NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A STUDY OF COVERT CHANNELS
IN A TRUSTED UNIX SYSTEM

by
Ronald Johannes DeJong
March 1995

Thesis Advisor: Cynthia E. Irvine
Co-Advisor: Timothy J. Shimeall

Approved for public release; distribution is unlimited.

19950526 002

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information s estimated to average 1 hour per response, including the time reviewing instructions. searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of informaticn. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestrons for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Sute 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT 1YPE AND DATES COVERED
March 1995 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A STUDY OF COVERT CHANNELS IN A TRUSTED UNIX
SYSTEM

6. AUTHOR(S)
DeJong, Ronald Johannes

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5101

A S e~ o
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES .]] . .
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABH'.ITY STATEMENT' . X . L. 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words) .
Analysis and identification of potential channels for illicit information flow is not required for Class B1 trusted

systems such as the Sun Microsystems Trusted Solaris 1.1 trusted computing base. When used in a multilevel
context such channels would present a risk to data security. The problem addressed by this thesis is the identification
of covert channels in Trusted Solaris and the determination if their exploitation can be detected using mechanisms
provided to the security adminstrator.

The approach taken to address this problem was to identify covert storage channels in the form of observable
effects and exceptions of sharing internal databases by subjects at differing access classes. Software was developed
to exploit the identified covert channels using a method requiring detailed specifications prior to the creation of
code. Audit trails were obtained to evaluate the efficacy of audit in detecting active covert channel exploitation.

This thesis presents: a list of identified covert channels in Trusted Solaris; a method to circumvent a vendor
attempt to close a covert channel; the granularity of auditing required to detect identified covert channels; and an
assessment of audit management impact on a posteriori covert channel detection tools.

A major product of this research is a fully operational multilevel security Class B1 TCB system available for
further research.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Covert Channel; Audit; Multilevel Secure System;Software Engineering; 101
Ji5 PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURI-'FY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

1 Prescribed by ANSI Std. 239-18

T
b

TS
e

11

Approved for public release; distribution is unlimited

A STUDY OF COVERT CHANNELS
IN A TRUSTED UNIX SYSTEM

Ronald Johannes DeJong
Captain, United States Army
B.S., Kansas State University, 1988

Submitted in partial fulfillment of the Accesion For

requirements for the degree of NTIS CRA& g
0

DTIC TAB

MASTER OF SCIENCE IN COMPUTER SCIENCE | Unannounced
Justification

e e e e m s e e |

from the By
Distribution/

NAVAL POSTGRADUATE SCHOOL

Availability Codes

March 1995 ‘ Avail and/or
Dist Special
Author: g ‘2 ‘/ N ‘U 'é o {
Ronald J(l{hanneslf)eJ on é')
Approved By: ﬁ /- f) '

anthia E. Irvine, Thesis Advisor

Timothy'J. Shimeall, Co-Advisor
Ted Lewis, Chairman,
Department of Computer Science

iii

ABSTRACT

Analysis and identification of potential channels for illicit information flow is not
required for Class B1 trusted systems such as the Sun Microsystems Trusted Solaris 1.1
trusted computing base. When used in a multilevel context such channels would present a
risk to data security. The problem addressed by this thesis is the identification of covert
channels in Trusted Solaris and the determination if their exploitation can be detected using
mechanisms provided to the security adminstrator.

The approach taken to address this problem was to identify covert storage channels in
the form of observable effects and exceptions of sharing internal databases by subjects at
differing access classes. Software was developed to exploit the identified covert channels
using a method requiring detailed specifications prior to the creation of code. Audit trails
were obtained to evaluate the efficacy of audit in detecting active covert channel
exploitation.

This thesis presents: a list of identified covert channels in Trusted Solaris; a method
to circumvent a vendor attempt to close a covert channel; the granularity of auditing
required to detect identified covert channels; and an assessment of audit management
impact on a posteriori covert channel detection tools.

A major product of this research is a fully operational multilevel security Class B1

TCB system available for further research.

TABLE OF CONTENTS

I INTRODUCTIONoouiiieiiiininienceortssueesiessessesseesssstesssssssuessesnsessessossasssassassassassas 1

A PURPOSE ...ttt srcensestesteae et essesnessaassessesssssssssanes 1

B BACKGROUNDoiiiiiitcnininniinreninntentcstesresesstesteeseseeonessnossassesseesassssssans 2

C RESEARCH OVERVIEW ...ttt enecesseenessestessessnens 5

II. SYSTEM SET UP AND CONFIGURATIONccceinuiririnsenieranrereesnnrasonsasaesasnens 9

A, PREPARATION ...cooiiiiieiiiniiiiiiccctcnnscestcstsesestesesesessenensssnssssasenas 9

B PRE-INSTALLATIONocoiiiiiiiiiniintincntininctcstesesseneseesssessassessesnsassnnes 9

C INSTALLATION AND CONFIGURATIONcoocovirientirrenreennnneneasenneenns 11

D SYSTEM BACKUPuviiiiiiriireniceceesceeeenrenessessissesseseesse s sesenssenne 12

E. SUMMARY .oiiiiitninctststeteectteestenteeseetesessessessessessssssssssessssssssane 12

F. COMMENTS ...ttt ettt stessesess s se s saes 13

IH. COVERT CHANNELSooiiiirtiintiteeitccesntescneesestsnetesteneesessessesesssssessasass 15

A. METHOD TO IDENTIFY COVERT CHANNELSccooosnvinrenrecreernnnns 15

B. INFORMATION THEORY METHODcccccccevniinininienierinricenrenreenenne 16

C. FILE SYSTEM MODULATION COVERT CHANNELccccecevvervennne. 17

D. ADDITIONAL COVERT CHANNELS IDENTIFIEDcccccceveuvevvernennene. 19

IV. SOFTWARE ENGINEERINGcoicnirtininicreinineirineseeiesenereessessessessesessesnens 21

AL PURPOSE ...ttt stes et cc s eats e se st ass e sn s s snss s sns 21

B. GOALS OF SOFTWARE ENGINEERINGccececcvnnecennieecrecrenrernene. 21

C. PRINCIPLES OF SOFTWARE ENGINEERINGccccooeveeiecrececrreeerrene. 22

D. SPECIFICATIONScooiitieeneeiresteeesesteie s s e saeste e sasesess et s ssease s 25

E. SUMMARY ...ttt ettt e e et este e se e s ssa e se s e svas 27

V. AUDIT DATA COLLECTIONccoeiicinieinneereneeirienensssasseensesansesessssessssessssesens 29

A, PURPOSE ...ttt ettt e se st ste s sa st sssase s en s eaee 29

B. OVERVIEW OF AUDITING IN TRUSTED SOLARIS 1.1c.cun...... 30

C. AUDITING TECHNIQUES AVAILABLE TO THE ISSOccoceuu.e. 31

VL ANALYSIS ettt st e s s st st e e sn et ee e et ssese e enne e 33

AL AUDITING ..ottt ettt et ss e sttt e s neene 33

B. BANDWIDTH ESTIMATIONcccooinmirintrireneirenenieeeeene e ereeseeseseseenens 34

C. COVERT CHANNELSctoiiiictnerenenineetentesteen e seenneseess e s esae e saese s 35

VIIL. CONCLUSION ..ottt ceeeereneereasatatssese e sesessssasasssssnssensssesessssssasesessnnes 37
A. COVERT CHANNELS ON TRUSTED SOLARIS 1.1:

INITIAL FINDINGSooiiiiiiiictieeectetenenreeneeereseesse e sesaes e e esnenas 37

B FUTURE RESEARCH ..ottt seseaee e esevane e 37

APPENDIX A.UNDERSTANDING TRUSTED SOLARIS 1.1 ..ccocooieieiriierecee. 39

APPENDIX B.MODULE SPECIFICATIONSccooiiineieenenreeeeeerees e 51

LIST OF REFERENCESooiiiiiiiiienecieeeetre st enee e sttt sane s s enenne 87

INITIAL DISTRIBUTION LIST ...ooiiiiiiiiieecieieeceetee ettt ce st cevee s evs s enens 89

vii

ACKNOWLEDGEMENT

I'want to thank Prof. Irvine for igniting my interest in computer security, and for her

guidance and patience during this research.

Albert Wong, the Research and Development Manager of the Computer Science

Department, was instrumental in the successful configuration and installation of the trusted

multilevel system. His many years of experience in distributed system administration was

an ever-ending source of information. Not only was it a pleasure to work with and learn

from him, but it was fun. My only regret is that I will not be here longer to tap his

knowledge in system administration. Thanks Al!
I would also like to extend a thank you to the following individuals for their time,

patience, and energy in helping make this thesis materialize:

e

°

Patrick Barrett, Sales Representative, Sun Microsystems Computer Corporation
Prof. Harold Fredricksen, Mathematics Department,

Prof. Frank Kelbe, Naval Postgraduate School

Prof. Timothy Shimeall, Naval Postgraduate School

Prof. Man-Tak Shing, Naval Postgraduate School

Prof. Roger Stemp, Naval Postgraduate School

Sue Whalen, Lead Systems Administrator, Naval Postgraduate School

Mike Williams, Lead Hardware Technician, Naval Postgraduate School

A very special thank you to my wife Linda for her unwavering love and support

which allowed me to successfully complete my graduate education.

ix

I. INTRODUCTION

A. PURPOSE

The Department of Defense (DoD) agencies are directed to purchase Commercial
Off the Shelf (COTS) software and systems that will meet automation requirements when
available. The identification of potential channels for illicit information flow is often absent
in the documentation of these systems due to the vendors’ lack of knowledge or reluctance
to publish them. A number of relatively small channels for illicit information flow may exist
in a multilevel secure system. The existence of these illicit channels is usually buried deep
in the Trusted Computer Base (TCB) system design, and it may be impractical to eliminate
them all because of cost or the effects on overall system performance. Although it is
possible to audit the use of these small illicit channels without adversely affecting the
system performance, the auditing may not always be enough to assure their detection due
to the vast amount of information generated during an audit trail. The Information System
Security Officer (ISSO) may never detect an information security breech during human
analysis of the audit trail, unless they are aware of what entries to look for. Without
automated auditing tools humans can easily overlook covert information flows. [Ref. 1]

The major thrust of this thesis involved the installation (and subsequent
administrative management) of a multilevel secure network operating with Sun
Microsystems Computer Corporation’s Trusted Solaris 1.1 TCB. This provided a fully
operational TCSEC Class Bl TCB system for further study and experimentation on
problems involving multilevel security. A number of illicit information flow channels were
identified in the system, and a mechanism was created to exploit them. Additionally, the
research shows that the ability of a system to audit a covert channel is, in itself, insufficient

to detect its use.

B. BACKGROUND

The computer security problem has increased with the growth of computer usage.
The problem of security was not really noticed in the early computers because the size and
nature of their applications could be resolved in the environment surrounding the computer
system. Systems that processed sensitive information were merely locked in a room:
granting access to authorized users only. However, users began demanding better utilization
of computer resources around the mid-sixties. This gave birth to timesharing computer
systems that served multiple users simultaneously. With the use of timesharing systems
came the problem of controlling the processing environment and data protection. In the late
1960’s the DoD began development of a way to protect classified information stored on
computers. Prior to that time it was against DoD policy to process classified information on
a computer system that uncleared individuals had access to [Ref. 2, p. 63]. As the use of
computers further increased, the DoD put forth effort to develop multilevel secure systems
that could protect multiple levels of classified information on a single computer system and
enforce the associated security policy; in essence, control the sharing of resources.

This introduced a new twist to the disclosure-of-information problem, known as
illicit information flow. Illicit information flow involves the dissemination of information
to an unauthorized user or process. Lampson [Ref. 4] was the first to address the problem
of illicit communication through legitimate mechanisms in 1973, and discussed confinin g
a program during its execution so that it can only transmit information back to its caller. An
illicit activity that normally took hours in a “paper” environment, could now be
accomplished in seconds on a computer, due to the enormous storage capability and ever
decreasing access times. Over the past two decades, the computer security community has
placed a great deal of attention on the disclosure of information threat. Two significant
mathematical information flow models were developed during this period; known as the
Bell and La Padula model and the Biba integrity model. [Ref. 3, p. 4]

Bell and LaPadula (BLP) [Ref. 4] devised a security model that has had an
enormous impact on research and development in computer security. The security policy

reflected in the BLP model has two components comprised of discretionary and mandatory

access control rules. The discretionary component can be represented in an access control
matrix model similar to the Graham-Denning model [Ref. 5], and has about 20 functions
for dealing with modifying components of the matrix. The mandatory component consists
of the simple security property, also known as the no read up rule, and the confinement
property (*-property), also known as the no write down rule. Both properties enforce
mandatory access control by restricting accesses based on a comparison of access class
attributes (a combination of access modes such as read, write, and execute) of subjects and
objects on the computer system. An object is anything that holds data, such as a file or
memory, and a subject is anything that can access or manipulate objects, such as a process.
A user is viewed as a subject at the highest level of abstraction from the system.

The BLP model only dealt with the secrecy or disclosure of information, and failed
to control unauthorized modification of information, also known as data integrity. In this
context, data integrity means that information is modified only by those having the right to
do so. In the mid 1970s, Biba [Ref. 6] made this observation about the BLP model and
developed an integrity model that is nearly identical to the BLP model, except that the rules
are reversed. The simple integrity rule is no read down, and the confinement property
(*-property) is no write up. Both these rules enforce integrity by restricting accesses based
on a comparison of integrity access class attributes of subjects and objects.

Mandatory access controls can only prevent illicit communication across access
classes. However, computer systems are designed with various overt (legitimate)
mechanisms intended for providing interprocess information and services communication.
Examples of such mechanisms are a file, an interprocess message, shared memory, and
system performance information. When a computer system mechanism can be used in an
unexpected manner to disclose information to an unauthorized individual, then a covert
channel exists.

A covert channel is defined as: “any communication channel that can be exploited
by a process to transfer information in a manner that violates the system’s security policy.”
[Ref. 1, p. 81] The two types of covert channels are storage and timing. A covert storage

channel is any communication path that results when one process directly or indirectly

writes to a storage location that another process observes by the direct or indirect reading

of the same storage location. The covert storage channel can be further subdivided
depending on which of the following three types of information it uses: object attributes,
object existence (or nonexistence), and shared resources. A covert timing channel is any
communication path that results from one process modulating its own use of system
resources, which another process observes by measuring the changes in response times for
its use of the same system resources.

A Trojan Horse can be written to take advantage of a covert channel, and is an
important concept because it eliminates the need for cooperation between two individuals
for the exchange of illicit information. Any program that appears to the user to perform
some desirable (overt) function, but in fact carries out some illicit or undesirable (covert)
function is a Trojan Horse. Thus, a Trojan Horse program replaces an existing program on
the system that is invoked by an unsuspecting user. The Trojan Horse appears to function
as normal to the user, but is actually exploiting some covert channel or other malicious
actions in the background. Consider the following scenario, a user invokes the “vi” edit
command on a UNIX system that has been corrupted by a Trojan Horse. The “vi” editor
appears to function normally to the user, but is actually sending each character you type in
to an unauthorized user’s file by exploiting a covert storage channel. The storage channel
exploits the fact that other users can monitor file size information (object attributes). First,
the Trojan Horse creates a file (or uses an existing file) in the users current directory. Then
for each character typed in, the file is set to a specific size. A process being run by the
unauthorized user monitors the file size changes; which converts the size to a character
using a predetermined mapping function. Finally, when the legitimate user ends the *“vi”
editing session the Trojan Horse signals an “end of transmission” to the unauthorized user’s
process before shutting down. This is only one of many scenarios that prompted user to
demand more secure systems.

