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Director's    message 

"Geometrical methods in fluid dynamics" were the subject of 
the 1993 GFD session, a mathematical summer in which the 
inhabitants of Walsh Cottage explored applications of Hamiltonian 
fluid mechanics and related ideas about symmetry and conservation 
laws to practical problems in geophysical fluid dynamics. Experts 
Phil Morrison and Ted Shepherd set the pace with an intensive 
introductory course, leaving themselves exhausted and the rest of us 
greatly stimulated. Subsequent lecturers "fanned out" to cover the 
spectrum of currently interesting topics, from slow manifolds to fast 
dynamos. 

The 1993 session attracted an extraordinary number of 
visitors, forcing the director to abandon his early promise of "no 
afternoon lectures after the first few weeks." But despite the heavy 
schedule, lots of work got done, especially by our fellows, several of 
whom apparently discovered the secret of going entirely without 
sleep. This year we stretched our meager resources to accept 10 
fellows from a group of 45 outstanding applicants. However, I must 
sincerely apologize to the many excellent young scientists who had to 
be  turned down. 

This year, in an effort to decrease the 1993 volume's size while 
increasing its archival value, I mildly discouraged participants from 
submitting abstracts of work that would soon be published in a 
regular journal. Therefore, readers should be sure to scan the "1993 
Lecture Schedule" to get a complete picture of what went on at the 
cottage. 

Once again, it is a great pleasure to thank the Woods Hole 
Oceanographic Institution for its warm hospitality, and Jake Peirson 
and the staff of the WHOI Education office for their indispensable 
help. Very special thanks go to our administrative assistant, Barbara 
Ewing-DeRemer; to our crisis-management specialist, Bob Frazell; 
and to Steve Meacham and Glenn Flierl, who kept things running 
smoothly in the computer trailer. We gratefully acknowledge the 
continuing support of the National Science Foundation and the Office 
of Naval Research. 

Rick Salmon 
1993    Director 
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Hamiltonian Description of the Ideal Fluid 

P. J. MORRISON 

Department of Physics and Institute for Fusion Studies 
The University of Texas at Austin 

Austin, Texas   78712 
morrison@hagar.ph.utexas.edu 

Introduction 
Why look at fluid mechanics from a Hamiltonian perspective? The simple answer is because 
it is there and it is beautiful. For ideal fluids the Hamiltonian form is not artificial or 
contrived, but something that is basic to the model. However, if you are a meteorologist 
or an oceanographer, perhaps what you consider to be beautiful is the ability to predict 
the weather next week or to understand transport caused by ocean currents. If this is the 
case, a more practical answer may be needed. Below, in the remainder of this Introduction, 
I will give some arguments to this effect. However, I have observed that the Hamiltonian 
philosophy is like avocado: you either like it or you don't. In any event, over the past 13 years 
I have also observed a strong development in this field, and this is very likely to continue. 

One practical reason for the Hamiltonian point of view is that it provides a unifying 
framework. In particular, when solving "real" problems one makes approximations about 
what the dominant physics is, considers different geometries, defines small parameters, ex- 
pands, etc. In the course of doing this there are various kinds of calculations that are done 
again and again, for example, calculations regarding: 

1. waves and instabilities by means of linear eigenanalyses; 

2. parameter dependencies of eigenvalues as obtained by such eigenanalyses; 

3. stability that are based on arguments involving energy or other invariants; 

4. various kinds of perturbation theory; 

5. approximations that lead to low degree-of-freedom dynamics. 

After a while one discovers that certain things happen over and over again in the above 
calculations, for example: 
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1. the nature of the spectrum is not arbitrary, but possesses limitations; 

2. upon collision of eigenvalues only certain types of bifurcations can occur; 

3. the existence of Rayleigh type stability criteria (these occur for a wide variety of fluid 
and plasma problems); 

4. simplifications based on common patterns; 

5. common methods for reducing the order of systems. 

By understanding the Hamiltonian perspective, one knows in advance (within bounds) what 
answers to expect and what kinds of procedures can be performed. 

In cases where dissipation is not important and approximations are going to be made, it 
is, in my opinion, desirable to have the approximate model retain the Hamiltonian structure 
of the primitive model. One may not want to introduce spurious unphysical dissipation. 
Understanding the Hamiltonian structure allows one to make Hamiltonian approximations. 
In physical situations where dissipation is important, I believe it is useful to see in which 
way the dynamics differ from what one expects for the ideal (dissipationless) model. The 
Hamiltonian model thus serves as a sort of benchmark. Also, when approximating models 
with dissipation we can isolate which part is dissipative and make sure that the Hamiltonian 
part retains its Hamiltonian structure and so on. 

It is well-know that Hamiltonian systems are not structurally stable in a strict mathemat- 
ical sense (that I won't define here). However, this obviously does not mean that Hamiltonian 
systems are not important; the physics point of view can differ from the mathematics. A 
simple linear oscillator with very small damping can behave, over long periods of time, like 
an undamped oscillator, even though the topology of its dynamics is quite different. 

Figure 1: 

To say that a Hamiltonian system is structurally unstable is not enough. A favorite 
example of mine that illustrates this point concerns the first U.S. satellite, Explorer I, which 
was launched in 1958 (see Figure 1). This spacecraft was designed so that its attitude would 
be stabilized by spin about its symmetry axis. However, the intended spin-stabilized state 
did not persist and the satellite soon began to tumble.   The reason for this is attributed 
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to energy dissipation in the small antennae shown in the figure. Thus unlike the simple 
oscillator, where the addition of dissipation has a small effect, here the addition of dissipation 
had a catastrophic effect. Indeed, this was a most expensive experiment on negative energy 
modes, a universal phenomenon in fluids that I will discuss. 

Figure 2: 

After Explorer I, in 1962 Alouette I was launched (see Figure 2)*, which has an obvious 
design difference. This satellite behaved like the damped linear oscillator in the sense that 
dissipation merely caused it to spin down. I would like to emphasize that the difference 
between the behavior of Explorer I and Alouette I lies in a mathematical property of the 
Hamiltonian dynamics of these spacecraft; it could have been predicted. 

So, the purpose of my lectures is to describe the Hamiltonian point of view in fluid 
mechanics, and to do so in an accessible language. It is to give you some fairly general tools 
and tricks. I am not going to solve a single "real" problem; however, you will see specific 
examples of problems throughout the summer. Lecture I is somewhat different in flavor from 
the others. Imagine that you have succeeded in obtaining a finite Hamiltonian system out 
of some fluid model, the Kida vortex being a good example. What should you expect of 
the dynamics? Lecture I, being a sketch of low degree-of-freedom Hamiltonian dynamics, 
answers this to some degree. The remaining four lectures are concerned with the structure of 
infinite degree-of-freedom Hamiltonian systems, although I will often use finite systems for 
means of exposition. To see how the Lectures are organized, consult the Table of Contents. 

References are given both as footnotes and at the end of various sections. Those at the 
ends of sections are typically of a more general and comprehensive nature. The referencing 
should not be taken as complete, but as a guide to the literature. 

Acknowledgments 
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*Both Figures 1 and 2 are after P. W. Likins, AGARD Lecture Series, 3b-l (1971). 
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I.    Rudiments of Few Degree-of-Freedom 
Hamiltonian Systems Illustrated by Passive 
Advection in Two-Dimensional Fluids 

In this introductory lecture we will review some basic aspects of Hamiltonian systems with 
a finite number of degrees of freedom. We illustrate, in particular, properties of one, two, 
and three degree-of-freedom systems by considering the passive advection of a tracer in two- 
dimensional incompressible fluid flow. The tracer is something that moves with, but does 
not influence, the fluid flow; examples include neutrally buoyant particles and colored dye. 
The reason for mixing Hamiltonian system phenomenology with fluid advection is that the 
latter provides a nice framework for visualization, since as we shall see the phase space of 
the Hamiltonian system is in fact the physical space occupied by the fluid. 

A point of view advocated in this lecture series is that an understanding of finite Hamil- 
tonian systems is useful for the eventual understanding of infinite degree-of-freedom systems, 
such as the equations of various ideal fluid models. Such infinite systems are the main sub- 
ject of these lectures. It is important to understand that the infinite systems are distinct 
from the passive advection problem that is treated in this lecture; the former is governed by 
partial differential equations while the later is governed by ordinary differential equations. 

A.    A Model for Two-Dimensional Fluid Motion 

In various situations fluids are adequately described by models were motion only occurs in 
two spatial dimensions. An important example is that of rotating fluids where the dominant 
physics is governed by geostrophic balance, where the pressure force is balanced by the 
Coriolis force. For these types of flows the well-known Taylor-Proudman* theorem states 
that the motion is predominantly two-dimensional. A sort of general model that describes a 
variety of two-dimensional fluid motion is given by the following: 

^ + hM = S + 2>, (1.1) 

where q(x,y,t) is a vorticity-like variable, ij>(x,y,t) is a stream function, both of which 
are functions of the spatial variable (x,y) € D, where D is some spatial domain, and t 
is time. The quantities S and T> denote sources and sinks, respectively. Examples of S 
include the input of vorticity by means of pumping or stirring, while examples of V include 
viscous dissipation and Ekman drag. Above, the Poisson bracket notation, which is also the 
Jacobian, is used: 

and we have assumed incompressible flow, which implies that the two components of the 
velocity field are given by 

<->-(-££)• <"> 
*J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer-Verlag, New York, 1987). 
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In order to close the system a "self-consistency" condition that relates q and iß is required. 
We signify this by q = Ciß. Examples include: 

• The two-dimensional Euler equation where q = V2xß. 

• The rotating fluid on the /3-plane where q = V2iß + ßy. 

In the former case q is the vorticity, while in the latter case q is the potential vorticity. 
For convenience we will suppose that the domain D is an annular region as depicted in 

Figure 1 below. Many experiments have been performed in this geometry* where the fluid 
swirls about in the 8 and r directions and is predominantly two-dimensional. The geometry 
of the annulus suggests the use of polar coordinates, which are given here by the formulas: 
x = r sin 6 and y = r cos 9. In terms of r and 6 the bracket of (1.2) becomes 

lfdfdg     dfdg\ .    . 

The spatial variables (x,y) play the role below of canonical coordinates, with x being the 
configuration space variable and y being the canonical momentum. The transformation from 
(x,y) to {r,Q) is a noncanonical transformation and so the form of the Poisson bracket is 
altered as manifest by the factor of 1/r. (In Lecture III we will discuss this in detail.) To 
preserve the canonical form we replace r by a new coordinate J :— r2/2 and the bracket 
becomes 

[U] ~ mil~ dido■■ (L5) 

These coordinates are convenient, since they can be action-angle variables, as we will see. 

Figure 1: 

A solution to (1.1) provides a stream function, ip(0,J,t). In this lecture we will assume 
that various forms of iß are known, without going into detail as to whether or not these forms 
are solutions with particular choices of £, S, or V. Here we will just suppose that the tracers 

*See e.g. H. P. Greenspan, Theory of Rotating Fluids (Cambridge Univ. Press, Cambridge, 1968) and 
J. Sommeria, S. D. Meyers and H. L. Swinney, Nonlinear Topics in Ocean Physics, edited by A. Osborne, 
(North-Holland, Amsterdam, 1991). 
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in the fluid, specks of dust if you like, follow particular assumed forms for the velocity field 
of the flow. The stream function gives a means for visualizing this. Setting ^constant for 
some particular time defines an instantaneous stream line whose tangent is the velocity field. 
(See Figure 2 below.) 

instantaneous 
velocity v 

Figure 2: 

B.    Passive Advection 
Imagine that a tiny piece of the fluid is labeled, somehow, in a way that it can be followed. 
As mentioned above, a small neutrally buoyant sphere or a small speck of dust might serve 
this purpose. Since such a tracer, the sphere or the speck, moves with the fluid its dynamics 
is governed by 

x = u = -— = [z,V>], y = v = — = [y, $\ (1.6) 

or in terms of the (0, J) variables 

j 
de' 

e = dt/> 
dj' 

These are special cases of Hamilton's equations, which are usually written as 

Pi = \pi, H] 
dH 

ii = [<n, H] 
dH 

~ dPi 
« = 1,2,. >N, 

where [, ], the Poisson bracket, is defined by 

(1.7) 

(1.8) 

^(dfdg      dfdg\ 

Here (<fc,p,) constitutes a canonically conjugate pair with &• being the canonical coordinate 
and pi being the canonical momentum. Together they are coordinates for the 2N dimensional 
phase space. The function H(q,p,t) is the Hamiltonian. Observe that y ( or J), which 
physically is a coordinate, here plays the role of momentum, and —rp is the Hamiltonian. 
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We emphasize, once again, that the coordinates (x,y) are coordinates for something 
labelling a fluid element, and the motion of the fluid element is determined by a prescribed 
velocity field. This is to be distinguished from the Lagrangian variable description of the 
ideal fluid, which we treat in Lecture III, where the goal is to describe the velocity field as 
determined by the solution of a partial differential equation. 

Before closing this subsection we give a bit of terminology. A single degree of freedom 
corresponds to each (q,p) pair. However, some account should be given as to whether or 
not H depends explicitly upon time. It is well-known that nonautonomous ordinary differ- 
ential equations can be converted into autonomous ones by adding a dimension. Therefore, 
researchers sometimes count a half of a degree of freedom for this. Thus (1.7) is a if degree- 
of-freedom system if tp depends explicitly upon time, otherwise it is a one degree-of-freedom 
system. This accounting is not so precise, since one might want to distinguish between 
different types of time dependencies. We will return to this point later. 

C.    Integrable Systems: One Degree of Freedom 

All one degree-of-freedom systems are integrable. However, integrable systems of higher 
dimension are rare in spite of the fact that old-fashioned mechanics texts make them the 
center piece (if not the only piece). A theorem often credited to Siegel* shows how integrable 
systems are of measure zero. What exactly it means to be integrable is an active area of 
research with a certain amount of subjectivity. For us integrable systems will be those for 
which the motion is determined by the evaluation of N integrals. When this is the case, the 
motion is "simple." 

More formally, a system with a time independent Hamiltonian, H(q,p), with N degrees 
of freedom is said to be integrable if there exist iV independent, smooth constants of motion 

Ii, i.e., 
dli 

~di 

that are in involution, i.e., 

5 = M = 0, i,j = l,2,..JV, (1.10) 
at 

[/.-,/,-] = 0, ;,j = i,2,..jv. (i.ii) 

The reason that the constants are required to be smooth and independent is that the 
equations J; = ct-, where the c,-'s are constants, must define N different surfaces of dimension 
2N - 1 in the 2N dimensional phase space. The reason for the constants to be in involution 
is that one wants to use the J's (or combinations of them) as momenta and momenta must 
pairwise commute. In coordinates of this type the motion is quite simple. 

Sometimes additional requirements are added in definitions of integrability. For example, 
one can add the requirements that the surfaces J; = constant for i = 1,2,...N be compact 
and connected. If this is the case the motion takes place on an iV-torus and there exist 
action-angle variables J,, 0; in terms of which Hamilton's equations have the form 

^ = -|^ = o,    ^ = !? = a-(J), .\; = I,2,..JV.      (i.i2) 
dt OVi dt       dJi 

*See e.g.   J. Moser, Stable and Random Motions in Dynamical Systems, (Princeton University Press, 
Princeton, 1973). 
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The first of Eqs. (1.12) implies H = H(J) alone. When H does not depend upon a coordinate, 
the coordinate is said to be ignorable and its conjugate momentum is a constant of motion. 
In action-angle variables all coordinates are ignorable and the second of Eqs. (1.12) is easy 
to integrate, yielding 

Oi = 0°{ + tU(J)t i,j = 1,2,.. JV, (1.13) 

where 0° is the integration constant, 6 is defined modulo 2ir, and fi,(J) := dH/dJi are the 
frequencies of motion around the iV-torus. 

A good deal of the machinery of Hamiltonian mechanics was developed to try and reduce 
equations to the action-angle form above. If one could find a coordinate transformation, in 
particular a canonical transformation (c.f. Lecture III), that takes the system of interest into 
the form of (1.12), then one could simply integrate and then map back to get the solution in 
closed form. The theory of canonical transformations, Hamilton-Jacobi theory, etc. sprang 
up because of this idea. However, now it is known that this procedure is not possible in 
general because generically Hamiltonian systems are not integrable. Typically systems are 
chaotic, i.e., trajectories wander in a seemingly random way in phase space rather that lying 
on an N-dimensional torus. A distinct feature of trajectories is that they display sensitive 
dependence on initial conditions. We will say a little about this below. 

To conclude this section we return to our fluid mechanics example, in which context we 
show how all one degree-of-freedom systems are integrable. In the case where ij) is time 
independent, we clearly have a single degree of freedom with one constant of motion, viz. ip: 

+ -%*+%*-*< c-") 
which follows upon substitution of the equations of motion for the tracer, (1.6). To integrate 
the system one solves 

#r,y) = Vo (1-15) 

for x = f(if>o, y), which is in principle (if not in practice) possible, and then inserts the result 
as follows: 

y=^(*,y) =:D&0,y). (1.16) 

Equation(I.16) is separable, which implies 

Jyo  D(ip0,y)     Jto 

Thus we have reduced the system to the evaluation of a single integral, a so-called quadrature. 
There are some sticky points, though, since x = /(^o? y) may not be single-valued or even 
invertible explicitly, and usually one cannot do the integral explicitly. Moreover, afterwards 
one must invert (1.17) to obtain the trajectory. These are only technical problems, ones that 
are easily surmounted with modern computers. 
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Generally equations of the form of (1.1) possess equilibrium solutions when iß and q 
depend upon only a single coordinate. The case of special interest here is when the domain 
is the annulus discussed above, polar coordinates are used, and ip depends only upon r (or 
equivalents the canonical variable J). Physically this corresponds to a purely azimuthally 
symmetric, sheared fluid flow, where ve = v9{r). In this case stream lines are "energy 
surfaces," which are merely concentric circles as depicted in Figure 3 below. The counterpart 
of (1.13), the equations of motion for the speck of dust in the fluid, are 

0 = 0o + ft(r) *, r = r0 (1.18) 

where ve = tor. Note the speck goes round and round at a rate dependent upon its radius, 

but does not go in or out. 

Figure 3: 

D.     Chaotic Dynamics: Two Degrees of Freedom 
As noted, one degree-of-freedom systems are always integrable, but two degree-of-freedom 
systems typically are not. Nonintegrable systems exhibit chaos which is briefly described. 

Systems with two degrees of freedom have a four dimensional phase space, which is 
difficult to visualize, so we do something else. A convenient artifice is the surface of section 
or as it is sometimes called the Poincare section. Suppose the surface H(qi,q2,pi,p2) = 
constant =: E is compact (i.e. contained within a three sphere). Since the motion is 
restricted to this surface p2 can be eliminated in lieu of E, which we keep fixed. We could 
then plot the trajectory in the space with the coordinates (qi,q2,Pi), but simpler pictures 
are obtained if we instead plot a point in the (?i,pi) plane whenever q2 returns to its initial 
value, say q2 = 0. 

We also require that it pierce this plane with the momentum p2 having the same sign 
upon each piercing. This separates out the branches of the surface H — E. That q2 will 
return is almost assured, since the Poincare recurrence theorem tells us that almost any orbit 
will return to within any e-ball (points interior to a sphere of radius e). It is unlikely it will 
traverse the ball without piercing q2=0.   (If there are no fixed points within the ball the 
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Figure 4: 
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vector field can be locally rectified and unless there is no component normal to the (?i,pi) 
plane, which is unlikely, it will pierce.) 

For integrable systems an orbit either eventually returns to itself, in which case we have 
a periodic orbit or it maps out a curve, which is an example of an invariant set. The latter 
case is typical as illustrated in Figure 4. In nonintegrable or chaotic systems this is not true 
as is illustrated Figures 5(a) and 5(b), where it is seen that orbits make "erratic" patterns. 

Figure 5: 

Now what about the fluid mechanics illustration? Can chaos exist? How can we have 
a two degree-of-freedom system when we only have the two spatial coordinates, say (0,«/)? 
The answer is that explicit time dependence in ^, the extra half of degree of freedom, is 
enough for chaos. There is, in fact, a trick for puffing up a l| degree-of-freedom system and 
making it look like a two degree-of-freedom system, and vice verse. 
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de     dH dV dJ dH        di/> 

ds      dJ ~ dJ' ds de ~   de' 

d<j>     dH 
~ds~~ dl = i, 

dl 
ds 

dH        dip 

d<t>~    d<ß' 

Let s correspond to a fake time variable, set t - <f>, where <f> is going to be a new canonical 
coordinate, and define a new Hamiltonian by 

j5r(M,6J) = MJ,fl + J. (L19) 

The equations of motion for this Hamiltonian are 

a IT fl,l> 
(1.20) 

(1.21) 

The first of Eqs. (1.21) tells us that <f> - s + s0 = t; we set s0 = 0. Thus we obtain what we 
already knew, namely, that <j> — t and that Eqs. (1.20) give the correct equations of motion. 
What is the role of the second of Eqs. (1.21)? This equation merely tells us that I has to 
change so as to make i/=constant. 

The above trick becomes particularly useful when ^ is a periodic function of time: 
ip(e,J,t) = ij>(e,J,t + T). In this case it makes sense to identify <f> + T with <j>, because 
the force or vector field is the same at these points. With this identification done, it is clear 
that a surface of section is obtained by plotting (0, J) at intervals of T. 

We will leave it as an exercise to show how to construct l| degree-of-freedom Hamiltonian 
systems from two degree-of-freedom Hamiltonian systems. 

Now suppose the stream function is composed of an azimuthal shear flow plus a propa- 
gating wave: 

V>(j, e, t) = MJ) + MJ) cos (rm(0 - Ult)), (1.22) 

where mx € IN and ^1 is assumed small in comparison to ip0- Here i>o(J) represents the 
azimuthal background shear flow and the second term represents the wave, with ij>i, mx and 
u>i being the radial eigenfunction, mode number and frequency of the wave, respectively. 

This system might look like a l| degree-of-freedom system, but it is in fact integrable. 
The easiest way to see this is to boost into the frame of reference rotating with the wave. In 
this frame the stream function becomes 

^(J,M) = ^o(i) + V'i(^)cos(m10) -WiJ, (L23) 

where the canonical transformation is J = J, § = 6 — u)it.^ This transformation is derivable 
from the mixed variable generating function F(e, J) = J(0 - w^). Note the term -UJXJ 

accounts for the azimuthal rigid rotation generated from the frame shift. 
In the absence of the wave it is clear that the trajectories in phase space are just circles 

as shown in Figure 3 (or straight lines as plotted in Figure 4). However, from the form of 
(1.22) it is clear that something interesting is going to happen at stagnation points, that is, 
where a /       a i 

*t = ?i = 0. (1.24) 
de    dJ 
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Stagnation points occur at places where the phase velocity of the wave matches the back- 
ground azimuthal velocity. Here a critical layer opens up into an island chain. In the 
terminology of Hamiltonian dynamics this is called a resonance and looks as depicted in 
Figure 6 below. 

J 

6 

Figure 6: 
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From the picture it is clear that orbits lie on surfaces and from the form of the stream 
function given by Eq. (1.23) it is clear that the motion can be solved by quadrature. The 
use of the coordinate 6 = 0 — oj^t reduces this system to a single degree of freedom. 

As noted above, the fact that we could reduce the l| degree-of-freedom system to a 
single degree of freedom is the exception rather than the rule, generically it is not possible 
to get rid of time dependence by changing coordinates. This is the case, for example, for an 
azimuthal shear flow with the presence of two waves with different phase velocities, which 
has the stream function 

iß(J,0,t) = fa(J) + fa(J) cos (rai(0 — wi*)) + rJ>2(J) cos (m2(& — w2<)) (1.25) 

It is clear that in this case a frame no longer exists in which the flow is stationary. In general 
there will be chaotic motion of a tracer particle. In a frame moving at a phase velocity uix 
a tracer particle wants to execute its integrable motion, as described above, however it is 
perturbed by a time dependent wave propagating by at a speed |u>i — w2|. In a frame moving 
at u>2 the situation is reversed. A plot of both of the integrable motions, in their respective 
frames, is shown below in Figure 7. This is a plot of (1.23) for the first wave superimposed on 
a plot of the same function for the second wave, but with fa, mi and u>i replaced by fa, fn2 

and w2. The form of fa and fa is chosen in this figure to be proportional to sech2; the angle 6 
is 0—Lorf for the first wave and 6—u2t for the second. If the distance between the island chains 
is well separated, then this figure closely approximates the surface of section. The figure, in 
fact, suggests a basic mechanism of Hamiltonian chaos, the competition between resonances. 
If the resonances are close enough together a trajectory, in a sense, flips back and forth 
between the two integrable motions. When this happens a given trajectory may no longer 
map out a continuous curve. Generally separatrices become fuzzy, but some continuous 
curves still exists as shown in Figure 5. 

As stated above, Figure 7 is not a surface of section, because the resonances were plotted 
independently, but if they are far apart and the amplitude of the resonances are both small 
it looks about right.  To see the real surface of section one could integrate the differential 
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equations numerically *. Instead of doing this you can consider the following toy, actually a 
serious toy, called the standard map (which is sometimes called the Chirikov-Taylor map): 

#n+l = #n + Jn+l 

Jn+i = Jn-k sin(0), (1.26) 

where J and 0 are computed mod-27r. This is an example of an area preserving map; it was, in 
fact, used to obtain Figures 4, 5(a), and 5(b). Area preserving maps are nice because the sur- 
face of section can be obtained without having to iterate differential equations. Importantly, 
the standard map describes generic behavior of Hamiltonian systems near resonances—it is 
the prototype of area preserving maps. 

I recommend that you examine the standard map starting from k — 0, gradually in- 
creasing k. The case where k = 0 was shown in Figure 4, which clearly indicates integrable 
behavior. For k ^ 0 some of the invariant sets (continuous curves) are broken. As k —* 0 the 
measure of invariant sets approaches unity. This is in essence the celebrated KAM theorem. 
For larger k more and more curves are broken, but some still exist (see Figure 5(a) where 
k = .80 and Figure5(b) where k = 1.2). At a critical value of kc « .97, curves that span 
0 < 9 < 1-K no longer exist. The critical value kc was calculated by Greene* to many decimal 
places. 

The question of when the last continuous curve breaks is an important one of Hamiltonian 
dynamics theory. In particular, it is of importance in the passive advection fluid mechanics 

*To do this one can use standard Runge-Kutta packages. However, now more sophisticated symplectic 
integration algorithms exist. See e.g. C. Kueny, "Nonlinear Instability and Chaos in Plasma Wave-Wave 
Interactions," Ph.D. Thesis, University of Texas at Austin (1993) and many references cited therein. 

*J. M. Greene, J. Math. Phys. 20, 1183 (1979). 
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problem since these curves are barriers to transport. One is interested in when these curves 
break as the sizes and positions of the resonances change. The method developed by Greene 
gives a precise answer to this question, but requires some effort. A simple but rough criterion 
that yields an estimate for when the continuous curves between two resonances cease to 
persist is given by the Chirikov overlap criterion. According to this criterion the last curve 
separating two resonances will be destroyed when the sum of the half-widths of the two 
resonances (calculated independently) equals the distance between the resonances; that is, 

W-,      Wo 
(1.27) 

where W\ and W2 denote the widths of the resonances while Jf and J| denote their positions. 
This criterion is straightforward to apply and usually gives reasonable results. However, it 
must be borne in mind that it is only a rough estimate and as such has limitations. As noted 
above, more sophisticated criteria exist. 

The study of two degree-of-freedom Hamiltonian systems is a richly developed yet still 
open area of research. Unfortunately, in only a single lecture it is only possible to scratch 
the surface and hopefully whet your appetite. Conspicuously absent from this lecture is any 
discussion of the notions of universality and renormalization. There is much to be learned 
from the references given below. 

E.     "Diffusion": Three Degrees of Freedom 

In closing we mention something about three degree-of-freedom systems. For these systems 
the invariant sets that are remnants of the integrable iV-tori do not divide the phase space. 
For three degree-of-freedom systems the phase space is six dimensional and the corresponding 
three dimensional invariant tori do not isolate regions. Because of this trajectories are not 
confined and can wander around the tori. This phenomenon is generally called Arnold 
diffusion. A cartoon of this is shown in Figure 8 below. 

Figure 8: 

There is a great deal of literature dealing with the chaotic advection of a passive tracer in 
two-dimensional fluid systems. These studies typically involve model stream functions that 
are time periodic, and hence are nonintegrable. For these systems the diffusion phenomenon 
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mentioned above cannot occur. However, it is possible that the solution of (1.1) is not 
periodic, but quasiperiodic, a special case of which is represented by the following: 

tl>(0,J,t)=f(O,J,U2t,W3t), (1.28) 

where / is a function that satisfies 

/(0, J, «a«, W3«) = f(e, J, u2t + 2TT, ust) = f(e, J, U2t, W3< + 2TT) . (1.29) 

If wj/u^ is irrational, then ip is not periodic. 
One can puff up a system with a Hamiltonian of the form of (1.28) into a three degree- 

of-freedom system by a technique similar to that described above. Let e =: &i, J =: J\, and 
define 

H(e1,j1,e2, J2, 03, J3) = M, Ji, e2, e3) + U2J2 + u;3J3, (1.30) 

and introduce the false time s as before. Note the last two terms of (1.30) are just the 
Hamiltonian for two linear oscillators in action-angle form, but here they are coupled to each 
other and to oscillator "1" through /. Hamilton's equations are 

dex    df 
ds      dJi ' 

de2            de3 
— =u2,        — = u>3; 
ds                    ds 

(1.31) 

dh         df 
ds       de,' 

dJ2         df           dJ3 

ds         de2 '         ds 
df 
de3' 

(1.32) 

It is clear how the last two equations of (1.31) can be collapsed back down.  The last two 
equations of (1.32) guarantee that J2 and J3 will vary so as to make H conserved. 

The kind of quasiperiodic system treated in this section is undoubtedly relevant for the 
study of transport in two dimensional fluids. Solutions of (1.1) are more likely quasiperiodic 
than periodic. A stream function that describes an azimuthally symmetric shear flow plus 
three waves with different speeds is quasiperiodic. Transport in systems like this and its 
generalization to more frequencies is not well understood. 
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II.    Functional Calculus, Two Action Principles of 
Mechanics, and the Action Principle and 
Canonical Hamiltonian Description of the Ideal 
Fluid 

A.     Functional Calculus 

A functional is a map that takes functions into real numbers. Describing them correctly 
requires defining a function space, which is the domain of the functional, and the rule that 
assigns the real number. Like ordinary functions, functionals have notions of continuity, 
differentiability, the chain rule, etc. In this section we will not be concerned with rigor, but 
with learning how to perform various formal manipulations. 

As an example of a functional consider the kinetic energy of a constant density, one- 
dimensional, bounded fluid: 

T[u] = \ r pou2 dx. (Ill) 
Jxo 

Here T is a functional of u which is indicated by the "[ ]" notation, a notation that we use 
in general to denote functionals. The function u(x) is the fluid velocity, which is defined on 
x G (x0, xi), and p0 is a constant fluid density. Given a function u(x) we could put it in 
(II.1), do the integral, and get a number. 

We would like to know in general how the value of a functional K[u) changes as u(x) 
changes a little, say u(x) —» u(x) + eSu(x), where u + eSu must still be in our domain. The 
first order change in K induced by Su is called the first variation, SK, which is given by 

SK[u; Su\ := lim —h — = -fK[u + e ou\ 

JXi 

£=0 

X1
6u^dx=:(S-f,Su). (IL2) 

xo 0U{X) \ 0U I 

We will assume that the limit exists and that there are no problems with the equalities 
above; later, however, we will give an exercise where something "interesting" happens. 

The notation SK[u;6u] is used because there is a difference in the behavior of the two 
arguments: generally SK is a linear functional in 6u, but not so in u. The quantity 6K/8u(x) 
of (II.2) is the functional derivative of the functional K. This notation for the functional 
derivative is chosen since it emphasizes the fact that SK/Su is a gradient in function space. 
The reason why the arguments of u are sometimes displayed will become clear below. 

For the example of (II. 1) the first variation is given by 

'    pou SU dx , (II.3) 
xo 
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and hence the functional derivative is given by 

ST 
Su 

= pou, (II.4) 

To see that the functional derivative is a gradient, let us take a side track and consider 
the first variation of a function of n variables, /(xi, £2, • •••> xn) = f{x): 

Sf(x; Sx) = £ ^5T^ Sxt =: V/ • Sx. 
i=l dxi 

(II.5) 

It is interesting to compare the definition of (II.5) with the last definition of (II.2). The "•" 
in (II.5) is analogous to the pairing ( , ), while Sx is analogous to Su. In fact, the index i is 
analogous to x, the argument of u. Finally, the gradient V/ is analogous to SK/Su. 

Consider now a more general functional, one of the form 
rx\ 

F[u] =        T(x,u,ux,uxx,...)dx, 
Jxa 

(II.6) 

where T is an ordinary, sufficiently differentiable, function of its arguments.   Note ux := 
du/dx, etc. The first variation of (II.6) yields 

dT dT 
SF[u; Su]= -z-Su + -—Sux + - Suxx + 

Jx0   [du dux duxx 

which upon integration by parts becomes 

SF[u; Su] = f 
Jxi du 

d dT      d2  dT 
+ 

dx dux     dx2 dux 
Su dx + 

dux 

dx, 

Su + 
Xl 

XQ 

(II.7) 

(II.8) 

Usually the variations Su are chosen so that the last term, the boundary term, vanishes; e.g. 
Su(x0) = Su(xi) = 0, fot^Xo) = Sux(xi) = 0, etc. Sometimes the integrated term vanishes 
without a condition on Su because of the form of T. When this happens the boundary 
conditions are called natural. Assuming, for one reason or the other, the boundary term 
vanishes, (II.8) becomes 

'SF 
SF[u;, Su] = ( —, Su 

where 
SF_ 

Su du 
d dT + 

Su 

d2  dT 

(II.9) 

(11.10) 
dx dux     dx2 duxx 

The main objective of the calculus of variations is the extremization of functionals. A 
common terminology is to call a function ü, which is a point in the domain, an extremal 
point if SF[ü]/Su = 0. It could be a maximum, a minimum, or an inflection point. If the 
extremal point ü is a minimum or maximum, then such a point is called an extremum. 

The standard example of a functional that depends on the derivative of a function is the 
arc length functional, 

L[u]=  r y/l+ ul dx. (11.11) 
Jxn 
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We leave it to you to show that the shortest distance between two points is a straight line. 
Another example is the functional defined by evaluating the function u at the point x'. 

This can be written as 
u(x')= I    S(x - x') u(x) dx , (11.12) 

Jxo 

where S(x - x') is the Dirac delta function and where we have departed from the "[ ]" 
notation. Applying the definition of (II.2) yields 

SS=8{x -x>) ■ (IL13) 

This is the infinite dimensional analogue of dxi/dxj — Sij. 
The generalizations of the above ideas to functional of more than one function and to 

more than a single spatial variable are straightforward. An example is given by the kinetic 
energy of a three-dimensional compressible fluid, 

T[P,v] = iJDP^d3x, (11-14) 

where the velocity has three Cartesian components v = (vx,v2,v3) that depend upon x = 
(xu x2, x3) <E D and v2 = v • v = v\ + v\ + vj. The functional derivatives are 

ST ST     v2 

S^rPVi'        ¥ = "2" ^ = PVi, — = ^r. (H.15) 

We will use these later. 
For a more general functional F[V>], where i}>(x) = (ipu i/>2,..., ip») and x = (xu x2,..., xn), 

the analogue of (II.2) is 

sF[i,.M] = jDHi^-)r^:{^M). due) 

Here and henceforth we sum repeated indices. 
As an exercise consider the pathological functional. 

P[V>]= f1 V(^Mdx, (11.17) 

where 

v = J Vx + n (ins) 

[o  , Vi = o. 
Calculate 8P[0,0; öißi, Stp2}- Part of this problem is to figure out what the problem is. 

Next, we consider the important functional chain rule, which is a simple idea that un- 
derlies a great deal of literature relating to the Hamiltonian structure of fluids and plasmas. 
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Suppose we have a functional F[u] and we know u is related to another function w by 
means of a linear operator 

u = öw. (11.19) 

As an example, u and w could be real valued functions of a single variable, x, and 

O-JKx)^, (11.20) 
*=o ax 

where, as usual, u, to, and a* have as many derivatives as needed. We can define a functional 
on w by inserting (11.19) into F[u]: 

F[w] := F[u] = F[0 to]. (11.21) 

Equating variations yields 

(&*■)=(£•«■)• (,L22) 

where the equahty makes sense if 8u and 8w are connected by (11.19), i.e. 

8u = O 8w, (11.23) 

where we assume an arbitrary 8w induces a 8u. 
Inserting (11.23) into (11.22) yields 

-(&%.*»). (11.24) 

where Ö* is the formal adjoint of Ö. Since 8w is arbitrary 

8F     ~*8F /TT __. 

This follows from the DuBois-Reymond lemma, which is proven by assuming (11.25) does 
not hold at some point x, selecting 8w to be localized about the point x, and establishing a 
contradiction. A physicist would just set 8w equal to the Dirac delta function to obtain the 
result. 

Notice that nowhere did we assume that Ö was invertible—it needn't be for the chain 
rule to work in one direction. Functionals transform in the other direction. Given a relation 
V>[x] we can calculate an expression for 8F/8x, where F is a functional of x through iß. 
However, given an arbitrary functional of x? we cannot obtain a functional of iß. 

The above was clearly a special case in that the two functions u and w were linearly 
related. More generally, consider the functional F[iß] and suppose iß is related to x = 
(Xi)Xit•••■>Xß) m an arbitrary, not necessarily linear, way: 

ißi = ißi[x}, i = l,2,...,v. (11.26) 
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This "[ ]" notation could be confusing, but we have already stated that ip and x are functions. 
A variation of ip induced by x requires linearization of (11.26), which we write as 

% = ^Mx], i = l,2,...,v, (11.27) 
ÖX 

or simply, since Sip/Sx is a linear operator on Sx, 

S^ = P-SXj 1 = 1,2,...,*;     j = l,2,...,(i. (11.28) 
°Xj 

Inserting (11.28) into (11.22) implies 

/SF l'*ix) = (mU£,*x), (*») 
whence it is seen that 

SF_ _ (fnPiV SF_ 

6xj ~ Uxj/   % 
i = l,2,...,*/;     j = l,2,...,//. (11.30) 

Here we have dropped the overbar on F, as is commonly done. In (11.30) it is important to 
remember that <5(function)/£(function) is a linear operator acting to its right, as opposed to 
<5 (functional)/^(function), which is a gradient. 

As an example consider functional that depend upon the two components of the velocity 
field for an incompressible fluid in two dimensions, u(x,y) and v(x,y). These are linearly 
related to the stream function ip by u = -dip/dy and v = dip/dx. For this case (11.27) 
becomes 

8u = — Sip = --T- Sip 
dtp oy 

Sv = ^.8iP = -^8i>, (11.31) 

aild *L = ®-— - d-— (11.32) 
Sip      dy Su     dx Sv 

Now consider the second variation, S2F, and second functional derivative, S2F/SipSip. 
Since the first variation, SF[ip; Sip], is a functional of ip, a second variation can be made in 
this argument: 

S2FUP; Sip, 6%j>] = ^-SF{iP + n84>; Sip] 
an TJ=0 

S2F   „. /„,   S2F =!/D'*^^H4*w**)-      (IU3) 
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Observe that 82F is a bilinear functional in Sip and Sip.   If we set Sip = Sip we obtain a 
quadratic functional. Equation (11.33) defines S2F/SipSip, which is a linear operator that acts 

A 

on Sip but depends nonlinearly on ip. It possesses a symmetry analogous to the interchange 
of the order of second partial differentiation. To see this observe 

82F[iP; 8xP, 84>]= j-Q-Fty + rjSiP + eSiP] (11.34) 
E=0,T)=0 

Since the order of differentiation in (11.33) is immaterial it follows that 

/  82F  V        82F 
^SipiSipj)      SipjSipi ' 

* = 1,2,...,«/. (11.35) 

This relation is necessary for establishing the Jacobi identity of noncanonical Poisson brack- 
ets. 

As an example consider the second variation of the arc length functional of (11.11). Per- 
forming the operations of (11.34) yields 

fXl 1 
82L[u; 8u; 8u] = /    8ux -——TTTJ- 8UX dx. (11.36) 

Jxo (1 + ulfl2 

82L      d 1 d 

L0    
x (l + ulfl2 

Thus 
*L

=
d     l      d m37) 

8U2 dx   (1 + «2)3/2   dx • \    -°   > 

For an important class of function spaces, one can convert functional into functions of a 
countably infinite number of arguments. This is a method for proving theorems concerning 
functionals and can also be useful for establishing formal identities. One way to do this would 
be to convert the integration of a functional into a sum by finite differencing. Another way 
to do this, for example for functionals of the form of (II.6), is to suppose (a;0,^i) = (—f >n") 
and expand in a Fourier series, 

oo 

u(x)=   J2   u*eikx- (IL38) 

Upon inserting (11.38) into (II.6) one obtains an expression for the integrand which is, in 
principle, a known function of x. Integration then yields a function of the Fourier amplitudes, 
Wfc. Thus we obtain 

F[u\ = F(u0,u1,u.l,...). (11.39) 

In closing this discussion of functional calculus we consider a functional, one expressed as 
a function of an infinite number of arguments, that demonstrates an "interesting" property. 
The functional is given by 

oo 

F(xux2,...) = J2(bkxl-\bkxi) , (11.40) 
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where the domain of F is composed of sequences {xk}, and the coefficients are given by 

«. = £.    «* = p- (IL41> 
Assuming that (11.40) converges uniformly, the first variation yields 

oo 

6F = Yl(akXk-bkxi)Sxk, (11.42) 
it=i 

which has three extremal points 

4°) = 0,        *<±> = ±{aklbky*, (11.43) 

for all k. It is the first of these that will concern us. The second variation evaluated at xk 

is 

^ = E«»NJ. (IL44) 
where we assume (11.42) converges uniformly for xk and 8xk. Since ak > 0 for all &, (11.44) 
is positive definite; i.e. 

82F > 0   for   Sxk^0 ,    for all   k. (11.45) 

However, consider AF defined by 
00 

AF = F(s<°> + Ax) - F(x<°>) = £ [!«* (Axfc)
2 - |&* (Axfc)

4] , (11.46) 

which we evaluate at 
( l_ 

m 
, k = m 

(11.47) 

0    , k^m, 

Axk = ^ 

and obtain 
AF<0, (11.48) 

provided m > 1. Since m can be made as large as desired, we have shown that inside any 
neighborhood of x^°\ no matter how small, AF < 0. Therefore, this extremal point is not a 
minimum — even though PF is positive definite. 

A sufficient condition for proving that an extremal point is an extremum is afforded by a 
property known as strong positivity. If f/j is an extremal point and the quadratic functional 
(52F[^; 8tp] satisfies 

82F[4>;6i>)>c\\8i>\\*, 

where c = const. > 0 and "|| ||" is a norm defined on the domain of F, then 82F[rß; 8rß] 
is strongly positive. This is sufficient for T/> to be an minimum. We will leave it to you to 
explain why the functional F(xi,x2,...) is not strongly positive. This example points to a 
mathematical technicality that is encountered when proving stability by Liapunov's method 
(cf. Lecture V). 
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B.    Two Action Principles of Mechanics 
Physicists have had a long lasting love affair with the idea of generating physical laws by 
setting the derivative of some functional to zero. This is called an action principle. The 
most famous action principle is Hamilton's principle, which produces Lagrange's equations 
of mechanics upon variation. One reason action principles are appreciated is because they 
give a readily covariant theory and means have been developed for building in symmetries. 
However, it should be pointed out that the use of continuous symmetry groups in this context 
is only a limited part of a deep and beautiful theory that was initiated by Sophus Lie and 
others. Perhaps the most convincing deep reason for action principles is the cleanliness 
and utility of Feynman's path integral formulation. The utility of action principles should 
not be understated. Indeed, they provide a good starting place for making approximations. 
However, a quote from Truesdell can't be resisted: 

A fully conservative situation can be described by an action principle, which has 
the advantage of making the theory accessible also to physicists. * 

In any event, Hamilton's principle is an important prototype upon which modern theories 
are in part built. Shortly, we will show how this story goes for the ideal fluid, but first we 
review some mechanics. 

One approach to producing the equations of motion for a mechanics problem is to first 
identify the configuration space, Q, with coordinates q = (<7i,<72> • • • ,<1N)- Then based on 
physical intuition, write down the kinetic and potential energies, T and V, respectively. The 
equations of motion then follow upon setting the functional derivative of the following action 
functional to zero: 

S[q}=  I* L(q,q,t)dt, (11.49) 
Jt0 

where L := T — V is the Lagrangian function. The functions q{t) over which we are extremiz- 
ing must satisfy the fixed end conditions q(to) = qo and q(t\) = q\. Thus Sq(t0) = b~q(t\) = 0. 
The functional derivative relations 

SS[q] 

imply Lagrange's equations, 

0 (11.50) 

^=4^- (11-51) 
oqi      at oqi 

*C. Truesdell, Six Lectures on Modern Natural Philosophy (Springer-Verlag, New York, 1966.) 
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This is Hamilton's principle. 
Since for particles in rectangular coordinates usually 

T = \E™rf V = V(q), (11.52) 

Eqs. (11.51) yield 
dV 

rriiqi = —-^— , 
Oqi 

i = l,2,...,N, (11.53) 

This is just Newton's second law with a conservative force. You will notice that Hamilton's 
principle does not yield Hamilton's equations—one way to get them is via the Legendre 
transformation. 

The Legendre transformation is a trick for transferring functional dependence. Generally 
it is used in physics when one has a sort of "fundamental" function that describes a theory, 
whether it be thermodynamics or, as is the case here, dynamics. It has a nice geometric 
interpretation, but we will skip this. Here we will use it to transform the N second order 
differential equations of (11.53) into the 2N first order equations of Hamilton. 

Define a quantity p,- := dL/dqi, which is the canonical momentum, and consider 

H(q, p, q, t) := £ PW ~ Li^ 9» *) • (11.54) 

Now we ask the question: how does H change if we independently change q, q, p, and t a 
little? Evidently 

SH=Y: 

= E 

Oqi Oqi dpi dt 

dLc      ,       dL,c.   ,        ' 
-—% + {pi - ^r-)% + qidpi 

oqi oqi -£* (11.55) 

The first thing to notice is that if Sq = Sp = St = 0, i.e. we only vary 6q, then 6H = 0, since 
Pi = dL/dqi. This means H is independent of q, so we drop the overbar and write H(q,p, t). 
Equating the remaining coefficients of the variations yields 

8H 

dqi 

dL dH 

dpi 
= ?«; dt 

dL 

'dt 
(11.56) 

Lagrange's equations, (11.51), together with the definition of p,- and the middle of (11.56) 
give Hamilton's equations: 

Pi 
dqi' 

1i 
dH 

dpi ' 
(11.57) 

In order to explicitly calculate H(p,q,t) in the standard case of mechanics, one uses 
Pi = dL/dqi to solve for q = q{p) and then inserts this into (11.54).  This requires L to be 
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convex in q. Since there exist important physical cases where L is not convex, Dirac and 
others developed a theory to handle this. An interesting new application of Dirac's constraint 
theory for filtering out fast motion in GFD models has recently been developed*. 

Now consider another action principle which is sometimes called the phase space action. 
This one, which directly yields Hamilton's equations, is given by 

s[q,p}= r 
Jto 

Y,Piqi-H(q,p,t) dt, (11.58) 

where S is a functional of q and p, independently. The end conditions are q(t0) = q0 and 
q(ti) = qi, i.e. q is fixed as before. However, the boundary condition on p is natural in that 
nothing is required of it at the ends. One has a sort of "clothesline" boundary condition as 
depicted in Figure 1 below, where the curve is free to slide along the lines of constant q in 
the p- direction. 

Figure 1: 

Variation of S with respect to q and p yields, respectively, 

Pi = 
dH 

Qi 
dH 

(11.59) 

Thus the phase space action yields directly Hamilton's equations as the extremal condition. 

*R. Salmon, J. Fluid Mech. 196, 345 (1988). 
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C.    Action Principle and Canonical Hamiltonian Description of 
the Ideal Fluid in Lagrangian or Material Variables 

Now we are in a position to talk about fluid mechanics, but we're going to do so in terms 
of variables that might be new to you. Often, fluid mechanics is taught entirely in terms of 
Eulerian variables. In what follows, Lagrangian variables, or as they are sometimes called, 
material variables, will be central. 

The idea we are going to pursue is a simple one. // a fluid is described as a collection 
of fluid particles or elements, then both the Hamiltonian and the Lagrangian formalism that 
we have described above can be adapted to describe the ideal fluid. The adaptation requires 
an extension to an infinite number of degrees of freedom in order to describe a continuum 
of fluid elements. This means that a fluid element is shrunk to zero size and that there is 
one for each point of the fluid. This is an idealization since in reality, fluid elements don't 
exist: if they were of macroscopic size, they wouldn't maintain their integrity forever, and if 
they were of microscopic size, we would be outside the realm of fluid mechanics. However, 
there exists a precise Eulerian state corresponding to a Lagrangian state. It should be kept 
in mind that the above limitations apply to the fluid description in general, whether it be in 
Lagrangian or Eulerian variables. 

Suppose the position of a fluid element, referred to a fixed rectangular coordinate systems, 
is given by 

q = q(a,t), (11.60) 

where q = (?i,?25?3)- This is the material or Lagrangian variable. Here a = {ai,a2,a3) is 
any label that identifies a fluid particle, which is often taken to be the position of the fluid 
particle at time t = 0*. The quantities qi{a,t) are coordinates for the configuration space 
Q, which is in fact a function space because in addition to the three indices "i" there is the 
continuum label a. We assume that a varies over a fixed domain, D, which is completely 
filled with fluid, and that the functions q map D onto itself. We will assume that as many 
derivatives of q with respect to a as needed exist, but we won't say more about Q; in fact, 
not that much is known about the solution space for the 3-D fluid equations in Lagrangian 
variables. At this stage we will assume that the configuration space has been specified and 
proceed to discuss the potential energy of the fluid. 

*Note, however, that the freedom to relabel particles is associated in an important way with the Casimir 
invariants that are discussed below. See e.g. M. Calkin, Can. J. Phys. 41, 2241 (1963); P. Ripa, AIP Conf. 
Proc. 76 (1981); R. Salmon, AIP Conf. Proc. 88, 127 (1982). 
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The fluid approximation assumes local thermodynamic equilibrium in spite of the fact 
that the fluid can flow at nonzero velocity. Potential energy is stored in terms of pressure and 
temperature. More precisely we adapt the energy representation of thermodynamics where 
the extensive energy is treated as a function of the extensive variables, viz. the entropy 
and the volume. For a fluid it is convenient to consider the energy per unit mass, which we 
denote by U to be a function of the entropy per unit mass, s, and the mass density, p. The 
inverse of the later quantity is a measure of the volume. The intensive quantities, pressure 
and temperature, are obtained as follows: 

T = ^(s,p),       p = p^(s,p). (11.61) 

The second of (11.61) is a bit peculiar—it arises because the volume, the usual thermody- 
namics variable, is proportional to p~x. Note also that special choices for U produce specific 
fluid flows: barotropic flow, adiabatic flow, etc. 

The quantities p and s are in fact Eulerian variables which we must, in order to move 
ahead, describe in terms of Lagrangian variables. With this goal in mind, let us sidetrack 
for a moment and discuss the Lagrangian-Eulerian map. The difference between the two 
types of variables can be elucidated by describing two ways of watching fish. In the Eulerian 
picture one stays at a point and watches whatever fish happen by; in the Lagrangian picture 
one picks out a particular fish and keeps track of where it goes. Note that this analogy gets 
better if the fish are very small, neutrally buoyant, and dead! 

Call r the spatial variable, i.e. the Eulerian point of observation. The Eulerian density 
is then related to the Lagrangian variable q as follows: 

p(r, t)= f 6(r - q{a, t)) p0(a) d3a . (11.62) 
J D 

Here 8{r — q) is a three-dimensional Dirac delta-function and po(a) is an initial configuration 
of mass density ascribed to the particle labeled by a. It is akin to knowing the mass of the 
particle labeled by "i" in conventional particle mechanics. 

Equation (11.62) embodies mass conservation. This can be seen by using a property of 
the ^-function: 8(f(x)) = S(x — x0)/ \ f'(x0) | where x0 is the only place where f(x0) = 0. 
In three dimensions this yields 

P(r,i)=   P°{a) (11.63) 
J(a,t) 

where the Jacobian J = det(dqi/daj). That this is local mass conservation follows from 

pd3q = p0d
3a, (11.64) 

where d3a is an initial volume element that maps into d?q at time t, and d3q = J d3a. (When 
integrating over D we will replace d3q by d3r.) 

In addition to the mass ascribed to a fluid particle, one could ascribe other quantities, 
e.g. color, smell or what have you.   In the ideal fluid, the entropy per unit mass s is such 
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a quantity. We suppose that initially s = s0(a) and that it remains so. A form similar to 
(11.62) corresponding to this statement is given by 

a(r, t) = I a0(a)S(r - q(a, t)) d3a , (11.65) 
J ID 

where cr(r,t) = p(r,t) s(r,t) is the entropy per unit volume and aQ = p0(a)s0(a). Thus the 
counterpart of (11.63) is 

«(r,i) = *o(«)U-iM. (H-66) 
This is merely the statement that the quantity s stays put on a fluid particle. 

Completing the Lagrange-Euler map requires the specification of the Eulerian velocity 
field, something that is not needed now, but which we record here for later reference. By now 
you will have noticed that the Euler-Lagrange map naturally takes the Lagrangian variables 
into Eulerian densities. Thus we consider the momentum density M := pv. A form for M 
similar to (11.62) and (11.65) is given by the following: 

M(r, t)= f  q{a, t) 6(r - q(a, t)) p0(a) d3a. (11.67) 
«/Is 

Performing the integration produces the counterpart of (11.63) and (11.64), viz. 

w(r,0 = «(o,0U-i(r,t). (IL68) 

which is the usual relation between the Lagrangian variable and the Eulerian velocity field. 

Now we can return to our quest for the potential energy. Since the energy per unit volume 
is given by pU, the total potential energy function is evidently 

V[q] =  f p0U(s0, po/J) d3a. (11.69) 
JD 

Observe that (11.69) is a functional of q that depends only upon J and hence only upon 
dq/da. 

The next step required for constructing Hamilton's principle is to obtain an expression 
for the kinetic energy functional. This is clearly given by 

T[q} = ^JDP0q
2d3a. (11.70) 

Observe that (11.70) is a functional of q that depends only upon q. 
From (11.69) and (11.70) the Lagrangian functional is obtained, 

L[q, q] =  I [ \po q2 ~ PoU(s0, p0/J)\ d3a (11.71) 

=: /  £(q,q,dq/da,t)d3a, 
JD 

4(e 



where £(q,q,dq/da,t) is the Lagrangian density. Thus the action functional is given by 

S[q] = £ L[q, q] dt = £ j£ [\ p0 c? - p0U] d3a . (11.72) 

Observe that this action functional is like that for finite degree-of-freedom systems, as treated 
above, except that the sum over particles is replaced by integration over D, i.e. 

JD <*3a ~ £ . (11.73) 

The mass of each "particle" of the continuum corresponds to p0 (Pa. 
The end conditions for Hamilton's principle for the fluid are the same as before, 

Sq(a,t0) = Sqia,^) = 0. (11.74) 

However, in addition, boundary conditions are needed because there is now going to be 
integration by parts with respect to a. It is assumed that these are such that all surface 
terms vanish. Later we will see what this implies. 

In order to apply Hamilton's principle, we must functionally differentiate (11.72), thus, it 
is necessary to know something about differentiating determinants. Recall 

dqk Aki _ . 
■Ä^T"^' (IL75) 

where A^ is the cofactor of dqk/dai =: qk,i. (Remember repeated indices are to be summed.) 
A convenient expression for Aki is given by 

l ÖQj &9 Aki = -2 ejw|6|mil—— , (11.76) 

where e,-^ is the skew symmetric tensor (density), which vanishes if any two of i,j, k are 
equal, is equal to 1 if i,j, k are unequal and a cyclic permutation of 1,2,3, and is otherwise 
equal to — 1. In functionally differentiating (11.72) we will require the following relation: 

§^ = Aii' (IU7) 

which follows from (11.75). 
For Lagrangian density functional of the form £(q, q, dq/da, t), the functional derivative 

8S/8q(a,t) = 0 implies 
d (dc\    d (dc\   de   n 

provided the surface integral vanishes: 

/'" /„ * s"'A''n' *" - C L »to-"**- (n-ra) 
The equality above follows upon changing from integration over a to integration over q. Note 
Aijd2a = cPq. Evidently the surface term vanishes if any of the following are true on dD: 
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(i) % = 0 

(ü) P = (p2o/J2) (dU/dp) = 0 

(iii) Sq • n = 0 , 

where p is the pressure and h is a unit normal vector to 3D. While all of these possibilities 
result in the vanishing of the surface term, (i) is clearly more than is necessary, in light of 
(iii), which merely states that fluid particles are not forced through the boundary. In the case 
where D is a box and periodic boundary conditions are imposed, the vanishing of the surface 
term is automatic. In the case where D is "all space" the physical boundary condition is 
(ii), which asserts that the pressure vanishes at infinity. 

Prom (11.78) the equation of motion is obtained, 

Here we have used dAij/daj = 0, which you can work out using (11.76). Alternatively, upon 
using (11.75) the equation of motion can be written in the form 

'do,-     Jdai\j2dp 
Poqj-^-J^-l^}=0. (IL81) 

We leave it to you to show that (11.80) can be transformed into Eulerian form: 

p(j£ + v-Vv^=-Vp, (11.82) 

where v = v(r,t). A useful identity in this regard is 

9 =4^.-#-- (n.83) 
dqk     J      dai 

With (11.83) it is clear that (11.80) is of the form of Newton's second law. The Legendre 
transform follows easily. The canonical momentum density is 

CT 

TTi(a,t) := ——^ = po4i , (11.84) 
bqi{a) 

and 
J3a #[TT, q]= Jd3a[TT-q-C]=  fd3 

Hamilton's equations are then 
.2Po 

(11.85) 

SH .      SH 
TTi = —7—; Qi = T~- ill.bö) 

bqi OTTi 
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These equations can also be written in terms of the Poisson bracket 

d3a (11.87) {*•,<?} = / 
S£   *>G_f>G   8F_ 
Sq    Sir      Sq    Sir 

viz., 
*,• = {*■,-,#}; qi = {qi,H}. (11.88) 

Here 8qi(a)/6qj(a') = Sij6(a — a') has been used, a relation that is analogous to dqj/dqi = <$,-_,• 
for finite systems [recall (11.13)]. 

In conclusion we point out that variational principles similar to that given above exist 
for essentially all ideal fluid models, including incompressible flow, magnetohydrodynamics, 
etc. One can even obtain directly two-dimensional scalar vortex dynamics by considering 
constrained variations. 
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III.    Noncanonical Hamiltonian Dynamics 
—Examples 

A.    Noncanonical Hamiltonian Dynamics 
Let us start out by playing a sort of game. Suppose we have a system of ordinary differential 
equations: 

i' = y*'(z),    t = l,2...Af. (III.1) 

How would you know if this system is a Hamiltonian system? If you came upon the equations 
during research you might have some idea based upon the physics, but assume that this is 
not the case here. What would you do? 

One thing you might try is to check Liouville 's theorem. Hamilton's equations have the 
property 

dgj     dpi 
dqi     dpi 

d2H d2H 
= 0, 

dqidpi      dpidqi 

from which one can show that phase space volume is conserved; i.e. if 

N 

V(*)=L   Udpidqi, 

(III.2) 

(III.3) 

where S(t) is a surface that bounds an arbitrary volume, then 

dV 
dt 

(III.4) 

The surface may distort, and in general it will do so in a major way, but the volume inside 
remains constant. The analogous statement for the system of (III.l) is incompressibility of 
the vector field; i.e. 

dz 

whence it follows that 
m=LUdzi 

(111.5) 

(111.6) 

is constant in time. 
Suppose (III.5) is not true, as is the case for the following example: 

z1 = -j-z2, 

*2 
Z\ 

zl + l 
(TTT.7) 
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For this system 

7r + 7r = -T%zh to. (m.s) dzi     dz2        {z\ +1)2 

You would be mistaken if, based on (III.8), you concluded that (III.7) is not Hamiltonian. In 
fact this system is a disguised simple harmonic oscillator. It has been disguised by making 
a noncanonical coordinate change, something that we will discuss below. 

So, is there a method for determining whether a system is Hamiltonian in general? Prob- 
ably the answer is no, since one must first find a Hamiltonian and this requires a technique 
for finding constants of motion. There is no completely general way for doing this.* Never- 
theless we can say some things; however, to do so we must investigate Hamiltonian systems 
in arbitrary coordinates. 

You might wonder, why would equations ever arise in noncanonical variables? Surely 
the physics would make things come out right. To the contrary, variables that are the most 
physically compelling need not be canonical variables. The Eulerian variables that describe 
ideal continuous media are in general noncanonical. This includes Liouville's equation for 
the dynamics of the phase space density of a collection of particles, the BBGKY hierarchy, 
the Vlasov equation, ideal fluid dynamics and various approximations thereof, magnetized 
fluids, ...; it includes essentially every fundamental equation for classical media. 

So with the above motivation, let us turn to discussing noncanonical Hamiltonian dy- 
namics for finite degree of freedom systems, a formalism that extends back to Sophus Lie. 
The first step is to write Hamilton's equations in covariant form. Thus define 

*< = (* 
I Pi-N 

for * = 1,2,...N, mTQv 
ioii = N + l,...2N. KLLLy) 

The zx are coordinates on phase space which we denote by Z. In terms of the 2's Hamilton's 
equations take the compact form 

8H 
i«- = ^_ = [*'",#], (lino) 

where the Poisson bracket is given by 

M = {% £)• (IIL12> 
Above, the repeated indices are to be summed over 1,2,... 2N. In (111.12), Ojv is an N x iV 
matrix of zeros and 1^ is the N x N unit matrix. The subscript c of Jc indicates that the 
system is written in terms of canonical coordinates. It is important to realize that we have 
only rewritten Hamilton's equations in new notation, albeit in a form that is suggestive. 

with 

""Techniques for finding constants of motion do exist, but necessarily possess limitations.   See e.g.   A. 
Ramani, B. Gramniaticos, and T. Bountis, Phys. Rep. 180, 161 (1989), and references therein. 
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Now consider a general, time independent change of coordinates 

z1 = z\z). (IH.13) 

The Hamiltonian H transforms as a scalar: 

H{z) = H(z). (111.14) 

Taking time derivatives of (III. 13) yields 

" dH ,     dzl.i     dzl TijdH 
dz* dz{  c dz> 

Defining 

dzl   .-dzm 

dz* c dzi dz" 
(111.15) 

we see Hamilton's equations are covariant and that Jlm, which is called the cosymplectic 
form, transforms as a contravariant tensor of second rank. In the new variables, Hamilton's 
equations become 

Zl = Jlm(z)^ = [zl,H], .       (111.17) 

where the Poisson bracket is now given by 

Uql^MjimJÜL. (111.18) [J,9i     dz1      dzm K        ' 

Notice in (111.17) we have displayed the explicit z dependence in Jlm. This was done to em- 
phasize an important distinction—that between covariance and form invariance. Equation 
(111.16) is a statement of covariance, while a statement of form invariance is given by 

fm = ^jv^ mi.19) 
d*   c dzi K ' 

This is in fact the definition of a canonical transformation. Form invariance here means that 
the form of the J,J, and hence Hamilton's equations remains the same. Evidently, the first 
N of zl are coordinates, while the second N are momenta, so it is a simple matter to revert 
to the usual form of Hamilton's equations in the new canonical variables zl. 

Let us now return to Liouville's theorem. Taking the divergence of (111.17) yields 

di<    dJ'm dB     lm d>5 mi20) 

dzl       dz' dzm dzldzm ' K    '   ' 

The second term vanishes because Jlm is antisymmetric and d2H/dz1dzm is symmetric. This 
is all there is for the usual Liouville's theorem, since in the canonical case Jtm is constant so 
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the first term vanishes. However, for Hamilton's equations written in noncanonical coordi- 
nates the following is typically (but not necessarily) true: 

dj _dJ*»dß_ . 

This was the situation for our little example of (III.7). 
It might have occurred to you that changing the coordinates may hide but cannot destroy 

volume preservation. This is clear if we simply change coordinates in (III.3): 

m-j, 
2N 

jT\dzl. (111.22) 
«(*)       1=1 

If we include the Jacobian J := det{dzi fdz^) in the integrand, then Liouville's theorem is 
still satisfied. There is a nice formula relating J and J, which is obtained by taking the 
determinant of (III. 16) and using the determinant product rule: 

J=vkj- (IIL23) 

Observe that there are many J's with the same J. 
Before leaving this discussion of Liouville's theorem we mention that even though J is a 

function of z, it is still possible for dzl/dzl = 0. This can happen because H is such that the 
two vectors of (111.21) are perpendicular or it may happen that dJlm/dzl = 0, even though J 
is a function of z. The latter case occurs for fluid models and underlies attempts to describe 
turbulence by using statistical mechanics concepts.* 

Now it is clear that the essence of what it means to be Hamiltonian does not lie in the 
canonical form. Where does it lie? It lies in some coordinate invariant properties of J. To 
illustrate this we will play another sort of game. Suppose you have a system of the form of 
(ULI) and you want to know if it is Hamiltonian. Moreover, suppose you are clever enough 
to realize that Liouville is not the answer, because you know that Hamiltonian systems 
in noncanonical coordinates look like (111.17) with Poisson brackets like (III.18). Finally, 
suppose somehow you have found a constant of motion, call it H, and you think this is the 
energy and therefore a good bet for the Hamiltonian. Then you can write 

Vi(z) = Jii^J       i = l,2,...M. (111.24) 

Everything in (111.24) is known except Jl\ which is required to be antisymmetric because 
of (111.16). The antisymmetry automatically makes dH/dt = 0, and leaves M equations for 
(M2 — M)/2 unknown quantities in Jx*. Suppose that with some fiddling around you have 
found a candidate J. [Try this for the simple example of (III.8).] Does a transformation 
exist such that you can transform the candidate J back to Jc? 

*See e.g. D. Montgomery and R. Kraichnan, Rep. Prog. Phys. 43, 35 (1979). 
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The answer to this question is given by an old theorem that is credited to Darboux. If 
the Jij you have found makes a good Poisson bracket; that is, when (111.18) is assembled it 
satisfies 

\f,9] = -\9,f\       V/>Ä (IH.25) 

[/, [<7, h]] + [g,[h, /]] + [h, [/, 9}} = 0      V /, g (ffl.26) 

and moreover if det J ^ 0, then Darboux says there exists a transformation (at least locally) 
where J -> Jc. Note, a requirement for det J ^ 0 is that M = 2N, since odd dimensional 
antisymmetric matrices have zero determinant. We will not prove Darboux's theorem, but 
will mention that Eq. (111.26) is the important ingredient. This is an integrability condition 
known as the Jacobi identity; it is the central identity of a Lie algebra—a nonassociative 
algebra—which has a product with properties (111.25) and (111.26), and elements that are 
functions defined on the phase space. We will say more about this later. 

The bracket properties, (111.25) and (111.26), can be translated into properties required 
of the cosymplectic form. The first is evidently 

>' = -J'\ (111.27) 

The second, with a little work, can be shown to be equivalent to 

Sijk = judJ^ + jsidJ^ + Jkld£_ = 0 (nL28) 
oz' ozl ozl 

In going from (111.26) to (111.28) it is observed that all the terms involving second derivatives 
that arise upon calculating [/, [g, h]] + \g, [h, /]] + [h, [f,g]] cancel; only the terms where the 
derivative of the outer bracket acts upon the J of the inner bracket survive. This fact makes 
life much easier when verifying the Jacobi identity. 

Now suppose everything worked out right except the J you found had det J = 0, with 
some rank 2N < M. What then? A generalization of the Darboux theorem, which was 
proven* at least by the 1930's, says that J can be transformed into the following form: 

/ 

(Jc) = 

ON IN 0    ) 

-IN ON 0 
0 0 0M-2N ) 

(111.29) 

Interesting things happen in places where the rank of J changes. Later we will say something 
about this, too. 

From (111.29) it is clear that in the right coordinates the system is an TV degree-of-freedom 
system with some extraneous coordinates, M - 2N in fact. The geometrical picture is as 
depicted below in Figure 1. 

Through any point of the M dimensional phase space 2 there exists a regular Hamiltonian 
phase space V of dimension 2N. These surfaces are called symplectic leaves. A consequence 
of the degeneracy is that there exists a special class of invariants that are built into the phase 
space.  They are called Casimir invariants, a name which derives from the Lie algebra for 

*See e.g.   L. P. Eisenhart,  Continuous Groups of Transformations (Dover, New York, 1961) and R. 
Littlejohn, AIP Conf. Proc. 88, 47 (1982). 
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Figure 1: 

angular momentum. Since the rank of J is 2N there exists possibly M—2N independent null 
eigenvectors. A consequence of the Jacobi identity is that this is the case and, moreover, the 
null space can in fact be spanned by the gradients of the Casimir invariants, which satisfy 

(111.30) 

where a 
from 

1,2,3,..., M — 2N. That the Casimir invariants are constants of motion follows 

C<»> = Ä,|*Uo. (111.31) 
dz*       dz> 

Note that they are constants of motion for any Hamiltonian; they are as noted above built 
into the phase space and are in this sense kinematical constants of motion. The dynamics 
is determined by the Hamiltonian H. Note that the surfaces V of dimension 2N in the 
figure are the intersections of the M — 2N surfaces defined by C^ = constant. Dynamics 
generated by any H that begins on a particular V surface remains there. 

The picture we have described above is the finite dimensional analogue of the Hamiltonian 
form possessed by Eulerian continuous media theories. We will describe the Poisson brackets 
for some of them soon, but now we mention that for these theories the J1-7 has a special form 
that is linear in the zk, i. e. 

Jij = 4zk , (111.32) 

where the c*k
3 are constants—in fact, structure constants for a Lie algebra. In light of (111.27) 

and (111.28) they must satisfy 
(111.33) ck  —      ck 

and 
ij   mk   ■   Jk  mi   ,     ki  mj _ r. 

CmCl      + °mCl     + CmCl      ~ U • 

Brackets of the form of (111.32) are called Lie-Poisson. 

(111.34) 
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It is interesting to reexamine the condition for Liouville's theorem (111.21) for J's of the 
above form, 

dJ^M^j   dIL = 0 (IIL35) 
dzl dzm      '  dzm v 

In general, structure constants do not possesses antisymmetry or symmetry upon interchange 
of an up with a down index. However sometimes they do, as in the case of so(3) [see (III.B)]. 
In general semisimple Lie algebras can, by a coordinate change, be brought into a form 
where the structure constants are completely antisymmetric* In these coordinates there is 
Liouville's theorem without the need for inserting a Jacobian as in (111.23). This, as noted 
above, is typically the case for fluid theories in Eulerian variables. 

In infinite dimensions the analogue of (III. 18) is given by 

where 0*'(M)» and (i = (^i,...,/u„) is a "spatial" or Eulerian observation variable, and rp\ 
i = 1,..., n are n components of the field. Now Z is an operator, and we require 

{F,G} = -{G,F}      VF,G (111.37) 

{F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0       V F, G, H (111.38) 

where F and G are now functional. Analogous to (111.27) the antisymmetry condition of 
(111.37) requires 3 to be skew-symmetric, i.e. 

(f,3g) = (yf,9) = -(9,3f). (111.39) 

The Jacobi identity (111.38) for infinite dimensional systems has a condition analogous to 
(111.28); one need only consider functional derivatives of 3 when calculating {F,{G,H}} -+ 
{G, {H, F}} + {H, {F, £}}+. For Eulerian media, as noted above, the cosymplectic operator 
typically has the Lie-Poisson form 

Vi=(%il>k, (111.40) 

where C*k
j are structure operators. We will clarify the meaning of these structure operators 

by examples; a bit more will be said in Lecture IV. 

*N. Jacobson, Lie Algebras (Wiley Interscience, New York, 1962). 
*See e.g. P. J. Morrison (1982), Ref. Ill A. 
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B.    Examples 

Below the noncanonical Poisson brackets for several systems are presented. The first, the free 
rigid body, is a finite dimensional system, the others are infinite dimensional. We present the 
brackets here and refer the reader to the references* for a discussion of the Jacobi identity. 

1.    Free Rigid Body 

The equations that govern the motion of the free rigid body are Euler's equations, the 
following three-dimensional system: 

4 = hi* {}2~li)' (IIL41) 

which correspond to the statement of torque-free motion in a frame frozen into the body 
with axes aligned with the principal axes. (See Lecture IV for more details.) The energy is 
purely rotational kinetic energy; since the axes are principal axes it takes the form 

H = \tf- <IIL42) 
The function H is easily seen to be a constant of motion upon differentiating with respect to 
time and making use of (111.41). The Poisson bracket for this system is of Lie-Poisson type 

^i = -^4I|- (IIL43) 

*See e.g. Morrison (1982), I.e. 
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The structure constants are e,jfc, which are those of £0(3), that is, the group of rotations. 
The Jacobi identity is assured since the e^, being structure constants, satisfy (111.34)— 
something that is not difficult to verify directly. It is evident upon substituting (111.42) into 
(111.43), that 

i,= [4#], (HI.44) 

is equivalent to (111.41). This system possesses the Casimir invariant 

C = lJ:eh (IH.45) 
t'=l 

which satisfies 
[C,/] = 0,       V/. (111.46) 

Thus the global picture of the phase space Z, which here corresponds to Figure 1, is one 
where the symplectic leaves are nested two-dimensional spheres in the three-dimensional 
space with coordinates (^1,^2,^3)- 

2.    Korteweg-deVries Equation 

We write the famous Korteweg-deVries (KdV) equation*, which describes long wavelength 
water waves and ion-acoustic waves in plasmas, in the following form: 

du       du     d3u /TTT^^X 

ä+uä;+ä?=0- (m47) 

Here x G D, which can be (and typically is) chosen to be (—00,00) or (—ir, -K). In the former 
case the appropriate boundary condition is «(±00) = 0, while in the later case periodic 
boundary conditions are appropriate. The KdV equation possesses a countable infinity of 
constants of motion, but the one that is of interest now is the following: 

H L 'Mi)' dx. (111.48) 

The noncanonical Poisson bracket, due to Gardner*, is given by 

8F d 8G <™=-/D£££*- <m«> 
from which it is seen that the cosymplectic operator is 

»- -h- (IIL50) 

*See e.g. G. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974). 
tC. S. Gardner, J. Math. Phys. 12, 1548 (1971). 
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The skew-symmetry of (111.49) follows upon integration by parts; the Jacobi identity can be 
shown to be automatic since the cosymplectic operator is independent of u. Inserting the 
functional derivative of (111.48), 

(111.51) 

into (111.49), yields 
du        d (x , , d2u\ du     d3u /TTT coX 

dx21 dx     dx3 ' 

This bracket possesses one Casimir invariant, 

0M-/o u dx. (111.53) 

It is easily verified that {C, F} = 0 for all functionals F. The phase space Z in this case is 
infinite dimensional—it being a function space composed of all admissible functions u. The 
symplectic leaves are of one fewer dimension, but they are also infinite dimensional. 

Note that the bracket above is not linear in u and is therefore not of Lie-Poisson form, 
in spite of the fact that we have claimed that the standard Hamiltonian form for theories of 
media is of this type. You may know that the KdV equation is special—it being integrable 
by the inverse scattering method—so it is not too surprising that it has a Hamiltonian 
structure that is inconsistent with the credo. Although the basic equations that describe 
media in terms of Eulerian variables has the Lie-Poisson form, when approximations are 
made this form can change. 

3.     1-D Pressureless Fluid 

Now we consider an equation even simpler than the KdV equation, that of a one-dimensional 
pressureless fluid, 

du       du     n /TTT „ J. 
ä+"s=0- (IIL54) 

This equation has, in jest, been referred to as both the dispersionless KdV equation and the 
inviscid Burger's equation. That it models a fluid suggests that the Hamiltonian ought to 
be just the kinetic energy functional, 

H[u] = I Wdx, (111.55) 
JD 

dx; (111.56) 

there being no internal energy. The following bracket, with the above Hamiltonian, produces 
(111.54): 

~SF Ö SG     SG d SF] 
8u 

that is 
du     r    TT-,        i / du     d(u2)\ du /TTT KW. 
- = {u,H} = -Uu- + -^)=-u-. (111.57) 

3 JD     \ 8U dx Su      Su dx 

5-f 



The cosymplectic operator is evidently given by 

>--4("5 + 5-)~*M + K)- (m-58) 

The following Casimir invariant is easily obtained by solving {C,F} = 0 for all functional 
F; i.e., by searching for null eigenvectors of (111.58) and undoing the functional derivative: 

C= I   \u\^2dx. (111.59) 
JD 

It is evident that the following Hamiltonian: 

H[u] = \j u3dx, (111.60) 

together with the bracket (111.49) will also produce (111.54). Thus it is possible for a system 
to have two Hamiltonian structures: two functionally independent Hamiltonians with two 
distinct Poisson brackets. This rarity occurs for the above system, the KdV equation and 
other systems. It is a symptom of integrability*. 

4.    1-D Compressible Fluid 

Now we consider a somewhat more complicated model, that of a one-dimensional compress- 
ible fluid with a pressure the depends only upon the density. The equations of motion for 
this system are the following: 

du _      du     1 dp 
dt dx     p dx 

dp = _öH (m 61) 

dt dx 

The Hamiltonian has a kinetic energy part plus an internal energy part, 

H[p, u] = fD[ W + PU(P)] dx > (IIL62) 

and the Poisson bracket is given by 

^•G> = -/D[ 
WJi^_6Gd_8£ 
8p dx 6u      Sp dx 8u 

dx. (111.63) 

The cosymplectic operator 

(^') = (I   o)' (IIL64) 

»See F. Magri, J. Math. Phys. 19, 1156 (1978). 
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is seen to be skew-symmetric upon integration by parts and systematic neglect of the surface 
terms. The Jacobi identity, follows since the cosymplectic operator is independent of the 
dynamical variables. 

Observe that this bracket, like the two above, is not Lie-Poisson. However, upon trans- 
forming from the dependent variables (u,p) to (M,p), where M = pu, it obtains the Lie- 
Poisson form. We won't do this transformation here but consider this below when we treat 
the ideal fluid in three spatial dimensions. 

Setting {F, C} = 0 for all F yields two equations 

3   SC        n d  SC        « /TTT «x 

TxJp- = °> feÄT = °» (IIL65) 

from which we obtain the following Casimir invariants: 

C1[u]= [  udx, C2[p}= f  pdx. (111.66) 
JD JD 

Using 

8H 

err 

-^ = X + Kp), (111.67) 

where h(p) := pUp + U is the enthalpy (note that SH/6p = constant is Bernoulli's law), in 
(111.63) produces 

These equations are seen to be equivalent to (111.61) upon making use of hx = px/p (recall 
p = p2Up). 

5.    2-D Euler Scalar Vortex Dynamics 

The vortex dynamics we consider here, unlike the examples above, has two spatial variables, 
r := (x, y) € D, in addition to time; that is, it is a 2 + 1 theory. The noncanonical Poisson 
bracket possessed by this system* is the prototype of 2 + 1 theories, it being shared by the 
1-D Vlasov-Poisson equation*, quasigeostrophy or the Hasegawa-Mima equation, and others. 

