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Abstract 

Numerical applications frequently contain nested loops that process large arrays of data. The 
execution of these loop structures often produces memory reference patterns that utilize data 
caches poorly. Indeed, poor reuse of the data, large working set sizes, and frequent non-unit 
stride accesses all combine to cause many cache misses. To improve cache performance, data 
copying has been proposed. However, this technique has high overhead. 

In this paper, instead, we propose a combined hardware and software technique called data 
relocation and prefetching which eliminates much of the overhead of data copying through the 
use of special hardware. Furthermore, by relocating the data while performing software prefetch- 
ing, the overhead of copying the data can be reduced further. This technique performs better 
than prefetching alone because it reduces cache misses through relocation, and it reduces over- 
head by prefetching multiple elements at once. The hardware is designed to overlap relocation 
and prefetching with normal execution, and to highly utilize the available bus bandwidth. Sim- 
ulation results show that this technique greatly reduces data cache miss rates. As a result, large 
applications including PERFECT and SPEC benchmarks achieve up to 2.5 times speedup. The 
hardware support required by this technique has been greatly refined over that presented in an 
earlier paper. 
Index terms - Cache conflicts, data copying, data relocation, program optimization, software 
prefetching. 

I 
1    Introduction 

Numerical applications frequently contain nested loops that process large arrays . The execution 

of these loop structures has been shown to produce memory reference patterns that under-utilize 

data caches [1][2].  This is caused by at least three problems.  First, large working set sizes cause 
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cache overflow, resulting in cache misses. Secondly, non-unit stride access patterns can cause low 

utilization of cache lines, which increases cache conflicts, in addition to wasted bus and memory 

cycles [3]. Finally, low reuse of data results in poor cache use, and therefore more cache misses. 

Potentially, one could use a larger cache size and higher cache associativity to reduce some of 

these effects. This brute force approach, however, does not scale well with larger problem sizes. 

Moreover, it would result in significant hardware cost and increased cache access latency, both of 

which could be avoided via the more cost-effective approach proposed in this paper. 

The use of loop blocking transformations is often effective in improving performance of 

caches [2] [4] [5]. By partitioning the iteration space, loop blocking transformations reduce the 

amount of data referenced between two references to the same datum, thereby increasing the po- 

tential for data reuse. In practice, however, it has been shown [4] that loop blocking transformations 

suffer from cache mapping conflicts. Additionally, blocking alone is not effective for singly-nested 

loops since the data accesses are not reordered. Data copying has been proposed to reduce the 

cache conflict misses [1] [4] [6], however the overhead is significant. 

Data prefetching has also been proposed to reduce cache misses by fetching data into the cache 

before it is referenced [7] [8]. When used in conjunction with small cache-block sizes, one can 

potentially eliminate the problem of low utilization of cache blocks and wasted bus cycles [3]. 

However, data prefetching may increase the size of the working set, introducing capacity misses. 

Also, prefetched data may conflict with the current working set in the cache, introducing more 

conflict misses [9] [10]. In order for data prefetching to improve performance in a reliable manner, 

one must ensure that both current and future working sets can fit into the cache. 

We propose an approach, called Data Relocation and Prefetching (DRP), that prefetches the 

array element read references into consecutive, and therefore non-conflicting, locations within the 

cache. This is implemented with combined hardware and compiler support which has less overhead 

than the traditional data copying approach, because the relocation is integrated with prefetching. 

Also, compression and prefetching of the next working set is overlapped with the computation for 

the current working set in order to hide the latency of the relocation. With this technique, if the 

original data access pattern is of non-unit stride, unused data are not brought into the cache during 

compression and prefetch, resulting in improved cache-line utilization. I 

The initial version of this technique was proposed in an earlier paper [11], which focused on 



compiler support and gave a rough description of the hardware support. Preliminary results were 

also presented. This paper presents a more detailed description of the architectural and hardware 

support, which has been redesigned for improved efficiency. Improvements include greatly reduced 

instruction set modifications required, a much wider range of hardware issues that are discussed, 

and even more encouraging experimental results. 

Overlap of program execution with DRP, high utilization of the memory bus bandwidth, and 

support of out-of-order return of requests from the memory system are important objectives the 

hardware should satisfy. Four of the main components of the hardware unit were designed to satisfy 

these objectives: the Precollect Status Store, Instruction Queue, Outstanding Memory Request 

Store and Block Assembly Cache. The Precollect Status Store, which provides synchronization 

between the DRP unit and the CPU, and the Instruction Queue, which allows the DRP unit to 

operate asynchronously with the CPU by buffering DRP requests, combine to help fully overlap 

program execution and DRP instruction execution. Additionally, the Outstanding Memory Request 

Store, which allows multiple outstanding memory requests, provides high utilization of the memory 

bus, and the Block Assembly Cache handles out-of-order return of requests from the memory 

system. The operation of each component will be discussed in detail in Section 2.4. 

Using the IMPACT compiler [12], an emulation tool, and a simulation tool, we show that this 

extension to the cache and processor architecture along with the requisite compiler support greatly 

improves the data cache performance for array-based applications. Cache miss rates are reduced 

for all the applications tested, and are nearly eliminated for several applications. Up to 2.5 times 

speedup is achieved, and the average speedup is over 1.5. 

1.1    Related Work 

The technique proposed here is conceptually similar to the gather operation used in the Cray- 

1 [13]. In the Cray-1, the array elements are "gathered" from memory into the vector registers 

before performing vector operations, and "scattered" back to memory after the vector operations 

are complete. However, the hardware necessary to support data relocation and prefetching would 

be much easier to add to an existing processor than the hardware to support vectorization. 

Chen and Baer [7] presented a hardware approach which preloads blocks for accesses with 

constant strides. However, their method does not attempt to reduce conflict misses because it does 



not change the layout of the prefetched data within the cache. On the other hand, our technique 

relocates only data elements which will be referenced, and maps them into sequential locations 

within the cache. 