The National Computer Security Center (NCSC) was formed in J anuary 1981, and
given the major goal “to encourage the widespread availability of trusted computer systems

for use by those who process classified or other sensitive information.” [Ref. 1, pp. 1-2] In

1983 the NCSC published the Trusted Computer System Evaluation Criteria (TCSEC)
[Ref. 1], also known as the “Orange Book.” It was revised in 1985 and adopted by the DoD
as the standard criteria for trusted computer system evaluation. This document, commonly
referred to as TCSEC, provides standards and guidelines to manufacturers on how to build
and evaluate systems built for commercial or military applications. The TCSEC provides
seven evaluation criteria classes ranging from systems that have minimal protection
features (D) to those that provide the highest level (A1) of assurance that the system
enforces the following requirements: the security policy, marking of storage objects with
access control labels, identification of individual subjects, and accountability of security
related actions (auditing). The NCSC has since published a set of trusted system TCSEC
interpretations and guidelines, referred to as “the Rainbow Series,” that further assist in the
development and usage of trusted computer systems.

The TCSEC requires covert channel analysis (CCA) for systems in classes B2
through Al. Although CCA is not required for TCSEC class B1 systems, the potential risk
exists that the system may be used in an operating environment with a wider range of
TCSEC class systems. The TCSEC class B1 system may also be used by individuals, or to
process information, outside the approved range of clearance or data sensitivity levels. It is

for these reasons that the following analysis has been conducted.

C. RESEARCH OVERVIEW

In this section an overview is given of each chapters contents.

1. Introduction

2. System Setup and Configuration

This chapter is not intended as a stand alone instructional manual to installing a
trusted computer base (TCB). It provides highlights of the preparation and planning, and
contains an overview of the installation process and system software and hardware
configurations. Further, it gives observations noted during the installation of Trusted

Solaris that generally hold true for the installation of any trusted system. The most

significant observation is that all members of the installation team should have prior

experience in administering a network.

3. Covert Channels

Chapter III contains the descriptions of the covert channels discovered on the
Trusted Solaris 1.1 system. Additionally, an explanation is given of the information theory
techrique used to encode the data passed by the covert channels. Appendix B contains the
specifications for the covert channels exploitation code. The actual exploitation of the
discovered covert channels does not synchronize between sender and receiver to ensure
efficient transfer of information. However, this research shows that covert channels exists

and are in fact exploitable.

4. Software Engineering

Chapter IV discusses the importance of a disciplined approach to software
development. The goals and principles of software engineering techniques to properly
decompose a software system into modules are summarized. Further, a description of the
method used to develop the process specifications contained in Appendix B is given. The
process specifications represent the largest amount of detailed work in building a software
system. Although the covert channel software system is small enough that it could have
been designed without following all the rigors of software engineering, it was done as an
exercise to fully appreciate and understand the methods used to develop a TCB system.
However, the observations made during the development of this relatively small system,
with respect to the value of the software engineering process, proved to result in a system

that is easily maintainable and more efficient.

5. Audit Data Collection

This chapter describes the auditing process and discusses the TCSEC requirements
for auditing in a trusted system. It further provides an overview of how auditing is
configured in Trusted Solaris 1.1, and the auditing tools available to the ISSO for managing

and analyzing the audit information generated by the audit mechanism.

6. Analysis

Chapter VI provides an analysis of the auditing tools available to the ISSO on
Trusted Solaris 1.1, implications of auditing on system performance, and a discussion of
the discovered covert channels. The analysis demonstrates the need for an additional
auditing application to assist the ISSO in managing and analyzing the enormous amount of
auditing information generated. Additionally, it shows that there is no easy “fix” to close

the discovered covert channels.

7. Conclusion
Chapter VII provides a summary of the initial research findings and offers

recommendations for future research.

i A

II. SYSTEM SET UP AND CONFIGURATION

A. PREPARATION

1. UNIX System Administration Tutorials
The Trusted Solaris 1.1 kernel is UNIX-based. Having no prior knowledge or

experience in network administration and limited expertise in the UNIX environment,
attending the series of tutorials on UNIX system administration was extremely helpful. The
two part series of tutorials was offered by the UNIX System Support Committee and taught
by experienced system administrators at NPS. Part one of the series covered the intricacies
of the UNIX operating system from a system administrator’s perspective and provided a
thorough understanding of how the system works. Part two discussed the concepts of

networking, client/server operations, and network services.

2. Hardware

The hardware portion of the trusted computer system consisted of three
interconnected SPARCstation 10 (sund4m) workstations, an external tape drive, an external
CD-ROM drive, and a Hewlett Packard LaserJet III printer. Two workstations had one
405MB internal hard drive each, and the other had two 405MB internal hard drives.The

configuration of the system is discussed in section B.2 of this chapter.

3. Software

An evaluation copy of Trusted Solaris 1.1 from the SUN Microsystems Computer
Corporation was used. Trusted Solaris 1.1 is a TCSEC class B1 system [Ref. 1, pp. 20-25].

B. PRE-INSTALLATION

This portion of the installation was the most time consuming. All the Trusted
Solaris manuals needed to be reviewed and an in-depth understanding was required of the
contents in the Security Features Users’ Guide and the Trusted Facility Management

Manual volumes I and II. Only then could the planning of the system configuration start.

1. Installation Team

In Trusted Solaris, the traditional UNIX “superuser” role and its associated tasks
and capabilities are distributed among the following three default trusted facility
management roles: Information System Security Officer (ISSO), system administrator, and
system operator. The ISSO performs all the security-relevant administrative tasks for the
trusted system, such as configuring the other roles, user clearances, setting up object labels,
and managing and analyzing the audit data (discussed in Chapter V). The standard
non-security-relevant UNIX system administrative tasks are performed by the system
administrator. The system operator is responsible for conducting system backups and
machine reboots.

This separation of duties is a major aspect of trusted facility management and is part
of the principle of least privilege, which requires that system managers be given no more
access than is needed to do their job [Ref. 2, p. 49]. The separation of management tasks
reduces the security risks resulting from human error, deliberate wrong doing, and system
failure. The ISSO and the systemn administrator must work together to plan and install the
system; the system operator is only needed once the system is up and running.

The ISSO role is by far the most critical position. The ISSO must plan the
installation to be consistent with the Site Security Policy. Therefore, the ISSO must:

 Understand Site Security requirements.

Thoroughly understand the workings of the trusted system in order to set up
and maintain the safeguards that protect the security of the information in
accordance with the Site Security Policy.

 Have a clearance equal to or greater than the highest security level of

information processed on the system.

The ISSO and system administrator should already have experience administering
SunOS on Sun machines, and together they must learn and understand the differences
between SunOS and Trusted Solaris. Sun recommends a senior system administrator assist
the ISSO in the software installation. Together, these installation team members should
already have an understanding of: local network configuration, server support services,

SUN hardware configuration, and local site security requirements. [Ref. 5, pp. 138-140]

10

2. Planning the Configuration and Installation of the Distributed System

In order to preserve the trusted computing base (TCB), the closed net distributed
system was configured with a network file system (NFS) and network information services
(NIS) server and two dataless clients. A dataless client is a machine that has its own copy
of the Trusted Solaris operating system on the local disk drive, but because it receives
(mbunts) the /home and /etc/security/audit/<server name> file systems from the NFS
server; it cannot completely boot without the NFS, NIS, and Audit servers. The /home NFS
contains all the users’ working directories and the .../audit/<server name> is where all the

audit data is written.

3. Gathering Preliminary Information

The Trusted Facility Management Manual [Ref. 5] contained excellent worksheets
for planning the installation of Trusted Solaris on each machine. These worksheets covered
all practical aspects of the installation such as: network information, software categories to

install, overall disk partitioning, and auditing.

C. INSTALLATION AND CONFIGURATION

The actual installation required minimal time. This is mainly attributable to the
amount of prior planning and experience of the senior administrator. The installation is
predominantly menu driven using the suninstall program. However, the only type of server
that 1s fully configured during suninstall is the diskless client server. This required the
additional exporting of the following file systems from the NFS server to the clients: /usr
(sd0), /home (sd1), and /usr/security/audit (sd1). Although this is easily within the expertise
of the senior administrator, the ISSO must also have a basic understanding to insure the
integrity of the system is maintained and that the entire configuration supports the site’s
security policy.

A Hewlett Packard LaserJet III printer was later added to the system. This printer is

not accredited for the Trusted Solaris system and causes an extended configuration of the

11

TCB. Although the printer was not used in conjunction with any covert channel

exploitation, its effect on assurance protection is unknown.

D. SYSTEM BACKUP

This aspect was especially important because the entire installation could not be
accomplished in one “sitting” due to other commitments of the install team members.
Therefore, a backup was made at the end of each session of any file, or file system, altered
during the configuration process; thus preventing loss of data and valuable time. Although
backups are performed the same as for a SunOS system, the backup media requires

handling commensurate with sensitivity level of the data processed on the system.

E. SUMMARY
The following listing is a summary of the major steps involved in the TCB system
configuration and Trusted Solaris 1.1 software installation:
° Installation team members thoroughly review system manuals; noting
differences between Trusted Solaris and SunOS.
* ISSO determines how the system must be configured to meet the Site Security
Policy.
+ ISSO and senior system administrator plan the configuration of the distributed
system (server and client types).

* Gather preliminary information for the installation by filling out the provided
worksheets.

+ Partition the internal disks of each machine according to the sizes on the
worksheets.

 Install and configure the master server (NIS/NFS).
e Install and configure the client machines.

e ISSO and senior system administrator configure the trusted system
management roles.

e ISSO configures auditing on all machines.

e ISSO tumns auditing and TCB verification “on” in the /ezc/rc.local file of all
machines. Then synchronizes (updates) the TCB verification databases on all
machines. The TCB verification satisfies the “System Integrity” requirement of the
TCSEC. [Ref. 1, p. 24]

12

+ Reboot the server, and then reboot the clients.

F. COMMENTS

The following comments are observations noted by the installation team during the
process of installing Trusted Solaris that generally hold true for the installation of any

trusted system:

» The amount of time and effort placed on the preparation and planning phase by
the installation team is instrumental in the successful installation of the system.

+ Maintain a log/journal during the installation to insure completeness. This is
especially helpful when the installation cannot be completed in one sitting.

« Leaving auditing off and not synchronizing the TCB consistency databases
until the entire system was configured saved time. The installation manual has the
install team synchronizing the TCB consistency databases multiple times in
different sections of the installation process. The command to synchronize the TCB
consistency databases after each particular NIS file is properly altered is
cumbersome and time consuming. Synchronizing the TCB consistency databases
after all files have been altered and then re-booting does not affect the proper
installation of the system. However, this should only be done in a secure site
environment with controlled access. This insures that no single member of the
install team having knowledge of the boot password can tamper with the system.

¢ Obtain errata sheets for all manuals. Many instructional errors were found that
caused unneeded delays.

« The system is only as good as the trusted facility management personnel. If the
trusted facility management personnel do not have the qualifications and
knowledge discussed in section B.1, the system may not be configured or managed
properly. This will inevitably lead to an untrusted system.

An excellent overview of the Trusted Solaris 1.1 operating environment is provided
in Appendix A. The reader is highly encouraged to scan the overview to gain a basic

understanding of how the system works and how to work with the system.

13

III. COVERT CHANNELS

This chapter contains the descriptions of the covert channels investigated on the
Trusted Solaris 1.1 system. Explanations of the method used to investigate the existence of
covert channels on the system and the information theory technique used to encode the data
passed by the covert channels are provided. Appendix B contains the specifications for one
covert channel’s exploitation code, and Chapter IV discusses the software engineering
techniques used to develop the process specification. An analysis of the covert channels
identified is provided in Chapter VI.

This research does not synchronize the transfer of information between the sender and
receiver processes. That is, some information is lost in the transfer due to the processes
running at different speeds and do not synchronize (“shake hands”) after each piece of data
is exchanged. However, the research shows that covert channels exists and can in fact be

exploited in the system.

A. METHOD TO IDENTIFY COVERT CHANNELS
The NCSC A Guide to Understanding Covert Channel Analysis of Trusted Systems
[Ref. 18] gives three primary sources of covert channel identification:

+ System reference manuals containing descriptions of TCB primitives,
CPU and I/O processor instructions, their effects on system objects and
registers, TCB parameters or instruction fields, and so on;

» The detailed top-level specification (DTLS) for B2-A1 systems, and the
Formal top-level specification (FTLS) for all A1 systems; and

« TCB source code and processor-instruction (micro) code.

Only the first source was available for this research, and there are certain
disadvantages when having to strictly rely on system manuals for covert channel
identification. First, the TCB and processes can only be viewed as black boxes; thus, hiding
the details of the system. Only guesses and possible analogies with specifications of other
systems known to contain covert channels can be used as a means for identification.

Therefore, all covert channels may not be identified. Second, “few identification methods

15

exist that exhibit any degree of precision and that can rely exclusively on information from

system reference manuals.” [Ref. 18]

The method used to investigate the existence of covert channels in the Trusted Solaris
system involved a bottom-up systematic approach to finding kernel or system call
databases that might share information between processes at different sensitivity levels.
First, the UNIX header (k) files were examined to identify databases that might be shared
by processes at different access classes. Then all system call commands listed in the manual
were intuitively scanned for possible usage of the databases identified. Finally, the
identified system call commands were used simultaneously at different sensitivity levels to
determine if the database information was being shared. This identification method led to
the file system modulation covert channel discussed in Section C. One particular database
identified, that is not sharable, is the process database. A user or process only has access to
information about processes at its own sensitivity level.

In addition to searching for shared databases, some shared system resources were
explored. This led to the identification of two additional covert channels: memory and

device allocation. These covert channels are further discussed in Sections D.1 and D.2.

B. INFORMATION THEORY METHOD

The purpose behind the exploitation of covert channels is the illicit transfer of
information from a high to a low security classification level. An example of such
information might be a military Battle Plan or sensitive corporate information. In a
multilevel system this information is considered secure (protected from view by lower
classified users) and is normally stored in plain text form.

The study of information theory regarding the percentage of characters needed from a
document in order to extract the meaning of its contents, and the numerous methods of
encoding the data, is beyond the scope of this thesis. However, a simple (yet effective)
cryptographic technique was used which involves encoding only the alphabetic and

numeric characters. All uppercase alphabetic characters are converted to lowercase prior to

16

encoding. The probability distribution of alphabetic characters in the English language
[Ref. 9] was then used to map the letters to a rank ordered number code based on the
probability. For example the letter “e” occurs with the highest probability and the letter “z”
with the lowest, and they would be mapped to zero (0) and twenty-five (25) respectively.
The numeric characters zero through nine (0-9) are mapped to 26 through 35. Giving a total
of 36 character codes (0-35).

The codes can then be transmitted by whatever means the covert channel employs.
Although one of the exploited covert channels allows the full transmission of the character
code, most other covert channels only allow a single bit (flag) to be set or unset. In such

instances the character code requires further encoding to a binary signal by converting the

36 character codes to binary using groups of six bits (25 = 64).

C. FILE SYSTEM MODULATION COVERT CHANNEL

1. Description

This covert channel exploits the fact that files are stored in a file system. A file
system corresponds to a finite area (partition) of disk. The amount of space available and
allocated to each file system is printed by the df command or by making the direct system
call to statfs from within a process. The disk space on the file system is allocated in units
called blocks; a block is typically 512 or 1024 characters, the latter being the case of
Trusted Solaris. The statfs system call receives the information from a system database
structure called fs, the details of which can be found in the /usr/kvm/sys/ufs/fs.h file. This
command, and subsequent file system information, is available to all users and is especially
useful to ensure that enough space is available prior to creating a large file.

Consequently, this system mechanism can be exploited by a low classified user
observing file system size changes that another higher classified user is making. The high
user may intentionally modulate the file system size to signal the low user, or the low user
can implant a Trojan Horse to accomplish the task. The Trojan Horse can start up when the

high user opens a file for editing, and will covertly send the file contents to the low user.

