
Miscellaneous Paper EL-95-2
February 1995

US Army Corps
of Engineers
Waterways Experiment
Station

Microbial Degradation of Volatile
Anthropogenic Organic Chemicals

by Martin Alexander, Francois Roch, Cornell University

Approved For Public Release; Distribution Is Unlimited

19950414 082

DT1C _
ELECT Ef|

APR 1 7 1995 ' -A

G

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

® PRINTED ON RECYCLED PAPER

Miscellaneous Paper EL-95-2
February 1995

Microbial Degradation of Volatile
Anthropogenic Organic Chemicals
by Martin Alexander, Francois Roch

Department of Soil, Crop, and Atmospheric Sciences
Cornell University
Ithaca, NY 14853

Accesion For

NTIS CRA&I
DT!C TAB
Unannounced
Justification

D

By
Distribution /

Availability Codes

Dist

\i±

Avail and/or
Special

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

li'Jil

US Army Corps
of Engineers
Waterways Experiment
Station

BtmawBmn.
LABORATORY

FOR M&WATION CONTACT:

PUBUC AFFAIRS OFFICE

U.S. ARMY ENGINEER

WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD

VICKSBURQ, MISSISSIPPI JS150-61S9

PHONE: <S01)S3«-2502

AHEA OF RSEflVATlON -2.7 iq hra

Waterways Experiment Station Cataloging-in-Publication Data

Alexander, Martin, 1930-
Microbiai degradation of volatile anthropogenic organic chemicals / by
Martin Alexander, Francois Roch ; prepared for U.S. Army Corps of
Engineers. ' p

124 p.: ill.; 28 cm. — (Miscellaneous paper; EL-95-2)
Includes bibliographic references.
1. Trichloroethylene — Biodegradation — Data processing
2. Bioreactors — Data processing. 3. Trichloroethylene —
Bioremediation. I. Roch, Francois. II. United States. Army Corps of
Engineer. III. U.S. Army Engineer Waterways Experiment Station
IV. Environmental Laboratory (U.S. Army Engineer Waterways
Experiment Station) V. Title. VI. Series: Miscellaneous paper (U S
Army Engineer Waterways Experiment Station) • EL-95-2
TA7 W34m no.EL-95-2

i

Contents

Preface v

1—Introduction 1

Background 1
Objectives 4

2—Materials and Methods 6

Chemicals 6
Mineral Salts 6
Microorganisms 7
Batch System 8
Analytical Methods 8

3—Experiments 10

Degradation of TCE and TCA by Bacteria Growing on
Different Organic Compounds 10

Toxicity Level of TCE to Methane and Propane Oxidizers 11
TCE Sorption on Dry GAC 12
TCE Sorption on Wet GAC 13
Degradation of TCE Sorbed to Activated Carbon 15
Extraction of TCE from GAC with Methanol 15
Methanol Toxicity to Methanotrophic Bacteria 17
Degradation of TCE by Methanotrophs Growing on Methanol ... 19
Influence of Packing Material on the Cometabolism of TCE 23
Threshold in Cometabolism of TCE by Methanotrophs 24
Volatile Organic Products Generated During the Cometabolic

Degradation of TCE 28
Bioreactor Design 29

4—Kinetics of TCE Degradation by Methanotrophs 35

Kinetic Model Derivation 35
Review of Some Mathematical Models 42
Future Research 47
Computer Program 51

IV

References . 52

. Al

Bl

Appendix A: Computer Program . .

Appendix B: Notation . . .

SF298

List of Figures

Figure 1 Pathways of methane metabolism by methanotrophic
bacteria 2

13

. 14

. 16

21

22

25

26

28

30

31

32

Figure 2. Concentration of TCE in the air in equilibrium with
different amounts of TCE sorbed to GAC

Figure 3. Sorption of 8.8 mg of TCE to 80 mg of dry and wet
activated carbon . .

Figure 4. Extraction with methanol of 59 mg TCE sorbed to
500 mg GAC

Figure 5. Degradation of TCE and methane by methanotrophs
(Ma, Mb, Mc) growing on 0.8 percent methanol and/or
methane

Figure 6. Degradation of TCE and methane by methanotrophs
(MCB, Mx, Ml, M2) growing on 0.8 percent methanol
and/or methane . . .

Figure 7. Degradation of 80 ng/L of TCE by methanotrophs in
the presence of packing materials: no packing, glass
beads, and ceramic saddles .

Figure 8.

Figure 9.

Degradation of 80 jig/L of TCE by methanotrophs in
the presence of packing materials: marble chips,
combusted sand, untreated sand, and cat litter

Degradation of 100 and 1.0 g of TCE per liter by
methanotrophs growing on methane

Figure 10.

Figure 11.

Figure 12.

Chromatograms of the analysis by GC of experimental
bottles 17 days after their inoculation with strain M2

Chromatograms of the analysis by GC of experimental
bottles 17 days after their inoculation with strain M3,
and after their acidification with sulfuric acid

Initial bioreactor design .

Preface

This work was supported by funds provided by the U.S. Army Engineer
Waterways Experiment Station under Contract No. DACA39-91-K-0014.
The research was conducted by Martin Alexander (principal investigator)
and Francois Roch (graduate research assistant) in the Department of Soil,
Crop, and Atmospheric Sciences, Cornell University, Ithaca, NY, from
1 July 1991 to 30 September 1993.

The scientific program officer at WES was Mr. Mark Zappi, Environ-
mental Engineering Division (EED), Environmental Laboratory (EL). The
authors gratefully acknowledge the helpful comments and suggestions of
Mr. Zappi, EED, and Drs. Douglas Gunnison and Judith C. Pennington,
Environmental Processes and Effects Division (EPED), EL. Mr. Norman
Francingues was Chief, EED, and Mr. Donald Robey was Chief, EPED.
Director of EL was Dr. John W. Keeley.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

This report should be cited as follows:

Alexander, M., and Roch, F. (1995). "Microbial degradation of vola-
tile anthropogenic organic chemicals," Miscellaneous Paper EL-95-2, U.S.
Army Engineer Waterways Experiment Station, Vicksburg, MS.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

1 Introduction

Background

Many volatile compounds are released as a consequence of Army and
civilian activities. These compounds may originate from air stripping of
contaminated aquifers, manufacturing or processing procedures, or the use
of products containing volatile constituents. Some of these compounds
are innocuous, but others are toxic or objectionable because of their foul
odors. Many, and possibly nearly all, of the organic compounds emitted
into the air are biodegradable, and thus it is likely that practical technolo-
gies can be developed to bring about their biodegradation. Indeed, a vari-
ety of processes have been developed to destroy organic compounds in
waste gases when those compounds support microbial growth. However,
many of the organic pollutants of interest to the Army do not support
growth but are rather cometabolized.

Trichloroethylene (TCE)1 is an example of such a compound. TCE is
widely used in the dry-cleaning industry and in the industrial industry as a
degreasing solvent. It is a suspected human carcinogen and a widespread
contaminant in soil and groundwater.

TCE is quite resistant to microbial degradation, and no known microor-
ganism is able to use TCE as a carbon and energy source. However, TCE
was found to be a substrate for several oxygenases of low substrate speci-
ficity, including ammonia mono-oxygenase, toluene diooxygenase, and sol-
uble methane mono-oxygenase. The last enzyme is responsible for the
oxidation of methane to methanol in bacteria known as methanotrophs.

Methanotrophs are gram negative, strict aerobes able to grow on meth-
ane as a sole source of carbon and energy. The degradation pathway of
methane involves its oxidation to methanol, formaldehyde, formate, and
carbon dioxide. Carbon necessary for cell metabolism is assimilated at the
level of formaldehyde by one of two possible pathways, the ribulose mono-
phosphate (RuMP) pathway and the serine pathway (Figure 1). All

For convenience, symbols and abbreviations are listed in the Notation (Appendix B).

Chapter 1 Introduction

Methane
Mono-oxygenase

Methanol
Dehydrogenase

Formaldehyde
Dehydrogenase

Formate
Dehydrogenase

CHgOH HCHO

ED+ PQQ PQQHg

Figure 1.

HCOOH

NAD+ NADH NAD+ NADH

Electron Carbon
transport assimilation

/\
Typel&X Type II

Ribulose Serins
Monophosphate Pathway

Pathway

Pathways of methane metabolism by methanotrophic bacteria. EDH is the
electron donor of methane mono-oxygenase. It is NADH if the enzyme is
soluble methane mono-oxygenase, but its identity is unknown with paniculate
methane mono-oxygenase. PQQ is the cofactor pyrrolo-quinoline quinone

methanotrophs are able to form resting structures called cysts or
exospores, and the bacterial cells have complex systems of internal mem-
branes when grown with methane (Stanier et al. 1987).

Methanotrophs can be divided into three groups, type I, type II, and
type X, depending on several physiological and biochemical traits', includ-
ing the structure of their internal membrane and the pathway of formalde-
hyde assimilation. Type X was recently added to accommodate strains of
Methylococcus capsulatus, which are the only group of methanotrophs
capable of autotrophic C02 fixation (Green 1992). These strains were pre-
viously categorized as type I methanotrophs (Whittenbury and Krie^
1984). °

The enzyme methane mono-oxygenase (MMO) catalyzes the oxidation
of methane to methanol by the addition of one atom of oxygen (from
molecular oxygen) to methane. The second atom of molecular oxygen is
reduced to H20 at the expense of reducing power. There are two types of
MMO. One is membrane bound and is called particulate MMO (pMMO).
The other is soluble in the cytoplasm and is called soluble MMO (sMMO)
Particulate MMO may contain a copper-containing cofactor, and it is syn-
thesized preferentially to sMMO when copper is present in sufficient con-
centration. In the absence of copper, some methanotrophs are able to
synthesize sMMO, an enzyme which contains an iron cofactor (Fox et al
1989).

Chapter 1 Introduction

Soluble MMO has a low substrate specificity and is able to oxidize
(i.e., cometabolize) a variety of other compounds including TCE. Particu-
late MMO is also able to oxidize TCE but at a much slower rate (DiSpirito
et al. 1992). Not all methanotrophs are able to synthesize sMMO when
copper is absent. Type II and type X methanotrophs are able to synthesize
sMMO, but type I methanotrophs are not. The only known exception is
the type I methanotroph Methylomonas methanica 68-1 (Koh, Bowman,
and Sayler 1993). The studies discussed herein deal with conditions under
which TCE is rapidly degraded. Therefore, the methanotrophs are grown
under copper-limited conditions to favor the synthesis of sMMO.

Several products are obtained from the oxidation of TCE by sMMO.
The primary oxidation products of TCE are assumed to be TCE epoxide
and chloral (2,2,2 - trichloroacetaldehyde). TCE epoxide is then spontane-
ously and rapidly hydrolyzed to carbon monoxide, formate, glyoxylate,
and dichloroacetate (Fox et al. 1990). The proportion of the different
products varies depending on the species of methanotroph, and the fate of
these products is discussed in the following paragraphs.

Chloral was found to be biologically transformed to trichloroethanol
and trichloroacetic acid by Methylosinus trichosporium OB3b, a type II
methanotroph, presumably by the action of the enzyme methanol dehydro-
genase (Newman and Wackett 1991). Carbon monoxide is a substrate of
sMMO, and its oxidation to carbon dioxide was found to inhibit TCE oxi-
dation both by exerting a demand for reducing factor (needed as cosub-
strate for sMMO catalysis) and through competitive inhibition (Henry and
Grbic-Galic 1991a). Formate is the usual substrate of the enzyme formate
dehydrogenase in methanotrophs, and it may be the only degradation prod-
uct of TCE that provides the cell with any benefit.

An experiment on the biological oxidation of radiolabeled
[1,2- C]TCE by Methylocystis sp. strain M (a type II methanotroph) indi-
cated that dichloroacetate and trichloroacetate accumulated in the me-
dium. Glyoxylate accumulated during the mid-log phase and then was
oxidized; carbon monoxide did not accumulate, but 14C-carbon dioxide
did (Uchiyama et al. 1992). Nakajima et al. (1992) found that strain M
was not able to utilize glyoxylate as the sole carbon source, and they sug-
gest that glyoxylate was assimilated by cooxidation in strain M. When
14C-TCE was degraded by a mixed culture from which strain M was iso-
lated, dichloroacetate and glyoxylate were completely converted to CO-,
but trichloroacetate was somewhat more resistant to further degradation
(Uchiyama et al. 1992).

Like many mono-oxygenases (Walsh 1979), sMMO requires a reducing
cofactor (NADH) to catalyze the oxidation of a substrate by molecular
oxygen (Fox et al. 1989). As a consequence, the oxidation of TCE or
carbon monoxide by sMMO depletes the energy reserves of the cells.

Chapter 1 Introduction

In methanotrophs, the oxidation of formate to carbon dioxide is always
coupled to the reduction of NAD+ to NADH (Anthony 1982), but
methanotrophs do not seem to grow on formate (Whittenbury and Krieg
1984). Therefore, formate can be considered to be a source of reducing
factor but not a growth substrate. Alvarez-Cohen and McCarty (1991b)
reported that the addition of formate resulted in increased initial rates of
TCE transformation and an elevated total transformation capacity of TCE
by a mixed methanotrophic culture in the absence of methane (i.e., by rest-
ing cells). These effects presumably occurred because the addition of for-
mate slowed the depletion of endogenous energy reserves of the cells, a
depletion partially resulting from the use of reducing power during TCE
oxidation.

Similarly, Henry and Grbic-Galic (1991b) reported that during methane
starvation, the addition of formate increased the rates of TCE transforma-
tion by Methylomonas species, but this was not observed in experiments
with a mixed culture of methanotrophs. These authors observed lipid stor-
age granules in several of the cells and suggested that they served as an
endogenous source of electrons for TCE oxidation during methane starva-
tion. Earlier studies by Whittenbury, Phillips, and Wilkinson (1970)
showed that such storage granules in methanotrophs contained polyhydro-
xybutyrate (PHB). In addition, Henrysson and McCarty (1993) found a
positive correlation between the PHB content of resting mixed cultures of
methanotrophs and the transformation rate of TCE as well as between the
amount of PHB and the activity of sMMO (assayed by measuring the oxi-
dation rate of naphthalene by sMMO).

In addition to the consumption of reducing power, the oxidation of
TCE is detrimental to the bacterial cell. Studies on the purified sMMO of
Methylosinus trichosporium OB3b by Fox et al. (1990) demonstrated a de-
crease in sMMO activity following TCE oxidation. An oxidation product
of TCE and not TCE itself was shown to be responsible for the inactiva-
tion. Each component of the enzyme became radiolabeled following the
oxidation of 14C-TCE, and it was suggested that a diffusible hydrolysis
product of TCE epoxide formed covalent bonds with the components of
sMMO. Similar results were obtained by Oldenhuis et al. (1991), who
showed that cells of Methylosinus trichosporium OB3b became inacti-
vated following the oxidation of ,4C-TCE. Various cell proteins became
covalently radiolabeled, including the hydroxylase component of sMMO

Objectives

The objectives of the research were as follows:

a. Devise a cometabolic system to bring about the degradation of
volatlile organic compounds not supporting microbial growth.

Chapter 1 Introduction

b. Develop a means for maintaining the microbial population on a solid
support or in a liquid system.

c. Determine the organic products that are generated during the
cometabolic biodegradation and establish a means to destroy those
compounds.

d. Establish whether there is a need for specialized microorganisms to
degrade compounds sorbed to solid supports and establish a means
for promoting the development of those microorganisms on the solid
phase.

e. Determine if there is a threshold for the biodegradation of volatile
organic compounds that are cometabolized and that are degraded as
a consequence of microbial growth.

The following paragraphs briefly summarize how the above objectives
were approached.

Consistent with the first objective, the test compound was TCE, and its
cometabolic transformation was performed by methanotrophs (and, at an
early phase of the study, by propane oxidizers).

There were only a few problems associated with maintaining the micro-
bial population in a liquid system, and the biodegradation of TCE in the
presence of several solid supports was investigated.

Some analyses were performed to detect potential volatile products gen-
erated during the cometabolic biodegradation of TCE.

Attempts were made to study the biodegradation of TCE sorbed on
granular activated carbon (GAC), but the analytical method was not reli-
able. Additional studies were conducted on a procedure that consisted of
extracting TCE from GAC using methanol and of the biodegradation by
methanotrophs of TCE dissolved in methanol.

A study was conducted to determine if there was a threshold concentra-
tion below which TCE will not be cometabolized by different inocula of
methanotrophs.

In addition to the objectives, to facilitate the upscaling of a bioreactor,
an intensive study was conducted on the kinetics of TCE degradation by
methanotrophs, including the development of a computer program. How-
ever, because of time constraints, only preliminary designs were made for
a bioreactor.

Chapter 1 Introduction

2 Materials and Methods

Chemicals

Tnchloroethylene (TCE) (>99 percent pure, spectrophotometric grade),
1,1,1-tnchloroethane (TCA) (99 percent), dichlorodimethylsilane (99 per-
cent), and pentane (>99 percent) were from Aldrich Chemical Co., Mil-
waukee, WS. Methane (grade 4.0), propane (grade 3.7), nitrogen (grade
5.0), air (grade 0.1), and hydrogen (grade 5.0) were from Airco, The BOC
Group, Inc., Murray Hill, NJ. Hexane (grade "optima") was from Fisher
Scientific Co, Rochester, NY.

Mineral Salts

Following is the aqueous solution of mineral salts contained in grams
per liter of distilled water: MgS04 • 7H,0, 0.5; Ca(NCL), • 4H,0, 0 3-
NH4N03, 0.2; K2HP04, 0.7; NaH2P04, 0.2; Fe(N03)3 • 5H20, 0 007. The
concentration of trace nutrients in the solution was in milligrams per liter
ZnS04 • 7H20, 0.64; Na Mo04 • HO, 0.16; MnSO, • H,0, 0.48; H,BO
0.2, Co(N03)2 • 6H20, 0.8; Ni(N03)2 • 6H20, 0.08; tl. 0.2. In addition?'
0.024 ml of HN03 (70 percent) was added per liter of solution.

The procedure used to prepare the aqueous solution of mineral salts
was as follows. The distilled water and MgS04 • 7H O, Ca(NO) • 4H O
and NH4N03 were sterilized together by autoclaving at'121 °C for 25 min!
Then phosphate salts, which were sterilized separately by autoclaving
were added in the solution. Iron was then added to the salts solution from
a stock that had been sterilized by filtration through a 0.2-|im pore-size fil-
ter contained in a Nalgene disposable filter unit (Nalge, Inc., Rochester
NY). The stock iron solution contained HN03 at a concentration of 0.066
M. The stock solution of trace nutrients was prepared by adding the differ-
ent salts to sterilized distilled water containing 0.066 M of HNO It was
expected that the low pH of the solution killed most of the microorgan-
isms that may be present; nevertheless, this solution may not have been
sterile. Autoclaving of the solution containing trace nutrients was avoided
to prevent the possible precipitation of some of the salts. In addition this

Chapter 2 Materials and Methods

stock was not filter-sterilized because some of the salts might have been
retained by the filter (which was observed with iron and some filters).
The stock of trace nutrients was clear following its preparation, but it
turned yellow after 1 week. Its chemical composition thus may have
changed with time.

Microorganisms

Enrichments of microorganisms able to degrade propane, pentane, and
hexane were obtained from soil. The methane-degrading enrichment
designated Ma was also obtained from soil. Enrichments Mb and Mc,
which are able to grow on methane, were obtained from an expanded bed
bioreactor fed with methane and were provided by W. J. Jewell of Cornell
University. From these two enrichments, five strains able to grow on
methane were isolated after purification on solid medium (strains Ml, M2,
M3, M4, and M5). The methanotroph Methylococcus capsulatus (Bath)
(MCB) and an unidentified but pure methanotrophic culture (Mx) were ob-
tained from Cornell University.

The pure bacterial cultures and enrichments able to grow on methane
and propane were grown in test tubes loosely closed with screw caps and
placed inside hermetically closed jars (BBL Gas Pack System from VWR
Scientific Rochester, NY) containing a mixture of about 30-percent meth-
ane and 70-percent air. These jars were incubated at 30 °C on a rotary
shaker. The test tubes usually became turbid after 2 days of incubation
when the carbon source was methane, but they only became turbid after
about 6 days when the carbon source was propane.

The purity of the cultures was checked periodically by streaking them
on agar plates containing mineral salts and 1.6 percent of Bacto-agar
(Difco Laboratories, Detroit, MI). These plates were placed inside the
same jars used to grow the bacteria in test tubes. About 1 week of incuba-
tion was necessary before bacterial colonies were clearly visible on the
agar plates. Strain MCB never grew on these plates; therefore, its purity
was never certain. Similarly, the microorganisms of the mixed culture Ma
grew very poorly on the agar plates, and attempts to isolate pure cultures
of methanotrophs from this mixed culture were not successful.

The microorganisms were incubated at 30 °C on rotary shakers, but the
analysis of the headspace of the experimental bottles was conducted at
room temperature (about 24 °C).

Chapter 2 Materials and Methods

8

Batch System

Almost all experiments were carried out in a batch system consisting of
glass bottles (64 ml) (Qorpack clear Boston Rounds, Fisher Scientific,
Rochester, NY) closed with screw caps with teflon-coated silicon septa or
Mininert valves (Baxter Scientific Products, Edison, NJ). The bottles con-
tained 8 mL of an aqueous solution of mineral salts. The microorganisms
and the chlorinated compound were added to these bottles. TCE or TCA
diluted in a small volume of water was added from a stock of TCE or TCA
dissolved in water at a concentration equal or below 500 |ig/mL.