*P. J. Morrison, "Hamiltonian field description of two-dimensional vortex fluids an guiding center plas- 
mas," Princeton University Plasma Physics Laboratory Report, PPPL-1783 (1981) (Available as American 
Institute of Physics Document No. PAPS-PFBPE-04-771, AIP Auxiliary Publication Service, 335 East 45th 
Street, New York, NY 10017) and P. J. Olver, J. Math. Anal. Appl. 89, 233 (1982). 

tR J. Morrison, Phys. Lett. 80A, 383 (1980). 
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The single dynamical variable for the 2-D Euler equation is the scalar vorticity, defined 

by 
u>{r,t):=z-Vxv, (111.69) 

where v is the Eulerian velocity field and z is the ignored coordinate. The velocity field is 
assumed to be incompressible, V • v = 0, and hence the streamfunction, tp, is introduced: 

■-(-&£)• (IIL70) 

which is related to the vorticity through 

w = V2f (111.71) 

The equation of motion for this system is 

tj£ = -Wu> = -&,*], (111.72) 

r,   ,     dfdg     dfdg mT7^ 
^^TxTy-TyTx- (HL73) 

There is some subtlety with the boundary conditions. The physical boundary condition 
for the ideal fluid is that no flow penetrates the boundary; i.e. the normal component of 
v vanishes. This amounts to ip = constant on dD. Since u is the dynamical variable one 
might expect the boundary condition to be, u; = constant on dD. Then it is natural to set 
variations of u; to zero on the boundary to eliminate surface terms obtained upon integration 
by parts. Although this boundary condition is correct for the Vlasov-Poisson equation, it 
is unphysical for the ideal fluid where the vorticity at a point on the boundary need not be 
constant. When boundary terms do not vanish with physical boundary conditions, generally 
the mathematics is signalling something physical. In this case it is signalling the fact that 
surfaces of constant vorticity possess dynamics, an idea that is the basis of the "contour 
dynamics" approximation technique. To describe this is beyond the scope of these notes. 
However, all these complications can be avoided by choosing the domain D to be a finite 
box and impose periodic boundary conditions. Alternatively, D can be chosen to be IR 
with vanishing vorticity at infinity; however, as is well-known in electrostatics, this requires 
a potential that diverges logarithmically. 

The energy in this model is purely kinetic, thus the Hamiltonian is given by 

H[UJ] = \J v2d2r = \JD\V^\2d2r 

= J ju(r) K(r\r') w(r') d2r = -\ J u^ d2r , (111.74) 

where K is defined by 

^(r) = - Ju{r)K(r\r')w(r') d2r. (111.75) 
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Observe that in the case where D = ]R2 the last equality requires the elimination of the 
logarithmic singularity. The noncanonical Poisson bracket for this system is given by 

JD      8u}' SLO 
cPr, (IH.76) 

which is of the Lie-Poisson form. The cosymplectic operator in this case is 

3=-[uv]- (HI.77) 
Skew-symmetry follows from 

JD f[g, h] d?r = -jD g[f, h] <Pr, (111.78) 

which is obtained upon integration by parts and neglect of the boundary terms. The Jacobi 
identity for 3 is inherited from that for [, ], as is generally the case for Lie-Poisson brackets. 
The Casimir invariant for the bracket of (III.76) is given by 

C[w]= Jc(u)d2r, (111.79) 

where C is an arbitrary function. Since C is arbitrary C in fact constitutes an infinity of 
constants of motion. These arise form the incompressibility of phase space*. We mention 
that even though there are an infinity of constants this is insufficient for the 2-D Euler 
equations to be integrable. In order to obtain the equations of motion we require 

§--*■ (m-80> 
Evidently, 

^ = {«, H} = -[«, ^] = K 0, (111.81) 

which is equivalent to (III.72). 

6.    3-D Ideal Fluid 

For this last example we consider the ideal fluid in three-dimensions, our first example of 
a 3 + 1 theory where the spatial variables are the Cartesian coordinates r := (x,y,z) =: 
(xi,X2,x3) € D. The dynamical variables used are the same as those discussed in Lecture 
II: the three components of the Eulerian velocity field, v, the density p and the entropy per 
unit mass s. We use s rather than the pressure p, but it is a simple matter to alter this. The 
equations of motion are 

^ = -v.Vt;-±Vp, (111.82) 
at p 

% = "v • (H > (IIL83) 

ds 
— = -v-Vs. (111.84) 

*For a physical explanation see P. J. Morrison, Zeitshrift für Naturforschung 42a, 1115 (1987). 
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Recall that the thermodynamics is embodied in an internal energy function U(p,s), from 
which in addition to the pressure p = p2Up, the temperature is given by T = Ua. 

The Hamiltonian functional is given by 

H{v,p,s] = JD(lpv2 + pU(p,s)) d3r, 

and the noncanonical Poisson bracket* is 

(111.85) 

f6F„  8G     8F„ 
. Sp       8v      Sp 

8G\     fVxv 
8v)     \    p 

8F     SGy 

-r- X -T- 
8v      8v 

+ Vs      8F8G 
8s 8v 

W8G\ 

8s 8v ) 
d3r, (111.86) 

This bracket is familiar in that the first term is the generalization to three-dimensions of 
that for the 1 + 1 compressible fluid given above. Similarly, recognizing that via the chain 
rule 8F/8v = V x 8F/8u>, the second term is seen to be a generalization of that for the 2 + 1 
scalar vortex dynamics given above*. The third term is not familiar, but had we included 
entropy in our 1 + 1 fluid theory its one-dimensional counterpart would have been present. 

Using 
6H     P^        ? = y + W,        S4 = PUS, (IIL87) 
8v      r~ ' 8p 

Eqs.(IIL84) are seen to be equivalent to 

8s 

I-*,.*,  !-{**}.  !-<**>■ (111.88) 

In order to obtain the equations of motion from the above and in order to prove the Jacobi 
identity, integrations by parts must be performed and surface terms involving functionals 
must be neglected. The boundary condition appropriate for the ideal fluid, as noted above, 
is h • v = 0 on dD, but this is a boundary condition on v not on the functionals directly. 
The function space of functionals must be such that these terms vanish for all functionals. 
In the case where D is a finite domain there is a complication with the vanishing of these 
terms, as in the case for the 2-D Euler equations. This problem is not an issue when periodic 
boundary conditions are used or when D — IR3, for in these cases the space of functionals can 
be defined appropriately. However, when D is a finite domain there is difficulty. One might 
try to eliminate the surface terms by requiring all functionals to satisfy n • 8F/8v = 0, but 
this space of functionals is not closed, i.e. the bracket of two functionals with this property 
does not necessarily produce a functional with this property. A method that circumvents this 
complication is to build the boundary condition into the Hamiltonian by a suitable potential 
energy functional. 

It is evident that the Poisson bracket of (111.86) is not of Lie-Poisson from. However, 
if a transformation form the variables v, p, and s to the conserved variables M := pv, p, 

*P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 45, 790 (1980); ibid. 48, 569 (1982). 
tSee, for three-dimensional vortex dynamics, E. A. Kuznetsov and A. Mikhailov, Phys. Lett. 77A, 37 

(1980). 
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and a := ps, which were introduced in Lecture I (and alluded to above), is made, then the 
bracket becomes* 

{F,G} = -/D[M,( 8F   d   8G       8G   d   8F\       (8F      8G _ 8G_      S£ 

kSMj dxj 8Mi     8Mj dXj 8M{) + P\8M '     8p     8M '     8p, 

(8F   vSG__tG_  v^ d3r (111.89) 

This transformation requires the use of the chain rule for functional derivatives, which gives 
formulas like the following: 

8_F_ 

8p v,s 

8F_ 

8p M,s 

M_   8F_    a8£ 
p    8M     p 8a 

(111.90) 

It is straight forward to show that (111.89) together with the Hamiltonian 

H[M,p,a] = jD(\^j + pU{p,<Tlp)} d3r, 

produces the fluid equations of motion in conservation form as follows: 

9M        ft*   rjl OP        r      m da 
W = {M,H),        Yt={p,H},        W = {*,*}• 

(111.91) 

(111.92) 

Now consider the condition for the Casimir invariants, {F, C} = 0 for all F. From (III.86) 
it is seen that this implies 

8v 
1„ 8C n -Vs • — = 0 
p 8v 

^8C     (Vxv)     8C     Vs8C     n V— + ^ '- x - — = 0. 
dp p ov        p   OS 

One solution of these equations is 

JD 

(111.93) 

(111.94) 

where / is an arbitrary function.  If we eliminate the entropy variable, s, from the theory, 
then another solution is the helicity 

C2[v] = I   v V xvd3r. 

It will be left to you to investigate the general solution. 

(111.95) 

^Morrison and Greene, I.e.; I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys. 125, 67 (1980). 
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7.    General Comments 

Above we presented a variety of noncanonical Poisson brackets, of one, two and three spatial 
dimensions and of one or more field variables, culminating in that of the three-dimensional 
fluid with the field variables (u, />, s) or (Af, p, a). In closing this lecture we make some brief 
comments about the classification of the various brackets. 

Consider the cases where there is only a single field variable. We presented two such 1 + 1 
theories, that for the KdV equation and that for the pressureless fluid. It is natural to ask 
whether or not these brackets are in some sense equivalent. Is it possible by a coordinate 
change to map one into the other? A simple scaling analysis suggests that a quadratic 
transformation might do this. An invertible transformation of this kind is given by 

with the inverse 

Inserting 

into the KdV bracket yields 

SF d SG 

ü = |u2sgn(u), (111.96) 

u = sgn(u)v/6Ä. (111.97) 

^ = 2sgn(ü)\/6ä^ (IIL98) 
8u ou 

<'.">--/.£££--»£ u 
Wj^fö_8Gd_fyF 
Sü dx Sü      Sü dx Sü 

dx. (111.99) 

Now it is evident from (111.99) and from above, where we changed fluid variables form 
(v, p, s) to (M,p,cr), that sometimes brackets can be mapped into the Lie-Poisson form by 
an invertible transformation. The study of when this can be done is an interesting area 
that we will not address here. However, since typically for fluid theories this can be done, 
this suggests a classification of such theories by their Lie-Poisson bracket, which in turn are 
classified by the Lie group corresponding to the structure operators. Thus theories can be 
classified by a Lie group* and the corresponding Casimir invariants are determined. In the 
case of 1 +1 theories discussed above, the group is that of coordinate changes and the algebra 
is in essence the infinitesimal generator d/dx. In the case of the 2 + 1 theory of Euler's fluid 
equations the group is the group of canonical transformations of the plane, or equivalently 
area preserving transformations. When one increases the number of spatial dimensions the 
possibilities increase. When more than one field variable is considered the groups become 
more complicated. They are groups by extension, such as the direct product or semidirect 
product. Treatment of this area is beyond the scope of these lectures, although we will briefly 
comment on this in the context of Clebsch variables in Lecture IV. 

"This idea is an old one. It in essence was developed in the work of Sudarshan (1963), Ref. IV B. See 
also Sudarshan and Mukunda (1974), Ref. Ill A. Further development in the geometrical setting was given 
by V. I. Arnold, Ann. Inst. Four. 16, 319 (1966) and Usp. Mat. Nauk. 24, 225 (1969), although unlike here 
the (cumbersome) Lagrange bracket is emphasized. 
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IV.    Tutorial on Lie Groups and Algebras, 
Reduction—Realization, and Clebsch Variables 

A.    Tutorial on Lie Groups and Lie Algebras 

This section, which was in fact a lecture, was given after all the others. However in retrospect 
it appears for continuity better placed here. It can be skipped by the cognoscenti. 

A Lie group <S is both a group and a differentiable manifold. The elements of the group, 
which are uncountaby infinite in number, correspond to points of the manifold. To be 
concrete we will consider a realization where elements of 0 correspond to functions that 
define transformations (coordinate changes) on some manifold Z. 

Suppose the manifold Z has coordinates z%, i = 1,2,..., M, and a family of transforma- 
tions is given by 

*"' = /'"(*, a) z = l,2,...,M, (IV.l) 

where z = (zx,z2,..., zM) € Z and a = (a1, a2,.. .,aN) 6 (5 denotes a parameterization of 
the family. For each value of a the functions / constitute a one-one, onto transformation of 
Z to itself. For convenience we denote this by Ta. Thus Ta:Z —> Z and z' = Taz. The set of 
T0's form a group under composition of functions. 

It is important to distinguish between the M-dimensional manifold Z and the TV-dimen- 
sional group manifold 0. The latter is called either the parameter space, group space, or the 
group manifold. We are introducing Z now so that you have something concrete to visualize, 
but this is really unnecessary—it could be done completely in the abstract. 

Another distinction to be made is between the passive and active viewpoints of the 
transformation Ta. In the passive viewpoint (adopted above) the point of Z remains fixed 
and Ta represents a change in the coordinates used to identify the point. In the active 
viewpoint there is dynamics of a sort; a point of Z is mapped into a new point. Below you 
are, for the most part, free to think in terms of either viewpoint. 

The group product, as noted above, is composition. Closure requires the existence of a 
group element Tc such that 

Tcz = TbTaz (IV.2) 

for all T;, and Tc. Hence, there must be a function <j>(b, a) = c. It is this function that really 
defines the group. If one assumes that <j> possesses three derivatives in each of its arguments, 
it is a wonderful thing that this guarantees the existence of all derivatives. We will see how 
this goes, but not work it out in detail. In terms of the function of (IV.l) closure can be 
stated as follows: 

/(*,c) = f(f(z,a),b) = f(z,<j>{b,a)). (IV.3) 

A simple example of a Lie group is that of S0(2), rotations of the plane. These are linear 
transformations given by 

cos 9 sin 9 
— sin 9 cos 9 

(IV.4) 
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or equivalently 
z' = Tez. (IV.5) 

This a one parameter group with 0 e [0,27r]. Closure requires that a rotation through an 
angle 9 followed by a rotation through an angle tj> must be equivalent to a rotation through 
some angle x: 

T^Tg = 
cosV> sin^> 

— sinV> cos^> 
cos 9 sin 9 

— sin 9 cos 9 
cos(^> + 9) sin(V> + 0) 

- sin(V> + 0) cos(V> + 0) 
=• T (IV.6) 

Evidently, the analogue of c = <f>(b, a) is x = 4>{4>-> 9) = ij> + 9, mod 2TT. 
You may know that in addition to closure, groups have three other properties: associa- 

tivity, the existence of an identity, and the existence of an inverse. These properties are 
natural if you think about elements of the group corresponding to coordinate changes. 

Associativity requires 
Ta(TbTc) = (TaTb)Tc. 

Since TaTb = /(/(*, b),a), the right hand side is 

(TaTb)Tc = /(/(/(*, c), 6), a) = /(/(*, c), <f>(a, b)) = /(*, <f>(<f>(a, b), c)). 

Since TbTc = T^c), the left hand side is 

Ta(TbTc) = T^a,<j>(b,c)) • 

Upon comparing (IV.8) and (IV.9) we see that associativity implies 

<f>(a,(f>(b,c)) = <j>(<f>(a,b),c). 

This relation is clearly not satisfied for all <f>; it in fact places a strict restriction on the 
functions that define a group, as we shall see. 

The identity element of the group is denoted by T0. It must satisfy 

(IV.7) 

(IV.8) 

(IV.9) 

(IV.10) 

or 

Therefore, 

rp rp      rp rp      rp 
J0Jo — JaJ0 — J-a 

f(f(z,a),0) = f(f(z,0),a) = f(z,a) 

(IV.11) 

(IV.12) 

<f>(0,a) = <f>(a,0) = a. (IV.13) 

For every element a of a group G5 there must exist an inverse, which we denote by a-1, 

rp rp rp        rp rp 
J-ala-1   — J-a-lJ-a = -*0 • 

such that 

Evidently, 
<f)(a, a-1) = <^(a_1,a) = 0 

In order for these equations to have a unique solution for a~l, given a, 

'd<f>(a,by 
det 

da 
,.,     d-M,.. 

(IV.14) 

(IV.15) 

(IV.16) 
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It is easy to verify the above properties for the example of 50(2); it is recommend that 
you do this. 

A Lie algebra, Q, arises in studying the group manifold in a neighborhood of the identity. 
Such a study yields ordinary differential equations for <f>. 

Suppose 8a is small and consider 

1 5 •— J-aJ-Sa 

or 
a = <f>(a, 8a). 

Since <f> was assumed to be continuous a must be near a, so we write 

ä = a + da = <f>(a, 8a) 

or in terms of the transformations 

J. a+da*' — -*■ a-L Sa** • 

This is depicted in Figure 1. 

z' + dz1 a & 

(IV.17) 

(IV.18) 

(IV.19) 

(IV.20) 

a + da 

Figure 1: 

Taylor expanding (IV.18) about a = b = 0 yields 

d<f>a(a,b) 
aa + daa = (/>a(a,0) + 

dW 
6at> + ..., 

b=o 
(IV.21) 

where the greek indicies a, ß etc., which we will use to denote coordinates of the group 
manifold, run over 1,2,..., N. From (IV.21), 

where 

daa = LQ
ß(a)8aß 

d<f>a(a,b) 
La

ß{a) := 
db0 

(IV.22) 

(IV.23) 
6=0 
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Consider now a function denned on the group manifold F:<5 —► JR. How does F(a) differ 
from F{a)1 

dF(a) := F{a) - F(a) = F{a + da) - F(a) 

« ^l.daa = ^-La
ß{a)8aß 

daa da01   pK ' 

=: SaßXßF(a). (IV.24) 

The quantities Xß denned by 

Xp^Lfta)^., (IV.25) 

are called the infinitesimal generators of the Lie group. They are in fact elements of the 
Lie algebra, 0, associated with 0. The quantities Xß are to be thought of as vectors with 
components {Lf\ and basis vectors {d/daa}. Evidently, if we choose F(a) = a, (IV.24) 
implies 

da? = W%a7 = L}8aß. (IV.26) 

We will use this later. 
Now let us return to our quest of determining what the group properties say about <j>. 

Taylor expanding <f> about a — b = 0 through third order yields 

««, 6)=«o, o)+»a..+«mat v+1 *gm „v v v ' ;     Y K '  ' da« dbK 2   daKdax 

0^(0,0)     A    1 0^(0,0)     x     i_ a3^(o,o)   KX 
+    da«d& + 2    06«0M + 3! da«da*da» 

i g3^(o,o)     A      i 0y(o,o)  -^   i a3<mo) ^^ 
+ 2 da"daxdb» 2 da«dPdb» 3! db«db*db» 

+ 0(4), (IV.27) 

where derivatives with respect to a are taken in the first slot of ^" and those with respect 
to 6 in the second. Since 

4>(a,0) = <f>(0,a)^a (IV.28) 

for all a, it is clear that 4>(0,0) = 0, and upon differentiating (IV.28) 

0^(0,0) 
da K K(0) = t 

^ = *:<») = «. (IV.29) 

Differentiating (IV.28) twice and then thrice in the nonzero argument implies 

av(o,o)    0V(o,o)    03^(o,o)     a3^(o,o) 
da«daA 5&«<%A daKdaxda»      db«dbxdb» 

= 0. (IV.30) 
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However, (IV.28) does not contain information about mixed derivatives; viz. 

ay (0,0)       ay(o,o)       ay (0,0) 
da"db*   '        da«da*db»'        da«dbxdb» ' 

Thus far we have reduced (IV.27) to 

(IV.31) 

*(a,6)-«   +6  +   ^^   «& 

i ay(o,o)    A    i ay(0,0) ..v  om        rTV  . 
+ 2äÄwaa6 + 2 a.'Wö*'a 6 6 +0(4)'        (IV,32) 

To go farther the associativity condition (IV.10) is imposed. If you expand through 
second order, in anticipation of a result, you will be disappointed. Associativity places no 
constraint to this order. If you attempt to expand through third order you will also be 
dissapointed because you will generate a tedious mess. Nevertheless, perseverance and a tad 
of cleverness results in a condition on <f>. If we define 

,__ay(o,o)   ay(o,o) rTV™ 

which obviously satisfies 

the condition obtained is 

"«A —     ^XK > (IV.34) 

<x4, + *,A + <fc< = 0 • (IV.35) 
The numbers C

V
KX were called structure constants by Sophus Lie. They are the heart of the 

matter. 
You might wonder what happens to next order.  It turns out that (IV.34) and (IV.35) 

are enough to determine <f>—the structure of the group (that is connected to the identity). 

Now we will obtain a differential equation for the group and then discuss briefly some 
important theorems proved by Lie. Recall Eq.(IV.26) 

dcP = SaPXßO1 = L}8aß , (IV.36) 

which we derived by expanding Ta+da = TaTßa-   Since <^(a,a~x) must have a solution, this 
implies Lß(a) has an inverse for all a. We call this L~lß; i.e. 

and (IV.26) can be inverted 

Now suppose 

La
ßL;lß = 6» (IV.37) 

8aß = L~lß daa . (IV.38) 

Tc+dc = TaTb+db = TaTbTsb, (IV.39) 
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c+ de 

2! +dz' 

Figure 2: 

which is depicted below in Figure 2. 
Equation (IV.39) implies 

c + dc = </>{a, b + db) = <j)(a, <f>(b, 8b)). 

If dc = db = 8b = 0, then c = <f>(a, b); thus (IV.40) becomes by associativity, 

c + dc = </>(<f>(a, b), 8b) = </>(c, 8b). 

Therefore, 
ca + dca = <f>a{c, 8b) = 4>a{c, 0) + La

ß{c) 8b6 + 

and 
dc° = La

p{c) 8b3 = La
ß{c)L~lß{b) dV, 

where the second equality follows from (IV. 38). Evidently, 

^ = L"ß(c)L;V(b), 

but since c = <f>(a, b) 
d<j>a(a,b) 

= L°ß(<K*,W;lßQ)- 

(IV.40) 

(IV.41) 

(IV.42) 

(IV.43) 

(IV.44) 

(IV.45) 

Equation (IV.45) is a system of partial differential equations of Mayer-Lie type. Here 
<f>(a, b) is the unknown and a is a fixed parameter. A similar equation holds where the roles 
of a and b are reversed. In order for a system of equations of this type to possess a solution, 
they must satisfy an integrability condition, viz 

d2(/>a(a,b) _ d2<f>a(a,b) 
db»db->    ~    dfcdb»   ' 

which implies 
d_ L"ß(<f>(a,b))L^(b)} = A [L°ß(4>(a,b))L;V(b)] . 

(IV.46) 

(IV.47) 
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Performing the differentiation in (IV.41) 

~d?      8&~~L'>   (6) + ^(c)    db» 

dLfc) dpfrb)    w WA01»10® (IV.48) 

and then using (IV.44) yields 

dLftc) 
dc" 

Li(c)L;"{b)L?'(b) - L"s(c)L?s(b)L-V(b) 

dL~V(b)     dL-^(b) 
= L%{c) dm db» 

(IV.49) 

Now the left hand side can be made a function of c alone and the right hand side can be 
made a function of 6 alone, by multiplying by ilL(b)L(b)L~1(c)n with the appropriate indices. 
We obtain 

L-^{c) 
dcu 

= LW)L°ß(b) 
dLz*{b)     dL-^{b) 

db°> dm (IV.50) 

Since the points b and c were arbitrary, the two sides of (IV.50) must equal the same constant, 
which is determined by setting c = 0. Using 

and 

yields for the two sides 

W) = V(o) = tf 

dLfto)   02<mo) 
dcv dcdbß 

~^~ L^c) ~ ~i)örLß{-c) = °^ Ls (c)' 

av»<»)   «,-(') =<4,£;..(i)V,(i). 

(IV.51) 

(IV.52) 

(IV.53) 

(IV.54) 
dm dm 

Equation (IV.54) is an important equation known as the Maurer-Cartan equation. Since 
its left hand side is a "curl", the divergence of its right hand side must vanish. This is true 
provided the structure constants satisfy (IV.35). Therefore (IV.54) can be solved for L-1(6). 
With this value of L~l (IV.44) is solved for <f>. 
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Above we have described the connection between Lie groups and the Lie algebra of 
generators. It needs to be emphasized that Lie proved a remarkable theorem: given the Lie 
algebra of generators 

[Xa,Xß] = clßX, (IV.55) 

where the structure constants cjj satisfy (IV.34) and (IV.35), or equivalently 

[Xa,Xß] = -[Xß,Xa], (IV.56) 

Xa, [Xp, X7]] + [Xß, [X,, Xa]\ + [X7, [Xa, Xß}] = 0, (IV.57) 

then there exists some Lie group for which the "c's" are the structure constants. Moreover, 
in the vicinity of the identity this group is unique. The proof of this theorem in the general 
case is difficult. It requires a deep understanding of the structure of Lie algebras; namely, 
that any Lie algebra can be decomposed into the sum of two kinds of algebras—a semi-simple 
algebra and a solvable algebra. It is not possible to pursue this within the confines of a single 
lecture like this. 
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B.     Reduction—Realization 

Reduction is a procedure for obtaining from a given Hamiltonian system one of smaller 
dimension. The idea dates to Poincare and Cartan. It is an example of generating dynamics 
via a canonical realization of a Lie group, which is a subgroup associated with a Lie algebra 
composed of the ordinary Poisson bracket and a selected collection of functions defined on 
phase space*. There are two parts to reduction: kinematics and dynamics. The kinematic 

*See again Sudarshan (1963) and Sudarshan and Mukunda (1974), I.e. 
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part is concerned with the use of special variables that have a certain closure property, 
while the dynamic part refers to a symmetry of the Hamiltonian, viz. that the Hamiltonian 
be expressible in terms of the special variables. The symmetry gives rise to one or more 
constants of motion (Casimirs) that can, in principle, be used to reduce the order of the 
system. However, the term reduction is, in a sense, a misnomer since in practice the procedure 
does not reduce the order of a system, but splits the system in such a way that it can be 
integrated in stages. 

In this section we discuss reduction in general terms for finite systems, and then consider 
a reduction that we term standard reduction, where the new variables are linear in the 
momenta. This is followed by two examples, the free rigid body and the ideal fluid, both of 
which are standard reductions. In the next section we discuss Clebsch variables, a reduction 
that is bilinear in canonical coordinates and momenta. 

1.    Reduction of Finite Dimensional Systems 

In the first part of reduction, that which pertains to kinematics, the system is transformed 
into a useful set of (generally) noncanonical coordinates. To see how this goes, we begin 
with the canonical Poisson bracket 

[h9>      dziJc dzi 
i,j = l,2,...,2iV, 

(Jij) = 
ON IN 

—IN ON 

(IV.58) 

(IV.59) 

z = (q,p), (IV.60) 

and suppose we have a set of functions wa{z), with a = 1, • • •, M, where in general, these 
functions are noninvertible functions of z and M < 27V. Also suppose / and g obtain their 
z-dependence through the functions w, i.e. 

where recall 

and 

Differentiation of (IV.61) yields, 

/(*) = f(w(z)). 

df _  df dwa 

dzi ~ dwa dz{ ' 
which upon insertion into (IV.58) gives 

\f,9] 
df   dg   (dwa Tijdw^ 

dwadwß \dzi "c dz> 

where we have dropped the "overbar." The quantity 

(IV.61) 

(IV.62) 

(IV.63) 

(IV.64) 
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is in general a function of z. However, it is possible that Jaß can be written as a function of 
w only. When this closure condition occurs we have a reduction. Said another way, we have 
a Lie algebra realization composed of the functions w and the Poisson bracket. 

In order for functions of w together with the bracket 

K'l-SSrS^»)- (IV-65) 

to be a Lie algebra, in is necessary for [, ] to satisfy the Jacobi identity for all such functions. 
This is equivalent to 

ATPI ßTaß        „rcn*<a 

sr»(w) := JaS^-r + r*%-r + JßS^~r = o. (iv.66) v  ' dws dw5 ows 

(Recall Lecture III.) Substituting (IV.64) into (IV.66) gives 

= [wa, [wß, vP]] + [wß, [vP, wa)) + [vP, K, wß]\ = 0, (IV.69) 

where the last equality follows from the original Jacobi identity applied to the functions wa. 
Thus any reduction produces a bracket that satisfies the Jacobi identity. 

Now consider briefly the second part of reduction, that which concerns the symmetry 
property of the Hamiltonian. In order to have a complete, reduced description of the dynam- 
ics, i.e. one entirely in terms of the tu's, the original Hamiltonianif (z) must be expressible 
solely in terms of these varibles, i.e. there must exist a function H(w) such that 

H(z) = H(w). (IV.70) 

Equation (IV.70) is in fact a statement of symmetry. This is a condition that must be verified 
case by case, but it is not difficult if one knows the generators of the symmetry. 

2.    Standard Reduction 

For standard reduction the functions w have the following special form: 

wa = Aai(q)Pi. (IV.71) 

Writing out (IV.64) 
p = duPdw^ _ dw^dvf^ (     72) 

dpi   dq{        dp1   dql  ' \     ■    > 
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and inserting (IV.72) into (IV.71) yields 

j«ß-A^p._Aßi^p. J     ~A     dqiP>     A    dqiP> 

•{"*$■-"*£)»■ (IV-73) 

Closure occurs if constant numbers c?P can be found such that 7 

Aai^r - Aßi2§-r) Pi = tfWPi = dSfvP. (IV.74) 

The form of (IV.74) may ring a bell. Recall the discussion in Section A where we talked 
about integrability and obtained the Maurer-Cartan equation. From Eq.(IV.53) it is clear 
that if the A's are chosen to be the components of the infinitesimal generators of some Lie 
algebra, then Eq.(IV.74) holds, with the constant numbers c"13 being the structure constants. 

You may have noticed that above the structure constants have two covariant indices and 
one contravariant index, which is the opposite of that of Section A. Technically, above we 
have considered the dual of the algebra—the algebra of linear functionals. Evidently there is 
more to this story than we are telling you. For now, we emphasize that the important thing 
is that (IV.53) have a solution. 

Since reduction involves a symmetry and symmetries are related to constants of motion, 
it should come as no surprise that a general expression for constants of motion, which are, 
of course the Casimir invariants, comes along with the reduction framework. A clean way of 
seeing this is afforded by triple bracket dynamics*. 

This construction begins by considering a semisimple Lie algebra with structure constants 
cfj and metric tensor* #,_,• which is given by 

*,- = -<£ 4*- (IV-75) 
This quantity can be used to raise and lower indices.   (Note the minus sign is introduced 
here to make gij positive for e.g. the rotation group.) 

The fact that the structure constants have three indices hints at the existence of a geo- 
metric bracket operation on three functions, and it would be appealing if all three functions 
appeared on equal footing. This can be achieved by using the fully antisymmetric form of 
the structure constants, 

cijk = gim 9jn cL , (IV.76) 

from which the following triple bracket is constructed: 

lA,B,c\—#>%*£, ec. (IV.77) 

*Bialynicki-Birula and Morrison, (1991), Ref. IV C. Triple bracket dynamics is a generalization of a 
formalism due to Y. Nambu, Phys. Rev. D 7, 2405 (1973). 

tThis is also called either the trace form or Killing form. See e.g. Jacobson, I.e. 
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A simple relationship exists between [f,g, h] and the Lie-Poisson bracket [f,g\. This is 
made manifest by inserting the Casimir of the Lie algebra, as given by 

C:=|^W, (IV.78) 

into one of the slots of the triple bracket, i.e. 

[f,9,h} = [f,9], (IV.79) 

Due to this relationship time evolution can be represented as follows: 

ft = [f,H,C], (IV.80) 

where / is an arbitrary dynamical variable. In this formulation the dynamics is determined 
by two generating functions, the Hamiltonian H and the Casimir C and because of the 
complete antisymmetry the Casimir is necessarily conserved. 

3.    Reduction of the Free Rigid Body 

The free rigid body, which is a sort of prototype for reduction, is a good example because it 
is finite dimensional and the computations are relatively easy. A free rigid body is a rigid 
body that is subject to no external forces, and thus a frame of reference can be assumed in 
which the center of mass is fixed. It takes three numbers to specify the state of the body: 
if a mark is placed on (or in) the body as a reference point, then two angles specify the 
orientation of the line from the center-of-mass to the mark, while another angle is needed to 
specify the orientation relative to the line; i.e. the location of another mark (not along the 
line) is determined by a rotation about the line. Thus the dimension of the configuration 
space Q, for the free rigid body, is three. A traditional set of coordinates is provided by the 
Euler angles x = (Xi)X2)X3)> which are defined by Figure 3 below. 

Evidently, the rotation matrix, R(x)y that takes the primed into the unprimed axes is 
the product of three rotations through the three Euler angles. 

By imagining infinitesimal rotations, 6x, or by consulting a mechanics book, you can 
obtain the following important formulae relating the angular velocites, relative to a set of 
cartesian coordinates fixed in the body, to the time rate of change of the Euler angles: 

wi = Xi cos X3 + X2 sin Xi sin X3 

u2 = -Xi sin X3 + X2 sin Xi cos X3 

w3 = X3 + X2 COS X2 • (IV.81) 

The body axes are convenient since in these axes the moment of inertia tensor is constant in 
time and one can choose them so that the moment of inertial tensor is diagonal, the so-called 
principal axes. In these coordinates the Lagrangian is deceptively simple, 

L(x, X) = \ (IM + 1*4 + hut) , (IV.82) 
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Figure 3: 

it being merely the kinetic energy since there are no external forces. Note however, upon 
insertion of (IV.81) the Lagrangian becomes a complicated function of x and x- I will leave 
it as an exercise for you to calculate the equations of motion. 

Since the Lagrangian is convex in x we can effect the Legendre transformation.   The 
canonical momenta are given by 

Pi = 
dL _ dL dwj _ 

i.e. 

dxi      du, dxi      ~3 dxi ' 

where 
COSX3 -sinxs 0 

(A1)=    sinxisinxa   sinxicosxa   0 

(IV.83) 

(IV.84) 

(IV.85) 
0 0 

and the angular momentum l{ := 7,-a;,- (not summed). Comparing (IV.81) with (IV.84) 
reveals that 

"i = DijXj, (IV.86) 

where DT = A'1 with "T" indicating transpose. If ti is defined to be the antisymmetric 
matrix composed of the three components of w, then an important way to write (IV.85) is 
as follows: 

Ü = RTR. (IV.87) 

This form is analogous to that of the map from Lagrange to Euler variables. I will leave it 
for you to work this out. 

The inverse of (IV.84) is given by 

*i = Aji(x)Pi, (IV.88) 

T^ 



where 

(A) = 
1 

smxi 

'   sinxicosx3    sinx3   -sinxscosxi 
-sinxisinx3   C0SX3   -cosx3«>sxi 

\ 0 0 sinxi 
(IV.89) 

This is the standard reduction formula of the form of (IV.71). 
Upon effecting the Legendre transform, the Hamiltonian is obtained: 

£2 i 

H(p,x) = PiXi -L = \h"k = \Y<lr- = \Y,TAkiAk>Pipi (IV.90) 

which obviously possesses the necessary symmetry of (IV.70). 
It remains to show whether or not the variables £( allow a reduction. To see if this is the 

case consider [•£,-,■£_,•], which upon insertion of (IV.88) becomes 

lA'l^jJ — A-a "» I ~       ™.i, 
dA 

dxk 
■jk 

dx 
jrAik (IV.91) 

as expected from the results of the previous subsection. Since the left hand side of (IV.91) 
is difficult to evaluate, we make use of 

dA tr   A-l 

dxk 
A'1 — A Qtf 

,r dxk' 

which follows upon differentiating 

to obtain 

A- A-1 — X- 

[£t-,£_jJ — I ls—Q       1 [AjrAik — AiTAjk) 
\     dXk J 

(IV.92) 

(IV.93) 

(IV.94) 

The matrix in the first parentheses is not too difficult to calculate. The evaluation of the 
second parenthesis amounts to the determination of three matrices; since [A,^'] is antisym- 
metric only [£1,£2], [A>^3]> and [£2^3] must be obtained. Multiplying out the matrices of the 
two parentheses (three times) yields the following compact and expected result: 

4.    Reduction for the Ideal Fluid: Lagrangian —* Eulerian Variables 

(IV.95) 

Now consider reduction for the ideal fluid, which amounts to the transformation from La- 
grangian to Eulerian variables. In the Lagrangian variable description of Lecture II we had 
the Hamiltonian 

— + poU(s0,p0/J) 
*Po 

H[*,q]= f 
JD 

which together with the canonical Poisson bracket 

[F,G}= [ 
JD 

dza 

6F_   SG_SG   SF 
8q     Sir       8q     Sir 

fa. 

(IV.96) 

(IV.97) 
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produces the ideal fluid equations of motion. For the moment, let us forget about the 
Hamiltonian structure and just consider the change from (q, 7r), the Lagrangian canonically 
conjugate pair, to (p,a,M), the Eulerian non-canonical variables. Recall from Lecture II 
that 

p{r,t)= I p0(a)8(r-q(a,t))d3a, 
JD 

a(r,t) = /  a0(a) S(r — q(a,t)) d3a , 
JD 

M(r,t)= I *S(r-q(a,t))d3a. 
JD 

(IV.98) 

Clearly, from the above three relations, we can calculate (/>, er, M) for a given displacement 
field q and a given momentum field 7r. The chain rule thus goes the way we need it to 
calculate variations of 

F[q,7c] = F[p,a,M]. (IV.99) 

In (IV.99) we are supposing that F obtains its q and ■K dependence through some functional F 
of (/9, er, M). The functional F and F are defined on different functions, which are themselves 
defined on different (space-like) domains, a and x, respectively. 

Consider the variation of F, 

SF -L 

-L V 

■7— • Sq + — • OTT 
bq OTT 

d\ 

c      8FC       SF    e„ 
, Sp + —8a +YTJ-8M 
D [8p 8a 8M 

d3r. (IV. 100) 

Note that the two domains of integration coincide, although the variables of integration 
have different names. We will now try to find the functional derivatives with respect to the 
Lagrangian fields in terms of the Eulerian fields. This will allow us to express the bracket in 
Eulerian fields. The variations of the Eulerian fields induced by a variation of the Lagrangian 
fields are 

Sp = — /  po(a) V8(r — q) • Sq d3a, 
JD 

Sa = — /  a0(a) VS(r — q) • Sq d3a , 
JD 

SM = /   [Sir 8(r -q)- 7rV<5(r - q) ■ Sq] d3a . 
JD 

(IV.101) 

Above (and below) the V-operator operates on the r-dependence. Inserting (IV.101) into 
(IV. 100), interchanging the order of integration, and equating the coefficients of Sq and Sir 
implies 

S£ 
Sq I SF SF SF 

PoJp~ + <To^ + 7r-SM 
VS(r - q) d3r 



-/. 

8F SF ,     „SF 

SF_ 

Sir 

SF 

-Lm*-** 
SF 
SM 

d3r =: 

S(r - q) d3r 

SF 

r=q SM'' 

(IV. 102) 

(IV.103) 

where the second formula is obtained after integration by parts, assuming the boundary 
terms vanish. Inserting (IV.102) and (IV.103), for both F and G, into (IV.98), yields 

_  _        r f       SF    SG        „SF    SG      SG      d   SF 
{F, G} = JD S(r - q) l^oV— • — + «r0V— • — + j^ «Q^J^ 

„SG    SF „SG    SF 
Po^-T- • TT77 - °ov- 

&F     Ö £G 
7Tr d3a. 

Sp   SM'    ~"' Sa   SM'     SMj   *djSMi 

After interchanging the order of integration, the integral over d3a can be carried out, 

(IV.104) 

{F,G} = -JD[M^ 
SF   d   SG       SG   d   SF\       fSF_      SG _ SG_  y^F\ 

kSMj dXj SMi     SMj dxj SM{)    P
{SM'    Sp     SM '    Sp) 

(SF   „SG_SG_      SF^ 
+ CT[SM'     SO      SM'     SOJ 

d3r. (IV.105) 

Equation(IV.105) is the noncanonical bracket that was given in Lecture III. It is a bracket 
expression in terms of Eulerian functionals, that is ones that depend on Eulerian fields, 
integrated over the Eulerian spatial domain. 

Above we have considered the transformation of variables only. This can be viewed as 
kinematics. To complete the Hamiltonian description in terms of Eulerian variables we must 
obtain the Hamiltonian in terms of p, er, and M. The reduction we have performed can only 
yield dynamics if we can find a Hamiltonian, H that satisfies 

H[q,*] = H\p,(r,M], (IV.106) 

upon substitution of Eqs. (IV.98). In general this is not possible, but for the ideal fluid the 
one that does the trick is of course 

H[p,aM}= I 
J U 

1M2 TT, ^N ±— + pU(p,-) 
p p . 

d3r. (IV.107) 

Note that while the reduction of the bracket only depends upon the definitions of p, a, 
and M, the corresponding reduction of the Hamiltonian involves a symmetry, namely the 
independence of the Hamiltonian under fluid particle relabelling. 
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C.    Clebsch Variables 

In this section we consider Clebsch variables. These are canonical variables that reduce to 
noncanonical variables where, as mentioned above, the noncanonical variables are bilinear in 
the momenta and configuration space coordinates. We will use the term Clebsch to describe 
all such bilinear transformations for which there is a reduction, however, particular forms 
are of special interest. Below we consider finite systems, infinite systems, the semidirect 
product, and several examples of each, notably the Clebsch representation for the ideal fluid, 
whence the name Clebsch orignates*. 

1.    Clebsch Variables for Finite Systems 

It is well known that the three components of the angular momentum, q xp, form a canonical 
realization; if one restricts phase space functions to be functions of only these three variables, 
then the canonical Poisson bracket of two such functions produces another such function. 
This is just the closure condition discussed in the previous section. The resulting noncanoical 
Poisson bracket in this case, like that for the free rigid body, is that corresponding to SO(3). 

We will present the Clebsch reduction from an historical, if not logical, point of view. 
Suppose we have a noncanonical Lie-Poisson bracket of the following form: 

*A. Clebsch, J. Reine Angew. Math. 54, 293 (1857); ibid. 56, 1 (1859). 



where 4J are the structure constants for an arbitrary Lie algebra. We know from the previous 
section that a canonical Poisson bracket, with a transformation of the form of (IV.71), reduces 
to this form. Now we turn things around and ask the question, can we inflate (IV. 108) and 
obtain other canonical descriptions. Here we have used the word inflation, since we are not 
talking about the canonical description on the symplectic leaves of Lecture III, which would 
be a further "reduction." This inflation is in essence what Clebsch did for the ideal fluid: 
he found a set of variables that uniquely determines the usual physical fluid variables, but 
the inverse of his transformation does not exist. For this reason we say there are "gauge" 
conditions analogous to those for the vector potential in electromagnetism. 

The following transformation, which is motivated by the angular momentum reduction 
described above, is a finite dimensional generalization of Clebsch's transformation: 

w< = $qk
Pj , (IV.109) 

where all indices are summed on 1,2,...,N. The quantities w* could be thought of as 
components of a generalized angular momentum. Given a canonical description in terms of 
the qi and pi, 

ifri^moi-Hi^, (iv.iio) 

the bracket in terms of w is obtained by a reduction. This is seen upon substituting 

£L - d/ Jink 
dPi~ dw'kq 

!=l?^ <iv-in) 

into (IV.IIO) 

dfdg      dfdg__ {itjk _ jt  A df_dg_ 
dq^dp~i~ dPi dq< " Pt q   VC* *       Ck C' ) dw< 8wi 

ow' ow* 

where the last equality follows upon making use of the Jacobi identity for the structure 
constants, (IV.35). 

Given any noncanonical system in terms of the iw's one can obtain a canonical system of 
equations in terms of the Clebsch q and p; when these are solved for q(t) and p(t) then the 
w constructed according to (IV.109) is a solution of the noncanonical system. 

2.    Clebsch Variables for Infinite Systems 

Here we will be a bit formal and define things in somewhat general terms. First we will 
denote by (, ) a pairing between a vector space and its dual. We will, for now, leave the 
particular form of this unspecified, but we have in the back of our mind an integration like 

Sf 



that in (111.36). The first slot of (, ) can be thought of as an infinite dimensional analogue 
of the finite dimensional "up" indices, while the second slot is the analogue of the "down" 
indices. We will refer to elements of the first slot as belonging to 0 and those of the second 
slot, the dual, as belonging to 0* . In general the pairing is not symmetric. 

In terms of the pairing, noncanonical Lie-Poisson brackets have the following compact 
form: 

{F,G} = -(X,[FX,GX}), (IV.113) 

where [, ] is a Lie algebra product, which takes 0* x 0* —* 0*, and we have introduced the 
shorthand 

F •=— G  •=— (IV114) 

which are, of course, in 0*. We refer to {, } as the "outer" bracket and [, ] as the "inner" 
bracket. 

Now we define the binary operator [, ]* as follows: 

<X,[/,d)=:([x, *]*,/), (IV.115) 

where evidently x^Ji/^S'i an<* [ > ]+ : 0 x 0* —► 0- The operator [, ]* is necessary 
for obtaining the equations of motion from a Lie-Poisson bracket. The bilinear Clebsch 
transformation analogous to (IV.109) is given by 

x = [£,n]t. (iv.116) 

In order to effect the reduction, consider a variation of (PvM16), 

6x = [6Q,Tfp + [Q,60p, (IV.117) 

which is used to relate functional derivatives as follows: 

SF=(SX,FX) 

= ([8Q,I1? + [Q,8II}\FX) 

= (8Q,FQ) + (Fn,8H) . (IV.118) 

Manipulation of the second equality of (IV.118) yields 

8F=(6Q,[FX,U]) + (Q,[FX,SU]) 

= (8Q,[Fx,U])-(Q,m,Fx}) 

= (8Q,[FXM - ([Q,FX]\8U) , , (IV.119) 

where the antisymmetry of [, ] and the definition of [, ]* have been used. Upon comparing 
the last equality of (IV.119) with the last equality of (IV.118) we obtain 

FQ = [F„ n], Fn = -{Q, Fx]1. (IV.120) 
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The canonical bracket in terms of Q and II can be written as 

{F,G} = (Gn,FQ) - (Fn,GQ) . (IV.121) 

Inserting (IV.120), produces 

{F, G} = - ([Q, Gx]t, [Fx, II]) + ([Q, Fx]\ [Gx, II]) 

= (Q,[[GXU],FX] + [[II,FX},GX]) 

= (Q, [[Gx,Fx},Il]) = -{[Q,m\[Fx,Gx}) 

= -(X,[Fx,Gx]), (IV.122) 

where use has been made of the Jacobi identity of [, ]. 

3.    Fluid Examples 

Now consider two examples from fluid mechanics: the first is the two-dimensional Euler 
equation, while the second is related to the three-dimensional ideal fluid. 

As observed above the structure constants for the free rigid body noncanonical bracket 
are £,-_,•*, which is completely antisymmetric. The structure operator for the 2-D Euler non- 
canonical bracket, which was given in Lecture III, shares this property. This is clear from 
the "fgh" identity of (111.78), from which we also observe that 

\f,gV = -\f,gh (IV-123) 
Here no distinction is made between the vector space and its dual. For this case 

and 
(,)=/     d'r. (IV.125) 

The Clebsch variables Q(r,t) and II(r,t) are related to the scalar vorticity via 

w(r,t) = [n,Q], (IV.126) 

and the reduction from these canonical variables to the 2-D Euler bracket parallels exactly 
the calculation of the previous subsection*. There are two ways to obtain the equations of 
motion for Q(r,t) and U(r,t). One way is to insert (IV.126) into the Hamiltonian H[LO] of 
(III.74) and then calculate 

dQ     8H m= _SH 
dt    sn' dt      8Q' \   •    ) 

"The careful reader will notice a sign discrepency. There is a story that goes with this sign, but unfortu- 
nately we are not able to tell it here. 
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The other way is to insert (IV. 126) directly into the equation of motion for u>, viz. 

du 
dt = -hM, (IV. 128) 

[cf. (111.72)] and then manipulate as follows: 

ran 
~dt dt ,Q + ' dt 

= - [+, [n, Q]] = [n, [Q, +] + [Q, [^ n]], (iv.129) 

where the Jacobi identity was used to obtain the last equality. From (IV.129) we obtain 

t§+[+,m,Q + n, 22+ [*,$] = 0, (IV.130) 

which is satisfied if 

dQ     r/ n]   dr (IV.131) 

where the terms involving T point to the gauge ambiguity present in (IV. 126), something 
that will not be discussed further here. If Q(r,t) and II(r,t) are solutions of (IV.131), then 
the u) — [II, Q] constructed from these solutions are solutions of (IV.128). 

Turn now to the following bracket, which is a portion of the noncanonical bracket for the 
ideal fluid, [cf. (111.89)]: 

8F   d   8G      8G   d   8F\ 
1  '   ' ~     JD    * V SMj dxj 8Mi     8Mj dXj 8Mi) 

=:-(M,[FM,GM]) (IV.132) 

It is obvious that this bracket will satisfy the Jacobi identity if (III.89) does.   The inner 
bracket in this case is given by 

It „i  _ f 
d9i     „ dfi (IV.133) 

where, evidently, / and g now have three components. Integration by parts and neglect of 
surface terms yields 

[x'9l>-XtdXj
+   dxi   ' 

(IV.134) 
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whence the Clebsch variables are seen to be related to M by 

M.=Qi™±+mim. (iv.135) 

In reality the decomposition above is not quite that due to Clebsch, whose transformation 
did not have the second term of (IV.135). However, it is closely related to that introduced 
for MHD*. In fact the reduction occurs without this last term; it also occurs with the last 
term with opposite sign. Also, it is not important that Q and II have three components. 
Some of this will be discussed below in the last subsection of this lecture. 

4. Semidirect Product Reductions 

The semidirect product is an example of an extension, a group theoretic notion for making 
bigger groups out of a given group. We cannot discuss this is any kind of detail here so the 
interested reader is referred to the references*. However, this notion makes its way up to Lie 
algebras and thus to Lie-Poisson brackets, a case of which we will discuss (briefly) here. 

Suppose the functional F in (IV.118), in addition to its x dependence, depends upon 
Q, i.e., F[x,Q] — F[Q,U]. (We have included the overbar now, as in Lecture II, to avoid 
confusion.) Effecting the chain rule with this additional dependence yields 

FQ = [Fx,Il} + FQ, (IV.136) 

which upon substitution into (IV.121) produces instead of (IV.122), the following: 

{F, G} = - (x, [Fx, Gx)) - ([Q, GX]\FQ) + {[Q, Fj, GQ) 

= - (x, [Fx, Gx}) + (Q, [Gx, FQ] - [F„ GQ]) , (IV.137) 

where the second equality follows from manipulations simliar to those performed above. 
Many systems possess brackets of this (and similar) form(s). The rigid body in a grav- 

itational field is an example of finite dimension. An example of infinite dimension, which 
was first given in the context of reduced MHD*, but also occurs in fluid mechanics, is the 
semidirect product extension of the noncanonical bracket for the 2-D Euler fluid. For this 
example one simply interprets (IV.137) using (IV.124) and (IV.125). 

5. Other Clebsch Reductions: That for the Ideal Fluid 

In this final subsection we present some other forms of Clebsch reductions. The first is 
another way to reduce to the reduced MHD bracket of above. This emphasizes the fact that 
reductions are not unique.   Following this we show another way to reduce to the portion 

*P. J. Morrison and J. M. Greene, Phys. Rev. Lett. 48, 569 (1982) and Morrison (1982), Ref. IV C. 
*See e.g.   Sudarshan and Mukunda (1974), Ref. IV C, J. E. Marsden and P. J. Morrison, Contemp. 

Math. 28, 133 (1984). 
tMorrison and Hazeltine (1984), Ref. IV C. 
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of the ideal fluid bracket, also treated above. Finally we reduce to the complete ideal fluid 
noncanonical bracket. This final transformation is the one actually due to Clebsch. 

Suppose we have a system with canonical variables (Qi(r,t),Ui(r,t)), where i = 1,2 and 
r — (x,y). The canonical Poisson bracket is then 

{F, G}= f (FQ -Gn-GQ- Fn) d2r. (IV.138) 
JD 

The following transformation is a reduction: 

x = [Qi,n1] + [g2,n3] 

* = [QuQi], (IV.139) 

where [, ] is given by (IV. 124). We leave it as an exercise to show via the chain rule that 
with (IV.139), (IV.138) reduces to a bracket of the form of (IV.137). 

Now consider the portion of the fluid bracket discussed above in (IV.132), but now instead 
of (IV.135) we let 

M = QiVUi. (IV. 140) 

where i = 1,2,...TV and N is arbitrary.   We also leave it as an exercise to show via the 
chain rule that with (IV.140), a canonical bracket in terms of (Qi(r,t),Hi(r,t)), where now 
r = (x,y,z), reduces to a bracket of the form of (IV.132). 

Finally, suppose in addition to (IV-14-3) that 

P = Qi, cr = Q2. (IV.141) 

We leave it as a last exercise to show via the chain rule that with (IV.140) and (IV.141), 
a canonical bracket in terms of (Qi(r, tf),II,-(r, £)), reduces to the ideal 3-D fluid bracket of 
(111.89). One can chose iV large enough to describe the velocity field of interest. 
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V.     Stability and Hamiltonian Systems 

This Lecture concerns notions of stability in Hamiltonian systems. In Section A canonical 
systems are considered. Here, basic definitions are reviewed, energy arguments for stability 
are discussed, and the notion of a negative energy mode (NEM) is introduced. An example 
that illustrates properties of NEM's is given, in which context simple Hamiltonian bifurcation 
theory is reviewed. Finally in this section, these ideas are applied to the ideal fluid in 
the Lagrangian variable description. Section B is concerned with stability in noncanonical 
Hamiltonian systems. The energy-Casimir method is described and two examples are given: 
a charged rigid body in an external magnetic field and the 2-D Euler equation. The examples 
exhibit a pathology related to the rank changing behavior of the cosymplectic form, that is 
discussed. In Section C the notion of dynamical accessibility, which can be used to make 
statements about stability, in spite of the rank changing behavior, is introduced. Finally, it 
is shown how Eulerian variations, constrained by the condition of dynamical accessibility, 
lead to the same expression for the potential energy, S2W, as Lagrangian variations. 

A.     Stability and Canonical Hamiltonian Systems 

Consider a dynamical system of the form 

i« = V(*),        i = l,2,...,M, (V.l) 

where, as in Lecture III, we will not get into what is required of V(z) for existence and 
uniqueness of solutions, but just assume everything is alright. An equilibrium point, ze, is a 
type of solution of (V.l) that satisfies V(ze) = 0. Stability concerns the behavior of solutions 
near such equilibrium points. Roughly speaking, ze is stable if solutions starting "close" to 
ze at t = 0 remain close to ze for all later times. This idea is formalized by the following: 

The equilibrium point ze is said to be stable if, for any neighborhood N of ze there 
exists a subneighborhood S C N of ze such that if z(t = 0) G S then z(t) € N for 
all time t > 0. 

At first one might wonder why such a fancy definition is needed. Why introduce the 
subneighborhood? Why don't we just say, if it starts in a set and stays in the set, then it 
is stable? The answer to this is illustrated in Figure 1, which is the phase portrait for the 
simple harmonic oscillator. In this figure the circles are surfaces of constant energy. Here 
we have chosen as a neighborhood N the rectangular region in which we have marked an 
initial condition by the symbol "x". Since trajectories move round and round on the circles 
of constant H, it is clear that in a short time the trajectory starting at x will leave N, in 
spite of the fact that the equilibrium point at the origin is stable. However, if we choose 
initial conditions inside the subneighborhood S, which is defined as the region bounded by 
an H = constant surface contained in N, then the trajectory will remain in N for all time. 
Thus, H = constant surfaces serve as a handy means of defining sub neighborhoods. 
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H=  Const. 

Figure 1: 

Observe that the neighborhood N can be chosen to be any neighborhood N of ze. We 
can make them smaller and smaller, and in this way, probe the stability property of the point 
ze. In the example above we can always find tiny circular energy surfaces inside any N, no 
matter how small. 

When z(t) is determined from the linearized dynamics, 

dVi 

(V.2) 

where now z(t) := ze + 8z, and this dynamics is stable according to the above definition, we 
say that (V.2) or ze is linearly stable. 

One might think, since TV can be made as small as we like, that these types of stability 
are equivalent, but this is not the case, as we shall see below. To distinguish, we sometimes 
call stability under the full nonlinear dynamics, V(z), nonlinear stability. Equilibria that 
are unstable under nonlinear dynamics, yet stable under linear dynamics are said to be 
nonlinearly unstable. This is different from finite amplitude instability, where the equilibrium 
point is nonlinearly stable until it is pushed hard enough. In a sense (almost) all physical 
systems are finite amplitude unstable; for example, any laboratory experiment is unstable 
to a perturbation caused by a large enough earthquake. 

One last definition is that of spectral stability. A linear system such as (V.2) has this 
type of stability if upon substituting 8z = 8z etut, and solving the resulting linear algebra 
problem for to := WR + ij, there exist no solutions with 7 < 0. Clearly, linear stability implies 
spectral stability, but beware, the converse is not true. 

A nice thing about Hamiltonian systems is that they have a built in method for proving 
nonlinear stability. In the case where the Hamiltonian has a separable form, H = p2/2+V(q), 
an old theorem due to Lagrange states that an equilibrium point with pe = 0 and qe being a 
local minimum of V is stable. It is tempting to think that the converse should be true, but 
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a counterexample from the book of A. Wintrier* shows this not to be the case. Consider 

n?)=(e~l/?2c°s(i/<?) q*a (v.3) [ 0 q = 0. 

The equilibrium position qe = 0 is stable, but due to the wild oscillation that occurs as 
q —> 0, the origin is not a local minimum. However, with some relatively mild restrictions 
on V, Lagrange 's theorem is both necessary and sufficient for Hamiltonians of this restricted 
form. Sufficiency follows since surfaces of constant H serve to define subneighborhoods, as 
in the example of the simple harmonic oscillator above. Necessity is more difficult to see, 
but rests upon the idea that there exists a direction where the trajectory can fall down to a 
state of lower potential energy. 

For "well-behaved" V(q), stability can be determined by analyzing the potential energy 
matrix, d2V(qe)/dqidqj. If all the eigenvalues are greater than zero, the equilibrium point 
H defines good subneighborhoods (topological 2N-spheres) and the equilibrium is stable—in 
fact nonlinearly stable. If there exists a negative eigenvalue the system is unstable. 

One might be fooled into thinking that nonlinear stability implies linear stability; how- 
ever, with a little thought you can see that this is not true. The one degree-of-freedom 
system with potential 

V(q) = £ (V.4) 

has an equilibrium point qe = 0, and it is clear that this is nonlinearly stable since H defines 
good subneighborhoods. However, the linear dynamics satisfy 

8p = 0,        6q = 8p (V.5) 

and thus 
Sp = constant, Sq = Sqo + Spt. (V.6) 

Obviously, trajectories leave any neighborhood of the equilibrium point provided 8p ^ 0. 
This example also reveals why spectral stability does not imply linear stability. Adding 
another degree of freedom, (q',p') and defining the potential V(q, q') = q4/4: + q'2/2, produces 
a linearly unstable, yet spectrally stable, system. 

In the 1950's, project Matterhorn was begun at Princeton for the purpose of investigating 
controlled fusion reactions as a source of energy. The idea was (and still is) to confine hot 
plasmas by means of magnetic fields. Since the dominant force balance is governed by 
MHD, a great deal of stability analyses using this model were undertaken in a variety of 
confinement configurations invoking different magnetic field geometries. What is in essence 
the infinite degree-of-freedom version of Lagrange's theorem was worked out for MHD*. This 
goes by the name of the energy principle or "6Wn (which is in fact the second variation 
of the potential energy). Extremization techniques applied to this quantity have been used 

*A. Wintner, The Analytical Foundations of Celestial Mechanics (Princeton University, Princeton, New 
Jersey, 1947). 

*I. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. Roy. Soc. A 244, 17-40 (1958); 
Von K. Hain, R. Lust, and A. Schlüter, Zeitschrift für Naturforschung A 12, 833-841 (1957); G. Laval, C. 
Mercier, and R. Pellat, Nuc. Fusion 5, 156-158 (1965). 
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to determine stability and instability, and such procedures were automated in PEST, the 
Princeton Equilibrium and Stability code, and elsewhere. Early MHD calculations were 
successful in explaining and eliminating the fastest plasma instabilities. 

Often, (as we shall see) Hamiltonian systems are not of the separable form H(q, p) — 
p2/2 + V(q), but are instead general functions of q and p. When this is the case another old 
theorem, which is sometimes called Dirichlet's theorem, gives a sufficient condition for stabil- 
ity. It should be no surprise to you now that if in the vicinity of an equilibrium point surfaces 
of H = constant define a family of good neighborhoods, then the equilibrium is nonlinearly 
stable. For well-behaved Hamiltonians one need only analyze the matrix d2H(ze)/dz,dz:>, 
where z := (q,p). If this quantity is definite, i.e., there are no zero eigenvalues and they 
all have the same sign, then we have stability. Observe that H could in fact be an energy 
maximum. This can occur for rigid body dynamics and is typically the case for a localized 
vortex in fluid mechanics. 

There is an important example due to Cherry* that illustrates two things: that Dirichlet's 
theorem is not necessary and sufficient and that linear stability does not imply nonlinear 
stability. Cherry's Hamiltonian is 

H = Jo*« + ql) - \*x{p\ + q\) + \a [2qlPlp2 - q2{q\ - p\)\ , (V.7) 

where w1)2 > 0 and a are constants. If a is set to zero Cherry's system reduces to a 
linear system of two stable simple harmonic oscillators. However, because of the minus sign, 
d2H/dzidzj is not definite. Observe that this minus sign cannot be removed by a time 
independent canonical transformation and in the generic case cannot be removed by any 
canonical transformation. Oscillator "1" of this system is a negative energy mode (NEM). 

Negative energy modes are important because when dissipation is added, they tend to 
become linearly unstable: If energy is removed from an NEM its amplitude increases1'. Also, 
with the inclusion of nonlinearity NEM's can be driven unstable. The example of Cherry 
demonstrates this; assuming a ^ 0 and u>2 = 2u>i, (V.7) possesses a solution* of the form 

y/2    . , x V2       /   ,      x 
qx = - sm(wi< + 7), Pi = 1 cos(w!< + 7) 

e — at e — at 

q2 = ^- sin(2a;1< + 27), p2 = ^— cos(2o;1i + 27). (V.8) 
e — at e — at 

This is a two parameter, (0,7), subfamily of the general four parameter solution set of 
Cherry's system. These solutions are of interest since they can diverge in finite time. In 
fact, in any neighborhood of the equilibrium point q\ = q2 = Pi = P2 = 0 there exist 
initial conditions for solutions that diverge in finite time.   Such behavior is referred to as 

*T. M. Cherry, Trans. Cambridge Philos. Soc. 23, 199 (1925) 
tThis is a fairly old idea that is sometimes called the Kelvin-Tait theorem. See W. Thompson and P. G. 

Tait, Treatise on Natural Philosophy (Cambridge University Press, Cambridge, 1921), part 1, p. 388. 
*See E. T. Whittaker, Analytical Dynamics (Cambridge University Press, London, 1937), Sec. 136, p. 101, 

but be careful because there are typographical errors. 
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explosive growth and is characteristic of systems that possess both NEM's and resonance. 
Another example is the well-known "three-wave" problem8. The three-wave problem and 
Cherry's "two-wave" problem are examples of systems with order three resonances that are 
driven unstable by cubic terms in the Hamiltonian. These are in fact normal forms that are 
obtained upon averaging a general class of Hamiltonians. Thus explosive behavior is to be 
expected when there is resonance. When the resonance is detuned these systems generally 
are finite amplitude unstable and systems with three or more degrees of freedom may in fact 
be unstable, although with very small growth. 

One might think that systems with NEM's are artifacts or unphysical, purely mathemat- 
ical, oddities; this, however, is not the case. They occur in fluid and plasma systems* for a 
reason that will become clear below. Generally, they occur in mechanical systems with gyro- 
scopic forces, like the Coriolis force, and they occur in the dynamics of particles in magnetic 
fields. An example that exhibits both of these is described by a Lagrangian of the form 

L = \m(x2 + y2) + G(yx - xy) + \k{x2 + y2), (V.9) 

where G is a constant that is either proportional to the constant angular speed of a rotating 
coordinate system or to a constant magnetic field. Note that for k > 0 the potential en- 
ergy term corresponds to a hill and thus without the gyroscopic term the system would be 
unstable. Upon Legendre transforming and scaling, the following Hamiltonian is obtained: 

H = \{p\ + p\) + OJG(12PI - qxP2) + \{<fa - w'M + <fe2), (V.10) 

where the two time scales of the problem are determined by the frequencies 

«o:=-, u;*:=Mp. (V.ll) 
m V rn 

Assuming «7112, pi,2 ~ e,wi, it is easy to solve for eigenvalues, 

W = ±iOk(V^l ± y/i) , (V.12) 

where e := UQ/UJ
2

.. This system possesses the three types of Hamiltonian spectra: 

1. LO = ±CUR stable 

2. Lü = ±ij unstable 

3. u> = ztu>R ± iui unstable 

^See e.g. C. Kueny, "Nonlinear Instability and Chaos in Plasma Wave-Wave Interactions," Ph.D. Thesis, 
University of Texas at Austin (1993) and many references cited therein; See also D. Pfirsch, Phys. Rev. 
D 48, 1428 (1993). 

*In the context of MHD see J. M. Greene and B. Coppi, Phys. Fluids 8, 1745 (1965); of fluids see R. A. 
Cairns, J. Fluid Mech. 92 1 (1979), R. S. MacKay and P. G. Saffman, Proc. Roy. Soc. A 406, 115 (1986), 
P. Ripa, Geophys. Astrophys. Fluid Dyn. 70, 85 (1993); and of Vlasov theory see P. J. Morrison and D. 
Pfirsch, Phys. Rev. A 40, 3998 (1989), Phys. Fluids B 2, 1105 (1990) and ibid. 4, 3038 (1992). 
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In Hamiltonian systems eigenvalues occur in doublets or quartets. Case (1) is the only stable 
case. It occurs in the example when e = ci^/w* > 1, which means the rotation or magnetic 
field is large enough to make the system stable in spite of the destabilizing potential energy. 
In this case we have two stable doublets, a fast one and a slow one. The slow one is an NEM. 
For e > 1 there exists a canonical transformation (q,p) -* (Q,P) that takes H into 

H(Q, P) = ->,(ps
2 + Ql) + W/ + Q)). (v-13) 

which is the linear part of Cherry's Hamiltonian. The canonical transformation is effected 
by the following mixed variable generating function: 

F2(qu 92, Pf, P.) = <qiPs + toPf) + PfPs + \c2qiqi, (V.H) 

where c:=[4(wä-^)]1/4. 
Case (2) occurs if G is set to zero. There exist two unstable doublets, corresponding to 

the two directions for falling off the hill. 
Case (3) occurs when e < 1. This case of the quartet obviously requires two degrees of 

freedom, and is obviously unstable. 
A nice feature of the above example is that it displays the two kinds of bifurcations that 

are generic to Hamiltonian systems. The first is when a doublet makes a transition between 
cases (1) and (2). There is a steady state bifurcation where the frequencies go through the 
origin of the w-plane as shown in Figure 2. Here the stable pair is indicated by x while the 

7    u>-plane 

Q 

-X — 

« 

-X- 
Ws 

Figure 2: 

unstable pair by the <g). This bifurcation generally occurs in systems where the Hamiltonian 
is separable, i.e. H = p2/2 + V(q), i.e. those for which Lagrange's theorem applies. It occurs 
in one degree-of-freedom systems where the potential goes from concave up to concave down. 
The arrows of the figure correspond to this case. For the system of (V.10) it occurs when 
G = 0 and u>l —> -u>\. 

The other bifurcation, which is something called a Krein crash, is illustrated in Figure 3. 
The arrows indicate the path followed by the eigenvalues of system (V.10) as e is decreased 
from some value greater than unity. At e = 1 the fast and slow modes coalesce at a value 
\uk\ ^ 0. Two possibilities exist: either the modes go through each other and remain on the 
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Figure 3: 

real axis or they can migrate off the real axis as shown in the figure. Krein's theorem* states 
that a necessary condition for this latter case is that the signature of the colliding modes 
must be different, i.e. one of them must be an NEM. The proof of Krein's theorem is not 
difficult; it relies on the fact that definite Hamiltonians cannot have instabilities. 

Krein's theorem provides a means for detecting the occurrence of NEM's. If you have 
performed an eigenanalysis in some nondissipative system, one that you believe is Hamil- 
tonian, and you observe the bifurcation described above, there must exist an NEM. This 
bifurcation is very common in fluid and plasma models. Why? 

To answer this question we return to the Hamiltonian formulation of the ideal fluid in 
terms of the Lagrangian variables q and ir that we discussed in Lecture II. Since we have 
defined an equilibrium point of a dynamical system to be a solution obtained by setting 
time derivatives to zero, it is evident that the sets of Lagrangian and Eulerian equilibria 
are not equivalent. Although static Eulerian equilibria, i.e. ones for which v = 0 for all 
r, certainly correspond to Lagrangian equilibria with TT — 0 and q = constant, stationary 
Eulerian equilibria, i.e. ones for which v = v(r), do not correspond to Lagrangian equilibria, 
but to a particular kind of time dependent orbit, which we denote by 

qe = qe(a,t), we = xe(a,t). 

The functions above are particular in that they have the properties 

/>o(«) 
J(a,t) = Pe(r) 

a=Qe1 (r,t) 

so(a)|a=ge-i(rii) = se(r) 

TTe(a,t) 

Po a=qe
1(r,t) 

= 9e(M)|0=ge-iM=ue(r), 

(V.15) 

(V.16) 

(V.17) 

(V.18) 

♦Moser (1958) and (1968), Ref. VA. 
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where we emphasize that, upon doing the substitutions indicated on the right hand sides of 
the above equations, the resulting functions pe, se and ve are independent of time. 

Although (qe,TTe) does not constitute a Lagrangian equilibrium state, it is a reference 
state about which we could linearize. We could set 

TT = ire(a,t) + p(a,t) (V.19) q(a,t) = qe{a,t) + £(a,t), 

and expand (11.88); however, the resulting equation would have explicit time dependence 
due to that in (qe,ire)- Even when the time dependence is periodic, analysis of such linear 
equations is not trivial (recall Mathieu's equation). 

We can get out of this bind by an old trick. To see this we turn to the action principle 
of (11.72), insert (V.19), and expand 

S[q] = S[qe] + SS[qe; £] + S2S[qe; £] + .... (V.20) 

The first term of (V.20) is merely a number, while the second term vanishes since the reference 
trajectory qe is assumed to be a solution and is thus an extremal point. The third term, 
upon variation with respect to £, generates the linear dynamics relative to the reference state 
qe. It is given by 

S2S[qe; fl = jT dt JD d
3a   \ p0? -  ^     [(&)' + & 6,i] - pluP PI 

2J*Upp (6.<)a 

Qe 

(V.21) 
It is important to observe that in (V.21) the term involving Up and Upp possesses the explicit 
time dependence arising from qe(a, t). The old trick is to view the perturbation of a trajectory 
in a frame of reference moving with the reference trajectory. This can be done since qe = 
qe(a,t) is invertible. Thus we define 

^M)^(M)U-M. (V.22) 

The quantity rj(r, t) is a sort of Eulerian field for the Lagrangian displacement variable. A 
time derivative of (V.22) yields 

C(M) = fU        + A. <l*\a=q7\rJL) dt dr 

or in light of (V.18) 

i(a,t) = ^l + ve(r).Vr,(r,t). 

(V.23) 

(V.24) 

Note that we have used " •" for time derivatives at constant a and d/dt for time derivatives 
at constant r. Since in (V.24) ve(r), the equilibrium velocity, is time independent, no explicit 
time dependence is introduced by this transformation. 

It is interesting and revealing to compare (V.24) with the transformation for time deriva- 
tives when going into a rotating frame of reference 

d_ 
dt fixed 

d_ 
dt 

+ Ü x (V.25) 
rot 
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Just as the second term of (V.25) gives rise to noninertial (or fictional) forces, notably the 
Coriolis force that gives rise to the gyroscopic term in the Hamiltonian of (V.10), the second 
term of (V.24) will give rise to a noninertial type force in the fluid Hamiltonian. Transforming 
(V.21), using (V.22) and (V.24) yields 

62S[r,} = i £ dt jD d
3r (Pe \r! + Ve.VV\2-r,^e-r,) (V.26) 

where 93e is an operator, although one without explicit time dependence because it is now a 
function of the equilibrium quantities pe and se. The second term, the potential energy, can 
be written as 

62W:=\j d3rTj-<Be-ri 

= 1 jD d*r ((V • nf P.j& + (V • V)(V ■ Vpe)) , (V.27) 

where pe(pe, se) is the equilibrium pressure expressed as a function of the equilibrium density 
and entropy. 

We can now obtain the (time independent) Hamiltonian by Legendre transformation. 
The canonical momentum is given by 

CT 

P=jr = Pe(fi + ve • VT?) , (V.28) 

whence the Hamiltonian is seen to be 

S2H[p, r,] = ljD d
3r iX--2p- (ve ■ VT?) + V ■ 93e • V) , (V.29) 

which has the "noninertial" term — p,- vej dr)i/drj that is reminiscent of the gyroscopic term 
of (V.10). 

Now, it should come as no surprise that ideal fluids typically have negative energy modes, 
and generally S2H is not positive definite as required for Dirichlet's theorem. In spite of 
the indefiniteness of 82H the system can be spectrally stable; Lagrange 's theorem, which is a 
necessary and sufficient condition for stability, is not possible since the Hamiltonian is not 
of the separable form. 
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B.    Stability and Noncanonical Hamiltonian Systems 

In noncanonical Hamiltonian systems it is still the case that equilibria occur at extremal 
points of the Hamiltonian, 

Fin 
zi = rPr = [zi,H} = 0, (V.30) 

but the situation is more complicated. To see that something is amiss, consider the variation 
of the energy for a barotropic fluid, where 

H\pM= I [>2 + pU(p)] d3r ; (V.31) 

namely, 

SH 
— = /w 
bv 

S-^ = j + u(p) + pu(p) ■ <v-32) 

Setting the right hand side of (V.32) to zero results in the trivial equilibrium state with 
v = 0 and p = constant (which is generally zero). If this were the only equilibrium state, 
fluid mechanics would not be a very interesting discipline. Where are the other equilibria? 
Why are they not extremal points of the Hamiltonian? 

To answer these questions, compare (V.30) with its counterpart for the canonical case: 

iW^H = o. (V-33) 

Since detJc = 1, it is evident that i = 0 implies dH/dzj = 0. Thus all equilibria are extremal 
points. However, in the noncanonical case this is not so when det J = 0. In the vicinity of 
points where the rank of J does not change, the null space of J is spanned by dCa/dz\ 
a = 1,2,... v, where v is the corank of J. In this case the general solution to (V.33) is given 

by 
dF_ 
dzi 

dH 
d\{ 

,   dCa 

dzi 
Ze. 

0. (V.34) 
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Here Xa are Lagrange multipliers, which are determined by choosing the values of the con- 
stants Ca. Thus (V.34) gives those equilibria that lie on the symplectic leaf with the chosen 
values. 

Not surprisingly, the linear dynamics obtained by setting z = ze + Sz and expanding to 
first order, exhibits behavior arising from det J = 0, namely, the existence of zero frequency 
modes. The equation for the linear dynamics is easily seen to be 

Si = Äk{ze)8zk, (V.35) 

where 
AiW!ss^®=:A- (v-36) 

[Note, this linear dynamics has a Hamiltonian structure with the Poisson bracket defined 
by Je (which is constant) and the Hamiltonian given by S2F := 1/2 Fjk SzfSzj.] Assuming 
Sz ~ ewt yields an eigenvalue problem with a characteristic equation given by 

det(iW -A) = 0, (V.37) 

where zero frequency modes satisfy 
det A = 0. (V.38) 

In the canonical case, A is given by 

4k = JiJH,jk (V.39) 

and 
det(4 k) = det(J?)det(H,jk) = det(H,jk). (V.40) 

Thus all the zero eigenvalues of Ac arise from det(Hjk) = 0. These zero eigenvalues corre- 
spond to (local) troughs in the energy surface. 

In the noncanonical case zero eigenvalues can arise from two places, namely, det(Ju) = 0 
and det(Ftij) = 0. An accounting of these zero eigenvalues is given by 

Rank(A'fc) < min{Rank(J,'j),Rank(JFijk)}. (V.41) 

Thus for every Casimir there exists a null eigenvector, Sz*. To avoid complication suppose 
det(Fjk) i1 0, i.e. that there are no local troughs in F, then all the null eigenvectors come 
from degeneracy in the bracket and they are given by 

gzo = (F-i)*;^), (V.42) 

where (F'^Fji = Sf. Evidently, with Sz0 given by (V.42), 

A{Szl = JijFjkFkl^ = J'Ä = 0. (V.43) 

In spite of the existence of null eigenvalues, a version of Dirichlet's theorem goes through 
in the noncanonical case.   Since F is a constant of motion it can be used tu define the 
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C =  constant 

F = constant 

Figure 4: I 

subneighborhoods in the definition of stability given above, provided S2F — l/2FjkSz'6zk = 
constant defines compact (as depicted in Figure 4) surfaces in the vicinity of ze. This will I 
be the case if i*jfc(ze) is definite. ' 

It is of interest to note that this prescription for stability places no restrictions on Sz, 
even though dynamically Sz is confined to surfaces of constant Ca (as depicted Figure 4). We I 
will see in the next section that sometimes it is useful to take advantage of this information. ' 

Although the picture described above for equilibrium and stability of noncanonical Hamil- 
tonian systems may seem nice and tidy, there is a complication that occurs at places where I 
the rank of J changes. Generally, this happens at isolated points but it can happen on curves ' 
or surfaces. When the rank changes it is no longer true that setting z% = 0 and solving for 
ze is equivalent to solving (V.34) for all choices of Xa. When the rank decreases on an open I 
set, there is no problem in obtaining new Casimirs whose gradients span the null space of 
J. However, when the rank changes at (for example) a point, a new null eigenvector of J 
appears, an eigenvector that cannot be written as a gradient in the normal way. I 

The above pathology is perhaps best illustrated by an example. Consider the free rigid 
body of Lecture III, but modified so that the Hamiltonian has the form I 

jjj + ÄAj- (™) | 

Here, we have added the linear term with Bi constant and nonzero for i = 1,2,3. This 
Hamiltonian is a sort of mixture between that of a spin system and a free rigid body. This 
form serves our purpose and we won't dwell on the physics, although it isn't hard to imagine 
a physical system where Hamiltonians of this form might arise. The equations of motion are 
now 

it = -tijAjjr = -«a*** [j. + Bi\ (v-45) 

and it is clear that equilibria must satisfy I 

li{I?l2 + B2) - £2(lr% + Bi) = 0 

ti&Hs + B3) - 4(/f ^i + £i) = 0 (V.46) 
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l2(I^% + B3) - £Z{I2H2 + B2) = 0. 

From (V.47) it is clear that a nonrotating configuration with £\ — £2 = £3 = 0 is an 
equilibrium point, but there are other, uniformly rotating equilibria as well. 

Now, consider the equilibria that arise upon extremizing F = H + AC, where C is given 
by (111.45). (Note the Casimirs remain the same as in Lecture III since we have not altered 
the bracket—only the Hamiltonian.) From dF/dti = 0 for i = 1,2,3, respectively, we obtain 

AC/f1 + A) = -B, 

4(/-i + A) = _j32 

4(/3-1 + A) = -JB3. (V.47) 

It is evident from (V.47) that there exists no choice of A for which the equilibrium point 

£1=£2 = £3 = 0 (V.48) 

extremizes F. Observe, also, that the inequivalence of (V.47) and (V.44) occurs for an 
equilibrium, namely (V.48), that corresponds to a point where Jij — —tijk£k changes from 
rank 2 to rank 0. 

