
R L-TR-95-37
Final Technical Report
March 1995

COMPOSITE EVENT SPECIFICATION AND
DETECTION FOR SUPPORTING ACTIVE
CAPABILITY IN AN OODBMS: SEMANTICS
ARCHITECTURE AND IMPLEMENTATION

University of Florida

S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin,
and S-K Kim

APPROVED FOR PUBLIC RELEASE" DISTRIBUTION UNLIMITED.

19950612 063
Dnc QUAL:TY •Xsflo 3V

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-95-37 has been reviewed and is approved for publication.

APPROVED: _ y_ .- iy d /
RAYMOND A. LIUZZI
Project Engineer

FOR THE COMMANDER:

HENRY J. BUSH
Deputy for Advanced Programs
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE orm ApovedPOMB No. 0704-0188
Publc reportt bli d f dfru c Ok r f ir-tm gbnis e il le td to average I ho s pur resp nse i fLaf t fnm f rreviwring V swegM sacfhin ,g di a sw "ces,
gattwmkg ad mc ntairt* g ft dat I kd. 0 ,: crn ind reviewin the :codlction c•n-flonn Smen coi•a-ts regwrcr d* bdeestitle any c aspect of this
Ccjadjt, dhI-famgbo h. sig go faw rmdon lxar V bud to Wasf*itcn Headquates S e Dreotorate fo Informatn Operadons ardRepo•ts, 1215 Jefferson
Davi HIlgay, SiLb 1204,/ A*gb VA 2-43024 and to the Office o Managgmut and Budget P •wwor Rei.tion Pro (0704-.18 ", Washgocrn. DC 2050

1. AGENCY USE ONLY (Leave Blank) 2- REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Final Jun 93 - Sep 94

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
COMPOSITE EVENT SPECIFICATION AND DETECTION FOR C - F30602-93-C-0178
SUPPORTING ACTIVE CAPABILITY IN AN OODBMS: SEMANTICS PE - 62232N
A1WHTTFCT[TRF7 ANT ThPT.F.W.NTATTCN PR - R427

6. AUTHOR(S) TA - 00

S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and WU - P3

S-K Kim

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . PERFORMING ORGANIZATION

University of Florida REPORT NUMBER

College of Engineering

319. Well Hall
Gainesville FL 32611 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Command, Control & Ocean AGENCYFREPORTNUMBER

Surveillance RDT&E Division Rome Laboratory (C3CA)
5357 Silvergate Ave 525 Brooks Rd
San Diego CA 92152-5246 Griffiss AFB NY 13441-4501 RL-TR-95-37

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Raymond A. Liuzzi/C3CA/(315) 330-3528

12a. DISTRIBUTIONIAVAILABUITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT,,•.,n Zo,•w

This effort is a result of a jointly-funded agreement between NAVY/NCCOSC and

USAF/Rome Laboratory in the area of intelligent knowledge base systems. During the
last decade, database management systems (DBMSs) have evolved considerably to meet the
requirements of emerging applications. One of those requirements is to represent
real world situations as part of the database, and to monitor and react to them
automatically without use of application intervention. Making a database system active
entails not only developing an expressive event specification language with well-
defined semantics and algorithms for the detection of composite events, but also

an architecture for an event detector along with its implementation. This report
extends earlier work on event specification language and provides the semantics of
composite events over a global event-history (or a global event-log).

14. SUBJECT TERMS 11 NTMBER OF PAGES

Database, Software, Artificial intelligence, Computers I aPRICE CODE

17. SECURITY CLASSIFICATION 1& ,SECURI'Y CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF AB$TRACT

U 1W5 RI ED A WC M~ED TI9~ThD UL

NSN 7540- -280-590 Stuaidud Form 298 (Rev ? 80.Prescribe by ANSI Std Z31,-! 8
298-102

DTIC QUALITY MESPCTED 3

Contents

LIST OF FIGURES 3

1 INTRODUCTION 4

2 SEMANTICS OF COMPOSITE EVENTS 6

2.1 Sum m ary of Snoop 6

2.1.1 Prim itive Events

2.1.2 Com posite Events 7

2.2 Histories and Event Logs 11

2.2.1 The Unrestricted Context 12

2.3 Composite Event Detection 14

2.3.1 Parameter Contexts 15

2.3.2 Illustration of Composite Event Detection 17

2.4 Storage Requirements 21

2.5 Issues not addressed in Snoop 22

3 ARCHITECTURE 24

3.1 Architecture of the Open 00DB system 24

3.1.1 Features of Open 00DB 24

3.2 Rule Processing Requirements 26

3.3 Sentinel Architecture 28

4 IMPLEMENTATION 32

4.1 Rule M anagem ent 32

4.2 Event Detection...... ... 34

4.2.1 Primitive Event Detection 34

4.2.2 Composite Event Detection 35

4.3 Rule Execution and Scheduling 35

4.4 Parameter Computation 36

4.5 Example Applications 37

5 OVERVIEW OF RELATED WORK 39

5.1 Ode 39

5.2 SAMOS 40

5.3 ADAM. 41

5.4 Alert .. 42

5.5 UBILAB system 43

5.6 K 4-4

6 CONCLUSIONS AND FUTURE WORK 46

6.1 Future WVork 10

1

Appendix A. COMPOSITE EVENT DETECTION ALGORITHMS 48

6.1.1 Algorithm for the Recent Context 49

6.1.2 Algorithm for the Chronicle Context 52

6.1.3 Algorithm for the Continuous Context 55

6.1.4 Algorithm for the Cumulative Context 58

Appendix B. A DETAILED EXAMPLE 61

6.1.5 Original program 61

6.1.6 Preprocessed program 61

REFERENCES 65

2

List of Figures

1 Global event history 15

2 Illustration of Event detection in various contexts for the expression X = (El A E2

; E3; E2 A E4) 18

3 Event detection in various contexts 20

4 Class Lattice of Sentinel 29

5 Sentinel Architecture 31

6 Detection of X in recent mode 49

7 Detection of X in chronicle mode 52

8 Detection of X in continuous mode 55

9 Detection of X in cumulative mode 58

NTIS GRAUI
DTIC IAr
Unacunounef [

Juva.•L- aea1o

iset [

3

1 INTRODUCTION

During the last. decade, database management systems (DBMSs) have evolved considerably to meet
the diverging requirements of application domains. Most new developments in database technology

aim at representing real-world situations as part of the database and monitoring and reacting to

them automatically without user or application intervention. Though triggers in DBMSs, ON
conditions in programming languages, and signals in operating systems have been used effectivelV
for condition monitoring, they are not at a level of abstraction appropriate for modeling non-

traditional applications and cannot be seamlessly incorporated into traditional passive DBMSs

[Cha91]. Traditional DBMSs are referred to as passive since any situation to be monitored has to
be done explicitly by the user or application by executing queries or transactions. For example, in
a hospital environment if the Electro Cardiogram (ECG) readings are recorded in a database for

an intensive care unit patient, it is the responsibility of the doctor or nurse to check for the change
of values over a period to determine any state of emergency. An active DBMS can continuously
monitor situations to initiate appropriate actions in response to database updates, occurrence of
particular states or transition of states automatically, possibly subject to timing constraints. In the
previous example, the DBMS will alert the doctor when it detects any state of emergency based
on the set of rules triggered as a result of the updates.

Situation monitoring can be done by defining ECA rules on events of interest. ECA rules, in the
context of an active DBMS, consist primarily of three components: an event, a condition and an
action. An event is an indicator of a happening which can be either simple or complex. In database
applications. they are mostly state changes that are produced by database operations (e.g., method
invocations). \Ve can also have temporal and explicit events, which are externally detected and
signalled to the DBMS by the system or the user. The condition can be a simple or complex query
based on the existing database states and set of data objects, transitions between states of objects
or even trends and historical data. Actions specify the operations to be performed when an event
has occurred and the condition evaluates to true. Once rules are specified declaratively, it is the

responsibility of the DBMS to monitor the situation and trigger the rules when the condition is
satisfied. Thus active DBMS provides both modularity and timely response and prevents hard-
wiring code into the application. For our example, the event might be monitoring of the pulse rate
over a time interval, the condition might be a drop in the rate (say by 50%), the action might be

to alert the doctors and nurses by setting off an alarm.
The process of augmenting an exiting passive DBMS to have active capability involves event/rule

specification. rule management and execution. The environment/model into which ECA rules are

incorporated has a bearing on some of the above. As described by Anwar et al. [AMC93], event
detection is considerably complex for an object-oriented environment and furthermore, compile time

and runtime issues need to be addressed. Parameter computation and its usage is also complicated
a.s there is no single data structure such as a relation into which parameters can be stored and

passed. Optimization of condition and action components (if they are not non-1procedurai) as well
as scope of sharied and program objects are also different for the object-oriented model.

This report i-itemn)ts to address some of the design and implementation aspects of making a
database sysmemn active. This report extends our earlier work [Mis9l, CM94a] on event specification
ianguage and proposes an architecture for comnposite event detection. It also covers the inliplemen-

4

tation for integrating composite events and rules with an existing passive DBMS. This report is

organized as follows. Section 2 discusses the semantics of composite events and extensions to our

earlier work. Section 3 introduces Open OODB (the passive DBMS on which active capability is

incorporated), its architecture and extensions. It also details the ECA rule processing requirements

and proposes an architecture for rule execution. Section 4 describes the implementation details.

Section 5 gives an overview of related efforts to incorporate ECA rules into a passive DBMS and

presents a comparison between our approach and related approaches. Section 6 presents conclusions

and future work.

5

2 SEMANTICS OF COMPOSITE EVENTS

The design of any active DBMS involves a method for specifying events and composite event

expressions with associated semantics. The event specification language used in this report is an

extension of our earlier work Snoop [Mis9l]. A detailed discussion of how we have refined the

semantics of Snoop event expressions with respect to various parameter contexts is presented ,in

this section.

2.1 Summary of Snoop

We start with a brief description of the primtive events and event operators proposed in Snoop

[Mis9l] for the object oriented environment. Here, we assume an equi-distant discrete time domain

having "0" as the origin and each time point represented by a non-negative integer. Chakravarthy

and Mishra, [CM94aI distinguish between an event, an event expression, and an event modifier.

Briefly, an event expression defines an interval on the time line. The notion of an event expression

is needed to model operations that take a finite amount of time for their execution. For example,

a method, a function, or a transaction can be viewed as an event expression. The interest in event

expressions comes from the fact that one needs to choose a point on the time line, within the closed

interval defined by an event expression, to denote an occurrence of that event. In other words,

an event expression needs to be mapped to a point that can be declared as an event occurrence

corresponding to that event expression. Event modifiers were introduced in Snoop [CM94b] to

transform an event expression to one or more events, each of which corresponds to a point of

interest within the closed interval defined by that event expression. For example, begin-of and end-

of are two event modifiers that transform an arbitrary interval on the time line into corresponding

event occurrences.

An event is an instantaneous, atomic (happens completely or not at all) occurrence. In database

applications, the interest in events comes mostly from the state changes that are produced by

database operations. That is, state changes are concomitant with operation execution and hence

event occurrences corresponding to these operations are of interest. State changes are effected by

using parameters associated with the operations. Hence, events are associated with operations

(i.e., event expressions) of interest and operation's parameters are viewed as the parameters of

the event associated with that operation. For simplicity, we assume that two occurrences of the

same event are not simultaneous.' Moreover, we assume that no two event types occur simulta-

neously. Furthermore, an event may precede or follow another, or events may be unrelated. For

example, the two events end-of-a.bort TI and begin-of-rollback T1 must follow one another and are

causally related (causally dependent), whereas the events begin-of T1 and begin-of T2 are causally

independent and are said to be unrelated. An event is definite if and only if it is guaranteed to

occur.
'This may noi be true in multiprocessor and distributed environments. Furthermore, we do not differentiate

between the rinie-of-occurrence (Locc) and the time of detection (t-det).

6

2.1.1 Primitive Events

Events are classified into: i) primitive events - events that are pre-defined in the system (using

primitive event expressions and event modifiers). A mechanism for the detection is assumed to

be available [AMC93, CAMM94] and ii) composite events - events that are formed by applying a

set of operators to primitive and composite events constructed so far. Primitive events are further

classified into database, temporal, and explicit events.

Database events correspond to database operations, such as retrieve, insert, update and delete

(in the relational model) and methods (in the object-oriented model). Temporal events are either

absolute or relative. An absolute temporal event is specified with an absolute value of time (and

is represented as: < timestring >). For example, 2 p.m. on March 15th, 1994 is specified as <

(14 : 00 : 00)03/15/94 >, using the format < (hh/mm/ss)mm/dd/yy >. In the specification of an
absolute temporal event, a field in the time string may contain a wild card notation, which is denoted

by '*' which matches any valid value for that field. This is especially useful in the specification

of events that match many points on the time line. For example, in a banking application, to

print the local branch report at 5 p.m. each day, one can specify an event using the wild card

notation as follows: < (17 : 00 : 00) * / * /* >. In addition, a wild card can be used as a method
for increasing the granularity of the time line by pre-specified amounts (e.g., seconds, minutes,

days). A relative event also corresponds to a unique point on the time line but in this case both

the reference point and the offset are explicitly specified. The reference point may be any event

that can be specified in Snoop including an absolute temporal event. The syntax for a relative

event is event + [timestring]. In the representation of an offset, an empty field in the time string

is substituted with the minimum value for that field. Observe that a relative event subsumes an

absolute event. However, the absolute version is retained for practical reasons. Explicit events are

those events that are detected along with their parameters by application programs (i.e., outside

the DBMS) and are only managed by the DBMS. Once registered with the system, they can be

used as primitive events.

2.1.2 Composite Events

Primitive events form the basic building blocks for developing an expressive and useful event specifi-

cation language. In the absence of event operators, several rules are required to specify a composite

event. Furthermore, some control information needs to be made a part of a rule specification. 2 We

define a composite event as an event obtained by the application of an event modifier to a composite

event expression. By default, the end-of event modifier is assumed.

Composite event expression is defined recursively, as an event expression formed by using a

set of primitive event expressions, event operators, and composite event expressions constructed

up to that point. Below, we describe each of these operators and their semantics. We will use E

(upper case alphabets) to represent an event expression as well as an event type and e (lower case

211 fact, in production rule systems (e.g., OPS5 [For82, FM87]), programs are written by incorporating a lot of

control inforination as part of rules which have a form similar to an ECA rule. Specifically, in an OPS5 rule, events
are not explicitly specified but are inferred for the worst case scenario.

7

alphabets) to represent an instance of the event E. We use superscripts to denote the relative time
of occurrence with respect to events of the same type. Subscripts denote the event types [CKAK94].

An event].E (either primitive or composite) is a function from the time domain onto the boolean

values, True and False.

E : T --+ {True, False}

given by

EW T(rue) if an event of type E occurs at time point t
E F(alse) otherwise

We denote the negation of the boolean function E as - E. Given a time point, it computes the
non-occurrence of an event at that point.

The Snoop event operators 3 and the semantics of composite events formed by these event
operators are as follows:

1. OR (V): Disjunction of two events El and E 2 , denoted E1 VE 2 occurs when E1 occurs or

E2 occurs. Formally,

(EVE2)(t) = E(t) V E2(t)

2. AND (A): Conjunction of two events El and E2, denoted E1 A E2 occurs when both El
and •2 occur, irrespective of their order of occurrence. Formally,

(EIAE 2)(t) - (EI(t') A E 2 (t)) V ((El(t) A E 2(tl))

and t' < t

Note that the OR and AND operators are commutative and associative

(E 1VE 2)(t) = (E 2VE 1)(t)

(E 1 A(E 2AE 3))(t) = ((EIAE 2)AE 3)(t)

= (EIA(E 2AE 3))(t)

= (EIAE 2 AE 3)(t)

3. ANY: The conjunction event, denoted by Any(m, El, E2, ... E,) where m <= n, occurs

when in events out of the n distinct events specified occur, ignoring the relative order of their
occurrence. Formally,

ANY(rn, El, E2, .,E•)(t) (Ej(t 1) A Ej(t 2) A ... A Ek(t m))
and t' < t2 < ... < t- and t- =: t

for sorme distinct i, j, , k, each < n

3T he "-di.O1un1tin", "Conjunction" and "not" event operators are denoted ats 7, A, and -, respectively. The
symbots V. \. and represent the or, aMd, and not boolean operators, respectively.

