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Abstract 

The ever-increasing demand in surveillance is to produce highly accurate target and track identifica- 

tion and estimation in real-time, even for dense target scenarios and in regions of high track contention. 

The use of multiple sensors, through more varied information, has the potential to greatly enhance target 

identification and state estimation. For multitarget tracking, the processing of multiple scans all at once 

yields the desired track identification and accurate state estimation; however, one must solve an NP-hard 

data association problem of partitioning observations into tracks and false alarms in real-time. This report 

summarizes the development of a multisensor-multitarget tracker based on the use of near-optimal and real- 

time algorithms for the data association problem and is divided into several parts. The first part addresses 

the formulation of multisensor and multiscan processing of the data association problem as a combinatorial 

optimization problem. The new algorithms under development for this NP-hard problem are based on a 

recursive Lagrangian relaxation scheme, construct near-optimal solutions in real-time, and use a variety of 

techniques such as two dimensional assignment algorithms, a bundle trust region method for the nonsmooth 

optimization, graph theoretic algorithms for problem decomposition, and a branch and bound technique for 

small solution components. A brief computational complexity analysis as well as a comparison with some 

additional heuristic and optimal algorithms is included to demonstrate the efficiency of the algorithms. A 

two radar system with data supplied by Rome Labs is used to demonstrate the efficiency and robustness of 

current multisensor-multitarget tracker that is based on these fast data association algorithms. 
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1. Introduction. The ever-increasing demand in surveillance is to produce highly accurate target and 

track identification and estimation in real-time, even for dense target scenarios and in regions of high track 

contention. The use of multiple sensors, through more varied information, has the potential to greatly improve 

state estimation and track identification. This approach is part of a much broader problem called data fusion, 

which for military applications is denned as "a multilevel, multifaceted process dealing with the detection, 

association, correlation, estimation and combination of data and information from multiple sources to achieve 

refined state and identify estimation, and complete and timely assessments of situation and threat" [64]. The 

various problems are generally partitioned into three or more levels: (1) fused position (state) and identity, (2) 

hostile or friendly military situation assessments, and (3) hostile force threat assessments. (Comprehensive 

discussions can be found in the books of Waltz and Llinas [64] and Hall [26].) Level 1 deals with single and 

multisource information involving tracking, correlation, alignment, and association by sampling the external 

environment with multiple sensors and exploiting other available sources. Numerical processes thus dominate 

Level 1; symbolic reasoning involving various techniques from artificial intelligence permeate Levels 2 and 

3. This report focuses on Level 1 data fusion with the goal being to use multiple sensors to achieve superior 

state estimation and track identification. 

Sensor fusion systems vary greatly depending on the particular needs of a surveillance system. Key 

issues in the design of such a system include sensor type (active or passive), sensor location (distributed 

or collocated), and the level of association, which ranges from sensor level fusion to centralized fusion with 

hybrids in between. Although there are many such issues, the central problem in any surveillance system is 

the data association problem of partitioning measurements into tracks and false alarms. To explain this data 

association problem, we must first address the levels of association. 

At one extreme is sensor level tracking, wherein each sensor forms tracks from its own measurements and 

then the tracks from the sensors are fused in a central location. Once the correlation is complete, one then 

combines the tracks with appropriate modification in the statistics [13]. Compared with central level fusion, 

the advantages include the reduced communication costs between the sensors and central processing unit 

and easier data association. The disadvantages are that combined track estimates tend to be worse than in 

central-level fusion and the error independence assumptions in data association are no longer valid, thereby 

introducing additional complexity into the problem [11,13]. At the other extreme is centralized fusion in 

which sensors send measurements to a central processing unit where they can be combined to give superior 

state estimation [11] (compared to fusion of sensor level tracks). The difficulties are generally claimed to be 

data association (our strength), communication costs between the sensor and central processing unit, and 

the loss of the tracking capability if the central processing unit becomes inoperative. In reality, current 

and proposed sensor fusion systems for any surveillance system make use of both systems. Certainly, one 

can treat a hybrid of these two systems by sending the observations associated with a track obtained at 

the sensor level to a central processing unit and treat the association as in centralized fusion [11]. Having 

explained the level of data association, we now return to a brief overview of the methods of data association 

for central and some hybrid central-sensor level tracking. 

The existing algorithms range from single scan or sequential processing to multiscan processing. Methods 

for the former include nearest neighbor, one-to-one or few-to-one assignments, and all-to-one assignments as 

in the joint probabilistic data association (JPDA) [6] in single sensor tracking. Problems involving one-to- 

one or few-to-one assignments are generally formulated as (two dimensional) assignment or multi-assignment 

problems for which there are some excellent algorithms [7, 8, 9]. This methodology is real-time but can result 

in a large number of partial and incorrect assignments, particularly in dense or high contention scenarios, 



and thus incorrect track identification. The difficulty is that decisions, once made, are irrevocable, so that 

there is no mechanism to correct misassociations. The use of all observations in a scan (e.g., JPDA) to 

update a track moderates the misassociation problem and has been successful for tracking a few targets in 

dense clutter [6]. 

Deferred logic techniques consider several data sets or scans of data from multiple sensors all at once 

in making data association decisions. At one extreme is batch processing in which all observations (from 

all time) are processed together, but this is computationally too intensive for real-time applications. The 

other extreme is sequential processing. Deferred logic methods between these two extremes are of primary 

interest in this work. The key advantage of this approach is the ability to change data association decisions 

over several of the most recent scans of data. It is this feature that leads to superior track estimation. The 

principal deferred logic method used to track large numbers of targets in low to moderate clutter is called 

multiple hypothesis tracking (MHT) in which one builds a tree of possibilities, assigns a likelihood score based 

on Bayesian estimation, develops an intricate pruning logic, and then solves the data association problem by 

explicit enumeration schemes. The fundamental limitation of MHT, as it now exists, is that it is an NP-hard 

combinatorial optimization problem, so that in dense scenarios and high track contention or with multiple 

sensor input, the time required to solve this problem optimally can grow exponentially with the size of the 

problem. This failure is not graceful, i.e., the method is not robust with respect to real-time needs. Thus 

to make MHT viable, near-optimal algorithms are needed to solve the data association problems to the noise 

level in real-time. This is precisely the subject of this research program and report. The centralized fusion 

approach is also highly parallelizable and is ripe for the use of parallel computers in the future. 