17

The following scenario describes how the file system information is exploited. The

high (i.e.; top secret) classified user implements a program that opens the file containing
the information to be sent to the low (i.e.; unclassified) user. The previously mentioned
information theory cryptography technique is used to encode the file contents (characters),
and the size of another file is changed to the number of blocks corresponding to each
character code. The file size is increased or decreased by the truncate system call according
to the number of blocks given as the parameter. Simultaneously, the low user starts a
program that opens a file for writing and makes an initial statfs system call to establish a
base file system size. The number of free blocks remaining is a statistic returned from stafs,
and is used to monitor the file system size. Subsequent calls to statfs compare the current
number of free blocks to the base; the absolute difference of the two is one encrypted
character code, which is mapped back to a character by reversing the same cryptography
technique used by the high user. This process continues until a prearranged end of file

signal is received.

2. Attempted Vendor Fix

First, all staffs and truncate system calls are able to be audited. However,
discovering the exploitation of the covert channel through the audit trail can be difficult, to
say the least. This topic is discussed in greater detail in Chapter V.

The second “fix” is to somehow monitor file system size changes caused by the
truncate system call to alter file sizes, and then return random file system size information
from a staffs system call. All information is accurate for a file beginnin g with a size of zero
and increased in size up to eight blocks (one block = 1024 bytes = Kbyte). After eight

blocks the staffs information is erroneous and unpredictable.

3. Workaround

Further analysis revealed the following two properties whereby the statfs system
call returns accurate information. First, it was discovered that multiple files can be set to

sizes ranging between zero and eight blocks. Additionally, if a file is set to any size up to

18

eight blocks, it can then be increased an additional eight blocks if the file size is not returned
to zero each time.

These discoveries lead to two important techniques employed in the exploitation of
the file system covert channel. First, the original encryption technique is possible by using
five files for modulating the file system size; thus giving a total file system size modulation
range of 41 blocks (0 - 40, or O - 8 times five files). Second, a base of 10 blocks (two files
always set to a minimum file size of five blocks) is possible due to the discovery that any
file can be increased in size an additional eight blocks if not returned to a block size of zero.
The “base” can then be used as an end of transmission (EOT) signal by setting all file sizes
(including the “base” files) to zero; thus, showing the low user a negative file system size

change.

D. ADDITIONAL COVERT CHANNELS IDENTIFIED

The following two covert channels require that two processes, of different sensitivity
levels, run simultaneously on the same machine. This is accomplished by logging in as a
high sensitivity level user and opening two command tool windows; one at a low sensitivity
level and the other at a higher sensitivity level. Commands or processes can then be
initiated from within each window. This is similar to the two users on separate machines
for the file system modulation covert channel; in the current case, the users are two separate

command tool windows, at different sensitivity levels, on the same machine.

1. Memory Allocation

This covert channel exploits the fact that a finite amount of memory area is shared
by processes. If one process allocates a major portion (over half) of the memory area, then
another process is unable to allocate a similar amount and receives an error that the memory
space has not been allocated. For example, if 30 megabytes of memory is available and
process “A” allocates 20 megabytes, then process “B” will receive an error when it tries to
allocate the same amount. Unfortunately to reduce covert channel exploitation, the system

locks all memory area acquired by a process; even though the process deallocates (frees)

19

the memory space, another process is still unable to use any of the locked memory area until

the process that allocated the area terminates. However, a signal can be sent between

processes using this method.

2. Device Allocation / Deallocation

This covert channel exploits the fact that devices, such as floppy and tape drives,
can only be allocated to one process at a time. This covert channel is similar to the memory

allocation method, but uses the error that a device has already been allocated.

20

IV. SOFTWARE ENGINEERING

A. PURPOSE

A disciplined approach to software development, in the form of proper software
development methods, ensures the correctness of software systems. To ensure correctness
in a trusted computing base (TCB) system, it must be “internally structured into
well-defined largely independent modules” [Ref. 1, p. 30]. In the case of illegitimate
software, its developers must be confident that the Trojan Horse acts correctly in order to
avoid detection. The following method was used in the development of the covert channel

software, and the resulting process specifications are provided in Appendix B.

B. GOALS OF SOFTWARE ENGINEERING

The underlying goal in software development is that the resulting system meets the
stated requirements. However, the requirements will inevitably change over the life cycle
of the system. The following four general properties are accepted as goals for the overall
software engineering discipline, and aid in the transition between changes. [Ref. 10, pp. 18-

20]

1. Modifiability

A software system may require modifications to correct an error, or in response to
changes in the requirements. To effectively modify the system, the original design
decisions must be maintained across changes or the original structure will be obscure and
further complicate future modifications to the system. Although the modifiability of a
software system is hard to measure, the goal is to be able to introduce changes without

increasing the complexity of the original system.

2. Efficiency
This goal implies that a software system should operate using the available time and
space resources in an optimal manner. Time resources are mainly dependent on the

hardware architecture, but the choice of software algorithms will impact the overall

21

execution time. Space resources refer to the physical considerations of the system such as
memory and peripheral devices. The software system must consider both classes of
resources during design. One fault is to concentrate on microefficiency of the resources in
the early development phase instead of macroefficiency. An early understanding of the
overall problem will yield more efficiency than the maximization of each resource

throughout the design, without regard for other processes.

3. Reliability

A computer system is expected to be reliable in the prevention of or recovery from
failure. However, it must also provide reliability in performance and the correctness of
operations. For instance, the TCB must be reliable in the enforcement of mandatory and

discretionary access control to sensitive information or processes.

4. Understandability

This goal is the most critical in managing the complexity of the software system.
Every level of the development phase should ensure understandability. From the mapping
of the objects and operations to the requirements at the highest level, to the readability of
the code at the lowest level. Since the development of any software system is bound to have
a certain degree of personnel turnover, understandability of the system leads to earlier

productivity from new personnel.

C. PRINCIPLES OF SOFTWARE ENGINEERING

The following are principles that will assist in developing software systems that
meet the above goals of modifiability, efficiency, reliability, and understandability. [Ref.
10, pp. 20-24]

1. Abstraction and Information Hiding

One of the fundamental principles for managing the complexity of the software
system solution is abstraction. The objective of abstraction is to extract the basic elements,
yet omit the details of the elements. The elements of the solution are the algorithms, and

their associated data. Each element in the decomposition becomes a part of the abstraction

22

at a certain level. Figure 1 shows an example of how abstraction can be applied to file

access elements.

Level 3 Calling Function
Level 2 File Manager

Level 1 Memory Manager (Buffer)
Level 0 System Calls

Figure 1. Example of abstraction levels for file access.

Closely related to abstraction is the principle of information hiding. Although the
objective of abstraction is to extract the details of a given level, information hiding makes
the details of a particular element inaccessible to other elements. By hiding the details of
one level from another, the cascading of changes can be prevented.

The principles of abstraction and information hiding reduces the details a developer
at one level needs to know about the other level; therefore, aiding in the goals of
modifiability and understandability of the overall software system. The software
engineering principles also aid in the goal of readability by localizing an operation to one

element in a level and preventing the dependency of the operation on other elements.

2. Modularity and Localization

Another principle that helps in managing the complexity of a software system is
modularity. The general decomposition techniques are top-down and bottom-up design.
With top-down design, each successive level of the system is decomposed into modules;
with the properties that higher level modules specify what is to be done, and the lower level
modules specify how the action is to take place. Whereas, bottom-up design employs the
same properties except that the system is built from low level modules to ever increasing
complex ones. A large complex system will normally employ both design methods [Ref.
10, p.23]. Decomposing from the top down and then building from the bottom up with

existing reusable modules.

23

The localization principle assists in creating modules that exhibit loose coupling

and strong cohesion. Coupling is a measure of the degree to which modules are
interconnected. A loosely coupled module is relatively independent of others. Cohesion is
the measure of how tightly bound the internal elements of the module are to each other. A
strongly cohesive module has functionally and logically dependent components.

The conventional method for modularization, decomposes the software system
using a flowchart and then assign one or more subroutines to each module. A more
unconventional method is proposed by Parnas for more complex systems; usually beyond
the order of 10,000 instructions. First, the difficult and likely to change design decisions are
listed. Then modules are designed based on the decisions. The reasoning behind his method
1s, “Since, in most cases, design decisions transcend time of execution, modules will not
correspond to steps in the processing.” [Ref. 11]

Both conventional and unconventional methods are expected to support the same
goals of software engineering: modifiability, reliability, and understandability. A well
modularized structured system limiting the coupling between other modules will be easier
to understand and increase reliability. Additionally, the localization of design decisions will

prevent the cascading of modifications across modules.

3. Uniformity, Completeness, and Confirmability

These final principles ensure that a software system will be consistent and correct.
Uniformity requires that a consistent control structure and calling sequence for related
objects is the same at level used, and is normally achievable through good coding styles.
Completeness ensures that only necessary and important elements are present in the design.
Finally, confirmability ensures that the system has been properly decomposed so that it can
be readily tested. The confirmability principle is especially imperative for a TCB system
design, since “Testing shall demonstrate that the TCB implementation is consistent with the
descriptive top-level specification.” [Ref. 1, p. 31]

All four software engineering goals are supported by these principles. Uniformity

directly supports understandability by using consistent notation. Modifiability, efficiency,

24

and reliability are supported by the principles of completeness and confirmability through

the development of correct (testable) solutions.

D. SPECIFICATIONS

The underlying purpose of the previous sections is to properly decompose the
software system into modules. This section covers the aspects of capturing the behavior and
structure of the software system with relevance to the development team. “An architectural

design describes the internal and external interfaces along with the concepts needed to build

the proposed system.” [Ref. 12, p. 207]

1. Initial Specification

The process starts by considering a major module of the system decomposed by the
previous methods as a single black box (localization of module), and proceeds to
decomposing the black boxes into more primitive ones, until all the primitive boxes are
simple enough to be implemented by a single function or procedure of code. There is no
current method for conducting the black box decomposition on a computer. However,
Berzin and Luqi [Ref. 12] recommend using the following guidelines for human designers:

» Sketch an informal algorithm for the module, limited to about 10 lines.
The limit of 10 lines for the informal algorithm can be relaxed for regular

structures such as case statements with many independent cases at the same
level of abstraction, provided that the actions to be performed in each case
are encapsulated in lower-level modules.

* Identify the primitives used that are not already available, and specify
them as modules using the techniques for functional specification.

+ Repeat the process for the new primitives introduced in the previous

step, if there are any.

An important decision is whether or not to decompose a primitive black box further.
The basic guideline is that each primitive should be small enough to code and compile with
about one person-day of effort, not counting design and testing. [Ref. 12, p. 215]

There are many tools and formats that can be used to produce a process

specification, such as: flowcharts, decision tables, structured English, pre/post conditions,

25

and diagrams. Although structured English is favored by most system analysts, Yourdon
[Ref. 13, p. 203] gives two crucial requirements that any method used must meet:

 The process specification must be expressed in a form that can be
verified by the user and the systems analyst. It is precisely for this reason
that we avoid narrative English as a specification tool: it is notoriously
ambiguous...

* The process specification must be expressed in a form that can be
effectively communicated to the various audiences involved. While it will
typically be the systems analyst who wrifes the process specification, it will
usually be a diverse audience of users, managers, auditors, quality assurance
personnel... who read it.

MODULE CONSTANTS: Globals to all the functions in the module.
TYPES:
VARIABLES:
DATABASES:
Databases/structures internal to the module.
FUNCTION DESCRIPTION:
Text description of the function operations.
INPUTS
“In” type parameters to the function.
PROCESSING
Structured English.
FFE
Resulting effects of the function on global structures and variables.

EXCEPTIONS

Exceptions resulting from user input or system calls.

QUTPUTS

“Out or InOut” type parameters and functions returns.

DATABASE REFERENCED

Global databases/structures accessed by the function.
INTERFACE: “C” language specific syntax for use of function.

Figure 2. Example of process specification format.

An example of the format used for the development of the covert channels process

specifications is given in Figure 2. Structured English was used to describe the processing

26

for each function. The interested reader can find a full listing of the process specifications

developed for the covert channels.

2. Reviews

There are normally three different kind of reviews: customer, internal, and reviews
by domain experts. The purpose of the customer review is to ensure the software system is
meeting the requirements of the original problem. The purpose of the internal review is to
find feasibility, performance, or cost problems, and to find inconsistencies in the
requirements. The purpose of the domain expert review is to find problems in the

application domain that have not been addressed in the requirements. [Ref. 12, p. 67]

3. Maintenance

Once the development of the software system is complete, at some point during the
life cycle there will be changes or additions to the requirements of the system; requiring a
corresponding change to the specification and software. Some or all of the development
team personnel may no longer be associated with the project. These modifications will
require less effort by the current development team if the previously discussed goals and
principles of software engineering were followed. However, to ensure the ease of future
changes, each subsequent change should adhere to the software engineering goals and
principles. Additionally, all changes should be well documented and a copy of each version
of the software specification maintained. Many software companies use automated

applications to maintain the software system’s documentation over its life cycle.

E. SUMMARY

The process specifications represent the largest amount of detailed work in building
a software system. Although the covert channel system is small enough that it could have
been designed without following all the rigors of software engineering, it was done as an
exercise to fully appreciate and understand the methods used to develop a trusted system.
However, the following observations were made during the development of this relatively

small system with respect to the value of the software engineering process:

27

 Internal reviews of the process specifications eliminated most logical errors
prior to coding.

 The application of the software principles during the system specification
development resulted in more compressed and efficient code. Specifically, the
function code written to test the feasibility of the file size modulation by the high
user was improved (Appendix B, Sec. G.4.2). Not only was it made more
efficient by eliminating over half of the conditional statements, but it also became
more readable.

o Testing and debugging of the modules was easier due to the principles of
software engineering applied. Each function in a module could be evaluated for
correctness.

28

V. AUDIT DATA COLLECTION

A trusted computer system must provide authorized personnel with the
ability to audit any action that can potentially cause access to, generation of,
or effect the release of classified of sensitive information. The audit data
will be selectively acquired based on the auditing needs of a particular
installation and/or application. However, there must be sufficient
granularity in the audit data to support tracing the auditable events to a
specific individual who has taken the actions or on whose behalf the actions
were taken. [Ref. 1]

A. PURPOSE

The auditing in a secure system is the process of recording, examining, and
reviewing any or all security-relevant activities on the system, and is required for TCSEC
[Ref. 1] Classes C2 and above. Users, and their processes, can be monitored for attempts to
compromise the security of the system, and analysis of the audit can help determine the
extent that the system has been penetrated. The device used to detect and collect all the
security-relevant activities is called the audit mechanism, and has five important security
goals: [Ref. 14][Ref. 15]

+ mustallow the review of patterns of access to individual objects, access
histories of specific processes and individuals, and the use of the various
protection mechanisms supported by the system and their effectiveness.

* mustallow discovery of both users” and outsiders’ repeated attempts to
bypass the protection mechanisms.

* must allow discovery of any use of privileges that may occur when a
user assumes a functionality with privileges greater than his or her own, i.e.,
programmer to administrator.

* mustactasa deterrent against perpetrators’ habitual attempts to bypass
the system protection mechanisms. However, to act as a deterrent, the
perpetrator must be aware of the audit mechanism’s existence and its active
use to detect any attempts to bypass system protection mechanisms.

¢ supply an additional form of user assurance that attempts to bypass the
protection mechanisms are recorded and discovered. Even if the attempt to
bypass the protection mechanism is successful, the audit trail will still
provide assurance by its ability to aid in assessing the damage done by the
violation, thus improving the system’s ability to control the damage.

29

Users of the audit mechanism fall into two categories. The first consists of the
auditor, normally the Information System Security Officer ISSO), who selects the system
events to be audited, enables the auditing conditions (flags) to record those events, and
analyzes the audit trail produced by the audit mechanism. The second category consists of
all the system users: administrators, operators, programmers, and all others. Although this
category of users does not have direct access to the audit mechanism, they are considered
users because they generate audit events. Additionally, they must know the existence of the
audit mechanism and what impact it has on them; otherwise, the user deterrence and
assurance security goals of the audit mechanism cannot be met.

