
St-

C

J3

USING A GENETIC ALGORITHM TO LEARN BEHAVIORS FOR AUTONOMOUS VEHICLES* * „

Alan C. Schultz and John J. Grefenstette j|l ^Yjlj^ « •<
Navy Center for Applied Research in Artificial Intelligence (Code 5514), *$& -*<J

Naval Research Laboratory, Washington, DC 20375-5000, U.S.A.
EMAIL: schultz@aic.nrl.navy.mil

(202) 767-2684

&

Abstract
Truly autonomous vehicles will require both projec-
tive planning and reactive components in order to
perform robustly. Projective components are needed
for long-term planning and replanning where explicit
reasoning about future states is required. Reactive
components allow the system to always have some
action available in real-time, and themselves can
exhibit robust behavior, but lack the ability to expli-
citly reason about future states over a long time
period. This work addresses the problem of creating
reactive components for autonomous vehicles. Creat-
ing reactive behaviors (stimulus-response rules) is
generally difficult, requiring the acquisition of much
knowledge from domain experts, a problem referred
to as the knowledge acquisition bottleneck. SAMUEL
is a system that learns reactive behaviors for auto-
nomous agents. SAMUEL learns these behaviors under
simulation, automating the process of creating
stimulus-response rules and therefore reducing the
bottleneck. The learning algorithm was designed to
learn useful behaviors from simulations of limited
fidelity. Current work is investigating how well
behaviors learned under simulation environments
work in real world environments. In this paper, we
describe SAMUEL, and describe behaviors that have
been learned for simulated autonomous aircraft, auto-
nomous underwater vehicles, and robots. These
behaviors include dog fighting, missile evasion, track-
ing, navigation, and obstacle avoidance.

1. Introduction
As hardware issues are being resolved, and as

competent low-level controllers are being designed,
attention in autonomous vehicle design is now focus-
ing more on the higher level autonomic functions of
these vehicles. Historically, many researchers have
examined either projective planning (e.g. Kanade,
1990) or reactive systems (e.g. Brooks, 1991) in isola-
tion for control of an autonomous vehicle. However,
in order to create a truly robust, intelligent auto-

nomous vehicle, both projective planning and reac-
tive components will be necessary and recently,
researchers have been examining systems that com-
bine both projective and reactive elements in order to
exploit the strengths of both systems (Arkin,1989;
Laird, et al, 1991).

Projective (or deliberative) components are
needed for long-term planning and replanning where
explicit reasoning about future states is required. One
problem with projective systems are that they are
unnecessarily slow on tasks that are performed often.
That is, they generally must rethink solutions to prob-
lems that are seen over and over again. Also, projec-
tive systems usually require a model over which the
reasoning takes place.

Real-time performance is often a critical
requirement for many of the capabilities needed in
autonomous vehicles. Reactive systems in which
stimulus-response rules drive the behavior of the
vehicle easily achieve real-time performance and can
perform well in a wide variety of situations. Further-
more, reactive systems typically require no underly-
ing model. The weakness of reactive systems is the
inability to explicitly reason about future states over
long periods of time. This allows the reactive system
to occasionally get into situations that they cannot
resolve.

An interesting problem in the design of intelli-
gent, autonomous systems is the creation of the pro-
jective and reactive components. In this paper, we
consider the creation of the reactive component
Creating reactive behaviors (stimulus-response rules)
is generally difficult, requiring the acquisition of
knowledge from domain experts, a problem referred
to as the knowledge acquisition bottleneck. This
paper presents work on SAMUEL, a system that learns
reactive behaviors for autonomous agents. SAMUEL,
based on genetic algorithms (Holland, 1975), learns
these behaviors under simulation, automating the pro-
cess of creating stimulus-response rules and therefore

t In Proceedings of the AIAA Guidance, Navigation and Control Conference, Hilton Head, SC, August 10-12, 1992.

19950510 117

ON-LINE SYSTEM OFF-LINE SYSTEM

TARGET
ENVIRONMENT

RULE SIMULATION RULE
INTERPRETER MODEL INTERPRETER

A

V

A

I ACTIVE V
I BEHAVIOR r

LEARNING J TE ST \
iVIOR j MODULE H BEHfi

Fig. 1. A Model for Learning from a Simulation Model.

reducing the bottleneck. The learning algorithm was
designed to learn useful behaviors from simulations
of limited fidelity. The expectation is that behaviors
learned in these simulations will be useful in real-
world environments. Previous studies have illustrated
that knowledge learned under simulation is robust
and might be applicable to the real world if the simu-
lation is more general (i.e. has more noise, more
varied conditions, etc.) than the real world environ-
ment (Ramsey, Schultz and Grefenstette, 1990), and
work continues in this area.

