plotted in Figures 4(a), 4(b), and 4(c), respectively. In accordance with the summary 

of 2D Unitary ESPRIT at the end of Section 3.0, the computations required for a single run were: 

(i) 64 additions per each of 64 snapshots to transform from complex-valued space to real-valued 

space, (ii) calculation of the 3 "largest" left singular vectors of a 64 x 128 real-valued matrix, (iii) 

calculation of the solution to two systems of equations of the form AX = B where A and B are 

both 64 x 3 and real-valued, and (iv) calculation of the eigenvalues of a 3 x 3 complex-valued matrix. 

The performance of 2D Unitary ESPRIT is observed to be very close to the CRLB for SNR's greater 

than or equal to -6 dB, although it does not achieve the CRLB even at the rather high SNR level of 

12 dB. (Keep in mind that there are 64 elements and that the SNR is that per element.) Observe 

that on a logarithmic scale, the small gap between the performance of 2D Unitary ESPRIT and 

the CRLB is fairly constant as a function of SNR for SNR's above -6 dB. 

To demonstrate the efficacy of working in a reduced dimension beamspace, 2D DFT Beamspace 

ESPRIT employed a 3 x 3 set of 9 beams with mainlobes rectangularly spaced in the u-v plane and 

centered at (u, v) = (0,0). In accordance with the summary of 2D DFT Beamspace ESPRIT at the 

end of Section 4.0, the computations required for a single run were: (i) 9 sets of 64 multiplications 

and 63 additions for each of 64 snapshots to transform from element space to beamspace, (ii) 

calculation of the 3 "largest" left singular vectors of a 9 x 128 real-valued matrix, (iii) calculation 

of the solution to two systems of equations of the form AX = B where A and B are both 9x3 

and real-valued, and (iv) calculation of the eigenvalues of a 3 x 3 complex-valued matrix. A scatter 

plot of the 3 eigenvalues obtained from 2D DFT Beamspace ESPRIT for each of 200 independent 

runs at an SNR of 3 dB is displayed in Figure 4(d). For SNR's greater than or equal to -6 dB, 

the performance of 2D DFT Beamspace ESPRIT is observed to be only slightly worse than that of 

2D Unitary ESPRIT despite the dramatic reduction in computational complexity. Similar to 2D 

Unitary ESPRIT, the gap between the performance of 2D DFT Beamspace ESPRIT and the CRLB 
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is fairly constant as a function of SNR over the range of SNR's simulated. 

An interesting observation is that for SNR's lower than -9 dB, 2D DFT Beams-pace ESPRIT 

outperformed 2D Unitary ESPRIT. This is in accordance with observations made by Xu et al. 

[16] in comparing the performance of their version of Beamspace ESPRIT with that of ESPRIT in 

element space. At low SNR's Xu et. al. argued that the better performance of the former over that 

latter is due to fact that Beamspace ESPRIT exploits a-priori information on the source locations 

by forming beams pointed in the general directions of the sources. This argument is applicable here 

as well. 

The difference in performance between 2D Unitary ESPRIT or 2D DFT Beamspace ESPRIT 

and the CRLB, and the fact that 2D MUSIC achieves the CRLB for the range of SNR's simulated, 

suggests a strategy wherein the 2D angle estimates provided by either 2D Unitary ESPRIT or 2D 

DFT Beamspace ESPRIT axe used as starting points for localized Newton searches of the 2D MUSIC 

spectrum to achieve uniformly minimum variance unbiased estimates (UMVUE's). Note that the 

computational burden of performing these localized searches of the 2D MUSIC spectrum may be 

reduced substantially by operating in beamspace and exploiting the conjugate centro-symmetry of 

the URA manifold. 

9     Conclusions 

2D Unitary ESPRIT is a closed form 2D angle estimation algorithm for use in conjunction with 

a URA and is easily adapted for other dual invariance arrays including a cross array. 2D DFT 

Beamspace ESPRIT is an efficient beamspace implementation of 2D Unitary ESPRIT facilitating 

reduced dimension processing and attendant reduction in computational complexity. The 2D angle 

estimates provided by either 2D Unitary ESPRIT or 2D DFT Beamspace ESPRIT may be used as 

starting points for localized Newton searches of the 2D MUSIC spectrum, the ML algorithm, or the 

Multiple Invariance ESPRIT algorithm. Due to space limitations, performance analysis of either 

2D Unitary ESPRIT or 2D DFT Beamspace ESPRIT is not included here, but would follow in the 

same vein as the performance analysis of UCA-ESPRIT in [22]. Note that 2D Unitary ESPRIT 

may also be employed in a variety of applications other than 2D angle estimation including 2D 

harmonic retrieval for image analysis, for example. 
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2    Beamspace DO A Estimation Featuring Mult irate Eigen- 
vector Processing 

A novel approach to angle of arrival estimation in beamspace is developed. Beamspace noise 
eigenvectors may be transformed to vectors in the element-space noise subspace. The trans- 
formed noise eigenvectors are bandpass, facilitating multirate processing involving modulation 
to baseband, filtering, and decimation. As these operations are linear, a matrix transformation 
applied to the eigenvectors may be constructed a priori. Incorporation of the technique into ei- 
ther the Root-MUSIC or ESPRIT prescriptions provides a computationally efficient procedure. 
Compared to past efforts to adapt Root-MUSIC and ESPRIT to beamspace, this approach cir- 
cumvents the need for restrictive requirements on the form of the beamforming transformation. 
An asymptotic theoretical performance analysis is also included to provide an alternative to 
computationally intensive Monte-Carlo simulations. Simulation studies show the validity of the 
performance predictive expressions and verify that the procedure, when incorporated into the 
Root-MUSIC/ESPRIT formulations, produces a direction finding technique that nearly attains 

the Cramer-Rao bound. 

2.1 Introduction 

2.2 Array Signal Model 

2.3 Development of DOA Estimators Featuring Multirate Eigen- 
vector Processing 

2.3.1 Multirate Noise Eigenvector Processing 

2.3.2 Incorporation of Filter Deconvolution 

2.3.3 Root-MUSIC Incorporating Multirate Eigenvector Processing 

2.3.4 TLS-ESPRIT Incorporating Multirate Eigenvector Processing 

2.3.5 Location of Extraneous Roots Created by Filtering 

2.4 Theoretical Performance Analysis 

2.4.1 Performance Analysis of Root-MUSIC Formulation 

2.4.2 Performance Analysis of ESPRIT Formulation 

2.5 Computer Simulations 

2.6 Conclusions/Remarks 

2.7 References 

2.8 Appendix: Asymptotic Variance of ESPRIT Formulation 
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1. Introduction 

Beamspace formulations of the eigenstructure class of direction finding sensor array processing algo- 

rithms offer a number of advantages over their element space counterparts. First, there is a computational 

benefit realized in the processing of data of a much smaller dimension. Second, a practical implemen- 

tation to current phased array technology is allowed. Third, beamspace formulations exhibit a reduced 

sensitivity to sensor position perturbations and noise non-idealities [1]. Fourth, although suboptimal in 

high SNR situations, the inherent concentration over a specific spatial region of interest leads to noise 

reduction and, hence, enhanced ability for localization in the more critical case of low SNR [2, 3]. 

In the case of the Spectral MUSIC algorithm proposed by Schmidt [4], which is applicable to arbitrary 

array geometries, the Vandermonde nature of the element space array response to a plane wave signal for 

the common uniform linear-spaced array geometry facilitates a root-finding procedure for angle estimation 

[5] as a computationally attractive alternative to the spectral search. The beamspace formulation of 

Spectral MUSIC, however, does not directly offer a polynomial root-finding capability. By relating the 

beamspace manifold to the element space direction vector, a beamspace Root-MUSIC capability can be 

realized but the order of the resulting polynomial to be rooted is related to the number of sensors, N, 

as 2JV — 2. This represents such a considerable computationally intensive task for large arrays so as to 

preclude its use for the associated performance gains as noted in [6]. 

Recently, an efficient algorithm was proposed in [7] as a means of reducing the Root-MUSIC polyno- 

mial to order 2JV& — 2, where Nb is the number of beams. This represents a tremendous computational 

savings if only a relatively few number of beams are formed to probe a spatial subband (sector) for sources. 

The approach in [7] was accomplished by requiring that the beamforming vectors possess common spatial 

nulls. We point out that, like the beamspace Root-MUSIC formulation in [7], an adaptation of ES- 

PRIT to beamspace in [8] also required significant restrictions on the form of the beamforming vectors. 

Aside from this possibly over-restrictive requirement, two other problems associated with the beamspace 

Root-MUSIC algorithm were observed. First, the technique didn't exploit the spatially-confined region 

of operation in the rooting stage of the algorithm. That is, as the number of sensors comprising the array 

increases, the spatial extent of the beamforming window decreases with constant Nb but, yet, the rooting 

algorithm is still capable of localizing signals over all of visible space. Second, the approach involved the 

use of an iVj, x Nb matrix transformation Q which was found to be highly ill-conditioned. For example, 
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the condition number of Q for an iV = 128 element array operated upon by a spatial Discrete Fourier 

Transform (DFT) beamformer was computed for a varying number of beams and plotted in Figure 1. In 

contrast, the other curve in the figure (Z transformation) corresponds to an alternative approach that is 

the key result of this paper, having a similar implementation for the MUSIC setting but fundamentally 

different to the approach in [7]. Whereas the condition number associated with the Z transformation is 

relatively constant at a value near 3 for all beamspace dimensions, the corresponding value for the Q 

transformation is large for even a small number of beams, e.g., for a beamformer comprised of Nb = 8 

spatial DFT beams, the condition number is approximately 8 • 109. 

The main purpose of this paper is to develop a processing methodology that is based on the trans- 

formability of a beamspace noise eigenvector to an element-space counterpart as noted in passing in [3, 9]. 

In the intended application of beamspace processing, a spatial subband is probed so that the transformed 

beamspace noise eigenvectors are naturally bandlimited in a spatial sense. This banded characteristic 

allows for the application of classical multirate digital signal processing to isolate and spatially enlarge 

the spatial subband of interest. Note that this methodology departs from classical multirate processing in 

that the pertinent information lies in the in-band signal nulls instead of signal peaks. In the conventional 

mode of multirate processing, one has to be concerned with spectral peaks outside the "basebanded" sub- 

band being aliased into the subband thereby causing ambiguities. Lowpass filtering is implemented prior 

to decimation to avoid this condition. However, in array processing at the sensor level, this pre-filtering 

operation destroys the Vandermonde nature of the manifold thereby precluding rooting based DOA es- 

timation techniques such as Root-MUSIC or ESPRIT. Here the goal is to preserve in-band signal nulls 

and the development will show that the ability to root is easily maintained. In addition, with respect 

to aliasing artifacts, out-of-band signals not sufficiently de-emphasized by the front-end beamforming 

give rise to out-of-band signal nulls which actually serve to suppress aliasing contributions resulting from 

decimation (see Figure 2 to be discussed shortly). 

An important feature of this approach is that there are no restrictive requirements on the form of 

the beamforming vectors. Another advantage of this technique is that the angular separation between 

"in-band" signal roots is increased by the decimation factor, thereby easing the job of rooting. Another 

major advantage is that the technique is computationally robust as the Z matrix transformation applied 

to the beamspace noise eigenvectors is well conditioned, e.g., refer to Figure 1 where the condition number 
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of a Z transformation is shown for the same array length and a suitable decimation procedure. 

As the eigenvector transformation-decimation procedure is general in nature, the technique may be 

applied to any eigenstructure direction finding algorithm. We here consider the Root-MUSIC and ES- 

PRIT [10] formulations as these techniques are fairly representative of the eigenstructure class of angle 

estimators; application to other algorithms is straightforward. 

The contents of this paper are as follows. Following a description of the data model, the beamspace 

noise eigenvector transformation-decimation technique is developed and applied to Root-MUSIC and 

ESPRIT ideology in Section 3. The theoretical performance of the MUSIC/ESPRIT formulations is de- 

veloped, in terms of the estimation variance, in Section 4. Finally, the theoretical performance expressions 

are validated in simulations and the optimality of the technique is observed through a comparison study 

with the stochastic Cramer-Rao bound in a variety of experiments in Section 5. 

2. Array Signal Model 

The DO A estimation methodology described herein assumes a uniform linear array of sensors. An 

extension to the two-dimensional array geometry composed of a rectangular lattice of sensors is readily 

clear. 

Assuming that K narrowband plane-wave signals, residing at a common center frequency, impinge 

upon an N-sensor array, the complex basebanded data snapshot vector at the m'th sampling instant, 

x(m), is expressed as a superposition of signals embedded in additive noise as 

K 
x(m) = Yl *k(rn)aN(pk) + n(m) m = 1,...,M (1) 

In the above equation, the amplitudes of the K signals, Sfc(-), k = 1,..., Ä", are modelled as zero-mean 

jointly Gaussian random variables with non-singular covariance Ps, and n(-) is a zero-mean complex 

gaussian noise vector with assumed covariance £ n(m)nH(m) = <T*1N- The array response to a unit- 

amplitude signal arriving from the spatial location /x is represented by aw(/i), where \i = ^ d sin(ö), 

d is the sensor spacing, A is the wavelength, and 9 is the conical angle of arrival. In accordance with a 

uniform sensor placement, the structure of the array manifold vector has the form 

Ml*) = {l,eJli,e^,...,e*N-^}. (2) 

The associated sensor covariance matrix, assuming that the noise is uncorrelated with the signal set, is 
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simply 

Rx = APSA
H + a2

nIN, (3J 

aN(fj,1): ajv(/i2): • • • : &N{IJ>K) In the where A is the matrix of element-space manifold vectors, A = 

event that the noise exhibits a colored character, we assume that the noise correlation matrix is known. 

The benefits of beamforming as a pre-processing operation prior to DOA estimation is well known in 

the literature [1, 2, 3, 7]. Here we transform the element-space data to an Nb dimensional beamspace in 

a digital or analog fashion. This operation is mathematically modelled as 

y(m) = WHx(m) m = l,...,M (4) 

where the columns of the JVxiV& beamforming matrix are orthonormalized so that WFW = INb. De- 

noting the jVj-dimensional beamspace manifold vector as b(/z), the associated beamspace covariance, Rj,, 

is 

Ry = S \y{m)y(m)H] = WHRrW = BPSB" + <r2nINb, (5) 

where B = b(/*x);b(/*2); ... \b(fiK)] andb(^) = WHa.N(fi). 

As the ideal covariance matrix is not accessible in practice, an M-sample estimate is employed as 

M 

R* = £ y(m)yH(m), (6) 
m=l 

where we assume that M > K. We also assume that Nb > K for proper operation of the DOA es- 

timators. As the beamspace dimension, Nb, is usually chosen to be small in relation to N, to yield a 

computationally attractive algorithm displaying enhanced localization performance of low SNR signals 

[7, 9], the assumption K < Nb may seem too restrictive. However, through judicious selection of beam- 

forming vectors, we merely assume that fewer than Nb signals are effectively present in the beamspace 

data; signals that are not located within the spatial sector of interest are sufficiently de-emphasized by 

the beamforming operation. 

The eigendecomposition of Ky provides the signal and noise subspace descriptors as necessitated by 

the DOA architectures considered in this paper. Notationally, R, is decomposed as (A^J where At-, 

i—l,...,Nb, are the eigenvalues arranged in decreasing order, Ai > A2 > ... > Ajvfc > 0, with associated 

eigenvectors e,-. Thus { e,-, i = 1, ...,K } span a ./^-dimensional (signal) subspace used as an estimate of the 

true subspace spanned by the columns of B, and the remaining Nb - K eigenvectors span an estimate of 
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the orthogonal (noise) subspace. The number of signals, K, is assumed to be available, possibly estimated 

via a procedure such as that described in [11]. 

An alternative procedure for the estimation of the noise or signal subspace is the decomposition of the 

real part of Rj, as discussed in [7, 9]. By simply referencing the phase of the beamforming vectors and 

the element space manifold to the array center, i.e., through the scaling of (2) by the multiplicative factor 

exp (—jfJ'^f^j) and requiring a symmetric magnitude taper in the beamforming vectors, the beamspace 

manifold b(/z) is real-valued. Thus Re{Rj,} = BRe{Ps}B
T + cr$Nb- The advantages of processing 

only the real part of Rj, are a computational savings and a signal decorrelation effect to improve the 

angle estimation accuracy in correlated signal scenes [9]. Note that the forthcoming discussion of DOA 

estimation employing eigenvector decimation places no restrictions on how the signal or noise eigenvectors 

are estimated. 

3. Development of DOA Estimators Featuring Multirate Eigenvector Pro- 

cessing 

In this section, we develop the beamspace Root-MUSIC and TLS-ESPRIT DOA estimators incorpo- 

rating multirate eigenvector processing. In Section A, we discuss the basis of the multirate processing 

technique of beamspace noise eigenvectors and present some computational reductions in Section B. Fi- 

nally the techniques are applied to obtain Root-MUSIC and TLS-ESPRIT DOA estimation algorithms 

in Sections C and D, respectively. 

A. Multirate Noise Eigenvector Processing 

The critical relation motivating the development of the algorithms presented in this paper is that a 

beamspace noise eigenvector can be transformed to a noise eigenvector in element space as noted in [3, 9]. 

Defining 

v,- = We,-, (7) 

where et-, i  > K, is a noise eigenvector of the ideal beamspace covariance, we see that v; is indeed an 

eigenvector lying in the noise subspace of Rx as evidenced by 

0 = B^e, = (W*Af et- = A" (We;) = A*v,-      i > K. (8) 

Since A is an NxK matrix composed of the element space direction vectors which collectively span the 

signal subspace, v,- = W et-, i=üf+l,...,iV&, lies in the element space noise subspace. Also, given that e, is 
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unit-length, v,- is unit-length as guaranteed by the ortho-normality of the columns of W. Note, however, 

that no direct relationship exists between the beamspace and element-space signal subspace eigenvectors" 

and that the Nb - K transformed noise eigenvectors only partially describe the iV-dimensional element- 

space noise subspace. 

We now focus the development of the multirate eigenvector prescription to the MUSIC algorithm. 

Employing the transformed noise eigenvectors which partially describe the element-space noise subspace, 

the associated MUSIC null spectrum [4] is appropriately described as 

Nb 

KAO =    E    l4(/*)vfc|
2.     -7T</i<7r (9) ">MUK.  . 

k=k+\ 

For the structure of the array manifold given in (2), it is observed that each term in (9) simply has the 

form of an iV-point spatial Discrete Time Fourier Transform (DTFT) of a transformed noise eigenvector, 

VM = ajfoOvfc = E VfcWe'X"-1)     -K < p < * (10) 
n=l 

where Ufc(n) represents the n'th entry in the vector vfc. 

By selecting the set of beamforming vectors to interrogate some sector of space while attenuating 

signals that lie elsewhere, the spectrum of the transformed eigenvectors are naturally spatially band- 

limited. This can be seen by viewing the null spectrum of a single transformed noise eigenvector as shown 

in Figure 2. The parameters associated with the figure are as follows. iV=128 half-wavelength spaced 

sensors were employed in conjunction with a spatial DFT beamformer consisting of eight consecutive 

beams centered in space at sin 0 = 25/iV. For reference purposes, the spatial responses of the JVj, = 8 

beams are plotted in Figure 3. There were two equi-powered signals located near mid-band at 10.6° and 

11.5°; the locations are labelled on the figure. In addition, a high-strength signal was placed at a distant 

location of sin 0 = 69/iV. A single beamspace noise eigenvector of the ideal covariance was employed to 

generate the plot in Figure 2. Note that the "extraneous" null within the band will fill in when all of the 

transformed noise eigenvectors are employed. Although in-band nulls are of interest, the main point of 

the figure is that the spectrum exhibits an elevated response in the spatial region where the beams are 

directed and a suppressed response in the region neighboring the distant signal. 

The bandpass nature of the null spectra suggests a multirate procedure wherein the spatial band 

surrounding sin 9 = 25/iV is spatially basebanded and the corresponding spatial sequence is decimated. 

Consider decimation by an integer factor D that is less than or equal to the maximum allowable value. 
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For the example employing Nb spatial DFT beams, the maximum decimation factor is Dmax = N/Nb.
2 

The sequence associated with the fc'th decimated eigenvector is (recall vk = Wet) 

v$\i + 1) = vk(Di + 1)    i = 0,1,..., N/D - 1. 

From classical multirate theory, the spatial spectrum associated with the fc'th decimated eigenvector is 

Keep in mind the periodicity in the variable //, i.e., V(fi + 2irn) = V(fi) for integer n. Assuming that 

the spectrum has negligible amplitude outside of the region of interest, i.e., Vk{n) « 0, \fi\ > ir/D, only 

the £ = 0 term contributes to the sum leading to Vfi  (fi) « Vk(fi/D) for -ir < ^ < ir. 

In the usual application of multirate processing, one must be concerned with the aliasing of signals 

into the band of interest; here we must insure that aliasing does not result in the "filling in" of signal 

nulls within the band of interest. Note that signals that lie outside of the spatial band of interest do not 

affect the spectrum, i.e., in fact, the reduced amplitude in the neighboring region as seen in Figure 2 will 

result in a smaller aliasing contribution. However, the presence of the large distant signals may increase 

the perceived dimension of the signal subspace, K, in the decomposition of the sample covariance matrix 

so that their presence is undesired. 

If the front-end beamformers have high sidelobes, a spatial filter prior to decimation might be necessary 

to insure that the null spectrum is not distorted due to aliasing, i.e., the "signal" nulls are not lost or 

shifted appreciably. The filter should incorporate a sufficient stopband attenuation to limit the degree of 

aliasing. However, a larger stopband attenuation requires a larger filter length. As the ultimate intention 

of multirate processing is to reduce the dimension of the transformed/decimated noise eigenvectors, a 

shorter-length filter is desired. Note that the length of the noise eigenvectors after decimation is [ ^p'1 ], 

where L is the filter length, D is the decimation factor which is less than or equal to Dmax = N/Nb, and 

\ x] refers to the smallest integer greater than or equal to x. 