Another example* where 8F = 0 does not yield all equilibria, is that of the 2-D Euler's 
equations for fluid motion (cf. Lecture III). Here the equation of motion yields the equilibrium 
relation 

_ = [u;,^]=0, (V.49) 

which is satisfied if a; and tp are functionally dependent. Suppose S = S(x,y) defines a locus 
of points, then the equilibrium relation is satisfied if u>e = uje(S) and i/?e = ij>e(S). Note that 
we need not be the graph of ij)e and vice versa. Thus we can write, e.g. 

We = G(V>e) , (V.50) 

where G(i}>e) is an arbitrary function of ipe. 
Let us contrast this with the equation obtained upon varying the functional F = H + C, 

which for the 2-D Euler equations, is given by 

F[u] = -i / il>u><?r+ I C(u) <Pr. (V.51) 

The functional derivative SF/Sco = 0 implies 

V>e = C'(we) • (V.52) 

•This example is credited to V. Arnold, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (54), 3 (1966) and (1966), 
I.e. Lecture III, which is the origin of the popular terminology "Arnold's method" or "Arnold's theorem" for 
the application of these ideas to other situations. This terminology is erroneous since the method was used 
in earlier papers: R. Fjortoft, Geofy. Pub. 17, 1 (1950), W. Newcomb, in Appendix of I. Bernstein, Phys. 
Rev. 109, 10 (1958), M. D. Kruskal and C. Oberman, Phys. Fluids 1, 275 (1958), C. S. Gardner quoted in 
K. Fowler, J. Math. Phys. 4, 559 (1963) and Phys. Fluids 6, 839 (1963), and K. Fowler, ibid. 
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Assuming C'(u) is monotonic we can solve for u as follows: 

a;e = VVe=C'-1(V'e). (V.53) 

Thus here, in contrast to (V.50), the vorticity must be a monotonic function of the stream 
function—if it is not, then it does not satisfy (V.52) and hence is not extremal.  (Suppose 

V>0 ^ ^1 and ^(V'o) = w(V>i) = w*'   Then (V-52) imPlies ^o = C'(w.) = V>i, which is a 
contradiction.) 

In stability analyses it is important for the equilibrium to be extremal. When this is the 
case, as for the monotonic equilibria above, one can calculate the second variation 

8>F[ue]8u;} = U (iVVf + C'W2) d 2r 

= l/U2 + <M*(%5r)>- (V.54) 

where the second equality follows upon differentiation of (V.52) with respect to tj)e. Formally, I 
if we have an equilibrium for which du>e(^e)/dipe > 0, then 82F is positive definite and in I 
analogy with finite degree-of-freedom systems we could claim stability, in a "norm" defined 
by 82F. This would also be the case if due(ipe)/dipe < 0 and the second term of (V.54) could I 
be shown to always dominate the first when 8u is in some space. This case, which is typical I 
of localized vortices, corresponds to an energy maximum. In either case the situation would 
be pretty good, but in infinite dimensions things can still be slippery. Recall in Lecture II I 
we gave an example of a functional with positive second variation at a point that was not ' 
a minimum.   The condition of strong positivity is needed to show convexity.   A rigorous 
stability analysis requires the definition of a Banach space in which the solution must be I 
shown to exist. Convexity is one technical piece that is needed in a complete proof of stability. ' 

If the first variation exists and does not vanish on the equilibrium of interest, then it is 
impossible for F[cve] to be convex and thus impossible to obtain a norm as discussed above. I 
It can turn out that the functional is not differentiable at the equilibrium of interest but 
still can be proven to be stable by obtaining appropriate bounds*. Another technique is to 
restrict the class of variations so that they lie within symplectic leaves. In the next section I 
we will see how this removes problems related to the rank changing behavior of J. 
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C.    Dynamical Accessibility 

Dynamically accessible perturbations are ones for which all the Casimir invariants are un- 
changed. As depicted in Figure 5, these perturbations lie in the surfaces defined by Ca = 
constant for all a. In the prescription described above for obtaining equilibria of noncanoni- 
cal systems from a variational principle, the energy was extremized subject to a selection of 
Casimir invariants. The values of these invariants are determined by the Lagrange multipliers 
(and vice versa). In contrast, dynamically accessible perturbations are "direct" variations 
that automatically satisfy the constraints without choosing their particular values. The 
particular constraint surface is selected after the fact by the equilibrium point, rather than 
by Lagrange multipliers. Since the cosymplectic form, J*-7, projects (co)vectors onto the 
symplectic leaves, it is natural to consider a first order variation of the form 

64a = [G,zi] = JJi(z)9j, (V.55) 

where Q := z%g{. Here the arbitrariness in the variation is embodied in the arbitrariness in 
the generating function gj, but because of the presence of J,J the variation S^z^a is arbitrary 
only within the symplectic leaf. Observe that J,J is evaluated at any point z, in practice this 
will be a candidate equilibrium point that is determined after setting the first variation to 
zero. 

Whether or not one wants to restrict to dynamically accessible variations, as described 
above, is a question of physics that likely must be determined on a case by case basis. In 
some systems the constraint is quite robust, while in others it is not. However, we will 
make the comment that if there exist mechanisms for creating perturbations that are not 
dynamically accessible, then it would seem appropriate to reexamine the model equation to 
see if such a mechanism should be incorporated into the dynamics. 

Before considering equilibria and stability with this kind of variation, let us show explicitly 
that S^Zda preserves the constraints to first order: 

«CM-fJrf'V-g^r-O. (V.56) 
An expression that preserves the constraint to second order is given by 
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Figure 5: 

Here we have added the superscripts (1) and (2) to distinguish the first order from the second 
order generating functions. Inserting (V.57) into 82C and using the fact that JtjdC/dzl = 0 
(in at least an open set) verifies the assertion. 

In the case where JlJ = cj!zk, the first and second order variations have the form 

*(1)4 = = 4*9? 

A convenient form to all orders is given by 

icl'k 

(V.58) 

(V.59) 

where Az := z — z is a finite variation. The infinite dimensional analogue of (V.59) can be 
used to construct finite leaf variations, which are important for proving convexity in infinite 
dimensional systems. Expanding g = gW + g^ + ... and the exponential of (V.59), yields 
Eq. (V.58) to second order. 

Return now to the example of the rigid body with the modified Hamiltonian. Using 

S£ta = eijkhgj, (V.60) 

we obtain u ^ 

{ir^i + B^dug? = 0, (V.61) SF ?L s& = — 8id 

d£i   *     dii   * 

for the extremal equilibrium condition. Equation (V.61) yields a result that is identical to 
(V.47), the equilibrium condition obtained upon setting £,• = 0 in the equation of motion. 

In the case of the 2-D Euler fluid 

8ojda = {G,u} = -\g,w]i (V.62) 
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where Q := fDu>g <Pr with g arbitrary, and 

8Fda := 8F[u; 8u)da] = - / rf> 8uda d
2r 

JD 

= I  i>\g,w) d2r = - I g[t/>,u] <Pr = 0, (V.63) 

which implies [ip,u;] = 0—the condition obtained upon setting du/dt = 0 in (V.49). 

Proceeding now to the second variation, it is clear that stability can depend upon the 
class of variations allowed. Decomposing a general perturbation as 

8z = Szda + Sznda (V.64) 

and inserting into 82F yields 
S2F = S2Fda + 62Fnda, (V.65) 

where 
2      _ !    d2H(ze) 

SFda->[^7dzT + x ̂ ?^^)jli(^1)jkj(^)- (V.66) 

Note, it is always the case that S2Fnda depends only on the first order flf's. It is evident that 
82F can be indefinite because of the presence of 62Fnda, even if 62Fda, which involves only 
perturbations of the form J,J(.ze)#>1% is of definite sign. An example is given by the free rigid 
body with the equilibrium 

RT 
^ = "ÄÄTT' ^=^ = 0, (V.67) 

where we set Bi = B and B2 = Bs = 0. In this case 

^ = -2>>* + \ ({ - i) («0« + \ {{ ' i) W ■ (V.68) 

If I\ < Ii < I3, the last two terms are positive; however, the first term can have either sign. 
Dynamically accessible perturbations satisfy 

8iia = eijkee
j9k = eijk£e

j9k ; (V.69) 

hence S£fa = 0. Therefore, S2Fda is definite, even though 82F need not be. Observe that the 
nondynamically accessible perturbation corresponds to the null eigenvector described above. 

In this example, and above, we substituted the first order dynamically accessible variation 
into the second order quantity 82F. To some of you it may not be clear that 82Fda is identical 
to 82Hda, which is obtained by expanding H to second order and then inserting (V.55) and 
(V.57). It is, however, straightforward to show that these are in fact identical. Expanding 
some Casimir Ca to second order about the equilibrium yields 

A(3)c,a = tt^V + |#§^(1)^(V , (V.70) 
dzx 2dz*dz> v       ' 
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but, when restricted to the constraint surface, (V.70) reduces to 

A (2),™ _ dC" JUJ1) + ?£L TlinW 

+ 2dz< dzl
0
Je9t  9j   + 2dzidz'e91   J'9«   • ^-U) 

I 
The first and second terms in (V.71) clearly vanish because 

JtJ'|£ = 0. (V.72) 
ozi 

However, by exploiting the local nature of the constraint surface, it is also possible to show 
that the last two terms cancel, so that, to second order, A^C^ vanishes identically. Indeed, 
one can realize (V.72) as a Taylor series about the equilibrium point ze and observe that, 
since this equation holds for all z (at least in a neighborhood of ze), each power of 6z in the 
expansion 

° dzi       e dd+      \dzi dzi +   e dzldzi) + l        } 

must vanish identically. The first term in (V.73) is clearly zero, while the vanishing of the 
second term, the one linear in 8z\ yields the desired relation 

dJldc^   _**&_ (v 74) 
dzi  dzi e dzl

edzi ' 

between the first and second partial derivatives of Ca. It follows immediately that the second 
variation A2 da = 0. 

Similarly, expanding H to second order yields 

A(2)# = 0Bfr)j + f^V + I J^tfVrf V , (V.75) 
dzl oz% * oz^oz1 

which, when restricted to lie within the constraint surface, takes the form 

It is evident that the first term of (V.76) is the same as the first term of the free energy 
S^Fda, but in order to compare the second terms in these relations, one must again use 
(V.74) and the equilibrium condition (V.34) involving the Lagrange multipliers. Indeed, by 
summing (V.74) over Xa and then exploiting (V.34), one concludes that 

x jii^£L - _x M^! _ ?1L?K rv 771 
a e dzidzi "   a dzi dzi    dzi dzi' y ' ) 

It thus follows that, as was asserted, the constrained variation S^2'Hda — 8^2>Fia. 
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Now we show how dynamically accessible variations are related to Lagrangian variations, 
in the context of the ideal fluid. In particular we will relate the Lagrangian and Eulerian 
potential energy functional. 

To obtain dynamically accessible variations for the fluid, the following functional: 

G:= [ (M-ri + hp + ka) d3r, (V.78) 
JD 

can be inserted into the bracket of (111.89). Here the arbitrariness of variation within the 
symplectic leaf is described by the free functions of r: 77, h, and k. We will only need the 
expressions for the first and second variations of the density and entropy per unit mass 

S^W = {0, *} = V • (a^J = V • H) (V.79) 

*(2W = §{£,{£,/>}} = |V'.[lyV .(pi,)] 

#*>** = \{{G, G, *}} = JV • foV • (arj)} . (V.80) 

(Note we are not expanding Q since we already know only the first order part contributes.) 
Observe that the variations of (V.79) are compatible with those of (IV.101), which are 
induced by variation of the Lagrangian coordinates. 

The potential energy functional for the ideal fluid is 

W[p,<x} = I   pÜ(p,a)d\, (V.81) 
JD 

where recall U is the internal energy per unit mass and a — ps. In terms of the function 
U(p, a) the equation of state for the pressure is given by 

„,      .       2fdÜ     adÜ\ ,„„n, 

«»'^'{T,*-,■*)■ (V-82) 

Here we have used the tilde to indicate that the dependence is upon p and a instead of p 
and s. Upon Taylor expansion, the second order potential energy functional is seen to be 

S2W == I JD ( (sUpf (pÜpp + 2ÜP) + (SU*)2 (pü„) + 2 (SU* 8Up) (pÜp<T + Ü.) 

+ 2 (sMp) (PÜP + Ü)+2 (S^a) (pÜa) ) d3r , (V.83) 

where subscripts denote partial differentiation. Inserting (V.79) and (V.80) into (V.83) cre- 
ates a relatively complicated formula, one with terms that are similar but with no immediate 
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simplification. What we have is in reality a sort of integration by parts puzzle. We will not 
give all the details here of a calculation that gets us to the desired end, but only a few 
"landmarks." The first move is to integrate the second order variations by parts. Next, the 
terms are grouped as follows: 

S2Wda = \ JD ((V • n)2 (p3Üpp + 2p2Üp + o2p\Jca + 2a?Ü9, + 2apÜc) 

+ (V • 7/) {n ■ Vor) {apfj„ + p2Üpa + pÜp) 

+ (V • r,) (r, • Vp) (p2Üpp + 2pÜp + apÜpc + <rÜ9) J dzr, (V.84) 

which upon making use of (V.82) can be put into the form 

S2Wda = 1 JD ((V • nf (ppp + <rpa) + (V • n) (V ■ Vj5)) d3r. (V.85) 

The definition p(p, s) := p(p, a) and the chain rule imply ppp + vpo = PPP, which when used 
in (V.85) yields, finally, 

82Wda = \ JD ((V • rj)2 (pPp) + (V • rj) (17 • Vp)) <Z3r . (V.86) 

This expression, when evaluated on p = pe and a = <re, is precisely that of (V.27), which 
was obtained in the strictly Lagrangian variable context. We have thus, in a sense, gone full 
circle! 
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Applications of Hamiltonian theory to GFD 
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1    Generalized Hamiltonian dynamics 

1.1    Introduction 
Virtually every model used in Geophysical Fluid Dynamics (GFD) is, in its conservative 
form, Hamiltonian. This is not too surprising since the fundamental equations from which 
every model is derived are themselves Hamiltonian: namely the three-dimensional Euler 
equations for compressible, stratified flow (Morrison & Greene 1980; Morrison 1982). 

The Hamiltonian formulation of dynamics is relevant to the description of many dif- 
ferent phenomena. In the field of theoretical physics, it provides a general foundation for 
quantum mechanics, quantum field theory, statistical mechanics, relativity, optics and celes- 
tial mechanics. Hamiltonian structure constitutes a unifying framework, wherein symmetry 
properties are readily apparent which may be connected to conservation laws by Noether's 
theorem. One therefore expects some of the same advantages to hold in GFD. 

In these lectures we will consider particularly the application of Hamiltonian structure 
to problems involving disturbances to basic states. As we shall see, such diverse topics as 
available potential energy, wave action, and most of the well-known hydrodynamical stability 
theorems (static stability, symmetric stability, centrifugal stability, and the Rayleigh-Kuo 
and Charney-Stern theorems) may all be understood — and in some cases significantly 
generalized — within the Hamiltonian framework. 

It is sometimes objected that Hamiltonian structure is irrelevant to GFD because real 
fluids are viscous. Against this, we note simply that many phenomena in GFD are essentially 
conservative (inviscid, adiabatic) since they occur at high Reynolds numbers, Re ~> 1. For 
example, in the free atmosphere Re ~ 1015. Thus many GFD phenomena (instabilities, 
wave propagation, and wave, mean-flow interaction) are traditionally studied within the 
framework of a conservative model. Even if non-conservative effects arise, these may often 
be understood as localized effects on otherwise conserved quantities: examples include fronts, 
shocks, and gravity-wave drag (cf. Benjamin & Bowman 1987). 

Moreover, many of the most interesting phenomena in GFD arise from the nonlinear 
(usually advective) terms in the relevant equations. Examples include wave, mean-flow in- 
teraction, energy budgets and conversions, and spectral transfers in turbulent flow. These 
nonlinear terms are conservative, and are therefore part of the Hamiltonian structure of the 
problem. It follows that the nonlinear interactions are constrained by preservation of invari- 
ant quantities (e.g. energy, enstrophy) which are connected to the underlying Hamiltonian 
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structure of the model: one cannot deduce the correct spectral transfers in a problem unless 
one imposes the correct invariants on the nonlinear dynamics. 

Hamiltonian structure also provides a natural framework within which to derive approxi- 
mate models. It is well known that in making approximations one should attempt to maintain 
fundamental conserved quantities. A good example of this is provided by the hydrostatic 
primitive equations on the sphere (Lorenz 1967), where energy and angular momentum con- 
servation are lost under the hydrostatic approximation, and certain manipulations must be 
made to the equations in order to restore them. Rather than such trial-and-error methods, 
it is preferable to ensure maintenance of invariance properties by making the approximations 
within a Hamiltonian framework (Salmon 1983, 1985, 1988a). 

The approach followed in these lectures is to use the Hamiltonian structure of GFD in 
a very practical way. In particular, there is no need to use the Poisson bracket itself, or 
even to know it, if one knows the invariants. One needs merely to know that the bracket is 
there! All the manipulations required here can be expressed in terms of standard variational 
calculus: one has merely to vary all dependent variables, integrate by parts, and check the 
boundary conditions. Finally, everything derived from Hamiltonian theory may always be 
verified afterwards by direct use of the equations of motion. 

1.2    Dynamics 

We consider the generalized Hamiltonian dynamical system 

du _   8H /-|\ 
~dt~    6Ü' 

where u{x,t) are the dynamical fields, H is the Hamiltonian, and J is a skew-symmetric op- 
erator (called the cosymplectic form) having the required algebraic properties (see Morrison's 
lectures). The equivalent formulation in terms of Poisson brackets is 

^ = lf,n], (2) 

where JF[w] is an admissible functional. The Poisson bracket is defined by 

™=<£•'£> (3) 

(the angle brackets denoting an appropriate inner product), and the bracket satisfies prop- 
erties analogous to those of J. Typically 

\<5u'   6u'     J      fjSui   36u/ 

i.e. the inner product is the spatial integral of the dot product of the two vectors. Further 
discussion of the forms (1) and (2) as applied to fluid dynamics may be found in Morrison 
(1982), Benjamin (1984), Salmon (19886), and Shepherd (1990, 1992a). 

Let us verify the equivalence of the above two formulations, (1) and (2). Assuming first 
that (1) holds, we note from (3) that 



(the last step invoking the chain rule for functionals), and hence (2) is verified. Now assuming 
that (2) holds, let us take 

T[u] — Ui(x0) = / 6(x - x0) Ui(x) dx 

for some i and some x0, where 6(x - x0) is the Dirac delta-function; thus 

6(x - x0)6ui(x) dx,       -— = 6(x - x0) Su, 
OUj 

(6) 

(7) 

where % is the Kronecker delta. Then using (2), (6) and (7), we have 

dui dF     ibT  JH 6Hy .6Hy 
w=£=<&'£>=<«• - **. C£),>=('£).<*>• (8) 

Thus (1) is verified, component by component. 

1.3    Steady states and conditional extrema 
Let u — U be a steady solution of the dynamics (1). If J is invertible, then 

f6H 
8u u=U 

&U_ 

dt 
= 0 

leads to 
6H 
6u 

= 0. 
u=U 

(9) 

(10) 

Hence steady solutions are extrema of H. 
But suppose now that the dynamics of the system is non-canonical, in the sense that J 

is non-invertible (cf. Morrison's lectures). Then (9) does not imply (10). However, Casimirs 
C may be defined such that 

J— = 0        (equivalent^, [C, T\ = 0 V J7), 
ou (11) 

and the set of all vectors 6C/6u spans the kernel of J. At u = U, therefore, 6H/6u is 
locally parallel to 6C/6u for some C (a different C for each choice of U); equivalently, there 
generically exists a Casimir C such that 

6H 
du u=U 

8C 
6u u=U 

(12) 

One must be careful here with classes of admissible variations; this point will come up again 
when we consider nonlinear stability. Note that Casimirs are always invariants of the motion, 
since 

dC-\CH]-/6C   J6H\-    /J6C  6H\-0 (W 
dt \^u'   6u' 
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0. (14) 
From (12), we have that 

This statement has two interpretations: (i) U is an extremum of the invariant H+C; and (ii) 
U is a conditional extremum of H, subject to the constraint C = const, (as with Lagrange 
multipliers). An example of an elliptic fixed point, representing a maximum or minimum, 
is sketched below; the curves are lines of constant H, and the constraint surface is the 
"symplectic leaf' C — const. 

C«*J 

1.4    Example: barotropic vorticity equation 
This model is discussed in Morrison's lectures, but it is useful to consider it in the present 
context. The discussion will also illustrate some of the complications that are introduced by 
boundaries. The governing equation is the (2-D) vorticity equation 

^ + d(4>,u) = 0, (15) 

where if) is the stream function, the velocity is given by v = z x V^, u = V2ip is the vorticity, 
and d(a, b) = axby - Oybx is the two-dimensional Jacobian operator. With this choice of u, 
the system is identical to the 2-D Euler equations. We consider a closed, multiply-connected 
domain D with N connected boundaries dDi (i = 1,..., N) on which vh = 0 (or d^/ds = 0, 
where s is arclength along dDi), where n is the unit outward normal vector. 

This system is Hamiltonian with 

H = JJ \\Vi>\2dxdy. (16) 

The first variation of H is given by 

6H  =    If V^-dV^dxdy 

=    If [V • (#VV>) - ip6V27p] dxdy 

-   X^<$f    Vijj • nds -       tp6u)dxdy, (17) 

where the last step follows from the fact that ip is constant on the boundaries. This means 
that one cannot write 6H = ((6H/6u),6u) alone. Stated otherwise, u is not enough to 
determine the dynamics; we need boundary terms as well, as follows. 
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Defining 7< = §dD. Vip • nds to be the circulation on each connected piece dDi of dD, 
recall that d%/dt = 0. (This is the usual boundary condition on the tangential velocity; 
it follows from consideration of the momentum equations underlying (15).) The boundary 
circulations can therefore be considered dynamical variables, and one may rewrite 8H in 
terms of 67» in addition to 6u: from (17), 

6H = 5^^^7i — / / ij)6u>dxdy , 

which implies 
6H ^=4 

(18) 

(19) 

Note that in the first equation of (19), one cannot think in terms of partial derivatives: 
in particular, d\v\2/du> makes no sense. Instead, it is clear that variational derivatives are 
required. 

Relative to u alone, the 7*'s extend the phase space in the following way:  there are 
now N + 1 dynamical variables u = (u, 71,... ,7AT)

T
, 

(N + 1) x (N + 1) matrix operator: 
and the cosymplectic form J is an 

/ 

V 

-d(u, •) 
0 

0 

0 
0 

0 
0 

0 

(20) 

Substituting (19) and (20) into (1) yields, as expected, the equations of motion 

(du ^71        diN\T     du       8H     /     ,       n \r 

Having seen that arbitrary disturbances can be incorporated into the Hamiltonian de- 
scription, let us now, for simplicity, restrict our attention to circulation-preserving distur- 
bances: namely those with 6^ = 0 for all i. (If this condition holds at one time, it will 
hold at all subsequent times.) For this special case, u is the sole dynamical variable and 
J = —d(cu, •). Let us find the Casimirs. Solving (11) in this case, we obtain 

a(a,,g) = 0; (22) 

in other words, lines of constant u and constant 6C/6u coincide. Locally, at least, this means 
that 8C/8u = f(u) for some function /. Such a function may not be defined over the entire 
domain D, however. A sub-class of these Casimirs which is useful for applications (see the 
later sections on stability) consists of those for which the functional relation is global: these 
may be written as 

CM = II C{u) dxdy (23) 

for some function C. Since Casimirs are always invariants of the motion, this demonstrates 
that 

-JJDC(uj)dxdy = 0 (24) 
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for any function C(u). The set of conservation laws described by (24) reflects the fact 
that a; is a Lagrangian or material invariant of the dynamics (15), given that the flow is 
non-divergent. Since the dynamical evolution takes place on the symplectic leaf C =const, 
where the constraint refers to all Casimirs simultaneously, we see that the Casimirs provide a 
severe restriction on dynamically possible behaviour. This is intuitively obvious for piecewise- 
constant vorticity profiles. The calculation also demonstrates that there is nothing esoteric 
about Casimirs: they have real physical meaning. 

We should be able to show that steady solutions of (15) are conditional extrema of H, 
subject to the constraint that the variations preserve C. First consider the extremal condition 
(12), which takes the form ip = C'{u) in this case for C given by (23). If, therefore, (12) 
holds, it follows that 

ut = -d(M = -d(C'(u),u) = 0, (25) 

and the flow is steady. One may also build in the constraint imposed by conservation of 
C directly on the variations. To do this, set 6u = d(<p,uj) for some arbitrary ip which 
is constant on the boundaries. Such variations bu are clearly just non-divergent (area- 
preserving) rearrangements of the vorticity field u, for which 

6C = IJ E6U dxdy = I ID C'^9^'U) dxdy = I ID d^ C(-U)) dxdy = °" (26) 

For steady states with d{tp, u) = 0, the variation of H is then 

6H= II ~ 6u dxdy = -JJ W&, u) dxdy = JJ^ ipdty, u) dxdy = 0        (27) 

(using the fact that both ip and <p are constant on the boundary); hence steady solutions 
of (15) are seen to be unconditional extrema of H for vorticity-preserving variations, as 
expected on general grounds. 

The variations 8UJ = d((p,u) considered above may be written in the form 6u = Jip, 
which suggests the general form 8u = Jip for a vector (p. Evidently such variations are 
guaranteed to be Casimir-preserving, since 

*=<£.*»>=<&*>=-('£.*>=<>- ™ 
The reader is referred to Morrison's notes for a more detailed description of such variations, 
which he refers to as being "dynamically accessible". 

1.5    Symmetries and conservation laws 

As in textbook classical mechanics (e.g. Goldstein 1980), for any functional T we can define 
a one-parameter family of infinitesimal variations bj:U induced by T by 

bTu = J-f, (29) bu 

where e is the infinitesimal parameter. The change in another functional Q induced by this 
variation is 

A?g = Q[u + bjru] - Q[u\ = Ä 6ru) + 0{{bru)2) = z\Q,T\ + 0(e2), (30) 
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where the second step follows from the definition of the functional derivative, and the third 
step from the definition of the bracket together with (29). This proves 

Noether's Theorem: The Hamiltonian is invariant under infinitesimal variations generated 
by a functional F, in the sense that A^H — 0, if and only if T is a constant of the motion. 

Therefore, given a symmetry of the Hamiltonian (a variation 8u under which the Hamilto- 
nian is invariant), one can attempt to solve (29) to find the corresponding invariant (modulo 
a Casimir). Equally, given a known invariant F, one can use (29) to determine the corre- 
sponding symmetry. 

Exercise: Cyclic coordinates in a finite-dimensional canonical system. If H is invariant 
under translations in qt (i.e. dH/dqi — 0 for some i), use (29) to show that the corresponding 
Pi is a constant of the motion. 

As is well known, the KdV equation possesses more than one (non-trivially related) 
Hamiltonian representation. Consider two representations with cosymplectic forms J\ and 
J2. Suppose that 8u\ is a symmetry of the system; using J\ with (29) then defines an 
invariant I\. But knowing Ilf (29) may now be used with J2 to find a new symmetry, 8u2. 
Then substituting 8u2 back into (29) with J\ produces a new invariant I2, and so on. This 
procedure will continue indefinitely as long as we keep generating new invariants; in the case 
of the KdV equation this turns out to be true, and leads to exact integrability. See Olver 
(1986) for a more thorough, and highly readable, discussion of this topic. 

Returning to the relation (29), we see that Casimirs correspond to invisible symmetries 
since 

6cu = eJ— = 0 : (31) 

Casimirs induce no change whatsoever in the dynamical variables. 
Let us now consider some examples of symmetries and conservation laws. First suppose 

that the Hamiltonian H is invariant under translation in time. We can set 6pU = —e(du/dt) 
as the variation in u induced by a shift in time, e = 8t. (The minus sign is indeed correct: 
think about it!) To find the corresponding invariant T we must therefore solve —(du/dt) = 
J(8J:/8u), which implies T — —H (to within a Casimir). This shows that H is the invariant 
corresponding to time-translation invariance. (This statement is not trivial. In particular, 
recall the relation dH/dt = dH/dt in classical mechanics; the former corresponds to a 
conservation law, the latter to a symmetry-invariance.) 

As another example, suppose that the Hamiltonian H is invariant under translation in 
space: Xj, say, for some j. We can set ö>u = -e(du/dxj), and to find the corresponding 
invariant we must solve -(du/dxj) = J(8F/8u). In the case of the barotropic vorticity 
equation, for example, with j — I this becomes 

du _/    &Fx 8T 
Tx   =   9^)        =*        -8u- = V 

=►        T   =   JJDyudxdy = JJ^-^dxdy = J^udxdy (32) 

(to within a Casimir). Therefore the invariant corresponding to x-translation invariance of 
the dynamics is seen to be the zonal momentum, as expected. 



For j = 2, similar considerations lead to 

du _,    8J7. 8T 
Ty   =   d{u>jJ        => «üT-* 

^ = -IID
xudxdy=ILx(^-t)dxdy=ILvdxdy   (33) 

(also to within a Casimir). Therefore the invariant corresponding to y-translation invariance 
of the dynamics is seen to be the meridional momentum. 

By Noether's theorem, the same construction is guaranteed to work for any continuous 
symmetry. Let us show it for a rotation. We take the variation to be or = 0, 86 = e, where 
r and 6 are polar coordinates defined by a; = rcos0 and y = rsind. The corresponding 
variations in x and y are given by 

8x — —r sin 6 66 — -ye,       6y — r cos 6 66 — xe. (34) 

It follows that the variation in the dynamical variable u is 

du du /du      du\ .   . 
6u = -dx-6x-dy-6y=yydx--X-dy-)€- (35) 

Then to determine the invariant corresponding to this symmetry we must solve (29), which 
takes the form 

du       du _,    8T.        __ 6T        1    o      2 r2 

XTy~yTx   =   ^^        =*        ^ = ~2ix +y) = -2 

=^        T  =   - / / — u dxdy — / / z • (r x v)dxdy (36) 

(to within a Casimir).   The last computation is obtained after integrating by parts.   As 
expected, we obtain the angular momentum. 

1.6    Steadily-translating solutions 

Suppose there exists a solution to the system (1) translating steadily in a; at a speed c, i.e. 
u(x,y, z, t) = U(x - ct, y, z). Then clearly 

dU dU 
St = -C~dx- (37) 

The fact that the solution is translating in x implies that there is a symmetry in x; if M is 
the invariant corresponding to this symmetry, then by (29) 

dU _   8M 
dx        8u 

(38) 
u=U 

On the other hand, we have 
dU _   8H 
dt        8u 

(39) 
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It follows from (37), (38), and (39) that 

f6H 
6u 

= cJ 
6M 

u=U 6u 
T6(H - cM) 

u=U 6u u^U 
8(H-cM+C) 

8u 
0 

u=C7 
(40) 

for some Casimir C. Thus U is seen to be a conditional (or constrained) extremum of the 
invariant H — cM. We note that (40) provides a variational principle for travelling-wave 
solutions (cf. Benjamin 1984). 

2    Hamiltonian structure of quasi-geostrophic flow 

In order to illustrate the general theory of the previous section, we describe in some detail 
the Hamiltonian structure of what is probably the most widely-used model in theoretical 
geophysical fluid dynamics: quasi-geostrophic flow. Two specific such models are considered: 
the two-layer model in a periodic zonal /5-plane channel, and continuously stratified flow over 
topography. 

2.1    The two-layer model 

The governing equations may be written (e.g. Pedlosky 1987) as 

®ä + Vi.vqi = o   [t = l,2], (41) 

where the velocity in each layer is given by Vi = z x VV>», and the potential vorticity by 

« = V% + (-l)'F,(ft -4>2) + f + ßy   [t = 1,2]. (42) 

The parameter Fj is a measure of the stratification; if the layer depths are denoted Diy then 
we have the geometric constraint DiFi = D2^2- All fields are assumed to be periodic in x. 
The boundary conditions at the channel walls y = 0,1 are the usual ones of no normal flow, 

dx 

and conservation of circulation, 

0       aty = 0,l    [z = 1,2]; (43) 

dt J  dy 3/=0 "    dt%       ' 
- f^-dx 
dt J  dy 

y=i 

^Jf! = 0       [<=1.2].        (44) 

The dynamical variables are qi, q2, 7°, 7J, 7°, and 73. We can write the Hamiltonian as 

H = JJD \{DX\V^\2 + £>2|VV>2|
2 + A*iM - V2)2} dxdy, (45) 
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in which case 

SU   =    If {AV^I • Vfo/>i + D2V^2 • V<^2 + £1^1(^1 - $i Wi - ^2)} dxdy 

=    II {i^V ■ (frVöxßi) - Dlip16V2ipi + D2V ■ (ip2V6ip2) - D2ip2bV2^2 

+D1F1 il>i6{il>i - fa) - D2F2 ip26(ipi - fa)} dxdy. (46) 

To obtain the last line, the relation D\F\ = D2F2 has been used. This gives 

6H   =   A^i|y=1*yi + ^i^l^o^? + £)2V'2|y=1<572 + ^2^1^72 

- II {Diil>i <5[V*V>I - Wi - $01 + £2^2 ^[V2V>2 + Wi - $j)]} dardy» (4?) 

from which we may infer 

6W n / — = -Diipi and 
6H 

H öJ=^S=o,i    li = 1'2]- 
(48) 

The functional derivatives in this system are evidently analogous to those of the barotropic 
system, as described in Section 1.4. Taking the dynamical variable u to be 

t*=(9i,92,7i>7i1,72>72
1)T. 

the cosymplectic form J is clearly 

(-£d(qu-) 0 0   0   0   0\ 
-£%2,-) 0 0 0 0 

(49) 

J 

V 
The Casimirs are of the form 

0 
0 
0 
0 
0 

0 
0 
0 
0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 J 

(50) 

3=0,1 

C[qi,q2,lWin°2^} = lln{Cl(q1) + C2(q2)}dxdy+ £ CH, (51) 
J JD t=l,2 

where the Ci's are arbitrary functions of one argument, and the Cf's are arbitrary scalars. 
It is easy to see that 

6qi 6-yi 

whence the condition (11) is verified. To find the steady states, we must solve the following 
extremal equations: for <fe, 

6H 
Sqi 

6C_ 

Öqi 
DiA = C'Mi), (53) 
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which implies ^ = ^(ft); and for 7/, 

6ft        6C DM      =-Ci (54) 
£7/ 67/ *v=i 

which implies that ^ is constant along the boundaries. 
To find the zonal momentum invariant M, we must solve the equations 

dqi      1 M    6M. dq2      1 M    6MS ,__* 
li = -Dl

d{q^'        fe-ft*»«^ (55) 

simultaneously. Note that there is no continuous symmetry for 7/. The solution (to within 
a Casimir) of (55) is evidently 

6M = DiV        =►        M=JJD{D1yq1 + D2yq2}dxdy, (56) 
6qi 

again analogous to the barotropic case. Using the definition of <ft, 

r     -        a.i. a.i.        iv=1        . . A./. «„/. 

=   D17} 4- D272 +// Pi«i + ö2w2) dxdy + const. (57) 

The first two terms of the above expression are Casimirs, while the spatial integral represents 
the zonal momentum. 

2.2    Continuously stratified flow over topography 
In the above sub-section we have shown how to handle the circulation terms on the side walls, 
so to simplify the following manipulations we now restrict our attention to the case where 
the circulation is held fixed when performing the variations. We again consider a periodic 
zonal channel, bounded top and bottom by rigid lids, with 0 < z < 1. The dynamics is given 
by (e.g. Pedlosky 1987) 

D^ = ^ + d^,q) = 0    [0<2<1], (58) 

§-tWz + fSh) = 0    [z = 0],        §~t(^) = 0    [z = l], (59) 

where the potential vorticity q is defined by 

q = V*S + iPyy + -(%*,), + f + ßy- (60) 
Ps    <-> z 

The density ps{z) and stratification function S(z) = N2//2 (where N(z) is the buoyancy 
frequency) are both prescribed, h(x,y) is the topography at the lower surface, and ipz is 
proportional to the temperature. 
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The dynamical boundary conditions (59) on the lids z = 0,1 are necessary, and represent 
true degrees of freedom. This can be seen by varying H: 

H = JJJD^{\Vi>\2 + ±tfz}dxdydz (61) 

implies 

6H   =    III psfrip ■ V6ip + -gipztyz} dxdydz 

=   ///D{-^#VV + ^(5^0 ~^(f ^dxdydz 

=     11 ^ ipStßz dxdy       - 111 psiß6q dxdydz (62) 

(noting that the variations in the side-wall circulations have been taken to vanish). In 
particular, we cannot write 6H = ((6H/8q),6q) unless we treat the terms in (62) involving 
the spatial integrals over the lids. 

One option is to make the lids isentropic: ipz = constant. Then in a completely analogous 
fashion to the way in which one may eliminate the circulation terms, one may restrict 
attention to variations with 6tpz = 0 on z = 0,1, in which case the integrals over the lids in 
(62) disappear. Note that this is dynamically self-consistent: from the governing equations, 
it follows that isentropic lids remain isentropic under the dynamics. Pursuing this option 
leaves us with a dynamical structure very similar to that of the barotropic system, but this 
is very restrictive indeed. For example, it eliminates the meridional temperature gradient at 
the lower surface which is so crucial in driving the atmospheric circulation. 

A better option is to incorporate the terms in question into 8H. This can be done by in- 
troducing additional dynamical variables, just as one may introduce the side-wall circulations 
as dynamical variables (see previous sub-section). It is natural to define 

Xo = ^z + fSh)\z=o,       A1 = !V4=1, (63) 

in which case (59) take the form 

^2 = 0,        ^1=0. (64) 
Dt Dt K   ' 

Then (62) can be written 

6H= ffipöXidxdy      - ffipSXodxdy      - fff psip6qdxdydz; (65) 

the entire variation of H is now captured, with the functional derivatives 

£--**• £~*u IHu-        (66) 

Taking the dynamical variable to be u = (q, A0, Ai)T, the cosymplectic form is evidently 

(-jrd{qr)       o o    \ 
J= 0 -d{Xor)       0 . (67) 

\        0 0 d(Xu-) ) 
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The Casimirs axe clearly of the form 

C[q, A0, Ax] = JJj psC(q) dxdydz + JJ C0(Ao) dxdy      + JJCx{\x) dxdy (68) 
z=l 

for arbitrary functions C, Co, and C\, with 

Tq=
psC'{ql   ^=CS(Ao)'   wrc'i{Xi)) m 

which when combined with (67) may be seen to satisfy (11). 
The steady-state solutions satisfy 

(70) 
&H__f>C 
6q 6q' 

which implies psip = paC'(q) and thus tp = tp(q); and 

wr-w, i^0'11- (n) 

which implies (—1)V = C^Ai) and thus ^ = V'(Ai) on z = i. 
To find the zonal momentum invariant M, we must solve the equations 

l4aO £-•(*•£>■ ^-^^)    '72> 
simultaneously; the solution (to within a Casimir) is 

M = A// psyqdxdydz + Jj y\0 dxdy      - Jj y\\ dxdy      . (73) 

Exercise: Show that (to within a Casimir) M = fffD psu dxdydz. 

3    Pseudoenergy and available potential energy 

3.1    Disturbances to basic states 
Very often one is interested in flows that are close to some given basic state. Examples 
include the energetics of waves, stability and instability of basic flows, wave propagation in 
inhomogeneous media, and wave, mean-flow interaction. We would therefore like a Hamilto- 
nian description of the disturbance problem. Ideally it should be exact, i.e. nonlinear. Two 
questions immediately arise: What is the correct Hamiltonian? What is the energy? The 
answer to these questions involves a new quantity, often referred to as the pseudoenergy. One 
of the simplest contexts in which the relevant issues arise is the familiar and classical one of 
available potential energy (APE), so we shall discuss it at some length. Further details may 
be found in Shepherd (1993a). 
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3.2    APE of internal gravity waves 

Consider the energy of internal gravity waves in an incompressible, Boussinesq fluid, governed 
by the equations 

vt + (v ■ V)v + /z x v = -^ - A?z, (74) 
Poo     Poo 

pt + vVp = 0,       V • v = 0, (75) 

where poo is a constant reference density. The notation is standard. The resting basic state 
on which the waves exist is assumed to have a horizontally uniform density p = po(z), with 
stable stratification: g{dpQ/dz) < 0. The kinetic and the potential energy per unit volume 
are given by 

EK = TjPooM2,       EP = pgz. (76) 

Since it integrates to a constant, we might as well remove p0gz from the potential energy. 
This leaves 

EP = {p- pQ)gz. (77) 

Now, for small-amplitude waves, EK = 0(a2) but EP = 0{a), where a < 1 is the wave 
amplitude. This is odd, for a number of reasons. First, EK < EP, which is counter-intuitive 
(one expects the two forms of energy to be of the same order); second, EP is not sign-definite; 
and third, the disturbance energy cannot be calculated to leading order from linear theory. 
To see this, consider a solution involving a perturbation expansion in some small parameter 
e: 

p- p0 = epi+ e2p2 + ...,       v = ev!+ e2v2 + .... (78) 

The subscript 1 variables would be determined from linear theory, the subscript 2 variables 
from second-order nonlinear theory, and so on. Expanding the energies in terms of e yields 

EK = \poo\vx\2e2 + 0(e%       EP = Plgze + p2gze2 + 0(e3). (79) 

If we are considering sinusoidal waves then pi = 0 but p£ ^ 0 in general, where the overbar 
denotes an average over phase. Therefore to determine EP at leading order, p2 must be 
determined; but this requires a solution of the nonlinear problem. 

All these difficulties arise from the fact that the expression for EP is formally 0(a). 
Fortunately, however, there is a remedy. Traditionally (e.g. Holliday & Mclntyre 1981) 
it is presented as a trick. For incompressible fluids, (75) implies that JJJD F(p) dxdydz is 
conserved for any function F(-). For a statically stable basic state p0(z), the inverse function 
z = Z(po(z)) is well defined. We may then take 

F(p) = -fgZ(p)dp, (80) 

and note that 
fjl [EK + EP + F(p) - F(po)} dxdydz (81) 
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is conserved. That is, we combine energy conservation with mass conservation, to obtain a 
new conserved quantity with density per unit volume given by 

A   =   EK + EP + F(p) - F(po) 
1 fP 

=   -zPoo\v\2 + (p - po)gz - / gZ(p)dp 
It Jpo 

1 o fP-PO 
=   ^PooM + (P ~ Po)9z ~ JQ      gZ(po + p)dp 

=   2/Joo|v|      /      9\Z(po + p)-Z(po)}dp. (82) 

The small-amplitude approximation to A (appropriate for waves, say) is 

A « \poo\v\2 - \gZ'(po)(p - A,)2 = ^ool^l2 - \fi$P - A))2- (83) 

The second term in (83) is the familiar expression for the APE of internal gravity waves (see 
e.g. Gill 1982, §6.7 or Lighthill 1978, §4.1). The conserved quantity A has the properties 
we would expect from a disturbance energy: A = 0(a2); A > 0 if the background is stably 
stratified (this is also true at finite amplitude); and A is calculable to leading order from the 
linearized solution. In textbooks, the small-amplitude form is derived by direct manipulation 
of the linearized equations — thereby obscuring the fact that mass conservation has been 
used. 

Other cases where a similar situation arises include the energy of acoustic waves (Lighthill 
1978, §1.3) and the APE of a hydrostatic compressible ideal gas (Lorenz 1955). 

3.3    Pseudoenergy 
When one considers the wide variety of situations in which the concept of APE arises, 
certain questions naturally arise. In particular: Why do other conservation laws (like mass 
conservation) need to be brought in? Which conservation laws are needed? Is there a 
systematic way to construct the APE? Does the concept extend to arbitrary fluid systems? 
And does it extend to non-resting basic states? 

It turns out that these questions can all be answered by considering things within the 
Hamiltonian framework. Since fluid systems are generally non-canonical, perturbing a steady 
state U with a variation 6u will give rise to a change in the Hamiltonian 

&H[U; 6u] = H[U + 6u]-H[U] = {^ , Su) + 0((6u)2). (84) 
u=U. 

This is the reason why there is an ö(8u) = 0(a) term in the expression for potential energy. 
For canonical systems, the underbraced term would vanish and the change in the Hamiltonian 
would automatically be quadratic in the disturbance amplitude. This is not the case here, 
but we know that generically there exists some Casimir C such that 

™       =-*:       . (85) 
6u u=U 6u u=U 
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So if we choose 

A[U; 8u) = H[U + 6u] - H[U] + C[U + 6u] - C[U], (86) 

with C determined by (85), then we will have a quantity which by construction satisfies 

= 0. (87) A[U;0} = 0       and        |J 
/67i     6C\ 

u=U 

Hence A[U; 6u] = ö((6u)2), and we have what we want. 
This quantity A is the pseudoenergy (e.g. Mclntyre & Shepherd 1987). It is an exact 

nonlinear invariant of the equations of motion. Its construction involves a combination of 
energy and a suitable Casimir. For disturbances to resting basic states, these Casimirs 
invariably involve mass conservation. The available potential energy is evidently the non- 
kinetic part of the pseudoenergy. To construct the available potential energy, therefore, we 
need only know the Hamiltonian H\ the dynamic variables, i.e. the fields u; and suitable 
Casimirs C such that (85) is satisfied. One may well know these things without knowing «7, 
in which case the Hamiltonian structure underlies the method without appearing explicitly. 

Prescient adumbrations of the above realization can be found in the classical GFD lit- 
erature. In a brilliant and now largely forgotten paper, Fj0rtoft (1950) noted that (stably) 
stratified, resting basic states were energy extrema for adiabatic disturbances; this varia- 
tional principle corresponds to the Hamiltonian statement that resting steady states are 
conditional extrema of the Hamiltonian, with the relevant Casimirs being those arising from 
the material conservation of entropy. Building on Fj0rtoft's work, Van Mieghem (1956) used 
this variational principle to construct a small-amplitude expression for APE, thereby recov- 
ering the formula of Lorenz (1955). This can now be seen as the non-kinetic part of the 
small-amplitude (or quadratic) pseudoenergy. 

Having examined this problem from the Hamiltonian standpoint, the questions raised at 
the beginning of this sub-section may be answered immediately. 

Question: Why is energy not good enough? Why do other conservation laws (like mass 
conservation) need to be brought in? 
Answer:   Because the Eulerian descriptions of fluid motion are generally non-canonical, 
which means that steady states are not necessarily energy extrema. 

Question: Which conservation laws are needed? 
Answer:  Those associated with the non-canonical nature of the dynamics:  the Casimir 
invariants. 
Question: Is there a systematic way to construct the APE? 
Answer: The APE is the non-kinetic part of the pseudoenergy relative to a resting basic 

state. 
Question: Does the concept extend to arbitrary fluid systems? 

Answer: Yes, provided the system is Hamiltonian. 

Question: And does it extend to non-resting basic states? 
Answer: In principle, yes — provided the pseudoenergy is sign-definite. See Section 4.3 for 
further discussion. 
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3.4    Example: stratified Boussinesq flow 
The algorithm described above for constructing the APE will now be demonstrated in the 
context of 3-D, incompressible, stratified, Boussinesq flow, governed by (74,75). The dynam- 
ical variables are evidently p and v. The Hamiltonian is given by 

H = jjjD{ -A>oM2 + pgz] dxdydz, (88) 

with functional derivatives 
on on .   . 
te=p™v>     TP

=9Z- m 

The determination of an appropriate J gets us into the issue of constrained dynamics (see 
Abarbanel et al. 1986; also Salmon 1988a), but for our purposes only the invariants H and C 
are required. An unconstrained Hamiltonian representation of this system, in the form (1), 
can be obtained by working in isentropic — or, in this case, isopycnal — coordinates (Holm 
& Long 1989), but for applications it is desirable to have an expression for APE in physical 
coordinates. 

What are the Casimirs for this system? It can be verified that the potential vorticity 
q = o> • Vp, where u) = V x v, satisfies 

qt + v • Vq = 0. (90) 

Putting (90) together with (75) implies that 

C[v, p) = jjjD C(p, q) dxdydz (91) 

is a class of conserved quantities for arbitrary functions C. These are in fact the Casimirs, as 
can be verified by examining the system in isopycnal coordinates. However, such verification 
is not actually necessary: usually one can guess the Casimirs based on knowledge of the 
materially conserved quantities; if one cannot satisfy the condition (85), then one must 
consider a broader class of conserved functionals. 

Taking the first variation of C gives 

8C   =   JJJ {Cp6p + Cq8q} dxdydz 

=   jlj {Cp6p + Cq[(Vx 6v)-Vp + u) -Vöp}} dxdydz. (92) 

After integration by parts, one obtains 

|j = Cp-V.(C>),       ^ = Vx(W). (93) 

We may now follow the recipe set forth earlier. Given a steady state U — (0,po(z)), C is 
determined from the condition 

6H 
6v u=U~    6v u=U 

poov = -V x (CqVp)   at   p = po, v = 0 

0 = V x (CqVp0), (94) 
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which will be satisfied if we take C = C(p), in conjunction with the condition 

gz = -Cp + V • (C,w)   at   p = p0, v = 0 6ft 
op u=U 

6C 
'dp u=U 

gz = —Cp   at   p = po- (95) 

Now po(^), being monotonic by hypothesis, has a well-defined inverse, Z: i.e. z — Z(p0{z)). 
It can be easily seen that 

C(p) = -fgZ(p)dp (96) 

satisfies the required condition (95): 

C, 
P=PO 

-gZ(po) - -gz. (97) 

(It is in fact a general result that when the basic state is at rest, only that part of the Casimir 
depending on the density (or more generally, the entropy) needs to be considered; possible 
dependence on the potential vorticity is not required (see Shepherd 1993a).   This is why 
Fj0rtoft's (1950) variational principle could describe all resting steady states.) 

With this choice of C, the pseudoenergy takes the form 

A   =   H[v,p}-'H[0,po)+C[v,p}-C[0,po] 

= jjf {2P00M2 + (P- po)gz - j gZ(p)dp}dxdvdz 

=   JJJ {^PooM2 + (p - Po)gZ(po) - £ " gZ(po + p) dp} dxdydz 

=   JJJD{lpooM2-J0
PP09[Z(po + p)-Z(po))dp} dxdydz. 

APE 

(98) 

This recovers the expression (82) obtained earlier by direct methods. Note that provided 
g(dp0/dz) < 0, then g{dZ/dp0) < 0; thus the APE, and in consequence A itself, will neces- 
sarily be positive definite for p — po / 0. 

The finite-amplitude expression for APE provided above has a simple geometrical inter- 
pretation: the APE is g times the area under the curve Z(p) (see below). 

So 



3.5    Nonlinear static stability 

The existence of a positive definite conserved quantity suggests stability. Of course, the 
condition g(dp0/dz) < 0 is precisely the condition for static stability. Note that 8 A = 0 by 
construction while the second variation of A is 

82A = JJJD ^{poolH2 - ^(M2} dxdydz > 0. (99) 

Thus by analogy with finite-dimensional systems, statically stable equilibria are elliptic fixed 
points. This is what is usually referred to as formal stability (e.g. Holm et al. 1985; see also 
Morrison's lectures). However, for infinite-dimensional (or continuous) dynamical systems, 
such as fluids, mere positivity of the second variation does not, in itself, establish anything 
about stability. Instead, one must attempt to obtain explicit bounds on the growth of dis- 
turbance norms. One might think it wise to begin with the linearized equations; however, 
if stability is established in the linear dynamics this proves nothing for the actual dynam- 
ics, since the system is Hamiltonian. (Stability can never be asymptotic for Hamiltonian 
systems.) Thus one is forced to consider the full nonlinear dynamics right from the start. 

Definition: (Normed Stability) If we measure the deviation from a particular steady field 
U by the norm ||«'||, where u — U + u', then U is stable in that norm if for any e > 0 there 
exists a 8(e) > 0 such that 

||u'(0)||<6    =►     ||u'(t)||<e,        Vt>0. (100) 

This is also called Liapunov stability. 

In the present context we may define our norm by 

\\(v,p - po)||2 = JJJD \{poo\v\2 + \(p - A))2} dxdydz, (101) 

.., ... , / ci   = mm{-gZ'(p0)} > 0 
with   Ci < A < C2   where    < .     _..   ... (102) 

y c2   = max{-gZ'{po)} < oo. 

The existence of such constants Ci, c2 will be referred to as the convexity condition. Under 
these circumstances it can be shown that the available potential energy, 

APE = - /       g[Z(p0 + p) - Z(po)\ dp, (103) 
Jo 

is bounded from both above and below: 

\c,(p - pof < APE < l-c2{p - PQf. (104) 

If Z(po) is smooth then this result follows immediately from Taylor's remainder theorem. 
However, it is true for Z(p0) that are only piecewise differentiable. This bound on the APE, 
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coupled with the fact that the pseudoenergy A is conserved, leads to the following chain of 
inequalities for basic flows satisfying the convexity condition (102): 

\\(v,p-po)(t)\\2   =   JJJD\{poo\v\2 + \(p-po)2}(t)dxdydz 

<   ±A(t) = ±A(0)<*\\(v,p-po)(0)\\2- (105) 
Ci Ci Ci 

By taking 6 = Jcjc^e, (105) proves nonlinear normed stability in the norm defined by (101). 
It is well known that the small-amplitude definition of APE is closely connected to lin- 

earized static stability. The above results show that the definition pf finite-amplitude APE 
is closely connected to finite-amplitude static stability. 

A comment should be made concerning the definition of the function Z(-) used to calculate 
the pseudoenergy, which appears in the integrand of expression (103) for the APE. What if 
p lies outside the range of p0? How do we evaluate Z(p) in that case? First note that if a 
disturbance is "dynamically accessible" (see Morrison's lectures) then p always lies within the 
range of p0. However if one is interested in a larger class of disturbances, then the definition 
of Z(p) can be extended outside the range of p0 while still keeping A as a conserved quantity. 
This is because any function C(p) can be used to obtain a Casimir. In fact, it is only the 
condition that A = 0(a?) in the small-amplitude limit that determined the particular choice 
of C involving Z, and this constraint only determines C for values of its argument lying 
within the range of p0. So to allow the possibility of arbitrary disturbances, the expression 
(103) can still be used provided we extend the function Z(p) outside the range of p0 in some 
arbitrary way, subject only to 

d < -gZ'(p) < C2 (106) 

in order not to weaken our bounds. Clearly, this extension can always be made. 

3.6    Nonlinear saturation of instabilities 

The APE provides a rigorous upper bound on the saturation of static instabilities. In a 
way, this is a more robust definition of static stability than the concept of normed stability 
presented in the previous sub-section. 

To see this, consider the case of a fluid that is initially at rest but statically unstable. 
We may consider this initial state to be a (finite-amplitude) disturbance to some statically 
stable, resting basic state. Using conservation of the pseudoenergy relative to this basic 
state, and noting that v(t = 0) = 0 by hypothesis, yields 

/// ^°°lvl2(f) dxdydz -A® = A(0) = I IL APE{0) dxdydz- (107) 

Thus the kinetic energy at any time t is bounded from above by the initial APE: this is, after 
all, why it was called "available" by Lorenz. For example, consider the situation sketched 
below. 
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The initial density profile p{z) is shown by the solid line, and consists of a statically unstable 
inversion layer — Az < z < Az located within a stably stratified region with dp/dz = —r. 
Suppose for definiteness that p(z = 0) = 0. (Recall that p is the departure from the reference 
state poo, and therefore may be negative.) One may choose as the basic state po(z) = —rz, 
which is stable and which satisfies (102) with Ci = C2 = g/r. The initial disturbance is then 

(Ap 

p =p-po 
z,   if -Az <z<Az 

Az 

k 0, otherwise . 

(108) 

The integrated APE (averaged in x and y) is then easily computed, yielding the saturation 
bound 

,   öPoo\v\2(t) dxdydz < -f (ApfAz. 
ID 2 or III (109) 

It is interesting to note here that the disturbance p' is not, in general, dynamically accessible; 
or, rather, the initial condition p(t = 0) is not dynamically accessible from the basic state 
Po(z). It would only be so in the special case Ap/Az = r. The bound represented by (109) 
therefore highlights the fact that pseudoenergy conservation holds for arbitrary disturbances, 
not just dynamically accessible ones. It also demonstrates that, in many practical cases of 
interest, the freedom to consider disturbances that are not dynamically accessible is quite 
useful. The original, physical definition of APE proposed by Margules (1903) and formalized 
by Lorenz (1955) was keyed around the idea of dynamically accessible perturbations: the 
APE was defined to be the amount of energy released in an adiabatic rearrangement of the 
mass into a statically stable state. The variational approach of Fj0rtoft (1950) and Van 
Mieghem (1956) likewise builds dynamical accessibility directly into the theory. In contrast, 
the use of integral invariants, in particular the pseudoenergy, goes beyond this in a powerful 
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way: the basic state may be any statically stable state, not just the dynamically accessible 
one. This insight was first noted by Holliday & Mclntyre (1981) and Andrews (1981), and 
is vividly demonstrated by the above example. 

One may logically define the APE in (107) to be the minimum APE over all possible 
choices of the stable basic state. This extremization problem is highly non-trivial, and would 
make a good topic for further study from a mathematical perspective. In the above example, 
for instance, the expression (109) is merely one bound, not necessarily the minimum one. 

Exercise: Calculate the amount of APE in the initial condition of the above example, 
taking the basic state p0(z) to be the unique, dynamically accessible state obtained through 
an adiabatic rearrangement of the mass. 

There is a well-known analogy between static stability and so-called symmetric stability: 
namely the stability of a baroclinic flow to disturbances that do not vary in the downstream 
direction (also known as "slantwise convection"). This analogy has recently been exploited 
by Cho, Shepherd & Vladimirov (1993), who prove a nonlinear stability theorem and use it 
to determine a finite-amplitude APE for such motion. 

4    Pseudoenergy and Arnol'd's stability theorems 

4.1    Arnol'd's stability theorems 
In the previous section the steady basic state was at rest, so the kinetic energy contribution 
to the pseudoenergy was solely the disturbance kinetic energy. But what happens when 
the kinetic energy of the steady state is nonzero? To explore this question, we study the 
barotropic vorticity equation on the /5-plane (cf. §1.4) 

Pt + d{*,P) = 0, (110) 

where 4> is the stream function, P is the potential vorticity 

P = V*<$> + f + ßy + h(x,y), (111) 

and h is the topographic height. Three possible geometries are considered: (i) periodic in 
x and y; (ii) unbounded, with decay conditions at infinity; and (iii) multiple boundaries (as 
with a zonal channel). The last case is the most complicated, since the boundary terms enter 
the equations directly, so we choose to analyze it. 

Suppose there exists a steady solution, $ = #, P = Q with # = #(Q) a monotonic 
function. We seek Casimirs such that 6A = 0. We have 

H = jjD\\V$\2dxdy, (112) 

C = U C(P)dxdy + J2^i, (113) 

3H- 



where ßi = §dD. V<1> • nds is the circulation on each connected piece, dDi, of the boundary 
dD. To determine the pseudoenergy, we must solve the equations 

6H 
6P P=Q 

6C_ 

6P P=Q 

6H 

P=Q 

6C_ 

6ßi P=Q 

The left half of (114) gives (see §1.4) 

which integrates to 

while the right half of (114) gives 

* = C'(Q), 

C(Q) = f*(v)dv, 

# 
dDi 

= -a*. 

(114) 

(115) 

(116) 

(117) 

(118) 

If we consider the disturbance problem 

P = Q + q,    $ = # + ^,    tn = Ti + 'yi, 

then noting that q = V2^ we construct the finite-amplitude pseudoenergy as follows: 

A  =   HiQ + q^i + ri-HlQ^+ClQ + q^i + ri-CiQJi] 

= JJ { V# • Vtf + \|V^|2 + J +<1 *(g) dq} dxdy + £a^ 

=  JJ {V • (#VV0 - Wty + ||V^|2 + J* *(Q + q) dq) dxdy - £ *\dD 7<<119) 

In the last line, the first term can be directly integrated and found to cancel the boundary 
circulation terms. Furthermore, noting that 

_ $vty = -tfg = - T *(Q), (120) 
Jo 

the pseudoenergy can be written simply as 

A = JJD{\\^\2 + JQ
9mQ + q)~ *(<?)] d?} dxdy (121) 

(Mclntyre & Shepherd 1987). The pseudoenergy is an exact, nonlinear invariant, as may 
be checked by direct substitution into the equations of motion. It is valid for arbitrary 
disturbances (not necessarily dynamically accessible ones). If there exist values of Q + q 
outside the range of Q, one can extend the definition of V(Q) arbitrarily to cover those 
values, as discussed in §3.5. A is evidently sign-definite when 

dQ 
>0. (122) 

Essentially, this is Arnol'd's (1966) first stability theorem. 
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Suppose that 
[ dV 1 f cM} 

Cl = TpQ/>0,     C2 = m^\dQJ<00- m 

In this case we can establish normed stability of the basic state. The "convexity" condition 
provides 

\cxq2 < [ MQ + Q) - *(<?)] dq < \w\, (124) 

which is valid for continuous (possibly non-smooth) ^(Q)- In particular, let us choose the 
norm defined by 

IMI2 = fjD |{|V^|2 + Xq2} dxdy, (125) 

with C\ < X < C2. Then 

\\q{t)\\2 < -At) = -.4(0) < -Ik(0)||2- (126) 
C\ C\ C\ 

So given e > 0, choose 6 = Jci/c2e to prove nonlinear normed stability. As with static 
stability, this holds for arbitrarily large disturbances. 

It is important to emphasize that the demonstration of normed stability provided above 
depends on the choice of norm. For normed stability, it is always essential to specify the 
norm; this is because in infinite-dimensional spaces, all norms are not equivalent. This point 
is highlighted by the following example. 

Consider (110) in the special case P = V2$, and introduce a basic state U(y) = Xy. The 
disturbance (q, ip) is given by 

P = Q + q=-\ + q,       $ = tt + ^ = --Ay2 + ^, (127) 

and the exact equation for the disturbance vorticity q = V2ip is 

qt = -d{*,q) - d(il>,Q) - d(i>,q) = -Xyqx - dfaq). (128) 

Multiplying (128) by q and integrating over the domain yields 

Jt II 2q2 dxdy   =   ~ HD Xyqqx dxdy ~ I ID q9^' ^ dxdy 

=   0. (129) 

This proves that 2-D linear shear flow is stable in the enstrophy norm. However, consider an 
initial condition consisting of a plane wave q(t = 0) = R{ei(kx+loy)}. Then the disturbance 
energy is given by (e.g. Shepherd 1985) 

cn\      ff 1\x7i\*u\j A       Sip j^(t) dxdy     Sip |g2(0)dxdy 
£{t) = JJo 2,V^ {t)dxdy =        K» + P        = VTP • (130) 
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It can be shown that I evolves with time according tol = lo + Xkt, while k is constant. So 
for Z0 < 0 and AA; > 0, the energy will attain its maximum amplification 

€(t)     fc2 + /0
2 -lQ 

eöj = -är-    at    t = W (131) 

Clearly, the amplification described by (131) becomes arbitrarily large in the limit |Z01 —► oo. 
This example demonstrates the point that stability in one norm (here the enstrophy) does 
not imply stability in another (here the energy). 

Returning to the general form of (110), consider the special case of zonal (x-invariant) 
flow, with h = 0. Then the condition 

dV _ V* _ #y _ -U 
dQ-VQ-Q~y-Q;>0 (132} 

is sufficient for stability of the flow. This is the nonlinear generalization of the result of 
Fj0rtoft (1950). 

There is an interesting possibility in this barotropic case which did not arise in the previ- 
ously discussed case of static stability. Recall from §3.5 that in that case the pseudoenergy 
was given by 

A = fff {^PooM2 + APE(p - A,)} dxdydz. (133) 

Since p and v are independent variables, A can never be negative definite. This is like the 
case of "natural systems" discussed in traditional classical mechanics. In the present case, 
however, there is only one dynamical variable, and in principle A could be negative definite. 
This gives what is called Arnol'd's (1966) second stability theorem. 

How does this happen? Suppose 

dQ 

Then 

< 0   and   C\ = min \ —37^ \ > 0,    &i = max < — — > < 00. (134) 

I ,Q
9
 [9{Q + q)- V(Q)] dq < -\ciq

2, (135) 

so this quantity has the potential for being more negative than ^V^l2 *s positive, when 
integrated over the domain. In fact, for bounded domains this is possible. A detailed 
discussion is provided in Mclntyre & Shepherd (1987, §6). 

4.2    Andrews' theorem 

The appearance of Arnol'd-type stability arguments created considerable interest in the 
meteorological community, for it appeared that they could be used to examine the stability 
of non-parallel flow profiles ^ = ^(Q). However, Arnol'd's theorems turn out to be not as 
powerful as they might seem in this regard. A theorem proved by Andrews (1984) shows 
this quite succinctly, as follows. 

Suppose we are given a basic flow profile ^ = ^(Q), and suppose that the given problem 
is zonally symmetric: i.e. h = h(y), and the boundaries (if any) are independent of x. A 
zonal channel would be the most common such geometry. 
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Claim: If — > 0, then Qx = 0 and ¥x = 0. 
dQ 

Proof: The chain rule of differentiation implies 

*, = V(Q)Q*- (136) 

Multiplying this expression by Qx and integrating over the domain yields 

fj VxQxdxdy   =   jJD^(Q)(Qx)2dxdy, 

<=* JJ yxVHxdxdy   =   jf *'{Q)(Q*?dxdy 

*=* Jj V-(*xV*x)dxdy   =   JID{\V<ax\2 + ^'(Q)(Qx)2}dxdy.        (137) 

The integral on the left-hand side vanishes if the boundaries are zonally symmetric, which 
implies that $x = 0 = Qx everywhere. 

Therefore, any flow in a zonally symmetric domain that is stable by Arnol'd's first theorem 
must itself be zonally symmetric! The argument can also be shown to apply to Arnol'd's 
second theorem (Carnevale & Shepherd 1990). These results help explain the conspicuous 
lack of non-zonal Arnol'd-stable flows in the literature. 

There is a simple heuristic explanation of Andrews' theorem. If a problem is zonally 
symmetric, but the basic state is non-zonal, then a possible disturbance is the simple one 
generated by a zonal translation of the basic state. This zonal translation cannot change the 
pseudoenergy. Therefore, such basic states cannot be true extrema of the pseudoenergy — 
equivalently, A is not sign-definite — which implies that they cannot be Arnol'd stable. 

However, it should be noted that Andrews' theorem may not apply to certain zonally 
symmetric problems in unbounded domains because of the boundary conditions at infin- 
ity (Carnevale & Shepherd 1990). Otherwise one could deduce, for example, that circular 
vortices were not Arnol'd stable — something which is demonstrably untrue. 

4.3    Available energy 

Can we regard the quantity 

[9[V(Q + q)-y(Q)]dq (138) 
Jo 

as a generalization of APE? In a sense, yes. For any stable flow (*, Q) with dV/dQ > 0, we 
have 

I ID I™*® dxdy ~ A{t) = A{0) = A[Q] q(0)]' (139) 

For a given initial condition, P(0), one can vary the right-hand side of (139) over various 
stable Q to seek the tightest possible bound on the disturbance energy. 

In the case of static stability, the variations were over p0 and didn't affect ||v|2. Here 
iß = $ - vj), so when one changes the basic flow, one also changes the definition of the 
disturbance. This is not a satisfactory situation. 
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Suppose, however, that the problem is zonally symmetric and that one is interested in 
the eddy energy. We may write 

$ = $ + $' where () = x-average and $' = 0. (140) 

Then, if we choose a zonally symmetric flow (as required by Andrews' theorem), i.e. 

tf' = 0,       Q' = 0, (141) 

this implies 
$' = tft       p> = d. (142) 

Hence (q', ip') are independent of the choice of the basic state. Then, for the eddy energy we 
have the upper bound 

S' = IJDl\^f(t)dxdy = JJDl\V^'\2(t)dxdy   <   ffD\\V^\2{t)dxdy 

<   A[Q;q(0)}. (143) 

Now one can vary the right-hand side of (143) to seek the tightest possible bound on the 
eddy energy. 

We now illustrate the general method by applying it to the case of baroclinic flow. 

4.4    Nonlinear saturation of baroclinic instability 

The two-layer model was presented in §2.1. The notation has been changed somewhat for 
convenience; q there corresponds to P here, while tp there corresponds to 3> here. Further 
details of the following analysis may be found in Shepherd (19936). 

Suppose Fx = F2 = F in the domain 0 < y < 1, periodic in x. The potential vorticity in 
each layer is given by 

Pi = V2$i + (-l)iF($1-$2) + / + /?2/   [t = l,2]. (144) 

Consider the basic-state stream function ^j = ^»(Qi) corresponding to the purely zonal flow 

Ui(y) = -d9i/dy   [i = l,2], (145) 

with potential vorticity 

Qi(y) = V2^ + (-l)iF(^1-$2) + / + ^    [2 = 1,2]. (146) 

Let tpi be the disturbance stream function, so that 

*i = ¥i(y)+M*,y,t)   [* = 1,2]. (147) 

This allows the pseudoenergy to be written 

A  =   //^j^lV^p + IV^p + F^-^)2; 

+ Jo   [*1(Qi + g)-*i(Qi)]d<7 + /o   [%(Q2 + q)-^2(Q2)]dq\dxdy,   (148) 
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where g» is the disturbance potential vorticity 

ft = Va^, + (-l)'F(^1-^,)    [i = l,2]. (149) 

It is clear from (148) that if 

—i>0       and       ^7r>0' (150) 

dQi dQ2 

then .A > 0. This is Amol'd's first stability theorem applied to quasi-geostrophic flow (Holm 
et al. 1985). Since we are considering the zonally symmetric case, these conditions are 
satisfied if 

Ui     <0    [t = l,2]; (151) 
dQi/dy 

put this way, the theorem represents the nonlinear version of the Fj0rtoft-Pedlosky theorem. 
Suppose our initial condition consists of an infinitesimal disturbance to the Phillips zonal 

flow _ _ 
_ »1=0, = 1(1+ «)+*,       _$£ = & = «» (152) 

dy F ay 
where u0 is an arbitrary constant. The flow (152) is known to be unstable if e > 0, provided 
the domain is sufficiently wide in an appropriate sense (e.g. Pedlosky 1987, §7.11). 

Now choose a one-parameter family of stable basic flows 

_^l==^ = |(l-Ä)+^>       -™l = U2 = u0, (153) 
dy F ay 

with associated potential vorticity 

Qx = ß(2 - 6)(y -X) + f + ß\,       Qi = ß6(y - A) + / + /?A, (154) 

where A is a constant of integration. We have three free parameters: A, u0, and 6. For all A, 
UQ, and 6 such that d^i/dQi > 0 we then have the rigorous upper bound on the eddy energy 

S'   =   J'l\\\V#i? + |V$'2|
2 + F{$\-&2)

2}dxdy 

- IS ^{IV^I2+|v^2+Wi"^)21dxdy 

<   A(t) 

=   A(0) 

+ terms involving the initial non-zonal disturbance. (155) 

The contribution to the initial pseudoenergy associated with the initial non-zonal disturbance 
can, of course, be included in the above bound. However, in the situation we are considering 
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here of an infinitesimal initial disturbance to the Phillips initial condition, this contribution 
is negligible compared with the pseudoenergy arising from the zonal-mean part of the initial 
disturbance to the stable basic flow, which is the part written out explicitly in the last line 
of (155). 

Now, choosing A = ^ so that 

J*(y-Xfdy=±-, (156) 

which is the best choice, and setting 

ß(l-6) +u0F = Q        =►        Uo = -^—^-„ 
F 

(157) 

A{0) -      2F*     I1 + 12+ ~m~\ ~     2AF>    i12 + JJ- (158) 

Setting dA(0)/d6 = 0 yields a minimum at 

6=^[-l + y/l + (96e/F)]~e       for       e < 1. (159) 

One could, of course, use the optimal value of 6, but the simple choice 8 = e certainly gives 
a valid saturation bound too, which is 

S'<A0) = §(l + f)e. (160) 

Now the eddy energy is also bounded by the total energy of the system, namely 

£'<£total = ^(l + f)(l + e)2- (161) 

However it is clear that £totaj > -4(0) for e < 1, so the bound (160) is providing a non-trivial 
constraint on the dynamics. 

This gives a bound on the scaling of the saturation amplitude of the instability. But is 
it any good? Weakly-nonlinear theory (Pedlosky 1970; Warn & Gauthier 1989) gives 

£max - ^ (162) 

for e -C 1, which is the same scaling as (160); the numerical factors in (162) are l/7r2 for the 
non-resonant case, and 1/8 for the resonant case. This is to be compared with a coefficient 
of 1/6 for the stability-based bound. So the bound is, in fact, not too bad as an estimate of 
the saturation amplitude. 

An important generalization of these saturation bounds is to forced-dissipative systems. 
If 

^L = _r(P _ Pe) (163) 

(potential vorticity relaxation), where Pe = P(t = 0), then these bounds on the eddy energy 
remain valid (see Shepherd 19886). 



5    Pseudomomentum 

5.1    General construction 

We have seen how one can construct the pseudoenergy, a second-order invariant, for distur- 
bances to a steady basic state under time-invariant dynamics. Similarly, if the dynamics 
under consideration is invariant to translations in the x direction, we may construct a second- 
order invariant for disturbances to x-invariant basic states. 

Recall how we constructed the pseudoenergy from the Hamiltonian, H, and the Casimirs, 
C: since the basic state U in that case is a steady solution of the dynamics, 

J — 
6u 

= 0. 
u=U 

(164) 

It follows that for some Casimir C, 

6H 
6u u=U 

6C_ 

6u u=U 

The pseudoenergy is then 

A[U; 6u] = H[U + 6u] - H[U) + C[U + 6u] - C[U], 

(165) 

(166) 

where C is defined by (165). 
In the very same way, we may construct the pseudomomentum from the momentum 

invariant, M. By definition of A4 (see §1.5), J(6M/8u) = -ux. Now, since the Hamiltonian 
is presumed to be invariant under translations in the x direction, it follows from Noether's 
theorem that M is an integral of the motion. If the basic state U is also invariant with 
respect to x translations, then 

T6M 
6u 

It follows that there exists a C such that 

ÖM 

-Ux = 0. (167) 
u=U 

6u u=U 

6C_ 

6u u=U 

Finally we define the pseudomomentum by 

A[U;6u] = M[U + 6u}- M[U] + C[U + 6u] - C[U], 

(168) 

(169) 

where C is defined by (168) so that (6A/6u)\u=u = 0. In fact, it is clear from Noether's 
theorem that we may generate a similar functional for any continuous symmetry of the 
dynamics. 

The pseudomomentum, like the pseudoenergy, is guaranteed to have the following nice 
properties: (i) it is calculable to leading order from linear theory; (ii) it may be sign-definite 
under certain conditions. If we find some zonal basic states for which the pseudomomentum 
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is sign definite, then it is clear that we are in a position to generate more nonlinear stability 
theorems. 

If the basic flow is both zonally symmetric and steady (as zonally symmetric flows often 
are), we may combine the pseudoenergy and the pseudomomentum to generate still more 
quadratic invariants, according to 

A={H + aM+C)[u]-(H + aM + C)[U]. (170) 

Here we may choose a arbitrarily and, again, C is chosen so that (SA/6u) \u=u — 0. 

5.2    Example: Barotropic vorticity equation 
In this section we will develop an expression for the pseudomomentum of the barotropic 
model in a /?-plane zonal channel. The flows we will consider are governed by the vorticity 
equation 

Pt + ö($,P) = 0 (171) 

where $ is the stream function, and P is the absolute vorticity 

P = V2$+ / + /%. (172) 

For definiteness, we consider flows that are periodic in the x (zonal) direction, and bounded 
by rigid walls in the y direction. 

We take as the state variable the absolute vorticity, P, and the boundary circulations, 
ßi = §dD. V3> • n ds. Recall that in this formulation, the Hamiltonian is given by 

H = jjD\\V$>\2dxdy. (173) 

The cosymplectic operator, J, acting on the basis (P, pi, /u2), is given by 

J = 
' -d(P, •)   0   0 

0        0   0  I . (174) 

<      0        0   0 

The Casimirs associated with J are functional of the form 

C = ff C(P) dxdy + y; OHM (175) 
JJD fr{ 

for arbitrary functions C(-) and scalars a*. The momentum invariant M is found by solving 

(dP nn\T     j/SM 6M 6M\T dP     r.fpSM^ f     . 

The solution (to within a Casimir) of (176) is given by 

6M 
6P y        =»        M = jj yPdxdy. (177) 
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This expression differs from the usual definition of momentum, which is ffD u dxdy. The 
reader may verify (cf. §1.5) that the difference between these two expressions can be written 
solely as a function of the boundary circulations pi and //2 — in other words, the difference 
is a Casimir. 

If the basic state is given by $ = V, P — Q, then to find the pseudomomentum we must 
solve 

6-§       =-§ =>       y = -C'(Q). (178) 
bF   P=Q bF P=Q 

Note that this requires Q to be independent of x, i.e. Q = Q(y). Thus zonally symmetric 
states are seen to be constrained extrema of M, just as steady states are constrained extrema 
of H. Solving (178) for C yields 

C(Q) = -jQY(q)dq, (179) 

where Y(-) is the inverse of Q(y): that is, y = Y(Q(y)). 
Note that since the disturbance need not be dynamically accessible, we may (as before) 

extend the definition of F(-), if required, to cover values of its argument outside the range 
of the basic state Q. 

The pseudomomentum, A, is given by 

A = I ID V{P " Q) dxdV + C[P]~ C[Q]- (180) 

A - JJD{yq - JQ+q Y(q) dq} dxdy. (181) 

Setting P = Q + q, and substituting (179) for C, yields 

fQ+q_ 

>Q 

Finally, since y — Y(Q), we may write 

A = JJ A dxdy = jjD{-[\Y(Q + $)- Y(Q)l <%} dxdv (182) 

(Killworth & Mclntyre 1985).   Note the similarity between the pseudomomentum (182) 
and the expression in (98) for the APE. As a consequence, (182) has the same geometrical 
interpretation as the APE (see the sketch in §3.4). 

If dQ/dy (and thus dY/dQ) is sign-definite, then so is A. In particular if dY/dQ ^ 0 
and 

dY a       ' (183) 0<ci < 
dQ 

< C2 < 00, 

then 
\ciq2 < \A\ < \c2q\ (184) 

This is the convexity condition for this problem. We then have normed stability under the 
enstrophy norm. In particular, if we define our norm according to 

IM; JJDlq2dxdy, (185) 
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then we have 
12 ^ ! MA - * At(\\ s ^n^nMi2 \\q{t)f < -A(t) = -A(0) < -%(0)||2, (186) 

C\ C\ C\ 

which proves normed stability. 
As with the previous stability criteria, this stability criterion applies to arbitrarily large 

disturbances. It is the finite-amplitude version of the Rayleigh-Kuo theorem (Shepherd 
19886). The same procedure applied to the quasi-geostrophic equations yields a finite- 
amplitude Charney-Stern theorem (Shepherd 1988a, 1989). 

In §3.6 and §4.4, pseudoenergy-based finite-amplitude stability theorems were used to ob- 
tain rigorous upper bounds on the nonlinear saturation of instabilities. The same procedure 
is of course possible with the pseudomomentum. For a general discussion and applications 
to parallel flows on the barotropic 0-plane, see Shepherd (19886). Further applications are 
provided in Shepherd (1988a, 1989, 1991). 