The first topic (Section 2) in this report is the formulation of multisensor and multiscan processing of the 

data association problem as an NP-hard combinatorial optimization problem. Next, an overview of some of 

the near-optimal and real-time algorithms for solving this problem is presented in Section 3. The algorithms 

under development are based on a recursive Lagrangian relaxation scheme, construct near-optimal solutions 

in real-time, and use a variety of techniques ranging from two dimensional assignment algorithms, a bundle 

trust region method for the nonsmooth optimization, graph theoretic properties for problem decomposition, 

and a branch and bound technique for small solution components. These topics are presented in Sections 3 

and 4. A brief computational complexity analysis as well as a comparison with some additional heuristic and 

optimal algorithms is included in Section 5 to demonstrate the efficiency of the algorithms. The existing and 

on-going software work is discussed in Section 6. Finally, in Section 7, a two radar system with data supplied 

by Rome Labs is used to demonstrate the efficiency and robustness of current multisensor-multitarget tracker 

that is based on these fast data association algorithms. 

2. Formulation of the Data Association Problem. The goal of this section is to explain the formulation 

of the data association problem that governs large classes of data association problems in centralized or 

hybrid centralized-sensor level multisensor/multitarget tracking. The presentation is brief; technical details 

are presented for both track initiation and maintenance in [49] for nonmaneuvering targets and [52] for 

maneuvering targets. These works also contain expressions for the likelihood ratios Lil...iN used in the 

score in the following equations (2.3) and (2.4). The formulation presented here is of sufficient generality 

to cover the MHT work of Reid [61], Blackman and Stein [10], and modifications by Kurien [34] to include 

maneuvering targets. As suggested by Blackman [10] this formulation can also be modified to include target 

features (e.g., size and type) into the scoring function. 

The data association problems for multisensor and multitarget tracking considered in this work are 



generally posed [6,10,35,49,52] as that of maximizing the posterior probability of the surveillance region 

(given the data) according to 

' p(r = 7 | zN) 
Maximize 

P(T = 7° | ZN) 
7 er* (2.1) 

where ZN represents N data sets, 7 is a partition of indices of the data (and thus induces a partition of the 

data), T* is the finite collection of all such partitions, T is a discrete random element defined on Y*, 70 is 

a reference partition, and P(r = 7 | ZN) is the posterior probability of a partition 7 being true given the 

data ZN. The term partition is defined below; however, this framework is currently sufficiently general to 

cover set packings and coverings [35]. 

Consider N data sets Z(k) (k = 1,.. .,7V") each of Mk reports {zik}ik=i, and let ZN denote the cumulative 

data set defined by 

Z(k) = {zfX=i   and   ZN = {Z(l),...,Z(N)}, (2.2) 

respectively. In multisensor data fusion and multitarget tracking the data sets Z(k) may represent different 

classes of objects, and each data set can arise from different sensors. For track initiation the objects are 

measurements that must be partitioned into tracks and false alarms. In our formulation of track maintenance 

[49,52], which uses a moving window over time, one data set will be tracks and remaining data sets will be 

measurements which are assigned to existing tracks, as false measurements, or are assigned to initiating 

tracks. In sensor level tracking, the objects to be fused are tracks [10]. In centralized fusion [10], the objects 

may all be measurements that represent targets or false reports, and the problem is to determine which 

measurements emanate from a common source. 

We specialize the problem to the case of set partitioning [49] defined in the following way. First, for 

notational convenience in representing tracks, we add a dummy report z\ to each of the data sets Z(k) in 

(2.2), and define a "track of data" as (z* ,..., zf^) where ik and 2* can now assume the values of 0 and 2*, 

respectively. A partition of the data will refer to a collection of tracks of data wherein each report occurs 

exactly once in one of the tracks of data and such that all data is used up; the occurrence of a dummy report 

is unrestricted. The dummy report 2* serves several purposes in the representation of missing data, false 

reports, initiating tracks, and terminating tracks [49]. The reference partition is that in which all reports 

are declared to be false. 

Next under appropriate independence assumptions one can show [49] 

p(T = y0   I   ZN)   ~      7  ~ Al h*l">N> ^-6) 
V I     \ > (ii-tV)67 

Li1...iN is a likelihood ratio containing probabilities for detection, maneuvers, and termination as well as 

probability density functions for measurement errors, track initiation and termination. Then if Cil...{N = 

— in Li1...iN, 

P(l\ZN) -In 
P{j>\Z") £      C>V-V- (2-4) 

(•1 !N)67 

Using (2.3) and the zero-one variable Zi1...{N = 1 if («i,.. .,ijv) € 7 and 0 otherwise, one can then write the 
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problem (2.1) as the following N-dimensional assignment problem: 

Mi MAT 

Minimize      X] " ' X] C
»'I-»V

Z
»I-»JV 

»1=0     iV=o 

Ma MN 

Subject To:     E '"' E **'1-''" =-1,   i1 = l,...,M1, 
<2=o      >v=o 

Mi Mk_i    Mk+i MN 

E-E E -2>-* = i. (2-5) 
i'i=0        u-i=0ik+i = 0        iN=Q 

for    ik = 1, ■ • •, Mk and k = 2,..., N - 1, 
Mi Mj\r_i 

E'"   E   Z«i-»V = !.   »V = 1,...,MJV 
«1=0        JV_I=0 

^•I-.-JV  £ {°. !} for a11 l'i. • • •. JV, 

where co...o is arbitrarily defined to be zero. Here, each group of sums in the constraints represents the fact 

that each non-dummy report occurs exactly once in a "track of data". One can modify this formulation to 

include multiassignments of one, some, or all the actual reports. The assignment problem (2.5) is changed 

accordingly. For example, if z\ is to be assigned no more than, exactly, or no less than nfk times, then the 

" = 1" in the constraint (2.5) is changed to " <, =, > nffe," respectively. Modifications for group tracking 

and multiresolution features of the surveillance region will be addressed in future work. In making these 

changes, one must pay careful attention to the independence assumptions that need not be valid in many 

applications. 

For track maintenance, we use a sliding window of N data sets and one data set containing established 

tracks [49,52]. The formulation is the same as above except that the dimension of the assignment problem 

is now N + 1. 