Several techniques have been proposed to help reduce cache conflict misses, and can be used 

in conjunction with DRP. The victim cache [14], the column-associative cache [15], and the assist 

cache [16] can be used with DRP to reduce conflict misses for untransformed accesses. These 

strategies avoid some of the cost of an associative cache by providing a fast access for cache hits 

and a slightly slower path for references that conflict in a direct-mapped cache. Additionally, the 

Cache Miss Lookaside buffer [17] can be used to reduce conflict misses in a large second-level cache, 

while DRP is used for first-level caches. 

The remainder of this paper is organized into four sections. Section 2 presents the proposed 

technique and describes the necessary architecture, compiler, and hardware support. In Section 3, 

the simulation environment is detailed, and in Section 4 simulation-based experimental results 

are provided to demonstrate the effectiveness of the proposed technique. Finally, Section 5 offers 

concluding remarks and future directions. 

2    Data Relocation and Prefetching 

2.1     Overview 

We propose a hardware-based, compiler-supported technique called data relocation and prefetching 

in order to improve the data cache performance . In this method, the array elements read in the 

inner loop of a nest are sequentially mapped into special relocation buffers within the cache before 

they are accessed. Special hardware that is attached to the cache unit performs this relocation of 

data into sequential locations while prefetching the data from the memory to the cache, without 

stalling the CPU. The relocation operations are invoked by an explicit precollect instruction inserted 

by the compiler. The compiler also inserts a declaration into the original code to allocate a relocation 

buffer in memory for the relocated data. 

Because the array data is relocated, the prefetch is binding. During the computation, the newly 

assigned address in the relocation buffer is used to access the data rather than the original address. 

Consequently, the relocation must be completed before the computation on the same data begins. 



a) Original Code 

for   (i   =   0; i   <  N;   i++) 
for   (j   = 0;   j   <   3;   j++) 

...   = A[i][2*j]   +  B[j][i]; 

b)Transformed Code 

for (i = 0; i < N; i++) 
for (j = 0; j < 3; j++) 

... = A'[j] + B'[j]; 

A[0][0] A[0][2] A[0][4]      B[0][0] 

Layout in memory 

B[1][0] B[2][0]  

Relocation Buffer 

A' B' 

Layout in cache 

Figure 1: Concept of Data Relocation 

So if the relocated, cached data is replaced by some other data, the relocated data is automatically 

written back to the relocation buffer in memory since the accesses in the computation use' the 

address of the relocated data. To insure that this write-back occurs, the dirty bit is set when the 

cache line for the data is allocated. Modifications to this algorithm necessary for the use of a write- 

through cache, instead of a write-back cache, will be discussed in Section 2.4. Array references that 

are written in the loop are never transformed, as will be discussed in Section 2.2.2, so the relocated 

data will never need to be written back to the original address. 

DRP can improve the spatial locality of array accesses for a loop nest. Figure 1 shows how 

array data elements accessed in the first iteration of the outer loop are copied to sequential cache 

locations that map to the relocation buffer in memory. Array A is accessed with a stride of two, 

and array B is accessed in column order during the execution of the inner loop. Accesses to these 

array elements can result in poor performance because: 

1. The accesses may have low spatial locality because of the non-unit access stride, resulting in 

wasted cache capacity which may lower the cache hit rate. 

2. The sets of accesses for different arrays may conflict with each other because they may be 

mapped to some of the same locations in the cache. 

3. The accesses for a single array may conflict with each other because of a large access stride. 



If the accessed elements of these arrays are relocated into the cache, spatial locality can be improved 

by packing elements of the arrays into contiguous locations. This increased spatial locality can 

eliminate conflicts between elements of the same array, as well as between those of different arrays. 

Also, since only necessary elements are brought into the cache, the extra memory requests and time 

to fill the cache line due to the non-unit stride accesses are reduced. Furthermore, if the total size 

of the relocated array elements is smaller than the cache size, the compression guarantees that the 

references to the relocated data do not conflict with each other in the cache. Finally, cache space 

is conserved by packing elements of the arrays. 

In order to reduce the instruction-fetch overhead due to the inserted precollect instructions, each 

precollect instruction contains enough information to operate on several elements of the array in 

sequence. Also, in order to accommodate the latency of the relocation of array data, the relocation 

and computation phases are separated in time by software-pipelining the outer loop. 

2.2    Architectural Support 

Implementing the mechanism for the DRP technique requires an extra instruction as well as extra 

hardware. In the following, we first describe the new instruction, and then discuss instructions 

eliminated from the original design [11]. 

2.2.1    Precollect Instruction 

To support DRP, a new precollect instruction is added to the instruction set of the processor. This 

instruction compacts the array data referenced in a computation into consecutive memory locations 

in the cache before the data is needed for the computation. These locations together are called a 

relocation buffer. The precollect instruction also sets the dirty bit of the cache line so that if the 

relocated data is displaced from the cache, it is backed up in a relocation buffer in memory. The 

precollect instruction accesses the cache to find the source data first. If it misses then a request is 

sent to the memory system for the data. In either case, the processor does not stall from cache 

accesses caused by a precollect instruction. 

The precollect instruction has five operands. The first operand is the address of the first element 

of the array to be relocated. The second operand is the address of the first element of the relocated 

array in the relocation buffer.   Finally, the third through the fifth operands are the size of each 



array element in bytes, the stride of the array accesses in bytes, and the number of array elements 

to be collected, respectively. 

Since most RISC architectures do not allow five operands, the precollect instruction is actually 

implemented with two machine instructions. The first machine instruction is an immediate load, 

which encodes the element size, stride and number of data elements in a register. Then the new 

machine instruction called precollect has three register operands: the array address, the buffer 

address, and the encoded register. If the instruction set architecture only supports two source 

register operands, then the buffer address may be specified as an immediate value, since it requires 

the fewest bits of the three operands. Because the data element size, stride, and number of data 

elements are likely to be loop-invariant, the immediate load is usually moved out of the outer loop 

by our compiler. Therefore, the overhead of this instruction is minimal. 

