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CAPACITANCE OF CHARGED INTERFACES 
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Abstract: An electrostatic model of solvent (H2O) dipole interactions at charged 

interfaces is reported. The model of H2O used in the present study has an internal dipole 

structure characterized by both a dipole moment (HD) and a finite dipole length (d^). The 

electric force acting on an individual molecule in the first monolayer is computed as a 

function of du, taking into account both surface charge/dipole and dipole/dipole 

interactions. Inclusion of the finite dimensions of the dipole and hard-core solvent 

diameter allows a simple and self-consistent method for calculating the interaction between 

solvent molecules. The capacitance of the charged interface, based on a simplistic two- 

state model of H2O orientation, is shown to be sensitive to the dipole structural parameters 

(ID and du., demonstrating the necessity of accounting for the charge distribution within the 

solvent molecule. The results are discussed in terms of existing models of H2O currently 

used in molecular dynamics and Monte Carlo simulations of interfacial fluid structure. 
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Introduction. Solvent orientation at the electrode/electrolyte interface has been the 

subject of intense research since the first two-state dipole model of a H2O monolayer was 

proposed by Watts-Tobin in 1961.l In the Watts-Tobin model, solvent molecules in the 

first monolayer of electrolyte are assumed to orient with their dipoles pointed either towards 

or away from the electrode surface in response to the applied electric field. At potentials 

far from the potential of zero charge (p.z.c), the electric force acting on the dipole layer is 

sufficiently large that orientation of the dipoles is predicted to occur. Near the p.z.c, the 

electrostatic interaction is small compared to thermal energies, reducing the degree of 

dipole orientation. A key result of the Watts-Tobin model is the prediction of a maximum 

in the inner layer capacitance as a function of the potential. The inner layer capacitance 

maximum or "hump" is experimentally observed for Hg electrodes in aqueous2 and 

nonaqueous3 electrolytes, as well as for oriented solid electrodes (e.g., Ag4"6 and Au7-9). 

In situ infrared spectroscopy of surface H2O supports the notion of a potential-dependent 

solvent reorientation but also demonstrates that the solvent structure is clearly more 

complex than suggested by the classical two-state model.10 

Numerous improvements and modifications of the Watts-Tobin model have been 

made over the course of the past 3 decades, motivated by the desire to quantitatively 

describe the potential-dependent capacitance and surface entropy of Hg electrodes in 

aqueous and non-aqueous electrolyte. Three-state11 and multi-state models12»13 have been 

introduced, and the role of hydrogen bonding14, image charges15, solvent tilt angle1, 

solvent clustering16-17, and higher-order polarization have been investigated. Lateral 

interactions between adjacent H2O dipoles, apparently first considered by Levine et al.15 in 

context of the Watts-Tobin model, have been extensively investigated by Fawcett11-12-18 

and Lamperski19 in point-dipole models. A detailed account of progress in this field is 

described in a review by Guidelli.20 

Although the above-mentioned analytical models have been remarkably successful 

in computing the inner layer capacitance,     general objections have been raised in the 



literature concerning this approach to modeling the interface.21'22 First, the separation 

of the interface into an inner layer and outer layer is clearly only approximate, requiring a 

artificial boundary to demarcate the region in space where the solvent structure is no longer 

influenced by the presence of the surface. Second, the analytical models have relied on 

the use of point dipoles imbedded in a continuum dielectric to describe the structure of the 

solvent. The use of a point dipole model appears valid only when the interaction distances 

being considered are much larger than the actual separation of charge within the solvent 

molecule. This limiting case may not strictly apply to densely-packed H2O molecules 

within the inner layer. 

Beginning with investigations in the early 1980's, Monte Carlo (MC) and 

molecular dynamics (MD) simulations have been used with increasing frequency to 

characterize the structure of liquids at hard surfaces. The use of so-called "realistic" 

models of H2O23-27, such as the popular ST228 and SPC29 models, and the avoidance of 

separating the double layer into inner and outer regions, suggests that the MC and MD 

methods offer significant advantages over the analytical approach initiated by Watts-Tobin. 