3. Overview of the Lagrangian relaxation algorithms. Having formulated an N-dimensional assign- 

ment problem (2.5), we now turn to a description of the Lagrangian relaxation algorithms. The algorithms 

presented here are the subject of numerous publications [42, 45, 46, 47, 50, 55, 59] and two patents [53,58] and 

were developed under the current and previous AFOSR grants. The relaxation procedures presented here are 

based on relaxing an arbitrary number of constraints. Thus, subsection 3.1 presents many of the relaxation 

properties associated with the relaxation of an n-dimensional assignment problem to an m-dimensional one 

via a Lagrangian relaxation of n — m sets of constraints. Although any n — m sets can be relaxed the descrip- 

tion here is based on relaxing the last n — m sets of constraints and keeping the first m sets. Given either an 

optimal or suboptimal solution of the relaxed problem, a technique for restoring feasibility to the original n- 

dimensional problem is presented in subsection 3.2 and an overview of the Lagrangian relaxation algorithm, 

in subsection 3.3. A presentation of these various algorithms is the subject of forthcoming publications [59, 

59, 55] and the thesis of Alexander J. Robertson [60]. 

The following notation will be used throughout the remainder of the work.  Let' N be an integer such 
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that N > 3 and let n £ {3,..., N}. The n-dimensional assignment problem is 

Mi Mn 

Minimize   Vn(z) = £ • • • £ c?...,.^?...,.. 
ti=0       i„=0 

M2 M„ 

Subject To:     £ • • • £ *?...,., = 1,   *i = 1 Mi, 
«3=0        :„=0 

Mi Mi_i    Mk+i Mn 

E- E E -Ec<. = i. (3-1) 
»1=0        »k-i=0 tfc + i=0        !„=0 

for   it = 1,..., Mk and fc = 2,..., n — 1, 
Mi M„_i 

E---    E    ^-ü = 1.     »■n = l,-.-^n 
»i=0        »'„_i=0 

*£••.,■,   €{0,1} for all ix,...,!„. 

To ensure that a feasible solution of (3.1) always exists, all variables with exactly one nonzero index (i.e., 

variables of the form ZQ...oi 0...0 for ik ^ 0) are assumed free to be assigned and the corresponding cost 

coefficients are well-defined. 

3.1 The Lagrangian Relaxed Assignment Problem. The n-dimensional assignment problem (3.1) has 

n sets of constraints. A (Mk + l)-dimensional multiplier vector associated with the k-th constraint set will be 

denoted by uk = («§,u\,...,uk
Mk)

T with u§ = 0 and k = 1,...,n. The n-dimensional assignment problem 

(3.1) is relaxed to an m-dimensional assignment problem by incorporating n — m of the n sets of constraints 

into the objective function. Although any constraint set can be relaxed, the description of the relaxation 

procedure for (3.1) will be based on the relaxation of the last n — m sets of constraints. The relaxed problem 

is 

^mn(um+1,...,un) = 

Mi Mn 

Minimize    <j>mn{zn;um+\ ...,«")= E " • E c"i■■<&-«» 
»1=0        »'„=0 

n        Mk r Mi Mfc-i    Mt+i Mn -i 

+ E E< E- E E -E*?x-«.-i 
i:=m+l!t=0 Lii=0        ik-i=0ik+i=0        »n=0 

Mi Mn n n Mk 

= E-Elc.<.+ E <]*?,-.<.- E E< 
»1=0        »'„=0 fc=m+l fc=m+X»fc=0 \Ö-Z) 

M3 Mn 

Subj.To    E'"Ez"i-<- = 1'   h = l,...,Mu 
i2-0        »'„ = 0 

Mi Mk-i    Mk+i M„ 

»1=0        »k_i=0ik+i=0        »n=0 

for    ik = 1,.. •, Mk and k = 2,..., m, 

*."•••«•„   € {0, l}for allii,...,i„. 

An optimal (or suboptimal) solution of (3.2) can be constructed from that of an m-dimensional assign- 

ment   problem. To   show    this,    define   for    each    (ii,...,im)    an    index    (jm+i, ■ ■ ■ ,jn)     = 



(jm+i(h, ■ ■ ■ ,im), ■ ■ ■ ,jn(h, ■ ■ ■ ,im)) and anew cost function cm...im by 

(jm+i,---,jn) - argmin<c^...,-n +   ^   «ft    i* = 0,.. .,Mk and k = m + 1,... ,n i 
V t_„,_i_1 J fc=m+l 

n 

C--»=c?i-.W»+i-i.+    E   <for(*i,...,in,)?t(0)...)0) (3.3) 
fc=m+l 

Mm+i M„ 

-■■■>      — 
c0-0 — 

im + l=0 l'n=0 ^ fc=ro+l 

£   ...£ Minimum] 0,cg...o,-m+1...,-n +   X!   <[ 

(If (j'm+i,.. -,jn) is not unique, choose the smallest such jm+i, amongst those (n — m)-tuples with the same 

jm+i choose the smallest jm+2, etc., so that (jm+i, ■ ■ -,jn) is uniquely defined.) Using the cost coefficients 

defined in this way, the following m-dimensional assignment problem is obtained: 

Mx Mm 

$mn(u
m+1, ...,«») = Minimize   j>mn{zm-um+\ ...,un)= vm(zm) = ]T • • • £ C-.mC-Sm 

»1=0 i'm = 0 

M2 Mm 

Subject To:     £ • • • £ z£„.im = 1,   i1 = l,...,Mi, 
»2 = 0 im = 0 

Mi Mt_i    Mk+i Mm 

E- E E •••Ec-.m = i- (3-4) 
»1=0 !k_i=0jt + i=0 l'm=0 

for    it = 1,..., Mfc and & = 2,..., m — 1, 

Ml Afm-l 

E-"   E   C-^ = l.   im = !,.■■,Mm 
j'i=0        »TO_i=0 

C-im   e {0,1} for all i!,...,!™. 

As an aside, observe that any feasible solution zn of (3.1) yields a feasible solution zm of (3.4) via the 

construction 
zm        _ f 1    if *,"...,■„ = 1 for some (im+i,..., i„) 

11'"'m      l0    otherwise. 

Thus the m-dimensional assignment problem (3.4) has at least as many feasible solutions of the constraints 

as the original problem (3.1). 

The following theorem states that an optimal solution of (3.2) can be computed from that of (3.4). 

The converse is contained in Theorem 3.2. Furthermore, if the solution of either of these two problems is 

e-optimal, then so is the other. 