8

For example, ANY(3, El, E 2 ,., E)(t) (Ei(tl) A Ej(t 2) A Ek(t m))

and (t1 < t) and (t2 < t)

and t' =t and (iZ j 5 k)

and (i _• n) and (j <_ n)

and (k < n)

To specify mn distinct occurrences of an event E1

ANY(m, E')(t) = (El(t1) A El(t 2) A .- A Ek(t M))

and t1 < t 2 < -.- < tm and t m = t

4. Seq (;) Sequence of two events El and E2, denoted E1 ;E 2 occurs when E 2 occurs provided

El has already occurred. This implies that the time of occurrence of E 1 is guaranteed to be

less than the time of occurrence of E2. Formally,

(El; E 2)(t) = (E 2(t) A El(t'))

and t' < t

It is possible that after the occurrence of El, E2 does not occur at all. To avoid this situation,

it is desirable that definite events, such as end-of-transaction or an absolute temporal event,

are used appropriately.

5. Aperiodic Operators (A, A*):

The Aperiodic operator A allows one to express the occurrence of an aperiodic event in the

half-open interval formed by El and E24.

There are two variations of this event specification. The non-cumulative variant of an ape-

riodic event is expressed as A(E 1 , E 2 , E3), where El, E2 and'E 3 are arbitrary events. The

event A is signaled each time E 2 occurs during the half-open interval defined by El and E3.

A can occur zero or more times (zero times either when E2 does not occur in the interval or

when no interval exists for the definitions of El and E3). Formally,

A(E 1 , E2, E 3)(t) (El(t 1)A - E3 (t2) A E 2 (t))

and tI < t2 < t or

tl < t2 < t

There are situations when a given event is signaled more than once during a given interval

(e.g. within a transaction), but rather than detecting the event and firing the rule every time

tlhc event occurs, the rule has to be fired only once. To meet this requirement, we provide
an, op(erator t' (El, E2, E3) that occurs o1lY once when E3 occurs and accumulatmes. -, 1

occurrences of E2 in the half-open interval formed by El and E3. This constructor is UtSe' iU
4 Thle K"rval can either be (Locc(Ii), t_occ(F2)] or [toCC(lF~), tLocC(E 2)).

9

for integrity checking in databases and for collecting parameters of an event over an interval

for computing aggregates. As an example, highest or lowest stock price can be computed over
an interval using this operator. Formally,

A*(El, E 2 , Ea)(t) = (El(t') A E3 (t)) and t' < t

In this formulation E2 (there can be 0 or more occurrences of it) is not included because ýve

are concerned with occurrence of the composite event A* which coincides with the occurrence

of E3 and is not constrained by the occurrence of E 2 . However, the parameters of A* will

contain the parameters of E 2 .

6. Periodic Event Operators (P, P*):

We define a, periodic event as an event E that repeats itself within a constant and finite amount

of time. Only a time specification is meaningful for E. The notation used for expressing a

periodic event is P(E 1 , [t], E3) where E1 and E3 are events and t is the time specification.

P occurs for every t in the half-open interval.(El, E 3]. t is assumed to be positive. It is

important to note that t is a constant and preferably not contain wild card specification in all

fields because this will result in continuous (i.e., for each point on the time line) occurrences

of P. Formally,

P(E1,[TI],E3)(t) (EI(t')A- E 3 (t 2))

and t' <t 2 and t' +i,*TI=tforsome0 < i< t

and t2 < t

where TI is a time specification.

Note that the event of interest in P is the middle event which is a time specification. To

make the event more practical and meaningful for real-life applications, it may be useful to

allow a parameter along with the frequency specification. To accommodate this, we define a

cumulative variation of P (denoted P*) which includes a parameter for each occurrence of the

periodic event. In the absence of this parameter, the cumulative operator just accumulates

time of occurrences of the periodic event as the parameter object. Formally,

P*(E1 ,[TI]Arg,E 3)(t) = (EI(t') A E 3 (t))

and t1 < t

Though TI is not mentioned in this formulation, the parameters specified are collected for

each occurrence of [TI] as part of P*.

Not (-i): The not operator, denoted -,(E 2)[E 1 , E 3] detects the non-occurrence of the event

E2 in the closed interva.l formed by El and E 3 .

Note t hat this operator is different from that of !E (a unary operator in Ode [GJS92b]) which

detecis the occurrence of any event other than E.

-(E 2)[E,, E 3]() = (E1 (t')A - E2(t 2) A E3 (t))

and tI < t12 < t

10

We believe that the above set of event operators define an event specification language that meets

the requirements of a large class of applications. Periodic and aperiodic operators were introduced

to meet the requirements of process control, network management, and CIM applications.

2.2 Histories and Event Logs

So far, we have defined the semantics of event operators over the time line in which only the time of

event (primitive or composite) occurrences were recorded. However, detection of a composite event

entails detecting not only the time at which the composite event occurs, but also the constituent

event occurrences and associated parameters that make the composite event occur. In this section,

we formally express the occurrence of a composite event E with respect to its constituent events

that form part of the occurrence of E. A constituent event of an event are its sub-events. At some

level. all constituent events are primitive events.

Recall that event occurrences are denoted by ei where j denotes the event type and i denotes

the relative time of occurrence with respect to events of the same type. Composite events are

represented as a set of constituent event occurrences within which the order of event occurrences is

prcsc rced for non-repeating primitive events. That is, it is possible for the same event occurrence

to be used more than once as a participating event. For these repeating use of the same event,

only one occurrence will conform to the order of event occurrences. Furthermore, the last event

in the set is one whose occurrence makes the composite event occur. The time of occurrence of a

composite event is the time of occurrence of the last primitive event in the set.

Global Event-History/Event-Log is a set of all primitive event occurrences and is denoted by

H. Each primitive event occurrence is represented as a set in the log.

H = {{e} for all Ej, the primitive event ej

has occurred at instance i relative to events Ej}

Primitive Event-History/Event-Log of the primitive event type Ej is a set of the occurrences

of EJ present in the Global History H and is denoted by Ej[I].

Ej[H] = {{e'} I for all i, {e'} E H}.

Composite Event-History/Event-Log of a composite event Ecomposite that has n constituent

events, l. -- , E, is a mapping from the global event-history H to a subset of Ej[H] U... U

E,, _I7[where U+ is an operator that computes the cross product of two sets (whose elements are

sets) and merges the elements of the cross product using the set union operator.

For example. E,ornposite[H] UE 2 [H], given the event histories,

1[el, 1(, {} and E2[i1] =Ife'). le2}

is VIJen by

11j ([]{ , (, 1 , 1 , c. }, 21 1 2 , C e , 21}

3112 12

Event Collection is a collection of all primitive/composite events occurrences of a particular
type within a specified time interval. It is denoted by the function p.

•(E, startitime, end time) = {e I {e} E E[H] and start-time < t-occ(e) < end-time}

Note that if E is a composite event E[H] is computed according to the definition given above.
Given a global event-history, the event-history for an arbitrary composite event formulated

using the operators defined in section 2.1.2 can be easily computed. Below, we define these compu-
tations formally. This formulation will compute all occurrences of a composite event (along with
participating constituent event occurrences) for a finite H. This is termed the Unrestricted Context.

The operators IJ, V, A are all left associative.

2.2.1 The Unrestricted Context

1.

(EVE2)[H] ={eI e E[H] u E 2[H]}

2.

(EIAE2)[H] = {{e, ej} I {e', e} C E1 [H] UE2 [H] U

E2 [H] UEI[H] and

and Locc(ez) < tocc(e2)}

3.

ANY(m., E1 , E 2, " ", En)[H] {={e, eJ,... , ek} I
tocc(e') I< Locc(e3) < ... < Locc(ek) and

I {ezJ, .. .,ek} I = K < and

fezJ,''' .,ek} E P(Ei[H] LýE 2[H] (J... [E,[H])}

where P is the power set.

ANY(m, E*)[H] {{ee,... , ek} I
tocc(e.) < tocc(e.) < ... < Locc(ek) and

I {ez,ej, .".,e} 1= r < n and

{ez, ej, , ek} E P(E[H])}

4.

(E1 ;E 2)[JI] = {{ez,eJ}} I tocc(ei) < Locc(ej) and

{e.ej} I EE[[H] WE2[1[]}

5.

-(El, E 2 ,];' 3)[Hi] { { ci, } I _occ(e') < I occ(e.) and

I2 C Ej[R] UF2[H] U, ,-[11]}

12

6.

P(E 1 , [t], E 3)[II] ={{e, ti} l t-occ(el) < tj) and

V{e', ek} E El[H] WJE3[/]

alltj = i + jt and tj < k and j > O}

7.

-(E2)[El, E][H] =f{{ei, ek} I {ei,ek} E El[H] UE3 [H] and

p(E 2, Locc(ei), tocc(ek))

The definition of the cumulative operators include the accumulation of event occurrences over

an interval. This requires the function p to collect the appropriate occurrences. A* and P* are

defined below using p

8.

A*(EI,E 2 ,E3)[H] {{ei,go(E 2 ,Ltocc(ei), t_ocC(ek)), ek} I

Locc(et) < Locc(ek),

{ei} E El[H] and {ek} E E 3 [H]}

9.

P*(Ei,[t],E3)[H] {{ei, gp(t, Locc(ei), tocc(ek)), ek}

{ei} E El[H], t-occ(e') < Locc(ek)

poreturns timepoints and {ek} E E3 [H]

V{eiek} El[H] UE 3 [H]

all t = i + jt' and t < k and j > 0}

Below, we illustrate the computation of the composite event X5 on the global history according

to the above definitions of operators for the unrestricted context. As can be visualized, there are 16

occurrences of the event X for the given history. It is not clear whether all these occurrences will be

useful in all applications. We strongly believe that an application would be interested in a subset

of these events that are meaningful to the semantics of that application. Furthermore. different
applications may be interested in different subsets. In the next section, we propose parameter

contexts as a way of imposing meaningful restrictions of the composite event history generated for

an event.

H {{el}, {elj}, {4}, {e} 2, fell, {e+}, {e'}}

El [11] = f{e lj,{e•}}

E2 [fI] = {{e}{2

.E3[H] = {{ '},{e 2}
E:,[H : {cl),{fc

•Th event X is drawn from the stock market applications. The interpretation of X is as follows: El: Opening
of stock market. E2: Change in Dow Jones average, E3: Change in the price of IBM stock, and E-: CQlange in a
commnoditY which depends on 1131M stock.

13

X = ((EilE 2); E3; (E 2AE 4))

X[II] = ((EIAE 2); E3; (E 2AE 4))[H]
= ((El ý,E2) [H];I E3[H]; (E2AE,j) [H]) [111

= (((E1AE 2)[II]; E3[H])[H]; (E 2AE 4)[H])[II]

(EIAE2)[H] = {{eIfe}, {el, e , {e2,e'}, {e 2 e 2}

, 1e}, {e2, el}, { 2, e}}(E2AXE4)[H] = { ff },e {4, 24 2 41

X[H] {{el, 4, el,4, el},{ele4,el, el, e�}1, elel, 4 ell, {e, el, el, e2, e1 2

, 1, 2, 1, 2{e, 1,1,42, 2 }, {e1, 2,2, e1, e,21 {el, 4, e2, e 2, e42
el~ ~ ~ ~ ~ ~ ~~~3 e2ee2e2fle 3e e 2e

2, 1 1 , e,3,1, 1 1, 2 1 2, 1 ,e2 l ,f ' l 2 1ele2,e 2e fe 3 e2,4 e e2, e3•

{ el, e2, ee2, 2}, {el, e, e42, e212,e2, e 2,,, e4}, e 2, e, e2, e2 , e 2}{e21 2 3 2 4 21 23224 2 32212 32

Note that the detection a composite event in the unrestricted context may warrant keeping
all event occurrences (especially for ;, Any, and A operators) and hence poses practical problems
for the management of event-history and detection. In most applications, either the time interval
within which the events need to be detected or the relevance of multiple occurrences of the same

event is derived from the application semantics. Hence, only a subset of the events detected in the
unrestricted context is likely to be meaningful.

2.3 Composite Event Detection

Events can always be detected and parameters computed using the unrestricted context presented
in the previous section. However, the unrestricted context produces a large number of event oc-
currences and not all occurrences may be meaningful from the point of view of an application.
Moreover, the computation and space overhead associated with the detection of events in this
context can be substantial.

In this section, we refine parameter contexts introduced in Snoop [CM94a] for the purpose of
reducing the space and computation overhead associated with the detection of composite events
and providing a mechanism for choosing a meaningful subset of event occurrences generated by
the unrestricted context. Parameter contexts serve the purpose of detecting and computing the
parameters of composite events in different ways to match the semantics of applications.

Parameter contexts essentially delimit the events detected, parameters computed., and accom-
modate a. wide range of application requirements. The choice of a parameter context also suggests
the complexity of event detection and storage requirements for a given application.

The detection of a composite event may require the detection of one or more constituent events
as well as one or more occurrences of a constituent event type. Events requiring multiple event

occurrences (either of the same type or of different types) for the detection of a composite event.
give rise to alternate ways of comnputing the history as well as parameters, as the events are likely
to oCcu r multiple times over an interval.

The occurrence of any composite event (e.g., Z) is marked by the occurrence of a constituent
event that makes the composite event occur (using the end-of event expression semantics). Re-

c a rsive applc'a ion of this defimiition will yield a. prim-itive event that marks the end of a given

14

composite event. This primitive event is termed the terminator of the composite event Z. Several

primitive events can act as terminators, but there is at least one terminator event for a given

composite event. Analogously, there is always a primitive event that initiates the occurrence of a.

composite event. This primitive event is termed the initiator of the composite event. There is at

least one initiator for a composite event but there could be more than one. For a primitive event

the terminator is the same as the initiator. For any one occurrence of a composite event there is

only a single initiator and terminator.

A sequence of primitive event occurrences (over a period of time) makes a composite event

occur. Hence, the composite event detector needs to record the occurrence of each event and save

its parameters so that they can be used to compute the parameter set of the composite event. We

adopt the notation Z(El, E2, .-- , En) to represent an event expression Z, where Ei6 , i = l..n are

its constituent primitive events. Consider the following event expressions:

A = (El A E2) ; E37 B = ElVE2VE3 and C = El ; Any(2,E2, E3)

where El, E2, and E3 are primitive events. Event A is detected when at least one instance of

all three events has occurred with E3 being the last occurrence. Event B is signaled each time

an instance of any of the three events El, E2 or E3 occurs. Parameters of event A (as well as C)

include parameters of all the three events El, E2 and E3 whereas the parameters of event B include

only the parameters of one of its events. Both El and E2 can.be initiators of A and E3 is the only

terminator. For C, El is the initiator and both E2 and E3 can be terminators. Figure 1 shows the

occurrences of different instances8 of event El, E2 and E3 as well as the event graph for A.

A

[I I I] I I time
S1 2 1 1 2 e1 2 2:eIe i e2 e3 e2 e e

1 1 2 3 2 4 e3 e4

E3

El E2

Figure 1: Global event history

2.3.1 Parameter Contexts

The parameter contexts proposed below are motivated by a careful analysis of several classes

of applications. We have identified four parameter contexts that are useful for a wide range of

applications. Below, we indicate the characteristics of the applications that motivated our choice

of parameter contexts:

1. Applications where the events are happening at a fast rate and multiple occurrences of the

saame type of event only refine the previous data value. In other words, the effect of the

occurrence of several events of the same type is subsumed by the most recent occurrence.