Indeed, fundamental insight into various electrochemical phenomena such as ion 

adsorption30-31'32 and solvent dynamics33'35 have been obtained during the past few years 

using realistic H2O models in computer simulations. As with the previous analytical 

theories, the success of the MD and MC simulations in accurately describing interfacial 

properties relies to a large extent on the model of H2O chosen for the simulation. The 

majority of these models are characterized by (i) a fixed-site distribution of point charges 

(either 3 or 4-site charge models are employed) intended to mimic the dipole and 

quadrupole moments of individual H2O molecule, and (ii) a Lennard-Jones term describing 

the interaction between oxygen atoms of different molecules. The L-J potential is radial 

symmetric, allowing an effective hard-core collision diameter, ou, to be defined for the 

molecule. In the present context, it is important to note that the parameters associated 

with both (i) and (ii) have been determined empirically using data for bulk H2O.   Thus, 



there is no a prior reason to assume that such H2O models are equally well suited for 

simulations of interfacial H2O.     Table I lists some of the more popular models of H2O, 

all of which yield reasonable properties of bulk properties of H2O when employed in 

simulations (the older Rowlison model of H2O is not currently used but is included here in 

order to give an example of a model based on the dielectric properties of vapor phase H2O). 

Table I also lists the dipole moment (M-D). dipole length (d^),    and  CLJ for each model. 

In addition,   the dipole position relative to oxygen atom, and the ratio of the dipole length 

to the hard-core diameter (dp/au). are schematically shown in the last column of Table I. 

(The reader should note that d^ and the dipole position are not explicitly given in the 

original papers describing these models, but can be readily deduced from the geometrical 

positions of the point charges defining the model.)     The interesting feature of the data in 

Table I is the large variance in both dp. and the dipole position for the various H2O models 

currently used in MD and MC simulations. For instance,   dp. for the BNS (1.16 Ä) and 

ST2 (1.04 Ä) models are approximately twice as large as that for SPC/E (0.58 Ä) and 

TTPS2 (0.44 Ä);    on the other hand,   the dipoles of BNS and ST2 H2O are nearly 

symmetrically centered about the oxygen atom, while the negative end of the dipole for 

SPE/C and TIPS2 H2O are positioned directly on the oxygen atom. TTP4P and PPC have 

relatively small values of du (similar to SPC/E and TIPS2),   but have symmetrically 

centered dipoles (similar to BNS and TIPS2).   Given the dissimilarity of the dipole 

structures of these models, it seems unlikely that each can capture the properties of charged 

interfaces with equal success, since the potential distribution should depend markedly on 

the dipole structure of the solvent model.     Indeed, a MD simulation of the capacitance of 

a charged Pt/H2Ü interface using BJH and TIP4P models of H2O has been reported;36 

however, this simulation failed to reproduce the potential dependence of the capacitance 

associated with solvent reorientation. 

In this short communication,  we develop a simplistic 2-state model of solvent 

orientation (similar to the original Watts-Tobin model) that takes into account the finite 



dipole length of H2O. The goal is to gain insight into the nature of the dependence of the 

interfacial capacitance on the assumed dipole structure of the solvent molecule; no attempt 

is made to develop a realistic picture of the interface. H2O is modeled as a hard sphere 

with an imbedded dipole of finite length. Using an classical electrostatic approach recently 

developed for computing the potential distribution across self-assembled monolayers 

containing fixed site acid/base or redox centers,37*39 we compute the inner layer and total 

capacitance of an ideal electrode immersed in an ideal non-adsorbing electrolyte. The 

results clearly demonstrate that the potential distribution and capacitance are strong 

functions of the dipole structure. 

Results and Discussion 

Model of Inner Layer Structure 

Fig. 1 shows the electrostatic model used to compute the interfacial potential and 

charge distributions. In the monolayer adjacent to the electrode surface, solvent molecules 

are modeled as hard spheres of radius r0 containing an imbedded dipole. The dipole is 

characterized by two point charges, z^ and -z^, separated by a distance d^ and 

symmetrically centered within the hard sphere. The dipole moment is defined as |1D = 

Zjjdn- A dielectric constant e«, is assigned to the inner layer region (i.e., 0 < d < 2r0). 

At distances > 2r0, the electrolyte solution is assumed to be a structureless fluid with a 

potential distribution governed by the Gouy-Chapman model, decaying to (j)s in the bulk. 

The solution contains a symmetrical z:z electrolyte and is assigned a dielectric constant es. 

The average electric field E at the center of the monolayer can be calculated as the 

sum of the electric fields contributed from the metal surface (Em) and from the dipoles 

(Ed): 

ET
 -Em + Ed - jit+ ik (i) 



In eq. 1, cm is the average charge density on the metal surface and EQ is the permittivity of 

vacuum. The quantity Gi is the charge density on the plane defined by the end of the 

dipole nearest the electrode surface (Fig. 1), and is given by 

a, = zMF(r1-r2) (2) 

where 1^ and T2 are the surface concentrations (mol/cm2) of solvent molecules having 

their dipoles directed towards or away from the electrode, respectively. Similarly, 02 is 

defined as the charge density of the plane defined by the end of the dipole furthest from the 

surface.   By definition,   o"i = -o"2. 