As there is no need for a linear phase requirement, an IIR filter may be employed. The absence of 

a linear phase requirement in IIR designs should result in a smaller filter length, L, where L is taken 

as some appropriate effective length of the associated impulse response. Note, however, that the classic 

IIR low-pass filter designs such as Butterworth, Chebyshev, Elliptic, etc., yield poles that are very near 

2Although the terminology "sampling rate alteration" applies for non-integer Dmax, we will still refer to the rate 
conversion operation as decimation. 
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the unit circle so that the associated impulse responses are relatively long. It was determined that these 

classic IIR designs offer little or no advantages in terms of lengths vs. band specifications as compared 

to such FIR techniques as the Hamming, Hanning, or Blackman windowed low-pass filters (LPF). Also 

note that a high degree of passband ripple may not pose a significant problem as there is a procedure, to 

be discussed shortly, for the removal of the residual ripple after decimation. 

A major factor in determining an appropriate filter length is the width of the transition band. The 

simplest means of increasing the width of the transition band, and, hence, shortening the filter length, 

is to decimate by a factor that is less than the maximum allowable limit Dmax. This would increase the 

distance between the edges of the beamforming sector, i.e., the region encompassed by the mainlobes of 

the Nb beams, and the spatial location \i = v/D, i.e., the location that is scaled-up to the spectral edge 

(p = 7r) after decimation. Thus, by designing a filter with a transition band that lies within a spatial zone 

that is exterior to the passband of the beamforming sector, the aliasing effects are essentially confined to 

this region which is disregarded in the end. 

Another approach is to simply allow the passband edge to extend within the beamforming sector as 

it has been shown in [7, 9] that beamspace DO A architectures tend to perform rather poorly in terms 

of estimation bias/variance at the edges of the beamforming sector. This effect is attributable to the 

reduction in the total signal power, proportional to bH(/i) b(», as the signal nears the edge of the spatial 

subband. Thus the transition band of the filter may be designed to encompass perhaps 25-50% of the total 

beamforming sector in which case one would have to allow a corresponding overlap appropriate amongst 

subbands probed in succession or in parallel. Due to the characteristic shape of the noise eigenvector 

spectra, the aliasing effects primarily originate just outside of the pre-decimation subband defined over 

^ e [-7T/D, ir/D]. Thus, specifying that the transition band of the filter be centered at 7r/D, the 

aliasing will be primarily present in the edges of the beamforming window and this is disregarded. 

Returning to the Nb = 8 beam example, an N = 128 element Hamming-windowed LPF with a 

transition band defined over the region \i € [Q.5TT/N,9.5TT/N], where p = STT/N is both the edge of the 

beamforming window and the edge of the pre-decimation subband, proved to be a reasonable design. 

A sketch of the passband associated with this low pass filter design can be found in Figure 4. The 

filter response is superimposed over the MUSIC null spectrum associated with the use of all spatially 

basebanded transformed noise eigenvectors to show another feature of this filter selection: the interlacing 
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of the nulls which results in a dramatical reduction in the effects of aliasing. As the out-of-band nulls 

of the basebanded beamspace MUSIC null spectrum are at known data-independent spatial positions 

corresponding to the common null locations of the beam set of Figure 3, the filter parameters can be 

selected to produce the null interlacing effect as seen in Figure 4. Also note that the use of all beamspace 

noise eigenvectors in a MUSIC formulation resulted in the removal of the non-signal in-band spatial null 

that was present in the single transformed noise eigenvector spectrum of Figure 2. The resulting filtered 

eigenvector MUSIC null spectrum is shown in Figure 5 and the corresponding decimated MUSIC null 

spectrum is shown in Figure 6. 

With the modulation (spatial basebanding), filtering, and decimation operations notated by M, F, 

and V, respectively, the decimated/transformed noise eigenvectors are then i/, = V ? M { W e; }, i > K. 

As decimation, filtering, and modulation are linear operations, these may be performed a priori on the 

Nb columns of W as evidenced in 

( Nb ) Nb Nb 

Ui = VTM    E wfcei(fc)     = £ PFM {wfc}] ei{k) = £ zke{{k) = Ze<, (12) 
U=l k=\ k=l 

where 

= VTM {W}. (13) zi: z2 : ... : zNb 

Hence, a matrix Z of dimension NzxNb, where Nz = \ N+£~l ], may be computed a priori and applied 

to the beamspace noise eigenvectors ei, i = K + 1, ...,Nb. In the more general case of sampling rate 

conversion where the desired "decimation" factor is not an integer but can be expressed as a ratio of two 

integers D = MD/MI, the corresponding matrix Z is computed as 

Z = VMDF1MIM{W}, (14) 

where VMD represents a decimation operation by a factor of MD and I'M/ refers to an interpolation 

operation by a factor of Mi. Note that the filter frequency design specifications are appropriately modified 

to reflect the positioning following the interpolator. Also, due to the modulation operation, the matrix 

Z can be employed for a common beam set steered to any sector of space. In this mode of operation, the 

estimates of the signal \i locations provided by the algorithm are relative to the center of the beamforming 

sector. 

B. Incorporation of Filter Deconvolution 
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As the inclusion of a properly designed filter will result in negligible aliasing effects, it is possible to 

reduce the row-dimension of the matrix Z, and hence the order of the polynomial that ultimately needs 

to be rooted. This computational advantage is accomplished through the deconvolution of the decimated 

filter sequence from each column of Z as substantiated in this section. 

Denoting the spatial DTFT of the i'th transformed and decimated beamspace noise eigenvector i/,- 

defined in (12) as VJ?FM(p), we find, as similar to the form in Equation (10), 

Nz 

fc=i 

The above form offers an alternative view of the decimation procedure where the spatial spectrum 

V$FM{n) is expressed in terms of the respective DTFT's of the filter and the z'th modulated-transformed 

eigenvector. Defining the DTFT's 

TV 

v£>(?) = E-SW^^    *>K (i6) 

H(pi)    =    J2 h(k)e^k-V (17) 
k=\ 

where vj$ = M {We,-} = M {i/i} and h = [Ä(l), ■•-, h(L)f is an L x 1 vector composed of the 

entries of the filter impulse response. One can express VfiFM(fi) as 

Notice that the form of (18) implies an integer-valued decimation factor D. Modifications for the more 

general cases where the sampling rate alteration is expressible as a non-reducible ratio of two integers, 

D = MD/MI, are readily incorporated into the procedure and will be addressed later in this section. 

Assuming that aliasing effects are negligible, the £ = 0 term (region surrounding baseband) dominates 

so that the following approximations hold 

v&M « ^(5)^(5 
1_ 

D S'CT?: V5i?(£)- («) 

Notice that the bracketted term in the latter approximation is simply the DTFT of the decimated impulse 

response of the filter sequence, hD(k) = h(Dk). Acceptance of the above approximations suggests 

that one is capable of removing the effects of the filter from the decimated null spectrum.   Thus, we 
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may acquire the pertinent (signal) information associated with the eigenvector spectrum by viewing an 

alternate spectrum, denoted VQ11DFM(/JL), given as 

V{i) (,A ~ V
DFM{V) .    . V

G-*DFMW ~      D_! H(B-21i\- (20) 

Equivalently, the spectral division can be accomplished by deconvolving the decimated filter sequence 

out of the i'th decimated eigenvector, Ze,-. As the deconvolution operation is also linear, one can simply 

deconvolve the decimated filter impulse response out from each column of Z in (13) to form a matrix Z'. 

Denote the deconvolution operator as Q~l so that Z' = Q~XVTM. {W}. Recall that Z is an NzxNb 

matrix where Nz = [" N+£~a ] ■ Assuming that the deconvolution is exact, the size of Z' is Nz>xNb, 

where Nz> — \ N^~1 ] - [£] + 1. As the imperfect filtering introduces a small degree of aliasing, the 

deconvolution is not exact. Therefore, there exists a remainder term that must be considered such that 

the resultant process may not be causal. Numerically it is better to carry out the deconvolution by way of 

spectral division. In this case, the DTFT of a given column of Z is divided, point-wise, by the DTFT of 

the decimated filter sequence so that the inverse DTFT of the result provides the associated deconvolved 

column of Z'. Depending upon the values of N and Nb, simulations have shown that possibly one or 

two extra points on either side of the Nz> points should be appended to each column of Z'. A suitable 

criterion employed in simulation studies is that all points whose magnitudes greater than 5-10% of the 

maximum value should be included in Z'. 

Returning to the example cited earlier where the beamforming matrix corresponding to an N = 128 

element ULA with d = A/2 and Nb = 8 beams is operated on by an L = 128 length Hamming-windowed 

LPF and then maximally decimated, the dimensionality of the Z matrix is NzxNb, Nz = r NfL-i -| _ -^ 

Assuming perfect deconvolution, the associated value of Nz, is 9. Adopting the 10% criteria in the 

selection of the row-dimension of Z', it was found that one extra row was needed. By way of spectral 

division employing the FFT/IFFT algorithms, the extra values were the last samples of the IFFT, which 

were wrapped-around to form the first row of Z'. 

In the case of non-integer decimation where the factor D is expressible as a ratio of two integers as 

D = MD/MI, a similar procedure can be implemented. Referring to Equation (18), the spectrum V$(-) 

is replaced by the pre-filtered spectrum V}^(-) defined by the DTFT of the i'th transformed, modulated, 

and interpolated (Mi) noise eigenvector. The applicable decimation factor in (18) is then MD. Note that 

the filter frequency-band specifications are selected to reflect the presence of the interpolation stage. As 
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a result, for the matrix Z defined by Z  = VMD TXMl M { W }, the Nb columns of the matrix Z' are 

found by deconvolving the decimated filter impulse response (decimated by the factor MD) out from the 

corresponding columns of Z. 

The reduced row dimension of Z' relative to that of Z ultimately results in a computational savings for 

DOA estimation at the expense of a slight degradation in performance as will be shown in a subsequent 

section. The application of multirate eigenvector processing to the MUSIC algorithm is analyzed in 

Section C while an application to the TLS-ESPRIT algorithm is considered in Section D. The two 

algorithms are considered as representative of the class of eigenstructure DOA estimators. Extensions to 

other DOA estimation algorithms are easily accomplished. 

C. Root-MUSIC Incorporating Multirate Eigenvector Processing 

The multirate eigenvector technique is simply incorporated into the MUSIC algorithm of Schmidt [4]. 

As the transformed beamspace eigenvectors, We,-, i > K, are orthogonal to the element-space manifold 

vectors corresponding to a signal arrival angle, ajv^fc), k < K, the following condition holds 

Ze, = VTM { We,} J_ VTM { ajv(^) }      i>K, k< K. (21) 

Assuming that the filter is ideal with a cutoff at the spatial location p = T/D, it is easily observed that 

the in-band signal nulls are preserved through the decimation operation such that 

(VFM{Wei}f (VTM W/ife)}) = {Zeif *Nz{D fik) = 0    i>K,k<K. (22) 

If the filter is properly designed to limit aliasing yet pass all in-band signals, Equation (22) is a reasonably 

accurate approximation. Thus a suitable MUSIC null spectrum can be defined as 

-        UMU^)=    E    |a£z(ZV)(Ze,)|   = ajJa(^)ZEnEfZffa^(I>/i), (23) 

where the estimated noise eigenvectors comprise En = eK+\ ■ &K+2 ■ ••• -eNb and a.Nz{Dn) is an 

iVVdimensional element space manifold vector, where Nz = fi^ril- Due to the Vandermonde 

structure of RNz(Dp), the spectral search for the estimation of the DOA angles can be converted 

to the rooting of polynomial a la Root-MUSIC. The true angles, 0fc, are then computed from zk via 

9k = sin_1(arg{5fe}A/27r<fI>), k < K. The resulting algorithm is summarized below. Note that the 

Root-MUSIC algorithm employing the deconvolved version of Z, Z' = g^VTM { W}, is defined in 

a similar way where Z' and Nz> are substituted for Z and Nz, respectively. 
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Summary of Root-MUSIC Application Algorithm 

1. form the Nz x Nb decimated-filtered-modulated beamforming matrix a-priori: Z  = VT'M {W} 

2. EVD of Ry  =  E!=I y{m)yH(m)/M, where y(m) = WHx{m) m=l,...,M. 

3. estimate number of sources, K, and place Nb-K "smallest" eigenvectors as columns of En 

4. with pk = Eto F(Nz -k + i,i + 1), k=0,l,...,i\^-l, where P  =  Z EnEf ZH, and construct 

p(z) =Po+ pxz + ... + PNz-,zN^ + ... + p\z™^ + p5z™«-a 

5. root p(z), select Ä" signal roots: 0fc = sin~1(&Tg{zk}\/2irdD)   k = 1,2,..., Ä" 

Comparing the above prescription to that delineated in [7], the Nz x Nb transformation Z replaces 

an Nb x Nb matrix Q. The only disadvantage is a slight increase in computation as the polynomial to be 

rooted is slightly higher in order. However, the dimension Nz can be selected to be only slightly larger 

than Nb if the deconvolution operation, Q~x, is incorporated. The advantages of using the Z approach 

over that of Q are robustness to the computational accuracy of the rooting algorithm (due to the increase 

in angular separation between signal roots) and removal of the over-restrictive structural requirements of 

the type of beamformer employed. In addition, the condition number of Q is astronomical, between 105 

and 1025 for the array parameters employed in generating Figure 1 while Z is extremely well-conditioned. 

The accuracy of the Z and Z' transformations was assessed by observing the signal root locations when 

the ideal sample covariance is decomposed for use in the Root-MUSIC algorithm. The parameters of the 

array, beamformer, and decimator are those presented earlier in the example of Figures 2-6. The resulting 

root locations are shown in Figure 7 and the actual signal root locations for the two transformation types 

are included in the figure. The extremely accurate signal-root placement associated with the use of Z 

suggests-that the orthogonality criterion Ze; J_ a^z(DfXk), i > K, k < K, is valid. Also note that the 

effects of the filter can be removed via deconvolution without appreciably affecting the performance of 

the algorithm as indicated by the locations of the roots associated with the use of Z'. 

To visualize the removal of the passband ripple as induced by the filter when deconvolution is em- 

ployed, an example involving an FIR filter designed via the Parks-McClellan [12] algorithm with a "large" 

passband ripple was analyzed. In addition, to verify the validity of the general multirate procedure, an 
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N = 90 sensor array with Nb — 6 beams was used in a scenario involving decimation by a non-integer 

fraction D = 11.25 = 45/4 which is less than the maximum allowable value of Dmax = N/Nb = 15. 

The filter was designed to be of length 270; note that the filtering is accomplished at the output of the 

interpolator stage (Dj — 4). The sub-maximal decimation factor allowed for a wide filter transition 

band, (l/4)(5/7V)7r < \i < (l/4)(ll/JV)7r, which, combined with a frequency band weighting favoring 

a high stopband attenuation, resulted in a 67 dB stopband attenuation with a 1.8 dB passband ripple. 

Plots of the spatial responses of the filter (dashed line) and interpolated beamformers (solid lines) are 

presented in Figure 8. The beamforming weight vectors were interpolated, by a factor of 4, to allow a 

visual comparison with the filter response curve. 

Figure 9 shows the response of the Nb = 6 transformed, filtered, and decimated beamforming vectors 

along with the spectrum of the decimated filter. Note that the decimated filter magnitude spectrum 

(dashed curve) appears to follow the shape of the beam peaks. 

The spectral MUSIC algorithm was employed with an ideal noise-only beamspace covariance matrix to 

compare the effects of using Z or Z'. As this situation is effected using EnEf = I, the MUSIC spectrum 

characterizes the imparted distortion to a white noise input spectrum by the inclusion of filtering or 

filtering followed by deconvolution. Figure 10 shows the MUSIC spatial spectra for a noise-only input 

employing the Z and Z' techniques. The results show that the deconvolution operation was effective 

in removing the filter shape from the spectrum leaving only a slight ripple that is representative of the 

finite spatial window associated with the beamformer. Again, the deviation at the edges of the spatial 

spectrum from the anticipated constant level is expected: the beamforming sector does not extend to the 

edge of the band at fi = r/D. 

D. TLS-ESPRIT Incorporating Multirate Eigenvector Processing 

As with a previous beamspace Root-MUSIC algorithm [7], the beamspace ESPRIT formulation of 

Xu, et.al. [8] requires a rather restrictive specification on the form of the beamforming vectors. As we 

will see in this section, the ULA geometry allows an ESPRIT application of the transformed-decimated 

beamspace eigenvector approach of section B. 

Given the Nb-K transformed and decimated noise eigenvectors, define an Nz x {[Nz - Nb] + K) 

matrix Ezs whose columns form a subspace that is orthogonal to that formed from the vectors Zet-, 

i > K. An efficient means of computing Ezs is by way of a QR decomposition of ZEn. Note that the 
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Standard ESPRIT approach employs a matrix whose K columns span an estimate of the signal subspace; 

here we have a set of vectors in E^3 whose span encompasses the (decimated element-space) subspace, 

since Nz > Nb. Assuming aliasing effects to be negligible, we have 

span{ajvz(2tyfc), fc = l,-J<}  C range { EZs } ■ (24) 

Although beamspace signal eigenvectors are not transformable to their element space counterparts, 

there is an alternative means of finding a set of vectors that are related to the beamspace signal eigenvec- 

tors and also span the orthogonal subspace of span {Ze,-,z = K + 1,..., iVj,}. The NzxNb matrix trans- 

formation Z has full column rank so that the orthogonal subspace of span{Ze,-,i = K + 1,..., Nb} is 

expressible as a collection of Nz — Nb spanning vectors which are orthogonal to the columns of Z as well 

as K vectors lying in the column space of Z. A permissable set of vectors which span the orthogonal 

subspace are the columns of 

Ez3 = Z(ZHZ)-1e1\ ...•:Z(ZHZ)-1eK-.ß1\ ...\ßNz_Nb   , (25) 

where \ ßi, ..-, ßw _w } 1S a se* OI" vectors that span the subspace orthogonal to the column space of 

Z. Notice that the set of vectors in (25) are not orthogonal but still are adequate for use in ESPRIT. 

In addition to the computational savings in avoiding a QR-decomposition, construction of Ez, according 

to (25) also allows one to derive the theoretical angle estimation performance using available asymptotic 

expressions for the beamspace eigenvector statistics as we shall see in Section 4. 

We will return to the "over-specification" issue of the decimated signal subspace in this section and 

show that judicious beamforming and filter design allows for proper operation of a suitably defined 

ESPRIT algorithm. Assuming that the beamforming and filtering operations produce little aliasing effects 

so that Equation (24) is a reasonably accurate approximation, we may define a TLS-ESPRIT procedure 

to estimate the directions of the K signal arrivals based upon the Vandermonde form of a^z(-). The 

algorithm is summarized as follows. 

Summary of TLS-ESPRIT Application Algorithm 

1. form Nz x JV& decimated-filtered-modulated beamforming matrix a priori:  Z   =   VfM{W}. 

Form a set of vectors, ß{, i = 1,..., Nz — Nb, that span a subspace orthogonal to range{ Z }. 

2. EVD of Rj,  = Em=i y{m)yH(m)/M, where y(m) = WHx{m), m = 1,..., M. 

49 



3. estimate number of sources, K, and form the matrix EZl composed of vectors which span the 

estimated decimated signal subspace: EZs z^z)-1^! ... i Z{ZHZ)-Xek \ßx\...\ ßNz_Nb 

4. form (Nz-l) x 2(NZ-Nb + K) matrix Exy =    Ei | E2    where Ei and E2 are the first and last 

Nz-l rows of Ez„ and compute the 2{NZ-Nb+K) x 2{NZ-Nb+K) EVD   Ej,EE, = ESE" 

5. partition E into (Nz-Nb+K) x (Nz-Nh + K) submatrices: E = 

6. compute the {Nz-Nb + K) x (Nz-Nb+K) EVD   -tix2E^ = T$T 

En   Ei2 

E21   E22 

7. for those Ä" nearly unit-magnitude eigenvalues A,- = $„, estimate the corresponding signal arrival 

directions as 6k = sin'1 (angle{\i}\/2ivdD) 

Location of Extraneous Roots Created by Filtering 

A major concern is that the extra column dimension of EZs over the if-dimensional signal subspace will 

result in the declaration of ambiguous signals. First of all, note that we've already at this point estimated 

the number of signal arrivals. Here, an argument is presented that suggests that the extraneous roots 

will not lie near the unit circle. This claim is also verified via a simulation example presented in Section 

4. 

First, note that in the case of ideal decimation where the filter exhibits a perfect low-pass nature, 

Equation (24) applies. From the summary above, recall that the fc'th diagonal element of $ has unit 

magnitude, $kk = ejDßk ■ Now consider the inclusion of a linear filter in the decimation operation. The 

aliasing effects caused by decimation will result in an ESPRIT signal eigenvalue that will not have a unit 

magnitude characteristic, even if the ideal beamspace covariance matrix is available. However, a judicious 

filter and beamformer design will result in an approximate unit-magnitude eigenvalue characteristic. 

In addition to ESPRIT eigenvalues directly corresponding to signals, assume that there is an extra- 

neous unit magnitude eigenvalue, A», i.e., 

I?! EZs - A, T2 Ez, = 0. 

This suggests that, in addition to the Vandermonde components arising from the true signals, a Vander- 

monde vector corresponding to the angle D\i* also lies in the decimated signal subspace.  Equivalently, 
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this implies a§z(Dfj,*) is orthogonal to the range of ZE^5, so that 

a#z(ity.) [ZEnE^Z*] aNz(Dp.) = 0. 

