
AVF Control Number: AVF-VSR-608.0695
Date VSR Completed: 23 June 1995

95-03-29-GHS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 950615W1.11387
Green Hills Software, Inc.

Green Hills Optimizing Ada Compiler, Version 1.8.7B
SPARCstation 10 under SunOS, Release 4.1.3 =>
Heurikon R4600 Laguna under VxWorks, 5.1

(Final)

Prepared By:
Ada Validation Facility

88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

19950724 147

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and reviewing the collection of information. Send comments regading this burden, to Washington Headquarters Service,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory
Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 23, 1995

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE:
Ada Compiler Validation Summary Report, VC# 950615W1.11387
Green Hills Software, Inc. - Compiler Name: Green Hills Optimizing Ada
Compiler, Version 1.8.7B

6. AUTHOR(S)

Systems Technology Branch, Standard Languages Section

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility
Language Control Facility, 645 C-CSG/SCSL
Area B, Building 676
Wright-Patterson AFB, OH 45433-6503

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office, Defense Information System Agency
Code JEXEV, 701 S. Courthouse Rd., Arlington, VA
22204-2199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Ada implementation was tested and determined to pass ACVC 1.11. Testing was completed on 15 June 1995.
Host Computer System: SPARCstation 10 (under SunOS, Release 4.1.3)
Target Computer System: Heurikon R4600 Laguna (under VxWorks, 5.1)

14. SUBJECT TERMS
Ada Programming Language, Ada Compiler Validation Summary Report, Ada Compiler
Validation Capability, Validation Testing, Ada Validation Office, Ada Validation Facility,
ANSI/MIL-STD-1815A, Ada Joint Program Office

15. NUMBER OF PAGES
30

16. PRICE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

M^ ̂ DTI® QUALITY INSPECTED 8

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 15 June 1995.

Compiler Name and Version: Green Hills Optimizing Ada Compiler,
Version 1.8.7B

Host Computer System: SPARCstation 10
under SunOS, Release 4.1.3

Target Computer System: Heurikon R4600 Laguna
under VxWorks, 5.1

Customer Agreement Number: 95-03-29-GHS

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 950615W1.11387
is awarded to Green Hills Software, Inc. This certificate expires on March
31, 1998.

This report has been reviewed and is approved.

Ada Validation Facility
Brian P. Andrews
AVF Manager
88 CG/SCTL
Wright-Patterson AFB OH 45433-5707

/s&iZu*****
,— Organization *"
tomputer and Software Engineering Division
•0±V HA^AMMA Una* 1 ••MAM Institute for Defense Analyses

Alexandria VA 22311

Joint yP^ogrt
snald J.//Reifer

Director, AJPO
Defense Information Systems Agency,
Center for Information Management

t Accession
I "iris ößAfti

Justification.

Distribution/.,

"Üfllä

m+mm. ul.i.1«—IT -ü

AveIl.abO.Ity tfcdxm

) i ^

Customer:

DECLARATION OF CONFORMANCE

Green Hills Software, Inc.

Ada Validation Facility: Hq 645 C-CSG/SCSL
Standard Languages Section
Systems Technology Branch
Wright-Patterson AFB OH 45433-5707

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Green Hills Optimizing Ada compiler
Version 1.8.7B

Host Computer System: Sun Sparc Station 10 running SunOS 4.1.3

Target Computer System: Heurikon R46 00 Laguna running VxWorks 5.1

Customer's Declaration

I, the undersigned, representing Green Hills Software, Inc., declare
that Green Hills Software, Inc., has no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation listed in this declaration. I declare that Green Hills
Software, Inc. is the OWNER of the above implementation and the
certificates shall be awarded in the name of the OWNER'S corporate name

Date: May 10, 1995

Daniel O'Dowd, President
Green Hills Software, Inc,
510 Castillo Street
Santa Barbara CA 93101

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro95] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro95].
A detailed description of the ACVC may be found in the current ACVC User's
Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro95] Ada Compiler Validation Procedures, Version 4.0, Ada Joint
Program Office, January 1995.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK_FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint
Program
Office (AJPO)

The part of the certification body which provides policy and
guidance for the Ada certification system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part
of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process,
requirements specified.

or service of all

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable
test

ISO

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro95].