Analytical Methods

TCE and TCA were determined with a gas Chromatograph (GC)
(Hewlett-Packard HP-5890A) fitted with a 25m HP-1 capillary column
(crosshnked methyl silicone gum 0.2 mm x 0.33 jim film thickness), an
electron-capture detector (ECD), and a split capillary inlet. All materials
were from Hewlett Packard, Kennett Square, PA. The carrier gas was ni-
trogen; the headpressure of the column was 25 psi with a corresponding
flow rate of about 1.74 mL/min, and the oven temperature was 55 °C Un-
der these conditions the retention time of TCA was about 1.76 min and
the retention time of TCE was about 2.08 min.

The glass insert of the split injector of the GC was deactivated to elimi-
nate the tailing of the TCA and TCE peaks. Deactivation was accom-
plished by acid washing the insert overnight in concentrated sulfuric acid
with Nochromix (an oxidizing agent manufactured by Godax Laborato-
ries New York, NY), soaking the insert for a few seconds in a 10-percent
(vol/vol) solution of dichlorodimethylsilane in hexane, and rinsing it with
acetone.

The first method used to analyze TCE and TCA in the experimental bot-
tles involved the extraction of the chlorinated compound from the 8 ml of
aqueous solution by adding 1.6 mL of hexane. Hexane was separated
from the water and the microbial cells by centrifugation, and a 4-^iL sam-
ple of this layer was analyzed by GC. The method, which was only used
m preliminary experiments, had a detection limit of approximately 1 [ig of
TCE or TCA per liter of water. Pentane was initially used instead of hex-
ane m this method, but its use was quickly abandoned because its high
volatility led to large experimental errors.

The second method involved the analysis of the headspace of the ex-
perimental bottles, and it was used only for the analysis of TCE A vol-
ume of 9 or 500 uL of the bottle headspace was removed with a gas-tight
syringe and injected in the GC. The limit of detection of TCE in water
was below 1 ng/L when the sampling volume was 9 jiL, and close to

Chapter 2 Materials and Methods

2 ng/L when the sampling volume was 500 |0.L. Because of its simplicity
and sensitivity, this method was used in almost all the experiments.

At equilibrium, TCE will be present in the headspace of the bottle at a
concentration proportional to its concentration in aqueous solution. The
Henry constants H? (ratio of the concentration of the test compound in the
air (grams per liter) to its concentration in the liquid (grams per liter)) of
TCE at different temperatures were obtained from Gossett (1987). These
constants were used to calculate the concentration of TCE in the aqueous
solution as a function of the concentration of TCE in the headspace of the
experimental bottle when only the concentration in the headspace was de-
termined with the GC.

Methane was analyzed by injecting a sample (9 |lL) of the headspace of
the experimental bottle into the GC. The column used was an HP-1 capil-
lary column (diameter of 530 m and length of 5 m) and methane was deter-
mined with a flame ionization detector (FID). This column is not
appropriate for separating gases, but methane was present in such large
amounts in the bottles that its analysis was still accurate. A glass column
(diameter of 2 mm and length of 6 ft) packed with Porapak Q 80/100 mesh
was used for some analyses. Both columns were obtained from Hewlett
Packard.

A method to detect chloride ion released during TCE oxidation was de-
veloped. This method "depends upon the displacement" by chloride ion
"of thiocyanate ion from mercury (II) thiocyanate complex; in the pres-
ence of iron (III) ion a highly coloured iron (III) thiocyanate complex is
formed, and the intensity of its color is proportional to the original chlo-
ride ion concentration" (Jeffery et al. 1989). The procedure given by Jef-
fery et al. (1989) was modified somewhat for convenience and to increase
the detection limit for chloride. The procedure used consisted of adding
to 1.0 mL of a saturated solution of Hg(SCN)2 in ethanol 3.5 mL of the
aqueous solution to be analyzed followed by the addition of 0.5 mL of 1.0
M Fe(N03)3 • 9H20 dissolved in an aqueous solution of 4.5 M HN03.

The detection limit was about 10 jiM of chloride ion in solution. The
solution to analyze was obtained from the aqueous solution of the experi-
mental bottles by removing the microbial material first by centrifugation,
then by filtration through a syringe filter (0.22 Jim).

However, this method to detect chloride was only used once because
some organic material remaining in the filtered solution apparently re-
acted with Hg(SCN)2 similarly to chloride ion, and the result was an over-
estimate of the concentration of chloride in the solution. It is not known
what organic compounds were responsible for this reaction, but the addi-
tion of cysteine (which has a -SH functional group) to a solution to be ana-
lyzed gave similar results as adding chloride ion to this solution.

Chapter 2 Materials and Methods

3 Experiments

Degradation of TCE and TCA by Bacteria
Growing on Different Organic Compounds

The purpose of the experiment was to investigate which bacterial en-
richment was able to degrade TCE or TCA. The experimental bottles con-
tained 8 mL of an aqueous solution of mineral salts and either 140 jug of
TCE or 80 (ig of TCA per liter of aqueous solution.

Four enrichments were used. They were grown on methane (enrich-
ment Ma), propane, pentane, and hexane, respectively. The concentration
of methane and propane in the air of the headspace of the experimental
bottle was 20 and 40 percent, respectively. The concentration of pentane
and hexane in the aqueous solution was 1.0 g/L.

For each microbial enrichment, six experimental bottles were used.
The time at which TCE was added to the experimental bottle varied TCE
was added either together with the microbial inoculum or 1 to 5 days later
The size of the microbial inoculum was 40 uL. Ten days after the begin-
ning of the experiment, the aqueous solution was analyzed for its content
of TCE or TCA after extraction with hexane.

All the microorganisms grew readily under the experimental condi-
tions, except that the culture utilizing propane grew slowly. The enrich-
ment growing on methane markedly reduced the concentration of TCE
the value falling to approximately 1 ug/L in water. The propane degraders
decreased the concentration of TCE by up to 50 percent, but significant
degradation of TCE by the pentane and hexane degraders was not ob-
served. None of the enrichments were able to appreciably reduce the con-
centration of TCA. However, the error associated with the analytical
method was more than 10 percent so that slight activity on either chlorin-
ated compound would not have been detected.

A more extensive degradation of TCE occurred in experimental bottles
in which TCE was added less than 3 days after the inoculum of methane
oxidizers, or when TCE was added together with propane oxidizers

10
Chapter 3 Experiments

Based on these results, only the biodegradation of TCE by methane-
and propane-oxidizing bacteria was studied.

Toxicity Level of TCE to Methane and Propane
Oxidizers

An experiment was conducted to determine the lowest aqueous concen-
tration of TCE that inhibits microbial growth. In addition, TCE was
added to the solution at different times following the addition of 40 pL of
the inoculum.

The inocula consisted of three mixed cultures (Ma, Mb, and Mc) and
two pure cultures (MCB and Mx) of methane oxidizers and a culture of
propane oxidizers. The headspace of the experimental bottles contained
either 45-percent methane in the air or 45-percent propane in the air. The
concentrations of TCE in the aqueous phase of the bottles were 0.12, 1.4,
8.4, or 28.0 mg/L.

When the concentration of TCE was 0.12 mg/L, four experimental bot-
tles were used for each inoculum, but TCE was added at different times.
When the carbon source was methane, TCE was added at the time of in-
oculation or 1, 2, or 4 days later. When the carbon source was propane,
TCE was added at the time of inoculation or 4 or 9 days later (two bottles
were inoculated at 9 days).

When the concentration of TCE was 1.4, 8.4, and 28.0 mg/L, only two
experimental bottles were used for each inoculum and each TCE concen-
tration. In the first bottle TCE was added to the microorganisms. TCE
was added to the second bottle 4 days later when the bottle contained
methane oxidizers or 10 days later when the bottle contained propane oxi-
dizers. In addition, analyses were conducted of the contents of sterile bot-
tles corresponding to each treatment to detect abiotic losses of TCE. The
duration of the experiment was 12 days for methane degraders and 16
days for propane degraders.

Many measurements were made of the disappearance of TCE and meth-
ane from the different bottles. However, appreciable abiotic losses of
TCE from the experimental bottles were detected. For this reason, the
data are not presented. One reason for the abiotic losses of TCE was the
damage to the teflon layer of the septa that closed the bottles. As a conse-
quence, these damaged septa permitted TCE to reach and sorb to the sili-
cone side of the septum. Nevertheless, the following observations were
made.

When its concentration in the aqueous phase was 0.12 mg/L, TCE was
degraded by all five inocula of methane degraders, and its final concentra-
tion sometimes was below 1 |ig/L. Less extensive degradation of TCE

Chapter 3 Experiments 11

12

usually occurred when TCE was added after 4 days. In the presence of
propane, degradation of TCE was slower than in the presence of methane,
presumably because the bacteria grew more slowly; nevertheless, the TCE
concentration fell to less than 1 u.g/mL.

When the concentration of TCE was 1.4, 8.4, and 28.0 mg/L, its de-
gradation could not be detected because of appreciable losses of TCE
from the experimental bottles. However, observations of the turbidity in
the bottles indicated that all the methanotrophic bacteria grew in the pres-
ence of 1.4 or 8.4 mg of TCE per liter, but none could grow in the pres-
ence of 28.0 mg of TCE per liter. Therefore, the toxic level of TCE in an
aqueous solution for the methane oxidizers was between 8.4 and
28.0 mg/L.

Propane degraders were not able to grow in the presence of 1.4, 8.4,
and 28.0 mg of TCE per liter. Growth was not detected after 19 days at
these concentrations, whereas analysis of bottles without TCE indicated
that, in the absence of TCE, these bacteria would give a turbid solution af-
ter about 6 days. Apparently, the toxic level of TCE in aqueous solution
for the mixed culture of propane oxidizers was between 0.12 and 1.4 mg/L.

TCE Sorption on Dry GAC

Air streams contaminated with TCE may contain 10 mg/kg of TCE. At
equilibrium with water and at room temperature, this represents somewhat
more than 30 g of TCE per liter in the aqueous phase. At this low concen-
tration and in a bioreactor that is flushed with large volumes of air, a sin-
gle-stage bioreactor might function far below its TCE-degrading capacity
and be prone to drying. Therefore, this and the following experiments
were devised to investigate whether TCE from contaminated air could be
trapped by activated carbon and then degraded by methane- or propane-
oxidizer bacteria.

Three kinds of activated carbon were used: granular activated carbon
(GAC) (mesh 6-14, Fisher Scientific Co, Rochester, NY), the same acti-
vated carbon but crushed to a powder, and a fine activated carbon (grade
G-60, Atlas Chemical Industries, Inc., Chemical Division, Wilmington
DE). & '

This experiment was devised to investigate the sorptive capacity of
GAC towards TCE. The experiment consisted of adding different
amounts of TCE to duplicate experimental bottles containing 500 mg of
GAC and measuring the concentration of TCE in the headspace of the bot-
tle at different times until equilibrium was reached.

Approximately 6 days was necessary for equilibrium to be reached be-
tween TCE sorbed to GAC and TCE in the headspace. The results ob-
tained after 1 and 6 days are shown in Figure 2. The data indicate that

Chapter 3 Experiments

-. 10'

DI
E

CO
V

c
o
«
c
0)
u c o u

LU
Ü

1000 -

10 -

0.1

10 20 30 40 50 60
weight of TCE over weight of GAC (%)

Figure 2. Concentration of TCE in the air in equilibrium with different amounts of TCE
sorbed to GAC

10 mg of TCE per kilogram in the gas phase will be in equilibrium with
the equivalent of 14 g of TCE sorbed on 100 g of initially uncontaminated
GAC, or 14 percent. The data also show that after 1 day, TCE was still
not in complete equilibrium with the GAC, especially with low amounts
of TCE.

TCE Sorption on Wet GAC

This experiment was carried out to determine affinities for TCE of
three kinds of dry or wet activated carbon. The experiment consisted of
adding 6 U.L of TCE (8.8 mg TCE) to experimental bottles containing
80 mg of three kinds of activated carbon: GAC, crushed GAC, and fine
activated carbon. The concentration of TCE in the headspace of the bottle
was measured a few minutes following the addition of TCE and 3 and 4
days thereafter. On day 4, 8 mL of water was introduced into the experi-
mental bottles so that the activated carbon was completely submerged, and
the concentration of TCE in the bottle headspace was measured a few min-
utes thereafter and 1 day later (day 5).

Chapter 3 Experiments 13

The results (Figure 3) indicate that GAC (crushed or not) apparently
had a greater affinity for TCE than the fine activated carbon, as only 8 mg
of TCE were present per kilogram of headspace in the bottles containing
GAC and crushed GAC, whereas about 230 mg of TCE were present per
kilogram of headspace in the bottles containing fine activated carbon. In
addition, an appreciable amount of TCE was released to the headspace fol-
lowing the addition of water. This release was apparently faster with
crushed GAC and fine activated carbon. After 1 day, the concentration of
TCE in the headspace of the experimental bottles was about 330 mg/kg in
the presence of GAC, 650 mg/kg in the presence of crushed GAC, and
8,300 mg/kg in the presence of fine activated carbon.

This release of TCE following the addition of water may facilitate the
biological degradation of TCE sorbed on dry GAC by decreasing the abil-
ity of GAC to sorb TCE. In addition, the results show that if GAC is used
as a solid packing in a wet bioreactor, its sorptive capacity for TCE will
be substantially lower than its sorptive capacity in a dry environment. In
addition, if a column of dry GAC is used to trap TCE from a contaminated
air stream, its sorptive capacity is likely to vary depending on the water
content of the air stream (Crittenden et al. 1988).

_ 104 -
o

v" "
_ — ^

E Fine activated /

i 1000 ;
CO t
o :

carbon

iGAC ~~

■ - - - - -■

c 100 ^
~ i
CO

c

1 - ^^^^-^

Crushed ' " -"^>-\^

' >

o
£ 10 -
o
u
III
O

GAC '^^-#^^^

Add water to the dry
activated carbon \.

■■~/

H 1 -

0

1 * i

1 2 3
^1

4
i

5 6
Time (days)

Figure 3. Sorption of 8.8 mg of TCE to 80 mg of dry and wet activated carbon. The
activated carbon was initially dry

14
Chapter 3 Experiments

Degradation of TCE Sorbed to Activated Carbon

An experiment was conducted to study the biological degradation of
TCE sorbed on GAC. The first reason for the study was that GAC could
be used as packing material in a bioreactor designed to decontaminate an
air stream contaminated with low concentrations of TCE. The TCE in the
airstream would be expected to be strongly sorbed to the GAC before the
bacteria begin to degrade it (unless the GAC is already saturated with
TCE). Therefore, it is important to determine whether TCE sorbed to
GAC could be effectively degraded by bacteria or if it is not available for
bacterial uptake.

The second reason is that dry GAC columns could be used to trap TCE
from a contaminated air stream, and then the contaminated GAC of the
columns could be treated by a microbiological process. This procedure
would avoid problems associated with flushing a bioreactor with huge
amounts of contaminated air, because TCE would no longer be present in
the air stream but would be sorbed to GAC. In addition, as mentioned
above, some of the sorbed TCE would be released when the GAC is
placed in the aqueous solution in the bioreactor, and TCE might thereby
become more available to bacteria.

Several bottles containing 8 mL of an aqueous solution of mineral salts
and 8 mg of TCE sorbed to 80 mg of the three kinds of activated carbon
used in the previous experiment were inoculated with methane- and pro-
pane-degrading microorganisms. Because GAC has a large sorptive capac-
ity for TCE, it was expected that only a small fraction of the TCE would
be degraded. For this reason, measuring the amount of TCE remaining in
the solution was not considered to be a sufficiently sensitive method. In-
stead, it was planned to estimate TCE degradation by measuring the
amount of chloride released to the aqueous solution following the oxida-
tion of TCE.

Unfortunately, organic constituents of the bacteria as well as sub-
stances in the activated carbons also reacted with the chloride reagent
(Hg(SCN)2) so that analyses could not be performed by such procedures.

Extraction of TCE from GAC with Methanol

A method was investigated to remove TCE from GAC. It consists of
extracting the TCE with methanol. The TCE dissolved in methanol would
then presumably be degraded by methanotrophs. An experiment was thus
conducted to estimate how much TCE could be extracted from GAC by
repetitive extraction with small volumes of methanol.

Chapter 3 Experiments 15

A volume of 40 uX TCE (59 mg) was added to two duplicate experi-
mental bottles containing 500 mg of GAC, and the bottles were allowed to
stand for 1 week to permit equilibrium to be reached between TCE in the
headspace and TCE sorbed to GAC. Then 1 mL of methanol was added to
the bottles, and after 1 hr and repetitive shaking, the methanol was re-
moved from the bottles, and its content of TCE was measured. This proce-
dure was repeated several times, although sometimes the methanol was
removed after 1 day.

The results in Figure 4 show that after six extractions with 6 mL of
methanol, about 75 to 80 percent of the TCE could be extracted from the
GAC. The first time methanol was added into the bottles, only about 0.4
mL could be removed, the remainder being sorbed to the GAC. In the ex-
tractions that followed the first one, usually all of the added methanol
could be recovered. The concentration of TCE was 5.2 uX of TCE per mil-
liliter of methanol or 0.0096 g of TCE per gram of methanol.

Although it is difficult to extrapolate these results to conditions in
which thorough extraction of TCE from GAC was achieved, the results
suggest the concentration of TCE that might be obtained in a solution of
methanol used for the extraction. This methanol can then be provided to
methanotrophs in the expectation that they will degrade TCE while grow-
ing on methanol. However, it was necessary first to investigate the

S5 100 -
Ü
< -
Ü
E 80 -
o M •»-

TJ ""
<D 60 - first J^^ M" Ü
TO replicate s' ,,-'
X ^^ ' M
o 40 - ^-^^^

UJ ^^■^^ ^ **

Ü
1- /^ ,-M second
«t—
o 20 -

/ M"' replicate
c X *
o
u
1_ o - UL

1
i.i i i

2 3 4 5
Number of extractions

l 1

6 7 f

Figure 4. Extraction with methanol of 59 mg TCE sorbed to 500 mg GAC

16
Chapter 3 Experiments

toxicity of methanol to methanotrophic bacteria. This is the subject of the
next experiment.

Methanol Toxicity to Methanotrophic Bacteria

The concentration of methanol above which the growth of methanotro-
phic bacteria on methanol will be adversely affected was assessed. Mixed
cultures Ma, Mb, and Mc and pure cultures MCB, Mx, Ml, M2, and M3
were grown in bottles containing 8 mL of an aqueous solution of mineral
salts with 0.1, 0.5, 1.0, 2.0, and 5.0 percent (vol/vol) of methanol as the
sole source of carbon and energy.

A qualitative estimation of the growth of the bacteria was obtained by
visually observing the turbidity of the aqueous solution in each bottle 1,3,
and 6 days after the addition of 40 |i.L of the inocula. The extent of turbid-
ity was designated 0 (no turbidity) or by an increasing number of plusses.
After 1 day, all the mixed cultures (Ma, Mb, and Mc) had grown to their
maximum turbidity when the concentration of methanol was up to 0.5 or
1.0 percent, and less turbidity was observed at 2.0- or 5.0-percent metha-
nol (Table 1). The pure cultures grew slower than the mixed cultures, and
no growth was detected at 5.0-percent methanol.

Table 1
Methanol Toxicity. Turbidity in Bottles After 1 Day of Incubation

Inoculum

Methanol Concentration In Solution, percent

0.1 03 1.0 2.0 5.0

Ma ++++ ++++ I I I I + +

Mb ++++ ++++ +++ + + I

Mc ++++ ++++ +++ + + I

MCB + + + + 0

Mx + + + + 0

M1 + + + + + I

M2 0 0 0 0 0

M3 + + + + • I
After 3 days, differences in turbidity were not observed at any concen-

tration of methanol with mixed cultures Ma and Mc (Table 2); culture Mb
was only somewhat less turbid at 5.0-percent methanol than at lower con-
centrations. With the exception of strain Ml, no pure culture could grow
at 5.0-percent methanol. In addition, with strains Mx, Ml, and M3 the

Chapter 3 Experiments 17

aqueous solution was less turbid at 2.0-percent methanol than at lower
concentrations.

Table 2
Methanol Toxiclty. Turbidity in Bottles After 3 Days of Incubation

Inoculum

Methanol Concentration in Solution, percent

0.1 0.5 1.0 zo 5.0 I

Ma ++++ ++++ IIII ++++ ++++ I

Mb ++++ ++++ ++++ ++++ + J
1 Mc ++++ ++++ 1111 ++++ ■till

SMCB + + + + 0

Mx +++ +++ + + 0

M1 + + + + + I

IM2 + + + + 0

M3 + + + + 0

After 6 days, differences in turbidity were not evident at any concentra-
tion of methanol in the bottles containing the mixed cultures Ma, Mb, and
Mc (Table 3). Pure cultures MCB, Ml, and M3 showed a little turbidity at
5.0-percent methanol, but strains Mx and M2 did not grow at that concen-
tration. The sensitivity of the pure cultures to methanol varied, and they
did not reach the turbidity obtained with mixed cultures, even at the low-
est concentration of methanol (0.1 percent).