Thus the spectrum of every transformed and decimated beamspace noise eigenvector exhibits a null at the 

spatial location Z?/z„. By design, there are no common in-band beamformer nulls and the filter response 

is also non-zero across the spatial sector of interest so that A, must be an ESPRIT eigenvalue associated 

with a signal arrival. 

Refer to Figure 6 where a Hamming-weighted LPF was employed as the decimation filter applied 

to noise eigenvectors generated from an A^ = 8 spatial DFT beamformer. The filter has an associated 

spatial response that is relatively flat across the subband and there are no common in-band nulls in the 

set of beamforming vectors. Note that the only nulls in the MUSIC null spectrum correspond to signal 

arrival angles. The behavior at the edges of the band is expected from the presence of a root near -K at a 

radius of 0.9 as shown in Figure 7. As a result of the relationship between the ESPRIT eigenvalues and 

the roots generated from Root-MUSIC, it is anticipated that an extraneous ESPRIT eigenvalue will lie 

in the complex plane near the unit circle at x and that all other non-signal eigenvalues will be sufficiently 

displaced from the unit circle. This is acceptable since these eigenvalues are discarded anyway as a result 

of previous discussion. In summary, an ESPRIT eigenvalue with a nearly unit magnitude suggests the 

presence of a signal at an associated spatial angle as long as the filter and beamforming vectors are 

judiciously designed. 

4. Theoretical Performance Analysis 

As noted in Section 2, the use of conjugate centro-symmetric beamforming architectures in conjunction 

with uniformly-spaced linear arrays with phase referencing at the array center results in a purely real- 

valued beamspace manifold. The real-valued property of the manifold allows one to decompose only the 

real part of the sample covariance matrix to determine the signal or noise subspaces as noted in [7, 9]. In 

addition to the obvious computational advantages of a real-valued decomposition, a performance benefit 

is realized through the decorrelation of correlated signals as taking the real part of the beamspace sample 

covariance matrix is equivalent to applying a single forward/backward average in element-space prior to 

beamforming [7, 9]. In uncorrelated signal environments, the real and complex-valued procedures result in 

similar performances in terms of estimation variance; however, the bias is, in general, smaller with the use 
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of real covariance processing. As a result of these advantages as well as the applicability of either approach 

with regard to the Root-MUSIC and ESPRIT based procedures incorporating eigenvector decimation, 

we derive the theoretical performance of the two algorithmic approaches for the case of real-covariance 

processing. Extension for the case of complex processing is readily determined. 

Define Ae; = et- - e,-, i = 1, ...,K, as the error in the z'th eigenvector due to the use of a sample 

estimate of the covariance matrix where et- and e,- are the i'th eigenvectors obtained from the beamspace 

sample covariance matrix and the ideal covariance, respectively, under some common uniqueness criterion. 

The distribution of Ae; was shown to be asymptotically Gaussian with zero mean and covariance [9] 

Nb     Nb V      ., ' 

S{M&ekAeJ}   =    £   EM       ATfA      A ) e"e"'   M = l,-..,# (26) 
m=i    „=i    \Xk - Am){M ~ K) 

Tmntk   =   - { AfcA^m^„jb + AfcAm5mn6M + (e^R/e/)(eJ'R/en)(l-^)(l-5fcn) 

+ (e^R/cKef R/e,)(l - 6mn)(l - Ske) } (27) 

R,   =   Im{R} = BIm{Ps}BT. (28) 

To allow for the use of previous MUSIC [6, 9] and ESPRIT [15] performance analyses, it is assumed 

that the aliasing effects are negligible. As noted earlier, the assumption is valid when the decimation 

operation includes a judiciously designed filter or the use of front-end beamformers with very low out- 

of-band responses. The condition may be verified by observing the placement of the (signal) MUSIC 

roots/ESPRIT eigenvalues in the case of a known ideal covariance. Once again, the Root-MUSIC sig- 

nal locations for the motivational example shown in Figure 7 confirm the validity of the assumption, 

particularly in the case where deconvolution is not employed. 

A. Performance Analysis of Root-MUSIC Formulation 

The asymptotic variance of the Root-MUSIC estimator is readily obtained using available results 

when assuming orthogonality between the transformed-filtered-decimated beamspace noise eigenvectors 

and the decimated element-space manifold, i.e., Ze; JL a.Nz{6k) k = 1,...,K i = K + 1,...,^. 

By observing that the spectral and Root-MUSIC formulations offer the same asymptotic performance in 

terms of the variance as shown in [6], the expression for the spectral MUSIC estimate variance employing 

real-covariance processing in [9] can be easily amended to the case at hand. Specifically, the null spectrum 
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can be written as 

MMU{9)   =   agz(0)i    £   (Zei)(Zei)H \ aNx(6) 
{ i=K+l ) 

I i=K+l I 
(29) 

Observing the results in [9], the asymptotic variance of the Root-MUSIC estimator is easily shown to be 

expressed as 

AVax{0i} = 
1 K 

E h°l e^a^)       » = !,...,#,       (30) 
Me^z(9i)ZEnElZHkNz(ei) fx (A* - <Y 

where M is the number of snapshots, ä.Nz(9i) is the derivative of ajvz(0) with respect to 9 evaluated at 

9 = 6i, and (Ajt, e^), fc=l,...,K, are the signal eigenvalues and corresponding eigenvectors of the real part 

of the ideal beamspace covariance matrix. 

B. Performance Analysis of ESPRIT Formulation 

The alternate expression in Equation (25) for the decimated signal subspace involving the transformed 

beamspace signal eigenvectors and a non-random basis for the orthogonal subspace of the columns of Z 

allows for an asymptotic analysis of the ESPRIT formulation. The error in the matrix whose columns 

form a basis for the decimated signal subspace, AE^3, is simply 

AEz3 Z(ZHZ)-1Aei; ... ■:Z(ZHZ)-1AeK-:0Nzx{Nz-Nb) (31) 

In this form, the error is only a function of the error in the eigenvectors associated with signal eigenvalues 

of the beamspace covariance. This allows for an asymptotic variance analysis similar to that found in 

[15]. The analysis in [15] is valid for the Least-Squares (LS) and Total Least-Squares (TLS) versions of 

ESPRIT. The variance analysis, for real beamspace covariance processing, is included in Appendix A. 

The asymptotic variance associated with the i'th angle estimate in the case of uncorrelated sources is 

£{(M)2}  = 
A n2 

2irdD cos 9{ 

1 

2M 

alh ■ K 

.£ (A* - ^ Im{xt-(Ä;)E^at-}| 

K    K 

+ EE 
AfcA kM 

k=i t=i (A* - x() 
Im|x,(^)efat-}   - Im[xt(£)efa,-j Im|x,-(A;)e^ai j 

a, = (z^z)-1z^[r1-z;r2]^([r1EZ3]t^qj, 

E„ *K+1 '■ ■ ■ ■ '■ eNb 

,     (32) 

(33) 

(34) 
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where f denotes pseudoinverse, x, and qt are the right and left eigenvectors associated with the i'th 

(signal) eigenvalue of F = (r1EzJtr2Ez., and T1 and T2 are (Nz - 1) x Nz matrices that select the 

first and last Nz - 1 rows of a matrix with Nz rows, respectively. Note that the expressions contained 

in Appendix A may be applied to the more general case of correlated signals; only the result for the 

uncorrelated signal scenario is summarized here due to its simpler form. 

5. Computer Simulations 

A number of computer simulations were conducted to assess the validity of the noise eigenvector 

transformation/decimation techniques with regard to angle estimation. Specifically, the theoretical and 

empirical standard deviations of the Root-MUSIC and TLS-ESPRIT estimators were compared in a 

variety of source/processing scenarios. Also, the performance of the decimation approach was compared 

to the stochastic Cramer-Rao Lower Bound [4, 16]. 

Common to all experiments, 600 trials were employed to derive the empirical results and only M = 16 

snapshots were used to estimate the beamspace covariance matrix. Although this situation can hardly 

be classified as asymptotic in the number of snapshots, the theoretical performance curves were observed 

to compare rather closely to the derived experimental results. 

The empirical standard deviations were computed in a variety of scenarios involving one or two 

uncorrelated, closely-spaced signals. A MUSIC root or ESPRIT eigenvalue was classified as arising from 

a signal if the root/eigenvalue location was within a 0.15 radial distance from the unit circle and lying in 

an angular (decimated) region encompassing 85% of the unit circle, i.e., in the region [-0.857T, 0.857r]. All 

trial runs, including those unresolved situations where only one signal was observed in the neighborhood 

of a signal pair, were used to compute the location statistics. 

Experiment 1: The simulation parameters of this experiment associated with the array, beamformer, 

and decimation components are similar to those outlined in the example of Section 3, namely, an N = 

128 element ULA with half-wavelength spacing was operated on with an Nb = 8 channel spatial DFT 

beamformer. The spatial window was centered at broadside so that the spatial region -Nb/N < sin# < 

Nb/N was probed. An L - 128 length Hamming-weighted low-pass filter was employed in the decimation 

procedure configured for maximal decimation, i.e., D — N/Nb- 

.    Two half-Rayleigh spaced signals of equal power were embedded in additive complex Gaussian noise 

so that a sensor level 10 dB SNR was achieved. To assess the effects of signal placement within the spatial 
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beamforming sector on the estimation variance, the center of the signal set was shifted from baseband 

(sm6 = 0) to the edge of the window (sin9 = S/JV). The empirical standard deviation of the two Root- 

MUSIC angle estimators, i.e., those formed using the matrix Z as well as the deconvolved version Z', 

were computed. Note that the dimension of Z was 16 x 8 while Z' was formed by adding one additional 

(remainder) row to the required (Nb + 1) x Nb matrix to form a 10 x 8 eigenvector transformation. The 

results are shown, along with the theoretical prediction as obtained from Equation (30) and the stochastic 

Cramer-Rao Lower bound [4, 16] in Figure 11. 

Several comments relating to Figure 11 are in order. Although the number of snapshots is relatively 

small, the theoretical performance curve is still a reasonably accurate representation of the empirically 

derived result. The rippled nature of the variance curves is due to the limited number of beams that are 

implemented in the approach. This characteristic is the result of a varying spatial power gain as similar 

to that depicted in Figure 10. As noted in [7, 9], the degradation in performance near the band edge 

suggests the need for sub-band overlap if one is interested in the detection and localization of all signals 

across the visible spatial spectrum. The variance of the estimate at the extreme right edge is not shown 

as the experimental and theoretical curves exhibit an exponential rise. In the central region of the band, 

however, the eigenvector transformation-decimation technique is seen to produce an accurate estimate 

in this Root-MUSIC formulation as evidenced by the closeness of the results to the Cramer-Rao Bound. 

Note that the curves related to the theoretical variance associated with the use of Z and the Cramer-Rao 

Bound overlap. 

Experiment 2: Employing the same decimation transformations as in Experiment 1, the variance of 

the Root-MUSIC estimators were observed for a varying SNR for two signals located at 10.6° and 11.5°, 

as used in the motivational example of Figures 2 through 7. The empirical and theoretical standard 

deviations were computed and are depicted in Figure 12. 

Note that the theoretically derived curve, defined for the 16 x 8 transformation Z, closely tracks 

the corresponding empirical counterpart at moderate to high SNR values. The deviation at the lower 

SNR values is attributed to the signal-merging effects in the resolution threshold regime of operation as 

noted in [9]. Although the stochastic Cramer-Rao Bound is based upon the statistics of the available 

beamspace data and does not assume the presence of any sub-optimal techniques such as decimation, 

the Root-MUSIC procedure incorporating decimation is readily observed to essentially offer the optimum 
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performance associated with un-biased estimators. Also, the similarity between the empirical variance 

curves corresponding to the competing approaches (Z versus Z') suggests that the computational savings 

associated with the smaller Root-MUSIC polynomial via the use of Z' is not obtained at the expense 

of a higher estimation variance. In fact, simulations have shown that the estimation variance is usually 

smaller for decimation architectures incorporating deconvolution. However, the imperfect deconvolution 

usually results in an induced estimate bias as will be observed in Experiment 3. 

Experiment 3: The main purpose of this experiment is to show that the filtering operation in the 

decimator may not be warranted in certain situations. A single signal was positioned at 1° and the 

bias performance was studied for the use of two beamforming architectures. In one situation, Nb = 6 

DFT beams were formed from an N - 36 element ULA. The beamspace to element-space eigenvector 

transformation was configured for maximal decimation, D = 6, with and without the use of a Parks- 

McClellan equiripple FIR filter exhibiting approximately 50 dB attenuation in the stopband region. In the 

other beamforming scenario, a practical application of Nb = 6 Taylor weighted beams [17], exhibiting a 

50 dB sidelobe level, were spaced at the half-power points and employed in a similar scheme involving the 

use/absence of additional filtering in the decimation operation. Note that the latter approach will produce 

an angle estimate exhibiting a substandard resolution ability due to the attendant wider mainlobes relative 

to DFT beams. However, this methodology is often required in practice to reduce the deleterious effects 

of sidelobe clutter, i.e., the masking of signals within a given beam by a strong clutter signal in the 

sidelobes of the beam. The beam spacing/aperture weighting associated with this case results in no 

common spatial nulls amongst the beam set so that the application of past beamspace MUSIC [7] and 

ESPRIT [8] formulations is precluded. 

The empirically derived mean location estimates were determined for a varying SNR for various 

schemes incorporating the two beamforming architectures and are plotted in Figure 13. Again, the 

purpose ..here is not to compare the two beamforming approaches, rather, it is to observe the effects on 

performance of the inclusion of a filter in the decimation operation. Also, the inclusion of a filter increases 

the order of the polynomial to be rooted thereby increasing computation and creating extraneous roots. 

With reference to Figure 13, note that the use of a filtering operation in the decimator with no additional 

deconvolution stage results in essentially an unbiased estimator for both beamforming architectures. 

As observed in the results, the Taylor-based sensor weighting provides sufficient attenuation so that a 
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negligible aliasing effect is incurred, i.e., the induced estimation bias is small. However, with the filter 

incorporated into the decimation operation, the imperfect deconvolution stage imparts a small bias of 

—0.02°. Thus the filtering operation is unnecessary as evidenced in the bias plot and a smaller standard 

deviation should be realized on account of the smaller dimension of the resulting Root-MUSIC polynomial. 

Essentially the opposite is observed for the case of unweighted spatial DFT beamforming. Here the 

sidelobe levels are large so that aliasing effects are present as evidenced by the top curve indicating a 

0.05° bias in the unfiltered mode of operation. With filtering as well as a deconvolution stage included 

in the decimation operation, a smaller bias of 0.025° is realized. The need for filtering is evident from 

observing the required dimension of the transformation Z'. Comparing the necessary row dimension 

of the decimation transformation incorporating deconvolution, Z', for the unweighted DFT and Taylor 

beamformers, the required sizes were 10 x 6 and 7x6, respectively. These required sizes were determined 

according to the criteria discussed in Section 3. 

Experiment 4: In this experiment, we test the validity of the TLS-ESPRIT formulation of the noise 

eigenvector transformation-decimation procedure and verify the theoretical variance expression of Section 

4i, Equation (32). The source/processing parameters are the same as those of Experiment 2. 

The theoretical and empirical standard deviation were computed over a varying SNR and the results 

are depicted in Figure 14. The results show that the performance predictor of Section 4 accurately 

tracks the empirical results. Also, the variance associated with the decimation architecture incorporating 

a filter deconvolution stage outperforms the "undeconvolved" counterpart. To verify the conjecture 

that the quiescent locations of the extraneous eigenvalues are sufficiently away from the unit circle, the 

ESPRIT eigenvalues were calculated in the absence of noise and plotted in Figure 15. Note that only the 

eigenvalues, interior to the unit circle are plotted as the closest exterior eigenvalue is located at a radius 

of 5.4 (associated with the Z transformation). Referring to Figure 15, in the absence of deconvolution, 

two "signal" eigenvalues appear at the correct location and the eigenvalue closest to the unit circle of the 

remaining is located at a radius of 0.62 and an angle very near IT. When deconvolution is incorporated, 

the closest non-signal eigenvalue is located at T at a radius of 0.09. However, the signal eigenvalues 

exhibit a small bias at the perceived (translated) angular locations of 10.587° and 11.465°. 

6. Conclusions/Remarks 

We have developed a novel approach to angle estimation in the beamspace domain.  The approach 
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offers a computationally attractive and non-restrictive procedure relative to the type of beamformer 

employed that is easily implemented in the MUSIC and ESPRIT algorithms. Theoretical expressions 

for the estimate variance were obtained in an asymptotical analysis and confirmed in a variety of sim- 

ulations. Although the technique was applied to the uniform linear array geometry, an extension to a 

two-dimensional array to provide simultaneous azimuth/elevation angle estimates is evident and currently 

under investigation. 

Appendix: Asymptotic Variance of ESPRIT Formulation 

Given that z,- is a (signal) unit-magnitude eigenvalue of the matrix 

F = (r1E^)t(r2E2j = [(r1Ezj
H(r1Ezj]t(r1Ezj

ff(r2E^), (35) 

with x,- and q, the corresponding right and left eigenvectors, Rao and Hari [15] showed that, to o(M *), 

Azi = qf AFx,. 

The error in F, AF, due to the finite sample estimation of the beamspace covariance matrix is 

AF = {TiEzJiTtAEz.) - (TxEz.y(^AE^JF, 

(36) 

(37) 

which is applicable to either the Least Squares (LS) or Total Least Squares (TLS) versions of ESPRIT. 

Substituting the form of AEz3 in Equation (31) into Equation (36), one obtains 

£{|A,;|2}   =   a? 

(z*f£{ (A*)2}   =   of 

J2Exz(k)x*(Z)£{AekAeJ} 
k=i t=i 

J2J2 *,-(*) *,•(*)£{AejfeAeH 
k=i t=i 

aci 

«.-> 

(38) 

(39) 

where a and the signal eigenvector error statistics were stated in Equations (33) and (26), respectively. 

Following [15], these quantities are then substituted into 

£{ (A0;)2} = 
A 

2irdD cos 0{ 

S{\Az^}-Re{(z*rS{(Azxy}} 
(40) 

to yield the desired theoretical asymptotic estimation variance. 

In the case of uncorrelated signals, the asymptotic error in the signal subspace eigenvectors become 

_f .       .   T,        Ski  Ä       Ai-A™ T       (I — Si??)      AtA 
£{ Aek Aej } = — }_, 

2M t, (h ~ Am)2 

m^k 

e"iem 

■kM T eeek. 
2M     (Afc - \e)2 

(41) 
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After substituting and simplifying (the algebraic details are omitted here due to space limitations), the 

asymptotic variance of the ESPRIT angle estimate for uncorrelated sources reduces to 

£{(A*02}   = 
A 

T2 

2xdD cos 9; 

1 K ~2 

£ 7I^IIm{^)E^} 2M |j=i  (Afc - a\ 

K    K AtA/ 
+    £En       lJIm{^eH   -Im{x1-(/)e?,a,-}lm{xt-(*)efaI-} 

fc=i i=i iAfc     A^i   v 
,     (42) 

where En is an Nb x (JV& - K) matrix composed of the noise eigenvectors associated with the ideal 

beamspace covariance. 
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Figure 1: Condition Number vs. Number of Beams 
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Figure 2: Spectrum of a Transformed Noise Eigenvector 
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Figure 3: Angular Responses of Eight Successive DFT Beamforming Vectors 
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Figure 6: Null Spectrum After Decimation By Factor of 128/8 = 16 
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Figure 8: Spatial Responses of Equi-Ripple Filter and Interpolated Beam Set 

Figure 9: Decimated Filter/Beamformer Spectra 
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Figure 10: Effects of Filter Deconvolution on White Noise MUSIC Spectrum 
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Figure 11: Experiment 1: Left Signal Standard Deviation vs. Signal Set Location Within Subband 
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Figure 12: Experiment 2: Left Signal Standard Deviation vs. Source SNR 
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3    Multidimensional Mult irate DO A Estimation in Beamspact 

TThe ID multirate approach developed in the previous section is extended to the more general 

case of 2D angle estimation with a uniform rectangular array (URA) of sensors. Multidimen- 

sional multirate processing is employed to ultimately yield a small order polynomial in two 

variables. Again, due to the linearity of the 2D filtering and 2D decimation operations, the 

actual algorithm merely premultiplies each beam space noise eigenvector by a precomputed 

transformation matrix. To avoid the spectral search, despite the fact that the fundamental 

theorem of algebra does not hold in 2D, we propose taking the orthogonal complement of the 

resulting transformed noise eigenvectors and applying a novel version of ESPRIT facilitating 

closed-form 2D angle estimation. Simulations demonstrating the efficacy of the approach are 

presented along with theoretical performance analysis. 

3.1 Introduction 

3.2 Array Geometry 

3.3 Beamforming 

3.4 Eigenanalysis 

3.5 TLS-ESPRIT 

3.6 Bandlimiting the Response 

3.7 Further Reductions in Complexity 

3.8 Algorithm Summary 

3.9 Performance Analysis 

3.10 Computer Simulations 

3.11 Conclusions 

3.12 , Appendix: Characterizing the Asymptotic Error 

3.13 References 

3.14 Figures 
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1    Introduction 

The eigenstructure based Spectral Music Algorithm of Schmidt [1] has become the standard for 

estimating the Direction of Arrival (DOA) of narrowband plane waves impinging upon a sensor array. 

Unfortunately the required spectral search is a burdensome task for ID arrays and computationally 

pohibitive for 2D arrays. Two well developed methods for reducing this complexity are beamforming 

techniques [5] and Esprit [4] [6]. Beam space methods reduce the complexity from the number of 

array sensor elements to the number of beams used to probe a given sector or subband. Furthermore, 

in the case of a uniform linear array (ULA), beam space techniques yield an implementation (Beam 

space Root-Music) that allows one to solve for the arrival angles by rooting a small order polynomial. 