5.3    Wave, mean-flow interaction 
In this section we shed some light on why A is called the pseudomomentum. Still considering 
the barotropic vorticity equation, if we take the x-average of the zonal momentum equation 
we get          

du       d(v?)     d(uv) dp (     , 
dt dx dy       J      dx' X     ' 

The first and last two terms on the right-hand side vanish due to the presumed periodicity 
in x, together with the fact that v => -tpx so v = 0. This leaves 

du        d (u't/) n Qas 
m = —dy-' (188) 

where the primes indicate departures from the x-average flow. Using the fact that the flow 
is non-divergent, we can rewrite the previous equation as 

^(S-s)-^^-"■>]• (189) 

The second term on the right-hand side vanishes under the zonal average, while the first 
term represents the meridional flux of potential vorticity, q', hence 

dn 
"öl = V'Q' 

Inl (190) 
dt 

On the other hand, from the linearized potential vorticity equation 

4t + Uq'x + v'Qy = 0 (191) 

we get 

t/ = ~tä + iVJ. (192) 
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Substituting this expression for v' into (190) then leads to 

?5 = _*(iZy (193) 

This is the well-known relation of Taylor (1915), describing how disturbance growth or decay 
induces mean-flow changes. But note that the small-amplitude limit of the pseudomomentum 
density (182) is 

A-& (194) 

Combining this with the previous equation then yields the small-amplitude relation 

*E = dÄ (195) 
dt      dt' V 

which justifies the interpretation of A as a pseudomomentum. (The prefix "pseudo" has 
led to some confusion. However, to discuss the "momentum" of waves has historically been 
a source of profound confusion! For background on this issue, as well as a defense of the 
current nomenclature, the reader is referred to the spirited article of Mclntyre (1981).) 

In the continuously stratified quasi-geostrophic case, (190) generalizes to (see e.g. Ped- 
losky 1987, §6.14) £(f) = J(^ (196) 

where C is the linear elliptic operator 

C = £. + ±±»±. (197) 
dy2     psdzSdz \ 

The pseudomomentum conservation relation may be written in local form, including non- 
conservative effects, as 

^ + V-F = A (198) 
at 

where D represents the non-conservative effects and -F is the so-called Eliassen-Palm flux 
(Andrews & Mclntyre 1976), satisfying 

V • F = -¥?. (199) 

(The minus sign in the definition of the E-P flux is for historical reasons: the introduction of 
the E-P flux predated its understanding in terms of pseudomomentum.) From these relations 
we get the following equation for the mean-flow tendency: 

Relation (200) generalizes (195) in two distinct ways: first, by including non-conservative 
effects; and second, by extending the relation to quasi-geostrophic flow. Integrating (200) in 
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time over some finite time interval then gives the following expression for the net change in 
the zonal flow, Aw: 

A"=£"'{J(A3-/B*)}- <201> 
That is, to have a change in ü, we need either transience in the wave activity, AÄ ^ 0, 
or wave-activity dissipation, I) ^ 0; this is the "non-acceleration theorem" (Andrews & 
Mclntyre 1976). The insight provided by this theoretical framework has recently led to 
profound advances in our understanding of some classical questions in large-scale atmospheric 
dynamics, including the maintenance of the westerlies (see the discussion in Shepherd 19926). 

The beauty of the Hamiltonian framework is that it provides insight into which aspects of 
a particular derivation may be generalizable to other systems. For example, the wave, mean- 
flow interaction theory exemplified by the relation (200) is clearly generalizable through the 
unifying concept of pseudomomentum (e.g. Scinocca & Shepherd 1992; Kushner & Shepherd 
1993). 

5.4    Wave action 

There is a classical literature in fluid mechanics that is relevant to wave propagation in 
inhomogeneous, moving media. For WKB conditions — namely, a nearly monochromatic 
wave packet propagating in a slowly varying background state — there is a conservation 
law for the so-called "wave action" (Whitham 1965; Bretherton & Garrett 1968). The wave 
action is given by E'/u, where E' is the wave energy (as measured in the local frame of 
reference, moving with the mean flow) and u> is the intrinsic frequency of the waves (i.e. the 
frequency in the local frame of reference). In the case of the barotropic vorticity equation 
with a zonal basic state, for example, 

£'=i]WF       and       *=-^, (202) 

where k and / are the x and y wavenumbers, respectively, Qy is the basic-state potential- 
vorticity gradient, and the overbar now represents an average over the phase of the waves. 
Thus the wave action for Rossby waves is given by 

E =   l (fc2+*2)iwi2 = _jV (203) 
Ü        2k Qy 2kQy' 

Referring to (194), we conclude that the wave action is the pseudomomentum divided by 
the zonal wavenumber, 

— = -. (204) 
u)      k 

Of course, wave action is a local concept which may be defined even when there is no global 
symmetry in the problem (provided the WKB conditions are satisfied). However, when the 
basic state has a zonal symmetry, the pseudomomentum may be defined and is related to the 
wave action in the above fashion; the factor of k is then irrelevant since it is constant. Under 
such conditions, the pseudomomentum may be regarded as a generalization of wave action 
insofar as it is not restricted to WKB (slowly varying) conditions, neither is it restricted to 
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small amplitude. This connection has already been made by Andrews & Mclntyre (1978) 
within the context of Generalized Lagrangian Mean theory; the present treatment illustrates 
how it holds for the Eulerian formulation of fluid dynamics. 

5.5    Instabilities 

Analysis of normal-mode instabilities is often facilitated by the use of quadratic invariants 
such as pseudomomentum and pseudoenergy. This is because for a normal mode, 

A = Aoe2<Tt (205) 

where AQ = A(t = 0) and a is the real part of the growth rate. However, A is conserved in 
time, which implies that a A = 0. Therefore, we conclude that growing or decaying normal 
modes (with a ^ 0) must have A = 0. [In fact, many of the well-known derivations of linear 
stability criteria involve the implicit use of this relation a A — 0: an example is Pedlosky 
(1987, Eq.(7.4.22))]. 

The constraint A = 0 on normal-mode instabilities means that such instabilities consist 
of regions of positive and negative A. This is a generalization of the notion of positive and 
negative energy modes discussed in Morrison's lectures. It is clear from the Hamiltonian 
perspective that one may speak of positive and negative pseudoenergy, or positive and nega- 
tive pseudomomentum, or even some combination of the two, depending on which invariant 
quantity is most appropriate for the problem at hand. 

This concept is most useful when the wave-activity invariant being considered is sign- 
definite in certain parts of the flow, and can be associated (in an appropriate limiting sense) 
with certain wave modes. Typically in the short-wave limit these modes decouple and are 
neutral. 

As an example, consider baroclinic instability in the continuously stratified quasi-geostro- 
phic model, with ZQ < z < z\. In this case the small-amplitude expansion of the pseudomo- 
mentum gives (Shepherd 1989) 

A = Ai+A2 + A3 (206) 

where 2 

^-fffoTäm***- (207) 

W/saä***^   *=-niton** 
Here Q and q are the basic-state and disturbance potential vorticity fields, while A* = 
^vD and \i = Qib,        where ^ and ip are the basic-state and disturbance stream 
S        z=Z{ z—Zi 

function fields. All known (inviscid) quasi-geostrophic baroclinic instabilities may be under- 
stood within this framework. In the case of the Eady model, we have 

^ = 0,   q = 0,   and   ^ < 0. (209) 
dy ay 

(208) 
Z=ZQ 

/<fS 



Therefore, in this model instability is possible with Ai = 0, A2 < 0, and A3 > 0. In the case 
of the Charney model there is no upper lid so the contribution to A2 vanishes, while 

(210) f>0 
dy 

and 
dy 

<0. 

Thus in this case Ai < 0, A2 = 0, and A3 > 0. For internal baroclinic instability (like in the 
Phillips model), A2 = 0 and .A3 = 0 so we must have A\ = 0, but characteristically 

dQ 
> 0   for   z > zc 

A      dQ       n and   -?- <0 for   z < zc (211) 
dy '       "" c dy 

for some zc, so A\ consists of a negative-yl mode above a positive-./! mode. 
A very important feature of these wave-activity invariants is that their finite-amplitude 

forms are meaningful even for discontinuous basic-state profiles. Indeed, the understanding 
of instabilities in terms of interacting modes is clearest when the modes are spatially localized 
on material interfaces. For example, consider the barotropic system with a basic state 

Q{y) 
{Q2, y 

\Qx, y 

>o 
<o (212) 

where Qi < Q2. We can study the stability of this profile by looking at the regions where 
A ^ 0. In this case the pseudomomentum is given by 

A=-[ [Y(Q + q) - Y{Q)\ dq. 
Jo 

(213) 

Note that A = 0 except in the hatched regions (see figure below). 

ys1 

5.0 

rs ^1 

It turns out (see Shepherd 1988&, Appendix A) that 

1 A = ILA dxdy = ~2^2~ Q^ f ^ dx' (214) 

where 77 is the meridional displacement of the material contour where the vorticity jump 
occurs. Evidently in this case A < 0, and the basic state (212) is stable. The above formula 
can be generalized for N contours (denoted by Q) as follows: 

N     f 

(215) A = jjDAdxdy=-\YtJjdx. 
So we see that the pseudomomentum resides in each contour, and has a sign opposite to that 
of the vorticity jump. This is in contrast to the pseudoenergy, which is not so localized. 
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A Nonlinear Wave in Rotating Shallow Water 
Oliver Bühler 

Department of Applied Mathematics and Theoretical Physics, Cambridge, U.K. 

Introduction 

In this project the one-dimensional shallow-water equations on an /-plane have been studied. One 
equation describing all possible dynamics has been derived. The potential vorticity structure appears 
explicitly in that equation. A nonlinear steadily translating periodic wave has been found and its 
limiting amplitude behaviour studied. There exists no solitary wave in this system. The Lagrangian 
description of fluid motion has been used, taking particle displacements as dependent variables. 

The Lagrangian Description of Fluid Motion 

The Lagrangian description of fluid motion is a formalism which is not very often put to work. Both 
the Eulerian equations and the Lagrangian equations appear on equal footing in the introductory 
chapter of Lamb's Hydrodynamics, but the latter are almost completely neglected in the following 
chapters. Only once do they appear explicitly in the book, in paragraph 251 when Gerstner's (1802) 
rotational deep-water surface wave is described. That wave is a fully nonlinear solution to the 
free-surface problem on a homogeneous and infinitely deep fluid. It is easily written down using La- 
grangian coordinates but it is very difficult to solve for it in Eulerian coordinates. As Stokes describes 
it in the appendix to his paper on Oscillatory Waves (Collected Papers, vol. I, page 219ff), the wave 
is derived assuming that material surfaces coincide with surfaces of constant pressure throughout 
the fluid body. (It has not been stated in Lamb's book, nor in Stokes's or Rankine's papers—-who 
found the same wave independently fifty years after Gerstner—, that the same assumption allows 
the wave to exist in a stratified fluid as well. This is because the baroclinic term in the vorticity 
equation V/9 x Vp = 0 by the assumption. ) This assumption is true at the free-surface, and at great 
depth, where the motion ceases, but not necessarily in-between. Indeed, the classical irrotational 
water wave does not have this property. 

Why is this almost the only example of a practically successful Lagrangian solution ? Probably 
because asking for a solution to the Lagrangian equations is often asking for too much information, 
namely the complete displacement history of each fluid particle. It appears reasonable to assume 
that only very special flows will produce displacement fields which are describable with a couple of 
known functions (in Gerstner's case particle paths are perfect circles). From a more problem-oriented 
perspective, incompressible and irrotational two-dimensional motions are much more easily described 
in the Eulerian formalism where the mathematical task is reduced to solving Laplace's equation. 
Posing the same problem in the Lagrangian description leads to no simplification of the original 
equations at all. 

In the extreme case of one-dimensional motion, however, the Lagrangian description can be used to 
some advantage, because particles cannot interchange their positions and this simplifies the problem 
in terms of particle locations. 
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Shallow-Water Equations in Lagrangian Form 

The familiar shallow-water equations on an /-plane in Eulerian form are three partial differential 
equations for the fields of the horizontal velocity (u, v) and the layer depth h in terms of the three 
independent variables £, y and t: 

Du      , dh m 

m-fv = -9di (1) 

Du dh /9x 
m+fu = -% (2) 

5^ + AV-u = 0. (3) 

The equations in Lagrangian form look quite different, and they are the result of changing both 
dependent and independent variables. The dependent variables are taken to be the particle displace- 
ments vector (X, Y), and the independent variables are particle labels (a, 6) and time t. The particle 
labels will be chosen arbitrarily up to the constraint that the Jacobian of the displacement fields 
with respect to the labels must equal the inverse layer depth: 

This requirement satisfies the continuity equation identically for any choice of X(a, b, t) and Y(a, b, t), 
thus reducing the number of equations from three to two. The material time derivative becomes an 
ordinary partial time derivative, denoted by a simple dot, and the spatial derivatives transform as: 

Oh   _   d{h,y)       d(a,b) d(k,Y) 
dx    ~   d{x,y)      d(X,Y)d(a,b) 

1 0(1/J,Y) _      1 d(J,Y) 

The resulting equations read 

J    d(a,b) J3 d(a,b) 

J3{*-*} = *1# <"> 
J*{Y + fX]   =   g d(X,J) 

d(a,b) ' 

where J is given by (4). 

Restriction to one-dimensional motion 

If the velocity and the layer depth at each instant are independent of one space coordinate (y, say), 
then the motion is one-dimensional. To get anywhere in the new variables, we have to align one of 
the particle label coordinates with the y-axis. If this holds true initially, then it will be true at later 
times as well. Let's assign the labels such that the lines of constant a are parallel to the F-axis. 
For any F-independent initial depth field we can then find a b to fulfill (4). This translates into the 
restrictions 

X = X{a, t),        J = J(a, t) and Y = Y(a, t) (7) 
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which can be used to simplify (6) as far as possible. 
The right hand side of the second equation of (6) is zero, therefore one can integrate once with 

respect to time and get 
Y + fX = K(a,b), (8) 

the left hand side of which is independent of 6, therefore 

K = K(a). (9) 

Since Y is independent of b, the most general form for Y, 

Y = P{a,t) + Q(a,b) (10) 

is obtained. Plugging this form into the requirement for J, (7), one gets 

Jb(a,t) = 0 = XaYbb   =   XaQbb     and hence 

Q(a,i)   =   A(a)b + B(a). (11) 

The first equation of (6) now takes the preliminary form 

(XaA(a))3 {X + fX - fK(a)} = g(XaA(a))aA(a). (12) 

The a-derivatives only appear in conjunction with the function A(a), hence for any choice of A(a), a 
can be rescaled such that Ada = da. The long and the short is, that one can conveniently set 
A(a) = l/H, where H is the undisturbed layer depth, without loss of generality. This gives a the 
dimension of length. 

The end result is this equation: 

X + f2X = fK(a)+gH^   for X = X{a,t), (13) 

which describes all possible F-independent motions on an /-plane. After this equation has been 
solved for the X-displacement field, the F-field can be found by time-integrating (8) and finding the 
functions P(a,t) and Q(a,b). The depth field is given by (4) as 

1/h = XJH. (14) 

Significance of K{a) 

The shallow-water potential vorticity is defined as 

PV = {vx -uy + f)/h, (15) 

which in our case becomes (using (8) and the transform rule (5)) 

pv4f=r<o)^ <i6> 
From the assumption of one-dimensional motion, the potential vorticity is independent of Y and 
independent of time, which must be the case because PV is a materially conserved quantity, i.e., 
constant following particles. 

The potential-vorticity structure thus takes a prominent and explicit place in the equation of 
motion and mediates the dynamics. 
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Steadily Translating Patterns 

The shallow-water /-plane has both nonlinear and dispersive properties. The nonlinear effects try 
to steepen wave fronts by moving crests faster than troughs, the dispersive effects can counter this, 
and there might be a finite-amplitude balance where a wave-like shape translates without further 
distortion. To find out whether that's possible here, 

d(X,X- ct) _ d{Xa,X-ct) _ 
0 (17) 

d{a,t) d(a,t) 

is assumed, with c being an unknown constant wave speed. Using (13) and (17)1 the requirement on 
K(a) is found to be that it is a linear function of a, making the potential vorticity uniform. 

The Simple Wave 

Taking the PV uniform and equal to f/H throughout the plane and using the ansatz2 

X = a + £(s)   with s = a-ct (18) 

(13) becomes 

c2e + fH = gHjrh^- (19) (i+er 
To non-dimensionalize this equation the Rossby-deformation length 

LR = y/gH/P (20) 

is defined and 

is substituted. This yields 

C(s) = LR$(T) with r = S/LR (21) 

(22) 

where c2 = c?/gH. A solution to this equation gives both X (through (18)) and the fields of u and h 
in a parametric representation; to find out what the wave looks like in physical space one has to 
plot it on a computer. After the scaling, the only parameter left is the wave speed c. The rotation 
rate / only sets the length scale through (20), such that for weaker rotation a longer wavelength is 
necessary to produce the same wave speed. 

The equation resembles a nonlinear oscillator. For small amplitudes the bracket is almost constant 
and the wave-form is sinusoidal, for larger amplitudes it is varying through a period and the wave- 
form becomes distorted with peaky crests and wide troughs. Finally, there exists a critical amplitude 
where the bracket becomes zero at one point of the cycle. No physical meaningful solution exists 
with larger amplitude. 

The study of the equation is greatly simplified by the existence of an exactly conserved quantity 

K(#\#)S^.   «■• -j—s   +-. (23) 

lrTo really do that, you must take the Jacobian of (13) with X - ct and use X = K/f + A{a,t) to find that 
necessarily A = A(K/f - ct). You plug that back into (17) and it only works if K' is constant. 

2 Which can be checked to satisfy (17). 



The critical amplitude corresponds to a trajectory with 

He = (c2/3 - l)3/2. (24) 

Indeed, (22) can be written fully in Hamiltonian form, but with a singular bracket which goes to 
infinity at the saddle point of W($', $) coinciding with the critical amplitude of the wave. Thus the 
saddle point is not a stationary point of the evolution, although the gradient of H vanishes there. This 
makes the contour plot of H over the phase space somewhat deceptive. In particular, the existence 
of a saddle point often signals the possibility of a soliton solution, but here the trajectory passes 
right through the saddle point in finite time and thus there exists no soliton for the shallow-water 
model on an /-plane. 

■ Constant ot Motion     CA2 - 8 WavaShope.   C2-8      H . 0.03 0.25 0.5 

20 30 
X/LR 

Figure 1: Trajectories of the nonlinear oscil- 
lator. Critical amplitude has a saddle point. 

Figure 2: Wave Shape for different ampli- 
tudes. Critical amplitude H = 0.5 has a 
sharp corner. 

Relation between Velocity and Depth 

From (18) and the identity (14) it follows that there exists a fixed relation between u and h, namely 

h-H 
u gHc 

h 
(25) 

This is the nonlinear extension of the familiar relation between the velocity and depth amplitudes 
for the linear wave. Presumably, this relation could be used to deduce the wave in an Eulerian frame 
as well. 

Stokes Drift 

The waves have periodic X-displacement fields, indicating at first sight a surprising absence of Stokes 
drift. But Stokes drift is defined as the difference between the Lagrangian mean velocity and the 
Eulerian mean velocity and thus everything works out, because the velocity over one wave period at 
a fixed point in space is not zero, but negative if c is positive. Therefore c actually gives the wave 
phase speed in a frame moving with the Stokes drift velocity: 

cph = USD + c. (26) 
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This is an example of how understanding a solution to the Lagrangian equations in ordinary space- 
time pictures requires some work and might lead to unexpected results. 

To find out how big the Stokes drift is (or rather how small, since we want to neglect it!) the 

velocity is averaged over one wavelength: 

Stokes Drift at 95 % of Critical Amplitude. 
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Again, U$D is the average velocity of a fixed 
particle as seen from a frame in which the 
average velocity at a fixed point is zero. It 
is below ten percent of the phase speed for 
the case considered in the wave shape picture 
(Fig.: 2). The drift speed increases more than 
linearly with c and comparing this with the 
general result from linear wave theory 

USD I 
lul u. 

c ~ + 0(-2fL) 

indicates that umaxfc increases with increas- 
ing c. 

Figure 3: Stokes drift at 95 % of the critical 
amplitude. 

Nonlinear Breaking Amplitudes 

The sufficient breaking criterion umax/c = 1 comes from the following argument: for / = 0, surface 
waves are longitudinal, i.e., the particle displacement vector is parallel to the phase propagation 
direction of the wave. For / ^ 0, surface waves have an additional particle displacement component 

transverse to the propagation direction. 

Maximum Amplitudes of Velocity and Depth over Wave Speed 

3 4 5 6 
Dimensionless Wave Speed CA2 

Figure 4:   Breaking amplitudes of velocity 
and depth over wave speed squared. 

But in both cases the wave can only exist if 
the phase speed exceeds the maximum par- 
ticle velocity in direction of the phase prop- 
agation. Otherwise particles would surf on 
wave crests and never come back. Therefore 
the wave must break unless «max/c < 1- But 
the wave might already break nonlinearly at 
lower amplitudes. From (24) we can deduce 
the maximum particle velocity for each value 
of c as well as the maximum depth h. The 
lower half shows that the breaking velocity 
amplitude is much smaller than c, therefore 
breaking occurs much earlier than estimated 
from the sufficient criterion umax/c = 1. The 
upper half shows that the maximum layer 
depth is smaller than twice the mean layer 
depth for phase speeds smaller than \/8- 

/S"8 



Summary 

Associated with every linear inertio-gravity wave in shallow water there is a nonlinear family of 
finite-amplitude waves with the same phase speed but varying amplitude. For each phase speed 
there exists a maximal amplitude for the waves. For bigger waves the nonlinear effects cannot be 
balanced any more by the dispersion, and the waves will break. This breaking criterion (see Fig.: 4) 
is much more restrictive than the sufficient criterion of maximal particle speed equals phase speed. 
Waves with equal phase speed but increasing amplitude have decreasing wavelengths. 

Uniform potential vorticity is necessary for any steadily translating solution and then the derived 
wave family is the unique solution to that problem. 
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Drop formation from viscous fingering 
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Abstract 

The stability of the horizontal displacement of an intermediate layer of fluid bounded by two 
other fluids of different viscosities is analysed. We consider the flow of immiscible fluids in a 
porous medium; the results are also valid for the analog Hele-Shaw cell displacement. Linear 
stability analysis for both one-dimensional rectilinear and radial flows are presented. It is 
found that in a rectilinear displacement, the presence of a nearby stable interface cannot 
lead to the stabilisation of the other interface. The intermediate layer will then eventually 
breakup into drops. However, in the case of radial flow, the continuous thinning of the 
intermediate layer as it moves outward, results in the stabilisation of the system. 

1. Introduction 

When a fluid is horizontally displaced by another in a porous medium, the interface between 
them may be either stable or unstable, depending on the relative viscosities of the fluids and 
on their miscibility. The basic mechanism of this instability was first described by Hill (1952) 
and later by Saffman and Taylor (1958). Consider the rectilinear displacement of a fluid of 
viscosity /z2 by a another fluid of viscosity m in a homogeneous porous medium (figure 1). 

y ^ 
"i; 

i^'WAii: 

(a) (b) 

Figure 1. Rectilinear displacement of a fluid by another fluid of different viscosity. 

The motion of the fluids through the porous medium is governed by Darcy's law, which for 

steady flow may be written as 

(1) u = —Vp = -MVp 

where u denotes velocity, K is the permeability of the medium and p is pressure.   M is 
the mobility of the fluid. Suppose the interface between the two fluids is deformed slightly 

\GO 



such that there is a virtual displacement Sx from its convected location (figure lb). Then, 
from (1), the pressure force on the displaced fluid is 8p = pi — P2 = (I/-M2 — l/Mi)U6x 
where U is the steady state velocity. If the net pressure difference is positive, then any small 
perturbation to the interface will grow, leading to an instability. Hence, the interface will 
be unstable when a less viscous fluid displaces a more viscous fluid. Long 'fingers' of the 
displacing fluid will penetrate into the more viscous fluid ahead. 

We have assumed above that the interface between the two fluids is sharp, i.e. that the fluids 
are immiscible. A detailed stability analysis should therefore take into account the effect of 
surface tension (Chouke et a/.,). For disturbances in the form of normal modes proportional 
to exp(at + iky), the general growth rate of the instability is given by 

Mi -Mi 
Uk- 

M\Mi 
■TV (2) 

M\ + Mi" "    Mi+ M2 

Here T denotes the surface tension coefficient and k is the wavenumber of the instability. 
The dispersion relation (2) shows that the effect of surface tension (second term) is to damp 
short waves, whereas the basic mechanism (first term) favours them. The competition of 
these two opposing effects leads to the occurence of a preffered mode (figure 2). 

Figure 2. Dispersion relation for the rectilinear displacement of two immiscible fluids. 

Many recent investigations (Homsy, 1987) on the Saffman-Taylor instability have been 
directed mainly at exploring different possibilities of surpressing the instability. This problem 
has been motivated by its relevance in oil recovery processes which attempt to produce oil 
by displacement with air or water; this is often accompanied by the addition of polymer to 
reduce the instability at the boundary between the oil and the displacing fluid (Mungan, 
1971, Gorell and Homsy, 1983 and Paterson, 1984). 

In the present study, we extend the work described above. We investigate the stability of 
the displacement of an intermediate layer of fluid bounded by two other fluids of different 
viscosities. The dynamics of the two interfaces and their interaction is studied; the possibility 
of stabilising an interface with the presence of another nearby interface is analysed. In section 
2, we model the flow in a rectilinear geometry. In section 3, radial source flow is considered. 
Finally, in section 4, we draw some conclusions and give suggestions for future work. 
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2. Rectilinear displacement 

Consider the displacement in a porous medium of an intermediate layer of fluid, bounded 
by two other fluids, as sketched in figure 3. The three fluids are assumed to have different 

viscosities and to be immiscible. 

y n 
111 

111 

m 

D 

Figure 3. Displacement of an intermediate layer of fluid. 

The equations describing the motion of the fluids are Darcy's law (c.f.  (1)), which may be 

written in terms of a velocity potential <f> = Mp as 

(3) u = -V<£ 

and the continuity condition for incompressible fluids 

V.u = 0 (4) 

The velocity potential therefore satisfies Laplace's equation V2<£ = 0. The boundary 
conditions for the problem specify the continuity of velocity and the pressure drop due 
surface tension at each interface. These equations admit the steady state solution 

t^-Ux + cj       7 = 1,2,3 (5) 

where the subscripts 1, 2 and 3 refer to the inner, intermediate and outer fluids respectively. 
The constants CJ may be detemined by specifying the magnitude of the pressure at some 

point in the flow. 

As the interface moves, it experiences perturbations due to inhomogeneities. Consider a 
wavelike perturbation a = Aexp(iky + at) at the interface between fluids 1 and 2, and a 
similar perturbation b = Bexp(iky + at) at the interface between fluids 2 and 3, where a is 
the growth rate of the instability and k its wavenumber. The required solution of (3) and 

(4) has the form (f>j = (f>°j + <j>), with 

<f>\ = aeiky+kx+at 

s\ = ße
ikv-kx+at -j- ^e

iky+kx+<Tt 

<j>\ = 8eiky-Hz-D)+<rt 

(6a, 6, c) 
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where a, ß, 7 and 8 are constants to be determined. We consider here a moving frame of 
reference in which the instant positions of the interfaces coincide with the planes x = 0 and 
x = D (to first order). The continuity of velocity across the interface between fluids 1 and 

2 (at x=a) is given by 
u° + u°lxa + u\ = u2 + u\xa + u\ — at (7) 

The pressure condition at this interface is 

Ml + {Ml)xa + Ml ~ W2 
+ {Jh)xa + W2- Ta» (8) 

Similar velocity and pressure conditions may be written for the interface between fluids 2 
and 3. The resulting system of equations may be solved for the growth rate of the instability, 
<T, and for the ratio of the amplitudes of the perturbations at the two interfaces, A/B. The 

solution is 

«(mh«(m)+« = ° (9) 

where ao, a\ and a2 are given by 

..-(i+££)~(*i»+(£+£H<u» 

+ ((^-i)+^<->3)-(-) 

and 

TM2 
+ ^(A^)2«»»/^)! 

(10) 

We have assumed here that the surface tension coefficient is the same at both interfaces. 

Figure 4 shows a plot of the dispersion relation for a case in which both interfaces are 
unstable. The configuration of the intermediate layer, obtained from the ratio of amplitudes 
A/B, has been sketched beside each curve. It may be seen that there are two different 
modes. One in which the interfaces grow in phase , and another in which the interfaces 
grow in antiphase. Both modes are unstable for long wavelengths. Short wavelengths are 
stabilised by surface tension, as expected. 
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Figure 4. Dispersion relation when the two interfaces are unstable. 

In figure 5, the dispersion relation for a case in which only one of the interfaces is unstable is 
represented. One of the modes is now stable for all wavelengths. The other mode is unstable 
for long wavelengths, but stabilised by surface tension for short wavelengths. 

V 

2 4 6 8 10      K D 

Figure 5. Dispersion relation when only one interface is unstable. 

The limit of a thin intermediate layer 

Let us consider the limit in which the thickness of the intermediate layer is small compared 
with the length scale of the motion, i.e. kD < 1. From equations (9) and (10), we have 

M\ -Mi 

Mi + M$ 
kD 

IT    MiMz 

UD2 Mi + Ms 
{kDf 

VTiTs ~ Mi) 

(11a, b) 

Mz     Mz 
M3 ~'Mi 

<o^ 



and 

,2T    M,M2   N2 4 
1     KUD^M.-Mz)  {kD) 

(12a, 6) 

1 + 2 A"1 M2r 

V1      MJUS      Mi) 
(kDf 

I 

Equation (11a) describes the stability of a mode similar to the Saffman-Taylor mode (com- 
pare with (2)). It is an overall mode since it is determined by the properties of only fluids 1 
and 3. The other solution, given by (lib), represents a slower growing, internal mode. The 
results in figure 5 suggest that the Saffman-Taylor mode is unable to stabilise the internal 
mode. This result represents physically an important initial step for the eventual breakup of 
the intermediate layer into drops. A sketch of the expected evolution of this layer is shown 
in figure 6. This behaviour should be verified experimentally in future work. 

H (t) t') CJ) 

Figure 6. Breakup of the intermediate layer into drops. 

3. Radial displacement 

Consider the radial displacement of an annulus of fluid in a porous medium, as shown in 
figure 7. 
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Figure 7. Radial displacement of an annulus of fluid. 

The flow is described by Laplace's equation (c.f.  (3) and (4)), which in polar coordinates 

reads 

<f>rr + Ur + 4«W = 0 (13) 
r rz 

For a point source with volume flow rate per unit depth Q, the velocity potential of the 

steady flow satisfying (13) is 

f Q_lnr + C.       j = 1,2,3 (14) 

This solution satisfies the continuity of velocity at each interface. The constants Cj may be 
determined by prescribing both the pressure drop due to surface tension at each interface 

and the magnitude of the pressure at some point in the flow. 

Suppose that at some time the positions of the interfaces are r = Rx and r = R2 (figure 
7) and that both interfaces are perturbed from the steady state circular configuration. The 
interface at r = R\ undergoes a wavelike perturbation a = A(t)exp(in6) and the interface 
at r = R2 a perturbation 6 = B{t)exp(in9), where both amplitudes are functions of time t. 

The required solution of (13) is of the form <f>j = <j)] + <j>) with 

^ = «(0(^)VB* 

<A = ß(t)(^rnein6 +7W(£)Vnö (15a, 6, c) 

The functions of time in the equations above may be determined by the boundary conditions 
at each interface. The continuity of velocity at the interface between fluids 1 and 2 (r = 

R\ + a) requires that 

v{ + v°lTa + v\ = v\ + v°2ra + v\ = v° + at (16) 



The pressure condition at this interface is expressed by 

i^ + Wra+M"^ + (M2)ra+iW2+:r(^ äT} (17) 

Similar continuity conditions may be written for the interface at r = R2 + b. The resulting 
system of equations may be solved for the growth rate of the instabilities of the two interfaces, 
At and Bt- The general solution is complicated and we shall therefore focus upon a more 
simple, limit situation. 

If the viscosity of the displacing fluid (fluid 1) is very large, then M\ -* 0 and therefore 
A, At -* 0. Physically, this means that the inner interface is rigid to any perturbation, and 
hence it remains circular as it moves outward with time. If we assume further that M2 > M3 
and also that the annulus of fluid 2 is thin compared to the wavelength of the instability 

(nS < 1), we find 
„ a4 fit _ n{n+l)TM3\ M, 

?1 - ^ ^2x 2      ' -   Q      7^S (IS1) 
B~ 1 + Ä 2xÄll + ^j 

where 8 = (R2 - Ri)/R\ is a non-dimensional thickness of the annulus. The first term in the 
expression above represents the opposing effects of the viscosity difference between fluids 2 
and 3 (destabilising effect) and of the surface tension (stabilising effect). The numerator of 
this term is similar to that found by Paterson (1981) in his work on the stability of a single 
interface in radial source flow. The second term in (18) represents a new effect, that of the 
thickness of the annulus becoming smaller with time. This thinning of the intermediate layer 
tends to stabilise any perturbation to the interface between fluids 2 and 3. We may see that 
there is some interaction between the effects described above, since the denominator of the 

first term contains n6. 

We are interested in finding the radius at which the interface first becomes unstable, for 
prescribed input conditions, that is the solution of the equation 

§ = 0 (19) 

It is possible to show that the mode that first becomes unstable depends on the radius of 
the interface, R2. We must thus combine (19) with the condition 

I),-0 (20) 

in order to determine the critical minimum radius and the corresponding wavelength for a 
perturbation to be maintained. Let us define the non-dimensional variable 

„ = -^^i (21) 
M2   V 

K   J 
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where V = 2xB%8 is the volume per unit depth of the annulus fluid and Rc - (l2TnMz)IQ 
is the radius at which a circular interface first becomes unstable when only two fluids are 
present (see Paterson, 1981); v is thus a volume fraction. 

•V 

\J    -    u,v\sba.hle. 

Figure 8. Stability diagram for the radial displacement. 

The solution of equations (19) and (20) in (v)-(R2/Rc) space is shown in figure 8. It may be 
seen that for a fixed volume of annulus fluid, the interface is stable at small radii; this is a 
result of the effect of surface tension. At larger radii, the interface becomes unstable due to 
the unfavourable viscosity difference. However, surprisingly, at still larger radii the interface 
is again stable. This stabilisation at large radii is a result of the thinning of the annulus 
during the outward flow in radial geometry, as seen above. 

In the asymptotic limit of a relatively large volume of the annulus fluid, i.e. when v -»• 0, 
the minimum wavenumber at which instability occurs is given by 

n (.1)1/2 
K2vJ 

(22) 

4. Conclusions 

The linear stability analysis of the one-dimensional displacement of an intermediate layer of 
fluid, bounded by two other fluids of different viscosities shows that there are two different 
modes. One of the modes is determined only by the properties of the bounding fluids; it 
is an overall mode, analogous to the Saffman-Taylor mode. The other mode depends on 
on the properties of the three fluids; this internal mode has a smaller growth rate than the 
Saffman-Taylor mode. The presence of one stable interface results in the stabilisation of one 
of the modes. In a rectilinear displacement, this stable mode is unable to stabilise the other 
mode. The intermediate layer is therefore unstable and will eventually breakup into drops. 
However, in a radial displacement the system can be totally stable owing to the continuous 
thinning of the intermediate layer during the outward flow. 

At this stage it would be interesting to compare our theoretical predictions with experimental 
observations.    Qualitative verification of the behaviour described above and, eventually, 
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measurement of the wavelength of the instability at its inception are significant points. 
A deeper mathematical analysis of the radial flow problem should also be carried out. In 
particular, the growth rate of the instability should be compared with the rate of change 
of the position of the intermediate layer. If the latter is non-negligible, integration of the 
growth rate of the instability over time should allow a more realistic modelling of the incipient 
instability. 
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A Study of a Shell Model of Fully Developed 
Turbulence 

Diego del-Castillo-Negrete 

1    Introduction 
The study of turbulence is one of the most challenging problems of science. At sufficiently 
high Reynolds numbers fluids exhibit fully developed turbulence. This state is characterized 
by extremely irregular variations of the velocity field both in space and in time due to 
strong nonlinear interactions between many degrees of freedom and scales. A landmark 
in the understanding of fully developed turbulence is the Kolmogorov scaling theory [1]. 
According to this theory, in a turbulent flow there is a local transfer of energy from large 
scales, where the system is driven, to small scales, where viscous dissipation dominates due 
to large velocity gradients. In an intermediate range of scales, called the inertial range, the 
fluid behaves like an inviscid unforced system and it exhibits scaling behavior. Assuming 
that the rate of energy transfer is constant and homogeneous in space one obtains, using 
dimensional arguments, the Kolmogorov scaling law for the energy spectrum E(k) ~ k 5> . 
This theory gives a good overall description of the energy spectrum of turbulent flows but fails 
to account for fluctuations in the energy transfer and dissipation seen experimentally [2,3] and 
numerically [4]. The deviations from Kolmogorov theory are more evident in the higher order 
moments statistics. It turns out that the energy transfer is not homogeneous but intermittent 
and that the majority of energy dissipation concentrates on a fractal-like structure rather 
than being spatially uniform. At present, there is not a satisfactory theory to explain the 
intermittency and high order statistics of fully developed turbulence based on the Navier- 

Stokes equation. 
Early attempts to correct Kolmogorov's original idea were made by Landau [5] and by 

Kolmogorov [6]. Later on Mandelbrot [7] introduced a fractal model for the energy dissipa- 
tion. Following this model, Frisch, Sulem and Nelkin [8] introduced the /3-model in which 
the flux of energy is transferred to only a fixed fraction ß of the eddies. To correct some of 
the discrepancies between the ß-model and experimental results [2], Benzi, Paladin, Parisi 
and Vulpiani [12] presented the multifractal random /?-model. 

The main criticism of these models is that they are based on general scaling arguments 
that use Navier-Stokes equation only marginally. One would like to explain the intermittency 
directly from the dynamics of the Navier-Stokes equation. Unfortunately, this approach is not 
feasible since the number of relevant degrees of freedom increases rapidly with the Reynolds 
number.   A scaling argument shows that the number of degrees of freedom required in 
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a numerical simulation is proportional to Re9/4 where Re is the Reynolds number. An 
alternative is to consider few degrees of freedom models of Navier-Stokes equation. In recent 
years a class of models of this type, called shell models, has been successfully used in the 
study of fully developed turbulence. The objective of this report is to study the shell model 
proposed by Yamada and Ohkitani [9]. 

2    Shell Models 

The basic idea of the shell models is to divide the Fourier space into N shells. Each shell, 
kn, contains all the wave numbers k in the range an <\ k |< an+1, where a is a constant 
(usually a = 2). The velocity field is specified by TV complex numbers un which represent the 
Fourier transform of the velocity field on the scale l/kn. The Navier Stokes equation is then 
approximated by TV complex, ordinary, nonlinearly coupled, first-order differential equations 
governing the time evolution of the Fourier amplitudes. Here we consider a shell model for 
three dimensional fully developed turbulence originally proposed by Yamada and Ohkitani 
[9]. The model takes into account only first and second neighbor interactions between the 
Fourier modes and is given by 

V Jt + ^"J Un = ^°nU"+lU"+2 + 6""n-l<+l + CX-l<-2) + A», n0 (1) 

for n = 1,2,... ,7V, where v is the viscosity and / is the forcing acting at the scale l/knQ. 
The coupling constants are chosen to be an = kn,bn = — A:n_1/2,c,l = — fcn_2/2, b\ = b^ = 
cx = c2 = öiv-i = fl/v = 0 in order to have energy and phase space volume conservation in 
the inviscid, unforced case {y = f = 0). 

In the recent years this model has been studied extensively, see for example, [9-11]. In 
[9,10] it was shown that the model has positive Lyapunov exponents and that its dynamics 
is chaotic and confined to a strange attractor in the 27V-dimensional phase space. It was 
also observed that on the average the chaotic solution exhibits Kolmogorov scaling in an 
inertial subrange of shells. Numerical simulations by Jensen, Paladin and Vulpiani [11] 
show that the model gives a correction to Kolmogorov scaling due to intermittency which is 
very close to the experimental value. More generally, they computed the velocity structure 
functions, Su® =| u(t + r) — u(i) \Q, and showed that on the average there is scaling behavior 
(8u®) ~ T^Q with (Q a nonlinear function of Q. These results represent a correction to the 
linear dependence between £Q and Q predicted by Kolmogorov theory and were shown to be 
consistent with the multifractal random /3-model. Also, in [11] a connection was established 
between the energy bursts and the instantaneous Lyapunov exponents. Shell models have 
also been proposed for the study of one dimensional turbulence (Burger's equation) [13], 
two dimensional turbulence [14,15] and for the study of turbulent advection of passive scalar 
fields [16]. 
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3    Fixed Points Analysis and Linear Stability of the 
Shell Model 

In this section we study the fixed points (dujdt = 0) of the shell model and their linear 
stability. Our objective is to understand the relationship between Kolmogorov scaling and 
the fixed points of the system. From a physical point of view, the relevant quantity is the 
amplitude of the velocity (i.e. the energy), therefore it is convenient to use polar coordinates 
un = r„(cos 9n + i sin 0n), / = ?/(cos ( + i sin£) and write the Eqs. (1) as 

dr. 
-^ = anrn+1rn+2 sin(0n + 0n+1 + 0n+2) + Krn.xrn+x sin(0n_! + 0„ + 0n+1) + 

Cnrn-irn-2 sin(0n_2 + 0n-i + V cos(£ - 6n)6n>no + 0„) - vk2
nrn 

dt 
(2) 

d0n 
dt 

071^71+1^+2 COs(0n + 0n+l + 6n+2) + 

Cn^n-l^n-2 

Kru-l^n+l cosCön-x + en + en+1) + 

cos(0n_2 + 0n_! + 0n) + -+- sin(£ - en)Sn<no (3) 

Let us assume for the moment that the boundary shells are fixed (i.e. dun/dt = 0 for 
n = 1,2,7V - 1 and N) and that the inner shells (n = 3,... ,N - 2) evolve according to 
Eqs.(2) and (3) with v = 0 and / = 0. In a sense, this corresponds to considering an "inertial 
range" in the shell model since we are neglecting the effects of viscosity, forcing and of the 
smallest and largest scale shells. For this case, since the wave numbers scale as kn ~ an 

there are an infinite number of fixed points «,0;) defined by the conditions 9^+3 = 6*n and 
r* - r*Ja. In the phase space this set of fixed points forms a six-dimensional manifold T 
which we can parameterize by three angles and three radii (for example, using a0, «i and 
a2 we have 6*n = anmod3 for all n and similarly for <). The set of fixed points having the 
Kolmogorov scaling r* = fc~1/3 is a three-dimensional submanifold, £, of T defined by the 
extra condition r\ = Jfc~1/3 for i = 1,2 and 3. It is interesting to observe that the only 
fixed points which exhibit scaling r*n = k° belong to K; that is, the only scaling solution 
corresponds to the Kolmogorov scaling. 

Having found the fixed points of the system, the next step is the study of their linear 
stability. The linearized equations for a perturbation (8rn,60n) are given by 

d_ 
dl 

Sr 
86 

_ ( Jsin(^)     Jcos(V>)   \ ( 

where ip 

ftcos(^)   -7£sin(V>) 

ax + a2 + a3, Knm = 8n>m/r*, 1 is the identity matrix and 

1X -8 -1 

^n-l^n-l 

(4) 

£** ^nrn+lrn+2 'n+2,m + 77^n+l,m ~ On-l.m _ 77^n-2, ,m 

•"Tnm —     knrn+l"n+2,m "•" knrn+2 "n+l,m 

fcn-l>"n+l "I" ":w-2>*n-2 
8n- ■X,m 

^n-2r*_x 
6n- ■2,m (5) 
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Note that (Srn,S9n) with Srn+3 = Srja, S0n+3 = 80n for n = 1,2,...,N are six null 
eigenvectors which correspond to perturbations tangent to the T manifold. Also, for tj) = 
7r/2 the equations for Sr and SO decouple and the stability problem reduces to finding the 
eigenvalues of the band diagonal matrices TZCg and CT. 

4    The 2-1/2 shell model 

The general JV shells model is hard to analyze and for that reason it is better to deal with a 
simplified version of it. Here we consider a truncation of the model in which only two shells, 
say the n and the n + 1, are assumed to vary both in phase and amplitude and the rest of 
the shells are held fixed at the Kolmogorov scaling value with phases equal to zero except 
for the phases of the n — 1 and n + 2 shells which are assumed to evolve according to the 
shell dynamics. We refer to this model as a 2-1/2 model since it consists of 2 shells coupled 
to "1/2" (i.e. only through the phases) of the n - 1, n + 2 boundary shells. The resulting 
model (taking a = 2) is the following six degrees of freedom dynamical system 

~df 
dR2 

~dT 
dh 
~dt 

dh 
dt 

djH 
dt 

dt 

o(2n-3)/3 

2(2n-l)/3 
f sin(0i + 92 + fa) - 

sin(0i + 62 + fii) 
R2- 

sin(0! + fii) 1- v2lnRx 

{[sin^i + 62 + »2) + sin(0! + 02 + Hi)] Ri + sm(62 + /z2)} - i/22<n+1>i22 

2(2n-3)/3JLos(öi+Ö2 + //2)_ 

2(2n-l)/3 

cos(0i + &2 + A*l) R2 

Rl 

Rl 

~^~2RCOS^1 + fl^ ) 

{ [COS(0! + 02 + fi2) + COS(0! + 02 +>i)] -j± + COs(02 + Z^)} 

=   2(2n-5>/3e [ifcÄa 008(0! + 02 + f*i) " Y «*»(*i + /*i) ~ \ <*>* d 

R1R2 
- com Wo -4- an 1 — _   2(2n+1)/3

e cos u2 —— cos(02 + H2) — COs(Ö! + 02 + H2) (6) 

where Äi = k^3rn,R2 = *lfir„+i,0i = #n,02 = On+i,ßi = On-i and (i2 = 0n+2- In these 
rescaled radial coordinates Kolmogorov scaling corresponds to Ri — 1. Note that we have 
introduced the parameter e, which is not in the original shell equations, to control the rate 
of change of \i\ and /x2. For t = 0, \i\ and /*2 remain constant and the system reduces to the 
2 shell model whereas for e = 1 we recover the 2-1/2 shell model. 

The use of polar coordinates is not convenient for the numerical integration of the model 
because of the 1/i?,- singularities in the phases equations. To avoid this problem we have 
done all the numerical integrations using cartesian coordinates x,+i = Rn+i cos 0n+t-, yl+i = 
Rn+is'm0n+i, i = 0,1 for which the equations become 

(7) 

( Xl  \ j ( -v22n 0 «1 ßi       \ 
( Xl) 

/ -7i\ 
d 3/1 0 -v22n 

ßi -ai yi + -72 

dt X2 
-a2 ~ß2 -j,22(n+1) 0 x2 73 

\V2/ ^   -Ä a2 0 _v2^+i) ) \ V2 ) I    74    / 
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*!   =   2<*-8>'3£coSp,(i1x,-»,»2-Y_i)-2(1"-,>'sC8iii/i1(i(,n + a:,!(i-^) 

where 

ai = 2(2"-3)/3 (sin ^-\ sin /n)   ft = 2<2"-3)/3 (cos ^ - \ cos Ml) 

<*2 = 22("-2)/3 (sin //! + sin p2)     ß2 = 22(n"2)/3 (cos m + cos //2) 

7l = 2(2n"6>/3 sin m   72 = 2<2"-3)/3 cos m 

73 = 2(2n-1>/3 sin p2   74 = 2(2n"1>/3 cos fi2 

It is interesting to observe that we can interpret this six-dimensional system as a four- 
dimensional linear system in the x;, y> variables depending parametrically on \ix and p,2. For 
v = 0 the four-dimensional system is Hamiltonian. 

For each value of the viscosity the 2-1/2 shell model has four fixed points V{, (i = 1... 4). 
Defining $, = (ö*,^,^) and writing V{ = (ÄJ, R*2, $.•) we have 

g2o;1-22("+1Vgi 
1      22(2n+1)^2+u;1u;2 

Ui = 2(2n-3)/3 r in(0* + ,. + ^;) _ I sin(^ + e; + ^ (9) 

9(2n-l)/3 
«* = ^— [sin(^ + 0; + ^) + sin(0? + e; + £)] (10) 

o(2n-3)/3 , ,      x 

to = ^— sin(^ + tf)   </2 = 2(2-1)/3 sin(02* + ^) (11) 

Defining v* = 2~(4n+7)/3 we have for the phases the following cases 

• v <v*\ 

$! = (0,0, -TT/2, -TT/2)     $2 = (0,0, TT/2, TT/2) 

$3 = (0, -7T, TT/2, -TT/2)   $4 = (0,0, -TT/2, TT/2) 

where 

i/* < v < 21/3!/*: 

$x = (0,0, -TT/2, -TT/2)   $2 = (-T, 0, TT/2, TT/2) 

$3 = (0, -7T, TT/2, -TT/2)    $4 = (0,0, -TT/2, TT/2) 



• 21/3!/* < v < Zu*: 

$! = (0, 7T, -7T/2, -7T/2)     $2 = (-7T, 0, 7T/2, ?T/2) 

$3 = (0, -7T, TT/2, -TT/2)   $4 = (0,0, -TT/2, TT/2) 

• 3i/* < i/: 

$x = (0, ir, -ir/2, -TT/2)   $2 = (-7T, 0, TT/2, TT/2) 

$3 = (-T, *, TT/2, -TT/2)   $4 = (0,0, -TT/2, TT/2) 

In the limit 1/ -» 0, ?i -» (1,1, $1), Pa -> (1,1, ^a), ?3 -♦ (oo,oo,$3) and V4 -> 
(oo,oo,$4); that is, two of the fixed points merge in the {Ri,R2) plane at the Kolmogorov 
scaling value and the other two diverge to infinity. For small viscosity v « 0 the radial 
distance between V\ and V2 increases linearly with v and in the limit of large viscosity 

i?i, R*2 —> 0 for all the fixed points. 
In the polar coordinates (Ä1} -R2,0i, 0a, Mi> Ma) the linear stability problem decouples into 

the the stability problem of the Ri variables and the stability problem of the phases. WFriting 
8r = (SRi,SR2) and S9 = {S0i,662,8ßi,Sß2) the equations have the form 

d89     KA M 
at 

where the n x n matrices Mr and Me are obtained by linearizing Eqs. (6) at the fixed 
points. If v = 0 the eigenvalues of V\ and P2 are pure imaginary and the ones for Vz and 
7>4 are equal to zero. For v ^ 0 the real part of the eigenvalues of MT is always negative 
and therefore the four fixed are stable with respect to radial perturbations. The eigenvalues 
of Vz and V4 are always real and those for V\ and V2 are complex if 0 < v < 27/3/3. 

The stability properties of the system with respect to perturbations in the phases is 
more complicated and interesting. As a general rule, there is always at least one eigenvalue 
with positive real part and therefore the fixed points are unstable to perturbations in the 
phases. The dependence of the eigenvalues of Me on the viscosity for the fixed points V\, 
V2, V3 and "P4, is shown if Figures la, lb,lc and Id respectively. Ri denotes the real part 
and Ii the imaginary part of the z'-th eigenvalue. The values of e and n were e = 1 and 
n = 4. Observe that as the viscosity varies the stability of the fixed points changes due to 
bifurcations. When a pure real eigenvalue changes sign we have a steady-state bifurcation and 
when a complex conjugate pair crosses the imaginary axis we have a Hopf bifurcation [17] . 
Another kind of bifurcation, called eigenvalue collision, occurs when two pure real eigenvalues 
approach and merge into a complex conjugate pair. Collision of eigenvalues gives rise to the 
"forks" observed in Figure 1. V\ (Fig.la) always has one positive real and one negative real 
eigenvalue. For small viscosity the other two eigenvalues are complex conjugate. As viscosity 
increases, the complex eigenvalues transform into two negative real eigenvalues by means of 
an eigenvalue collision.   V2 (Fig.lb) always has one positive real eigenvalue.   As viscosity 
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increases, we observe a Hopf bifurcation and three eigenvalue collisions that eventually give 
rise to three negative real eigenvalues. For small viscosity, V3 and V4 (Fig.lc and Fig.ld) have 
very large positive real eigenvalues. For V3 (Fig.lc), as viscosity increases, two eigenvalue 
collisions yield at the end to two real positive and two real negative eigenvalues. Finally, V4 

(Fig. Id) exhibits a complicated sequence of bifurcations that eventually results into four 
negative real eigenvalues at high viscosity. 

Associated with each real eigenvector and each complex conjugate pair of eigenvectors 
is an invariant manifold. If the real part of the associated eigenvalue is negative (positive) 
the manifold is called stable (unstable) since the dynamics on it approaches (diverges from) 
the fixed point as t —► +00 [17]. A homoclinic connection occurs when an unstable manifold 
of a fixed point joins one of the stable manifolds at the same point. If the two manifolds 
belong to different fixed points the connection is called heteroclinic. In Figure 5 we show 
an example of an homoclinic connection in a three-dimensional dynamical system with one 
positive real and two complex conjugate (with negative real part) eigenvalues. The stable 
and unstable manifolds are denoted by W* and Wu. 

The homo(hetero)clinic connections are important because in their vicinity the dynamics 
of the system exhibit intermittent and pulse-like behavior (see for example [18]). A theorem 
by Silnikov [17] gives the conditions for having chaotic orbits in a three-dimensional dynam- 
ical system with a homoclinic orbit with one real and two complex conjugate eigenvalues 
(see Fig.5). In [19] some generalizations of Silnikov's theory were presented for the study 
of heteroclinic connections in a six-dimensional model of turbulent convection. It would be 
interesting to try to apply these ideas to the 2-1/2 shell model. 

In Figures 2 and 3 we present numerical integrations of the 2-1/2 shell model in cartesian 
representation (Eq. (7)) with (n = 4, v = 1(T3, e = 1(T3) and (n = 4, v = 3 x 10"3, £ = 10"*) 
respectively. In both cases, a homoclinic connection at V\ seems to be responsible for the 
observed behavior. In Fig. 2 the approach and departure from V\ show oscillatory behavior 
indicating that the stable and unstable manifolds have complex eigenvalues (i.e. near V\ the 
manifolds are spiral). On the other hand, the behavior observed in Fig. 3 seems to indicate 
that the unstable manifold has a real eigenvalue and the stable a complex one. At present we 
have not been able to observe homo(hetero)clinic connections for e = 1, however, we believe 
that changing v and n may eventually lead to them. In Figure 4 we show the numerical 
integration of the 2-1/2 model with (n = 10, v = 5.55 X 10-6, e = 1). As is typical for the 
cases with e = 1, the fluctuations are stronger than for smaller e, the "laminar" regions show 
larger oscillations and the "bursts" are less well defined. 

5     Conclusions 

For the general N shell model (with v — f = 0 and the boundary shells fixed) we have 
found that there is an infinite number of fixed points which form a six-dimensional manifold 
T in the phase space. The fixed points corresponding to Kolmogorov scaling form a three- 
dimensional submanifold, fC, of T. There are no fixed points with scaling behavior different 
from Kolmogorov scaling.   We interpreted geometrically the fluctuations of Kolmogorov 
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scaling in the model by saying that the trajectories escape intermittently from K (since 
this surface has unstable directions) but return to it due to the existence of stable attracting 
directions. An open question is why in the numerical simulations [11] the dynamics fluctuates 
only around K. and not around the whole T manifold. In order to gain some understanding 
of the general shell model we studied a 2-1/2 shell model which consists of two shells coupled 
to the boundary shells through the phases. We have shown how this six-dimensional system 
can be interpreted as a parametrically excited four-linear system. For v = 0 this four- 
dimensional system is Hamiltonian. The 2-1/2 shell model has four fixed points. As v 
approaches zero two of them approach Kolmogorov scaling and the other two diverge to 
infinity. We have computed, as a function of viscosity, all the eigenvalues of the linearized 
system. We have found that the fixed points are stable with respect to perturbations in 
Ri but unstable along the phases directions. We have observed steady state bifurcations, 
Hopf bifurcations and eigenvalue collisions as the value of the viscosity changes. Numerical 
integrations of the 2-1/2 model with small e show intermittent and pulse like behavior due 
to the presence of homoclinic connections. For e = 1 the fluctuations in the system are large 
and the intermittency is not as clear as it is for c <C 1. 
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Figure Captions 
• Figure 1. Eigenvalues of Me as function of viscosity. Figures a, b, c and d correspond 

to the fixed points Vu V2, V3 and V4 respectively. The values of e and n were e = 1 
and n = 4. Ri denotes the real part and /,- the imaginary part of the i-th. eigenvalue. 

• Figure 2. Numerical integration of the 2-1/2 shell model (Eq. 7) with n = 4, v = 10-3 

and c = 10-3. Figure a shows the projection of the phase space trajectory onto the 
(Ri,R2) plane. Figure b and c show the time series of Ri and R2. 

• Figure 3. Same as Figure 2 but with n = 4, v = 3 x 10~3 and e = 10"2 

• Figure 4. Ri time series obtained from the numerical integration of the 2-1/2 shell 
model (Eq. (7)) with n = 10, u = 5.55 x 10"6 and e = 1. 

• Figure 5. Homoclinic trajectory in a three dimensional dynamical system with one 
positive real and two complex conjugate (with negative real part) eigenvalues. 
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Gravity Wave Generation by Quasi-Geostrophic Point Vortices 

Geoffrey T. Dairiki * 

1 Introduction 

Point vortex models have proven to be quite useful in improving our understanding of the 
behavior of the shallow water equations, particularly in the areas of two-dimensional and 
quasi-geostrophic turbulence. 

The conventional point vortex models provide a class of exact solutions to either the two- 
dimensional Euler equations, or the quasi-geostrophic equations. These equations, however, 
are rather drastic approximations to the shallow water equations since they completely 
neglect any dynamics involving surface gravity waves. It is important to understand, then, 
how allowing for vortex-gravity wave interactions might change the the resulting vortex 
dynamics. Insight in this area could shed light not only on how the standard vortex models 
break down, but also on the limits of validity of the quasi-geostrophic and other similar 
"balance" models. 

This report is concerned with the generation of weak gravity waves by rotating vortex 
pairs. Problems considered here include radiation by vortex pairs in an unbounded domain, 
both with and without background rotation. Also radiation by a vortices on a half-plane 
(i.e. near a coastline) will be considered. In each case, the far-field wave solution will be 
found, along with the radiated power. In all cases, it will be shown that wave radiation is 
weak; in some cases it is altogether negligible. 

2 Standard Point Vortex Models 

The development of two common vortex models will be reviewed in this section. First, 
the shallow water equations will be presented. Next, two approximations to the shallow 
water model are discussed. Finally, the point vortex models which correspond to these 
approximations will be introduced. 

2.1    The Shallow Water Equations 

The shallow water equations describe the dynamics of an inviscid, homogeneous and in- 
compressible fluid, in which the horizontal scales of motion are much greater than the fluid 
depth. They consist of an equation expressing conservation of momentum, 

dtu + (u ■ V)tt + fzxu = -c2Vr), (1) 

and an equation of mass conservation, 

Ö<7?+(lfV)7?+(l + 77)V-U. (2) 

'The Applied Physics Laboratory, University of Washington; 1013 NE 40th Street; Seattle, WA 98105. 
(dairiki@u.washington.edu) 

SS" 



Where u = {u(x,y,t),v(x,y,t)) is the horizontal component of the fluid velocity; n(x,y,t) 
is the relative surface displacement (the fluid thickness is given by h = H{\ + rj}); f is the 
Coriolis parameter; c is the linear short gravity wave speed: c2 = gH; g is the acceleration 
of gravity, and H the undisturbed fluid depth. 

The shallow water equations comprise three coupled first-order ODE's. Upon lineariza- 
tion and fourier transformation one finds, for any given wavevector, fc, three linear eigen- 
modes. Two of these modes are termed gravity modes and are distinguished from the third 
vortical mode by their relatively high frequency. 

Often, particularly in geophysical problems, one in interested primarily in the slow 
geostrophic (in the case / + 0) or vortical (in the case / = 0) dynamics. Lower order 
approximations to equations 1 and 2, which "filter out" the gravity modes are of interest. 
Two standard models which accomplish this are the rigid lid and the quasi-geostrophic 

models. 
These models also lead naturally to point vortex formulations. It is these two models, 

and extensions of them, which will be considered for the remainder of the paper 

2.2 The Rigid Lid Approximation 

One obvious way to eliminate the gravity waves is to put a rigid lid over the ocean. In 
the shallow water equations this is roughly equivalent to taking the limit as g ->• oo; or 
more accurately the limit Fr = {[u]/c) -> 0. Applying this limit to equations 1 and 2 with 
/ = 0 (no rotation), one finds that i) -* constant, and thus V • u -> 0. This allows u to be 
represented by a scalar stream-function ^:u = zxV^. Taking the curl of equation 1 to 

obtain a vorticity equation gives: 

ötC'+0MO = O;        VV = C- (3a'b) 

Here, C, is the vertical component of vorticity: ( = Z'Vxti = ^- dyu, and d (•, ■) 
represents the two-dimensional Jacobian: 8 (f,g) = dxfOyg - dyfdxg. These equations are 
identical to the two-dimensional Euler equations for an incompressible, inviscid fluid. 

Note that equation 3a is a prognostic equation which tells how vorticity is moved around. 
Equation 3b is a diagnostic equation which tells how to find the velocity field from the 
vorticity field. Also, the coupled set (3a, 3b) is first-order in time — the gravity modes are 

gone. 

2.3 The Quasi-Geostrophic Approximation 

The quasi-geostrophic model is the simplest in a series of balance models for nearly geo- 
strophic flow. The derivation of the quasi-geostrophic equations is quite standard [Ped87, 
sec. 3.12]. One invokes a linearized version of potential vorticity conservation, and main- 
tains that advection of potential vorticity by only the geostrophic component of velocity 
will yield a good enough answer. The quasi-geostrophic equations for a single layer /-plane 
ocean can be written 

dtq + d{rl>,q) = 0;        V2^ - A~2^ = q, (4a,b) 

where q is the quasi-geostrophic potential vorticity, q = C - fm and * - c/f is the Rossby 
radius of deformation. 



2.4    Point Vortex Models 

Both the 2-D Euler equations (eqs. 3a, 3b) and the quasi-geostrophic equations (eqs. 4a, 4b) 
have quite similar forms. Both models contain one prognostic equation which describes the 
advection of (potential-) vorticity by a scalar streamfunction, and one diagnostic equation 
which gives the streamfunction in terms of the vorticity distribution. It is this form which 
lends itself well to the development of a point-vortex model. This is done by approximating 
the (potential-) vorticity field by a sum of delta functions. 

The point vortex models for the 2-D Euler and the quasi-geostrophic equations take 
very similar forms. The dynamics is summarized by a set of equations giving the velocities 
of the point vortices in terms of their positions: 

Ixi^Tj&xVgixi-Xj). (5) 

Where X((t) are the locations of the point vortices, and 27rl\ are their circulations. Q is the 
Green's function for either equation 3b or equation 4b. In an unbounded domain, for the 
Euler equations, Q{x) = log|x|; for the QG equations, Q(x) = -K0(|x|/A) (where K0 is a 
modified Bessel function.) 

Solutions of equation 5 solve equations 3a and 3b or equations 4a and 4b exactly, with 
the vorticity distribution (£ or q) = £,• 2-KTiS2{x - x,). 

3    Allowing for Weak Gravity Waves 

It would be nice to generalize the rigid-lid (2-D Euler) model to allow for a weak gravity 
wave field — in other words, we would like a model valid for small but finite Froude number. 
One such model will be presented, somewhat informally, in this section. In later sections, 
this model will be more fully justified; and it will be applied to the problem of gravity wave 
generation by a rotating vortex pair. 

Taking a time derivative of equation 1 and a gradient of equation 2, and then elimi- 
nating VdtT] between the two yields, after application of the vector identity V(V • u) = 
V2u -zxV(, 

d\u - c2V2u = -c2z x VC    [+c2VV-{T)u)-dt(u-V)u]. (6) 

Neglecting the last two terms on the right hand side — we will justify this approximation 
later — and introducing a vorticity equation obtained by taking the curl of equation 1 yields 
the pair of equations 

dtC + V • (t*C) = 0;        d}u - c2V2u = -c2z x VC- (7a,b) 

These two equations present a picture somewhat similar to that given by the 2-D Euler 
model (equations 3a and 3b). The left equation describes advection of a conserved vorticity 
by a velocity field. The second relationship gives the velocity field in terms of the vorticity. 
In the case of the 2-D Euler equations, this second relation was completely diagnostic (no 
time derivatives). Now, in these new equations, the velocity is the solution of a linear wave 
equation which is forced by the vorticity field. 

The vorticity field may be discretized, as in the previous section, to produce a point 
vortex model, roughly: 

±xi = z x Vtl>\rx=Xi;        0fy - c2 W = -c2 £ 2*TM* ~ *••)• 
dt 
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(The r indicates that the streamfunction, i> must by regularized — essentially, the singular 
part, which looks like r,log|a; - as«|, must be subtracted from V before the gradient may 
be taken at a;,-.) In this model, a rather satisfying picture emerges in which the vortices 
"communicate" with each other exclusively through the gravity wave field. 

It is also encouraging that equations 7a and 7b, in the limit c2 -» oo, yield the 2-D Euler 
equations (eqs. 3a, 3b). (Since z x V commutes with V2, u = z X V^ with V2V> = C is a 
solution of V2u = z x V£.) 

3.1    (Non)Existence of 'Steady' Vortex Pair Solutions 

The two-vortex solutions of the 2-D Euler point vortex equations (eq. 5) are well known: 
two point vortices in an unbounded domain will exhibit steady, uniform rotation about their 
mutual center of vorticity [Bat67, sec. 7.3]. In the special case where the two vortices have 
circulations of identical magnitude, but opposite sign, the two vortices advect each other in 
steady linear translation (since their center of vorticity is at infinity). 

It is interesting to investigate the existence of analogous steady solutions to equa- 
tions 7a and 7b. It will be found that, in general, a vortex pair must always radiate 
gravity waves (albeit at a slow rate). This could set important constraints on the limits 
of validity of the 2-D Euler (and also the quasi-geostrophic) approximations to the shallow 
water equations. 

3.1.1 Linearly Propagating Plus/Minus Pair 

The special case of a linearly propagating plus/minus vortex pair is considered. Postulat- 
ing the existence of a steadily translating vortex pair, and looking for solutions of equa- 
tions 7a and 7b of the form 

C(ar, y, t) = C(x - Ut, y) = CO*, y),        u{x, y, t) = u(x - Ut, y) = u(x, y), 

gives the following equation for u 

(l-(U/c)2)d2
xü + d2

yü = zxVC 

As long as the Froude number, Fr = U/c2 < 1, this equation is elliptic. It follows that there 
is indeed a solution of equations 7a and 7b which corresponds to a plus/minus vortex pair 
propagating along without loss of energy to gravity waves. 

This problem is equivalent to that of steady, inviscid, sub-sonic flow around an obstacle 
— it is well know that no wake is generated as long as the upstream velocity is less than 
the phase speed of the slowest possible radiated wave. (This is known as D'Alembert's 
paradox [Bat67, sec. 5.11].) 

3.1.2 Radiation by a Rotating Vortex Pair 

When, however, one looks for steadily rotating solutions of the form 

u(r, 0, t) = u(r, 0 - Qt) = ü(f, 0), 

the following equation arises 

{f-2 - (ft/c)2} b2
eu + B2u + f-1 drü = z x VT?. (8) 



This equation is elliptic in the region f < R = c/Q, but it is hyperbolic for f > R. While 
this equation may still be solved, the resulting solution involves both outward and inward 
propagating waves at f ~* oo. This solution does not satisfy radiation conditions, and it 
must be dismissed as non-physical. 

Apparently, there are no (physically meaningful) steadily rotating solutions of equa- 
tions 7a and 7b. Any rotating vortex pair must always radiate (and lose energy to) gravity 
waves. This is quite an important realization. It suggest that almost all non-trivial vortical 
or "balanced" solutions to the shallow water equations will constantly couple energy into 
the gravity wave field. One is left with a strong intuitive basis for doubting the existence 
of the sought-after "slow manifold". 

4    Gravity Waves Radiated by a Vortex Pair 

Now that we are convinced that a rotating vortex pair must radiate gravity waves, we 
proceed, in this section to calculate the radiated wave field and radiated wave energy flux 
from a rotating vortex pair. We will solve equation 6 and equation 7a asymptotically to 
lowest order for small Froude number. Since these equations are singular at Fr = 0 (the dfu 
term in equation 6 goes away) we will need to resort to matched asymptotics. 

From the discussion in section 3.1 we expect an inner solution corresponding roughly 
to the elliptic region of equation 8, where r < c/fi. In this region the solution should look 
much like the familiar 2-D Euler (or rigid-lid) vortex solution. 

The outer solution corresponds to the hyperbolic region of equation 8, and it is here that 
we expect to see propagating gravity waves. The wavelength of the radiated gravity waves 
should be on the order of c/Q = R. This is much greater than the inter-vortex spacing, so 
it is anticipated that the spatial coordinates will have to be rescaled in order to properly 
resolve the dynamics of this outer region. 

4.1    Setup and Scaling 

We consider two point vortices with circulations 27IT, 2iryT, and initial separation d (we 
assume |7| < 1 without loss of generality); c is the linear gravity wave speed: c = gH. The 
origin is taken to be at the center of vorticity of the vortex pair. 

4.1.1    Inner Scaling 

The appropriate length scale for the inner expansion is the inter-vortex spacing, d. Since 
it is expected that the length scale will have to be changed for the outer solution, the 
parameter a has been introduced. For now, it should be assumed that a = 1, but it will be 
carried along as a convenient bookkeeping device, which will identify terms to be rescaled 
later on. The length scale is given by L = d/a. 

The velocity scale is given by U = aT/d — this is roughly the vortex advection velocity 
which would be expected from the standard 2-D Euler solution. Again, that darned a shows 
up — this is because velocities should fall off as r-1 for large r; when L is increased to look 
at large spatial scales, the velocity scale, U should be decreased accordingly. Vorticities, as 
is common, will be scaled by U/L. 

Now the Froude number for this problem may be defined: e = U/c = T/(cd). 
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The time scale, T = d2/T, is the inverse of the angular rotational frequency which would 
be calculated for the equivalent incompressible 2-D Euler vortices. 

Finally, applying these scalings to the shallow water momentum equation (eq. 1), reveals 

that that r] = 0(s2). 
The physical control parameters are taken to be c, d, and e. Non-dimensional variables 

will be denoted with an overbar. (Barred operators like dt, and V represent derivatives taken 
with respect to the appropriate non-dimensional independent variables.) The scalings are 

summarized: 

u = £cau,    x = (d/a)x,    t = d(ec)~1t,    C = (e«*7<0C,    r1 = e2f\. 

These scalings, when applied to equation 7a and equation 6 produce 

^C + a2V-K) = 0, (9) 

and 
(e2/a2) d}u - V2ü = -z x VC + e2 {VV • (f)u) - Bt{ü ■ V)ü}. (10) 

4.2    Solution 

4.2.1 Inner Solution 

In the inner region (a = 1) equations 9 and 10 become 

ätC + V-(üC) = 0;        V2ü = zxVC + 0(£2). 

The right hand equation is solved by ü = z x V$, where # satisfies V2^ = Ö The lowest 
order solution for the vortex motion, then, is given by plain old 2-D Euler vortex dynamics. 

The positions of the vortices are given by 

(xi,yi) = —— (coswt.sinwt),    (S21Ö2) = -j—(cosa;?,sina;i), (11) 

where u = 1 + 7 is the (non-dimensional) rotational frequency of the pair. (Dimensionally, 

fi = (r/d2)(l + 7).) 
The velocity field associated with this inner solution may be written in terms ot a 

(multiple-valued) velocity potential: ü = V<£, where: 

^t^-iiZ^ + ^an-i^l2-. (12) 
X — X\ x — £2 

4.2.2 Outer Solution 

It has already been mentioned, that in order be able to see gravity waves, lengths must 
be rescaled. This is because the wavelengths of the expected gravity waves (» c/Q) are 
much greater than than the inter-vortex spacing. Inspection of equation 10 also reveals 
that if lengths are rescaled by a factor of e'1, the singular d}u term will come into play. 
This rescaling is accomplished in equations equations 9 and 10 by setting the value of the 
place-keeper, a, to e. The outer scalings (denoted by the subscript *) are then 

■u» = e~l ü,    x* = ex,    U = i,    T]* = f). 

I9O 



Realizing that vorticity is non-zero only at the vortices themselves, we can safely set the 
vorticity, £* to zero for the outer solution. Then it* must satisfy 

d}u* - V2«* = 0(e2) 

Writing u* in terms of a velocity potential: um = V*<£» obtains to lowest order 

#>*-v2^ = o. 
Since the inner solution, to the order that it has been resolved, is rotating at constant 

angular velocity, uniformly rotating outer solutions are sought. After decomposition into 
azimuthal modes, the solution is to be had in the terms of Hankel functions: 

4. = Re JAotan-1^ + f) AmK$ (m(l + y)r.) e^^A . (13) 
^, m=l * 

4.2.3 Matching 

The inner solution for the velocity potential, equation 12, may be Taylor expanded in terms 
of the X( for (|x,|/f) <C 1. Then substituting for Xj using equation 11 yields 

$ ~ (1 + TjtaiT1! + £       7\ iL   f"m sin m(ö -"*)'        f > L (14) a;      z—'    m(7 + l),n 

The intriguing absence of azimuthal mode 1 from this expansion, is easily shown to be a 
consequence of linear momentum conservation for point vortices (which says: x\ + 7x2 = 
constant). Lack of m = 1 radiation also follows from LighthhTs theory of sound generation, 
in which he proved, quite generally, that there can be no dipole acoustic radiation unless 
there is an external input of momentum [Lig78, sec. 1.10]. 

The outer solution, 0* may be evaluated for r»<l using the limiting form for a Hankel 
function of a small argument: H&\z) ~ -(i/7r)r(m)(^/2)-m. [AS70, eq. 9.1.9] 

^~ReL0tan-1^+f;Aro^^f-7^)mr-e-(
fl-^},    r.« 1.   (15) 

I x*     m^i m      Vm(l + 7)/ J 

Equating coefficients between equation 14 and equation 15 (keeping in mind that r* = 
ef) gives 

,40 = l + 7;        Al = 0;        Am = K
1™ + {^1)mj (™Y ,    m > 2. (16) 

This, along with equation 13 gives, to lowest order, the far-field solution for gravity waves 
radiated by a point vortex pair. 

4.2.4 Energy Flux 

Finally, we may calculate the rate of energy transfer to gravity waves from our rotating 
vortex pair. 

The shallow water equations (eqs. 1, 2) may be combined to form an energy equation 
dtE + V • F = 0, where E, and F are the energy density and flux, respectively [Ped87, 
sec. 3.5]: 

E = i(l + 7,)H2 + ic2(l + ^)2;        F = u(l + T,)U\u\2 + <?(l + V)}- (17a,b) 



The rate of energy loss by the vortex pair to radiated gravity waves, is found by in- 
tegrating the energy flux carried by the gravity wave of the outer solution at large r: 
E = limr_>00(^F • rids), where {•) denotes a time average, TJ may be calculated from u 
with the aid of the Bernoulli-type relation: ±\u\2 + c2r}-Qruo = constant, valid for steadily 
rotating flows, in regions of zero vorticity. 

Since the quantity of interest is really the rate of energy loss relative to the energy 
contained in the basic vortex solution, E is normalized using the inner scalings: E = 
(U2d2/T)E = {e3c3d)E. With this scaling, the inverse of E gives the ratio of the "spin- 
down" time to the orbital period for the vortex-pair. What emerges, after some algebra, 

is 

•- f2v o   f 
E=  lim 2r„ /    (u*r)*) ■ n d0 =  lim 2wr2, /    <(t».)r(ti*)«)<W. 

r.-foo J0 r.-K» J0 

The solution for <£„ (eq. 13) is approximated for large r, using the asymptotic form 

H^(z) ~ ^/yirze^-™/2-*^, valid for \z\ > 1 [AS70, eq. 9.2.3]. The radiated power is 
then given by 

m=2 

4TT
2
(1 + 7) (7m + (-l)m7)' 

m\(m — 1)! 
fme\ 2m 

(18) 

For values of e = 0.1, 7 = 1, equation 18 gives a non-dimensional radiated power E = 
1.6 x 10"2. Thus the time-scale for energy loss by a rotating vortex pair will be on the 
order of ten rotational periods. While this value seems quite significant, it should be kept 
in mind that E = 0(£-4), so that the radiated power decreases rapidly when the Froude 
number is decreased. 

5    Wave Radiation by a 
Pseudo-Quasi-Geostrophic Vortex Pair 

In this section, the analysis of the previous section will be repeated for the case / ^ 0. The 
problem of interest involves the generation of inertio-gravity waves by a vortex pair. The 
vortices are taken to be nearly geostrophic (Ro < 1). 

The imposition of background rotation imposes a lower cut-off frequency on the possible 
radiated waves: — (linear) free gravity waves do not exist at frequencies below /. By 
definition, the rotation rate for a "nearly geostrophic" vortex pair is < /. It is expected, 
then, that the relatively slow vortex motions will be very inefficient at exciting gravity 
waves. A simple back-of-the-envelope scaling argument indicates that free waves are only 
possible at azimuthal mode number of order Ro-1 or greater; and the results of the previous 
section show that radiated wave amplitude falls off rapidly as the mode number increases 
(ex Fr_1). There is every reason to suspect that wave generation by geostrophic vortex pairs 
will be completely insignificant. 

Nevertheless, we proceed. 
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5.1 Weak Gravity Wave Model 

In order to develop a model, similar to equations 7a and 7b, which will be applicable to the 
case / T^ 0, first shallow water potential vorticity conservation is invoked: 

dtw + (u • V)G7 = 0;        G7 = ^Y+- (19a'b) 

(This equation follows exactly from the shallow water equations. The funny form for the 
potential vorticity, w, differs from the more familiar form II = (/+C)/(l + r?) by a constant. 
Specifically, w = II - /.) 

A time derivative of equation 2 combined with a gradient of equation 1 yields the wave 
equation for 77: 

dh + f2V-c2V2
V=-fq   [-fcV-fot») + V-(«-V)u]. (2°) 

This equation is exact with q being the quasi-geostrophic version of potential vorticity, 

q = C - fv- 
If the last two terms on the right side of equation 20 are neglected, then we see the 

inertio-gravity wave field forced by the potential-vorticity field. (This equation should be 
compared with equation 7b.) Further, if q is substituted for w in equation 19a, and u is 
found from the linear shallow water polarization relation: 

d2u + f2u = -c2(dtVr) -fix V77), 

(all of these assumptions will be justified later), then once again the picture emerges of 
vorticity being advected by a wave field which is in turn forced by the vorticity field. 

5.2 Setup and Scaling 

As in section 4.1, the strengths of the two point vortices are 27rr, and 27T7r. The inter-vortex 
separation is again taken to be d. This time, however, the vortices are on an /-plane. 

The scalings used in the previous problem (section 4.1.1) will be adopted here with the 
following exceptions and additions. The Rossby number for the problem is defined S = 
U/(fL) = Y/(d2f). Also, in anticipation of finding free waves only at high frequencies, 
a scale for the azimuthal mode number, /z, is introduced as a bookkeeping device in the 
scaling of time. 