Table 3

Methanol Toxicity. Turbidity in Bottles After 6 Days of Incubation

1 Methanol Concentration In Solution, percent

1 Inoculum 0.1 0.5 1.0 ZO 5.0

Ma ++++ ++++ i i i i ++++ ++++

1Mb ++++ ++++ i i i i ++++ ++++

Mc ++++ ++++ i i i i ++++ ++++ I
I MCB + + + + + I

Mx +++ +++ + + 0

M1 + + + + + .

M2 + + + + 0

M3 + + + + + I

18
Chapter 3 Experiments

Apparently, the pure cultures were more sensitive to methanol than the
mixed cultures. This is not surprising considering that the mixed cultures
are likely to contain some methylotrophic bacteria that grow efficiently on
methanol, whereas methanotrophic bacteria (like the purified strains)
grow slowly on methanol (Anthony 1986). The populations of the mixed
cultures were probably composed mainly of methylotrophic bacteria,
whereas the mixed cultures probably contain mainly methanotrophic bacte-
ria when grown in the presence of methane. The concentration of metha-
nol above which growth of the purified strains was substantially affected
was apparently between 2.0 and 5.0 percent, but an effect on growth was
even evident below these concentrations.

Degradation of TCE by Methanotrophs Growing
on Methanol

An experiment was conducted to investigate whether methanotrophs
would degrade TCE while growing on methanol. As mentioned above, the
purpose of this experiment was to test if methanotrophs could be used to
degrade a solution of methanol contaminated with TCE as obtained follow-
ing the extraction with methanol of TCE sorbed to GAC.

The microbial inocula consisted of three mixed cultures (Ma, Mb, and
Mc) and four pure cultures (MCB, Mx, Ml, and M3). The inocula were
grown in bottles containing 8 mL of an aqueous solution of mineral salts
and about 250 g of TCE per liter of water. The concentration of methanol
was 0.8 percent, which was not toxic to the organisms (see previous ex-
periment). Some bottles also contained a small amount of methane (0.71
or 0.016 percent in the air of the headspace). One of the purposes of the
addition of methane was to test whether the presence of small amounts of
methane would influence the degradation of TCE. The second purpose
was to study the biodegradation of methane by methanotrophs growing on
high concentrations of methanol. For this study, the degradation of meth-
ane was only measured in the experimental bottles containing 0.71 percent
of methane. Methane was introduced into the headspace of the bottle,
either together with the inoculum or when the aqueous solution became
turbid as a result of microbial growth. A control was also tested in which
0.71 percent of methane but no methanol was present.

All tests were conducted in triplicate, and eight sterile bottles were
used as controls. The system was incubated for 15 days, and the contents
of the bottles were analyzed six times during this period for TCE and
sometimes methane and methanol.

A total of 128 bottles were used in this experiment. Because TCE was
not appreciably degraded in any of the bottles, only a few of the analytical
results are presented. The percentage of TCE and methane remaining af-
ter 15 days in the bottles inoculated with microorganisms Ma, Mb, and Mc

Chapter 3 Experiments 19

and also with microogranisms MCB, Mx, Ml, and M2 is shown in Fig-
ures 5 and 6. An appreciable disappearance of TCE was not evident in
most cultures containing methanol. In the few instances in which the con-
centration of TCE had decreased, the maximum loss of TCE as a result of
microbial activity was never more than about 60 percent of the amount
added. An average of 25 percent of the TCE disappeared abiotically from
the control bottles, indicating that similar losses of TCE may have oc-
curred in the experimental bottles. Thus, most of the TCE missing from
the experimental bottles may have disappeared abiotically and not as a re-
sult of bacterial activity.

From 70 to 90 percent of the methane (initially present at 0.71-percent
methane in air) remained in experimental bottles that contained methanol,
but only about 3 percent of the methane remained in experimental bottles
in which methanol was absent. The only exception is one of the triplicate
experimental bottles that was inoculated with strain Mx, in which 62 per-
cent of the methane remained at the end of the experiment. The abiotic
loss of methane from the experimental bottles was not assessed, but it may
be responsible for the small amount of methane lost in the bottles contain-
ing methanol.

Most experimental bottles containing methanol were turbid due to mi-
crobial growth after 2 days. The bottles containing 0.71-percent methane
and no methanol were only slightly turbid, and they contained a much
lower density of microbial cells than the bottles containing methanol. Bot-
tles initially containing 0.016 percent of methane and no methanol did not
show visible growth, and significant TCE disappearance was not evident,
probably because the cell density was too low.

In all bottles containing methanol, methanol was still present at high
concentrations (about 0.5 percent in water) at the end of the test period
(data not shown). It is likely that the bacteria had used most of the oxy-
gen in the headspace and consequently could no longer oxidize methanol.

The previous experiment on the toxicity of TCE to methanotrophs indi-
cated that the inocula Ma, Mb, Mc, MCB, and Mx were able to degrade
TCE while growing on methane. A preliminary test experiment (data not
shown) indicated that strains MI and M3 were also able to degrade TCE
while growing on methane. However, in a larger experiment dealing with
the possible existence of a threshold for TCE degradation (an experiment
that was made before the one described in this section), only inocula Ma,
Mb, MCB, M2, and M3 were able to degrade TCE while growing on meth-
ane, whereas inocula Mc, Mx, and M1 were not able to degrade TCE
while growing on methane. In addition, an experiment conducted after the
one described in this section indicated that, in the presence of methane,
strains MCB, M3, and M4 but not strains Mx, Ml, and M5 could degrade
TCE.

20
Chapter 3 Experiments

100

80

60 -

40 -

e. 20
U)
.E 0
c
"g 80

o
JL.

0

o
UJ
Ü
H

60

40 CO
sz
o 20

0

80

60

40

20

0

21

(FjD
no treatment

tested

C D E F
Treatments

G

Figure 5. Degradation of TCE (250 ug/l) and methane by methanotrophs (Ma, Mb, Mc)
growing on 0.8-percent methanol (MeOH) and/or methane (0.71 percent or
0.016 percent in air). The columns indicate the fraction (percent) of TCE and
methane remaining in the experimental bottles after 15 days. Treatments: A,
MeOH; B, MeOH + 0.71-percent methane that was added when the solution
was turbid; C, MeOH + 0.71-percent methane that was added initially; D,
0.71-percent methane (no MeOH); E, like B but with 0.016-percent methane,
F, like C but with 0.016-percent methane; G, 0.016-percent methane (no
MeOH); X, sterile control. TCE: ü ; Methane: d(only the experimental
bottles initially containing 0.71 percent of methane were analyzed)

Chapter 3 Experiments 21

(Fix)

no treatment
tested

>/|\

Treatments

i i 1 r

(FiT)

no treatment
tested

/j\

G ' X

Figure 6. Degradation of TCE (250 u.g/L) and methane by methanotrophs
(MCB, Mx, M1, M3) growing on 0.8-percent methanol (MeOH)
and/or methane (0.71 percent or 0.016 percent in air). See the
definition of the treatments in Figure 5. TCE: £§§ ; methane- B

22
Chapter 3 Experiments

Consequently, it seems that microorganisms Mc, Mx, and Ml lost their
ability to degrade TCE while growing on methane. This is surprising be-
cause strain M3, which can degrade TCE, was isolated from the mixed cul-
ture Mc. The reason for this loss of ability to degrade TCE is unknown.

Thus, the apparent inability of some inocula (especially inocula Mx,
Mc, and Ml) to degrade TCE while growing on methanol may simply be
due to the inability of these inocula to degrade TCE under any conditions.

It is known that the enzyme responsible for the primary oxidation of
TCE is sMMO, which also catalizes the oxidation of methane to methanol.
It is likely that the synthesis and expression of sMMO is tightly controlled
by the cell to prevent unnecessary oxidation of methane to methanol
which would lead to accumulation of methanol in the cell. One of these
physiological controls may be sensitive to the concentration of methanol,
and a high concentration of methanol in the aqueous medium may inhibit
the synthesis of sMMO (or turned off the enzyme by some allosteric
mechanism). Another explanation for the results is that sMMO has a
weak capacity to oxidize methanol to formaldehyde, and methanol will
therefore act as a competitive inhibitor of methane for sMMO, an effect
that is increased by the high concentration of methanol.

In summary, the data suggest that the degradation of TCE and methane
by methanotrophs is strongly if not completely inhibited in the presence
of high concentrations of methanol. Therefore, the use of high concentra-
tions of methanol as a growth substrate for methanotrophs to cometabolize
TCE in a bioreactor does not appear to be a feasible means to cometabo-
lize TCE.

Influence of Packing Material on the
Cometabolism of TCE

In a bioreactor designed to carry out the degradation of TCE by methan-
otrophic bacteria, the identity of the packing material may influence the
degradation process of TCE. Therefore, an experiment was conducted to
study the degradation of TCE in bottles containing an aqueous solution of
mineral salts, methanotrophic bacteria, TCE, and different possible pack-
ing materials for a bioreactor.

The materials were glass beads, ceramic saddles (6 mm) (both from
Fisher Scientific Co, Rochester, NY), marble chips, untreated sand, com-
busted sand, and a material probably made of ceramic and clay particles
used for cat litter. These materials were thoroughly washed with water be-
fore use, and a portion of each was kept several hours in a boiling aqueous
solution of Na2EDTA (2 g/L), after which they were again washed exten-
sively. The EDTA was used to remove any copper ions that might have

Chapter 3 Experiments 23

24

been present, as most methanotrophs are unable to cometabolize TCE
when grown in the presence of substantial copper concentrations.

The microbial inocula consisted of two enrichments (Ma and Mb) and
one inoculum containing two pure cultures (M3 and M4). All inocula had
the ability to cometabolize TCE when grown on methane. From 3 to 8 g
of packing material was added to the bottles and these were supplemented
with 4 mL of an aqueous solution of mineral salts. The inoculum and a
mixture of methane and air (about 20-percent methane) was introduced.
The bottles were incubated at 30 °C for 5 days, at which time the bottles
were turbid from microbial growth. The bottles were then flushed with a
fresh mixture of methane and air (about 20-percent methane), and TCE
was added at a concentration of about 80 |Lig/L in water. Analyses for meth-
ane and TCE were performed after 2 and 4 days. All tests were conducted
in triplicate.

The results in Figure 7 (no packing material, glass beads, and ceramic
saddles) and Figure 8 (marble chips, combusted sand, untreated sand, and
cat litter) show the concentrations of TCE remaining in water 2 and 4 days
after the addition of TCE to the bottles. None of the packing materials
tested sorbed significant amounts of TCE, as indicated by the absence of
large differences in TCE concentrations obtained in sterile condition in
the presence and absence of packing material. With all the packings
treated with EDTA and with glass beads and ceramic saddles not treated
with EDTA, more than 80 percent of the TCE had disappeared with all
microbial inocula 2 days after the addition of TCE. A somewhat smaller
(60 percent or more) amount of TCE was metabolized by two inocula (Mb
and M3/M4) in the presence of marble chips, untreated and combusted
sand, and cat litter that were not treated with EDTA. However, the third
culture (Ma) had almost no activity on untreated and combusted sand and
cat litter that were not treated with EDTA, and it had less activity on mar-
ble chips untreated with EDTA than the two other inocula.

These results indicate that some packings can indeed inhibit TCE de-
gradation by some methanotrophs. However, this inhibition is overcome
if the packing is treated with EDTA. It is assumed that the differences ob-
served between the treatments were the consequence of the higher concen-
tration of copper ions in the packings not treated with EDTA. The reason
why one inoculum (Ma) was more sensitive to the treatment with EDTA
than the other inocula is not known and was not investigated.

Threshold in Cometabolism of TCE
by Methanotrophs

The purpose of these experiments was to determine whether there is a
threshold for the biodegradation of volatile organic compounds cometabo-
lized and degraded as a consequence of microbial growth. In this

Chapter 3 Experiments

NO packing

a b a b a b

Glass beads

abed

..ir/si-

a b c d
abed

Ceramic saddles

abed

lärfmh
abed

abed

sslssj; «Eifert]
Sterile Ma Mb

Microbial inocula

M3/M4

Figure 7. Degradation of 80 ng/L of TCE by methanotrophs in the presence
of packing materials: no packing, glass beads, and ceramic
saddles. The columns indicate the concentration of TCE
remaining in the aqueous phase 2 and 4 days after the addition
of TCE in the experimental bottles. Treatments: a—packing
not treated with EDTA, day 2; b—packing not treated with
EDTA, day 4; c—packing treated with EDTA, day 2; d—packing
treated with EDTA, day 4

Chapter 3 Experiments 25

3.

CD
V)
CB
£ a
w
3
O
a
CT
CO

sz

m
O

c
o
CO

*"•
c
o
Ü
c
o o

Sterile Ma Mb

Microbial inocula

M3/M4

Figure 8. Degradation of 80 \ig/L of TCE by methanotrophs in the presence
of packing materials: marble chips, combusted sand, untreated
sand, and cat litter. The different columns (a, b, c, d) are
defined in Figure 7

26
Chapter 3 Experiments

particular case, the test compound was TCE, and the microorganisms re-
sponsible for its cometabolic degradation were all methanotrophs.

The setup of the experiments consisted of bottles containing 20 to
30 percent of methane in air and 8 mL of an aqueous solution of inorganic
salts. TCE was added to the bottles so that its concentration in the aque-
ous solution was either 100 or 1 |J.g/L. The inocula consisted of mixed cul-
tures Ma, Mb, and Mc, and pure cultures MCB, Mx, Ml, M2, and M3. A
small volume of inoculum (40 (lL) was added to each bottle, except for
some bottles which remained sterile and were used to estimate the abiotic
losses of TCE during the experiments and the sampling process. The ex-
periments were conducted using four replicates for each bottle. Sampling
was conducted daily during the first week and then at longer time inter-
vals for the following week, and the frequency varied depending on the
type of microorganism used. TCE was analyzed by headspace sampling
by removing either 9 or 500 jiL of the bottle headspace, depending on the
concentration of TCE remaining in the experimental bottle. The concentra-
tion of methane in the headspace was also analyzed, although the analyses
gave little useful information.

A summary of the results is given in Figure 9. When acted on by micro-
organisms Mb, MCB, M2, and M3, the concentration of TCE at the end of
the experiments (in at least 2 of the 4 replicates) was below the detection
limit of the analytical method (about 0.002 (J.g of TCE per liter of water).
This occurred when the starting concentration of TCE was either 100 or
1 Jig/L. In enrichment Ma, TCE was still detected at about 0.020 fig/L in
all bottles. Microorganisms Mc, Mx, and Ml did not degrade TCE appre-
ciably at either the 100- or l-|J.g/L concentration; these findings were sur-
prising as Mc and Mx were apparently active on TCE in previous studies.

The data in Figure 9 also show that the rates of TCE degradation varied
among the inocula. The amount of TCE degraded after 4 days was more
than 90 percent for inoculum Mb, about 80 percent for M2 and M3, 70 per-
cent for Ma, and only 30 percent for MCB. The values of all four repli-
cates agreed in all experiments, even though some of the replicates were
sometimes losing some TCE abiotically because a few of the bottles were
closed by a damaged septum.

In summary, when the microorganisms were able to degrade TCE, they
degraded it either below the detection limit (inocula Mb, MCB, M2, and
M3) or to about 0.020 (ig/L (inoculum Ma). Consequently, if there is a
threshold for TCE cometabolism by methanotrophs, it is at concentrations
below about 0.002 |i.g/L of TCE in the aqueous phase.

Chapter 3 Experiments 27

15 0 4 15

Days after inoculation

F.gure 9. Degradation o 100 and 1.0 ug of TCE per liter by methanotrophs
Ma Mb Mc, MCB, Mx, M1, M2, and M3 growing on methane
The columns md.cate the average amount of TCE present in
the experimental bottles at the time of the inoculation, 4 or 15
days later. Legend: S3 : the initial concentration of TCE was
about 100 ug/L; B: the initial concentration of TCE was about
1~>~9J ' , }-: flJeast two of the four replicates were below the detection limit (about 0.002 ug/L)

28

Volatile Organic Products Generated During
the Cometabolic Degradation of TCE

Some of the experimental bottles used in the above experiment were
analyzed by gas chromatography for any halogenated volatile hydrocar-
bons that could have been produced during TCE degradation. The analy-
sis of experimental bottles that initially contained 100 ug of TCE per liter
of water were compared to the analysis of bottles that contained 1 ug of
TCE per liter. The analysis was performed by injecting 500 uL of the bot-
tle headspace in the same GC column that was used for TCE detection

Chapter 3 Experiments

The ECD is very sensitive to halogenated compounds, and it would detect
volatile chlorinated compounds that could have been produced from TCE
degradation. The analysis was made 17 days after the bottles were
inoculated.

Concentrated sulfuric acid (0.8 mL) was added to some of the bottles to
be analyzed because some chlorinated carboxylic acids have been reported
to be products of TCE degradation by methanotrophs. The low pH was ex-
pected to facilitate their partitioning of these carboxylic acids to the head-
space of the bottle. The retention time of potential degradation products
of TCE in the GC column could have been quite important; therefore, the
temperature of the oven was gradually increased after 2.3 min from 55 °C
to 240 °C at a rate of 20 °C per minute, and the analysis was performed
for about 20 min.

The results obtained by analyzing some bottles inoculated with strain
M2 are shown in Figure 10. The chromatograms, which were almost iden-
tical for bottles initially containing 100 or 1 Hg/L of TCE, suggest that
volatile compounds were not present.

Similarly, no significant differences were observed between the chroma-
tograms of bottles initially containing 100 or 1 (Xg of TCE per liter that
had been inoculated with strain M3 and into which sulfuric acid was
added (Figure 11). In addition, the chromatograms of Figure 11 were simi-
lar to those of Figure 10. The very small peaks with a retention time of
2.090 and 2.099 min on the two chromatograms of Figure 11 are those of
TCE, and their sizes are consistent with TCE concentrations of about
0.003 and 0.002 [ig/L in water, respectively. TCE peaks are not visible in
the chromatograms of Figure 10 because the concentration of TCE remain-
ing in those bottles was below the detection limit.

These results indicate that no volatile chlorinated compounds originat-
ing from TCE degradation were detected in the headspace. However, the
microorganisms had 15 days to degrade TCE and perhaps some of its de-
gradation products.

Bioreactor Design

A preliminary attempt was made to build a bench-top bioreactor that
would purify air contaminated with low concentrations of TCE. The biore-
actor is depicted in Figure 12 and consists essentially of a modified chro-
matography column (C) (510 mm long, i.d. 25 mm, Ace Glass, Vineland,
NJ) that contains either a suspension of bacterial cells in water or a pack-
ing material coated with the cells. The contaminated air stream is intro-
duced into the bottom of the column by using a long glass tube that is
tightly fit at the top of the column. At the bottom of that tube is a porous
fritted-glass sparger. The contaminated gas is prepared by passing air
through a small column (A) packed with granular activated carbon loaded

Chapter 3 Experiments 29

CM

"co

c
o

JO
3
Ü
o c

CD
x:

0)

ro
CO
>»
CO

•D

CO

o

c
a>
E
CD
Q.
X
CD

O

Ü
O
.Q

CO
_>»
CO c
CO

CD

w
E
CO
I—
D)
o
co
E
o
k_

Ü

CD

3
D)
il

30
Chapter 3 Experiments

03

03

re
■o c

CO

CO

c
"co
+-*
CO

c
o

3
U
o
c

0

03

re
CO ><
CO

TJ

K
T—

CO
03

•*—•
O

.Q

10
*J

C
0
E
k_

CD
Q.
X
CD

»•—
o
Ü
Ü
>.

.Q
CO
CO "D
>»T7 — Ü
co co
c „
co .9

L.
0) 3

SZ "-
— 3
O W

w £

fc* ■- c
03 o

CO £
Eä
£=6
-^ "
O co

03

3

Chapter 3 Experiments 31

c

'55

O
03
a>
o

XJ

75

OJ

3

32
Chapter 3 Experiments

with 10 percent (by weight) of TCE. The air emerging from the column
contains approximately 4 mg/kg of TCE.

The bioreactor contains additional tubing to permit further dilution of
the contaminated air and to permit, when desired, the introduction of meth-
ane into the air stream. The flow rates of the gases are controlled by mi-
crometric valves. The analysis of the incoming and outgoing gas is made
by using modified test tubes (B and D) closed by Mininert teflon valves
through which the gas is sampled with a gas-tight syringe. Analysis is by
gas chromatography. All material in contact with the contaminated gas is
either glass or teflon. e*

Because the input and output of the carbon source and the toxic com-
pound occur in the gas phase, their flow does not wash out the microbial
cells present in the liquid phase, which would occur in a conventional che-
mostat in which the carbon source and toxic compound are carried by a
stream of liquid. As a consequence, in such a bioreactor, a packing mate-
rial to which microorganisms are sorbed is not required to prevent the
wash-out of microbial cells due to the flux of the carbon source and the
toxic compound. Such a packing material may be needed if it is necessary
to renew the liquid in the bioreactor at a rate comparable with the growth
rate of the bacteria, which might be required to remove water-soluble
toxic products that accumulate in the liquid.

The disadvantage of using a liquid suspension of bacterial cells is that
the residence time of the bubbles of contaminated gas in the bioreactor is
limited approximately to the time necessary for the bubbles to travel from
the bottom to the top of the bioreactor. However, such a reactor would
not be dried out by high flow rates of contaminated gases. In addition, be-
cause the microrganisms are suspended in the aqueous solution, they can
easily be replaced with fresh cultures, and the composition of the aqueous
phase can be precisely controlled.

