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Abstract 

We develop a class of multivariate life distributions based on the notion that 

an unknown common environment induces dependencies.   The environment is assumed 

to be dynamic and is described by a gamma process.   The multivariate exponential 

distribution of Marshall and Olkin, motivated via an environment comprising of 

nonfatal Poisson shock processes wherein the probability of failure associated with 

each shock is the same, turns out to be a special case of our development.   The 

gamma process environment reduces to a consideration of a Poisson shock model 

with the shocks having different probabilities of failure. 
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1.    Introduction 

Consider a two component system which operates in an environment which 

may or may not be identical to the test bench environment.    The component 

lifelengths, when assessed under the test bench environment, are assumed to have 

failure rates Xj(u), i = l, 2, for u  ^ 0.   The operating environment is supposed to be 

made up of several stresses whose intensities and presence change over time.   It is 

assumed that the nett effect of the operating environment is to modulate X^u) to 

X(u) V(u), i = l, 2.   The Xj(u)'s may be known or unknown; however, ?7(u) is assumed 

to be unknown for all u  ^ 0.   If at any time u, the operating environment is judged 

harsher (gentler) than the test bench environment, then ?7(u)  > (<) 1; 1(u)  = 1 

would correspond to the case in which the operating environment and the test bench 

environments are identical.   Given X^u), X^(u) and ?7(u), for all u  ^ 0, we shall judge 

the component lifelengths independent.   When r?(u), u  ^ 0, is unknown, we shall 

describe our uncertainty about it by a suitable stochastic process (??(u); u  ;> 0>. 

Under the above circumstances, there is an induced dependence between the 

lifetimes of the two components, and the aim of this paper is to describe such 

lifelengths for a particular choice of {7?(u); u ^ 0}, namely, that {JQ ??(u) du; t ^ 0} 

is a gamma process.    In Singpurwalla and Youngren (1989b) we consider the case 

wherein C?(u); u ;> 0} is described by a •'shot-noise process" [cf. Cox and Isham 

(1980), p. 34].   The case Xj(u) = \, i=l, 2, with ??(u) = V, and uncertainty about V 

described by a gamma distribution, has been considered by Lindley and Singpurwalla 

(1986), Currit and Singpurwalla (1989) and the references therein.    A motivation for 

describing {L ?7(u)du; t ^ 0} by a gamma process is in Singpurwalla and Youngren 

(1989a), and in Kalbfleisch and Prentice (1980), p. 203.   By way of a brief review, 

and with the aim of introducing some notation, we have 



De finition 1.1.    Let a(t) be a nondecreasing left-continuous real valued function on 

[0, cc), with a(0)  = 0, and let 3  € (0, =c).    A stochastic process (x(t); t  ^ 0} is said 

to be a gamma process with parameters a(t) and 6, denoted "X(t)  € Q (a(t), 5)    if 

i)      X(0)  = 0 

ii)     X(t) has independent increments, and 

i)   (X(t)  - X(s)) has a gamma distribution with shape parameter in; 

(a(t) — a(s)), and scale parameter I/o, for 0 <. s <, t. 

Definition 1.2.   [Dykstra and Laud (1981)).   Let 0(t), t ;> 0, be a positive right- 

continuous rea 1 valued function and let X(t)  E Q (a(t), 1).    Then the process 

{z(t); t  > 0), with z(t)   d^=f 

rt 
3(s)dx(s) is called an extended gamma process with 

0 
parameters a(t) and 3(t), and is denoted "Z(t)  - QE(a(t), 3(i))." 

A useful property of the extended gamma process is that if Z(t)  -E QE (o.U), 

3(t)\ then G7m(w), the Laplace Stieltjes transform of the distribution of Z(t), is 

given as 

'zur 

(1.1) GZ(t)(w) = exp 

rt 
En (1   - w .3(u)) d a(u) 

0 

see Dykstra and Laud (1981) or Cinlar (1980) [who introduces another generalization 

of the gamma process and describes an imaginative modeling of the deformation laws 

of materials]. 