Since, with non-zero /, the momentum balance is primarily geostrophic, the scaling 
for T) must also be changed. Examination and scaling of the shallow water momentum 
equation (eq. 1) indicates that 77 = 0(e2/S). Finally the potential vorticity is scaled by ec/d. 

In order that the quasi-geostrophic potential-vorticity, q be a decent approximation to 
the full shallow water potential-vorticity, w, it must be that [77] = (e2/S) < 1. Therefore, 
it is assumed that e = 0(5) (with 8 < 1). (Note that e/8 = d/X, where A = c/f is the 
Rossby deformation radius. The situation considered here is one where the vortex spacing 
is of the same order as the Rossby radius.) 

With the non-dimensionalizations: 

u = scan,    x = (d/a) x,    t = d(ecn)~1 i,    77 = (e2/S) fj,    q= (ec/d) q, 

the shallow water momentum equation (eq. 1) becomes 

Sfj, dtü + 6a2 (ü ■ V)tt + z x ü = -Vfj. (21) 
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Equation 20 in non-dimensional form is 

(liS)2(s/8)2 B2fj + (e/S)2 fj-a2 V2?7 =-q- H<*2e2 BtV • (fjü) + <*4S V • (ü • V)ü.     (22) 

5.3 Vortex Motion 

For the inner scaling, (// = a = 1), the dominant terms of equations 19a, 21, and 22 give, 

respectively 

Btq + (ü-V)q = 0;       ü = ZXVTJ;        V2^ - (e/S)2 fj = 9. (23a,b,c) 

These turn out to be exactly the standard quasi-geostrophic equations! Maybe it is not too 
surprising that the (slow) vortex motions are given by plain old quasi-geostrophic dynamics. 

In any case, the solution is straightforward. The (non-dimensional) orbital frequency of 
the vortex pair is given by u = (1 + T)A, where A is defined A = {e/8)Ki(e/6). (Kx is a 
modified Bessel function.) The vortex positions are given by equation 11. 

Equations 23a, 23b, and 23c are valid for all values of a (< 1), as long as m = 0(1). 
Therefore, the quasi-geostrophic solution is uniformly valid (0 < r < 00) for low mode 
number. 

5.4 High Mode Gravity Wave Radiation 

Once again, uniformly rotating solutions involving free (inertio-)gravity waves are sought. 
The (dimensional) frequency of the mth mode is mfl = mSuf. Free waves are expected 
only for mtt > f, or m > 0(<S_1). Equation 22 corroborates this intuition, since m ~ 8~l is 
just the scaling required to allow the d?f) term to come into play. In this case the dominant 
terms of equation 22 are 

(e/S)2(S2 B2n + f})- V2*? = -q. (24) 

The right hand side is known, since the motion of the vortices was found in the previous 
section. All that is left to do in order to find the radiated wave field is to solve this forced 
linear wave equation. 

Written in cylindrical coordinates, and fourier transformed in both 9, and i (assuming 
solutions like e"

n(0-"'t)) this equation becomes: 

f2B2fl + rBrf)+ {f2(e/S)2{m2S2u2 - 1) - m2}fj = 0. 

Propagating wave solutions to this equation only exist for m > mc = (Su)-1, as guessed 
above. 

Also, for r2 < e~2, the left term in the curly braces may be neglected in favor of m2. 
So the near-field solution for fj, denoted by rf, is given simply by VV = <?• The solution is 

7?+ = log|S -ail+ 7 log I* - Jc2|,        |*| <e~2. (25) 

The far-field solution, 77*, is found by solving equation 24 with the right hand side set 
to zero (since for r > 1, q is identically zero). The solution is found in terms of (the now 
familiar) Hankel functions. 

„* = lower, 
evanescent 

modes ^m=mc 

+ Re\Yl Arn^\kmf)eimV-^\,        f» 1, (26) 



where 
km = iy/mWu* - 1. 

Matching equation 26 in the limit r ->• 0 to equation 25 in the limit f -)• oo, much like 
as was done in section 4.2.3, gives the amplitudes of the radiated modes 

Am = -in ilt^I(A._{m,(1 + 7)}-)*(~)-1    m>mc 

5.5    Radiated Energy Flux 

The outgoing energy flux, limf_f0O(/F • nds), with F given by equation 17b, is evaluated 
with help from the linear shallow water polarization relation 

S2&}ü + ü=-8BtVfj + z x Vfj, 

which may be derived from the dominant terms of a time derivative of equation 21 combined 
with z X (•) of the same equation. 

E is non-dimensionalized, as in section 4.2.4, by the appropriate scales for the basic 
vortex solution. In this case, E = (c2[rj\/T)E = <?ez{dS)-xE. To lowest order, the non- 
dimensional power radiated by the vortex pair is given by 

E= lim 2f /    (ufj)-nd0. 

After some authentic Seattle grunge, it is found that 

rn>mc 
v      ' 

The radiated power, E = 0(e2mc) — a small number. This finding supports Rupert 
Ford's linear stability analysis of shallow water vortex patches. He finds that axisymmetric 
vortex patches are always unstable to gravity wave generation. The growth rate of the most 
unstable mode is 0(Fr2mc). [For93] 

For a Rossby number, S = 0.1, and 7 = 1, E attains a maximum value of 2 x 10-21 at 
£«3x 10-2. Assuming that the orbital period of the vortex pair is on the order of a day, 
this gives a radiation time-scale of 100 million times the age of the universe! The effects of 
gravity wave radiation in this case are miserably negligible. 

6    Quasi-Geostrophic Vortices Near a Wall <=. s> J  j  J J 

It was found in the previous section that, for quasi-geostrophic vortices on a constant depth, 
unbounded /-plane, there is practically no coupling from the quasi-geostrophic motions into 
the gravity wave field. In this section we will consider a quasi-geostrophic vortex pair near 
a wall. It will be shown that in this case, weak but conceivably significant radiation can 
occur. 

The reason that the coupling was so weak in the previous case, was that there were no 
free wave modes with frequencies near that of the slow quasi-geostrophic motion. When 
the vortices are near a coastline, however, the possibility of exciting boundary trapped 
Kelvin waves exists [Ped87, sec. 3.9]. These remarkable waves exist at all frequencies, so 
the potential exists that the slow geostrophic motions might be able to excite gravity waves 
of non-negligible amplitude. 
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6.1 Setup & Scaling 

Again a vortex pair is considered. This time though the vortices are confined to the semi- 
infinite half-plane, y > 0. For simplicity, it will be assumed that the two vortices have equal 
strengths, both equal to 2xT. Their initial positions are taken to be aJi|t=o = (d/2, yo), 
and x2\t=o = (-d/2,yo). A no flow condition: v\y=o = 0 is imposed at the boundary. 

6.2 Vortex Motion 

The appropriate inner scalings (a = 1) are the same as those in the previous problem (see 
section 5.3), namely 

u = ecu,    x = dx,    t = d(ec)~1t,    T]=(S
2
/8)T],    q=(ec/d)q. 

As before, the vortex motion, to lowest order, is given by regular quasi-geostrophic theory. 
The presence of the coastline, however, complicates the solution somewhat. The proper 

boundary condition may be seen upon consideration of the x-component of the shallow 
water momentum equation, (eq.l) which when non-dimensionalized becomes 

8 dtu + 8 udxu + 8 vdyU - v = — dxr). 

At the boundary, v is zero. So 

dxV\y=0 = -8(dtu + udxu)\y=0 = 0(8). (27) 

To lowest order, then, the vortex motions are given by the solution of the quasi-geostrophic 
equations, with the boundary condition dxr)\y=0 — 0. 

The point vortex solution which satisfies this boundary condition may be found using 
the method of images. The two-vortex problem turns into a four-vortex problem (with a | 
certain amount of symmetry). While the problem is still integrable, the solution is quite a ' 
mess, and not very illuminating. It is straightforward to show, though, that the vortices 
will still always follow closed, periodic orbits. I 

For the sake of the calculations in the rest of this section, it will suffice to assume that ' 
the orbits are still roughly circular, with an orbital period which approximates that for an 
equivalent vortex pair in an unbounded domain. I 

6.3 Kelvin Wave Generation 

Equation 27 verifies that dxt]\y=o is small enough that the inner solution (to lowest order) 
may be obtained by setting 77 to a constant on the boundary. At the same time, however, 
it shows that dxrj\y=0 is not identically zero — there will be a jump in 77 across the region 
of the inner solution. This jump may be calculated as follows: 

/+00 r+00 r+00 

dxr]\y=o dx' = -8 /      {9^1^=0 + ±dx(u\y=0)2} dx' *8dt (dyV)\y=0dx, 
-00 J—00 ./—00 

(28) 
where u has been approximated by the geostrophic velocity, ug = -dyr]. Note that for the 
vortex pair solution under consideration, [770] will be periodic in time with a period half 
that of the orbital vortex motion. 

For the inner, quasi-geostrophic solution, 77 is given by 

77 = -{Kofcr1 \x - seil) - KoieS-1 \x - x[\) + KQ^"
1
 \X - x2\) - Ko^-1 \x - Vx\\)}. 
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Here, the locations of the "image" vortices has been noted by the superscript ': x\ = 
(a?i, —j/i). The last integral in equation 28 may be evaluated with help from a hefty table 
of integrals [GR80, eqs. 6.596.3, 8.469.3]. This gives, simply enough 

[ijbl = -2n6dt(e-Wyi + e~(£/%2). 

The value of R = e~(e/%i + e-(
£/%2 wm attain a minimum when the two vortices are 

"abreast": t/i = t/2 = 0> and a maximum when one of the vortices is at its closest approach 
to the wall. In this latter case, j/i « t/o - (d/2), !/2 « Vo + {d/2). The peak-to-peak range 
of R is then given approximately by 4e~^e^s^yo sinh2(eS~1 d/4). Expecting that the time 
variations of R are roughly sinusoidal, with a frequency equal to twice the vortex orbital 
frequency gives: 

[ijöl « -SnSu e-W
yo sinh2(e$_1 d/4) sin 2ut. (29) 

6.4 The Outer Solutions 

Since Kelvin waves travel at the short wave speed, c, the waves generated by the slow 
motions of the vortex pair will have a long wavelength, L = 0(e_1). Officially, the outer 
solutions should be found by rescaling x: a;* = ex. (rj, u, v, £, and q all need to be adjusted 
too.) But, it has already been guessed that the outer solutions will consist of Kelvin waves. 
Since the reader has long since grown tired of scaling arguments, the details will skipped. 

Kelvin waves have the remarkable properties that they are non-dispersive; and that 
they propagate only in one direction, always keeping the shoreline to their right (in the 
northern hemisphere). The general form for the outer, Kelvin wave solution in dimensional 
units is 77 = e~ylxS(x - ct) [Ped87, sec. 3.9]. Non-dimensionalizing by the inner scales, this 
becomes: 

r} = e-WyS{ex-t), 

where S is an arbitrary function of its single argument. Note the appearance of the ex 
(which should really be a x*), reflecting the long wavelength of the Kelvin waves relative to 
the inner scales. 

6.5 Matching 

There are three asymptotic regions in which we have solutions: an inner region (|x| <C £-1)) 
surrounded by two outer regions; one to the left (x <C — 1), and one to the right (x >• 1). 

Since the Kelvin waves of the outer solutions only propagate to the right, there can be 
no wave in the left outer region. Any waves there would have to have come from x = — oo 
— these are disallowed by radiation conditions. The left outer solution is just f) = 0. 

All that is needed to complete the outer solution on the right side is an boundary 
condition at x± —)■ 0+. The jump in f) across the inner region (equation 29) provides this 
boundary condition. The right outer solution is then 

fj = U8ue-^l^yo sinh2^"1 rf/4) e-<e/*>»sin 2u{ex - t). 

6.6 Radiated Energy Flux 

The energy flux carried by the radiated Kelvin waves, lim^oo f£° F-xdy may be calculated, 
much as before. The radiated power is normalized, exactly as in the previous problem, 
by c3e3(d8)~1 (see section 5.5). Finally, 

E = 167T252o;2 C-
2W*)* sinh4^-1 d/4). 



With y0 = d= X,8 = 0.1, the non-dimensional radiated power is E = 3.5 x 10-3. Yet 
another contemptibly small though conceivably significant value. Note that the amplitude 

of the radiated wave is O(Ro). 

7 Remarks 

The strength of gravity wave radiation in all of the cases considered above has been shown 
to be weak. In the case of quasi-geostrophic vortices far from a boundary, coupling is 
miniscule. The last problem considered, that of forcing of Kelvin waves by vortices near 
a wall is quite intriguing. It demonstrates relatively significant coupling between vortical 
eddies and Kelvin waves on a nearby coastline. This sort of process could play an important 
role in ocean dynamics near coastlines (and presumably other topographic features). 

It would be nice to extend the analyses presented here beyond lowest order. Specifically, 
one would like to carry out the calculations to high enough order to see direct effects on 
the vortex motion. This was my goal at the beginning of the summer, but my attempts at 
it so far have been thwarted by the singularities inherent in any point vortex model. 
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A periodic orbit expansion of the Lorenz system 
Sean McNamara 

Scripps Institution of Oceanography, La Jolla CA 92093-0230, USA 

The Lorenz system is three coupled first order ordinary differential equations. It was 
originally developed as a crude model of convection, and is well known to be chaotic. 
A method has recently been developed for calculating useful and descriptive properties 
of chaotic systems, called the "periodic orbit expansion". I use this method to calculate 
the heat flux and kinetic energy of convection, as well as several other quantities. 

I. Introduction 

In 1963, Lorenz presented a system of equations as a model describing convection which 
exhibits chaotic behavior for certain parameter values1. For this reason, it has proved to be a 
very interesting system mathematically2'3, and much work does not consider its humble origin as 
a simple model of convection. In this paper, I remember its origin and caculate its estimate the 
heat flux and the kinetic energy of the fluid motion, how frequently the flow direction reverses, 
as well as the Lyapunov exponent. 

In chaotic systems, it is hard to calculate quantities of interest. Recently Cvitanovic4'5'6'7 

and others, have developed a method which can be used. This is the periodic orbit expansion. 
The basic idea is that hidden in the phase space of a chaotic system are an infinite set of unstable 
periodic orbits. If the system begins on a point exactly on one of these orbits, it travels around and 
around the orbit forever. If it is just slightly off the orbit, it follows the orbit (approximately) 
for a while, then diverges from it to shadow another. These orbits stand in relation to the 
nonperiodic trajectories as the rational numbers to the irrational. There is an infinite number of 
them, and any point is arbitrarily close to one, yet the orbits contain an infinitely small fraction 
of all points. The periodic orbit expansion computes quantities by constructing a sum over these 
orbits, weighting each orbit by its stability, and truncating the sum carefully. 

In this report, I study the Lorenz system using this method. In Sec. II, I sketch the origin 
of the Lorenz system and the quantities I will calculate. Sec. HI, describes the periodic orbit 
expansion. Sec. IV describes how the periodic orbits of the Lorenz system were found. Sec. V 
presents results. 

II The Lorenz system 

a. Derivation 
Figure 1 shows a fluid with viscos- 

ity v, thermal conductivity K, between two 
horizontal plates spaced a distance H apart. 
The upper plate is held at temperature T0 

and the lower at T0 + AT. The density 
of the fluid depends on temperature: p = 
p0[l — a(T - To)], where a is the coeffi- 
cient of thermal expansion. Gravitational 
acceleration, g is downward. Establish a 
coordinate system with z pointing upwards, 
and x horizontally. 

H/a- 

\\\\^\ \\\\\\\\\\\wk\\\ 

z 

>;      T = T0 

z/, K 

l| P = 

i Po(l - <xf) 

y ///]//'//// ///////////   «\ 

T = T0 + AT 

Figure 1. Definition sketch for convection between two 
parallel plates. 
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The Boussinesq equations for two-dimensional motion are: 

AT 
0t + J(V>,0) = /cV20+— V>*, 

(1) 

where ^ is the streamfunction and 6 is the departure of the temperature from the linear profile: 
T = To + AT(H - z)/H + 0. Assume the solution is two-dimensional rolls of the form 

*-(A) [***«» (T)-(?)1 
8 = r(*)v5cos(^)Sin(f)-Z(i)Sin(^' 

(2) 

where a is the aspect ratio of the rolls. The dimensionless constants 6 and r will be defined after 
the next equation. Time has been nondimensionalized: i = (Air2/bH2)Kt. Put this solution into 
Eq. (1). There will be a term containing each of X, Y, and Z. Ignore all terms which do not 
have the same spatial dependence as these terms. (This involves neglecting the nonlinear terms 
in the momentum equation, and a nonlinear term proportional to sin(37rz/H) in the temperature 
equation.) Equating terms with the same spatial dependence gives the Lorenz equations: 

X = -aX + aY, 

Y = -XZ + rX - y, 

Z = XY - bZ. 

(3) 

Here, a = U/K is the Prandtl number, a property of the fluid. The geometry of the rolls enters 
through the parameter b = 4/(1 + a2). The parameter r = Ra/Rc measures the strength of the 
forcing. (Ra = gaATH3/vK is the Rayleigh number, and Rc = TT

4
(1 + a2)3/a2 is the critical 

Rayleigh number; when Ra > Rc (r > 1) the solution </> = 0 = 0 is unstable and convection 
occurs.) The "classical" values which Lorenz first used are r = 28, b = 8/3 and a = 10. In this 
report, I will vary r but not a and b. 

b. solutions 
When r < 1, the point X = Y = Z = 

0 is stable. The system moves from any 
initial point to the origin and stays there. 
This corresponds to no fluid motion, with 
heat transported purely by conduction. At 
r = 1, this fixed point becomes unsta- 
ble, and bifurcates into two stable, fixed 
points at X = Y = ±y/b(r - 1), Z = 
r - 1. For 1 < r < 24.74, the system 
moves from any point towards one of these 
two points. These fixed points correspond 
to steady convective rolls. There are two 
because the fluid can move clockwise or 
counterclockwise. Finally, for r > 24.74, 
these points become unstable, and the sys- Figure 2.  Typical chaotic trajectory at r 
tern is chaotic. initial position is near (Y, Z) - (30,50). 

N30 

28.  The 
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c. quantities predicted by the Lorenz system 
In this paper, I will calculate three physical quantities predicted by the Lorenz system. The 

first of these is the heat flux q: 

fH/a 
q= (wT-KTz)dx, (4) 

Jo 

where w is the vertical velocity, and the integral is taken at some fixed value of z. Using the 
solution in Eq. (2), we have 

Jb=(r+2<z>)' (5) 

where ATi = vK,Rc/gaH3 is the temperature difference required to give r = 1. The angular 
brackets denote averages over a long time (they will be more rigorously defined in Sec. III). 
Deriving Eq. (5) also requires taking the long time average of the third Lorenz equation to get 
0 = (XY)-b(Z). 

The kinetic energy of the fluid is: 

fH/a [H 
KE= j       dx       dz pVxf> ■ VV>, (6) 

Jo Jo 

which becomes 
{KE)     _V*\(X% (7) 

M(K/H)
2
      a2b3 

where M is the mass of the fluid in the roll, and K/H has dimensions of velocity. 
The third quantity is the "floppiness", T. The floppiness is the number of times X and Y 

change sign per unit time. Thus, if T = 0.65, it is expected that X and Y change sign 65 times 
in 100 time units. A change in the sign of X corresponds to a reversal of the flow direction. 
In Fig. 2, the change in sign of X and Y corresponds to changing the fixed point the system is 
currently circling. 

I also estimate the Lyapunov exponent \i. This quantity measures how fast two neighboring 
points in phase space seperate. When the two points are close together, the distance between 
them grows like e^. 

III. The Periodic Orbit Expansion 

In this section, I sketch the periodic orbit expansion. This is not a complete derivation, but 
it is thorough enough to give a glimpse of the mathematical details. These details are found 
in the Refs. 4-7. None of this is my original work, but I have not been able to find a simple 
presentation in the literature. 
a. objective 

The goal is to compute "long time averages", denoted by angle brackets, and defined by 

(*) = lim i- / da *«(a), (8) 
t-KX Vt Jy 

where 

**(a)= /'dt'flfCa)]. (9) 
Jo 
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way: 

V 

Here, boldface denotes positions in phase space. The movement of the system through phase 
space is given by f'(a). If a system is at a, it will have moved to f'(a) after time t has passed. 
V is a fixed volume in phase space in which the system remains, and Jv da - V. The quantity 
we are averaging (the heat flux q for example) is <j>, and $'(a) is the integral of <f> along a 
trajectory beginning at a and continuing for a time t. The average of <j> along one trajectory is 
^(a)/*. It is necessary to average over phase-space as well as time because $*(a) can depend 
on a (if a is on a periodic orbit for example). 

b. derivation 
We will approach Eq. (8) indirectly. I will dabble with some apparently unrelated equations, 

when suddenly an expression for (<f>) will appear. Let me begin by writing 1 in a very complicated 

\- f da I dx 6[x - f*(a)] = Ac = 1, (10) 
v   JV       Jv 

The 6 function has a singularity when a system at a moves to x after time t. Thus, for each 
value of a e V, the delta function has a singularity at exactly one x e V. Thus, the integral 
over x is 1. The integral over a is V, giving 1 for the whole expression. I include A0 here, 
because Eq. (10) is the leading (largest) eigenvalue of the operator 

£'(x,a) = 6[x-f(a)]. (11) 

£' is called the Perron-Frobenius operator. It is instructive to compare £'(x,a) with a finite 
dimensional operator Lif. 

Vi = LijUj. (12) 

Lij operates on vectors, taking one vector into another. The analog of Eq. (12) for £' is 

p2(x) = / da£*(x,a)pi(a). (13) 
Jv 

The arguments x and a play the role of the subscripts i and j. Eq. (12) involves summation 
over j; Eq. (13) requires integration over a. £' operates on phase space density functions such as 
pi and pi. In Eq. (13), an initial distribution of points according to px will move to a distribution 
according to p2 after time t. This is the action of £*. This gives C* the special property: 

CtljCt2 =Ctl+t>. (14) 

This property implies that A0 is the leading eigenvalue of £' for large t. To see this, divide t 
into N parts; t = NT, where N is large and r order unity: 

A0 = 1 =  f dx f daCf^= f dx f da CTCr ■■■CT-, 

where we used Eq. (14) to write £* = [CT]N. Then expand p = 1/V in the eigenfunctions of 
CT: 1/V = copo + cipi H . Here, the pi are the eigenfunctions and the a are constants. Let 

(15) 
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A; be the eigenvalue corresponding to eigenfunction pi. We can show that these eigenvalues are 
real and can be ordered: f A0 > Ax > A2 > • • •• We then have: 

A0 = 1 = A^ / c0p0(x)dx + *i   I clPl(x)dx + • • • « A^ / c0po(x)dx.        (16) 
Jv Jv Jv 

Applying the operators multiplies each term by the appropriate eigenvalue, raised to the iVth 

power. Finally, the term involving the leading eigenvalue A0 dominates since A^ > A^ if N is 
big enough. If we consider N and t increasing, with r fixed, we can show fv c0po(x)dx = 1 
so 

Ao = A0
N = 1. (17) 

This, combined with the property of Cf in Eq. (14) shows that A0 is the leading eigenvalue of 

Now, let us write 

i j daj dx exp^«(a)]/:t(x,a) = A£(/?) = exp[Q(ß)t]. (18) 

Here, ß is a parameter we have introduced, and $* is the integral of <f> along the trajectory, 
defined in Eq. (9). Note that the new operator L\ = exp[/?$*(a)]£* has the same property 
[Eq. (14)] as £'. Thus, AJ(/0) is the leading eigenvalue of C{. When ß = 0, Eq. (18) reduces 
to Eq. (10), implying Q(0) = 0. Now, comes the surprise. Differentiate Eq. (18) by ß, and set 
ß = 0. After doing the x integral, we have 

©L=w//a#,(a)=w! <i9> 
c. where the orbits come in 

In summary, to find (<j>), we must first find Q(ß) but finding this requires finding the leading 
eigenvalue of C\. To find this eigenvalue, calculate the trace: 

tr£< = / da£*(a,a)= / da.S[&- f*(a)]u;(a). 
Jv Jv 

(20) 

Here, we have used tu (a) = exp[/3$*(a)] for clarity. As with finite matrices, the trace will be 
the sum of the eigenvalues. In the limit of t -> oo, the leading eigenvalue will dominate, and 
will simply be equal to the trace. 

The 8 function in Eq. (20) has a singularity only when a point returns to its original location 
in phase space. Thus, only points on periodic orbits contribute to tr££. Therefore, the trace can 
be rewritten as 

irCl = T I   dx{\ dx± 6[s„ - /'(x,,)] 8[x± - /'(xjJMx). (21) 

\ This is shown using Fredholm theory: we consider Cf as an infinite dimensional matrix, as 
we did in Eq. (12). The definition of £' enables us to deduce enough its matrix representation 
to prove the eigenvalues are real and can be ordered, as we have assumed. 
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Here, p indexes the prime orbits. Given any orbit, it is possible to find another one with 
exactly twice the period by traveling around the first orbit twice. The second orbit, however, 
is not prime; a prime orbit cannot be considered as multiple trips around a shorter orbit. The 
integrals are taken over Vp, a thin tube encircling the orbits. Since only points on periodic orbits 
contribute, we can establish a new coordinate system, where x\\ runs along the orbit, and xi 
are the directions perpendicular to the orbit. The delta function involving x^ has a singularity 
only when t is an integer multiple of an orbital period. This enables us to write 

/   *h-/*(*||)]<fe||= /   S(t-rT,)(^\     dxr=Tp6(t-rTp). (22) 

The integral over xi is 

'   S[x± - f(x±)]dx± = [det(I - j;)]-1, (23) 
/.. 

where I is the identity matrix and 3P is the linearization of the dynamics around the periodic 
point.   Suppose a system begins a small distance Axj. from the periodic orbit.   After one 
period, its position will be 3pAx±. The quantity det(I - Jp) is related to the eigenvalues of 
Jp. In the Lorenz system, 3P must have at least one unstable (absolute value greater than 1) 
eigenvalue (denoted AP) since the orbit is unstable. The other eigenvalue (denoted Xp) is stable, 
and represents the movement of systems towards the strange attractor. With this notation, we 
can write 

"   TpS(t-rTp)w; tr£*-?S(i-A;)(i-A;y (24) 

At this point, we continue our mathematical Odyssey, encountering Fourier series, Wick rotations, I 
complex integration and summation of infinite series. At last, we reach the dynamical ( function, 
which defines Q{ß) implicitly:! 

1 TTA     exy\ß%-Q(ß)Tv\\_v (25) 

The product is over the prime orbits, indexed by p. The period of the orbit is Tp, and $p is the 
integral of <j> once around the orbit; $p = $r" (a) where a is any point on the orbit. 

Expanding the infinite product, and using fp = exp[/?$p - Q(ß)Tp]/Ap we have 

{piPi-.-Pk} 

Where do we truncate this sum? First, we assign an order to each orbit. The order of an orbit 
is related to its length; more details will be given below. Then, define the order of each term 
in Eq. (26) to be the sum of the orbits involved. For example, if orbit p = 1 is first order, and 
p = 2 third order, the term £i£2 is fourth order. Finally, we keep terms up to a certain order. 
This works because terms of the same order tend to cancel one another. For example, consider 
the four orbits of Fig. 4. Let £a be the contribution from the orbit of panel a, and so on. Then 
the third order term is —£c — f <* + £a&- But orbit c resembles orbit a superimposed on orbit b, 
so £a£& nearly cancels —fc. At higher orders, the cancellation becomes more complete. 

f The C function is reached via the Fredholm determinant which involves the contracting 
eigenvalue \p as well as Ap. It can be written as a product of ( functions. The Fredholm 
determinant and the ( function have the same leading zero. 
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d. results 
The accuracy of the periodic orbit expansion can be checked by recalling <2(0) =0 and 

Eq. (25): 
1 „,.-.„ (27) 

<(0,0) ?(-*)- 0. 

This puts a constraint on the stabilities of the orbits. The orbits are not independent entities, but 
are related in a strict way. By checking Eq. (27), it is possible to detect missing or duplicated 
orbits. 

Differentiating Eq. (25) with respect to ß and setting ß = 0 gives 

U\  _   (?9.\ =   T,${piP2...Pk}/A{piP*~-Pk} ^ 
\Vß ) ß=0 l~>^{PlP2-Pk}lA{PlP2-Pk} 

where the sums are over {p\P2 • • • Pk}, as in Eq. (26). Here, 

(28) 

{plP2-Pk} J-Vi  T-lpj T"'Ti| LPl ip2 Pk) (29) 

A{PlP2-Pk}   =(-!)    APlAP2""APfc- 

IV. How to find orbits 

Next, we turn to the problem of finding the periodic orbits of the Lorenz system. I construct 
a one dimensional map, and find the periodic orbits of the map. From these orbits, it is possible 
to accurately estimate the orbits in the full system, which can be refined further. 
a. the one-dimensional map 

As shown in figure 2, the system is 
continually looping around one of the two 
fixed points. For each loop, there is a max- 
imum Z. It turns out that the maximum in 
Z can be predicted from the Z-maximum 
in the previous loop. If we solve the equa- 
tions numerically and plot successive pairs 
of Z maxima, we get figure 3. f Us- 
ing figure 3, it is possible to predict the 
sequence of Z-maxima which will follow 
any first Z-maximum. For example, if we 
start with the point where Z = Znext (the 
fixed point of the map), we stay there for- 
ever; the Zmax of each loop remains un- 
changed. This is the first periodic orbit of 
the map, and is a "first order" orbit. There 
is a second order orbit where Zmax alter- 
nates between two values. In an nth order 
orbit, Zmax runs through n values before 
repeating. The first order orbit and one 
third order orbit are shown in figure 3. 

Figure 3. Map for predicting successive Z maxima at 
r = 28. Two orbits are shown: the first order orbit, 
where the map intersects the diagonal line, and a third 
order orbit. These orbits are shown in figure 4. 

f We interpolate between the "observed" pairs of Z-maxima with a cubic spline. 
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b. refining the guess from the map 
Once we know a Zmax associated with a certain c^bit, we can estimate the X and Y which 

occur at this point. Then, using this as an initial condition, we integrate forward in time until 
n Z maxima later. We will be near the initial point, but not exactly, since the initial guess was 
not exact. But this initial guess can be refined using a Newton-Raphson technique. In figure 4, 
I present several low order orbits at r = 28. Figure 4a corresponds to the orbit described in the 
previous paragraph, where Z = Znext- . 

Inspection of Fig. 4 reveals a complication that was not visible in the map. Figure 4a, 
which is first order in the map, is really second order in the differential equation, since it 
makes two loops before returning to its starting point. There is a whole class of orbits with 
this property. This happens because the Lorenz system is unchanged by the transformation 
(X,YyZ) -> (-X,-Y,Z). This symmetry is invisible to the map, which involves only Z. So, 
there are two possible ways of determining the order of an orbit: from the map or from the 
differential equation (defining the order of the orbit as the number of loops around one of the 
fixed points). If we use the map, the orbit in figure 4a is first order. If we use the differential 
equation, it is second order, but we must count asymmetric orbits (Fig. 4d) twice to account for 
its mirror image. In the map, we include it only once. Counting orders according to the map is 
more efficient because it exploits a symmetry of the dynamics (see Ref. 7 for more details). 
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Fieure 4   The four lowest order orbits at r = 28. (a) the first order orbit, shown also in Fig. 3. (b) the second 
SSr orbit, (c) £e third order symmetric orbit, (d) the third order ant.symetnc orb.t, also shown m F.g. 3. 
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Figure 5. The map for r = 49. In (a), the map is double-valued for 52 < Z < 62. In (b), the map has been 
"checkerboarded" to make the map single-valued. The same orbit is shown in both panels and in figure 6. 

c. Complications at higher r 
As r increases, a new class of orbits appear. In figure 5a, we show the ^-maximum 

map for r = 49, and one fifth order orbit. This orbit is different from the orbits of Figs. 3 
and 4 First, it travels far up into the cusp, reaching a high value of Z. This sends it to 
a new branch of the map {Z > 78 in figure 5a) not seen at r = 28 (Fig. 3). Then, at the 
next Z-maxima, it visits a new part of the 
map at small Z before returning to the main 
map. The map has become double-valued 
for small Z, and it is very cumbersome to 
locate the periodic orbits of a double-valued 
map. One solution is to "checkerboard" the 
map, as shown in Fig. 5b. Bits of the map 
are shifted to restore the single-valuedness of 
the map. I have traced the same orbit in both 
panels to show how this works. The orbits 
that visit these shifted segments of the map 
turn out to be very unstable, and difficult to 
locate. Figure 6 shows the orbit of Fig. 5 in 
the YZ plane. Note the broad sweep across 
the top - this is the passage through large Z 
to the new parts of the map - nothing like 
this is seen in the orbits of Fig. 4. Figure 6  The periodic orbit of Rg 5 shown in the 

YZ plane. Compare with the orbits of fig. 4. 
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V. Results 

30 35 40 
r 

Figure 7. The number of orbits found at each order, 

50 

vs. r. 
Figure 8. The quantity in Eq. (27). The difference from 
0 measures the error in the periodic orbit expansion. 

Fig. 7 shows the number of orbits of each order as a function of r. The number of orbits 
at each order is constant for r < 40, when more orbits appear. These new orbits are associated 
with the map becoming double-valued, and are related to the orbit shown in Fig. 6. These orbits 
are difficult to locate because the are very unstable. For r > 40, there were orbits estimated from 
the map could not be located in the flow. The lumpiness of Fig. 7 probably could be removed 
by an improving the method used to find orbits. 

In figure 8,1 show estimates of ((0,0) = 0 for several values of r and orders of approxima- 
tion. This measures the accuracy of the periodic orbit expansion. Figure 8 shows good behavior 
for r < 43, and then problems appear for higher order estimates. These errors are caused by 
certain periodic orbits which become stable at special values of r. When this happens, the 
periodic orbit expansion breaks down because it assumes all orbits are unstable. In figure 9, I 
show the orbit that is causing problems at r = 48. It is a seventh order orbit. Note that one of 
the points is very near the flat part of the map in Fig. 9b. As r changes continuously, the map 
changes smoothly, and the points of this orbit move smoothly. For some special r, one point is 
at the local minimum of the map, and the orbit has Ap = 0, and the periodic orbit expansion 
doesn't work. 

-40        -30 -20 10 20 30 40 

Figure 9. The trouble-making orbit at r = 48 in (a) the YZ plane (b) on the map. Note that it touches the map 
where it is nearly flat. 
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Figure 10. The heat flux. For r < 24, the values 
are calculated from the stable fixed points. For r > 24: 
solid line: eighth order periodic orbit expansion, dashed 
line: first order periodic orbit expansion; open circles: 
averaging for t = 2500 time units; points: averaging 
for t = 25 time units. 

Figure 11. Same as figure 10, except for Kinetic energy 
of the fluid. 

In figures 10 and 11 show the heat flux and and kinetic energy of the flow. For r < 24, 
the solid line is the head flux and kinetic energy associated with the stable fixed points. For 
r > 25, there are four different estimates (two from the periodic orbit expansion and two from 
solving the diffemtial equations, and averaging), all in good agreement. These quantities are 
easy to estimate because they don't vary much from orbit to orbit. Note that the the transition 
to chaos is not associated with an increase in kinetic energy or efficiency of heat transport. The 
transition to chaos should not be thought of as the system finding new ways to transport heat 
more efficiently; it is less efficient. 

2 

1.8 

1.6 

1.4 

1.2 

L      1 

0.8 

0.6 
( 

0.4 

0.2 

Figure 12. 
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Figure 12 shows four estimates of the "floppiness". Here, the calculations converge much 
more slowly. The low order periodic orbit expansion estimate is too high because the first orbit 
(Fig. 4a) is very "floppy" - it flops from one stable point to the other time it circles one of 
the fixed points. The higher order orbits will often circle the same fixed point several times 
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before flopping (Fig. 4d or Fig. 6). The contribution from these orbits reduce the fioppiness. 
The fioppiness converges slowly, because orbits vary widely in fioppiness. 

Estimates of the Lyapunov exponent are shown figure 13. This quantity is very difficult to 
compute by averaging over the flow because it converges slowly. There is a roughly constant 
offset between the results of the periodic orbit expansion and those of an averaging method. The 
deep gashes in the periodic orbit estimate are due to almost stable orbits, such as that shown in 
figure 9. Orbits with unusual properties can confuse the periodic orbit expansion. One the other 
hand, when there is a stable orbit, the Lyapunov exponent vanishes, so there are special values 
of r for which Lyapunov exponent plunges to 0. This dramatic behavior is suggested by the 
periodic orbit expansion, but not the averaging method. 

VI. Conclusions 

The periodic orbit expansion works, but it requires a lot of effort to find the orbits. To 
calculate the heat flux or kinetic energy, it is easier just to average while integrating the equations 
forward in time. But once the orbits are located, it is easy to calculate averages of many different 
quantities. The periodic orbit expansion also avoids the problem of selecting intial conditions 
for averaging. The periodic orbit expansion also provides a measure of its accuracy in Eq. (27). 
This result places a constraint on the stabilities of all the orbits, showing they are all related. 
Thus, given a set of periodic orbits, it is possible to tell whether they describe a real dynamical 
system. Finally, examining the periodic orbits is a pleasing way to study the different behaviors 
a system can have. 
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Elliptical Vortices in Shear: Hamiltonian Formulation, 
Vortex Merger, and Chaos 

Keith Ngan 
Department of Physics, University of Toronto 

Abstract 
The equations of motion for a pair of interacting, elliptical vortices in a background shear 
flow are derived using a Hamiltonian moment formulation. For no background flow, a 6th 
order system — identical to that obtained by Melander et al. (1986) — results. These 
equations are analysed using a variety of methods and implications for vortex merger are 
examined. A modification of the standard Melnikov method is developed; it is shown that 
the separatrix for inter-centroid motion exhibits exponentially small splittings. Numerical 
simulations are performed and chaotic motion is detected. 

1    Introduction 
The emergence of quasi-elliptical, quasi-uniform vortices in numerical simulations of freely 
evolving two-dimensional (2D) turbulence has been studied extensively (e.g.   McWilliams' 
1984). Vortices of like-sign merge to form persistent coherent structures; it is believed that 
this phenomenon is essential to the phenomenology of 2D turbulence (e.g. Melander et al. 
1988). Vortex merger is a very complicated phenomenon and it is not well-understood. 

In this report, a highly idealized model of vortex merger is derived and then analysed. 
Specifically, the evolution of a pair of elliptical vortices in a background shear flow is con- 
sidered. This model is an idealized one primarily because it assumes that at all times, the 
vortices are well-separated and elliptical. It is very instructive to compare this model to 
some simpler ones: the Kida vortex and a pair of point vortices in shear. These models are 
closely connected to the present one: they underlie the main aspects of this project and they 
provide a natural overview of this report. 

In the Kida problem (Kida 1981), an elliptical patch of constant vorticity evolves in a 
background shear flow 

* = L(x2 + y2) + \e{x2 - y2) (1) 

according to the 2D Euler equations. Kida showed that the ellipse remains elliptical for all 
time with its centroid fixed and its orientation and aspect ratio varying periodically with 
time, i.e. 

Ä   =   -e\s\n2d (2) 
• A u     11 +A2 

S   = 1 1 ecos2(p, 9 (1 + A)2     2     21-A2 v' 

where A is the aspect ratio and <f> is the orientation. This system can be derived from 
the equations of motion for the quadratic vorticity moments (Flierl et al. 1993, hereafter 
FMM); the latter are obtained from the Poisson bracket for 2D Euler flow using the method 
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FMM); the latter are obtained from the Poisson bracket for 2D Euler flow using the method 
of reduction (Morrison 1993, hereafter M93). The model which will be derived in section 2 
may be thought of as a pair of Kida vortices which are allowed to interact, but in a restricted 
way. It is obtained by generalizing the analysis of FMM to two uniform elliptical vortices. 

The relevance of such a model to vortex merger may be appreciated by considering the 
simplest model of vortex merger: two point vortices with circulation T,- and position x, in 
a (Kida) background flow \P (e.g. Meacham 1993). The equations of motion for pure shear 
(i.e. u = — e) are: 

X = -(J-_JL_ + !W 
V27rA'2 + F2     IV 

where X = x\ — ar2 and Y = t/i - y^. There are hyperbolic points at 

(3) 

(4) 

which are connected by a separatrix (heteroclinic orbit). (For w ^ —e, there are analogous 
results.) Regions of unbounded motion are divided from regions of closed motion by the 

p"  : Jim-: 
— ; r^i1/-: i /,' 

S£f< scv \l 

y 
\y//i .M<r 

Figure 1: Phase portrait for a point vortex pair in shear. 

separatrix and thus merger is impossible. But for the system of two Kida vortices, there 
are internal degrees of freedom (d.o.f.) and the vortices can merge. The separatrix should 
also split apart, allowing merger for initial conditions in the unbounded regime. This is 
examined in section 3 using a Melnikov integral. The Melnikov method for time-periodic, 1 
d.o.f. systems is extended to systems with fast and slow time-scales and it is demonstrated 
that the separatrix splitting is exponentially small. This splitting implies chaotic behaviour 
and this is studied numerically in section 1. Section 5 presents a summary and outlines 
possibilities for future work. 
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2    Hamiltonian Formulation 

The equations of motion for two interacting Kida vortices are obtained following FMM. 
Briefly, FMM: (1) expressed the Poisson bracket for the 2D Euler equations in terms of 
the quadratic moments — a reduction; (2) determined the cosymplectic matrix J from the 
bracket; (3) computed the Hamiltonian in terms of the moments; and (4) obtained the 
equations of motion from H and J. While this procedure is not especially complicated, it 
is fairly involved; therefore, in the interests of brevity, the derivation will only be outlined: 
many details will be omitted. (The remaining sections of this report will be abbreviated in 
a similar fashion. A detailed account of this work will be published elsewhere). 

Firstly, some basic notation is established. Our system consists of two elliptical vortices 
with aspect ratios A,-, circulation T,-, and vorticity q'{ (i = 1,2) in a background Kida flow, 
$. The vorticity centroids are located at (x;*,yi*) with respect to some reference frame; $ 
is also defined with respect to this frame. The vortices have orientations <j>i with respect to 
the stationary reference frame; (a^,y,-) are coordinates in the body frame. 

^2     >%^-~>*7 

^c 
Figure 2: Configuration for the interacting Kida vortices 

Because the global centroid will not be fixed when the background flow is present, both 
first order and quadratic vorticity moments must be considered. The quadratic moments are 
defined by: 

«i   =   /'»?.'/ /  (x-Xi*)2dxdy (5) 

«2    =   /*«<?«' J J   (x- a;,»)(y - yim) dxdy 

a3   =   Mi j j  {y-yi*fdxdy 

where /z,- = A/Ai and Z>, is the domain of vortex ?'. The first order moments are defined by: 

a-i = ml j    x dxdv (6) 

V-rfx J J   'J dxdy . a o    = 
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It is also convenient to define functions m) which are the integrands of the a): m\ = (x-£,•») , 

etc. 

The first step in the derivation proper is the computation of the Poisson bracket. The 
Poisson bracket for 2D Euler flow is: 

where [•, •] is the 2D Jacobian and the constant background vorticity has been ignored. From 
the definition of the a), it follows that 

r n on  C_t 

(8) 
SF 
Sql 

T-^dFSa) 

Y da) 8q\ 

3          ■> 

where we have restricted F,G to functions of the a). It then follows that: 

,8F dG 

ijk 

It is important to note that this reduction is exact because we have restricted F and G to 
functions of the a) only. 

After relabelling indices so that a, = a) (likewise m*) and so that q'jk = q\ (likewise //,-), 
the cosymplectic matrix J for the Poisson bracket (9) is defined by 

{F,G} = Y,i  ^-Pk^-dxdy. (10) 
^JD daj       dak 

The relabelling is needed in order for the elements of Jjk to define a unique matrix; the precise 
relabelling is arbitrary. (For convenience, let j, k = -2 ... 3 be associated with vortex 1 and 
let all other integers from -4 to 6 be associated with vortex 2; 0 is excluded in both cases.) 
Thus one obtains that 

J3k= I tikikto,™*]- (n) 

So in order to determine J all the products [my, mjt] must be worked out. This is a straight- 
forward calculation and we omit the details. The essential point is that the m,- constitute an 
algebra, i.e. [m;,mj] = mk. (For instance. [mi,m3] = [(x - xu)2, (y - y\*)2] = 4m2.) This is 
necessary for J(a,{) to satisfy Jacobi's identity and the reduction to work (M93, lecture 3). 

JisalOxlO matrix with the following form: 
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where 
0 4ßiq[ 

■ißiq'i 0 
0 .0 
0 0 

0 0\ 
0 0 
0 4^2 ?2 

-4^2?2 0 / 

and 

with 

B = 
C   0 
0   D 

(13) 

(14) 

0        2//i<zi      4//ia2 \ 
C = |   -2mai   0 2fna3     , (15) 

-4/xia2   -2/xia3       0     / 

and similarly for D. A is the J for two isolated point vortices and B is the J for two isolated 
Kida vortices (c.f. FMM). The full J is thus a direct product of the J's associated with the 
first and second order moments; likewise, it is a direct product of two single-vortex J's. 

Next, the Hamiltonian is computed in terms of the a,-. By definition, 

H = \ f | V* + (VV>; + V^2) I2 dxdy. (16) 

Dropping the constant terms and integrating by parts, 

H = " E {/D. *<?,' dxdy + i jDi M dxdy + | J^ ^ dxdy } , (17) 

where j ^ i. In order to calculate H, iß'f, the streamfunction induced by each vortex is 
needed. Within a vortex, Lamb's (1932) solution for the streamfunction inside a uniform 
elliptical vortex is used. 

^=<?; 
i   i 

2(1 + A,)2 (A
2*'2 + y'2) - 

A,-       , 1,   (1 + A,)2 

4(1 + A?) + 4 m      A« 
(18) 

In using this solution, it is assumed that the ellipse remains elliptical for all times: this is 
approximation 1. Outside a vortex, the Green's function for a point vortex in an unbounded 
domain must be used: 

G(x ,x') = ^\n\x -a;'|, (19) 

where x ' is a point inside the vortex and the streamfunction is tpl = — fD. q'{ G(x , x ') dxdy. 

The first two terms of H are easily computed — they are analogous to the Hamiltonian 
for an isolated Kida vortex; however, the final term is not quadratic in x, y because of the 
Green's function, and it cannot be exactly represented using first and second order moments. 
It can be approximately written using the moments by Taylor expanding the Green's function 
to second order in e0, where 

e0 = xs/R < 1, (20) 
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xa is the semi-major axis, and R is the intercentroid separation. Thus it is assumed that the 
ellipses are small and well-separated: this is approximation 2. Finally, 

H=   - 
1 

1 

4/*2 

(w + e)fll + (w - e)a3 + 49l(u; + e)(^|)2 + 4^« - e)(^|)2 

0-4x2 

(21) 

,a-3> 
(w + e)a4 + (w - e)a6 + 4g2(w + e)(^-)2 + 4?2(u; - e)(~) 

8 
In 

7T 
(ai + a3 + 2)— 

r2, ——m 

1 

■Kflifi2 L 

r\j    8 
2 rl 

(a4 + 06 + 2) 
7T 

49;^lni22 + —[-cos2%;(a6-a4) + ?2(a3-ai)) - sin 26 (q'2a2 + q[a5)} 
K   2 

From J and H a 10th order system can be obtained for the <n. However, this system can 
be simplified further. The global centroid motion decouples from the relative centroid motion 
(and the internal d.o.f.) since there is a decoupling in J and in H. There are two Casimirs 
d = aia^-aj and C2 - a4a6-a2

5', they correspond to circulation preservation of each vortex. 
And for this report, it is assumed that the vortices are symmetric. These simplifications lead 
to a 4th order system; recasting it in terms of (R,0,\,<f>), where x2* - xu = RcosÖ and 

2/2* — yu — R sin 0, one obtains: 

Ä«   ^sin^-^i^sin^-^) (22) 

A   =   -A {-^j sin 2(0-0) + esin2<^| 

X   =       q'Xs   - ll±^(4-cos2(0-0) -ecos24 + o;/2 9        (1 + A)2      21-\2\irR2        K        ' I 

We note in passing that the 10th order system can be extended as well as simplified: the 
equations of motion for N vortices have been worked out. 

The 6th order system in (Ä, 0, A,-, <?,-) is — with no background shear — identical to one 
derived by Melander et al. (1986). This being the case, why is the Hamiltonian formulation 
useful? Most significantly, it explains why Melander et al. obtained a Hamiltonian system. 
They showed that their model is Hamiltonian and that it possesses conservation laws anal- 
ogous to those of the 2D Euler equations; however, these results seem to be very fortuitous: 
the Hamiltonian formulation demonstrates otherwise. The Hamiltonian approach is simpler 
than the procedure employed by Melander et al. (who manipulated the moments directly) 
and some results (e.g. the decoupling between the first and second order moments) are more 
readily grasped with it. 

Although this model is not exact, it is consistent. Deviations from ellipticity are O(el) 
and will only be significant when e0 is large and the second approximation breaks down. The 
model cannot provide an exact description of vortex merger, but it should provide insight into 
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aspects such as the break-up of the separatrix for a point vortex pair in shear. Furthermore, 
this model is a very interesting dynamical system and it is worth studying in its own right. 
The background shear introduces many new effects which are not found in the integrable 
system of Melander et al. 

3    A Modified Melnikov Method 
For an integrable system, the stable and unstable manifolds associated with the hyperbolic 
fixed points coincide, forming heteroclinic (homoclinic) orbits. However, under a perturba- 
tion, these invariant manifolds no longer coincide and motion (transport) across the separa- 
trix is possible (e.g. Wiggins 1992). The well-known Melnikov method (e.g. Drazin 1992, 
Wiggins 1988) measures the separation between the stable and unstable manifolds. Zeroes of 
the Melnikov function are indicative of chaotic motion. In this section, a Melnikov calculation 
is described for which the integrable basic state corresponds to a point vortex pair in shear 
and the perturbation corresponds to the internal d.o.f.'s of the interacting Kida vortices. 
Although other basic states may be chosen, this one is a good choice — notwithstanding the 
existence of a separatrix! — because it ensures that the results will be physically meaningful 
for small perturbations (i.e. the model should still be valid). 

Before outlining the Melnikov calculation, it is necessary to non-dimensionalize the 4th 
order system. Defining a perturbation parameter e = A/(irD2), where D is the semi-major 
axis), letting r = RD, and rescaling time as t —+ t/q', one obtains: 

r   =   I±r«n2«-^-^8in2(«-0 (23) 

'   =   2| + 2?COS(2S) + ^+27Ji¥!cOS2(,'-*) 

A   =   -A I e\ sin 2(0 - <?) + -, sin 2<j> \ 

This system may be interpreted in the following manner: (1) at 0(1) the background shear 
flow acts on (r, 6) and the internal degrees of freedom; there is also self-rotation (Kirchoff 
rotation) of the vortices; (2) at 0(e) the vortices interact, but only as if they were point 
vortices; and (3) at 0(e2) the vortices are now interacting Kida vortices: the internal d.o.f.'s 
now affect the inter-centroid motion. 

While these equations are correct, they cannot be used for a standard Melnikov analysis. 
Melnikov's method is usually formulated in terms of 0(e) perturbations to an integrable basic 
state; for a 1 d.o.f. system, 

x   =   fi(x,y) + eg1(x,y,t) (24) 

V   =   f2(x,y) + eg2(x,y,t). 
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But in (23), the basic state terms are at 0(1) and 0(e), and there isn't a simple 0(e) 
perturbation (it also expands the phase space). If, however, one scales the background flow 
so that e/q' = ef, where 7 is 0(1), then all the basic state terms will indeed be at 0(e). 
This scaling is natural because it means that the background shear and the point vortex 
interactions are equally important — precisely the case near the separatrix. 

With this scaling, the first three equations in (23) are 0(e) and there is fast, 0(1) 
rotation of the vortices in the <f> equation. The dynamics are thus a combination of slow, 
0(e~x) time-scale, motion around the unperturbed separatrix and fast, 0(1) perturbations. 
This coupling between the internal d.o.f. and the inter-centroid motion takes place at 0(e2); 
it can be examined using a multiple time-scale analysis by introducing a slow time-scale 
T = et and expanding the variables in terms of fast and slow components: 

r(t,T) = ros(T) + e{rls(T) + rlf(t,T)} + e2{r2s(T) + r2f(t,T)} + 0(e3)       (25) 

0(t,T) = eo3(T) + e{0ls(T) + eu(t,T)} + e2{923(T) + ev(t,T)} + O(e3) 

\(t,T) = K + e{Xis(T) + \if(t,T)} + 0(e2) 
<l>(t,T) = <f>of(t) + <f>os(T) + t{<i>u(T) + <f>if(t,T)} + 0(e2). 

By solving the perturbation equations, one can determine the leading order (i.e. 0(e )) 
perturbation to the slow, basic state motion; at this order, \U(j)0 and <j>i act as time-periodic 
forcing functions. A Melnikov analysis may now be performed. 

It can be shown that an analogue of the time-periodic, 1 d.o.f. Melnikov function exists 

for this system, viz. 

M(t0)   =   e
2y""-|^ + i7(a-l)|y0|^^^[cos3ö0cos2^ + sin3Ö0sin2MJ^ 

+   e2 f°° _ I _L + I^(a + 1) )x I -L Iz*£ [Sin 30o cos 2(J>0t - cos 360 sin 2<j>0t] I dt 
J-00     [2rl     2 J       (_4r0    A0 J 

The separatrix co-ordinates (r0,6o) are evaluated at time T = e(t - t0), <f>0 = A0/(l + A0) , 
x0 = r0cos90 and y0 = rosin0o, t0 parametrizes distance along the unperturbed separatrix, 

and a = u/e. 

In the limit e -♦ 0, one can also show that M(t0) and the splitting between the manifolds 
are exponentially small,   i.e. M(t0) is smaller than any power of e. This is an asymptotic 
result:  it suggests that the splitting will be exponentially small for small e, but it is not 
a rigorous proof.  Holmes et al.  (1988) showed that the separatrix splitting in the rapidly 
forced, 1 d.o.f. dynamical system 

ü = g(u,6) + ep6h(u,e,t/e),   0 < 6 < I, p > 0 (26) 

should be exponentially small. Although our Melnikov calculation has been done indepen- 
dently of the theory of Holmes et al., it does seem to be consistent with this general theory. 
Nevertheless, this result needs to be verified because higher order terms in the perturbation 
have been neglected. 
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This result has a number of implications. It suggests that the system is chaotic for non- 
zero e. And while this is to be expected since this is a 2 d.o.f. system with only 1 integral of 
motion (the background shear has destroyed the rotational symmetry of the Hamiltonian), 
it is nice to have some analytical confirmation. There has been some interest in whether or 
not there are chaotic solutions to the Euler equations: insofar as the model remains valid, 
this demonstrates that a system of N point vortices (N > 4; Aref and Pomphrey 1982) is not 
the only such system. Furthermore, the exponentially small splitting suggests that vortex 
merger will be rather difficult. Because of the exponential scaling, relatively large values of 
e are required to produce a large enough splitting for well-separated vortices (i.e. outside 
the separatrix) to merge. Ordinarily, the splitting would simply scale as e2. 

4    Numerical Simulations 

Although the Melnikov result is rather interesting, it only addresses a specific question: 
how far do the model's stable and unstable manifolds split apart? In order to study its 
dynamics, numerical simulations are needed. While these equations are easily integrated, 
they are difficult to visualize: this is a 4 dimensional chaotic system with 4 free parameters 
(e, q, u>, e). For instance, one could simply plot r, 9, A and <j> as functions of time for specified 
initial conditions; while this provides much information about localized regions of phase 
space, it is a poor way to study the global dynamics. 

In this study, Poincare sections are constructed at constant <f> (<f>0 = 0). The Poincare 
section projects the 4 dimensional phase space onto a two-dimensional surface and it provides 
a global picture of the dynamics. It is generated by integrating a set of initial conditions 
forward in time and plotting (for each initial condition) a point (X, Y) whenever <f> goes 
through <f>0 in a particular sense (clockwise for q' > 0). The choice of initial conditions is 
extremely important: if one just picks random initial conditions, the Poincare section will 
not exhibit distinct structures but will be smeared out instead. 

The initial conditions should be chosen such that they, and their images under a Poincare 
mapping, are all dynamically accessible to one another (c.f. M93, lecture 2). This is done 
by choosing points which satisfy H — H0 and C = C0, where C is the Casimir. It is 
well-known that Hamiltonian dynamics takes place on the .intersection of constant H and 
constant C surfaces (c.f. M93, lecture 2); therefore, H and C should be fixed: changing 
them amounts to changing the dynamical system. For each initial condition (r, 9), H is fixed 
at H0, <f> = (j>0, and A must be determined. It is trivial to fix the Casimir since it corresponds 
to the circulation. 

Figure 3 is a Poincare section for A = 0.031416, T = 1, e = 0. As expected, this case is 
integrable: one observes a sequence of concentric, closed curves. There are no points around 
the origin because for r sufficiently small (r <; 0.6), the vortices merge before <j> goes through 
(f>0. Thus the last invariant curve to disappear (i.e. the one nearest the origin) defines 
a merger threshold. Although this figure isn't particularly exciting, it confirms that the 
model is integrable without a background flow and it provides a benchmark against which 
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other Poincare sections may be compared. In what follows, the background shear is fixed 
(w = _e = -0.318309; the hyperbolic points are at (0, ±1)), and e is increased. 

y 

PS for •-«-•.  A-O.03141C,   «tc. 

-"••        -<>•*        -<>•*        -0.2 0 0.2 0.4 O.f 0.1 | 

Figure 3: Poincare Section for a» = e = 0. 

A Poincare section for e = 0.01 is shown in figure 4. H0 is chosen to be the value of 
the Hamiltonian on the unperturbed separatrix (r0 = 1.00, 0o — 1.57): this is a reasonable 
choice for motion near the separatrix. This figure is quite similar to figure 1 (point vortex 
pair in shear) and to figure 3 — integrable cases both. In this figure, there are no large 
stochastic regions. This is consistent with an exponentially small separatrix splitting — the 
stochastic regions should be thin — but the stable and unstable manifolds must be computed 
numerically in order to verify the Melnikov result. A well-defined invariant torus separating 
initial conditions which merge from those which do not can be seen. It has been observed 
that the position of this critical torus moves outwards as e is increased. For this value of 
e, the critical torus is well-separated from the unperturbed separatrix and the separatrix 
splitting is not relevant to vortex merger. 

PS   for  cpi   •   0.01,   O-O.318309— 

Figure 4 e = 0.01, u = -e = 0.318309. 

Nevertheless, one still expects chaotic behaviour around the unperturbed separatrix. 
However, for e = 0.01 it is very hard to discern. The inter-centroid separation r has been 
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plotted against t for initial conditions around the unperturbed separatrix (0 = 0,1.57) and 
chaos has not been detected. The absence of any noticeable chaotic behaviour underscores 
the thinness of the stochastic region. However, an inner stochastic region may be found for 
this value of e. In figures 5a to 5b, r : t is plotted for c = 0.01 and initial conditions 
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Figure 5: (a) r : t for r0 = 0.484,60 = 0.0; (b) r : t for r0 = 0A9,6o = 0.0. 

successively farther from the origin. As one moves away from the origin there is a transition 
from regular motion (r0 = 0.47), to chaotic motion (figure 5a), and finally to quasi-periodic 
motion (figure 5b). This stochastic band is associated with a higher order resonance — 
observe the island chain in figure 6. This stochastic band is much larger than the one near 
the separatrix: it isn't exponentially small. It is uncommon for an inner stochastic band 
to be larger than the one around the separatrix: for small perturbations, chaos is usually 
localized around the separatrix. 

PS   Cor  epa   -   0.01,   ro -   0.49-0.48,   thet.l  --   0 

-0.5       -0.4        -0.3        -0..?        -o.l 0 0.1 0.2 I].] 0.4 0.5 

Figure 6: Blow-up of Poincare section near inner stochastic band. 

In order to determine whether or not there is actually chaotic motion around the sep- 
aratrix. a larger value of e is considered. In figure 7, a Poincare section for e = 0.03 is 
shown. This plot looks quite different from the previous ones: it has a distinct stochastic 
band and there are folds near the hyperbolic points which are reminiscent of a perturbed 
(stable) manifold. This unusual structure may be a consequence of exponentially small 
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X 

Figure 7: Poincare section for e — 0.03. 

splitting: points are constrained from wandering away from the unperturbed separatrix 
and this may help demarcate the perturbed separatrix. This manifold structure can also 
be observed for e = 0.01 if one looks closely enough; it's not very prominent because the 
splitting changes rapidly with e due to the exponential dependence. It is evident that a 
separatrix no longer remains for this value of e and that there will be transport across what 

remains of it. 

Although the separatrix splitting is not, as hoped, directly connected with vortex 
merger, it is clear that some interesting things are happening around the separatrix. Specifi- 
cally, there is chaotic scattering of the vortices. Instead of approaching and separating as for 
two point vortices in shear, the Kida vortices come together and wander about in a chaotic 
fashion before separating. There has been some work on chaotic scattering, but it has mostly 
been in the context of molecular physics (e.g. Gutzwiller 1990). For small vortices, chaotic 
scattering may be more important than vortex merger: the number of initial conditions for 
which the vortices will scatter is much greater than the number for which they merge. 

5    Summary and Future Work 

In this report the equations of motion have for a pair of elliptical vortices in background 
shear (Kida vortices) have been derived using a Hamiltonian formulation and analysed. The 
derivation follows that of Flierl et al. (1993) and requires the vortices to remain elliptical and 
well-separated for all time; for no background flow, the 6th order system of Melander et al. 
(1986) has been recovered. A 4th order system is obtained by assuming symmetric vortices. 
This system is studied analytically by means of a Melnikov integral for a 1 d.o.f. system with 
fast and slow time-scales: it is shown that the separatrix splitting is exponentially small. 
The 4th order system is studied numerically by constructing Poincare sections and plotting 
r against t. The results are qualitatively consistent with an exponentially small splitting. It 
is proposed that an empirical merger threshold can be determined from the position of the 
last invariant torus and that chaotic scattering may be more important than vortex merger. 
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There is much more work that remains to be done. With regards to numerical work, 
the Melnikov result should be explicitly verified. A wider range of parameter values should 
be considered; simplified models other than symmetric vortices should be utilized (e.g. a 
point vortex and a Kida vortex). The amount of transport across the separatrix should be 
quantified. As for analytical work, it should be possible to predict the position of the folds 
from the perturbation equations. The location of the inner stochastic region (i.e. higher 
order resonances) should be predicted and a physical interpretation should be given. It 
would also be useful if an analytical criterion for merger could be devised (i.e. the position 
of the last invariant torus). Finally, the precise relation of the Melnikov calculation to the 
general result of Holmes et al. should be determined. 
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A Hamiltonian weak-wave model for Shallow Water flow 

Caroline L. Nore 

September 14, 1993 

The Shallow-Water (SW) model is relevant for the studies of geophysical flows in 
which the stratification is not crucial. The atmospheric or oceanographic phenomena 
that it can describe must be characterized by large horizontal scales compared to the 
vertical scales, and must be conservative to a first approximation. One can write a SW 
hamiltonian which is cubic in the field variables for a free surface. In order to derive 
nonlinear stability conditions, this paper presents a simplified SW model characterized 
by a quadratic hamiltonian with a good bracket; a flow composed of two components: 
vortical and divergent motions, weakly coupled ;and the two limits of full SW: quasi- 
geostrophic and gravity-wave limits. 

Sufficient stability conditions are obtained for steady basic states admitting an 
x-invariance or an axisymmetric invariance in the model. Their application to jets, 
shear flows and vortices is discussed. For hydrodynamically "non stable" profiles, 
rigorous upper bounds on spontaneous emission of waves (gravity waves and others) 
are computed. 

1    Derivation of the hamiltonian weak-wave model 

1.1 Farge and Sadourny's model 

Farge and Sadourny ([1]) have studied the turbulent cascades of a flow characterized 
by two invariants of the motion: an energy and an enstrophy, both quadratic. They 
have shown that part of the injected energy goes into divergent motion which cascades 
towards the small scales before being dissipated, while the rest of the energy goes into 
vortical motion and remains at large scales. They have written down an approximated 
system of equations for their model in which the approximation is not well defined, 
dropping some terms appearing at the same order as ones they have kept. Besides, 
unlike the SW equations, this system does not appear to be hamiltonian. 

1.2 Derivation of the hamiltonian weak-wave model 

1.2.1    Full SW model 

The full SW equations read in terms of the velocity and the depth of the single-layer 

(«,Ä)([2]): 

^ + (v-V)v + fzxv   =   -gVh (1) 
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dh 
dt 

+ V-(hv)   =   0 

This system is equivalently represented by the hamiltonian form 

du_6Jh 
dt 8u 

(2) 

(3) 

( ° q -dx \ 
-q 0 -dy 

\ -dx -dy o   / 

where the vector field u = (v, h)T, the hamiltonian functional is Hi{v, h) = \ Jf(h\v\2 + 
gh2)dxdy, and the co-symplectic form Jx is: 

Ji = 

with q = (/ + z • V x v)/h the potential vorticity. Ji satisfies the Jacobi identity and 
admits the following Casimirs: C = ff h C(q)dx dy. One can transform the system (3) 
into a new representation (q, A, h') where q = z -V x v - fh'/H is an approximate 
potential vorticity, A = V• v is the divergence and h' = h-His the depth perturbation 
around a constant depth H. The velocity is defined by v = z x V^ + V* where ip, 
the stream-function, corresponds to the vortical motion and x, the velocity potential, 
corresponds to the divergent motion. The co-symplectic form reads then: 

/ 

J2 = 

V • (sfc V(0) iff+fc' 

0 
H+h' 

V2 

with 

H2   =   ljjh\v\2+gh* 

=   \ jJH\ VVf + I Vx|2) + <7#2 + 25ff h' + gh'2 

By subtracting some Casimirs given by C = //(# + /i')C (ff+FJ > ^2 becomes: 

1.2.2    Approximations 

The procedure contains three steps: 
- approximation of small Rossby number e 
- assumption of timescale separation for the vortical motion and divergent motion 
- amplitude of the vortical motion dominating the amplitude of the divergent motion 
We non-dimensionalize the bracket with the Rossby number, e = U/fL and the 

Rossby deformation radius, a = y/gH/f. The *'s denote non-dimensional variables 
: u = VV = efu* , A = e/A* , h! = eHh* , q = efq* and V = ^V*. We 
then substitute the * variables in J2 and in rows and columns by the corresponding 
functional derivatives. 
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The non-dimensionalized hamiltonian reads: 

H* = Hi/gJH* = \ ff(l + eh*)(\V*i> * |2 + |V*X * |2) + h* 

The non-dimensionalized Casimirs read: 

c* = //<1+rt*>c(rrk) 
Up to order e, the equations are given by: 

/        _€[$V] eV-(g*V(-))      0 

-eV-(?*V(-))        -«[ff*,-]        -V2 / </tf2e 
■2,2 

V o V2 0 

'     — 1p*     * 

-x* 
^ h * — ip* J 

In J2, there are four terms of order e.  We will argue to keep only one with the 

following assumptions. 

1.2.3    Separation of amplitudes and timescales 

We drop the ~ and *. We want to describe a weak but fast divergent flow weakly 
interacting with a dominant but slow vortical motion ([3]). We keep in each equation 
the dominant term and rescale the time for the equation in q. Our final system reads 

then, up to order 1: 

t = -M 
dA 
dt 

=   -V2(/i-V) 

d±   =   -A 
dt 

The corresponding hamiltonian is given by: 

H = \ffm2 + \VX\2 + h2 

The co-symplectie form is: 

/-[?,•]     0        0 
J= 0        0     -V2 

^     0       V2      0 

We check that the bracket of our system verifies the Jacobi identity (see appendix). 

1.3    Tests of the weak-wave model 

In the gravity-wave limit, the equations become: 

d2j> 

at2 =   V2V> - 4> 

1H<0 



This equation only in ip corresponds to the non-dimensionalized gravity-wave equa- 
tion. 

In the quasi-geostrophic limit, the equations become: 

A   =   0 and h = ip 

q   =   Vty - tp 

I = -f*.i 
which corresponds to the material conservation of potential vorticity. 

2    Hamiltonian structure 

We underline the hamiltonian structure of our model ([4]). 

2.1 Good bracket 

We check that the co-symplectic form corresponds to a good bracket, i.e. it satisfies 
the Jacobi identity. It ensures that the dynamics takes place on the leaves where the 
Casimirs associated to the bracket are constant. 

2.2 Conservation of H 

We check that our approximate hamiltonian is effectively conserved. 

dt 
=    fvip-VA + Vx-Vxt + hht 

=   J-tpqt-X^t + (h-ip)ht = 0 

where integration by parts is used. 

2.3 Casimirs 

The Casimirs of our weak-wave model are d - / C(q), C2 = / h and C3 = / A . 
d — J(ax + ßy)h and C5 = J('yx + Sy)A might appear to be Casimirs but they are not 
Casimirs of the full SW system. In fact, they don't satisfy the boundary conditions 
and so are not admissible functionals. Thus we keep only Ci, C2 and C3 which prove to 
be good Casimirs. 

2.4 Zonal momentum invariant 

The momentum for an x-invariant flow is seen to be: 

J yq + h-^ 
ox 
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Therefore, it appears: 

J 

(   SM   \ 
Sq 

SM 
SA 

\    SM    ) 
\    Sh    I 

(   -^   \ dx 
_§A 

dx 
_dh 

dx 

which proves that M is the momentum invariant for a zonal steady flow (Noether's 

theorem). 

2.5    Axisymmetric momentum invariant 

The momentum for an axisymmetric invariant flow is seen to be: 

*-/-i*+*g 
Therefore 

J 

I   SM   \ 
Sq 

SM 
SA 

I     SM     I 
\    Sk   / 

/ -T2 

= J -v-2(§) 
d$ 

which proves that M is the momentum invariant for an axisymmetric steady flow. 

V 

\ 

J 

, dA 
d9 

V -i J 

3    Nonlinear stability conditions 

In general, the dynamical equations for geophysical flows are nonlinear partial differen- 
tial equations and so, to perform a stability analysis is a difficult task. Sometimes it can 
be computed for some kinds of perturbations, whereas a "physical" steady solution is 
stable under all kinds of disturbances: no small perturbation can develop and destroy 
the initial structure. Therefore, it is interesting to obtain an analytical criterion by 
which to check the stability with respect to any kind of small but finite perturbation. 
This criterion is obtained by considering the energy or the momentum of a steady state 
which admits all the relevant symmetries of the problem. If one can show that all 
perturbations change either the energy or the momentum, or a combination of both, 
then the flow is stable. That leads to a convexity theorem and therefore to sufficient 
conditions for nonlinear stability ([5, 6]). 

3.1    X-invariant steady flow 

We consider an x-invariant steady basic flow. In cartesian coordinates, it reads: 

Ux      =     «V) = -QJ+te 

&$     dx 
y ox     oy 

h   =   h(y) 
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3.1.1    Pseudo-energy 

The pseudo-energy is a linear combination of the conserved quantities of the flow. It 
corresponds to the amount of energy in the fluid when it is perturbed minus the amount 
in the unperturbed medium. 

A   =   *4(perturbed flow) — ^(unperturbed flow) 

=   (H + Ci + \C2 + vC3)(perturbed f.) - (H + d + XC2 + vC3)(unperturbed f.) 

where A and v are real numbers. 
For the computation, it is equivalent to consider the following A: 

A   =   H + d + XCt + vCs 

=   Jß(m2 + \VX? + h2) + C(q) + \h + uA 

By definition of the basic state, the first variation of A must be zero: 

SA   =   0 

=    16V4> ■ Vtp + SVx ■ Vx + hSh + C'(q)6q + X6h + v6A 

=   J Sq(-ip + C) + 6A(v -X) + Sh(h + A - ^) 

That implies: 

C'(q(y))    =   My)^C(q) = f^(v)dv 
X   =   " 

h-^   =   A 

where the bar quantities denote the basic state. 
We can choose A = 0 = v which gives for the second variation of A: 

S2A = J(6Vr(>)2 + (6VX)2 + (6h)2 + C"{q){6qf 

This quantity is positive definite if and only if: 

C"(q) > 0 

So a profile is nonlinearly stable if 

C"(q) > 0 ^ ? 
dq 

>0 (4) 
9=9 

A is then: 

A = jJ |(|VV12 + |VX|2 + h2) + j\^(q + V)~ m)dv, 

where ip, x, h and q are disturbance quantities. 
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3.1.2    Normed stability j 

For a stable profile satisfying the conditions (4), if there exist Xx and A2 such that 

I 
Ai = mmq j — > 0 and A2 = maxq 

<t=ij 
dq 

< oo 
9=9/ 

then 
hiq2 < PWq + v) ~ i>(q))dV < ijW for all t. 
2 Jo L 

We choose the energy-enstrophy norm such that: 

\\q\\x = Jj |(|VV|2 + |Vx|2 + W) + A^ with Aj < A < A2. 

Then . . 
Ht)\\l < ^(<) = yMO) < ^||g(o)||A 

So for a given ß > 0, we choose 6 = ^ß such that if ||g(0)||A < 8 =► ||g(*)|U < 
/?. That proves Liapunov stability in the energy-enstrophy norm and Arnol'd's first 

theorem. 
We are unable to prove Arnol'd's second theorem for this system. 

3.1.3    Pseudo-energy-momentum 

The pseudo-energy-momentum is a linear combination of H and M with some Casimirs. 
It is a conserved quantity for a steady x-invariant basic flow. 

A   =   H-aM + Ci 

=   Jß(W\2 + \Vrf + h^-a(yq + hte) + C{q) 

for all a. 

6Vif> • VV> + £Vx • Vx + h6h - a(y6q + Sh-^ + h—) + C'(q)6q 

=   j 6q(-iP -ay + C'(q)) - x<$A + 6h(h - i> - a-£) + a—SX 

That gives for the basic state: 

C'(q)    =   i^ + ay 

X   =   o 
h-1>   =   0 
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For a monotonic profile Q(y) = q(y), there exists a function Y such that y = 
Y(Q(y)). So 

C{q) = f@(v) + <xY(r,))dV 

The second variation of A is: 

S2A   =   J(6ViP)2 + (SVX)2 + (Sh)2 + C"(q)(6q)2-2a6h^- 

=   J{6V^f + (S^)2 + C"(q)(6Q? + (Sh - a^f + (1 - «2)(f^)2 

This expression is positive-definite if and only if 

C"(q) > 0 and 1 - a2 > 0 

This is equivalent to: 

f + a 
Ä_>0and   -l<a<l (5) 

That means that, if there exists an a such that the conditions (5) are satisfied, 
then the flow is nonlinearly stable, i.e. stable under finite rather than infinitesimal 
perturbations; and no precise information on the basic state is required. 

3.2    Axisymmetric steady flow 

We consider an axisymmetric steady flow. In cylindrical coordinates, it reads: 

1 dip     dx 
ur   =   0 =—-ZZ + -Z- r dd      or 

-, x     dip     1 dx 

h   =   h(r) 

3.2.1    Pseudo-energy 

H   =   jj^(u2
r + u2

s + h2)rdrdO 

A   =   n + C1=Jß(\ViP\2 + \Vx\2 + h2) + C(q) 

The same procedure as in the x-invariant case gives for the basic state: 

C'(q(r))    =   ^(r) 

*   =    ° 
h-ip   =   0 

and for the nonlinear stability condition: 

C"(q) > 0 

The normed stability is proved as in the x-invariant case. 
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3.2.2    Pseudo-energy-momentum 

As in the x-invariant case: 

A   =   H-aM + d 

=   // \m\2 + IVxl2 + h2) - a{-\r\ + h^) + C(q) 

for all a. 
The 0-invariance gives for the basic state: 

C'(q)   =   ?(r)-ay 
X   =   0 

h-ip   =   0 

#A   =    f(6ViP)2 + (6VX)2 + (6hY+C"(q)(6Q)2-2<*M 
d6x 
de 

=   j(SV^ + («§*)« + C"(q)(6<l? + (Sh - adj±Y + (1 - a2)(^)2 

This expression is positive-definite if and only if 

C"{q) > 0 and \ - a2 > 0 (6) 
r2 

For an unbounded domain, the last conditions (6) must be valid for every r. That 
implies that a must be zero. So an axisymmetric steady flow is nonlinearly stable iff 

C"(q)>0   <*i|>0 
dr 

It means that the pseudo-energy-momentum doesn't contain more information as re- 
gards stability than does the pseudo-energy for an unbounded domain. In the case of 
a bounded domain with a limit r < L, the condition (6) would become 0 < a < 1/L. 

4    Applications 

We use the preceding nonlinear stability conditions for testing different flows such as 
jets, shear-flows and vortices. In the case where the flow is not stable, we compute a 
rigorous upper bound on the disturbance saturation. 

4.1    Stability of jets, shear-flows and vortices 

4.1.1    Bickley Jet 

We study the stability conditions for the basic state: 

u{y) = u0sech?(-yy) =—Q- 
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where 7 is the inverse of the half-width of the jet. This jet is stable by the condition 
(7) iff 

-2» >0&(-u + a)qy>0 (7) 

for a s.t. -1 < a < 1. 

qy = u - uyy = uQsech2('yy)(l + 2j2 - ^Hantf^y)) 

The last term is positive iff 0 < 7 < |, for which qy > 0 everywhere. So the condition 
(7) is satisfied for 1 > a > umax = u0 > 0. If not, qy changes sign and so (-•u + a) 
must change sign for the same y = ys. The only possibility is to take a = u0sech2(jya) 
but then (-u + <x)qy is always negative. So, for 7 > |, the Bickley jet is not provably 
stable under the condition (7). 

4.1.2 Shear-flow 

We study the shear-flow defined by: 

u = u0(a + tanh(iy)) 

which gives: 
qy = u0(a + (1 + 2y2)tanh(jy) - 2-ftanh3(73/)) 

There are two cases: 
- for 0 < 7 < |: 
if a > 1, then qy > 0 everywhere. So the shear-flow is stable if 1 > a > umax = 

u0(a + l). 
if a < 1, </„ changes sign for some y = ys and so (—u + a) must change sign for the 

same ys. The shear-flow is then not provably stable. 
- for 7 > |: 

if a > _^=Ü±3LJ—} then qy > 0 everywhere. So the shear-flow is stable if 1 > a > 
Umax = U0(a + 1).^ ^ 

if a < T^
1+7

 ^—, then gy changes sign and the shear-flow is not provably stable. 

4.1.3 Vortex patch 

We study an axisymmetric vortex patch such that: 

V2ip — ip = q0 for r < a 

V2i/> - ip = 0 for r> a 

in cylindrical coordinates. The solutions are expressed in terms of Bessel functions 
([7]). The conditions are the continuity of ip and §^ for r = a. The solutions read: 

J0(a)üri(a) + Ii{a)K0(a) 

For such a vortex patch, ^ is always negative which shows that it is not stable under 
conditions (7). 
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4.2    Rigorous bounds on the nonlinear saturation of x-invariant un- 

stable flows 

The nonlinear stability conditions previously written are used for constraining the 
evolution of an unstable flow in terms of its vicinity to a stable flow ([8]). The cases 
of unstable Bickley jets and unstable shear flows are discussed. We bound the amount 
of eddy energy £ which can go into the waves (gravity or vortical waves) when the 
instability takes place by the amount of pseudo-energy-momentum PEM between the 
unstable flow and a stable flow (of the same family in practice). For all t, we have 

£<E 

with the total disturbance energy E given by 

£ = //^(|VVf + |VX|2 + />2). 

