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ABSTRACT 

This thesis investigates the application of the two-dimensional cepstrum transform 

to a speaker identification system. Two distance measures are implemented for the 

identification decision; the Euclidean distance and a weighted two-dimensional cepstral 

distance. The study considers three words to be tested under several noise levels. The 

effect of speaking rate during recordings is examined and is shown to be critical. Results 

show identification rates in the range of 95% to 98.5% for 50 dB signal to noise ratio and 

57.65% to 80.7% for 0 dB signal to noise ratio. 
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I. INTRODUCTION 

There have been several studies in the past dealing with the communication 

between humans and machines through speech. The problem of speaker identification is 

examined in this thesis, where speaker identification refers to the task of identifying a 

given speaker among a group of several known speakers using test utterances. The 

applications of speaker identification cover a wide area which may include efficient 

banking and business transactions, controlled access of a specific space or information to 

selected individuals for security purposes, etc. 

The method of speaker identification focuses on transforming the speech signal 

into a set of parameters that will efficiently represent the individual speaker and then 

compare these parameters with a library of stored reference templates of parameters of a 

group of people. The task is then for the machine to find the closest match and make a 

decision. Several signal processing techniques have been applied in order to create these 

parameters. The vocal tract characteristics uniquely describe the voice of each individual 

and these characterizing parameters may be obtained by using one-dimensional analysis. 

The two-dimensional cepstrum is an extension of the one-dimensional in that it takes into 

account the variations of the cepstral coefficients. Therefore, in this thesis, the 

two-dimensional cepstrum transform is used to build word patterns to represent each 

speaker. 

The use of three words is considered: two simple monosyllable and one longer, in 

order to examine the performance of the system in combinations of voiced and unvoiced 

speech. The robustness of the recognizer is also investigated in noisy conditions when 

background noise is added with a user-defined Signal to Noise Ratio. 

Chapter II gives a brief analysis of speech and its characteristics. Chapter III 

presents the basics of cepstral analysis. We first introduce the one-dimensional cepstrum, 

and then present the two-dimensional cepstral extension. Chapter IV analyzes the data 

collection and preparation process. Chapter V describes the test set-up and the results 



obtained. Finally, Chapter VI presents conclusions and recommendations for future 

research. 



II. SPEECH ANALYSIS 

Speech signals are used for communication and exchange of information between 

two or more people. Fundamentally, speech is made up of sound pressure waves that are 

produced by the mouth of a speaker when and traveling through a medium are perceived 

by a listener. These pressure waves are primarily produced in the lungs. The resulting flow 

of air passing through the trachea, glottis, larynx, pharynx, mouth and nose generates the 

various sounds. These sounds, depending on the position of the vocal tract articulators, 

namely the vocal cord, tongue, lips and velum, produce the phones, words and phrases 

that make up every spoken language. 

Speech is divided into voiced and unvoiced sections depending on the means of 

excitation. Voiced speech is produced when air is blown through the glottis or between 

the vocal folds. The vocal cords then vibrate due to their tension in a quasi-periodic 

fashion. The sound produced in that way is called voice or phonation. Some examples of 

voiced sounds are the sounds HI in "eve", IE/ in "met" and l@l in "at". Unvoiced speech is 

produced when there is a constriction at some point of the vocal tract. Examples of 

unvoiced sounds are I si in "see", /// in "for", IT/ in "thin" and I SI in "she". 

Speech can be represented as the concatenation of elements from a well defined set 

of symbols. The basic units or symbols from which each sound can be classified are called 

phonemes. When the phonemes are combined, they produce the words and phrases that 

are used for communication. The combinations of the phonemes follow certain rules, and 

the science studying them is called linguistics. Phonetics is the study and classification of 

speech sounds. Coarticulation is the term used to refer to the change in phoneme 

articulation and acoustics caused by the influence of another sound in the same utterance. 

Articulators are the finer anatomical features like the vocal cords, the velum, the tongue, 

the teeth and the lips that move to different positions to produce various speech sounds. 

These movements, that most of the time overlap in time, have an effect on the transitions 

from one sound to the next one, as well as on the duration of phonemes. For example, 

consider the duration of the utterance "an" spoken by itself and when spoken in the 



sentence "an open door". The duration is significantly reduced when spoken in the phrase. 

The vocal and nasal tracts can be represented as tubes of nonuniform cross-sectional area. 

The resonant frequencies of the vocal tract tube, when sound propagates through it, are 

called formant frequencies which depend upon the shape and dimensions of the vocal 

tract. 

Phonemes can be classified depending on properties related to the time waveform, 

characteristic frequencies, manner of articulation, place of articulation, type of excitation 

and stationarity of phoneme. In general, phonemes are divided into continuants and 

noncontinuants. Continuant is a phoneme whose sound is produced by a steady-state vocal 

tract configuration. Noncontinuant is a phoneme where there is a change in the vocal tract 

configuration. Table 1 presents a classification of phonemes of American English and 

Table 2 lists their respective phonetic representation, as well as, examples of how each 

phoneme is pronounced in the context of a word. 

Phones are defined as the actual sounds produced by speakers, which lead to the 

understanding of the intended meaning of the sounds. Phoneme sounds, in normal speech, 

have transition periods between them, therefore, with each phoneme a group of 

transitional phone variations called allophones are associated [Ref. 1]. 

Vowels are among the phonemes with the largest amplitudes. They are produced 

by exciting a fixed vocal tract with quasi-periodic pulses of air generated by vibration of 

the vocal cords. They are distinguished by the frequency location of their first three 

formants, whose averages are shown in Figure 1 [Ref. 1]. The group of sounds consisting 

of/w/, IV, ITI and lyl are called semivowels. They are classified as either liquids (/w/, III) or 

glides (ITI and lyl). Note that they are called semivowels because they have similar spectral 

characteristics to vowels. 



Continuant 

Vowels 

/ 
ront 

/ 

IV 

\ 

id Back 
fU IRI lul 
III M lüf 
lei IN lol 
IEI Id 
/©/ lal 

Fricatives 

Noncontinuant 

A 
Consonants 

Voiced Unvoiced 
/b/ /p/ 
Id/ IM 
Ig/ Ikl 

Voiced 
Nl 
IÜI 
IzJ 
IZJ 

Unvoiced 
m 
m 
Isl 
ISI 

Consonants 

Whisper 
Ihl 

Affricates Nasals 
/J/ Iml 
/C/ In/ 

IGI 

Table 1. Phonemes used in American English. 



Single Upper Examples Single Upper Examples Single Upper Examples 

Symbol case Symbol case Symbol case 

Version Version Version Version Version Version 

i IY heed d D deep t T tea 

I m hid k K kick F DX batter 

e EY hayed g G go Q Q quit 

E EH head f F five w w want 

@ AE had V V vice y Y yard 

a AA hod T TH thing r R race 

c AO hawed D DH then C CH church 

0 OW hoed s S so J JH just 

U UH hood z Z zebra H WH when 

u UW who'd S SH show b B bat 

R ER heard Z ZH measure P P pea 

X AX ago h HH help M EM some 

A AH mud m M mom N EN son 

Y AY hide n N noon X IX roses 

W AW how'd G NX sing L EL cattle 

O OY boy 1 L love 

Table 2. Phonetic Alphabets. 



3600 

3000 

2400 

TT   1800 

s-   1200 

eoo 

o r*™i 

i     i 

HI     l\l     IEI   l@l   /a/    Id    IUI    hi    IN   /HI 

Figure 1. Average formant locations for vowels in American English, [Ref 1]. 

The quasi-periodic features of vowels are illustrated in Figure 2 and Figure 3. 

They respectively show the time domain and frequency domain representations for the 

vowels l@l from the word "man" and I'll from the word "beat". 

Diphtongs are produced by the movement from one vowel toward another. This 

movement is done by varying in time the vocal tract during this transition. Semivowels are 

weaker than vowels and are classified as glides and liquids. They are transitional and 

vowel-like sounds and, hence, are similar in nature to the vowels and diphtongs. Nasals 

are voiced sounds produced by the glottal waveform exciting an open nasal cavity and 

closed oral cavity. 

Fricatives are divided into voiced and unvoiced phonemes. The voiced fricatives 

are produced by exciting the vocal tract by a steady air flow and a region of the vocal tract 

is constricted.  The location of the constriction determines the sound spoken. The voiced 



Phoneme /@/from the word "man" 

0.01      0.02 0.03 
Time 

0.04 
[sec] 

Spectrum of phoneme t@f 

0.05      0.06      0.07 

1000 2000 3000 
frequency        [Hz] 

4000 

Figure 2. Time waveform and spectrum of the phoneme l@l from the word 'mart. 



Phoneme f\l from the word "beat" 

0.01      0.02 0.03 
Time 

0.04 
[sec] 

Spectrum of phoneme f\i 

0.05      0.06      0.07 

1000 2000 3000 
frequency        [Hz] 

4000 

Figure 3. Time waveform and spectrum of the phoneme //'/ from the word 'beat. 
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region of the vocal tract. There are also periodic glottal pulses exciting the vocal tract, 

which mixed with the excitation described before, produce the voiced fricatives. These 

two excitation sources cause two distinct spectral components. Stop consonants are 

transient, noncontinuant sounds that are produced by pressure built-up due to total 

constriction, followed by a sudden release of this pressure. The voiced stops differ from 

the unvoiced ones in that their production also includes vocal fold vibration. Affricates 

are sounds produced by transitions from a stop to a fricative. 