The approach described here reflects a particu-
lar methodology for learning via a simulation model.
The motivation is that making mistakes on real sys-
tems may be costly or dangerous. In addition, time
constraints might limit the number of experiences
during learning in the real world, while in many
cases, the simulation model can be made to run faster
than real time. Since learning may require experi-
menting with behaviors that might occasionally pro-
duce unacceptable results if applied to the real world,
or might require too much time in the real environ-
ment, we assume that hypothetical behaviors will be
evaluated in a simulation model (see Figure 1).

Genetic algorithms, the heart of SAMUEL, are
powerful, adaptive search techniques that can learn
high performance knowledge structures. The genetic
algorithm's strength comes from the implicitly paral-
lel search of the solution space that it performs, via a
population of candidate solutions. In SAMUEL, the
population is composed of candidate reactive
behaviors for solving the problem. SAMUEL evaluates
the candidate behaviors by testing them in a simu-
lated environment. Based on the behaviors' overall
performance in this environment, genetic and other
operators are applied to improve the performance of

the population of behaviors.
In Section 2, the SAMUEL system and one

domain will be described. This domain is introduced
to describe the SAMUEL system in context. Section 3
will describe other autonomous vehicle domains and
results from learning in these domains. Section 4 will
describe related ongoing and future research.

2. Description of the SAMUEL System

SAMUEL is a system designed to learn reactive
behaviors for solving sequential decision problems.
SAMUEL consists of three major components: a prob-
lem specific module, a performance module, and a
learning module. Figure 2 shows the architecture of
the system. The problem specific module consists of
the world model and its interfaces. In these experi-
ments, the world model is a simulation of an auto-
nomous vehicle its environment. The performance
module is called CPS (Competitive Production Sys-
tem), a production system that interacts with the
world model by reading sensors, setting control vari-
ables, and obtaining payoff from a critic. Like tradi-
tional production system interpreters, CPS performs
matching and conflict resolution. In addition, CPS
performs rule-level assignment of credit based on the
intermittent feedback from the critic. The learning
module uses a genetic algorithm to develop reactive
behaviors, expressed as a set of condition-action
rules. Each behavior is evaluated by testing its per-
formance on a number of tasks in the world model.
As a result of these evaluations, behaviors are
selected for replication and modification. Genetic
operators, such as crossover and mutation, and other
operators, such as generalization and specialization,
produce plausible new behaviors from high perfor-
mance precursors.

31st
andt^I»-

Spectial

PROBLEM SPECIFIC
MODULE

PERFORMANCE ,rDQ,
MODULE tOFb'

SENSORS MATCHER

CONTROLS «e-
CONFLICT

RESOLUTION

CRITIC
CREDIT

ASSIGNMENT

BEHAVIOR
FITNESS

GENETIC
ALGORITHM

RULE
STRENGTHS

NEW
BEHAVIOR

LEARNING
MODULE

Fig. 2. SAMUEL: A Learning System for Reactive Behaviors

2.1. Problem Specific Module: Description of AUV
simulation domain

To illustrate the problem specific module and
the other modules of the system, we now describe one
autonomous vehicle domain under study, collision
avoidance and navigation for an autonomous under-
water vehicle (AUV). In this domain, we have a sim-
ple two-dimensional simulation of an AUV that must
navigate through a dense mine field towards a station-
ary object with which it must rendezvous. The AUV
has a limited set of sensors, including sonar, and must
set its speed and direction each decision cycle. We
wish to learn a reactive behavior that is expressed as
a set of reactive rules, (i.e. stimulus-response rules)
that map sensor readings to actions to be performed at
each decision time-step. Note that the system does
not learn a specific path, but a set of rules that reac-
tively decide a move at each time step allowing the
vehicle to reach its goal and avoid the mines.

2.1.1. Sensors
We assume that the AUV knows its own position

with some margin of error, and that the position of the
stationary target is known, again with some margin of
error. The AUV is equipped with an active sonar for
detecting obstacles in its path. The sonar is com-
posed of seven cells, each with a resolution of 10
degrees, giving the AUV a total coverage of 70
degrees. The AUV also has some internal, or virtual,
sensors that give the AUV certain information about
its own state. The sensors are:
last-turn: The current turning rate of the AUV. This

sensor can assume 13 values, ranging
from -60 degrees to 60 degrees in 10
degree increments.

time: The current elapsed time, an integer.

range: The range to the rendezvous area.
Assumes 16 values from 0 to 1500.

bearing: The bearing to the rendezvous area.
Assumes integer values from 1 to 12.

The bearing is expressed in "clock ter-
minology", in which 12 o'clock denotes
dead ahead of the AUV.

speed: The current speed of the AUV. Assumes 9
values from 0 to 40. Note that the AUV

can come to a stop.

asonarjv. One of 7 active sonar cells used for colli-
sion avoidance. Each cell takes on values
from 0 to 200 in increments of 10 (20
bins) and represents the distance to an
object within that sonar cell's view. If no
object is seen, a special value indicates
that no object is sensed.