We compare E to PEM: 

PEM   =   JJ \{\VM2 + IVxl2 + h2) + C(q + q)- C(q) - C'(q)q - ah^ 

=   // 5W + (fyW + C(^+q) ~ c® " CO)* 

+ 2{h-a^]  +2(1"a%) 

It follows that for all t, 

E{\ - a2) < PEM 
PEM    ,       -     ., 

E < jz ^ for a2 < 1 
(1 - a2) 

Since PEM is invariant, the rhs provides a rigorous bound on the nonlinear saturation 
of unstable flows. 

4.2.1    Bickley Jet 

We consider an unstable jet given by: 

•ü)   =   ——tanh(yy) 
7 

ue   =   u0sec/i2(7j/) 

The same formula holds for the stable jet, with 7 and u0 instead of 7 and ii0. In order 
that PEM be finite, we must impose the velocity momentum conservation: 

/ uedy =     udy=> -^ 
«0 

7        7 
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Besides, in order to minimize PEM, we choose: ^ = 1. This gives: 

E   <   ß=^(f)V(l-(^o)2)* 

/ (tanhijy) - tanh(jy))2 4- (isectftfy) - jsech2^)) 

+(cosh2(jy) - l)(ian/i(7y)(l + 2j2 secti2 (yy)) 

-tanh(~/y)(l + 2-y2sech2(jy)))/(l + 2j2 - §-ftanh2{~iy))} 

We want to study the gravity-wave like instability s.t. 7 < | and «0 = 1 + e are 
fixed. For fixed 7 and u0, we compute B for 0 < 7 < ^ and find its minimum value. 
Figure 1 shows the stream function for the stable and the unstable jets, figure 2 the 
velocity and figure 3 the potential vorticity. Figure 4 shows the minimum bound vs e 
in logarithmic scales. 

4.2.2    Shear-flow 

We consider an unstable shear-flow given by: 

~, . /_       ln(cosh(;yy)) ~ ,. 
i>   =   -ü0(äy + —-—. wyy/ + const.) 

7 
u8   =   ü0(ä + tanh^y)) 

The same formula holds for the stable shear-flow, with the tildes removed. PEM will 
be finite if const. = ljß-, const. = — and u0 = u0. To be stable, u0 must be smaller 
than Y^. So the instability that we can study is a quasi-geostrophic like instability. We 

fix a = 2 (1+72)3 2 ^ whjch admits two relevant roots 7ci and 7c2. We choose 7 = 7c2 + e 
and 7 = 7c2 — 6 with 7cJ < 7c2. We fix e and compute the minimum of 

0 2 1 - iut J 
ln(cosh(iy))     ln2     ln(cosh(jy))     ln2 

7 7 7 7 

7 7 
/    v ,,    u5        2    /Inicoshi^y))     ln2     „     ,,._ . 

+(tanft(72/) - tanh(-yy))2 + —-{    V     . wg" + -5- - 7^^(72/) 
0.     l 7 7 

_fn(coSfe(7y))_/n2+7secfe2(7y)y 

for 6 (note: the ß dependence on u0 is not relevant). Figure 5 shows the stream 
function for the stable and the unstable shear-flows, figure 6 the velocity and figure 7 
the potential vorticity. Figure 8 shows the minimum bound vs e in logarithmic scales. 

5    Conclusions 

The model derived from the full SW model seems to be the minimum model containing 
a weak divergent flow (allowing gravity waves) coupled to a slow vortical motion, and 
characterized by a quadratic hamiltonian and a good bracket. 
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Some interesting stability conditions were found for finite amplitude disturbances 
to x-invariant and axisymmetric steady basic flows. 

Bounds on saturation of instabilities of jets or shear-flows were computed. 
However, when a profile is not provably stable, nothing ensures that an instability 

will actually develop. To be sure, a perturbation calculation is necessary. A future 
work. 
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Appendix: Jacobi identity for the weak-wave model 
The bracket reads: 

{F, G} = Iq[Fq, Gq] + FhV
2GA - FAV

2Gh 

where 
Fq = -,    etc. 

That implies that: 

{{F, G}, H} = I q[{F, G}q, Hq] + {F, G}hV
2HA - {F, G}AV2Hh 

Then 

{F, G}q   = [Fq, Gq] + q[Fqq, Gq] + g[Fq, Gqq] + FqhV
2GA + FhV

2GqA - FqAV
2Gh - FAV

2Gqh 

= [Fq, Gq] - Fqq[q, Gq] + Gqq[q, Fq] + FqhV
2GA - GqhV

2FA + GqAV2Fh - FqAV
2Gh 

{F,G}h   = q[Fhq,Gq} + q[Fq,Ghq} + FhhV
2GA + FhV

2GhA-FhAV
2Gh-FAV

2Ghh 

= -Fqh[q, Gq] + Gqh[q, Fq] + FhhV
2GA - GhhV

2FA + GhAV2Fh - FhAV
2Gh 

{F,G}A   = q[FAq,Gq} + q[Fq,GAq} + FAhV
2GA + FhV

2GAA-FAAV2Gh-FAV
2GAh 

= -FqA[q, Gq] + GqA[q,Fq] + FAhV
2GA - GkAV2FA + GAAV2Fh - FAAV2Gh 

It follows that 
{{F,G},ff} + (permut.) = 0 
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Dissipative Quantum Chaos 

by Dean Petrich 

working with Ed Spiegel 

1 Introduction 

In the study of classical chaos, one can distinguish two broad classes: Hamil- 
tonian and dissipative. Among other things, Hamiltonian chaos is character- 
ized by a conservation of volume in phase space. Dissipative chaos, on the 
other hand, is characterized by a contraction of phase space as the system 
evolves. This implies that all orbits get drawn to a set of measure zero in 
phase space, a set known as a strange attractor. 

The study of quantum chaos is the study of the quantum mechanics of sys- 
tems that exhibit chaos in the corresponding classical problem. Modulo some 
uniqueness problems having to do with operator ordering, there is a way of 
quantizing classical systems possessing a Hamiltonian: the Schrodinger equa- 
tion. On the other hand, it is not as clear how to quantize a classical system 
which has dissipation, and as a result, there has been less work done such 
systems (See, for example, Graham (1987)). Here we will simply choose one 
such method, explain why it may be a good model for dissipative quantum 
mechanics, and use it to study the quantum mechanics of a system that ex- 
hibits dissipative chaos in the classical limit. The goal is to see how quantum 
mechanics modifies the classical strange attractor: does quantum mechanics 
preserve it, smear it, or even destroy it? This report describes the first steps 
to answering the question for our choice of dissipative quantum mechanics. 

2 The Classical System: a Bouncing Ball 

The classical system studied here is that of a bouncing ball. The ball bounces 
on a sinusoidally forced platform. Without dissipation, in almost all cases, 
the ball would simply gain more and more energy and eventually reach arbi- 
trarily large heights. To balance the forcing, we add dissipation not through 
inelastic bounces, but through a frictional force. Hence the equation of mo- 
tion for the ball is 

mz = —mg + fxz, (1) 

where m is the mass of the ball, g is the gravitational constant, and \i is the 
coefficient of friction. By dividing by m and rescaling z and t, we can set all 
the constants equal to one. The boundary conditions on the bounce can be 
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worked out by momentum and energy conservation and are 

VUp = Vplat + \vdown ~ Vplat\, (2) 

where Vdown is the upward velocity before the bounce, vup is the upward 
velocity after the bounce, and vv\at is the platform velocity at the time of the 

bounce. 
The above equation has to be solved numerically, since the platform moves 

sinusoidally as a function of time, and therefore the ball generally impacts 
the platform at different heights on successive bounces. 

The most edifying way to view the output is in terms of maps. Figures 
1 and 2 are stroboscopic maps; each time the platform reaches its minimum 
height, the position and velocity of the ball is plotted. The maps have a 
filamentary structure reminiscent of the Henon map; figure 2 shows an ex- 
panded view of a small region of figure 1. This process can be continued, 

and the filaments look similar to very small length scales. 

3    Dissipative Quantum Mechanics 

Before introducing the model for dissipative quantum mechanics, we start 
by reviewing some features of Hamiltonian quantum mechanics. Given a 
classical system with Hamiltonian H(x,p), the corresponding quantum me- 
chanical system that reduces to the classical system as % —» 0 is given by the 
Schrodinger equation, 

ä^ = %PMM), (3) 

where p denotes an operator, p = —i%dx. Moreover, H must be a Hermi- 
tian operator, and hence the order of the terms x and p is important. For 
simplicity, from here on we will set h = 1. 

The function iß is the fabled wave function, and it encodes all the infor- 
mation of the system. Note that the equation for iß is linear, and hence has 
a complete set of orthogonal eigenfunctions. Each eigenfunction represents a 
state of a given energy, labeled by its eigenvalue. The probability density for 
finding the particle at x and t is given by \iß(x, t)\2. Since this is a probability 
density, one can use it to define expectation values, as usual. For instance, 
the expected value of x, written here as (x), is 

/oo 
x\iß(x,t)\2dx. (4) 

-oo 

The expected value of the momentum is given by 

/oo 
iß*(x,t)(-idx)iß(x,t)dx. (5) 

-oo 
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The dissipative quantum mechanics we intend to study has a similar 
structure. (See Kostin (1974), or for other possibilities, see Dekker (1981).) 
To motivate the equation, we follow an argument of Kan and Griffin (1974). 
They require that the equation have the appropriate classical limit (a par- 
ticle experiencing a frictional force proportional to the velocity), and that 
the total energy be given by the sum of the kinetic energy and potential 
energy pieces. They then note that in the fluid dynamical interpretation of 
the Schrodinger equation, where the magnitude of iß represents the density 
and the phase of represents the velocity potential, the continuity equation 
is automatically obeyed. Since F = -dV/dx, to get a term proportional to 
the velocity in the equation of motion, one can add the velocity potential 
to the true potential. The dissipative Schrodinger equation will thus have a 
term proportional to the phase in it. To insure that the expectation value 
of the energy is given by the kinetic energy plus the true potential, we sub- 
tract the expectation value of the velocity potential, the phase. Thus we 
find that if the classical evolution has the form of a Hamiltonian piece plus 
a friction term (like the bouncing ball problem above), the equation for the 
wave function time evolution is 

ii/>t = Hi> + n(<f>-(<i>))Tp, (6) 

where <f> is the phase of the wave function, iß = Re'*. Note that it is non- 
linear, so there is coupling between different energy eigenstates of the zero 
dissipation problem. 

For the problem at hand, the equation of motion for iß is 

iA = —^tßzz + gziß + ß(<ß-((ß))iß. (7) 

There are two boundary conditions. The first is iß(z = zpiat(t),t) = 0, where 
Zpiat(t) is the platform height at time t. The second we will take to be tß(z = 
L, t) = 0, which physically represents putting a lid above the ball at height 
z = L. We can put this lid so high that classically it makes no difference 
for low energy bouncing, as studied here; it is included in the quantum 
mechanical case only to make the problem easier to solve numerically. 

4    Results 

Equation (7) was studied numerically using a Crank-Nicholson, finite differ- 
ence code. Some results are shown in figures 3-7. 

Figure 3 shows the evolution of the probability density \iß\2 as a function 
of time for the zero dissipation, zero forcing case. In the simulation, g = 10. 
The simulation shows one "bounce" of the quantum-mechanical ball. 
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Figure 4 shows the evolution of the expectation values (z) and (pz) as a 
function of time for the zero dissipation, zero forcing case. One case see that 
the quantum ball "bounces" five times. Note that the evolution is not quite 

periodic, as it would be in the classical case. 
To see the effect of including the dissipative term, figure 5 shows the 

evolution of the expectation values in the zero forcing case. The expectation 
values indicate that the quantum ball begins to drop, but reaches a terminal 

velocity as in the classical case. 
Figure 6 shows the evolution of the expectation values of z and pz in the 

case with both forcing and dissipation: here g = 10, [i = 1, m = I, A = 3, 
u = 20, where the plaform height is given by zplat(t) - Acos(ut). This is not a 
stroboscopic map. It simply shows the evolution of the expectation values for 
a short time. One can see that the quantum ball bounces, but it meanders 
around even as it moves away from the platform, since the wavefunction 
interacts with the wall all the time, as opposed to the classical case. 

Finally, in figure 7, we show the stroboscopic map of the expectation 
values, with the same parameters of figure 6. This is the quantum mechanical 
analogue of figures 1 and 2; there we plotted z and z, here we plot (z) and (pz). 
The straight vertical line is the mean platform height. The straight horizontal 
line represents a transient; this is the ball dropping from its initial condition. 
The simulation has been run for times long enough for the transients to 
decay, so any structure of an attactor should be apparent. One can see that 
the structure of the classical strange attractor is totally destroyed for this 
choice of parameters. Unfortunately, these parameters correspond to the 
strong quantum limit. By taking g and m larger, the quantum mechanics 
should approach the classical limit, and figure 7 should look more like figure 
1. Moreover, the stroboscopic map of the expectation values is only the first 
step towards a characterization of a quantum mechanical "strange attractor." 

5    Future Work 

One possibility for further study has already been mentioned; i.e., take the 
parameters m and g to be very large and study the quantum mechanics to 
see if the classical limit is reproduced, at least for short times. 

Another direction for future research is to try to answer the general ques- 
tion of what chaos should look like in a dissipative quantum system, or for 
that matter, any partial differential equation with both forcing and dissipa- 
tion. The idea is the following: in the classical case, we have a one degree of 
freedom system, and we can use all the standard lore of nonlinear dynamics 
and chaos. In the dissipative system studied here, all orbits are drawn onto 
strange attractors. The quantum mechanical case really represents an infi- 
nite degree of freedom system, as can be seen by, say, projecting the wave 
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function onto a complete set of eigenfunctions and writing the dissipative 
Schrodinger equation as a set of evolution equations for the coefficients. Is 
there an attractor in this function space, the analogue of the classical strange 
attractor? Unfortunately, this is a truly difficult problem; turbulence is an 
example of this type of system! Perhaps there is some simple model for which 
it is tractable. 

Lastly, it should be possible to study this system using the method of 
periodic orbits. The periodic orbits of a classical chaotic system are dense in 
the set of all orbits, and as such, can be used as a "basis" in which to expand 
any orbit. This technique can be used to calculate quantities in classical 
physics, but in fact, the classical periodic orbits also can be used to calculate 
quantities in the corresponding quantum mechanical system, too. Using the 
classical maps shown in section 2, the periodic orbits of the classical system 
can be determined, and can be further used to calculate any quantity of 
interest in the classical or quantum mechanical system. 
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MOISTURE AND AVAILABLE POTENTIAL ENERGY 

Kyle Swanson 
1993 Summer Study Program in Geophysical Fluid Dynamics 

Fellow Project Report 

1. Introduction 
The concept of available potential energy (APE) is fundamental to any understanding 

of instabilities in the Earth's atmosphere. It encompasses phenomena of varying scales; 
for example, the synoptic-scale eddies which dominate the variability of the extra-tropical 
troposphere owe their existence to the APE stored in the pole to equator temperature 
gradient, while on a much smaller scale, buoyancy driven plumes in the planetary boundary 
layer owe their existence to the APE in an unstable temperature/height profile. 

Recently, Shepherd (1993) has shown that a common understanding of APE for a wide 
variety of systes can be obtained by considering the underlying Hamiltonian structure of 
those systems. A conserved quantity called the pseudoenergy can be constructed from 
a combination of the Hamiltonian of the system together with its Casimir invariants, 
and under certain restrictions can be used to construct bounds on the APE available to 
a disturbance. This generalization is extremely powerful, as it allows one to construct 
rigorous upper bounds to disturbance energies, which complement the more usual upper 
bounds calculated by adjustment arguments, in which it is supposed that an unstable flow 
evolves to some final stable (or neutral) state. 

One system in the atmospheric sciences where APE has historically played a large role 
but the underlying equations are not Hamiltonian is that of non-adiabatic moist convective 
dynamics. Traditionally, this system has been studied using parcel dynamics (Thorpe, et. 
al. 1989), in which the fluid is seperated into two different entities, namely an infinitessi- 
mal parcel and the surrounding fluid environment. The parcel is then assumed to evolve 
without effecting that fluid environment, which allows for a considerable simplification of 
the dynamics, and also allows for the construction of an APE for the individual parcels, a 
quantity known as the convective available potential energy, or CAPE. 

This approach, of course, has the draw-back that it is a parcel theory, and in neglect- 
ing the feedback between parcel and environment it throws out much useful information. 
Hence, it would be intriguing if it were possible to extend the methods obtained from APE 
considerations in a Hamiltonian framework to moist convective systems. 

The outline is as follows: First, we will review the Hamiltonian theory of dry, 2-D 
Boussinesq convection, emphasizing the ideas behind the construction of the APE. We 
then will quickly review Lagrangian parcel dynamics, and finally, will attempt to extend 
the Hamiltonian APE concepts to the moist convective case. 

2. Hamiltonian bounds and APE: A Boussinesq example 
The two-dimensional, non-hydrostatic, dry adiabatic Boussinesq equations can be writ- 

ten 
Du    _      px 

~Dt    ~   ~~po 
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Dw pz     gß 
    =   -—+ — (I) 
Dt po r 0o { } 

ux + wz   =   0 
DO 
In  = °- 

The notation is standard, with 6 the potential temperature, and ß0 a constant reference 
value. 

As the velocity is nondivergent in the x - z plane, we can introduce the streamfunction 
V> defined by 

u = 0„ w = -ipx; (2) 

it follows that D/Dt = d/dt + d(ij>, •), where d(f,g) = f2gx — gzfx is the two-dimensional 
Jacobian operator. The pressure can the be consequently eliminated by the introduction 
of the vorticity u = uz — wx, which reduces (1) to 

We shall consider these equations in a simply connected domain D with the nonpenetrative 
boundary condition 

i> = 0 on dD. (4) 

a. Hamiltonian structure 
The dynamics described by (3) conserves the integral 

"-//„{äW-Tr}*""- (5> 
Evaluation of the functional derivatives of 7i with respect to u and 0 shows 

6H   =   J j {V0 • W^ - j-8e\ dx dz (6) 

where the second expression follows from integrating by parts. It follows immediately that 

6H , ■ m        gz 
&J = "*'        19= ~T0- 

(7) 

If we then consider the Poisson tensor 

/-3(uv)   d(6,.)\ 
J-{-d(e,.)     o   J (8> 

it follows that we can write (3) in the form 

"3 
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3
8UJ 

= 0. 

For this system, the Casimirs have the form 

C = JJDC(ß)äx dz 

for arbitrary C, for which 
SC _ 

8u> 
o, 

8C 

89 ~ 
C'{9) 

where ux = u and u2 = 0. If J displays the properties of a Poisson tensor, i.e. skew- 
symmetry, Jacobi identity, etc. then (9) is a continuous Hamiltonian system. Proof that 
J in this case actually satisfies such properties is given in Benjamin (1986). 

In addition, the Poisson tensor for this case happens to be singular; there exists a class 
of functions, the Casimir invariants C, that span the null space of J, viz 

(10) 

(11) 

(12) 

(There is another Casimir for this system as well, namely / fDwC(9)dx dz, but this will 
not come into play as we are considering disturbances to a resting state.) 

To construct the pseudoenergy, consider disturbances to a resting, stably stratified 

basic state 
u = w = 0, 0 = 6(*). (13) 

C then must satisfy 
s2i = JJL (i4) 
80 89 v    ' 

which immediately implies 

C\0) = gz/90 «<=► C{9) = f / Z0)S. (15) 

Note that 0(z) stably stratified (i.e. increasing with height) defines the function Z(-) 
according to z = 2(Q). This can be seen by considering the second variation of the 
functional H + C, which shows immediately that the condition for this state to be and 
extremum is d2C/d92 = ^dz/89 > 0. 

The pseudoenergy is then considered to be a functional of the form 

A[u] = H[u] - H[U] + C[u] - C[U] (16) 

where U is the stable reference state, which in this case is U = (0, 6(2)), and u is a 
disturbance state.   Note that A is an exact invariant of (9), as it is composed of exact 
invariants. The APE is defined to be the non-kinetic portion of this pseudoenergy. 

For the reference state outlined above, it immediately follows that 

A = J JD {^iVr/f + [~&g[z(® + 8)- Z(0)]d§\ dx dz, (17) 

implying the integral over 9 represents the density of APE, as desired. 
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b. Simple Example 
Consider the steady, statically unstable initial profile 

eM = -%a; w<°> = 0 (18) 
H 

in the domain x € [—L/2,L/2], z € [—H/2,H/2], where e > 0. Now, consider an infinites- 
simal disturbance (9^\UJ^) to this profile, implying 

ö = ö(o) + ö(i). u^JV+JV. (19) 

We can now consider (19) to be a finite amplitude disturbance to some stable basic flow 
U = (ft, 0); if we take 

0 = %6z; ft = 0, (20) 
H 

where 6 > 0, then the pseudoenergy will be 

A=IL{bv^+il^'lshdz- (21) 

Carrying through the 6 integration yields an expression for the APE: 

APE <    24   V    g 
J . (22) 

This is minimized by choosing 8 = e, giving the final bound for the APE, viz 

gH2Le ,    x APE < y . (23) 

The important feature to note from this simple calculation is that APE is in a sense 
a spatially integrated measure of how far each parcel is from its "rest" position given by 
the choice of the stable state. This idea will become important when we consider moist 
convective dynamics, where degeneracies will appear that we will be forced to deal with. 

3. Lagrangian parcel dynamics: Moisture and CAPE 
The addition of phase changes of water and the associated latent heating complicates 

the theoretical understanding of convective instability immensely, as the effective stability 
of the fluid to vertical motions depends on the sign and magnitude of the vertical displace- 
ment of the fluid. In order to deal with this complexity, the "parcel dynamics" approach 
to moist convection was formulated. This parcel theory relies on an abandonment of the 
continuum hypothesis to replace the fluid by two distinct entities - the parcel and the 
undisturbed environment through which it moves. This assumption allows one to neglect 
the perturbation pressure forces on the parcel, and reduces the original partial differential 
equations for the entire flow to ordinary differential equations for the parcel. 

An important offshoot of parcel dynamics has been the concept of the convective avail- 
able potential energy (CAPE) of a moist atmosphere. As its name would suggest, CAPE 
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is a measure of how much energy is available for a parcel to release as it udergoes vertical 
motion, but it differs from the more traditional concepts of APE as outlined in section 2, 
as the parcel must meet certain conditions in order to have access to the APE. 

The equations of motion for the moist convective system are very similar to those for 
the dry adiabatic system outlined in section 2. The only change is in the equation for the 
potential temperature, viz 

D9      j kw   saturated motions 
Dt ~ \    0 otherwise 

(24) 

In other words, the potential temperature of the parcel will change only if the parcel is 
saturated, which will usually coincide with rising motions. It follows immediately that if 
a parcel is rising, it will heat up and has the potential to become more bouyant than its 
surroundings, leading to an instability. 

For the simple thermodynamic systems such as those that will be considered below, 
we will be considering the saturation moisture profile to be simply a function of height z. 
Hence, we can define a CAPE appropriate to our model simply as 

CAPE = |- r\ep - 9e)dz 
VQ  JZb 

(25) 

where zb and zt have the same meaning as above, and 9P, 6e are the parcel and environ- 
mental potential temperature profiles, respectively. The CAPE has the basic geometric 
interpretation shown in Figure 1: 

*\y CAPE 

 Environmental Potential Temperature Profile 
 Parcel Potential Temperature Profile 

6 
Figure 1: CAPE as defined for the simpler thermodynamic systems herein. Note that 
A, C are stable equilibrium points and that B is an unstable equilibrium point of the 

Lagrangian dynamics. 

In Figure 1, the parcel undergoes dry (constant 9) motions until it becomes saturated at 
height LCL, and then begins to warm by the latent conversion of moisture into sensible 
heat. At height LFC, it reaches a level where it has the same bouyancy as its surrounding 
environment, and any further upward motion allows the parcel to tap into a source of 
potential energy, as the latent release of heat as the parcel rises warms it at a rate exceeding 

2SX 



that of the lapse rate of the environment. The shaded area in Figure 1 then represents the 
amount of kinetic energy the parcel will have when it reaches point C, where it again is 
neutrally bouyant. It can be seen immediately that points A and C are stable equilibria 
for the parcel, and point B is an unstable equilibria. Hence, this type of moist instability 
is referred to as conditional, as a certain amount of energy must be supplied to the parcel 
to get it to point B, where it can release its CAPE. 

4. Generalizations of CAPE to finite amplitude perturbations 
As it stands, there are several inherently unsatisfying aspects to the Lagrangian CAPE 

as outlined above. Most disconcerting of these is that the theory is a parcel theory — it 
does not take into account the effect of the parcel on the environment. Therefore, we would 
like a generalized theory of CAPE which would allow us to consider all perturbations to 
the moist atmosphere, analogous to that for dry convection as outlined in section 2. 

As such, we would like to define an APE for the moist case analogous to the dry APE 
defined earlier, viz 

APE ~JJf [C(fj + rf) - C(fj)]dri' dx dz (26) 

where 77 is quantity conserved by the flow, fj is a stable reference state of that quantity, and 
C is analogous to a Casimir. For the moist systems to be considered shortly, the conserved 
quantity is 

r) = 9 + m(zsat) (27) 

where $ is a usual the potential temperature, and m(zaat) represents a temperature per- 
turbation due to the moisture within a given parcel, which is a function of the height at 
which a given parcel of air becomes saturated. 

The quantity m(zsat) for a parcel requires defining a saturation moisture profile for our 
system. This is most simply done in terms of a saturation height, zsat(x,z,t) which is 
simply the height at which the parcel's thermodynamic evolution shifts from dry to moist 
adiabatic motion. zsat(x,z,t) can be simply defined as 

zsat(x, z, t) = max {zsat(x0, z0,0), m&x{z(t)}} (28) 

where x0 and z0 are the initial position of the parcel, where this quantity is considered in 
a domain x G [-L/2,L/2], z G [-H/2,H/2]. This then leaves our conserved quantity as 

ri = 0 + k(H/2 - zsat) (29) 

while the thermodynamic equation is simply 

DO      ( kw    z = zsat 

Dt      \   0    z<zsat. 
W 

This condition on the moisture evolution is equivalent to "raining" out all the moisture 
above saturation instantaneously, with its latent energy going to heat the parcel. 

a.   What is a stable basic state? 
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One of the requirements for the application of Hamiltonian APE ideas to the moist 
non-adiabatic problem is that we can define a stable basic state. As the example in section 
2 showed, it was the ability to define that basic state and treat the unstable state as a 
finite amplitude perturbation that led to the abililty to construct bounds on the APE. 

For the Hamiltonian case, this determination simply amounts to finding whether or 
not the basic flow is a true extremum of the pseudoenergy A, which can be calculated by 
examining the second variation 82A. Such a determination for the Hamiltonian case leads 
to a condition for arbitrary perturbations to the flow; in other words, nonlinear stability. 

In this moist non-adiabatic case, however, we have no Hamiltonian structure to guide 
us in defining a stable basic state. Hence, we must confine ourselves to the case of infinites- 
simal perturbations, as well as defining our basic state from other physical principles. The 
major point is that we want to use the dry (or moist) adiabatic stability concepts as a 

guide. 
As such, we define a stable basic state as one which is stable to both dry and moist 

adiabatic disturbances. Under this assumption, several facts are immediately apparent: 

1. Any state which has the identical dry and moist saturated profiles as a stable basic 

state but which is undersaturated will also be stable. 

2. Stability depends on the magnitude of the total temperature perturbation 77, rather 

than its slope as in the dry case. 

These two results indicate that the moist non-adiabatic case is significantly different from 
the dry case examined in section 2, so much so that straightforward application of the 
Hamiltonian APE of the form in equation (26) is impossible! Hence, we must attempt 
another approach, namely reduction to a dry state and then application of the Hamiltonian 

APE thinking. 

b. Reduction to dry state 
In order to reduce our moist system to an equivalent dry system, we must first make 

a relation between moist and dry states. To do this, we choose to equate the dry neutral 
state 9{z) =constant with the moist neutral state 77(2) =constant. It is perhaps best to first 
review what assumptions we are making in doing this. From the definition of Lagrangian 
CAPE, it is immediately apparent that any type of moist APE will be strongly dependent 
on the mean temperature profile of the atmosphere in which it evolves. Lagrangian parcel 
dynamics gets around this by assuming that the mean state is fixed. For an atmospheric 
case which is strongly stably stratified to dry motions, a logical assumption is that dry 
motions (i.e. vertical mixing of 9) will be strongly inhibited. Hence, the effect of the moist 
convection will be to simply raise the average temperature of the atmosphere, not adjusting 
its dry static stability. In a sense, parcels which are warmer by virtue of containing moisture 
will quickly rise to the top, but downward motions will consist of slow subsidence. Such is 
the case in active convective regions of the Earth's atmosphere, such as the tropics. 

Before we undertake such a procedure, it is useful to lay out our expectations. First, 
we expect that the Lagrangian CAPE will represent an upper bound to any CAPE we 
may calculate. Why? Simply because it does not take into account any mean temperature 
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profile modification. Also, we expect our reduction process to be non-local, that is, it will 
have to take into account the entire temperature profile of the fluid. This is again due 
to the non-locality of moist convective processes - the mean temperature of the profile is 
what determines the accessibility to APE, not the local gradients 6 gradients, as in the 
dry case. 

b. Example: Straightforward use of adjusted r\ profile. 
As a first approach, we can simply ignore any mean temperature profile feedbacks, and 

calculate the APE from the 77 profile just as we would in the dry case. Consider a basic 
state consisting of the stable potential profile 

0{0)(z) = fa* (31) 

and saturation height profile 
Zsat(z) = 2, (32) 

i.e. an initially saturated atmosphere. The stability of our mean state is then controlled 
by our choice of the moist adiabatic lapse rate k; examination of 

1(0)(*) = *(0) + y(I/2 - zsat) (33) 

shows that k > a implies instability. Our neutral basic state is k = a; this leaves our 
reduced (dry equivalent) problem as 

«SiM-G^ (34) 

which is the identical problem considered in the example in section 2 if we equate e = k — a, 
which gives the result for the APE of 

,„„     gH2L(k-a) ,   x APE = - ^ '-. (35) 

This can be compared to the Lagrangian CAPE for the whole domain, which is 

CAPE   =   j-ffj   \k- a)z' dz' dx dz (36) 

gH2L(k -a) 
=   " Q  (37) 

As is clear from the above, straightforward application of the "adjusted" profile gives 
a result identical to the Lagrangian CAPE. Is this true in general? No. An easy example 
would be to consider a situation where the atmosphere is saturated for z < 0 and completely 
dry for z > 0. For such an example, the equivalent dry APE is larger than in the case 
examined here, but the Lagrangian CAPE is somewhat smaller. Examples where the 
Lagrangian CAPE is larger than the APE are also easy to come up with. 
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Note that we expected the Lagrangian CAPE for the whole domain to be an overes- 
timate of the APE available for a moist diabatic disturbance, so it is natural to ask if a 
correction can be made to this. The answer appears to be no, as doing so removes us from 
the realm of direct analogy with the dry Hamiltonian case. In addition, the example above 
showed us that the relationship between Lagrangian CAPE and the equivalent dry profile 

is not well denned. It appears that a reduction procedure cannot be done rigorously (or 

even consistently, for that matter), and as the above indicates, the whole question is not 

well posed. 

c.  Comments 
Some observations about this whole procedure are immediate: 

1. Moist convective system vastly different from dry. The profile of the conserved quan- 
tity does not determine stability - rather the entire temperature profile does. 

2. Hamiltonian APE ideas appear not to be able to be consistently applied. 

3. Any calculation will in a sense be ad hoc - without Hamiltonian structure as a guide, 
it is difficult to see how to proceed. In particular, it is not clear how to work feedbacks 

into the problem. 

4. Discussion 
The question of how to fit the diabatic effects of moisture into atmospheric energetics 

has been a topic of considerable theoretical interest for many years. Insofar as moist 
processes in the atmosphere are adiabatic, straightforward application of Hamiltonian 
methods such as those outlined in section 2 should allow for the proper treatment of 
moisture in constructing APE budgets for various atmospheric fluid systems. However, as 
has been shown above, the generalization of these methods to diabatic moist convection 
is not possible in a rigorous or even a consistent manner. Moisture is and will remain a 
significant barrier to a complete theoretical understanding of energetics in problems where 

it plays a significant role. 
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On Aspects Of Benney's Equation 
Rodney A. Worthing 

Department of Mathematics, MIT 

Introduction 
The PDE under investigation is 

ut + uux + vuxx + nuxxx + uxxxx = 0 , x 
-7T < X < 7T, 1/ > 0, /i > 0, ^' 

where u is considered to be periodic in a: as an apology for the infinite domain. This equa- 
tion seems rich in character and has been derived in several physical contexts including 
the flow of thin liquid films (Benney 1966, Topper and Kawahara 1977). Starting from 
arbitrary initial conditions, the solutions to (1) often ultimately form pulse-like struc- 
tures that qualitatively maintain their respective positions but may or may not "lock in" 
to form a steadily traveling pulse train. Should they "lock in", then numerical simula- 
tions and asymptotic weak interaction theory show that the final spacings are not unique 
(Kawahara 1983, Elphic at al. 1991, Balmforth 1993). Also as a certain parameter, u, is 
increased these states lose stability and interesting perturbative dynamics result. These 
dynamics are the focus of this work. By example, the general type of bifurcation is iso- 
lated and the responsible mechanism discussed. Though, a general simple theory (like 
an extension of weak interaction theory which would reduce the dynamics to simply the 
time-dependent positions of the pulses) is, yet, elusive. 

With only two parameters (v and /z) this equation is actually a nondimensional version 
of 

«j + üüx + vüxx + ßüixx + \ü£xxx = 0, - L < x < L (2) 

with 

v = -7=-, /* = T~ (3) 
TI-'A Air 

There are other nondimensional forms but this choice is natural since it necessarily 
includes the uxxxx term, as it is required to insure solutions remain bounded for v > 0. 
This point follows by inspection of the following energy equation which is valid for periodic 
boundary conditions: 

1 If* 
< 2«2 >*= v <ux

2>-< uxx
2 >, < (•) >= — j_ (-)dx (4) 

Also implied by this equation is that the general role of both the uux nonlinear term 
and the uxxx term is simply to redistribute energy locally (a wave-like mechanism), leaving 
the overall energetics unchanged. In Burgers' equation 

ut + uux - vuxx = 0,   v > 0,   =4> < -u2 >t= -v <u2
x> (5) 

it is precisely this nonlinear term that is solely responsible for the development and 
propagation of shocks.   Likewise, it is solely the dissipative term — uxx that forces all 
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solutions to eventually decay away to zero in the absence of an energy source at the 
boundaries (as is the case for periodic or u = 0 boundary conditions). For Benney's 
equation, the uxxxx term has acquired the dissipative role but the sign reversal on the uxx 

term has turned it into an internal energy source. Indeed, this is the term responsible 
for the creation and sustentation of pulses. 

Steady Traveling Solutions 
In this section we discuss some general features of the steady solutions to (1), construct 

a few approximate solutions using weakly nonlinear theory (Malkus and Veronis 1958) 
and discuss their stability. Recall that we are ultimately interested in the dynamics after 
these solutions go unstable. 

Benney's equation has Galilean invariance. That is, if you have a solution u(z, t) = 
U(x,t) to an initial value problem u{x,0) = u0(x) then the solution to the initial value 
problem u(x, 0) = uQ(x) + c, where c is a constant, is u(x, t) = U(x - ct, t) + c. Roughly 
speaking, lifting up u also speeds it up. Thus, all of the nontrivial dynamics are identical 
and occur on the same time scale no matter the Galilean boost. With this in mind we 
are free to choose, say < u >= 0, as a restriction on the class of steady solutions we 
investigate since all others are obviously related. Such steady u are described by an 
eigen-pair {H, c) where u(x, t) = H(£), £ = x - ct and 

- cH' + HE' + uH" + nH'" + H"" = 0, < H >= 0. (6) 

As in (Elphick, et al. 1991) this nonlinear eigenvalue problem is solved numerically using 
orthogonal expansion techniques. 

Unlike both the Burgers and the KdV equations, the zero solution to Benney's equa- 
tion is usually unstable as a consequence of the inclusion of the energy production term 
uxx. Instability of the u = 0 solution can be demonstrated by linear theory. Normal 
modes of the form 

u <x e    e    e (') 

solve the linear version of (1) provided 

a = vk2 - k\    w = /iit3,     fc = 0,l,2,--- (8) 

Notice that the k = 0 mode is always neutral reflecting the fact that < u > is also 
conserved by the linearized version of (1). To make things simpler, we consider only 
disturbances having zero mean so that the effect of boosting up and down is factored 
out. It is clear from (8) that temporal growth of small disturbances is determined only by 
the struggle between the uxx and uxxxx terms with v emerging as the relevant bifurcation 
parameter. Due to the discreteness of k, we see that u = 0 is linearly stable if v < 1 
and linearly unstable if v > 1. Near the marginal point, the least damped disturbance 
is a long wave eix that travels at the finite phase speed of roughly -fi as it grows or 
decays. To display this point, Figure 1 shows an initial value run starting with energy 
in several modes at a slightly subcritical value of v = .95. Actually to obtain Figure 1 
we integrated the full equations and we didn't start with initial conditions that were all 
that small, yet still the zero solution was the long time limit. This will always be the 



case, provided v < 1, as can be shown by energy theory (Elphick et al. 1991). Using the 
Poincare inequalities (as adapted for this periodic domain) 

< u2 >  <  < u\ >,      and       < u2
x > <  < u2

xx >, (9) 

(5) implies 

\<u2>t <   (v-\)<u2
xx> (10) 

which shows that < u2 > ever decreases until there is no curvature. In a periodic domain, 
this means that the solution becomes a constant and since we only admit disturbances 
with zero mean, then this constant must be zero as a consequence of the conservation 
of < u > by equation (1). Expecting that these linear instabilities saturate forming 
equilibrated states, we introduce the expansions 

u   =   tu\ + e2u2 + e3u3 -\  
v   =   i/0 + eV2 + • • • (11) 

u0t   =   (1 + eVs + • • -)T 

where e measures the contribution of a fundamental linear eigen-mode in the equilibrated 
2ir periodic (in r) steady state. Plugging into (1) and equating terms of equal order in c 
provides the following sequence of linear PDE's: 

0(e) 
0(e2) 
0(e3) 

£o(ui)   =   u>o(ui)T - LoM = 0 
C0(u2)   =   WO(«2)T - L0(u2) = N2 (12) 
£o(u3)   =   UQ(U3)T - L0(u3) = L2(ui) + u2L0(ui) + N3 

where we have defined 

JJQ =      VQOXX       ßOxxx       Oxxxx     -"*2 ==       2\Ml)x (11} 
L2 = -v2dxx N3 = -(uxu2)x. 

The first equation, of course, has many solutions each corresponding to a different number 
of pulses, i.e. 

Ul = ei(T+kx) + ex.,    v0 = k2,   uj0 = fik3,    ifc = 1,2,3... (14) 

We know that for small enough e any steady state associated with k > 1 must be unstable 
to roughly a k = 1 mode. This is inferred from the linear stability theory of the zero 
state which, of course, is the steady state profile limit as c —► 0. However, should e be 
larger, then it is possible (and apparently the case) that these higher mode steady states 
can stabilize, at least for some finite range of v. We therefore leave k arbitrary for now 
and continue on to the next order with the reservation that all of the steady branches, 
with the exception of k = 1, must initially be unstable as they branch off the unstable 
zero state. Using elementary techniques the forced equation for u2 is easily solved, 

u2 = Cö1 {-;/fce2,'(T+fc*> + c.c.} = 7(Jt)e2,'(T+fc^ + c.c. (15) 

where 
_ 6fca,o - i{\2kul) 

l{k)- (12itf)» + (6u,o)2/ (lb) 
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Also note that by the definition of e, we have excluded the homogeneous solution when 
computing u2. At the next order we find a forcing that would not permit «3 to be 
periodic, unless we choose 

-'Ö^M    *ni    "»"SCS+fcJ (17) 

from which we can calculate the approximate amplitude and speed of the resulting steady 
state, 

e = ^(12** + 3n2k*)(v - it2), c = -fik2 + i(1/ - k2). (18) 

So, at least near the bifurcation points in v, Hmax increases linearly with /x and as 
the square root of v. This compliments the observation of Kawahara (1983), based on 
steady states obtained by time integrating (1), that in general the height of the resulting 
steady pulse train increases, approximately linearly, with the dispersion parameter ft. For 
very large (i, evidently, a KdV-like balance between the uux and uxxx terms is obtained 
for each pulse with the final, delicate spatial arrangements determined by higher order 
contributions from the other terms. By considering some integral consequences of (18), 
namely 

v < (H')2 >=< (H")2 > and   c < (H')2 >-< H(H')2 > +/z < {H"f >= 0,     (19) 

we see any steady solution must satisfy 

< H{H')2 > ,onv 
C + ^=   <(H>)2> m 

and therefore 
Hmin<c+vv<Hm&x. (21) 

At first glance the relation (21) hints at the tendency of #max to increase with fi and v 
but without more information, like useful bounds from below on c(fi,u), no such claims 
can be made. 

For fi = 1, Figure 2 shows three of the branches given by (18) (corresponding to 
one, two and three pulse solutions) along with some numerically calculated data points 
(marked with V, '+' and '*' again) representing the actual range of stable, steady 
solutions1. As expected, stable solutions of the two and three pulse type do not ex- 
tend down to e = 0 yet the finite-amplitude theory still seems useful as it approximates 
these solutions once they stabilize. Next we provide an estimate for the smallest value of 
v for which a stable, two pulse solutions exists by doing an approximate linear stability 
analysis on the approximate steady states acquired from the weakly nonlinear theory. 

The equation governing small deviations from an exact steady solution {H, c} is 

vt - cv£ + (Hv)z + vvtf + fivfä + Vfät = 0 (22) 

1 These points were calculated by solving the eigenvalue problem (6) plus the appropriate linear 
stability problem using spectral methods. 
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where u — H + v. Our plan is to substitute approximate steady states into (22) and 
estimate a stability criterion2. Taking k = 2 and thus introducing 

#(0 = ee2* + ex.,   c=-4/i + i(i/-l),   e = 2^/(48 + 3/I
2
)(I/ - 4)        (23) 

into (22), we see two suitable expansions for v are 

v = eattiai []T cne
2,n«] ,     a = 0 or 1 (24) 

The choice a = 1 is appropriate since for small enough c we can infer from the analysis 
of the zero solution that the instability ought to have the form e'*. We radically truncate 
(24) to 

u = e<rt{c1e
,« + c_1e-

,'i}, (25) 

insert into (22), neglect higher harmonics produced by (Hv)^, and obtain a simple 2 by 
2 eigenvalue problem for a from which it follows that H is unstable if 

e2<(c + n)2 + (v-l)2. (26) 

For fj, = 1 the transition according to (26) occurs at v « 4.1. If we include the e3'* and 
e-3^ modes in (25) we obtain an improved transition value of v « 5.1. Both of these 
approximations are represented on the 2-pulse branch in Figure 2 by V. These values 
should be compared to u äJ 5.5 obtained from an accurate stability analysis of the weakly 
nonlinear approximate state, and v « 5.7 obtained from an accurate stability analysis of 
an accurate steady state. 

Pulse Dynamics 
In this section we discuss the dynamics just after a steady train of pulses go unstable 

as a result of increasing the parameter v. For the one, two and three pulse cases, Figure 
2 shows where such regions roughly begin by the last point in each of the three sequences 
of data shown. In all three cases, the linear stability analysis shows that stability is lost 
as a pair of complex growth rates cross the imaginary axis. Direct numerical simulations, 
by spectral methods, show that these bifurcations are supercritical with saturation of 
unstable eigenfunctions easily occurring in regions just beyond the critical points. Figure 
5 displays this type of quasi-steady behavior in the case of three pulses at a post-critical 
value of v = 18. The dynamics may be described as repeated attempts to bring in one 
more pulse. This 'extra pulse' appears to move backwards through the pulse train as it 
tries to pop up where two larger pulses have been sufficiently separated. The larger pulse 
on its left then seems to overtake the 'extra pulse', but in the process creates room to 
its left, inducing another growth. Solutions of this type naturally have two distinct time 
scales (the average propagation speed of the group of pulses, and the frequency of the 
inter-pulse oscillations) and so cannot appear steady in any reference frame. The resulting 

2Of course, any approximate solution must really be unstable according to the exact equations, but 
by assuming (6) to be satisfied, whether it is or not for our particular choice of {H, c}, we seem to arrive 
at a somewhat robust stability problem (22) in which approximate steady states can be meaningfully 
analyzed. 
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u(x, t) will be a periodic function in space and most likely only an almost periodic function 
in time. By using weakly nonlinear theory we can provide a fairly simple representation 
of these time-dependent solutions. We take the three pulse case as an example. At its 
point of bifurcation, v « 17.324 (for // = 1), H along with the eigenvalues coming from 
the associated linear stability problem (22) are plotted in Figures 3 and 4, respectively ° 

We expand near this solution by carrying out a weakly nonlinear calculation that also 
provides a description of the time-dependent approach to the final quasi-steady state. As 
before we set u(x,t) = H(£) + v((,t) where {H,c} satisfy (6) and therefore v satisfies 
the complete version of (22), 

C(v) = -\{v2)i   where   C = dt - c^ -f $(#•) + vdu + ßdia + dui0       (27) 
Li 

We expand in the following manner 

v    =   evi + e2v2 -\  
t     =    T + C

2
T = T + T 

v    =   v0 + t2v2 + --- (28) 
H   =   H0 + e2H2 + --- 
c    =   Co + e2c2 H  

with i/0, Co and H0 being the marginal values eluded to earlier, and obtain the sequence 

0(e) 
0(e2) 
0(e3) 

£>(t>l)     =     Mr " £o(t>l) = 0 
AW   =   Mr - Lofa) =-l(vl)€ (29) 
C0(v3)   =   (v3)T - L0(v3) = -C2{vi) - (viv2)t 

where 

Co = dr-Codz+dtiHo^+Uodit+ndKt+dxx    and    C2 = Ör-c2^+^(//2-)+^^. (30) 

Consistent with the 0(e) equation, we take vx to have the form of the marginal Hopf 
mode, so that 

«i = A(T)<f>{£)eiwT + c.c.       where   L0((f>) = iu(f>,    u 6 $1. (31) 

The 0(e2) equation is a well set BVP for v2 and so the amplitude evolution equation 

< tft > AT+ < ^M« + {H2<S>)i - ^2<t>d >A+< <f>\ß<ß + a<t>*)z > \A\2A = 0   (32) 

is obtained at 0(e3) as a solvability condition. The two functions a(£) and ß(£) originate 
from the particular solution for v2 and are determined numerically by the solving the 
BVPs 

L0(a) - 2iucx = Uz    and    L0{ß) = (#*)«• (33) 

Also, just as {iu, <j>) is an eigen-pair of the operator L0, {ito, ft) is an eigen-pair of the 
adjoint operator L\ and its existence has been verified numerically. In this formulation 

3As evident from Figure 3 we have not consistently required < H >= 0. 1 
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we are free to choose v<i from which e, c2 and H? are calculated from (6). The quasi- 
steady field predicted by these calculations at v = 18 is shown in Figure 6 and should be 
compared to Figure 5. We have yet to check whether the quantitative discrepancies are 
within the expected accuracy of the theory. 

Appendix 
In this appendix we explore numerically a class of steady solutions to 

ut + uux + vuxx + \uxxxx = 0 (34) 

with the fixed boundary conditions u{±\) = ^1 and, if A ^ 0, ux(±l) = 0. The purpose 
is to provide another simple setting in which comparisons with the more familiar Burgers 
equation can be made. Consider the cases: 

• A = 0, and a range of negative v (Burgers) 

• v = 0, and a range of positive A (Figure 7) 

• A = 1, and a range of positive v (Figure 8). 

Simple tank solutions exist for the case A = 0, and so as u approaches zero, these station- 
ary fronts steepen and always maintain their monotonicity. When the — uxx dissipation 
is replaced with uxxxx we see the same general steepening of the front as A is decreased, 
but we also see an additional oscillatory feature that appears most significant very near 
the shock interface - see Figure 7. Profiles quite different from these are shown in Fig- 
ure 8. Those having more oscillations are associated with larger values of v, a feature 
reminiscent of the periodic pulses. A remarkable feature of this class of profiles is that 
drastic changes in amplitude occur during the transitions where the number of oscilla- 
tions increase. Figure 9 and Figure 10 are intended to display this point. Figure 9 shows 
this entire class as a surface plot, but perhaps Figure 10, by simply plotting the global 
measure < u2 >, shows this transition phenomenon most clearly. 
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Coherent Structures and Homoclinic orbits 

N.J. Balmforth 

In the physics of fluids, the dynamics of coherent structures plays a central role. 
These localized objects appear in laminar flows and persist in turbulent states. In some 
situations the coherent structures take the form of solitary waves, and this lecture reviewed 
recent experiments observing the formation and interactions of such objects. It further 
described the derivation of approximate equations modelling these objects, and discussed 
the connection between the solitary wave solutions of such equations and the orbits of a 
dynamical system. Finally, aspects of the theory of pulse interactions were mentioned. 

Coherent fluid structures , . . 
The concept of a solitary wave, though widespread in physics nowadays, originated 

first in fluid dynamics after Russell's historic observation of a coherent, propagating struc- 
ture in the Edinburgh canal. Since that observation, the notion that fluid motion often 
organizes itself into localized states permeates modern fluid dynamics. In this lecture, spe- 
cific examples occuring in binary fluid convection and on a falling fluid film were described 
in some detail. , 

In binary fluids, sequences of experiments m thin annuh clearly demonstrate the cre- 
ation of localized states of travelling convection.1-2 These states consist of a compactpat- 
tern of rolls whose envelope moves around the annulus. In many cases, several such con- 
vective pulses" coexist within the annulus, and this leads to an experimental visualization 
of pulse dynamics, which which range from steady interaction to temporal chaos. 

In falling fluid films, solitary structures also occur. These are visible in drying paint 
and on windows on rainy days. They arise through the linear instability of a film of uniform 
thickness which grows to a finite-amplitude state of a sequence of propagating sohtary 
waves.3 These sequences are described by certain solitary wave speeds and particular pulse 
separations, and can generate spatially disordered patterns. Other states take the form of 
a succession of rippled, hydraulic jumps. 

Model equations ,.,,,. a -J i- 
The solitary structures observed in systems hke the binary fluid convection occur 

near the Hopf bifurcation of a spatially extended (one-dimensional) system. In this cir- 
cumstance, the equations governing the fluid can be asymptotically reduced to a complex 
Ginzburg-Landau equation governing the spatio-temporal evolution of the envelope of a 
single wave packet.4 .    ,. 

A simple example of a system reducing to complex Ginzburg-Landau near marginaüty 
is the partial differential equation, 

dtu + udxu + dx
2u + iidx

3u + dx
4u + au = 0   , (1) 

where \i and a are parameters. This equation arises in studies of falling fluid films5 and 
in plasma instabilities. For a film, u is the surface displacement about a uniformly thick 
state, and a is normally zero, but here we vary it continuously through positive values to 
precipitate a Hopf bifurcation. 

The equilibrium state u = 0 bifurcates to instability for a = 0.5. If we expand about 
this critical state, a = 0.5 + e2a2, and introduce stretched timescales and lengthscales, 
then equation (1) can be decomposed into a set of equations of successively higher-order 
in e. Applying solvability conditions at each order eventually yields the Ginzburg-Landau 
equation, 

drA = ßA + Ddi
2A + j\A\2A (2) 

for the amplitude of a propagating wave packet. Here, r is the slow timescale on which 
the amplitude evolves and £ is a corresponding (long) length scale, and the quantities ß, 
7 and D are complex coefficients depending on ju and 0:2- 
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The complex Ginzburg-Landau equation is known to have solitary wave solutions that 
take the form of pulses or kinks.5 The former kind of solutions can be comfortably fitted 
to the experimental data derived from binary fluid convection.2 Pulses undergoing fission, 
briefly coherent pulses and spatio-temporally complicated states are more interesting solu- 
tions to the complex Ginzburg-Landau equation.3 All three appear to have experimental 
counterparts. 

Pulses and homoclinic orbits 
In a partial differential equation like (1), the propagating, steady solutions take the 

form, u(x,t) = U(x - ct) = U(x), and satisfy the ordinary differential equation, 

U'" + IMU" + U' - cU + U2/2 = 0 (3) 

which arises from (1) on setting a = 0 and integrating. This equation can be viewed as a 
dynamical system whose flow in the phase space, U = (U, U',U"), defines a velocity field, 
V = U'. The divergence of the velocity field is -JX indicating that, for fi > 0, the flow is 
volume contracting. Thus the system asymptotically heads towards an attractor of zero 
volume, which could be a fixed point, a periodic orbit or a strange attractor. 

The various attractors of the system, theircharactersitics and bifurcations can all be 
catalogued to find the many kinds of propagating patterns which solve (1). Of most interest 
are those that approach a state U = constant as \ ~* ±°°; *°r tnen t^ie time series ^(x) 
defines a propagating localized solution in real space and time. 

The trajectories that follow such paths are special types of orbits in the dynamical 
system. They asymptote to the fixed points of the system as "time", x, runs forward or 
back. Orbits that connect the same fixed point are homoclinic orbits; they correspond 
to the pulse of the partial differential equation (see Fig. 1). Heteroclinic orbits join two 
different fixed points together, and in real space and time, define moving fronts or kinks 
(or hydraulic jumps). < 

These special kinds of orbits arise as a result of various bifurcation sequences, and 
they emerge at certain parameter values in (3). A particularly useful feature of these orbits 
is that trajectories often spend extended periods of time following them, and this leads us 
to analyse solutions asymptotically.7 

Figure 1: A homoclinic orbit. The first panel shows the phase portrait of the orbit, and 
the second its pulsatile time trace. 

ZGT 



Shil'nikov theory and timing maps 
Except for a relatively short interval of time, the homochnic solution shown in figure 

1, if (x), is contained within the neighbourhood of the origin. Here, equation (3) can be 
approximately replaced by its linearization and we find the solution 

U ~ at"x + be~px cos(u>x + VO    , (4) j 

where a and -p ± iu are the eigenvalues of the flow, and a, b and rj> are constants. The 
homoclinic connection emerges from the origin 0 at \ = -oo, escapes the vicinity of the 
origin, but rapidly returns and spirals back into O at % = oo. Thus 1 

f one** X -^ -oo ,^ 
n W ~ \ hoe-™ cos(o;x + 0o)     X -> oo I 

The two sections of the solution for if correspond to the two invariant manifolds intersect- 
ing O (a one-dimensional unstable manifold and a stable two-dimensional manifold). | 

Nearly homoclinic trajectories typically get caught near the invariant manifolds, and | 
consequently they "skirt" H(y) during any excursion away from O. Since they generally 
do not enter the vicinity of the origin with a — 0 identically, however, the trajectories 
invariably become thrown out from the origin's vicinity along the unstable manifold after 1 
spending a lengthy period there.  They are reinjected relatively rapidly, however, and so I 
the solution U(x) takes on the appearance of a train of widely separated pulses. 

Because the nearly-homoclinic solutions spend long durations circulating near the on- i 
gin, but only relatively short periods away from it, the solution can be approximately | 
described by analytical means in the two representative regions. Near the origin we have 
solution (4), and away from it, U(x) ~ Hix)- This is equivalent to a matched asymptotic 
expansion of the solution. For a pulse train, the result of asymptotic analysis is a relation I 
between the successive intervals spent near the origin, or, equivalently, the adjacent spac- | 
ings between pulses. This can be viewed as a timing map for the pulse train. For certain 
ranges of parameter values, this map iterates chaotically, and the result is a sequence of . 
irregularly spaced pulses. I 

For widely separated pulses, the map is of the form,7 

Zk+1 =A + BZi sin(ft log Zk + $)    , (6) j 

where Zk = exp(-crAfc), Afc is the kth pulse spacing, A, B and $ are constants, and 
8 = p/a. The constant A measures the proximity of the homoclinic connection; it vanishes I 
at homoclinicity. 

The map is illustrated in figure 2 for A = 0 in the two cases -6 > 1 and 8 < 1. From it 
one can construct the spacings of a train of pulses, and knowing the form of a single pulse 
then provides a complete, approximate solution. 

The map also predicts the bifurcation sequence that generates the homoclinic orbit 
(see the insets of figure 2). The fixed points of the map, Zk = Zk+i, correspond to periodic J 
orbits of (3). When 8 > 1, the period of one such orbit monotonically diverges at A = 0 j 
and then vanishes. In other words, as A approaches zero, an orbit collides with the origin, 
annihilates and creates the homoclinic connection. When 8 < 1 there is an infinite number j 
of periodic orbits in the map at A = 0.   Here a periodic orbit winds into homoclinicity j 
creating a dense set of periodic orbits most of which are unstable. Thus ShiPnikov's theory I 
predicts the existence of a chaotic set and this is the region of parameter space in which 
one expects irregularly spaced pulse trains. 

Pulse dynamics 
Shil'nikov theory predicts the various kinds of steady solutions of (1) that take the 

form of patterns of propagating pulses. Calculations using the partial differential equation 
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(1) suggest that temporal evolution often leads to solutions that lock into these steady- 
states. Then we have an approximate solution 

K 

k=l 
0M)^X>(x-x*)   , (7) 

where K is the total number of pulses, H(x) is the homoclinic solution and Xk locates the 
position of the kth pulse. These pulse positions are related by a map of the form 

F(Ak) + F(-Ak+1) = A   , (7) 

for some function F(A), which for large A reduces to (4).8 

In many problems, however, we typically need more information than just a knowledge 
of the different kinds of pulse formation is insufficient. For example, we may further need 
stability information and other aspects of pulse dynamics. To partially account for this we 
can permit the positions of the pulses vary weakly on a slow time: Xk = Xk{et) = Xk{T). 
Rather than the map (4), we then find a set of coupled ordinary differential equations,8 

F(Ak) + F(-Ak+1) = Xk    , (8) 

which govern the slow evolution of the pulses. 
For many partial differential differential systems, this asymptotic description of pulse 

dynamics works well. One can then describe the interactions between pulses in a practical 
semi-analytical way and advance to consider many-body systems which would otherwise 
be computationally intractable. For (1), however, this picture is fatally flawed because 
pulse interactions are partly mediated by waves and we require further aspects of pulse 
dynamics (see R. Worthing's report). Nevertheless, this kind of behaviour is at times 
useful and does point to ways to analyse the multiple solitary-wave solutions in partial 
differential equations. 
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Intergyre Water Exchange of Combined 

Wind and Buoyancy Forcing 

Liang Gui Chen 

Scripps Institute of Oceanography La Jolla, CA92093-0230 

Water exchange between the subtropical and subpolar gyre is a general feature of the 

ocean circulation. Recently, several wind driven theories have been proposed to address 

this problem which allow the baroclinic exchange of water between gyres (Pedlosky 1984, 

Schopp and Arhan 1986, Schopp 1988 and Chen and Dewar 1993). Chen and Dewar's 

(referred as CD93 thereafter) study shows that the communication (water exchange) 

solution is close associated with the baroclinic and barotropic wave interactions and has 

multiple solution in purely wind driven case. This study is an extension of CD93 which 

includes the additional buoyancy forcing. The communication equation, which allows 

the water exchange between gyres, is given as (follow the same notations as CD93): 

Gx{hx, h2, <j>y)hix + G2(h, h2, <j>y)h2x = G3(wSl,wS2) (1) 

where G\ and G2 are defined as 

Gi(hu h2, <j)y) = (1 - 2/i! - h2){(j)y + 2hx + h2- {2h2 + h\ + 2/i!/i2)) 

G2{hu h2, (j)y) = (1 - 2hx - h2)((f>v + (/ii + h2){\ -h- h2)) + h^y + h2{\ -hx- h2)) 

G3(wSl,wS2) = wS2(3hx + h2 - 1) - wSlhi 

In which hi and h2 are the layer depth and 0 is the Sverdrup streamfunction ((f>y — rx). 

The cross isopycnal buoyancy fluxes are wSl and wS2. This equation is the generalization 

of the same name equation of CD93. In the limit of the no buoyancy flux, equation (1) 

results into two kinds of solutions, the traditional non-communication solution and the 

communicating solution of CD93. An analytical solution of this equation with stagnant 

third layer condition, has been obtained: 

r=„;fj ,.+c,«*--<w (2) 
2(4io| + T2) 

in which h = h+h2 &ndu(h) = (T-2WS)(C
2
-2/I

2
)-2(T+2WS)VC

2
 - h2+c2(4w2

s+r2)/T. 

The constant C\ is determined by the boundary conditions: 

G\ = -n,A   o ,    ON 
exP [ sin-1 (/ie/c)]   from x = 0,h = he 2(4w2 + r2) ws 
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Ci = 
u>(hw) 

2(4^2+ r2) 
exp [ sin   (hw/c)]   from x = -1, h = hw 

ws 

The two group of solutions, each associated with the eastern or western boundary con- 

ditions, merger at the middle of intergyre boundary, and form a piecewise smooth com- 

munication solution. The multiple solutions of the purely wind driven case disappear 

even with infinitesimal buoyancy flux. 
The buoyancy effects on the communication problem can be explained by studying 

the second layer mass balance, derived from eq. (1) with stagnant third layer: 

hx{-uc) = hx((j}y + hih2)/hi = ws (3) 

Eq. (3) is a /^-convergent/divergence balance equation. The term hx(— v2) represents 

the second layer meridional velocity, </>y represents the eastward Sverdrup transport and 

hih2 the westward baroclinic wave speed (CD93). The ws is the vertical buoyancy 

flux entering (or leaving) the second layer. This equation states that the horizontal 

divergence is balanced by the vertical buoyancy flux. 
Figures-1,2 illustrate this convergence/divergence concept. The IGB is divided into 

three different sections. Near the eastern boundary, the Sverdrup transport 4>y is almost 

zero while the baroclinic wave speed h\h2 is non-trivial, this results in a finite value of 

uc. For small ws, it means weak horizontal convergence and small meridional transport, 

hx = v2, and thus almost flat thermocline. Going westward, the barotropic transport 

increases while the baroclinic wave speed barely changes due the small hx. In section 

II, the barotropic transport finally catches up the baroclinic wave speed and results in 

near zero uc. Large meridional transport (hx) is thus needed so that the horizontal 

convergence -hxuc can balance the vertical buoyancy flux ws. For zero ws, uc becomes 

zero which corresponds to the communicating solution of CD93. With large hx, the 

baroclinic wave speed increases drastically and keeps in pace with the increase of the 

barotropic transport so that the uc remains close to zero. This section is defined as 

the communication window in the CD93. Because the maximal baroclinic wave speed 

is limited by the eastern boundary condition (Schopp and Arhan [1986], CD93), the 

barotropic transport finally overcomes the baroclinic wave speed at the end of section II 

(xd), where singularity occurs, and results in the changing sign of uc. In section III, due 

to the changing sign of uc, the meridional transport also reverse its direction. Since uc 

is no longer small, hx decreases with small ws. In the limit of ws —> 0, this corresponds 

to the non-communicating flat thermocline. 
The direction of the cross gyre transport depends also on the sign of the ws (the 

/^-spiral concept).   In sections I and II, where uc is negative, cooling (negative ws) 



is accompanied by subsurface southward flow and surface northward flow. This is in 

agreement with general circulation patterns where a large volume of warm water is 

being transported from the subtropical gyre to the subpolar gyre (in section II) and 

results in strong surface cooling. 

Following the same argument in CD93, the interior solution can be obtained by 

method of characteristics of which characteristic equations (Luyten and Stommel's 1986a) 

is: 

dh 

ds 
<t>y       h2 

yhi     y2 hx + 4>x 
yhi 

hy = -ws (4) 

The interior is thus divided into three different regions, the eastern, western and the com- 

munication regions. The characteristics equation is thus integrated from these boundary 

to the interior (Figure-3, the trajectories of the characteristic). It is found that with no 

zero ws , the characteristics equation must be integrated from the intergyre boundary 

in order to recover the communicating solution in the interior. The flat thermocline at 

the intergyre boundary can not recover the communication flow nor can it satisfy the 

communication equation of (1) and thus are incorrect. When buoyancy flux is weak, the 

interior flow pattern is similar to that of CD93 (Figure-3). 
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Fast dynamos near integrability 
Steve Childress 

New York University, Courant Institute, New York, NY 10012 USA 

In the study of fluid flows with small dissipation, it is natural to consider first a 
reduced problem where the dissipation is identically zero. A notable case is steady flow 
past a bluff body, where the dissipation is viscous and the reduced problem is inviscid 
flow. The problem is then to select meaningful solutions of the reduced problem, which 
presumably represent the limits of small dissipation, from a generally much larger set of 
possible solutions. In our example this might select inviscid flows compatible with Prandtl's 

boundary-layer theory. 
A similar problem arises in the context of magnetohydrodynamics, when a magnetic 

field is present in an electrically conducting fluid and the magnetic diffusion is small. The 
kinematic dynamo theory focuses on a subset of this problem, where the velocity field 
u(x,t) is given and the resulting effects on the magnetic field B are sought. The equation 
for the latter field is the induction equation, 

?-Vx(uxB)- eV2B = 0. 
at 

We shall assume V • u = 0 so the middle term takes the form u • VB - B • u. The rate of 
strain of the fluid thus affects the magnetic field. Tubes of flux can be stretched, folded, 
etc. The small parameter c is one over the magnetic Reynolds number, and is indeed 
extremely small in stars and galaxies (where the dynamo problem we consider here is of 
interest). The reduced equation, e = 0, has the well-known property that the flux carried 
by a flux tube is an invariant of the flow. This leads to a compact representation of the 
magnetic field in terms of Lagrangian variables of the flow. 

Dynamo theory studies solutions of which grow in time, usually exponentially. If we 
identify a maximal growth rate j€ for solutions (by setting appropriate boundary conditions 
and maximizing over initial magnetic fields), we say the flow is a dynamo if 7e > 0. We 
may then take the limit for small c (perhaps as an infimum limit), to obtain 70. If 70 > 0 
we say u is a fast dynamo. The question then is, can we identify fast dynamos from the 
reduced problem, and compute 70 as equal to the growth rate 7(0) obtained from one of 

its solutions? 
To examine this question in a simple setting, we consider the unit square 0 < x, y < 1 

and the folded Baker's map (x,y) -» (2x,y/2) or (2-2x,l-y/2), depending upon whether 
x is less than or greater than 1/2. This effectively doubles the aspect ration of the figure, 
cuts it in two, and folds it back on itself. If we imagine an initial magnetic field (1,0) 
the field after one operation, by conservation of flux, is 2 sgn(\/2 - y). We thus define an 
operator T describing the effect of the map on a field (6(y), 0): Tb(y) = 2 sgn(l/2-y)b(r(y) 

where r(y) = min(2y, 2 — 2y) is the tent map. 
N iterations of T on any smooth initial field produce alternating layers of field of 

strength ±2N, with total flux (if N > 1 exactly zero, while energy grows exponentially. If 
small dissipation is added by letting b(y) satisfy the heat equation for unit time between 
applications of T, it is not difficult to show that the field does tend to zero for large t, 
provided that we extend the problem with period 1 in y. 
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This suggests that 70 = 7(0) = -00 in this model. Actually this is not true for 
other periodic extensions. We can test for other measures of growth by introducing the 

inner product (c,6) = /„* c*bdy. Let <f> be a smooth test function and consider (<j>,TNb) = 
(SNc,b). Here S is the adjoint map, Sb = b(y/2) - 6(1 - y/2). As Bayly noticed in a 
related problem [1], the adjoint map has a complete set of smooth eigenfunctions. The 
eigenvalue 0 is infinitely degenerate since any function of (y - 1/2)2 is an eigenfunction. 
The other eigenvalues are 1/4*,k = 0,1,2,... with eigenfunctions p1 = y - l,...,j>2fc+i = 
a polynomial of degree 2k + 1. Thus 0 is the maximal growth rate. If we require the test 
functions to be at least continuous, then pi can be extending to a period 2 eigenfunction of 
S. The operator T correspondingly has an eigenfunction in the form of a distribution. In 
fact for finite but small e the eigenfunction of the diffusional version of T, for the eigenvalue 
1, is /1 = e3y'/16e - e3(y~1)a/16c mod 2. This example shows that the correct measure of 
growth used in the reduced problem will depend upon the nature of the problem, here the 

periodic extension used. 
More reasonable models of fast dynamo action utilize     Beltrami waves of the form 

u = a(t)(0, sin x, cos x) + /?(t)(sin y, 0, ± cos y), 

where the - sign gives waves of the same helicity, the + sign of opposite helicity. If 
2a,2/? = 1 ±8cos(wt), where S < 1, the waves describe a flow close to an integrable one 
with helical streamlines. Fast dynamo action in the reduced problem can be investigated 
using a variant of Melnikov's method [2]. The distinguishing feature of this model is the 
hypothesis that the magnetic boundary layers of the steady, integrable flow are replaced 
by the time-dependent unstable manifolds coming out of each critical point. Based on this 
hypothesis an approximate method can be found for determining growth rate as measured 
by the magnetic flux in the manifold. If u> > 1 this method offers an extension of 
conventional laminar boundary-layer methods to nearly-integrable flows with thin bands 
of chaotic structure. Numerical calculations indicate that in the dynamo phase of growth 
of the field, the most intense field is indeed concentrated near the heteroclinic tangle on 

the unstable manifolds. 
We have not touched here on the important issue of dynamical equilibration of fast 

dynamos, which is controlled more by B2 than by weak measures such as flux, and so is 
sensitive to the intense small-scale structure of B. 

[1] Bayly, B. , Childress, S. (1989): Unsteady dynamo effects at large magnetic 
Reynolds numbers. Geophys. Astrophys. Fluid Dyn. 49 , 23-43. 

[2] Childress, S. (1993): On the geometry of fast dynamo action in unsteady flows 

near the onset of chaos. Preprint. 
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Pressure fluctuations in swirling turbulent flows 

by Stephan Fauve 
Ecole Normale Superieure de Lyon, 69364 Lyon, France 

Pressure fluctuations in boundary layers as well as in the bulk of fully developed 
homogeneous isotropic turbulent flows have been studied for a long time [1-4] and 
the pressure field is commonly used as a diagnostic in meteorology. However, to the 
best of my knowledge, it has been emphasized and shown only recently that pressure 
can be used to locate regions with high vorticity or dissipation in turbulent flows 
obtained by direct numerical simulations [5]. It has been known for a long time that 
in an incompressible fluid of density p, pressure obeys a Poisson equation obtained 
by taking the divergenge of the Navier-Stokes equation, 

. d2(ViVj)       p.   2        ,. 

*—iw£-i<     >• () 

where u is the vorticity and a2 the squared rate of strain [6], thus showing that low 
pressures occur in vortex cores (as expected) and high pressures in regions where the 
effect of strain is large compared to the one of vorticity (stagnation points). Low 
pressures associated with vorticity filaments were clearly observed in a numerical 
simulation of the Taylor-Green flow in reference [5], and we performed laboratory 
experiments to check whether pressure measurements can be used similarly as an 
experimental tool to study vortical and dissipative structures in turbulent flows. We 
did find a surprisingly good agreement with the results of numerical simulations [5, 7] 
concerning the probability density function (PDF) of the pressure, which is strongly 
asymmetric and displays a long tail toward low pressures whereas the high pressure 
part shows a sharper cut-off. The low pressure part of the PDF results from random 
pressure drops which are due to vorticity concentrations in the vicinity of the pressure 
probe [8]. Let us note that this shape for the pressure PDF is not restricted to the 
[>articular geometry of our flow (see below) but has been also observed since in jets 
9]. We are now studying some statistical features of the low pressure events in order 

to get insights in vorticity dynamics in turbulent flows [10]. 

Von Karman swirling flows 

The experimental set-up is shown in figure 1. It consists of a cylindrical con- 
tainer, 20 cm in diameter and 19 cm in height, filled with water. Its temperature is 
maintained constant with a regulated water circulation. Two co-axial rotating disks 
of diameter D = 17.5 cm, at a distance H = 8 cm apart from each other, are rotated 
independently by two DC motors at angular velocities ft1|2 in the range [0, 1800] 
RPM, i.e. [0, 30] Hz for üi^/2-ir. Pressure fluctuations are measured by piezoelectric 
acceleration-compensated transducers, mounted flush with the lateral wall. We have 
observed no difference on the shape of the pressure PDF when varying the transducer 
diameter from 2.5 to 15 mm, although these transducers are all very large compared 
to the Kolmogorov length. This obviously affects the high-frequency cut-off of the 
pressure spectrum. 

The flows generated between two co-axial rotating disks, known as von Kar- 
man swirling flows, are widely studied in fluid mechanics [11]. When the disks are 
counter-rotating at the same rate, the flow in the median region of the cell looks 
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rather homogeneous when a turbulent regime is reached. As recently visualized ex- 
perimentally in water seeded with air bubbles [12], vorticity concentrations in the 
form of filaments are randomly generated in space and time. This motivated us to 
choose this flow to perform quantitative pressure measurements. 

Let us first give several orders of magnitude which characterize our flow. If one 
assumes that momentum transfer does not depend on viscosity in a fully developed 
turbulent regime, dimensional analysis then gives for the torque, T cc pL ft , which 
is known as "centrifugal torque" behavior in the engineering literature. Similarly, 
one has for the dissipated power, P oc pL5ft3, where L is a characteristic large scale. 
Note that these laws do not depend on any particular assumption on the turbulent 
flow, but follow from dimensional analysis as soon as u is negligible for momentum 
transfer. For ft/27r = 20 Hz, we have P « 100 W, thus the average dissipation per 

unit mass e, is e « 4 W/kg. Using 17 « {v3/e)1/4, we get for the Kolmogorov length, 
n w 20/im. The integral Reynolds number cannot be defined without ambiguity 
except in the large aspect ratio configuration, H < D. If one takes L = 10 cm for 
the integral length-scale, and uses L/rj « Äe3/4, one get Re « 100000, which shows 
that the characteristic large scale velocity is roughly 1 m/s, i.e O.lLttD/2. One can 
also estimate the Taylor scale based Reynolds number, Rx, with the relation 

e = 15u < ®2>—("Tf- 
Using the estimate of vrms obtained from pressure measurement (see equation (2) 
below), vrms « 1 m/s, we get A « 1mm. This gives a certainly too large value 
Rx « 1000, which is not surprising since R\ depends on v2

rma which is only roughly 
estimated using (2). 
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pressure 
transducers 

Pressure measurements 

A direct time-recording of the pressure is displayed in figure 2. It is clearly visible 
that pressure fluctuations are asymmetric with random occurrence of strong pressure 
drops. We relate these low pressure events to random vorticity concentrations in 
the vicinity of the pressure transducer. Indeed, we have checked that the pressure 
signals recorded by two transducers, 1 cm far apart, display no coherence. These 
pressure drops are thus localized in space and do not correspond to a depression on 
the integral length-scale (or even one tenth of it). 
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The PDF of p/ft2 is displayed in figure 3. It is strongly non-Gaussian with 
a roughly exponential tail toward low pressures, due to the random occurrence of 
pressure drops. The low pressure tail becomes stretched at higher Reynolds numbers, 
i.e. displays a upward concavity in the log-lin plot of figure 3 [13]. It is important to 
notice that the PDFs of pJQ2 for different fts (810 and 1250 RPM) roughly collapse 
on the same curve, showing that pressure fluctuations are mostly governed by the 
integral scale velocity field, i.e. the large scale velocity fluctuations give the largest 
contribution to pressure fluctuations, as can be understood from the dimensional 
relation 

Prms CX pV2
rma, (2) 

(see reference [3] for the value of the proportionality constant in the case of homoge- 
neous isotropic turbulence). We checked (2) by measuring the area under the pressure 
power spectrum as a function of the rotation rate ft. This leads to a reasonable order 
of magnitude, vrms « 1 m/s, for ft/27r « 20 Hz. Although the high frequency part 
of the pressure spectrum may be affected by the large size of the transducers, its 
high-frequency cut-off is at integral time-scale, 27r/ft, and is well resolved; thus most 
of the power is measured by the transducer. 
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Two possible models for the PDF of the pressure drops 

From equation (1) it is clear that the tails of the pressure PDF, should be 
governed by regions with high velocity-gradients. In particular, the low pressure tail 
should result from vorticity concentrations. As usual, we have two possibilities to 
model this : either the shape of the pressure drops, i.e. of the velocity field of the 
filaments, is enough to explain the functional dependence of the low pressure tail of 
the PDF, or one should take into account the distribution of pressure drops in time 
(or space). Let us first consider the first possibility ; assume that on a ball B of size 
r centered on a vorticity filament, we have 

/ (u;2-<rV 
JB 

rocr. (3) 

Then Gauss's theorem and equation (1) give, |Vp| oc 1/r, thus 

p=p0Log—, (4) 
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where r is the distance to the vortex center and r0 is some scale larger than the 
characteristic one of the filament. The probability v(p)dp of observing a low pressure 
in the range \p,p + dp] is proportional to the probability of being at a distance r 
within dr from a filament, which scales as rdr. The PDF for the pressure drops is 
therefore, 

7r(p) a—exp —. (5) 
Po       Po 

However, one needs to check that the velocity field of the filaments satisfies (3). As 
emphasized by the referee of reference [8], a Burgers vortex (an exact axisymmetnc 
vortex solution of the Navier-Stokes equation) does not satisfy (6) because of the 
existence of a large dissipation around the core of the vortex. It is not obvious that 
the filaments in turbulent flows have the same structure, and it would be interesting 
to check this on numerical data. However, as said in our note [17] of reference [8], it 
is possible to model the pressure PDF with Burgers vortices if one takes mto account 
their distribution in time (or space). 

Let us consider for instance a collection of Burgers vortices, each one stretched 
by an axially symmetric strain flow [14]. If the size of their core is r0 and their 
characteristic vorticity u>0, the minimum pressure in the core scales as 

Pmin oc (r0o>o)2. (6) 

Now, because of the strain a, uQ increases exponentially in time up to a critical value 
for which the filament is destroyed [14]. Conservation of kinetic momentum implies 
that ,_, 

r0 wo = constant {') 

during the increase of vorticity. Thus, 

PmmOCWo. (8) 

Assume now that these vortices are generated at a constant rate; then, at any time, 
one has an exponential distribution of uQ, and consequently of low pressures. Fluc- 
tuations of the strain or of the critical u>0 at which the filaments are destroyed, would 
give a more stretched PDF than the exponential one. 

Note that an exponential distribution of pmt„ in the direct recording of figure 2 
does not rule out the first model, since it is precisely what could be expected from 
filaments sweeping at random distances from the center of the pressure probe. A 
PDF conditionned on a given value of pmin will hopefully discriminate between the 
above two possible models. 

The high pressure part of the PDF was fitted to (pmax - p)4 in reference [8], 
and understood in the spirit of the first model given above. However, a Gaussian 
fit is equally good for the tail and even better with the smallest pressure probes. A 
Gaussian behavior for the high pressure part is not understood theoretically, even 
with a simple model. 

Discussion 

The low pressure tail of the pressure PDF in this turbulent flow clearly results 
from vorticity concentrations in the form of nearly 2D filaments. It has been shown 
recently that a Gaussian velocity field gives a skewed PDF but with exponential 
tails on both sides [15]. This was also observed numerically for the low pressure tail 
[7]. I think that this agreement for the shape on the low pressure side is accidental; 
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the Gaussian velocity field does not involve strong vorticity concentrations, and thus 
underestimates low pressure fluctuations. For the high pressure part of the PDF, 
the Gaussian velocity field gives a qualitatively wrong prediction, and it would be 
interesting to understand why the dynamics imposes a sharper cut-off of the PDF. 