Each specific individual has unique vocal tract characteristics which makes his/her 

own voice different from others. Each sound can be characterized by the vocal tract 

configuration that is used in its production. The changing resonant structure in the vocal 

tract is reflected as shifts in formant frequency locations. Figure 4 shows a plot of second 

formant frequency as a function of first formant frequency for several vowels spoken by a 

wide range of speakers [Ref. 2]. It can be easily seen that the broad ellipses drawn show 

the approximate range of variation in formant frequencies for each of these vowels. From 

this last figure, one can observe that not all speakers produce the same frequencies for 

each phoneme, although their locations vary within certain limits, but everyone has his/her 

unique characteristic way of speaking and producing sounds. 

10 
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1000 

SOW.1 

A-A-A- 

200 <IOO 600 0(K) IOOO 

I HI out IKY or F, IN in 

1200 I400 

Figure 4. Plot of second formant frequency versus first formant frequency for vowels 
by a wide range of speakers. (G. 12. Peterson and II. L. Barney, "Control Methods 
Used in a Study of the Vowels,"./. Acoust. Sou. Am., Vol. 24, No. 2, pp. 175-184, 
March 1952, reproduced with permission from the Publisher.) 



12 



III. CEPSTRAL ANALYSIS 

A. ONE-DIMENSIONAL CEPSTRUM 

1. Introduction 

As discussed in the previous chapter, speech is produced by a flow of air passing 

through the vocal tract. In more engineering terms, this can be represented by the filter of 

Figure 5, where the excitation sequence e(n) is filtered with a time-varying linear filter to 

create the speech signal s(n). The impulse response Q(n) of this filter corresponds to the 

vocal tract characteristics. The output speech signal s(n) can be either voiced or unvoiced, 

depending on the type of the excitation sequence. 

e(n) 
Vocal tract 

s(n) 

Excitation   w 
Speech 

sequence signal 

Figure 5. Speech production model. 

The excitation sequence e(n) is described by a set of periodic impulses when the resulting 

speech signal is voiced, and white noise when the speech signal is unvoiced [Ref. 1]. Thus, 

e(n) is given by the following expression: 

white; Gaussian; noise 

voiced case 

unvoiced case 
(1) 

where n is the number of samples and Tp is the pitch period. Therefore, the speech signal 

can be expressed as: 

13 



s(n) = e{n) * 6(H). (2) 

Since the excitation and impulse response of a linear time invariant system are 

combined in a convolutional manner, the problem of speech analysis can also be viewed as 

a problem in separating the components of the convolution to isolate the vocal tract 

characteristics represented by Q(n) [Ref. 2]. Such a separation can be obtained using 

cepstral analysis. 

Historically, the cepstrum has its roots in the general problem of the deconvolution 

of two or more signals and was first proposed to decouple vocal tract characteristics from 

the excitation source by Bogert, Healy and Tukey (1963) [Ref. 3] and Noll (1967) [Ref 

4]. Two implementations of the cepstrum exist; the real cepstrum (RC) and the complex 

cepstrum (CC). Both implementations are discussed further and compared, although only 

the real cepstrum is used in the experiments. 

2. Real Cepstrum 

The one-dimensional real cepstrum of a speech signal s(n) is given by: 

c,(n) = F-1 {log \F{s(n)} !}=£•£ log |S(co)| • e*»<fo, (3) 

where the operator F{ •} denotes the DFT and © the digital frequency. 

Recall that a speech signal s(n) is obtained from convolving the vocal system 

impulse response Q(n) with an excitation sequence e(n) such that s(n) = e(n) * Q(n). 

Thus, Fourier transforming both sides of equation (3) leads to: 

S(C0) = £(©)• 0(G)). (4) 

Taking the logarithm of the magnitude of S(a) we get: 

C,(ffl) = l0g{|S(CD)|} 

14 



= log{|£(o))-0(co)|} 
= log{|£(G))|}+log{|0(G>)|} 

C,((ö) = C,((ö) + CG((O). (5) 

Note that C/a) is the linear combination of the two components C/a>) and C/co), and also 

that it is real and even. The last step of the cepstrum operation is the inverse Fourier 

transform of C/®) which leads to: 

Cs(n) = ±-]cs((ö).e*°nd(0. (6) 

However, due to the fact that Cs((ö) is real and even, we can substitute a straight 

Fourier transform for the inverse transform operation without changing the final 

expression for c/n): 

cs(ri) = ce(n) + cQ(ri). (7) 

The new domain introduced with the cepstrum transformation is called the quefrency 

domain and has time dimensions. The coefficient c/Q) is related to the energy of the 

speech signal and is usually discarded, as discussed later. Experiments show that for 

speech signals the two components c/n) and c/n) occupy different parts of the quefrency 

axis. The part c/n) corresponds to the excitation source and is represented by a decaying 

train of periodic impulses which occupies the higher quefrency portion. The period of the 

impulses represents the pitch period. The part c/n) characterizes the vocal tract and 

occupies the low quefrency portion up to the first impulse of c/n). 

15 



Graphically,   the   real   cepstrum   transformation   can   be   represented   by   the 

block-diagram given in Figure 6. 

Real cepstrum 

Figure 6. Block-diagram for the computation of the Real Cepstrum. 

Note that in practical implementations we define the short-term real cepstrum 

(stRC) over finite-time windows. The only difference between the long-term cepstrum and 

the short-term is that for the short-term cepstral transformation the speech signal is first 

separated in frames of length N and each of these frames is processed individually. FFT's 

are used to compute cepstral coefficients, as it is more computationally efficient. In 

addition, zero-padding the frames of the speech signal is usually required to avoid aliasing 

[Ref. 1]. The block-diagram for the stRC computation is shown in Figure 7, where m 

denotes the time sample at which the N-length frame of speech ends, and 

ßn; m) = s(n)w(m - n). The sequence w(m - ri) denotes the window used to separate 

the speech signal s(n) into successive frames. 

w(m-n) 

Figure 7. Block-diagram for the computation of the stRC using the FFT. 

16 



3. Complex Cepstrum 

Backtransforming the real cepstrum information to recover the original signal is 

impossible, since the phase information is lost when the log spectrum is computed. This 

drawback is corrected with the complex cepstrum (CC) transformation by replacing the 

log|S(o)| operation with the complex logarithm of the DFT, which preserves the phase 

information. The complex cepstrum y/n) of the signal s(n) is defined as: 

Y,(n) = F-1 {\og(F{s(n)})} = £ £ logS^e^dco, (8) 

where © is the digital frequency, and the logarithm is complex. Recall that the logarithm of 

a complex number is defined as: 

log2 = loglzl+yarg{2}, (9) 

and consequently the complex logarithm of the spectrum S(ß) is equal to: 

logS(a>) = log l5((o)l +7arg (S(cu)} . (10) 

It is obvious that this transformation preserves the phase of the spectrum, thereby allowing 

us to return to the original time domain if so desired. The computation of the complex 

cepstrum is shown in the block-diagram of Figure 8, where the two branches for the 

computation of the complex logarithm are illustrated. The resulting cepstrum coefficients 

are given by: 

Y*(«) = Ye(«) + Ye(«), (11) 

where y/n) represent the coefficients corresponding to the excitation sequence and y/n) 

represent the vocal tract characteristics. Similarly to the real cepstrum, each component of 

y/n) occupies a different part of the quefrency axis. The lower portion of the axis is 
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occupied by y/n) and y/n) occupies the higher portion of the quefrency axis. Now, either 

of the two components can be separated with appropriate windowing and 

back-transformed to the original time domain. 

sty 

S(a>) 

DFT ♦+ log| 

arg{} 

Y 'real 
IDFT 

KgH 
limag 

IDFT 

'even 

+ 

<#* 

'odd 

Figure 8. Computation of the complex cepstrum. 

Note that the complex logarithm is multivalued, thus, discontinuities in the 

complex cepstrum phase may appear when the imaginary part of the logarithm is 

computed modulo 2n. Such a discontinuity is not allowed from the definition of the 

complex cepstrum, which requires that the imaginary part of log^co) be a continuous and 

periodic function of CD. This problem can be avoided by unwrapping the phase of \ogS(a>) 

which changes phase jumps greater than it to their 2n complement, thereby eliminating 

discontinuities in the phase curve. In addition, the complex cepstrum can also be 

implemented in the short-term sense, as we did with the real cepstrum. 
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The real cepstrum is equivalent to the even part of the complex cepstrum. If the 

application under study does not require back-transformation to the original time domain, 

then it is more preferable to use the real cepstrum due to its simplicity. 

B. LITTERING 

It is possible to separate the excitation from the vocal tract characteristics using 

cepstral analysis, as described in section A. In order to eliminate one of the two 

components, we apply a linear filter, which is called a 'lifter' in the cepstrum domain. The 

procedure of the liftering operation is shown in Figure 9. 

if n>0 

c (0) + ce(0)    if n=0 
6 

Figure 9. Block-diagram of liftering operation. The block stRC corresponds to the 
cepstrum computation of Figure 6. 