Each sensor can have noise added to simulate a
more realistic environment. In particular, the sonar
readings have both a gaussian noise added, and a
small random probability of "missing" an object, or of
reading a "ghost" object that is not really there.

2.1.2. Actions (effectors)

There is a discrete set of actions available to
control the AUV. In this study, we consider actions
that specify discrete turning rates and discrete speeds
for the AUV. The control variable turn has 13 possible
settings, between -30 and 30 degrees in five degree
increments. The control variable speed has 9 possible
settings between 0 and 40 (the units are arbitrary)
with an increment of five. The learning objective is
to develop a reactive plan, i.e., set of decision rules
that map current sensor readings into actions, that
successfully allows the AUV to rendezvous with the
stationary target without using up all of its fuel while
avoiding mines.

The AUV simulation is divided into episodes
that begin with the placement of the AUV centered in
front of a randomly generated mine field with a
specified density. The episodes end with either a suc-
cessful rendezvous at the target location, or a loss of
the AUV due to time running out (no fuel) or a colli-
sion with a mine. The rendezvous is successful if the
AUV approaches within 50 units of the target location.
It is assumed that the only feedback provided is a
numeric payoff, supplied at the end of each episode,
that reflects the success of the episode with respect to
the goal of reaching the rendezvous point. The payoff
is defined by the formula:

' 1.0, if AUV reaches goal area
payoff =

50 / (50 + range), otherwise.

depending on the AUV'S distance from the goal when
the AUV is lost; this gives partial credit for failures.

2.2. Performance Component
The performance module of SAMUEL, CPS, has

some similarities to both traditional production sys-
tem interpreters and to classifier systems. The pri-
mary features of CPS are a restricted but high level
rule language, partial matching, competition-driven
conflict resolution, and incremental credit assignment
methods. These features are described in more detail
in the following sections.

2.2.1. Knowledge Representation
In a departure from many previous genetic

learning systems, SAMUEL learns rules expressed in a
high level rule language. The use of a high level
language for rules offers several advantages over low
level binary pattern languages typically adopted in
genetic learning systems. First, it is easier to incor-
porate existing knowledge, whether acquired from
experts or by symbolic learning programs. Second, it
is easier to explain the knowledge learned through
experience. Each CPS rule has the form

IF Cj
THEN Ö!

AND
AND

AND c„
AND am

where each c{ is a condition on one of the sensors and
each action a, specifies a setting for one of the control
variables.

The form of the conditions depends on the type
of the sensor. SAMUEL supports four types of sensors:
linear, cyclic, structured, and pattern. Linear sen-
sors take on linearly ordered numeric values. Condi-
tions over linear sensors specify upper and lower
bounds for the sensor values. For example, the speed
sensor in AUV can take on values over the range 0 to
40, discretized into 8 equal segments. Thus, an exam-
ple of a legal condition over speed is

speed is [10 15]

The payoff returned by the critic is 1.0 for a success
and a value between 0 and 0.5 (non-inclusive)

which matches if 10 < speed < 15. In AUV, last-turn,
time, range, speed, and the sonar cells are linear sen-
sors.

Cyclic sensors take on cyclicly ordered
numeric values. Like linear sensors, the range of
each cycle sensor is divided by the user into equal
segments whose endpoints constitute the legal bounds
in the conditions. Unlike linear sensors, any pair
of legal values can be interpreted as a valid condition
for cyclic sensors. In AUV, bearing is a cyclic sensor,
since the next "higher" value than bearing = 12 is

bearing = 1.

The rule language of CPS also supports struc-
tured nominal sensors whose values are taken from
the nodes of a tree-structured hierarchy. Conditions
for structured sensors specify a list of values, and the
condition matches if the sensor's current value occurs
in a subtree labeled by one of the values in the list.
Structured nominal sensors are not used in the AUV
domain, but that are used in the other three domains
presented.

The right-hand side of each rule specifies a set-
ting for one or more control variables. For the AUV
problem, each rule specifies a setting for the variable
turn, and a setting for the variable speed. In general,
a given rule may specify conditions for any subset of
the sensors and actions for any subset of the control
variables. Each rule also has a numeric strength, that
serves as a prediction of the rule's utility (Grefen-
stette, 1988). The methods used to update the rule
strengths is described in the section on credit assign-
ment below.

2.2.2. Production System Cycle
CPS follows the match/conflict-resolution/act

cycle of traditional production systems. Since there
is no guarantee that the current set of rules is in any
sense complete, it is important to provide a mechan-
ism for handling cases in which no rule matches. In
CPS this is accomplished by assigning each rule a
match score equal to the number of conditions it
matches. The match set consists of all the rules with
the highest current match score.