2.2.2    Instructions Eliminated from Previous Work 

The previous version of this technique that we proposed [11] required five extra instructions, not 

only precollect, but also await, preallocate, distribute and finishup. The await was used as a synchro- 

nization mechanism to avoid accessing the relocated array data before the precollect was completed. 

We were able to remove this extra instruction by adding hardware to enforce this constraint, as 

will be explained in Section 2.4. 

For data that is written only, a write-no-allocate cache is used so that these references are simply 

sent to the write buffer if cache misses occur, thereby avoiding cache conflicts. The preallocate, 

distribute and finishup instructions were used to support relocation and prefetching of data that is 

written and later read within the inner loop. Experimental evidence suggests that this support is 

unwarranted, for only two loop nests in all of the applications that we tested contained references 

of this nature that were being transformed. When we did not transform these references, less than 

a 1% degradation in performance occurred. The fact that few loads follow stores to the same 

array within the same inner-most loop in our applications, coupled with the use of a write-no- 

allocate cache as described above, results in this small performance degradation. Therefore, we 

have eliminated the preallocate, distribute and finishup instructions. 



2.3 Compiler Support 

We apply the data relocation and prefetching optimization to loops nested two or more deep. For 

loop nests which are nested more deeply than two, the transformation is applied to the two inner- 

most loops. In this case, we refer to the outer of the two inner-most loops as the outer loop, and 

the inner-most loop as the inner loop. Singly nested loops are transformed into doubly-nested loops 

via loop strip-mining, discussed in Section A.l, so that relocation and prefetching can be applied 

to them. 

Before each execution of the inner loop, the array data accessed in the inner loop are relocated 

and prefetched. In order to allow sufficient time for precollect instructions to complete, we overlap 

the execution of one outer loop iteration with the precollection of data used in the next outer loop 

iteration. Therefore, two relocation buffers are required for each array we precollect (prefetch and 

relocate), one for the executing iteration and one for the next iteration which is precollecting. 

The code transformations employed for data relocation and prefetching are explained in detail 

in [18]. The compiler algorithms have been improved over those in previous work [11] so that the 

DRP technique can be applied more broadly and effectively. The most important of the compiler 

transformations are explained in Appendix A, and an example is given. 

2.4 Hardware Support 

The hardware support required for DRP is an on-chip module called the Data Relocation and 

Prefetching unit. The DRP unit receives precollect instructions from the processor. It fetches data 

from the cache or main memory, one element at a time, and then assembles each cache block in 

an assembly buffer and writes it into the cache. The DRP unit needs to access both the bus and 

the data cache. Therefore, the DRP unit shares the cache with the CPU a.nd shares the bus with 

the cache (Figure 2). In this configuration, both the processor and the cache have higher priority 

than the DRP unit to access shared resources. This priority hierarchy helps to ensure that the 

DRP unit does not interfere with the processor accesses to the memory system while a precollect 

instruction is being executed. We verified via simulation that the DRP unit should have lower 

priority in accessing the bus [18]. 

In our current implementation, we use a virtually-addressed write-back data cache. However, a 

physically-addressed cache can also be used, as discussed in Section 2.4.6. If a write-through cache 
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Figure 2: Data Relocation and Prefetch Unit Interfaces 

is used instead, when the precollected data is written to the data cache, it must also be placed in 

the write buffer. This is to ensure that the relocated data is also initially placed in the relocation 

buffer in memory, because there is no provision to ensure that the relocated data will be written 

back to memory when it is replaced from a write-through cache. A dedicated read port into the 

data cache is required by the DRP unit. It is used to check if data to be precollected resides in the 

cache. This read port should not trigger a cache miss if the data is not found in the cache: If the 

data is not found in the cache, the DRP unit accesses memory using its connection to the memory 

bus. Furthermore, the DRP unit itself does not block when fetching data from a memory location. 

If a high-bandwidth memory system like a split-transaction bus system is used, many read and 

write requests issued by the DRP unit can be in progress at the same time. 

The structure of the DRP unit is shown in Figure 3. It has five main parts: Precollect Status 

Store, Instruction Queue, Address Generator, Outstanding Memory Request Store, and DRP Block 

Assembly Cache. As discussed in Section 1, the Precollect Status Store and Instruction Queue 

satisfy the objective of overlapping program execution with DRP, the Outstanding Memory Request 

Store helps fully utilize the memory bus bandwidth, and Block Assembly Cache supports out-of- 

order return of data from memory. In the following, we consider each component in turn. 
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Figure 3: Data Relocation and Prefetch Unit Data Path 

2.4.1    Precollect Status Store 

When a precollect instruction is executed, we allocate an entry in the Precollect Status Store (PSS). 

Each PSS entry has a bit for each cache block of the relocation buffer into which we are precollecting. 

All the bits are initialized to zero when the entry is first allocated. As each cache block of relocated 

data is finally copied into the data cache, the corresponding bit in the PSS is set. Once all bits 

for an entry are set, the precollect instruction is complete, and we remove the entry from the PSS. 

Note that more than one precollect may be in progress if the memory can return data out-of-order. 

The cache controller must check the PSS each time the cache is accessed by the processor to 

ensure that the block it is attempting to access has been precollected. If the corresponding bit 

is zero then the cache is blocked until the bit for that block is set.   If an entry is not found in 

10 



the PSS for the block being accessed, the cache can proceed because either the corresponding 

precollect. instruction is completed, or the data being accessed was not transformed for relocation. 

As discussed in Section 1, the PSS contributes to the desired overlap of program execution with 

DRP by providing a mechanism to synchronize the CPU and the DRP unit when necessary. 

Entries in the PSS must be allocated immediately upon the issue of a precollect instruction so 

that an access to the precollected data issued the immediately following cycle will correctly cause 

the cache to block. Therefore, the number of write ports into the PSS should equal the number of 

precollects allowed to issue in the same cycle. 