Although vorticity filaments do generate the strongest pressure fluctuations, 
their role in the energy transfers in turbulence is unclear. Filaments seem to have 
been considered as small scale structures of the turbulent flow, leading to question- 
able conjectures about their role in direct or inverse cascades of energy. This mistake 
probably results from the fact that, according to numerical simulations, their mean 
radius was found to be a few Kolmogorov lengths. However, it is fairly obvious that 
this does not mean that filaments contribute to the flow kinetic energy mostly at 
large wavenumbers; they contribute at all wavenumbers between the integral and 
dissipative scales, and certainly strongly at small wavenumbers; as shown by pres- 
sure measurements, they involve a large-scale characteristic velocity difference, which 
can be easily understood if one considers that they are generated by stretching of a 
large eddy. This also explains why the pressure PDF scales as the integral velocity, 
eventhough it contains a dominant contribution due to vorticity filaments in the low 
pressure tail.  It is clear that filaments locally (in space and time) violate isotropy 
and the mean Kolmogorov scaling, Av oc r1/3; however, further work is needed to 
claim that they are the source of intermittency. 

I acknowledge P. Abry and C. Laroche with whom I am performing the experi- 
ments on pressure fluctuations. I have also benefitted from many useful discussions 
with B. Castaing and A. Pumir. 
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Gulf Stream meandering: 
Some physics and some biology 

Glenn Flierl, MIT 

and 

Cabell Davis, WHOI 

Simple models of Gulf Stream physics and biology are used to assess the influence of 
meandering on the biological populations. For biological dynamics, we use a 
phytoplankton—Zooplankton—nutrient model. However, such models are rather ad hoc, 
and we describe new (for biological modeling) techniques for taking a complex, multi- 
component set of reaction equations and deriving a reduced set retaining the essential 
aspects. The full model is solved in a zero-dimensional system under appropriate forcing. 
The empirical orthogonal eigenfunctions are then used as basis functions for a reduced 
model. The projection of the equations on this basis set leads to a low-order system which 
can be incorporated into a two- or even three-dimensional model. 

Most of the biological activity occurs in the upper part of the ocean, so we must use 
some form of mixed layer model in the physical dynamics. We make the assumption that 
the upper layer is well mixed and average the equations over the mixed layer depth. When 
the layer is entraining, the nutrients tend to be increased, while the phytoplankton and 
Zooplankton are diluted (under the assumption that these cannot sustain themselves in the 
deep water.) In contrast, when the mixed layer is detraining, the material just below the 
interface has the same properties as the mixed layer and the properties in the mixed layer are 
unaltered. In the summer, the mixed layer depth is fixed by the surface stresses and the 
entrainment/detrainment is produced by the upward/downward motion at the base (driven 
by the meandering.) We assume that the properties below the mixed layer reach 
equilibrium (all nutrients) by the time the water upwells again. The lack of symmetry 
between upwelling and downwelling regimes implies that not only do fluctuating flows 
lead to time-dependent biological properties, but the average values are changed as well. 

For the physical dynamics, we use a 1-1/2 or two layer contour dynamics model. The 
1-1/2 layer model can form rings, if the initial perturbation is large enough; however, the 
two layer model permits baroclinic instability so that even a small perturbation can grow 
into an eddy and pinch off. The vertical velocities are much bigger in the baroclinically 
developing meander. The biological patterns show enhancement of the phytoplankton and 
reduction in the Zooplankton on the northward going branches, as upwelling brings nutrient 
into the mixed layer and dilutes the plankton. In the southward branches there is 
downwelling, but the flow is strong enough to carry the enhanced phytoplankton down 
through most of the meander. The changes in biomass are order 20% and may be difficult 
to observe since they are, in reality, embedded in significant cross-stream gradients. Yet 
they are large enough to suggest that meandering and eddy formation can be important 
modifiers of the biological state. 
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Generation of Solitary Waves by External Forcing 

by Roger Grimshaw 
Department of Mathematics, Monash University, Clayton, Vic 3168, Australia 

The forced Korteweg-de Vries (fKdV) equation is now established as a canonical 
model for the generation of solitary waves by the interaction of a flow with a topographic 
obstacle.   In suitable non-dimensional co-ordinates it is 

" Mr + A^x) + 6AAx + \xx + Fx = ° W 

Here   a*Afar)   is the amplitude of the dominant resonant wave mode,    aF(x)   is a 
representation of the topographic obstacle,   a2 A   is the linear long wave speed of the 
resonant wave mode, X = ex and r = ea2t where x is a spatial co-ordinate along the 
wave guide and t is time. The system contains two small parameters a and e where a 
is a measure of the amplitude of the topographic forcing and   e2   is a measure of linear 
wave dispersion.   The usual nonlinear—dispersive balance holds so that e2 = a2.   The fact 
that in the frame of reference of the topography the linear long wave speed is   a2 A   and 
hence 0(a2) defines the resonant condition here; in traditional hydraulic terminology the 
flow is supercritical or subcritical according as  A  is positive or negative.    Note that in 
this resonant system a topographic forcing of 0(a) produces a response of 0(a2) . 

The fKdV equation has been shown to describe the generation of solitary waves by flow 
interaction with topography in a wide variety of physical contexts (see, for instance, the 
review by Grimshaw, 1992). We note in particular that it describes the critical flow of a 
homogeneous fluid over topography (Akylas, 1984; Cole, 1985; Wu, 1987; and Lee et al., 
19S9), or the critical flow of a density stratified fluid over topography (Grimshaw and 
Smyth, 1986; and Melville and Helfrich, 1987), or the critical flow of a swirling fluid past 
an obstacle (Grimshaw, 1990), or the resonant generation of Rossby waves by flow 
interaction with topography (Patoine and Warn, 1982; and Grimshaw and Yi, 1991), or 
the resonant generation of coastally—trapped waves by the interaction of a coastal current 
with topography (Grimshaw, 1987; and Mitsudera and Grimshaw, 1990). In general the 
fKdV equation (1) is not integrable, although it is Hamiltonian with the Hamiltonian 
invariant 

H = f" {±AA* + ±42 - A* - AF}  dX (2) 

.00 

and also possesses the mass invariant    f   AdX.    Solutions must generally be obtained 
—  00 

numerically, and so far most interest has focussed on the case of zero initial condition (i.e. 
A(X,0) = 0) and isolated forcing when F(X) is typically modelled by a Gaussian-type 
function of amplitude F .    This situation corresponds to the generation of solitary-like 
waves by the critical flow over topography, and the key parameters are   A   and   F   , 
measuring respectively the criticality of the flow and the magnitude and sign of the 
topographic forcing. A representative solution is shown in Figure 1 for A = 0 and 
F  > 0 .   The main features of this solution are the generation of an upstream wavetrain, a 
stationary depression in the lee of the obstacle and a downstream wavetrain. In this 
Figure, the obstacle (not shown) is located at X = 86 , and has a half-width of about 3, 
while the flow is from left to right.   Grimshaw and Smyth (1986) describe a comprehensive 
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et of numerical solutions in which the parameters A and FQ are varied.   In general, for 

subcritical flow when A < 0 the upstream wavetrain is weaker and as A decreases will 
evSaUy SJach from the obstacle, while the downstream wav^aan correspondmgly 
intensifies and eventually as A decreases stationary lee waves form m the lee of the 
obstacle. For supercritical flow when A > 0 , the upstream wavetrain ^"»""^ 
to the obstacle but each wave takes longer to be generated, while the downstream 
wavetrain weakens and is swept downstream as A increases. 

Grimshaw and Smyth (1986) and Smyth (1987) provide a theoretical interpretation of 
these numerical solutions in which the hydraulic,W«««^ » «*^to^ 
modulation theory for the periodic solutions of the unforced KdV equation Consider for 
simplicity, the case of positive forcing (FQ>0) and resonant, or critical, flow. The 
hydraulic approximation omits the linear dispersive term (i.e. A^ in (1). It can then 

be shown that for critical flow when | A | < (12FQ)' , the hydraulic solution to the initial 
value problem is a locally steady flow over the topographic obstacle, consisting of an 
upstream elevation A_(>0) and a downstream depression A+ (<0J wnere 

6A± = A + (12F0)* • (3) 

Within the hydraulic approximation, this steady flow is terminated by upstream and 
downstream shocks, both propagating away from the obstacle However, withiithe 
context of the KdV equation, now unforced since the constant so utions A± occur 
essentially in the regions outside the isolated obstacle, these shock solutions are not 
perm sable and must be replaced by solutions of the KdV equation which resolve these 
step discontinuities. Such solutions can conveniently be described a^ymptoticall y.nterms 
of modulation theory for the periodic cnoidal wave solutions of the KdV equations, 
described, for instance, by Whitham (1974 Chapter 16) Tfe, details of this apP^ation of 
modulation theory are described by Grimshaw and Smyth (1986) and Smyth (1987). Here 
we note that the modulated wavetrains range in general from solitary waves of amplitudes 
;2A± upstream (downstream) at one end to small-amplitude sinusoidal waves at the other 

(see Figure 1), and occupy the respective zones. 

A - A A. < X/r < min {0 , A + 6 A.} , upstream 3a) 

or   max {0 , A - 2At }  < X/r < A - 12A+, downstream. (3b) 

Combining there relations with the hydraulic estimates (2) for A± we can deduce that the 

upstream wavetrain is attached to the obstacle for -4(12FQ)J < A < (12FQ)2 and 

detaches for -(12F )* < A < -i(12F )* , while the downstream wavetrain is detached 

from the obstacle for -*(12/y± < A < (12FQ)* and is attached to the obstacle with 

the formation of stationery lee waves for -(12F/ < A < -*(12jy* . Further, it can 

be shown that in the upstream wavetrain each individual wave eventually becomes a 
solitary wave as r -» » , thus leading to the description of this phenomenon as the 
generation of upstream solitary waves. Similarly, when the downstream wavetrain is 
detached from the obstacle, each individual wave eventually becomes a solitary wave. 

Similar interpretations are available for the non-resonant case, | A | > (12FQ)2 and for 

the case of negative forcing, FQ < 0 . 
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The fKdV equation (1) combines the ingredients of nonlineanty and linear wave 
dispersion with external forcing. In Mitsudera and Grimshaw (1991) we describe a model 
which adds the concept of flow instability to these basic ingredients. The model is a 
reduction from the two-layer quasigeostrophic equations in which a coastal current can 
support a baroclinically unstable wave which is simultaneously resonant in the sense 
described above. The model equations are a fKdV equation for the thin upper layer, 
coupled to a linear vorticity equation for the deep lower layer, given by, in 
non-dimensional co-ordinates, 

-{AT + A/lx) + 6AAx + Axxx + Fx+ fL tftf dy = 0 (4a) 

(4+  ^)(^+^+  Vx = 0 (4b) 
aCA' "Tyy 

where tp = 0 at y = -L , 0 (4c) 

and % = ß ~ u,yy - ^ • (4d) 

Here the two-layer fluid occupies a channel -L <. y < 0 in which the basic flow 
consists of an upper layer current tf(y) with tf(-L) = tf(0) = 0 and a lower-layer 
current   aU {y).    To leading order the upper-layer stream function is   aA{X , r) tf (y) 
and the lower-layer stream function is ofty (X , r ; y) . Here aj is the ratio of the 
upper-layer depth to the lower-layer depth, the upper-layer linear long wave speed is 
aA, aMX) is a measure of some topographic forcing in the coastline y■ = 0, A - ex 
and T = tat where x is a co-ordinate parallel to the coastline and t is the time. The 
small parameters a and t* again measure the amplitude of the topographic forcing and 
linear wave dispersion respectively, while here the appropriate balance between 
nonlinearity and dispersion requires that a = e2. 

To determine the linear long-wave stability features of the system (4a-c) we omit the 
forcing term (F ) , the nonlinear term (6AAJ and the linear dispersive term {A^ in 
(4a) and then seek solutions in which A is proportional to exp { ik (X - cr)} while ip = 
A<f>{y) .   We find that 

c - A + fl 4>Udy = 0 (5a) 

^+7C/i-(c^Vj^ = ° (5b) 

and       <j> = 0 at y = L, 0 (5c) 

A necessary condition for baroclinic instability is that Q^ < 0 somewhere, and a typical 
instability diagram is shown in Figure 2 where we see the occurrence of a bubble of 
instability as function of A. Interestingly the unforced system (4a-c) (i.e. F = 0 in 
(4a)) has a solitary wave solution A = a sech? {/(X - cr) } + d , where a = 2P and 
ip = A</)(y) provided that 

c - r + fl <t>Vdy = 0 (6a) 

and       r =  A - 2a -6d, (6b) 
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while <Kv) again satisfies the Rayleigh equation (5b with boundary conditions (5c). 
Comparton of föa, b) with (5a) shows that the only difference is that the lmear lonj; wave 
speed A is replaced by the solitary wave speed T Hence we can infer that the solitary 
waves exist and are stable except when A^ < T < AL where A^ < A < AL 

defines the instability bubble in Figure 2. But since for solitary waves r depends on the 
amplitude a (see (6b) and a must be positive since a = 2P) , we can expect tnat n 
unstable solitary waves occur they will increase in amplitude up to »^^ mphtude^ 
beyond which they stabilize. Numerical solutions of the unforced system (4a-c) contirm 
this expectation. 

When the forcing term   (Fx)   is included in (4a) numerical solutions of the system 
(4a-c) by Mitsudera and Grimshaw (1991) show that initially the solution develops into an 
upstream wavetrain, a stationary depression in the lee of the obstacle and a downstream 
wavetrain, similar to the solution of the fKdV equation  1).   Now however the^barochmc 
Stability mechanism contained in the system 4a-c) allows for the possibility that; other 
or Doth of these wavetrains may contain unstable waves.   In Figure 3 we show an example 
of a situation where the downstream waves are unstable, and in Figure 4 a case when it is 
the upstream waves that are unstable.    In these numerical solutions we put the channel 

width L = -2 and let  tf(y) =  (* + 4/JT)-' { cos (x/2 (y + 1)) + i sin (x/2 (y + 1)) } 
which  describes an asymmetric jet flowing ^ the positive i^irection        For the 
non-dimensional depth ratio we choose 7 = 2.5 (x + 4/TK   The forcing term F(x) is 
typically modelled with a Gaussian-type function of amplitude   FQ.    In both cases tne 
unstable waves grow in amplitude but simultaneously decrease in speed and eventually 
stabilize.       Although   these   waves   are   only   approximately   solitary   waves   the 
amplitude-speed relation defined by (6b), together with the en tenon that the w<aves are 
unstable only for  A^ <   T   <   AL ,  is found to provide a reliable guide to the growth 
and eventual stabilization of these waves.    Finally we note that Mitsudera and Grimshaw 
(1993a b) add the effects of interfacial and bottom Ekman friction terms to the system 
(4a-c).   This allows for the additional feature that multiple steady states can occur which 
describe a balance between nonlinearity, topographic forcing, baroclmic instability and 
frictional dissipation.   Further work on this kind of model is being pursued with the am of 
applying the concepts involved to the study of the meandering states of coastal currents, or 
or to the study of atmospheric blocking systems. 
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Figure 2: 
fff£fnErB ^S-^ve stability diagram for the system (5a-c).    Here 
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Figure 3: A   typical   solution   of  the   system   (4a-c)   showing   the   development 
downstream of unstable waves.    Here   FQ = 0.2 ,   A = 0 ,   ß = 1   and 
U = 0 .   In the lower layer we plot 0.575$x , r ; -1) . 
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Figure 4: A typical solution of the system (4a-c) showing the development upstream 
of unstable waves.       The parameters are as in Figure 3, except that 
U   = -1.6. 
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Solitary waves with oscillatory tails and exponential asymptotics 

by Roger Grimshaw 
i 

Department of Mathematics, Monash University, Clayton, Vic. 3168, Australia 

Solitary waves are traditionally conceived as localized disturbances of permanent 
form and propagating with constant speed. One of the classical prototypes is the 
solitary-wave solution of the Korteweg—de Vries equation 

u. + 6uu   + u      = 0 (1) 
l X XXX v    ' 

given by u = u (x - c t) where 

uo(x) = asech2(ix) (2a) 

and cg = 2a = 4^ (2b) 

Importantly in the present context we note that in the tail of the solitary wave, as 
\x- ci | -• oo ,   uß ~ 4c exp(-j \x— c t\) .    Thus the KdV-solitary wave (2a, b) is a 
genuine solitary wave, with exponential decay in the tail regions. 

However, it has recently become recognised that so-called solitary waves may not 
be genuinely localized and are in fact accompanied by co-propagating oscillatory tails 
which persist with non-zero amplitudes (see for instance the reviews by Boyd, 1989, 1990, 
who has called these objects "nanopterons"). This situation may occur in a variety of 
physical situations including the case of solitary water waves in the presence of surface 
tension where a combination of numerical work by Hunter and Vanden-broeck (1983), 
Vanden-broeck (1991) and Vanden-broeck and Dias (1992) and analytical work by Amick 
and Kirchgassner (1989), Iooss and Kirchgassner (1990), Beale (1991), Sun (1991) and Dias 
and Iooss (1993) has lead to the following general picture. In the absence of any surface 
tension, there exist solitary water waves of elevation, which can be described by the 
KdV-solitary wave (2a, b) in the limit of small amplitude. However, when the Bond 
number (measuring the effect of surface tension) is greater than 1/3 , there exist solitary 
gravity-capillary waves of depression, which can again be described by the KdV-solitary 
wave (2a, b) in the limit of small-amplitude. But when the Bond number lies between 0 
and 1/3 there exist two kinds of solitary wave; one kind contains waves of both 
depression and elevation with decaying oscillations in the tail region; the other kind 
consists of a solitary wave core of elevation accompanied by non-decaying tail oscillations. 
It is this latter non-local solitary wave which is the subject of our attention here. 

The first step in determining when non-local solitary waves can be expected to 
occur is to examine the dispersion relation for small-amplitude waves. For instance, the 
dispersion relation for gravity-capillary waves of phase speed c and wavenumber k is, in 
suitable non-dimensional co-ordinates, 

C2 = (* +k
Tk2) tanhk (3) 

where  r is the Bond number.   This is plotted in Figure 1 where we draw attention to the 
distinction between the cases 0 < r < 1/3  and   r > 1/3 .   Solitary waves are bifurcations 
from k = 0 at  c = c™' where f°> = 1 is the phase speed in the limit /,--> 0 , and always 
occur in the opposite direction to the sense of the linear dispersion.       Thus when 
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0 < r < 1/3   we see that   c   decreases below   c^   as   it increases,   and hence solitary 
waves can be expected with a speed c > c(o) . But from Figure 1(a) it is apparent that 
there is now a possibility of a resonance between this solitary wave and a gravity-capillary 
wave with a finite wavenumber     k   .       It is  this resonance which produces the 
co-propagating tail oscillations for the solitary wave.   By contrast, when r > 1/3 we see 
from Figure 1(b) that the bifurcation is now for c < r0' and no such resonance can occur. 

This simple consideration establishes when one can expect solitary waves to be 
non-local and accompanied by co-propagating tail oscillations, and also provides an 
estimate of fr, of the oscillation wavenumber.    However, it remains to establish that the 
resonance actually occurs, and this requires a calculation to determine the amplitude of the 
tail oscillations. Often, as in the case of gravity-capillary waves, this amplitude is 
exponentially small with respect to some small parameter characterizing the amplitude of 
the solitary wave core.   A typical form for the amplitude is 

(slowly varying function of i) exp(-jr/2c7) 

where e is the above-mentioned small parameter, and 7 is a physical constant. It 
follows that the tail amplitude cannot be calculated by conventional means using, for 
instance, power series expansions in e . Instead, the amplitude calculation requires 
exponential asymptotics, or "asymptotics beyond all orders" in the terminology of Segur 
and Kruskal (1987), and Kruskal and Segur (1991) who pioneered this technique in the 
present context. In this short article we outline a refinement of their method using a 
model equation as an illustrative example. The method we describe here is similar to the 
approach of Pomeau et al (1988) and Byatt-Smith (1991) for the same model equation, 
and fuller details can be found in Grimshaw and Joshi (1993). The same method can be 
applied to other problems, for instance to solitary waves (Akylas and Grimshaw, 1992) and 
to the Kuramoto-Sivashinsky equation (Grimshaw 1992,1993). 

Consider then the perturbed Korteweg-de Vries equation 

i x xxx xxxxx ' \*) 

which has been proposed by Hunter and Scheurle (1988) as a model for gravity-capillary 
waves when the Bond number is just less than 1/3 . Here we describe the construction of 
non-local solitary wave solutions of (4) when the parameter e is small. For solutions 
u = u(x-ct) equation (4) becomes 

-cu + 3u2 +  u     +  f2u       = 0 (5) 
xx xxxx \°J 

where a constant of integration can be effectively ignored in this context. The dispersion 
relation for the linearization of (5) is 

c =  -&  +   f2jfc* (6) 

The graph of (6) is similar to that of Figure 1(a) and hence we can expect a resonance to 
occur between solitary-like waves of speed   c> 0  and oscillatory waves of wavenumber 
kr * c     ,   noting that here the long-wave phase speed   c^ = 0 .    Further, for a given 
c > 0 the solution of (6) for k has two real solutions, and two pure imaginary solutions, 
where real solutions correspond to oscillatory behaviour in the tail regions (\x\ -* 00) and 
the pure imaginary solutions correspond respectively to exponential growth or decay as 
lzl ~\°° • Hence a pure solitary wave solution of (5) would require three boundary 
conditions as 1-*», and a further three as x->m, leading to an overdetermined problem 
since (5) is only a fourth-order differential equation. We can conclude that pure solitary 
wave solutions of (5) are extremely unlikely, and indeed the argument which follows 
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demonstrates that there are no local solitary wave solutions of (5), at least when e2 is 
sufficiently small. 

First we seek a regular asymptotic expansion u   of (5). where 
t s 

u   ~    E  e2nu (x),     c ~   E e2nc (7) 

Here   u   ,   c    are given by (2a, b) and correspond to the KdV-solitary wave, while 
«! = -5a« + 15w2/2 and  c = 4o2 .    The general terms  u  ,  c    are readily calculated 
by a recursion formula (in fact   c   =0   for   n > 2) .   It is found that this asymptotic 
expansion  u   contains no tail oscillations, and satisfies the symmetry condition that  u{x) 
= u(—x) . However, as already noted, the tail oscillations are exponentially small with 
respect to c, and hence cannot be detected by asymptotic expansions of the form (7). To 
find these tail oscillations we observe that   u    is singular in the complex   x—plane at 
i= ±(2n + 1) iw/2j (n = 0 , 1 , 2 ...) , and motivates us to consider the solution 
structure near these points.   Thus let 

* = % +  cq (8) 

and we then find that 

»,~M-? + ?-r + -) + 0(1)- (9) 

Next, motivated by the form of (9) we put    v = e2u   and change independent 
variables from i to j using (8) .   Omitting an 0(e2) term we get 

v       +  v    + 3tP = 0 (10) qqqq qq ^     ' 

Our aim now is to solve equation (10) subject to a matching condition obtained from (9)j 

f ~ - \ + p " fr +  •••> as   19|  - .    in Re(q) > 0  ,    Im{q)  < 0, 

(11) 

and the symmetry condition that Im{v(q)} = 0 on Re(q) = 0 , Im(q) < 0 . To solve 
(10) we use a Laplace transform 

v = exp(-sq) V(s) ds , (12) 
7 

where the contour 7 runs from s = 0 to infinity in the half—plane Re(q) > 0 , 
Im(q) < 0 . Substituting (12) into (10) we obtain the Volterra integral equation 

r s 

(54 + S2)   V(s) + 3       V(X)   V(s-X) dX = 0 (13) 
Jo 

From the form of (13) we can anticipate that V(s) has singularities at 5 = ±i, ±2?, .... 
(but not at s = 0) and the contour 7 must be chosen to avoid these. Standard iteration 
techniques can now be used to establish the existence of a unique solution V(s) of (13). 
To construct this solution we first try 

z^M- 



V{s) = E a 52n+1  . (14) 
o    n 

and substitution into (13) yields the recurrence relation 

"_1 (2r+l)i  (2n-2r+lV fl. a„_.* 'tolliV  
r=i 

for n =2,3... (15) 

f (2n-l)(2rc+6) \„    .„       , o V „  „      (2r+l)!  (2n-2r+l)! 
|(2ll+2)(2tt+3Jrn+an-l + 3^1 °ran-r^ T2i%!  

where a = -2 , a = 5 . Also substitution of (14) into (12) and term-by-term 
evaluation verifies that the matching condition (11) is satisfied. But as n -> oo , 
a
n ~ (-1)" K where K is a constant, found numerically such at A'« -19.97. It follows 

that the series (14) converges only for \s\ < 1 and for |s| > 1 on the contour 7, V(s) 

must be determined by analytic continuation using (13). But since a ~ (—l)n K as n-»oo 
we can infer that   V(s) has a singularity at s = ±i where 

v(s) ~ iff?   as s -+ ± j (16) 

In particular the contour 7 must now be chosen to pass to the right or left of the 
singularity at s = i.   To fix ideas we let 7 pass to the right (i.e. 7 lies in Re(s) > 0) . 

It remains to satisfy the symmetry condition on the imaginary f-axis. Further, it 
is immediately apparent that with V(s) given by (14) for \s\ < \ implying in turn the 
pole singularity at s = i (16), the expression (12) cannot satisfy the symmetry condition. 
The remedy is to add a subdominant asymptotic term to (12) so that now 

exp {-sq) V(s)ds + $ ibexp (~iq + iS), (17) 
7 

where b , 6 are real constants to be determined.    Note here that   | exp (—iq) |   is smaller 
than any power of q as |q| -»00 in Re(q) > 0 , and hence this exponential term does 
not affect the matching condition (11), and further exp(—iq) is an approximate solution of 
(10), again as |q| -»00 in Re(q) > 0 , Im(q) < 0 . The symmetry condition is now applied 
by moving the contour 7 to the imaginary s-axis, deforming the contour around the 
singularity at s= i.   We find that 

b cos 6 = -xK (18) 

The final step is to bring the solution v (17) back to the real z-axis using (8). Taking 
account of a corresponding contribution from the singularity at 1= —ix/2j we get, in 
x> 0 , 

u ~ us + |j exp(-£.) sin(f-£), (19) 

where we recall that  ug is given by (7) and defines the solitary wave core.    It is obtained 
from the integral term in (17), while the tail oscillation term in (19) comes from the 
subdominant exponential term in (17). The expression (19) defines a one-parameter 
family of non-local solitary wave solutions of (4), and this result compares well with the 
numerical solutions of (5) obtained by Boyd (1991). 
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As a final comment we recall that the non-local solitary wave solution (19) is 
symmetric, and contains tail oscillations, both as:r->coandasx-»-oo. It follows that 
this solution has an energy flux both as x-*a> and as x -» -co, and since here the group 
velocity is approximately 2/e2 (obtained from (6)), this is positive. Hence this solution 
can only be generated by appropriate energy sources and sinks as x -> -co and x -»oo. If 
instead equation (4) is solved with a localized initial condition, we expect the solution to 
consist of solitary waves accompanied by radiating oscillations to the right only. Such 
solitary waves cannot be exactly steady since they continue to lose energy to this radiation. 
These aspects are discussed further by Benilov et al (1993). 
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Figure 1(a):   Plot of dispersion relation (3) for r = 0.2 

Figure 1(b):   Plot of dispersion relation (3) for r = 0.35 
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Vertical Temperature Gradient Finestructure Spectra in the Gulf of California 
Juan A. Rodrigues-Sero, Myrl C. Hendershott 

Vertical temperature gradient finestructure in the upper kilometer of the water column in the 
Gulf of California was studied by making CTD vertical yoyos lasting a semidiurnal period at 
locations ranging from the center of Guaymas Basin (tens of km from coasts and thousands of m 
deep) to the shallow sills (a few hundred m deep) that separate Guaymas Basin from the shallow 
northern Gulf and over which spring tidal currents are likely to be supercritical with respect to 
internal wave speeds. Spring tide vertical temperature gradient (VTG) spectra observed at these 
yoyo locations show internal wave levels (defined below) that rise from near open ocean values in 
central Guaymas Basin to values about 15 times open ocean values very near the sills. Spring tide 
VTG spectra in central Guaymas Basin closely resemble open ocean spectra, being nearly flat at the 
lowest wavenumbers k < 0(0.1 cpm) and then falling off nearly as k_1. Further towards the sills 
the transition between the flat region and the k*1 falloff occurs at smaller wavenumbers, and the k"1 

region itself terminates with a region of increase towards very high wavenumbers. 

The differences in shape between different Gulf VTG spectra and between Gulf and open 
ocean VTG spectra are accountable for in a composite model of ocean vertical gradient spectra 
which connects the Garret-Munk internal wave spectra (flat at low wavenumbers k) with the 
Kolmogoroff and Obukhov Universal spectra (varying as k1/3 at high wavenumber) through an 
intervening saturated internal wave region (varying as k_1 between an internal wave saturation 
wavenumber kR and a higher wavenumber koz corresponding to the largest vertical scale at which 
overturning can occur). The composite spectral model is largely conventional, the new ingredients 
are (1) use of Gregg's recent suggestion that kinetic energy dissipation e has the simple 
dependance N2E2 on local Vaisala frequency N and Garret-Munk internal wave level E, and (2) 
care with constants in patching the spectra together. In the Gulf of California, where stratification 
is primarily determined by temperature, the resulting VTG spectra Fxz(k) vary with local mean 
vertical temperature gradient T0' and with E as: 

FTz(k)«(T0'2)E 
kR«E-l, 
F-rz(k) » (T0'2)/k 
koz -E-lCToW 
FTC(k) = E4/3(T0'2)5/3kl/3 

in which k* is a wavenumber corresponding to a low mode internal wave vertical scale. 

The scaling (1, 2, 3) with with T0' and with E (estimated from the low wavenumber part of 
the spectra) successfully collapses all the Gulf VTG spectra that have an approximately flat internal 
wave region followed by a k"1 saturated internal wave region. The scaling (3, 4, 5) successfully 
predicts the wavenumber koz at which the k"1 region terminates, but only qualitatively predicts the 
dependance on T0' of VTG spectra for k > koz- 

A further consequence of the composite spectral model is an estimate of internal wave 
induced diapycnal diffusivity Ky of heat or salt. In the open ocean this estimate yields Ky = 0.15 
cm2/s, but in the high internal wave energy region just south of the sills it yields Ky ~ 34 cm2/s. 
This is roughly a third of the value that would be required to completely account for spring-neap 
changes in vertical profiles of temperature recently observed in this part of the Gulf. 

Z^ 
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kR < k < koz, (3) 
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koz < k, (5) 



On the representation of a magnetic field as vector product of two gradients. 

Louis N. Howard 

Suppose a and ß are scalars evolving according to the scalar advection equation 

(!+.-v)(M)-o 

and let A = v« x V/3- To show that then A satisfies the induction equation [At = vx(vxA) = 
A-yv-v-yA (when div v = 0)], we may calculate as follows: 

Ai = yatxv/5 + yaxv18j 
= -V(v-V«)x V/?-V"X vCv-V/3) 
= -Vx((v-V«)V/?) + Vx((v-Vß)va) 
= V x[(v • v/J) v« - (v• V«) V/?] 
= vx[vx(v«x V0)] = Vx[vx A] 

Now if we have a magnetic field B(x,i) which at t = 0 has the representation B(x,0) = 
V«o X vA)> tnen we may take a° and A> as initial conditions for a and ß, which are to evolve 
according to the scalar advection equation. Then the field A = V«xv/3will satisfy the induction 
equation, as above, and assuming v such that this equation has a unique solution to the initial 
value problem (continuity and boundedness of v and its first derivatives would suffice, though 
considerably less would do), we conclude that B = A: i.e., the representation B = vax S7ß 
persists. 

If the region of interest is not all space and the flow crosses its boundary at some points, there 
are some further issues. Both the initial value problems for the advection equation and for the 
induction equation will require the specification of boundary data at inflow points in order to have 
unique solutions. If B and v are defined in all space but the region in which B(x, 0) = Vao x V A) 
is not all space, these boundary issues can to some extent be avoided by restricting attention not 
to the same region in space as at * = 0, but to the same set of fluid particles. Then the region in 
which we continue to have B = V a x V ß would itself move with the fluid. 

On being frozen-in 

If some region in space is occupied by a fluid continuum moving with velocity v(x,i), the 
particle paths are perhaps most clearly described as curves in the 4-dimensional space-time which 
are integral curves of the equations 

dx        .     . 
— =v(x,i) 

I  , (1) 
dT 

the 'world lines' of the fluid particles. The projections of these curves onto the space may be very 
complicated curves with many self-intersections, but in principle we can imagine the differential 
equations solved and the results expressed in the form x = P(x0,t0;t), this P giving the position 
at time t of the particle which at time t0 was at Xo. 

3oo 



For any vector field A(x) (which may also depend on t) we can define the 'lines' of the field as 
the integral curves (in space) of the system 

Ts = A(x)- 

The lines in this sense of the velocity field v(x, t), at time t, are the 'instantaneous streamlines'; 
while they coincide with the projections onto space of the particle paths when the velocity field is 
independent of time, they are in general not the same at all. The lines of a vector field A(x, t) are 
integral curves of 

g = A(M) (2) 

and may be described by functions of the form x = X(i,Xo;s), in which t appears simply as an 
extra parameter, Xo being the value of X when 5 = 0, the initial condition for the system (2) (in 
which t is arbitrary but fixed). Under fairly weak assumptions about the field A; e.g., Lipschitz 
continuity in x, the lines of the field exist and are unique. (If Xo is a critical point of (2) — where 
A = 0 — the 'line' through xo is of course just the point Xo itself.) The solutions of the equation 
can be extended from s = 0 forward and backward either for all s, or until the integral curve 
reaches the boundary of the region of definition of A. 

Now a vector field A may be described as frozen-in (with respect to the given velocity field 
v(x, i)), if the following is the case: Take an arbitrary line of A at time to, follow the fluid particle 
paths starting on this line at to to an arbitrary (different) time t\; if the resulting curve of particle 
positions remains a line of A — now of A(x, t{) — and if this is true for all to, <i and original lines, 
then call A "frozen-in." 

This geometrical or kinematic concept of being frozen-in is evidently a property of the lines of 
A, and not precisely of A itself, in the sense that if A is frozen-in so is any other field A(x,i)A(x,i) 
which has the same lines. To express this concept of being frozen-in in an infinitesimal form, we 
first solve the particle path equations (1) with the initial conditions (at r = 0): x = xo, t = to. 
This may be done, for instance, by Picard iteration for small r with the result (assuming suitable 
differentiability) 

x = x0 + Tv(xo,*o) + 0(r2) 

t = t0+T 

Similarly, we solve (2) to compute the line of A through the point x0 at t = to as: 

x = xo + aA(xo,*o) + ^s2A(x0,t0) • V A(xo,*o) + 0(s3) (4) 

Now taking the initial point xo in (3) as a point on this line of A corresponding to some (small) 
value of s in (4); i.e., 

x0 = xo + sA(xo,t0) + -s2A(xo,f0) • V A(x0,*o) + • • • 

(3) gives for some fixed (small) value of r a parametrization by s of the curve occupied at to + r 
by the particles which at to were on the line of A. The tangent to this curve thus has the direction 

^° + r^ • Vv(x0,to) + 0(T
2
) in which 

as as 

—5- = A(xo,t0) + sA(x0,io)- VHxo,to) + 0(s2) 
as 
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so to first order in s and r this tangent has the direction 

A(xo,*o) + *A(xo,*o) • V A(x0,«o) + rA(xo,*o) ' Vv(xo,*o) (5) 

If A is to be frozen-in, this vector should be parallel to the vector A at the corresponding point, 
namely (to first order) xo + sA(xo,i0) + rv(x0,*o), and at time t0 + T, which is 

A(xo,<o) + (5A(xo,/o) + rv(xo,to))-VA(xo,to) + rAt(x0,/o) = A + 5A-vA + r(At + v-vA) (6) 

(Here A and v, and their derivatives, are to be evaluated at XQ, t0.) The cross product of the 
vectors (5) and (6), to first order in s and r, is thus rA x (A* + v • y A - A • V v) and so if A is 
frozen-in we must have, at each interior point of the relevant space-time region, 

Ax(At + v-vA-A-vv) = 0 (7) 

To demonstrate the converse, namely that if (7) holds, or equivalently if A satisfies an evolution 

equation of the form 
At + v-yA-A-vv = AA (8) 

for some scalar field A(x,i), then A is frozen-in, we may proceed as follows. (To avoid consideration 
of flow across boundaries, we here just assume the fields are defined in all of the x-space. We also 
assume that v and A and their first x-derivatives are continuous.) 

Let X(a) be the solution of (2) for t = *o, with x(0) = x0; (X(s) gives a parametric description 
of the line of A through the arbitrary point Xo at time t0). 

Let P(xi,i) be the solution of -^ = v(x,i), x(*0) = xu (P(xi,<) is the position at time t of the 
Gil 

particle which at t0 was located at Xi). 

Let Qa(xut) = dPfx
Ut)- Then Q{j satisfies ^ = J^(P(xi,*),*Mw with Qt^to) = 

6ij. 

Let Y(s,t) = P(X(s),t). Y gives a curve, parametrized by s, which is the locus at t of 
the particles which at t0 occupied the line X(s).   We want to show that provided (7) (or (8)) 

holds then this curve is a line of A(x,<); i-e-, i*' is parallel to A(Y(«, *),<)• Now -^ = 

Qik(X(s),t)Ak(X(s),t0). We consider the antisymmetric tensor 

Cij(s,t) = — Aj(Y(s,t),t)—T^-Ai, whose vanishing implies the parallelism. Evidently Cy(«,*o) = 

0, since Qij is Sij at t = t0. We compute 

üg* = 1 [Qifc(X(5),OAfc(X(5),io)Ai(Y(5,0,0 - Qjk(^t)Ak(X,t0)MY,t)} 

= p-(Y(s, t), t)Qtk(X(s), t)Ak(X(s), to)Aj(Y(s, t),t) + Qik(X, t)Ak(X,t0) 

■(j^(Y,t)ve(Y,t) + Ajt(Y,t) 

P-(Y(S, t), t)Qik(X(s), t)Ak(X(s), t0)MY(s, t), t) - Qjk(X, t)Ak(X, t0) 
OXl 

^i(Y,t)ve(Y,t) + Ait(Y,t) 
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Using (8), this is 

^T = f^(Y>0<3^(X,foM;(Y,') + Oifcil*(Xf to)(^(Y,*)^(Y,0 + \Aj<y,t)) 

- |^(Y, t)QikAk(X, to)Aj(y, t) - QjkAk(X, t0)(Ae(Y,i)|^(Y, t) + AA^Y,<)) 

= ^(y,t)[QtkAk{XMAiV,t) - QjkAk(X,t0)At(Y,t)) 

+ ^(Y^a^X,^^,*) - QtkAk(X,t0)MY,t)] 

+ XiV^lQikAkiX^MVS) - QjkAk(X,t0)Ai(Y,t)} 

= ^{Y't)Cij + S7(Y'f)c" + W'K?«- 
Thus dj(s,t) satisfies a linear homogeneous system of differential equations in t with zero initial 

conditions, hence is identically zero. Consequently — is indeed parallel to A(Y,t), and the field 
us 

A is frozen-in. 

Remarks: 

a) The condition (7) is clearly weaker than the induction equation, though it is satisfied if A 
does satisfy the latter. There are, in fact, divergence free fields A which are frozen-in in this 
kinematic sense but do not satisfy the induction equation, for instance a field satisfying (8) 
with A not zero but a function only of t (when div v = 0), or a field evolving according to 
At + V x (A X v) = X(t) A (which also preserves div A = 0 if it holds initially) even if div v ^ 0. 

b) The meaning of the induction equation satisfied by a magnetic field B is not merely that the 
field lines are carried by the flow into field lines, but the stronger condition that the flux of B 
through any piece of surface which is carried with the flow is preserved. 

c) The induction equation is satisfied by the vorticity vector of an incompressible Euler flow, and 
from this we may conclude that the flux of vorticity through any piece of surface carried with 
the flow is preserved. Kelvin's circulation theorem follows from this, for any circuit which is the 
boundary of a surface lying in the flow domain. If the latter is not simply-connected, however, 
we cannot in this way deduce Kelvin's theorem for circuits which are not such boundaries, 
though it is in fact true for them: it follows directly from the Euler equations and the single- 
valued character of the pressure, independent of the connectivity of the domain. Thus Kelvin's 
circulation theorem is, for fluid dynamics, more fundamental than the vorticity equation. It 
does not seem that a similar extension, to the "circulation of the magnetic vector potential," 
is possible for magnetohydrodynamics, however, since presumably the flux through a circuit 
surrounding a hole could be externally altered; e.g., if a toroidal flow domain were one winding 
of a transformer. 
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Why do synoptic scale eddies like to go to the tropics? 
R.Kimura and H.B.Cheong 

(Ocean Research Institute of Tokyo Univ., Tokyo) 

Observational analysis: Synoptic eddies and the background pressure fields are sep- 
arated in weather charts at 500hPa to investigate the characteristics of propagation of 
disturbances produced by the baroclinic instability. The geopotential height data used in 
this analysis are objectively analysed data set from 1985 to 1991 provided by ECMWF. 
The weather charts for synoptic eddies and the background pressure fields were made with 
filtered data of periods from 2.5 to 6.5 days and of periods longer than 7 days, respectively. 

Spatial correlation of synoptic eddies were calculated at a base grid point at 45N. The 
correlation pattern depends upon the choice of the base grid point. We calculated 36 cor- 
relation patterns by changing the longitude of the base grid points by 10 degrees(at 45N). 
Fig.l is the result made by composite of all correlation patterns so that all base points are 
the center of the figure to eliminate longitudinal effects as done by Randel(1988). Since 
the synoptic eddies are produced by the baroclinic instability of the westerly, it is not 
surprising to get a wave train of a low and high pressure system propagating to the east 
direction along the latitude circle. However, there is a slight tendency for the wave to 
propagate equatorward. 
This tendency was confirmed by calculating the propagation-velocity vectors of the center 

1.0- gOW 

Lag 0 day 

90« 

9DE 

90E 

Lag +1 day •180 -90 

Fig.l One-point correlation map 
at 45N in winter season 500hPa. 
Contour interval is 0.1. 

90 180 
(degree) 

0 
angle 

Fig.2 Frequency distributions of angle with 
zonal direction, normalized by total frequency 
divided by 50. 

of individual pressure anomalies(both positive and negative) by comparing two weather 
charts with 12 hours interval. Fig.2 shows frequency distributions of angle between each 
propagation-velocity vectors and the latitude line(negative values mean equatorward prop- 
agation). In this figure we separate eddies in the developing stage from the decaying stage. 
Note that the distribution is not symmetric: The frequency of the equatorward propaga- 
tion is greater than that of the poleward propagation. Besides, the deviation from the 
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Symmetrie distribution is greater for the eddies in the decaying stage than for the eddies 
in the developing stage. This result implies that the equatorward propagation is caused 
by the barotropic process, because the baroclinic eddies turn out to be barotropic in the 
decaying stage. Encouraged by this fact, we try to explain this tendency by means of the 
non-divergent barotropic vorticity equation. 

Propagation of wave-packet and phase tilt: The linearized non-divergent barotropic 
vorticity equation with a zonal flow ü on a sphere is written as 

where all variables are non-dimensional, time being scaled by ft-1 and length by the radius 
of the earth. A is longitude, 9 is latitude and / is the Coriolis parameter, 2sin0. Let us 
introduce the stream function to express u = -||, v = ^ff and £ = V2^. If Eq.(l) is 
multiplied by (' cos 9 and averaged in the zonal direction 

ÖV   
—   =   -27-u'C'cos0 (2) 

=   +27-— (uVcos20), (3) 

where // is sine of latitude, V = (®, and 7 = ^(/ + C)- Tne posivive value of 7 makes the 
mean flow free from barotropic instability(Baines,1976). The zonally averaged enstrophy, 
V, represents the meridional distribution of amplitude of eddies when they are composed 
of only one zonal wavenumber or an isolated one. We are interested in the propagation 
of eddies rather than the wave activity discussed in Held and Hoskins(1985). 

• Meridional phase tilt: Let the stream function with single zonal wavenumber m 
be written as 

i//(\,6)   =   Cm(9)cos(m\) + Sm(9)sm(m\) 

=   y/Cl + Slcos{m\-mZ(9)}, (4) 

where mE is the longitudinal phase angle at latitude 9 i.e. raE = tan"1 %*-. Then, the 
meridional gradient of phase or the phase tilt is expressed as 

dE   _     1 u'v' cos 9 
~d9   ~   ^2     ^2     ' (5) 

When a vorticity anomaly is isolated, let (A0,90) be a point where §f = 0 i.e. the 
location of maximum amplitude. If the latitude is increased by infenitesimal amount 69, 
the longitudinal location of the maximum amplitude will be shifted by 6X. 
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where the first term in rhs vanishes by definition, and the differentiation in rhs is taken 

at (Ao,0o). 
If the rhs ofEq.(7) is multiplied by i>' and averaged, 

<5A     dE     WW cos 9 
(7) 

89     v'2cos29 

When the stream function is represented by a single wavenumber m, Eq.(7) is identical 

to Eq.(5). 
In the Eqs.(5) and (7), the NE-SW phase tilt is defined as positive and NW-SE is 

as negative. Then, the Eq.(3) can be used as a prognostic equation on wave-packet 
propagation in the meridional direction. Suppose that a wave-packet of zonal wavenumber 
m whose phase tilt is exactly NE-SW i.e. contant with latitude is located in mid-latitude. 
In this case the meridional gradient of üVcosÖ is positive to the south and negative to 
the north of the center of it. Form Eq.(3) this means that the wave-packet will propagate 
into low latitude. Therefore, the wave-packet with NE-SW(NW-SE) phase tilt is expected 
to propagate into low latitude(high latitude). 
•Phase tilt and wave-packet propagation with ü = 0, m = 6: Eq.(l) is represented 

■     i i 

day 73 

40 60 
t ime(day] 

Fig.3 Time evolution of V. Contour 
interval is 1/10 of the maximum of day 0 

LO        L/2 

Fig.4 Two phase configurations 
, NW-SE and NE-SW. CI is 1/5 of 
maximum of initial condition. 

L 

by spectral method with truncation N and time integrated with an appropriate initial 
condition. We consider an initial vorticity field given by 

C' = C — cos(raA)exp{-( 
cos 6*0 

45° and C = 0.1 

9 -0(K2-) 
10°  ' '' 

(8) 

with m = 6 , 0o = 45° and C = 0.1 . This vorticity field is symmetric with respect 
to the equator. Notice that this initial eddy field has no phase tilt. Fig.3 shows time 
evolution of V. The wave-packet initially located in mid-latitude propagate into low or 
high latitude, continuously changing the phase tilt. The initial vorticity field is dispersed 
by the dispersion relation of each modes of Rossby-Haurwitz waves; o™ = 1m 

n(n+l)" The 
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local maximum of the eddy amplitude propagates into high or low latitudes, by the 
interference of Rossby-Haurwitz waves. Around the day 73 the wave-packet shows an 
apparent tendency to propagate toward low latitude, while around the day 48 the wave- 
packet propagates toward high latitude. Vorticity fields of day 48 and 73 are shown in 
Fig.4. The phase tilt of them is NW-SE and NE-SW, respectively. 

• Effect of zonal flow: If the initial eddy given by Eq.(8) is located in a zonal flow, the 
phase is tilted by the meridional shear of it. Fig.5 shows the time evolutions of the initial 
eddy in the 4 zonal flows shown in Fig.6. The most striking feature in the presence of 
the zonal flow is that once the wave-packet propagates into high or low latitude, they are 
trapped there or reflected and eventually reach a certain latitude. These features can be 
explained qualitatively. The wave-packet 'A' is splitted into two parts by the zonal flow. 
The northern part whose phase tilt is NW-SE propagates poleward and the southern part 
whose phase tilt is NE-SW propagates equatorward. During the propagation the phase 
tilt is steepened more and more; the phase tilt of the northern part tends to be close 
W-E and the southern E-W. Before reaching the pole region the phase tilt of the northern 
part becomes NE-SW, the inverse phase tilt of initial stages, which means the turning of 
the propagation direction. The wave-packet 'a' is splitted into two parts also, but in this 
case with the reversed phase tilt compared with the wave-packet 'A'. The wave-packet 'a' 
tends to back to the mid-latitude forming a waveguide. In case of m = 6 the shear effect 
dominates over that of latitudinally varing Coriolis effect. The simple prognostic Eq.(3) 

10    20   30 
tim9(day) 

Fig.5 Time evolution of V. The zonal flow 
type is written on each panel. 

zonal  fLowCm/s) 

Fig.6 Zonal flows used here. 

is useful in interpreting the propagation of Rossby wave-packet in horizontal shear flow 
as in Yamagata(1976), where the trajectory of the wave-packet was calculated by the ray 
path theory. 

Packet velocity: The usual concept of group velocity cannot be used for the meridional 
energy propagation in our problem. Instead, we can define a 'packet velocity' on the basis 
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of the basic concept. The latitudinal location of largest amplitude is solely due to the 
zonal phase propagation of Rossby-Haurwitz waves in the absence of the zonal flow. In 
the presence of the shear flow, however, the location of largest amplitude is determined 
by both the shear flow and the dispersion of Rossby-Haurwitz waves due to the Coriolis 
factor. Which factor will dominate depends on the detailed profile of the zonal flow as 
well as the zonal wavenumber of the vorticity field. We define the 'packet velocity' as the 
propagation speed of the location of local maximum. Let the vorticity field be 

m+N 
C=   £C>nmMcos(mA + 0 (9) 

, where a™ = a™t + a™0, a™° is the initial phase in the longitude. Then, by definition 
and from Eq.(2) 

V   =   ^ECrC>/m(^)C(^)cos(ar-0, 
L l,n 

T£ = \i{ß)Y,l7Cpnß)Pn{ßWM<x?-<). 
l,n 

Let fj,Q be where f^- = 0 at t0. Then the packet velocity can be written as 

(10) 

(11) 

d» 

c 

Vgy'COS9=-^   = 
d2v fd2v" 
dßdt \dß2, 

(12) 

The differentiation with respect to n can be evaluated directly by using the recursion 
relation of Legendre polynomials. Once no is known, the packet velocity can be calculated 
for any zonal flow. We show the calculated 'packet velocity' of vorticity field of day 73 
in Fig.7. The presence of the zonal flow alters the packet velocity to a large extent. The 
zonal flow of 'A' enhances the equatorward propagation of eddies into low latitude, while 
'a' does not. 

-1- 

Fig.7 The packet velocity. The letters 
A,a,B and b represent zonal flow types. 
0 denotes the case without zonal flow. 
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Short Wavelength Instabilities of Riemann 
Ellipsoids 

Norman R. Lebovitz 
The University of Chicago, Chicago, IL 60637 

We consider families of astrophysical flows that are stable under the assumption 
that they are axially symmetric, but are unstable under even a small departure from 
axial symmetry. We adopt as models families of Riemann ellipsoids. These figures of 
uniform density are the only known exact models of self-gravitating fluids that depart 
from axial symmetry. Their stability has been the subject of many investigations, 
going back to Riemann [1] himself. Despite this long history, very little is known 
about their stability to perturbations of length less than, say, one-fourth the average 
radius. We use the geometrical-optics approximation to study the limit of short 
wavelengths. 

We consider a restricted class of steady-state Riemann ellipsoids, the so-called 
S-type family (see [2] for a description). In a frame of reference rotating with angular 
velocity u> about the x3 axis relative to inertial space, their semiaxes are aligned with 
the coordinate axes and they have further fluid motions with a velocity, relative to 
the rotating frame, given by 

Ui = \—x2,     U2 = -X—x1,     U3 = 0. (1) 

Here A is a constant parameter. The parameters A and u> are related to to the 
semiaxes al502 an<i °3 of the ellipsoid through the equations of fluid equilibrium. 
By virtue of Eq. (1) the vorticity of the flow is constant, having the value (R — 
—X[(ai/a2) + (a2/ai)] relative to the rotating frame, and the value (y = %J + (R 

relative to inertial space. The parameter space is conveniently taken to be the plane 
of (0,2/0,1,0,3/0,1). The permissible steady state figures occupy a horn-shaped region 
of the unit square in the first quadrant ([2]). In fact, they occupy two such regions 
because, for each ellipsoidal shape, there are two choices of the parameters A and u. 
One choice, for which |A/w| < 1, leads to the so-called direct configurations ; the 
opposite choice leads to the adjoint configurations. 

The stability of any one of these figures to small perturbations is governed by 
the Euler equations of fluid dynamics linearized about the steady-state solution. If 
the Eulerian perturbation of the Eulerian velocity field is denoted by u(x,t), the 
geometrical-optics approximation to u is achieved, to leading order, by the ansatz 

u(x,t) — exp{—}a(x,t), (2) 
e 
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where $ represents a real phase, the small parameter e is a nondimensional measure 
of the wavelength, and a is the amplitude, which may be spatially localized. We 
refer to k - V$ as the wavenumber, regarded as of order unity. On substitution of 
this ansatz into the linearized Euler equations under the assumption that the fluid is 
incompressible, one obtains the eikonal and transport equations (cf. [3]) 

d± = -L*k (3) 
at 

and 

— = f- (L + 2tt) + 2k~2kkt (L + ttj)a = Aa, (4) 
dt       \ ' 

which are compatible with the incompressibility condition a ■ k — 0. Here the matrices 

L and Q given by the formulas 

0 Aaa/02   0 \ / 0   -u   0 \ 

-Aa3/ai        0        0     ,    ft =     w     0     0     , 
0 0        0/ \ 0     0     0 / 

are constant. The general solution of Eq.   (3) is 

k = ko(Jl-ii*ßcos(\{t - to)), -Jl - fi\^sm(\(t - t0)),n), (5) 
y a\ y 02 

where // is a parameter representing the angle between the wave-vector k and the x3 

axis at t = t0. As a result, the equation for the amplitude has periodic coefficients. 
Since the instability or stability of the flow depends on whether the amplitude a 
grows with time or not, the mathematical problem is one of analyzing a certain linear 
differential equation with periodic coefficients (see [4],[5],[6]). This has been done 
with a combination of analytic and numerical methods. 

We now turn to the specific results of this analysis, beginning by considering 
certain special cases that can be treated analytically. 

The rigidly rotating ellipsoids of Maclaurin (for which a2 = ßi) and Jacobi (for 
which A = 0 and a2 < ai) have been the objects of numerous investigations over a 
period of centuries (cf. [7]). The Maclaurin figures are known to be stable to collective 
modes provided 03/01 exceeds the critical value 0.303 (this is the so-called point of 
dynamical instability, where the Maclaurin family becomes unstable, in the absence 
of dissipation, to perturbations described by spheroidal harmonics of order two). 
The Jacobi family is known to be stable to collective modes from its intersection 
with the Maclaurin line (at o3/ai = 0.583) to the point where (o2/ai,a3/ai) = 
(0.432,0.345) (the point of "pear-shaped" instability to perturbations belonging to 
ellipsoidal harmonics of order three). 

The transport equations reduce significantly in these cases of rigid rotation: A = 0 
so the wave-vector k is constant and Eq. (4) has constant coefficients. The analysis 
is easy and shows that no further instabilities are added to those previously known: 
the Maclaurin and Jacobi families are stable to short wavelength perturbations. 
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If the total vorticity relative to inertial space vanishes, the transport equations 
can be integrated explicitly, and the solutions are periodic in time, so these figures are 
stable. A more complete analysis shows that the curve in parameter space of these 
irrotational ellipsoids is embedded in a narrow band throughout which all solutions 
are bounded. These are therefore stable to short wavelength perturbations. 

A complete mapping of the domains of stability and instability can only be carried 
out numerically. The band of stability is found to occupy only a small fraction of the 
parameter space ([2]); the much larger region of instability abuts the line of Maclaurin 
spheroids, except near the region where the latter tend to a sphere. Consequently, the 
smallest departure from axial symmetry implies the instability of the corresponding 
motion. When these results are combined with the known instabilities to collective 
modes belonging to the second, third, and fourth ellipsoidal harmonics, even less of 
the parameter space is occupied by stable figures. 
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VORTICITY COORDINATES AND 
A CANONICAL FORM FOR BALANCED MODELS 

by Gudrun Magnusdottir 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge, Silver Street, Cambridge CB3 9EW, U.K. 

The shallow water equations on an /-plane 

The shallow water equations on an /-plane can be written 

dt 

dv a 
dt+Cu+^[gh + l(ui + ^)]=o, 

, (du     dv\ 

(i) 

(2) 

(3) 
Dh        Idu     dvy 

~Dt+ h[dx~+dy~y 

where u and v are the eastward and northward components of the velocity, h is the fluid 
depth, 

/i yt ri H 

(4) 
D_ 

Dt 
L       —       — 
dt       dx       dy 

the total derivative, and 
dv     du 

Q~S+d~x"~ Ty 
(5) 

the absolute vorticity. 
Now consider a transformation from the coordinates (x,y,t) to the new coordinates 

(X,Y,T), where T = t. The symbol T has been introduced to distinguish the time derivative 
at fixed {X,Y) from the time derivative at fixed (x,y). We require the new coordinates to 
be vorticity coordinates in the sense that the Jacobian of (X,Y) with respect to (x,y) is the 
dimensionless absolute vorticity, i.e., 

c = / 
d(X,Y) 
d(x,y) ' 

(6) 

If we eliminate C between (5) and (6), the resulting expression can be rearranged into the 
form 

d 
dx 

ly{U-^[{X-X 

(X-x)(^ + l)-(Y-y) 
dY_ 

\dy 

dY 
dx 

a*. 
dy. 

(r-9,|f + 1 )]}-• (7) 

Thus, the first term in braces can be expressed as dx/dy and the second term in braces by 
dx/dx, where x{xtV^)1S a scalar potential. This results in 

u = Tx + *f (X -x 
dY 
dx C-'M'^1 (8) 
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dx 
dy + 1/ tv      JdY       \     „,      A 

(9) dy   ' 7     v^      *;% 
We can regard (8) and (9) as a Clebsch representation of the velocity field (Lamb 1932, 
page 248; Seliger and Whitham 1968) or as generalizations of the geostrophic coordinates 
of semigeostrophic theory (Schubert and Magnusdottir 1993, hereafter SM, and references 
therein). 

To transform the original momentum equations we now take d/dt of (8) and (9) to obtain 

du      d  , t     ,, 2      2V1      MX,Y)       dU 

dt 

dv 

dx 

dU _+»^+i(, + 1,)]=/3*ig + fv 

where 

gH = gh+l(u2 + v2) + ^ + ±f (X-x) 
dY_ 

dt 
iY~y)-m 

(10) 

(ii) 

(12) 

Adding —(v to both sides of (10) and (u to both sides of (11), then using (6) and the original 
momentum equations (1) and (2), we obtain 

0, (13) 

0. (14) 

(15) 

(16) 

Equation (15) has been obtained by eliminating DY/Dt between (13) and (14), and (16) by 
eliminating DX/Dt between (13) and (14). These are the canonical shallow water equations 
where % involves the temporal variation of the Clebsch variables and where the derivatives 
of % are taken in (X, Y, T) space. The total time derivative (4) can be written in vorticity 
coordinate« 

In = W + UM+vW (17) 

The advantage of (17) over (4) is that the horizontal advecting velocity is expressed in terms 
of derivatives ofH by (15) and (16), which are mathematically analogous to the geostrophic 
formulae. 

The governing equation for the absolute vorticity can be derived from (15) and (16) or, 
in the usual way, from (1) and (2). Combining the vorticity equation with the continuity 
equation (3) so as to eliminate the divergence, we obtain 

fdYDX 
J \ dx Dt 

dX DY\ 
~ dx Dt)+9 

dU _ 
dx 

fdY DX 
f\dy Dt 

dXDY\ 
~ dy Dt)+9 

dU _ 
dy ~ 

Together (13) and (14) imply that 

U = 

v = 

DX 
Dt 

DY 
' Dt 

gdn 
fdY 

gdU 
fdX' 

i 

Dh* 
lit 

0, (18) 
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where h* = (//() h is the potential thickness (or the reciprocal of the potential vorticity), 
which is simply the thickness a fluid column would acquire if the absolute vorticity £ were 
changed to the constant reference value /. 

We can now summarize the above as follows. In vorticity coordinates the independent 
variables are (X,Y,T) and the transformed governing equations are 

\d(X,Y) 
h* 

dy_ 
dx 
dx 
dX 

+ dx 
dx -\f{Y 

dx    2l{ 

f(Y - y), 

f(X - x), 

V~    fdY' 

g^dH 

fdX' 
V 

Dt      yv 
h) + I(w2 + r2) _ 1/ [(x - x)(V + v)-(Y- y)(U + «)]. 

Dx 
~bl 
Dy 
Dt 

Dh* 
Dt 

= M, 

0. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Equations (20) and (21) are simply the vorticity coordinate versions of (8) and (9). Equation 
(24) is derived by combining (8), (9) and (12). Taken together, (19)-(27) constitute a system 
of nine equations for the six diagnostic variables h, u, v, H, U, V and the four prognostic 
variables x, x, y, h*, with the total derivative given in (X, Y, T)-space by (17). Obviously, 
an additional relation is required. If the additional relation is simply a definition of ft, and 
if this definition is inserted between (21) and (22), then the time evolution of the prognostic 
fields X,x,y,h* can be found by sequential calculations in the order given. 

In fact, we have some freedom in choosing the additional relation. For example, the 
choice n = 0 leads to the conclusion that DX/Dt = U = 0 and DY/Dt = V = 0, i.e., the 
vorticity coordinates move with the flow so that D/Dt = d/dT. In addition, the right hand 
side of (24) is simplified and we now have three diagnostic equations, in addition to the four 
prognostic equations. 

Notice three interesting features of the transformed system (19)-(27). Firstly, the system 
consists of four predictive equations rather than three, as in the original shallow water equa- 
tions (1) (3). The additional prognostic equation is due to the added information content in 
the solutions of the transformed system. This is most apparent in (25) and (26), which de- 
termine Lagrangian particle trajectories. This trajectory information is not directly available 
from solutions of the Eulerian equations (l)-(3). The second interesting feature of (19)-(27) 
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is the natural way in which the predictive equation for potential thickness emerges. The third 
interesting feature is the freedom in choosing how the vorticity coordinates move. This last 
feature is useful in the derivation of balanced models through approximation of the primitive 
set (19)-(27). One such balanced model is the semigeostrophic model, the derivation of which 
is discussed in SM. 

There is a certain arbitrariness to the system (19)-(27) in the sense that the representation 
(8)-(9) is not the only representation leading to (6). In fact (8)-(9) is only unique to within a 
canonical transformation. We can regard (8)-(9) as the definitions of the vorticity coordinates, 
(X,Y), in terms of u, v and x- Our choice in (8)-(9) was in part motivated by the desire to 
represent both directions on the /-plane equally. 

The quasi-static primitive equations in spherical coordinates and a general struc- 
ture for balanced theories 

When considering the quasi-static primitive equations in spherical and isentropic coordi- 
nates we proceed similarly to the previous section (for details see SM). In particular, we now 
require the three components of vorticity to satisfy: 

(£, 77,C) = 2fi sin $ 
/ad(A,sin$)  a#(A,sin$)  d(A,sin<fr)\ .    . 
V     d{4>, s)     ' cos <f>d(s, A)' d(\, sin 4>)) ' (    ' 

where (A, <j>, s, t) are the original coordinates, (A, $, 5, 7) are the new coordinates and S = s, 
T = t. This leads to a Clebsch representation of the velocity field expressed as: 

UCOS(/) = J*_ + |na(A - A)^f£^ - ifia(sin2 ft - sin2 <^)^^, (29) 

d\      i^ ,k     , x d(sin2 ft + sin2 (f>)     ,_   .. , ^      . » ,^A .    . 
V = ^k+ 2     (    "   ]    d4>      " 2     ( "        ^W {) 

0 = g + |0a2(A - A)^^ - ^a2(sin2 ft - sin2 <t>)fg. (31) 

Transforming the two momentum equations and the hydrostatic equation, we obtain 

where U = a cos ft DA/Dt, V = aD$/Dt, and M involves the temporal variation of the 
Clebsch variables, A, ft and x- These are the canonical quasi-static equations. Now, the total 
derivative in (A, $,S,T) space can be written as 

D~t = dT + UacoS*dA+V^d*+SdS' (33) 

where S = s since S = s, resulting in the same advantage as before; that of being able to 
express the horizontal advecting velocity in terms of derivatives of M, which by (32) are 
mathematically analogous to the geostrophic formulae. 
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Consider the potential pseudodensity, defined by 

'2ft sin $' /2ft sin $\ 

{-r-r (34) 

where a = -dp/ds is the pseudodensity. The potential vorticity, P, and the potential pseu- 
dodensity are related by Pa* = 2ftsin*. The potential pseudodensity equation, which can 
be easily obtained from the potential vorticity equation, has the flux form 

da*       d(a*U)       d(a*Vcos$) , d(a*S) 
+ + + 0. (35) 

dT  ' acos$9A '     a cos $#$ OS 

This is identical to the form of the potential pseudodensity equation found in many balanced 
model studies mentioned in SM. Here, it has been derived from the quasi-static primitive 
equations on the sphere. An advantage of (35) is that the velocity that accomplishes the flux 
is simply expressed in terms of derivatives of M by (32). 

The potential pseudodensity defined by (34) can also be expressed in terms of a Jacobian. 
To obtain this Jacobian form we first note that from the definition of pseudodensity we can 
write 

dp        d(\, sin <f>,p)        d(A,sin$,S) d(A,sin<ft,p) 
ds #(A,sin<£,s) d(\,sm<j>,s) d(A,sin$,S) 

C      \ d(\,sin(t>,p) 
V2ftsin$7 

(36) 
v2ftsin$y 0(A,sin$,S)" 

Then, comparing (36) with (34), we obtain the Jacobian form 

d(\,sm(f>,p) _ 
9(A,sin$,5) 

Using the gas law and the form of the hydrostatic equation given in the last entry of (32), we 
can write (37) as 

(37) 

R 

dX d sin <p 
cos *9A      cos $9A      cos *9A V^ dS I 

(Pm\ 

ax 
9* 

dS 

9 sin <j> 
9$ 

d sin <j> 
dS 

-d_(0dM\ 
9* \r dS ) 

dS \r dS ) 

+ <r" 0. (38) 

If approximations to (29) and (30), along with a balance assumption, allow A and sin <f> to 
be expressed in terms of M, then (38) becomes an invertibility relation, relating a* and M. 
This invertibility relation and the predictive equation (35) then give a, succinct mathematical 
description of the dynamics. Thus, the pair of equations (35) and (38) constitute what might 
be called the canonical form for balanced models. 
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Necessary Conditions for Statistical Stability: with Applications to Large 
Scale Flow Due to Convection 
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ABSTRACT 

In this study, the mean properties of solutions associated with the statistically steady 
states are sought. A necessary condition that the Reynolds stress and its equivalent 
thermal transport term are time independent is that global integrals of the square of all 
perturbative departures from these transport terms decay with time. For that special 
set of perturbative departures from a statistically stable mean which have the spatial 
and temporal form of any one of the other solutions to this problem, and have no global 
correlation with other solutions, it is possible to determine a first set of integral properties 
of the solutions characterizing stability. For example, in the symmetry breaking large 
scale shear flows observed in high Rayleigh number convection, the first condition found 
is that the sum of the mean squared convective terms and a function of the Rayleigh 
number times the mean squared Reynold stresses must be maximum among all possible 
solutions. For these criteria to be usefully sharp, it is speculated that the necessary 
conditions "approach" the sufficient conditions as the density of adjacent solutions in 
the phase space becomes large. Of course, these many solutions include the observed 
highly disordered flows in space and time. How can one estimate their properties?... 
One quantitative approach is upper bound theory. A recent study by L. N. Howard 
(1990) determines the minimum Rayleigh number for a prescribed heat and momentum 
flux in plane parallel convection. Here one can use these results to make a first estimate 
of the large scale mean flow and the corresponding heat flux (less than the maximum 
possible) which lead to optimal statistical stability for a given Rayleigh number. The 
very limited experimental data support the theory, but begs for further data to determine 
the theory's limits of validity. 

INTRODUCTION 

In turbulent pipe flow one is confident that the average velocity profile for a given 
Reynolds number will be the same profile tomorrow - and next year. Yet the detailed 
fluid motions responsible for this local average will never be the same. Such a statisti- 
cally steady state is also critically balanced, in that a small change in Reynolds number 
leads to a (non-linearly) different average velocity profile. However, no deductive ap- 
proach from the basic equations to this statistical stability problem is to be found in the 
literature. 

The question raised above lies in a small domain of the general problem of non- 
equilibrium statistical mechanics. There are at least two schools of inquiry. The Brus- 
sels school would start with Newton or Schrödinger and follow the path of Boltzmann. 
Deductive advance beyond dilute gas kinetic theory has been slight. The second school 
following from Gibbs, has a Bayesian base, but similar objects of inquiry, with similar 
success. Most physical scientists find little comfort in either the Brussels or Bayesian 
approach. They appear to believe that the questions as posed are "bad questions", that 
is that the rate of occupancy of the phase space and initial conditions determine the 
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observations - and that no general quantitative results will be forthcoming. Yet the 
Bogoliubov-Kolmogorov work and much of modern turbulence theory fall in one or the 
other of these schools. 

The example of pipe flow given in the first paragraph, in idealized form, is a well- 
posed problem in the Hadamar sense, and suggests a different approach to determining 
the properties of the statistically steady state (= s3) in a macroscopic continuum. The 
alternative explored here is to presume knowledge of the average features of the many 
macroscopic solutions including and adjacent to a particular s3 and seek to establish the 
properties of the subset of these solutions which can survive disturbances of arbitrary 
amplitude and form. Having established at least some of the properties characterizing I 
this s3, one can then use formal bound theory to predict their dependence on the (forcing) 
parameters, without the introduction of empirical functions or constants.   Hence the j 
adequacy of these properties to define the s3 can be "falsified", or more generously, the | 
"limits of validity" can be determined. 

Determination of a Necessary Condition for the s3. j 

The Boussineq equations for plane parallel convection with a large scale horizontal 
flow are written i 

(^-1/^)V = --VP-W'Vy + agTk (1) | 
at p 

V • V = 0 (2) | 

(^_«V2)T=-V-VT (3) 
at . 

where V is the velocity, P the pressure, T the temperature, and v, K, p, a, g, are constants | 
determining viscosity, conductivity, density, coefficient of expansion, gravity, and k is the 
unit vector in the z direction. Consider the horizontal average of eq. (3) (over x, y -> oo), . 
written as (—), | 

^T-KTZZ = -(^)Z (4) 
at I 

where w = V • k, and 9(r,t) = T{r,t) - T{z,t). I 

Now for all initial conditions « 

^ - 0 only if l@6)t -» 0, or 1(50) -> 0 (5) 

This state is (believed to be) realized in real geometries.   The resulting thermal I 
"profile" T(z) appears to be unique and is akin to the average velocity profile in the 
pipe of the introductory paragraph. j 

The idealized statistically steady state, s3, is defined here to be stable against all 
possible disturbances.   A necessary and sufficient condition for the fields w0(r, t) and J 
0o(r, t) to have an s3 horizontal average is that for all possible disturbance w'(r, t) and j 
0'(r,t), where V • v' = 0 and w' = 0' = 0 on the boundaries, ' 

|"|A + ^ + ^ + ^i<0 (6) I 
ijli I 
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at any instant t = t0. Note that the time development of w,6 due to the basic equations 
(1), (2), (3), will lead to other w',0' from among all possible disturbances, which in turn 
are required to satisfy (6) if wQ(r,t) • O0(r,t) is to be a s3. 

It follows from (6) that a necessary condition for w0$0 to be one of the realizations 
of a unique s3 is that 

^<& + w% + wiiF]2>    < 0 at each t = i0, (7) 
at 

where <       > indicates an average over the entire system. 

Condition (7) must be met also by that subset of disturbances w',9' which have 
arbitrary amplitudes but the spatial and temporal form of other solutions to the basic 
equations which can equilibrate but are unstable (e.g., the many steady cellular solutions 
which are not realized at large Rayleigh number.) 

Here, (7) will be used to seek a primary selection criteria for a s3 among the many 
(unknown) solutions. To implement this search the subset of test disturbances is further 
reduced to include only solutions which are not spatially correlated over the (infinite) 
horizontal domain. That is, where w' = Awx and 9' = BQX,A and B are arbitrary 
amplitudes, and wx = wi(r,< = to),01 = 0i{r,t = t0) is another solution to the problem 
at some arbitrary initial instant, then wQ,6x = wl6Q=z 0. It follows from eq. (7) that at 
any instant t = to 

A2B^ < (Mi)2 >< 0. (8) 

For the selection criteria which emerges from (8) to be usefully sharp, it is speculated 
that the density of adjacent solutions in the phase space must become very large. 

For the large scale mean flow observed in convection, consider V = V(z, t) + v, and 
from Eq. (1)   

^ - uVzz = -(wü)z (9) 

paralleling eq. (4), where here u = v • i. 

Then paralleling the discussion leading to eq. (8), in a first instant 

jt < (»)2 >,< 0 (10) 

where v' = Avx. First integrals of eqs. (4) and (9) for equilibrated solutions are 

H = -KTZ + w0 and M = -vVz + wü. (11) 

where H and M are constants for plane convection. 

Using the Schwarz inequality it follows that eqs. (8) and (10) are met if d < v > 
jdt < 0 and d < 6a > /dt < 0 in the first instant. 
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and 

From the basic equations (1), (2) and (3) the disturbance integrals for this case are 
written 

d<v'2> = „ < v'. v
2v' > +ag < H7W > - < »(Fo)z >< 0 (12) 

dt 

3 <f > =K<6'- V20' >-< ^W{T0)Z >< 0. (13) 
dt 

It is convenient to scale the variables at this point, writing, 

* „     agATd3 v ,     —* _ «»* 

where d is the vertical dimension of the convecting layer and AT is the temperature con- 
trast between its boundaries. Then, from eqs. (10), (11), (12), so scaled, the condition 
for s3 is written 

< h-ih-h) > +|(< "^^ >)<m1(m-m1) >    >0 

from which it follows that a necessary property which characterizes s3 is that 

<tf>4(l-<«*>-*)'>}<n.'>Sq (14) 
R { < h > J , 

is a maximum. 

Implementing the necessary conditions for s3. i 

An upper bound on (14), subject to derived integral constraints on < v2 > and I 
< e2 > can be found which leads to Euler-Lagrange equations describing an entire field 
of temperature and velocity which will generate this bound. This study is under way, I 
and like the earlier work, Busse (1978), contains an entire spectrum of motions.  Yet, | 
there is the observed remarkable gap between the many small scale motions which drive 
the flow and the very large scale flow, seemingly symmetry breaking, but reflecting I 
the large scale geometry (e.g., Krishnamurti and Howard (1981), Zocchi et al.  (1990). I 
Here, by great good fortune, a recent study by Howard (1990) can be applied to find a 
formal maximum to (14) directly from the integral constraints. Howard determined the 
minimum R for given < h > and < m >, in a paper entitled "Convection with Shear has I 
its Limits". This observation is apparent in eq. (1), where one sees that the last term, 
involving Vz "uses up" buoyancy, hence reducing the convective heat flux.   Although 
there are many interesting bifurcations along the way to high R, only that high R limit 1 
will be described here. Howard established relations between < h >,< m >, and R for I 
< h » 1 and < m » 1, subject to two integral constraints. In this limit the bracket 
{    } function of h in eq. (14) approaches the value 1/2, and I 

<h2>   =   < h >2 +0(< h >) 
< m2 >   =   <m>2 +0(< m >) (15) 

R<h>   >   <m>2 I < h >+(U/3) < h3 > 
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for the special case a = 1. From eq. (14) one finds that the maximum value of Q, eq. 
(14), occurs for maximum < m > . In this limit, and for a = 1, Howard's study leads to 

< m >max< 2^64^ (16) 

From Busse's (1978) upper bounds for shear flow applied to this case, which use the 
same integral constraints used by Howard, and for a = 1, one finds that 

< m >~< V2 > /(-)2 (17) 

Therefore, from eqs. (16) and (17), redimensionalizing, 

>0:'=\{ha!>hTi^ <18) 

It is seen that < V > is a fraction of the "free-fall" velocity squared, (agATd). 
Although the preceding bounds were made for a = \,a is retained in eq. (17) as a 
first determination of the a dependence for a = 0(1). This result, eq. (17), as an upper 
bound, is in such good agreement with the limited observations that a fortuitous element 
in the reasoning or data is suspected, which one will now endeavor to remove with a 
more complete theory and new experiments. 

Conclusions and Acknowledgments 

The search continues for the most revealing physical hypothesis which leads to further 
optimal properties for the statistically steady state (s3). The path described here may 
point the way. Combined with the formal tools of upper bound theory, now supplemented 
by new constraints made accessible by computer, many qualitative and quantitative 
features of the organization of turbulent flows may be revealed, (e.g., the "origin", from 
stability theory, of large scale magnetic fields). 
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Three-Dimensional, Hamiltonian Vortices. 

Steve Meacham 
Dept. of Oceanography, Florida State University. 

Abstract. 

I demonstrate a Hamiltonian-moment method of approximating flows dominated by 
coherent concentrations of vorticity, developed by Flierl, Meacham & Morrison (1993), 
by applying it to an ellipsoidal quasigeostrophic vortex in a shear flow. In this partic- 
ular case, the approach yields exact, as opposed to approximate, equations of motion. 

1. Introduction. 

As one possible model of an intrathermocline vortex in a shear flow, one can con- 
sider a blob of uniform potential vorticity embedded in an unbounded, uniformly 
stratified, quasigeostrophic flow. Such a model was examined by Meacham et al. 
(1993) (hereafter, MPSZ) who showed that when the background flow was given by 

a streamfunction of the form 

* = \u{x2 + y2) + -e(x2 - y2) - ryz (1) 

an initially ellipsoidal blob of potential vorticity will remain ellipsoidal for all future 
times. This result and its proof is really a generalisation of a result from the theory of 
vortices in 2D Euler flow - that an elliptical patch of uniform vorticity in a background 

strain flow will remain elliptical (Kida, 1981). 

The motivation for the work of Meacham et al. was a desire to try and understand the 
conditions under which a shear flow might cause a vortex to break up. In MPSZ, it 
was shown that the motion of the ellipsoid was described by a six-dimensional system 
of nonlinear ODEs. These were written in terms of three variables that describe 
the shape of the ellipsoid - the semi-axis lengths, a(t), b(t), c(t) - and three that 
describe its orientation - the Euler angles 4>(t), 0(t), ij>{t). These equations are rather 
complicated, a fact which limits their utility and makes it difficult to classify all of 
the modes of behavior of the vortex. It was conjectured (MPSZ) that these equations 
correspond to a Hamiltonian system but while it is possible to show this directly for 
certain particular forms of *, MPSZ were unable to do this for the general case, (1). 

It was also noted in MPSZ that their dynamical system posesses several conserved 
quantities - i) vortex volume, ii) particle height, and Hi) excess energy. Volume 
conservation can be exploited quite readily to reduce the system from sixth-order to 
fifth-order but it is very difficult to achieve any further reduction of order by exploiting 

the remaining integrals of motion, (ii) and (Hi). 