Once the match set is computed, an action is
selected from the (possibly conflicting) actions
recommended by the members of the match set. Each
possible action receives a bid equal to the strength of
the strongest rule in the match set that specifies that
action in its right-hand side. CPS selects an action
using the probability distribution defined by the
strength of the (single) bidder for each action. This
prevents a large number of low strength rules from
combining to suggest an action that is actually associ-
ated with low payoff. All rules in the match set that
agree with the selected action will have their strength
adjusted according to the credit assignment algorithm
described in the next section.

After conflict resolution, the control variables
are set to the values indicated by the selected
actions.1 The world model is then advanced by one
simulation step. The new state is reflected in a new
set of sensor readings, and the entire process repeats.

23. The Learning Module
Learning in SAMUEL occurs on two distinct lev-

els: credit assignment at the rule level, and genetic
competition at the plan level.

2.3.1. Credit Assignment
Systems that learn rules for sequential behavior

generally face a credit assignment problem: If a
sequence of rules fires before the system solves a par-
ticular problem, how can credit or blame be accu-
rately assigned to early rules that set the stage for the
final result? Our approach is to assign each rale a
measure called strength that serves as a prediction of
the expected level of payoff that will be achieved if
this rule fires. When payoff is obtained at the end of
an episode, the strengths of all active rules (i.e., rules
that suggested the actions taken during the current
episode) are incrementally adjusted to reflect the
current payoff. The adjustment scheme, called the
Profit Sharing Plan (PSP), consists of subtracting a
fraction of the rule's current strength and adding the
same fraction of the payoff. Rules whose strength
correctly predicts the payoff retain their original lev-
els of strength, while rules that overestimate the
expected payoff lose strength and rules that underesti-
mate payoff gain strength. However, conflict resolu-
tion should take into account not only the expected
payoff associated with each rule, but also some meas-
ure of our confidence in that estimate. One way to
measure confidence is through the variance associ-
ated with the estimated payoff. In SAMUEL, the PSP
has been adapted to estimate both the mean and the
variance of the payoff associated with each rule.
Thus, a high strength rule must have both high mean
and low variance in its estimated payoff. By biasing
conflict resolution toward high strength rules, we
expect to select actions for which we have high
confidence of success.

23.2. The Genetic Algorithm
At the plan level, SAMUEL treats the learning

process as a heuristic optimization problem, i.e., a
search through a space of knowledge structures look-
ing for structures that lead to high performance. A
genetic algorithm is used to perform the search.
Genetic algorithms are motivated by standard models

1 If there is more than one control variable, as is the case
in the AUV domain, the conflict resolution phase is executed
independently for each control variable. As a result, the
settings for different control variables may be recommended
by distinct rules.

of heredity and evolution in the field of population
genetics, and embody abstractions of the mechanisms
of adaptation present in natural systems (Holland,
1975). Briefly, a genetic algorithm simulates the
dynamics of population genetics by maintaining a
knowledge base of knowledge structures that evolves
over time in response to the observed performance of
its knowledge structures in their training environ-
ment Each knowledge structure yields one point in
the space of alternative solutions to the problem at
hand, which can then be subjected to an evaluation
process and assigned a measure of fitness reflecting
its potential worth as a solution. The search proceeds
by repeatedly selecting structures from the current
knowledge base on the basis of fitness, and applying
idealized genetic search operators to these structures
to produce new structures {offspring) for evaluation.
Goldberg (1989) and Davis (1991) provide a detailed
discussion of genetic algorithms. The learning level
of SAMUEL is a specialized version of a standard
genetic algorithm, GENESIS (Grefenstette, 1986). In
SAMUEL, the knowledge structures that make up the
population are behaviors, or sets of reactive rules,
that represent a strategy for solving the problem. The
remainder of this section outlines the differences
between GENESIS and the genetic algorithm in
SAMUEL.

random, e.g. the location of the mines and the goal
location.

In order to introduce plausible new rules, (and
also to specialize overly general rules in the plan later
in the learning) a plan modification operator called
SPECIALIZE is applied after each evaluation of a plan.
This operator will trigger if there is room in the plan
for at least one more rule, and an episode ended with
a successful rendezvous.
SPECIALIZE creates a new rule with the right hand side
being set to the action that occurred during the suc-
cessful episode that triggered the operator, and with a
more specialized left-hand side. For each sensor, the
condition for the sensor in the new rule covers
approximately half the legal range for that sensor,
splitting the difference between the extreme legal
values and the sensor reading obtained from the suc-
cessful episode. For example, suppose the initial plan
contains the maximally general rule:

IF

THEN turn is ANY AND

speed is ANY

Suppose further that the following step is recorded in
the evaluation trace during the evaluation of this
plan:

2.3.2.1. Adaptive Initialization and Using Existing
Knowledge

Several approaches to initializing the
knowledge structures of a genetic algorithm have
been reported. By far, random initialization of the
first population is the most common method. This
approach requires the least knowledge acquisition
effort, provides a lot of diversity for the genetic algo-
rithm to work with, and presents the maximum chal-
lenge to the learning algorithm. As a second alterna-
tive, we have developed an approach called adaptive
initialization. Each plan starts out as a completely
general rule, but its rule is specialized according to its
early experiences, thus creating more rules for each
plan. Specifically, each plan in the initial population
consists of a maximally general rule which says:

for any sensor readings, take any action

A plan consisting of only this rule executes a random
walk, since the rule matches on every cycle and
specifies any possible legal action. Although each
plan in the initial population executes this random
walk policy, it does not follow that they all have the
same performance, since the initial conditions for the
episodes used to evaluate the plans are selected at

sensors:

action:

... time = 4, range = 500,

bearing =6 ...

turn = -15, speed = 10

Then SPECIALIZE would create the following new rule:

IF time is [2 .. 11] AND

range is [300 .. 1000] AND

bearing is [3 .. 9] AND

THEN turn is [-15] AND speed is [10]

The resulting rule is given a high initial strength, and
added to the plan. The new rule is plausible, since its
action is known to be successful in at least one situa-
tion that matches its left hand side. Of course, the
new rule is likely to need further modification, and is
subject to further competition with the other rules.

A third approach is to seed the initial popula-
tion with existing knowledge (Schultz and Grefen-
stette, 1990). The rule language of SAMUEL was
designed to facilitate the inclusion of available
knowledge. In some cases, such as the AUV domain,
random behavior will never yield a success and so the

adaptive initialization will not have sufficient infor-
mation for adequately specializing the maximally
general rule. In these domains, it is essential that the
initial population include heuristic knowledge to start
the search. This initial knowledge does not need to
lead to very good results, but simply gives the system
some initial successes so that the adaptive initializa-
tion will work. Following are the set of initial rules
used in this study. Note that the performance
achieved with this hand-crafted plan is only eight per-
cent, i.e. the AUV can successfully reach the rendez-
vous area 8 out of 100 episodes. Note that this plan
does not specify any action values for the speed
action; they must be learned.

Goal is somewhat in front of us; nothing
is too close ahead, go straight

IF bearing is [11 .. 1] AND
asonar4 is [180 .. INF]

THEN turn is [0]

Goal is somewhat is front of us; object
within range in front of us; turn hard.

IF bearing is [11 .. 1] AND
asonar4 is [10 .. 190]

THEN turn is [30]

Turn towards the goal.

IF bearing is [2 . . 6]
THEN turn is [-30]

IF bearing is [6 .. 10]
THEN turn is [30]

A maximally general rule.
Choose speed randomly.

IF
THEN speed is ANY

23.2.2. Evaluation
Each plan is evaluated by invoking CPS, using

the given plan as rule memory. CPS executes a fixed
number of episodes, and returns the average payoff as
the fitness for the plan. The updated strengths of the
rules are also returned to the learning module. Each
episode begins with randomly selected initial condi-
tions, and thus represents a single sample of the per-
formance of the plan on the space of all possible ini-
tial condition of the world model. Earlier work indi-
cated that it is important for the simulation model to
include more variability and noise that the actual
environment (Grefenstette, Ramsey and Schultz,
1990). In this study, noise is included in the sensors,
and each initial environment is comprised of a ran-
dom mine field.

23.2.3. Selection
Plans are selected for reproduction on the basis

of their overall fitness scores returned by CPS. Using
the notion of "survival of the fittest", plans that per-
form well get to produce more offspring (i.e. plans)
for the next generation. The topic of reproductive
selection in genetic algorithms is discussed in the
literature (De Jong, 1975; Goldberg, 1989). In
SAMUEL, the fitness of each plan is defined as the
difference between the average payoff received by the
plan and some baseline performance measure. The
baseline is adjusted to track the mean payoff received
by the population, minus one standard deviation. The
baseline is adjusted slowly to provide a moderately
consistent measure of fitness. Plans whose payoff fall
below the baseline are assigned a fitness measure of
0, resulting in no offspring. This mechanism appears
to provide a reasonable way to maintain consistent
selective pressure toward higher performance.

2.3.2.4. Genetic Operators
Selection alone merely produces clones of high

performance plans. CROSSOVER works in concert with
selection to create plausible new plans. In SAMUEL,
CROSSOVER treats rules as indivisible units. Since the
rule ordering within a plan is irrelevant, the process
of recombination can be viewed as simply selecting
rules from each parent to create an offspring plan. In
SAMUEL, CROSSOVER assigns each rule in two
selected parent plans to one of two offspring plans.
CROSSOVER attempts to cluster rules that are tem-
porally related before assigning them to offspring.
The idea is that rules that fire in sequence to achieve a
successful rendezvous should be treated as a group
during recombination, in order to increase the likeli-
hood that the offspring plan will inherit some of the
better behavior patterns of its parents. Of course, the
offspring may not behave identically to either one of
its parents, since the probability that a given rule fires
depends on the context provided by all the other rules
in the plan. The effect is that small groups of rules
that are associated with high performance propagate
through the population of plans, and serve as building
blocks for new plans.