Validation

Withdrawn
test

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVD. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C35507O C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1B06A
AD1B08A BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113L. • Y (14 tests) C35705L. .Y (14 tests)
C35706L. • Y (14 tests) C35707L. .Y (14 tests)
C35708L. • Y (14 tests) C35802L. • Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. • Y (14 tests) C46012L. • Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check f^r the predefined type
SHORT_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLQAT, or SHORT_FLOAT; for this
implementation, there is no such type.

C45423A, C45523A, and C45622A check that the proper exception is raised
if MACHINEjOVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type; for this
implementation, MACHINE_OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX_MANTISSA of 47 or greater; for this
implementation, MAX_MANTISSA is less than 47.

D64005G uses 17 levels of recursive procedure calls nesting; this level
of nesting for procedure calls exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
Al-00408 and Al-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTLAL_IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

2-2

IMPLEMENTATION DEPENDENCIES

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_IO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE^ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL" JO
CE2102F CREATE INOUT FILE DIRECT 10 "
CE2102I CREATE IN FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT_IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE2102O RESET IN FILE SEQUENTIAL" "10
CE2102P OPEN OUT FILE SEQUENTIAL" "10
CE2102Q RESET OUT FILE SEQUENTIAL "10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN_FILE TEXT_IO
CE3102F RESET Any Mode TEXT 10
CE3102G
CE3102I

DELETE
CREATE

TEXT_IO
TEXT_IO OUT FILE

CE3102J OPEN IN FILE TEXT_IO
CE3102K OPEN OUT FILE TEXT 10.

The following 16 tests check operations on sequential, direct, and text
files when multiple internal files are associated with the same external
file and one or more are open for writing; USE_ERROR is raised when this
association is attempted.

CE2107B..E CE2107G..H CE2107L CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3304A checks that SET_LINE LENGTH and SET PAGE_LENGTH raise USE_ERROR
if they specify an inappropriate value for the external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT_ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 7 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B83033B B85013D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the
generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units obsolete—no
errors are detected. The processing of these tests was modified by
re-compiling the obsolete units; all intended errors were then detected by
the compiler.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Jim Gleason
Green Hills Software, Inc.
510 Castillo St.
Santa Barbara CA 93101
(805) 965-6044

For sales information about this Ada implementation, contact:

David Chandler
Green Hills Software, Inc.
510 Castillo St.
Santa Barbara CA 93101
(805) 965-6044

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it jrocesses each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro95].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system — if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3791
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 74
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 275 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the Ethernet, and run. The results were captured on the host
computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. No explicit options were
used for testing this implementation.

Test outp-t, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_IN_LEN—also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX_IN_LEN

$BIG_ID1

$BIG_ID2

$BIG_ID3

$BIG_ID4

$BIG_INT_LIT

$BIG_REAL_LIT

$BIG_STRING1

$BIG_STRING2

$BLANKS

200 — Value of V

(1..V-1 => 'A', V => '1')

(1..V-1 => 'A', V => '2')

(1..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

(1..V/2 =*> 'A') & '4' &
(1..V-1-V/2 => 'A')

(1..V-3 => '0') & "298"

(1..V-5 => '0') & "690.0"

"" & (1..V/2 -> 'A') & ""

"" & (1..V-1-V/2 => 'A') & '1' & ""

(1..V-20 => ' ')

$MAX_LEN_INT_BASED_LITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

A-l

MACRO PARAMETERS

$MAX STRING LITERAL "" & (1..V-2 => 'A') & f«r

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC_SIZE 32

$ALIGNMENT 4

$COUNT_LAST 2_147_483_646

$DEFAULT_MEM_SIZE 1024

$DEFAULT_STORJUNIT 8

$DEFAULT_SYS_NAME SERVER

$DELTA_DOC 2.0**(-31)