The product generated by the audit mechanism, in accordance with the chosen audit
events, is the audit trail. The TCB should provide the auditor (ISSO) with a pre-selection
mechanism to indicate which auditable events will be recorded on the audit trail. However,
the ISSO must ensure that the chosen pre-selected events are in support of their site’s
security policy. The TCB should also provide a post-selection mechanism which allows the
auditor to query/filter/retrieve specific auditable events from the audit trail in a binary form,
and output the results of the query in a human-readable format. The advantage of
post-selection is that the audit trail can be stored in a binary format that requires less storage

space, and queried at any time.

B. OVERVIEW OF AUDITING IN TRUSTED SOLARIS 1.1

As described in Chapter II, the system is configured with a NFS/Audit server and
two clients. Both clients mount the audit file system from the audit server. This ensures that
all audit trail information is stored in one location so that the ISSO can analyze all the audit
data concurrently. If each client machine were to store its own audit data, the ISSO would
have to analyze each audit trail separately. This would not provide a global view of the
system, and illicit activities occurring on separate machines might possibly be overlooked.

All security-relevant actions taken by users, access-control decisions,
administrative, and certain other actions are auditable. Each user is assigned an audit ID

and a process pre-selection mask at login for auditing purposes. The audit ID is a unique

30

number that is assigned by the auditing mechanism when an authorized user begins a
session on the system (login) and propagates to all subsequent child processes and across
remote logins. The audit ID differs from the user ID because users are allowed to have
simultaneous sessions on multiple machines; therefore, the audit mechanism can monitor
and compile a separate audit trail for each session. In short, the user ID is for login
purposes, and the audit ID is for auditing operations. The process pre-selection mask
determines what classes of events will be audited for a process based on the systemwide
default audit flags set by the ISSO. The process pre-selection mask consists of two 32-bit
binary values that specify what classes of events will be audited when events fail and when
events succeed respectively.

An individual audit trail record contains information, generated by the audit
mechanism, about one auditable event. Each audit record is put into a buffer in the kernel
called the audit queue, and then transferred from the audit queue to the audit trail file by the
audit daemon process. The following information is contained in an audit record: attributes
describing the objects involved in the audit event, type and time of the event, the user

causing the event, and other event dependent data. [Ref. 8]

C. AUDITING TECHNIQUES AVAILABLE TO THE ISSO

In Trusted Solaris the ISSO is responsible for configuring and monitoring auditing,
and managing and analyzing the information stored by the audit mechanism. As prescribed
in the NCSC Audit Guide [Ref. 14], Trusted Solaris provides the ISSO with pre-selection
mechanisms for configuring and monitoring auditing, and post-selection mechanisms for
managing and analyzing the audit information.

The ISSO specifies (pre-selects) the auditable events in the system in two ways.
First, the default classes of events are specified in the /etc/security/audit control file. An
audit flag is a two letter designator for the class of auditable events. For example the “fa”
audit flag includes all classes of events that involve file attribute accesses, such as the
system call commands: stat, statfs, truncate, etc. A few examples of the audit flags are

provided in Table 1. The audit flags entered in the audit control file apply to all users’

31

processes. Second, the ISSO can modify what is audited for individual users by placing

audit flags in a user’s entry in the /etc/tfm/nis/passwd.adjunct file on the Network
Information Services (NIS) server. A plus (+) must also be entered at the end of the /erc/
securitylpasswd.adjunct file on every machine, because at login the NIS first checks for
entries in the local machine’s passwd.adjunct file; if no entries are found and the plus (+)
is at the end, the NIS then refers to the /etc/tfm/nis/passwd.adjunct file on the NIS server.
The user’s individual audit flags are then combined with the system’s default audit flags to
define the pre-selection set for the user’s session. Placing the audit flags in the NIS server
passwd.adjunct file only, maintains the single-system image. Any audit flag entries found
in the local machine’s passwd.adjunct will be combined with those found in the NIS
server’s file; however, the NIS server entries override any contradicting entries in the local
machine, unless a plus (+) is not found at the end of the file.

The two post-selection mechanisms available to the ISSO for managing and
analyzing the audit information is auditreduce and praudit.

The auditreduce program merges audit trail files from each machine to
form the systemwide audit trail and selects records according to specified
criteria such as time, record type, user, or label. The praudit program prints
the audit records in a human-readable form. Using auditreduce and praudit
together provides a way to filter and display audit data. [Ref. 8, pp. 72}

Flag Audit Class Event Characteristics

all all All flags set

fa file_attr_acc Access of object attributes: stat, pathconf, etc.
fw file_write Write of data, open for writing, etc.

lo login_logout Login and logout events

pr use_of_priv Use of privilage

sl set_label Set file / process security attributes

tf tfm Trusted facility management

Table 1: Audit Flags, Class Names, and Descriptions. After Ref. [8]

32

VI. ANALYSIS

A. AUDITING

1. Volume of Audit Data

As described in the previous chapter, Trusted Solaris provides the ISSO with pre
and post-selection tools of auditable events. However, it is an accepted fact that additional
analysis tools are needed, due to the volume and heterogeneous nature of the audit trail
data. [Ref. 16][Ref. 17]

The detection of an illicit activity on the system requires extensive and timely
analysis of the audit data by the ISSO. Without an additional audit trail analysis tool an
illicit activity may easily be overlooked. For example, the auditreduce command shown in
Figure 3 produces a post-selection listing of just one user, for one audit class (file attribute
accesses), over a 20 minute period, piped through praudit to format the audit events in a
“human” readable form, and finally output to the printer. The printout of the audit data

resulting from this command required nearly a ream of paper.

auditreduce -u lowuser -c fa -a 199501101200 -b 199501101220 | praudit | Ipr

Figure 3. Example of post-selection command.

After two users (with sessions at different security levels) completed exploitin g the
use of the file system modulation covert channel, the post-selection command shown in
Figure 3 was performed for the period during which the illicit activity occurred. Although
the time and type of illicit activity to look for was known, it still required over half an hour
to locate the activity in the output audit data, and this was a listing for only one user over a
20 minute period! Had the post-selection listing been acquired for both users, the listing
would have approximately doubled. Though Trusted Solaris does merge the auditable
events according to their time of occurrence, the events unrelated to the illicit activity
(intermixed with the illicit events) make it difficult for the ISSO to locate and identify the

occurrence of the exploitation.

33

The pre and post-selection mechanisms provided with the system are insufficient
tools to assist the ISSO in managing and analyzing the audit trail information. Therefore,
an additional automated auditing tool should be used by the ISSO to assist in the timely and
accurate analysis of the audit data to assure all illicit activity is detected. One such tool
available for use with the Trusted Solaris system is the Computer Misuse Detection System

(CMDS). [Ref. 16]

2. Effect on System Performance

The auditing mechanism should have a minimal effect on the functionality of the
system. However, “some performance impact due to auditing is generally inevitable.” [Ref.
3] The auditing effects on performance should not be so great that the users encourage
administrators to remove or alter the auditing scheme to improve performance. On a good
system, the users will notice minimal effects of auditing.

Although the effect of auditing on Trusted Solaris’ performance is not substantially
noticeable to the user, a timing experiment revealed that there is in fact an effect on
performance from auditing. The runtime of the file system modulation covert channel code
was timed with only the login and logout (lo) audit class and then with the “all” auditing
class on. The portion of code timed did not include any overhead instructions. The “low”
user’s process was not timed because its runtime is dependent on the “high” user’s
processing time of the illicit information (256 characters). The results show that there is
approximately a 50 percent runtime increase with all auditing turned on (0.63 vs. 0.92
milliseconds). However, rarely will all classes of auditing be pre-selected because of

reasons addressed earlier in Chapter V.

B. BANDWIDTH ESTIMATION

The bandwidth of a covert channel, usually expressed in bits per second, is the
amount of information that can be passed through the illicit channel over a fixed time
period. The precise bandwidth measurement of the discovered covert channels is beyond
the scope of this thesis. Therefore, a covert channel’s bandwidth will either be referred to

as being large (high exchange rate of data bits per second), or small (low exchange rate of

34

data bits per second. The interested reader is referred to A Guide to Understanding Covert

Channel Analysis of Trusted Systems [Ref. 18].

C. COVERT CHANNELS

1. File System Modulation

This is a large bandwidth covert channel. As discussed in section A.2, the
transmission of 256 characters takes less than a second even with all auditing enabled.
Additionally, the covert channel is auditable. The two repeated temporal commands to
identify the exploitation of this covert channel in the audit trail are truncate and fstatfs or
statfs. Auditing of the class “fa” (file attribute accesses) must be enabled to detect these two
events. The Trusted Solaris manual [Ref. 8] recommends auditing this class of events.

If the disk resources are available, the channel can be closed if separate /home file
system partitions are created for each level of users on the multilevel system. For example
on a military system, unclassified users would have a different /home directory from secret
users, etc. Further partitions could be created for compartments. This would prevent low
and high security level users (or a Trojan Horse) from having access to the same file system
information; yet, in compliance with the BLP security model [Ref. 6], the high security
users could read lower security information, but low security level users can only write (not

read) high security information.

2. Memory Space

The use of memory space has been reduced to a process existence test, effectively
eliminating the covert channel. The bandwidth is limited to the speed by which processes
can be created and terminated. The audit class “pc” (process operations) must be enabled
and the recvmsg event in the audit trail header will identify this operation. There is no way
to close this channel unless a system were to contain separate resident memory devices (not

merely separate space) for each sensitivity level.

35

3. Allocation/Deallocation of Devices

This channel has been reduced to a device existence test, effectively eliminatin g the
covert channel. The bandwidth is limited to the speed by which devices can be allocated
and deallocated. The allocate and deallocate auditable events are found in the audit trail if
the audit class “ma” (MAC events) is enabled. There is no known way to close this channel

without removing device allocation privileges from users.

36

VII. CONCLUSION

A. COVERT CHANNELS ON TRUSTED SOLARIS 1.1: INITIAL FINDINGS

This thesis research has provided an initial investigation into the existence of covert
channels in the Trusted Solaris 1.1 TCB system. A thorough investigation of all covert
channels existing in a system is difficult without detailed top-level specifications or TCB
source code. However, this research shows that covert channels exist and can in fact be
exploited in the system and the potential of risk exists for systems used in an operating
environment with a wider range of TCSEC class systems.

The amount of information generated by the audit mechanism can quickly
overwhelm the ISSO and cause detection of illicit activity to be overlooked. The pre and
post-selection mechanisms provided with the system are insufficient tools to assist the
ISSO in managing and analyzing the audit trail information. Therefore, an additional
automated auditing tool should be used by the ISSO to assist in the timely and accurate
analysis of the audit data to assure all illicit activity is detected.

To exploit covert channels in Trusted Solaris a set of tools was carefully built
applying software engineering techniques. The disciplined approach to software
development ensures the logical correctness of software systems. It is especially important
for TCB systems to be structured into well-defined largely independent modules; this
enables the system to be properly evaluated and provide sufficient assurance that it enforces
the security requirements. Although the covert channel system could have been designed
without following all the rigors of software engineering, it did result in a highly

modularized software system which is easily maintained and logically correct.

B. FUTURE RESEARCH

The following is a list of suggested follow-on work to this thesis:

37

1. Covert Channel Analysis

Acquire the TCB source code for the Trusted Solaris 1.1 system and conduct further

covert channel analysis.

2. Multi-Network System

Two additional SPARCstation 10 (sund4m) workstations (one with the necessary
hardware to be configured as a server) are available that could be configured as a separate
distributed system. The two distributed systems could be interconnected and further covert
channel analysis conducted in the expanded configuration. Additionally, this would enable
yet another researcher to become familiar with the configuration, installation, and

administration of a multilevel distributed system.

3. Auditing Implications / Techniques

Conduct further analysis of the auditing implications on system performance and
administrative personnel. The design of an audit trail analysis tool would be beneficial to

the DoD agencies currently using the Trusted Solaris system.

4. Cryptographic Methods

Explore and analyze the use of different cryptographic methods with covert

channels of varying bandwidths.

S. Information Theory

Research and design the synchronization between covert channel processes that

would ensure minimal data loss, taking into consideration information theory.

38

APPENDIX A. UNDERSTANDING TRUSTED SOLARIS 1.1

This appendix contains the specifications for the modules used by the High and Low users for

the file system modulation covert channel. All code specific syntax is written in the C language.

Understanding Trusted Solaris 1.1

by Albert Wong
Computer Science Department, Naval Postgraduate School
Nov 8, 1994

Introduction

Trusted Solaris 1.1 is a secure distributed computing system where workstations are intercon-
nected via a local network in a client/server relationship under a single administrative domain
using Network Information Service (NIS). Each workstation is based on the SPARC architecture
configured with a modified SunOS 4.1.3 operating system and a modified OpenWindows environ-
ment. These modifications collectively referred as Trusted Computing Base (TCB) provide the
mechanisms to enforce discretionary and mandatory security policies that meets the TCSEC class
B1 requirements. In addition, the Trusted Solaris provides a Trusted Facility Management system
(TFM) with administrative programs, operating procedures, and window tools to ensure that TCB
1s safely configured and maintained.

The purpose of this document is to unscramble volumes of Trusted Solaris manuals to provide
a basic understanding of how the system works and how to work with the system. The figure
attached to the end of this document gives an excellent overview. This diagram is taken directly
from the TFM manual. It shows how normal users and users in TFM roles interact with the sys-
tem. In this document, we will discuss the diagram in some detail. Along the way, a number of
security concepts and features will emerge. For more information on a particular topic, refer to the
following Trusted Solaris manuals:

» Security Features Users’ Guide,
¢ Trusted Facility Management Manual Volumes I and II,
» OpenWindows User Training Tutorial Guide.

Normal Users

Normal users are users who have no special authorization that would allow them to bypass the
security mechanisms of the system. They can run any program as along as the program requires
no special privilege and has no security implication. Special authorizations are granted to users to
run a privileged program and to assume an administrative role. As shown in the diagram, a normal

39

user can run untrusted programs, trusted SunOS programs, and forced privilege programs.
Untrusted programs are programs that require no privilege. Typically, these programs are pro-
grams that a normal user may develop or install but oddly enough, they encompass most of
SunOS system commands including the shell. Trusted SunOS programs are those system com-
mands that require authorizations for users to run them and privileges to do the work when they
are running. Forced privileges programs are equivalent to setuid 0 programs; the required privi-
leges are coerced during the execution of the program. Nevertheless, programs invoked by normal
users must access the kernel modules via the unrestricted uses of system calls. The unrestricted
uses of system calls is a separate set of system calls whereby access control in the kernel is strictly
enforced so that security of the system cannot be compromised.

Authorized Users in Roles

In a traditional UNIX system including SunOS, the administration of the system belongs to a
root user often referred to as a superuser. In Trusted Solaris, there is no superuser. The tasks and
power of the superuser are distributed among different roles. TFM provides a set of guideline for
the administration of the system. TFM is based on two fundamental principles.

» Separation of Duties
System administration tasks are divided among roles to reduce human errors and
wrongdoings,

 Principle of least privilege
Each user or process is granted the most restricted set of privileges that a user or a process
needs for the performance of the authorized task.

TFM roles are assumed by authorized users to perform specific system functions. The tasks
performed by each role are restricted to a portion of the total administrative tasks. See Authoriza-
tions and Privileges below. The duties and responsibilities of the TFM roles are:

+ Information System Security Officer (ISSO)

The ISSO enforces on-site security policy and performs security relevant tasks such as setting
up labels, managing user security, administering audit events, assigning privileges to pro-
grams and assessing new applications.

e System Administrator

The system administrator is responsible for the standard system administrative tasks such
as setting up user accounts, managing machines and network, maintaining files and file sys-
tems, administering window tools, and installing new software.

o System Operator
The system operator is responsible for managing devices such as tapes and printers, start-
ing and shutting down the system, and backing up files.

As shown in the diagram, authorized users in roles can run trusted SunOS programs, forced

privilege programs, and administrative programs provided by TFM but not untrusted programs.
Programs invoked by authorized users in roles access the kernel modules via the restricted uses of

40

system calls which allows them to bypass the security mechanisms.