While CROSSOVER operates on the entire popu-
lation of plans, recombining rules among the plans,
SAMUEL also includes six unary operators that modify
the rules within a single behavior: MUTATION, CREEP,
SPECIALIZE, GENERALIZE, MERGE, and DELETE. Unlike
previous versions of the system, SAMUEL has now
adopted the policy that all of these operators except
DELETE are creative. All modifications are made on a

new copy of the original rule, and the altered rule is
added into the plan, where it will compete at the rule
level with the rule from which it was created. A rule
survives intact unless it is explicitly deleted or lost
when its behavior is not selected for reproduction.
This policy allows a much more aggressive applica-
tion of rule modification operators with little damage
if the changes are maladaptive. Each of these opera-
tors will now be discussed.

The genetic operator MUTATION introduces a
new rule by making random changes to a copy of an
existing rule. For example, MUTATION might alter a
condition within a rule from asonar_4 [150
200] to asonar_4 [10 .. 200]. The opera-
tor CREEP is similar to MUTATION, except that it only
makes small changes, e.g. from asonar_4 [150
.. 200] to asonar_4 [140 .. 200]. This
operator "creeps" a value the smallest increment
possible for a particular sensor or action.

The SPECIALIZE operator was described earlier
in Section 2.3.2.1 during the discussion of population
initialization. This operator is applied when general
rules fire in successful episodes. The operator creates
a new rule whose left hand side more closely matches
the sensor values existing at the time the general rule
fired, and whose right hand side more closely matches
the action that was actually taken.

The GENERALIZE operator creates rules that are
more general versions of overspecialized rules. GEN-
ERALIZE can be applied when a rule fires because of a
partial match during a successful episode. A partial
match occurs when no rule fully matches the current
sensors, and the rule that most closely matches is
selected. This operator creates a rule that will match
when a similar situation occurs again by generalizing
the conditions enough to match the sensor readings
that were active when the rule fired.

The MERGE operator creates a new rule from
two high-strength rules that specify the same action.
The new rule matches any situation that was origi-
nally matched by either of the two original rules.
Together, the MERGE operator with the DELETE opera-
tor (described next), help to eliminate overspecialized
rules from the behavior.

DELETE is the only operator that can remove
rules from a behavior. A rule may be deleted if the
rule has not fired recently, the rule has low strength,
or the rule is subsumed by another rule with higher
strength.

3. Results and Other Domains
This section will describe the results from the

collision avoidance and navigation domain and then
briefly describe and give results of three other
domains for which behaviors have been learned.
Each of these domains represent behaviors that are
important to an autonomous vehicle whether the vehi-
cle is an air vehicle, land vehicle or underwater vehi-
cle. The three additional domains are tracking, dog
fighting, and missile evasion.

3.1. Results from Navigation and Obstacle
Avoidance Domain

Simulation results demonstrate that an initial,
human-designed behavior which has an average suc-
cess rate of only eight percent on randomly generated
mine fields can be improved by this system so that the
final behavior can achieve a success rate of 96 per-
cent

The experiments shown here reflect our
assumptions about the methodology of simulation-
assisted learning. At periodic intervals (10 genera-
tions in the current experiments), a single behavior is
extracted from the current population to represent the
learning system's current hypothetical behavior. This
behavior is tested for 100 randomly chosen problem
episodes. The assumption is that the current best
behavior can be extracted from the learning system
and used in the real world while the learning system
continues looking for a better hypothesis.

In the first experiment, the system was initial-
ized with the rules discussed and shown in section
2.3.2.1. Each episode, the AUV was placed centered
before a randomly generated mine field with a density
of 25 mines. The rendezvous area was placed at a
random point on the other side of the mine field.
SAMUEL was then run for 100 generations. Each
evaluation of a behavior is the average over 20
episodes, as discussed earlier. Since a stochastic pro-
cess is involved, each experiment was repeated ten
times, and the results averaged. Before learning, with
just the initial rules by themselves, the AUV will ren-
dezvous with the goal just eight out of 100 times.
After 100 generations, the performance reachs 96 per-
cent

In order to test the robustness of the learned
behavior, the best behavior learned over the whole
experiment was extracted and then used, without
learning, in other environments. The results are sum-
marized in Table 1. When presented with an environ-
ment with double the mine density (50 mines), the

rules learned with 25 mines still produced 46 percent
performance. The learned rule set was then tested in
scenarios with 25 drifting mines. The mines made
random walks at a speed of seven units. In this
environment, the AUV achieved 91 percent perfor-
mance. Next, the behavior was tested in an environ-
ment with 50 drifting mines, again with a speed of
seven units. In this case, the AUV reached 41 percent
performance.

before learning learned with

(uses initial rules) 25-mine scenarios

25 mines 8% 96%

50 mines 1% 46%

25 moving mines 1% 91%

50 moving mines 0% 41%

Table 1. Trained with 25 mines; varied testing.