The most popular lifters used in speech applications are low-time lifters, which 

eliminate the higher part of the cepstrum corresponding to the excitation sequence. The 

specific size and shape vary according to the type of application considered. Some of the 

more frequently used low-pass lifters include the rectangular lifter, the triangular lifter and 

the raised sine lifter, which are shown in Figure 10. The time-domain expressions for these 

three lifters are given by: 
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rectangular lifter, 

w1(k) = { l , k-l,...,L 
0 otherwise 

triangular lifter, 

m     r l+r(k-l)/(L-l)    k=l,...,L 
W2(k)={ 0 'otherwise* (12) 

raised sine lifter, 

(^)={
1 + f-sin(f)> k=l,...,L 

0 ' otherwise 

where L is the length of the window and is usually chosen to be less than one pitch period. 

Note that the raised sine lifter, initially proposed by Juang et al. [Ref. 4], is mostly 

used for cepstral smoothing, as it reduces the variation of the cepstrum coefficients 

between different speakers. This lifter allows the user to reduce the effects due to low and 

high-order coefficients which have higher variance. Variability in lower order coefficients 

is a result of the variations in transmission and speaker characteristics, and thus, it is 

desired to reduce them. Variability in higher quefrency coefficients is an artifact of the 

procedure of the cepstral transformation, especially when the cepstral coefficients are 

derived using LPC analysis. Such liftering can be very useful, especially in speech 

recognition, where it was shown to increase the performance of the recognizer. 
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Rectangular lifter 

40 60 
quefrency 

Triangular lifter 

40 60 
quefrency 

Raised sine lifter 

40 60 
quefrency 

80 

80 

80 

100 

100 

100 

Figure 10. Three types of low-time lifters. 
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C. APPLICATIONS OF THE REAL CEPSTRUM 

Cepstral analysis is used in speech processing to separate the excitation source of 

speech from the vocal tract characteristics. The real cepstrum is mostly used in pitch 

detection, formant estimation and speech recognition. All three of these applications are 

briefly discussed in what follows . 

The pitch period is defined only for voiced speech signals and such information is 

included in the excitation source used for their production. In [Ref. 1], it is shown that the 

higher cepstrum coefficients correspond to the excitation source and are approximated by 

a periodic impulse train with period equal to the pitch period. The part c/n) that 

corresponds to the vocal tract characteristics usually decays rapidly with respect to the 

pitch period. Therefore, the peaks are easily distinguished from the rest of the cepstrum, 

and since the quefrency axis has time dimensions, pitch period can be estimated, as shown 

in the following example. 

The word "man" was recorded and digitized with a sampling frequency of 8192 

Hz. First, the word sequence was divided into frames of length N=256, which corresponds 

to time duration of 32 ms, with a 50% overlap. Figure 11 plots the respective log spectra, 

zero padded to 512, obtained for each frame. Next, we compute the FFT of the log 

spectra to obtain the one-dimensional cepstrum coefficients, as shown in Figure 12. The 

peaks that appear at approximately 75 and 150 time samples (i.e. 9.15 msec and 18.3 

msec), on the quefrency axis correspond to the pitch period and twice the pitch period of 

the speech signal. The absence of peaks in the first and last frames indicates unvoiced 

speech or silence. Note that the window length must be long enough to cover at least two 

periods of the voiced portion of the speech signal. Otherwise, the resulting cepstrum no 

longer consists of an impulse train, and the pitch cannot be detected. The coefficient c/0) 

represents the energy of the signal and is not shown in the plots, since it has been observed 

that absolute power measures of the signal are unreliable and the use of c/0) has been 

de-emphasized in the literature [Ref. 6]. Therefore, from this point on, c/0) is not included 

in the set of coefficients used in our study. 
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Log spectra of individual frames for the word "man" 
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Figure 11. Log spectra of individual frames for the word "man". 
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Cepstra of individual frames for the word "man" 

50 100 
quefrency 

150 200 250 
[time samples] 

300 

Figure 12.   Cepstral coefficients cs(n;m) obtained for the word "man", sampling frequency 8192 
Hz, FFT size 512. 
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A second application of the cepstral analysis is in formant estimation, which is 

done by "cepstral smoothing" to produce an estimate of Q(Gipn) or log\0((apn)\. The 

procedure to generate the set of characteristic parameters is shown in Figure 13. 

s(n) 
f(n;m) 

stDFT —* logll —► IDFT ■ -r> 
Low 
Time 
Lifter 

r* DFT 
log|0(ffl;m)| 

w(m-n) 
c(n;m) c(n;m) 

Figure 13. Block-diagram for "cepstral smoothing". 

The coefficients ce(n;m) can be isolated from cs (n;m) by applying a low-time lifter. The 

estimate of log\ 0(co,-m)\ can be obtained by computing the DFT of ce(n;m) [Ref. 1]. 

Speech recognition is an area where cepstral analysis is mostly applied. Another 

way of computing the cepstral coefficients is recursively from the LPC parameters 

associated with the speech signal. Such resulting cepstral coefficients produce a smoothed 

version of the cepstrum coefficients derived using FFT's as previously discussed. Hence, 

they provided a far superior performance when used in speech recognition since the 

differences between various speakers are reduced. 

D. TWO-DIMENSIONAL CEPSTRUM 

1. Introduction 

The two-dimensional cepstrum is the extension of the one-dimensional cepstrum, 

as described earlier. The two-dimensional cepstrum represents both static and dynamic 

features of speech, as well as, frequency and time variations of speech at the same time 

[Ref. 7]. 
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The generation of the two-dimensional cepstral matrix is similar to that of the 

one-dimensional cepstrum. First, the speech signal is divided into frames of fixed length 

long enough to include at least two periods of the voiced part of the speech signal, usually 

32 to 64 ms. Then, the log spectrum S^ of each frame is computed by: 

Skm = 10 log 
N-l 

n=0 
(13) 

where snm represents the wth point of the /wth frame, N is the length of each frame, M is the 

number of frames, k is the frequency index, m denotes the frame number and, 

Wi = exp(j'2n/N), 0 < k < N- 1 and 0 < m <M- 1.        (14) 

The two-dimensional cepstral coefficient c^ is obtained by applying a two-dimensional 

FFT to S., which leads to: Jkm> 

N-l     M-\ 

2 E 
*=0     m=0 

n-i    M-i 

c^ = ^S Y,skmwtqwTp   , (is) 

where W2 = exp(/2ii/A4), with 0<#<7V-land 0<p<M-l. Due to symmetry 

properties of the two-dimensional FFT, only one quarter of the matrix needs to be used. 

The #-axis is called quefrency and has time dimension. Each row along the q-axis 

represents the one-dimensional cepstrum of each frame. The /»-axis is called 

time-frequency and has frequency dimension. This axis indicates the variation of given 

cepstral coefficients along the frames. 

The higher components c^ on the q axis correspond to the fine structure of the 

spectrum. The lower components correspond to the spectral envelope. The fine structure 

corresponds to the excitation source, and the spectral envelope corresponds to the vocal 
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tract characteristics. Higher components on the p-axis correspond to local time variation 

and lower components correspond to global time variation. [Ref. 7] 

In order to get a better understanding of the two-dimensional cepstrum, we replace 

the two-dimensional operation in (15) with two successive one-dimensional FFTs in order 

to study the effects of each FFT operation onto S^. Thus, applying a first FFT to S^ 

along the k axis leads to: 

</*. = JE &.»?*. (16) 
fc=0 

Next, applying the second one-dimensional FFT to dqm along the m axis leads to the 

resulting cepstral coefficient c : 

M-l 

cqp = jilLdqmWTP. (17) 

Note that the coefficients dqm represent the cepstral coefficients obtained at a given frame 

m. Next, the coefficients c^ represent the variation of the q^ spectral coefficient in the 

/^-frequency domain. 

2. Examples 

In this section, we apply the two-dimensional cepstral transformation to a few 

signals to investigate the transform properties. The signals considered are: 

i.  One complex exponential, 

ii. Two complex exponentials, 

iii. Phoneme l@J. 
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a. One Complex Exponential 

The complex exponential signal x(n) considered is given by: 

x(n) = exp(/27i(0.3>?)5 (18) 

where 0.3 represents the normalized frequency of the signal and the sampling frequency is 

/=1000 Hz. The data length is equal to 2000 points (2 sec). A window with length equal 

to 512 points (512 msec) with a 20% overlap is used in the study. Thus 20% of the length 

of the window corresponds to 102 points (102 msec). Hence, the first data frame begins at 

point 1 and ends at point 512. The second frame begins at point 411 and ends at point 

922. Finally, we separate the data into four frames of length equal to 512 points and 

ending at points 512, 922,  1332 and 1742, respectively. Figure 14 represents the 

expression S^ obtained by applying (13) to x(n). Note that Skm shows a peak at 0.3, as 

illustrated in Figure 15, which plots a cross-section of Skm for m fixed to 1. Figure 16 plots 

the magnitude of the coefficients dqm obtained by applying a one-dimensional FFT of size 

512 along the columns of the log spectrum quantity S^. Figure 16 indicates the presence 

of a dc value for all the frames m, as expected. Next, Figure 17 plots the magnitude of the 

two-dimensional cepstral coefficients c^ obtained by applying a one-dimensional FFT of 

size 64 along the rows of the coefficients d. Note that the coefficients c    exhibit qm qp 

symmetry at p=32 and q=256, thus all the information contained in c   is present for 

1 <p < 32 and 1 < q < 256, i.e., in the lower left quadrant of the set of coefficients c 
qp' 

as shown in Figure 18. 