To assume a TFM role, the administrator must first login as normal user. The user, then,
selects the Trusted Path menu to assume the appropriate role. You cannot login as a TFM role and
you cannot assume a TFM role unless you are authorized by the ISSO for that role.

Login Process

After the system is rebooted, system automatically comes up. The ISSO must first login as
normal user and assume an ISSO role to enable logins for all other users. To login to the Trusted
Solaris system, you need an account on the system. The system administrator creates the account
but the ISSO sets up the initial password, and the security attributes for your account.

The login process consists of a series of three trusted login window screens. The first login
screen allows you to enter your login name and password; the second screen is read-only that pro-
vides general information about your workstation; and the third screen allows you to establish
your session clearance. After login, you are automatically operating in Trusted Solaris OpenWin-
dows environment and allowed to perform operations within your session level.

Password

Password is used for authentication. It authorizes the user to access the system. It is the first
line of defense against system penetration by unauthorized users. Trusted Solaris provides the
required protections to ensure that your password cannot be traced when you enter the system at
login or reenter the system through lock screen. Other mechanisms such as system generated
password, shadowed password, and password aging are supported.

Working in the Trusted Solaris Environment

After login, the workspace on the screen consists of two special items: the console tool and
the screenstripe. Other optional items such as file manager, wastebasket, clock, mail tool and
printing tool may be included.

» Console Tool
Console tool is a read-only text window used for displaying error and system messages.

« Screenscripe

The screenstripe is a narrow rectangular stripe located across the bottom of the screen. It is a
permanent part of the root window that cannot be suppressed. The screenstripe appears after
login and remains throughout the session monitoring the status of the input devices and the

trusted programs.

If the screenstripe appears on the trusted login screen and the trusted lock
screen, your are being spoofed -- Someone is trying to capture your password.

Screenstripe Components
The screenscripe consists of two bands. The upper band displays information about the key-

41

board. It consists of a keyboard grab symbol, a trusted shield, and the input information label that
identifies the security level of the input from the keyboard. Likewise, the lower band displays the
information about the mouse. It consists of a mouse grab symbol, a trusted shield, and the mouse
label of the window that is holding the mouse pointer. The grab symbol shows the grab status. A
grab occurs when an application take control of the input. Keyboard grabs can mean tampering
and have security implications The trusted shield, when appears, indicates that the current appli-
cation is trusted. The screenstripe has, in addition, a hidden component called the trusted path.

Trusted Path

Trusted path is a mechanism that allows users to perform security related operations in a safe
manner. It provides users with an unforgeable connection to the TCB and prevent users from
being spoofed by trojan horses and other misleading programs that tamper with the security of the
system. A trusted path can be activated in one of two ways:

» Using the Screenstripe
By pressing the menu button which is the right mouse bottom on the screenstripe, a trusted
path menu will appear. On this menu, you can select such items as:

o Utilities

to refresh the screen, to control window size and display, to save current workspace lay-
out, to lock the screen, to logout, and to shut down the machine (but you won’t be able to
bring it back up unless you are authorized).

» Set Labels

to set labels on files and directories, to change the label on the workspace in order to bring
up window tools with a proper label, and to cut and paste between windows (see Transfer
Data in OpenWindows).

* Change Password
to change your password.

» Set Screen Access
to modify your monitor access control list to enable other users to access your screen.

e Trusted Frame Menu
By pressing the menu button on the dark stripe above the header of any window or icon, a
trusted frame menu appears. On this menu, select

e Show Full Screen Label
to open a read-only window to show the extended label for that window or icon, or select

» Set Input Information Label (IIL)

to set information label on input from your keyboard. The information level you choose is,
of course, constrained by your session clearance and your accreditation range.

42

» Workspace Menu

From the workspace menu, you can run deskset tools, allocate and deallocate devices, and
change screen properties. To bring up the workspace menu, press the menu button anywhere
on the background areas of the screen. If you select the programs item on the workspace
menu, you have a complete list of deskset tools including the shell.

Session Clearance

Session clearance is the highest sensitivity level at which you can work during a particular
login session. The ISSO sets the default clearance when defining the security attributes of your
account. You can choose to lower your session clearance when you login. See Login Process
above.

Accreditation Range

Accreditation range is a set of authorized sensitivity levels for which access can be granted.
There are two types of accreditation ranges: system and user:

» System Accreditation Range

System accreditation range is set of valid sensitivity levels on the system defined by the limits
of SYSTEM_HIGH and SYSTEM_LOW. SYSTEM_HIGH is above all other sensitivity lev-
els in the system. This label is used to protect system files that contain security sensitive infor-
mation since normal users cannot read up. SYSTEM_LOW is lowest level dominated by all
other sensitivity levels in the system. This is used to protect publicly accessible system files
and system commands since normal users cannot write down (see Mandatory Access Control
below for enforcement of security policy).

e User Accreditation Range

User accreditation range is a subset of the system accreditation range excluding both
SYSTEM_HIGH and SYSTEM_LOW. By default, your session clearance and your home
directory mark the highest and the lowest sensitivity levels at which you can work. When you
login, the default security level or label (SL) is set at the level of your home directory which is
minimum. Your default SL is the SL of the workspace menu. This SL will, therefore, be inher-
ited by all processes invoked from the menu and hence all the files created by those processes.
To ensure the proper labels on these files, you can change your default SL to the desired level
before invoking the process providing the desired level is within your accreditation range and
does not exceed your current session clearance.

To change your default SL, you change the SL of your workspace using the Set Labels option
from the Trusted Path menu. Recall that the mouse label at the screenstripe displays the label
that holds the mouse. Using this feature, you can display your default SL by moving your
mouse on the workspace which is the background of your screen. Likewise you can display
the label of your session clearance by moving the mouse pointer to the screenstrip.

Labels

Labels represent the levels of sensitivity associated with the system entities. Trusted Solaris

43

assigns labels to every subjects and objects to regulate the flow of information. Each label has two
components displayed as IL[SL] in the label stripe above the title bar of the window.

IL is the information label that describes the security level of the information contained within
the entity. Its purpose is track the flow of information, not to enforce access control. IL comprises
a classification, a set of compartments as well as marking and caveats for the handlin g of entity.

SL is the sensitivity label consisting of a classification and a set of compartments that are used
as the basis for mandatory access control decisions.

» Classifications

Classifications represent hierarchical levels of security such as TOP SECRET, SECRET
CONFIDENTIAL, AND UNCLASSIFIED. TOP SECRET is the highest level of classifica-
tion which dominates all other classifications. Each label has one classification out of possible
16 classifications that Trusted Solaris supports.

e Compartments

Compartments are nonhierarchical and independent of classifications. Each compartment has
a name representing a work group, a project or a topic. A label has one classification and a set
of zero or more compartments. One label dominates another label if the other label is a proper
subset. If neither label dominates the other, the two labels are disjoint and noncomparable.
Trusted Solaris supports a maximum of 128 separate compartments.

e Markings

Markings are used to regulate the flow of information. They describe how data should be han-
dled rather than how it should be protected. Markings are the third component of an IL and are
not included in SL. An IL has zero or more markings. Examples of a marking are NOFORN
for No Foreign Dissemination and LIMDIS for Limited Distribution to members of a particu-
lar project.

Access Contro!l

Access control is accomplished by both discretionary and mandatory access controls. They
reflect two distinct aspects of the overall security policy. Both policies must be satisfied in order
to gain access to the object.

 Discretionary Access Control (DAC)

DAC is based on user identity and need-to-know criteria. Its implementation is the same as in
standard UNIX. DAC also includes an access control list (ACL) to allow file owner to restrict
access permission by individual users or groups. ACL is a list entries consisting of two parts
as depicted as follows:

Part 1
#file: filename name of the object
#owner: ownername name of the owner
#group: groupname name of owner’s group

USEer::rwx owner’s permission

user:name:r-x individual user’s permission
group::r-x owner’s group permission
group:groupname:-w- individual group’s permission
class:r-x permission mask for users and groups
other:--x permission for others
Part 2
default:user::rwx Part 2 is applicable for directories only. These default ACL

settings are used for files created under this directory.

ACLtool which is a window-based management tool can be used to construct the entries. It
can be invoked from the workspace menu. DAC access control is based on ACL. If an object
does not have an ACL, standard UNIX permission bits are used.

» Mandatory Access Control (MAC)

MAC, on the other hand, provides access control based on the sensitivity labels between two
objects. MAC is checked before DAC. Because users cannot modify sensitivity labels to
affect the Mac check. MAC, therefore, provides stronger level of protection.

MAC enforces a write up/read down (WURD) policy. Read access requires that the subject
SL dominates the object SL; write access requires that the subject SL be dominated by the
object SL; and read/write or modify access requires that the SLs be equal between the subject
and the object.

Authorizations and Privileges

Authorizations are given to users and privileges are assigned to programs. In order for a user
to assume a TFM role or to perform a trusted function, that user must have the proper authoriza-
tion. By the same token, a TCB program to perform must have the proper privilege to perform the
trusted function on behalf of the user. These trusted functions can have profound security implica-
tions and must be performed by trusted programs and trusted users. The ISSO uses trusted win-
dow tools to assigned authorizations to the designated users according to the security policy.
Authorizations are checked by the privileged programs before performing the trusted functions.
Authorizations and privileges in Trusted Solaris are the means to distribute the system responsi-
bilities so that each user and each program is granted the proper authority needed for the perfor-
mance of the assigned task. There are two types of authorizations:

TFM Role Authorizations

o« TFM _ROLE_isso for the ISSO role

+ TFM_ROLE_admin for the system administrator role

» TFM_ROLE _oper for the system operator role

» TFM _ROLE_root for the ISSO to install application software
SunCMW Authorizations

45

* SunCMW_boot_system to allow users to enable logins after reboot.

¢ SunCMW_terminal_login to allow users to login to a terminal attached to the Sys-
tem to perform maintenance.

* SunCMW_remote_login to allow users to telnet, ftp, and rlogin to remote hosts.

* SunCMW_upgrade_sensitivity_label to allow users to upgrade the SL of an object
for moving data between windows and relabeling files.

e SunCMW_down grade_sensitivity_label to allow users to downgrade the SL of an
object for moving data between windows and relabeling files.

* SunCMW_outside_accreditation_range to allow users to operate outside the user
accreditation range.

* SunCMW_set_single_level_device to allow users to allocate and deallocate devices
to import or export data.

Privileges are grouped into an array called privilege set. Each element of the privilege set cor-
responds to a single privilege that allows or disallows the program to bypass certain security
restriction (i.e., file_mac_read). Out of a total of 128 possible privileges, 78 are currently defined.
There two privilege sets associated with each program:

» allowed
Allowed privilege set defines the individual privileges that a program can inherit from its
parent process.

o forced
Forced privilege set defines the individual privileges that a program has independent from
its parent process.

Managing Files and Directories

In Trusted Solaris, managing files and directories is not Just a matter of organizing; it is also a
matter of classifying the information you are handling. We conclude this document by discussing
some of the basic operations but first we summarize the issues regarding security rules and file
attributes.

e Security Rules
When you try to access a file or directory, two common error messages are often occurred:

 Not Owner -- indicates that the object SL is above your session clearance, and
¢ Permission Denied -- indicates that your session clearance dominates the SL of the
object but not the process trying to access the object.
The following security rules are reiterated:
To create a file or directory within a directory, it requires

¢ MACread and DAC search access to all the directories in the path,
* MAC write and DAV write access to the directory in which the entry is to be created.

46

To open a file in a directory, it requires
+ MACread and DAC search access to all the directories in the path.

To list the files a directory, it requires
* MACread and DAC search access to all the directories in the path,
* DAC read access to the directory to be listed.

MAC rules with respect to labels:
» In any object, the IL must always be dominated by the SL.
» SL of an object is inherited.
» IL of an object can be floated.
e All labels used in the system must be defined in the system accreditation range.
» All labels used by a normal user must be contained in the user accreditation range.
e SL of a home directory is crated at the lowest level.
» SL of a subdirectory dominates the SL of its parent directory.
» SL of a program that creates a file must be equal to SL of its directory.

« File Attributes

There are three types of file: ordinary, directory, and special. Ordinary files are files such as
data, source and object code, and executable; directory files are files that contain other file and
subdirectories; and special files are devices such disks, tapes, and printers. Each file has its
own set of attributes. For example:

* DAC including ACL
» MAC labels including both IL and SL
» privileges if the file is executable.

¢ Creating a file or directory

Just as in standard UNIX, there are many ways to create a file or directory. A file can be cre-
ated from an editor or from the file manager. A directory can be created from a command line
using a command tool or from the file manager. The file you created inherits both the IL and
the SL from the tool you use (remember directory has no IL). To ensure the file you created
has the desired label, you can choose the tool that has the right label or change the label after
creation using the Set Label option from the Trusted Path menu

DAC components such as permission, owner, group, and ACL require very little attention
because the default values are in general acceptable. When a file or a directory is created,
DAC components are derived from ACL. Recall that ACT has two parts. Part 2 is used as
default ACL for files created under that directory. If a directory is created, part 2 from the par-
ent directory is appended so that the default can be propagated to its subdirectories. In the
absence of ACL, standard UNIX implementation is used where permissions are derived from
the creation mask called umask.

« Copying or Editing files

When your are copying or editing a file, the DAC attributes remain unchanged but the MAC
attributes of the file are likely to change. If a file is copied to another file in the same directory,
the file attributes are preserved.

47

If you are editing a file, the SL of the edited file is inherited from the SL of the editor and the
IL will be floated. Floating IL is a phenomenon that occurs when an operation is performed
between two objects with different ILs. The merging of the two ILs is resulted in conjunction
where conjunction is the maximum of the classification portion of the two ILs and the union
of their compartments and marking.

For example, If an editor has a null IL editing a file with an IL of CONFIDENTIAL and
NOFORN. The IL of the editor will be floated up to the level of the file and the edited file
inherits the IL of the editor. The file, at this point, has the same IL as before. Now if the same
editor is used to edit another file with an IL of UNCLASSIFIED. The IL of the second file will
be changed from UNCLASSIFIED to CONFIDENTIAL and NOFORN. To retain the ori ginal
IL for the second file, a fresh copy of an editor must be used.

* Multilevel Directories

It is possible to create directories that let you create files with different of SLs. One way to
accomplish this is the use of Multi-label directory (MLD). Under the MLD, you can create
files with different classification levels. The way Trusted Solaris works is to collect the like-
labeled files into a hidden single-label directory (SLD) under a given MLD. If you list the
contents of the directory, the only files you see are the files with SLs equal to the SL of the
tool you used. To create a MLD, use the command mkdir -M directoey-name. If you cd to that
directory, you can create files with different SLs by changing your default SL.

A more direct approach is to create the directory and relabel it. This approach does, however
require authorization for upgrading the SL label. It is because the SL of the parent directory is
lower than the SL of the label that you try to change. You will not be able to save the label in
the parent directory unless you have authorization.

» Transferring Data in OpenWindows

Transferring data in an OpenWindows environment amounts to moving text from one window
to another. These operations include cus and paste and drag and drop. With the required
authorization, you can copy and paste up or down to windows with different SLs.

» Cut and Paste
Cut and paste operation in a window can occur regardless of labels. All users can cut and
paste data between windows with equal SL.

» Drag and Drop

Drag and Drop operation requires ether the SLs of the objects be equal or the SL of the
destination window dominates the SL of the source window. You can drag a file to the
open part of a window and drop the file into the window. You can also drag and drop a file
to an icon. When you drop a file to an icon, it replace what was there.

» Upgrading and Downgrading Text

One reason to upgrade and downgrade text is to produce a report for people with different
clearances. Before you can perform a upgrade or downgrade, authorization to upgrade or
downgrade is required. When upgrading text, the IL of the destination label merges and

48

floats up. You may need to create a new IL to refiect the actual IL of the upgraded data.
When downgrading text, you need to create new IL for the text you are transferring. if the
destination SL is lower than the source IL.