$ENTRY_ADDRESS 16#0#

$ENTRY_ADDRESS1 16#1#

$ENTRY_ADDRESS2 16#2#

$FIELD_LAST 2_147_483_647

$FILE_TERMINATOR f i

$FIXED_NAME NO_SUCH_FIXED_TYPE

$FLOAT_NAME NO_SUCH_FLOAT_TYPE

$FORM_STRING llll

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY

$GREATER THAN DURATION
90 000.0

$GREATER_THAN_DURATION BASE LAST
T0_00T5_000.0

$GREATER_THAN_FLOAT_BASE LAST
1.8~E+308

$GREATER_THAN_FLOAT_SAFE LARGE
l.Ö"E308

A-2

MACRO PARAMETERS

$(a^EATER_THAN_SHORT_FLOAT SAFEJLARGE
1.0E308

$HIGH_PRIORITY 254

$ILLEGAL_EXTERNAL_FILE_NAME1
/NODIRECTORY/FILENAMEl

$ILLEGAL_EXTERNAL FILE NAME2
~ 7k)DIRECTÖRY/FILENAME2

$INAPPROPRIATE_LINE_LENGTH
-1

$INAPPROPRIATE_PAGE_LENGTH
-1

$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1 .ADA")

$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1 .ADA")

$INTEGER_FIRST -2147483648

$INTEGER_LAST 2147483647

$INTEGER_LAST_PLUS_1 2_147_483_648

$INTERFACE_LANGUAGE C

$LESS_THAN_DURATION -90_000.0

$LESS_THAN_DURATION_BASE FIRST
-lff_000_000.0

$LINE_TERMINATOR ASCII.LF

$LCW_PRIORITY 1

$MACHINE_CODE_STATEMENT
asm' (inst => "nop");

$MACHINE_CODE_ TYPE asm

$MANTISSA_DOC 31

$MAX_DIGITS 15

$MAX_INT 2147483647

$MAX_INT_PLUS_ _1 2_147_483_648

$MIN_INT -2147483648

$NAME BYTE INTEGER

A-3

MACRO PARAMETERS

$NAME_LIST

$NAME_SPECIFICATIONl

$NAME_SPECIFICATION2

$NAME_SPECIFICATION3

$NEG_BASED_INT

$NEW_MEM_SIZE

$NEW_STOR_UNIT

$NEW_SYS_NAME

$PAGE_TERMINATOR

$RECORD_DEFINITION

$RECORD_NAME

$TASK_SIZE

$TASK_STORAGE_SIZE

$TICK

$VARIABLE_ADDRESS

$VARIABLE_ADDRESS1

$VARIABLE_ADDRESS2

$YOUR PRAGMA

SERVER

/sun4/X2120A

/sun4/X2120B

/sun4/X3119A

16#FFFFFFFE#

1024

8

SERVER

ASCII.LF & ASCII.FF

WITHDRAWN

asm

32

4096

1.0

FCNDECL.VAR_ADDRESS

FCNDECL. VAR_ADDRESS1

FCNDECL.VAR_ADDRESS2

NO SUCH PRAGMA

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

Compile Options

-fC Compile only if necessary.
-fE Generate error log file.
-fL Generate exception location information.
-fN Suppress numeric checking.
-fO Suppress storage checking.
-fo Prevent harmless changes to low level units from

forcing recompilation.
-fs Suppress all checks.
-fU Inhibit library update,
-fv Compile verbosely,
-fw Suppress warning messages,
-g Generate debug information.
-G Generate debug information for MULTI.
-help Display help.
-1 Generate listing file.
-L Use alternate library.
-N Do a dry run of the compilation.
-OLAIMS Perform Optimizations.
-P Print operations,
-p Generate profiling information.
-S Produce assembly code.
-Xnnn Turn on the -Xnnn option where nnn is a three digit integer.
-Znnn Turn off the -Xnnn option where nnn is a three digit integer.