Alternatively, Esprit places a minor restriction on the array geometery and then determines the 

arrival angles from the eigenvalues of a rotation matrix. 

For maximum computational savings, a beam space formulation of Esprit has been de- 

sired, but previous attempts have resulted in restrictive requirements on the beamformer. Recently 

Zoltowski and Kautz [2] [3] developed a beam space formulation of Esprit for ID ULA's that works 

with any type of front end beamformer. The new approach is based on the observation that beam 

space noise eigenvectors may be transformed to vectors in the element space noise subspace, which 

are bandpass and exhibit nulls at the location of inband sources. This facilitates multirate pro- 

cessing involving modulation to baseband, filtering, and decimation. From the linearity of these 

operations, the actual algorithm need only need premultiply each beam space noise eigenvector by 

a simple transformation matrix that is computed apriori. The resulting "telescoped" noise eigen- 

vectors yield a small dimensional element space noise subspace which is used to obtain a small 

dimensional signal subspace where the Esprit algorthm can be applied. 

With the combined advantages of beam space processing and Esprit, multidimensional DOA 
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estimation becomes computationally feasible. This paper extends the beam space approach to the 

more general case of 2D angle estimation with a uniform rectangular array (URA). Multidimensional 

multirate processing is employed to ultimately yield a small dimensional signal subspace. Again, 

due to the linearity of the 2D filtering and 2D decimation operations, a simple transformation 

matrix is computed apriori so that the actual algorithm need only premultiply each beam space 

noise eigenvector by this matrix. 

Directly applying the ID Esprit algorithm to the ÜRA would require two separate appli- 

cations of Esprit, one for each direction. This estimates the two direction angles independently 

and leads to the problem of how they can be paired. Alternatively, a novel version of Esprit is 

developed that estimates the two directions from a singal eigenvalue eigenvector pair. Hence they 

are automatically coupled. 

The paper is organized as follows. The array geometry and data model are described in 

Section 2 and the beamforming process is briefly reviewed in Section 3. The eigen characteristics 

of the system are developed in Section 4 and multirate processing techniques are applied to the 

eigenvectors in Section 5. The applicability of the Esprit algorithm is verified in Section 6. Section 

7 addresses the issue of bandlimiting the beamformer response and Section 8 describes some further 

reductions in computational complexity. Finally in Section 9 the proposed 2D Multirate Esprit 

Algorithm is presented. A theoretical performance analysis is presented in Section 10 and computer 

simulations are examined in Section 11. A few concluding remarks are included as Section 12. 

The notation used in this paper indicates vectors by lower case bold letters and matrices by upper 

case bold letters. The Hermitian, conjugate transpose, will be denoted by a superscript H and the 

conjugate will be denoted by a superscript *. 
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2     Array Geometry 

The array geometry considered in this paper is a rectangular array comprised of M elements in the 

x direction and N elements in the y direction uniformly spaced by Ax = Ay = A„/2 (see Figure 1). 

To specify the source directions, define x,y, and z to be unit vectors along the coordinate axes and 

O.N-1 

M-1.N-1 

Figure 1: Array Geometry 

ax, cty, az to be the angles between a vector and the respective coordinate axis. If pi is a unit vector 

normal to a plane wave emanating from the ith source, then pi = cos^Jx + cos(ayi)y + cos(aZi)z. 

These direction cosines are converted to azimuth, 9, and elevation, <j>, angles as cos aXi = cos 9i sin <j>i 

and cosaVi. = sin 0,- sin fc (see Figure 2). 

Define an arbitrary reference point to be r = (xr,yr,0) = (krAx,lTAy,0) and let fk,i be a 

vector from r to the k, Ith sensor. Then rk,i = {k - kr) Axx + (l - lr) &yy. Assuming that the signals 

are narrowband with common center frequency u>0, the response of the k, Ith sensor to the iih source 

at time t can be written as 

jf«' (t)  = s-(i)e?Uo^?k'1*^  = Si.(i)eJ^Kfc-fc'-)AiCOSÖ>sill^+('-i'-)Avsinöisin*il. n\ 

Because sin(^) = sin(7r — <f>), a signal with direction angles (9, <f>) and a signal with direction angles 

(0, -K — <f>) will have the same array response. This produces a directional ambiguity that is inherent 

to uniform rectangular arrays (URA). To see how this ambiguity manifests itself notice that if <f> 
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Figure 2: Angle Definitions 

corresponds to a direction from above the array, <j> € [0,§], then ir — <f> corresponds to a direction 

from below the array, ir - <j> € [f, ir].. Therefore, the direction of arrival (DOA) of a signal can only 

be resolved to two possibilities, one from above the array and one from below the array. This is a 

significant reduction from the directional ambiguity of a uniform linear array (ULA) which consists 

of a cone encircling the array. Since the sensor array will generally be mounted on a platform or the 

body of a plane, the ambiguity can be removed by assuming that all signals impinge from above 

the array. To facilitate this assumption, the angles are restricted to the ranges 9 € [-ir,K] and 

4> € [0, f], and the spatial frequency variables JJL and v are defined as 

P T
1

 Ax cos 9 sin 6   =   7rcos#sin<^   €    [—ir, r] 
(2) 

v   =   ^Aysin^sin^    =   TT sin 9 sin <f>    €    [—x, 7r]. 

The azimuth and elevation angles can be recovered from the spatial frequencies by noticing that 

9 = arctan (-) and <j> = arcsin (^vV2 + 1/2)- Where the full four quadrant inverse tangent is used. 

With these spatial frequency variables, equation (1) becomes 

Xljit)  = Si(t)e Jp-Mw+e-'r)"'] 
*(*)■ 

,-]{krlti+lrVi) „jikiti+ll/i) (3) 

For notational convenience X(m) will be used to denote the matrix obtained by sampling 

70 



the array at time tm and X'(m) will denote the array response due to the ith signal at time tr 

where m is the snapshot index. Using equation (3) X*(m) is given by 

X'(m) = Si(tm)e-^i+l^ 

e3Vi 

oJßi e3(ßi+V<) 

„j(N-l)vi 

Dj[w+(JV-l)".-i 

ej(M-l)ßi     ej[(M-l)M,+^]     ...     ej[(M-l)ßi+(N-l)i>i] 

(4) 

The term e""^fcrW+'r'/^ is an arbitrary phase common to all sensors, that is determined by the 

reference point. Choosing the origin as reference point [kr = lr = 0), yields an element space 

array manifold, i.e. the array response viewed as a function of fi and f, of the form A.MN{IJ-I V) = 

aM(/i)a^(y). Where ajvf(/z) and &N{V) are defined to be the one dimensional uniform linear array 

(ULA) manifold vectors. 

aM(/x)   =    [l.e»*, ...,e^-^ 

The mth snapshot of the array due to all d impinging signals can now be written as 

d-l 

X(m) = Yl Si(m)AMN{fii, v%) + N(m) 
i=0 

(5) 

(6) 

Where Nk,i(m) is measurement noise associated with the mth snapshot of the k, Ith sensor, and 

N(m) is the M x N noise matrix. 

It is useful to view the array response as an MN x 1 vector as well as an M x N matrix. 

To facilitate conversions between these forms, consider the operator vec that maps an M x N 

matrix to an MN x 1 vector by concatenating its columns, and the inverse operator, mat, that 

maps an MN x 1 vector to an M x N matrix by using M consecutive elements of the vector for 

each column of the resulting matrix.  If Q is an arbitrary matrix with columns denoted q^, then 

r i T 
uec(Q) =    qf, q^, ..., qjj     . If q is an arbitrary vector and q(k : /) denotes its kth through Ith 
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Table 1: Properties 

PI: V]V ® x,w    = =   uec(xitfV^) 

P2: XMVJ   = =   mat(vN ® XM) 

P3: uec(ADB)   = =   (Br ® A)uec(D 

P4: (A®B)T   = =   (AT®BT) 

P5 : (A <g> B)(C <g> D)   = =   (AC)®(BD) 

elements, then mat(q) = [q(0 : M - 1) |   ... | q(MN - M : MN - 1) ]. The following example 

illustrates these operators 

/ 

vec 

V 

1 3   5 

2 4   6 

=   [1,2,3,4,5,6]' 

\J 

mat ([I, 2, 3, 4, 5, 6, f)    = 
1 3   5 

2 4   6 

Some important properties of vec, mat, and the Kronecker product, <g>, are listed in Table 1 (see 

also [9]). Most notably, Property 1 allows the array response to be written in vector form as 

d-l 

x(m)  =  uec(X(m))  =  £} st-(m)aMivO;, Vi) + n(m)  =  >Ws(m) + n(m). (7) 
t=0 

Where s(m) is the vector of signal amplitudes, aAfjv(^, ^) is the array manifold in vector form, and 

the columns of AMN are the signal steering vectors, i.e., the array manifold evaluated at the spatial 

frequencies corresponding to the signal directions. 

s(m)   =   [s0(m), ..., Sd-i{m)] 

SLMN(fi, v)   =   vec(AMN(lJ; v)) = a.N(v) ® ajw(//) 

AMN   =   [a-MNincvo) I ••• I 3^(^-1,^-1)] • 

(8) 

(9) 

(10) 

The element space signal subspace is defined to be the column-space of AMN, Se = 'R {AMN}, and 
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the element space noise subspace is denned to be the orthogonal complement of <Se. Since AMN is 

MN x d, Se is a d dimensional subspace of MN dimensional space. 

3    Beamforming 

Now consider the class of separable two dimensional beamformers. Let WM be an arbitrary M x Mb 

beamforming matrix (with Mb < M) for the fi spatial frequency. The kth row of W^ denoted w^k 

forms a beam for a specific frequency in the desired range. W„ is defined in a similar fashion for 

the v spatial frequency. Using w^, in conjunction with w*( a beam is generated for a specific 2D 

frequency in the subband of interest. Therefore, the Mb x Nb beam space snapshot matrix is formed 

as Y(m) = W^X(m)W*, and the MbNb x 1 beam space snapshot vector is given by y = uec(Y). 

Using Property 3 from Table 1 these can be written as 

Y(m)   =   WfX(m)W;   =   £ Si(m)W« AMN{m, u{)W; + Wf N(m)W; 
»=o (11) 

y(m)   =   vec(Y{m))        =    [Wf <g> Wjj AMNs(m) + [Wf ® Wf J n(m). 

Therefore, the beam space array manifold is described by 

BO*,*)   =   WfAMiv(M,i/)W; (12) 

b(p,v)   =   [wf0Wj]a^,y)  =   [Wf aiV(Z/)] ® [wf aM(^)] (13) 

B     =     [b(ll0,V0)   |   ...   |   M/irf.!,^-!)]. (14) 

Finally the beam space signal subspace, 5&, is defined to be the d dimensional subspace of MbNb 

dimensional space that is spanned by the columns of S, and the MbNb — d dimensional beam space 

noise subspace is defined to be the orthogonal complement of <Sf,. 

At this time it should be noted that the beamformer need not be separable. This assumption 

was made because the separable nature of the array structure leads directly to separable beamform- 
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ers. In vector form, nonseparable beamformers modify equation (11) by replacing W„ <g) Wß with 

an arbitrary MN x MbNb matrix W6. 

4    Eigenanalysis 

Using equation (7) and assuming that the measurement noise is zero mean, uncorrelated between 

sensors, and has equal power cr2, the MN x MN element space autocorrelation matrix is 

R* = E {x(n)x(n)F} = ARSA
H + a2I. (15) 

It has been observed [4] that the eigenvectors of R^ corresponding to the d largest eigenvalues form 

a basis for Se and the remaining eigenvectors of R^ form a basis for S^. Under the assumption of 

orthonormal beams, the MbNb x MbNb beam space autocorrelation matrix has the form 

Ry W? ® w H ARSA
H [W„ ® W„] + <72I  =  BRsB

H + a2I. (16) 

The eigenvectors of Rv are also divided into two sets, the "beam space signal eigenvectors" {f; : 

i = 0, ...d- 1} that form a basis for Sb, and the "beam space noise eigenvectors" {f, : j = 

d,... MbNb — 1} that form a basis for Sb
L. 

If the number of signals, d, is unknown it can be estimated at this time using the AIC or 

MDL methods of [10]. Therefore, in all further developments, it will be assumed that d is known. 

Since the "beam space noise eigenvectors" lie in Sb
x, they are orthogonal to the beam space 

signal steering vectors, i.e., bH(m, i/,-)fj = 0 for all i - 0,... d - 1 and j = d,... MbNb - 1. Recalling 

equation (13) yields the following important result. 

H 
0 = b*{(ja, ui)fj = [(Wf (8) Wf) ajwK/i,-, fij\    f, = *MN(^ ^ [(w<- ® WM) f.] (17) 

This shows that the matrix W„ (8) WA maps the beam space noise eigenvectors, f,-, to the element 

space noise subspace, S^ [3]. However, there are only MbNb - d beam space noise eigenvectors, so 
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this mapping does not yield a complete basis for <Se
x. 

The general Music algorithm exploits the orthogonality between the beam space noise eigen- 

vectors and the signal steering vectors, by forming the beam space Music null spectrum Sß{ft, v). 

MbNb-l MbNb-\ 2 

SB(W)  =     E    h'Wftl    =     E    |a£(/x)WMF,Wja^)| (18) 
j=d j=d 

Where Fj is defined to be the beam space noise eigenvector written in matrix form (Fj = mat(fj)). 

Signal directions are then estimated from values of p and v corresponding to nulls in SB(P, V). TWO 

well established problems with this method [4] are that the array manifold must be known and 

stored, and the search over a two dimensional space can be computationally prohibitive. 

5    Multirate Processing of Beam Space Noise Eigenvectors 

In an effort to circumvent these problems, notice that the crux of the beam space Music null 

spectrum are the M x N telescoped [3] beam space noise eigenvectors Gj = W^FjWj (j = 

d,...,MbNb — 1) and GJ(IM,V) = aj^(//)Gja^(z/) is the two dimensional Discrete Space Fourier 

Transform of Gj. Letting Fj(k, I) denote the k, Ith element of Fj yields 

Mfc-1 Nb-\ 

G,(/i,u) = a^W^Wja^) =  E   E *)(*>0 [aS(^)w«<*NH] ■ (19) 
Jk=0     /=0 

Since wMfc and w„( form a beam in the desired subband, aj^(//)"wMfcw^a^(i/) is a bandpass function 

of fi and v for all k, I. Consequently Gj(n,v) is a bandpass function of \i and v. Without loss 

of generality, assume that the M&iVj, beams encompass the spatial subband defined by — ir f-^J < 

P < K \~M) 
an(l ~ir (iv ) — v — T \~N) 

an<^ nave sufficiently low out of band sidelobes. Then the 

beamformer response is negligible outside this subband, i.e., Gj(n, v) ~ 0 for ^-ir < \fi\ < r and 

J£TT < | v | < 7T, so Gj can be decimated by dx = j^- and dy = jj- without incurring a significant 

amount of aliasing.   (Note:  Gj can always be modulated to baseband and filtered to make this 

assumption valid. See section 7). 
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The decimation process can be modeled mathematically as premultiplying Gj by Dx and 

postmultiplying by D^ where Dx and Dy are the Mb x M and Nb x N decimation matrices. For 

example if Mb = 2 and M = 6 

Dr = 
10   0   0   0   0 

0   0   0   10   0 

Therefore the decimated telescoped beam space noise eigenvectors are given by 

H,   =   D.Gj-Dj1   =   (D,W„) F,-(D,W„ (Mb x Nb) 
(20) 

h,-   =   veciHj)     =   [(DyWv)®(DxWß)]fj (MbNb x 1) 

for j = d,...,M6iVfe-l. 

It is important to note that since decimation is a linear operation it can be performed apriori 

on the telescoping matrices. Furthermore, fractional sampling rate alterations can be effected by 

replacing Dx with DxFxlx, where I* represents an interpolation matrix and F* represents filtering. 

The space spanned by the decimated telescoped beam space noise eigenvectors, hj, will be referred 

to as as <Sj". 

Since H, is Mb x Nb, it has a 2D-DSFT given by ^(/x, u) = a^(/*)H,a^(i/) where aMb(/0 

and 3iNb{v) are defined analogously to equation (5). By standard Multirate analysis [13] the rela- 

tionship between Hj(fi,v) and Gj(n,v) is 

1    d*z* d^      (u-2-xp  v - 27r<?\ 
Hj(fi,v) EEcf «s"y   p=0   g=0 dr 

(21) 

Since the beamformer response is negligible outside the subband, Hj(p, v) « j^rGj (£, ^J for all 

—7T < /i, i/ < 7T and therefore 

Hj(dxfMi,dyi/i) 
1   G,-0i,-,i/0  =  ^Vb^^^Ofi  = 0. 

dx^y 0>xOiy 

(22) 

This shows that the decimation process preserves the in band source nulls and increases their 

separation by a factor of dx and dy.   Hence, the beam space Music null spectrum (18) could be 
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reformulated as 

MbNb-l MbNh-\ 

SBM  =     £    |ffi(M,")i2  =     E    |a£»Hia^(i/)| (23) 

thereby reducing the computational intensity of each evaluation of 5B(M5 
Z/
)- 

In the one dimensional case, this search can be removed by defining z = tm and writing SB 

as a polynomial in z. Signal directions are then obtained from the roots of SB- This procedure, 

refered to as Root-Music [5], has always been theoretically possible for the two dimensional case, 

but the lack of 2D rooting algorithms has precluded its use in practice. However the efficient 2D 

rooting algorithm recently proposed by someone [15] has made 2D Root-Music a viable option. 

It is well known that the Esprit algorithm [4] offers another alternative to the spectral search 

of Music. In an effort to apply Esprit, notice that 

Hj(dxfii,dyUi)  =  &Mb{dxßi)'H.j&*Nb{dyVi)  =  a.%lbNb(dxni,dyvi)h.j. (24) 

Comparing equations (22) and (24), it is seen that 

^MbNb(
d^^ dvvi)hi = ° V i = 0,..., d - 1 and j = J,..., MbNb - 1. (25) 

This shows that the decimated telescoped noise eigenvectors form a complete basis for a lower 

dimensional element space noise subspace <Sj\ Therefore, the orthogonal complement, Sd, is a 

lower dimensional element space signal subspace. This space will be refered to as the decimated 

signal subspace, even though it is not obtained by decimating the signal subspace. 

Before showing that Sd has the Esprit structure, it is useful to summarize the preceding 

results. The original array response resided in the element space signal subspace which is ad di- 

mensional subspace of MN dimensional space defined as Se = span {a-MN^i, ^t) i = 0,..., d — 1} . 

Due to the array geometry, this space has the Esprit structure, however, the array response is an 

M x N matrix (or MN x 1 vector) which can make computations unwieldy. Since the signals are 
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known to be in a certain subband, a beamformer is applied that imposes a bandpass characteristic 

on the array response, which can then be decimated without incurring aliasing. This reduces the 

signal space to a d dimensional subspace of an MbNb dimensional space and yields matrices that 

are only i¥& x N},. However in the beamforming process the Esprit structure is lost. This structure 

can be restored by decimating and telescoping in the noise subspace, then converting back to the 

orthogonal complement (see Figure 3). It is important to notice that the element space signal eigen- 

^i,dyvi) 

Figure 3: Subspace Relations 

vectors which are obtained directly from the element space correlation matrix cannot be decimated 

because they are not bandlimited. The beam space signal eigenvectors are not telescoped because 

this does not yield vectors in the element space signal subspace. Hence they will not have not have 

the Esprit structure. However telescoping and decimating the beam space noise eigenvectors yields 

a space that is the orthogonal complement to a smaller dimensional element space signal space. 

6    TLS-Esprit 

It remains to show that Sd does indeed have the Esprit structure. The Esprit algorithm requires 

an array formed by "sensor doublets" that are separated by a constant displacment vector [4]. This 
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can be accomplished by viewing the Mb x Nb rectangular array as two overlapping Mb x (Nb - 1) 

subarrays with Mb(Nb — 2) common elements (see Figure 4a). The resulting subarray manifolds are 

AR 

r. --.-,. "i 

i  

AR 

~i_~ 

(a) (b) 

Figure 4: Array Partitioning 

given by the first and last Nb — 1 columns of AMbNb{(J; v). Mathematically this can be modeled as 

AA^JV^/Z,:/)!?! and AMbNb{ß, v)T2, where Tx and T2 are the first and last Nb - 1 columns of the 

Nb x Nb identity matrix. For example, if Nb = 3, I\ and T2 are as follows: 

r1 = 

1 0 

0 1 

0 0 

r2 = 

0 0 

1 0 

0 1 

The vector form of the subarray manifolds are obtained by premultiplying by the Mb x Mb identity 

matrix and applying Property 3 of Table 1. It is easily verified that the two subarray manifolds, in 

matrix and vector form, are related as follows: 

(26) 
AMbNb(v, v)T2   =   e?v AMbNb{fi, v)Tx 

■"     32&MbNb(v>,v)   =   eJ"JiaMöjV5(/^)- 

Where Ji = Tj®lMb and J2 = rj®IA/6. Therefore, the signal steering vectors for the subarrays are 

related by 223LMbNb(dxVi, dyfi) = e3dyVi3ia.MbNh{dxiii, dyUi) for all i = 0,..., d - 1 and consequently 

^2^-MbNb = J\AMbNb~£v (27) 
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where Tu = diag^»"0,..., e3d,jl,d-1}. This can be generalized to an arbitrary basis, K = ^4M6JV6T, 

for Sd by postmultiplying both sides by any d x d nonsingular matrix T and premultiplying T by 

Id = TT-1. 

hAMbNbT   =   Jx^^TT-^T (28) 

J2K   =   JiK*. (29) 

Where * = T_1TT. This relationship is the basis for the TLS-Esprit algorithm [4]. It shows that 

the v spatial frequencies can be estimated from the eigenvalues of the matrix that rotates the first 

Mb(Nb - 1) rows of K into the last Mb(Nb - 1) rows of K. 