The PSS is fully-associative and is accessed from one of three sources: the data cache, the 

Block Assembly Cache (BAC) (discussed in Section 2.4.5), and the Address Generator (discussed 

in Section 2.4.3). There should be a dedicated port into the PSS from the data cache for each of 

the memory load requests that the processor can issue simultaneously. The other two requests are 

multiplexed into one port, as shown in Figure 3. All of these ports perform an associative search 

on the buffer address. Priority to access the shared port is given to the Address Generator, since 

stalls may impact performance significantly. The algorithm flow chart for the PSS access port is 

illustrated in Figure 4. 

2.4.2    Instruction Queue 

Once the precollect instruction is decoded, the operands are fetched from the register file and placed 

in the Instruction Queue (IQ). As with the PSS, the IQ must have as many write ports as the number 

of precollects allowed in the same cycle. In addition, to avoid stalling the processor, both the PSS 

and the IQ need enough entries to hold the maximum number of "in-flight" precollects. If either 

the IQ or the PSS is full when a new precollect is sent from the processor, the DRP unit stalls the 

processor until there is an empty entry. By buffering precollect instructions as they are received 

from the CPU, the IQ allows asynchronous operation of the CPU and DRP unit. 

An entry is dequeued from the IQ as soon as it is latched into the Address Generator, discussed 

in Section 2.4.3. 

11 
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Figure 4: Algorithm Flow Chart for the Precollect Status Store Access Port 

2.4.3    Address Generator 

The Address Generator simultaneously calculates, for each array element, its original address and 

its destination address. To do this it uses the starting array address, stride, starting relocation 

buffer address and element size. The compiler forces all relocation buffers to align to virtual page 

boundaries, and therefore, memory block boundaries. Consequently, the lower bits of the relocation 

buffer addresses are zero and we can simply append the computed element offset to the high-order 

bits of the relocation buffer address. Also, the size field is encoded, since the data element size (in 

bytes) can be any power of two up to the bus transfer width. Step 5 of Figure 5 corresponds to 

the generation of these addresses, as described above. Additionally, a counter is used to determine 

how many element addresses remain to be generated. 

After the source and destination addresses are generated, but before attempting to access the 

corresponding data, an entry must exist in the BAC, described in Section 2.4.5. The BAC contains 

the logic to align the requested element within the received block of data into the corresponding 

relocation buffer cache block. If the element to be precollected will reside at the start of a relocation 

buffer cache block, an entry must be allocated in the BAC. To determine if this element is the start 

12 
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Figure 5: Algorithm Flow Chart for the Address Generator 

of a new cache block, the Address Generator checks if the destination address low order bits are 

zero, and if so, allocates an entry in the BAC once there is space. Furthermore, a counter associated 

with each BAC entry is set to the number of precollected elements that will reside in that cache 

block, which is determined using the element size, the block size and the Address Generator counter 

value. Steps 7 through 10 of Figure 5 correspond to these actions. 

Next, a read request is sent to the cache. If data is present in the cache, it is written to the BAC, 

using the destination address and size. These actions are shown in Steps 11 and 12 of Figure 5. 

If the data is not present in the cache, the cache does not send a read request to fetch the 

data. Instead, the DRP unit sends the read request to memory using the source address. Step 16 

of Figure 5 corresponds to this action. Before sending the request, the address is translated by the 

TLB. Because the DRP unit needs to access the TLB for every element, a dedicated port into the 

TLB is required. The destination address and size are sent to the Outstanding Memory Request 

Store (OMRS), discussed in Section 2.4.4, for later use. Similarly, the physical address is sent from 

the TLB to the OMRS. Steps 14 and 15 of Figure 5 correspond to these actions. 

Because we may not be precollecting into the maximum number of blocks allowed per relocation 

13 
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Figure 6: Algorithm Flow Chart of the Outstanding Memory Request Store Logic 

buffer, some status bits in the PSS may be unused and will never be set by the data returning from 

the precollect. Since an entry is removed from the PSS only when all of its status bits are set, these 

unused bits must somehow be set. Therefore, when the Address Generator counter reaches zero all 

of the addresses have been generated, so the bits corresponding to unused blocks in the relocation 

buffer are set. Steps 4 and 20 of Figure 5 correspond to these actions. 

Each precollect instruction is processed completely by the Address Generator before the next 

may proceed. When the Address Generator's counter has reached zero, requests have been gener- 

ated for every element, and the next precollect instruction may be latched from the IQ. 

2.4.4    Outstanding Memory Request Store 

As mentioned in Section 2.4.3, when a request is sent to the memory system by the Address 

Generator, the physical address, destination address and size are saved in the Outstanding Memory 

Request Store. The algorithm flow chart of the OMRS's logic is shown in Figure 6. Each entry in 

the OMRS corresponds to one outstanding request. 

If the OMRS has enough entries, the store does not block while it waits for a memory access 

to complete. In order to minimize the probability that the OMRS blocks, the store should have as 

many entries as the maximum memory latency divided by the Address Generator cycle time. By 
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keeping track of multiple outstanding requests, the OMRS exploits available bus bandwidth, one 

of the objectives discussed in Section 1. 

When the data returns from memory, the physical address fields of the OMRS are searched 

associatively using the physical address from memory to find the corresponding entry. The re- 

quested data is then written to the BAC using the destination address and size from the OMRS. 

Additionally, that entry is removed from the OMRS. These last three actions are represented by 

Steps 2, 3 and 4, respectively, of Figure 6. 

2.4.5 DRP Block Assembly Cache 

In order to handle out-of-order return of data from the memory system, we use a small fully- 

associative cache in the DRP unit, called the DRP Block Assembly Cache, to align and assemble 

the precollected elements into cache blocks. Each entry of the BAC holds a cache block that is a 

portion of a relocation buffer. The assembly of each destination cache block is performed in the 

BAC instead of in the data cache, to minimize the interference with regular cache operation. The 

BAC also eliminates the need for a dedicated write port into the cache, because the cache refill 

write port used by memory to write load miss data can be shared with the DRP unit. After an 

entire block is assembled, it is written into the cache. Then, the corresponding bit in the PSS is 

set and the block is removed from the BAC. For each block in the BAC, a counter keeps track of 

how many elements have yet to be received. This counter is initially set by the Address Generator, 

as described in Section 2.4.3. Consequently, the BAC knows when the block is fully assembled. 