Using eq. (2),  the electric field across the inner layer can be thus be written in 

terms of the parameters )ID and d^. 

£_=-**- + ^(ri-r2) (3) 

Unlike results obtained using point-dipole models of the inner layer, eq. 3 indicates 

clearly shows that the electric force acting on a solvent molecule is expected to be a function 

of the charge distribution within the molecule. 

Levine et al.15 and Fawcett and coworkers11*12'18 have previously demonstrated 

the importance of taking into account lateral electrostatic interactions between neighboring 

dipoles. Their approach to computing the dipole-dipole interaction is based on a two- 

dimensional hexagonal lattice model. Assuming a point dipole solvent molecule, the field 

acting on a central dipole, due the dipole field of the neighboring solvent molecules is 

given by 

Ef  = £(mp + m,.) 



where C is a coordination number, d is distance between nearest neighbors, and mp and 

mi are the average permanent and induced dipole moments per site (for instance, mp = 

(rt - r2)/xD/rT). The precise value of C critically depends on how dipole-dipole and 

dipole images are computed, as has been previously discussed in detailed in the 

literature.40-42 The lattice approach ignores local equilibrium between neighboring 

dipoles; i.e, the probablility of a neighboring dipole being in an up or down configuration 

is independent of the orientiational state of the central dipole (and vice versa). This 

"random approximation"15 leads to a value of Ef that is the same at all dipole sites. 

By analogy with the above strategy, the lateral interactions between dipoles of 

finite dimension d^ can be computed by summing the field at the position of a central dipole 

due to the charge densities c\ and 02- Fig. 2 shows an individual dipole of length dp. 

imbedded in a hard sphere of diameter 2rQ. The planes of charge Ci and 02 are located at 

a distance (l/2)dM. above and below the dipole center. The field at the center of the dipole 

is computed, excluding its own field, by integrating the field resulting from the charged 

planes between r0 and °°: 

Ef =   -— 
'o~ [(d^/lf + r2]3'2 r 

dJ2 
V-w <4> 

= XEd 

dß/2 
'2)2+i 

the point dipole models, the use of averaged charge densities (tfi and 02) is based on the 

where X =  \ 2^72-   Similar to the use of an average dipole moment (mp) in 



approximation of random dipole orientation (no nearest neighbor correlation). The use of 

averaged charge densities, rather than discrete charges on a lattice sites, however, allows 

for a simple method of computing long-range electrostatic interactions. 

From eq. (4), the lateral interaction is determined by X, which in turn, is a 

function of |!D and the solvent radius r0. Using the terminology of Damaskin17, X may be 

referred to as a discreteness coefficient that accounts (albeit approximately) for the finite 

dimensions of both the solvent and dipole length. 

It is readily seen from eq. (4) that when X is equal to 1, Ef = Ed.   Physically, 

this corresponds to including the dipole self-interaction in computing the force acting on 

the dipole (as assumed by Watts-Tobin1). On the other hand, X equal to 0 corresponds to 

neglecting the lateral interactions (i.e., Ef = 0, as assumed in several theories). 

Clearly, X should take on a value between 0 and 1. For the so-called realistic H2O 

models listed in Table 1, X has values ranging from 0.15 (TIPS2) to 0.38 (BNS) 

(approximating 2r0 by cu and ignoring the offset of the dipole from the central oxygen 

atom position). In the following sections, X and Ef(eq. 4) are used to compute the total 

electric field, ET (eq. 1), acting on a dipole in the inner layer. 

The potential drop across the inner layer is given by: 

"V. Vm V2r0 £g£x £o£oo 

_ 2^ + fipFd -r2) 

(5) 

e0e„ e0e„ 

Unlike the electric field, the potential drop across the inner layer does not depend on the 

dipole structure. 

As previously noted, the molecular orientation is anticipated to be a function of 

applied potential if the electrostatic forces between the charges on the metal and on the 

molecule are sufficiently large to flip the molecules between an inwards and outwards 



configuration. As an approximation of the influence of electrostatic potential on the 

molecular orientation, we assume that the electrochemical potential of the solvent is given 

by 

Pj = ß° + RTlnaj - F(ErpD)j (6) 

where R and T are the molar gas constant (J mol"1 K*1), and the absolute temperature (K), 

respectively. The subscript j refers to the two possible dipole orientations (positive end 

inwards (j = 1) and outwards 0=2) surface). At equilibrium, "ßx=Ji2. Approximating 

the activities in eq. 6 by the respective surface concentrations Tx and T2, yields a 

relationship between the potential drop across the inner layer and the orientation of the 

dipoles. 