B-l

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to this
report.
Link Options

-f Suppress main program generation step.
-L Use alternate library.
-m Produce a primitive load map.
-n Suppress the linking of the object files, but do generate the

main program.
-N Do a dry run of the compilation,
-o Use alternate executable file output name,
-p Enable profiling.
-P Print operations.
-Q Link in an extra object file,
-r Create re-linkable output,
-v Link verbosely,
-w Suppress warnings.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -217483648..217483647;
type SHORT_INTEGER is range -32768..32767;
type BYTE_INTEGER is range -128..127;
type LONG_INTEGER is range -217483648..217483647;

type FLOAT is digits 6 range -3.40282346638529E+38..3.40282346638529E+38;
type LONG_FLQAT is digits 15 range -1.79769313486231E+308..1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0..86400.0;

end STANDARD;

C-l

APPENDIX F OF THE Ada STANDARD

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation-dependent characteristics
of Green Hills Ada. Note that there are no preceding appendices.
This Appendix is called Appendix F in order to comply with the
Reference Manual for the Ada Programming Language* (LRM)
ANSI/MIL-STD-1815A which states that this appendix be named
Appendix F.

Implemented Chapter 13 features include length clauses, enumeration
representation clauses, record representation clauses, address clauses,
interrupts, package system, machine code insertions, pragma
interface, and unchecked programming.

F.l Pragmas

The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5.
interface See section F.l.l.
list See the LRM Appendix B.
pack See section F.l.2.
page See the LRM Appendix B.
priority See the LRM Appendix B.
suppress See section F.l.3.
inline See the LRM section 6.3.2.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled
optimize
system_name
shared
storage_unit
memory_size

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the compiler
issues a warning message rather than an error, as required by the Ada
language definition. Refer to the ARM Appendix B for additional
information about the pre-defined pragmas.

F.l.l Pragma Interface

The form of pragma interface in Green Hills Ada is:

pragma interface (language, subprogrogram [, "link-name"]);
where:

C-2

APPENDIX F OF THE Ada STANDARD

language This is the interface language, one of the names assembly,
builtin, c or internal. The names builtin and internal
are reserved for use by Green Hills compiler maintainers
in run-time support packages.

subprogram This is the name of a subprogram to which the pragma
interface applies. If link-name is omitted, then the Ada
subprogram name is also used as the object code symbol
name. Depending on the language specified, some
automatic modifications may be made to the object code
symbol name.

link-name This is an optional string literal specifying the name
of the non-Ada subprogram corresponding to the Ada
subprogram named in the second parameter. If link-name
is omitted, then link-name defaults to the value of
subprogram translated to lowercase. Depending on the
language specified, some automatic modifications may
be made to the link-name to produce the actual object
code symbol name that is generated whenever references
are made to the corresponding Ada subprogram.

It is appropriate to use the optional link-name parameter
to pragma interface only when the interface subprogram
has a name that does not correspond at all to its Ada
identifier or when the interface subprogram name cannot
be given using rules for constructing Ada identifiers
(e.g. if the name contains a '$' character).

The characteristics of object code symbols generated for each interface
language are:

assembly The object code symbol is the same as link-name. If no
link-name string is specified, then the subprogram name
is translated to lowercase.

builtin The object code symbol is the same as link-name, but
prefixed with the string, "_mss_".
This language interface is reserved for special
interfaces defined by Green Hills Software, Inc. The
builtin interface is presently used to declare certain
low-level run-time operations whose names must not
conflict with programmer-defined or language system
defined names.

c The object code symbol is the same as link-name, but with
one underscore character ('_') prepended. This is the
convention used by the C compiler. If no link-name string
is specified, then the subprogram name is translated to
lowercase.

internal No object code symbol is generated for an internal language

C-3

APPENDIX F OF THE Ada STANDARD

interface; this language interface is reserved for special
interfaces defined by Green Hills Software, Inc. The
internal interface is presently used to declare certain
machine-level bit operations.

No automatic data conversions are performed on parameters of any interface
subprograms. It is up to the programmer to ensure that calling conventions
match and that any necessary data conversions take place when calling
interface subprograms.

A pragma interface may appear within the same declarative part as the
subprogram to which the pragma interface applies, following the subprogram
declaration, and prior to the first use of the subprogram. A pragma
interface that applies to a subprogram declared in a package specification
must occur within the package body in this case. A pragma interface
declaration may appear in the private part of a package specification.
Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma
interface.