J :Id Ei havce been used iiterchangeably from this point,
-:1,s is a con sititluent, event of the composite event X used in the previous section.

"- s eoccurrenice of event inlstan ces are iused in tie rest. of the report.

15

This is typical of sensor applications (e.g., hospital monitoring, global position tracking,
multiple reminders for taking an action),

2. Applications where there is a correspondence between different types of events and their
occurrences and this correspondence needs to be maintained. Applications that exhibit causal
dependency (e.g., between aborts, rollbacks, and other operations; between bug reports and

releases; start of a transaction and its end) come under this category,

3. Trend analysis and forecasting applications (e.g., securities trading, stock market. after-the-
fact diagnosis) where composite event detection along a moving time window needs to be

supported. For example, computing change of more than 20% in DowJones average in any 2
hour period requires each change to initiate a new occurrence of an event. This corresponds

to the initiation of the detection of an event for each distinct occurrence, and

4. Applications where multiple occurrences of a constituent event needs to be grouped and used
in a meaningful way when the event occurs. This context is useful in applications where

an event is terminated by -a deadline-event and all occurrences of constituent events are

meaningful to that occurrence of the event. For example, in a banking application we might
want to keep track of the amount of withdrawals and deposits performed in a day and use it
to update a balance at the end of the day.

We introduce the following contexts for the classes of applications described above. These
contexts are precisely defined using the notion of initiator and terminator events. We explain the
contexts using the composite event A which is a constituent event of the event X (example used in
the previous section). We are not concerned with the primitive occurrences el and e2 as primitive
event E4 is not part of the event expression of A. Note that the semantics of a primitive event, is
identical in all contexts.

Recent: In this context, only the most recent occurrence of the initiator for any event that
has started the detection of that event is used. When an event occurs, the event is detected

and all the occurrences of events that cannot be the initiators of that event in the future are
deleted (or flushed). For example, in the recent context, parameters of event A will include
the event instances {e2, el, e1} (A is detected when e' occurs) and {e2, e2, e } (when A is
detected again when e 2 occurs). In this context, not all occurrences of a constituent event
will be used in detecting a composite event. Furthermore, an initiator of an event (primitive

or composite) will continue to initiate new event occurrences until a new initiator occurs.

Chronicle: In this context, for an event occurrence, the initiator, terminator-air is unique.
The oldest initiator is paired with the oldest terminator for each event (i.e., in chronological
order of occurrence). When X is detected, its parameters are computed by using rhe oldest
initiator and the oldest terminator of E. However, the constituent events of an event X cannot
occur in any other detection of the occurrence of E. For example, parameters of ev':nt A in

The chronicle context will be computed by using event instances {eC., e.. ci-}. \.Vhie. :-e next
29 2

t-'1 type event occurs at e, then the A will be detected with the instances {K.C -". C

16

" Continuous: In this context, each initiator of an event starts the detection of that event.

A terminator event occurrence may detect one or more occurrences of the same event. The

initiator and the terminator are discarded after an event is detected. This context is especially

useful for tracking trends of interest on a sliding time point governed by the initiator event.

In Figure 1, each of the occurrences el and e' (as well as el and e') would start the detection

of the event A. The first occurrence of A will have the instances {ei, el, el}. The second

occurrence of A will consist of {e2, el, el}. In this context, an initiator will be used at least

once for detecting that event.

There is a subtle difference between the chronicle and the continuous contexts. In the former,

pairing of the initiator is with a unique terminator of the event whereas in the latter multiple

initiators are paired with a single terminator of that event.

" Cumulative: In this context, all occurrences of an event type are accumulated as instances

of that event until the event is detected. Whenever an event is detected, all the occurrences

that are used for detecting that event are deleted. For example, parameters of event A will

include all the instances of each event up to el when it occurs. The first four event occurrences

instances shown in Figure 1 is the set of occurrences that make the composite event A. Unlike

the continuous context, an event occurrence does not participate in two distinct occurrences

of the same event in the cumulative context.

Observe that the cumulative context described above cannot be generated as a subset of the

event-history generated by the unrestricted context. The notion of accumulation of event occur-

rences is not present in the unrestricted context. For this reason, the definitions of A* and P* used

the function p which accumulates a set of event occurrences of a specific type over a given interval.

Although contexts described above restrict the set of event occurrences generated, they are

based on the use of initiator, terminator pair in different ways. In addition to the above contexts,

it may be useful to detect composite events over non-overlapping time intervals. That is, for any

two occurrences of an event X, the tocc of the initiator is greater than the tLocc of the terminator

of the immediately preceding occurrence of X. This notion of the use of non-overlapping intervals

can be applied to any of the contexts described in this section, including the unrestricted context.

This can be easily seen from the Figure 2. For instance, all events detected in recent, chronicle, and

continuous contexts are not disjoint. If disjoint detection of event occurrences were to be specified

for the example shown in Figure 2, only the first occurrences of events in each context (i.e. 1, 3, 5.

and 9' would be detected.

Baszed on the above definitions of contexts, several observations can be made. Disjoint contin-

uous context is the same as disjoint chronicle context. Also, cumulative context always generates

occurrences that satisfy the disjoint specification. In other words, disjoint cumulative context is

equivaielit to cumulative context.

2.3.' Illustration of Composite Event Detection

1he V:-T loach taken for composite event detection in this report is different from the approaches

- .al Ode and Samos. Samos defines a. mechanism based on Petri iietls for modeling and detection

of'co:.: ,.ite event.s for an OOD)BMS. They use modified colored Pet ri nets called SAMONI Pet ri Nets

17

I t i I I I I time

el e 2 el el e2 1 e2 e2
1 1 2 3 2 e4 3 e4

Recent

1. H H H H I
2. H H H I

Chronicle

3.H H H I
4. H H i

Continuous

5.i H H i
6. H H H I

H. I H H I

8. H H H H I

Cumulative

9. n n H H H i

- Time interval over which X is detected

0 - Initiator I - Terminator

- Participating primitive events in the detection of X

Figure 2: Illustration of Event detection in various contexts for the expression X = (El A E2 ; E3;
E2 A E4)

18

to allow flow of information about the event parameters in addition to occurrence of an event. It
appears that common subexpressions are represented separately leading to duplication of Petri Nets.
Furhliermore, although not stated explicitly, Samos detects events only in the chronicle context

described in this report. Ode uses an extended finite automata for composite event detection.
Their extended automaton, makes a transition at the occurrence of each event in the history like a
regular automaton and in addition to that it looks at the attributes of the events, and also computes
a set of relations at the transition. The definitions of 'And' and 'Pipe' operators on event histories
does not seem to produce the desired result. These approaches are discussed in detail in Section
5.

\Ve use an event tree for each composite event and these trees are merged to form an event
graph for detecting a set of composite events. This will avoid the detection of common sub-events
multiple times thereby reducing storage requirements. Primitive event occurrences are injected at
the leaves and flow upwards (analogous to a data-flow computation). Furthermore, the commonality
of representation between event detection and query optimization using operator trees allow us to
combine both, and optimize a situation (event-condition pair) as a unit. This is certainly possible
in t he relational model as transformations can be applied to push predicates from conditions to
the event graph and apply them during event detection as part of the optimization (in contrast,
event masks are specified in Ode by the user). Finally, the combination of event-condition trees
will allow conditions to be evaluated on a demand basis avoiding unnecessary computations. In
summary, our formulation of event detection readily lends itself to optimization techniques used in
databases.

The introduction of parameter contexts adds another perspective to the detection of composite
events. The appendix includes detailed illustration of each of the parameter contexts through an
example and also the algorithm for each of the parameter context. From the example it is easier
to understand how each parameter context detects different instances of the same composite event
for a given sequence of primitive event occurrences. In this section we will use one event graph
and discuss how we compute the constituent events of a composite event for each of the parameter
contexts. The time line indicates' the relative order of the primitive events with respect to their
time of occurrences. All event propagations are done in a bottom-up fashion. The leaves of the
graphs have no storage and hence pass the primitive events directly to their parent nodes. The
operator nodes have separate storage for each of their children. The graphs shown in Figure 3 for
the various contexts are at a time point when primitive event el is detected. The different instances
of the same event are stored as separate entries and are shown in separate lines in the figure. Since
the leaves do not have any storage the primitive event e4is passed to the parent of leaf £4. The
arrows pointing from the child node to its parent in the graph indicates the detection and flow of
the events. The event instances that will be deleted after this instant of time are expressed in bold
letters.

In the recent context {e1, eI} is sent to node A since e2 and e' are the most recent initiator
1and terminator of the AND operator (node C). Since the terminator e4 can serve as an initiator for

node C£" (according to the semantics of AND), it is not discarded. At node A the inltiaor 1 i. already
pr.�, Ii, and {j (-i serves as the terminator. So event E is detected with {t•, , (1 i. Here

shi-ce imle teliiiinator cannot serve as the initiator it is discarded and only {e2, C 1,} whvIi cli is the

nosi :recent initiator of E is retained at. node A.

19

I I I I I I I I tim e
1 2 1 1 2 1 2 2

e e e6 e e e e
1 1 2 3 2 4 3 4

e e e3 e2 el

detect X 1 2 3 2 4
detet.: e eee

ele 2 1e3 2 e3

e BeC/2 2 B 1 C
e22 2 • 1 e2e 1
1e 2 3 A e 12 * 2a

12' 2 4 1'30 2%

e e ee2 e e

e 2e2 D e2\ D£ 2/ -

1A E3 E2 E4 A E3 E2 E4

e 1i e e

4 4
El E2 El E2

Recent context Chronicle context

11111
ele 2ee3 e4

1 112 1
ele2ee3 e 2 e 4 2 2

detect X 2 112 1 eeeleIe e e
I ee e e e e-.1~~3e

S A 1 1 2112 14 detect X A
Se06 ee ee ee e1 e1e2e11 0 12e1

21 1 2 1 1 1 2 3 ; 22e4

1 23 2 4

B ~1C 1B e1 C

Se4 2 A e
2 2 4

222

22 E3 2 E4 A E3 E2 E4
e2 e 1

2 e e
4 4

El E2 El E2

Continuous context Cumulative context

Figure 3: Event dletection in various contexts

20

In the case of Chronicle context, e1 is the oldest initiator of node C and it is at the head
of the initiator list. Hence e1 is paired with el and {el, el is passed to node A. Once they are
passed, unlike the recent context, both the initiator and the terminator are discarded. Htence node

retains only e• after AND is detected. Event E is detected with {fe, e , ee. el} at. node A and
bothIt {e ,ee} and {e2, e4} are deleted.

Continuous context involves lot of storage overhead for event detection. As in the chronicle
context we retain all the initiators signalled so far in each of the nodes. But unlike chronicle
context the terminator is paired with each of the initiators present and all the initiators are deleted
after the detection of the composite event. We retain the terminator only if it can serve as an
initiator for future detection of the composite event. At any point of time the terminator of the
composite event expression X in all the other contexts will signal only one occurrence of event X
whereas in the continuous context it will generate multiple occurrences of X. In our example .e2, e2
are the initiators at node C. Both of them are paired with e4 to generate two occurrences of the
AN'D at the same point of time namely {el, el}, {, el}. Since el can serve as an initiator for node
C in the detection of a new occurrence of the constituent event, we retain it and both the initiators
1. 2 that have been paired are deleted. At node A there are two initiators already present and

the two terminators signalled from node C lead to 4 instances of the detection of event E with the
same time of occurrence. Among the 4 contexts presented, continuous context generates a larger.
subset of the event occurrences identified by the unrestricted case.

In the cumulative context, unlike the continuous context, all the initiator occurrences available
so far are combined with the terminator and only one occurrence of X is detected. In our example
e1. C2 are combined together as one initiator and {el, e2, el} is sent to parent node A. Similarly
node A detects X with {e , el, e , e, e , e , el}. Once detected the unified initiator and terminator
is discarded.

2.4 Storage Requirements

Parameter contexts introduced in this section simplify the event detection as well as the computa-
tion of parameters as compared to the unrestricted context.

Some of the parameter contexts, such as continuous and chronicle, impose more storage require-
ments than the recent and cumulative contexts. The recent parameter context can be implemented
using a fixed size buffer for each event (i.e., at each node of the event graph). This is because
only the parameters for the most recent occurrence of an event is stored and hence requires the
least amount of storage. For the chronicle context, a queue is required and the amount of storage
needed is dependent upon the duration of the interval of the composite event and the frequency of
event occurrences within that interval. Similarly, for the continuous context, the storage require-
menis can be excessive implying that the choice of the parameter context for each rule needs to
be made judiciously. The cumulative context, unlike the continuous and chronicle contexts. coin-
bines all initiators and hence at each node there is only one whole initiator combination. Though
canthnuous and chronicle both maintain a list of initiators, only contimuous cain slalga l -:ore than
one occurrence of a composite event for a. single terminator. Since this composite e-en l aught be
a constituent event of another larger expression, the continuous parameter context rem.::es a. lot
of to:-aage compared to any othler paxrameter context. The storage requirements ca:; be excessive

21

for the cumulative context also. However, based on the semantics of the parameter contexts, the
storage requirement increases monotonically from recent to cumulative to chronicle to continuous
to unrestricted. This is because all the event occurrences used in the detection of a composite event
are deleted when the event is detected in the cumulative context whereas in the chronicle context,
initiator and terminator event occurrences are paired in the order of occurrences and hence more
events are stored for longer duration. Application of the disjoint modifier, on any context (except
the cumulative), further reduces the storage requirements by allowing events to be discarded earlier.

2.5 Issues not addressed in Snoop

This report extends earlier work on Snoop [Mis9l, CM94a] in several significant ways. Earlier work
was primarily concerned with the motivation for the event language, classification of events, need for
event operators, a small set of event operators and parameter contexts. In this report., we introduce
primitive event sequences as ordered occurrences of a primitive event (termed primitive event-
history/event-log), and composite event-history/event-log as a partial order of the merged primitive
event-histories. We define the semantics of primitive and composite events over an event-history. We
argue that the detection of composite events over a composite event-history leads to monotonically
increasing storage overhead as previous occurrences of events cannot be deleted. To overcome this
problem, we refine the notion of parameter contexts as a mechanism for precisely restricting the
occurrences that make a composite event occur as well as for computing its parameters using the
initiator and terminator concepts.

Snoop gave an outline of all the contexts that are meaningful for various application domains.
But the parameter contexts identified had to be detailed further. Also, the effect of the contexts
on the various operators and whether the application of the context does make sense for certain
operators like A, A*, P, P* had to be analysed. The parameter computation for these operators
as constituent events had to be specified. Event expressions can be specified earlier and rules
can be bound dynamically to event expressions at a later point in time. Meanwhile the event
graph constructed for the event expression might have detected certain primitive/composite events.
Hence there is a possibility that rules specified on these event expressions may be triggered by the
constituent events whose t-occ is less than the initiation time of the rule. This led to the provision of
options for triggering rules based on the point of time the rule was activated or the point of the time
the composite event expression to which the rule subscribed was declared. Also, the parameters
computed for any valid expression in Snoop was stipulated to be in the form of a relation so that all
relational operators can be applied to it. Since we were looking at an object oriented environment
this specification could not be adhered to. Moreover each method could have a variable number of
parameters and values, so it is not possible to express them as a relation. Hence linked lists were
chosen as a form of parameter representation.

The concept of Initiator and Terminator was introduced to define context for each operator. An
anal.ysis of storage requirements and comparison of contexts have been presented. This will further
help us to investigate whether having different contexts for subexpressions of an event expression
is of :nterest for any application domain.

5:iOop did not include the NOT operator a.s part of its event specification language. We have
i111 rs17uced the NOT operator to capture the non-occureuce of primitive or conmposite event within

22

a well-defined interval.