Let Y(t)   <^f 

rt 
r?(u)du, and suppose that Y(t)  -. Q(a(t), 1/b), where a(t) is 

continuously differentiable with ^ a(t)  = a(t).    Then, it follows that \ (t)    £ 

\.(u) d Y(u), the cumulative hazard rate of component I, i=l, -, is such that 

0 KAuh 
A-(t)  = QE (a(t), -i—J, and this will be the underlying hypothesis upon which our 

results will be based. 



2.   The Bivariate Survival Function and Its Marginals 

Let T1 and T-, be the lifelengths of the two components, and suppose that 

0  ^ T    <_ r-,  < oo .    Then, under the hypothesis of the previous section and from 

the independent increments property of the gamma process, it can be seen that the 

bivariate survival function of the two components 

(2.1)     P(Tj > Tj, T2 > r2iX1(u), X2(u), a(u)> b)    =   F(T1' T
2

) 

exp 
fTl        f \1(u)+X9(u) , ] [      f2 o U        X2(u)l ,  ^ 

£n (l   +    1 2      ) a(u)du   • exp - £n[l  -r -^-Ja(u)du 
in > «■       Jrl 

ilso, the marginal survival functions P(Tt  > T\\(.u)t a(u), b)  =   F{(T)  - 

exp(-  f  £n(l   + -£■) a(u)du), i = l, 2. 
«•0 

2.1    The Bivariate Exponential and Weibull as Special Cases 

In what follows, we show that one of the most widely discussed multivariate 

distribution in reliability theory - which has been motivated via considerations 

which, at least at the surface, appear to be different from ours - is a special case 

of (2.1).   To see this, suppose that X^u) = \, i = l, 2, and all u ^ 0; then A^T) = 

\Y(r)  £ Q(CC(T), -A, from which it can be verified that 

- f       b       l^l* f     b   )a-^r^-<x(~Tl) 

(2-2) F(Tlf T2) = l^jjq^J I b^J 

and that 



Note that the failure rate of Tj, 

fb+Xn 
(2.4) r^T) = a(r) £n (-^j, i = l, 2, 

is a constant times the derivative of a(t), the shape parameter of the gamma 

process.   Thus, we may choose different functional forms for a(t), each suggested 

by a physical scenario of the environment, and obtain different marginal 

distributions for the component lifelengths.   One such choice - perhaps a natural 

one - is that <X(T) = at, for some constant a  > 0.   For this choice of <X(T), the 

marginal distributions are exponential, and the bivariate survival function (2.2) is 

(2.5) 
b+X-,   .aTj ,   b+Xj   yxr2 , Kb+X^X^ ^T; 

U+Xj+X-J        Ib+X^xJ l(b+X2)(b+X1)J 

b+X,+X^ t r(b+xi> (b+x2}l h+X   +X AüT/\I;   (UTn",h 

If we set X*  = a£n(-^), i = l, 2, and \J2  = a£n[  ^^^ J, then (2   .5) 
we set  r,i   =  w-<-"^-   b+x      j. * —-» -'      ij v   b(b+X1+X2J  "" 

becomes, 

(2.6) F(rvr2) = exp(-(Xjr1 + \\r2 + \\2 max (TpT-,))), for rpT2 ;> 0; 

this is the bivariate exponential distribution (BVE) of Marshall and Olkin (1967). 

The marginal distributions corresponding to (2.6), in terms of the parameters a and 

8, are 

rb+X; 
(2.7) FJ(T) = exp(-a£n(-s-

i}T), i = l,2, and r ^ 0. 



If we let a(r)   = o.r3, for constants a, S   > 0, and proceed as above, then 

the resuitmg bivariate survival function is the bivanate Weibull of Marshall and 

Olkm (196"). 

Contrast the above results to those obtained by Lindley and Singpurwalla 

(1986), who, in effect, describe their uncertainty about A^t), the cumulative rate of 

component i, by a gamma distribution, and obtain the logistic and the Pareto as their 

bivariate and univariate survival functions, respectively.    The bivariate logistic 

obtained by the above authors is absolutely continuous, whereas the bivariate 

exponential, obtained by describing A^t) by a gamma process, has a singular 

component. 