Because the BAC is small, there may not be enough entries and the OMRS may have to stall. 

To avoid stalls, the BAC should be fully-associative and have enough entries to hold the maximum 

number of blocks "in-flight". The number of blocks required depends on the memory latency, bus 

bandwidth and the average element size. For our configuration, which has a 10-cycle memory 

latency, five entries are enough. Note that the DRP unit can be easily interfaced with a banked 

memory system since the BAC handles out-of-order data return. 

2.4.6 Virtual Versus Physical Cache Considerations 

Our implementation thus far uses a virtual data cache. Therefore, we attach the process identifier 

to the data cache tags so that the data cache need not be drained when a context switch occurs. 
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For the same reason, entries in the IQ, PSS, OMRS and BAC also need to have process identifiers 

attached. Otherwise, we must drain the DRP unit completely before performing a context switch. 

This approach, of course, would result in prolonged context switching latencies. Assuming that we 

attach process identifiers, then the actions taken in response to a context switch depend on the 

cause of the context switch. If the context switch was caused by anything other than a page fault, 

no actions need be taken, and the DRP unit can continue normal execution. 

If a context switch is due to a page fault triggered by a precollect instruction, then a small part 

of the DRP state must be saved to the processor, since the DRP unit is in the process of executing 

the faulting precollect instruction (Step 17 of Figure 5). After the page fault has been handled 

and execution of the faulting process resumes, the saved state is used to restart the precollect 

instruction at a point where the fault occurred. Precollect instructions in the IQ which are issued 

after the faulting precollect instruction may begin execution immediately after the context switch. 

In order to simplify the implementation, immediately before the faulting process resumes execution, 

the operating system emulates the execution of the faulting precollect instruction using ordinary 

processor load and store instructions. 

At the point of page fault detection for a precollect instruction, we save the precollect's state 

information from the Address Generator. As shown in Figure 3, the state information saved consists 

of the source address that faulted, the number of remaining elements (from the counter), the 

destination address, stride, and size. To avoid having a single partially filled block remain in the 

BAC, the destination address of the element that caused the fault, the element size and the block 

size are used to set the counter of that BAC entry to the number of elements precollected before the 

page fault (Step 18 of Figure 5). Therefore, after the OMRS drains, this partially completed block 

of relocated data will be written into the data cache. Finally, the entry in the PSS corresponding 

to the faulting precollect instruction is removed using the destination address from the Address 

Generator (Step 19 of Figure 5, Steps 6 and 10 of Figure 4). 

If the data cache is physically addressed, we assume that address translation occurs in parallel 

with access of the cache tag store using the virtual address. The BAC is also physically addressed 

using the same assumptions. In Figure 3, the read and write ports for the data cache and the write 

ports for the BAC use virtual addresses since the address translation is initiated by the caches. 

The DRP unit should still use virtual addresses, since the PSS, IQ, Address Generator and OMRS 
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use the virtual addresses provided by the precollect instruction. 

For a physically addressed cache, on any type of a context switch, the same process described 

above for a virtually addressed cache must be performed, but the entire IQ and PSS must also 

be saved as part of the state. However, in this case, the DRP state is restored in hardware when 

the faulting process resumes execution, rather than performing software emulation, since software 

emulation will not simplify hardware. 

2.4.7    Relocation Buffer and DRP Component Size Considerations 

Another issue that needs to be considered is the relocation buffer size. The buffer space should be 

the same size or smaller than the data cache so that there are no cache conflicts between relocation 

buffers. Within this area, we will allocate several relocation buffers corresponding to different 

arrays in the loop nest. The relocation buffer size imposes a maximum on the number of arrays per 

loop nest which may be transformed. For our experiments, we used an 8K-byte cache and 128-byte 

relocation buffers, which allowed us 64 relocation buffers per loop nest. However, as explained in 

Section 2.3, two relocation buffers are needed per array to accommodate software pipelining, so we 

can transform 32 arrays per loop nest. Although 64 entries is the maximum needed for both the 

IQ and PSS, software pipelining allows us to use 32 entries for each with only a small possibility 

of stalling. 

If more than 128 bytes of array data are accessed in the inner loop, multiple precollects can 

be executed. The compiler aligns the corresponding relocation buffers sequentially in memory so 

that they appear as one large relocation buffer. Therefore, the size of the relocation buffer does 

not inherently limit the amount of data one can precollect for the inner loop execution. 

3    Experimental Environment 

In this section, the environment used for experimental evaluation of the DRP technique is presented 

. The applications for this study consist of seven numeric benchmark programs: ARC2D, ADM, 

BDNA, and OCEAN horn PERFECT [19], MATRIX300 from SPEC'89, and NASA7 and TOM- 

CATV from SPEC'92. The experimental environment includes the compiler support, emulation 

to verify transformation correctness, and the simulation techniques used to generate experimental 
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Function Latency Function                               |  Latency 

Int ALU 1 FP ALU 2 
memory load 2 FP multiply 2 
memory store 1 FP divide (single prec.) 8 
branch 1+1 slot FP divide (double prec.) 15 

Table 1: Instruction latencies for simulation experiments. 

results. 

3.1 Compiler Support 

In the high-level IMP A CT compiler phases, the applications were profiled at the loop-level to obtain 

the number of invocations and the number of iterations for all loops in order to apply the DRP 

transformations selectively and effectively. Data dependence analysis is performed using the Omega 

test [20] [21] to exclude inner loops with specific cross-iteration dependences which can prevent the 

necessary transformations. 

In order to provide a realistic evaluation of the DRP technique, we first optimized the code 

using the machine-specific phases of IMPACT compiler. Classical optimizations were applied, then 

optimizations were performed which increase instruction level parallelism such as loop unrolling 

and superblock formation [22]. The code was scheduled, register allocated, and optimized for a 

four-issue, scoreboarded, superscalar processor with register renaming. Each of the four functional 

units are pipelined and can execute any type of instruction. The register file contains 64 integer 

registers and 64 double-precision floating-point registers. 