Theorem 3.1.  Let wm be a feasible solution to problem (3.4) and define wn by 

if (im+i,...i„) = (jm+i,---,jn) and (ii,...,im) # (0,...,0) 

0 if (im+i,...i„) 7^ (im+i, • • •,in) and (ii,..., im) # (0,..., 0) 
n 

= 1 ifCWm+1...,.n+   E   <  ^° (3-5) 
k—m+l 

W. •l-ln 

w0-0im+i-in 

<-0im+1-in = 0 ifCoem+i...»„+     E     <    >0 



Then wn is a feasible solution of the Lagrangian relaxed problem (3.2) and <j>mn(wn;um+l,...,un) = 

4>m„{wm\ um+l,...,«")- Eit=m+i E<!f=o ut ■ If> in addition, wm is optimal for (3.4), then wn is an optimal 

solution of (3.2) and $mn(«ro+1,...,u") = $™(«m+1,...,«")- £Lm+i E?=o < ■ 

With the exception of one equality being converted to an inequality, the following theorem is a converse 

of this theorem. 

Theorem 3.2.  Let wn be a feasible solution to problem (3.2) and define wm by 

'm+l=0 »n = 0 
n 

fc=m+l 

C.o = 0if(t1)...I*m) = (0,...,0)andcJ...Ol.m+l...,.n+   £}   < > 0 for all (im+i,.. .,i„) (3.6) 

w%..0 = 1 if (n,...,im) = (0,...,0) and c%...oim+l...in+   ^   u-fc < 0 for some (im+1,... ,in). 
k=m+l 

Then wm is a feasible solution of the problem (3.4) and <f>mn(wn;um+1, ...,u")> 4>mn(wm; um+1,..., un) - 

Et=m+iE^=out-   H' in addition, wn is optimal for (3.2),  then wm is an optimal solution of (3.4), 

4>mn(wn;um+\...,un)   =   Kn(wm;um+\...,un)-Y:nk=m+xZyk=o<,   and  <S>mn(um+\...,u")   = 

*»„(«"+V..«")-E2=m+i£S:o<- 

3.2 The recovery procedure. The next objective is to explain a recovery procedure, i.e., given a feasible 

(optimal or suboptimal) solution wm of (3.4) (or wn of (3.2) constructed via Theorem 3.1), generate a feasible 

solution z™ of (3.1) which is close to wm in a sense to be specified. We first assume that no variables in (3.1) 

are ^reassigned to zero; this assumption will be removed shortly. The difficulty with the solution wn is that 

it need not satisfy the last n — m sets of constraints in (3.1). (Note however that if wm is an optimal solution 

for (3.4) and wn (constructed as in Theorem 3.1) satisfies the relaxed constraints, then wn is optimal for 

(3.1).) The recovery procedure described here is designed to preserve the 0-1 character of the solution wm 

of (3.4) as far as possible: If w™...im = 1 and i\ ^ 0 for at least one / = 1,..., m, the corresponding feasible 

solution zn of (3.1) is constructed so that £,"■■■»„ = 1 f°r some (im+i,.. .,in)- By this reasoning, variables 

of the form •Jo---oim+l---«„ can ^e assigned a value of one in the recovery problem only if w™.^ = 1- However, 

variables ZQ-.O« —i wm be treated differently in the recovery procedure in that they can be assigned 0 

or 1 independent of the value w™..0. This increases the feasible set of the recovery problem, leading to a 

potentially better solution. 

Let {(i[,...,iin^f^i be an enumeration of indices of wm (or the first m indices of wn constructed in 

Theorem 3.1) such that w"j   .,-  = 1 and (i{,..., 4) ^ (0,..., 0). Set (*'?,.-•> i°m) = (0,..., 0) for j = 0 and 
tl"'im 

define 

C-   =0   ji,        ,      forit = 0,...,Mfc; k = m + l,...,n;   j = 0,...,Mo. (3.7) 



Let Y denote the solution of the (n-m + l)-dimensional assignment problem 

Mo   Mm+i M„ 

Minimize    £   £   •••EC+Hn^+r-'» 
j=0sm+1=0       in=0 

A/m + l M„ 

Subject To      ^   ' • • 5Z J/i«m+i-»n = !.   j = l,..-,M0, 
>m + l=0 !„=0 

Mo   Mm+i Mk_i    Mt+i M„ 

E E - E E ■■■$>->•••«■ = L (38) 

j=0«'m+i=0        U-i=0 ik+i=0        «'„=0 

for    ik — 1, • • •, -Mjfc and fc = m + 1,..., n — 1, 
Mo     Mm+1 Mn-X 

E   E    "  E  %'-+i ■■'" = !'  »n = i,...,Af„, 
j=0t'm+i=0 8n-l=0 

J/jim + 1-in     G  {0) !} f0r  a11 h Wl. ■ • • > «n- 

The recovered feasible solution zn of (3.1) corresponding to the multiplier set {um,...,un) is then defined 

by 
zn   .   _|l    if (ii,...,fm) = (ij,...,^) for some j = 0,...,M0 and yjlm+1...!n = 1 (3 9) 

1 10    otherwise. 
This recovery procedure is valid as long as all cost coefficients c" are denned and all zero-one variables in zn 

are free to be assigned. Modifications are necessary for sparse problems. If the cost coefficient c"    .., . 
*]_"■■* m* m + 1 " '* » 

is well defined and the zero-one variable 2"    .., . is free to be assigned to zero or one, then define 
' 1'' '* m* m+1 '"'n 

c"rm+1     = c» .as in (3.7) with z"~™+\   being free to be assigned.   Otherwise, z"f ™+1,-    is 

preassigned to zero or the corresponding arc is not allowed in the feasible set of arcs. To ensure that a feasible 

solution exists, we now only need ensure that the variables z?^™+1 are free for j =0,1,..., Mo. (Recall that 

all variables of the form 2o—»v-o are ^ree (*° be assigned) and all coefficients of the form Co...!fc...0 are well 

defined for k = 1,..., n.) This is accomplished as follows: If the cost coefficient c" .,- .,- is well defined and 

zni-j -j n 
1S fiee< tnen define e?,r™+1 = c" ., .,- with zf^™+1 being free. Otherwise, since all variables 

of the form z"...ik...0 are known feasible and have well-defined costs, put cj0~™+1 = J2T=ujj£0 co...o,->o--o' 
3.3. Summary of the Lagrangian Relaxation Algorithm. Starting with the ./V-dimensional assign- 

ment problem (3.1), i.e. n = N, the algorithm described below is recursive in that the ./V-dimensional 

assignment problem is relaxed to an m-dimensional one by incorporating (n — m) sets of constraints into 

the objective function using a Lagrangian relaxation of this set. This problem is maximized with respect 

to the Lagrange multipliers, and a good suboptimal solution to the original problem is recovered using an 

(n — m + l)-dimensional assignment problem. Each of these two (the m-dimensional and the (n — m + 1)- 

dimensional assignment problems) can be solved in a similar manner. Here we describe one loop in this 

procedure. 