\'Ve have developed complete algorithms for detecting Snoop expressions in all the parameter

contexts and presented them in the appendix.

23

3 ARCHITECTURE

The previous section highlighted the semantics and contexts of composite event detection. This
section details an architecture for incorporating rules/events into an existing passive DBMS. The
details of the passive DBMS and its features are highlighted in the following section., followed by
the requirements of a rule processing subsystem and our architecture.

3.1 Architecture of the Open OODB system

The Open OODB project [WBT92, Ins93] at Texas Instruments, Dallas, was an effort to build a
high-performance, multi-user object oriented database management system (OODBMS) in which
database functionality can be tailored by application developers for the diverse needs of demanding
applications.

The system provides an incrementally improvable framework that can also serve as a common
testbed for research by database, framework, environment, and system developers who want to
experiment with different system architectures or components. The toolkit organization also fa-
cilitates importation of new components from smaller groups lacking resources to build an entire
database system.

The Open OODB tries to describe the design space of OODB, build an architectural framework
that enables configuring independently useful modules to form an Object Oriented Database Man-
agement System. Open OODB has extended the existing language (C++) in a seamless manner to
incorporate persistence. The system architecture is divided into i) meta-architecture - consisting of
a collection of kernel modules and definitions providing the infrastructure for creating environments
and boundaries, and regularizing interfaces among modules, and ii) an extensible collection of policy
manager modules - providing the functionality for OODB. To allow for openness and .modularity,
the OODB Toolkit was architected as a collection of independent object services paralleling the
Object Management Group (OMG) Object Services Architecture. The services can be combined to
provide object-oriented database, relational database, repository, and distribution systems. Several
modules are database independent and can be used in non-database applications. In essence, an
extensible Open architecture is adopted for Open OODB. Since OODB is an Object-oriented front
end. it uses Exodus storage manager as its underlying storage manager through an interface.

3.1.1 Features of Open OODB

Seamless Interfaces: Open OODB seamlessly adds functionality such as: persistence. resilience,
concurrent transactions, and schema evolution to developers' existing programming environments.
Open OODB does not require changes to either type (class) definitions or the way in which objects
are manipulated. Rather, applications "declare" normal programming language objects to possess
cer-taii additional properties; such objects then transparently "behave properly" according to the
dec'ared extensions when manipulated in the normal fashion. For example, if an object is declared
asr pesistent. the DBMS is responsible for moving it between the computational and long term
ine:-orv as needed to ensure both its residency during computation and its preservatIon during

pro":'am termination. This allows programmers to: i) stay within familiar programinn~i paradigms,
Iii -_aY within familia.r progra-mning languages, and iii) support legacy (.ode and da: a. 00DB

24

extends existing languages (C++ and Common Lisp) rather than trying to invent a new "database
language".

Sentry mechanism: The Open OODB computational model allows developers to define behav-
ioral. extensions of events, which is an application of an operation to a particular set of objects. In
this model all objects accessible to a program exist in an "universe of objects". This universe-is
partitioned into "environments" by "environmental attributes". Environmental attributes include
information about the address space where the object resides (e.g., persistent or transient, local or
remote), replicas of object, lock status and transaction owning the lock, etc. These environments
and boundaries of the environments identify where extensions may be required. For example, if we
need an extension to allow objects to reside in a remote address space, we can define an environmen-
tal attribute named "address space" that defines the location of the object using the domain values
which are the set of address spaces where the object could reside. To perform these extensions

we must be able to interrupt or trap operations. Thus, the trapping mechanism combined with
the protocol for permitting the entity performing the trapping to invoke an arbitrary extension is
know as a 'sentry". The primary function of sentries is to detect events which are interaction with
objects, and to pass control to a policy manager which controls and performs the actual extension
if it is determined that an event should be extended. The sentry manager is the used for specifying
events to be extended, and is responsible for deploying sentries to detect extended events.

Extensibility: When an object is declared to Open OODB to have "extended" behavior, there
are certain "invariants" associated with the extension that must be enforced. When an operation
involving an extended object occurs, the sentry is called which as detailed above interrupts the
operation and transfers control to a policy manager module responsible for ensuring that operations
against extended objects "behave properly". Each semantic extension is implemented by a different
policy manager. Thusl there is a policy manager for persistence, another for index maintenance,

etc. Policy managers can be added independently, and are inherited from a common root class to
make them type compatible for invocation purposes. This strategy allows new extensions to be
added, the semantics of a given extension to be changed, and implementation of a, given policy to
be changed or selected dynamically. It allows for hiding the semantic extension from applications
to obtain seamlessness. Basic services used by policy managers are provided by a collections of
"..support modules".

Reusability: With an open system, researchers can focus on modules of interest without having
to build complete systems. This reduces duplication by encouraging the reuse of system compo-
nents, and increases the quality and depth of components of the system by allowing developers to
focus on smaller portions of the system. To achieve this, Open OODB uses a generic framework

for extensibility that allows reuse of components developed by different research groups and orga-
iiizýTions. It should be noted that OODBs by their very nature facilitate code reuse. since stored
obJ ects contain code as well as state.

Persistence: Persistence is the ability of objects to exist beyond the lifetime of `-te program
That created them. The Persistence Policy Manager in Open OODB provides applicnt:ons with an

25

interface through which they can create, access and manipulate persistent objects. EXODUS is
used as the persistent store for objects. The interaction with EXODUS in transferring and saving
objects is built into the Persistence Policy Manager and hence is transparent to the user.

Application Programming Interfaces: Open OODB provides seamless extensions to both
C++ and Common Lisp. The features of each of these APIs include:

"* full coverage of C++ type system and Common Lisp type system (including CLOS).

"* persistence.

"* recoverable, concurrency controlled transactions.

"* remote access to data via a client/server model.

"* SQL-like object queries in C++ API.

The various features outlined above encouraged the use of Open OODB for our project. Also
the architecture of Open OODB is data model independent. Moreover, the. availability of the
source code for the Release 0.2 (Alpha) helped us to modify the Open OODB system to suit
our requirements. The primary class OODB has been extended to have reactive capability. Also
the availability of sentry mechanism helped us build wrapper functions wherever necessary. The
persistent feature will be useful when the current system is extended to detect global events.

3.2 Rule Processing Requirements

Before we detail our architecture we need to identify the requirements for ECA rule management
to determine the aspects that the architecture should cover.

Briefly, ECA rule management involves event detection, rule execution and rule maintenance
in a manner that is consistent with the transaction concept for databases. Event detection entails
not only the detection of primitive events but also of composite events in an efficient manner. The
semantics of rule execution in the context of databases is based on the work done by Chakravarthy
[ChaS9] and Widom et al. [WF90]. Rule scheduling involves ordering of rules for execution
when several rules are triggered at the same time. Either a conflict resolution strategy (using the
user specified priority or precede/follows information) can be used to totally order the rules or
traditional serializability theory can be applied to execute rules concurrently or a combination of
both. For example, Starburst [WF90] uses the first approach whereas HiPAC [HLMSS] uses the
second approach using an extended nested transaction model.
Rule execution points have been identified in HiPAC [HLM88] as coupling modes. Three cou-
pling modes were introduced to support various application needs. Their semantics with respect to
triggering transactions is defined as follows: in the immediate coupling mode a rule is executed at

lie point where the event occurs, in the deferred coupling mode a rule is executed at the end of the

Ira:! sactioll prior to its cornait, and in detached coupling mode a rule is executed as aý indepen-
der:" transaction. A causally dependent variation of the detached mode was introduced which the
iind,:audent rule transaction is not committed unless the triggering transaction coM:11its. These

26

modes can be specified on a finer granularity (i.e., independently between event and condition as
well as between condition and action).
Nested rule (or even cyclic) execution occurs when a rule action signals events triggering additional
rules to an arbitrary level of nesting. Again scheduling strategies (depth-first, breadth-first etc.)
fo, these rules need to be outlined.
Rule management involves keeping track of activated and deactivated rules. Re-activating rules
involves deciding whether the rule will get triggered by events that occurred prior to its activatioii.
Based on the given priority, one can group a set of rules (e.g., integrity rules) and assign execution
semantics automatically. For example, integrity rules need to be triggered in the deferred mode
as the database state can be inconsistent within a transaction. Also, if rules are treated as shared
objects (like any other shared data), then modification of rules need to be supported. This entails
subjecting rules to the same concurrency control mechanism used for any other shared data. Oth-
erwise, rules have to be treated as meta-data whose manipulation is deemed different from shared
data.

The environment/model into which ECA rules are incorporated has a bearing on some of the
above. As described by Anwar et al. [AMC93], event detection is considerably complex for an
object-oriented environment and furthermore, compile time and runtime issues need to be ad-

* dressed. Parameter computation and its usage is also complicated as there is no single data struc-
ture such as a relation into which parameters can be stored and passed. Optimization of condition
and action components (if they are not non-procedural) as well as scope of shared and program.
objects are also different for the object-oriented model.

In addition to the above requirements of ECA rule processing, we have to analyze the require-
ments of a rule processing subsystem for an object-oriented active DBMS. We need to support:

Inter-application rules: In addition to rules based on events from within an application, it is
useful to allow composite events whose constituent events come .from different applications. This

is especially useful for cooperative transactions and workflow applications. This entails detection

of events that span several applications,

Parameter computation: When a composite event is detected, the parameters need to be col-
lected and recorded by the event detector. Furthermore, these parameters need to be interpreted

by the rule condition and action.

Multiple rules: An event can trigger several rules. Hence, it is necessary to support a rule
execution model that supports concurrent as well as prioritized rule execution, and finally
Online and batch detection of composite events: The composite event detector needs to
support detection of events as they happen (online) when it is coupled to an application or over a

stored event-log (in batch mode).

The above requirements as well as the data model under consideration affect the design of both

the rule processing subsystem and the event detector. Below, the issues involved in each of the

above requirements are analyzed to derive the architecture presented. Using our event specification

language, we can readily model the deferred coupling mode in terms of immediate coupling mode

by using the A* operator and begin and pre-commit transaction events. This causes a deferred

rlie to be executed exactly once even though its event may be triggered a number of times in the

course of that transaction execution. This formulation handles the net effect variant of deferred rule
execuition. Ileuce, we need to implement only the immedia.te audi detached co(0plh ing modes. The

27

detached independent coupling mode requires that a new transaction be started for rule execution.
This has severe ramifications in the object-oriented model where the rule's condition and action
could be arbitrary functions requiring the declaration of all classes. Unlike the relational model,
creating an independent transaction for a rule in an object-oriented case, may be limited by the host
environment (e.g., objective C, C++, Common Lisp, SmallTalk). The causally dependent coupling
mode can be modeled by using events that span applications (i.e., by using the inter-application
rules mentioned above), assuming that it is possible to create a top-level transaction corresponding
to that rule. Each transaction can signal a pre-commit and (possibly) an abort event which can be
used by the global event detector to enforce abort dependencies between two top-level transactions.

Supporting inter-application rules requires not only the detection of global events spanning
several applications, but also dealing with address space issues. In the relational model, it is

easier to handle this as the data dictionary has the type information of all objects and furthermore
attributes values are atomic. In the object-oriented model, interoperability across applications is
extremely complicated on account of the component objects, pointers, and virtual functions. These
issues are currently being addressed by OMG and Corba [Vin93I. Given the limitations of this
model, we feel that it is possible to pass only the event name, persistent oid, and atomic values

(pass by value) across address spaces and the interpretation of these parameters must be left to
the application executing the rule. Of course, shared database objects can be accessed as part of
the rule evaluation. Parameter computation for composite objects raises additional problems in

the object-oriented framework. The lack of a single data structure (such as a. relation) makes it
extremely difficult to identify and manage parameter computation even within an application. As
a first cut, we are including the identification of the object (i.e., oid) as one of the event parameters
and simple types by value. However, no assumptions are made about the state of the object (xWhen
the oid is passed as part of a composite event) as the detection of a composite event spans a, time
interval. Complete support for parameters of composite events may require versioning of objects
and related concurrency control and recovery techniques.

Support for multiple rule execution and nested rule execution entails that the event detector

be able to receive events detected within a rule's execution in the same manner it receives events
detected in a top level transaction. This can be accomplished relatively easily by separating the
composite event detection from the application as detailed in the architecture described below.
Finally, support for both online and batch/after-the-fact detection of composite events is also
accomplished by separating the composite event detector from the application and detection of

primitive events.

3.3 Sentinel Architecture

The Sentinel architecture proposed in this section extends the passive Open OODB system [Ins93].
The Open OODB Toolkit uses Exodus as the storage manager and supports persistence of C++
o0bjects. Concurrency control and recovery are provided by the Exodus storage manager. A full

C- pre-processor is used for transforming the user class definitions as well as the application
code. Extensions incorporated for making the Open OODB active, are:

Specification of ECA rules either as a part of the class definition or as part of an application:
tIs is pre-processe(I (by using ain enhiaiiced C++ pre- processor) into a.pprop::ate code for

28

event detection •nd rule execution,

Detection of primitive events by using the sentry mechanism of the Open OODB. Sentry

mechanism provides a wra.pper method that permits us to invoke notification of an event to

the composite event detector,

A composite event detector for detecting composite events in various contexts [CKAK94,

CKTB94]. There is a composite event detector for each Open OODB application or client

(each application of Open OODB is a client to the Exodus server),

Figure 4 shows how the cla.ss lattice of the Open OODB has been extended. The classes outside

the dotted box have been introduced to make Open OODB active.

Sentinel Class Hierarchy

(Reactive 1 (Notifiable)

.oo)< ---(voo, 1

Event Detector

(Address space mgr_. .• Translation m, 1
••__, OODB I "

Local asm l (Name mgr ' l i Persist mgr)

Open OODB

SDerived class 0 Friend class

Figure 4: Class Lattice of Sentinel

In order to satisfy the above requirements in an object-oriented fi'amework, we use the architec-

ture shown in Figure 5. The architecture supports the following features, i) De•ection of primitive

events, ii) Detection of composite events, iii) Paralneter computation of composite evelltS, and iv)

Clean separation of composite event detect.ion with application execution.

Our primitive event detection is based on the design proposed by Anwa: ,;t al. [:\.•lC93].

Both primitive and composite eveats ca.n be sigualed as soon as they are detected, floweret, the

detection of a composite eveat ma.y spa.n a time interval a.s it involves the dete<ion and grouping

29

of its constituent events in accordance with the parameter context specified. We have modified the
Open OODB to support the detection of primitive events. A clean separation of the detection of
primitive events (as an integral part of the data-base) from that of composite events allows one to:
i) implement a composite event detector as a. separate module and ii) introduce additional event
operators without having to modify the detection of primitive events.

Each application has a local event detector to which all primitive events are signaled. In addition
each application will have a thread that handles the execution of rules whose events span applica:-
tions (a global event-handler thread). Our implementation uses threads (light weight processes),
instead of processes, for separating composite event detection from application as: 1) threads com-
municate via shared memory rather than a file system, thus allowing applications to share the same
address space, ii) the overhead involved in creating threads and inter-task communication is low,
and iii) it is easy to control the scheduling and communication of threads by assigning priorities.
\Vhen a primitive event occurs it is sent to the local event detector and the application waits for the
signaling of rules that are detected in the immediate mode. The global event detector communi-
cates with the local event detectors for receiving events detected locally and with the application's
global event handler for signaling the detection of global events for executing tasks based on global
events. Again there is a clean separation between the events detected by the local event detector
and the global event detector. Finally, as the local event detector and the application share the
same address space and our event detection uses an event graph similar to operator trees, it is

possible to combine rule evaluation with event detection (when the coupling mode permits and
rules are non-procedural) and optimize the entire tree as a whole.