Alternatively, the array can be viewed as two overlapping (Mb - 1) x Nb subarrays with 

(Mb - 2)Nb common elements (see Figure 4b). This yields subarray manifolds that are the first and 

last Mb-l rows of AMbNb(p, v) an<i modelled by T3AMbNb(fJ; v) and T4AMbNb(n, v). In this case, 

T3 and T4 are the first and last Mb - 1 rows of the Mb x Mb identity matrix and 

J4-4M6;V6 = 2zAMbNb"£ß (30) 

where Y„ = diag{e^M,..., e^*"--»}, J3 = IJV6 ® T3, and J4 = Ijv6 ® T4. 

Therefore, if the array is divided in a row-wise fashion, the JJL spatial frequencies can be 

estimated from the eigenvalues of the matrix that rotates J3K into J4K. However, if the p. and 

v frequencies are obtained independently by applying Esprit to K in a row-wise and column-wise 

fashion, there is no apparent way to pair the frequency components corresponding to a specific 

signal. 

In an effort to circumvent this problem, notice that as long as no two signals have the same \i 

and v frequencies, JXK and J2K are rank d. Therefore, * always exists and has a full set of eigen- 

values and linearly independent eigenvectors. Consider performing an eigenvalue decomposition of 

* to obtain *=ETE-X. 
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If Vi is a distinct frequency, then 7,- is a distinct eigenvalue of \£ and the associated right 

eigenvector is unique (to within a scalar multiple). Therefore, et- is the ith column of T_1 and the 

ith signal steering vector can be obtained as 

Ke,  =  ÄMbNbTei  =  aiaMbNb(dxHi,dyVi). (31) 

To estimate the \i frequency from the steering vector recall equation (30), let 1^ = Ke„ and notice 

that (J3l,)ff (J4I.O = {Mb - l)Nbe>d*ßi. Therefore, define p{ as 

A 
Pi   = L— (J310" (J4IO = ith^Tßi* = ifpi.- = «*". (32) 

(Mb-l)Nb
yö,J v"v * (Mb-l)Nb 

So Hi is obtained as \i{ = -j-arg (pi). An important observation here is that the p, and v frequencies 

for a signal are estimated from an eigenvalue-eigenvector pair and as such are automatically coupled. 

Now consider the case where V{ is not a distinct frequency, say z/0 = ... = vv-\, then \£ 

has an eigenvalue of multiplicity p and the associated eigenvectors {e0,..., eP-i}, are not unique. 

Therefore, et- is not the ith column of T-1 and 

Ke, = [sLMbNb(dx{J,o, dyv0) \...\ a^^^/ip-i, dy^p-i)] Ci   V i = 0,... p - 1 (33) 

for some arbitrary p x 1 vector C;. In this case the eigenvector will not directly yield the [i frequency. 

However, the matrix 

K [e0 I • • • I ep_x] = [a.MbNb{dx/J.o, dyv0) \...\ aMbNb(dxßP-i, ^p-i)] C (34) 

has the Esprit structure. Therefore, applying Esprit in a row-wise fashion will yield the \i frequen- 

cies. Coupling the frequencies is not an issue because all of the corresponding u frequencies are 

identical and already known. 

Before proceeding, several aspects of the above development need to be emphasized. First, 

K, the arbitrary basis for Sd, is obtained as the orthogonal complement of the decimated telescoped 

noise eigenvectors h;-. Second, the matrix products JaK and J2K are the first and last Mb(Nb - 1) 
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rows of K, and can be effected without actually performing any matrix multiplies. Third, the matrix 

* that rotates JiK into J2K is estimated by applying the Total Least Squares method of Golub 

and Van Loan [11] [12] to equation (29) (as in [4]). Finally, equation (29) has a unique solution 

for * provided that the number of rows exceeds (or equals) the number of columns in JiK. Since 

JXK Mb(Nb -l)x(f, TLS-Esprit can determine up to Mb(Nb - 1) signal directions. It is also worth 

mentioning that since Sd has the Esprit structure any type of Esprit algorithm, such as PRO-Esprit 

[6], can be applied to K. 

7    Bandlimiting the Response 

Thus far it has been assumed that beamformer employed is comprised of MbNb beams that encom- 

pass the subband defined by -TT ($) < [i < * (§) and -TT ($) < v < TT ($). If the beams 

are insufficiently bandlimited or not centered at broadside, the beam space noise eigenvectors can 

be modulated to baseband and filtered prior to decimation to make the assumption valid. It is 

important to realize that the filtering process increases the length of the eigenvectors. In the one 

dimensional case Kautz [2] showed that a decimated version of the filter can be deconvolved from 

the decimated telescoped eigenvectors to remove most of this extra dimensionality. Furthermore 

since filtering and deconvolution are linear operations they can also be performed apriori on the 

telescoping matrix. For the ID case this yields telescoped eigenvectors that are (Mb + 1) x 1 and 

a resulting decimated signal subspace that is a d + 1 dimensional subspace of Mb + 1 dimensional 

space. 

This extra dimensionality does not cause any problems for 2D Music. In fact, if the beam- 

former employed has the common out of band nulls property then filter nulls can be positioned 

to coincide with out of band peaks thereby effectively eliminating aliasing [5]. For ID Esprit, this 
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extra dimensionality produces a \I> matrix that is (d + 1) x (d + 1) and has an eigenvalue that is 

not related to a signal direction. Kautz argued that this extraneous eigenvalue is far removed from 

the unit circle, so it is easily identified and ignored. In the case of a rectangular array, the filter- 

ing is two dimensional, so after deconvolution the resulting eigenvectors are (Mb + 1) x (Nb + 1). 

This yields a d + Mb + Nb + 1 dimensional decimated signal subspace and * has Mb + Nb + 1 

extra eigenvalues. Kautz's argument that these additional eigenvalues are far removed from the 

unit circle is still valid, but now the eigenvalue decomposition is performed on a matrix that is 

(d + Mh + Nb +1) x (d + Mb + Nb +1) instead of d x d. This is a nonnegligible increase in complexity 

that can be easily circumvented by improving the front end beamformer. 

An obvious choice for the beamformer is (Mb - 2) x (Nb - 2) Hamming weighted orthonormal 

DFT beams centered at // = -ir(Mb-3)/M .. .x(M6-3)/M and v = -ir(Nb-3)/N .. .ir(Nb-3)/N 

because they have low sidelobes and common out of band nulls [5]. However this yields an even larger 

increase in complexity because the eigenvectors have length MbNb but there are only (Mb-2)(Nb-2) 

of them. Therefore Sd is a d + 2Mb + 2Nb + A dimensional subspace and # has 2Mb + 2Nb + 4 extra 

eigenvalues. So the beamformer employed must have Mb x Nb beams. 

In section 11 several types of beamformers will be investigated to determine which ones 

yield the best performance. For the moment, it is sufficient to point out a few properties that need 

to be considered when choosing the beamformer. First, for the- Esprit formulation no filtering is 

performed, so common out of band nulls are unnecessary. Second, larger main lobes are required to 

reduce the sidelobe ripple, but this yields beams that may extend outside the desired subband (see 

Figure 5). This is not a problem, since aliasing caused by these wider main lobes will only effect 

signals at the band edge. It is a well established fact that performance decays at the band edge 

even without aliaing, so subands should be overlapped. Third, orthogonal beams are required for 

equation (16) to be valid, but this increases the ripple, and consequently the estimation error due 
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to aliasing. However, nonorthogonal beams introduce error because Ry = BHSB
H + <r2W^W(,. 

One way to reduce the error due to nonorthogonal beams is to "clean" the matrix Ry. This is 

mentioned in [6] for use in cases where the noise is not spatially white. Notice that nonorthogonal 

beams only cause a problem at low SNR. 

8    Further Reductions in Complexity 

In this section several remarkable computational savings that have been devloped for ID are ex- 

tended to 2D. Since these are direct extensions of the ID case and are given a thorough treatment 

elsewhere, the details will be omitted. 

8.1     Real Covariance Processing 

It has been observed [5] that for the ID ULA, placing the reference point in the center of the array 

and making appropriate restrictions on the beamformer enables one to replace the EVD of Ry with 

the EVD of TZe. {Ry}. This effects a considerable reduction in complexity and is readily extended 

to the uniform rectangular array. 

With the reference point in the center of the array, r = (^^A^, —jpA^O), the array 

manifold'vectors have the form AMN{V-, 
V
) — aA/(M)aN-(^) where 

a„W   =    [e->m»,...,eW)f ^ 
''   awW   =    [e-^)V..,^>f. 

These steering vectors have the following conjugate centrosymmetric property: 

IMN*MN{PL, V)  =   (ijv ® IM) (a;v(z/) <g> aw(p))  =  ajsr(i/) ® aJtf(/0  =  aM7v(^ "). (36) 

Where 1M is the M x M reverse permutation matrix, that "flips" the M x 1 column vector. Since 

IM is its own inverse and IMN = IN ® IM, applying a conjugate centrosymmetric beamformer yields 
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real valued beam space steering vectors. 

B =   {W?®W*]A =   [W? ®W?]iMNiMNA =   [WJ®WJ]^*  = B* (37) 

Using this in equation (16) and taking the real part of the beam space correlation matrix yields 

7&{RJ  =   ^{[wf^Wj^R^tW^W.l + a2!}  = Bile {Rs} BT + <r2I.     (38) 

Therefore, the real part of the beam space correlation matrix has the desired eigen structure and 

the TLS-Esprit algorithm can be applied to the real part, instead of the "full blown", correlation 

matrix. 

8.2     Orthogonal Complement 

Recall that columns of K form a basis for Sd and have thus far been obtained as the orthogonal 

complement of H = WtF„. This requires a computationally intensive SVD on.WtFn to find 

K. Kautz [2] noticed that an alternate basis for Sd can be obtained by applying a simple linear 

tranformation to Fs. To show this, let Z = Wt (wf Wt)     and notice that 

(Zfifhj  =   [w^Wfw/f^W^  = fff,-  = 0. (39) 

Hence the matrix Z maps a beam space signal eigenvector to element space (but not to its element 

space counterpart). Therefore K can be determined as 

" K = ZF, = [Zf0 | ... | Zfd_x]. (40) 

In the event that filtering is employed, this transformation yields an insufficient basis for Sd- How- 

ever the remaining basis vectors can be obtained by precomputing the orthogonal complement of 
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9    Algorithm 

1. Precompute the beamforming matrix, Wj, and Z = Wt (Wf WtJ    . 

2. Store P snapshots of the array as the columns of X, and form Y = Wf X. 

3. Compute the EVD of the real part of the beam space correlation matrix and form K. 

1 MbNb-l 

Ke{Ry} = --Re{YYH} =    ]T    A,-f,ff K = Z [f0 | ... | f^ ] 
" l'=0 

4. Form K12 = [Ki | K2], where Ki and K2 are the first and last Mb(Nb — 1) rows of K, and 

compute the EVD of Kf2K12 = QAQ-1. 

5. Partition Q into d x d blocks and estimate \£ = — Q12 (Q22)- • 

6. Compute the EVD of \£ to obtain T and estimate the v frequencies. 

* = EYE-1 Y = diag{7o,..., 7^-1} Vi = -7- arg7,- 
dy 

7. For distinct i/t- estimate the fx frequencies as //,- = j- arg/),-. Where p,- = if PI,-, 1,- = Ke;, and 

*   -  (Mb-l)Nb 

8. For repeated V{ form L = K [ei | ... | ep_i] and estimate the pi frequencies as fii = j- arg /),-. 

Where p,- are the eigenvalues of the matrix that rotates the J3L into J4L (steps 4-6). 

10    Performance Analysis 

A large portion of the 2D performance analysis is identical to the ID analysis performed by Kautz 

[7] and Rao and Hari [8], so their work will be followed as much as possible. The bulk of the error 

analysis is included as Appendix A and the major results are presented in this section. To maintain 
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a consistent notation, estimated quantities will be denoted with a "hat", and the error between 

estimated and actual quantities will be denoted with a "A" (e.g. Af, = f; — f,-). 

The primary source of error in the proposed algorithm results from the finite snapshot 

approximation of the beam space correlation matrix Rj,. Let Ry = R/ + JRQ and recall that R/ is 

real, symmetric, and positive definite so its eigenvalues, A, are real and the associated eigenvectors, 

f, can be chosen to be real. Kautz has shown [7] that the error in the signal eigenvectors is 

asymptotically zero mean with with covariance 

,   MbNb-lMbNb-l r> 

m^k n^l 

k,l = 0,...,d-l      (41) 

Tmnlk     =      2   [^kWmlSnk + h^m6mJkl + (^Q^l)  (^kRQfn) (1 ~ M (1 " hn) 

+ (f£RQfn) (fjRQf;) (1 - Smn) (1 - Skl)\ . (42) 

It should be noted that the multiplicative factors of the form (1 - £..) can be removed. They are 

only included to emphasize the fact that ffc Rgffc = 0. 

This error propogates through to 7 and e, the eigenvalues and right eigenvectors of *, as 

E{|A7t-|
2}   =   c$ [EEe^K(0E{AffcAf;

T} 
L k=0 1=0 

(7;)
2
E{(A7,-)

2
} = c$\Y;Z«W«m{AfkM?} 

fc=0 1=0 

d-l d-l   ( 

OLi 

OL; 

E{Ae,Aef}   =   E E   7" 
m=0  n=0    ^ V  /» 

(7.7-) 

d-l d-l 

7m) (7j - In) 

inrtj) 
^0 n=o   I W« ~ 7m) (7i ~~ In) 

am   =   Zff(J!-7;j/(Kf)\- 

'd-l d-l 
<*i   X)£«(*)«i(0E{AffcAff}   aiB 

^•=o /=o 

E'{AeiAej}   =   EE «2. fi:i;ei(fc)Ci(0E{AffcAf?'}) «;„ 

(43) 

(44) 

(47) 

The relationship between Aet- and A/ot- is given by 

E{|A^|2}   =   efK^PKE{AeiAef}KffPTKet + efKHPTKE{AetAef}Ki?PKei 
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+2 % {ef K"PKE {Ae;Aef } KrPKe;} (48) 

E{(APi)
2}   =   efKHPKE{AeI-Aef}KrPTK*e* + efKTPrK*E{AeJAef}*K^PKet- 

+2 7?e {ef KTPKE { Ae< Aef } KH PKe,-} (49) 

r^r4). (so) 
(M6 - l)iVb "b 

It remains to show how A# and A7; relate to A//,- and A//;. This was done by Rao and Hari [8]. 

,          ,         E{|A7,|2}-^{(7,-)2E{(A7if}} 
E{(A^)}   =    ^  (51) 

B{(W}. 4iMH-^yB{(A,m (52) 

Combining equations 41 through 52 produces the desired asymptotic error characteristics 

of the signal frequency estimates. However, This does not yield any insightful information. For 

the case of d uncorrolated sources with equal signal power as and noise power an, the resulting 

asymptotic error reduces to 

11     Simulations 

Various computer simulations were performed to verify the efficacy of the proposed 2D Esprit 

algorithm. Unless stated otherwise, all experiments simulate a 32 x 32 array with half wavelength 

spacing and 3 equal power sources, a2
3. The beam space correlation matrix is estimated from 

32 snapshots of the array and 200 trials are executed for each particular point of interest. The 

front end beamformer consists of 64 beams centered at broadside, so the subband being probed is 

—f < (M^) < f; and the maximal decimation rate of dx = dy = 4 is used. To investigate the 

effects mentioned in section 7, three separate types of beams are simulated, DFT beams, Hamming 

beams, and Ortonormal Hamming beams (see Figure 5 for ID plots). Finally, it is important to 

note that the error criterion used to evaluate the estimator is the average RMS error between the 
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actual signal frequencies and their estimates, rms = j^V^' ~ ^^ + (^ ~~ ^' anc* ^^ re^ers 

i=0 

to the per signal per element signal to noise ratio, SNR = 10 log |§-. 
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Before simulating Esprit, it is worthwhile to simulate 2D Multirate Spectral Music (Eqn. 

23). The three signals simulated had 0 dB SNR and spatial frequencies (a,-a), (-a,-a), and 

(-a, a), ..where a = |f = 0.1963. Since the main lobe width of the Hamming beams is ||, these 

signals are said to have 100% beam width separation (see Figure 6). These plots show that 2D 

Multirate processing does indeed work, and the resulting spectral nulls are moved to (±dxa, ±dya) — 

(±0.7852, ±0.7852). For comparison purposes, Esprit was simulated with the same parameters 

and the results displayed as scatter plots (see Figure 7). Notice that the scatter plot verifies the 

automatic coupling properties of the proposed Esprit algorithm, but shows that DFT beams have 

a slight bias. 
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Figure 6: Beam Space Music Null Spectrum for 3 sources with OdB SNR and 32 Array Snapshots 

In section 7 it was stated that the orthogonality of the beamformer is only a consideration 

at low SNR, and at high SNR the dominant factor is the height of the sidelobes. Figure 6 illustrates 

this point. Hamming weighted beams have the lowest sidelobes and yield the deepest nulls. To 

further investigate the SNR dependence of the estimator, the same three signals were simulated and 

the SNR was varied from -30dB to OdB (see Figure 8 first row). This figure shows that for SNR 

values below — lOdB measurement noise dominates so DFT beams perform better, but for SNR 

values above — lOdB aliasing due to high sidelobess dominates so Hamming beams perform better. 

In an effort to investigate the performance of 2D Esprit for closely spaced sources, this 
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Figure 7: Scatter Plots: Esprit for 3 sources with OdB SNR and 32 Snapshots 

simulation was repeated with the signal separation reduced to 50% of the beamwidth (a = jj = 

0.0982) (see Figure 8 second row). The performance actually improved. To understand why this 

happened, it is necessary to investigate the beamformer performance with respect to signal location. 

It is a well established fact that the performance of ID beamformers decay near the band 

edges. To see how the 2D beamformer performs, one signal was simulated and its position was 

varied from the center of the band to the band edge along the // axis. This was repeated, varying 

the signal along the ft = v diagonal (see Figure 9). The performance does indeed decay, hence 

subbands should be overlapped. 

Lastly the number of array snapshots was varied. The first row of Figure 10 depicts the 

original 3 signals with 0 dB SNR, and the second row depicts the same three signals with -20 dB 

SNR. 

12     Conclusion 

The proposed 2D Multirate Esprit Algorithm has been shown to work well. Let's submit this paper! 
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Figure 8: RMS Error vs SNR: Esprit for 3 sources, OdB SNR, 32 Snapshots and 200 trials per SNR 

value. Row 1 has 100% BW separation, and Row 2 has 50% BW separation. 

A     Characterizing the Asymptotic Error 

A detailed characterization of the asymptotic error in the eigenvectors of the real part of the beam 

space correlation matrix can be found in [7], so the current developement will begin by showing 

how Af effects the estimate of *. Recall that K = [Zf0 | • • • | Zfr-i] = ZFS and K is divided into 

Ki = JiK and K2 = J2K. The error in these matrices is given by 

AK,  = K, - Kt  = JtK - JtK = JtZFs - JtZFs  = J<ZAFS 

Using Kx and K2, # is determined as the solution to K2 = Kx#. Therefore, 

K2 + AK2   =   (Kx + AKO^ + A*) 

K2 + AK2   =   K^ + KiA^ + AKx^ + AKiA* 

AK2   «   KxA^ + AKx* 

i = 1,2. (53) 
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Figure 9: RMS Error vs Position: Esprit for 1 source, OdB SNR, 32 Snapshots and 200 trials per 

Frequency. Row 1 varies the source frequency along the \i axis and Row 2 varies it along the \i — v 

diagonal. 

KxA*   =   AK2-AKX#. 

Hence A\£ is given by 

A* = K+AKs-KfAKx* = K+J2ZAFS - K+JXZAFS*. (54) 

Where Kf = (KfKij Kf is the pseudo-inverse of Ki. Rao and Hari [8] have shown that this 

error is valid for both Least Squares Esprit and Total Least Squares Esprit. 

To find expressions for the error in the eigenvalues and eigenvectors of *, recall [14] that if 

a matrix has the form A + eB with eigenvalues 7,-(e), right eigenvectors e,-(e) and left eigenvectors 

q,-(e), then 

1.W   = * + '-&T    md    -W   =  e' + £5(7,-7))(qfe,)- 

93 



RMS Error 
0.015 

20     40     60 
Number of Snaps 

RMS Error 
0.015 

20     40      60 
Number of Snaps 

RMS Error 
0.015 

o 
UJ 

0.01 

0.005 

 ON Hamming 

\ 

20      40      60 
Number of Snaps 

RMS Error 

20      40      60 
Number of Snaps 

RMS Error 

0.2 

5 0.15 

UJ   0.1 

0.05 
n  ■ 

20      40      60 
Number of Snaps 

RMS Error 

0.2 

§0.15 

ÜJ   0.1 

0.05 

20      40      60 
Number of Snaps 

Figure 10:   Performance vs Snapshots:   Esprit with 3 sources, 32 Snapshots and 200 trials per 

Frequency. Row 1 has OdB SNR and row 2 has -20dB SNR 

In this case A = <P, B = A*, and qf e,- = 1, so the eignvalue error is given by 

A7i = qf [K+AK2 - K+AKX*] e< = -7iqf K+(Jx - 7*J2) AKe< = -7iajf AFset.(55) 

Where a,j has been defined as a^- 

that 

ZH(Ji-^J2f (Kf)H q,. From (55), it is easily verified 

A7i a H AFseief AFf| a«  = <*£££ e,(A:)e*(OAffcAf;
ra 

d-x d-i 

Jfc=0 (=0 

(A7i)
2   =   (7i)

2 af f AFse,-ef AFf I a*.  =  (7lf a? £ £ ^H-(0AffcAif < 
d-\ d-i 

EE 
Jr=0 (=0 

Now consider the right eigenvector. 