F.1.2 Pragma Pack

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to
which it applies, provided that the pragma occurs within the same
declarative part as the composite type declaration, before any objects
or components of the composite type are declared.

Note that the declarative part restriction means that the type declaration
and accompanying pragma pack cannot be split across a package specification
and body.

The effect of pragma pack is to minimize storage consumption by discrete
component types whose ranges permit packing. Use of pragma pack does not
affect the representations of real types, pre-definsd integer types, and
access types.

F.1.3 Pragma Suppress

Pragma suppress is implemented as described int eh LRM section 11.7, with
these differences:

* Presently, division_check and overflow_check must be suppressed
via a compiler flag, -fN; pragma suppress is ignored for these
two numeric checks.

* The optional "ON =>" parameter name notation for pragma suppress
is ignored.

* The optional second parameter to pragma suppress is ignored; the
pragma always applies to the entire scope in which it appears.

C-4

APPENDIX F OF THE Ada STANDARD

F.1.4 Pragma Inline

Pragma inline is supported for procedures and functions.

F.2 Attributes

All attributes described in the LRM Appendix A are supported.

F.3 Standard Types

Additional standard types are defined in Green Hills Ada:
* byte_integer

* short_integer

* long_integer

* long_float

The standard numeric types are defined as:

type byte_integer is range -128 .. 127;

type short_integer is range -32768 .. 32767;

type integer is range -2147483648 .. 2147483647;

type long_integer is range -2147483648 .. 2147483647;

type float is digits 6
range -3.40282E+38 .. 3.40282E+38;

type long float is digits 15
range -T.79769313486231E+308 .. 1.79769313486231E+308;

type duration is delta 0.0001 range -86400.0000 .. 86400.0000;

F.4 Package System

The specification of package system is:

package system is

type address is new long_integer;

type name is (server);

system_name : constant name := server;

type target_systems is (
unix,
netos,

C-5

APPENDIX F OF THE Ada STANDARD

vms,
msdos,
bare,
mac,
VxWorks);

type target_machines is (
vax,
z8001,
z8002,
z80000,
m68000,
m68020,
m68030,
IQ68040,
m88000,
i8086,
i80286,
i80386,
i80486,
i860,
R2000,
R3000,
R4000,
RS6000,
HPPA,
spare,
PPC601,
PPC603,
PPC604);

target_system : constant target_systems := VxWorks;
target_machine : constant target_machines := R4000;

storage_unit : constant := 8;
memory_size : constant := 1024;

— System-Dependent Named Numbers

min_int : constant := -2147483648;
max_int : constant :» 2147483647;
max_digits : constant := 15;
maxjnantissa : constant := 31;
fine_delta : constant := 2.0 ** (-31);
tick : constant := 1.0 / 1.0;

— Other System-Dependent Declarations

subtype priority is integer range 1 .. 254;

The value of system.memory_size is presently meaningless.

F.5 Restrictions on Representation Clauses

C-6

APPENDIX F OF THE Ada STANDARD

Green Hills Ada supports representation clauses including length clauses,
enumeration representation clauses, record representation clauses and
address clauses.

F.5.1 Length Clauses

A size specificationt'size) is rejected if fewer bits are specified
than can accommodate the type. The minimum size of a composite type
may be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g. 8 for the range 0..255.
However, because of requirements imposed by the Ada language definition,
a full 32-bit range of unsigned values, i.e. 0..(2**32)-l, cannot be
defined, even using a size specification.

The specification of collection size (t'storage_size) is evaluated at
run-time when the scope of the type to which the length clause applies
is entered, and is therefore subject to rejection (via storage_error)
based on available storage at the time the allocation is made. A
collection may include storage used for run-time administration of the
collection, and therefore should not be expected to accommodate a
specific number of objects. Furthermore, certain classes of objects
such as unconstrained discriminant array components of records may be
allocated outside a given collection, so a collection may accommodate
more objects than might be expected.