3.2 Transformation Correctness Verification via Emulation 

To verify the correctness of the code transformations, emulation of the generated code was per- 

formed on a Hewlett-Packard PA-RISC 7100 workstation. The precollect instruction is emulated 

using a machine language subroutine that performs the data relocation from memory to memory 

instead of to and from the cache. Thus, the transformed code must relocate the data and reference 

it using the correct addresses for the emulation to produce valid results. 
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3.3    Simulation Parameters and Techniques 

The emulator drives the simulator that models the processor and the DRP unit to determine 

application execution time, cache performance, bus utilization, and processor stall overhead due 

to precollect instructions. The simulation latencies used are those of a Hewlett-Packard PA-RISC 

1100 microprocessor, as given in Table 1. 

The processor model includes separate instruction and data caches that are direct-mapped, 

8k-byte blocking caches with a 16-byte block size. In order to increase the accuracy of the results, 

the small data cache size was chosen to match the application data set size, which is reduced 

from the data set size of the actual applications. The data cache is a multiported, write-back, no 

write-allocate cache that satisfies up to four load or store requests per cycle from the processor. 

Any single load miss blocks the processor, but up to four load misses (one per cache port) can be 

outstanding simultaneously, because the data fetches are pipelined on the split-transaction memory 

bus. An 8-entry write buffer combines write requests to the same cache block. The instruction 

cache and data cache share a common, split-transaction memory bus, with a 8 bytes/cycle data 

bandwidth. A pipelined memory model is used with a 10-cycle latency. The latency of a cache 

block fetch from memory is 13 cycles, one for the request, ten for the memory latency, and two 

for the return of two 8-byte quantums of data. However, since the 8-byte quantum containing the 

requested data is fetched from memory before the other 8-byte quantum in the cache block, the 

load miss penalty is actually 12 cycles. 

A direct-mapped branch target buffer with 1024 entries is used to perform dynamic branch 

prediction using a 2-bit counter. Hardware speculation is supported, and the branch misprediction 

penalty is approximately two cycles. 

The simulation model for the DRP unit is based on the hardware description in Section 2.4. For 

instance, the number of queue and buffer entries are chosen as indicated in the hardware description 

so that no blocking occurs in the DRP unit due to insufficient entries. 

Since simulating the entire applications at this level of detail would be impractical, uniform 

sampling is used to reduce simulation time [23], however emulation is still performed between 

samples. The samples are .200,000 instructions in length and are spaced evenly every 20,000,000 

instructions, yielding a 1% sampling ratio. Most of the applications used have more than a bil- 

lion dynamic instructions, at least 50 samples, and thus, more than 10,000,000 instructions are 
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Benchmark 

Number of 
Transformed 

Loop Nests 
Percentage of 

Execution Time 

ADM 4 3.1% 
BDNA 1 65.8% 
OCEAN 13 20.2% 
ARC2D 36 89.2% 
MATRIX300 1 97.6% 
NASA7 17 70.4% 
TOMCATV 4 89.6% 

Benchmark 
Transformed 
Loop Nest 

Percentage of 
Execution Time 

ADM LEAPFR.30 1.9% 
BDNA ACTFOR.350 65.8% 

OCEAN 
IN.10 9.8% 
OUT.10 5.9% 

ARC2D 

STEPFX.232 9.9% 
STEPFX.435J 7.0% 
xPENTA.ll 5.5% 
STEPFX.212 5.4% 
STfiPFY.430 5.4% 

MATRIX300 SAXPY.10 97.6% 

NASA7 

CFFT2D2.30K 16.6% 
GMTRY.8K 11.2% 
CFFT2D1.130 9.9% 
VPENTA.li 7.9% 
VPENTA.15 5.6% 

TOMCATV 

MAIN.250 42.3% 
MAIN.4011 22.5% 
MAIN.5011 15.7% 
MAIN.2901 9.0% 

a) Number of DRP-transformed loop nests for each applica- 
tion, and percentage of original code execution time for all 

transformed loop nests per application. 

b)   Original  code  loop   nest  execution  time  percentages  for 

important  DHP-transformed loop nests. 

Table 2: DRP transformation statistics. 

simulated. For smaller applications, the time between samples is reduced to maintain at least 

50 samples (10,000,000 instructions). From experience with the emulation-driven simulator, we 

have determined that sampling with at least 50 samples introduces typically less than 1% error in 

generated performance statistics. 

4    Experimental Evaluation and Analysis 

In order to show the full performance benefit of the DRP technique, experimental results are 

presented for all application loop nests which are transformed by the DRP technique . Results for 

the entire applications are also presented. 

4.1    Individual Loop Nest Results 

Performance statistics for individual loop nests are obtained by marking the DPP-transformed 

loop nests as regions for gathering simulation statistics. Table 2a) lists the total number of loop 

nests that were DPP-transformed, as well as the percentage of total original code execution time 

they represent, for each application. Table 2b) shows the original code execution time for each 

of the most important loop nests transformed by the DRP technique as a percentage of the total 
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original code execution time. The execution time percentages are determined through simulation, 

and therefore, include all memory system and processor model effects discussed in Section 3.3. The 

transformed loop nests are identified by function name, the Fortran outer DO-loop number, and 

the loop iteration variable if necessary. The most important loop nests are those which account for 

over 5% of the application execution time, with the exception of ADM. ADM has no transformed 

loop nests which account for over 5% of the application execution time, so the only loop nest which 

accounts for over 1% of the execution time is shown. As shown in the table, the total execution 

percentage of the transformed loop nests for each application varies widely from 3.1% to 97.6%. 

Figure 7 presents the measured speedup of the DRP technique which is calculated by dividing 

the original loop nest execution time by the DÄP-transformed loop nest execution time. Measured 

speedup for most loop nests is relatively large, demonstrating the high performance improvement 

obtainable using the DRP technique. The smallest speedup in execution time obtained for any 

important loop nest is 1.21. 