Further, note that the frequency information of x(n) is contained in the phase of c 

The phase of the coefficients c^ is unwrapped in order to replace jumps greater than % 

with their 2n complement. The phase can be represented by a plane whose cross-section is 

shown in Figure 19. The frequency information can be extracted from its slope as follows; 

Recall that the phase of the cepstral coefficients is first calculated modulo 27i and is 

unwrapped next. For this specific case the slope is computed to be equal to -1.885. The 

actual normalized frequency is obtained by dividing the slope 1.885 by 2TL 
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Log spectrum of one complex exponential 
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Figure 14. Log spectrum S^ of x(n) = expö'27i0.3n); window length = 512; 20% overlap. 
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Figure 15. Skm ofxfn) for m = 1. 
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Figure 16. Magnitude of dqm (1-D FFT of log spectrum S^, FFT length = 512, f5 = 1000 Hz). 
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Magnitude of 2-D cepstrum coefficients of one complex exponential 

p - normalized frequency 0   0 

600 

q - quefrency- time samples 

Figure 17. Magnitude of 2-D cepstrum coefficients c   obtained for one complex exponential 
(fs = 1000 Hz, FFT length = 64). 
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Magnitude of 2-D cepstrum coefficients of one complex exponential 
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Figure 18. Lower left quadrant of the cepstral matrix of Figure 17. 
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Unwrapped phase of 2-D cepstrum coefficients 
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Figure 19. Unwrapped phase of c   of x(n). 
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b. Two Complex Exponentials 

Consider now the signal y(n), which consists of the concatenation of two 

single complex exponentials of different frequencies. The signal y(n) is: 

y(n) = [xi(n),x2(n)l (19) 

where Xi(n) = &xp(ßn(0.l)n)     0<«<2000, (20) 

x2(n) = exp(/27c(0.3>0     2201 < n < 6000, (21) 

andyfn) = 0 for 2001 < n < 2200. The time duration of the signal is 6 seconds, given 
that the sampling frequency xsf, = 1000 Hz. Following the same procedure as before, we 

obtain the log spectrum S^ shown in Figure 20. The two peaks at frequencies 0.1 and 0.3 

are illustrated in the cross-section of S^ for m=\ in Figure 21. Next, the cepstral 

coefficients c^ are computed, and only the absolute value of the coefficients for 

1 <p < 32 and 1 < q < 256 are plotted in Figure 22. Note that in the case of two 

complex exponentials the phase plot has again the shape of a plane, but the frequency 

information contained in its slope is close to the average of the two frequencies in the 

signal. Similarly to the one complex exponential case, the slope is found to be -1.5 and 

divided by 2TC gives a result of 0.23, which is approximately the average the frequencies 

0.1 and 0.3 contained in the signal. The cross-section of the unwrapped phase of the 

coefficients c   is shown in Figure 23. 

c. Phoneme/@/From The Word "Man" 

For the third example we consider the phoneme l@J from the word "man". 

The length of the phoneme is 120 msec and is separated into frame lengths of 32 msec 

with 75% overlap, in order to apply the two-dimensional cepstrum transformation. The 

absolute value of the coefficients c^ is plotted in Figure 24. Since the cepstral matrix is 

symmetric around p=256 and #=32, when the two-dimensional FFT is of size (512,64), 

only one fourth of the two-dimensional FFT transform is shown. The first column, for 
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p=\, represents the energy of the speech signal and is discarded from the plot, since it is 

not used in our computations, as mentioned in the previous section. Peaks shown around 

q= 70, 140, 210 in Figure 24, represent multiples of the pitch period. Next we apply a 

low-time lifter in order to isolate the part of the two-dimensional cepstrum that 

corresponds to the vocal tract. Experimentally, in [Ref. 7] it is shown that the range of 

values 1 < q < 15 and 0 <p < 4 is sufficient and contains sufficient information about 

the speech signal concerning the vocal tract characteristics. We use a raised sine lifter to 

deemphasize the effects due to low-order and high-order cepstral coefficients which have 

higher variance. Figure 25 shows the magnitude of the resulting liftered coefficients c   for 

1 < q < 15 and 0 <p < 4, where the frequency axis is no longer normalized. The choice 

of the frame length and of the amount of overlap used for the computation of the 

two-dimensional cepstrum coefficients is not unique, and varying this combination changes 

the shape of the two-dimensional cepstral surface. For example, note that reducing the 

amount of overlap from 75% to 20% and keeping the frame length fixed to 32 msec, leads 

to fewer frames obtained from the signal. Figure 26 shows the magnitude of the resulting 

liftered coefficients c^ for the range (q, p) as defined above. Note that if we extend the 

range of the frequency/? from 5 to 15 we obtain the plot of Figure 27. Comparing Figures 

25 and 27, we observe that the magnitudes of the coefficients have similar shapes for the 

different ranges of the frequency axis. Thus, reducing the amount of overlap "stretches" 

the two-dimensional cepstral plot, which may result in the loss of some information if we 

keep the range of the frequency axis fixed when changing the amount of overlap. 

Therefore, the choice of the range of the frequency axis p, may need to be modified when 

changing the amount of window overlap in order to keep the amount of information 

contained in the set of c^ coefficients the same. This simple example illustrates the fact 

that the range of p over which the cepstral coefficients are to be used for analysis is 

dependant upon the choice of window length and overlap. 
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Log spectrum of two complex exponentials 

k - normalized frequency 

frame # 

6000 

time    [msec] 

Figure 20. Log spectrum Skm of y(n)=[exp(j27i0.1n), exp(j27t0.3n)]; window length = 512; 
20% overlap. 
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Cross-section of log spectrum 

0.4 0.6 
k- normalized frequency 

0.8 

Figure 21. 5^ of y(n) for m = 1. 
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Magnitude of 2-D cepstrum coefficients of two complex exponentials 

p - normalized frequency 0    0 

300 

q - quefrency- [time samples] 

Figure 22. Magnitude of cepstrum coefficients cv for 0 < q < 256 and 0 <p < 32 ofy(n) (J 
1000 Hz, FFT length alongp-zxis = 64, FFT length along #-axis = 512). 
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Unwrapped phase of 2-D cepstrum coefficients 
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Figure 23. Unwrapped phase of c   of two complex exponentials 
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Magnitude of 2-D cepstrum coefficients for the phoneme l@f 

p - frequency 0 0 50 100      150      200      250      300 

q-quefrency [time samples] 

Figure 24. Magnitude of 2-D cepstrum coefficients c  for 1 < q < 256 and 0 < p < 32 for the 
phoneme l@l (f=8192 Hz). 
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Magnitude of littered 2-D cepstrum coefficients 

p - frequency 1    0 q - quefrency [time samples] 

Figure 25. Magnitude of the liftered c^ coefficients. (Lifter: raised sine, frame length= 
32 msec, overlap: 75%,/, = 8192 Hz). 
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Magnitude of littered 2-D cepstrum coefficients 

p - frequency 1    0 
q - quefrency [time samples] 

Figure 26. Magnitude of the liftered c^ coefficients. (Lifter: raised sine, frame length= 
32 msec, overlap=20%,/j = 8192 Hz) 
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Magnitude of littered 2-D cepstrum coefficients 

5CK 

p - frequency 0   0 q - quefrency [time samples] 

Figure 27. Magnitude of the littered c^ coefficients. ( Lifter: raised sine, frame length 
32 msec, overlap=20%,/J = 8192 Hz) 
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IV. SPEAKER IDENTIFICATION - PREPARATION 

A. PROBLEM DEFINITION 

Every individual has a different voice and the ability to recognize a person from 

his/her voice only is called speaker recognition. Recall that variations between speakers 

are mainly caused by the anatomical differences related to the shape and size of the vocal 

tract. Other variations can result from the different ways people have learned to produce 

speech. Aside from the variations between different speakers, there are also variations 

within the same speaker. Such variations are caused by different factors in speaking rates, 

emotional state, health, etc. In speaker recognition applications, it is desirable to have low 

variations within the same speaker but high variations between different speakers [Ref. 8]. 

Speaker recognition consists of two distinct parts; speaker identification and 

speaker verification. Speaker identification deals with the task of identifying a given 

speaker among a group of several known speakers using test utterances. Speaker 

verification deals with the task of verifying a speaker's identity. Note that the speaker 

verification task is much simpler than the identification problem, since it only requires a 

binary decision; to accept or reject the claimed speaker. On the other hand, speaker 

identification requires comparison with reference utterances from all speakers in the 

group, and this problem becomes increasingly difficult when additional speakers are added 

to the group. 