The Lagrangian Relaxation Algorithm for the n-Dimensional Assignment Problem 

Assume N > 3 and choose n € {3,..., N} and 2 < m < n. To obtain a near-optimal solution of the 

n-dimensional assignment problem (3.1), proceed as follows: 

A. Initialization: Choose an initial approximation {«o"+1,.. . ,u|}}. 

B. Use a non-smooth optimization technique (see subections 4.2 and 4.3) to maximize <£mn in (3.2), 

i.e., 

Maximize {$mn(um+1,..., un) | uk G IRMfc+1 ; k = m + l,...,n} (3.10) 
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C. Given an optimal solution (um+1,..., u") of (3.10), compute an optimal solution zm of (3.4). 

D. Using the procedure described in Section 3.2, solve the (n-m+l)-dimensional assignment problem 

(3.8) to recover a feasible solution zn of the n-dimensional assignment problem (3.1). 

3.4. Comments on the Various Algorithms. 

Of the many algorithms descibed above we dicuss them as three different classes of algorithms. The 

first is from our earlier work [42, 50] and is that in which one set of constraints is relaxed, yielding an 

m = n - 1 dimensional problem by incorporating one set of constraints into the objective function via 

the Lagrangian. We maximize the relaxed problem with respect to the corresponding Lagrange multipliers 

and then reconstruct a feasible solution to the n-dimensional problem using a two-dimensional assignment 

problem. This first relaxation scheme describes the framework for our earlier algorithm work [42, 50] and 

also incorporates the algorithm presented in [15]. The algorithm of Deb et.al. is a special case of ours in 

that only one nonsmooth iteration is taken at each inner relaxed m-dimensional level, no merit function 

is implemented, and no decomposition is performed. Their nonsmooth optimization method is, however, 

different from those that we use. 

The second algorithm is somewhat of a mirror image of the first in that n — 2 sets of constraints are 

relaxed, yielding an m = 2 dimensional problem. A feasible solution to the n dimensional problem is 

then recovered using ann-1 dimensional problem. In this case the function values and subgradients of 

$2n("3, • • •, u") can be computed optimally via a two dimensional assignment problem. The significant ad- 

vantage here is that there is no need for the merit or auxiliary function as discussed in subsection 4.1 and all 

function values and subgradients used in the nonsmooth maximization process are computed exactly (i.e., 

optimally). Problem decomposition is now carried out for the n dimensional problem; however, decompo- 

sition of the n — 1 dimensional recovery problem (and all lower order recovery problems) is performed only 

after the problem is formulated. 

Between these two algorithms are a host of different relaxation schemes based on relaxing n — m sets 

of constraints to an m-dimensional problem (2 < m < n), but these all have the same difficulties as the first 

algorithm in that the relaxed problem is an NP-hard problem. To resolve this difficulty, we use an auxiliary 

or merit function ^m„ as described in subsection 4.2. For the case m < n — 1, the recovery procedure 

is still based on an NP-hard (n — m + l)-dimensional assignment problem. The decomposition techniques 

discussed in subsection 4.7 are based on identifying the assignment problem with a layered graph and then 

finding disjoint components of this graph. In general, all relaxed problems can be decomposed prior to 

any nonsmooth computations because their structure stays fixed throughout the algorithm. All recovery 

problems cannot be decomposed until they are formulated, as their structure changes as the solutions to the 

relaxed problems change. 

4. Algorithm Details and Refinements.    Many aspects of the algorithm presented in Section 3 require 

further explanation on how various problems are solved. These along with the many refinements that can 

significantly increase the speed of the relaxation algorithm are explained in this section. 

4.1 Maximization of the Nonsmooth Function $m„(um+1,.. .,un).     One of the key steps in the 

Lagrangian relaxation algorithm in subsection 3.3 is the solution of the problem 

Maximize  {$mn(u
m+1,...,«") | uk €MMk+1 ; Jb = m +l,...,n} (4.1) 

where «* = 0 for all k = m + 1,..., n. In this subsection we discuss several aspects of this problem. We 

first show that this is a problem of nonsmooth optimization and then briefly explain the computation of the 
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required subgradients. Unfortunately, the evaluation of <£mn requires the evaluation of an NP-hard problem 

for m > 2.  Thus for real time needs, we address this difficulty at the end of the subsection.   The actual 

nonsmooth optimization methods are presented in the next subsection. 

That (4.1) is a problem of nonsmooth optimization is the subject of 

Theorem 4.1. Let um+1,.. .,un be multiplier vectors associated with the (m + l)st through the nth set 

of constraints in (3.1), let <3>m„ be as defined in (3.2), let Vn(z
n) be the objective function value of the 

n-dimensional assignment problem in equation (3.1), let zn be any feasible solution of (3.1), and let zn 

be an optimal solution of (3.1). Then, $mn(um+1, • • -,"") is piecewise affine, concave and continuous in 

{um+1,...,un} and 

$m„(«m+1, ••■>"") < Vn(z
n) < Vn(z

n), (4.2a) 

Furthermore, 

<f>m-1>n(um,um+1,...,un)<<f>mn(um+1,...,un) (4.26) 

for all uk G KMk+1 with uk
0 = 0 and k = m,..., n. 

Thus the problem of maximizing <$m„ is one of nonsmooth optimization. 

Most of the algorithms for non-smooth optimization are based on generalized gradients called subgradi- 

ents, given by the following definition. 

Definition 4.2. At u = (wm+1,..., un) the set 6$mn(u) is called a subdifferential of$mn and is defined by 

6$mn(u) ={q€ JR,M-+1+1 x • • • x MM"+1 | $mn(w) - $mn(u) < 

qT(w - u) V w G EtAf'»+l+1 x • • • x KM"+1}. 

A vector q £ 6$mn(u) is called a subgradient. 