The speedup obtained using the DRP technique is affected by several factors. First, the number 

of cache misses decreases with the application of the DRP technique, which will be quantified using 

cache miss rates from simulation. Second, the increase in bus contention caused by extra DRP 

accesses can reduce speedup. Bus utilization data will be shown to quantify the effect of bus 

contention on speedup. Finally, the processor stalls due to unfinished precollect operations can 

cause severe degradation of execution time, which will be quantified using simulation data. The 

effect of stalls due to insufficient entries in the DRP queues and buffers is not evaluated in this 

paper due to space constraints. 

Figure 7 shows the data cache miss rate for the original code and the DRP-transformed code 

for the loop nests. Since a no write-allocate cache is used for these experiments, the miss ratios for 

both original and transformed code are calculated by dividing the number of cache read misses by 

the number of cache read requests in the original code. This method of calculating the cache misses 

assures a fair comparison if the number of cache accesses for the transformed code is different from 

the number for the original code, which may occur due to DRP compiler transformations. 

Note that cache misses are nearly eliminated for most of the loop nests. Since the compiler relo- 

cates nearly all array data read in the loop nest, there are few possibilities for capacity and conflict 

cache misses to occur. Furthermore, prefetching the array data eliminates the compulsory misses. 
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Figure 8: Bus utilization and Precollect stall overhead for the DPP-transformed code and the 
original code for loop nests. 

Scalar variables accessed in the loop nest are not relocated and may conflict with relocated array 

data, causing cache misses. For instance, the STEPFY.430 loop nest in the ARC2D application 

contains inner-loop scalar accesses which contribute to the non-zero cache miss rate. In the loop 

nest ACTFOR.350 in BDNA, only half the array reads are relocated due to data dependences and 

complicated subscript expressions, which results in a relatively large percentage of remaining cache 

misses. Most of the remaining cache misses are due to additional memory accesses introduced by 

register spill code. 

Figure 8 displays the percentage of execution cycles for which the processor is stalled waiting 

for a precollect to complete in the transformed loop nests, and the memory bus utilization for 

the transformed and original loop nests. For the loop nests with small stall overhead (less than 

5%), the stalls are due almost entirely to the software-pipeline startup overhead in the first outer 

loop iteration.   The DRP unit utilizes the unused bus cycles because it has lower priority than 
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Figure 9: Data cache miss ratio for original code and Z>PP-transformed code, and speedup of the 
DPP-transformed code over the original code. 

the cache when accessing the bus. However, the DRP transformation does not cause more data 

to be brought to the CPU, but instead overlaps the data fetches to take full advantage of the 

bus bandwidth. Consequently, bus utilization increases because the program execution is sped up. 

Since the application programs tend to be limited by data access rather than computation, large 

stall overhead indicates that that no more performance can be gained unless the bus bandwidth is 

increased. 

4.2    Entire Benchmark Results 

The data cache read miss ratios show promising improvement for several applications shown in 

Figure 9. However, applications ADM and OCEAN show little improvement in cache performance 

since only a small percentage of the application execution is transformed by the DRP technique. In 

addition, application BDNA contains a single transformed loop with only half the array references 

relocated, so conflict misses are not effectively reduced. However, the cache miss reductions are large 

compared to the transformed loop nest execution percentage for ARC2D and NASA7 indicating 

that the loop nests with the worst cache behavior were indeed transformed. 

Speedups for the simulated execution-of the DPP-transformed code over the original code for 

the six applications are shown in Figure 9. The total speedups for ARC2D, MATRIX300, NASA7 

and TO MC AT V are high, although the rest of the applications show much smaller gains in total 

performance. For ADM and OCEAN the small speedup is attributable to the fact that percentage 

of the execution time spent in the transformed loop nests is relatively small, (3.1% and 20.2% 

respectively).   In the case of BDNA, a single loop nest dominates the entire execution time.   As 
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Figure 10: Speedup comparison of the DRP technique with 8K-byte direct-mapped caches to 
original code with caches of larger capacity and set-associativity. 

mentioned earlier, only half of the array references in the loop nest were transformed for DRP, 

resulting in the small speedup. 

In order to evaluate the effectiveness of the DRP technique as opposed to just increasing the 

cache size or associativity, we simulated the execution of the original code using various cache design 

parameters. Figure 10 shows the application execution speedup for the DRP technique using an 

8K-byte direct-mapped (DM) cache plotted with the speedup for 16K, 32K, and 64K-byte DM 

caches as well as for 2-way, 4-way and 8-way set-associative 8K-byte caches. All speedups shown 

are with respect to the execution of the original code using an 8K-byte DM cache. 

For ARC2D, MATRIX300, NASA7, and TOMCATV, the DRP technique with an 8K-byte 

cache outperforms caches with up to 64K-byte capacity by a large margin. DRP still outperforms 

up to 32K-byte caches for BDNA and OCEAN, even though the application of DRP is limited. For 

ADM, however, DRP is ineffective in reducing the execution time, so larger caches are the clear 

winner. 

The DRP technique is much more effective than increasing the set associativity for all the 

applications but ADM. Since most of the cache misses are due to limited cache capacity rather 

than mapping conflicts, increasing the associativity is of limited benefit. 

5     Conclusions 

5.1     Summary 

An architectural extension, referred to as data relocation and prefetching, is proposed to perform 

data relocation and compression during prefetching. Data relocation is employed to remove array- 
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data mapping conflicts by compressing the accesses in a loop nest into sequential locations in the 

cache. Compression also improves utilization of the cache by transforming non-unit stride and array 

column accesses into sequential accesses that require fewer cache lines for storage. Furthermore, 

reduction of the cache space used to hold the data in the loop nest can increase the data reuse 

across transformed loop nests. 