Ae.  =y(^h   = ^/-7,«?AFse,: 

j,=o       wt — 7?'J >=o (7i - 7j) 

(56) 

(57) 

(58) 
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Therefore 

Ae,Aef   =   £ £ 
'o i 1 (7i - 7m) (7i - 7n) 

U-\ d-\ 

<*?m EE^M(0Af,Af^ uiB 

d-1 d-1 

Ae,-AeJ   =    EE (7i7i) 

\jt=o ;=o 

^d-1 d-l 

emeffe9) 

\jfe=0 /=o / 

emel   (60) 
lo n=0   I W»'        7m) (7j        7n; 

Taking the expectation of equations (56, 57, 59, 60) yields equations (43 - 46). With the error in 

the eigenvectors of ^ characterized, the error in /?,- can now be determined. 

Pi   =   IfPli 

Pi + A/n   =   (l + Al^Pd + Al,) = lfPl,- + lfPAl1- + AlfPl, + AlfPAli 

Apt-   «   IfPA1, + AlfPI,  = efK*PKAe,- + Ae?K^PKe, (61) 

Equations (48 - 49) come directly from (61). 

It remains to show how A7; and A/9,- effect Ai/; and A/^-. Recall that ideally 7; = ejdyUi, but 

due to errors 7,- = r.-e-7^^' = fie
jd!'('yi+A''''). Consider 7 = re-7^ and notice that 

<97   =   dre^y+jdyre^ydu   =   e^vdr + jdyld„ 

97i   =   ^«dri+jdyvd,,;       =   7* (&<+;<*A) 

Therefore 

|d7i|
2 

(57,.)2 

^{(7n2(ö7l)
2} 

A)2 + (dA)2 

[A)2 - (4Af 

and consequently 

|A7,-|2-7^{(7;)2(A7,-)2} 
<*">   " 2(t? ■ 

(62) 

This results differs slightly from that obtained by Rao and Hari [8]. They were concerned with the 

direction angle 9 not the frequency v = sin0. Therefore, they had a (cos0) in the denominator 

due to the fact that dv = COS#<9ö. 
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4    Real-Time Frequency And 2-D Angle Estimation With 
Sub-Nyquist Spatio-Temporal Sampling 

An algorithm has been developed for real-time estimation of the frequency and azimuth and 

elevation angles of each signal incident upon an airborne antenna array system over a very wide 

frequency band, 2-18 GHz, commensurate with electronic signal warfare. The algorithm pro- 

vides unambiguous frequency estimation despite severe temporal undersampling necessitated 

by cost/complexity of hardware considerations. The 2-18 GHz spectrum is decomposed into 

1 GHz bands. The baseband output of each antenna is sent through two 250 MHz sampled 

channels where one is delayed relative to the other (prior to sampling) by .5 ns, the Nyquist 

interval for a 1 GHz bandwidth. Due to the high variance of the Direct ESPRIT frequency 

estimator, aliased frequencies are estimated via a simple formula and translated to the proper 

aliasing zone utilizing eigenvector information generated by PRO-ESPRIT. The algorithm also 

provides unambiguous 2-D angle estimation over the entire 2-18 GHz bandwidth despite se- 

vere spatial undersampling at the higher end of this band necessitated by mutual coupling 

considerations and resolving power requirements at the lower end of the band. Eigenvector 

information generated by PRO-ESPRIT is used to facilitate computationally simple estimation 

of azimuth and elevation angles automatically paired with corresponding frequency estimates 

despite aliasing. Simulations are presented demonstrating the capabilities of the algorithm. 

4.1 Introduction 

4.2 Spatio-Temporal Sampling and Data Model 

4.3 ESPRIT Based Frequency Estimation With Temporal Under- 
sampling 

4.4 2-D Angle Estimation With Spatial Undersampling Via PRO- 
ESPRIT and Integer Search Formulation 

4.4.1 Estimation of the Array Manifold for Each Source 

4.4.2 Prescription for Nonuniform Element Spacing Facilitating Nonambiguous 
Angle Estimation 

4.4.3 Integer Search Algorithm for Direction Cosine Estimation 

4.5 Simulation Examples 

4.6 Final Comments 

4.7 References 

4.8 Computation of Cramer Rao Lower Bound for Frequency and 
2D Angle Estimation 

4.9 Figures 
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1 Introduction 

The problem under investigation is that of real-time estimation of the frequency and azimuth and eleva- 

tion angles of each signal incident upon an airborne antenna array system over a very wide frequency band, 

2-18 GHz, commensurate with electronic warfare. The problem is complicated by severe undersampling in 

both the temporal and spatial domains necessitated by cost and complexity of hardware considerations [1]. 

To reduce the complexity of the overall receiver hardware, the bandwidth at the intermediate frequency 

is chosen to be quite large equal to 1 GHz. Correspondingly, the entire 2-18 GHz spectrum is decomposed 

into overlapping 1 GHz bands; each band is examined in succession or in parallel. The Nyquist temporal 

sampling rate for digitization of a 1 GHz band is 2 GHz. Although A/D converters operating at 2 GHz rate 

are available, they are very expensive and processing speed following the converter may limit the overall 

operation of the receiver. In the prototype system pictured in Figure 1 [1], the receiver output, after conver- 

sion to baseband, is sampled at a rate of 250 MHz, one-eighth of the Nyquist rate. This severe undersam- 

pling leads to aliasing and attendant problems of ambiguity. The aliased frequency as a function of baseband 

frequency with a sampling rate of 250 MHz is plotted in Figure 3. 

Note that the aliasing function plotted in Figure 3 is for the case where only the in-phase channel is 

sampled. Sampling of the quadrature channel represents additional hardware costs and overall doubles the 

number of samples to be processed. Thus, in keeping with the overall goal of reduced complexity of 

hardware and computation, it is assumed that only the in-phase component, a real-valued signal, is sampled 

and input to the system. Note, it is typically necessary to generate the complex analytic signal in a direction 

finding application to resolve a 180° ambiguity in the azimuth angle estimates. Again motivated by the 

desire to keep the computational complexity low, the complex analytic signal is roughly approximated by 

computing the DFT of the output of each antenna and throwing away the negative frequency portion of the 

spectrum. This approach averts the need to pass the sampled signal through an FIR digital Hubert 

Transformer which could possibly lead to edge effects or a reduced number of effective time samples 

(depending on whether one includes all output points of the FIR digital Hilbert Transformer or just those out- 

put points for which there were no zero entries in the FIR filter window.) The spatio-temporal signal model 

is developed in Section 2. 

The procedure for frequency estimation with Sub-Nyquist temporal sampling developed within may be easily 
adapted for narrowband direction-of-arrival estimation with two identical, collinear uniform linear arrays 
(ULA's). In this application, the displacement between the two arrays should be less than a half-wavelength 
but the interelement spacing for either array may be much greater than a half-wavelength to achieve a large 
aperture and, hence, increased resolution capability relative to a ULA of the same total number of elements 
but with half-wavelength spacing. 
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In order to estimate the baseband frequency of each signal despite aliasing, the baseband output of each 

antenna is sent through two 250 MHz sampled channels where one is delayed by x relative to the other (prior 

to sampling) as indicated in Figure 1. The time-delay, x, is chosen less than or equal to the Nyquist sampling 

interval for the baseband bandwidth, W, i. e., x ^ 1/(2W). In the prototype system depicted in Figure 1, W = 

1 GHz and x = .5 ns = .5 x 10"9 s. ESPRIT [2,3] may then be applied to estimate the baseband frequencies in 

any 1 GHz baseband bandwidth. To facilitate real-time implementation, ESPRIT is applied in DFT space. 

In this mode of processing the steps are (i) compute an FFT of a block of samples, (ii) locate peaks via a sim- 

ple peak-picking algorithm, and (iii) apply ESPRIT to a small set of DFT values around each peak. 

In Section 3, we show that the Direct ESPRIT frequency estimator has a variance several orders of 

magnitude greater than the Cramer Rao Lower Bound (CRB). An alternative approach referred to as Indirect 

ESPRIT is presented that is computationally simple and achieves performance very close to the CRB. 

Indirect ESPRIT makes novel use of eigenvector information generated by the PRO-ESPRIT algorithm [3] 

to estimate the aliased frequency of each source via a simple formula and correctly translate it to the proper 

aliasing zone where it is added to or subtracted from the appropriate integer of the sampling rate in accor- 

dance with Figure 3. 

Once the frequency of each signal is estimated, the next goal is to estimate the corresponding azimuth 

and elevation angles. There are two problems here. First, each angle estimate must be correctly paired with 

the proper frequency estimate. Second, in general, 2-D angle estimation is significantly more computation- 

ally complex than 1-D angle estimation. Again, real-time implementation is an overriding factor. Now, since 

the sources are at different frequencies, the filtering inherent in selecting only those DFT values around a 

spectral peak should ideally be sufficient to isolate single source contributions and avoid the frequency-angle 

pairing problem. However, aside from sidelobe leakage effects, this is not the case as sources well separated 

in analog frequency may be aliased to very nearly the same digital frequency. In Section 4, eigenvector 

information generated by PRO-ESPRIT is used to facilitate computationally simple estimation of azimuth 

and elevation angles automatically paired with corresponding frequency estimates despite aliasing. 

• In the case of a uniformly-spaced linear array, half-wavelength spacing between antennas is required to 

avoid ambiguities in estimating the arrival angle of a signal. With half-wavelength spacing at the upper end 

of the 2-18 GHz spectrum, the elements are too closely spaced at the lower end of the spectrum leading to 

problems of mutual coupling and poor resolution. The resolution capability and estimator accuracy of any 

arrival angle estimation algorithm is proportional to the aperture length measured in units of wavelengths. 

To achieve a high degree of resolution power and estimator accuracy and yet avoid mutual coupling, the ele- 

ments must be spaced nonuniformly over a large aperture. 
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The prototype system employs an L-shaped antenna array having nonuniformly spaced elements along 

each leg as pictured in Figure 2. The interelement spacings along either axis is much greater than a half- 

wavelength, particularly at 18 GHz. In Section 4, we develop (i) a prescription for interelement spacings for 

nonambiguous angle estimation and (ii) an attendant algorithm for angle estimation that is computationally 

simple for real-time implementation. Although there is a plethora of previous work on the design of nonuni- 

form linear arrays [6-8], the development in Section 4 assumes a small number of antenna elements due to 

cost and space limitations on the antenna platform attached to the aircraft. Also, high sidelobes is not as 

much a problem since we are able to isolate the individual contribution of each source. In contrast to previ- 

ous work [6-8], the prescription for interelement spacings is developed synergistically with a simple integer 

based search algorithm for angle estimation. Section 5 presents simulations that demonstrate the power of 

the overall frequency and 2-D angle estimation algorithm summarized in the flowchart presented in Figure 5. 

2. Spatio-Temporal Sampling and Data Model 

The parameters for the prototype sub-Nyquist spatio-temporal sampling system are indicated in Figure 

1. We concentrate on signal parameter estimation for a particular 1 GHz baseband bandwidth. For the sake 

of simplicity, the signals are modeled as RF pulsed waveforms. The development to follow, though, holds as 

B   L 
long as each signal satisfies the standard narrowband assumption — y cos8 < 1. For a given signal, B is 

the bandwidth, fc is the carrier frequency, L is the length of the array, X is the wavelength, and cosQ is the 

direction cosine relative to the array axis. Since the carrier frequencies here lie somewhere between 2 and 18 

GHz, the narrowband assumption is satisfied almost always except for some extremely wideband signals. 

We also assume that no two signals are at exactly the same RF frequency. Even if there is multipath propa- 

gation between a given source and the airborne antenna array, the Doppler shift each multipath signal under- 

goes is distinct as long as each multipath signal has its own distinct azimuth and elevation coordinates [9]. 

Let the sampling rate be denoted Fs. We are here assuming that Fs is well below the Nyquist rate lead- 

ing to aliasing. For our prototype system, Fs = 250 MHz equal to one-eighth of the Nyquist rate (2 GHz for a 

1 GHz baseband bandwidth). Consider sampling a single sinusoid of the form cos(2uFjt + <j>), where Fj is the 

baseband frequency (0 ^ Fj ^ 1 GHz). 

F- Fs 
cos(27cFjt + (!))|t;=IvFi=cos(2jt-^-n-i-(j)) = cos[2jrfjn + <!)] for    (XFj«:-^-       W 

F: F; Fs 
= COSPJCC-^—l)n + <H = cos[27t(l-~-)n - <M = cos[2;tfjn - $]       for    — < Fj < Fs 
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Fj Fs 
' cos[27i(l—-*-)n + <H = cos[2jcfjn + $] for    F, < Fj < 3— 

p. p. F 
: COS[2TC(—-2)n + $] = COS[2JI(2—=r)n -<!>] = cos[27cfjn - <j>] for      3-^- < Fj < 2FS 

Fs                                    Fs 2 

For each range of the analog baseband frequency, the corresponding digital frequency fj is between 0 and .5, 

i. e., 0 < fj < .5. Continuing this development, we obtain the aliasing function g(F) plotted in Figure 3 for the 

case of Fs = 250 MHz corresponding to our prototype system. With the aliasing function thus defined, the 

digital frequency, fj, is related to analog baseband frequency, Fj, as fj =g(Fj)/Fs. The analog aliased fre- 

quency is defined as Fj = fjFs = g(F); FJ is the frequency one would obtain if the analog sinusoidal signal 

was reconstructed from its samples. An important observation is that when Fj is in a range where the slope 

of the aliasing function g(F) is negative, the constant phase offset of the sampled sinusoid is the negative of 

that associated with the continuous-time sinusoid. 

In order to estimate the baseband frequency of each signal despite aliasing, the baseband output of each 

antenna is sent through two 250 MHz sampled channels where one is delayed by x relative to the other (prior 

to sampling). We here assume that the time-delay, x, is less than or equal to the Nyquist sampling interval 

for the baseband bandwidth, W, i. e., x s 1/(2W). In the prototype system depicted in Figure 1, W = 1 GHz 

and x = .5 ns = .5 x 10""9 s. 

The sampled versions of the reference and time-delayed data sets, referred to as the X and Y data sets, 

respectively, (one pair of data sets for each antenna) may be described as 

xi(n)= £ JAe*V^(i) e^" + -X^e^® e^" 1 (2) 

Yi(n) = Si —ej^Yioej^Y)(i) e"jx52ltFjT e"2^" + ^Le~jXiVj<,e"jK|YjCl) e^2*1^ e~j2^n I 

where, for the moment, we are neglecting the effects of noise. The various quantities in (2) are described 

below. J is the total number of signals in a particular 1 GHz baseband bandwidth. Aj is the amplitude of the 

j-th signal while Yjo is the phase of j-th signal at the origin of the antenna array system. Yj(i) is the relative 

phase of the j-th signal arrival at the i-th antenna. If the i-th antenna is at the x-y coordinate pair, (XJ , y{), 

and the j-th source is at an azimuth angle of 9j and an elevation angle of fy, 
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Yj(i) = --5- (XicosejSin<|)j + yiSin9jSin(j>j)        i=l,...,M (3) 

where Xj is the wavelength of the j-th signal arrival and M is the total number of antennas comprising the 

array. Kj is the slope of the aliasing function g(F) at F = Fj equal to either +1 or -1. In accordance with (1), 

Kj takes into account the conjugation that occurs when Fj is in an interval where the aliasing function is 

downward sloping. Note, in the prototype system the observation interval is .5 (i.s = .5 x 10-6 s yielding 

roughly N = 128 samples for each of the M antennas. 

As indicated in Figure 1, the first processing step is to compute an FFT of both the X and Y data sets at 

each antenna output Ultimately ESPRIT [2,3] is applied to a small set of DFT values around each spectral 

peak in the positive frequency portion of each of the 2M spectra. We are effectively using the DFT as a nar- 

rowband passband filter. This is done for two reasons. First, by isolating only positive frequencies we are 

able to resolve a 180° ambiguity in azimuth angle. Second, in processing a given peak, the eigenvalue 

decompositions (EVD's) required are done on matrices of dimension equal to the number of DFT values 

which is less than the number of antennas. Separate peaks may be processed in parallel. Recall that sources 

well separated in baseband frequency may be aliased to very nearly the same digital frequency due to under- 

sampling. Thus, several sources may be contributing to a given spectral peak. 

The respective N pt. DFT's of the X and Y data sets for the i-th antenna are denoted Xi(k) and Yi(k), 

i=l,...,M, and may be expressed as 

Xi(k) = £ j^e**«^® sincNj(fr£) + ^e-^e-^(i) sincNj(fj+£)} (4) 

Yi(k)-i|^*^® e^^sinc^f-l) + ^e-^e-^(i) ^2^sincNj(fj+|-)| 

where Nj is the number of samples for which the j-th signal is "turned on" and the periodic sine function is 

defined as sincwCf) = e"J,r(N"1)f sm^     .  Note, in contrast to convention, we include the phase term 
sin(Ttf) 

e-j7t(N-i)f m ^g definition of sincN(f) for the sake of notational simplicity. 

The next processing step is to locate spectral peaks. We here assume that a simple peak-picking algo- 

rithm is employed. Note that only coarse estimates of the peak locations are required for the algorithm to 

perform well. The respective DFT spectra for the X and Y data set for each antenna, 2M DFT spectra all 

together, should exhibits peaks at the same locations. At this point, we concentrate on a single peak in each 

DFT spectrum at the same location located at or near the DFT value k = k,, without loss of generality. 
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L = 2L'+1 DFT values around the corresponding peak in each DFT spectrum are collected to construct the 

following set of 2M L x 1 vectors: (5) 

Xi(ko) = [Xi(ko-L0,... .XiOfo) XiCko+L')]7 Yi(ko)=[Yi(ko-L0,... , Yi(ko) Yi(ko+L')]T 

To give a perspective on the computational complexity, in the simulations presented in Section 6 we ran 

cases where XiOO and YiOO are 4x1 and cases where Xt0O and Yt0O are 5x1. The governing factor is 

that the number of DFT values selected around a peak should be at least one greater than the number of 

sources making significant contributions to that peak, denoted J'. 

Substituting (4) into (5), the Lxl vector of X DFT values around k<> may be expressed as 

XiOO = £ j^V'^® d(fj) + Ae-™°e-™(i) dH) j (6) 

where d(fj) is the Lxl vector 

d(fj) = smew fj~ N 
, sincNj f-^ J      N 

, smcN 
kp+L' 

N 
(7) 

As long as the window of DFT values is not either near k=0 or near k=N/2, the DFT acts as a narrowband 

bandpass filter such that d(-fj) is small enough relative to d(fj) to be negligible. To simplify the develop- 

ment, we will neglect the contribution of d(-fj). If d(-fj) is not negligible then the algorithm to be 

developed will indicate a source having a negative aliased frequency which potentially may be screened out. 

Neglecting the negative frequency contributions, XiOO = E —ie^e^® d(fj) where J'< J is the 
j=i  2 

number of sources making a significant contribution to the spectral peak at or near the digital frequency 

ko/N. This expression describes the vector of DFT values around a peak in the DFT spectrum of a single 

antenna. The DFT vectors from all M antennas are placed as the columns of an LxM matrix as 

X = [Xi (ko); X2(ko); • • • ; XM(ko)]. X may be expressed in factored form as 

x = I AJ e^* d(fj)aT(ej,(|)j,Kj) (LxM) (8) 
j=i 

where A] = Aj/2 and aOj.^.xj) = [e*Yi(1), ejl™(2), • • • , ej^Yj(M)]T with YjG) defined by (3). aO^Kj) for 

Kj = 1 is the Mxl array manifold vector for a signal incident from the (0j,<(>j) direction. The dependence on 

Kj, the slope of the aliasing function at Fj, is introduced as a simplistic means of denoting a conjugation; it 

allows us to avoid breaking the sum in (8) into terms for which the array manifold is conjugated and those 

for which it is not conjugated. 
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Similarly, the corresponding DFT outputs from all M antennas for the Y (time-delayed) data is col- 

lected as Y = [Y1(k0); Y2(ko); ••• • YM(k<,)]. Neglecting negative frequency components, Y may be 

expressed as 

Y = £ Aj e** e*2^ d(fj) aT(ej,(|)jf Kj) (L x M) (9) 

Equations (8) and (9) represent the pure signal component of the spatio-temporal data model assumed 

throughout. Again, KJ is the slope of the aliasing function g(F) in Figure 3 at F = Fj equal to either +1 or -1. 

Kj is a notational tool that takes into account the conjugation that occurs when Fj is in an interval where the 

aliasing function is downward sloping. 

3. ESPRIT Based Frequency Estimation With Temporal Undersampling 

Given the data model described by (8) and (9), the applicability of ESPRIT [2,3] is evident 

Y - uX = £ Aj e** {e-*2^ - n)d(fj) aT(8j)(t)j,Kj) (10) 

The critical observation for estimating Fj is that when u. = e~JKi2j: '\ the rank of Y - uX drops from V to J'-l 

since the /-th term drops out of the sum. Thus, Uj = e"Jxi2,lF,\ j=l,... J', are J' distinct generalized eigenvalues 

of the LxM rectangular matrix pencil {Y, X}. 

The argument of the ESPRIT eigenvalue, arg{u.j} = -KJ27CFJT, is plotted as a function of the baseband 

frequency Fj for Fs = 250 MHz in Figure 4. Recall that KJ is the slope of the aliasing function at F = Fj. Note 

that certain ranges of phase within (-JI,JI) are not permissible as the argument of u.j. In fact, only half of the 

2TC interval (-TC,JC) is permissible. For example, under ideal noiseless conditions, no value of phase in the 

interval (-JC/8,-2JI/8) is permissible as the argument of Uj = c~iKi    jT. 