For multiple rule execution, a number of sub-transactions are spawned as a part of the applica-
tion process. This is further elaborated in Badani's thesis [Bad93]. The order of rule execution is
controlled by assigning appropriate priorities to .each thread. For detached execution of rules, we
are assuming that a separate application can be started with the rule as the body of a top-level
transaction. With this assumption, for detached mode with causal dependency, an inter-application
event is created to be detected by the global event detector. This is used to enforce the abort de-
pendency between the two top-level transactions. These are highlighted in Figure 5 by indicating
control and data flow. Detached mode is not yet implemented.

As the composite event detector can receive event occurrences either as they happen or from a
file, it can be used for after-the-fact analysis of events (e.g., telecommunications or stock market
applications) as well as a part of an active database.

30

Global Event Detector

.45
5- \

Application 1 Application n' D c>to execute to excue
1 dEentsgalhed 2 detached rule

0 p crked proc ss 4ommit rocessi0
0o

5 ntraplctio evenctso dtce 6-RusexuedasuTransactions•

-- begin begin

LoalE \n Transaction __Transaction 0oa 0vn

1-~~~ ermtv dvn sinld2-C moie e ntdecto 6 o m eit ue

3 - tr-om i a botsg l ed 4 - aslydpnen co mtsgae

Figure 5: Sentinel Architecture.

31

4 IMPLEMENTATION

This section details the implementation of event detection using the design proposed by Anwar et
al. [AMVIC93] and the architecture highlighted in the previous section. Our implementation uses
the Open 00DB Toolkit from Texas Instruments, Dallas as the underlying platform. The local

event detector and the rule manager have been implemented. We discuss the rule format and how
we translate a high level rule specification to Sentinel system calls followed by the details of our
implementation. A detailed example can be found in the appendix, parts of which are used in this
section for explanation.

4.1 Rule Management

To allow users to specify events and rules at an absta~rct level we introduce an high level event/rule
format. This event/rule format is preprocessed and changed into Sentinel system calls.

The syntax of a Sentinel event/rule specification is:

event [begin(eventNarne)] [& end(eventName)] method-name

event eventName event-expression

rule ruleName([eventName = event-expression I eventName,

condition-function, actionf unction

[[, parameter-context][, coupling inode]

[, priority][, rule-trigger-model])

When dealing with methods as primitive events, it is necessary to specify the event interface
so that the methods that generate events are clearly identified. Both begin-method (by indicating
begin(eventName)) and end-method events (by indicating end(eventName) are supported. This
event interface specification is pre-processed by adding wrapper methods to notify the event detector
when they are invoked. The eventName specified is optional and we can have only the begin or
end of a method as an event. By default ehd of a method is taken to be the event generator. For
primitive events specified as part of the interface, the user is allowed to use them directly in the
application program by prefixing the classname i.e., className-eventName for defining additional
event expressions.

Event expressions specify primitive and composite events using event specification detailed in
Snoop [CM94a] which supports a number of event operators (e.g., and, or, sequence, aperiodic). The
BNF of the event specification language can be found in [Mis9l]. We allow an optional eventName
to be specified within the event/rule definition to allow the users to name an event expression for

subsequent usage.

Currently, the condition and action component of a rule are global functions.9 The condition
function returns an integer to indicate whether the condition is satisfied or not. The action function
does not return any value.

9 Currently, only functions are used for specifying condition/action. We plan on using the ZQL[C++] of Open
OODB in the future. [In the current host environment, methods cannot be used for condition/action as their invocation

tied to an object which is riot known at compile time.

32

The optional parameter parameter-context provides the context for detecting an event expression
as well as for computing its parameters. Although the parameter context is meaningful only to an
event (for its detection), specifying it along with the event linmits the utility of an event definition.

If several rules need to be defined on the same event in different parameter contexts, then the event

has to be duplicated for each context. By allowing a late binding of parameter context (i.e., at

the rule specification time instead of at event specification time), reusability of events is readily

supported. Furthermore, common event sub-expressions are represented only once in the everit

graph (a graph representing an event expression; this is analogous to an operator graph) reducing

the total number of nodes. However, this has a bearing on the event detection algorithm and the

data structures employed as the same event may have to be detected in multiple contexts. The

default context is assumed to be Recent since all the other parameter contexts have larger storage
requirements. Once a context is specified it is propagated to all the nodes of the event graph

associated with the rule and the parameters are collected thereafter.

Couplingrmode refers to the execution points. Currently, immediate and deferred coupling

modes are supported between event and condition-action pair. Although our architecture lends

itself for supporting detached mode, as we have discussed earlier there are some implementation
difficulties for supporting this mode. Although [HLM88] suggest a finer granularity for coupling

modes (i.e., separating event, condition and action), we view the condition and action as a unit

and use the coupling modes between event and condition-action pair.

We use priority classes for specifying rule priority. An arbitrary number of priority classes can
be defined and totally ordered. A rule is assigned to a priority class either by indicating its number
or the name of the class. As our implementation supports concurrent and nested rule execution

(using light weight processes), priority of rules need to be resolved at different levels of execution.
Our current approach provides a global conflict resolution mechanism among the priority classes
and concurrent execution of rules that belong to the same priority class. This approach combines

the advantages of both integer priority schemes and precedes/follows schemes. This approach will
also allow us to change rule priority categories based on the context or inherit priorities from

-sers/applications.

We allow rule specification at class definition time and as part of an application. We also

support rule activation and deactivation at runtime. Moreover, named events can be reused later.
This implies that a number of rules may be defined on the same event expression and the event
expression might have been defined prior to the rule definition time. As a result. it is possible that
a rule gets triggered by event occurrences that temporally precede the rule definition time itself. As
this might not be desirable in all situations, we provide an option (ruletriggermode) for specifying

the time from which event occurrences to be considered for the rule. Two options. NOW (start

detecting all component events starting from this time instant) and PREVIOUS (all component
events since the event was detected last are acceptable) are supported as rule triggering modes,

with NOW being the default.

The user-level rule specification given above is pre-processed into C++ statements that create
"rule and event objects. This specification helps to hide the details of rule/event ihuplementation

:rom the user. Furthermore, the syntax of a rule is the same for both class level and instance
level rules. A class level rule satisfies the inheritance property. Even as part of the application,

rules having primitive evcnis can be Specified as applicable to an entire class or an instance of tlhat

33

class as shown below.

REACTIVE Stock;

Stock IBM;

event any-stk-price('any.stk.price', 'Stock', 'begin', 'set.price(float price)');

event setIBM-price('set_IBMprice', IBM, 'begin', 'setprice(float price)');

Here the character string 'Stock' is a class name and IBM is an instance of that class. The
primitive event any-stk-price defines a class level primitive event. This event will be detected for
all instances of this class whenever the method 'set-price' is invoked. The event 'set-IBM-price'
will be invoked only when the same method 'set-price' is invoked on the IBM object. A rule
defined on 'any-stk-price' will be a class level rule and a rule on 'setIBM-price' will be an instance
level rule. The specification of class/instance at the primitive event level allows us to have event
expressions with class level as well as instance level events and hence rule specification which has
mixed instance specification. Note that the event name is different although both the events are
specified on the same method 'set-price'. A rule which contains all constituent primitive events as
class level primitive events is termed a class level rule. Likewise a rule declared on only instance
level primitive events is an instance level rule. Any class whose events are used in rules (either
class level or instance level) need to be reactive (i.e., subclass of the REACTIVE class). When
a user-defined reactive class is pre-processed, appropriate primitive events and rule declarations
are generated and inserted in the application program. Since this rule will subscribe to an event
expression that is specified on a class level, this rule will be notified whenever any object of this
class invokes the method that are potential event generators.

4.2 Event Detection

4.2.1 Primitive Event Detection

In- Sentinel external events are assumed to be explicitly signaled to the local event detector. All
objects that can signal events must be derived from the REACTIVE class. The extensibility of the

system is achieved by making the system class of Open OODB (namely OODB) REACTIVE. We
specify an event interface to make the methods beginTransaction and commitTransaction of this
class generate events which result in actions used for deferred rule execution and flushing of all the
event occurrences from the event graph, etc. Although rules are subclasses of the Notifiable class,
methods of the Rule class can themselves be event generators. A rule class can be both reactive
and notifiable. A runtime rule defined as

rule R1(e4 = (el;e2)^e3, checkSalary, resetSalary, CHRONICLE, DEFERRED, 10, NOW)

is preprocessed by our system as

EVENT *e4 = new AND(SEQ(el,e2),e3)

RULE *R1 = new RULE(''R1'', e4, checkSalary, resetSalary, CHRONICLE)

R1->setcoupling-mode(DEFERRED)

Rl->set-priority(1O)

Rl->settrigger-mode(NOW)

34

The methods that can generate primitive events are modified by using the.wrapper class methods
using the sentry feature of the Open OODB system while pre-processing the application program.

This is accomplished by renaming the original method as user-method and creating a wrapper
method which has the original method name. The wrapper method does the required signaling to

notify the local event detector before and/or after the invocation of the userinethod (according

to the event interface specification). Each method which can generate an event (either at the

beginning or at the end) is extended by adding code for parameter collection and notification to

the. event detector.

Since conditions are assumed to be side-effect free, we have to avoid detecting events that may
be generated during condition execution. This can happen if conditions invoke methods that are

declared as event generators in the event interface. To disable the signaling of a primitive event
when the condition function is executed, we set an attribute of the local event detector which

indicates whether the events signaled should be acknowledged or not.

4.2.2 Composite Event Detection

Composite event specifications are pre-processed and code for generating event graphs at execution

time are generated. Leaf nodes of the event graph corresponds to primitive or external events.

Internal nodes correspond to event sub-expressions or rules. Each node has a list of subscribers to
whom it has to notify once the event denoted by that node is detected. For example, a primitive

event will have a list of subscribers which may contain rules and other 6vent expressions in which
it takes part. The same mechanism is uniformly used for composite events as well. Since primitive
events, composite events as well as rules are derived from a base EVENT class, the subscribers' list

is implemented as a linked list by specifying it as an attribute of the EVENT class. Every node of
the event graph has outgoing edges equal to the number of subscribers it has. The Event Detector

is also implemented as a class and we have a single instance of this class per application (termed the'
local event detector). Each of the primitive events defined is maintained as a list based on the class
on which it is defined. When the local event detector is notified of a method invocation for a class

by the DBMS, it is propagated only to the primitive events defined for that class. The local event
detector maintains separate lists for temporal and explicit events. Once a primitive event node is

notified it checks the method signature with the one that has been sent. If it matches, it notifies all

its subscribers. Similarly once a complex event node is notified, it is activated based on the operator
semantics [CKAK94], and notifies subscribers in its list. A rule node, in addition to notification,

creates a thread with the condition and action function as a unit to be executed when the thread is
scheduled. The local event detector schedules these threads. Our implementation based on event

graphs is demand-driven (analogous to a data-flow scheme).and does not propagate parameters to
irrelevant nodes. Furthermore, this approach efficiently supports subscribe/unsubscribe of rules to

events as insertion/deletion in its subscriber's list.

4.3 Rule Execution and Scheduling

All primitive event signaling is done by invoking methods of' the local event detector. Since this

object is visible to the entire application, the nested triggering of rules by the execution of action
funtction is also readily accomplished. As detailed above, when a primitive event is signaled the

35

local event detector determines which of the primitive event nodes should be notified. Once this
is done, the events propagate to the root nodes of the event graph. Whenever a rule is triggered
in immediate coupling mode, it gets a free thread id and transforms the function which checks the
condition and performs the action to a thread with the appropriate priority. Once all the immediate
rules are in the form of threads, the local event detector suspends the main application and allows
the rules to execute. Once all the rules are executed it resumes the main transaction.

Since a deferred rule is executed as a transformed rule (with an A* event) in immediate coupling
mode, it is triggered only when pre-commit primitive event is signaled by the transaction manager
and hence it is treated in the same way as an immediate rule. Consider

REACTIVE Stock;

event any.stk-price ('any.stk.price' ,'Stock', 'begin', 'set-price (float price)');

rule Rl(any-stk-price, checkSalary, resetSalary, CHRONICLE, DEFERRED);

The above rule is translated internally (and rule R1 is modified to reflect immediate mode) to

EVENT deferredRI = new A*(beg.trans, any-stk.price, pre-commit);

deferredRl->subscribe(RI);

The event to be monitored is changed to an A* event and the rule subscribes to the new A* event
created. Since threads are scheduled in a priority based preemptive manner, among rules scheduling

is based on their priority and in the case of multiple rules with the same priority, scheduling is

according to their time of initiation.

To implement the detached rule execution a global event detector has to be developed. This

can be done using Remote Procedure Calls. The global event detector is used to support inter-

application rules (global events spanning across several applications). It communicates with the
local event detector for receiving events detected locally. Though detached coupling mode is ac-

cepted in the specification, it is not yet implemented as its. implementation depends on the global

event detector which is currently being designed.

The nested rule triggering is handled by assigning priorities to threads based on their level
and the priority of the rule that triggered them. We currently support depth first execution of rules

using the priority class of the triggering rule and the priority class of the triggered rule to compute

a new priority value. For example, if the rule triggered has a priority 9 and the nested rule triggered

has a priority 5, we assign the priority 14 to the nested rule and since it has a higher priority than
the currently executing rule, it is executed first before the triggering rule is completed. So our rule

execution proceeds in a depth first manner.

4.4 Parameter Computation

Our implementation uses the same event graph to detect an event in different contexts. Each node
of the graph maintains all the contexts in which it has to collect parameters a.s well as to whom it has

to propagate the parameters. It also has one counter for each parameter context. Whenever a rule is

defined its context is propogated to all the nodes in its event graph. The counter for that particular
context is incremented. If the counter was previously 0, the set of nodes corresponding to the event

expression starts detecting events in this context. Specifying PREVIOUS (for rutletriooer mode)

36

for this rule will not have any effect. Introduction of this mechanism for event detection in the
presence of contexts helps avoid detecting events in the continuous and cumulative mode as they
have significant storage requirements. Once a rule is disabled or deleted the event expressions are
again notified and the respective counter is decremented. If the counter is reset to 0 events are no
longer detected in that context. Recent is used as the default context.

Composite events pose additional problems for parameter computation. The difficulties ih-
volved in passing complex data types as parameters across applications has been detailed in the
previous section. To avoid these pitfalls, currently, we have decided to pass only simple data types
(e.g., integer, float, character and string by value) as parameters. Although it is possible, copying
the values of complex data types will add considerable storage overhead. The parameters and
component events are all maintained as linked lists at the relevant nodes and hence there is no
copying of data. Only the pointers have to be adjusted thereby increasing the efficiency of event
detection. The event detector and rule manager implemented lends easily for Online as well as
Batch detection of events/rules.
Events crossing transaction boundaries: The logical unit of work in a DBAIS is a transaction.
To maintain the correctness of this concept we have to ensure that events (as well as parameters
associated with the event) are not carried over across transaction boundaries. This is especially
important in the presence of composite events whose detection can span an arbitrary time interval..

Consider the case when Transactionl invokes certain methods and is later aborted. These methods
might have triggered certain primitive events whose parameters are recorded in the event graph.
If these events are not flushed when a transaction is aborted (or committed), these events can
participate in composite events for another transaction. If we allow events to span transactions,

a second transaction might cause the firing of a rule which has constituent primitive events.and
parameters from a previously aborted transaction. This means that the condition and action
functions access parameters which in the database sense does not exist at all (since the previous
transaction was aborted, all its effects would have been rolled back in essence making it seem like
that method was never executed). The above situation can arise for committed transactions as well
although the parameter values may be consistent in this case.

WVe provide a flush operation that can either flush the event graph selectively for an event
expression or for the entire graph. This is invoked as an action of a rule on abort and commit
events. Selective flushing must be done by the application. Flushing of all event graphs are
managed as rules over the primitive events begin transaction, commit and abort. However, these
can be easily modified by deactivating these rules if events across transaction boundaries need to
be detected.