The hardware design meets the objectives of asynchronous operation of the CPU and DRP unit 

by allowing overlap of program execution and DRP, high utilization of memory bus bandwidth, 

and support for out-of-order return of data from the memory system. The Precollect Status Store 

and Instruction Queue components realize the first objective, the Outstanding Memory Request 

Queue realizes the second, and the Block Assembly Cache realizes the third. 

By combining the data relocation and prefetching hardware with supporting compiler transfor- 

mations, the performance of loop nests is greatly improved for a set of array-based benchmarks. 

Furthermore, we have shown that application of the data relocation and prefetching technique 

greatly improves the cache performance. Finally, the DRP technique compares very favorably to 

increasing the cache capacity or set-associativity in terms of application execution speedup. 

5.2    Future Research 

For the programs that contain many transformed arrays, some technique is necessary to reduce the 

bus traffic. Use of separate request and return data busses could be investigated for this purpose, 

as well as some technique to combine multiple bus accesses into a single access. In addition, the 

compiler transformations can be expanded and improved in order to transform more loop nests 

effectively. Further experiments are warranted to study the performance of this technique by 

varying implementation parameters for the DRP hardware. 
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a) Original Loop Nest c) After Transformations 

for   (i"0;   i<N;   i++) /*  Bd " dimension(BO)   *  8 bytes/element   «/ 

for   (j-0;   j<N;   j++)   < 
CCiHj]   - ACiH2«j]   + BCjDCOi /* prologue:   for first   outer   loop body */ 
DCiHj]   - CCiHj]   - BCj + lHi]; precollect UACOHO],   A',   8,   16,   K) ; 

y precollect (SB [OHO],   B",   8,   Bd,   N+l) ; 

for Ci'-O; i'<N; i'+-2) { 

/* first outer loop body •/ 
b) After Loop Unrolling .   = 

if   (i+1  < N)  -C 
for   Ci'"0;   i'<N;   i'+«2)   { /• for second outer  loop body  */ 

/« first   outer  loop body   •/ precollect(iA[i+l][0],A'■,8,16,N); 
i  "  i'; precollect(*BC0]Ci+l],B",8,Bd,N+l); 
for   (j»0;   j<N;   j++) } 

CCiHj]   - ACiH2«j]   + BCjHi]; for  (j„0;   j<N;   j++)  i 
DCiKj]   - C[i][j]   - BCj+l]CUi C[i][j]   ' A'Cj]   + B"[j]i 

DtiKjJ  - cCiHj]  - B'Cj+l]; 
/* second outer loop body */ } 

i++; 
if   Ci  < N)  < /*  second outer loop body */ 

for  (j«0;   j<N;   j++) i++; 

CCi][j]   ' A[iK2»j]   + B[j]Ci]i if   (i < N)  < 
DCiKj]   « CCiHj]   - BCj+l][il; if   (i+i  < N)  < 

} /* for first  outer loop body «/ 
> precollect(*A[i+i:[0],A',8,16,N); 

precollect(*B[0][i+1],B',8,Bd,N+l)i 
> 
for   (j«0;   j<N;   j++)   { 

C[i][j]   - A"[j]   * B"Cj]; 
D[i][j]   - CCiHj]   - B"[j + 1]; 

> 
} 

} 

Figure 11: Transformation Example for DRP 

A    Compiler Transformations 

A.l     Loop Strip-mining 
For the DRP technique, strip-mining of the inner loop is performed in order to create a doubly nested loop if the loop 
nest consists of only a singly nested loop. This is most beneficial for singly nested loops that issue strided references 
to array elements. Strip-mining is also used in order to reduce the amount of data relocated for the inner-loop 
computation if that amount is too large to fit in the cache. This is necessary since all elements that are relocated and 
prefetched for the inner loop computation must be allocated to unique cache locations to prevent possible conflict 
misses. 

A.2    Declaration of New Variables for DRP 
Next, the buffer space is declared as an array that has the same size as the cache size. This guarantees that the 
relocated arrays in the buffer space have no cache line conflicts among them. 

A.3    Loop Unrolling 
In order to overlap the data relocation and prefetching for the next outer-loop iteration with the computation for the 
current iteration, the relocation and prefetching phase is software-pipelined with the computation phase. The original 
loop nest of Figure 11a) is shown after loop unrolling in Figure lib). This software-pipelining scheme requires two 
relocation buffers. The inner loop is duplicated by unrolling the outer loop once. In the first outer-loop body, the 
data relocation proceeds into the second relocation buffer, while the computation is performed using the data already 
relocated in the first buffer. For the second outer-loop body, the same method is used as for the first outer-loop body 
except that the relocation buffers are switched. 
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A.4    Insertion of Precollect Operations 
After creating a doubly-nested loop by strip-mining, precollect operations axe inserted in the high-level code. These 
high-level operations are replaced by the corresponding machine instructions at the assembly code level. 

Before the outer loop, precollect operations are inserted for the first inner loop computation. Since these operations 
cannot be overlapped with any other computation in the loop body, these operations constitute the start-up overhead 
of software pipelining. Also, precollect operations for each inner loop within the unrolled outer loop are inserted before 
the inner loop in which they are used. Each inner loop needs to use a different relocation buffer since precollecting 
the data for the next loop is overlapped with the computation for the current loop by software pipelining. 

A.5    Replacement of Array References with Relocation Buffer References 
Once the DRP operations have been inserted, the array references for the computation within the inner loop are 
modified so that the relocation buffer locations are accessed instead of the original array locations. Some array 
references that do not need to be relocated are left as the original array references. Replaced array references are 
all one-dimensional even if the original array references are multi-dimensional. If more than one reference within a 
loop nest is to the same array, the reference patterns are analyzed to generate the minimum number of precollects 
necessary. For example, references B[j+l][i] and B[j][i] in Figure 11 are replaced by references to a single relocation 
buffer B' (in the first outer loop body), since the two references overlap in most elements they access. We only need 
to precollect B[j][i] for j from 0 to N+l. Therefore relocation buffer B' contains N+l elements. 

The final transformed code of the example in Figure 11a) is shown in Figure lie). 
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