The PRO-ESPRIT [3] variant of ESPRIT is here employed as a "fast" implementation of ESPRIT for 

estimating the phase factors, -Kj2jtFjX, j=l,...,J'. PRO-ESPRIT operates on the LxL autocorrelation and 

cross-correlation matrices RM = ^•£Xi(k0)X[I(k0) = ^XXH and R^ = ^SYi(k0)X[I(k0) = ^YXH. 

Note the number of DFT values selected around the peak at ko, L, may be as small as two if only a single 

source is contributing to the peak. The algorithm is first summarized and then briefly justified. 

First, compute an EVD of R„: RK u} = ^ u(, i = 1,...,L, where the eigenvalues are indexed in order of 

decreasing magnitude. The number of complex sinusoids with aliased frequency components in the vicinity 

of ko, J's J, may be determined from a number of techniques including statistical tests that examine the 

eigenvalues such as AIC or MDL. With the Y < L largest (signal) eigenvalues and corresponding signal 

eigenvectors, construct the J'xJ' diagonal matrix Zs and the LxJ' matrix Us as 

-105- 



Zs =diag{(X1-^nin)
iy2,a2-Xtnin)

1/2
)... ,(h'-K^)m) (11) 

us = [ui: u2: • • • : uj-] (12) 

The smallest eigenvalue, Amu,, is asymptotically equal to the noise power which affects the diagonal ele- 

ments of the autocorrelation matrix RM. Note for a given antenna output, even if the noise is not white, i. e., 

the noise spectral density is not flat over the entire 1 GHz bandwidth, it can be shown that the noise contam- 

inating a small set of successive DFT values is approximately i.i.d. The final major step is an EVD of 

»F = Zi1 Us1 Ryx Us Zi1      (J'xJ') (13) 

The eigenvalues of *¥ are estimates of Uj = e~J1<i   j\ j=l,...,J'. 

PROOF: Let X = UsZsVs be the SVD of X including only the J' nonzero singular values and correspond- 

ing left and right singular vectors; Us is LxJ', Zs is J'xJ', and Vs is MxJ'. It follows from (8) and (9), that 

range{Us} = range{Y} = span{d(fO ,... , d(fr)} and range{Vs} = range{YH} = span{a*(9i,<|)1,Ki).... 

, a*(8j',<|)j',Kj')} such that Y = UsUs YVsVs* where UsUs and VsVs* are projection operators. Thus, 

Y - uX = UsUs* Y VsVs1 - uUsZsVs1 

= UsZs{Zi1Us
IYVs-uIr}Vs

I 

= UsZs{Zi,UsIYVsZsUs
IUsZi1 -ulrJVs1 

= USZS {Zi1Us
IYXHUsZiI - pIr}V|? (14) 

where we have used the fact that ZsUsUsZ^1 =Iy. Thus, the J' nontrivial generalized eigenvalues of the 

LxM matrix pencil {Y, X} may be computed as the eigenvalues of the J'xJ' matrix Z^Us YXHUsZi1. The 

proof is completed by recognizing that XXH = UsZ|Us. H 

In the prototype system t = JxlO^s such that Fj may be estimated from the phase of the j-th ESPRIT 

eigenvalue according to Fj = | arg{|ij }/2n | (2xl09) Hz, j=l,... J', where arg{z} is the phase angle of the com- 

plex number z. Any error in arg{Uj} due to noise is grossly magnified due to the multiplication by 109, i. e., 

multiplication by a 1 GHz. Simulations presented in Section 6 reveal that the variance of the baseband fre- 

quency estimates obtained from ESPRIT in this manner are on the order of 10 MHz while the Cramer Rao 

Lower Bound (CRB) on the variance of any unbiased estimator of frequency is on the order of 10 KHz. This 

extreme differential motivates us to see if we can obtain performance closer to the CRB without incurring 

too much additional computation. 
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The above approach is referred to as the Direct ESPRIT approach. An alternative approach is referred 

to as Indirect ESPRIT. The steps in Indirect ESPRIT are: (i) estimate the digital frequency fj, (ii) convert fj 

to the aliased analog frequency via FJ = fj Fs, and (iii) translate Fj up to the proper aliasing zone using the 

phase of the ESPRIT eigenvalue u.j, in conjunction with Figure 4, where FJ is either added to or subtracted 

from an integer multiple of the sampling rate to estimate the actual baseband frequency. Two computation- 

ally efficient, high-resolution algorithms for estimating the aliased frequencies using DFT values as input are 

Beamspace Root-MUSIC [4] and Beamspace ESPRIT [5]. Recall high-resolution capability is necessary 

since sources well separated in analog frequency may be very closely-spaced in digital frequency due to 

aliasing. However, despite their relative computational efficiency, implementing either of these two algo- 

rithms represents a substantial increase in computational complexity. 

More important, though, is the data association problem wherein the aliased frequency estimates must 

be paired with the correct ESPRIT eigenvalue so that it is translated to the proper alias zone. If the aliased 

frequencies are estimated independently of the ESPRIT eigenvalues, this pairing problem is very difficult, 

insurmountable when sources are closely-spaced in frequency after aliasing. Fortuitously, eigenvector infor- 

mation provided by PRO-ESPRIT facilitates automatic pairing of the aliased frequency estimates with the 

corresponding ESPRIT eigenvalues. In addition, the eigenvector information generated by PRO-ESPRIT 

provides a means for isolating the individual contribution of each source despite aliasing. This facilitates 

simple estimation of the aliased frequency associated with each source. It may be done on an individual 

basis assuming a single source leading to a simple closed-form formula as shown shortly. 

The j-th Mxl right generalized eigenvector, r}, of the LxM rectangular matrix pencil {Y,X} is that vec- 

tor satisfying {Y - UJX}I-J = 0. Substituting the noiseless (ideal) forms of the X and Y data matrices: 

JS Aj e*Yi° {e-jKW - ii) d(fj) a^Sj^j.Kj)! Fj = 0 (15) 

When \L = e~iK,2nP'x, the /-th term d(f/) aT(8/,<|>/,iQ) drops out of sum such that aT(9/,<t),,K/)rj =0 for 

/ = 1 J', I * j. Hence, r-j can be used to extract d(fj) to within a scalar multiple: 

Xrjocd(fj) (Yrjocd(fj)) 

A key point is that the estimate of d(fj) obtained in this manner is automatically paired with the ESPRIT 

eigenvalue that is an estimate of Uj = eT^2n?iX since rj is the right generalized eigenvector associated with Uj. 

Thus, a frequency estimation algorithm that assumes a single source may be applied to d(fj) to estimate fj. 

Note, we only desire r-j in order to compute X rj as our estimate of d(fj) to within a scalar multiple. 

We can bypass the computation of Tj and construct Xrj directly from the J'xl right eigenvectors of f, 
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defined by (13), satisfying *Fßj = U-jßj,  j=l,...J'. From (14) and (15), it follows that 

d(fj)oeXrj = Us2:sft      j=l.--.J* (16) 

where Zs and Us are constructed from the J' largest eigenvalues and corresponding eigenvectors of R^ 

according to (11) and (12), respectively. 

Next, we apply Beamspace ESPRIT [5] to d(fj) to estimate fj. After much algebraic manipulation, the 

single source assumption leads to the following simple formula for estimating fj: 

fj = -^ arg|dH(fj) A* Pi d(fj) t    j=l,..,J' (17) 

where d(fj) is computed as in (16) and Pi and A are each LxL matrices defined as 

1 f k.-L' K ko+L' ] 
Pi=IL-lllT A = diag \-^-W-        e-**TT        :*"-N-4 (18) 

i_ C ,...,C ,...,C I 

«1 - 
where 1 is an Lxl vector composed of all ones. The aliased analog frequency is then estimated as Fj = Fsfj, 

where F, = 250 MHz in our prototype system. Rather than develop the formula in (17) as a simplification of 

the general Beamspace ESPRIT algorithm presented in [5], due to space limitations we here simply present a 

proof that it works when d(fj) = d(fj). 

PROOF: First, we need to define some quantities. Let W denote an LxN matrix whose rows are L succes- 

sive rows of the NxN DFT matrix associated with the DFT indices, ko - L',..., k,,,..., ko + L'. Let Yix and 

W2 be composed of the first and last N-l columns of W, respectively. Wj and W2 are each Lx(N-l) and 

related as W2 = AWj. Finally, let wN denote the last column of W; wN = diag(AN_1), where diag (•) con- 

verts the LxL diagonal matrix AN_1 to an Lxl column vector. Note, the first column of W is 1 such that 

Pi W = [0L ; Pi W2] = [0L : Pi AWi ], where 0L is an Lxl vector composed of all zeroes. 

Next, define v(f) as the Nxl Vandermonde vector v(f) = [ 1, ej2lrf , e** , • • • , e
j(N-1)2,rf]T. Let 

vj(f) and v2(f) be composed of the first and last N-l elements of v(f), respectively. vi(f) and v2(f) are each 

(N-l)xl and related as v2(f) = Qi2vf\\(f). With these definitions and relationships, it follows that 

dH(fj) A* Pi d(fj) = vH(fj) WH A* Pi W v(fj) 

= ^(fj) WH A* Pi AWi Vl(fj) ej2,rf) 

= {v?(fj) W? + e-
j(N-1)2,rf' w|J} A* Pi AW! Vl(fj) e^ 
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= v?(fj) W? A* Pi AW! vi(fj) ej27tf] + lTPi AW! Vl(fj)e J27tfi ^iTpi *w. v.^f.v-^-2^ 

= {v?(fj) W? A* Pi AW! Vl(fj)} ej2lrf< 

where we have used the fact that w§ A* = diagH(AN_1)A* = diagH(AN-1A) = diagH(IL) = 1T. where 

diagH(D) is intended to mean convert the diagonal matrix D to a column vector and conjugate transpose (in 

that order). 

Since v?(fj) W? A* Pi AWi vi(fj) is real-valued, it follows that arg{dH(fj) A* Pi d(fj)} = 2jrfj. 9 

Comparing the Direct and Indirect ESPRIT methods, in the former the phase of the j-th eigenvalue of 

Y is mulüplied by TCXIO
9
 while in the latter the phase of d (fj) A* Pi d(f-) is multiplied by 250X10

6
/2TC. 

The multiplicative factor in the latter is three orders of magnitude lower than that in the former. This is a 

heuristic explanation as to why the performance of the Indirect ESPRIT method comes much closer to 

achieving the Cramer Rao Lower Bound (CRB) than the Direct ESPRIT method. 

The formula for translating Ff up to the proper aliasing zone is dictated by Figure 4 wherein the phase 

of the ESPRIT eigenvalue u. = e~jK2*F\ where % = ^xlCT^s, is plotted as a function of the analog baseband 

frequency, 0 s F ^ 1 GHz. Within the interval (-JC, it) are eight disjoint permissible intervals, each having a 

width of TC/8 and a one-to-one correspondence with each of the eight aliasing zones depicted in Figure 3. If 

the phase of the ESPRIT eigenvalue lies within one of these permissible intervals, Ff is translated to the 

corresponding aliasing zone accordingly where it is either added to or subtracted from the appropriate integer 

multiple of 250 MHz. If, due to noise, the phase of the ESPRIT eigenvalue lies within one of the impermis- 

sible regions, it is projected into the nearest permissible region. This decomposes the interval (-TC, %) into 

eight distinct intervals, each having a width of TC/4, and having a one-to-one correspondence with each of the 

eight possible aliasing zones plotted in Figure 3. The baseband frequency of the j-th source, Fj, is ultimately 

determined from the aliased frequency estimate, Fj, according to 

Fj = 

<a               *            arg{u.;}+rc/16 
Fj -250xl06 round^ „  Hz     for      -15rc/16<arg{|ij}<JC        (19) 

Fj = lxl09-Fja   Hz for     -rc< arg{Uj} <-15ic/16 

where round[x] is the nearest integer to x as denned previously. 

As an example, if argfjij} is either in the impermissible region TC / 16 < arg{Uj} < JC / 8, the permissible 
"■a 

region 7i / 8 < arg{jij} < 2% 18, or the impermissible region 2% / 8 < arg{Hj} < 5rc / 16, Fj is subtracted from 

250 MHz to obtain Fj. Simulations presented in Section 6 reveal (19) to be a very robust formula for 

translating F* to the proper aliasing zone. Note, that if we are off by one in selecting the correct aliasing 
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zone a very large error may be incurred. Two adjacent aliasing zones differ in that in one F* is added to nFs 

while in the other it is subtraced from (n+l)Fs. 

4. 2-D Angle Estimation With Spatial Undersampling Via PRO-ESPRIT and Integer Search 

4.1 Estimation of the Array Manifold for Each Source 

In Section 3, we saw that use of the right generalized eigenvectors of the LxM matrix pencil {Y,X} 

facilitates a simple procedure for estimating the aliased frequency of a source that was automatically paired 

with an ESPRIT eigenvalue thereby, in turn, facilitating simple translation up to the proper aliasing zone. 

The left generalized eigenvectors of the LxM matrix pencil {Y,X} play a similar role in the problem of 

estimating the azimuth and elevation angle of each source contributing to a given peak in the DFT spectrum. 

Specifically, the j-th left generalized eigenvector of {Y,X} is used to extract from the X and Y data an esti- 

mate of the array manifold for the j-th source, denoted a(8j,<t>j,Kj). Recall the inclusion of KJ in the definition 

of the array manifold is a notational tool to reflect the fact that the array manifold is conjugated when the 

baseband frequency is located on a downward sloping portion of the aliasing function. 

The j-th Lxl left generalized eigenvector, lj, of the LxM rectangular matrix pencil {Y,X} is that vector 

satisfying if {Y - |ijX} = 0. Substituting the noiseless (ideal) forms of the X and Y data matrices, we have 

If JS AJ e** {e-*2"1^ - ujd(fj) a^Oj.^Kj) L 0 (20) 

When u. = e"jKi2'rf'T, the l-th term d(f/)aT(e/,<)>/,K,) drops out of the sum such that if d(f,) = 0 for 

/ = 1 J', / * j. Hence, lj can be used to extract a(8j,<t>j,Kj) to within a scalar multiple: 

If X«aT(ej,<j.j,Kj)   =>    XTlf - aOj.^Kj) if Y-a^Vcj)   =>    YTlf ~ aOj.^.Kj) (21) 

Thus, applying the j-th left generalized eigenvector allows us to extract an estimate of the array mani- 

fold forthe j-th source which, in turn, may be operated upon to estimate the azimuth and elevation angles of 

the j-th source. The latter problem is greatly simplified, specifically in cases where sources are very closely- 

spaced in digital frequency due to aliasing, due to the ability to isolate a single source contribution. In addi- 

tion, since lj is associated with the ESPRIT eigenvalue p.j = e~jX52,tFi\ the azimuth and elevation angle esti- 

mates obtained by processing the estimate of a(0j,fy,Kj) are automatically paired with the estimate of Fj 

obtained via the algorithm developed in Section 3. Knowledge of Fj is tantamount to knowledge of the 

proper aliasing zone. This allows us to determine the value of Kj enabling us to resolve a 180° ambiguity in 

the azimuth angle estimate (flipping the sign of KJ introduces a 180° change in azimuth angle). 
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Similar to the case with the right generalized eigenvectors, the j-th Lxl left generalized eigenvector, lj, 

of the LxM rectangular matrix pencil {Y,X} may be efficiently computed from the J'xl j-th left eigenvector, 

Oj, of Y in (13) satisfying aj1 *F = Ujaf, j=l,...,J'. From (14) and (20), it follows that 

ljsUsIi1«!      j=l,-..J' (22) 

Recall Y is the number of sources making a nonnegligible contribution to a particular DFT spectral peak 

which may be as small as one if sources are well separated in digital frequency. 

In general, the problem of 2-D angle estimation is considerably more computationally complex than 

the problem of 1-D angle estimation. Fortuitously, the isolation of single source components via PRO- 

ESPRIT facilitates separable 2-D angle estimation given an appropriate array geometry. For example, con- 

sider a 2-D array consisting of two orthogonal linear arrays, e.g., an L-shaped array. Since we've isolated a 

single source component, we can determine the direction cosine of a source relative to each axis indepen- 

dently. Each leg may be processed independently applying an appropriate 1-D angle estimation algorithm. 

The x and y direction cosines are automatically paired with each other as well as with the corresponding fre- 

quency estimate. Simple trigonometry may be invoked to convert the x and y direction cosines into azimuth 

and elevation angle estimates. 

42 Prescription for Nonuniform Element Spacing Facilitating Nonambiguous Angle Estimation 

In accordance with the discussion in Section 1, to achieve a high degree of resolution power and esti- 

mator accuracy and yet avoid mutual coupling, the elements of each leg of the L-shaped array are spaced 

nonuniformly with interelement spacings much greater than a half-wavelength. The design problem is two- 

fold: (i) development of a prescription for "good" interelement spacings for unambiguous angle estimation 

relative to each array axis and (ii) development of a computationally simple algorithm for processing the 

estimate of the array manifold provided by PRO-ESPRIT to estimate the direction cosine of a source with 

respect to each axis. We here assume a small number of antenna elements due to cost and complexity of 

hardware considerations and space limitations on the antenna platform attached to the aircraft 

The L-shaped array geometry employed in the simulations presented in Section 6 is depicted in Figure 

2. The corresponding array manifold is 

a(ejf4>j,x$)= (23) 

IT 

JS2s3-v,       j^2lC^0-v]       jijto-^-v,       JKjÄ-^-v, jnjÄ-J-n,       jxj27t1-uj       JKJ2K—5-U,       ji^ai-j-n 
e        *>    ,e *»      ,e        ^    ,e        **    ,l,e        ^    , e        ^    , e ">      , e        "» 

where Uj and Vj are the direction cosines of the j-th source relative to x-axis and y-axis, respectively, and Xj 
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~X 
v/"=vj0 + /d       /e" 

ceiling -T-(l+Vjo) , floor 
h 

d-Vjo) (28) 

The objective is to choose d! and d2 so that alignment, i. e., vk = v/~, only occurs for k = / = 0. 

Equating the expressions for vj: and vf 

- A« ~&i 
vjo+k- = vjo + /- 

d2_ = _T 

di     k 
(29) 

d2 d2      d2     /' , 
This indicates that ambiguities may possibly arise if — is rational. Express — as — = p- , where / and 

k' are relatively prime, i. e., have no common factors other than unity. The set of ambiguous angles is then 

v - v   + n k' _L = v:0 + n /' — for any n for which -1 < vn < 1. Consider the case of n=l. If we make 
™      ->" di d2 

X X; 
sure that either v^ + k7— or vio + /'— lies outside the visible region, i. e., is either less than -1 or greater 

^       di d2 

than +1, then there is no ambiguity. That is, within the visible region corresponding to direction cosines 

with absolute value less than 1 there is only alignment at n=0 or k = / = 0. 

Part of the design procedure then is to select di and d2 such that the relatively prime factors /' and k' 

comply with one of the following conditions. Either 

if* ceiling 
di 

*j 
d+Vjo) , floor 

*i 
(1-Vjo) r or  l'*\ ceiling 

d2 -—(l+vjo) 
A) 

, floor d-Vjo) 

These conditions depend on the direction cosine of the source. To remove the data dependence, we over- 

specify and let Vj«, = 1 for the lower bound limit and vjo = -1 for the upper bound limit The goal then is to 

select d! and d2 suchthat the relatively prime factors /' and k' comply with one of the following conditions. 

if* <-floor 
2d, 

*i 
, floor 

2d, 

h 
or     /' * -H 

" ■• 

-floor 
"2d2" 

, floor 
"2d2l   
L^ J 

«. - 

(30) 

d2      /' With —- = —, where k' and /' are relatively prime, if either of the conditions above are satisfied, then 
dj     k' 

within the visible region the ambiguities only align at true source direction cosine, VJQ. 

Note that satisfying the condition above at 18 GHz guarantees that ambiguities may be resolved at 

lower frequencies since Ik'^l = |k'max| = floor[2di /Xj] decreases with decreasing frequency (increasing \) 

-113 



as does |/'min| = \l'max\ = floor[2d2 / Xj]. 

As an illustrative example, for the simulations we chose di = 2.3 in and d2 = 5.3 in. Consider the upper 

limit of the 2-18 GHz spectrum, 18 GHz, for which the wavelength is X, = 2/3 in. (30) dictates that at 18 

GHz, k'<*{-6 , 6} and V* {-14 ,14}. Expressing d2/di as the ratio of two relatively prime numbers as 

h- = — = — = — we see that k' = 23 4 f-6 , 6} and /'=53 4 {-14 , 14} so that both conditions in (30) 
di     2.3     23     k' 

are satisfied and the direction cosine may be uniquely determined over the entire 2-18 GHz spectrum. 

4J Integer Search Algorithm for Direction Cosine Estimation 

We have shown that through judicious selection of the interelement spacings, it is theoretically possible 

to uniquely determine the true source direction cosine. We now develop an algorithm to do such. With 

• -, d> 
respect to Figure 2, element pairs 1-2 and 4-5 provide two measurements of \ft = arg{e     ^    }. The candi- 

date estimates of vjo in the "visible" region -1 < v s 1 are 

4D = A_¥l+k^i k      2;tdi Y1        di 
ke-^ ceiling 

di    Vi 
X,j    2TC 

, floor 
di    Vi 
Xj    2% 

(31) 

Let k* be that for which vio = —^-yi + k* -j-. We will determine k* by stepping through the integers in J      2;tdi di 

the range of k in (31), evaluating a metric for each corresponding v^, and selecting that value for which the 

metric is minimum. An appropriate metric is developed below. Note, since di is the smallest interelement 

spacing represented in the array, the number of ambiguous angles associated with the corresponding phase 

measurement ^ is least This is in line with the overridding goal of keeping the computational load as small 

as possible. 