To upgrade or downgrade text, use the copy and paste operation as follows:

1 - bring up two editors with two different label,

2 - edit a file using one editor depending on whether you are updgrading or
downgrading text,

3.- highlight the text you wish to copy,

4 - Paste the text into the other editing window. A Selection Labeler window
pops up and indicates that you are upgrading or downgrading information.

5 - Select an appropriate IL with the popped up Selection labeler.

49

Users Interactions with TCB

Normal
users

Untrusted
programs

(O Ouside TCB
Part of TCB

TCB with Privileges

Hardware

50

APPENDIX B. MODULE SPECIFICATIONS

This appendix contains the specifications for the modules used by the High and Low
users for the file system modulation covert channel. All code specific syntax is written in

the C language.

A. COMMON CONFIGURATION SYSTEM PARAMETERS

A1 MODULE CONSTANTS:
char QUIT = ‘9’
int NOERROR =0
int EXCEPTION = -1
int TRUE =1
int FALSE =0
int MAX_MENU_LENGTH = 80 -- max length of menu lines
int MAX_PATH_LENGTH = 256 -- max length of path names
int MAX_SEGMENT_SIZE = 256 -- processing array size
int ERROR_LINES = 2 -- number of lines in error prompt
int EOF_SIGNAL = -1 -- negative value to signal EOT

TYPES:
MENU_LINE_type -- character array of length
MAX_MENU_LENGTH
typedef char MENU_LINE_type[MAX MENU_LENGTH]
PATHNAME _type -- character array of length
MAX_PATH_LENGTH
typedef char PATHNAME_type[MAX_PATH_LENGTH];
SEGMENT_type -- character array of length
MAX_SEGMENT_SIZE
typedef char SEGMENT _type[MAX_SEGMENT_SIZE];
CODE _type -- integer array of length MAX_SEGMENT_SIZE
typedef int CODE_type[MAX_SEGMENT_SIZE];

VARIABLES:
MENU_LINE_type menu_errorfERROR_LINES] = {
“ERROR: Invalid menu choice.”,
“Press <ENTER> to continue.*

|
MENU_LINE_type path_error[ERROR_LINES] = {

“ERROR: Invalid pathname.”,
“Press <ENTER> to continue.” };

51

B.

A.2 DATABASES:

None.
HIGH DISPLAY MODULE
B.1 MODULE CONSTANTS:
None,
TYPES:
None.
VARIABLES:
None.
B.2 DATABASES:
None.,

B.3 Display displays all the user menus and prompts for the functions to the monitor.

B.3.1 INPUTS

Menu: storage structure for passing menu or prompt character strings.
Lines: number of lines in Menu to display.

B.3.2 PROCESSING
Initialize Status to NOERROR

Loop incrementing through Menu for number of Lines while Status equals
NOERROR

Call UNIX C-library printf with parameter character string from Menu and

set Status equal to returned function value.
return Status

B.3.3 EFFECTS

None.

B.3.4 EXCEPTIONS
UNIX exceptions.

B.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

B.3.6 DATABASE REFERENCED

None.

52

B.3.7 INTERFACE: int Display(
MENU_LINE_type *Menu,
int &Lines);

C. HIGH CONFIGURATION SYSTEM PARAMETERS

C.1MODULE CONSTANTS:

int PATHS = 5 -- number of files used for truncating
int MAX_BLOCK_SIZE = 1024 -- block size of file reads

TYPES:

BLOCK _type -- character array of length MAX_BLOCK_SIZE
typedef char BLOCK _type[MAX_BLOCK_SIZE];

VARIABLES:
None.

D. HIGH MAIN MODULE

D.1 MODULE CONSTANTS:
int MAIN_MENU_LINES = 4
char PROCESS =1’

TYPES:
None.

VARIABLES:
MENU_LINE_type main_menu[MAIN_MENU_LINES] = {
“MAIN MENU”,
“I. Process a file.”,
“9. Quit, exit to system prompt.”,
“Enter your choice: ¢

};

D.2 DATABASES:
None.

D.3 High_main loops calling HCC_Covert_init and HCC_Covert_run until the
user is done processing files.

D.3.1 INPUTS

None.

D.3.2 PROCESSING
Local Variables:
char Choice = PROCESS; -- variable to store user’s main_menu choice
char Covert_choice; -- variable to store user’s covert_menu choice
Initialize Status to NOERROR
Loop while Choice is not equal to QUIT
Call Display with parameters main_menu and MAIN_MENU_LINES and set
Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Choice equal to returned character and
set Status equal to returned function value.
If Status equals NOERROR and Choice equals PROCESS
Call HMC_Covert_init, set Covert_choice equal to returned character and
set Status equal to returned function value.
If Status equals NOERROR and Covert_choice equals QUIT
Set Choice equal to QUIT
If Status equals NOERROR and Choice equals PROCESS
Call HMC_Covert_run with no parameters and set Status equal to
returned function value.
If Status equals NOERROR and value of Choice is invalid
Call Display with parameters menu_error and ERROR_LINES and set
Status equal to returned function value.
return Status

D.3.3 EFFECTS

None.

D.3.4 EXCEPTIONS
UNIX exceptions.

D.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

D.3.6 DATABASE REFERENCED

None.

D.3.7 INTERFACE: int high_main();

E. HIGH_MODULATOR_CONTROLLER MODULE

E.1 MODULE CONSTANTS:

int COVERT_MENU_LINES =4
int THEORY_MENU_LINES =4
char PROBABILITY = ‘1’ -- choice for Info_Theory menu

54

char MODULATE = ‘1’ -- choice for Covert method menu
PROB_DIST -- Probability distribution codes structure
Alpha_codes -- integer array containing the probability
distribution codes for the lowercase alphabetic characters.
Num_codes -- integer array containing the probability
distribution codes for the numeric characters 0 thru 9.
struct Prob_dist{
int alpha_codes[26] = {
2,19,11,10,0,14,16,8,4,23,21,9,13,
5,3,15,24,7,6,1,12,20,17,22,18,25};
int num_codes[10] = {
26,27,28,29,30,31,32,33,34,35};
)

TYPES:
HMC_CDB_type -- HMC_Covert Database structure
Covert_method - integer value indicating covert method to
use.
Info_theory_method - integer value indicating info theory
method to use.
typedef int HMC_CDB_ type[2];

VARIABLES:
MENU_LINE_type covert_menu[COVERT_MENU_LINES] =
{
“COVERT METHOD MENU”,
“1. Modulate the file system.”,
“9. Quit, return to Main menu.”,
“Enter your choice: “
)
MENU_LINE_type theory_menu[THEORY_MENU_LINES] =
{
“INFORMATION THEORY METHOD MENU”,
“1. Probability distribution of characters method.”,
“9. Quit, return to Covert Method menu.”,
“Enter your choice: “
);
HMC_CDB_type CDB; -- Covert database
E.2 DATABASES:
HMC_Covert Database.

55

E.3 HMC_Covert_init sets the Covert_method in the HMC_Covert database equal to
the user’s choice. Calls other module initialization functions based on the covert
method chosen.

E.3.1 INPUTS

None.

E.3.2 PR ESSIN
Local Variables:

char Theory_choice; -- theory menu choice.
Initialize Status to NOERROR
Set Covert_choice equal to MODULATE
Loop while Covert_choice is not equal to QUIT
Call Display with parameters Covert_menu and COVERT_MENU_LINES
and set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Covert_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Covert_choice equals MODULATE
Set Covert_method in HMC_Covert database equal to MODULATE
Call HMC_Info_theory_init, set Theory_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Theory_choice equals QUIT
Set Covert_choice equal to QUIT
If Status equals NOERROR and Covert_choice equals MODULATE
Call HFR_Init with no parameters and set Status equal to returned
function value.
If Status equals NOERROR and Covert_choice equals MODULATE
Call HMT _Init with no parameters and set Status equal to returned
function value.
Set Covert_choice equal to QUIT
If Status equals NOERROR and value of Covert_choice is invalid
Call Display with parameters menu_error and ERROR_LINES
return Status;

E.3.3 EFFECTS

HMC_Covert database is initialized to contain covert method to use.

E.3.4 EXCEPTIONS
UNIX exceptions.

E.3.5 OUTPUTS

Covert_choice: character value containing user’s Covert_menu choice.
Status: NOERROR or EXCEPTION of the function.

56

E.3.6 DATABASE REFERENCED
HMC_Covert database.

E.3.7 INTERFACE: int hmc_covert_init(char Covert_choice);

E.4 HMC _Info_theory_init sets the Info_theory_method in the HMC_Covert
database equal to the user’s choice. Initializes needed structures based on the
information theory method chosen.

E.4.1 INPUTS

None.

E.4.2 PROCESSING
Inidalize Status to NOERROR

Set Theory_choice equal to MODULATE
Loop while Theory_choice is not equal to QUIT
Call Display with parameters Theory_menu and THEORY_MENU_LINES
and set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Theory_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Theory_choice equals PROBABILITY
Set Theory_method in HMC_Covert database equal to PROBABILITY
If Status equals NOERROR and value of Theory_choice is invalid
Call Display with parameters menu_error and ERROR_LINES
return Status;

E.4.3 EFFECT

HMC_Covert database is initialized to contain value indicating info theory
method to use.

E.4.4 EXCEPTIONS
UNIX exceptions.

E.4.5 QUTPUTS

Theory_choice: character value containing user’s Theory_menu choice.
Status: NOERROR or EXCEPTION of the function.

E.4.6 DATABASE REFERENCED
HMC_Covert database.

E.4.7 INTERFACE: int hmc_info_theory_init(char Theory_choice);

57

E.5 HMC_Covert_run calls the appropriate covert channel method based on the
value of Covert_method in the HMC_Covert database.

E.5.1 INPUTS

None.

E.5.2 PROCESSIN
Initialize Status equal to NOERROR

If Status equals NOERROR and Covert_method in HMC_Covert database
equals MODULATE
Call HMC_Modulator_controller with no parameters and set Status equal to
returned function value.
return Status;

E.5.3 EFFECT

None.

E.5.4 EXCEPTION
UNIX exceptions.

E.5.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

E.5.6 DATABASE REFERENCED

HMC_Covert database.
E.5.7 INTERFACE: int hmc_covert_run();

E.6 HMC_Modulator_controller calls HFR_Read repeatedly each time reading the
number_of_bytes from the file and then calling HMC_Info_theory and
LMT_Truncate, until the entire file has been read and processed. It then calls
HFR_Close to close the read file that was opened, and LMT _Delete to delete the
files used for truncating.

E.6.1 INPUTS

None.

E.6.2 PROCESSING
Local Variables:

int Bytes_read = MAX_SEGMENT_SIZE;
int Bytes_to_write;
SEGMENT_type Read_array;

58

CODE_type Code_array;
Initialize Status to NOERROR
If Covert_method in HMC_Covert database equals MODULATE
Loop while Status equals NOERROR and Bytes_read equals
MAX_SEGMENT_SIZE
Call HFR_Read, set Read_array equal to the returned array of
characters, Bytes_read equal to the returned number of bytes read, and
set Status equal to returned function value.
If Status equals NOERROR
Call HMC_Info_theory with parameters Read_array and
Bytes_read; set Code_array equal to returned integer array and set
Status equal to returned function value.
While Status equals NOERROR increment through Code_array for
number of Bytes_to_write
Call HMT_Truncate with value at current Code_array position
and set Status equal to returned function value.
return Status

E.6.3 EFFECTS

None.

E.6.4 EXCEPTIONS
UNIX exceptions.

E.6.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

E.6.6 DATABASE REFERENCED

None.
E.6.7 INTERFACE: int hcc_modulator_controller();

E.7 HMC_Info_theory takes all the significant characters in the Read_array and
stores them in the Write_array. Then HMC_Char_prob_dist is called to convert the
significant characters in the Write_array to the appropriate numeric codes.

E.7.1 INPUTS

Read_array: storage structure for passing the bytes read from the file.
Bytes_read: number of bytes contained in the read_array (this is always
positive).

E.7.2 PROCESSIN
Local Variables:

59

SEGMENT _type Write_array;
Initialize Status to NOERROR
Initialize Bytes_to_write to zero
If Info_theory_method in HMC_Covert database equals PROBABILITY
Loop incrementing through Read_array for number of Bytes_read
If character is significant (a-z, 0-9)
Copy character from Read_array to Write_array
If character is significant (A-Z)
Convert to lowercase and store in Write_array
Increment Bytes_to_write by one
Call HMC_Char_prob_dist with parameters Write_array and
Bytes_to_write; set Code_array equal to returned integer array and Status
equal to returned function value.
return Status

E.7.3 EFFECT

E.7.4 EXCEPTION
UNIX exceptions.

E.7.5 QUTPUTS

Code_array: storage structure for passing the converted character codes.
Bytes_to_write: number of bytes contained in the Code_array (this is always
positive).

Status: NOERROR or EXCEPTION of the function.

E.7.6 DATABASE REFERENCED
HMC_Covert database.

E.7.7 INTERFACE: int hmc_Info_theory(SEGMENT _type Read_array,
int &Bytes_read,
CODE_type Code_array,
int &Bytes_to_write);

E.8 HMC_Char_prob_dist converts the significant characters in the Write_array to
the proper integer codes and stores the codes in the Code_array.

E.8.1 INPUTS

Write_array: storage structure for passing the significant characters.
Bytes_to_write: number of bytes contained in the write_array (this is always
positive).

60

E.8.2 PROCESSING
Initialize Status to NOERROR

If Status equals NOERROR
Loop incrementing through Write_array for number of Bytes_to_write
If character is (a-z) then convert using Alpha_codes
If character is (0-9) then convert using Num_codes
Store code in Code_array
return Status

E.8.3 EFFECTS

None.

E.8.4 EXCEPTIONS

None.

E.8.5 QUTPUTS

Code_array: storage structure for passing the converted character codes.
Status: NOERROR or EXCEPTION of the function.

E.8.6 DATABASE REFERENCED

None.

E.8.7 INTERFACE: int HMC_Char_prob_dist(
SEGMENT_type Write_array,
CODE _type Code_array,
int &Bytes_to_write);

F. HIGH FILE READER MODULE

F.1 MODULE CONSTANTS:
int READ_PROMPT_LINES =1

TYPES:
HFR_OFS_type -- HFR_Open_file Database structure
typedef struct {

int open_status - boolean value indicating
open status of file;

fsid_t file_descriptor - integer assigned by the
system when a file is opened;

long file_size - size of the file in bytes;

int more - integer boolean that indicates if

more bytes to read;

61

long tot_bytes_read - total bytes read from

the file;

BLOCK _type block_array - holds a block of bytes read
from the file;

long block_bytes_read - number of bytes
read into the block_array;

long block_index - index into block_array,
indicates next byte to read;

JHFR_OFS_type;
VARIABLES:

MENU_LINE_type read_prompt = {

“Enter the path to the file you want to read:
)
HFR_OFS_type HFR_OFS;
HFR_OFS_type *HFR_OFS_ptr = HFR_OFS;
PATHNAME_type HFR_Pathname;

F.2 DATABASES:
HFR_Open_file Database.

F.3 HFR_Init initializes the HFR_OFS Database structure. Gets the pathname of the
file to read from the user and calls HFR_Open to open the file.

F.3.1 INPUTS

None.

F.3.2 PROCESSING
Local Variables:

int Done = FALSE; -- loop control variable
Initialize Status to NOERROR
Loop while Done equals FALSE
Call Display with parameters read_prompt and READ_PROMPT_LINES:
set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library gers, set HFR_Pathname equal to returned
character array and set Status equal to returned function value.
If Status equals NOERROR
Initialize HFR_Open_file database
Call HFR_Open with no parameters and set Status equal to returned
function value.
If Status equals NOERROR
Set Done equal to TRUE

62

If Status equals EXCEPTION and UNIX errno equals invalid path
exception
Call Display with parameters path_error and ERROR_LINES; set
Status equal to returned function value.
return Status

F.3.3 EFFECTS
HFR_Open_file database is initialized:

open_status is set to FALSE.

more is set to TRUE.

tot_bytes_read is set to zero.
block_bytes_read is set to zero.
block_index is set to start of Block_array.