ETdß = 
v  2z°F  j 

RTAnT 

2zDF    r2 
(7) 

Eq. 7 is the same as that derived by statistical methods. The first term on the r.h.s. of eq. 

7 describes the difference in the nonelectrostatic interactions between the two allowed 

dipole orientations. We define the fraction of molecules with positive charge oriented 

inwards toward the electrode surface as / = ri/rr (where TT = rt + r2), and 

£° = -(ß° - p%) 12zdF. At the p.z.c, the ratio Fx / T2 will be determined solely by £°'. 

Substituting eq. 7 into eq. 1, replacing Ed by Ef, and using Yx - F2 = (2f-l)TT, 

yields the charge density on metal, am. 

".-^ 
„  ,    RT Jl-n - z„AF(2/-l)rr (8) 



The inner layer capacity Q can be obtained, using eq. 5, by differentiating the surface 

charge with respect to the inner layer potential A§[: 

C7l = 

-   M      +   *~2   J^r dc„ (9) 

- Q       C2 
e0e„RT df 

ylzfdpWX-f) do» 
+ X -l 

where Cx = e0eM 12r0 and C2 = £0£„ / ^.   The term df/dam is calculated from eq. 8: 

df    _ 
do. 

e0£~ RT 
2   ßDFf(l-f) 

+ 2zßXfFTT (10) 

The total capacity of the interface is given by: 

C~x = r-1 + C~x (ID 

whereC^ = e0esKcosh\ze(<t>2r<>-<ps)/2kT]. The potential drop across the diffusion 

layer (<p2r - #,) can be evaluated by noting that the diffuse layer charge Odif is equal, but 

of opposite sign, to the charge density on the metal, i.e., 

-om = <*dif = -(2kTe0esK/ze)sinh[ze{<{>2r<>-<t>s)/2kTJ. Solving for (^ - 0,) 

yields37 

(*2r.   "   <M 
2kT 
ze 

In 
zea„ 

2kTe0esK 
zeo„ 

2kTe0esK 
+ 1 

1/2 "\ 

(12) 
J    ) 

10 



Substituting eqs. 9, 10,  and 12 into eq. 11 yields the total capacitance of the electrode. 

Effect ofdipole length on the inner layer capacitance. 

Fig. 3 shows the dependence of the inner layer capacitance as a function of the 

charge density on the metal and dipole length d^. The set of constants used in these 

calculations are ^D = 1.84 D,43 2r0 = 3.2Ä,40 and e« is 6,17-20 corresponding roughly 

to expected parameters for H2O at a metal interface. Results are shown for d^ between 

0.001 and 1.6Ä, corresponding to 380 > Zn>0.238e and 0.000313 < l< 0.447. The 

total dipole coverage is calculated as TT = (^NA)"
1
 = 1.7 x 10"9 mol/cm2, where NA is 

Avogadro' number. 

As can be seen in Fig. 3, the inner layer capacitance is a relatively strong function 

of d|i, the maximum in Q increasing by nearly a factor of 2 as dy. in increased from 0.001 

Ä to 1.6 Ä. The increase in capacitance with increasing d^ is clearly a consequence of the 

closer proximity of the dipole charge to the surface, thereby inducing a larger charge on 

the metal. 

The results in Fig. 3 show that the inner layer capacitance is essentially independent 

of the dipole structure for values of dp. less than -0.8 Ä. Thus, the model developed here 

for a dipole of finite length reduces to that of a point dipole model when dp. < -0.8 Ä. A 

more precise statement of this limiting case is that d^Ab « 1. For small values of d^Ab, 

(d^/2)2 can be ignored from the denominator of eq. (4), yielding X = (1^2^. When X = 

d^ro is substituted into eq. 9 for the inner layer capacitance, it is straightforward to 

show that the resulting equation is a function of the dipole moment |XD» but independent of 

the dipole length d^. 

In Fig. 4, the components of the electric field within the dipole layer are plotted as 

a function of total potential drop (0m - ^) across the inner and outer (diffuse) layers. 

As expected, the dipole field (either Ed or Ef) always opposes the field due to the surface 

charge on the metal,   Em.    However,   inclusion of the dipole-dipole interactions in 

11 



computing Ef, significantly reduces the dipole field in comparison to Ed (corresponding 

to X = 1).   On the over hand, Ef is makes a significant contribution to the total field and 

cannot be neglected. For example, for the parameters used in computing the results in 

Fig. 4(^D = 1-84 D, 2r0 = 3.2Ä, e«, is 6, andd^ = 0.5Ä), the magnitude of Ef is 

always comparable to that of Em. Thus, ignoring the dipole field (i.e., setting X = 0) 

results in a significant error in the inner layer field strength. 