If the bioreactor is filled with solid packing that is submerged in the
aqueous solution, the residence time of the bubbles of contaminated gas
will be somewhat similar to the residence time in the absence of a solid
packing. In addition, the previous experiment in which different packing
materials were tested did not suggest that the presence of packing material
would increase the degradation of TCE in a batch system. Rather, the ex-
periment showed that, without preliminary treatment with EDTA, some
packing materials decreased the ability of methanotrophs to degrade TCE.
Therefore, a bioreactor filled with solid packing submerged in the aqueous
solution might not have an appreciable advantage over the same bioreac-
tor without packing.

In a bioreactor containing packing material that is not submerged with
water and to which a biofilm of microorganisms is sorbed, the retention
time of contaminated gas can be much higher than in a submerged bioreac-
tor because the retention time will be proportional to the volume of gas
found between the solid particles. However, such a bioreactor will be

Chapter 3 Experiments 33

34

subject to drying, and will be less flexible than a submerged bioreactor
without solid packing because the microbial population will be more diffi-
cult to replace or modifiy.

Preliminary tests with the bioreactor filled with microorganisms sus-
pended in an aqueous solution suggested that the minimum flow rate of
contaminated gas allowed by the micrometric valves (about 2 mL/min) of
the initial bioreactor design was too high for a reactor of the volume de-
scribed here. There was no mixing system in the reactor, but when the
flow of contaminated gas was rapid, the advection caused by the rising
bubbles was sufficient to mix the reactor volume through its entire length
and to prevent the settling of microbial cells. However, this rapid flow
rate of gas exceeded the capacity of the bioreactor to degrade TCE effi-
ciently, and the concentration of TCE in the output gas was about the
same as in the input gas.

The bioreactor was not developed further, and attention was turned to
mathematical simulation (described in the next chapter) to help in the de-
sign and in estimating the flow rate required for proper functioning.

Chapter 3 Experiments

4 Kinetics of TCE
Degradation by
Methanotrophs

A mathematical model was devised to simulate TCE degradation by
methanotrophs in a batch system. Two reasons exist for developing such a
model. First, the model may be considered as the mathematical translation
of known or hypothesized phenomena, and testing the model is a way of
evaluating whether those hypotheses are correct and/or if the phenomena
described are sufficient to explain or predict TCE biodegradation by
methanotrophs. If the model fails, then finding the reasons for its failure
will help to increase the understanding of the process. Second, if the
model is adequate, it can be used to predict the biodegradation of TCE in
different environments, and it would facilitate the scaling-up of bioreac-
tors and selecting conditions that would optimize the process. The model
was intended to help the scaling up of the bioreactor described above.

Consideration to how the model was derived is given here in order to
provide a basis for considering the biological meaning of the different
mathematical expressions of a model.

Kinetic Model Derivation

Kinetic models of biological systems are often applied without being
fully derived from biological principles. This approach has the disadvan-
tage that the biological meaning of mathematical expressions may be diffi-
cult to understand. For this reason, the model proposed has been derived
based on biological principles. However, this derivation is purely informa-
tive. As will be discussed later, the mathematical expressions present in
the final form of the model have already been described in the literature.
In addition, the same mathematical expression may have different biologi-
cal meanings, and, consequently, several biological reasons may be respon-
sible for a phenomenon described by a mathematical expression.

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 35

36

The transformation of chemical compounds by bacterial cells is a com-
plex phenomenon that depends on many factors. Therefore, a simple
mathematical model to describe such transformations can only be derived
if some restrictive assumptions are made, and these restrictions will obvi-
ously limit the conditions under which the model is applicable. The
model derived below will describe the transformation of TCE in a batch
system consisting of a closed bottle containing an aqueous solution of inor-
ganic salts, methane, and TCE. Air, as well as methane, will be present in
the bottle headspace, and TCE will partition to this headspace. To sim-
plify the derivation of the model, it is derived for a batch system without
headspace, and the small modifications necessary to take into account the
partitioning of methane and TCE in the headspace will be introduced later
in the development.

In methanotrophs, the enzyme sMMO is responsible for the initial oxi-
dation of TCE, and nonenzymatic reactions are probably responsible for
the later transformation of the oxidized TCE (TCE epoxide or other spe-
cies) to other products. Thus, the primary goal of the mathematical model
is to find an expression for EtJt), the concentration (in milligrams per li-
ter) of enzymatically active sMMO present in the medium at time t.

E(ot(t) is assumed to be proportional to the concentration of cells in the
medium; therefore, if X(t) is the cell concentration (grams per milliliter)
in the medium at time t, then EtJt) is equal to the product of a proportion-
ality factor E multiplied by the cell concentration X(f) (Equation 1).

*»,<'> = **(/)
(1)

E therefore represents the mass of enzymatically active sMMO per unit
mass of microbial cells, and it will be considered constant in most of the
conditions simulated by the model. However, depending on the medium
and the environmental conditions, the cells may contain different amounts
of enzymatically active MMO (i.e., different £). For example, it is ex-
pected that E will decrease in the cell under conditions in which the
growth-limiting factor is no longer methane but another substance needed
for growth. To prevent the rate of methane oxidation exceeding the needs
of the cell, it is expected that the cell will reduce the amount of active
MMO (i.e., will reduce the value of E) either by deactivating the enzyme,
by slowing the transcription of its gene, or by any other mechanism.

The oxidation rate of TCE will be assumed to follow classical enzy-
matic kinetics that take into account the competitive inhibition between
TCE and methane for MMO (Equation 2) (Segel 1976).

rate of TCE degradation = — = -r E T

dt T tot

KT I +~ +T

(
r

1 +
K

c
V J (2)

Chapter 4 Kinetics of TCE Degradation by Methanotrophs

where

T = TCE concentration in the aqueous phase, g/mL

t = time, hr

rT = rate constant for TCE, L/hr

Etot = total enzyme concentration, g/mL

Kj = half-saturation constant for TCE, g/mL

C = methane concentration in the aqueous phase, g/mL

Kc = half-saturation constant for methane, g/mL

In Equation 2, and in the following equations, T, C, X, and E are func-
tions of time, but for clarity the characters "(f)" have been omitted from
the equations (i.e., E (t) will be written E).

The expression of Efot given by Equation 1 can be introduced into Equa-
tion 2 to give Equation 3.

rate of TCE degradation - —r- = -r EX
dt T

T
c

v j

\
+ T

(3)

The rate of methane oxidation can be expressed by a similar equation
(Equation 4) in which rT is the rate constant for methane (L/hr). Equa-
tion 3 describes the rate of TCE degradation with methane as a competi-
tive inhibitor, and Equation 4 describes the rate of methane degradation
with TCE as a competitive inhibitor.

rate of methane degradation = -—- = -r„EX
at C

KC

f

T
\ J

+ c
(4)

Equations 3 and 4 would be applicable to the kinetics of oxidation of
TCE and methane if the enzyme sMMO were free in the aqueous solution.
However, in these equations, sMMO is inside the microbial cells, and C
and T are defined as the concentration of methane and TCE in the aqueous
solution outside the cell. Therefore, it is assumed that methane and TCE
concentrations inside and outside the cell are in equilibrium. In other
words, it is assumed that the rate at which methane and TCE cross the cell
wall and membrane is fast compared to the rate of their oxidation. If this
assumption is not true, then the rates of TCE and methane oxidation in
Equations 3 and 4 must be replaced by more complex equations that take
into account the rates of TCE and methane crossing the cell wall and
membrane.

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 37

38

It is likely that the concentrations of methane and TCE inside the cell
(the concentrations of both compounds in contact with sMMO) will be dif-
ferent from their concentration outside the cell in the aqueous phase (i.e.,
C and 7). Consequently, the values of KQ and KT in the equations are
likely to be different from the values of similar constants obtained in a sys-
tem in which the enzyme would be free in solution. This statement means
that the values of KQ and KT estimated for the enzyme sMMO extracted
from microbial cells will probably be different from the values of K and
KT estimated for living microbial cells.

Molecular oxygen and NADH are also needed by MMO to carry on the
oxidation of TCE and methane. It is difficult to introduce mathematical
expressions describing the interaction and availability of NADH to
sMMO, and it is assumed that the supply of NADH to sMMO is not limit-
ing the rate of oxidation of either methane or TCE. Similarly, it is as-
sumed that oxygen will be present in sufficient quantity and does not limit
the oxidation rate of either methane or TCE. Both these assumptions will
be checked in preliminary experiments.

tion 5
The variation with time of the cell concentration X(t) is given by Equa-
n 5.

dt dt K b dt (5)

where

Y = cell yield: mass of cells created by unit mass of methane
metabolized for growth, unitless

ß = maintenance constant, 1/time

§ = toxicity constant, or mass of cells killed per unit mass of
TCE oxidized, unitless

There are several biological interpretations of the terms of Equation 5,
each of them corresponding to different biological assumptions. Only the
interpretation most common in the literature is given below.

It is assumed that the concentration of cells will increase in proportion
to the amount of methane oxidized (dX/dt = -YdC/dt). However, it is also
assumed that the cells need a certain amount of energy (maintenance en-
ergy) to remain alive, and in the absence of methane or TCE, the concen-
tration of active cells is assumed to decrease following first-order kinetics
(dX/dt = -ßX). The oxidation of TCE by sMMO produces reactive prod-
ucts that have been observed to damage the microbial cells. Moreover
the oxidation of TCE (and of CO, one of its oxidation products) consumes
NADH that could otherwise be used for cell biosynthesis or to provide en-
ergy. Therefore, it is assumed that the oxidation of TCE is associated
with a proportional decrease in microbial cell concentration, and in the

Chapter 4 Kinetics of TCE Degradation by Methanotrophs

absence of methane and maintenance energy dX/dt = % dT/dt. Equation 5
is obtained by adding the mathematical expressions of all those
assumptions.

Using a different derivation, it is also possible to obtain a somewhat dif-
ferent form for Equation 5; i.e., dX/dt = -Y dC/dt - YaX + t, dT/dt, in
which the constant ß is replaced by the product of two constants, one of
them being Y. Depending on the results obtained with the mathematical
model, this modified form of Equation 5 may be used instead of Equa-
tion 5.

The maintenance requirements will probably not remain constant dur-
ing the entire growth cycle of the cells and at any methane concentration.
When there is abundant methane available, the cells may have a different
maintenance energy requirement than when methane is scarce. In this last
situation, the cells may change their metabolism to conserve energy and
metabolites; they may also begin to store energy or utilize nutrient re-
serves accumulated when methane was abundant, or they may form rest-
ing bodies, in which case their metabolism may change completely.
Consequently, the presence of the parameter ß in Equation 5 is a simpli-
fied way to try to take into account the maintenance metabolism of the
cells.

Similar to ß, the parameter Y (representing the cell yield) may vary at
different methane concentrations, and under different environmental condi-
tions. For example, Y will be low if the cells use much of the methane oxi-
dized to store energy, but Y will be high if the cells use the stored energy
to supplement the input of energy provided by the uptake of methane.

A simple kinetic model often used to describe microbial growth on a
single substrate is Monod kinetics. The presentation below will show how
a Monod kinetics model describing the growth of microbial cells on meth-
ane can be derived as a simplified case of the above model.

If TCE is absent from the medium (7=0 and dT/dt = 0), Equation 4 re-
duces to Equation 6. In addition, if the cells have no requirement for
maintenance metabolism (i.e., ß = 0), Equation 5 reduces to Equation 7.

dt ~ ~rC Kc + C (6)

dX _ dC
dt ~ dt (7)

These two equations can be combined to form Equation 8 (by eliminat-
ing dC/dt). The expression of Monod kinetics is obtained in Equation 9
by replacing Yr^ in Equation 8 with a single constant, Umax, and by
rearranging the result.

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 39

dX
dt ~

YrcEX
Kc

C
+ c

1 dX
= Umax

c
X dt K^ + c

(8)

(9)

These transformations indicate that even though the kinetic model of
Equations 3, 4, and 5 was derived under quite limiting assumptions, it is
still more general than Monod kinetics.

The kinetic model of Equations 3, 4, and 5 was derived for the particu-
lar case when no headspace was present in the system. The modifications
necessary to take into account the presence of headspace in the system
and the partitioning of methane and TCE to this headspace are given in
Equations 10, 11, and 12 below. The only assumption made is that the
equilibrium of methane and TCE between the aqueous and gaseous phases
is fast compared to the degradation process. This assumption is reason-
able if the system is shaken throughout the test period, in which case the
equilibrium will be reached within minutes.

dC
dt

-V.

Vi + Hcv
rcEX

K,
T

\)

+ c
(10)

dT
dt V, + H V rTEX

l c a
K„
'^

+ T

J

dX v
Vl + H

c
Va dC Vl + HrV JT = -Y C SSL _ßX + f _L T_a dT

y- dt K s V. dt dt
I I

(11)

(12)

In Equations 10, 11, and 12, the definitions of T and C remain the same
as in previous equations (concentrations in the aqueous phase), but the
new parameters are as follows:

V; = volume of liquid, mL

Hc = Henry's constant of methane, unitless

VQ = volume of air in contact with the liquid, mL

HT = Henry's constant of TCE, unitless

40
Chapter 4 Kinetics of TCE Degradation by Methanotrophs

It is possible to reduce this system of three differential equations to one
differential equation (Equation 10) and two equations expressing T and X
as functions of C (Equations 13 and 14).

fc e =
V °J (13)

X - X =
o

V, + H V
I c a

V.

(3 ^
~Y+ * rcE,

(C
ß*v (r\

C) + r In
C

K °J (14)

+
rTE

+ ?,
^ v, + HV

l T a
(T - T)

o

Three additional parameters were introduced in Equations 13 and 14:

TQ = initial TCE concentration, g/mL

CQ = initial methane concentration, g/mL

XQ = initial cell concentration, g/mL

Equations 10, 13, and 14 are then solved using numerical methods.
The results are theoretical predictions of the concentrations of methane
(C(0), TCE (T(t)), and cells (X(t)) in the aqueous phase at different times
following the addition of methane, TCE, and microbial cells in a batch sys-
tem. Consequently, the solution of the system of equations can be written
as follows:

C(t) = C (T;rc,rT,Kc,KT,E,¥,$,$;

V V Hr,H-C ,X ,T)
a I C T o o o (15)

T(t) = T (t;rc,rT,Kc,KT,E,¥,$,{,;

V,V.,Hr,H-C ,X ,T)
a l C T o o o (16)

X(t) = X(t;rc,rT,Kc,KT,E,¥,$,$;

V ,V.,Hr,H-C ,X ,T) a I C T o o o (17)

These relations indicate that the solutions of the system of Equations
10, 13, and 14 require the knowledge of eight parameters to be estimated
(rc, rT, Kc, KT, E, Y, ß, and £), four parameters that are known (Va, V;)

Hc and HT), and three initial conditions (C , X , and T). Once the eight
parameters are known, any type of experiment can be simulated by

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 41

varying the values of the initial conditions, by varying V' and V. (which
describe the volume of air and liquid in the system), and by varying H
and HT (which are sensitive to the temperature).

Review of Some Mathematical Models

The following paragraphs give a brief literature review of a few mathe-
matical models describing the cometabolic degradation of a substrate by
bacterial cells. To facilitate comparison between the models, the equa-
tions for these models are written using the same variables and parameters
as the model of Equations 10, 13, and 14. In addition, to simplify the dis-
cussion of the models, some details are sometimes omitted in the descrip-
tion. The proposed model described by Equations 10, 13, and 14 is
rewritten in a simpler way and called Model 1 (which consists simply of
Equations 3, 4, and 5).

dC
dt

dX
dt

-rcEX

= -Y
dC

K^

\
-i

\
+ c

J

dT
T-vx^in Model 1

dT
dt -rTEX

K„
'^c

\

+ T

J

The variables and parameters used in the models are defined below
Several interpretations are sometimes given for the parameters, and some
of the parameters were already introduced and defined in the derivation of
the model, but they are given a more general definition which remains con-
sistent with their initial definition.

/ = time

C = methane or concentration of the growth substrate in the
aqueous phase

rc = rate constant for methane

E = mass of enzymatically active sMMO per unit mass of
microbial cells, or (for Model 3) fraction of cells that are me-
tabolically active for degrading either the growth substrate
(C) or the cometabolic substrate (T)

Kc = half-saturation constant for methane

42
Chapter 4 Kinetics of TCE Degradation by Methanotrophs

T = TCE or concentration of the cometabolic substrate in the
aqueous phase

KT = half-saturation constant for TCE

Y = cell yield: mass of cells created by unit mass of methane
metabolized for growth

ß = maintenance or decay constant

% = toxicity constant: mass of cells killed per unit mass of
cometabolic substrate oxidized, or additional demand
exerted by cometabolism on cell metabolism

rT = rate constant for TCE

O = oxygen concentration in the aqueous phase

X = concentration of microbial cells in the aqueous phase

rQ = rate constant for oxygen

K0 = half-saturation constant for oxygen

F,G,H,J = additional constants or groups of constants needed in some
of the models (given without description of their meaning)

Following this notation, dC/dt, dT/dt, and dX/dt describe the variation
with time in concentrations in the aqueous phase of methane, TCE, and mi-
crobial cells, respectively. Because the purpose of the model is to predict
the variation with time in the concentration of TCE (or other cometabolic
substrate) in a biological system, only dT/dt would be needed. However,
dT/dt is a function of the concentration of microbial cells in the system,
which in turn varies depending on the amount of methane degraded.
Therefore, the expression of dX/dt and dC/dt is needed in addition to the
expression of dT/dt.

Methane and TCE compete for the active site of sMMO, and to avoid
this competition and maximize the rate of transformation of TCE, bioreac-
tor systems are developed in which methane is not present during TCE oxi-
dation. As a consequence, several models were devised to simulate TCE
degradation by resting cells of methanotrophs (i.e., in the absence of meth-
ane). One of these models was developed by Alvarez-Cohen and McCarty
(1991a) to simulate the biodegradation of TCE by a mixed culture of rest-
ing cells in a batch system (Model 2).

Model 2 assumes that TCE degradation will follow Monod kinetics,
and the model takes into account the toxicity to the cell of the products of
TCE oxidation, consistent with another study of the same authors (Al-
varez-Cohen and McCarty 1991b). Alvarez-Cohen and McCarty (1991a)
introduced in their model the constant T , the "transformation capacity,"
to represent the maximum mass of cometabolized compound that can be
transformed per unit mass of resting cells. In Model 2, this constant has
been replaced by x = 1/T . This model does not include a term for mainte-
nance energy. In addition, because methane is absent, dT/dt does not need

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 43

to take into account the competitive inhibition of methane, and the oxida-
tion rate of TCE is simply described by Michaelis-Menten kinetics. A rea-
sonable fit was obtained between the experimental data and model
predictions, confirming the validity of the concept of "transformation
capacity."

dC
, = 0 (no methane present within the system)

dX . dT
dt * dt Model 2

dT
dt

XT
T KT+T

Broholm, Christensen, and Jensen (1992) proposed a model to simulate
the degradation of TCE by a mixed culture of methanotrophs in a batch
system at 10 °C (Model 3). This temperature is consistent with the low
temperatures found in groundwater, and TCE oxidation was slow in their
experiments (the experiments were conducted for several weeks). The
degradation of methane (dC/dt) was described assuming a competitive in-
hibition by TCE. Similarly, the degradation of TCE (dT/dt) was described
assuming a competitive inhibition by methane. The variation in cell den-
sity dX/dt was assumed to be proportional to the amount of methane de-
graded (dC/dt), and a maintenance constant was also present. However,
unlike Model 2 and the proposed model (Model 1), Model 3 did not in-'
elude an expression for TCE toxicity.

The experiments of Broholm, Christensen, and Jensen (1992) were lim-
ited to a study of the correlation between the rate of oxidation of methane
and TCE. Their model successfully simulated the data obtained at meth-
ane concentrations below 1.8 g/L but failed to simulate the data obtained
at 3.2 g of methane per liter, supposedly because the growth conditions
changed during the experiments.

dC
dt

dX
dt

-r.

K,

XC

T

T
\

+ C

J

-*%-»* Model 3

dT
dt

—r„ XT
(A

K, 1 c
1 Kc

^ J

+ T

44
Chapter 4 Kinetics of TCE Degradation by Methanotrophs

Semprini and McCarty (1991, 1992) devised a model to simulate the de-
gradation of TCE in a semi-confined aquifer in which an indigenous popu-
lation of methane-utilizing bacteria was stimulated by methane and
oxygen addition. Only the latter version of their model (1992) is described
here (Model 4).

The model attempts to take into account the consumption of oxygen in
the aquifer (dO/dt). Oxygen is provided as a nutrient in the field studies
that the model simulates, and its availability is likely to influence the rate
of TCE degradation. The expressions of dC/dt or dT/dt in their model
seem somewhat empirical and do not appear to be general expressions of
enzyme kinetics for multiple substrates (for example see Hammes 1982).

dC
dt

= -Err

Kr

XC
(\

V)

O
K + O

o

dX
dt -yf-^^b Model 4

dT
dt

= -Er„

K„

xT

c
\ J

+T

O
K0 + 0

dO
dt dt r K + O

The authors introduced a parameter (E) to express the fraction of the to-
tal population active in the cometabolic transformation. This parameter is
assumed to be 1.0 when the population is growing (dX/dt > 0) and de-
creases following a first-order process (dE/dt = -a E, in which a is a con-
stant) when the population is decreasing (dX/dt < 0). It is difficult to
determine if the variation of E will really follow such an expression, and
this is not supported by any study. However, this parameter has the same
mathematical effect as the parameter E in the proposed model (Model 1),
in which case it represents the amount of active sMMO present in one unit
mass of cells.