F.3.4 EXCEPTION
UNIX exceptions.

F.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

F.3.6 DATABASE REFERENCED

HFR_Open_file database

F.3.7 INTERFACE: int HFR_init();

F.4 HFR_Open opens a file for reading and sets the appropriate values in the
HFR_Open_file database structure.

F.4.1 INPUTS

None.

F.4.2 PROCESSING
Local Variables:

struct stat stat_buffer -- structure for holding return values from UNIX fszar
stat *stat_buf_ptr = stat_buffer;
Initialize Status to NOERROR
Call UNIX open with parameter HFR _Pathname and set Status equal to returned
function value.
If Status equals NOERROR
Set file_descriptor in HFR_OFS database to return from UNIX open

63

Call UNIX fstar with parameter file_descriptor in HFR_OFS database; set
stat_buf_ptr to returned stat structure and set Status equal to returned
function value.

If Status equals NOERROR

Initialize appropriate HFR_Open_file database values

return Status
F.4.3 EFFECTS
HFR_Open_File Database structure is set:

Open_status - set to TRUE.

File_descriptor - contains UNIX file descriptor value.

File_size - contains the size of the file in bytes.

F4.4 EXCEPTION
UNIX exceptions.

F.4.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

F.4.6 DATABASE REFERENCED

HFR_Open_file Database.

F.4.7 INTERFACE: int hfr_open();

F.5 HFR_Read reads a block of bytes at a time from the file indicated in the
HFR_Open_file Database and stores them in the Block_array. Passes back the
Read_array with MAX_SEGMENT_SIZE number of bytes or less if EOF
encountered. The logic of this function requires that MAX_BLOCK_SIZE be a
multiple of MAX_SEGMENT_SIZE.

F.5.1 INPUTS

None.

F.5.2 PROCESSING
Local Variable:

int read_array_index = 0;
Initialize Status to NOERROR
If Block_bytes_read in the HFR_OFS database is equal to zero and More in the
HFR_OFS database is equal to TRUE
Read MAX_BLOCK_SIZE of bytes from file indicated by file_descriptor
in HFR_OFS database
Set Block_bytes_read in the HFR_OFS database equal to actual number of
bytes read into block

Set Tot_bytes_read in the HFR_OFS database equal to Tot_bytes_read plus
block_bytes_read
If EOF encountered
Set More in the HFR_OFS database equal to FALSE
While the block_index in the HFR_OFS database is less than block_bytes_read
in the HFR_OFS database and the read_array_index is less than
MAX_SEGMENT_SIZE
Assign read_array with byte from block_array in the HFR_OFS database
Increment read_array_index by one
Increment block_array_index in the HFR_OFS database by one
Set bytes_read equal to read_array_index plus one
If at end of block_array (block_index equals MAX_BL.OCK_SIZE - 1)
Set block_index in the HFR_OFS database equal to zero
Set block_bytes_read in the HFR_OFS database equal to zero
return Status

F.5.3 EFFECTS
HFR_Open_{file database is updated:
tot_bytes_read is updated if file read required.
block_array holds the most current bytes read from the file.
block_bytes_read contains the current number of bytes read into the
block_array.
block_index is advanced by the number of Bytes_read or reset to zero if end

of block reached.

F.5.4 EXCEPTIONS
UNIX exceptions.

F.5.5 QUTPUTS

Read_array: storage structure for passing the bytes read from the file.
Bytes_read: number of bytes contained in the read_array (this is always

positive).
Status: NOERROR or EXCEPTION of the function.

F.5.6 DATABASE REFERENCED
HFR_Open_file Database

F.5.7 INTERFACE: int hfr_read(SEGMENT_type Read_array,
int &Bytes_read);
F.6 HFR_Close sets the open_status to FALSE in the HFR_Open_file database for
the file that has been opened by the function HFR_Open.

65

F.6.1 INPUTS

None

F.6.2 PROCESSIN
Initialize Status equal to NOERROR

If Open_status in the HFR_OFS database equals TRUE
Call UNIX close with parameter file_descriptor in the HFR_OFS database
and set Status equal to returned function value.
If Status equals NOERROR
Set open_status in the HFR_OFS database equal to FALSE

return Status

F.6.3 EFFECT
HFR_Open_{file database:

open_status is set to FALSE.

F.6.4 EXCEPTION
UNIX exceptions.

F.6.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

F.6.6 DATABASE REFERENCED

HFR_Open_file Database

F.6.7 INTERFACE: int hfr_close();

G. HIGH MODULATOR TRUNCATE MODULE

G.1 MODULE CONSTANTS:

int KBYTE = 1024

int BASE = 8 -- number of Kbytes to truncate each file

int MAX_KBYTE = PATHS * BASE -- maximum codes
possible

int TRUNC_MENU_LINES = 4

int TRUNC_PROMPT_LINES =]

int DEFAULT =1 -- truncate menu choice for default paths

int USER_PATHS = 2 -- truncate menu choice for user defined

Default truncate file paths:
PATHNAME _type TRUNC_PATHI1 = “./t1”
PATHNAME_type TRUNC_PATH2 = “ /2"
PATHNAME_type TRUNC_PATHS3 = “/t3”
PATHNAME_type TRUNC_PATH4 = “ /t4”

PATHNAME_type TRUNC_PATHS = “./t5”

int START_TRUNC = 0 -- signals HMT_Truncate function to
truncate the files to TRUNC_BASE size.

int TRUNC_BASE = 10 -- the minimum number of Kbytes the
files will always be truncated. Thus, when truncate files are
deleted the Low user will see a negative file system size
change signaling the end.

int FILE_BASE = 8 -- maximum number of Kbytes each file can
be truncated.

TYPES:
None.

VARIABLES:

MENU_LINE_type trunc_menu[TRUNC_MENU_LINES] = {
“TRUNCATE MENU”,
“1. Use the default truncate file paths.”,
“2. Enter the truncate file paths to use.”,
“Enter your choice: “

IR

MENU_LINE _type trunc_prompt = {
“Enter the truncate file paths, one per line.”

I

HMT_Pathnames -- two dimensional character array of length

MAX_PATH_LENGTH and depth of PATHS
PATHNAME_type HMT_Pathnames[PATHS];

G.2 DATABASES:
None.

G.3 HMT _Init initializes the paths to the files to be used for modulating the file
system size in the HMT_Pathnames array to either the default pathnames or user
defined pathnames.

G.3.1 INPUTS

None.

G.3.2 PROCESSIN
Local Variables:
char Choice; -- variable for storing user’s choice from trunc_menu

int Done = FALSE; -- loop control variable
Initialize Status to NOERROR
Loop while Done equals FALSE and Status equals NOERROR

67

Call Display with parameters trunc_menu and TRUNC_MENU_LINES
and set Status equal to returned function value.
If Status equals NOERROR and Choice equals DEFAULT
Initialize HMT_Pathnames to default paths (TRUNC_PATHI thru 5)
If Status equals NOERROR and Choice equals USER_PATHS
Call Display with parameters trunc_prompt and
TRUNC_PROMPT_LINES; set Status equal to returned function
value.
Loop for number of PATHS and while Status equals NOERROR
Call UNIX C-library gets; set HMT_Pathnames equal to returned
character string and Status equal to returned function value.
If Status equals NOERROR and value of Choice is valid
Call HMT_Truncate with parameter START_TRUNC and set Status
equal to returned function value.
If Status equals NOERROR
Set Done equal to TRUE
If Status equals EXCEPTION and UNIX errno equals invalid path
exception
Call Display with parameters path_error and ERROR_LINES; set
Status equal to returned function value.
If value of Choice is invalid
Call Display with parameters menu_error and ERROR_LINES and set
Status equal to returned function value.
return Status

G.3.3 EFFECT

None.

G.3.4 EXCEPTION
UNIX exceptions.

G.3.5 TPUTS
Status: NOERROR or EXCEPTION of the function.

G.3.6 DATABASE REFERENCED

None,

G.3.7 INTERFACE: int hmt_init();

G.4 HMT_Truncate truncates the files in HMT_Pathnames to the specified number
of Kbytes.

68

G.4.1 INPUTS

Kbytes_to_trunc: number of bytes the files are to be truncated.

G.4.2 PROCESSING
Local Variables:
int Base_files; -- number of files to be truncated to BASE value
Initialize Status to NOERROR
If Kbytes_to_trunc is greater than MAX_KBYTES
Set Status equal to EXCEPTION
If Kbytes_to_trunc is equal to EOF_SIGNAL
Call UNIX truncate for each of the files with parameters: path from
Pathnames_array and length equal to zero
If Status equals NOERROR
*#*Files 1 & 2 will always be truncated to TRUNC_BASE divided by two
plus any other bytes determined below
Set Base_files equal to integer result of Kbytes_to_trunc divided by BASE
Truncate Base_files number files to BASE
Call UNIX truncate for each of the files to be truncated to BASE with
parameters: path from Pathnames_array and length equal to BASE
Truncate the next file to the number of Kbytes resulting from
Kbytes_to_trunc modula BASE
Call UNIX fruncate with parameters: next path from Pathnames_array
and length equal to result of Kbytes_to_trunc modula BASE

Truncate any remaining files to zero
Call UNIX truncate for number of files to be truncated to zero with

parameters: path from Pathnames_array and length equal to zero
return Status

G.4.3 EFEECTS

None.

G.4.4 EXCEPTION
UNIX exceptions.

G.4.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

G.4.6 DATABASE REFERENCED

None.

G.4.7 INTERFACE: int hmt_truncate(int &Kbytes_to_trunc);

69

G.5 HMW_Delete deletes all the files used for truncating.

G.5.1 INPUTS

None.

G.5.2 PROCESSIN
Initialize Status to NOERROR

Loop incrementing through HMT_Pathnames array while Status equals
NOERROR
Call UNIX unlink with path as the parameter and set Status equal to
returned function value.
return Status

G.5.3 EFFECTS

None.

G.5.4 EXCEPTIONS
UNIX exceptions.

G.5.5 TPUTS
Status: NOERROR or EXCEPTION of the function.

G.5.6 DATABASE REFERENCED

None.

G.5.7 INTERFACE: int hmt_delete();

70

H. LOW CONFIGURATION SYSTEM PARAMETERS

L

H.1 MODULE CONSTANTS:
None.

TYPES:
None.

VARIABLES:
None.

LOW MAIN MODULE

L1 MODULE CONSTANTS:
int MAIN_MENU_LINES =4
char PROCESS =1’

TYPES:
None.

VARIABLES:
MENU_LINE_type main_menu[MAIN_MENU_LINES] = {
“MAIN MENU”,
“1. Receive and process a codes.”,
“9. Quit, exit to system prompt.”,
“Enter your choice:

};

1.2 DATABASES:
None.

L.3 Low_main loops calling LMC_Covert_init and LMC_run until the user is done
receiving and processing codes.

1.3.1 INPUTS

None.

L.3.2 PROCESSING
Local Variables:

char Choice = PROCESS; -- variable to store user’s main_menu choice
char Covert_choice; -- variable to store user’s covert_menu choice
Initialize Status to NOERROR
Loop while Choice is not equal to QUIT

71

Call Display with parameters main_menu and MAIN_MENU_LINES and set
Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Choice equal to returned character and
set Status equal to returned function value.
If Status equals NOERROR and Choice equals PROCESS
Call LMC_Covert_init, set Covert_choice equal to returned character and
set Status equal to returned function value.
If Status equals NOERROR and Covert_choice equals QUIT
Set Choice equal to QUIT
If Status equals NOERROR and Choice equals PROCESS
Call LMC_Covert_run with no parameters and set Status equal to returned
function value.
If Status equals NOERROR and value of Choice is invalid
Call Display with parameters menu_error and ERROR_LINES and set
Status equal to returned function value.

return Status

L33 EFFECT

None.

1.3.4 EXCEPTION

UNIX exceptions.

1.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

1.3.6 DATABASE REFERENCED

None.

1.3.7 INTERFACE: int low_main();

J. LOW_MODULATOR_CONTROLLER MODULE

J1 MODULE CONSTANTS:

int COVERT_MENU_LINES =4
int THEORY_MENU_LINES =4
char PROBABILITY = ‘1"

char MODULATE = ‘1’

char UNKNOWN_CHAR = ‘7

72

PROB_DIST -- Probability distribution codes structure

Alpha_codes -- character array containing the lowercase
alphabetic characters in the appropriate probability
distribution codes position..

Num_codes -- character array containing the numeric
characters O thru 9 in the appropriate probability
distribution codes position.

struct Prob_dist{

char alpha_codes[26] = {
‘e’,’t’)a’,o’,’1i,’n’,’s’,) h)) d e,
m’,f)p’, g, W,y b v Uk X,z)
char num_codes[10] = {
‘0,°1’,2°,°3°,°4°,°5°,°6°,°7°,°8°,’9°};

[

};

TYPES:
LMC_CDB_type -- LMC_Covert Database structure
Covert_method - integer value indicating covert method to
use.
Info_theory_method - integer value indicating info theory
method to use.
typedef int LMC_CDB_type[2];

VARIABLES:
MENU_LINE_type covert_menu[COVERT_MENU_LINES] =
{
“COVERT METHOD MENU”,
“1. Read file system modulation.”,
“9. Quit, return to Main menu.”,
“Enter your choice:
B
MENU_LINE_type theory_menu[THEORY_MENU_LINES] =
{
“INFORMATION THEORY METHOD MENU”,
“1. Probability distribution of characters method.”,
“9. Quit, return to Covert Method menu.”,
“Enter your choice:
IR
LMC_CDB_type CDB; -- Covert database

J.2 DATABASES:
LMC_Covert Database.

73

J.3 LMC_Covert_init sets the Covert_method in the LMC_Covert database equal to
the user’s choice. Calls other module initialization functions based on the covert
method chosen.

J3.1 INPUTS

None.

J.3.2 PROCESSIN
Local Variables:

char Theory_choice; -- theory menu choice.
Initialize Status to NOERROR
Set Covert_choice equal to MODULATE
Loop while Covert_choice is not equal to QUIT
Call Display with parameters Covert_menu and COVERT _MENU_LINES
and set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Covert_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Covert_choice equals MODULATE
Set Covert_method in LMC_Covert database equal to MODULATE
Call LMC_Info_theory_init, set Theory_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Theory_choice equals QUIT
Set Covert_choice equal to QUIT
If Status equals NOERROR and Covert_choice equals MODULATE
Call LFW_lInit with no parameters and set Status equal to returned
function value.
If Status equals NOERROR and Covert_choice equals MODULATE
Call LMR_Init with no parameters and set Status equal to returned
function value.
Set Covert_choice equal to QUIT
If Status equals NOERROR and value of Covert_choice is invalid
Call Display with parameters menu_error and ERROR_LINES
return Status;

J.33 EFFECT

LMC_Covert database is initialized to contain covert method to use.

J.3.4 EXCEPTIONS
UNIX exceptions.

74

J.3.5 QUTPUTS

Covert_choice: character value containing user’s Covert_menu choice.
Status: NOERROR or EXCEPTION of the function.

J.3.6 DATABASE REFERENCED

LMC_Covert database.
J.3.7 INTERFACE: int Imc_covert_init(char Covert_method);

J.4 LMC_Info_theory_init sets the Info_theory_method in the LMC_Covert
database equal to the user’s choice. Initializes needed structures based on the
information theory method chosen.

J4.1 INPUTS

None.

J.4.2 PROCESSING
Initialize Status to NOERROR

Set Theory_choice equal to MODULATE
Loop while Theory_choice is not equal to QUIT
Call Display with parameters Theory_menu and THEORY_MENU_LINES
and set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library getchar, set Theory_choice equal to returned
character and set Status equal to returned function value.
If Status equals NOERROR and Theory_choice equals PROBABILITY
Set Theory_method in LMC_Covert database equal to PROBABILITY
If Status equals NOERROR and value of Theory_choice is invalid
Call Display with parameters menu_error and ERROR_LINES
return Status;

J.4.3 EFFECTS

LMC_Covert database is initialized to contain info theory method to use.