If zn is an optimal solution of (3.2) computed during evaluation of $mn(w), differentiating $mn with 

respect to u"  yields the following «n-th component of a subgradient g of $mn(u) 

Mi Mt_i    Mfc+1 Mn /^ q\ 

9ik~Yl'"   J2     12   '" X) z»V-'n _ l for ^ = l,---,Mk and k = m+ l,...,n. 
«1=0        «fc-i=0 tfc+l=0        «'„=0 

If zn is the unique optimal solution of (3.2), 6$m„(u) = {g}, and $mn is differentiate at u. If the op- 

timal solution is not unique, then there are finitely many such solutions, say 2n(l), • ■., z"(K). Given the 

corresponding subgradients, g1,..., gK, the subdifferential <5$(u) is the convex hull of {g1,..., gK } [24]. 

4.2 The use of a merit or auxiliary function. For real-time needs, one must address the fact that 

the nonsmooth optimization problem (4.1) requires the solution of an NP-hard problem for m > 2. One 

approach to this problem is to use the following merit or auxiliary function to decide whether a function 

value has increased or decreased sufficiently in the line search or trust region methods: 

($mn(um+1, ...,un) ifm = 2 
tfmn(ü3,...,üm;um+1,...,un) = I or (3.2) is solved optimally,      (4.5) 

(_ $2n(w3,..., üm; um+1,..., u")    otherwise. 

where the multipliers ü3,...,üm that appear in lower order relaxations used to construct (suboptimal) 

solutions of the m-dimensional relaxed problem (3.2) have been explicitly included. Note that ^ is well- 

defined since (3.4) can always be solved optimally if m = 2. For sufficiently small problems (3.2) or (3.4), one 

can more efficiently solve the NP-hard problem by branch and bound. This is the reason for the inclusion 

of the first case; otherwise, the relaxed function $2n to guide the nonsmooth optimization phase. That the 

merit function provides a lower bound for the optimal solution follows directly from Theorem 4.1 and 
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Theorem 4.3.  Given the definition of^mn in (4.5) 

ymn{ü3,...,üm;um+\...,un)<$mn{um+1,...,un)  for all multipliers Ü3,.. .,üm,um+\.. .,un.   (4.6) 

The actual function value used in the optimization phase is *m„; however, the subgradients are computed 

as in (4.4), but with the solution z" ..,t being a suboptimal solution constructed from a relaxation procedure 

applied to the m-dimensional problem. Again, the use of these lower order relaxed problems is the reason 

for the inclusion of the multipliers ü3,..., üm. 

To explain how the merit function is used, suppose we have a current multiplier set (u™£1,.. .,u£ld) 

and we wish to update to a new multiplier set (u™*1,..., Kev,) v^a ("Sit1 > • • • . "Hew) = (u™£1 . • ■ ■ > u"id) + 

(Aum+1,...,Aun). Then we compute tfm„(ü*ld,.. •,^d;<d
fl,... ,<w) where ("old. • ■ •. "™d) is obtained 

during the relaxation process used to compute a high quality solution to the relaxed m-dimensional assign- 

ment problem (3.2) at (um+1,. ..,un) = (u™£1, • • -Xid)- The decision to accept «et1.. ■ .,<ew) is then 

based on *mn(u
3

old,..., ö^d; u^1,..., uj)ld) < *m„«ew. • • •. «SU; <eV. ■ • ■. "new) or some other stopping 

criteria commonly used in line searches. Again, «ew, • • •, ü™ew) represents the multiplier set used in the lower 

level relaxation procedure to construct a high quality feasible solution to the m-dimensional relaxed problem 

(3.2) at (um+1,..., un) = «It1. • • •, w"ew)- Tne Point is that each time one changes (um+1,..., un) and 
uses the merit function *mn(ö3,..., üm;um+1 ,...,un) for comparison purposes, one must generally change 

the lower level multipliers (ü3,..., üm). 

An illustration of this merit function for m = n — 1 is given in the work of Poore and Rijavec [50]. 

4.3. Nonsmooth Optimization Methods. By Theorem 4.1 the function $m„(u) is a continuous, 

piecewise affine, and concave, so that the negative of $mn(«) is convex. Thus the problem of maximizing 

$mn(u) is one of nonsmooth optimization. There is a large amount of literature on such problems [29, 30, 

33, 62, 63, 65]. Suffice it to say that we have tried a variety of methods including subgradient methods 

[63], bundle methods [29, 30, 33], and the recent bundle trust method of Schramm and Zowe [62]. We have 

determined that for a fixed number of nonsmooth iterations, say, ten, the bundle-trust method provides good 

quality solutions with the fewest number of function and subgradient evaluations of all the methods, and is 

therefore our currently recommended approach. 

4.4. The Two Dimensional Assignment Problem. The forward/reverse auction algorithm of Bert- 

sekas, Castafion, and Tsaknakis [9] is used to solve the many relaxed two dimensional problems that occur 

in the course of execution. 

4.5. Initial Multipliers and Hot Starts. The effective use of "hot starts" is fundamental for real-time 

applications. A good initial set of multipliers can significantly reduce the number of nonsmooth iterations 

(and hence the number of $m„ evaluations) required for a high quality recovered solution. A presentation 

of these techniques can be found in the thesis of Robertson [60]. 

4.6 Local Search Methods. Given a feasible solution of the multidimensional assignment problem, one 

can consider local search procedures to improve this result [38]. A discussion of these methods is presented 

in the thesis of Robertson [60]. 

4.7. Problem Decomposition. The algorithm described thus far is all based on relaxation. Due to the 

sparsity of the problems, one can frequently decompose the problem into a collection of disjoint components 

each of which can be solved independently. Due to the setup costs of Lagrangian relaxation, a branch and 

bound procedure is generally more efficient for small components, say four or five feasible arcs. Otherwise, 

we use the relaxation procedures described above. 
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Perhaps the easiest way to view our decomposition method is to view the reports or measurements as 

a layered graph. A vertex is associated with each observation point, and an edge is allowed to connect two 

vertices only if the two observations belong to at least one feasible track of observations. Given this graph, 

the decomposition problem can then be posed as that of identifying the connected subcomponents of a graph 

which can be accomplished by constructing a spanning forest via a depth first search algorithm [1]. 