The variation in population size dX/dt follows kinetics similar to that
of Model 3, except that an additional term [0/(KQ + O)] expresses that the
cell decay (or maintenance requirements) will be maximum when oxygen
is fully available but zero in the absence of oxygen. Alvarez-Cohen and
McCarty (1991b) showed that resting methanotrophic cells were inacti-
vated more rapidly when shaken in the presence of oxygen than when un-
shaken. They proposed that shaking the cells increased their decay
through endogenous respiration or predation, both of which probably

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 45

require oxygen. Therefore, the term [0/(KQ + O)] would simulate this
type of phenomenon. But their experiments were not conducted for more
than 24 hr, and it seems reasonable to assume that in a longer time period
and in the absence of oxygen, the methanotrophs will slowly die or per-
haps form resting structures. Consequently, the expression by Alvarez-Co-
hen and McCarty (1991b) of dX/dt may be limited to simulations of short
time periods. In addition, unlike Model 2, Model 4 does not include a
term to take into account the toxicity to the cells of products of TCE degra-
dation.

The variation in oxygen concentration (dO/dt) is assumed to be propor-
tional to the amount of methane degraded, and it is apparently propor-
tional to the amount of oxygen consumed by endogenous metabolism.

Alvarez-Cohen and McCarty (1991b) then introduced this model in a
spatial model at one dimension that considered the sorption of TCE onto
aquifer solids (linear and reversible sorption) and the diffusion and trans-
port of TCE in the aquifer (convection-dispersion equation). The model
simulations agreed well with the field observations.

Chang, Voice, and Criddle (1993) used Model 5 to simulate the biode-
gradation of an aromatic compound by pure cultures. For example, one
strain cometabolized p-xylene while growing on toluene as sole carbon
and energy source. This model was described in detail by Criddle (1993)
The model fit well with the experimental data, but the introduction of an
acclimation period was necessary to provide a better fit of the biomass
concentration.

The expression of dC/dt is similar to the one described in Model 3, and
it considers the competitive inhibition by TCE of methane uptake.

dC
dt = -/",

Arc

K^
T

\

+ c
J

dt Y dt ßX+^dt Model 5

dT
dt

= — r_ XT

K„

+ J
dC
dt

+ T K_

\ J

+ T

The expression of dX/dt includes a decay constant (ß), as in Model *
and also a toxicity constant ($), similar to the model of Alvarez-Cohen"'
and McCarty (1991) (Model 2). The presence of this "toxicity" constant
was justified to take into account a loss of biomass due to the consump-
tion of reducing power during the oxidation of the cometabolic substrate

46
Chapter 4 Kinetics of TCE Degradation by Methanotrophs

(e.g. p-xylene) by the dioxygenase. However, unlike TCE oxidation, men-
tion was not made of the possibility that the products of the oxidation of
the cometabolic substrate might be toxic to the cells. The expression of
both dC/dt and dX/dt in Model 5, therefore, are similar to the one used in
the proposed model (Model 1).

The expression of dT/dt is more complex than in the other models, and
it is related to the Luedeking-Piret (LP) model that describes the kinetics
of product formation, which combines growth-associated and nongrowth-
associated contributions (Bailey and Ollis 1986). The first term of the
equation is similar to the expression derived for dC/dt; i.e., a competitive
inhibition of the degradation of cometabolic substrate (7) by a growth sub-
strate (C).

The second term of the equation predicts an increase in the rate of de-
gradation of cometabolic substrate at increasing rates degradation of
growth substrate dC/dt. Criddle (1993) justifies this term by proposing
that higher rates of degradation in the presence of a growth substrate
might be attributed to elevated activity of catabolic enzymes when the
growth substrate is present (induction) or to higher rates of oxidation of
growth substrates compared to the rates for autooxidation of biomass.
Nevertheless, it is difficult to understand biologically why the expression
of the phenomena just described should have the mathematical formula-
tion given by Criddle (1993). In addition, it is not clear why such an
expression is not present in the equation describing the degradation of the
growth substrate (dC/dt) because the same dioxygenase was assumed to be
responsible for the oxidation of both the growth substrate and cometabolic
substrate.

Future Research

Although funding from the Waterways Experiment Station has ended, it
is hoped that funds will be found to continue the following investigations.
It is proposed to use Model 1 to simulate the biodegradation of TCE by
pure cultures of methanotrophs in a batch system at room temperature.
One of the purposes is to assess if such a model will simulate TCE degra-
dation in a bioreactor in which most of the environmental parameters can
be controlled. Pure cultures of methanotrophs will be used to decrease the
probability that factors not included in the model influence the experimen-
tal results (e.g., predation by protozoa). The studies described above for
Model 2 to 5 do not provide enough information for that purpose, either
because the model was too simple (e.g. Model 2), mixed cultures were
used (Models 2, 3, and 4), the environmental conditions were not optimal
(e.g., low temperature in Model 3, limiting oxygen availability in Model
4), too many external parameters influenced TCE degradation (e.g., move-
ment of nutrients and TCE sorption in Model 4), or TCE degradation was
not studied (Model 5).

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 47

48

In addition, even though most of the models described above give good
fits to the experimental data, the more complicated models (Models 3, 4,
and 5) were not tested under a large range of experimental conditions.

The models assume that their parameters are constant. However, the
more parameters included in a model, the higher the probability that the
model will fit sets of experimental data obtained under somewhat similar
conditions. A thorough investigation of the validity of the assumptions re-
quires an investigation of the ability of the model to fit experimental data
obtained under very different and even extreme conditions. However,
Models 3, 4, and 5 were not tested under many different conditions, and it
is not certain that the parameters obtained to fit the experimental data
would remain adequate to fit experimental data obtained under quite differ-
ent environmental conditions. Model 3 was tested under different starting
methane and TCE concentrations, but the experimental conditions were
still not adequate to find estimates for all the parameters individually
(only the ratio r/KTT could be estimated, not /y or KT themselves).

Therefore, the validity of Model 1 to predict TCE degradation by
methanotrophs will be tested under very different conditions, and a statisti-
cal method will be used to find the parameters that provide the best fit of
the model to the experimental data obtained from all the different experi-
ments together. The estimated variance of the parameters obtained from
the statistics will provide quantitative information on the validity of the
model, and indicate which parameters are most likely to vary in response
to different environmental conditions.

The following paragraphs briefly describe the methods that will be
used to estimate the eight parameters (rc rv Kc Kv E, Y, ß, and £) of the
kinetic model. Actually, only seven parameters need to be estimated be-
cause E cannot be estimated independently of rQ and /y, and its value will
be set to 1.0. The effect of the variation of E on the simulation will be as-
sessed later in the study.

The parameters will be estimated by fitting to the kinetic model the ex-
perimental data that will be obtained in batch systems by using weighted
least-squares methods. However, there are several problems associated
with the determination of the parameters, and some of them are discussed
below.

Generally, parameters of a mathematical model describing the variation
of an observed variable v at different values of an independent variable x
would be obtained by fitting the model to one plot formed by plotting the
experimental values of y obtained at different values of x. If N replicates
of the experiment are run, the model can be fit to each plot of each repli-
cate separately, and TV estimates of the parameters can be obtained. Then
an average and a standard deviation of each parameter can be calculated
from their N estimates (it is not valid to attempt fitting a model to an "av-
erage plot" formed by the average of the N yi's obtained at similar xi from
each replicate).

Chapter 4 Kinetics of TCE Degradation by Methanotrophs

However, the model in this proposal has seven parameters to be esti-
mated (actually 10 or more if one considers that the initial values C , Xo,
and T are also parameters of the model that need to be evaluated, and that
these three values will be different in different experiments). It is almost
certain that no single plot obtained from the replicates of an experiment
can give a valid estimate of each parameter, because the least-squares
problem will be ill-conditioned (Beck and Arnold 1977). In other words,
the estimation of the parameters from one single plot will almost always
give enormous uncertainties (variance) in the estimation of some of the pa-
rameters, and in most cases, the least-squares problem will have an infin-
ity of solutions.

To circumvent this problem, the parameters will not be estimated by
minimizing separately the sum of squares of each replicate of each experi-
ment, as suggested above. Rather, the parameters will be found by mini-
mizing one single sum of weighted-squares (total sum of weighted squares
(Total SWS)) formed by adding the sum of squares of all the replicates in
all the experiments. In addition, the experiments will be carefully de-
signed so that the minimization of Total SWS will not be ill-conditioned.
Weights will be included in the sum of squares to acknowledge the fact
that the errors associated with the measurement of methane or TCE are
relative and not absolute. The weights will be determined by estimating
the inverse variance of the relative error associated with methane and TCE
measurements, and plots of residuals will be examined at the end of the
calculations to ensure that the weights were correctly chosen.

The minimization of Total SWS will be made using the Levenberg-Mar-
quardt method (Seber and Wild 1989) and will involve repeating numeri-
cal calculations to evaluate the solutions of Equations 10, 13, and 14, for
each plot of each replicate. A computer program written in Pascal lan-
guage is being developed to handle the calculations.

The numerical calculations will require the determination of initial esti-
mates of the parameters. These estimations will be made by running ex-
periments under extreme values of methane, TCE, or cell concentrations
that permit the use of a simplified version of the mathematical model.
The purpose will be to obtain experimental conditions such that some pa-
rameters can be obtained by fitting a simplified version of the model to
one single plot of an experiment.

It is planned to include all the initial values of the variables C , X , and
To in the calculations, and each experiment will have its own initial condi-
tions. These initial values will be treated like additional parameters, and
they will increase the complexity of the calculations.

Depending on the time required for the calculations (which will be
done with a desktop computer), it may be necessary to simplify the
method to estimate the parameters.

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 49

Some preliminary experiments will be conducted to estimate the con-
centration of oxygen in the headspace of the experimental bottles above
which oxygen concentration has no influence on the rate of oxidation of
methane and TCE. Then, all experiments will be conducted with excess
oxygen.

Similar kinds of experiments will be conducted to ensure that in no cir-
cumstances the concentrations of inorganic salts will become so low that
they influence the oxidation rates of either methane or TCE.

Several experiments then will be conducted to estimate the parameters
of the kinetic model. The conditions of each experiment will be carefully
chosen in such a way as to avoid that the least-squares calculations be ill-
conditioned and that the estimation has the best possible accuracy.

It is expected that some limitations of the model will become apparent
during the estimation of its parameters. Those limitations and, more gen-
erally, the validity of the assumptions made during the derivation of the
model will be studied more closely by conducting additional experiments.
If feasible, some modifications of the model will be proposed to circum-
vent the weaknesses of some assumptions.

The assumptions concerning the nonlimiting availability of NADH to
sMMO will be assessed by supplying reducing power to the cells indi-
rectly in the form of formic acid. Methanotrophs cannot grow on formate
but the compound can provide the cell with NADH following the oxida-
tion of formate to carbon dioxide by formate dehydrogenase. An absence
of increase in the rate of oxidation of TCE (or methane) following the ad-
dition of formate to the medium will be consistent with a nonrate limiting
availability of NADH to sMMO.

Several experiments will also be conducted to study how the microbial
oxidation of TCE will be affected under specific conditions not simulated
by the model, including conditions of limiting oxygen or inorganic nutri-
ent availability. The possible inhibitory effect of ammonia as a competi-
tive inhibitor of MMO (Carlsen et al. 1991) will also be assessed.

All the above experiments will be conducted with the same strain of
methanotroph, and additional studies may be done with other pure and
mixed cultures of methanotrophs to determine whether the model applies
to mixed cultures as well as to other pure cultures. The effect of preda-
tion by protozoa will be studied by using eukaryotic inhibitors. Some
methanotrophs are not able to oxidize TCE, and the effect of their pres-
ence in a mixed culture containing TCE oxidizers will be assessed.

The information from these studies will be used to suggest the condi-
tions under which TCE will be oxidized most efficiently.

50
Chapter 4 Kinetics of TCE Dearadation hv Mpth,nn»rnnh,

Computer Program

The computer program in Pascal language was developed to a point at
which it was possible to start its testing by fitting artificial data values.
However, much work is still needed to debug it, increase its calculation
speed if possible, and make it easier to use. The program as given in Ap-
pendix A is therefore not completed, even though it seems to work with
simple data sets. The following paragraphs give a general overview of the
program. Several of the procedures used in the program were obtained
from Press et al. (1989) and were often slightly modified.

The program starts by opening an input file listing primary estimates
for the parameters to be estimated by the program. In addition, for each
parameter, minimum and maximum values are listed; their purpose is to
prevent the calculations from diverging too much during the first itera-
tions. The experimental data are listed in the file after the estimates of
parameters.

The parameters giving the minimum Total SWS are estimated itera-
tively by starting from the primary estimates using the method of Mar-
quardt (Press et al. 1989). Each iteration of the Marquardt algorithm
requires calculation of the theoretical values predicted by the mathemati-
cal model that correspond to each experimental datum, together with the
calculation of the partial derivatives with respect to each of the parame-
ters at each experimental datum. Because the mathematical model is only
described by differential equations that cannot be solved analytically, the
amount of calculation required for each iteration of the Marquardt algo-
rithm is quite important. The integration of the differential equations of
the model were made by using the Burlisch-Stoer method (Press et al.
1989), but the procedure iteratively driving this algorithm had to be modi-
fied to prevent the calculations from diverging under certain conditions.

The complete listing of the program, together with an example of an in-
put file, is given in Appendix A. Many comments are added in the listing
to help in understanding the program, but the program itself is not com-
plete and still has several bugs. The program was written in Think Pascal
4.0 (Symantec Corporation, Cupertino, CA).

Chapter 4 Kinetics of TCE Degradation by Methanotrophs 51

References

Alvarez-Cohen, L., and McCarty, P. L. (1991a). "A cometabolic
biotransformation model for halogenated aliphatic compounds
exhibiting product toxicity," Environ. Sei. Technol. 25, 1381-1387.

_. (1991b). "Effects of toxicity, aeration, and reductant
supply on trichloroetylene transformation by a mixed methanotrophic
culture," Appl. Environ. Microbiol. 57, 228-235.

Anthony, C. (1982). The biochemistry of methylotrophs. Academic
Press, London.

(1986). "Bacterial oxidation of methane and methanol,"
Adv. Microbiol. Physiol. 27, 113-210.

Bailey, J. E., and Ollis, D. F. (1986). Biochemical engineering
fundamentals. 2nd ed., McGraw-Hill, New York.

Beck, J. V., and Arnold, K. J. (1977). Parameter estimation in
engineering and science. John Wiley & Sons, New York.

Broholm, K., Christensen, T. H., and Jensen, B. K. (1992). "Modelling
TCE degradation by a mixed culture of methane-oxidizing bacteria "
Wat. Res. 9, 1177-1185.

Carlsen, H. N., Joergensen, L., and Degn, H. (1991). "Inhibition by
ammonia of methane utilization in methylococcus capsulatus (Bath),"
Appl. Microbiol. Biotechnol. 35, 124-127.

Chang, M. K., Voice, T. C, and Criddle, C. S. (1993). "Kinetics of
competitive inhibition and cometabolism in the biodegradation of
benzene, toluene, and p-xylene by two pseudomonas isolates,"
Biotechnol. Bioeng. 41, 1057-1065.

Criddle, C. S. (1993). "The kinetics of cometabolism," Biotechnol
Bioeng. 41, 1048-1056.

52

Crittenden, J. C, Cortright, R. C, Rick, B., Tang, S. R., and Perram, D.
(1988). "Using GAC to remove VOCs from air stripper off-gas,"
J. Am. Water Works Assoc. 80, 73-84.

DiSpirito, A. A., Gulledge, J., Shiemke, A. K., Murrell, J. C, Lidstrom,
M. E., and Krema, C. L. (1992). "Trichloroethylene oxidation by the
membraneassociated methane monooxygenase in Type I, Type II, and
Type X methanotrophs," Biodegradation 2, 151-164.

Fox, B. G., Borneman, J. G., Wackett, L. P., and Lipscomb, J. D. (1990).
"Haloalkene oxidation by the soluble methane monooxygenase from
methylosinus trichosporium OB3B: Mechanistic and environmental
implications," Biochemistry 29, 6419-6427.

Fox, B. G., Froland, W. A., Dege, J. E., and Lipscomb, J. D. (1989).
"Methane monooxygenase from methylosinus trichosporium OB3B,"
J. Biol. Chem. 264, 10023-10033.

Gösset, J. M. (1987). "Measurement of Henry's Law constant for Cl and
C2 chlorinated hydrocarbons," Environ. Sei. Technol. 21, 202-208.

Green, P. N. (1992). "Taxonomy of methylotrophic bacteria." Methane
and methanol utilizers. J. C. Murrell, H. Dalton, ed., Plenum Press,
New York, 23-84.

Hammes, G. G. (1982). Enzyme catalysis and regulation. Academic
Press, Orlando, Florida.

Henry, S. M., and Grbic-Galic, D. (1991a). "Influence of endogenous
and exogenous electron donors and trichloroetylene oxidation toxicity
on trichloroethylene oxidation by methanotrophic cultures from a
groundwater aquifer," Appl. Environ. Microbiol. 57, 236-244.

 . (1991b). "Inhibition of trichloroethylene oxidation by the
transformation intermediate carbon monoxide," Appl. Environ.
Micbrobiol. 57, 1770-1776.

Henrysson, T., and McCarty, P. L. (1993). "Influence of the endogenous
storage lipid poly—hydroxybutyrate on the reducing power availability
during cometabolism of trichloroethylene and naphthalene by resting
methanotrophic mixed cultures," Appl. Environ. Micbrobiol. 59,
1602-1606.

Jeffery, G. H., Bassett, J., Mendham, J., and Denney, R. C. (1989).
Vogel's textbook of quantitative chemical analysis. Longman
Scientific and Technical, London.

References 53

Koh, S.-C, Bowman, J. P., and Sayler, G. S. (1993). "Soluble methane
monooxygenase production and trichloroethylene degradation by a
Type I methanotroph, methylomonas methanica 68-1," Appl. Environ
Micbrobiol. 59, 960-967.

Nakajima, T., Uchiyama, H., Yagi, D, and Nakahara, T. (1992), "Novel
metabolite of trichloroethylene in a methanotrophic bacterium
methylocystis sp. M. and hypothetical degradation pathway," Biosci
Bwtechnol. Biochem. 56, 486-489.

Newman, L. M., and Wackett, L. P. (1991). "Fate of
2,2,2-Trichloroacetaldehyde (chloral hydrate) produced during
trichloroethylene oxidation by methanotrophs," Appl. Environ
Microbiol. 57, 2399-2402.

Oldenhuis,^., Oedzes, J. Y., van der Waarde, J. J., and Janssen, D. B.
(1991). "Kinetics of chlorinated hydrocarbon degradation by
methylosinus trichosporium OB3b and toxicity of trichloroethylene "
Appl. Environ. Microbiol. 57, 7-14.

Pre/,S
QOm ";' Flanner>'' B- p- Teukolsky, S. A., and Vetterling, W. T.

(1 y«9). Numerical recipes in Pascal. The art of scientific
computing." Cambridge University Press, New York.

Sewr', °' ,A ■/- 3nd WÜd' C J" (1989)- Nonlinear regression. John Wiley & Sons, New York.

Segel, I. H. (1976). Biochemical calculations. 2nd ed., John Wilev &
Sons, New York.

Semprini, L., and McCarty, P. L. (1991). "Comparison between model
simulations and field results for in-situ biorestoration of chlorinated

Sr29S:3P65r-t3I74BiOStimUlati0n °f methanotroPhic bacteria," Ground

 ^_^. (1992). "Comparison between model simulations and field
results for in-situ biorestoration of chlorinated aliphatics: Part 2
Cometabohc transformations," Ground Water 30, 37-44.

Stanier, R. Y., Ingraham, J. L., Wheelis, M. L., and Painter, P R (1987)
General microbiology. 5th ed, MacMillan, London.

Uchiyama, H., Nakajima, T., Yagi, O., and Nakahara, T. (1992), "Role
of heterotrophic bacteria in complete mineralization of
trichloroethylene by methylocystis sp. Strain M," Appl Environ
Micbrobiol. 58,3067-3071.

Walsh, C. (1979). Enzymatic reaction mechanisms. W. H Freeman
New York.

54
Referenroc

Whittenbury, R., and Krieg, N. R. (1984). "Methylococcaceae fam. nov."
Bergey's manual of determinative bacteriology. Williams and Wilkins,
Baltimore, Vol 1, 256-262.

Whittenbury, R., Phillips, K. C, and Wilkinson, J. F. (1970).
"Enrichment, isolation and some properties of methane-utilizing
bacteria," J. Gen. Microbiol. 61, 205-218.

