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Abstract 
Truly autonomous vehicles will require both projec- 
tive planning and reactive components in order to 
perform robustly. Projective components are needed 
for long-term planning and replanning where explicit 
reasoning about future states is required. Reactive 
components allow the system to always have some 
action available in real-time, and themselves can 
exhibit robust behavior, but lack the ability to expli- 
citly reason about future states over a long time 
period. This work addresses the problem of creating 
reactive components for autonomous vehicles. Creat- 
ing reactive behaviors (stimulus-response rules) is 
generally difficult, requiring the acquisition of much 
knowledge from domain experts, a problem referred 
to as the knowledge acquisition bottleneck. SAMUEL 
is a system that learns reactive behaviors for auto- 
nomous agents. SAMUEL learns these behaviors under 
simulation, automating the process of creating 
stimulus-response rules and therefore reducing the 
bottleneck. The learning algorithm was designed to 
learn useful behaviors from simulations of limited 
fidelity. Current work is investigating how well 
behaviors learned under simulation environments 
work in real world environments. In this paper, we 
describe SAMUEL, and describe behaviors that have 
been learned for simulated autonomous aircraft, auto- 
nomous underwater vehicles, and robots. These 
behaviors include dog fighting, missile evasion, track- 
ing, navigation, and obstacle avoidance. 

1. Introduction 
As hardware issues are being resolved, and as 

competent low-level controllers are being designed, 
attention in autonomous vehicle design is now focus- 
ing more on the higher level autonomic functions of 
these vehicles. Historically, many researchers have 
examined either projective planning (e.g. Kanade, 
1990) or reactive systems (e.g. Brooks, 1991) in isola- 
tion for control of an autonomous vehicle. However, 
in order to create a truly robust, intelligent auto- 

nomous vehicle, both projective planning and reac- 
tive components will be necessary and recently, 
researchers have been examining systems that com- 
bine both projective and reactive elements in order to 
exploit the strengths of both systems (Arkin,1989; 
Laird, et al, 1991). 

Projective (or deliberative) components are 
needed for long-term planning and replanning where 
explicit reasoning about future states is required. One 
problem with projective systems are that they are 
unnecessarily slow on tasks that are performed often. 
That is, they generally must rethink solutions to prob- 
lems that are seen over and over again. Also, projec- 
tive systems usually require a model over which the 
reasoning takes place. 

Real-time performance is often a critical 
requirement for many of the capabilities needed in 
autonomous vehicles. Reactive systems in which 
stimulus-response rules drive the behavior of the 
vehicle easily achieve real-time performance and can 
perform well in a wide variety of situations. Further- 
more, reactive systems typically require no underly- 
ing model. The weakness of reactive systems is the 
inability to explicitly reason about future states over 
long periods of time. This allows the reactive system 
to occasionally get into situations that they cannot 
resolve. 

An interesting problem in the design of intelli- 
gent, autonomous systems is the creation of the pro- 
jective and reactive components. In this paper, we 
consider the creation of the reactive component 
Creating reactive behaviors (stimulus-response rules) 
is generally difficult, requiring the acquisition of 
knowledge from domain experts, a problem referred 
to as the knowledge acquisition bottleneck. This 
paper presents work on SAMUEL, a system that learns 
reactive behaviors for autonomous agents. SAMUEL, 
based on genetic algorithms (Holland, 1975), learns 
these behaviors under simulation, automating the pro- 
cess of creating stimulus-response rules and therefore 
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Fig. 1. A Model for Learning from a Simulation Model. 

reducing the bottleneck. The learning algorithm was 
designed to learn useful behaviors from simulations 
of limited fidelity. The expectation is that behaviors 
learned in these simulations will be useful in real- 
world environments. Previous studies have illustrated 
that knowledge learned under simulation is robust 
and might be applicable to the real world if the simu- 
lation is more general (i.e. has more noise, more 
varied conditions, etc.) than the real world environ- 
ment (Ramsey, Schultz and Grefenstette, 1990), and 
work continues in this area. 

The approach described here reflects a particu- 
lar methodology for learning via a simulation model. 
The motivation is that making mistakes on real sys- 
tems may be costly or dangerous. In addition, time 
constraints might limit the number of experiences 
during learning in the real world, while in many 
cases, the simulation model can be made to run faster 
than real time. Since learning may require experi- 
menting with behaviors that might occasionally pro- 
duce unacceptable results if applied to the real world, 
or might require too much time in the real environ- 
ment, we assume that hypothetical behaviors will be 
evaluated in a simulation model (see Figure 1). 