Although the system is an opportunistic learn-
ing, the results indicate that generally useful reactive
rules for this task were learned by the system. Notice
that the performance of the learned behavior was
most affected by the mine density. One reason for this
is the relatively low resolution of the sonar, and the
noise added to the sonar model.

The performance of the behavior is not as
affected by environments with mines that move. Only
a small degradation is introduced when the mines are
allowed to move, given the same density of mines.
This is not surprising when you consider that the
behavior is reactive, and this points out one of the
drawbacks to projective planning: In this environ-
ment, a global path can almost never be constructed.

3.2. Missile Evasion Domain

In the missile evasion problem, there are two
objects of interest, a plane and a missile. The tactical
objective is to maneuver the plane to avoid being hit
by the approaching missile. The missile tracks the
motion of the plane and steers toward the plane's anti-
cipated position. The initial speed of the missile is
greater than that of the plane, but the missile loses
speed as it maneuvers. If the missile speed drops
below some threshold, it loses maneuverability and
drops out of the sky. It is assumed that the plane is
more maneuverable than the missile; that is, the plane
has a smaller turning radius. There are six sensors

range:

bearing:

heading:

speed:

that provide information about the current tactical
state:
last-turn: The current turning rate of the plane.
time: A clock that indicates time since detection

of the missile.

The missile's current distance from the
plane.
The direction from the plane to the missile.

The missile's direction relative to the plane.

The missile's current speed measured rela-
tive to the ground.

Note that for this and the next two domains, the sen-
sors use structured nominal types, as discussed in
Section 2.2.1.

Finally, there is a discrete set of actions avail-
able to control the plane. In this study, we consider
only actions that specify discrete turning rates for the
plane. The control variable turn has nine possible
settings, between -180 and 180 degrees in 45 degree
increments. The learning objective is to develop a
behavior, i.e., set of decision rules, that map current
sensor readings into actions, that successfully evades
the missile whenever possible.

The EM problem is divided into episodes that
begin when the threatening missile is detected and
that end when either the plane is hit or the missile is
exhausted.2 It is assumed that the only feedback pro-
vided is a numeric payoff, supplied at the end of each
episode, that reflects the quality of the episode with
respect to the goal of evading the missile. Maximum
payoff is given for successfully evading the missile,
and a smaller payoff, based on how long the plane
survived, is given for unsuccessful episodes. The
payoff is defined by the formula:

1000, if plane escapes missile.
payoff =

lOf, if plane is hit at time t.

The missile may hit the plane any time between 1 and
20 seconds after detection, so the payoff varies from
10 to 200 for unsuccessful episodes to 1000 for suc-
cessful evasion.

Again, because SAMUEL employs probabilistic
learning methods, the results presented for this
domain average the mean performance over 20
independent runs of the system, each run using a

2 For the experiments described here, the missile began
each episode at a fixed distance from the plane, traveling
toward the plane at a fixed speed. The direction from which
the missile approached was selected at random.

different seed for the random number generator.
Unlike the collision avoidance domain, for the EM
domain, no domain knowledge is placed into the ini-
tial population. The initial strategy (a random walk)
evades the missile about 31% of the time. After 50
generations, the final strategy evades the missile
about 82% of the time.

3.3. Dog Fighting Domain
The dog fighting domain pits the learning agent

against a rule-based adversary with identical sensor
and action capabilities. In this domain, the object is
to leam a behavior that allows the plane to defend
against and destroy an adversary plane. In this
domain, the learner uses the same six sensors used in
the missile evasion domain. Also as before, the plane
controls its own turning rate, but its speed is a deter-
ministic function of its turning rate. Each agent has a
weapon that allows it to destroy the opponent if the
agent is heading toward the opponent and is within
the weapon's range. The object, therefore, is both to
evade the opponent's fire while getting in position to
make an attack. The learner receives full payoff for
an episode in which the adversary is destroyed, par-
tial payoff for a draw, and 0 payoff if the learner is
destroyed. The adversary operates according to a
fixed set of rules, and does not learn during these
experiments.

The initial behavior (a random walk) defeats
the adversary approximately 40% of the time. After
50 generations, the final strategy evades the adversary
about 83% of the time.

3.4. Tracking Domain
In this model, the goal is to stalk the prey at a

distance without being detected. This domain again
uses the same six sensors as the missile evasion
domain, but in this domain, the tracker must learn to
control both its speed and its direction. The adver-
sary (the prey) follows a random course and speed. It
is assumed that the tracker has sensors that operate at
a greater distance than the prey's sensors. The object
is to keep the prey within range of the tracker's sen-
sors, without being detected by the prey. If the
tracker enters the range of the prey's sensors, it will
be detected and captured with a probability that
depends on the tracker's distance and speed. At the
end of each episode, the critic provides full payoff if
the tracker keeps within a certain average range of
the prey, proportionately less payoff if the average
range exceeds the threshold, and 0 payoff if the
tracker is captured by the prey.