55 References

Appendix A
Computer Program

Contents

Sample of Input File for the Program A3

Pascal Program A4

procedure HeapStack A8
procedure Define A8
procedure DefKmfromA A14
procedure DefLista A14
procedure DefRunCons A15
procedure SelectChoice Al8
procedure CheckConst Al9
procedure OUTconstants A20
procedure OUTcovar A21
procedure OUTPDmatrix A22
procedure OUTOneSetObsCAL A23
procedure OUTAllSetObsCal A24
procedure CheckDefine A25
procedure Initialize A27
procedure SimpleMetfromTime A27
procedure SimpleTCECellfromMet A29
procedure SimpleDefMetDeriv A29
procedure SimplePDCellfromPDMet . A30
function MetMin A30
procedure derivs A33
procedure mmid A34
procedure rzextr A35
procedure bsstep A36
procedure odeint A39
procedure MetfromTime A42
procedure TCECellfromMet A42
procedure DefMetDeriv A43

Appendix A Computer Program A1

procedure PDTCEfromPDMet A47
procedure PDCellfromPDMet A48
procedure OneSetSimpleCalc A48

procedure OneSetCalc A49

procedure DefFunclnput ^50

procedure Funcs A51
procedure gaussj ^53
procedure covsrt A 55
procedure mrqmin A56
procedure CurveFit A^Q

beginning of the main program A61

A2
Appendix A ComDUter Prnnram

49.033345
52.8784187
55.7942666
57.457014
60.7307919

SET2

Sdata
5

TimeSample
0
0.45327017
0.89038831
1.52003874
2.12478607

SET3

Sdata
8

TimeSample
0
15.9046115
31.3827736
54.7909271
79.9585203
109.610773
134.757759
239.95195

SET4

Sdata
8

TimeSample
0
0.44685132
0.91063316
1.65238176
2.48172788
3.47070542
4.30248463
7.64232658

2.6
2
1.4
1
0.2

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Meto vers.
1

TCEo vers. Cello vers.
1 2

Va vers.
2

VI vers.
2

Met
4
3.6
3.2
2.6
2

obs TCE obs Cell_obs
100
-1
-1
-1
-1

MetSig TCESig CellSig

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Meto vers.
2

Met_obs
0.02
0.018
0.016
0.013
0.01
0.007
0.005
0.001

TCEo vers. Cello vers.
1 2

Va vers.
1

VI vers.
1

TCE obs Cell_obs
100 ■

MetSig TCESig CellSig

@@@@@@@@@@@@@@@@@@@@@@@@@@@@(g)(g)

Meto vers.
3

Met
0.2"

obs

TCEo vers.
1

TCE obs

18
16
13
1
07
05
01

Cello vers.
3

Cell_obs
10

Va vers.
2

VI vers.
2

MetSig TCESig CellSig

Appendix A Computer Program A3

Pascal nropram

program TCE;

const
numb_obs = 20; {the number of "time" observation expected in ONE set)

{including time zero. BUT IN A SINGLE SET ONLY i e ft)
{is the max # of elements of TimeSample}

fiTtTii m?8 l1^'™111 number of differential equations solved simultaneously}
{i.e. the max. size of the vectors y and dydx.} "

nstepp = 200;

{maximum number of intermediate steps in x stored. (612)}

IM«™"!?-00"81 = 60; {the "^ number of constants used by the model}
{NOTE that I only need room for one version of Meto, Cello TCEo)

Because in the XMatDeriv the different Meto's are in the same)
{column (idem for TCEo and Cello.}

{%%% for rzextr %%%}

Rzextrlmax = ll; {must be equal to imax inside of bsstep}
RzextrNmax = 10; {must be equal to nvar}
RzextrNcol = 7; {must be equal to nuse inside of bsstep}

{%%% for marqmin and related %%%%}
ndatap = 200; {the maximum number of observations}

m!nN A™ THE SET?'With the additi0n °f the TCE'S' MEPS- CELL'S. unlike numb obs}
map - 50; {the max. numb, of constants to be fitted. I must take}

(for each set f*'' may h3V6 dlfieren[versions of Met0- Cell°. TCEo,}
{%%% for CurveFft}

itermax = 60; {the maximum # of iterations in the least squares}
{%%% To work with several sets of observations %%%%%}

maxSet = 20; {the maximum # of sets expected. It is also the}
{max # of different initial values Meto, TCEo, and Cello)

type "'
myreal = extended;
myinteger = integer;
InVector = array[1 ..numb_obs] of myreal;

M JnK?lly
a
,he ^eCt°r «?ntÜn,n9 the observations or their theoretical values}

MatDenv = array[1 ..numb_obs, 1 ..numb_const] of myreal;
{typically the matrix containing the values of the partial derivatives}
{with respect to each constant corresponding to each observation}

XMatDeriv = array[1 ..ndatap, 1 ..numb_const] of myreal;
{The equivalent of MatDeriv but for all the observations }
{Met, TCE, and Cell together.}

RealArrayNVAR = array[1 ..nvar] of myreal;
FOROdeintXp = array[1 ..nstepp] of myreal;
FOROdeintYp = array[1 ..nvar, 1..nstepp] of myreal;

{%%% for marqmin and related %%%%}
RealArrayNDATA = array[1 ..ndatap] of myreal; {vector of observations to be}
{fitted. NOTE that ft is not InVector if I use Mrqmin simultaneously for Met TCE)
{and Cell. In that case ndatap might be 3 times numb_obs.} '

IntegerArrayNDATA = array[1..ndatap] of integer;

A4
Appendix A Computer Proaram

RealArrayMA = array[1..map] of myreal;
StringArrayMA = array[1 ..map] of string[32]; {the vector of the constants name}
{If this vector is of size 8 or 12,1 get an error when doing "stringof(Meto.i)"}
{in Define. It might be that even if i is <10, the system want it to be}

{able to use the maximum value of i.}
IntegerArrayMFIT = array[1 ..map] of integer; RealArrayMAbyMA = arrayfj ..map, 1 ..map] of myreal;
{the matrix of covariance}

RealArrayMAbyl = array[1 ..map, 1 ..1] of myreal; {a type needed for GAUSSJ}
RealArrayNPbyNP = RealArrayMAbyMA; {those 3 declarations are for}

RealArrayNPbyMP = RealArrayMAbyl; {compatibility with the procedure}
IntegerArrayNP = IntegerArrayMFIT; {GaussJ}
SetlnVector = array[1..maxSet] of AlnVector;

{SetMatDeriv = array[1..maxSet] of MatDeriv;}
SetlntegenS = array[1 ..maxSet, 1 ..6] of integer;
Setlnteger5 = array[1 ..maxSet, 1..5] of integer;
Setlnteger3 = array[1 ..maxSet, 1..3] of integer;
string32 = string[32]; {the type of a file name}

var
k: integer;
word: string32;
sort: text; {the internal name of the output file}
OutputFile: string32; {used when I want to output my results to a file}
screen, simple: boolean;

{TRUE= I want the output on the screen, and the model used is the simple one}
time, Mace: myreal; {used to test MetFromTime}
ma, mf it: integer; {ma = the number of constants}

{mfit = the number of constants to enter the statistic}
{ExpConst: RecConst;}

fini: boolean;

M W, DP: integer; {The minimum width for writing the output}
{and the decimal places for writing the output}

Met, dMdt: RealArrayNVAR;
{are the y and dydx needed by odeint,}
{odeint will calculate such a vector for each experimental time}

{Those variables are all declared as dynamic variables}
Met_cal, TCE_cal, Cell_cal: AlnVector;
TimeSample: SetlnVector; {an array of pointers to InVector's}
Met_obs. TCE_obs, Cell_obs: AlnVector;

{those are the vectors of observations or theoretical values}
MetSig, TCESig, CellSig: AlnVector;

{the vectors of standard deviations corresponding to Met, TCE, and Cell}
PDMet, PDTCE, PDCell: AMatDeriv;

{Matrices of partial derivatives created as dynamic variable because I do not have}
{ enough room, probably in the stack (error page 524, "global data exceeds 32 K....)}

TimeX Xobs Xcal, Xsig: ARealArrayNDATA; {time, observations, predicted, sigma of obs.)
{MetoX, TCEoX, CelloX: ARealArrayNDATA;} '

{not needed yet}
PDX: AXMatDeriv;

{the 3just above are the equivalent of the 3 above them, but for}
{use by mrqmin, and include ALL the observations together in the}
{same vectors.}

Appendix A Computer Program A5

SetX: AlntegerArrayNDATA;
jSetX[i] is the adress of the data forming the iest element of the)

fJÄ "X"/or "$$} input-To actuaI|yfind ,he adress,}
nedSetToX matrix which indicates the regions between 2 T

{that a)rrespond to each Set, and within as Set at which Met. VCE)
{or Cell. SetX .s defined at the same time as SetToX in MakeMrqVector}

Km, Kt, rm, rt, Y, tox, main: myreal;
{constants (parameters) to be estimated}

timeo, TCEo, Meto, Cello, E, Hm, Ht, Va, VI, teta: myreal;
{lhose constants will remain constant, whereas the above "constant" 1
{(parameters) will be estimated statistically from thefSSStoEf^ }

dMdti, TCEi, Celli, Meti: myreal;
{dMdt, TCE, and Cell, from discrete value of Meti}
{data: integer;}

{number of experimental observations; replaced by SetConst[k 11}
n: integer; {the size of the vectory, typically 1, and <nvar}
tbeg tend: myreal; {the time at beginning and end of an ODEINT call}
i, j: mteger;{food for loops} '
reponse: string[8];
SigPrecMet, SigPrecTCE, SigPrecCell: myreal-
{the relative errors associated with the observations Are }
{defined in the INPUT file and read in Define}

aName: String Array MA;
{aName = The vector of strings containing the name of the constants
{used in the program at a location correspondingTo tSaS "T

a, amin, amax: RealArrayMA;
{a= the vector of constants.}
{amin= the minimum acceptable values for a.}
{amax= the maximum acceptable values for a}

lista: IntegerArrayMFIT;
MMin, MMinAcc: myreal;

{A first guess forthe minimum value that Methane will reach}
(i.e. when X = 0), and the minimum accuracy required to}

{detect this minimum, in fraction of the minimum.}
q,,o/T/

y
0?fl'" . . fused for some ^"9 wfth a simple Funcs}

{%%% for derivative %%%%}
FiistAccr: myreal; {1/fraction * the relative amount by which a constant will be \

{increased in DefAIIDeriv before the FIRST call to MRQMIN} }

{i.e. ReIDelA[i]:= FirstAccr*a[i]. (default about 01 Jj IN"}

fraction: myreal; {it multiplies the relative increase (or decrease) obtained!
from a prevrcus call or MRQMIN, and the result will be used to} ^

{estimate the partial derivatives in DefAIIDeriv. (defauft 0 01)}

SS*17rea,: <a de,autt value assigned to delta if ft is zero in MetAIIDerivs}

J?J < o? 'myrea,: {a defaU,t va,ue defined in DefRunCons} ' {%%%forOdeint(612)%%%} '
OdeintKmax, OdeintKount: myinteger

A6
Appendix A Computer Program

OdeintYp: AFOROdeintYp;
{those two arrays are to store intermediate results, which are stored at}
{intervals = OdeintDxsav.}
{NOTE: OdeintDxsav and OdeintKmax must be defined in the main program}
{before calling odeint}

nok, nbad: integer;
{%%% for ConsOdeint %%%}

{the accuracy Odeint_"eps" defined by Ao = eps x ysca![i]}
Odeint_eps: myreal;

{a guessed first step size (Odeintjrl)}
Odeint_h1: myreal;

{the minimum allowed stepsize (Odeint_hmin)}
Odeint_hmin: myreal;

{%%% for rzextr (621) %%%}
RzextrX: array[1 ..Rzextrlmax] of myreal;

{rzextr use these external arrays to store "xest" which is the square of the}
{step used during the iest call of the routine. Similarly, it will use the}
{matrix below to store the estimated y calculated with xest during the iest step}

RzextrD: array[1..RzextrNmax, 1 ..RzextrNcot] of myreal;
{%%% for marqmin and related (577) %%%%}

MrqminOchisq: myreal;
{= the value of the sum of square at the end of marqmin}

{i.e. it is the MINIMUM sum of square.}
Mychisq: myreal;

{a "chisq" that keeps the previous value of chisq and is not modified by}
{ Mrqmin. I use it to determine if the iteration was succesful or not}

MrqminBeta: RealArrayMA;
{= -1/2* gradient of the sum of square with respect}
{to the "constants" to evaluate}

RelDelA: RealArrayMA;
{RelDelA = The vector containing by how much the constants in "a"}
{had been increased (relatively) by the last call of MRQMIN.}

ndata: integer;
{The number of data that will be fitted together, it may be larger}
{than "data" if I put the observations of methane and TCE together}

covar, alpha: ARealArrayMAbyMA;
chisq, alamda: myreal;

{%%% To work with several sets of observations %%%%%}
numbSet, numbMeto, numbTCEo, numbCello, numbVa, numbVI: integer;

SetConst: Setlnteger6;
{SetConst= a matrix which describes the # of data (1st col), the address in "a"}
{of Meto (2), TCEo(3), Cello(4), Va(5), Vl(6) used by each set (in rows)}

SetVer, SetVerToA: Setlnteger5;
{SetVer= a matrix which describes the version of Meto (1), TCEo(2), Cello(3)}

{Va(4), Vl(5) used by each set (in rows)}
{SetVerToA= a matrix to make the transition between SetVer and SetConst}

{in row: the version #; in column: Meto(1), TCEo(2), CeIlo(3)}
{Va(4),andVI(5).}

{For a given version, the element gives the address in "a" of the}
{ constant corresponding to the column heading.}

{NOTE that these two matrices have just one column less than SetConst}

Appendix A Computer Program A7

{because the latter has a column for "data" in addition. For this reason}
{Meto is in position 1 in the 2 matrices, but in postion 2 in SetConst)

SetToX: Setlnteger3;

72*!!!?!!? ke®p?,!ra*for each set of ^ Position of its Met, TCE, and Cell)
{observations in the larger vector Xobs)

oldFreeHeap, oldStack: longint;
(Used by HeapStack procedure}
J%%yyyy.

r—JL~—._—.
procedure HeapStack

(where: string32);

{Kfh?SSKSÄ2?e merry and Sutack space available-ln addition}
8 Ivt «f . «JCe botween those results and the same obtained the }

/ 5™ ™*f" °f HeaPSlack- Forthat reason "oldFreeHeap" and "oldStack"}
(P GLOBAL variables) must be initialize the first time we call the procedure.}

MinWid: integer;
actualFreeHeap, actualStack: tongint;

begin
ShowText;
MinWid := 7;

actualFreeHeap := FreeMem; actualStack := StackSpace-

chr(9), • Stack = ■, actuaS': MilS); ()h (66 He3p = 'Chr(9)" ^'FreeHeap : MinWid.
oldFreeHeap := actualFreeHeap;
oldStack := actualStack;

end; {HeapStack}

,XtUre ?efine: ,{lts role fe t0 read the value of the constants and}

f ISXSEZSS*in the fi,e "entre"'and t0 define the ™espondin9}
var

entre: text;
word, mystring: string;
d, i, j, k, m, t: integer;
title, oldfile: string;
Wrect: red; {see the loop "with" below to see how it is defined}
chart, char2, char3, char4: char;

begin
SetRect(Wrect, 10, 50, 600, 450);

*0*SnS l?^imevns!ons sont donr|ees depuis le coin haut gauche}
SetTextRect(Wrect); {set the dimensions of the interactive window}

writelnCSelect the INPUT file (<return>)');
readln;
Reset(entre, OldFileNameCselect an input file'));
{page 334, open a file in read only}

readln(entre, title); {first line}

A8
Appendix A Computer Program

{skip any character before a tab in the line}

{skip the line with titles}
{"m" will be used to create SetVerA below}

if Pos('entre', title) <> 1 then
begin

writeln('wrong file or problem');
writelnfpress return and the program will quit');
readln;
halt;

end;
readln(entre); {skip the 2nd One.}
readln(entre, title); {3th One}
if PosCCONSTANTS', title) o 1 then

begin
writeln('could not find the line starting with "CONSTANTS"');

halt;
end;

chaM :=T;
repeat

read(entre, chart)
untilord(char1) = 9;
readln(entre, ma);
readln(entre);
m := ma;
if ma > numb_const then

begin
writeln('ma =', ma: 3,' is > numb_const = \ numb_const: 3);

writeln('i.e. there are too many constants, especially:'); writeIn('Meto"s, TCEo"s, Cello"s');
haft;

end;
{%%%%%%% Start reading the constants: first the position in the constants vector,}
{aName, the name of the constant, aMax, a, aMin.}

for i := 1 to ma do {"ma" est une valeur PROVISOIRE typiq. 10}
begin

aNamelO :=";
read(entre, chart);
repeat

aName[i] := StringOf(aName[i], chart);
read(entre, chart);

{that way the tab will not be included in aName}
untilord(chart) = 9; {i.e. atab}

readln(entre, k, aMax[i], a[i], aMinp]);
if k o i then

wr*rteln('error in "Define": constant[\ i: 2,"] has position', k: 2); end; {.. of loop over all the
constants}

readln(entre);
{%%%%% start reading the relative error of the observations. These values}
{are used if numbers <= 0 are input in the Sig matrices}

readln(entre, title);
if Pos('ERRORS\ title) <> 1 then

begin
writeln('could not find the heading "ERRORS" in the INPUT file');
halt;

Appendix A Computer Program A9

end;
readln(entre);

readln(entre, SigPrecMet, SigPrecTCE, SigPrecCell);

readln(entre);
{%%%%% start reading the different versions of Meto, TCEo, Cello, and Va/VI %%%%%}
{It is also here that I start defining the matrix SetVerToA}

readln{entre, title);
if PosfSET INFO', title) <> 1 then

begin
writelnCcould not find the heading "SET INFO" in the INPUT file')- halt-

end;
readln(entre);

readln(entre, numbSet, numbMeto, numbTCEo, numbCello, numbVa, numbVI); readln(entre)-
if numbset > maxSet then l ''

begin
writelnfnumbset =', numbset: 3, • is > maxSet =', maxSet: 3)- halt-

end;

{%%%%% for each Set I will keep its corresponding TimeSample in memory %%%%)
HeapStack('before TimeSample inft. in Define');
for k := 1 to numbSet do

new(TimeSample[k]);
HeapStackCafter TimeSample init. in Define')-
readln(entre, title);
if Pos(Version#', title) o 1 then

begin

writelnCcould not find the heading "version*- for Meto in the INPUT file1)- halt-
end; '

for i := 1 to numbMeto do
{V is the version number as entered in SetVerToA}

begin
ma := ma +1;
readln(entre, charl, aMinfma], a[ma], aMax[ma]);
aName[ma] := stringoffMeto', charl);
SetVerToA[i, 1] := ma;

end;
readln(entre);
readln(entre, title);
if Pos('version#\ title) o 1 then

begin

writelnCcould not find the heading "version*" for TCEo in the INPUT file1); halt-
end; ' '

for i := 1 to numbTCEo do
begin

ma := ma +1 ;
readln(entre, chad, aMin[ma], a[ma], aMax[ma]);
aNamefma] := stringof(TCEo', charl);
SetVerToA[i, 2] := ma;

end;
readln(entre);
readln(entre, title);

A10

if Pos(Version#', title) o 1 then
begin

writelnCcould not find the heading "version*" for Cello in the INPUT file'); halt;
end;

for i := 1 to numbCello do
begin

ma:=ma + 1;
readln(entre, chaM, aMin[ma], a[ma], aMax[ma]); aNamefma] := stringofCCello', charl); SetVerToATi, 3] :=
ma;

end;
readln(entre);
readln(entre, title);
if Pos(Version#', title) o 1 then

begin
writeln('could not find the heading "version*" for Va in the INPUT file'); halt;

end;
for i := 1 to numbVa do

begin
ma := ma +1;
readln(entre, chad, aMin[ma], a[ma], aMax[ma]);
aName[ma] := stringof('Va', charl);
SetVerToA[i, 4] := ma;

end;
readln(entre);
readln(entre, title);
if PosCversion*1, title) <> 1 then

begin
writeln('could not find the heading "version* for VI" in the INPUT file'); halt;

end;
for i := 1 to numbVI do

begin
ma:=ma + 1;
readln(entre, chart, aMinfma], a[ma], aMaxfma]);

aName[ma] := stringof(VI', chart); SetVerToAp, 5] := ma;
end;

{%%%%%% Start reading the data specific to each set, %%%%}
{it is here that I start defining "SetVer",the 1st column of "SetConst" (data),}
{TimeX, Xobs, and Xsig. The same intermediate vectors Met_obs, TCE_obs, Cell_obs}
{are used for each set.}
t > 0;
for k := 1 to numbSet do *

begin {the first thing is to check I am reading the right line}
readln(entre); {skip a line before reading the next set}
if k > 99 then

begin
writeln('in Define, "k" =', k : 4,' is > 99 i.e. more than 99 sets'); halt;

end;
d:=kdiv10;
if d > 0 then {...i larger than 9}

begin

Appendix A Computer Program A11

chart :=chr(48+d);
char2 := chr(48 + k mod 10);
mystring := stringoffSET, chart, char2);

end (reste de la division par 10}
else

begin
chart := chr(48 + k);

mystring := stringoffSET, chart);

end; {lexpecttoseeSET3ifk:=3andSET12ifk-=12}
readln(entre, title);
if Posfmystring, title) o 1 then

begin
writelnCcould not find in INPUT the line starting with \ mystring: MW)- halt-

end;

readln(entre); {skip the line of title for the following variables-}
{data (1), Metoversion(l), TCEo (2), Cello (3), Va (4) VI (5)}

rrIa3n((enS;SetCOnS,fk• U ^^ U ^^ 2)' SetVerfk' *■ SetVe^ ^.SetVefk, 5]);
readln(entre); {skip the line of title for the following variables)
forj:=i to SetConstfk, 1]do

begin

c3$gw\TlrTieSamp,eIk^- Me,-obs™ TCE_obs^, CelLobs^]); readln(entre, MetSigAffl, TCESigA
D1,

jlfthe sigma value is <= 0.0, it indicates that no value has been calculated}
Therefore a default value is assigned. SigPrecXXX represents the relative}