■ , dj 

• J   T"Vj° Element pairs 1-3 and 3-5 provide two measurements of y2 = arg{e     ^    }. The candidate estimates 

of Vjo in the "visible" region are 

*-2^**£ " ceiling 
d2   ¥2 

, floor 
d2   Y2I 
Xj    2K X,j    2% 

(32) 

Let I* denote that value of / such that vP = vjo. Equating the expressions for v£1} and vP} in (31) and (32), 

respectively, yields -^-¥1 + k-?- = ^rVi + l~- Selecting d! and d2 in accordance with the prescrip- r 2Kdi di     2)id2 a2 

tion developed previously, vP = vp} only when k=k* and 1=1 *. Solving for / yields 
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di     dj 2K     2JC 
(33) 

It follows that in stepping through the range of feasible integers k, (33) yields an integer value of / only when 

k = k* for which/ = /*. 

An    algorithm    for   determining    k*    then    is    as    follows.     For    each    integer    k    in 

{ceiling 
di   Yi 

, floor 
di    Vi 
Xj    2;t Xj    2ie 

}, compute the corresponding / according to (33). Select k* as that 

for which | /-round[/] | is minimum, where round [ / ] is the integer closest to /. Although this is a rather 

ad-hoc technique, it is computationally simple and simulations reveal that it performs very well with respect 

to resolving the ambiguity. 

So far we've only made use of the relative phase measurements associated with the interelement spac- 

ings di and d2. Element pairs 2-3 and 3-4 provide two measurements of ^ = arg{e 

X X 
vj/3 + m—-2— with the expression for v P and solving for m yields 

J 2«—r Vj,, 

}. Equating 

v<3> = 
2a<d2-d1) d2-di 

d2-di     d2-di vi     V3 
m = k—:— + 

Relative to the prototype array in Figure 2, 

di dj     2%     2% 

<*2-di      3.0     30     m' 

(34) 

_ J±v_ _^__ (30) dictates that at 18 GHz 
di        2.3     23      k' 

k'<* {-6 , 6} and m'<* {-8,8}. Since k'=23 and m'=30, the conditions are satisfied so that (34) only yields an 

integer when k = k . 

v(4> = 

Similarly, element pairs 1-4 and 2-5 provide two measurements of ^4 = arg{e 

\\r4 + n^ \   with the expression for v^!) and solving for n yields 

gd,-d,) 
j2jl r Vfa 

}. Equating 

2re(2d2-<i1) 202-d! 

2d2-d!     2d2-d! V!     y4 
n = k 1 -T— 

dj di     2JC     2JI 
(35) 

Relative to the prototype array in Figure 2, — = -^— = — = -77.  (30) dictates that at 18 GHz 
dj 2.3      2.5      K 

k'4 {-6 , 6} and n'<* {-22 ,22}. Since k'=23 and n'=83, the conditions are satisfied so that (35) only yields 

an integer when k = k*. 

A   refined    algorithm    for   determining   k*    is    as    follows.     For   each   integer   k   in 

{ceiling 
di   ¥1 

, floor 
"di    vi 

Xj    2% Xj    2« 
I, compute the corresponding values of /, m, and n, according to (33), 
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(34), and (35), respectively. Select k* as that for which |/-round[/]| + |m-round[m]| + |n-round[n]| is 

minimum. Once k* is determined, compute 1*, m*. and n* by substituting k* into (33), (34), and (35), 

respectively.     Compute    the    corresponding   estimates    of   the    direction    cosine    according   to 

vpÄjL.¥l+„*£-, vjPasJL.Va + /*^Lf v^—i^+m*-^-, and 
2jcdi di 2rcd2 d2 27t(d2-di) d2-di 

v($ = -2 \i/d+n*—-—.  The direction cosine relative to the vertical axis is estimated as a 
n      2ji(2d2-di)Y 2d2-di 

weighted sum of these estimates. Each direction cosine estimate is weighted by the corresponding interele- 

ment distance as the accuracy of the estimate increases with increasing distance, provided one can resolve 

the ambiguity. 

A similar procedure may be used to estimate the direction cosine relative to the horizontal axis. A 

flowchart of the overall algorithm, including frequency estimation, is depicted in Figure 5. The computa- 

tional simplicity is evident. Note, due to space limitations, the processing of the left eigenvectors indicated 

in the flowchart is only relative to a single leg and needs to be repeated for each leg. 

5. Simulation Examples 

The performance of the frequency and 2-D angle estimation algorithm summarized in the flowchart in 

Figure 5 was examined in two simulation examples. Example 1 involves two sources very closely-spaced in 

frequency after sampling due to aliasing. Example 2 represents a very stressful signal environment involving 

four sources very closely-spaced in frequency after sampling. In both cases simulations were conducted at 

the lower and upper ends of the 2-18 GHz spectrum. This was done to show that the algorithm works prop- 

erly over a very wide bandwidth using the same physical array, the M=9 element L-shaped array with 

geometry depicted in Figure 2. Note, at 18 GHz the wavelength is roughly 2/3 in. such that the smallest 

interelement spacing in the L-array, dt = 2.3 in, is roughly 7 times a half-wavelength. In general, both dt 

and d2 are several times greater than a half-wavelength at all frequencies in the band 2-18 GHz. 

The simulation parameters indicated in Figures 1 and 2 were common to all simulation runs. In all 

cases, the signal scenario was composed of equi-powered RF pulsed signals (monochromatic planewaves) 

that were "turned on" during the entire .5 us interval in which 128 samples were collected. White Gaussian 

noise was added to the raw data samples output from each channel of each antenna, in accordance with the 

raw data model described in Equations (36) and (37) of Appendix A, prior to computing the 128 pt DFT. 

Finally, the Cramer Rao Lower Bound for a particular set of simulation parameters was computed according 

to expressions developed in Appendix A. 
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Example 1. The parameters describing the two signal arrivals are listed in Table I. In the one set of 

simulations the signals were in the 2-3 GHz band and the mixing frequency was 2 GHz, while in the other 

the signals were in the 17-18 GHz band and the mixing frequency was 17 GHz. A typical DFT spectrum 

representative of any of the 18 sampled channels (two channels for each of M=9 antennas) for either signal 

band (2-3 GHz or 17-18 GHz), is plotted in Figure 8. Due to their relative proximity, the two signal arrivals 

give rise to a single peak in the positive frequency portion of the spectrum. The frequency and 2-D angle 

estimation algorithm was applied to the DFT values in the range 11-14. In each run, the major computations 

were a 4x4 EVD followed by a 2x2 EVD. Sample statistics computed from 250 independent runs for each of 

a number of different SNR's are plotted in Figures 6,7,9, and 10. 

Figures 6 and 9 reveal the high variance of the Direct ESPRIT frequency estimates, three orders of 

magnitude greater than the CRB, in accordance with the discussion in Section 3. The sample standard devia- 

tions of the Indirect Beamspace ESPRIT frequency estimates are very close to the CRB, particularly for 

SNR's greater than 4 dB. An important point to note is that despite how closely-spaced the two sources are 

in frequency after aliasing, in all cases, i. e., for each source, for each SNR tested, and for each of 250 

independent runs, the aliased frequency estimate obtained from Beamspace ESPRIT was translated to the 

proper aliasing zone. This demonstrates the robustness of the translation formula in (19). Note that the 

biases of the frequency estimates were always less than or equal to 1 MHz which is negligible relative to the 

actual RF frequencies which are in the band 2-18 GHz. 

Relative to the appropriate CRB, the performance of the angle estimation subroutine is not nearly as 

good as that of the frequency estimation subroutine. The sample standard deviations of the angle estimates 

obtained from the integer search algorithm are roughly two orders of magnitude greater than the CRB. This 

is true for both azimuth and elevation angle estimation as evidenced in Figures 7 and 10, respectively, and 

for both ends of the 2-18 GHz spectrum. Better performance may be achieved by using the angle estimates 

from the integer search algorithm as starting points for localized Newton searches of a 1-D or 2-D MUSIC 

spectrum or for initializing the expectation maximization algorithm, for example. However, imperfections in 

the hardware implementation of the algorithm may preclude achieving the CRB which for the case where the 

signals are in the 17-18 GHz band is roughly a thousandth of a degree. It may be very difficult to achieve 

this kind of accuracy in practice even if it is achieved in simulation. Note, although the sample variances of 

the angle estimates were large relative to the CRB, the sample biases were very small. Although not plotted, 

the sample biases obtained in the 2-3 GHz range were less 0.1° in all cases, even at 0 dB SNR, while the 

sample biases obtained in the 17-18 GHz range were less 0.01° in all cases, even at 0 dB SNR. 
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Again, for signals in the 17-18 GHz band, the smallest interelement spacing in the L-array employed is 

roughly 7 times greater than a half-wavelength. For a given source in a given run and for a given leg of the 

array, the integer search algorithm had to choose which of roughly seven possible angles is the correct one. 

For all SNR's tested, the algorithm chose an angle in the vicinity of the actual angle in all 250 independent 

runs despite how closely-spaced the two sources were in frequency after aliasing. 

Note, whereas the performance of the frequency estimation phase of the algorithm did not vary 

significantly from one end of the 2-18 GHz spectrum to the other, the performance of the angle estimation 

phase of the algorithm did. The sample standard deviations of the angle estimates obtained in the 17-18 GHz 

range are roughly an order of magnitude smaller than those for the corresponding sources in the 2-3 GHz 

range. This is to be expected since the aperture length in terms of wavelengths at 18 GHz is roughly an order 

of magnitude greater than that at 2 GHz. 

Example 2. This simulation example is presented to demonstrate the power of the algorithm in light of 

the stressful nature of the signal scenario. The parameters describing each of the four signal arrivals simu- 

lated are listed in Table II. A typical DFT spectrum is plotted in Figure 13. The four signal arrivals give rise 

to a single split peak in the positive frequency portion of the spectrum. The frequency and 2-D angle estima- 

tion algorithm was applied to the DFT values in the range 24-28. In each run, the major computations are a 

5x5 EVD followed by a 4x4 EVD. Sample statistics computed from 250 independent runs for each of a 

number of different SNR's are plotted in Figures 11,12,14 and 15. 

Despite the fact that the four sources were all aliased to within a 4 MHz range, performance similar to 

that obtained in the much less stressful signal scenario of Example 1 was achieved. Relative to the 17-18 

GHz simulation, for a given source in a given run and for a given leg of the array, the integer search algo- 

rithm had to choose which of roughly seven possible angles is the correct one. For SNR's greater than or 

equal to 5 dB, the algorithm chose an angle in the vicinity of the actual angle in all 250 independent runs. At 

0 dB, ah erroneous angle was selected roughly 10% of the time. This yielded a very large sample variance 

not plotted in either Figure 12,14 or 15. Bearing in mind the stressful nature of the signal environment, four 

sources aliased to within a 4 MHz range, this is actually remarkable performance. 

6. Final Comments 

The frequency and 2-D angle estimation algorithm developed within and summarized in Figure 5 is not 

able to handle sources that are aliased to exactly the same frequency. Examining Figure 3, this will occur if 

(i) two sources are separated in frequency by nFs or (ii) one source is at nFs - AF while another source is at 

nFs + AF, where n is an integer. The failure of the algorithm in this case is due to a rank deficiency in the X 

and Y data matrices similar to the coherent signal problem encountered in array signal processing [9]. At the 
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cost of a modest increase in computation, this deficiency may be overcome by working with spatial covari- 

ance matrices, as opposed to frequency domain covariance matrices, and performing a single forward- 

backward average when processing each leg of the L-array independently. The single forward-backward 

average is facilitated by the symmetric placing of elements along an axis. A more general measure would be 

to incorporate an additional sampled channel at a different rate, e. g., 225 MHz. This is the subject of ongo- 

ing investigation. 
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Appendix A. Computation of Cramer Rao Lower Bound for Frequency and 2-D Angle Esti- 

mation 

The data model used for calculating the CRB is the raw data output from the reference and time- 

delayed channels of each of M antennas. By raw data, we mean that prior to any processing including the 

FFT (or DFT). Let x(n) denote the Mxl vector the i-th component of which is the raw data output from the 

reference channel of the i-th antenna, i=l,...,M, at the n-th sampling instant, n=0,l,...,N-l. Let y(n) be 
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V 

defined similarly relative to the time-delayed channel at each antenna. From the initial development in Sec- 

tion 2, it follows that x(n) and y(n) may be expressed as 

x(n) = Re{AQnc}+nx(n)        n = 0,l N-l (36) 

y(n) = Re{AQnOc} + ny(n)        n = 0,1,...,N-1 (37) 

The various quantities in (36) and (37) are defined below. A is the MxJ DOA matrix 

A = [a(8,M): a(92,(|)2): • • ■ : a(Mj)] (38) 

where a(9j,(j)j) is denned by (23) with KJ = 1. c is the Jxl vector 

c = [ci,C2, ...,Cj]T=c+jc (39) 

where Cj = A^ is the complex amplitude of the j-th source at time n = 0 at the reference element, fl is the 

JxJ diagonal matrix 

Q = diag{ejCülT,ejü)jT,...,ejtülT} (40) 

where oOj = 27cFj with Fj denoting the baseband analog frequency, and T is the sampling interval equal to the 

reciprocal of the sampling rate, Fs. 4> is the JxJ diagonal matrix 

O = diag{ejC0lt,ejWjX,...,ejt0,T} (41) 

where x is the time delay equal to .5 ns = .5xl0"9 s in our prototype system. nx(n) and ny(n), n=0,l,...,N-l, 

are i.i.d. multivariate Gaussian noise vectors, nx(n) ~ H0,cnIu) and ny(n) - 9^0,anIu)- 

Given the Gaussian assumption on the respective distributions of nx(n) and ny(n), it follows that 

x(n) - ^Re{Annc},o^IM) and y(n) - 5^Re{AQnOc},a^IM). The log-likelihood function is 

lnL(a), 9, <j>, c, c, a„) = constant - NM lnc„ (42) 

—TS l|x(n)-Re{AQnc}||2--V S ||y(n)-Re{AQnOc}||2 

2C„   n=o 2<Jn   „=o 

Let a denote the set of parameters that the log-likelihood function depends on. a contains 5J+1 parameters 

which we group as follows: <a = [<Bi ,a>2,..., coj]T, 8 = [9i ,92,..., 9j]T, $ = [<j>i ,fo,..., <j>j]T, 

c = [A!COSYlo,..., AJCOSYJOL C = [Aisinyio,..., AjsinyJo], and o„ is the unknown noise power. Recall that 

J is the total number of sources. 

With the (5J+l)x(5J+l) Fisher Information Matrix defined as J = I(a) = E{Va(lnL) V£(lnL)}, the 

CRB on any unbiased estimator of the i-th parameter cq is [J
-1

]ü. *• e., the i-th diagonal element of the 

inverse of J. Taking into account symmetry, the Fisher Information Matrix may be built up from the the 
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(1,1)     element     E 

-^-(lnL)VT(lnL) 

M (InL) MN the     five     lxJ     blocks,     E 
3o2 

(lnL)Vj(lnL) 

,E 
da' 

-(lnL)Vj(lnL) ,E del 
(lnL)Vj(lnL) , andE -^-(lnL)VT(lnL) 

fan 
,all 

of which are equal to 0, and the JxJ blocks EtV^Vj], E[VsVj] E[V^Vj], EtV^Vj], E[VcV£], E[V<Vj], 

E[VeVj], E[V-cVj], E[V-CV£], E[V9VS], E[VeVj], E[V8V£], E^V*], E[V+Vj], and E[V*V£], where it 

is understood that the function that the gradient is operating upon in each case is the log-likelihood function 

in (42). The derivation of each block is straightforward. Due to space limitations, it is not feasible to present 

an expression for each of these fifteen JxJ blocks. As an example, though, 

E[V9Vj] = \ £ Re{Q*nC*AJ?}Re{AtanC} + -y E Re{Q*nC*<&*Ae
I}Re{A^QnC}     (43) 

On   n=0 an   n=0 

where C, Ae, and Aa are defined below. 

C = diag{ci ,c2 ,... , cj} (44) 

Afl = äe^« ,j=i,...j 
(e^MMj) 

A^ = a<!> a(9,<!)) 0=1,...J 
(8,<t.He],<t>j) 

(45) 
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A/D: 250 MHz rate 

Xj(ll) 
T=0.5 (is block 
N=128pt. FFT 

Xj(k) 

RF 

BW = 

2GHz< 

BPF 

= 1 GHz 

fc< 18 GH; 

Mix to 
Baseband 

0-1 GHz \>- ys(n) Yj(k) 
Delay 

T=. 5 ns A/D: 250 MHz rate 
'iv ' 

T=0.5 |is block 
N=128pt. FFT 

Figure 1: Receiver module and front end signal processing for i-th antenna in prototype system. 

yt • 1 

• 2 

wavelength at 2 GHz= 6  inches 
wavelength at 18 GHz = 2/3 inches 

d2 

L Array Configuration 
3 d1 =2.3 in. 

d2 = 5.3 in. 

8 §r 
Figure 2: L-shaped antenna array employed in simulations for azimuth/elevation angle estimation 
over 2-18 GHz spectrum. Each leg is symmetric about its center. 
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0 125 250 375 1000     F (MHz) 

Figure 3: Aliasing function: aliased frequency as a function of baseband frequency after sampling 
at 250 MHz with real processing (no I and Q). 
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Figure 4: Phase of ESPRIT eigenvalue as a function of analog baseband frequency with 250 MHz 
sampling rate. 
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With 1<L<6 DFTvalues centered at a DFT spectral peak in both X and Y data 
at i-th antenna, i=l,...,M, construct Lxl DFT vectors (L' = floor [ (L-l)/2 ]): 

X. (y = [ X Ofc- L-),...,X(ko),...^.(ko+L') ]T   Y .(y = [ Y (V La...,Y(k) Y(ko+L>) ]T 

I 
Form LxL covariance and cross-covariance matrices: 

M H M H 
R  = I X.(k)X.(k)/M     R  = X Y (k)X (k)/M 

XX       •    1 1     0 1     0 yX       .    , 1     0 1     0 XX    i=1 

T 
Compute EVD of R   . Determine no. of sources, J, (1<J<L) contributing 
to spectral peak at 1^ by applying statistical test (e.g., AIC) to eigenvalues. 

1/2 ^ 
Z =diag{(Xi- X^U.Oj- \±1)>(JxJ); Us=   ^...^(LxJ) 

eigenvalues, (i. 

left eigenvectors, 

I 
Compute EVD of ^Z^U R  U E~      (JXJ)      . L a. ^^*r^ s  S yx S JS__J—^ nght 

eigenvalues, \i 
J 

eigenvectors, ß. 

for each source, j=l,...,J, estimate analog baseband frequency, F , and direction cosine, v.,: 
J J 

i 
for each interelement spacing, d- , i=l,...,I, 

represented in leg, estimate corr. phase differential: 

V arg („^ ^0)»S<«J}'2 * 
m-th and n-th antennas are separated by d j 
dj is smallest interelement spacing in leg 

T 
determine n   as that integer in range 

ndJceilingf-d^Xj-cpJ  floor[d1/A,j-q>1 ]} 

I 
for which £ 

i=2 
n .-round [n.] 

l l 
is minimum 

where:" n. = (d./d^ (n + <p ) - <p.    i=2,...,I 

aliased freq. estimate (0 < F: < 125 MHz): 

F  =  latgtßrSU  ^UI ß.}.F 
j      2 7C   6 l Kj    S  S       I  S   S]      s 

baseband freq. estimate (0 < Fj < l GHz): 
arg{u.j}+ ic/16 A 

F.= 
J 

Aa 
F.— F • round 

J      S 7C/4 

I 

1 
K. =-sign {arg {p..} } 

J J A 
A (i)     *• i m       *  /v I 

_       , v   = if +n.—J 
J       J  Ii=1    j   '       j       d-    i      l d 

A 1    I    A(i) 
v.= K. J_X  v 

A 
A,: 

1 

F. and v. automatically paired- 
J J 

estimate of wavelength: 
A        .       RF     A   . 
A. • = c / (Fmix + Fi '    c: speed of light 

mixer frequency: 2 < F ^ < 17 GHz 
mix   

r~" defined quantities (computed a-priori): 

Fs = 250 MHz       wN= exp[- j2«/N] 
k0-L'        v k_+L' 

J. 1     T 

A=diag|wN    ?      WN    ;...,WN        ] 

i i    T ; 
= 1 -—11 (1: Lxl composed of ones) 

ILL i 

5. Flowchart of frequency and 2-D angle estimation algorithm. 



j Fj(RF) 
(GHz) (MHz) 

F? 
(MHz) 

*,■ = 

128F?/f. (deg.) (deg.) 
1 (2/17).227 227 23 11.8 20 40 
2 (2/17).275 275 25 12.8 50 30 

Table I. Signal Parameters for Simulation Example 1. 
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Figure 8: Sample DFT spectrum of X data for Ex. 1. 
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Figure 6: Frequency estimation performance for Example 1 
with signals in 2-3 GHz band. 

Figure 9: Frequency estimation performance for Example 1 
with signals in 17-18 GHz band. 
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Figure 7: Azimuth estimation performance for Example 1. Figure 10: Elevation estimation performance for Ex. 1. 
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j Fj(RF) 
(GHz) (MHz) 

F? 
(MHz) 128^,7/, 

9j 
(deg.) (deg.) 

1 (2/17).952 952 48 24.6 120 15 

2 (2/17).049 49 49 25.1 20 40 

3 (2/17).700 700 50 25.6 50 30 

4 (2/17).303 303 53 27.1 200 45 

Table II. Signal Parameters for Simulation Example 2. 
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Figure 13: Sample DFT spectrum of X data for Ex. 2. 
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Figure 11: Frequency estimation performance for Example 
2 with signals in 2-3 GHz band. 

Figure 14: Frequency estimation performance for Example 
2 with signals in 17-18 GHz band. 
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Figure 12: Azimuth estimation performance for Example 2. Figure 15: Elevation estimation performance for Ex. 2. 
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