IF bearing is [directly-ahead]
AND range is [high]

THEN turn is [straight] AND
speed is [medium high]

IF bearing is [hard-right, behind-right]
AND range is [high]

THEN turn is [soft-right] AND
speed is [medium, high]

IF bearing is [directly-behind]
AND range is [high]

THEN turn is [hard-right] AND
speed is [medium, high]

IF bearing is [hard-left behind-left)
AND range is [high]

THEN turn is [soft-left] AND
speed is [medium, high]

IF range is [close low medium]
THEN turn is [straight] AND

speed is [low, medium]

Fig. 3: Initial Strategy for Tracking Domain

This environment is more difficult than the mis-
sile evasion domain in the sense that a random walk
has very little chance of producing acceptable
behavior. An initial plausible strategy, shown in Fig-
ure 3, provides an over-general but plausible initial
starting point. The initial strategy successfully tracks
the adversary approximately 22% of the time. After
50 generations, the final behavior evades the adver-
sary over 72% of the time. Since the adversary fol-
lows a random route, it can, and often does, turn
directly toward the tracker and approach at high
speed. Since the probability of detection depends in
part on the tracker's own speed, it can easily be
surprised and trapped by the adversary. Future stu-
dies will shed more light on the ultimate level of per-
formance that can be obtained in this setting.

4. Conclusion
The results of learning behaviors for the above

domains are summarized in Table 2. SAMUEL has
demonstrated in several different domains, including
mine avoidance and local navigation, tracking, and
evasion, that robust reactive behaviors can be
learned. These behaviors are expressed in a high-
level language, and can be used in reactive systems
where real-time response is an important capability.
SAMUEL is an attempt to automate the process of
learning the rules needed in a reactive system, partic-
ular since reactive rules are very difficult to construct
by hand.

10

Sensors Controls Initial Gen 50 Initialized
Performance Performance with Rules

Evasion 6 1 31 82 N

Dogfight 6 1 40 83 N

Tracking 6 2 22 72 Y

Navigation 13 2 8 96 Y

Table 2. Summary of Learning Behaviors in Difference Domains

Related work is also examining the degree to
which behaviors learned under simulation apply to
real world situations. Initial experiments show that as
long as the simulation is more general (i.e. more vari-
ability and noise) than the real world, then the
behaviors are applicable (Ramsey, Schultz and Gre-
fenstette, 1990; Grefenstette, Ramsey and Schultz,
1990).

References

Arkin, R. C. (1989). Motor schema-based mobile
robot navigation. The International Journal of
Robotics Research (pp. 92-112).

Brooks, R. A. (1991). Intelligence without represen-
tation. Artificial Intelligence, 47, Elsevier, (pp.
139-159).

Davis, L. (1991). Handbook of Genetic Algorithms
New York: Van Nostrand Reinhold.

De Jong, K. A. (1975). Analysis of the behavior of a
class of genetic adaptive systems. Doctoral
dissertation, Department of Computer and
Communications Sciences, University of
Michigan, Ann Arbor.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization, and machine learning.
Reading: Addison-Wesley.

Grefenstette, J. J. (1986). Optimization of control
parameters for genetic algorithms. IEEE Tran-
sactions on Systems, Man, and Cybernetics,
SMC-16(1).

Grefenstette, J. J. (1988). Credit assignment in rule
discovery system based on genetic algorithms.
Machine Learning, 3(2/3), (pp. 225-245).

Grefenstette, J. J. (1989). A system for learning con-
trol plans with genetic algorithms. Proceedings
of the Third International Conference on

Genetic Algorithms. Fairfax, VA: Morgan
Kaufmann, (pp. 183-190).

Grefenstette, J. J., C. L. Ramsey, and A. C. Schultz
(1990). Learning sequential decision rules
using simulation models and competition.
Machine Learning, 5(4), (pp. 355-381).

Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor University
Michigan Press.

Laird, J. E., E. S. Yager, M. Hucka, and C. M. Tuck
(1991). Robo-Soar: An integration of external
interaction, planning, and learning using Soar.
Robotics and Autonomous Systems, 8(1-2), (pp.
113-129)

Ramsey, C. L., Alan C. Schultz and J. J. Grefenstette
(1990). Simulation-assisted learning by com-
petition: Effects of noise differences between
training model and target environment.
Proceedings of the Seventh International
Conference on Machine Learning. Austin, TX:
Morgan Kaufmann (pp. 211-215).

Schultz, A. C. and J. J. Grefenstette (1990). Improv-
ing tactical plans with genetic algorithms.
Proceeding of IEEE Conference on Tools for AI
90, Washington, DC: IEEE (pp. 328-334).

11

This paper is declared a work of the
U.S. Government and is not subject to
copyright protection in the United States.

12