4.5 Example Applications

Military Application A real-world military application was chosen to test our extensions to
Open OODB. The military consists of various units, positioned at various locations for performing
some task. Each unit has a readiness status indicating whether they are in a position to perform
certain operation. For example, we could define readiness based on personnel. training. supplies
etc. Rleadiness is maintained in terms of ratings with a value of 1 signifying Combat Ready and 5

signifying Overhaul. A readiness rating of 2 or below is desired for any unit..

37

As and when a crisis arises a plan has to be prepared to deal with it.- To each plan a set of units
have to be assigned to carry out the plan. Once this is done any change to either the plan or a
unit's readiness status has to be monitored continuously. In a passive DBMS environment this task

(of monitoring) is done manually by running a query. In our application we defined rules based on
the reports that they get on plan changes and unit readiness status. Once the. event, condition and
action were defined it was easier.to do tasks like data integrity checking, situation monitoring and
alerting. The concept of passing parameters was found to be very useful as certain updates had to
be disqualified immediately. Also developing this application helped us to tailor our system to suit
real-world semantics.

Stock Application Since the Military application did not involve complex events to be monitored
except 'OR', a prototype stock application was also developed. This was used to test the event
expression that we have discussed before, involving the various parameter contexts.

The Stock application involved monitoring the price index of various companies, and buying
stocks whenever the price reached a certain level. This also involved defining rules on multiple
classes. Instance level events and class level events were also defined and tested. For example, the
change in price of IBM stock was given as an instance level rule and the change in stock level of
any "Stock" class object was defined as a class level event. Complex event expressions were formed
on these events and rules defined on them. This helped us establish'aunified approach of relating
to class level and instance level event specification.

The applications described briefly have helped us in culling the initial requirements that are
necessary to use our system for any real-world application. We plan to choose an appjication
domain which uses most of the features we have provided and develop it in full scale to fine, tune
our system and make it functionally complete.

38

5 OVERVIEW OF RELATED WORK

5.1 Ode

Ode [GJS92b, GJS92a] is a database system and environment based on the object paradigm. The
database is defined, queried and manipulated using the database programming language O++,
which is an upward compatible version of C++. Ode provides active behavior by the incorporatibP
of constraints and triggers [GJ91]. Constraints and triggers are defined declaratively within a

class definition and consist of a condition and action. Constraints are used for maintaining object
consistency and are applicable to all instances of the class in which they are declared. Triggers, on
the other hand, are used for other purposes and are applicable only to those instances of the class
in which they are declared. Ode uses an extended finite automata for composite event detection
and triggering of constraints and triggers. The extended automaton, makes a transition at the
occurrence of each event in the history like a regular automaton and in addition handles attributes
of the events to compute a set of relations at the transition.

Comments on Ode

" Note that the differentiation between constraints and triggers is only for convenience [GJ91]
and does not contribute in any way to rule processing. Furthermore, triggers may be used to
specify constraints. Hence essentially Ode maps rules to triggers.

" Ode represents an event occurrence as a tuple of the form (primitive event, event identifier).
An example of an event identifier is defined by Gehani et al. [GJS92a] as the time at which
the primitive event occurred. An event history is defined as a finite set of event occurrences
with no two event occurrence having the same event identifier. Event expression specification
in the case of 'AND' operator is specified as an intersection of two event histories. The field
on which this intersection is performed is not specified. If it is on the event identifier then the
'AND' operator recognizes only simultaneous occurrence of events. It is stated that two event
occurrences el and e2 refer to the same event occurrence if their eids are identical which rules
out the possibility of simultaneous occurrence of events. The other alternative is to perform
the intersection with respect to the primitive event or the entire tuple of an event occurrence
in which case the result will always be an empty set. Most of the operators in Ode are defined

in terms of the 'AND' operator and since this definition itself is questionable these operator

semantics are also unclear.

" The automaton for the 'AND' operator constructed according to the specification given

[GJS92a] does not seem to reach an accepting state.

" In the case of automata construction for the expression employing the pipe operator ElF

according to the specification given [GJS92a], if E and F are primitive all the states will be
non-accepting states which is not the desired result.

" In the case of an event occurrence each constraint and trigger has to be evaluated, i.e., each
finite automaton constructed has to be checked to see: if there are any transitions. This leads
to excessive checking.

39

* Also there is no specification of priority in the case of constraints and triggers and hence they

seem to be activated in an arbitrary manner.

* In the case of implementation a suite of finite automatons are generated if an attribute is

specified, for each different value of the attribute. So further detection should satisfy all

the automatons generated and is a potential bottleneck. We have overcome this problem by

shifting the burden of checking the attributes to the condition function written for a rule.

5.2 SAMOS

The combination of active and object-oriented characteristics within one, coherent system is the

overall goal of SAMOS (Swiss Active Mechanism Based Object-Oriented Database System).

Samos [GD93, GD94] addresses event specification and detection in the context of active databases.

Although there are some differences between Snoop and Samos in the event specification language

(for example, Samos has a Times operator for defining the occurrence of n events in an interval
which can be specified as Any(n, E*) in our event specification), they differ primarily in the mech-

anism used for event detection. Samos uses modified colored Petri nets called SAMOS Petri Nets

to allow flow of information about the event parameters in addition to the occurrence of an event.

Comments on SAMOS

' When an event participates in more than one composition, (e.g., in E=(El;E2) and in

EE-(El,E3)) to combine the Petri Nets for the two composite events, El has to be duplicated

into El' and El". This results in duplicating Petri nets equal to the number of common event

expressions that El participates in. Since all duplicates must also be represented in the data

structure this might lead to excessive storage requirements. Our implementation uses linked

lists for the subscribers list and hence overcomes the need for duplication.

" In Samos only the chronicle context is supported. As we have highlighted before, the other

contexts are also useful in various application domains. The semantics of contexts is built

into our operator nodes. Hence it is easy for us to have a single instance of the event graph

and detect all the contexts. In the case of Petri nets they have to generate a different Petri
net for each context. Also, we can generate the event graph as and when the event expression

is specified even if the context information is not specified. If contexts are introduced in Petri

nets then they cannot be built unless the context information is specified beforehand.

" In the case of implementation, since ObjectStore is a blackbox Samos uses the layered ap-

proach for providing active capability. In a layered approach the underlying DBMS is aug-

mented with a layer that is responsible for providing active capability. The architecture shown

permits access to the augmented system either through a user interface tool that transforms

user active database design to underlying system constructs or through a stannd-alone inter-

face. All applications that require active capability have to interact with the system through

this layer; otherwise, active capability will not be available. Althliough full active capability

cannot be obtained in this approach, a. number of techniques can be used and some optimiza-

tions can be performed by the situation monitor layer. For instance, the layer can decide

40

whether to rewrite a transaction to include the condition monitoring code (similar to the
application-based architecture but the rewrite is done by the situation monitor layer) or use
either the polling or aperiodic checking approach depending upon the meta-data used by the
system. The layer is responsible for monitoring the situations and executing appropriate rules
which also means that all transactions are routed through the layer (although eventually pro-
cessed by the underlying system's transaction manager). There may be some limitations on
the class of ECA rules that can be supported using this approach. For example, immediate
mode coupling may not be possible as the layer may not be able to suspend a transaction that
is being executed by the underlying DBMS (even when the rewrite technique is used). Also,
explicit and other temporal events cannot be supported in this approach without resorting
to polling.

They have addressed the issue of composite event detection and rule management but do not
discuss the issues of rule execution.

5.3 ADAM

ADAM [DPG91] is an active OODB implemented in PROLOG. ADAM's main focusis to provide
an uniform approach for defining and treating rules in the same way as other objects in the system.
It adopts the ECA format for rules. Events and rules in ADAM are first class objects.

ADAM supports database events, clock events and application events. Events in ADAM are
generated either before or after the execution of a method. Rules are incorporated in ADAM by
using an object based mechanism. The attributes of a rule include an event, condition, action,
is-it-enabled, active-class and disabled-for. Rule operations are implemented as methods. The
attribute active-class in rules indicate which class this rule is monitoring. Correspondingly each
class structure has a class-rules attribute that indicates which rules to check when the object raises
an event. In order for ADAM to support inheritance of rules, each class definition is enlarged with
an activated-by attribute. When an update is done to the class-rules attribute of any class, the
update is propogated to the activated-by attribute of all its subclasses. This process is performed
automatically by the system.

Comments on ADAM

" Since complex events are not supported in ADAM attaching the rules as attributes to a class
leads to efficient rule detection. In our case since rules span multiple classes it is not possible
to use this approach. Our event detector keeps track of the primitive events defined on classes
and the event graph maintains the pointers to rule objects wherever necessary. When ADAM
is extended to include complex events it might have to use a similar approach where the
class-rules attribute keeps track of events defined on this class.

"* Since rules are treated as objects they can be created. deleted and modified like any other
object. In this sense ADAM provides a uniform treatment of rules in an object oriented
context.

"* Since complex events are not part of the system the concept of parameter contexts is not

applicable to this system.

41

"* ADAM supports only the immediate coupling mode.

"• Inheritance of rules is supported. But the way in which it is supported is specific to Prolog in
which the system has been implemented and hence cannot be adopted to other environments.

"* In ADAM all the method's arguments are passed as parameters to the rule. It is the same as

our case except that we restrict our parameters to only simple data types and oids.

"* Supporting instance level rule is not possible in this system. This requires naming all the

other instances in the 'disable-for' attribute of the rule and is cumbersome.

5.4 Alert

Alert [S+91] is an extension architecture, implemented in the Starburst extensible DBMS at the

IBM Almaden Research Center, for experimentation with active databases. Alert uses the layered

approach and the inherent disadvantages that we have discussed in section 5.2 with respect to a

layered approach applies to it as well.

Alert introduces the concept of active tables and active queries. Active tables are append-only

tables. Active queries are queries that range over active tables. An SQL-like syntax is used to
specify queries. Alert highlights that the active queries differ from the usual SQL-like passive

queries only in their cursor behavior. The standard SQL does a non-blocking read: if no more
tuples are available in the answer set of the query, the process doing a fetch is not blocked but is

simply returned an EOF. In the case of active queries a fetch-wait is employed which is a blocking

read i.e., if the current answer set is exhausted, the process doing a fetch-wait is blocked until one

becomes available.

Alert has transaction coupling modes which specify whether a rule executes in the same trans-

action that triggered the rule or as a separate transaction. Rule execution coupling modes are used

to specify whether a rule should be executed synchronously (rule execution is completed before

triggering transaction continues) or asynchronously (rule and triggering transaction execute in par-

allel) with the triggering transaction. Immediate and deferred coupling modes with the semantics

equivalent to ours are also present.

Comments on Alert

" By having a rule language similar to SQL, Alert reuses almost all of the existing semantic

checking, optimization and execution implementations.

" Schreier et al. [S+91] note that the fetch-wait process returns an EOF only if it is guaranteed

that no more answer tuples will be generated. However the point at which it is decided that

there are no more answer tuples is not clarified.

" In Alert the DBMS creates an active table for every user-defined passive table. But the

details regarding what is maintain in the active tables are not specified. The queries given

as examples by Schreier at al. [S+91] indicate that the system-defined active tables have

the same fields a.s the pa.ssive table. [f it is so, then there is n1o justification for having a

system-defined active table for each passive table.

42

" The users have to truncate the old tuples to limit the size of an active table. This shifts the
burden of maintaining active tables to the user and might lead to non-detection of certain
events if the user deletes the tuples arbitrarily.

" The issue of updating active tables when some tuples are deleted in the passive table is not
addressed.

" The type of events that Alert detects is not discussed, leading us to believe that they do not

support temporal and external events.

" The monitoring viewpoint of Alert is similar to busy waiting. Hence condition monitoring is
not efficient.

" The system is more geared towards the Relational Model. In relational databases, events are
generally restricted to database updates, but an 00 environment allows any message to raise.
an event. Thus the efficiency requirements for rule support in OODBs are even greater than

in relational databases. Hence extending the Alert system to an 00 environment will involve
significant extensions.

5.5 UBILAB system

The integration of an existing Smalltalk-based OODBMS - Gemstone and active DB functionality
was the goal of the UBILAB system [KD93]. This system also uses a layered approach but the
limitations of this approach have been realized and identified in the paper.

Since the OODBMS is a black box, all additional capabilities are implemented using the offi-
cially accessible interfaces of the DBMS. Internal events (changes and method execution on specific
objects), external events (events not related to any object or class), and time-related events (signal
absolute and relative points in time) are supported. UBILAB system also supports the concept
of simple events and complex events, the latter being defined by means of an event algebra. The
complex events occur totally within the scope of one transaction.

In this system all ECA rules are mapped onto triggers. The trigger mechanism is just a pair of
event and action without the notion of a condition. Event, action and triggers are classes to which
the ECA rule specifications are mapped. Parameter lists are also associated with each trigger with
an indication as to how they should be collected.

The implementation uses the concept of daemon processes to execute asynchronous actions.
Separate daemons for each of the action types have been identified namely, DML actions, general
UNIX actions and notification actions operating on the window system. A high level interface for
rule specification and debugging involving a rule designer, browser, simulator and tracer is currently
under development.

Comments on UBILAB system

* Only and, or, not and sequence (;) operators are supported in this .system. We support A,
A*, P and P* operators in addition to these operators for defining complex event expressions.

43

" The UBILAB system does not have the concept of parameter contexts. From the discussion
[KD93] it appears that events are detected in the Chronicle context.

The event detection features like the use of wrapper methods to signal events are similar to our
implementation. Method wrappers are created dynamically as soon as rules refer to a method.

It should be noted that the runtime creation of wrappers is specific to the implementatipn
environment of the UBILAB system and is difficult for adopting to other environments.

" The concept of grouped events is expressed as a relationship between two subsequent events
that belong to each other. A grouped event can be either a start event or a following event.

For example,
OPA-begin[1]; OPA-begin[2]; OPAEND[2]; OPAEND[1]
is a complex grouped event which will be raised if during the execution of OP-A the same
operation is once more executed completely. This is a useful mechanism and we are exploring

the ways of providing this feature with our system.

" Only one event per expression is raised in this system even if multiple occurrences of the same
event are detected. This simplifies the process of parameter collection and association. In

our case since we have parameter contexts the way users might want to deal with parameters
is not known. We provide all the parameters detected so far and let the user decide which is
necessary for evaluating the condition and performing the action.

" There is no discussion on how this system deals with complex data types in case of parameter
passing for event detection.

Implicit grouping of objects to separate events relevant to one user group and central events
visible to everybody is present in this system, which is highly desirable for our system.

5.6 K

K is a high-level knowledge base programming language developed at the University of Florida. It
is used for doing general computation as well as for defining, querying, and manipulating databases
in nontraditional application domains [SS91]. The underlying semantic model of K is OSAM*
[SKL89] an extensible object-oriented semantic association model which provides a rich class system
to support modeling, persistence, knowledge abstraction, encapsulation and multiple inheritance.

K provides declarative and expressive constructs to specify rules [Arr92]. It also takes care of
rule management and execution. Here rules are associated with class definitions. Each rule of class

X is specified as:
rule rule-name is

triggered trigger-time operation-spec

condition [guard-condition] rule-condition]

action statements]
otherwise statements]

end;

The semantics of a rule is given by: If the guard-condition is false the whole rule is skipped. If the

44

guard-condition is true and the rule-condition is also true then action statements are executed else
the otherwise statements are executed. The condition parts can contain any boolean expression,
including a database query. Both action and otherwise are optional, but atleast one of them

should be specified. Operation-spec is the event, which can be either a database operation or user-
defined method. The trigger-time specification can be before, after, or immediate-after. In the case
of before, the rule is executed before the specified method/operation is executed. In the case 'of
immediate-after, the rule is executed immediately after the method/operation is performed. After
is similar to our deferred rule specification.

Comments on K

"* K provides a uniform treatment of rules as objects.

"* Inheritance of rules are supported.

"* Temporal and external events are not supported.