Genetic algorithms, the heart of SAMUEL, are 
powerful, adaptive search techniques that can learn 
high performance knowledge structures. The genetic 
algorithm's strength comes from the implicitly paral- 
lel search of the solution space that it performs, via a 
population of candidate solutions. In SAMUEL, the 
population is composed of candidate reactive 
behaviors for solving the problem. SAMUEL evaluates 
the candidate behaviors by testing them in a simu- 
lated environment. Based on the behaviors' overall 
performance in this environment, genetic and other 
operators are applied to improve the performance of 

the population of behaviors. 
In Section 2, the SAMUEL system and one 

domain will be described. This domain is introduced 
to describe the SAMUEL system in context. Section 3 
will describe other autonomous vehicle domains and 
results from learning in these domains. Section 4 will 
describe related ongoing and future research. 

2. Description of the SAMUEL System 

SAMUEL is a system designed to learn reactive 
behaviors for solving sequential decision problems. 
SAMUEL consists of three major components: a prob- 
lem specific module, a performance module, and a 
learning module. Figure 2 shows the architecture of 
the system. The problem specific module consists of 
the world model and its interfaces. In these experi- 
ments, the world model is a simulation of an auto- 
nomous vehicle its environment. The performance 
module is called CPS (Competitive Production Sys- 
tem), a production system that interacts with the 
world model by reading sensors, setting control vari- 
ables, and obtaining payoff from a critic. Like tradi- 
tional production system interpreters, CPS performs 
matching and conflict resolution. In addition, CPS 
performs rule-level assignment of credit based on the 
intermittent feedback from the critic. The learning 
module uses a genetic algorithm to develop reactive 
behaviors, expressed as a set of condition-action 
rules. Each behavior is evaluated by testing its per- 
formance on a number of tasks in the world model. 
As a result of these evaluations, behaviors are 
selected for replication and modification. Genetic 
operators, such as crossover and mutation, and other 
operators, such as generalization and specialization, 
produce plausible new behaviors from high perfor- 
mance precursors. 
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Fig. 2. SAMUEL: A Learning System for Reactive Behaviors 

2.1. Problem Specific Module: Description of AUV 
simulation domain 

To illustrate the problem specific module and 
the other modules of the system, we now describe one 
autonomous vehicle domain under study, collision 
avoidance and navigation for an autonomous under- 
water vehicle (AUV). In this domain, we have a sim- 
ple two-dimensional simulation of an AUV that must 
navigate through a dense mine field towards a station- 
ary object with which it must rendezvous. The AUV 
has a limited set of sensors, including sonar, and must 
set its speed and direction each decision cycle. We 
wish to learn a reactive behavior that is expressed as 
a set of reactive rules, (i.e. stimulus-response rules) 
that map sensor readings to actions to be performed at 
each decision time-step. Note that the system does 
not learn a specific path, but a set of rules that reac- 
tively decide a move at each time step allowing the 
vehicle to reach its goal and avoid the mines. 

2.1.1. Sensors 
We assume that the AUV knows its own position 

with some margin of error, and that the position of the 
stationary target is known, again with some margin of 
error. The AUV is equipped with an active sonar for 
detecting obstacles in its path. The sonar is com- 
posed of seven cells, each with a resolution of 10 
degrees, giving the AUV a total coverage of 70 
degrees. The AUV also has some internal, or virtual, 
sensors that give the AUV certain information about 
its own state. The sensors are: 
last-turn: The current turning rate of the AUV. This 

sensor can assume 13 values, ranging 
from -60 degrees to 60 degrees in 10 
degree increments. 

time: The current elapsed time, an integer. 

range: The range to the rendezvous area. 
Assumes 16 values from 0 to 1500. 

bearing: The bearing to the rendezvous area. 
Assumes integer values from 1 to 12. 



The bearing is expressed in "clock ter- 
minology", in which 12 o'clock denotes 
dead ahead of the AUV. 

speed: The current speed of the AUV. Assumes 9 
values from 0 to 40. Note that the AUV 

can come to a stop. 

asonarjv. One of 7 active sonar cells used for colli- 
sion avoidance. Each cell takes on values 
from 0 to 200 in increments of 10 (20 
bins) and represents the distance to an 
object within that sonar cell's view. If no 
object is seen, a special value indicates 
that no object is sensed. 

Each sensor can have noise added to simulate a 
more realistic environment. In particular, the sonar 
readings have both a gaussian noise added, and a 
small random probability of "missing" an object, or of 
reading a "ghost" object that is not really there. 

2.1.2. Actions (effectors) 

There is a discrete set of actions available to 
control the AUV. In this study, we consider actions 
that specify discrete turning rates and discrete speeds 
for the AUV. The control variable turn has 13 possible 
settings, between -30 and 30 degrees in five degree 
increments. The control variable speed has 9 possible 
settings between 0 and 40 (the units are arbitrary) 
with an increment of five. The learning objective is 
to develop a reactive plan, i.e., set of decision rules 
that map current sensor readings into actions, that 
successfully allows the AUV to rendezvous with the 
stationary target without using up all of its fuel while 
avoiding mines. 