(error associated with the measurement of XXX}
if MetSigAD] <= 0.0 then

MetSigArj > SigPrecMet * Met_obsA[fl-
ifTCESigAfj]<=0.0then

TCESigAfl] := SigPrecTCE * TCE_obsAR]-
ifCeHSigAD]<=0.0then

CellSigA[j] := SigPrecCell * Cell_obsArj]-
if j > 1 then

if (TimeSample[k]Arj <= TimeSample[k]A[j -1]) then
{The times must be in increasing order otherwise the}
{calculations procedures will crash}

begin
writeln(Tim^

ena; {...of test}
end; {of loop "j" reading the observations for set "k"}

{%%%%% Now I will load the observations in the big vectors TimeX, Xobs, Xsig %%%)
for. := 1 to SetConstfk, 1] do {loop over all the "time" of Set "k"} '

begin '

HMeLobsA[i]> 0.0 then {-This is a valid "Met" observation to include in Xobs}

t:=t+1;
SetXA[t] := i;

TimeXA[t] := TimeSample[k]A[0; XobsA[t] := Met_obsA[i]; XsigA[t] := MetSigA[i]-
end; {...of test to see if we have a valid Met_obs at [i]}

end; {...of Loop I over "data" of one set}

A12
AnnonriiY A ■ □»._..._

SetToX[k, 1] := t; {record the position of the last Met_obs of set "k"}
for i := 1 to SetConstfk, 1] do

begin
if TCE_obsAfi] > 0.0 then {...This is a valid "Met" observation to include in Xobs)
begin

t:=t+1;
SetXA[t] := i;

TimeXA[t] := TimeSamplefkffi]; XobsA[t] := TCE_obsA[i]; XsigA[t] ;*TCESigA[i];
end; {...of test to see if we have a valid TCE_obs at [k,i]}

end; {...of Loop I over "data" of one set}
SetToXfk, 2] := t; {record the position of the last TCE_obs of set "k"}

for i := 1 to SetConstfk, 1] do
begin

if Cell_pbsA[i] > 0.0 then {...This is a valid "Met" observation to include in Xobs}"
begin

t:=t + 1;
SetXA[t] := i;

TimeXA[t] := TimeSample[k]A[iJ; XobsA{t] := Cen_obsA[i]; XsigA[t] := CellSigA[i];
end; {...of test to see if we have a valid Met_obs at fk,f]}

e nd; {...of Loop I over "data" of one set and vector Cell_obs}
SetToX[k, 3] := t; {record the position of the last Cell_obs of set "k"}

end; {... %%%% of loop K reading the data from each set %%%%}
ndata:=t; {this last t is also the total number of observations.}

{%%%% The big vectors TimeX, Xobs, and Xsig are now defined %%%}
{%%%%%% Now I must define the matrix SetConst, that indicates for each set the}
{corresponding position in "a" of each constant Meto, TCEo, Cello, Va, and Vl%%%%%}
{The first column (the number of data) is the same in SetVer and SetVerA}

for k := 1 to numbSet do
begin

for i := 1 to 5 do
SetConstfk, i +1] := SetVertoAfSetVerfk, i], fj; {in SetConst, i= 1 is data, 2 is Meto, 3 is TCEo 4

is Cello, 5 is Va, 6 is VI}
{In SetVertoA and SetVer, the position is one integer less.}
{SetVerfk.i] is the version of T that the set V uses.}

end;
{%%%% Below we define the vector RelDelA %%%}

for i := 1 to ma do
begin

if afi] = 0.0 then
RelDelAfi] := RelDelADefault

{RelDelADefautt is a default value defined in DefRunCons}
else

RelDelAfi] := RrstAccr * afi];
{This vector represents the "accroissement" of the constants from the calculations}
{of MRQMIN. But it will be needed for DefAIIDeriv before the first call of MRQMIN}
{because the amount by which the "variable" constants will be varied to estimate}

{numerically the partial derivative depends on RelDelA. Therefore I initialize this}
{vector with an arbitrary value of "FirstAccr", defined as a constant in the main}
{program.}

end;

Appendix A Computer Program A13

close(entre); {close the input file}
end; {....Define}

|^%%}

($P|

procedure DefKmfromA
(k: integer;

vara:RealArrayMA);
{Its role is to redefine the constants Km, Kt, rm from the values of the vector a}

f?n«?.f«e Value have been modified by MRQM'N- This is necessary because}
S3? i *°* **h "a"and not wit" the individual names of the constants)
Br new^alSj ^ WOfk With the '"^a* n^es, a^J need}" *

{"k" is the number of the Set concerned by those constants This is immrtanti
{because Meto, TCEo, Cello, Va, and VI are different from ea?h set} ^}

begin
Km := a[1J;
Kt := a[2];
rm := a[3];
rt := a[4];
main := a[5];
tox := a[6];
Y:=a[7];
E:=a[8];
Hm := a[9];
Ht:=a[10];

Vlt°ä^fcon?Ä;211: TCE0 " a[SetC0nSttk' 3«: Cell° := ^etConstfk, 4]]; Va := a[SetConsttk, 5]];
end; {...RedefConst}

procedure DefLista
(var lista: IntegerArrayMFIT;

constants} ™ "^ mte9er); {a"interaCtive procedure t0 define tne veclor ""sta" which indicates which

{oMhe c^nstamsrted * MRQM'N' * ^ ""^ *" °Pp0rtUnily to ehanBe the vaIues)

ffiSW Va,arld y? a-re n0-.1 part of the constant vector "a"- "^e reason}
LnH 2, iS P^.to "ntroduce them in the compensation. So why Hm
and Ht belongs to a"? Just for convenience, otherwise they are not}

{found in any particular vector.} '
var

Wrect: red;
i, k: integer;
word: string[2];
iabon: boolean;

label
99;

begin
iabon := true;
SetRect(Wrect, 10, 50, 600, 450);
{toutes les dimensions sont donnees depuis le coin haut gauche}

A14
Appendix A Computer Proaram

SetTextRect(Wrect); {set the dimensions of the interactive window}
writeln('defining LISTA and MODIFYING some constants');

writelnC <enter> to INCLUDE ALL CONSTANTS'); writeln(~M" to MODIFY and SELECT constants ')■
readln(word);
if not ((word = "M") or (word = 'm')) then begin

for i := 1 to 8 do
listap] := i;

mfit := ma - 2 - numbVa - numbVI; for i := 9 to mfit do
listalö := i + 2; {by default, I put first all the constants in the statistic,}

{except Hm and Ht (9, and 10) for which NO DERIVATIVES are available}
{and which can not be included in lista.}

goto 99;
end; {...of no modifications and default definition of Lista}

writeln('<enter> «= put in LISTA, value NOT MODIFIED");
writelnCE" = EXCLUDED from LISTA');

writelnfM" = MODIFY and included IN LISTA'); k := 0;
while iabon do

begin
for i := 1 to ma do

begin
writeln('constant', aName[i],' =', a[i]: MW); readln(word);

if not ((word = "E") or (word = "e")) then
{if we accept the constant, then it is loaded into lista}

begin
if (word = 'm*) or (word = 'M') then begin
writeln('enter new value'); readln(a[i]);

end; {of if M}
if not ((i = 9) or (i = 10) or (i > ma - numbVa - numbVI)) then {A test to prevent constants Hm, Ht, Va, VI to

enter the stat.}
begin

k:=k + 1;
lista[k] := i; end; {of Hm, Ht test}

end; {of Not Excluded}
end; {for i, loop over all the constants}

mfit := k;
writeln('these are the constants selected and their values'); writelnfpress <enter> if OK, "n" for NO and to
redo the loop');
for i := 1 to mfit do

writeln(aName[lista[i]],' = ', a[lista[i]]);
readln(word);
if not ((word = 'N') or (word = 'rf)) then

iabon := false
else

k:=0;
end; {iabon}

99:
end; {...DefLista}

{$P}
procedure DefRunCons;

Appendix A Computer Program A15

{this procedure defines and changes some constants used by Odeint}
|ajand MetM.n in an interactive way. i.e. constant used to run the program}

100;

var
fini: boolean;
reponse: string;
Wrect: rect;

begin
SetRect(Wrect, 10, 50, 600, 450)-
SetTextRect(Wrect);
OdeintKmax := 100; {Max number of steps to save}
Ode.ntDxsav := 0.1; {Save each step of xsav}
Odeint_eps := 0.000001; {accuracy}
Odeint_h1 :=0.01; {a guessed first step}
Odeint_hmin := 0.000001; {min. allowed stepsize}

1~ 1 n 1
D°e"6: {the relative error «*****> for MMin}

„ _ i.'" -°e"8: „ „ <the relative enror acceptable for SimpleMetfromTime}
1' . <for Odemt and Bsstep: the number of partial}

{differential eauuations to be solved}
MW:= 14; {Minimum width to print the data}
pP:=6; {digits after the point}
FirstAccr:=0.01; {1/fradion * the relative amount by which a constant will hp i 'BAS"*«-: «*««-«-b.i
fraction := 0.0001; {ft multiplies the relative inaease (or decrease) obtain^

{rom a previous call or MRQMIN, and the result will be used to) ^
{est.mate the partial derivatives in DefAIIDeriv} }

RefoelADei^^
tZn,Z / • n? : {a defau[t Va,ue assi9ned t0 ReIDeIA vector}
J2TET In e Wh6n the °™P°*"no constant is zero. It serves}
{the same purpose as defaultDefta: preventing divisions by zero)

wntelnCMODIFYING some of the MAIN CONSTANTS m"v
readin(reponse); v ' ''
if (reponse o V) and (reponse o'/) then

goto 100; {we go to the end of the procedure}
fini := false;
while not fini do

begin

if (reponse = V) or (reponse = •/) then
begin

write('enter new value »>');
readln(OdeintKmax);

end;

if (reponse = T) or (reponse = y) then
begin

A16
Appendix A Comnnter Prnn»

: eps x yscal[i]'); writeln('Odeint_eps=', Odeint_eps :

change it? Y/<ret>");readln(reponse);

write('enter new value >»');
readln(OdeintDxsav);

end;
writelnfthe accuracy Odeint_"eps" defined by Ao ■■
MW: DP,' change it? Y/<ret>'); readln(reponse);

if (reponse = "Y") or (reponse = y) then
begin

write('enter new value >»");
readln(Odeint_eps);

end;
writelnfa guessed first step size');

writelnCOdeint_h1=',Odeint_h1 :MW:DP,' changeit? Y/<ret>');readln(reponse);
if (reponse = T) or (reponse ="/) then

begin
writefenter new value >»*);
readln(Odeint_h1);

end;
writeln('the minimum allowed stepsize');

writeln('Odeint_hmin=', Odeint_hmin : MW: DP,
if (reponse = V) or (reponse = y) then

begin
write('enter new value >»');

readln(Odeint_h1);
end;

write!n(The relative error acceptable for MMin');
writeln('MMinAcc=', MMinAcc: MW, * change it ? Y / < ret >"); readln(reponse);

if (reponse = V) or (reponse «= y) then
begin

write('enter new value >»");
readln(MMinAcc);

end;
writeln(The relative error acceptable for SimpleMetfromTime'); writeln('Macc=', Mace: MW,'
Y / < ret >'); readln(reponse);

if (reponse = "Y") or (reponse ='/) then
begin

write('enter new value »>");
readln(Macc);

end;
writeln('FirstAccr, defined by RelDelA[i]:= FirstAccr*a[i] used in Derivative"); writeln('FirstAccr= "
MW,' changeit? Y/<ret>");readln(reponse);

if (reponse = *Y) or (reponse ='/) then
begin

wr"rte('enter new value »>');
readln(RrstAccr);

end;
writeln(*fraction, the fraction of Aa used as "delta" in Derivative'); writeln(f raction=', fraction: MW,' change
it ? Y / < ret >"); readin(reponse);

if (reponse = T) or (reponse ='/) then
begin

write('enter new value >»');

change it ?

, FirstAccr:

Appendix A Computer Program A17

readln(fraction);
end;

rf (reponse = 'V) or (reponse = y) then
begin

writefenter new value >»');
readln(defaultDelta);

end;

if (reponse = T) or (reponse = y) then
begin

write("enter new value »>');
readln(RelDelADefault);

end;

wrrtelnCdo you want to change the number of digits displayed?'); writelnf and/or START AGAIN? Y/

readln(reponse);
if (reponse = T) or (reponse = y) then

begin
write('enter an integerforthe number of digits >»')■ readln(DP)-

end
else

fini := true;
end;

100:
end; {...DefRunCons}

^******%%%%%%%%%%%%%%«%%%%%%%%%WMMHt%%%%%W6%%}

procedure SelectChoice
(var sort: text;

"sort" undefineVd}SCreen' '^ b°°lean): {" We Want t0 Print on the ««en. "screen" will be true, and
{m!ie-^ise "l?66?"wi" be ,alse and "^rt" will be the pointerto an ODenedl
{file. The problem is that I can not assign a type as variable} ^ ^

word: string[4];
title: string[36];
Wrect: rect;
k: integer;
allTCEo: myreal;

begin
screen := true;

simple := false;

writelnCOUTPUT: on SCREEN (<retum>) or on a FILE ("F") 7); readln(word)-
if (word = T) or (word = 'F) then

screen:» false;
if screen then

begin

A18
Appendix A Computer Proaram

SetRect(Wrect, 10, 50, 600, 450);
SetTextRect(Wrect); {set the dimensions of the interactive window}

end; {... of preparing the screen}
if not screen then

{I will print on a new file}
begin

writeln(TITLE, less than 36 characters');
readln(title);
Rewrite(sort, title);

end; {... of naming and opening the output file}
for k := 1 to numbTCEo do

allTCEo := a{SetConst[k, 3]];
if (main = 0) and (allTCEo = 0.0) then

begin
simple := true;
writelnCmain = 0.0 and all the TCEo = 0.0 => the SIMPLE MODEL will be used');
writeln;

end
else

begin
writelnfCOMPLETE (<retum>) or SIMPLE model ("ST) ?');
readln(word);
if (word = 's') or (word = 'S") then

simple := true;
end;

end; {SelectChoice}
{%%}
{$P}

procedure CheckConst
(var a: RealArrayMA;

var aName: StringArrayMA;
ma: integer);

{its role is to insure the constants have appropriate values before}
{doing heavy calculations. This procedure will be called each time}
{the constant vector "a" is changed}
{None of the constants may be smaller than zero, and several can not be}
{equal to zero, otherwise they will crash the program.}

var
i, prob: integer;
problem: IntegerArrayMFIT;

begin
prob := 0;
for i := 1 to ma do

begin
if a[i] <= 0.0 then
{all the constants susceptible to give problems are those <= 0.0}

if not ((a[i] = 0.0) and (aMin[i] < 0)) then {...the only cases which are OK are those inside the
statement of not.}
{As a code, aMinfj] < 0 means that a[i] can be = to 0. But no constants}
{at all are allowed to be < O.i.e. it is a CODE}

Appendix A Computer Program
A19

begin
prob := prob + 1; problem[prob] := i;

end;

end; {... of loop over the constants]

if prob > 0 then
|...we have constants values which will crash the program}

begin
for i := 1 to prob do

prSfnT"513"1''aNameIprob,em™ : MW''" •• «Pmbtonfln : MW); writeln(These values wiii crash the
halt;

end;
end; {... CheckConst}.

procedure OUTconstants
(screen: boolean;

var sort: text;
vara:RealArrayMA;

var aName: StringArrayMA; ma, MW, DP: integer)-
{OUTconstants will print the value of the constants, either on the screen if screen}
to * ■ °S,n V9 named whose P°inter fe "sort- if screen is FALSE1 {a= the vector of constants values,} '

{aName= the vector of constant names,}
{ma= the total number of constants.}
{fl?In' !? file.mUSt be °pened before caSS"0 '"e procedure, (see OUTCovar)} {ALSO, I do not output the Va's, and Vl's}

var

P^cedt^fe^^
var

i: integer;
begin

writeln(fichier);
writeln(fichier);

writeln(fichier, "constants of the model");
writeln(fichier);
for i := 1 to ma do

PrtnSSHSf'" aNamePl: MW' Chr(9,•m: MW: DP): end: <~ <* ** htemai procedure '

L—_ —-—*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%,
oegin {... of OUTconstants}

if not screen then
{I will print on the file "sort"}

PrintConstants(sort)
else {I will print on the screen}

begin
SetRect(Wrect, 10, 50, 600, 450);

Wfvlot^m?"^"5 S,0nt donnees dePuis le °°'m ha"t gauche} SetTextRect(Wrect); {set the dimensions of the interactive window}

A20
Appendix A Computer Program

PrintConstants(output);
end; {... of printing on screen}

end; {...OUTconstants}
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/oo/0%o/o'>/oo/oo/A
{$P}

procedure OUTcovar
(screen: boolean;

var sort: text;
varcovar: RealArrayMAbyMA; var aName: StringArrayMA; ma, MW, DP: integer);
{This procedure will output the values of the matrice of covariance.}
{INPUT = "covar", the matrix of covariance, "ma" the number of constants (which}
{determines the size of the matrix), "aName" the vector of the constants name.}
{screen= if "true" then the procedure print on the screen, if "false" it prints on a file,}
{whose name will be "title". Note that internally this file is called "fichier".}

{MW= the minimum width used to print the data.}
{DP= the number of decimal places.}

var
Wrect: red;

{ %%%%%%%%%%%%%%%%%%%%%%%%%%%}
procedure PrintCovar (var fichier: text);

var
i, j: integer;

begin
writeln(fichier, 'covariance Matrix');
writeln(fichier);
for i := 1 toMWdo

write(fichier,' •); {write MW spaces}
write(fichier, chr(9));
for i := 1 to ma do

{print the titles}
write(fichier, aNamefl]: MW. chr(9));

writeln(fichier);
for i := 1 to ma do

begin {print the row [i] of the covariance matrix for Met}
write(fichier, aNamep]: MW, chr(9));
forj:=1 tornado

write(fichier, Covar[i, fl: MW, chr(9)); {print the element "j" of row "i"}
writeln(fichier); {go to next row}

end; {...of writing row[i]}
end; {...internal procedure PrintCovar}

{ ___%%%%%0/o0/o%%0/o%%%%%%%%%%%%%%%%%}
begin {... of OUTcovar}

if not screen then
{I will print on a file}

PrintCovar(sort)
else {I will print on the screen}

begin
SetRect(Wrect, 10, 50, 600, 450);
SetTextRect(Wrect); {set the dimensions of the interactive window}
PrintCovar(output);

Appendix A Computer Program A21

end; {... of printing on screen}
end; {...OUTcovar}

procedure OUTPDmatrix
(screen: boolean;

theSet: integer;
var sort: text;
var TimeSample: InVector;
var PDM: MatDeriv;
var aName: StringArrayMA;

var SetConst: Setlnteger6; ma, MW, DP: integer)-
{This procedure will output the predicted values of ONE (PDM) of the matrices of)
{partial denvative: PDMet, PDTCE, or PDCell} mamces oi)
{Also, this will be done for ONE SET.}
{/Sl!f-n" kj^' tf}e results are Printed on the screen, if FALSE thev are)
data the nnmhT^fdh

aS "»f (externallv- but «** "*>«" ££5^*
/Mnrc .1 ^ °f observat,ons and the size of those InVector.}

{NOTE, the file must be opened before calling the procedure, (see OUTCovar)}

L
Wrect: rect;

-—-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%)
procedure PnntPredicted (var fichier: text) •

var
i, j: integer;

begin
writeln(fichier);

write(fichier, time': MW, chr(9));
for i := 1 to 8 do

Jffi!he.1"
ame of the constants on top of their corresponding PD)

write(fichier, aName[i]: MW, chr(9));
writeln(fichier, 'Meto': MW, chr(9), TCEo': MW, chr(9), 'Cello' • MW)-

writeln(fichier); ' ''
for i := 1 to SetConstftheSet, 1] do

begin
write(fichier, TimeSamplep]: MW, chr(9));

forj:=lto11do
write(fichier, PDMfi, j]: MW, chr(9));

writeln(fichier);
end;

end; {... of internal procedure PrintPredicted)
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%)

begin {... of OUTPDmatrix} '

A22
Artrtani-liu A /i — _

if not screen then
{I will print on a new file)

PrintPredicted(sort)
else {I will print on the screen}

begin
SetRect(Wrect, 10, 50, 600, 450);

SetTextRect(Wrect); {set the dimensions of the interactive window}
PrintPredicted(output);

end; {... of printing on screen}
end; {....OUTPDmatrix}

{%%%}
($P)

procedure OUTOneSetObsCal
(var comment: string;

screen: boolean;
var sort: text;
var theSet: integer;

varTimeSample, Met_cal, TCE_cal, Cell_cal: InVector; varMet_obs, TCE_obs, Cell_obs: InVector;
var MetSig, TCESig, CellSig: InVector; MW, DP: integer);
{This procedure will output the predicted values of the vector methane, TCE, and Cell}
{If "screen" is TRUE, the results are printed on the screen, if FALSE, they are}
{printed in a file named as "title" (externally, but called "sort" internally.}
fdata= the number of observations and the size of those InVector.)