A general representation of the speaker recognition problem is shown in the 

block-diagram of Figure 28. Several utterances of a specific speech signal are recorded 

and then processed in order to extract some average information required to accurately 

represent each person. This information is used to form a reference pattern or template. A 

test speech signal s(n) is then processed identically to signals used to create the reference 

templates. Next, reference and test templates are compared for identification or 

verification purposes. Note that speaker verification and speaker identification problems 

are similar in terms of the signal processing parts and the main differences occur in the 

decision logic. In the present study, only the speaker identification problem is investigated. 
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Distance 

Decision 
Logic 

Figure 28. General representation of the speaker recognition problem. 

The technique applied in the signal processing block of Figure 28 depends on the desired 

information to be extracted from the speech signal. Such information can be the pitch 

period, the formant frequencies, the LPC parameters or the cepstrum coefficients. The 

technique applied throughout this work is the two-dimensional cepstrum transformation, 

which was described in Chapter III. The coefficients derived from this transformation are 

used to form a reference pattern to represent each speaker. 

B. DISTANCE MEASURES 

The purpose of the distance calculation is to provide a measure of similarity 

between  the  reference  pattern  and  the  input  test  pattern.   For the  case  of the 

46 



two-dimensional cepstrum coefficients used in our study, cr will denote the reference 

pattern and ct will denote the test pattern. There are a number of distances introduced in 

the literature but only two of these are examined here; the Euclidean distance measure and 

the weighted two-dimensional cepstral distance. Recall that a distance measure must have 

the following three properties: 

Nonnegativity: 
D(cr,Ct)>0, Cr*Ct 

D(Cr,Ct) = Oi Cr = Ct 

Symmetry: D(cr, c,) = D(ct, Cr). (22) 

Triangle inequality:    D(cr, ct\) < D(cr, cti) + D(ct\ ,Ca). 

The Euclidean distance measure is defined as D(cr, ct) = ||cr — ct\\   and is perhaps the 
most popular distance measure that satisfies these relations [Ref 6]. 

The second distance measure used in this study is a weighted two-dimensional 

cepstral distance. This distance measure takes into account the variations of the cepstral 

coefficients along the frames by computing their derivatives, with respect  to the frame 

number. The distance measure is given by: 

N-\ M-\ 

D(cr,ct)= 2 Zftpi + qi + l). \cr(p,q)-ct(p,q)\2,        (23) 
9=1 p=0 

where ß is a combinational factor defined to introduce the effects due to the derivative 

terms into the distance measure, N is the range of the quefrency axis q, and M is the range 

of the frequency axis/?. Pai and Wang showed experimentally that the optimum values of 

the factor ß are in the range between one and three [Ref 9]. Experiments have also 

shown that this two-dimensional distance measure is very promising, especially for speech 

recognition applications [Ref. 9,10]. 
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C. DATA COLLECTION - PREPROCESSING 

The words selected to be used in this study are two simple monosyllable words 

containing three phonemes each: "man", "beat" and one more complicated word: 

"indigestible" which contains several voiced and unvoiced phones. Although cepstral 

analysis is mostly designed for voiced speech, the third word was also chosen to examine 

the behavior of the method in unvoiced speech. Fourteen speakers were used for the 

experiments, thirteen male and one female. Both U.S. and foreign speakers were used, 

with an average age of thirty. Three groups of speakers were formed, and one group was 

used for each word. Each group contained ten speakers. All speakers were recorded on 

the same machine, a Sun Sparc-1, under the same conditions and with the same 

microphone. Each speaker recorded the same word ten times and each repetition was 

saved in an individual file. For some of the recorded repetitions, speakers were asked to 

distort their voice by closing their nose during the recording, or speaking at faster or 

slower rate than normal. As discussed later, this was done in order to examine the 

performance of the recognizer using slightly distorted words or words spoken at rates 

different than normal. The other speakers were directed to speak at their usual rate and 

using their normal voice. 

All words were digitized as recorded using a sampling frequency of 8192 Hz. 

Silence or noise present before and after the digitized word was removed visually. The 

microphone used in the digitization process usually introduces undesired side effects, such 

as line frequency noise, at a frequency around 50 or 60 Hz. Therefore, a highpass FIR 

filter, of order 24, with a cutoff frequency of 100 Hz was applied to each speech signal to 

remove any unwanted noise caused by the equipment. 

Note that each individual spoke with slightly different levels of loudness. 

Therefore, each word was energy normalized after having its mean removed. The 

normalization used is the following: 

,  v spin) 
SN(H) = 
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where sjn) is the normalized sequence and s/n) is the filtered speech signal. As a result, 

all words have the same energy level, equal to one, regardless of the speaker or the word 

spoken. The block-diagram of Figure 29 represents the preprocessing sequence followed 

for the preparation of each word. 

Input 

speech 
A/D 

fs=8192Hz 

s(n) HP 
Filter 

fc=100Hz 

s(n) 
F Norm. 

Energy 

s(n) 

Figure 29. Block-diagram representing the preprocessing sequence for each word; f, is 
the sampling frequency of the A/D conversion, and fc is the cutoff frequency of the 
highpass filter. 
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V. TESTS AND RESULTS 

A. TESTS SET UP 

The two-dimensional cepstral coefficients, computed after the processing 

procedure described in the previous chapter, are used to form reference and test templates. 

Each word is repeated ten times by each speaker. Five of the repetitions are used to create 

a given speaker's reference template by averaging the two-dimensional cepstral 

coefficients obtained with each repetition. The other five repetitions are tested against the 

reference templates of all speakers. Four sets of reference and test templates are formed, 

so that each word repetition obtained from each speaker is included twice in each of the 

reference and test groups. The four sets formed for each word and each speaker were the 

following: 

i.  REF1=[1,2,3,4,5],   TEST1=[6,7,8,9,10], 

ii. REF2=[2,4,6,8,10], TEST2=[1,3,5,7,9], 

iii. REF3=[6,7,8,9,10], TEST3=[1,2,3,4,5] and 

iv. REF4=[1,3,5,7,9], TEST4=[2,4,6,8,10], 

where [1,2,3...,10] represent the respective repetitions of each word. Several averaging 

procedures, which are described next, are conducted during the experiments in order to 

make the results more statistically relevant. Figure 30 illustrates the set-up used for the 

experiments, where the combination of reference and test groups is composed of the 

groups denoted REF1 and TEST1, as described above. Note that in Figure 30, the term 

spkrX(i) denotes the i* repetition of a given word spoken by the Xth speaker. Recall that 

ten repetitions of each of the three words are available for a given speaker. Five of the 

repetitions are used to build the average reference information obtained for that given 

word and speaker. The other five repetitions are used in the testing phase of the 

identification procedure. Figure 30 illustrates the test procedure conducted on the first 

repetition of a given word spoken by Speakerl. The set of cepstral coefficients obtained 
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from this specific repetition is compared to the average sets of cepstral coefficients 

obtained for each of the speakers using the statistical distances introduced earlier. These 

ten successive comparisons lead to ten different distance values. Note that a correct 

decision would be obtained when the minimum value from this set of distances is the one 

which results from comparing the test template from Speakerl to the reference template 

from Speakerl. The resulting identification decision for this given repetition of the word 

for a given speaker is recorded as "correct" or "incorrect". This procedure described in 

Figure 30 is repeated for each of the five repetitions contained in the test templates, 

leading to the estimation of the recognition rate for a given combination of reference and 

spkrl(6) 

spkrl(l) 
spkrl(2) 
spkrl(3) 
spkrl(4) 
spkrl(5) 

spkr2(l) 
spkr2(2) 
spkr2(3) 
spkr2(4) 
spkr2(5) 

Ref. template 
ofspkrl 

Ref. template 
ofspkr2 

spkrlO(l) 
spkrl0(2) 
spkrl0(3) 
spkrl0(4) 
spkrl0(5) 

Ref. template 
ofspkrlO 

Dl(6) 

D2f6^ 

D10(6) 

Minimum 

Di(6) 
Identification 
Decision 

Figure 30. Example of test set up for REF1 and test word spkrl(6). 
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test groups. Next, the above process is repeated again for each of the four combinations of 

reference/test (REFi, TESTi) groups defined above to limit potential bias in the results. 

The overall recognition rate is obtained from averaging the recognition rates obtained in 

the four combinations of reference /test groups. 

Finally, some of the experiments investigated the robustness of the identification 

procedure in the presence of additive white Gaussian noise. For these experiments, the 

entire procedure described above was repeated ten times for a given SNR level to obtain 

more statistically relevant results. In these experiments, the overall recognition rate is the 

average of those obtained in each of the ten individual trials conducted at a given SNR 

level for each of the reference/test groups combinations, i.e. the average value obtained 

from 40 recognition rates. Finally recall that both the Euclidean and two-dimensional 

cepstral distance are used in some of the experiments to compare the identification 

performance obtained with each. Note that the cepstral coefficients were previously 

liftered with a raised sine lifter when using the Euclidean distance. However, no lifter was 

used for the case of the two-dimensional cepstral distance. 