The AUV simulation is divided into episodes 
that begin with the placement of the AUV centered in 
front of a randomly generated mine field with a 
specified density. The episodes end with either a suc- 
cessful rendezvous at the target location, or a loss of 
the AUV due to time running out (no fuel) or a colli- 
sion with a mine. The rendezvous is successful if the 
AUV approaches within 50 units of the target location. 
It is assumed that the only feedback provided is a 
numeric payoff, supplied at the end of each episode, 
that reflects the success of the episode with respect to 
the goal of reaching the rendezvous point. The payoff 
is defined by the formula: 

' 1.0, if AUV reaches goal area 
payoff = 

50 / (50 + range),    otherwise. 

depending on the AUV'S distance from the goal when 
the AUV is lost; this gives partial credit for failures. 

2.2. Performance Component 
The performance module of SAMUEL, CPS, has 

some similarities to both traditional production sys- 
tem interpreters and to classifier systems. The pri- 
mary features of CPS are a restricted but high level 
rule language, partial matching, competition-driven 
conflict resolution, and incremental credit assignment 
methods. These features are described in more detail 
in the following sections. 

2.2.1. Knowledge Representation 
In a departure from many previous genetic 

learning systems, SAMUEL learns rules expressed in a 
high level rule language. The use of a high level 
language for rules offers several advantages over low 
level binary pattern languages typically adopted in 
genetic learning systems. First, it is easier to incor- 
porate existing knowledge, whether acquired from 
experts or by symbolic learning programs. Second, it 
is easier to explain the knowledge learned through 
experience. Each CPS rule has the form 

IF        Cj 
THEN  Ö! 

AND 
AND 

AND    c„ 
AND    am 

where each c{ is a condition on one of the sensors and 
each action a, specifies a setting for one of the control 
variables. 

The form of the conditions depends on the type 
of the sensor. SAMUEL supports four types of sensors: 
linear, cyclic, structured, and pattern. Linear sen- 
sors take on linearly ordered numeric values. Condi- 
tions over linear sensors specify upper and lower 
bounds for the sensor values. For example, the speed 
sensor in AUV can take on values over the range 0 to 
40, discretized into 8 equal segments. Thus, an exam- 
ple of a legal condition over speed is 

speed  is   [10 15] 

The payoff returned by the critic is 1.0 for a success 
and a value between  0 and 0.5 (non-inclusive) 

which matches if 10 < speed < 15. In AUV, last-turn, 
time, range, speed, and the sonar cells are linear sen- 
sors. 

Cyclic sensors take on cyclicly ordered 
numeric values. Like linear sensors, the range of 
each cycle sensor is divided by the user into equal 
segments whose endpoints constitute the legal bounds 
in the conditions. Unlike linear sensors, any pair 
of legal values can be interpreted as a valid condition 
for cyclic sensors. In AUV, bearing is a cyclic sensor, 
since the next "higher" value than bearing = 12 is 



bearing = 1. 

The rule language of CPS also supports struc- 
tured nominal sensors whose values are taken from 
the nodes of a tree-structured hierarchy. Conditions 
for structured sensors specify a list of values, and the 
condition matches if the sensor's current value occurs 
in a subtree labeled by one of the values in the list. 
Structured nominal sensors are not used in the AUV 
domain, but that are used in the other three domains 
presented. 

The right-hand side of each rule specifies a set- 
ting for one or more control variables. For the AUV 
problem, each rule specifies a setting for the variable 
turn, and a setting for the variable speed. In general, 
a given rule may specify conditions for any subset of 
the sensors and actions for any subset of the control 
variables. Each rule also has a numeric strength, that 
serves as a prediction of the rule's utility (Grefen- 
stette, 1988). The methods used to update the rule 
strengths is described in the section on credit assign- 
ment below. 

2.2.2. Production System Cycle 
CPS follows the match/conflict-resolution/act 

cycle of traditional production systems. Since there 
is no guarantee that the current set of rules is in any 
sense complete, it is important to provide a mechan- 
ism for handling cases in which no rule matches. In 
CPS this is accomplished by assigning each rule a 
match score equal to the number of conditions it 
matches. The match set consists of all the rules with 
the highest current match score. 

Once the match set is computed, an action is 
selected from the (possibly conflicting) actions 
recommended by the members of the match set. Each 
possible action receives a bid equal to the strength of 
the strongest rule in the match set that specifies that 
action in its right-hand side. CPS selects an action 
using the probability distribution defined by the 
strength of the (single) bidder for each action. This 
prevents a large number of low strength rules from 
combining to suggest an action that is actually associ- 
ated with low payoff. All rules in the match set that 
agree with the selected action will have their strength 
adjusted according to the credit assignment algorithm 
described in the next section. 