In the next section, we explain as to why a consideration of the gamma leads 

us to the BVE. 

3.    The Gamma Process as a Poisson Shock Model with Varying Shock Intensities 

The BVE has been motivated [cf. Barlow and Proschan (1975), p. 136] via a 

consideration of three independent Poisson shock processes, with the shocks within 

a process being nonfatal and having equal intensities.    The latter assumption implies 

that the probability of failure due to each shock is the same for all the shocks 

within a process.    In what follows, we point out that the gamma process environment 

boils down to a consideration of a nonfatal Poisson shock process with the shocks 

having different intensities; that is, each shock induces its own probability of 

failure. 

To ascertain the above, it is useful to recall that a process with independent 

increments having no Gaussian components and no fixed points of discontinuity - 

such as a gamma process - can be represented as a sum of a countable number of 



jumps of random height at a countable number of random points [cf. Ferguson and 

Klass (1972)].   Furthermore, if for any fixed e  > 0, N(t, e) denotes the number of 

jumps in (0, t) of magnitude ^ e, then {N(t, e); t ^ 0} is a Poisson process with 

intensity (M(e).    For the gamma process, M(e)  = P        u" e"u du, where p is a 
Je 

parameter of the process; see for example Basawa and Prakasa Rao (1980), p. 106. 

Let U(e) denote the magnitude of a jump, given that it is ^ e > 0.   Then, for the 

gamma process, the density of U(e) is a truncated (at e) gamma density with shape 0. 

To invoke the above results for the purpose at hand, we consider jumps of 

size Ax, and remark that jumps of size X, where X ^ kAx, for k = l, 2, . . . , occur 

in accordance with a Poisson process with intensity M(kAx), and that U(kAx) is a 

truncated gamma density with shape 0.   Thus jumps of size X, where 

X  £ [kAx, (k + l)Ax), occur in accordance with a Poisson process with intensity 

AM (kAx), where AM (kAx) = M((k+l)Ax) - M(kAx), k = l, 2, . . ., .   A jump in the 

cumulative failure rate can be viewed as the result of a discrete shock, the effect 

of which is to cause the failure of any one, or both components of the system.   We 

would expect that the probability of failure of a component is a function of the 

size of the shock, and if Ax is sufficiently small, the probability of failure would 

be approximately the same for all X  £ [kAx, (k+l)Ax). 

Let P01(kAx) [p10(kAx)] be the probability that a shock of size 

X  £ [kAx, (k+l)Ax) will cause Component 1 [2] to fail and Component 2[1] to 

survive.   Let P0Q(kAx) [pn(kAx)] be the probability that a shock will cause both 

components to fail [survive].    Thus, for shocks of size X  £ [kAx, (k+l)Ax), 

k = l, 2, . . . ,   we have a standard nonfatal shock model with only a common shock 

applied to both components.   Thus, for any Tj, T^ ^ 0, the probability that the 

components will survive shocks of magnitude X £ [kAx, (k+l)Ax) is, 



(3.1)     P(T1  > rv T.  > T:X £ [kAx, (k+l)Ax)) = 

exp{-AM(kAx) P01(kAx)r1  - AM(kAx) P1Q(kAx)r: - AM(kAx) P00(kAx) 

max (~p T-J}. 

The probability that the system will survive shocks of ail magnitudes X is 

the product of (3.1) over all k.    Taking the limit as Ax i 0, we have 

(3.2)     P(T,   > T,, T > TO   = exp{-        pQ1(x)dM(x) Tj - 
1 JQ J 

P10(x)dM(x)T- 

POO 
(x)dM(x) max(Tp T?)|, 

and this is of the form (2.6). 

A comparison of (3.2) with (2.6) enables us to interpret Xp \X and \\2 in terms 

of the survival probabilities of jumps of magnitude X and their arrival intensities, 

in a representation of the gamma process. 
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