In order to examine the robustness of the method in additive noise, a white 

Gaussian sequence with a user-defined Signal to Noise Ratio (SNR) was added to the 

original time signals before the computation of the two-dimensional coefficients. SNR's of 

50, 20, 10, 5, 0, -5 dB were used, assuming that the original recording was noise free. 

Background noise can take the form of speech from other speakers, equipment sounds or 

even noise produced from the speaker as in breath noises, lip smacks, etc. Other 

parameters that were varied throughout the tests were the amount of overlap and frame 

length, as used in the computation of the two-dimensional cepstral coefficients. Four cases 

were examined: 

i. overlap=75%, frame length=256, 

ii. overlap=20%, frame length=256, 

iii. overlap=20%, frame length=512 and 
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iv. overlap=75%, frame length=512, 

where 256 and 512 time samples correspond to 32 and 64 msec, respectively. 

B. RESULTS 

1. Speaker Recognition In Noisy Conditions 

The robustness of the method in background noise is shown in Tables 1, 2 and 3 

for the three words tested. It can easily be seen that the performance degrades as the 

Signal to Noise Ratio decreases. Results using the two different distance measures 

considered are presented in the same Tables. Note that the two-dimensional cepstral 

distance did not show any significant improvement over the Euclidean distance, but 

instead degraded more readily with the decrease of the SNR level. 

The words "man" and "indigestible" gave similar results in performance. The word 

"beat" had a slightly worse performance. This is mainly caused by the existence of the stop 

consonant HI at the end of the word. As seen in Figure 30(a), there is a period of silence 

before the burst of energy which produces the HI. It was noticed in the experiments that 

some speakers pronounced the HI clearly, but some others did not, as seen in Figure 30(b). 

For the speakers who did not utter the /// clearly, it was more difficult to detect the end of 

the word, since there was no obvious point to differentiate from the speech signal and 

silence. This caused some unwanted variations of the cepstral coefficients, resulting in 

decreased performance. Note also, that the period of silence before the HI is not negligible 

compared to the duration of the phoneme ///. Therefore, the effect of the noise in this 

section of the word is more noticeable, which also leads to degraded performance. 

The results shown in Tables 3, 4 and 5 are obtained using cepstral coefficients 

computed with 75% overlap and a frame length of 256 time samples (32 msec). 
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MAN overlap=75% frame length=256 

Correct Identification rate 

Euclidean Distance 2-D Cepstral Distance 

SNR(dB) Mean Standard 
Deviation 

Mean Standard 
Deviation 

50 97.7% 0.7232 94.5% 1.797 
20 96.45% 1.6 96.05% 1.894 
10 95.7% 1.951 93.7% 5.214 
5 90.7% 2.919 89.45% 3.762 
0 80.7% 5.115 73.15% 6.108 
-5 59.52% 5.25 54% 5.026 

Table 3. Identification rates for the word "man", for SNR = 50, 20, 10, 5, 0, -5 dB for the 
Euclidean and 2-D cepstral distances; 2-D cepstral coefficients computed with 75% 
overlap and 256 time samples frame length. 

BEAT overlap=75% frame length=256 

Correct Identification rate 

Euclidean Distance 2-D Cepstral Distance 
SNR Mean Standard 

Deviation 
Mean Standard 

Deviation 
50 95.9% 2.216 94.6% 2.134 
20 91.5% 4.619 90.65% 3.932 
10 80.4% 5.047 79.15% 4.682 
5 71.4% 5.715 69.85% 5.289 
0 57.65% 5.061 56.2% 4.898 
-5 46.9% 5.771 46.1% 7.016 

Table 4. Identification rates for the word "beat", for SNR = 50, 20, 10, 5, 0, -5 dB for the 
Euclidean and 2-D cepstral distances; 2-D cepstral coefficients computed with 75% 
overlap and 256 time samples frame length. 
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INDIGESTIBLE overiap=75% frame length=256 

Correct Identification rate 

Euclidean Distance 2-D Cepstral Distance 

SNR Mean Standard 
Deviation 

Mean Standard 
Deviation 

50 95% 2.935 94.5% 2.592 

20 92.7% 4.826 88.7% 4.381 

10 88.65% 5.072 85.9% 6.008 

5 85.7% 5.388 82.3% 5.88 

0 79.7% 5.845 74.25% 6.23 

-5 62.35% 6.208 57.65% 5.201 

Table 5. Identification rates for the word "indigestible", for SNR = 50, 20, 10, 5, 0, -5 dB 
for the Euclidean and 2-D cepstral distances; 2-D cepstral coefficients computed with 75% 
overlap and 256 time samples frame length. 
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"beat" 

Figure 31. Word "beat" for two different speakers. In (a), the /// is clearly seen after 
the short period of silence following the phoneme ///. In (b), the end of the word is 
not obvious since the /// is not clearly seen. 
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2. Word Length Effects 

Next we consider the effect of word length on the performance of the recognizer, 

to investigate the effect due to different speaking rates. Note that no time alignment 

between different repetitions of a given word was applied. Thus, repetitions had different 

lengths according to the speaking rate of the speaker. In addition, some speakers were 

asked to distort their original voice, for some of their recordings, by speaking at rates 

different than normal to emphasize such a difference. When the repetitions of these 

speakers were tested against the speaker's own reference template, increased error rates 

were obtained. We noted that the words that failed the speaker identification test were 

those with average length much different from the average for high SNR levels. Tables 6, 

7 and 8 show the identification rates of specific utterances for certain speakers and for 

various SNR's for the three words tested. The second column of each table shows the 

deviation of the length of the word tested from the speaker's average word length. It was 

noted that repetitions that were spoken at rates different than normal intentionally almost 

always failed. On the other hand, we noted that repetitions where the difference in average 

length resulted from normal speaking, only failed in low SNR's, as shown in Tables 6 to 8. 

The lengths that were made intentionally different from the average can be identified in the 

tables from their values of deviation higher than 10%. It was interesting to note that 

speakers who were recorded mainly at a constant speaking rate were 100% correctly 

identified, even with SNR's as low as -5 dB. 

3. Robustness Of The Distance Measures 

The Euclidean distance computed in the tests is normalized by the number of 

cepstral coefficients included in the reference or test templates. The difference between the 

distance obtained from comparing a speaker's test utterance tested against its own 

reference template and that obtained when comparing to a different speaker can give us 

indications regarding the robustness of the procedure. Misidentification could more easily 

occur when the gap between these two distances is small. 
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MAN 

Deviation 
from avg. 

length 

50 dB 20 dB 10 dB 5 dB OdB -5 dB 

spkr4(l) +11% 0% 0% 0% 0% 0% 0% 
spkr4(6) +13% 60% 45% 45% 45% 0% 0% 
spkr4(8) -17% 100% 45% 25% 25% 20% 15% 

spkr4(10) +14% 100% 60% 50% 25% 15% 0% 
spkr2(l) +17% 100% 55% 20% 20% 20% 20% 
spkr3(l) +22% 100% 65% 60% 0% 0% 0% 
spkr6(9) -5.5% 100% 100% 100% 100% 95% 70% 
spkr7(3) +3% 100% 100% 100% 100% 100% 100% 
spkrl(5) +6% 100% 100% 100% 100% 80% 75% 
spkr5(8) -0.4% 100% 100% 100% 100% 100% 60% 

Table 6. Identification rates of individual utterances for the word "man", word length 
effect, Euclidean distance. 
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BEAT 

Deviation 
from avg. 

length 

50dB 20 dB 10 dB 5 dB OdB -5 dB 

spkr3(4) -19% 0% 0% 0% 0% 0% 0% 
spkrl(5) +10% 0% 0% 0% 0% 0% 0% 
spkrl(7) +30% 30% 30% 25% 5% 0% 0% 
spkr7(6) -17% 65% 5% 0% 0% 0% 0% 
spkrl0(2) +19% 100% 50% 45% 30% 25% 0% 
spkr3(7) +11% 100% 30% 0% 0% 0% 0% 
spkr4(5) -0.8% 100% 100% 100% 100% 100% 60% 
spkr7(8) +1.8% 100% 100% 100% 90% 60% 60% 
spkr9(9) -1.7% 100% 100% 100% 100% 80% 65% 
spkr8(7) +4% 100% 100% 100% 100% 90% 75% 

Table 7. Identification rates of individual utterances for the word "beat", word length 
effect, Euclidean distance. 
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Deviation 
from avg. 

length 

50 dB 20 dB 10 dB 5 dB OdB -5 dB 

spkrl(2) +32% 0% 0% 0% 0% 0% 0% 
spkr8(2) +31% 0% 0% 0% 0% 0% 0% 
spkr7(4) +6% 50% 50% 50% 50% 50% 50% 
spkr9(9) +6% 50% 50% 50% 50% 50% 50% 
spkrl(9) -6% 50% 20% 0% 0% 0% 0% 
spkrl(7) +6% 50% 50% 50% 50% 20% 20% 
spkr4(9) -0.3% 100% 100% 100% 100% 100% 100% 
spkr6(8) -3% 100% 100% 100% 100% 100% 80% 
spkr5(4) +0.8% 100% 100% 100% 100% 100% 60% 
spkrl0(6) +1% 100% 100% 100% 80% 65% 50% 

Table 8. Identification rates of individual utterances for the word "indigestible", word 
length effect, Euclidean distance. 
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Table 9 summarizes the distances for the test case where REF1 was used as 

reference utterances and TEST 1(1) was used as test utterance for the word "man". 