After conflict resolution, the control variables 
are set to the values indicated by the selected 
actions.1 The world model is then advanced by one 
simulation step. The new state is reflected in a new 
set of sensor readings, and the entire process repeats. 

23. The Learning Module 
Learning in SAMUEL occurs on two distinct lev- 

els: credit assignment at the rule level, and genetic 
competition at the plan level. 

2.3.1. Credit Assignment 
Systems that learn rules for sequential behavior 

generally face a credit assignment problem: If a 
sequence of rules fires before the system solves a par- 
ticular problem, how can credit or blame be accu- 
rately assigned to early rules that set the stage for the 
final result? Our approach is to assign each rale a 
measure called strength that serves as a prediction of 
the expected level of payoff that will be achieved if 
this rule fires. When payoff is obtained at the end of 
an episode, the strengths of all active rules (i.e., rules 
that suggested the actions taken during the current 
episode) are incrementally adjusted to reflect the 
current payoff. The adjustment scheme, called the 
Profit Sharing Plan (PSP), consists of subtracting a 
fraction of the rule's current strength and adding the 
same fraction of the payoff. Rules whose strength 
correctly predicts the payoff retain their original lev- 
els of strength, while rules that overestimate the 
expected payoff lose strength and rules that underesti- 
mate payoff gain strength. However, conflict resolu- 
tion should take into account not only the expected 
payoff associated with each rule, but also some meas- 
ure of our confidence in that estimate. One way to 
measure confidence is through the variance associ- 
ated with the estimated payoff. In SAMUEL, the PSP 
has been adapted to estimate both the mean and the 
variance of the payoff associated with each rule. 
Thus, a high strength rule must have both high mean 
and low variance in its estimated payoff. By biasing 
conflict resolution toward high strength rules, we 
expect to select actions for which we have high 
confidence of success. 

23.2. The Genetic Algorithm 
At the plan level, SAMUEL treats the learning 

process as a heuristic optimization problem, i.e., a 
search through a space of knowledge structures look- 
ing for structures that lead to high performance. A 
genetic algorithm is used to perform the search. 
Genetic algorithms are motivated by standard models 

1 If there is more than one control variable, as is the case 
in the AUV domain, the conflict resolution phase is executed 
independently for each control variable. As a result, the 
settings for different control variables may be recommended 
by distinct rules. 



of heredity and evolution in the field of population 
genetics, and embody abstractions of the mechanisms 
of adaptation present in natural systems (Holland, 
1975). Briefly, a genetic algorithm simulates the 
dynamics of population genetics by maintaining a 
knowledge base of knowledge structures that evolves 
over time in response to the observed performance of 
its knowledge structures in their training environ- 
ment Each knowledge structure yields one point in 
the space of alternative solutions to the problem at 
hand, which can then be subjected to an evaluation 
process and assigned a measure of fitness reflecting 
its potential worth as a solution. The search proceeds 
by repeatedly selecting structures from the current 
knowledge base on the basis of fitness, and applying 
idealized genetic search operators to these structures 
to produce new structures {offspring) for evaluation. 
Goldberg (1989) and Davis (1991) provide a detailed 
discussion of genetic algorithms. The learning level 
of SAMUEL is a specialized version of a standard 
genetic algorithm, GENESIS (Grefenstette, 1986). In 
SAMUEL, the knowledge structures that make up the 
population are behaviors, or sets of reactive rules, 
that represent a strategy for solving the problem. The 
remainder of this section outlines the differences 
between GENESIS and the genetic algorithm in 
SAMUEL. 

random, e.g. the location of the mines and the goal 
location. 

In order to introduce plausible new rules, (and 
also to specialize overly general rules in the plan later 
in the learning) a plan modification operator called 
SPECIALIZE is applied after each evaluation of a plan. 
This operator will trigger if there is room in the plan 
for at least one more rule, and an episode ended with 
a successful rendezvous. 
SPECIALIZE creates a new rule with the right hand side 
being set to the action that occurred during the suc- 
cessful episode that triggered the operator, and with a 
more specialized left-hand side. For each sensor, the 
condition for the sensor in the new rule covers 
approximately half the legal range for that sensor, 
splitting the difference between the extreme legal 
values and the sensor reading obtained from the suc- 
cessful episode. For example, suppose the initial plan 
contains the maximally general rule: 

IF 

THEN turn is ANY  AND 

speed is ANY 

Suppose further that the following step is recorded in 
the evaluation trace during the evaluation of this 
plan: 