The orginal relaxation problem is decomposed first. All relaxed assignment problems can be decomposed 

a priori and all recovery problems can be decomposed only after they are formulated. Hence, in the n-to- 

(n - 1) case, we have n - 2 relaxed problems that can all be decomposed initially, and the recovery problems 

are not decomposed (since they are all two dimensional). In the n-to-2 case, we have only one relaxed problem 

that can be decomposed initially. This case yields n - 3 recovery problems, which can be decomposed only 

after they are formulated. 

4.8 Use of Invariance and Cost Shifting. A heuristic that can add significant speed to the overall 

relaxation procedure is to use the following invariance principle to shift the most negative cost to zero. This 

work is discussed in the work of Rijavec and Poore [50]. 

5. Numerical Performance of the Algorithm. The Lagrangian relaxation algorithm in subsection 

3.3 with m = 2 is sufficiently general to encompass a wide range of dense and sparse multidimensional 

assignment problems. We should note a few features of our implementation that have an impact on the 

performance numbers that follow. First, the problems considered do not decompose. Second, we store 

only free variables (as opposed to a multidimensional matrix). The algorithm incorporates the bundle-trust 

method [62] to solve the nonsmooth optimization problem (4.1) and the forward/reverse asymmetric auction 

algorithm [8, 9] to solve the relaxed two-dimensional assignment problem (3.4). The program currently 

executes the same number of nonsmooth optimization steps for each assignment problem for which n > 2. 

When the solver reaches a 3-dimensional recovery problem, a 2-dimensional recovery procedure is executed 

for each nonsmooth iteration. 

As we now demonstrate for a particular class of problems, the execution time for the algorithm in 

subsection 3.3 with m = 2 is linear in the number of free or feasible variables and in the number of nonsmooth 

iterations. This is due to the fact that the dominant computational part of the algorithm is the evaluation 

of the relaxed two-dimensional cost coefficients as specified in (3.3). The problem class that we have chosen 

is 4-dimensional with Mk = 25 on average for k = 1,... ,4. The cost coefficients are uniformly random on 

the interval [-100,-1]. The times are averages over 100 randomly generated problems, with the algorithm 

running on an IBM RISC 6000/550. Our first test was to determine execution time as a function of the 

number of free variables for a fixed number of nonsmooth iterations. Our second test was to determine 

execution time as a function of the number of nonsmooth iterations, with a fixed number of free variables. 

Results are shown in Figures 5.1 and 5.2. 

In these graphs, the lines correspond to a linear least squares fit of the data provided. In Figure 5.1, the 

upper line represents the overall execution time and the lower line represents the time spent in evaluation of 

the relaxed cost coefficients. Figure 5.1 shows that the growth in execution time is a linear function of the 

number of free variables, and the evaluation of the relaxed cost coefficients (3.3) clearly dominates overall ex- 

ecution. Also, the fact that the gap grows slightly between the two lines as the number of arcs increases shows 

that the other algorithm components grow slightly in execution time. Figure 5.2 shows that the growth in ex- 

ecution is a linear function of the number of nonsmooth iterations. We can therefore conclude that the overall 

performance time of algorithm in subsection 3.3 with m — 2 is a linear function of the number of free variables. 
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Figure 5.1 - Number of Arcs vs Speed 
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Figure 5.2 - Number of Nonsmooth Iterations vs Speed 

Next we consider the comparison of two different suboptimal methods (relaxation and randomized 

greedy) to the optimal solution provided by branch-and-bound, run for 50 randomly generated problems. 
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The randomized greedy was the best of serveral other heuristic methods including greedy and max-regret, 

and thus we display on the results for this randomized greedy. The problems were all four dimensional, 

with average size Mk - 7, and costs uniformly generated on the interval [1,100]. The relaxation method 

was executed to convergence, which averaged 200 nonsmooth iterations. All objective function values are 

normalized to the optimal (100) solution. The graph shows the superior quality of the recovered feasible 

solutions, and also demonstrates the small approximate duality gaps provided by relaxation. 
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6. Tracking Software. Since the beginning of 1994, we have completely redesigned and rewritten our 

1993 multitarget tracker to include multisensor processing with new and improved data structures. The 

current program, which is about twenty thousand lines of C code, is modular and is designed for adaptation 

to different sensor fusion scenarios: moving vs. stationary platforms, collocated vs. distributed sensors, 

passive and/or active sensors, and handles asynchronous, out of sequence and delayed measurements/data. 

New maneuvering target algorithms now utilize the unique capability for fast re-association over multiscan 

window to switch between multiple models for the target dynamics. This software is, however, not available 

at the time this report was written. 

7. A Two Radar System with Rome Labs Data. This section describes a tracking problem based on 

six and a half minutes of real data observed by radars at Dansville and Remsen in upstate New York. The 

Remsen radar is approximately 20 NM Northeast of Rome Labs while the Dansville radar resides about 100 

NM West Southwest of Rome Labs. Both radars are L-band radars. They consist of a search radar and a 

Beacon Interrogator with a common digitizer set. The antenna of the radar and the beacon are collocated 

and move together. The JSS site characteristics of interest are: 
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DANSVILLE, NY REMSEN, NY 

Antenna speed 6 rpm 5 rpm 

Frequency 1280-1350 MHz 1250 - 1350 MHz 

Prf 350 Hz 340 Hz 

Pulse width 1.8 microsec 6 microsec 

Vertical beamw idth 3.75° 5.4° 

Horizontal beamwidth 1.2° 1.3° 

Range 200 NM 200 NM 

The data is received by specialized hardware called Data Interface Unit (DIU) where the asynchronous 

data is formatted into scans from each radar and sent on to files on a Micro VAX II or used as input to 

fusion algorithms. The detection times are generated by the combining of Universal Time code (UTC) with 

the delta time supplied by each input detection message. The two types of sensors collocated at the radar 

site detect two types of targets: radar and beacon. The radar system picks up the reflected signal, or "skin 

paint," from a non-cooperative target. Note that the signal can also be reflected by weather, atmospheric 

conditions, terrain, etc., causing false targets or clutter. Various canceling mechanisms can remove much of 

this clutter, but the remainder, or "clutter residue," appears to the system as radar targets. The Beacon IFF 

(Identification Friend of Foe) system relies on a transponder onboard the cooperative aircraft to respond to 

"who are you?" and "how high are you?" queries from the site. The Beacon system is thus of limited utility 

in a threat scenario, except to identify targets that are probably not a threat. It is also useful for providing 

"ground truth" for system testing when a cooperative target is used for a simulated threat. 