Respective distances for the other words were found to have similar behavior. The table 

shows the distances obtained between all the test speakers tested against all the speakers' 

reference templates. The values shown are the average distances (with their respective 

standard deviations -std- below) of ten iterations of the same test at a given SNR of 50 

dB. Note that bold characters denote the minimum distances and correct identification is 

obtained when the minimum distance is found on the main diagonal. Note that for only one 

speaker (speaker 4) the minimum distance is off the main diagonal, which means that this 

specific speaker was misidentified. The specific utterance of this speaker is 13% longer 

from the average length of the ten repetitions of the given word, as shown in Table 7. 

It is obvious from Table 9 that there is a significant gap between the minimum 

distances and the rest. Experiments showed that the gap decreases, as the SNR level 

decreases, thereby increasing the error rate. 

4. Effects Of Frame Length And Overlap 

As mentioned earlier in the chapter, the tests were repeated for different amounts 

of overlap and frame lengths, as applied in the computation of the two-dimensional 

cepstral coefficients. Figures 31 through 33, and Tables 10 to 18 show the relative 

performance of the four cases for the three words tested. Recall that the four cases 

examined are i) overlap = 75% and frame length = 256 (32 msec), ii) overlap = 20% and 

frame length = 256, iii) overlap = 20% and frame length = 512 (64 msec) and iv) overlap = 

75% and frame length = 512. 

It can be observed that for the words "man" and "beat", cases i, ii and iv behave 

very similarly. Case iii exhibits a degraded performance, especially when noise is added. 

Note that fewer frames of the speech signal are obtained for this combination of overlap 

and frame length, as discussed in the examples of Chapter II. This leads to less information 

available for the computation of the two-dimensional cepstral coefficients, and since the 
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range of the frequency axis p and the quefrency axis q remain fixed, the identification 

procedure is subject to more errors. 

The word "indigestible", due to its complexity and increased time duration relative 

to the other two words, leads to slightly degraded performance. The differences between 

the individual test cases are observed in the region of low SNR's, since for noise-free 

conditions all cases indicate similar results. The higher identification rates are obtained 

when the shorter frame length of 256 time samples (32 msec) is used. The lower 

identification rate is obtained when the overlap is 20% and the frame length is 512 time 

samples, as for the other two words. Since in that word several combinations of phonemes 

exist, such a long frame length results in obtaining frames that include both voiced and 

unvoiced portions of the speech signal. Thus, the identification performance is reduced, 

especially when noise is added, as there is not enough information to accurately represent 

the vocal tract characteristics. 
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TEST 

REF 

spkrl 
av. dist 

(std) 

spkr2 
av. dist 

(std) 

spkr3 
av. dist 

(std) 

spkr4 
av. dist 

(std) 

spkr5 
av. dist 

(std) 

spkr6 
av. dist 

(std) 

spkr7 
av. dist 

(std) 

spkr8 
av. dist 

(std) 

spkr9 
av. dist 

(std) 

spkrl 0 
av. dist 

(std) 

spkrl 0.1131 
(0.0119) 

0.2979 
(0.0364) 

0.5188 
(0.0850) 

0.4804 
(0.0841) 

0.6281 
(0.1226) 

0.5527 
(0.1175) 

0.6111 
(0.1178) 

0.5028 
(0.0789) 

0.5198 
(0.0997) 

0.4796 
(0.0817) 

spkr2 0.3784 
(0.1537) 

0.1624 
(0.0192) 

0.5146 
(0.0660) 

0.5141 
(0.0954) 

0.6917 
(0.1275) 

0.5467 
(0.1158) 

0.6319 
(0.1192) 

0.5427 
(0.0812) 

0.5293 
(0.0968) 

0.5415 
(0.0958) 

spkr3 0.4857 
(0.0869) 

0.4156 
(0.0698) 

0.1974 
(0.0105) 

0.5622 
(0.1006) 

0.5762 
(0.1064) 

0.5305 
(0.1075) 

0.6159 
(0.1154) 

0.5248 
(0.0839) 

0.5325 
(0.0992) 

0.5195 
(0.0843) 

spkr4 0.3701 
(0.0628) 

0.3731 
(0.0316) 

0.4672 
(0.0662) 

0.2899 
(0.0467) 

0.4326 
(0.0794) 

0.3731 
(0.0739) 

0.5948 
(0.1011) 

0.2759 
(0.0450) 

0.2827 
(0.0560) 

0.2458 
(0.0366) 

spkr5 0.6307 
(0.1335) 

0.6001 
(0.1110) 

0.5108 
(0.1084) 

0.4281 
(0.0886) 

0.1915 
(0.0457) 

0.4241 
(0.0906) 

0.6462 
(0.1234) 

0.3854 
(0.0908) 

0.3029 
(0.0647) 

0.3585 
(0.0720) 

spkr6 0.5203 
(0.1022) 

0.4769 
(0.0789) 

0.5738 
(0.1127) 

0.3006 
(0.0482) 

0.4281 
(0.0815) 

0.2814 
(0.0695) 

0.6166 
(0.1157) 

0.3521 
(0.0673) 

0.2825 
(0.0510) 

0.348 
(0.0707) 

spkr7 0.5648 
(0.0949) 

0.5915 
(0.0867) 

0.6454 
(0.1130) 

0.4651 
(0.0646) 

0.5683 
(0.0856) 

0.4641 
(0.0827) 

0.1789 
(0.0220) 

0.5835 
(0.0944) 

0.5906 
(0.1015) 

0.5684 
(0.0898) 

spkr8 0.5439 
(0.1116) 

0.5083 
(0.0852) 

0.5568 
(0.1167) 

0.3321 
(0.0758) 

0.3733 
(0.0832) 

0.4033 
(0.0801) 

0.6836 
(0.1330) 

0.1472 
(0.0442) 

0.2253 
(0.0515) 

0.2429 
(0.0547) 

spkr9 0.5526 
(0.1181) 

0.5146 
(0.0918) 

0.5724 
(0.1194) 

0.3203 
(0.0739) 

0.3205 
(0.0726) 

0.3296 
(0.0625) 

0.6723 
(0.1296) 

0.2675 
(0.0674) 

0.0931 
(0.0250) 

0.2048 
(0.0491) 

spkrl 0 0.5168 
(0.1146) 

0.5059 
(0.0835) 

0.5605 
(0.1103)| 

0.2668 
(0.0535) 

0.3687 
(0.0740) 1 

0.3251 
(0.0605) 

0.6418 
(0.1204) 

0.2711 
(0.0668) 

0.2296 
(0.0448) 

0.1151 
(0.0257) 

Table 9. Normalized distances and standard deviations for the case REF1 and TEST1 
(Euclidean distance). 
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Figure 32. Identification performance for four combinations of overlap and frame 
length for the word "man", Euclidean distance. 
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Figure 33. Identification performance for four combinations of overlap and frame 
length for the word "beat", Euclidean distance. 
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Figure 34. Identification performance for four combinations of overlap and frame 
length for the word "indigestible", Euclidean distance. 
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MAN overlap =20% frame length=256 

Euclidean Distance 

Correct Identification rates 

SNR (dB) Mean Standard 
Deviation 

50 98.5% 0.8771 
20 97.65% 1.6259 

10 96.35% 2.1668 

5 91.65% 3.8401 

0 81.65% 6.0576 

-5 
i—  

62.6% 7.0776 

Table 10. Identification rates for the word "man", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 75% overlap and frame length 
256 time samples. 

MAN overlap=20% frame length=512 

Euclidean Distance 

Correct Identification rates 

SNR (dB) Mean Standard 
Deviation 

50 98.5% 1.6794 
20 94.8% 2.388 
10 84.85% 3.8133 

5 71.25% 5.5412 

0 62.6% 6.8717 
-5 58.7% 6.1193 

Table 11. Identification rates for the word "man", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 75% overlap and frame length 
512 time samples. 
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MAN overIap=75% frame length=512 

Euclidean Distance 

Correct Identification rates 
SNR (dB) Mean Standard 

Deviation 
50 98.05% 1.395 

20 96.4% 1.6455 
10 94.8% 1.8564 

5 90.5% 3.8364 
0 79.6% 4.3958 

-5 59% 5.8177 

Table 12. Identification rates for the word "man", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 75% overlap and frame length 
512 time samples. 

BEAT overlap=20% frame length=256 

Euclidean Distance 

Correct Identification rates 
SNR (dB) Mean Standard 

Deviation 
50 96.4% 1.6455 
20 91.6% 3.6289 
10 77.2% 4.9157 
5 68.1% 6.4839 
0 58.7% 4.9313 
-5 46.95% 6.729 

Table 13. Identification rates for the word "beat", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 20% overlap and frame length 
256 time samples. 
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BEAT overlap=20% frame Iength=512 

Euclidean Distance 

Correct Identification rates 

SNR(dB) Mean Standard 
Deviation 

50 96.15% 5.2112 
20 84.3% 6.6956 
10 71.5% 4.8092 

5 63.75% 5.6783 

0 57.45% 5.9912 

-5 49.15% 6.2739 

Table 14. Identification rates for the word "beat", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 20% overlap and frame length 
512 time samples. 