2.3.2.1. Adaptive Initialization and Using Existing 
Knowledge 

Several approaches to initializing the 
knowledge structures of a genetic algorithm have 
been reported. By far, random initialization of the 
first population is the most common method. This 
approach requires the least knowledge acquisition 
effort, provides a lot of diversity for the genetic algo- 
rithm to work with, and presents the maximum chal- 
lenge to the learning algorithm. As a second alterna- 
tive, we have developed an approach called adaptive 
initialization. Each plan starts out as a completely 
general rule, but its rule is specialized according to its 
early experiences, thus creating more rules for each 
plan. Specifically, each plan in the initial population 
consists of a maximally general rule which says: 

for any sensor readings, take any action 

A plan consisting of only this rule executes a random 
walk, since the rule matches on every cycle and 
specifies any possible legal action. Although each 
plan in the initial population executes this random 
walk policy, it does not follow that they all have the 
same performance, since the initial conditions for the 
episodes used to evaluate the plans are selected at 

sensors: 

action: 

... time = 4, range = 500, 

bearing =6 ... 

turn = -15, speed = 10 

Then SPECIALIZE would create the following new rule: 

IF time is [2 .. 11] AND 

range is [300 .. 1000] AND 

bearing is [3 .. 9]    AND 

THEN turn is [-15] AND speed is [10] 

The resulting rule is given a high initial strength, and 
added to the plan. The new rule is plausible, since its 
action is known to be successful in at least one situa- 
tion that matches its left hand side. Of course, the 
new rule is likely to need further modification, and is 
subject to further competition with the other rules. 

A third approach is to seed the initial popula- 
tion with existing knowledge (Schultz and Grefen- 
stette, 1990). The rule language of SAMUEL was 
designed to facilitate the inclusion of available 
knowledge. In some cases, such as the AUV domain, 
random behavior will never yield a success and so the 



adaptive initialization will not have sufficient infor- 
mation for adequately specializing the maximally 
general rule. In these domains, it is essential that the 
initial population include heuristic knowledge to start 
the search. This initial knowledge does not need to 
lead to very good results, but simply gives the system 
some initial successes so that the adaptive initializa- 
tion will work. Following are the set of initial rules 
used in this study. Note that the performance 
achieved with this hand-crafted plan is only eight per- 
cent, i.e. the AUV can successfully reach the rendez- 
vous area 8 out of 100 episodes. Note that this plan 
does not specify any action values for the speed 
action; they must be learned. 

# Goal is somewhat in front of us; nothing 
# is too close ahead, go straight 

IF  bearing is [11 .. 1] AND 
asonar4 is [180 .. INF] 

THEN turn is [0] 

# Goal is somewhat is front of us; object 
# within range in front of us; turn hard. 

IF   bearing is [11 .. 1] AND 
asonar4 is [10 .. 190] 

THEN turn is [30] 

# Turn towards the goal. 

IF bearing is [2 . . 6] 
THEN turn is [-30] 

IF  bearing is [6 .. 10] 
THEN turn is [30] 

# A maximally general rule. 
# Choose speed randomly. 

IF 
THEN  speed  is ANY 

23.2.2. Evaluation 
Each plan is evaluated by invoking CPS, using 

the given plan as rule memory. CPS executes a fixed 
number of episodes, and returns the average payoff as 
the fitness for the plan. The updated strengths of the 
rules are also returned to the learning module. Each 
episode begins with randomly selected initial condi- 
tions, and thus represents a single sample of the per- 
formance of the plan on the space of all possible ini- 
tial condition of the world model. Earlier work indi- 
cated that it is important for the simulation model to 
include more variability and noise that the actual 
environment (Grefenstette, Ramsey and Schultz, 
1990). In this study, noise is included in the sensors, 
and each initial environment is comprised of a ran- 
dom mine field. 

23.2.3. Selection 
Plans are selected for reproduction on the basis 

of their overall fitness scores returned by CPS. Using 
the notion of "survival of the fittest", plans that per- 
form well get to produce more offspring (i.e. plans) 
for the next generation. The topic of reproductive 
selection in genetic algorithms is discussed in the 
literature (De Jong, 1975; Goldberg, 1989). In 
SAMUEL, the fitness of each plan is defined as the 
difference between the average payoff received by the 
plan and some baseline performance measure. The 
baseline is adjusted to track the mean payoff received 
by the population, minus one standard deviation. The 
baseline is adjusted slowly to provide a moderately 
consistent measure of fitness. Plans whose payoff fall 
below the baseline are assigned a fitness measure of 
0, resulting in no offspring. This mechanism appears 
to provide a reasonable way to maintain consistent 
selective pressure toward higher performance. 