Together, Figs. 3 and 4 clearly show that proper accounting of the lateral forces is 

critical in determining the interfacial charge and potential distributions. As previously 

noted, a number of theories have completely ignored (k = 0) or greatly overestimated (X = 

1) dipole-dipole interactions. It is thus interesting to briefly examine the magnitude of 

error expected in Q when X is chosen in a somewhat arbitrary fashion. In Fig. 5, we 

show a set of inner-layer capacitance curves as a function of X using the same set of 

parameters as above with dp = 0.5 Ä, except that two of the three values of X are chosen 

independendy of dp, rather than being calculated from eq. 4. The three curves in Fig. 5 

corresponding to X = 0.120, 0.154, and = 0.180 ( where X = 0.154 corresponds exactly 

to dp = 0.5 Ä as computed from eq. 4). Fig. 5 shows that the shape and magnitude of the 

capacitance curves are extremely sensitive to X; less than a 0.04 variation in X totally 

changes the shape of curve. The point here is that a small error in the computation of the 

dipole-dipole interaction is greatly amplified in the resulting capacitance curves. 

Conclusion. 

The results presented here demonstrate that the interfacial capacitance is a relatively 

strong function of the assumed dipole structure of the solvent molecule. The dependence 

of the capacitance on dp. arises through lateral dipole-dipole interactions. Values of the 

capacitance using a simple two-state model have been shown to be independent of dp for 0 

< d^ < 0.8Ä for H2O. This finding suggests that many of the realistic models of H2O 

listed in Table I,  which have dp < 0.8 (the exceptions being BNS and ST2 models), 

12 



should yield qualitatively equivalent results. However, the dipole structure is only one 

of several parameters used in optimizing H2O models for MD and MC simulations. 

Clearly, the induced dipole polarizability, ignored in our present treatment, will be 

important in determining interfacial dielectric properties. 

An interesting result of our investigations is that, for values of dp, smaller than ~0.8 

Ä, the finite-length dipole model of H2O yields values of the interfacial capacitance that 

are in quantitative agreement with results for a point-dipole structure. Even somewhat 

larger values of dp. (e.g., 1 Ä) yield capacitance values within 20% of the values obtained 

for a point-dipole structure. Thus, it follows that the earlier criticisms of using point- 

dipole models of H2O (see Introduction) are not as well founded as previously suggested. 

Acknowledgment. Financial support by the Office of Naval Research is gratefully 

acknowledged. 
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Figure Captions. 

1. Schematic drawing of solvent molecules adjacent to an electrode surface. The 

solvent is modeled as hard spheres with an imbedded dipole of finite length d^. The 

potential profile is shown across the inner and diffuse layers. The ends of the 

solvent dipole define hypothetical planes of mean charge density (ai and CT2) and 

potential (§1 and §2). 

2. Model system used to calculate dipole-dipole interactions within the inner layer. 

3. Dependence of the inner layer capacitance as a function of the charge density on the 

metal (am) and the dipole length (d^). The set of parameters used in these 

calculations are ^D = 1-84 D, 2r0 = 3.2 Ä, e«, = 6. Values of du are listed on the 

figure, and correspond to 0.000313 < A. < 0.447 and 360 > zu > 0.225e" (see 

text). 

4. Components of the inner layer electric field as a function of the total interfacial 

potential drop. Em = field resulting from surface charge on the electrode; Ed = 

total dipole field (K = 1); and Ef= dipole field acting on an individual solvent 

molecule. The dashed lined corresponds to the total field acting on an individual 

solvent molecule (ET = Em + Ef). The parameters used in the calculation are the 

same as in Fig. 3 with dp, = 0.5 A. 
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5. The inner layer capacitance as a function of X for a constant d^ ( = 0.5 Ä). Values 

of X used in computing the capacitance are chosen independently of dy. to show the 

effect of under or overestimation of the lateral interactions. Other parameters used as 

the same as in Fig. 3 
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Table I.    Dipole Parameters of Molecular Models 
ofH20 

Model (ref-}     MD)      ^(A)      gu(A)    Dipole Position 

(27) 
BNS 2.17 1.16 2.82 

(28) 
ST2 2.35 1.04 3.10 

(29) 
SPC/E 2.35 0.58 3.17 

(25) 
PPC 2.52 0.54 3.23 

Rowlinson2JJ   1.84        0.58 2.73 (~>) 

(24) 
TIPS2 2.24        0.44 3.24 
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(26) 
TIP4P 2.18 0.55 3.15 -> 
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