BEAT overlap=75% frame length=512 

Euclidean Distance 

Correct Identification rates 
SNR (dB) Mean Standard 

Deviation 
50 98.35% 1.6878 
20 92.15% 2.8061 
10 81.15% 4.0227 
5 69.8% 5.7788 
0 57% 6.0085 
-5 47.55% 6.0847 

Table 15. Identification rates for the word "beat", for SNR=50, 20, 10, 5, 0, -5 dB for the 
Euclidean distance. 2-D cepstral coefficients computed with 75% overlap and frame length 
512 time samples. 
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INDIGESTIBLE overlap=20% frame Iength=256 

SNR(dB) 

50 

20 

10 

0 

Euclidean Distance 

Correct Identification rates 

Mean 

97.13% 

97.1% 

93.35% 

90.6% 

82.75% 

Standard 
Deviation 

3.2051 

2.1219 

1.9942 

2.725 

3.9141 

65.5% 6.1227 

Table 16. Identification rates for the word "indigestible", for SNR=50, 20, 10, 5, 0, -5 dB 
for the Euclidean distance. 2-D cepstral coefficients computed with 20% overlap and 
frame length 256 time samples. 

INDIGESTIBLE overlap=20% frame length=512 

Euclidean Distance 

Correct Identification rates 
SNR (dB) Mean Standard 

Deviation 
50 93.6% 2.6096 
20 88.25% 4.689 
10 81.95% 2.8819 
5 75.35% 3.6624 
0 65.15% 6.5459 
-5 54.6% 4.5336 

Table 17. Identification rates for the word "indigestible", for SNR=50, 20, 10, 5, 0, -5 dB 
for the Euclidean distance. 2-D cepstral coefficients computed with 20% overlap and 
frame length 512 time samples. 
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INDIGESTIBLE overlap=75% frame length=512 

SNR(dB) 

50 

20 

10 

Euclidean Distance 

Correct identification rates 

Mean 

95.8% 

90.35% 

87.25% 

81.45% 

75.4% 

64.45% 1 

Standard 
Deviation 

1.9638 

3.0004 

3.0947 

2.6013 

2.9071 

6.3648 

Table 18. Identification rates for the word "indigestible", for SNR=50, 20, 10, 5, 0, -5 dB 
for the Euclidean distance. 2-D cepstral coefficients computed with 75% overlap and 
frame length 512 time samples. 
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VI. CONCLUSIONS 

We investigated the application of the two-dimensional cepstral transform to the 

speaker identification problem. For practical implementations, the whole process from 

data recordings to identification decision can be automated. The two-dimensional 

cepstrum transform was shown to be efficient in decoupling the vocal tract characteristics 

from the excitation source. Thus, the two-dimensional cepstral coefficients as generated 

form an accurate representation of each speaker. The memory requirements of the process 

are significantly reduced as only a small part of the entire cepstral matrix is needed. 

Three words were selected in the experiments: two simple monosyllables and one 

longer word. Four different reference and test groups were formed from a total of 

fourteen speakers used in the tests. Two different distance measures were implemented 

for the identification decision; the Euclidean distance and a weighted two-dimensional 

cepstral distance. 

Results show identification rates from 95% to 98.5% for a 50 dB signal to noise 

ratio and from 57.65% to 80.7% for 0 dB signal to noise ratio. The high identification 

rates of the results, even under noisy conditions, seem promising enough. In addition, 

results show that the two-dimensional cepstral distance doesn't lead to significant 

improvements in the identification rates over those obtained using the basic Euclidean 

distance. Results also show that the choice of frame length and overlap must be dependent 

upon the range of the two-dimensional cepstral coefficients used in the identification 

process. Specifically, we have shown that when the frame is relatively long (512 time 

samples, i.e. 64 msec) and the overlap is small (20%), fewer frames of the speech signal 

are computed, hence less information is available. This, in turns, leads to degraded 

performance, especially at lower signal to noise ratios. 

We noted that the most critical parameter that caused errors was the word length 

variation that resulted from differences in speaking rate during the recordings. 

Experiments showed that a higher rate of misidentification was obtained with test words 

which differed in length by 10% or more from the average word length obtained for a 
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given word and speaker. However, note that a 10% or more variation was obtained only 

when the speakers were specifically asked to speak at a rate different than normal. For the 

speakers that were directed to speak at a normal rate, although differences in word lengths 

existed, fewer errors occurred. Futhermore, error rate increased when some speakers 

intentionally distorted their voice. This leads to the conclusion that different repetitions of 

a given word need to be aligned in time (i.e. linearly matched) before being processed, in 

order to improve the results significantly. 

Finally, we found out that the choice of the specific words to be tested also had an 

effect on the performance. Each word must be spoken clearly, and the beginning and end 

of each utterance must be easily identified, as illustrated with the word "beat" in our 

experiments. 

Overall, the identification rates obtained from the tests are very promising 

especially under high SNR conditions. Future study of the specific subject should focus on 

the time alignment of the speech signals after their recording, in order to decrease large 

variations in word lengths. 
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APPENDIX A. MATLAB CODE FOR 2-D CEPSTRUM TRANSFORM 

function [Cl,cres,SNR] = cepstrum(word,overlap,p_axis,frame_length,flag,SNR) 
%Ver. 1.1 Modified by Ioannis Lelakis. 11/10/94 
% 

% This function takes a word of any length and returns 
% a 5 x 14 cepstral coefficient matrix. 
% If flag=l the cepstral matrix is liftered by a raised sine lifter. 
% If flag=0 the cepstral matrix is not liftered. 
% The first column of the matrix is also removed, reducing the influence 
% of speech energy. 
% 
0 % The user defines the amount of overlap and the frame length. 
% White Gaussian noise is added to the speech signal as desired by SNR 
% 
0. %useage:[Cl,cres,SNR]=cepstrum(word,overlap,p_axis,frame_length) 

word_length=length(word); 
n=frame_length; 
i=l; 
a=word_length-n; 
overlaperc=round(frame_length*overlap/100); 
word=reshape(word, 1 ,length(word)); 
% ADD NOISE TO THE SPEECH SIGNAL 
noise=randn( 1 ,length(word)); 
sigma=std(word)A2/(std(noise)A2* 10'XSNR/l 0)); 
word=word+sqrt(sigma)*noise; 

% Preprocessing section 
load hi 100 
word=filter(b,l,word); % HighPass filtering Cutoff fMOOHz 
word=normaliz(word); % Remove the mean 
word=word./norm(word); % Normalize the power 

while a>(frameJength-overlaperc) 
n=i*frame_length-(i-1 )*overlaperc; 
x(i, :)=word(n-frame_length+1 :n); 
i=i+l; 
a=word_length-n; 

end 
x=x-'; %Orient frames columnwise for 1-D FFT 
X=ffl(x,512); %Step 1: fft of frames (zero padded) 
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%Step 2: log spectrum of frames Skm=20. *log 10(abs(X)+eps); 
N=frame_length; 
M=i; %Number of frames 
C=(1/(N*M)) .* ffi2(Skm,512,64);    %Step 3: 2D FFT 

C=C.'; 
C=C(p_axis,2:15); 

C1=C: 

%Reorient to row orientation of frames 
%Take first column out and reduce to 
% 5 x 14 matrix 

ifflag=l 
Cl=liftef(C); 

end 
[r,c]=size(Cl); 
cres=reshape(Cl, 1 ,r*c); % Return 2-D cepstral coefficients in vector form. 
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APPENDIX B. MATLAB CODE FOR LIFTERING OPERATION 

function c_lifword=lifter(cword) 
% This function lifters the cepstral coefficients by weighting 
% each frame of the cepstral matrix by the equation 
% l(k)=l+(L/2)sin(pi*k/L). 
% 

% Reference: Equation 6.53; Discrete-Time Processing of Speech Signals 
% Deller et al. 
% 

% useage: c_lifword=lifter(cword) 
% 

[m,L]=size(cword); 
% Construct the lifter 

fork=l:L 
l(k)=l+((L-l)/2)*sin(pi*(k-l)/(L-l)); 

end 
% Lifter each frame of the cepstral matrix 

for k=l :m 
c_lifword(k, :)=1. *cword(k,:); 

end 
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APPENDIX C MATLAB CODE FOR 2-D CEPSTRAL DISTANCE 

function dis=papdist(average,testcep,p_axis) 
% This function computes the 2-D cepstral distance of two signals 
% given the cepstral coefficients according to [Ref. 10] 
% 
% 

average=reshape(average,length(p_axis), 14); 
testcep=reshape(testcep,length(p_axis), 14); 
num_coef=length(p_axis)* 14; 

for u=l :length(p_axis) 
forv=l:14 

disp(u,v)=(vA2+uA2+l)*abs(average(u,v)-testcep(u,v))A2; 
end 

end 

dis=(l/num_coef)*sum(sum(disp)); 
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