"* K supports only the disjunction of complex events. Other types of complex events are not

supported.

"* Index mechanism for selecting rules for execution is performed by using OQL queries.

" Rules cannot be explicitly specified to span multiple classes, but they are done indirectly by
using parameterized rule declarations.

" Rules are declared at class definition time. They are stored in the database along with the
class definition and are compiled as part of the schema definition. Since rules are created
declaratively, modification of the event it monitors at run time is not possible. In our case
rules are created dynamically enabling the modification of their attributes at run time.

From all the systems discussed so far we can conclude that the concept of parameter contexts
is unique to our system. We also address an extensible rule management and execution system.
We are aware of certain desirable features like grouping of events etc., and are in the process of
incorporating these extensions in our system.

45

6 CONCLUSIONS AND FUTURE WORK

This report significantly extends our earlier work [Mis9l, CM94a] on an expressive event specifica-
tion language. Earlier work was primarily concerned with the motivation for the event language,

classification of events, need for event operators, and the set of event operators. In this report, we
introduce primitive event sequences as ordered occurrences. of a primitive event (termed primitiye
event-history/event-log), and composite event-history/event-log as a partial order of the merged
primitive event-histories. We define the semantics of primitive and composite events over an event-

history. We argue that the detection of composite events over a composite event-history leads to
monotonically increasing storage overhead as previous occurrences of events cannot be deleted. We
define the notion of parameter contexts as a mechanism for precisely restricting the occurrences
that make a composite event occur as well as for computing its parameters and refine it to using
initiator and terminator concepts. We have developed complete algorithms for detecting Snoop

expressions in all parameter contexts. We then propose extensions to an object-oriented DBMS
(Open OODB) and indicate the functionality supported by the architecture. The implementation
- of event detection - using the design proposed by Anwar et al. [A-NIC93] and the architecture
highlighted is the main contribution of this report. We have presented an architecture for an active
OODBMS and described its implementation. We have discussed the implementation details of
ECA rule transformation, composite event detection and rule execution.

To summarize, the contributions of this report are:

"* Introducing the notion of primitive event history and composite event history and defining
the semantics of primitive and composite events over an event-history.

"• Algorithms for detecting Snoop expressions in all parameter contexts.

"* An extensible architecture for event detection and rule execution.

"* Implementation of the local event detector involved
- Seamless incorporation of ECA rules into a passive OODBMS Open OODB.
- Supporting the immediate and deferred coupling modes proposed in HiPAC.
- Supporting the specification and detection of complex and primitive events.

- Allowing class level and instance level events/rules.
- Supporting online as well as batch mode of rule execution.
- Supporting prioritized rule scheduling.

6.1 Future Work

The underlying concepts behind our architecture and implementation can be easily adapted to the
relational model as well. For example, the implementation of composite event detection can be
easily tailored to a relational model since the individual linked lists maintained by the composite
event detector can be viewed as tuples. Currently we are extendinig Ihe preprocessor of Open
OODB to convert our high level specification to low level object defitiiiois and. function calls.

Our future work includes

o Expanding the rule management support to public, private, and protected rules.

46

" Investigating efficient ways of providing the semantics of detached rule execution considering
the limitations inherently present in an object oriented system. The implementation of the
detached coupling mode entails generating an entire application with all the class definitions
in the triggering application as the condition and action functions might refer to both program
and database objects. The problems being addressed by OMG and Corba need to be resolved
for the implementation of detached mode. An alternative is to extend the nested transactions
semantics to include detached execution of rules.

"* Implementation of a global event detector satisfying all the functionality highlighted in our
architecture.

"* Integrating the nested subtransaction model into the rule execution model.

" In this report, we are assuming that the parameters of an event can be computed once the

event occurrences are known. It is useful, however, to explicitly introduce (as a minimum)
the identification of the object (i.e., oid) for which the primitive event is applicable. This can
be done by specifying, for each primitive event, a parameter which is either a constant or a
variable representing the oid. For example, the primitive event Change-price(IBM) indicates
that the event occurs when the method Change-price is executed for the IBM object. As
another example, Change-price(X);Change-price(X) refers to the sequence of events on the
same oid X. And Change-price(X);Change-price(Y) refers to the sequence of events on two

different oid's. All the event detection algorithms presented in this report extend readily
when the oid is allowed as an explicit parameter of a primitive event.

The task of making a passive DBMS active with all the functionality highlighted in this report
involves a tremendous amount of design as well as implementation. In this report we have addressed
a subset of these issues and provided solutions to them. The implementation of the local event
detector can be identified as a stepping stone for building the global event detector, which needs

to be implemented to attain complete active capability.

47

Appendix A. COMPOSITE EVENT DETECTION ALGORITHMS

In this appendix, we present algorithms for event graph construction and detection in all the
parameter contexts. Algorithms for all the contexts have been implemented and has been integrated
with an object-oriented DBMS (the Open OODB) from Texas Instruments, Dallas.

Figures 6, 7, 8, 9 illustrate the recent, chronicle, continuous and cumulative event detectipn
algorithms for the event expression X = ((El A E2) ; E3 ; (E2 A E4)) shown in the body of the
paper. The time line indicates the relative order of the primitive events with respect to their time
of occurrences; Events are propagated in a bottom-up fashion. The sequence of the graphs are from
left to right and top to bottom. Leaf nodes of the graph correspond to primitive events and pass
the events as they occur to their parent nodes. The operator nodes have separate storage for each
of their children. The different instances of the same event are stored as separate entries and are
given in separate lines in the figure. A small arrow indicates the primitive event detected at that
point of time. The arrows pointing from the child to its parent in the graph indicates the detection
of a composite event and flow of the detected events. The event instances that are deleted after a
composite event is detected and propagated are indicated in bold letters. A walk-through example
of each context on a single graph instance has been discussed in the body of the paper.

ALGORITHM Composite Event Detection
Construct an event graph for each rule with nodes as operators and leaves
as primitive events. The primitive event nodes are the source and the rule nodes
are sinks. Edges are from constituent events to composite event.
Initialize counters (e.g., num-events) and flags.
For each occurrence of a primitive event

store its parameter in the corresponding terminal node 't:
activate-terminal-node(t);

PROCEDURE activatefterminal-node(n)

For all rule-ids attached to the node 'n'
signal event;

For all outgoing edges i from 'n'
propagate parameters in node 'n' to the nodei connected by edge i
activate-operator-node(nodej);

Delete propagated entries in the parameter list at 'n'

48

6.1.1 Algorithm for the Recent Context

I I I I I I I tim e
1 2 1 1 2 1 2 2

1 1 2 3 2 4 3 A

2 1
AAeen12 e 2A

1 2 2
e e e

A E3E2 E4 A E3E2 E4 2 E3E2 E4

ee 2 e 2eeee
-el EEl E EliE2

1 2

2 11_ 1e e" 2~ e 2 12 21

1 1e e eee el

detect X 1 2 3 2 4

2 1 1 2 11 1 2 2

1 e e 1 1S2 1e2 2 2 2 42 ee 222

--

e e 2 e 2 e z
E2 E4 e 1 2 E3 E2 E4 A E3E2 E4/• el ,- e41

El E
2
t El E2 El E2

detect X 2e3e23e422

21 2 2 2 22 212

22 e 3eI ' 2 e5

322 2 1 3 2 21 22

12, 3 2 4 12 A e4 1e2 e2 A 4

2 2 2 2/ 2 2
e A 2E 3 E 2 E4 elAe2E

3 E 2 E4 elA E3E 2 E4

2 2
e 3 4

El E2 tEl E2 El E2

Figure 6: Detection of X in recent mode

PROCEDURE activate-operator-node(nodej) /* Recent Context */
CASE nodei is of type

a primitive or composite event has been signalled to nodej */
AND(E1, E2): if left event el is signalled

if E2's list is not empty
Pass <e2, el> to the parent

Replace el in El's list.

if right event e2 is signalled
if El's list is not empty

Pass <lI, e2> to the parent

49

Replace e2 in E2's list

OR(El, E2): For any event <e> signalled
Pass <e> to the parent

ANY(m,E1,E2,...,En):When an event ek is signalled
Replace ek in it's event list Ek.
Increment the counter num-events only
if Ek list was empty previously
if num-events >= m

Find all event tuples (taken from their
respective event lists)
<ei, ej, ek ... > such that
they are the most recent m distinct
occurrences of events.
Pass the tuple to the parent
change num-events appropriately

SEQ(El, E2): if left event el is signalled
Replace el in El's list

if right event e2 is signalled
if El list is not empty

Pass <el, e2> to parent

A(El,E2,E3) I
P(El,[t],E3): if left event el is signalled

Replace el (only tLocc & event name) in El's list

if middle event e2 is signalled
if El's list is not empty

Pass <el, e2> to parent

if right event e3 is signalled
FLUSH El's buffer

A*(E1,E2,E3)I
P*(EI,[t],E3): if left event el is signalled

Replace el (tLocc & event name) in El's list
FLUSH E2's buffer

if middle event e2 is signalled
if El's list is not empty

Append e2 to E2's list

if right event e3 is signalled
if E2's list is not empty

Pass <el, e2, e3> to parent
FLUSH El and E2's buffers

else
Pass <el, e3> to parent
FLUSH El's buffer

50

NOT(E2)[El, E3]: if left event el is signalled
Replace el (only t-occ & event name) in El's list

if middle event e2 is signalled
if El's list is not empty

FLUSH El's buffer

if right event e3 is signalled
if El's list is not empty.

Pass <el, e3> to parent
FLUSH El's buffer

51

6.1.2 Algorithm for the Chronicle Context

I I I I I [I time,

1 2 1 1 2 1 2 2

1 1 2 3 2 4 3 4

A 1 2 e2A

e ~el
E3 E2 E4 2 4 2 0E3 E2 E4

El E2 El E2 El E2
1 2

11 1
1 1 1

-e e
1

detect. Y e le2 lel 3ee

1~~~~~ ~~ 2e e3 2f/ 4l ~ ~•Qe
el e e e 2ee

2i 2••2 1 22 1

2 :22 o2
.12 63 1 e 1: e 2ele .2 a

21 2 ' 2 4

22/e 2/QeNE3 E2 E4 2 E3 E2 E4 E3 E2 E4

e3 A • 4

EE E2 t El E2/ El E2
2/

e e2

dete X ee e2e4

2 22 22 e2 2 2
1e2e3 1 2 3 2 4

.2.2 2 2 2 2

1 2; *3 e2 A
2 A . A

N

A E3 E2 E4 A E3 E2 E4 AA E3 E2 E4

2 2
/ 3 5 e4

El E2 El E2 El E2f

Figure 7: Detection of X in chronicle mode

PROCEDURE activate-operator-node(nodei) /* Chronicle Context */
CASE nodej is of type

a primitive or composite event has been signalled to nodei */
AND(E!, E2): if left event el is signalled

if E2's list is not empty
Pass <E2's head, el> to the parent
Delete head of E2's list

else Append el to El's list

if right event e2 is signalled
if El's list is not empty

52

Pass <El's head, e2> to the parent
Delete head of El's list

else Append e2 to E2's list

OR(El, E2): For any event <e> signalled
Pass <e> to the parent

ANY(m,E1,E2,...,En):When an event ek is signalled
Append ek in it's event list Ek.
Increment the counter num-events only
if Ek list was empty previously
if num-events >= m

Find all event tuples (taken from their
respective event lists)
<ei, ej, ek ... > such that
they are the oldest (head) m distinct
occurrences of events
Pass the tuple to the parent and delete them from
their respective event lists
change num-events appropriately

SEQ(E1, E2): if left event el is signalled
Append el to El's list

if right event e2 is signalled
if El list is not empty

Pass <El's head, e2> to parent
Delete head of El's list

A(E1,E2,E3)1
P(El,[t],E3): if left event el is signalled

Append el (only t-occ & event name) to El's list

if middle event e2 is signalled
if El's list is not empty

Pass <El's head, e2> to parent
Delete head of El's list

if right event e3 is signalled FLUSH El's buffer

A*(El, E2, E3)I
P*(E,[t],E3): if left event el is signalled

Append el (t-occ & event name) to El's list

if middle event e2 is signalled
if El's list is not empty Append e2 to E2's list

if right event e3 is signalled
if E2's list is not empty

Pass <El's head, All e2's in E2's list. e3> to parent
Delete head of El's list
Delete all e2's in E2's list whose Locc
is less than the El's head t-occ

53

If El's list is empty then FLUSH E2's buffer
else Pass <El's head, e3> to parent

Delete head of El's list

NOT(E2)[El, E3]: if left event el is signalled
Append el (only t-occ & event name) to EI's list

if middle event e2 is signalled
if El's list is not empty FLUSH El's buffer

if right event e3 is signalled
if El's list is not empty

pass <El's head, e3> to parent
Delete head of El's list

54

6.1.3 Algorithm for the Continuous Context

I I I I I I I time:
1 2 1 1 2 1 2 2

1 1 2 3 2 4 3 4

2 1
2e 1

SeAe 2 e 2 A/
1

eI

E3 E2 E4 e A E3 E2 E4 2 E3 E2 E4

El E2 El E2 El E2 elle el ele
2 1 12324

e e e e 1e 2 1ee1ee e

detect Xe2 12324le
11 23 21

ee I [ee e e le .el 2e3
2 1 1 2 1

1~~~
1 •

ee ee
e 2 :

eleee1 e2 E3 e 2 1
12 2 1 2 2 2 4

2 123 24:
2 1 *3 e A 4

1 2 2/1 E 2
I e2

I e4 e

k- 2E3 E2 E4 e2 E3 E2 E4 Q'E3 E2 E4

e \ 22 e24

43 A 4

El E2t El E2 El E2

t2 1 e

2ue
4

2 e1 2 2

3 4 e4

e 1 & e 2

2 E3E2 4 2eE3tE2
2

4 2 E3 E2sE4

2 2
e 2 2

e3es

Ell E2 e El E2 Ell E2

Figure 8: Detection of X in continuous mode

PROCEDURE activate-operator-node(nodej) /* Continuous Context *
CASE nodej is of type

/*a primitive or composite event has been signalled to nodej ~
AND(E1, E2): if left event el is signalled

if E2's list is not empty

For every event e2 in E2's list
Pass <e2, el> to the parenit

FLUSH E2's list,
(Ilse

Appeiid el to El 's list.