2.3.2.4. Genetic Operators 
Selection alone merely produces clones of high 

performance plans. CROSSOVER works in concert with 
selection to create plausible new plans. In SAMUEL, 
CROSSOVER treats rules as indivisible units. Since the 
rule ordering within a plan is irrelevant, the process 
of recombination can be viewed as simply selecting 
rules from each parent to create an offspring plan. In 
SAMUEL, CROSSOVER assigns each rule in two 
selected parent plans to one of two offspring plans. 
CROSSOVER attempts to cluster rules that are tem- 
porally related before assigning them to offspring. 
The idea is that rules that fire in sequence to achieve a 
successful rendezvous should be treated as a group 
during recombination, in order to increase the likeli- 
hood that the offspring plan will inherit some of the 
better behavior patterns of its parents. Of course, the 
offspring may not behave identically to either one of 
its parents, since the probability that a given rule fires 
depends on the context provided by all the other rules 
in the plan. The effect is that small groups of rules 
that are associated with high performance propagate 
through the population of plans, and serve as building 
blocks for new plans. 

While CROSSOVER operates on the entire popu- 
lation of plans, recombining rules among the plans, 
SAMUEL also includes six unary operators that modify 
the rules within a single behavior: MUTATION, CREEP, 
SPECIALIZE, GENERALIZE, MERGE, and DELETE. Unlike 
previous versions of the system, SAMUEL has now 
adopted the policy that all of these operators except 
DELETE are creative. All modifications are made on a 



new copy of the original rule, and the altered rule is 
added into the plan, where it will compete at the rule 
level with the rule from which it was created. A rule 
survives intact unless it is explicitly deleted or lost 
when its behavior is not selected for reproduction. 
This policy allows a much more aggressive applica- 
tion of rule modification operators with little damage 
if the changes are maladaptive. Each of these opera- 
tors will now be discussed. 

The genetic operator MUTATION introduces a 
new rule by making random changes to a copy of an 
existing rule. For example, MUTATION might alter a 
condition within a rule from asonar_4 [150 
200] to asonar_4 [10 .. 200]. The opera- 
tor CREEP is similar to MUTATION, except that it only 
makes small changes, e.g. from asonar_4 [150 
.. 200] to asonar_4 [140 .. 200]. This 
operator "creeps" a value the smallest increment 
possible for a particular sensor or action. 

The SPECIALIZE operator was described earlier 
in Section 2.3.2.1 during the discussion of population 
initialization. This operator is applied when general 
rules fire in successful episodes. The operator creates 
a new rule whose left hand side more closely matches 
the sensor values existing at the time the general rule 
fired, and whose right hand side more closely matches 
the action that was actually taken. 

The GENERALIZE operator creates rules that are 
more general versions of overspecialized rules. GEN- 
ERALIZE can be applied when a rule fires because of a 
partial match during a successful episode. A partial 
match occurs when no rule fully matches the current 
sensors, and the rule that most closely matches is 
selected. This operator creates a rule that will match 
when a similar situation occurs again by generalizing 
the conditions enough to match the sensor readings 
that were active when the rule fired. 

The MERGE operator creates a new rule from 
two high-strength rules that specify the same action. 
The new rule matches any situation that was origi- 
nally matched by either of the two original rules. 
Together, the MERGE operator with the DELETE opera- 
tor (described next), help to eliminate overspecialized 
rules from the behavior. 

DELETE is the only operator that can remove 
rules from a behavior. A rule may be deleted if the 
rule has not fired recently, the rule has low strength, 
or the rule is subsumed by another rule with higher 
strength. 

3. Results and Other Domains 
This section will describe the results from the 

collision avoidance and navigation domain and then 
briefly describe and give results of three other 
domains for which behaviors have been learned. 
Each of these domains represent behaviors that are 
important to an autonomous vehicle whether the vehi- 
cle is an air vehicle, land vehicle or underwater vehi- 
cle. The three additional domains are tracking, dog 
fighting, and missile evasion. 

3.1.    Results   from   Navigation   and   Obstacle 
Avoidance Domain 

Simulation results demonstrate that an initial, 
human-designed behavior which has an average suc- 
cess rate of only eight percent on randomly generated 
mine fields can be improved by this system so that the 
final behavior can achieve a success rate of 96 per- 
cent 

The experiments shown here reflect our 
assumptions about the methodology of simulation- 
assisted learning. At periodic intervals (10 genera- 
tions in the current experiments), a single behavior is 
extracted from the current population to represent the 
learning system's current hypothetical behavior. This 
behavior is tested for 100 randomly chosen problem 
episodes. The assumption is that the current best 
behavior can be extracted from the learning system 
and used in the real world while the learning system 
continues looking for a better hypothesis. 