Working with Phil Morrison and Glenn Flierl, I have come up with a better represen- 
tation of the same system. Here, I define better to mean more useful in the sense that 
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one can better exploit the integrals of motion and more easily classify the behavior 
of the vortex. I achieve this by using a Hamiltonian-moment formulation in which 
a truncated set of spatial moments of the vorticity distribution are used as dynami- 
cal variables and substituted into a non-canonical Hamiltonian representation of the 
equations governing the evolution of continuously stratified quasigeostrophic flows. 
This approach provides a general method for obtaining finite-dimensional approxima- 
tions to flows dominated by coherent but separated blobs of vorticity. For the case 
considered here, it leads to an exact set of evolution equations. A more comprehensive 
treatment of this problem can be found in Flierl, Meacham and Morrison (1993). 

2. Derivation of the moment equations. 

We begin with Morrison's Poisson bracket for continuously stratified quasigeostrophic 
flow (see Morrison's lectures earlier in this volume.) 

«°>-/«[£ dxdydz (2) 
\SF  8CT 

where [A,B] is the horizontal Jacobian dxAdvB - dyAdxB and q is the potential 
vorticity 

We assume uniform stratification and scale z by N/f so that the potential vorticity 
relation becomes isotropic 

q = W (3) 
We consider a compact vortex consisting of an ellipsoidal volume of uniform unit 
potential vorticity anomaly (formally q') embedded in a uniform potential vorticity 
background flow. We will use two Cartesian coordinate systems. One, Oxyz, fixed 
with respect to the underlying /-plane and the other, Oxyz, moving with the principle 
axes of the ellipsoid. In both cases, the origin coincides with the center of the ellipsoid. 
The background flow is described by a streamfunction of the form 

y=-(jl>(x2+y2) + -e{x2-y2)-Tyz (4) 

while the vortex generates an additional contribution ij)'. Provided that the shape of 
the vortex is ellipsoidal initially, it will remain ellipsoidal in such a flow. This shape 
can be described by a set of time-dependent semi-axis lengths, {a(t), b(t), c(t)}, while 
its orientation can be expressed in terms of Euler angles {<£(<)> #(*)> VK*)}- We define 

these so that the transformation between the fixed and co-rotating reference frames 
is 

where 

x = MTx (5) 

cos <f>     sin <f> 

— sin<f>   cos<f>   0 )       (6) 

0 0 
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The state (shape and orientation) of an ellipsoid is uniquely determined by the values 
of its six quadratic moments {OJ| * = 1,... ,6} defined by 

TJlj = x m$ = z m2 = xy,        m3 = y ,        ra4 = yz,        m5 = zx, 

a< = \i I q'midxdydz. 

Here, fi = 15/(4irabc). Thus, 

We see that, for variations that preserve the ellipsoidal property of the vortex, 

8JL 
Sq 

OF 
= fl^—mi 

It can be shown that in a background flow of the form (4), an initially ellipsoidal 
vortex will remain ellipsoidal (MPSZ). Within this restricted class of variations in q, 
the Poisson bracket may be rewritten in the form 

[mj,mfcj {F,G} = ^Jq— — [ 

where the symplectic matrix J is 

Jij = fi2  / q[mi,m.j] 

Applying this to the moments, we obtain 

dH 
äi = {ai,H} = j-^: 

r„ ^      dG TijdF 
(7) 

(8) 

(9) 

We note that [mi,mj] is itself proportional to some mk(itj) and find that J takes the 

form , „ « 
/    0 2aj 4a2 2a5        0 0\ 

-2ai 0 2a3 a4 -a5 0 
-4a2 -2a3 0 0 -2a4 0 
-2a5 -a4 0 0 -a6 0 

0 a5 2a4 a6        0 0 
\    0 0 0 0         0 0/ 

/* 

We now assume that the excess energy for the system, defined as 

(10) 



is the appropriate Hamiltonian for this system. Evaluating the integral in (10) yields 

where Vo = a-bc, 

and 

R = T(O> + e)aj + -(a> - e)a3 - ra4 4 4 

I=- (^dsK(s),        K(s) = [(a2 + s)(b2 + s)(c2 + s)]   ' 
Jo 

We introduce the related integrals, I\ and I2, where 

Ii = \j°°dssiK\s) (11) 

After some manipulation, the equations of motion are 

öi = — (u> — e)a2 + 2TO5 — 2VQ {(a2a6 — a4a5)ii +02/2} 

a2 = -(u> + e)aj - -(« - e)a3 + TO4 + V0 {[^(«l - 03) + (a\ - a\)]h + (01 - a3)I2} 

03 = (u; + e)a2 + 2F0 {(«206 - o,4a<i]Ii + a2I2} 

ö4 = -(ü> + e)a5 + V0 {[o3o5 - a4a2]Ii + o5 J2} 

05 = — -(a> — e)o4 + ra6 — Vb {[ai<*4 — as^Ki + ^4^2} 

a6 = 0 
(12) 

With the formulation (7), we can search for Casimirs, quantities, C, that satisfy 

{C,F} = 0 

for arbitrary F. From (12), ae (= Ci, say) is a Casimir; it corresponds to the 
conservation of particle height in the quasigeostrophic system. A second Casimir, C2, 
can be found by looking for a second null vector of the symplectic matrix «7. We find 

C2 = a\a$a,(, + 2020405 — Q>\a,4 — 03O5 — oea2 (1*V 

This is proportional to the square of the volume of the ellipsoid so that we recover 
volume conservation. There are only two independent Casimirs for this system. 

One of the coordinates, oe is already a Casimir, C\. We can introduce a change of 
coordinates a —► 6 so that the second Casimir is also used as a coordinate. This 
allows us to reduce to system to fourth order, since C2 = 0, and JtJdC2/dbj = 0 so 
that dH/dC2 will not appear on the right-hand side. 
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Set 

then 

bx = ai,    £>2 = o-z 5    &3 

/ 

«4>      &4 — a5,      &5 = C2»      65 — a6 — Cl 

6 = 

\ 

0 
—4fit2 

-2&4 

0 
0 
0 

4«t2 

0 
0 

263 

0 
0 

264 

0 
0 
h 
0 
0 

0 

-263 

0 
0 
0 

0 
0 
0 
0 
0 
0 

o\ 
0 
0 
0 
0 
0/ 

db 
(14) 

Here a2 is a known function of b that may be deduced from (13). Going further, (14) 
can be put into a canonical form by the change of variables 

Then 

ei = 64-6160;    e2 = b2
3 - b2b6;    e, =6j, i = 3,4,5,6. 

e5 = 0 

e6 = 0 

A         9H 
3H 

63 = ~e6dT4' 

e2 = 4e6w^—, 
dH 

e4 = e6-—, 

(15) 

where w = ±(eie2 - e5e6)K The double-branched structure of the square root does 
not pose any problem as w satisfies a well-behaved auxiliary equation 

w F(ei,...,e4;e5,e6) (16) 

in which F is a single-valued function of its arguments. This is useful when trying to 

integrate (15) numerically. 

3. Summary. 

The use of the Hamiltonian-moment method allows one to derive the evolution equa- 
tions for an ellipsoidal, quasigeostrophic vortex in shear in a Hamiltonian form. This 
method is much simpler than the approach used by MPSZ and permits one to employ 
more easily the constraints embodied in the available integrals of motion to reduce 

the order of the system. 
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In this note I would like to discuss some new perspectives on the construction of 
model equations for physical systems, with particular emphasis on the role of Hamiltonian 
structure and solitary waves. The ideas, which have a wide applicability, will be presented 
in the specific context of higher order model equations for water waves, valid in the 
shallow water regime. Details can be found in the references [5], [8], [9]. 

We begin with the standard free boundary problem for incompressible, irrotational 
fluid flow in a channel. We restrict attention to two-dimensional motions, taking x as the 
horizontal and y as the vertical coordinate, the (flat — for simplicity) bottom at y = 0, 
and the free surf ace at y = h + ii(x,t), where h is the undisturbed fluid depth. In terms of 
the velocity potential cp(x, y, t), the full water wave problem takes the well-known form 

CPXX+   <Pyy    =    0, 0 < y < h + ri(x,t), (1) 

<Py    =    0> y = 0, (2) 

<?t+l2<f>2X+  2<Py   +  g  T\ 

^t   =   «Py-^x'Px' 

= o, 1 
V      y = h + r|(x, t), (3) 

where g is the gravitational constant. For simplicity, I have omitted surface tension, 
although this can be readily incorporated in both the full equations as well as the models 
discussed below. In the standard Boussinesq (shallow water) approximation to the water 
wave problem, one begins by introducing the small parameters 

a h r\r \ e  =  h K  =  72  =  °<e)' 

where a is the wave amplitude,  C the wave length. The equations (1-3) are rescaled 
according to (x, y, t, Tj, (p) | > (Cx, h y, aT|, c_1gaf(p), where c  = Vgh   is the 
(linearized) wave speed. The boundary value problem (1-2) (in the rescaled variables) is 
then solved for the potential, and the resulting series expansion substituted into the free 
surface conditions (3). The resulting bidirectional system of equations is typically 
expressed in terms of the surface elevation T](x, t) and the horizontal velocity u(x, t) = 
(px(x, 6 h, t) at a fraction 0 < 0 < 1 of the undisturbed depth. Truncating to some 
specified order, one finds a variety of Boussinesq-type systems of model equations for 
waves propagating in both directions. To specialize to waves moving in a single direction, 
one resticts to an "approximate" unidirectional function surface, and re-expands the system. 
The result, to first order, is the celebrated Korteweg-deVries approximation 
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Tlt + Tlx  + §ET1T1X - 2*T1XXX    =   0, (4) 

which we have written in terms of i\, although the horizontal velocity u satisfies the same 
equation to first order. (The higher order approximations, though, are different, [8], [9].) 

The water wave problem was shown by Zakharov, [11], to be a Hamiltonian 
system with the total energy serving as the required Hamiltonian functional. Also, as is 
well known, [10; Chapter 7], the Korteweg-deVries equation (4) has two distinct 
Hamiltonian structures — indeed, the fact that it is a biHamiltonian system implies, by 
Magri's theorem, that it is, in fact, a completely integrable Hamiltonian system in the sense 
that it has an infinite sequence of independent conservation laws and associated 
(generalized) symmetries. On the other hand, in collaboration with Benjamin, [2], [7], the 
full water wave problem (1-3) was shown to possess precisely eight (seven if surface 
tension is included) local conservation laws, corresponding to nine (eight if surface tension 
is included) independent one-parameter symmetry groups. (The "extra" scaling group is 
not being "canonical", and thus does not lead to a conserved quantity.) In the course of 
trying to understand which of the Korteweg-deVries conservation laws correspond to true 
water wave laws, I found, much to my surprise, that neither of the Hamiltonian structures 
for the Korteweg-deVries equation arises directly from the Hamiltonian structure for the 
full water wave problem. The crucial feature is that the Boussinesq expansion is not 
canonical, and so cannot lead to a first order Hamiltonian approximation. Indeed, the first 
order truncation of the water wave energy functional is not one of the conserved quantities 
for the Korteweg-deVries model (4). 

The easiest way to appreciate this phenomenon is through an appeal to a simple 
form of "noncanonical perturbation theory". Consider a Hamiltonian system 

%  =  J(v)VH(v), (5) 

which, in our application, would represent the full water wave problem. In standard 
perturbation theory, which ignores any additional structure the model may possess — such 
as Hamiltonian structure, conservation laws, etc., one derives approximate models by sub- 
stituting the physically motivated perturbation expansion v = u + e cp(u) + e \|/(u) + ... 
into the system, and then truncating the resulting system to some desired order in e. 
However, this procedure must now be correlated with the Hamiltonian structure of (5). 
Indeed, if the expansion is not canonical then we must not only expand the Hamiltonian 
function(al) H(v) = HQ(U) + e HL(u) + e2 H2(u) + ..., but also the Hamiltonian operator 
J(v) | > J0(u) + E Jj(u) + e2 J2(u) + .... If we truncate to just first order, the resulting 
perturbed system 

^ =  JoVHo+e^VHo + JoVH^ (6) 

is not Hamiltonian in any obvious way. Indeed, as was remarked above in the context of 
the water wave problem, the first order truncation of the Hamiltonian, HQ(U) + e H^u), is 
not a conserved quantity for (6). A Hamiltonian first order approximation to (5) can be 
given by retaining some (but not all) of the second order terms: 

3x8 



(7) 
= ^VH^ e{ J1VH0 + J0VH1}+e^V^. 

(Technically, since the Jacobi identity imposes a quadratic constraint on the Hamiltonian 
operator, the combination J0 + e Jj is not guaranteed to be Hamiltonian; however, in 
many cases, including the Korteweg-deVries approximation, this is not a problem.) 

In certain situations, the first order model (6) may turn out to be Hamiltonian "by 
accident". One way in which this can occur is if the two terms in braces are constant 
multiples of each other, so Jl VHQ = X, J0 VHj. If this happens, the associated first order 
approximation (6) is in fact biHamiltonian, and hence completely integrable. This 
observation, which does apply to the Korteweg-deVries equation, can be offered as an 
explanation of the surprising prevalence of completely integrable soliton equations 
appearing as models for a wide variety of complicated nonlinear physical systems — it is 
because they arise from non-canonical perturbation expansions of Hamiltonian systems, 
while, at the same time, retaining some form of Hamiltonian structure. 

Both the Hamiltonian models constructed using the preceding non-canonical 
perturbation theory, as well as the complete second order models for unidirectional shallow 
water waves, are evolution equations of the general form 

u+cu +e{uu     + 2quu}+e2{au        +ßuu     +8uu   +3ru2u } = 0.  (8) 
t X ^  XXX n     X l       XXXXX      r      XXX X   XX x' 

Such models arise in a wide variety of other physical situations, including wave 
interactions, elastic media with microstructure, and soliton. The precise formulas for the 
coefficients vary, and I refer the reader to [5] for a survey of (most of the) models of this 
form in current use, including all water wave models, both first order Hamiltonian, and 
second order, with and without surface tension. Some analytical results are known for 
such fifth order models, although much remains unknown. In particular, numerical 
solutions have not, as far as I know, been implemented. Here I would like to comment on 
some recent results concerning the existence of solitary wave solutions. For small e, 
equation (8) should be regarded as a perturbation of the Korteweg-deVries model, cf. [4], 
obtained by omitting the 0(e) terms entirely. Therefore, one would expect that the model 
admits a one-parameter family of solitary wave solutions which would look like small 
perturbations of the standard sech solitons of the Korteweg-deVries equation. This point 
of view would be additionally bolstered by the fact that the full water wave model also 
admits a family of solitary wave solutions, up to a wave of maximal height which satisfies 
the Stokes' phenomena of exhibiting a 120° corner. Indeed, Kunin, [6], introduces 
models, using only e ß u uxxx in the second order terms, which do have solitary waves 
of maximal height, although these waves have a 0° cusp. Remarkably, the expectation of 
solitary wave solutions is not correct, and, indeed, most of the fifth order models (8) do 
not have the expected property. Indeed, in joint work with S. Kichenassamy, [5], it was 
proved that, subject to a technical analyticity hypothesis, the only models (8) which admit a 
one-parameter family of solitary wave solutions which, in the e > 0 limit, reduce to 
Korteweg-deVries solitons, are the models which admit a one-parameter family of exact 
sech   solitary wave solutions! 



/ll      3 
In the case of the water wave models, only at the "magic depth" 6 = A/ jj ~ ~ÄX 

do the higher order models possess solitary wave solutions. In this case, the Hamiltonian 
model is, in fact a fifth order Korteweg-deVries equation, having soliton solutions. (The 
many remakable properties of the models at this depth has been noted before, [8], [9], but 
no explanation is as yet forthcoming.) This fact brings into sharp focus our preconceived 
notions concerning the construction of model equations for solitary wave phenomena. 
According to work of Friedrichs and Hyers, [4], and Amick and Toland, [1], the full water 
wave problem possesses a one-parameter family of exact solitary wave solutions, up to a 
wave of maximal height. The Korteweg-deVries equation also has a one-parameter family 
of exact sech2 solitary wave solutions (of all amplitudes), which, for small amplitudes, 
are fairly good approximations to the exact solitary water waves, [3]. However, if one 
tries to improve the approximation by including higher order terms, or maintaining 
Hamiltonian structure, one in fact does much worse, destroying the solitary wave solutions 
entirely. At first glance, this is very surprising. However, what should really be 
surprising is that the models to a physical system have solitary wave solutions in the first 
place! Indeed, since the 0(ek) model is (presumably) only valid for time 0(e ), the fact 
that it has a solitary wave solution valid for all time is certainly not guaranteed, even if the 
full physical system has solitary wave solutions. In fact, all we have a right to expect is a 
solution which looks like a solitary wave for a long time, but then, possibly, has some 
completely different behavior, e.g. dissipation, break-up, blow-up, or something else, 
which is irrelevant for the physical system being modelled. The fact that almost all popular 
models for wave phenomean do have solitary wave solutions is, therefore, an accident that 
has lulled us into a false sense of security. 

The details of the proof of this result are to be found in [5]. The method is to first 
determine which of the models have exact sech2 solitary wave solutions. Substituting the 
explicit formula u(x, t) = a sech2 X(x - c t) into the model (8), we find that the coefficients 
a, X, c, must satisfy the compatibility conditions 

ap2 + Up + (p-c)  =  0,   15apa + 2(ß+y)p + 3na + 2q  =0, 

15 aa2 + (3ß + 2y)a + 2 p  = 0, 

where p = 4 A2, a = - 4 X21 a. Note that o < 0 gives a wave of elevation, a > 0 a 
wave of depression. Analysis of the algebraic system (9) proves that a general fifth order 
model (8) possesses either 0, 1, 2, «>, or °° + 1 explicit sech2 solitary wave solutions, 
where °° denotes a one-parameter family of such solutions. In particular, the model 
admits a one-parameter family of explicit sech2 solitary wave solutions if and only if the 
coefficients satisfy the two algebraic relations 

(ß + y)H   =   5qa, 15 ar  =   ß(ß + y). (10) 

It should be remarked that these are not enough to guarantee that the model is completely 
integrable! Interestingly, there may be more than one sech2 solitary wave solution for 
subcritical wave speeds if a |J. < 0. 

In order to prove non-existence, we first construct a suitable solitary wave tail (i.e. 
for | x | » oo) by proving the convergence of the appropriate formal series solution. On 
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the other hand, there exists a formal expansion of any solitary wave solutions in a series in 
power of sech, which, if it converged, would actually give a solitary wave solution. 
However, except when the coefficients of the equation satisfy the algebraic constraints (10) 
guaranteeing a family of sech2 solitary wave solutions, the recurrence relations for the 
formal series solutions introduce poles in the coefficients in the complex e-plane 
converging to e = 0, which serve to violate our underlying analyticity hypothesis. This 
gives a brief outline of the essence of the proof— the reader can find the full details in [5]. 
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Hamiltonian GFD and Stability 

by Pedro Ripa 

C.I.C.E.S.E., 22800 Ensenada, B.C., Mexico 

Most GFD models are Hamiltonian when dissipation is excluded; 
this is a structural property which provides a unified picture of 
different systems, three of which I would like to compare here. 
We envision the state of a Hamiltonian system as a point <p in a 
certain state space E; in practice we deal with a particular set 
of fields <pa(x,t) x e D, but it must be remembered that the 
Hamiltonian formalism is covariant under changes of representa- 
tion. Given any admissible functional of state &[<p,t] its gradi- 
ent D95 is a covector, which is represented by a set of functional 
derivatives 8$/8<pa, calculable from the first variation 5^ =: 
<d<p,D$>. The rate of change <pt of the state point is a vector 
field which is constructed by a linear operation of a tensor J[<JP] 
on the gradient of the Hamiltonian functional H[q>,t], namely <pt = 
JDK. Thus 

S = I? + {9.*},   V *[<p,t], (1) at   at 

where {4,%} := <D^,JDB>. This bracket allows for the definition 
of a one-parameter (say s) group of transformations, generated by 
some functional of state (say M[<p,t]),   namely 

^ = -{9,M},   V 9[tp,t] . (2) 
ds 

Let d & 8 be any two functionals of state which generate 
transformations represented by the vector fields JDd & JDS. Their 
Lie bracket (JIDd) (JDS) - (JDS) (JD4) is another vector field: if 
one demands it to be also of the form (2) and, moreover, to be 
generated by the bracket of both functionals (i.e. to be equal to 
-JD{^,8}) then it follows that J must be skew-symmetric and sat- 
isfy the Jacobi identity [1] (the converse is also true) . A J 
with those properties is called a Poisson tensor and { , } a 
Poisson bracket; only this type of brackets is considered here. 
If the J is singular, its null space is spanned by the gradients 
of the Casimirs, JDS = 0 (or {£,6} = 0 V?) ; using this in (2) 
shows that the Casimirs generate no transformation. Equations (1) 
and (2) are invariant under the addition of Casimirs to H  and M. 

One of the most powerful properties of a Hamiltonian system is 
given by Noether's theorem, which links symmetries to conserva- 
tion laws. A symmetry of a dynamical system represents the exis- 
tence of an operation that transforms any solution into another 
solution; the transformation may be done at any fixed time, with- 
out knowledge of the future -or previous- state of the system. In 
the particular case that the symmetry transformation of an arbi- 
trary functional 9 has the form (2), skew-symmetry and Jacobi 
property of J yield {$,dM/dt}   = 0 Vf, which in turn implies that 
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dM/dt is -at most- equal to a function of time and the Casimirs 
(this is called a distinguished function). Redefining M by sub- 
stracting the time integral of that function, the transformation 
(2) is not changed and the new M is conserved, dM/dt = 0. This 
derivation of Noether's theorem requires neither dH/dt = 0 nor 
dM/dt =  0; H[<p,t]   may not be conserved even if M[<p,t]   is. 

Let me now present the three models to be compared. In all 
cases D is some horizontal domain with a rigid boundary 3D, and 
the vertical structure is that of a single active layer of fluid. 

The first model is a generalization of the shallow water equa- 
tions, allowing for lateral -but not vertical- density inhomo- 
geneities [1] . The <pa fields are the flotability ■&, the layer 
thickness h, and the horizontal velocity u; the latter has Carte- 
sian components (u,v) along the the eastward and northward coor- 
dinates (x,y) . The external fields are the Coriolis parameter f  = 

f0 + ßy and a topography h0(x); h := h0 + h/2 is the mean depth 
of the water column. The evolution equations are 

#t = -u-V#, ht  =  -V(hu), ut = -ghzxu - Vb +  h\7#. (3) 

where g := (f+z-Vxu)/h is the potential vorticity and b : = 
■&(h+hQ) + u2/2 is the Bernoulli function. This rrotational force 
field comes from calculating the pressure profile in the active 
layer -using the hydrostatic balance- and then vertically averag- 
ing its horizontal gradient. In this system, potential vorticity 
is not conserved following fluid particles, indeed 

gt + u-Vg = h~1Z'VhxV-&. (4) 

Boundary conditions for (3) are un = 0 and V#xn = 0 at 3D, where 
n is the outward normal; the last one guarantees that the circu- 
lations KV  are constant. 

The condition & = constant (=: gr) defines a submanifold which 
is preserved by the dynamics: (3) reduces to the classical shal- 
low water equations (SWE) : ht = -V(ftu) and ut - -ghzxu - VJb, with 
b := gr(h+h0) + u2/2. This constitutes the second model discussed 
here. For this system, the right hand side of (4) vanishes, i.e., 
potential vorticity is conserved, but ■& is lost as a lagrangian 
label. 

The third model is the so called equivalente barotropic one. 
It is set up from the SWE writing h+h0 = H+T\, for some constant 
H, and assuming i\,h0 « H and z-Vxu,ßy « f0. To lowest order, the 
potential vorticity takes the linearized form 

g := f + z-Vxu - fQ(T)-h0)/H, (5) 

where 1/ff has been factored from this definition. The evolution 
equations for this model express that the circulations yv   are 
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time independent and that potential vorticity is conserved fol- 
lowing fluid particles, gt + u-Vg = 0. This equation requires to 
solve for (U,D) as functionals of (g,r„), which is done assuming 
u = zxVtf» and p (= gru) = ftfl>- Notice that this implies not only a 
geostrophic balance, f0zxu = -Vp, but also a vanishing horizontal 
divergence, V-u = 0, in spite of the vertical stretching 7j-h0 in 
the last term of (5). 

The three models presented are but the one-layer cases of 
larger families, namely primitive equations with inhomogeneous 
[1] or homogeneous [2] layers and the quasi-geostrophic approxi- 
mation of the latter [3] [4]. All these are singular Hamiltonian 
systems. For instance, (3) may be obtained from 

H   :=  -f h(u2   + *S) 
2Jn 

J : = 
'D 

0 0 -h-1V# 
0 0 -\7- 

-V -g zx 

(6) 

If and only if the boundary 8D  is invariant under x-translations, 
then the momentum 

M -.=   f h{u -  f0y - jßy2) 
JD 

(7) 

may be used in (2) to generate the transformation <pa(x, . .) 
<pa{x+s, ..), keeping x fixed elsewhere (e.g. in h0) . H is con- 
served because dH/dt = 0, whereas in order for M to be conserved 
one requires dhjdx = 0. Expressions for H and M tor the other 
two models are very similar to these ones. The main difference 
between the three models is in the geometry of state space, re- 
flected in the form of their respective Casimirs: 

e f qhCAi»   + hC2{0) ,    f hC3(q) ,    \  C4(g), 
Jn J n J D 

(8) 

where the C5 ( ) are arbitrary.  (The circulations iv   are also 
Casimirs.) 

Assume that for certain Casimirs £E & SM it is S(H+%E) = 0 @ <p 
= $E and 8(M+%M) = 0 @ <p = V The particular states *M &^ ^ 
could be the same one, and must satisfy 3t$E = JDK = JD(tf+SE) - 0 
and a $M = -JIDM = -JD(^+SM) = 0. The converse (i.e. given *M & $E 
such "that at$E = SX$M = 0, find £E & eM such that 3(H+GE) = 
8(M+%„) = 0) is not guaranteed, as shown below. Take for instance 
the second model (classical shallow water equations) and search 
for eK such that M+%M is quadratic to lowest order in u in u (:- 
h+hn-H, for some constant H) , i.e. 8(M+%M) = 0 at the resting 
ocean. Using h0 = 0 for simplicity (one only needs an 
x-independent topography), the pseudomomentum  obtained is [5] 
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9   := M  -  £   \ hiqt-f2/!!2)   + | I fn-dx H_ 
2ß 

I 
D '    J8D (9) 

2 uv  -   (Vx-Uy-fn/H)'  H/2ß(H+T)), 
D 

where trivially constant terms have been suppressed. Notice that 
there are higher order terms in 9, on account of the 1/(H+TJ) . 
However, for the third model (quasi-geostrophic) 9 is exactly 
quadratic and equal to -l/2ß times the enstrophy Siv^Uy-fv/H)2 

[6], since the integral of in? vanishes because of geostrophy. On 
the other hand, for the first model (shallow water equations with 
lateral inhomogeneities) this trick is not posible: in order to 
be able to construct 9 one would need a monotonous ambient buoy- 
ancy profile 8(y) . 

Notice that 9 cannot be obtained if ß = 0 (or, more generally, 
d[f/ {H-h0) ] /dy = 0), for lack of an appropriate Casimir. The rea- 
son being that for the degenerate cases (uniform ambient poten- 
tial vorticity and/or density) there are not enough natural con- 
served scalars that could serve as Lagrangian labels [7] . From 
the Eulerian point of view, both M and 9 may serve as x-momentum. 
From the Lagrangian point of view, M and 9 conservation are ob- 
tained from homogeneity of position x and label x0, but one can- 
not have one symmetry without the other. Moreover, different 
equivalent Lagrangians give conservation of different combina- 
tions of M and 9 for the independent variations Sx and 5x0, so it 
is not possible to say, in a unique way, which one of the two in- 
variants is related to which symmetry transformation [7]. 

For a steady basic state $E one can use the pseudoenergy ?E ; = 
H+GE, a?E = 0, to derive Arnol'd's first (S2?E > 0) or second 
(52?E < 0) formal stability theorems. Even better, one may use 
the total variation A?E to find finite amplitude (nonlinear) sta- 
bility criteria. Table III in Ref. [1] shows that this program 
has not had much success, except for the very restrictive class 
of horizontally non-divergent models (quasi-geostrophic and 2D 
Euler) . These are also the only models for which an instability 
can be characterized by energy transfer terms; for the other two 
classes discussed here, the perturbation may have zero or nega- 
tive energy and therefore its growth is related to an increase in 
the energy of the mean flow [2][8]. 

Primitive equations models with homogeneous layers (e.g., the 
classical shallow water equations) only have Arnol'd's first for- 
mal stability theorem [2], and this condition is harder and 
harder to satisfy as the number of layers increases. Moreover, 
there is no formal stability theorem for the cases_ with either 
inhomogeneous layers [1] or continuous stratification [8] ; for 
the latter, however, there is the Miles-Howard criterium for nor- 
mal mode perturbations. Failure of the strict application of 
Arnol'd's method does not mean that there are not stable states, 
it only means that their stability will have to be proved by 
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special methods. 

The condition S(K+£E) = 0 defines an extreme of the Hamilto- 
nian on the Casimir leaf 8M\C = 0 (or vice versa, SE|H = 0). In 
Ref. [4] it is argued that sign definiteness of 82H\C is enough 
to guarantee stability for general perturbations, even if 
52(#+gE) is not sign definite. The reason for this being that 
nearby constant-SE leaves have similar dynamics. A different sit- 
uation arises when leaving a sheet changes the physics, like go- 
ing from V0 =  0 (second model) to V8& *  0 (first model) . 

Finally, let me comment on the role of invariants in the in- 
stability problem. Consider the case of a symmetric system: by 
Andrew's theorem [9] one can only consider steady and symmetric 
basic states. Not only the pseudoenergy, but also the pseudomo- 
mentum ?M := M+^ are quadratic (and higher order) invariants. 
Formal stability is guaranteed if there is any a such that S2?E - 
u829M is sign definite. (This combination is the Hamiltonian for 
the linearized dynamics, in a frame moving with speed a.) On the 
other hand, if the basic state is unstable then there is a per- 
turbation for which 52?E - aS2?M = 0 for any a, i.e. both terms 
vanish. This represents a balance between positive and negative 
parts, which may be used to characterize growing perturbations 
[10] . Typification of an instability by energy transfer terms 
only works for non-divergent models. 

For lack of space I am only listing some of my contributions 
to these subjects. Further references may be found in these pa- 
pers and in the Lecture Notes by Phill Morrison and Ted Shepherd, 
in this volume. 
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STRUCTURE OF THE CANONICAL TRANSFORMATION 

Ian Roulstone 1 Michael J. Sewell 2 

1    Introduction 
The aim of this work (Sewell k Roulstone 1992) has been to conduct a fresh study of the 
canonical transformation. This transformation is widely known to be a classical and time- 
honoured device in mechanics, but we have found that an understanding of it may be no 
more than formal without a reasonable variety of explicit examples. The literature on this 
subject is often stereotyped and rather uncritical, or sophisticated and unduly difficult. One 
of our aims has been to investigate some of these apparently sophisticated ideas with some 
explicit examples which we have not found available elsewhere. 

We have found that the expression for the transformation in terms of gradients of gener- 
ating functions reveals much about the anatomy of the transformation. In turn, the variety 
of possible structures of generating functions (e.g. multivaluedness), suggests that some of 
the other definitions are ambiguous if stated in the forms that are often found in the litera- 
ture. We shall elucidate this point further in §5. 

The importance of the canonical transformation derives from the fact that it is intrinsic 
in any part of mathematics, mechanics or numerical analysis (applied to symplectic integra- 
tors), where Hamilton's equations appear. The trigger for this present work lay within our 
investigation of the semi-geostrophic equations of meteorology. Previous papers (Chynoweth 
& Sewell 1989, 1990, 1991) showed that topic to contain convexifications of multivalued Leg- 
endre dual functions such as the swallowtail, which are adapted to provide examples of 
canonical transformations. 

2    Definition 

It is clearest to deal with the lowest dimensional case, because this offers fully explicit 
examples in a way which higher dimensions, despite their importance, cannot. We use the 
neutral notation of Caratheodory (1982), which is not biased towards any particular context. 
Thus we suppose that a pair x, y of real scalars is related to another such pair X, Y by 

X = X(x,y),  Y = Y(x,y) . (1) 

This is a dependence or transformation R2 ■-»• R2. Let j denote the jacobian of ( 1). For 
some particular transformations ( 1), j has a constant value over some domain in x, y space. 

Meteorological Office, Bracknell, RG12 2SZ, U.K. 
2Department of Mathematics, University of Reading, Reading, RG6 2AX, U.K. 
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We adopt the following definition for the purpose of this paper.  If the transformation 

< » haS ,. = , (2) 

over a two-dimensional domain, we define the transformation to be canonical over that do- 

main. The domain need not be the whole space. 

3    Anatomy 
A canonical transformation has a locally unique inverse in the neighbourhood of every point 
of its domain, because j = 1 is sufficient for the inverse function theorem to apply. Even 
when the functions in ( 1) are single valued, however, the global inverse of the transformation, 

which we write as 
x = x(X,Y), y = y(X,Y) (3) 

in terms of differentiate functions on the right, need not be single valued. 

We now seek to explore some of the variety of anatomical detail which gives the canonical 
transformation its structure. It is convenient to define an internal singularity of a canonical 
transformation to be a location where one or more of dX/dx, dX/dy, dY/dx, dY/dy is 

zero or infinite. 

Theorem 1 A canonical transformation ( 1) with ( 2) can be expressed locally in one or 
more of the following versions, when the indicated sufficient condition holds. 
(i) If dY/dy ^ 0, ±oo, then X = X{x, Y),  y = y{x, Y) such that dX/dx = dy/dY. 
(ii) IfdX/dy ^ 0, ±oo, then y = y{x,X),   Y = Y{x,X) such that dy/dX + dY/dx = 0. 
(Hi) IfdX/dx ± 0,±oo, then x = x{X,y),  Y = Y(X,y) such that dx/dX = dY/dy. 
(iv) If dY/dx ^ 0, ±oo, then X = X(Y, y),  x = x(Y, y) such that dX/dy + dx/dY = 0. 

In the case of thermodynamics, the last equations in (i)-(iv) are called Maxwell's relations. 

Theorem 2 For each part of Theorem 1 which is available, there exists a scalar generating 
function listed below, allowing the canonical transformation to be expressed in gradient form 

as follows, and locally so in the first instance. 
(i) A(x,Y) such that X = dA/dY,y = dA/dx. (ii) B(x,X) such that y = -dB/dx,Y = 
dB/dX. (Hi) C(X,y) such that x = -dC/dy,Y = -dC/dX. (iv) D(Y,y) such that 

X = -dD/dY,x = dD/dy. 

The generating functions in Theorem 2 are available locally and as single valued functions 
in the first instance, but we shall give an example, later in this section, showing how they 

can be available globally, and as multivalued functions. 

Theorem 3 When any two of the generating functions having one argument in common 
exist, they are connected by a Legendre transformation which relates the non-common argu- 

ments as active variables, while the common one is passive. 
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To illustrate some of the features of Theorems 1, 2 and 3, consider the following example. 
The transformation 

X = x,   Y = x2 + y , (4) 

is canonical and possesses a quartet of generating functions (as in Theorem 2). There are no 
internal singularities associated with dX/dx = 1 and dY/dy = 1, so (i) and (iv) of Theorem 
2 with ( 4) can be integrated to give the generating functions A and C, over the whole x, Y 
and X, y planes respectively. These two functions each have the form of a fold catastrophe 
potential: A = —l/3ar3 + xY, C = -1/3X3 - Xy. The internal singularity of dY/dx = 0 at 
x = 0 is an isolated singularity of the A <-*■ D and C *-+ D relationships, but this does not 
inhibit the construction of the double-valued function D = =p§(F - y)* with cusped edge 
of regression along Y — y. The internal singularity dX/dy = 0 of ( 4) is not an isolated 
singularity, so that the inverse function theorem cannot be resurrected in the way that is 
possible for the foregoing isolated singularities. Parts (ii) of Theorems 1 and 2 fail in the 
stated forms. Nevertheless, the A «-> B and B *-* C relationships can still be constructed 
using the more basic definition of a Legendre transformation in terms of points and planes, 
or poles and polars respectively (see Sewell, 1987, §2.2). Each of A(x,Y) and C(X,y) is 
linear in the variable now required to be active, namely Y and y respectively, and the dual 
of these polars is the single point, with abscissa x = X and ordinate |a;3 = \X3, and only 
has restricted differentiability. The generating function B(x, X) still exists, therefore, but 
only over a domain of lower dimension. One may not know in advance which generating 
functions have this limitation. 

4    Semi-geostrophic theory 

The semi-geostrophic theory of meteorology provides a recent example of a Legendre quartet 
given by Chynoweth & Sewell (1989, 1991), which can contain singularities. Here x is a 
horizontal position vector in physical space, and the scalar z is a measure of height; M is a 
horizontal momentum vector, and 0 is a measure of temperature (see Chynoweth & Sewell, 
1991, for further discussion of these variables). Note that there is a Legendre transformation 
between R(0, M) and P(z,x), with all arguments active, having the property R + P = M-x, 
and 

dR/de = z(9, M),      dR/dM = x(0, M), (5) 

dP/dz = 8(z, x),      dP/dx = M(z, x) (6) 

(see Purser & Cullen 1987). 

Consider the case of flow in a single vertical plane. The vectors M and x are replaced 
by their scalar components M and x. In general ( 5)i can now be inverted and substituted 
into ( 5)2 to give a canonical transformation, M = M(0, —z), x = x(0, —z), generated, for 
example, by R(9,M). 
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A mathematically simple illustration is provided by the parabolic umbilic polynomial, 

i?(0, M) = ^M4 + M92 + aM2 + ßO2 , (7) 

in which a and ß are given parameters. This leads via ( 5) to z - 20(M + ß), x = 
M3 + 2aM + 92, which can be rearranged as the canonical transformation 

M = z/26-ß,  x = (z/20-ß)3 + 2a(z/26-ß) + e2 . (8) 

The function ( 7) was used by Chynoweth &; Sewell (1989) as a starting point for calculat- 
ing its Legendre dual function P{z,x), because the latter has a self-intersection line whose 
projection onto the physical x, z plane models the trace of an atmospheric front. From the 
viewpoint of canonical transformations, ( 8) is therefore an example of one which is derivable 
from a multivalued generating function P possessing self-intersections. 

5    Alternative definitions 

Here we comment briefly on the invariance of a circuit integral and its relationship to ( 2). 

If a differentiable function B(x, X) exists, and is single valued, and if (ii) of Theorem 2 
holds, then its first differential is unambiguously dB = YdX — ydx. In particular, if it has 
a single-valued branch over a closed circuit 7 drawn in its domain, then it follows that 

<f>Y dX = I ydx  , (9) 
J-y Jy 

where the circuit integrals are each evaluated around the lifted version of 7 on the considered 
branch. This result expresses the invariance of the circuit integral under the transformation 

One motivation for the use of the circuit integral is that it can be related via Stokes' 
theorem to the j — 1 definition, which can be illustrated by results of the following type. 

Theorem 4 If fully differentiable B(x,X) exists, and if there exists another, intermediate, 
uniquely invertible mapping 

x — x(a,b),  X = X(a,b) , 

to a third pair of variables a, b, then 

/Jfeljü-1'^0' <10> 
where D is the interior of the single valued image dD of the circuit 7. 
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Figure 1: (a) D(Y,y) of §(3), (b) The swallowtail surface. 

Proof. We write ( 9) in terms of a and 6 

Using Stokes' theorem (11) becomes 

di>     \ da db )=Lv(ra
da+aidb) ■ 

I d(X,Y)d(x,y) 
d(x,y) d(a,b) 

dadb ■i( 
dxdy 
dadb IS)«* 

(11) 

(12) 

which is ( 10). □ 

A common definition in the literature (Arnol'd, 1989, p. 239) is: 'The transformation 
( 1) is canonical if the property ( 9), or one of its alternatives, holds', but this is subject 
to the following qualifications. It must be reasonable to expect a generating function to 
have global multivaluedness, e.g. of the type encountered with the example in §3, or the 
swallowtail (see figure 1), or worse in higher dimensions. In such circumstances, one must 
decide which single-valued part of the multivalued generating function is to receive the lifted 
circuit. It may be that at least one of the four generating functions is always globally single 
valued, but in the absence of a theorem which identifies in advance which one, there is an 
inherent ambiguity in the use of the circuit integral. 
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ON THE HAMILTONIAN STRUCTURE OF SEMI-GEOSTROPHIC THEORY. 

Ian Roulstone 1 John Norbury 2 

1 Introduction 

A description of the canonical form for the semi-geostrophic (SG) equations within the 
context of Generalized Hamiltonian systems was given by Salmon (1988). In this work a 
canonical Hamiltonian structure for the semi-geostrophic equations is presented and from 
this, a reduced, noncanonical Hamiltonian structure is derived, providing a fully nonlinear 
version of the approximate linearised vorticity-streamfunction representation. This paper 
constitutes a synopsis of Roulstone k Norbury (1992). For reasons of brevity the propo- 
sitions are given here with only sketch proofs, however we attempt to convey some of the 
essential geometric ideas. 

Here we work with Lagrangian and Eulerian formulations of the equations. The SG 
equations of motion may be written either as an infinite set of coupled ordinary differential 
equations or, as in the formulation of the geometric model, an advection equation based 
on the Monge-Ampere operator. The geometry of the Monge-Ampere equation together 
with convex analysis and their application to atmospheric flows offers a new perspective on 

balanced systems. 

2 Semi-Geostrophic Dynamics 

2.1     Equations of motion 

The three-dimensional Boussinesq equations of semi-geostrophic theory given by Hoskins k 
Draghici (1977) on an f-plane, can be written using the following coordinates 

X = (X, Y, Z) = 

in the form 

X +   f ' y        f ' POo 
(1) 

—      =      Ug    =    (Ug,     Vg,     0)       | (2) 

that is, the motion in these transformed coordinates is exactly geostrophic. The material 
derivative is D/Dt = d/dt + u • Vx. In these transformed coordinates a consistent ap- 
proximation to the energy integral can be derived and the condition for the integral to be 
stationary under virtual displacements, may be expressed in terms of a convexity condition 
on a streamfunction for the geopotential (Cullen et. al. (1987)). We will introduce such a 
function in the next subsection. The Jacobian q = d(X, Y, Z) jd (x,y, z), defines a consistent 
form of the Ertel potential vorticity in SG, satisfying Dq/TH = 0. 

iMeteorological Office, Bracknell, RG12 2SZ, U.K. 
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2.2     The Legendre Transform 

The equations of motion have a particular duality structure. The vector X may be expressed 
as the gradient of some scalar function P(x), X = VXP. Within an arbitrary additive 
constant this function is uniquely defined by, from ( 1) P = <f>/f2 + (x2 + y2) /2, where 
<f> is the geopotential. Define Q(x) = VXX, then Q is the Hessian of P with respect to 
x. Q is symmetric, so when it is non-singular its inverse exists, and the inverse Jacobian is 
symmetric also, implying that x is the gradient of some scalar function R(X): 

x = VXR ■ (3) 

R is given to within an additive constant by R(X) = x • X - P(x), which is the expression 
for the Legendre transform between R and P. We can show that the motion is non-divergent 
in X-space and therefore, being constrained to Z-surfaces since ( 2) has Z = 0, is expressible 
in terms of a streamfunction tf by (u3, vg, 0) = (-dV/dY,dy/dX, 0) //. From ( 1) and 
( 3) we deduce that the simplest form for * is given by 

*  = /2 Q (*2 + y2)  " R{X))   • (4) 

The particular duality structure described above is but one realization of a quartet of Leg- 
endre transformations described in Chynoweth & Sewell (1989). 

2.3     A solution strategy 

We outline the numerical method as discussed by Purser &; Cullen (1987) and Cullen, Nor- 
bury & Purser (1991) to show that the above formulation leads to a natural phase space 
description. 

At each timestep define a distribution of p(X) = g-1(x) = det(Q_1), and solve the 
nonlinear elliptic or parabolic (Monge-Ampere) equation for R: 

det|Hes(i*)|  = p (5) 

subject to suitable boundary conditions. The boundary conditions are imposed with respect 
to the domain in which the fluid motion takes place and need to be translated into conditions 
on Vfi. The next step is to use * defined in ( 4) in terms of R given by ( 5) to update the 
conserved density p, according to the advection equation 

dp „      _   1 d{p, tt) 
- = -ug.VxP = lw-T). (6) 

In this model we seek to construct a solution by solving a sequence of time independent 
elliptic problems. 
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3    Hamiltonian Structure 

3.1 Kinematics and Dynamics 

For any differentiable function R of X for which we write the relationship ( 3), we can define 
the Hamiltonian functional, using ( 4) and an appropriate normalization for the geopotential, 

H [X] = f d7 ¥(X) = f2 J dx Q [(y - Y)2 + (X- x)2] - zz)   , (7) 

where dj is the measure over the Lagrangian particle labelling coordinates (a, b, c) = a, 
assigned at r = 0, X(a, r) : X(a, 0) = a. The coordinates x = (x, y, z) are locally 
cartesian on a domain D. The dual space mass density p(X), becomes the Jacobian of the 
map X i-> a, and is taken to have compact support in V to avoid later difficulties with 
boundary conditions. For incompressible flow, d(a)/d(x) = 1. We now write our equations 
of motion ( 2) in Lagrangian phase space variables X as a canonical Hamiltonian system by 
means of a Poisson bracket defined as follows. 

Proposition 1   The equations of motion ( 2) take the form on surfaces of constant Z 

^ = {«, X}c,  % = {«,  Y}c , (8) 

where { , }c is given by 

S* n\ f A   (JL-J9— _    6jr     SQ   \ 
i^, Wc - JT^\sX(a)6Y(a)       8Y(sL)6X(a)J   ' 

One can show directly in these variables that the X-space mass density p is conserved, 
{p, fi}c = 0. Conservation of potential vorticity may be established using the same 
procedure by noting p = q~l. 

3.2 Symplectic structure and particle labels 

Qualitatively, a Hamiltonian system possesses a volume element called the symplectic form, 
which we denote by tt, and this is an invariant in the sense that its Lagrangian derivative 
along the flow vanishes. We express the symplectic structure Q, in canonical bases for the 
particle label description. One can identify a natural dual to f2, such that their inner product 
is a scalar. We refer to this object as 0, known as the cosymplectic structure. It turns out 
that the abstract statement of the conservation of the symplectic inner product (ft|0), is 
equivalent to the conservation of potential vorticity on fluid particles. This is, therefore, an 
important relationship between the dynamical invariant q \z and the canonical kinematic 
structure fi. 
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3.3     A noncanonical Hamiltonian approach to the advection equation 

We make some brief remarks concerning the generalization of the results to noncanonical 
systems. Suppose that a system has densities p, G,which are functional of canonical co- 
ordinates zx. It may be possible to write the Poisson brackets in terms of noncanonical 
coordinates za, where a < i, in the following manner 

{J7, Q}E = / dzi / dz2-^- {zia, z2ß}c -Tz- ■ (9) 
J J oz\a OZ2ß 

We will show that this structure leads to an appropriate generalization of ( 6). 

In the following calculations the canonical coordinates zx will be identified with the La- 
grangian coordinates X% <r+ (X,Y), while the noncanonical variable z will be identified 
with p{Xl). We use the overbar to distinguish the use of the dual space coordinates here 
from that employed in §3.1: The partial derivative with respect to time is taken at constant 
X. It is the symmetry invariance (commonly referred to as gauge invariance) with respect 
to the particle relabelling that enables the kinematics of the system to be described in terms 
of a single observable z, together with a noncanonical structure. 

We use our previous Hamiltonian ( 7), but evaluated in phase space solely as a functional 
of p. The Hamiltonian is given by 

H[p] = j dX/»(X)*(X) (10) 

The functional derivative SH/Sp is calculated using the Legendre Transformation and may 
be related to the energy minimization condition. The result is 

SH 
Sp 

= f(\(X2 + Y>) -ä)   . (11) 

The key to understanding the variation in ( 11) is the use of the contact structure of the Leg- 
endre transformation. The salient feature of a contact space which is of importance here is 
the idea of a lifted curve (Arnol'd (1989), appendix 4). A curve R = C(X) in the 'base space', 
spanned by the coordinates (X, R), has an image or lift denoted C in the space spanned by 
the coordinates (X, R, VxR)- This is the structure of phase space for the reduced SG model. 
At a fixed point (X0, Ro) on a curve C, we can vary C with respect to x (using ( 3)) and thus 
the Legendre Transformation gives SC = SXR = X8x - VxPSx = 0. The integrand of the 
Hamiltonian ( 10) may thus be varied with respect to x, with the result SH = WSp + p8$. 
But at fixed X, Sx^ = 6XR = 0. Consequently we get ( 11). It is the contact geometry 
that distinguishes the dynamics of SG theory from that of perfect incompressible fluids (e.g. 
Marsden & Weinstein (1983)). 

We may now formulate the Hamiltonian structure of ( 6). 
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Proposition 2  The equation of motion ( 6) may be written in the following Hamiltonian 

form 

&jp- = {«, **)}. ■ 
with 

so 
{T, Q}E = J dX 

MX) d (X, Y) 

V / 

(12) 

and Hamiltonian given by ( 10). T is taken to be a union of bounded components in X in 

which the defining relation for R ( 5) holds. 

Sketch of Proof. With an appropriate functional form for p, we evaluate the canonical bracket 

in ( 6) and obtain the result 

r,*wirVl ^(X2 - XQ dp{Xx)       Ö8(X2 - Xx) dpjX,) 
{p(Xl),p(X2)}c = ^ d^   +        dxx dY1     ' 

and substitute this into ( 6). Integrating by parts and discarding boundary terms which are 
of the form <5(X2 - Xi)|8, because of compact supports, we get ( 12). Identify T with H 
and G with p, and use the results of §2.2 to get the right hand side of ( 6). □ 

We note that the form of ( 12) means that the bracket of functional depending on p 
alone will be in involution with respect to { , }E (i.e. their Poisson Brackets all vanish). We 
identify the bilinear skew adjoint operator J and write it 

J-  =  o   8^± 
d (X, Y) 
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Linear and Nonlinear Baroclinic Wave Packets: 
Atmospheric Cyclogenesis and Storm Tracks 

Kyle Swanson 
Department of the Geophysical Sciences 

University of Chicago 

Our present understanding of the dynamics of synoptic scale structures in the midlatitude 
regions of the Earth is based on quasi-geostrophic theory, with its roots in the works of Charney 
[1] and Eady [2]. These researchers found that the linearized equation expressing conservation of 
quasi-geostrophic potential vorticity in a vertically sheared mean flow, together with the 
appropriate boundary conditions, results in eigenmode solutions resembling midlatitude cyclones 
in scale and structure. Furthermore, for some spatial scales and mean flow parameters there exist 
associated eigenvalues corresponding to an exponential increase in perturbation amplitude with 
time, at least while the structures evolve according to the linear dynamics. 

While this theory elucidates the primary mechanism of the instability (see [3:7.1-7.6] for 
a review), namely the baroclinic conversion of mean flow potential energy into perturbation 
energy, there remains much to be explained as far as the role of these synoptic scale structures or 
""baroclinic eddies" in the general circulation of the Earth's atmosphere is concerned. As far as 
the role of baroclinic instability in this circulation is concerned, this boils down to two 
questions: First, how does baroclinic instability effect the mean flow profile of the atmosphere 
(essentially a question of mean flow interaction), and secondly, what are the fluxes in heat, 
moisture, etc. brought about by the instabilities themselves (a question of the structure and 
temporal frequency of the instabilities themselves). This presentation will deal with some 
preliminary results regarding the second of these points, namely trying to understand the 
evolution of baroclinic wave packets, i.e. coherent groups of synoptic-scale eddies, which have 
been shown to compose a large portion of variability in both the Northern and Southern 
Hemispheres [5]. 

Linear Theory: Absolute Instability and Wave Packets 
We first want to consider the linear stability of a strictly zonal (i.e. x - independent) flow, 

which can be given in terms of a geostrophic streamfunction (p = *F(y,z), corresponding to the 
basic state zonal velocity UQ = - d^/dy. If we let (J> be a small amplitude perturbation to that 

zonal flow, i.e. \§\ « 1, then neglecting terms of 0(<i>2) in the quasi-geostrophic equations yields 
the linear equation 

|^ + L(0,<7) = O (1) 
dt 

where q = <|>   + <j>   + V(<|> ,((> ) is the perturbation potential vorticity (V being a vertical coupling 
AA yy it    £d£t 

term) and L((]),q) is a linear operator representing advection of perturbation potential vorticity by 
the mean flow UQ. Equation (1) has solutions of the form <|>(x,y,z,t) = <&(y,z) exp[i(kx -cot)]; 

upon substitution this yields an eigenvalue problem, wherein modal solutions O exits only if co 
and k are constrained to satisfy a dispersion relation D[co,k] = 0.  Together, these allow the linear 
description of the evolution of a single wave. As stated above, co = co(k) is in general complex, 
implying the flow profile *F(y,z) has the potential for instability. Typical examples co = co(k) for 
the Charney and Eady profiles can be found in [3:7.7-7.11]; these examples mimic quite well 
more realistic profiles [6]. We will confine ourselves to the case where ^(y.z) is unstable. 

Generic disturbances, of course, are not composed of a single wavenumber, but rather 
can be thought of a Fourier superposition of a (possibly infinite) number of modes. In such a 
case, one expects the disturbance to develop spatially as well as temporally. The development of 
an initially localized disturbance (in the long time limit) can be calculated using absolute 
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stability analysis [4]. By taking the Laplace and then the Fourier transform of (1), we can state 
the solution for $ in terms of integrals, viz 

G(0),k)eiikx-M) 

$(x,t) =   J  dco \dk (2) 
-m+lj 

D[co,k] 

where the y and z dependence of $ has been suppressed for clarity. G(co,k) contains information 
about the mean flow, initial conditions, etc., but is analytic in the upper half co plane, and ymust 

be larger than the largest positive imaginary part of co = co[Real(k)]. 
The long time asymptotics of (2) are evaluated simply by making y as small as possible, 

i.e. moving the contour in the Laplace integral toward the real co axis. For a given co, the 
integrand will have poles where D[co,k] = 0, i.e. at k=k(co), where k(co) is generally multi- 
valued. As Y is reduced to zero, several things may happen: First, a given k = k(co) which 
started on one side of the real k axis may cross to the other, which will require the Fourier 
contour in the complex k plane to be deformed to avoid the singularity. If the crossing is from 
above (2) will receive contribution from negative Im(k) for x > 0, representing spatially 
amplifying disturbances, with the opposite holding as well; a crossing from below leads to 
spatially amplifying disturbances for x < 0. The second thing that may happen (which requires 
the first as a precursor) is that two poles originating from opposite sides of the real k axis may 
coalesce. If this occurs, the Fourier contour in the complex k plane cannot be deformed so as to 
avoid the singularity, and it can be shown that the contribution from this singularity grows 
exponentially with time for any x. Such a system is then called "absolutely unstable. If no such 
coalescence occurs, the system is then called "convectively unstable." The difference between 
these two cases is illustrated in Figure 1. 

AlJolvJt« Instiiility Coavertm InsuJihty 
Hfcfl ♦too 

Figure 1: Difference between absolute and convective instability. In absolute 
instability, the initially localized disturbance radiates both up and downstream 
from its initial source, whereas convective instability only affects regions 
downstream from its initial location. VL, VG, and VT represent the leading edge, 
group, and trailing edge velocities of the packet, respectively. 

Technically, whether or not one sees an absolute instability in a given system is strongly 
dependent on the Galilean reference frame in which one is observing the system. However, the 
term "absolutely unstable" is reserved for those systems in which exponential growth is observed 
for all x in the resting frame. This ambiguity resulting from the freedom of choice of Galilean 
frame turns out to be useful, however, as the wave packet emanating from an initially localized 
disturbance is defined asymptotically by those Galilean frames in which exponential growth 
occurs; this defines a wedge-shaped region in the x-t plane confined by the leading and trailing 
edge velocities as in Figure 1. Within such a region, absolute stability analysis allows the 
calculation of all relevant quantities; wavenumber, frequency, growth rate, and modal structure, 
all as a function of x/t, the velocity of a given Galilean observer. 

Such an analysis applied to a "typical" atmospheric midlatitude flow profile reveals the 
following [6]:   Dimensional growth rates following the packet peak are on the order of one day, 
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dimensional phase velocities are about 15% the maximum flow velocity and are relatively 
constant throughout the wave packet, and the group velocity is about twice that of the phase 
speed, implying that individual crests and troughs will move toward the trailing edge of the 
packet. Secondly, the leading edge of the packet tends to move with a velocity about that of the 
mean flow, while the trailing edge velocity is nearly stationary. Also, the modal structures tend 
to be "deeper" (i.e. maximum modal amplitude occurs at a greater height) at the leading edge of 
the packet, while the waves near the leading edge also tend to be longer in wavelength than those 
near the trailing edge. 

When one applies the results of this linear analysis to flows in the real atmosphere, an 
interesting picture is obtained. Rows which are baroclinically unstable in the atmosphere tend to 
be zonally confined (i.e. are of finite length in the x direction). Hence, one would expect that the 
amplification rate, which can be defined as the growth rate a function of position within the 
packet times the Galilean velocity characterizing that position, to give a meaningful picture of 
which portions of the wave packet should dominate the evolution. Applying such a criteria to the 
results of the absolute stability analysis for the atmospheric-like flows indicates that the short, 
shallow waves toward the trailing edge of the packet should dominate. 

Nonlinear Results 
To test whether or not this conclusion of linear theory holds in the nonlinear domain, we 

used a numerical model, namely the two-layer truncation of the quasigeostrophic equations (see 
[3:6.16] for a derivation) with a flow consisting of a narrow (~5 Rossby deformation radii in the 
meridional (y) direction) jet in the upper layer and no flow in the lower layer. Such numerics 
were necessary, as we are concerned with mean flow conditions which mimic the atmosphere 
(i.e. growth rate the same order of magnitude as advection time) whereas analytical approaches 
to the problem are only tractable in the range where the growth rate is asymptotically smaller 
than the advection time scale. 

The results of one of these integrations is shown in Figure 2. Several things are quite 
obvious: First, the largest amplitude structures in the nonlinear domain are located at the leading 
edge of the wave packet, rather than at the trailing edge as would be indicated by linear theory. 
This is because the nonlinear equilibration takes place solely by homogenization of the mean- 
state potential vorticity gradient in the lower layer, and since the modal structures are "deeper" 
near the leading edge of the wave packet than near the trailing edge, the upper layer perturbation 
can grow much larger. 

Distance (Deformation Radii) 

Figure 2: Time development of upper layer streamfunction of wave packet along 
the basic state jet symmetry axis. Contour interval is .5, with the zero contour 
omitted. A typical atmospheric radius of deformation is 700 km, which along 
with a typical flow speed of 70 m/s implies approximately 10 model time steps 
correspond to one day of actual time. 

Secondly, there is no spreading of the packet outside its linear theory boundaries even in the 
strongly nonlinear stage. One can certainly imagine the scenario where nonlinear wave-wave 
interactions would "seed" new disturbances well upstream of the linear theory packet boundaries, 
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but such interactions do not take place here. Finally, there is no "global" decay stage for the 
disturbance; it continues forward at nearly constant amplitude as long as there is undisturbed 
flow to supply it with energy. 

An additional consequence of the lifecycle of the wave packet is shown in Figure 3. The 
mean flow modification is confined for the most part to the region well upstream of the 
developing packet. Hence, the generation of a strong barotropic flow component will not act to 
stabilize the packet from which it was spawned. However, we would expect that its existence 
would tend to wipe out any absolute instabilities (if any are there) and act to suppress incipient 
upstream disturbances. Hence, the role of mean flow modification may be to enforce a temporal 
spacing between successive wave packets in the atmosphere. 

T=140 
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U„ 
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T=180 

U, 

A^yvVvVyv^^*' 
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U„ 

100 

Distance (Deformation Radii) 

200 

Figure 3: Alteration in mean flow along the basic state jet symmetry axis. The 
mean state values (shown on the right side of the graph) are Uj = 1 and U2 = 0. 
The vertical dashes for each time step represent the position of the linear theory 
group velocity. 
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INSTABILITY IN EXTENDED SYSTEMS 

L. TAOf AND E. A. SPIEGEL* 

Abstract. The elimination of fast modes from mildly unstable systems is complicated 
by the problem of resonances among the stable modes. In extended systems, where the 
spectrum of normal modes is continuous, this is a typical difficulty. We illustrate this 
problem with an example. 

Introduction. Bifurcation theory is reasonably well understood for finite systems 
whose linear theories produce discrete spectra of normal modes, even when several modes 
are nearly marginal for the same parameter values. One approach to this problem of 
multiple bifurcation is based on the ideas that Bogoliubov and collaborators have used 
in nonlinear dynamics and statistical physics [3]. However, when the systems studied 
are extended in one or more spatial directions, the eigenvalues of the linear theory become 
closely spaced. In the limit of infinite spatial extent, when we have to deal with continuous 
spectra, problems are encountered in applying the procedures for systems with discrete 
spectra [41. 

The first difficulty that arises in the case of continuous spectra, or even for closely 
spaced discrete spectra, comes early in the attempt to parallel the derivation of amplitude 
equations for the situation with sparse spectra. When trying to eliminate the fast modes 
to get equations for the slow modes, we have to decide how to distinguish the two kinds 
of mode. A natural choice is suggested when the system is finite in one spatial dimension 
(coordinate z) and infinite in the transverse ones (a; and y). In this configuration, com- 
monly studied in fluid dynamics, the system has discrete mode numbers associated with z, 
the vertical coordinate. When there is translational invariance in x and y, the horizontal 
coordinates, we have a continuum of horizontal wave vectors associated with the Fourier 
modes for that case. Typically, instability occurs for a few vertical mode numbers and 
here we assume that there is only one unstable vertical mode, the gravest. This gravest 
mode occurs for a continuum of horizontal wave numbers, k, and there is no way to divide 
this continuum reliably into fast modes and slow modes. Hence the best procedure seems 
to be to eliminate the relatively fast higher vertical modes and keep the gravest vertical 
modes for all k [4,7]. 

The trouble that normally arises in this reduction is that resonant nonlinear inter- 
actions among stable modes are often unavoidable in the case of continuous spectra, no 
matter how we tune parameters [4]. Moreover, in the present state of understanding, it is 
not clear whether these effects represent physics or come from the methods. Here we shall 
describe the problem in terms of a model system. 

A Model Problem. Consider a pair of equations for two functions f(x,t) and 
g(x,t), bounded for all x. These are stand-ins for the vertical modes of convection theory, 
mentioned in the introduction. The model equations are 

dtf = °f~ (d2
x - k\f f - fg. (1) 

dtg = J9-(dl-klfg + f2. (2) 

Here a and 7 are constants with 7 < 0 and |<r| << |7|. 
The linear theory of these equations has two solutions for the eigenvector (/, g)T; these 

are of the form (A, B)Texp(st - ikx), where the wave number k is arbitrary in the case of 
infinite spatial domain. The two solutions are (1,0)T with s - a - (k2 - kx)

2 and (0,1)T 

with s = 7 - (k2 - k2)
2, where ki and k2 are constants and fci is the critical wavenumber. 

* Physics Department, University of Chicago, Chicago IL 60637 
* Astronomy Department, Columbia University, New York, NY 10027 
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h(x,t)=  f 
J—c 

The mode (0,1)T is never critical and always suffers finite damping under the conditions 
prescribed. Thus o is becomes a slave of f, which controls it through the nonlinear terms. 

Since (2) is linear, we could write down a formal solution with g = Q[f\. Then we 
would substitute that functional into (1) to obtain an integrodifferential equation for / of 
the type studied in pattern dynamics [7]. This is a prototypical case of the problem we 
are talking about and we want to use a generalizable method on it. 

In the discrete case, which we get from this problem by making the spatial domain 
finite, there are (at least) two straightforward procedures that work nicely and give Lan- 
dau's amplitude equation. We can simply assume that \g\ is small everywhere and solve 
by successive approximations for Q[f]. Or we can use normal form theory to transform 
(l)-(2) into the desired form. In each case, there is trouble when 2<x = 7. This is not a 
real difficulty since we are usually interested in a > 0 and 7 < 0, , but it does foreshadow 
the problems that arise when these methods are applied to the continuous case ([2] and 
[4], respectively). Let us see what happens in the continuous case when we apply (for 
instance) the second procedure. 

The Functional Center Manifold. For any suitable function h(x,t) we write 

hk(t) eikxdk. (3) 

With this notation, the Fourier transforms of (1) and (2) are 
/oo 

gq(t)fk-q(t)dq, (4) 
-00 

and 

dtgk(t) = -Yk9k(t) + /      /.(*)A-t(*)<fc. (5) 
J—00 

where ak = a - (k2 + k2)2 and 7* = 7 - (k2 + k\)2. 
The dynamics of this system takes place in a phase space with coordinates /*(*) and 

gk(t) (-00 < k < 00). If fk(t) were zero, gk(i) would decay away and so we expect fk(t) to 
be larger than gk(t) in magnitude for most k, and will formulate expansions accordingly. 
Moreover, this picture leads us to look for dynamics approximately confined to a subspace 
with only one important coordinate at each k, at any rate near the origin of phase space, 
where the system will linger for the mildly unstable case, a w 0. 

Given these expectations, we look for new phase space coordinates, Fk(t) and Gk(t), 
related to old the coordinates by a functional power series with the idea that Fk(t) is the 
coordinate in the invariant subspace and Gk(t) is transverse to it. That is, we introduce 
the coordinate transformation 

/OO        /-OO 

/       Ik(p,q)F,(t)Fq(t)dpdq + ... , (6) 
-00 J—00 

/OO       rOO 

/       Jk(p,q)F,(t)F9(t)dpdq + .... (7) 
-OO J —OO 

This near-identity transformation preserves the structure of the linear problem. We want 
it also to turn (4) and (5) into this standard form: 

/OO        /-OO 

/       *ktp,q)Fp(t)Fq(t)dq + ... (8) 
-00 J — CO 
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and / oo 
dtGk(t) = (lk + J~ *k(p) Fp(t) dp + ..^j Gk(t) + ... . (9) 

Even though (8), the desired equation for Fk alone, is generally the main aim, for now we 
want to know whether we can get an equation like (9). For this equation says that, to 
leading order, once Gk(t) = 0, it remains so. The dots in the parentheses of (9) represent 
higher terms in Fk that complete the renormalization of 7*. More important are the dots 
at the end which must represent terms that vanish to reasonably high order for Gk(t) = 0. 
For now. we are content to develop the results in the leading order of this formal procedure 
to see whether a transformation of the form of (6)-(7) can produce (9) and give the desired 
form to the dynamics. 

We substitute the transformations into the equations for fk(t) and gk(t) and use (9). 
Then we equate like orders in the functional power series. The first significant result comes 
at order two: 

/OO        fO 

■OO J—c 

[Vk(p, q) MP, q)-S(p + q- k)] FpFq dpdq = 0 (10) 
J—oo«/—00 

where 
Vk(p, q) = <Tp + <Tg-'yk. (11) 

When we solve this for Jk(p, q), we find that it must contain the delta function and 
so we are interested in the condition p + q — k = 0. Even with this restriction, there are 
many wave number triplets for which Vk(p,q) = 0. As in plasma physics, where a similar 
problem arises [6] we write the formal solution as 

MP,q) = (^p^) " **(*>*(*«))) *(P + « - *). (12) 

where A is a constant (or set of constants should V have many zeros) and V means principal 
value. Now we put this into (7) and obtain 

/oo l 

,„iw^P)F>Ft->S(p-p°)dp+---'        (13) 

where {p0} is the set of all zeros of Vk(p, k—p) for given k and D'k(p, k-p) is the derivative 
of T>k(p, k—p) with respect to p. On referring to equation (11) we see that 

*>*(P, * - p) = -4(p2 - k\)p - 4((fc - pf - k\){k - p). (14) 

Now Gk = 0 is the invariant manifold in which the dynamics is played out, after the 
transients decay away and, once the system is in it, the dynamics is simplified. To leading 
order, this "functional center manifold" is given by 

/°° 1 A 

-oo Vk(p, k-p) ^} Vh{pQ, k - po) 
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where p0 is a function of A;. The problem that is as vet unsolved is the determination of 
the APo. In previous work on this subject, they have been implicitly set to zero. The way 
this has been done has been to assume either implicitly or explicitly [4] that fk vanishes 
outside narrow intervals containing k = ±k%. # I^IJI. 

A singular expression like that for Jk(p,q) arises in plasma physics and it had been 
avoided in the past by the assumption of compact support of the one-particle distribution 
function, f0 that arises there. But this approach was questioned by van Kämpen [6] who 
remarked that "the assumption of a rigorously cut off f0 is rather artificial, and it is 
unsatisfactory that the calculation should fail for an f0 that decreases rapidly without 
actually vanishing." This view is appropriate here. However, van Kampen also pointed 
out that [61: "Vlasov decreed that the Cauchy principal value has to be taken without 
trying to justify this choice. The present article will show that this choice was indeed 
correct." Van Kampen [61 (see also [1]) determined A by a normalization condition which 
we do not see how to use here. We shall instead describe what happens when we abide by 
the Vlasov decree and set A*(p, q) = 0. However, there is probably more to be said on this 
matter [8] and we hope to return to it at another time. 

The Evolution Equation. If we do set the \po = 0, then we omit the second term 
in (15). Moreover, we can approximate the finite P.V. integral, by noting that fk is peaked 
around ±h, even though it does not have compact support. Then, since <rkl is close to 
zero, (15) is well approximated by 

1     t 
h = -    fPh-Pdp+.... (i6) 

7* J-oo 

When we introduce this into (4), we get, to leading order, 

/oo       /«00       -I 

/ —h-qfpfq-V dPdQ- (17) 
-oo «/ —oo   7? 

If we continue to assume that fk is sharply peaked at *i, we consider this equation 
only near this critical circle. When k « h in the integral, we must have q « 0 and we 
may approximate jq by 7o = 7 - *2 =: V«- Then> when we take the Fourier transform of 
(13), we get ,    v 

dtf = <rf-{dl-k\?f-af, (18) 

This is the Swift-Hohenberg model familiar in convection theory [9]. 
In the next section we shall give some numerical solutions for the full model equations 

and for the Swift-Hohenberg model and see that the qualitative agreement is satisfactory. 

Numerical Experiments. We compare the periodic solutions of equations (1) and 
(2) (the full model system) to those of equation (18) (the Swift-Hohenberg model). Using 
a pseudospectral code, we calculate the exponential damping in time from the linear terms 
exactly for each Fourier mode and we compute the nonlinear terms in real space, lne 
timestepping scheme is explicit second-order Adams-Bashforth. The advantage of such 
a spectral code over conventional finite difference methods is the ease of comparison to 
the ordinary differential equations we obtained analytically. To test our code, we chose 
parameters for which the ordinary differential equations for each Fourier mode obtained 
by normal theory give us a system of predator-prey equations. In this test case, we indeed 
observe that the numerical solutions follow the classical predator-prey models. 

In figures 1-8 and 9-16 we show results from two calculations. In all figures, the solid 
line are the numerical solution of the full model system and the dotted lines the solutions 
of the Swift-Hohenberg model.   Initially we start with finite amplitudes in the first 4U 
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Fourier modes (our parameter values were a = 0.0005, 7 = 1.023, &i = 16 and £2 = 32 
and were chosen so that fk=o, /*=32 and gu=z2 form a resonating triad). The initial values 
of each Fourier mode were random with some weighting so that the /*'s near k\ = 16 
have higher amplitude than the rest. We contrast the transient dynamics of the Swift- 
Hohenberg model with its asymptotic behavior and show the space dependence of the 
/-mode at times t = 0,10,20,30 and at t = 50,100,150,200. As we see from Figures 5-8 
and 13-16 the approximate Swift-Hohenberg system asymptotically approaches the correct 
nonlinear state selected out by the full dynamics. Even though the Swift-Hohenberg model 
gets the transients wrong, eventually the system locks into the correct asymptotic state 
with the same decay rate as the solutions of the full model system. The approximate 
dynamics of the Swift-Hohenberg model mimics that of the full model system which is 
what we expect of the correct center manifold description. A variety of other parameter 
values were tried and we have not been able to detect the complicated time dependence 
shown in the analogous discrete spectrum ode model of Cessi, Spiegel and Young [2]. Our 
numerical results so far justify our choice in setting the \po 's equal to zero. 

Conclusions. Our goal in this note was to understand the effects of stable resonant 
modes in spatially extended systems. The Vlasov decree from plasma physics of taking the 
P.V. to deal with resonant denominators produces noncatastrophic results and leads to the 
usual Swift-Hohenberg model. The numerical results from this approximation are in good 
agreement with those from the full model system. Formally, the possibility of analogues to 
the van Kampen modes remains open. However, lacking proper normalization conditions, 
we have not yet seen how to include the resonant contribution to the determination of the 
functional center manifold. We hope that further work will shed light on this matter. 

This work was supported by the U.S. Air Force under contract number F49620-92-J- 
0061 to Columbia University. 
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The fluid dynamics of crystal slurries 
Andrew W. Woods and Richard A. Jarvis 

In this presentation, a model of the nucleation, growth and sedimentation of crystals 
in a vigorously convecting and cooling binary melt was described. The model is based 
upon the conservation of heat and mass in the melt, and explicitly accounts for the crystal 
size distribution and its evolution with time. The model can be used to predict the rate of 
accumulation of crystals on the floor of the chamber housing the melt, and also the variation 
of the mean crystal size with height in the deposit. The model was compared with some 
simple laboratory experiments in which a melt of aqueous ammonium chloride was cooled 
from an overlying layer of light oil. As the melt was cooled, crystals which nucleated near 
the upper cold boundary sank from into the main body of melt and eventually accumulated 
in a pile on the floor of the chamber. 

The model is based upon the conservation of heat in the chamber 

dT 
(H - h)pcp^ = -F + PL(H - h)Rp 

where H - h is the depth of the melt, h is the depth of the crystal pile, T is the melt 
temperature and F is the convective heat flux extracted from the upper boundary of 
the melt. Also, Rp is the rate of production of the crystals, and L the latent heat of 
crystallisation. The rate of accumulation of the crystals on the base of the chamber is 

% = (H-h)R, 

where we assume the crystals are close packed on the base of the chamber. 
The crystal size distribution <j)(a,t) is governed by the equation 

dt       da 

where V is the growth rate of the crystals, a is the crystal size and t is the time. In the 
limit in which the residence time of the crystals is much smaller than the cooling time of 
the magma, the solution of this equation has the simple form 

„     ,      N(t)        (   X(t)a3\ 

and this may be used to develop expressions for the crystal fraction in suspension and the 
production rate of the crystals in terms of the crystal nucleation and growth laws. In the 
model, the crystal nucleation was assumed to occur in the upper cooled boundary layer. 
The growth laws were specified by simple functional forms, incorporating the constraint 
that there be a finite undercooling before nucleation occurs. 
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The coupled model of the cooling together with the nucleation, growth and settling of 
the crystals was solved to examine the different controls upon the process. The dimension- 
less form of the equations describing the conservation of heat and solute and the thickness 
of the cumulate pile are 

(1 - d)6 = -f + AS(1 - d)rp 

9L = -A(l - kD)(9a - eL)rp 

d = A{\- d)rp 

Here, the parameter A which is of order 104, denotes the ratio of the cooling time of the 
magma to the crystal nucleation, growth and settling time. Two cases were examined to 
elucidate the controls upon the cooling. In the first, the upper boundary of the melt was 
lowered to a fixed value below the saturation temperature of the melt. It was found that 
during the initial stages of the cooling, crystals could readily nucleate in the upper bound- 
ary. Therefore, in order that the melt continues to cool, the growth of the crystals and 
hence the latent heat release, was suppressed by maintaining the melt close to saturation 
conditions - this is termed the growth limited regime. However, as the melt cooled so that 
the melt in the upper boundary approached the critical undercooling for nucleation, the 
nucleation rate decreased. Subsequently, the melt became supercooled since the limited 
supply of crystals suppressed the production of latent heat as these crystals grew in the 
melt. This is termed the nucleation limited regime. 

In the second case examined, the material overlying the turbulently convecting melt 
was assumed to be of a lower fusion temperature than the initial temperature of the melt. 
As a result, the upper layer melted while the lower layer cooled and crystallised. The upper 
layer was taken to be less dense than the lower layer, so that it remained separate from 
the initial melt. We found that if the upper layer is sufficiently viscous, then the initial 
temperature of the interface between the two layers is very close to the initial temperature 
of the lower layer and no nucleation occurs. Only after some time, when the upper layer 
has cooled sufficiently, was the critical undercooling for nucleation attained. Beyond this 
time, the system remained in the nucleation limited regime described above. In contrast, 
when the overlying melt was not sufficiently viscous, the system evolved from the growth 
limited to the nucleation limited regimes. 

We then described a series of laboratory experiments in which crystal piles were grown 
by cooling a binary melt from above, with a thin layer of overlying oil to prevent attachment 
of the crystals to the cold upper boundary. It was shown that within experimental error, 
the experiments were well modelled with the above theory of cooling and crystallisation, 
subject to the modification that the solid fraction in the crystal pile had a fixed value of 
0.1-0.3 rather than unity. 

One important prediction of the model concerns the variation of the crystal size with 
depth in the crystal pile. During the growth limited regime the model predicts that the 
crystal size steadily decreases with height in the deposit. This is a result of the decrease 
in the residence time of the crystals in suspension as the depth of the melt layer decreases. 
However, this crystal size grading is relatively weak compared to that associated with the 
nucleation limited regime. In that case, the mean grain size increases steadily with height 
as a result of the increasing viscosity and hence increasing residence time of the crystals as 
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the melt cools. The increase of grain size with height in the main portion of the intrusion 
is broadly consistent with geological observations from the Stillwater complex in Montana 
and the Palisades Sill in New York. 

A Laboratory Model of Cooling over the Continental Shelf 
J. A. Whitehead, Woods Hole Oceanographic Institution 

A laboratory experiment is conducted where hot water is cooled by exposure to air 
in a cylindrical rotating tank with a flat shallow outer "continental shelf' region next to a 
sloping "continental slope" bottom and a flat "deep ocean" center. It is taken to be a model 
of wintertime cooling over a continental shelf. The flow on the shelf consists of cellular 
convection cells descending from the top cooled surface into a region with very complicated 
baroclinic eddies. Extremely pronounced fronts are found at the shelf break and over the 
slope. Associated with these are sizable geostrophic currents along the shelf and over shelf 
break contours. Eddies are particularly energetic there.   Cooling rate of the hot water is 
determined and compared with temperature difference between "continental shelf' and 
"deep ocean". TTie results are compared with scaling arguments to produce an empirical 
best fit formula that agrees with the experiment over a wide range of experimental 
parameters. A relatively straight trend of the data causes a good collapse to a regression 
line for all experiments. These experiments have the same range of governing 
dimensionless numbers as actual ocean continental shelves in some Arctic regions. 
Therefore this formula can be used to estimate how much temperature decrease between 
shelf and offshore will be produced by a given cooling rate by wintertime cooling over 
continental shelves. The formula is also generalized to include brine rejection by ice 
formation. It is found that for a given ocean cooling rate, shelf water will be made denser 
by brine rejection than by thermal contraction. Estimates of water density increase implied 
by these formulas are useful to determine optimum conditions for deep water formation in 
polar regions. For instance, shelves longer than the length scale 0.09 f W5/3/B1/3 (where f 
is the Coriolis parameter, W is shelf width and B is buoyancy flux) will produce denser 
water than shorter shelves. In all cases, effects of Earth rotation are very important, and 
the water will be much denser than if the fluid was not rotating. 
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