The specification of storage for a task activation (t'storage_size) is
evaluated at run-time when a task to which the length clause applies
is activated, and is therefore subject to rejection (via storage_error)
based on available storage at the time the allocation is made. Storage
reserved for a task activation is separate from storage needed for any
collections defined within a task body.

The specification of small for a fixed point type(t'small) is subject
only to restrictions defined in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an
enumeration representation clause must be in the range of standard.integer.

The value of an internal code may be obtained by applying an appropriate
instantiation of unchecked_conversion to an integer type.

F.5.3 Record Representation Clauses

The storage unit offset (the at static_simple_expression part) is given
in terms of 8-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may
be in the range 0..31, with 0 being the least significant bit of a
component. A range specification may not specify a size smaller than can
accommodate the component. A range specification for a component not

C-7

APPENDIX F OF THE Ada STANDARD

accommodating bit packing may have a higher upper bound as appropriate
(e.g. 0..63 for a 64-bit float component). Refer to the internal
data representation of a given component in determining the component
size and assigning offsets.

The value of an alignment clause (the optional at mod part) must evaluate
to 1,2,4, or 8 and may not be smaller than the highest alignment required
by any component of the record.

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or variable)
or a task entry, but not for a subprogram, package, or task unit. The
meaning of an address clause supplied for a task entry is given in section
F.5.5.

An address expression for an object is a 32-bit linear segmented memory
address of type system.address.

F.5.5 Interrupts

A task entry's address clause can be used to associate the entry with a UNIX
signal. Values in the range 0..31 are meaningful, and represent the signals
corresponding to those values.
An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means
of type conversion.

F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implementation-
dependent components.

F.7 Machine Code Insertions

Machine code insertions, described in the LRM section 13.8, are supported in
Green Hills Ada. Exactly one form of machine code insertion can be used in
Green Hills Ada:

insertion of a string into the code stream.

There are additional restrictions on machine code insertions, as
described in the LRM:

A compilation unit that contains machine code insertions must
name package machine_code in a context (with) clause.

The body of a procedure containing machine code insertions
cannot contain declarations other than use, cannot contain statements
other than code statements, and cannot contain exception handlers.

C-8

APPENDIX F OF THE Ada STANDARD

Refer to the LRM for more specific details.

The definition of package machine_code is:

package machine_code is
type asm is

record
inst: string(1..256);

end record;
end;

The asm record is used for creating assembly instructions much the same
as the asm function in C.

Following is an example of a procedure that uses machine code insertions:

with system;
with machine_code;
procedure mach is
use machine_code;

begin
— This machine_code procedure adds its two arguments and
— calls the integer i/o package put routine on the sum.
asm'(inst => "add %iO,%il,%oO");
asm'(inst => "mov 0,%ol");
asm'(inst => "call IioPut008");
asm'(inst => "mov lu",%o2");

end;

F.8 Unchecked Programming

The Green Hills Ada compiler supports the unchecked programming generic
library subprograms uncheckedjdeallocation and unchecked_conversion.
There are no restrictions on the use of unchecked_conversion. Conversions
between objects whose sizes do not conform may result in storage areas
with undefined values.

F.9 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

* In calls to open and create, the form parameter must be the
empty string (the default value).

* More than one internal file can be associated wif* a single
external file for reading only. For writing, only one internal
file may be associated with an external file; Do not use
reset to get around this rule.

* Temporary sequential and direct files are given names.
Temporary files are deleted when they are closed.

C-9

APPENDIX F OF THE Ada STANDARD

* File I/O is buffered; text files associated with terminal devices
are line-buffered.

* The packages sequential_io and direct_io cannot be instantiated
with unconstrained composite types or record types with
discriminants without defaults.

F.10 Separate Compilation with Generics

A generic non-library package body can be compiled as a subunit in a
separate file from its specification whether or not the instantiations
precede the subprogram body. However, a generic non-library subprogram
body cannot be compiled as a subunit in a separate file from its
specification when the instantiations precede the subprogram body.
Also, a generic library package body cannot be compiled in a separate
file from its specification when the instantiations precede the subprogram
body.

C-10