In the first experiment, the system was initial- 
ized with the rules discussed and shown in section 
2.3.2.1. Each episode, the AUV was placed centered 
before a randomly generated mine field with a density 
of 25 mines. The rendezvous area was placed at a 
random point on the other side of the mine field. 
SAMUEL was then run for 100 generations. Each 
evaluation of a behavior is the average over 20 
episodes, as discussed earlier. Since a stochastic pro- 
cess is involved, each experiment was repeated ten 
times, and the results averaged. Before learning, with 
just the initial rules by themselves, the AUV will ren- 
dezvous with the goal just eight out of 100 times. 
After 100 generations, the performance reachs 96 per- 
cent 

In order to test the robustness of the learned 
behavior, the best behavior learned over the whole 
experiment was extracted and then used, without 
learning, in other environments. The results are sum- 
marized in Table 1. When presented with an environ- 
ment with double the mine density (50 mines), the 



rules learned with 25 mines still produced 46 percent 
performance. The learned rule set was then tested in 
scenarios with 25 drifting mines. The mines made 
random walks at a speed of seven units. In this 
environment, the AUV achieved 91 percent perfor- 
mance. Next, the behavior was tested in an environ- 
ment with 50 drifting mines, again with a speed of 
seven units. In this case, the AUV reached 41 percent 
performance. 

before learning learned with 

(uses initial rules) 25-mine scenarios 

25 mines 8% 96% 

50 mines 1% 46% 

25 moving mines 1% 91% 

50 moving mines 0% 41% 

Table 1. Trained with 25 mines; varied testing. 

Although the system is an opportunistic learn- 
ing, the results indicate that generally useful reactive 
rules for this task were learned by the system. Notice 
that the performance of the learned behavior was 
most affected by the mine density. One reason for this 
is the relatively low resolution of the sonar, and the 
noise added to the sonar model. 

The performance of the behavior is not as 
affected by environments with mines that move. Only 
a small degradation is introduced when the mines are 
allowed to move, given the same density of mines. 
This is not surprising when you consider that the 
behavior is reactive, and this points out one of the 
drawbacks to projective planning: In this environ- 
ment, a global path can almost never be constructed. 

3.2. Missile Evasion Domain 

In the missile evasion problem, there are two 
objects of interest, a plane and a missile. The tactical 
objective is to maneuver the plane to avoid being hit 
by the approaching missile. The missile tracks the 
motion of the plane and steers toward the plane's anti- 
cipated position. The initial speed of the missile is 
greater than that of the plane, but the missile loses 
speed as it maneuvers. If the missile speed drops 
below some threshold, it loses maneuverability and 
drops out of the sky. It is assumed that the plane is 
more maneuverable than the missile; that is, the plane 
has a smaller turning radius. There are six sensors 

range: 

bearing: 

heading: 

speed: 

that provide information about the current tactical 
state: 
last-turn: The current turning rate of the plane. 
time:       A clock that indicates time since detection 

of the missile. 

The missile's current distance from the 
plane. 
The direction from the plane to the missile. 

The missile's direction relative to the plane. 

The missile's current speed measured rela- 
tive to the ground. 

Note that for this and the next two domains, the sen- 
sors use structured nominal types, as discussed in 
Section 2.2.1. 

Finally, there is a discrete set of actions avail- 
able to control the plane. In this study, we consider 
only actions that specify discrete turning rates for the 
plane. The control variable turn has nine possible 
settings, between -180 and 180 degrees in 45 degree 
increments. The learning objective is to develop a 
behavior, i.e., set of decision rules, that map current 
sensor readings into actions, that successfully evades 
the missile whenever possible. 

The EM problem is divided into episodes that 
begin when the threatening missile is detected and 
that end when either the plane is hit or the missile is 
exhausted.2 It is assumed that the only feedback pro- 
vided is a numeric payoff, supplied at the end of each 
episode, that reflects the quality of the episode with 
respect to the goal of evading the missile. Maximum 
payoff is given for successfully evading the missile, 
and a smaller payoff, based on how long the plane 
survived, is given for unsuccessful episodes. The 
payoff is defined by the formula: 

1000,    if plane escapes missile. 
payoff = 

lOf,       if plane is hit at time t. 

The missile may hit the plane any time between 1 and 
20 seconds after detection, so the payoff varies from 
10 to 200 for unsuccessful episodes to 1000 for suc- 
cessful evasion. 

Again, because SAMUEL employs probabilistic 
learning methods, the results presented for this 
domain average the mean performance over 20 
independent runs of the system, each run using a 

2 For the experiments described here, the missile began 
each episode at a fixed distance from the plane, traveling 
toward the plane at a fixed speed. The direction from which 
the missile approached was selected at random. 



different seed for the random number generator. 
Unlike the collision avoidance domain, for the EM 
domain, no domain knowledge is placed into the ini- 
tial population. The initial strategy (a random walk) 
evades the missile about 31% of the time. After 50 
generations, the final strategy evades the missile 
about 82% of the time. 