55

if right event e2 is signalled
if El's list is not empty

For every event el in El's list
Pass <el, e2> to the parent

FLUSH El's list
else

Append e2 to E2's list

OR(El, E2): For any event <e> signalled
Pass<e> to the parent

ANY(m,E1,E2,...,En):When an event ek is signalled
Append ek in it's event list Ek.
Increment the counter num-events only
if Ek list was empty previously
if num-events = m

Find all event tuples (taken from their
respective event lists)
<ei, ej, ek ... > such that
they form m distinct occurrences of events
Pass the tuple to the parent
FLUSH all El, E2, ... , En buffers
Set num-events to 0

SEQ(E1, E2): if left event el is signalled
Append el to El's list

if right event e2 is signalled
if El list is not empty

For every event el in El's list
Pass <el, e2> to parent

FLUSH El's list

A(El,E2,E3)1
P(El,[t],E3): if left event el is signalled

Append el (only t-occ & event name) to El's list

if middle event e2 is signalled
if El's list is not empty

For every event el in El's list
Pass <el, e2> to parent

if right event e3 is signalled
FLUSH El's list

A*(E1, E2, E3)1
P*(El,[t],E3): if left event el is signalled

Append el (t-occ & event name) to El's list

if middle event e2 is signalled
if El's list is not empty

Append e2 to E2's list,

56

if right event e3 is signalled
if E2's list is not empty

For each el in El's list
Pass <el, All e2's whose t-occ is greater
than t-occ(el), e3> to parent

FLUSH El's and E2's buffers
else

For each el in El's list
Pass <El's head, e3> to parent

FLUSH El's buffers

NOT(E2)[El, E3]: if left event el is signalled
Append el (only t-occ & event name) to El's list

if middle event e2 is signalled
if El's list is not empty

FLUSH El's buffer

if right event e3 is signalled
if El's list is not empty

For each el in El's list
Pass <el, e3> to parent
FLUSH El's buffer

57

6.1.4 Algorithm for the Cumulative Context

I I I I I I I I tim~e

1 2 1 1 2 1 2 2
0 0 0 e e e e

1 1 2 3 2 4 3 4

e ee 1

e1 e• e 1
e

1 A N
21E E3 E2 E4 2 / E3 E2 E4 2 A 2 E3 E2 E4

1 1

El E2 El E2 El E2/

1 2

e4e e4

1 2 2

e
2 e 3 e e 4

1 E 1 11 2 1 1 2 1

Figure 9: D~~~~etectinoXincmltv mod

Petaeer 1eo e Co e
11D(23, E2k 12 2 1 3 eD 2024

1f E2 1-s -s -o e pt

11 1 2 31 2 0

112 2/1
e2 2 2V

Pas<lle',el/ /oteprn

E3 E2 E4 2E3UE2 E4 2 buE3E2eE4

els1

Elen E2t~ E2 ' it

El 2+El E2El E2

I '2

2 2 2

3 e e e 4

2 2
e e 2 E3 E2 E4 A e 2 E3 E2 E4 A e 2 E3 E2 E4

.2 2

El E2 tEl E2 El E2

Figure 9: Detection of X in cumulative mode

PROCEDURE activate-operator-node(nodej) /* Cumulative Context *
CASE nodej is of type

a primitive or composite event has been signalled to rlocej *
AND(E1, E2): if left event el is signalled

if E2's list is not empty
Pass <all e2's, el> to the parent
FLUSH E2's buffer

else
Append el to El's list

if right event e2 is sigualled

if El's list is not empty
Pass <all el's, e2> to the parent
FLUSH El's buffer

else
Append e2 to E2's list

OR(El, E2): For any event <e> signalled
Pass <e> to the parent.

ANY(m,E1,E2,...,En):When an event ek is signalled
Append ek in it's event list Ek.
Increment the counter num-events only
if Ek list was empty previously
if num-events = m

Find all event tuples (taken from their respective
event lists) <all ei, all ej, all ek ... > such that
they are the m distinct occurrences of events
Pass the tuple to the parent and
FLUSH all El, E2, ... En buffers
Set num-events to 0

SEQ(El, E2): if left event el is signalled
Append el to El's list

if right event e2 is signalled
if El list is not empty

Pass<all el's, e2>to parent
FLUSH El's buffer

A(E1, E2, E3)1
P(E1,[t],E3): if left event el is signalled

if El's list is empty
Store el (only t-occ & event name) in El's list

if middle event e2 is signalled
if El's list is not empty

Pass <el, e2> to parent
FLUSH El's buffer

if right event e3 is signalled
FLUSH El'V buffer

A*(E1,E2,E3)I

P*(El,[t],E3): if left event el is signalled

if El's list is not empty
Store el (t-occ & event name) in El's list,

if middle event e2 is signalled
if El's list is not empty

Append e2 to E2's list

if right event e3 is signalled
if E2's list is not empty

59

Pass <cl, All e2's in E2's list, e3> to parent
FLUSH El and E2's buffer

else
Pass <el, e3>to parent

FLUSH El's buffer

NOT(E2)[El, E3]: if left event el is signalled
if El's list is not empty

Store el (t-occ & event name) in El's list

if middle event e2 is signalled
if El's list is not empty

FLUSH El's buffer

if right event e3 is signalled
if El's list is not empty

Pass <el, e3> to parent
FLUSH El's buffer

60

Appendix B. A DETAILED EXAMPLE

6.1.5 Original program

class STOCK : public REACTIVE

{
private:

public:

event end(el) int selLstock(int qty);
event begin(e2) && end(e3) void set-price(float price);
int get-priceo(;
event e4 = el - e2; /* AND operator */
/ * class level rule */
rule Rl[e4, condl, actioni, CUMULATIVE, DEFERRED];

int STOCK::sell-stock(int qty) {................}
void STOCK::set-price(float price) { }
int STOCK::get-price0 I }
/* Main program */
STOCK IBM, DEC, Microsoft;
main0

{

/* Creating instance level primitive event */
event set-IBM-price("set-IBM-price" ,IBM,

"begin" ,"void set-price(float price)");
/* SEQUENCE operator */
event seq-event = STOCKIe4 << setIBM-price;

/* Creating a rule which contains both class level
and instance level events */
rule R2[seq-event, cond2, action2,,,20, PREVIOUS];

OpenOOBD->beginTransaction0;
IBM.set-price(115.00);
DEC.set-price(100.00);
Microsoft.sell-stock(200);
DEC.get-price(;
IBM.set-price(75.95);

OpenOODB->commitTransaction0;

6.1.6 Preprocessed program

class STOCK : public REACTIVE
{

private:

iit user-sell-stock(int qty);

61

void usersetprice(float price);
public:

int sell-stock(int qty);
void set-price(float price);
int getprice(;

1;
imt STOCK::selltstock(int qty)
{

int retvalue;
/* Parameters are collected in a linked list */
PARA-LIST *sell-stock-list = new PARALISTO;
sell stock-list->insert(" qty", INT, qty);

/* The original sell stock method is invoked here */
ret-value = user sell-stock(qty);

/* Notify end of method */
Notify(this, "STOCK", "int sell-stock(int qty)",

"end" ,sell-stock-list);

return(ret-value);
}
int STOCK::user-sell-stock(int qty)
{

/* original sell-stock method */
}
void STOCK::set-price(float price)
{

/* Parameters are collected in a linked list */
PARA-LIST *set-price-list = new PARALISTO;
set-price-list->insert(" price", FLOAT, price);

/* Notify begin of method */
Notify(this, "STOCK", "void set-price(float price)",

"begin" ,set-priceilist);

/* The original set price method is invoked here */
user-set-price(price);

/* Notify end of method */
Notify(this, "STOCK", "void set-price(float price)",

"end", set-price-list);
I
int STOCK:: user-set-price(float price){

/* original set-price method */
I
int STOCK::get-price(char *nl) { }

/* tMain program */
STOCK IBM, DEC, Microsoft;
LOCALEVENTDETECTOR *Event-detector

62

main0

{
/* Creating the local event detector */

Event-detector = new LOCALEVENTiDETECTORO;

/* Creating primitive events */
EVENT *STOCK-el = new PRIMITIVE("STOCK-el", "STOCK",

"end", "int sell-stock(int qty)");
EVENT *STOCKe2 = new PRIMITIVE("STOCK-e2", "STOCK",

"begin", "void set-price(float price)");
EVENT *STOCKe3 = new PRIMITIVE("STOCK-e3", "STOCK",

"end", "void set-price(float price)");

/*Composite event AND */

EVENT *STOCKe4 new AND(STOCK-el, STOCKe2);

/* Creating Rule R1 */
RULE *R1 = new RULE("RI", STOCK_e4, condl, actioni, CUMULATIVE);
Rl->set-mode(DEFERRED);

/* Creating instance level primitive event */
PRIMITIVE *setIBM-price = new PRIMITIVE("setIBM-price",

IBM, "end", "void set-price(float price)");

/* Composite event SEQUENCE */
EVENT *seq-event = new SEQ(STOCKe4, set-IBMvprice);

/* Creating Rule R2 */
RULE *R2 = new RULE("R2", seq-event, cond2, action2, RECENT);
R2->set-priority(20);
R2- >set-trigger-mode(PREVIOUS);

OpenOODB->beginTransaction0;
IBM.set-price(115.00);
DEC.setprice(100.00);
Microsoft.sell-stock(200);
DEC.get-price(;
IBM.set-price(75.95);

OpenOODB->commit0;

This example illustrates the wrapper methods introduced and conversion of application level event
specification to system calls during preprocessing stage. It also illustrates the use of class level and
instance level events/rules. Three class level primitive events, el as end-method event of sell-stock(,
e2 as begin-method and e3 as end-method event of set-price() are declared. A class level composite
event e4 is defined which is an AND of el and e2. A class level rule R1 is defined on event e4.
Instance level primitive event setIBMrprice is defined for Stock object IBM. A composite sequence
event is defined which is a. combination of an instance level and class level event and finally rule
R2 is defined on the sequence event(seq-event). Notice that after prel)rocessing the user defined
methods 'sell-stock' and 'set-price' are renamed as 'userisell-stock" and 'user-set-price' and wrapper

63

methods 'sell-stock' and 'set-price' are introduced. As seen from the example appropriate code is
introduced in the wrapper methods to notify the events. Also the application level rule and event
specification are preprocessed to appropriate code for generation of event and rule objects along
with the relevant parameters.

Regarding the detection of events Rule R2 will be fired first because it is in immediate mode
with parameters {{DEC, price, FLOAT, 100.00}, {Microsoft, qty, INT, 200}, {IBM, price, FLOAT,
75.95}}. Rule RI will be fired later since it is in deferred mode with parameters {{IBM, price,
FLOAT, 115.00}, {DEC, price, FLOAT, 100.00}, {Microsoft, qty. INT, 200}}. Both DEC anid
IBM prices will be parameters to Rule R1 since its context is specified to be CUMULATIVE. Refer
to [CKAK93] for details on parameter computation for various contexts.

64

References

[AMC93] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for

Object-Oriented Databases. In Proceedings, International Conference on Management
of Data, pages 99-108, Washington, D.C., May 1993.

[Arr92] J. A. Arroyo. The design and implementation of k.1 : A third-generation database pro-
gramming language. Master's thesis, Database Systems R&D Center, CIS Department,

University of Florida, E470-CSE, Gainesville, FL 32611, August 1992.

[Bad93] R. Badani. Nested Transactions for Concurrent Execution of Rules: Design and Im-

plementation. Master's thesis, Database Systems R&.D Center, CIS Department, Uni-
versity of Florida, Gainesville, FL 32611, October 1993.

[CAMM94] S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra. Design of sentinel: An object-
oriented dbms with event-based rules. Information and Software Technology, 36(9):1-

14, 1994.

[Cha89] S. Chakravarthy. Rule management and Evaluation: An Active DBMS Perspective.

Special issue of ACM Sigmod Record on rule processing in databases, 18(3):20-28, Sep.
1989.

[Cha91] S. Chakravarthy. Active Database Management Systems: Requirements, State-Of-

The-Art, and an Evaluation. In H. Kangassalo, editor., Entity-Relationship Approach:

The Core of Conceptual Modeling, pages 461-473. Elsevier Science Publishers, North-
Holland, 1991.

[CKAK93] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Anatomy of a composite
event detector. Technical Report UF-CIS-TR-93-039, University of Florida, E470-CSE,

Gainesville, FL 32611, December 1993. (Submitted for publication.).

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events for
Active Databases: Semantics, Contexts, and Detection. In Proceedings, International

Conference on Very Large Data Bases, pages 606-617., August 1994.

[CKTB94] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and R. Badani. ECA Rule Inte-
gration into an OODBMS: Architecture and Implementation. Technical Report UF-
CIS-TR-94-023, University of Florida, E470-CSE, Gainesville, FL 32611, Feb. 1994.

(To appear in ICDE-95, Taiwan, March 1995.).

[CM94a] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language
for Active Databases. Data and Knowledge Engineering. 13(3), October 1994.

[CM94b] S. Chakravarthy and D. Mishra. Towards an expressive event specification language
for active databases. In Proc. of the 5th Internatio7nal Hong Kong Computer Society

Database Workshop on Next generation Database Systems, Kowloon Shangri-La, Hong
Kong, February 1994. (Invited Paper).

[DPG91] 0. Diaz, N. Paton, and P. Gray. Rule Management in Object-Oriented Databases: A
Unified Approach. In Proceedings 17th International Cono frencc on Very Large Data
Bases, Barcelona (Catalonia, Spain), Sept. 1.991.

65

[FM87] C. L. Forgy and J. McDermott. Domain-Independent Production System Language. In
Proceedings Fifth International Conference on Artificial Intelligence, Cambridge, MA,
1987.

[For82] C. L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern
Matching Problem. Artificial Intelligence 19, pages 17-37, 1982.

[GD93] S. Gatziu and K. R. Dittrich. Events in an Object-Oriented Database System. In Prbc.
of the 1st International Conference on Rules in Database Systems, September 1993.

[GD94] S. Gatziu and K. R. Dittrich. Detecting Composite Events in Active Databases Using
Petri Nets. In Proc. of the 4th International Workshop on Research Issues in data
Engineering: Active Database Systems, pages 2-9, February 1994.

[GJ91] N. H. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints and
Triggers. In Proceedings 17th International Conference on Very Large Data Bases,
pages 327-336, Barcelona (Catalonia, Spain), Sep. 1991.

[GJS92a] N. H. Gehani, H. V. Jagadish, and 0. Shmueli. COMPOSE A System For Composite
Event Specification and Detection. Technical report, AT&T Bell Laboratories, Murray
Hill, NJ, December 1992.

[GJS92b] N. H. Gehani, H. V. Jagadish, and 0. Shmueli. Event Specification in an Object-
Oriented Database. In Proceedings, International Conference on Management of Data,
pages 81-90, San Diego, CA, June 1992.

[HLM88] M. Hsu, R. Ladin, and D. McCarthy. An Execution Model for Active Data Base Man-
agement Systems. In Proceedings 3rd International Conference on Data and Knowledge
Bases, Washington, D.C., Jun. 1988.

[Ins93] Texas Instruments. Open OODB Toolkit, Release 0.2 (Alpha) Document, September
1993.

[KD93] Angelika Kotz-Dittrich. Adding Active Functionality to an Object-Oriented Database
System - a Layered Approach. In Proceedings of the Conference on Database Systems
in Office, Technique and Science, Braunschweig, Springer Verlag, March 1993.

[Mis9l] D. Mishra. SNOOP: An Event Specification Language for Active Databases. Mas-
ter's thesis, Database Systems R&D Center, CIS Department, University of Florida,
Gainesville, FL 32611, August 1991.

[S+91] U. Schreier et al. Alert: An architecture for transforming a passive dbms into an active
dbms. In Proceedings 17th International Conference on I -ery Large Data Bases, pages
469-478, Barcelona (Catalonia, Spain), Sept. 1991.

[SKL89] S. Y. W. Su, V. Krishnamurthy, and H. Lam. An Object-oriented Semantic Association

Model (OSAM*). In Artificial Intelligence: Manufacturing Theory and Practice, pages

464-494. The Institute of Industrial Engineers, Norcross. GA. 1989. (Chapter 17).

[SS91] Y-M. Shyy and S. Y. W. Su. K: A High-Level Knowledge Base Programming Lan-
guage. In Proceedings, International Conference on [fanogeqnzent of Data, pages 29-31,
Denver, CO, May 1991.

66

[Vin93] S. Vinoski. Distributed Object Computing With Corba. C++ Report, pages 33-38,
July-August 1993.

[WBT92] D. Wells, J. A. Blakeley, and C. W. Thompson. Architecture of an Openl Object-

Oriented Database Management System. IEEE Computer, 25(10):74-81, October 1992.

[WF90] J. Widom and S. Finkelstein. Set-Oriented Production Rules in Relational Database

Systems. In Proceedings, International Conference on Management of Data, pages
259-270, May 1990.

* U.S. GOVERNMENT PRINTING OFFICE: 1995-610-126-50176

67

Rome Laboratory

Customer Satisfaction Survey

RL-TR-

Please complete this survey, and mail to .RL/IMPS,
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly
appreciated.
Thank You

Organization Name: (Optional)

Organization POC: (Optional)

Address:

1. On a scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating__

Please use the space below to comment on your rating. Please
suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes_ No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting
format are desired.

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all

applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