J4.4 EPTION
UNIX exceptions.

J.4.5 OUTPUTS

Theory_choice: character value containin g user’s Theory_menu choice.
Status: NOERROR or EXCEPTION of the function.

J.4.6 DATABASE REFERE
LMC_Covert database.

75

J.4.7 INTERFACE: int Imc_info_theory_init(char Theory_choice);
J.S LMC_Covert_run calls the appropriate covert channel method based on the value
of Covert_method in the LMC_Covert database.

J.5.1 INPUTS

None.

J.5.2 PROCESSIN
Initialize Status equal to NOERROR

If Staus equals NOERROR and Covert_method in LMC_Covert database equals
MODULATE
Call LMC_Modulator_controller with no parameters and set Status equal to
returned function value.
return Status;

JSIEFFECT

None.

J.5.4 EXCEPTIONS
UNIX exceptions.

J.5.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

J.5.6 DATABASE REFERENCED
LMC_Covert database.

J.5.7 INTERFACE: int Imc_covert_run();

J.6 LMC_Modulator_controller calls LMR_Read, LMC Info_theory and
LFW_Write repeatedly reading the number of free system blocks from the file
system disk that the LMR_Pathname file resides on until a negative block size change
is received from LMR_Read signalling the end of transmission. It then calls
LFW_Close to close the write file that was opened.

J.6.1 INPUTS

None.

J.6.2 PROCESSING
Local Variables:

int Temp_bytes; -- holds value of base minus kbytes read.
int Kbytes_read; -- value of return parameter from LMR_Read.
int Base_kbytes; -- initial value of return parameter from LMR_Read.

76

int Bytes_to_write; -- number of bytes in Write and Code arrays.

SEGMENT_type Write_array; -- storage structure for returned character
array from LMC_Info_theory.

CODE _type Code_array; -- storage structure for returned integers from
LMR_Read.

Initialize Status to NOERROR
Call LMR_Read; set Base_kbytes equal to returned integer value and Status
equal to returned function value.
Loop while Status equals NOERROR and Temp_bytes is greater than
EOF_SIGNAL
Set Bytes_to_write equal to zero
Loop while Status equals NOERROR, Kbytes_read is greater than zero and
Bytes_to_write is less than MAX_SEGMENT_SIZE
Call LMR_Read; set Kbytes_read equal to returned integer value and
Status equal to returned function value.
Set Bytes_to_write position in Code_array equal to Base_kbytes minus
Kbytes_read
Increment Bytes_to_write by one
If Status equals NOERROR
Call LMC_Info_theory with Code_array and Bytes_to_write; set
Write_array equal to returned character array and Status equal to
returned function value.
If Status equals NOERROR
Call LFW_Write with Write_array and Bytes_to_write; set Status equal
to returned function value.
Call LFW_Close with no parameters and set Status equal to returned function
value.
return Status

J.6.3 EFFECTS

None.

J.6.4 EXCEPTIONS
UNIX exceptions.

J.6.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

J.6.6 DATABASE REFERENCED

None.

J.6.7 INTERFACE: int Imc_modulator_controller();

77

J.7 LMC_Info_theory calls the appropriate decoding function based on the
Info_theory_method value in the LMC_Covert database.

J.7.1 INPUTS

Code_array: storage structure for passing the codes read from the file system.
Bytes_to_write: number of bytes contained in the Code and Write arrays (this is
always positive).

J.7.2 PROCESSING
Initialize Status to NOERROR

If Info_theory_method in the LMC_Covert database is equal to PROBABILITY
Call LMC_Char_prob_dist with parameters Code_array and
Bytes_to_write; set Write_array equal to returnen character array and set
Status equal to returned function value.
return Status

J.7.3 EFFECT

None.

J.7.4 EXCEPTIONS
UNIX exceptions.

J.7.5 QUTPUTS

Write_array: storage structure for passing the converted character codes.
Status: NOERROR or EXCEPTION of the function.

J.7.6 DATABASE REFERENCED
LMC_Covert database.

J.7.7TINTERFACE: int Imc_info_theory(CODE_type *Code_array,
int &Bytes_to_write,
SEGMENT_type *Write_array);

J.8 LMC_Char_prob_dist converts (decodes) the integer codes in the Code_array to
characters and stores the characters in the Write_array.

J.8.1 INPUTS

Code_array: storage structure for passing the converted character codes.
Bytes_to_write: number of bytes contained in the Code and Write arrays (this is
always positive).

78

J.8.2 PROCESSING
Initialize Status to NOERROR

Loop incrementing through Code_array for number of Bytes_to_write
If code is less than 26 then convert using Alphabetic_code_array
Store decoded character in Write_array
If code is greater than 25 and less than 35 then convert using
Numeric_code_array
Store decoded character in Write_array
If code is greater than 35
Store UNKNOWN_CHAR character in Write_array
return Status

J.8.3 EFFECT

None.

J.8.4 EXCEPTION

None.

J.8.5 QUTPUTS

Write_array: storage structure for passing the characters.
Status: NOERROR or EXCEPTION of the function.

J.8.6 DATABASE REFERENCED

None.

J.8.7 INTERFACE: int Imc_char_prob_dist(
CODE_type Code_array,
int &Bytes_to_write,
SEGMENT_type Write_array);

K. LOW FILE WRITER MODULE

K.1 MODULE CONSTANTS:
int WRITE_PROMPT_LINES = 1

TYPES:
LFW_OFS_type -- LFW_Open_file Database structure
typedef struct {

int open_status; - boolean value indicating
open status of file
fsid_t file_descriptor; - integer assigned by

the system when a file is opened
JLFW_OFS_type;

79

VARIABLES:
MENU_LINE_type write_prompt = {
“Enter the path to the file you want to write to:
};
LFW_OFS_type LFW_OFS;
LFW_OFS_type *LFW_OFS_ptr = LFW_OFS;
PATHNAME _type LFW_Pathname;

K.2 DATABASES:
LFW_Open_file Database.

K.3 LFW_Init initializes the LFW_Open_file Database structure. Gets the pathname
of the file to write to from the user and calls LFW_Open to open or create the file.

K.3.1 INPUTS

None,

K.3.2 PROCESSING
Local Variables:
int Done = FALSE; -- loop control variable
Initialize Status to NOERROR
Loop while Done equals FALSE
Call Display with parameters write_prompt and
WRITE_PROMPT_LINES; set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library gers, set LFW_Pathname equal to returned
character array and set Status equal to returned function value.
If Status equals NOERROR
Initialize LFW_Open_file database
Call LFW_Open with no parameters and set Status equal to returned
function value.
If Status equals NOERROR
Set Done equal to TRUE
If Status equals EXCEPTION and UNIX errno equals invalid path
exception
Call Display with parameters path_error and ERROR_LINES; set
Status equal to returned function value.
return Status

K.3.3 EFFECTS
LFW_Open_file database is initialized:

open_status is set to FALSE.

80

K.3.4 EXCEPTIONS
UNIX exceptions.

K.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

K.3.6 DATABASE REFERENCED
LFW_Open_file database

K.3.7 INTERFACE: int Ifw_init();

K.4 LFW_Open opens or creates a file for writing and sets the appropriate values in
the LFW_Open_file database structure.

K.4.1 INPUTS

LFW_Pathname: storage structure for passing the path to the file to open or
create.

K.4.2 PROCESSING
Initialize Status to NOERROR

Call UNIX open with parameter LFW_Pathname and set Status equal to returned
function value.
If Status equals NOERROR
Set file_descriptor in LFW_OFS database equal to Status
If Status equals NOERROR
Initalize appropriate LFW_Open_file database values
return Status

K4.3 EFFECTS

LFW_Open_File Database structure is set:
Open_status - set to TRUE.
File_descriptor - contains UNIX file descriptor value.

K.4.4 EXCEPTIONS
UNIX exceptions.

K.4.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

K.4.6 DATABASE REFERENCED
LFW_Open_file Database

81

K.4.7 INTERFACE: int lIfw_open(PATHNAME _type LFW_Pathname);

K.5 LFW_Write writes the characters contained in the Write_array to the file
indicated in the LFW_Open_file Database.

K.5.1 INPUTS

Write_array: storage structure for passing the characters to be written.
Bytes_to_write: number of bytes contained in the Write_array (this is always
positive).

K.5.2 PROCESSING
Initialize Status to NOERROR

Call UNIX write with file_descriptor in LFW_Open_file database, pointer to
Write_array and Bytes_to_write; set Status equal to returned function
value.

return Status

K.5.3 EFFECTS

None.

K.5.4 EXCEPTIONS
UNIX exceptions.

K.5.5 OUTPUTS
Status: NOERROR or EXCEPTION of the function.

K.5.6 DATABASE REFERENCED

LFW_Open_file Database

K.5.7 INTERFACE: int lfr_write(SEGMENT _type Write_array,
int &Bytes_to_write);

K.6 LFW_Close sets the open_status to FALSE in the LFW_Open_file database for
the file that has been opened by the function LFW_Open.

K.6.1 INPUTS

None

K.6.2 PROCESSING

Initialize Status equal to NOERROR
If Open_status in the LFW_Open_file database equals TRUE
Call UNIX close with parameter file_descriptor and set Status equal to
returned function value.

82

L.

If Status equals NOERROR
Set open_status in the LFW_Open_file database equal to FALSE
return Status

K.6.3 EFFECTS
LFW_Open_File Database has Open_status set to FALSE.

K.6.4 EXCEPTIONS
UNIX exceptions.

K.6.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

K.6.6 DATABASE REFERENCED

LFW_Open_file Database

K.6.7 INTERFACE: int Ifw_close();

LOW MODULATOR READER MODULE

L.1 MODULE CONSTANTS:
int READ_PROMPT_LINES =1

TYPES:
None.

VARIABLES:
MENU_LINE_type read_prompt = {
“Enter the path to the file on the file system you want to read:”
K
LMR_Pathname -- character array of length
MAX_PATH_LENGTH
PATHNAME_type *LMR_Pathname;

L.2 DATABASES:
None.

L.3 LMR_Init initializes the LMR_Pathname array to the path of a file on the file
system that the user wants to monitor the file system size modulation.

L.3.1 INPUTS

None.

83

L.3.2 PROCESSING

Local Variables:
struct stat stat_buffer -- structure for holding return values from UNIX star
stat *stat_buf_ptr = stat_buffer;
int Done = FALSE; -- loop control variable
Initialize Status to NOERROR
Loop while Done equals FALSE
Call Display with parameters read_prompt and READ_PROMPT_LINES;
set Status equal to returned function value.
If Status equals NOERROR
Call UNIX C-library gets, set LMR_Pathname equal to returned
character array and set Status equal to returned function value.
If Status equals NOERROR
Call UNIX star with parameter LMR_Pathname; set stat_buf_ptr to
returned stat structure and set Status equal to returned function value.
If Status equals NOERROR
Set Done equal to TRUE
If Status equals EXCEPTION and UNIX errno equals invalid path
exception
Call Display with parameters path_error and ERROR_LINES: set
Status equal to returned function value.
return Status

L.3.3 EFFECTS

None.

L.3.4 EXCEPTIONS
UNIX exceptions.

L.3.5 QUTPUTS
Status: NOERROR or EXCEPTION of the function.

L.3.6 DATABASE REFERENCED

None.

L.3.7 INTERFACE: int LMT_init():

L.4 LMR_Read determines and returns the number of free blocks on the file system
refered to by LMR_pathname. The UNIX block size is 1024 bytes.

L.4.1 INPUTS

Kbytes_read: number of free blocks on the file system.

84

L.4.2 PROCESSING
Local Variables:

struct statfs buf -- structure for holding return values from UNIX fstatfs
statfs *buf_ptr = buf;

Initialize Status to NOERROR

Call UNIX statfs with parameters LMR_Pathname; set buf_ptr equal to returned

statfs structure and set Status equal to returned function value.

If Status equals NOERROR

Set Kbytes_read equal to f_bfree in statfs struct (Kbytes_read = buf_ptr ->
f_bfree)
return Status

L.4.3 EFFECT

None.

L.4.4 EXCEPTIONS
UNIX exceptions.

L.4.5 OUTPUTS
Status: NOERROR or EXCEPTION of the function.

L.4.6 DATABASE REFERENCED

None.

L.4.7 INTERFACE: int Imr_read(int &Kbytes_read);

85

86

10.

11.

12.

13.

14.

15.

LIST OF REFERENCES

National Computer Security Center. DoD Trusted Computer System Evaluation
Criteria, Department of Defense, DoD 5200.28-STD, December 1985.

Gasser, Morrie. Building a Secure Computer System, New York: Van Nostrand
Reinhold, 1988.

Amoroso, Edward G. Fundamentals of Computer Security Technology, Prentice-
Hall, Inc., 1994.

Bell, D. E., and LaPadula, L. J. Secure Computer Systems: Mathematical
Foundations, ESD-TR-73-278, Vol. 1, Mitre Corporation, 1973.

Graham, G. S., and Denning, P. J. “Protection--Principles and Practice.” Proc.
Spring Jt. Computer Conf, Vol. 40. Montvale, N. J.: AFIPS Press (1972): 417-429.

Biba, K. Integrity Considerations for Secure Computer Systems, MTR-3153, Mitre
Corporation, 1975.

Lampson, Butler. “A Note on the Confinement Problem.” Communications of the
ACM, Vol.16, No.10 (October 1973): 613-615.

SUN Microsystems Federal, Inc. Trusted Facility Manual for Trusted Solaris 1.1.
Vol. I & II, Revision A, February 1994,

van Tilborg, Henk C. A. An Introduction to Cryptology, Boston: Kluwer Academic
Publishers.

Booch, G., and Bryan, D. Software Engineering with ADA, 3rd ed. Redwood City,
California: Benjamin/Cummings Publishing Company, Inc., 1994.

Parnas, D. L. “On the Criteria To Be Used in Decomposing Systems into Modules.”
Communications of the ACM Vol.15, No.12 (December 1972): 1053-1058.

Berzins, V., and Luqi. Software Engineering with Abstractions. New York: Addison-
Wesley Publishing Company, 1991.

Yourdon, E. Modern Structured Analysis. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1989.

National Computer Security Center. A Guide to Understanding Audit in Trusted
Systems, NCSC-TG-001 Ver. 2, 1 June 1988.

Gligor, Virgil D. Guidelines for Trusted Facility Management and Audit. University
of Maryland, 1985.

87

16.

17.

18.

Proctor, P. “Audit Reduction and Misuse Detection in Heterogeneous Environments:
Framework and Application.” JEEE Computer Security Applications Conference.
Orlando, Florida. (December 1994) : 117-125.

Fisch, E. A., White, G. B., and Pooch, U. W. “The Design of an Audit Trail Analysis
Tool.” IEEE Computer Security Applications Conference. Orlando, Florida.
(December 1994) : 126-132.

National Computer Security Center. A Guide to Understanding Covert Channe!
Analysis of Trusted Systems, NCSC-TG-030 Ver. 1, November 1993,

88

INITIAL DISTRIBUTION LIST

. Defense Technical Information Centeruiu e eemeneennnnnn.

Cameron Station
Alexandria, VA 22304-6145

. DudleyKnoxLibraryooiiiiiiiiiiiiiiinnn... e
Code 052

Naval Postgraduate School

Monterey, CA 93943-5101

. Chairman, Code CS ... i ittt e e e e e e

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. DrCynthiaE. Irvine, Code CS/ICoiiiiitii ittt
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

. DrTimothy J. Shimeall, Code CS/SM it
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

. Sun Microsystems Federal i
ATTN: Don Adams

2550 Garcia Avenue

Mountain View, CA 94043

Mail Stop 06-07

. Prof. Roger Stemp, Code CS/Spoviiiii i
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

. Albert Wong, Code CS oo i
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

89

9. CptRonald J. DeJong
1250 Monroe Blvd

South Haven, MI 49090

90