The beacon responds with an IFF response (squawk) and the altitude of the target. This response is 

a four digit number that is set manually by the target aircraft denoting the identity of the aircraft. This 

number may change during flight under direction of air traffic control. If either of the last two digits are non 

zero, the code is said to be discrete and unique to one aircraft in the sky. Usually all aircraft that are flying 

visual flight rules (VFR) are assigned the same number, 1200. Some aircraft do not have transponders. The 

altitude of the aircraft is sent with the beacon response. The altitude is a barometric pressure reading. A 

barometric altitude correction is needed for altitudes below 18,000 feet to correct it to true feet above Mean 

Sea Level. An apparent discontinuity in the altitude could occur as the target climbs or descends through 

the "transition altitude" of 18,000 feet. In summary, there are three types of target detections reported: 

Search Radar Detection: This is a detection by the radar system only. The target could be oriented such 

that the beacon signal did not activate the target's beacon or the target's beacon system could be turned 

off, but the target returned a radar signal (skin return). This detection could also be a false alarm. 

Beacon Reinforced Target: This detection report results when both the beacon receives a transponder 

return and the radar receives a skin return at the same position. 

Beacon Only Target: A signal received from the target's beacon which is not correlated with a radar 

signal. This can occur when the target aircraft's radar cross section is such that the radar skin return is 

below the detection threshold, but the one way energy of the beacon signal is strong enough to trigger the 

target aircraft's transponder. 

More than sixty aircraft are observed in the period covered by the data. There is also some clutter, 

both random and stationary, probably due to ground features. Almost all the observations in the problem 

come from the overlap region(i.e., the region observed by both radars). Several aircraft, however, are shown 
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outside of that area, especially north of Remsen. Due to the terrain features, and possibly other causes, a 

number of targets within the overlap region are observed by one radar only through all or part of their track 

life. For some targets, even the coverage by one sensor is intermittent. 

Rome Data - Flat Earth (All) 

* * 

wwen Radar 

Dansville Radar    m      «•** 

\        <* 

^ 
\ 

iOOfem 

Figure 7.1. 

At the ranges present in the problem, the curvature of the Earth becomes an issue and the "fiat earth 

assumption" leads to significant misalignment problems. Figure 7.1 shows the observations in the tracking 

plane generated by ignoring the Earth's curvature. It can be seen that the observations from the two sensors 

form parallel lines for each target observed by both sensors. 
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Figure 7.2 shows that the curvature of the Earth must be taken into account. Mulholland and Stout [36] 

describe a stereographic projection algorithm used in the National Aerospace System. The tradeoffs between 

the different projections are described in some detail by Goldenberg and Wolf, [25] and the stereographic 

projection is determined to be superior to other alternatives. The stereographic projection was thus chosen 

to transform the tracking problem into a Cartesian coordinate system. 

Aligned Rome Data (All) 
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s 

18,000ft height assumed for targets without transponders 

Figure 7.2. 

The tracking coordinate system was chosen to be 3D Cartesian coordinate system, with the origin 

midpoint between the radar sites, and the height as average of the height of the radar sites. The positive x 

axis pointed east, while the positive y axis pointed north. 
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Even after applying the stereographic projection, a slight misalignment remained in the data. It was 

found, however, that applying a 0.5 kilometer correction to the range of the Remsen radar and 0.1° correction 

to the azimuth of the Dansville radar removed almost all the misalignments. The aligned observations are 

shown in Figure 7.3. When more data becomes available, a more thorough analysis of the alignment problems 

can be made using system identification algorithms. 

Computing a stereographic projection of an observation with known height is straightforward. If, how- 

ever, only range and azimuth are available, the value of the height parameter must be assumed. This was 

taken to be 18,000 feet. The additional inaccuracy in the data resulting from the height assumption must 

be addressed in the tracking algorithms. 

7.2 Numerical Solution. This section will give a brief discussion of the algorithms used and experience 

gained in solving the two radar tracking problem described in the preceding section. In a general multisensor 

tracking problem, the target space would likely be partitioned according to the sensor coverage, and each 

part tracked separately, with additional logic to handle tracks crossing from one region into another. Since 

almost all the observations in this particular problem lay in the sensor overlap region, such partitioning was 

not necessary. 

The data stream from each radar was partitioned into scans. Since both sensors made sweeps, as opposed 

to instantaneous snapshots, of space, some observations were perceived by the tracker as out of time order. 

This was somewhat exacerbated by the fact that the Dansville radar has a faster scan rate than the Remsen 

radar. As a result, two scans from Dansville radar would occasionally be sequenced one after another for 

processing. This meant up to three observations could be out of time order. Out of sequence measurement 

problem would become more severe if more sensors were used or the difference in scan rates was larger. 

Handling out of sequence measurements imposes a significant programming overhead on the tracking 

software, even though it does not involve a measurable run-time penalty. The complications arise in gating, 

estimation, maneuver detection and output. Our current tracker is designed to handle sensors with widely 

varying scan rates, resulting in almost arbitrary number of measurements that arrive out of sequence. 

To compute the target tracks, an iterated extended Kaiman filter with multiple models was used for the 

different target dynamics. Figure 7.3 presents the tracks that were constructed by the tracker as a solution 

of the tracking problem shown in Figure 7.2. No additional smoothing was done for the tracks being output. 

Height estimation for the non-transponder targets poses an additional challenge. Numerical experience 

using the data generated by a simulator indicates that a system identification algorithm can estimate the 

target height very accurately if the target is observed by two radars. The accuracy is typically within a few 

hundred meters, even though a simple triangulation could possibly lead to accuracy of no more than 3000 

meters given the range and azimuth measurement errors. 

In handling the real-world data, the stereographic projection algorithm imposes additional inaccuracy, 

since a wrong assumed height of the target will result in an incorrect projection. If the transponder-equipped 

targets in the problem (whose height is known) are treated as if their height is not known, the preliminary 

numerical experience shows that the height can be estimated, projection errors notwithstanding. Even in 

the cases where the targets were observed by mostly one radar, with only an occasional observation by the 

second radar, the system identification algorithm gave a height estimate accurate to within 1200 meters. 

Due to the limited data sample, however, the final analysis of the height estimation algorithms will have to 

wait until more data becomes available. 
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Rome Data - Full Problem Solution 
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Figure 7.3. 
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