3.3. Dog Fighting Domain 
The dog fighting domain pits the learning agent 

against a rule-based adversary with identical sensor 
and action capabilities. In this domain, the object is 
to leam a behavior that allows the plane to defend 
against and destroy an adversary plane. In this 
domain, the learner uses the same six sensors used in 
the missile evasion domain. Also as before, the plane 
controls its own turning rate, but its speed is a deter- 
ministic function of its turning rate. Each agent has a 
weapon that allows it to destroy the opponent if the 
agent is heading toward the opponent and is within 
the weapon's range. The object, therefore, is both to 
evade the opponent's fire while getting in position to 
make an attack. The learner receives full payoff for 
an episode in which the adversary is destroyed, par- 
tial payoff for a draw, and 0 payoff if the learner is 
destroyed. The adversary operates according to a 
fixed set of rules, and does not learn during these 
experiments. 

The initial behavior (a random walk) defeats 
the adversary approximately 40% of the time. After 
50 generations, the final strategy evades the adversary 
about 83% of the time. 

3.4. Tracking Domain 
In this model, the goal is to stalk the prey at a 

distance without being detected. This domain again 
uses the same six sensors as the missile evasion 
domain, but in this domain, the tracker must learn to 
control both its speed and its direction. The adver- 
sary (the prey) follows a random course and speed. It 
is assumed that the tracker has sensors that operate at 
a greater distance than the prey's sensors. The object 
is to keep the prey within range of the tracker's sen- 
sors, without being detected by the prey. If the 
tracker enters the range of the prey's sensors, it will 
be detected and captured with a probability that 
depends on the tracker's distance and speed. At the 
end of each episode, the critic provides full payoff if 
the tracker keeps within a certain average range of 
the prey, proportionately less payoff if the average 
range exceeds the threshold, and 0 payoff if the 
tracker is captured by the prey. 

IF bearing is [directly-ahead] 
AND range is [high] 

THEN turn is [straight] AND 
speed is [medium high] 

IF bearing is [hard-right, behind-right] 
AND range is [high] 

THEN turn is [soft-right] AND 
speed is [medium, high] 

IF bearing is [directly-behind] 
AND range is [high] 

THEN turn is [hard-right] AND 
speed is [medium, high] 

IF bearing is [hard-left behind-left) 
AND range is [high] 

THEN turn is [soft-left] AND 
speed is [medium, high] 

IF range is [close low medium] 
THEN turn is [straight] AND 

speed is [low, medium] 

Fig. 3: Initial Strategy for Tracking Domain 

This environment is more difficult than the mis- 
sile evasion domain in the sense that a random walk 
has very little chance of producing acceptable 
behavior. An initial plausible strategy, shown in Fig- 
ure 3, provides an over-general but plausible initial 
starting point. The initial strategy successfully tracks 
the adversary approximately 22% of the time. After 
50 generations, the final behavior evades the adver- 
sary over 72% of the time. Since the adversary fol- 
lows a random route, it can, and often does, turn 
directly toward the tracker and approach at high 
speed. Since the probability of detection depends in 
part on the tracker's own speed, it can easily be 
surprised and trapped by the adversary. Future stu- 
dies will shed more light on the ultimate level of per- 
formance that can be obtained in this setting. 

4. Conclusion 
The results of learning behaviors for the above 

domains are summarized in Table 2. SAMUEL has 
demonstrated in several different domains, including 
mine avoidance and local navigation, tracking, and 
evasion, that robust reactive behaviors can be 
learned. These behaviors are expressed in a high- 
level language, and can be used in reactive systems 
where real-time response is an important capability. 
SAMUEL is an attempt to automate the process of 
learning the rules needed in a reactive system, partic- 
ular since reactive rules are very difficult to construct 
by hand. 
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Sensors Controls Initial Gen 50 Initialized 
Performance Performance with Rules 

Evasion 6 1 31 82 N 

Dogfight 6 1 40 83 N 

Tracking 6 2 22 72 Y 

Navigation 13 2 8 96 Y 

Table 2. Summary of Learning Behaviors in Difference Domains 

Related work is also examining the degree to 
which behaviors learned under simulation apply to 
real world situations. Initial experiments show that as 
long as the simulation is more general (i.e. more vari- 
ability and noise) than the real world, then the 
behaviors are applicable (Ramsey, Schultz and Gre- 
fenstette, 1990; Grefenstette, Ramsey and Schultz, 
1990). 
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