{NOTE that the procedure does not make any calculations, it just output the content}
{of the vectors calculated previously.}
{comment = any comment we want to print before the data. Is a Var parameter, the}
{best way is to create it like "comment := stringof('Sef, k3);"}

{NOTE, the file must be opened before calling the procedure, (see OUTCovar)}
var

Wrect: red;
{ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%}

procedure PrintOneSet (var fichier: text);
var

wi, i, j: integer;
begin

j:=theSet;
writeln(fichier);
writeln(fichier, comment);
writeln(fichier);
wi:=10; {the MW for below)

writer:wi,chr(9),*data ':wi,chr(9),'Meto ':wi,chr(9),'TCEo ,:wi,chr(9));writelnfCello ':wi
chr(9),Va ":wi,chr(9),"VI ":wi);
writefversion": wi, chr(9), "n.a.": wi, chr(9), SetVerfJ, 1]: wi, chr(9). SetVerfl, 2]: wi, chr(9)); writeln(SetVerfi,
3]: wi, chr(9), SetVerö, 4]: wi, chr(9), SetVerTj, 5]: wi);
write(Value': wi, chr(9), SetConstrj, 1]: wi, chr(9), a[SetConstß, 2]]: wi, chr(9), a{SetConst[j, 31]: wi,
chr(9)); writeln(a[SetConstfj, 4]]: wi, chr(9), a[SetConstö, 5]]: wi, chr(9), a[SetConst[i, 6]]: wi);

writeln;
writeln(fichier, 'Observed and predicted values for methane, TCE, and Cells');
writeln(fichier);
writeln(fichier, time": MW, chr(9), 'Met_obs': MW, chrf.9), *Met_caT: MW, chr(9), "MetSig": MW);
for i := 1 to SetConst[theSet, 1] do

Appendix A Computer Program A23

begin
writeffichier, TimeSample[i]: MW);

S'^ ^MeL0bS[|,]: MW): write(fichier' chr(9)' Mel-ca,Iil: MW): writeln(fichier, chr(9), MetSigp]

end;
writeln(fichier);

writeln(fichier, time': MW, chr(9), TCE^bs1: MW, chr(9), TCE_car: MW, chr(9), TCESig': MW)- for i = 1
to SetConst[theSet, 1] do

begin
writeffichier, TimeSamplep]: MW);

Äf!cJlier;1I*?
9)- TCE_obs[i]: MW); write(fichier, chr(9), TCE_cal[i]: MW); writeln(fichier, chr(9),

ivtoig[ij :MW);
end;

writeln(fichier);
wnteln(fchier lime': MW, chr(9), 'CelLobs': MW, chr(9), 'CelLcar: MW, chrp), 'CellSig1: MW); for i := 1 to
oeiuonst[tneset, 1] do

begin
write(fichier, TimeSamplep]: MW);

VMW)fiChier'Chr(9)' Cell-obs[i]: MW): write(fichier, chr(9), Cell_cal[i]: MW); writelnffichier, chr(9), CellSigfi]

end;
end; {... of internal procedure PrintOneSet}

{ ^%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0%%%o/0l
begin {... of OUTOneSetObsCal}

if not screen then
{I will print on a new file}

PrintOneSet(sort)
else {I will print on the screen)

begin
SetRect(Wrect, 10, 50, 600, 450);

{toutes les dimensions sort donnees depuis le coin haut gauche}
SetTextRect(Wrect); {set the dimensions of the interactive window}
PrmtOneSet(output);

end; {... of printing on screen}
end; {....OUTOneSetObsCal}

{%%%%%%%%%%%%o/0%o/oo/oo/^^^^^
{$P}

procedure OUTAIISetObsCal
(var TimeX, Xobs, Xcal, Xsig: RealArrayNDATA;

SetlntegfrSV5'61 Se,lnVector; var SetX: '"tegerArrayNDATA; var SetConst: SetlntegerB; var SetToX:

{Will print the observed and calculated values of all the sets}
var

k, t, i, m: integer;
comment: string;

begin
t:=0;

{initializes the observations matrices to -1, and the variance matrices to -1.}
{Remember that these matrices exist only for one set at a time, unlike}
{TimeSample which is a SetlnVector which include all the TimeSample)
{corresponding to each Set.}

A24
Appendix A ComDUter Prnnran

for k := 1 to numbSet do
begin

for i := 1 to numb_obs do
begin

Met_obsA[i] := -1; TCE_obsA[i] := -1; Cell_obsA[i] := -1; Met_calA[il := -1; TCE_calA[i] := -1; Cell_calA[i] := -1;
MetSigA[i] := -1;
TCESigA[i] := -1; Ce!ISigA[i] := -1;

end;
comment := Stringof('Data from Set', k: 4);

{A comment to be printed before each set, see below}
if k = 1 then

m:=0
else

m:=SetToX[k-1,3];
{a test necessary for the first call from i:=1 to SetToX[k,1]}

fori:=m + 1toSetToXTk, 1]do {loop for Met over all the "Met" of Set "k"}
begin

t:=t + 1;
Met_obsA[SetX[t]] := Xobs[t];

Met_ca!A[SetX[t]] := Xcal[t]; MetSigA[SetX[t]] := XSig[t];
end;

for i ;= SetToX[k, 1]+ 1 to SetToX[k, 2] do {loop for TCE over all the "time" of Set "k"}
begin

t := t +1;
TCE_obsA[SetX[t]] := Xobsft];

TCE_calA[SetX[tD := Xcal[t]; TCESigA[SetX[t]] := XSig[t];
end;

for i := SetToXfk, 2] +1 to SetToX[k, 3] do {loop for Cell over all the "time" of Set "k"}
begin

t:=t + 1;
Cell_obsA[SetX[t]] := Xobs[t];

Cell_calA[SetX[t]] := Xcaltf]; CellSigA[SetX[t]] := XSig[t];
end;

OUTOneSetObsCal(comment, screen, sort, k, TimeSamplelkp, Met_calA, TCE_calA, Cell_calA,
Met_obsA, TCE_obsA, Cell_obsA. MetSig*. TCESig\ CellSigA, MW, DP); {Will print the theoretical and
experimental results on the screen if "true"}

{or in a file that will be named like "title" if "false".}
e nd; {... of loop over all the K sets}

end; { OUTAIISetObsCal}
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0%o/0o/oo/oo/oo/o]
{$P}

procedure CheckDefine; {Its role is to check if the procedure Define did}
{a good job assigning the data. It will print the variable on the screen}

var
GetScreen: boolean;
word: string;

■ k, i, m, wi: integer;
Wrect: red; {see the loop "with" below to see how it is defined}

begin
with Wrect do

Appendix A Computer Program A25

begin

top := 50; left := 10; bottom := 450; right := 600
end;

SetTeXtR6Ct(Wr6Ct): (set the dimensions of the interactive window)

I , , pHECK,NG IF ™E CONSTANTS ENTERED ARE CORRECT") ■
wntelnc aName-: MW, chr(9), "a': MW. chr(9), "aMax": MW, chr(9), "aMirf: MW);

ion .= i to ma do

JOSSES^ 23$:W: °P' *» —«: W:«". *«. =Minp,: MW: DP,;
readln;
GetScreen := screen;
screen := true;

ff^Sn^1 rely.?nthe vaJue of "screen"to know where to print } {In CheckDefme, I want the results on the screen, so I save the oriainal)
{value and restore it after OUTAIISetObsCal} ,6gi5aveine(ln9ina|)

{/o/ /o/o/o Start pnnting the data as loaded in the "X" vectors %%%%%%}
for k := 1 to numbset do '

begin
writelnCSef, k: 3);

if k = 1 then m := 0
else

m:=SetToXfk-1,3];
{a test necessary for the first call from i:=1 to SetToX[k 11}

for i := m +1 to SetToXPc 1] do {Met data)
begin

ifi = m + 1then {fiistline}
writelnCSef, k: 3,' Methane*);

begin

ifi = SetToX[k,l] + ithen
writeln('Sef, k: 3,'TCE');

wrte.nCT,meX^: MW, chr(9), Xobs*[i]: MW, chr(9), Xcal^: MW, chr(9), Xstfg: MW)- end-
for i .= SetToXIk, 2] +1 to SetToX[k, 3] do {Cell data)

begin '
tfi = SetToX[k,2] + 1then

writelnCSef, k: 3,'Cells');

^ZJinr® •'MW' Chr(9)•XObsA[i]: MW'*«»■ ^ ••MW- *W. ***fll: MW)- end- wntelnCpress <return> to continue"); ;' '
readln;

end; {... of loop K over all sets}
screen := GetScreen;
readln;
writelnCtype <return> to continue") •
writelnCOR "H" to stop the program");
writelnCOR "N" to call DefUsta to change the constants V
readln(word);
if (word = 'N') or (word = 'n") then

A26
Appendix A Computer Proaram

DefListaflista, mfit);
if (word = 'H') or (word = 'h') then

halt;
end; {...of ChecKDefine}

{%%%o/0}
{$P}

procedure Initialize;
begin

DefRunCons;
{Define some constants and ask if we want to change any of them}
{Some of those constants are immediately needed by Define}

Define;
{This procedure will read the constants "a" and observations from the}
{file of our choice and assign those values in the program so that}
(they correspond to their definition. WARNING the input file must}
(have a stricly defined structure for this work to succeed.}

DefLista(lista, mfit);
{Defines the vector "lista" which list the constants to introduce in the}
{statistics, and provide an opportunity to change the constants. Also}
{defines the number of those constants, "mfit".}

CheckDefine;
{This procedure will print on the screen the constants and observations}
{as the program has loaded them. Any mistake will be seen at that point.}
{A mistake in selecting the constants may be corrected by calling Lista.}

CheckConst(a, aName, ma);
{Will screen all the constants for values <= 0.0 that may crash the program}

SelectChoice(sort, screen, simple);
{An interactive procedure to determine where the results must be output.}

end; {...Initialize}
{%%}
{$S EquaDiff}
I**"***************««**»******«***«*****»*«»«*«»« i

{$P}
procedure SimpleMetfromTime

(var TimeSample, Met_cal: InVector;
data: integer);

{Will calculate Methane from TimeSample. The model is t = f(Met), and}
{I use a bisection method to find Met = g(t).}
{Will return the methane concentration for a given time in conditions}
{under which we can use the simplified equation for methane degradation, i.e.:}

{1- TCEo = zero (No TCE present)}
{2- main = zero, the equation does not take maintenance into account.}

{The accuracy of the calculation will be somewhat similar to Odeint, see below.}
const

jmax = 100; {limit the number of bisection iteration}
label

100;
var

dm: myreal;
{dm is the difference between M2 and M1 in bisection}

Appendix A Computer Program A27

L

i, j: integer {food for bop}
M,M1,time:myreal;

Foncmid: myreal;

(a value to store the intermediate values of Cell(Mi)}
0/_0/ O/O/ O/ O/ O/ 0/ O/n/ «■>/ «/ «/ %%%%%%%%%%%%%%%%%%o/oo/oo/o%o/o]

function Fonc (Met: myreal): myreal;
var

phi, Cell: myreal;
begin

phi:=(Vl + Hm*Va)/VI;
Cell := Cello + phi * Y * (Meto - Met);

Me^C-TimÄ
L _%%%%%%%%o/0%o/0o/o6/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o}

begin
Mace := Odeint_eps;

{I will take the same level of accuracy as Odeint for Bsstep, but Odeint uses)
{Ä!i^^Ä7bein9: A0=eps *m+mi whereas}

m'ü^?^35 firf *"° V,f Lues the extreme of methane, i.e. Meto and zero)
£bnSmetoda

}
IUeS""'** UMdl°9ethert0fi"dthezero ^the>

M1 := Meto;
M := Meto; {in case time = 0.0)
dM := 0;
for i := 1 to data do {... loop over all the data)

begin
time := TimeSamplep];
if time = 0.0 then

goto 100; {this should only occur once. I MUST include a test before)
{calling th.s procedure or MetfromTime to insure that the times are in)
{increasing order otherwise both procedure will crash)

dM:=M1; {M1-0.0}
{JüüL"if V- and, ??l£? more accurate vahJe "M" to take the larger}
{expectation of M. Otherwise I might be below the next methane)

{calculated rf the times are very close together}
for j := 1 to jmax do {iteration for one point)

begin {... loop over many iterations)
dM := dM * 0.5;

M := M1 - dM; {| am going at decreasing methane cone, and increasing)
time. But if Met decreases, Fonc(Met,time) will increase. At the beginning}
Fonc(Meto) < 0 [zero - time] therefore if Fonca > 0, that means the new)

{point M is on the other side of the zero.)
Foncmid := Fonc(M);
if Foncmid <= 0.0 then {... M will be the new M1)

M1 := M; {Means that Fonc(M) being >= 0.0, M is still "a" M1)
if (abs(dM) < Mace * M) or (Foncmid = 0.0) then

goto 100;
end; {normally we only reach this end if j=jmax)

{we will not have more than jmax iterations, the loop will stop and}
{output the value obtained so far.)

A28
Appendix A Computer Proaram

writelnfSimpleMetFromTime, too many bisections: time =', time : MW,' Met_cal[\ i: 2,] = ', M •
MW);100: {we are done for this iteration}

Met_cal[i]:=M;
end; {....of the loop over all the data}

end; {... of SimpleMetfromTime}

{$P}
procedure SimpleTCECellfromMet

(var Met, TCE, Cell: InVector;
data: integer);

{INPUT the amount of methane, OUTPUT: TCE, Cell corresponding to Met}
{Typically, I use Met_cal[k], TCE__cal[k], and Cell_cal[k], and data = SetConst[k,1].}
{NOTE that TCE is supposed to be zero in Simple}

var
i: integer;
teta: myreal;

begin
for i := 1 to data do

begin
if Met[i] / Meto <= 0.0 then

begin
writelnCMeti/Meto <= 0.0 in SimpleTCECellfromMet the program stops'); halt;

end;
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm;
TCE[i] := TCEo * exp(teta * ln(Met[i] / Meto));
Cell[G > Cello + Y * (Hm * Va + VI) / VI * (Meto - Met[f]);

end; {...of loop over all the data}
end; {...SimpleTCECellfromMet}

{%%)
{$P}

procedure SimpleDefMetDeriv
(vara:RealArrayMA;

ma: integer;
varTimeSample, Met_cal: InVector; var PDMet: MatDeriv;

data: integer);
{a= the vector of constants INPUT}
{ma = is the quantity of constants. INPUT}
{Met_cal= the values calculated by the model. INPUT}
{PDMet = the matrix of partial derivatives. OUTPUT}
{This procedure will input "time" and output the corresponding Met, TCE, Cell,}
{and all partial derivatives, corresponding to time.}
{NOTE, Met_cal MUST HAVE BEEN DEFINED BEFORE CALLING THIS ROUTINE}

var
i, j, m: integer;

Denom, teta, phi, Met, TCE, Cell, time: myreal;
{time = the independent variable}
{Met, TCE, Cell= the calculated values at "time"}
{ma= the number of constants in vector "a"}

begin
for i := 1 to numb obs do

Appendix A Computer Program A29

forj:=l to numb_const do
PDMet[i,j]:= 0.0;

for i := 1 to data do

begin (T is one row corresponding to TimeSampiern)
, if TimeSamplefi] < 0.0 then

begin

writeln(TimeSamp!er, i: 2, T.' is < zero in SimpleDefAIIDerivs'); half
end;

time := TimeSamplep];
Met := Met_cal[i];
phi:=(VI + Hm*Va)/Vl;
Cell := Cello + phi * Y * (Meto - Met);
Denom := (Km / Met +. (Km + Cello / Y / phi + Meto) * phi * Y / Cell)-
{The denominator of all partial derivatives is identical)
Met_cal[i] := Met;

{1 is Km}

PDMetfi, 1] := (-LN(Met / Meto) + LN(Cell / Cello)) / Denom-
(o is rmj *

{7isY} PDMet[i'3]:='E*Y*(Ce,,0/Y/Phi + Meto)*time/Denom;

Meto)*p™et?-M^
{8 is E}

{9 is Meto}DMe,[i'8J := 'm *Y* (Ce,,°'Y/Phi + Met0) *time' Denom=

Y / Cell) rSüS:91 := ("E *"" *time *Y + Km ' Met0 + LN^''/Cello) + (Km + Celto/Y/phi + Meto)*Phi*
{11 is Cello}

Ce.to-1/Celof/De]™rn;E4mMime/pW

end; {... of loop over all the rows}
end; {...SimpleDefMetDeriv}

procedure SimplePDCellfromPDMet
(var PDMet, PDCell: MatDeriv;

var Met: InVector; ma, data: integer)-
{INPUT: Met, PDMet, ma, data}
{OUTPUT: PDCell}

{SSÄSSf °f Partial denVatiVeS PDMet 3nd Ca,CUlate the «^responding}
var

i, m: integer;
begin

for i := 1 to data do
for m := 1 to ma do

function MetMin

A30

Appendix A Computer Program

{MetMin will not look for a smaller value)
{I limit the number of bisection iteration}

(Mace: myreal): myreal;
{This procedure will find the value of Met when X = 0. Its OUTPUT is "out")
{its INPUT is Mace, the desired accuracy in fraction of the output value.}
{HOWEVER, if MMin is < limit, the procedure output MMin = "limit".}
{It is useless to calculate a value below that with the risk of using it}
{and getting underflowed.}

const
step = 100; {the number by which M1 will be multiplied for}

{eventually getting Cell(M1) and Cell(M2) of opposite}
{signs, "step" MUST BE > 1.0}

StartGuess = 1.0e-120; {the first value by which we start to find MMin}
{ITMUSTBE<Meto}

limit = 1.0e-4900;
jmax = 40;

label
100;

var
dm: myreal;

{dm is the difference between M2 and M1 in bisection}
j: integer; {food for loop}
fact, M, M1, M2: myreal;

{M1, M2: two values of Met such that Celli(M1)*Celli(M2)<0 (opposite signs)}
{fact= the factor by which M1 will have to be multiplied so that we}
{eventually get a Celli of opposite sign i.e. we found M2.}
Cella, Cellb: myreal;
{two value to store the intermediate values of Cell(Mi)}
done: boolean;

function Cell (Met: myreal): myreal;
var

a, b, teta, TCEi: myreal;
begin

if Met / Meto = 0.0 then
begin

writelnfMet/Meto = 0.0 in functon Cell of MetMin*);
MetMin := limit;
goto 100;

end;
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm;
TCEi := TCEo * exp(teta * ln(Met / Meto));
a := (-1 + main / rm / E) * (Met - Meto) + (main * Km / rm / E) * ln(Met / Meto);

b:=(main/E + rt*tox/Y)*(VI + Ht*Va)*Y/VI/rt*(TCEi-TCEo);
Cell := Cello+ Y*(Hm*Va + VI)/VI* a + b;

end;
begin

{The first goal is to find two values of Celli one negative the other positive.}
{Then those two values will be used together to find the zero using the}
{bisection method.}

if Meto = 0.0 then
begin

writeln('Meto = 0.0 in MetMin, the program is stopped'); halt;

Appendix A Computer Program A31

end;
{just a test to prevent problems if Meto is badly assigned}

M1 := StartGuess;

Cella :=Cell(M1);

if Cella=0.0 then
begin

writelnCCella = 0.0"); MetMin := M1;
goto 100; {we are done EH! (celui qui meprise I'improbable, etc...)}

end;
if Cella > 0.0 then

fact :=1/step;
{we will decrease M1 by a factor of 1/step until we find a neg. Cell value)

if Cella < 0.0 then
fact := step;

{we will increase M1 by a factor of step until we find a neg. Cell value)
done := false;

repeat
M2:=M1;
M1 := M2 * fact;
if M1 <= limit then

begin
wrfteln('Before bisection MetMin <= ', limit);

MetMin := limit;
goto 100

end;
Cellb:=Cell(M1);
if Cellb = 0.0 then

begin
wrftelnfCellb = 0.0'); MetMin := M1;
^goto 100; {we are done EH! (celui qui meprise llmprobable, etc...)}

until Cella * Cellb < 0.0;
{%%%% Now we use M1 and M2 for a bisection %%%%}

if fact > 1.0 then {i.e. fact = step so M2<M1}
begin

M:=M1;
M1:=M2;M2:=M;

end;
{now M2 > M1, and I know that Cell(M2) > 0, CelI(M1) < 0}

dM := M2 - M1 ;
for] := 1 tojmaxdo

begin
dM := dM * 0.5;
M:=M1+dM;

if M/Meto = 0.0 then {ne devrait pas arriver}
begin

writelnCMMin is underflowed, it will be set to "limiT);
MetMin := limit;
goto 100;

end;

A32
Appendix A Computer Program

Cella := Cell(M);
if Cella <= 0.0 then {... M will be the new M1}

M1 := M; {Means that Cell(M) being <= 0.0, M is still "a" M1}
if (abs(dM) < Mace * M) or (Cella = 0.0) then

{Mace is the relative accuracy of MetMin so the variation dm must be smaller}
{than Macc*M}

begin
if Cella < 0.0 then MetMin := M + dM

else
MetMin := M;

{I want the UPPER limit of MetMin, such that Cell will be positive. If Cell}
{is negative, I risk calculating log of negative numbers later}

goto 100;
end;

end; {normally we only reach this end if j=jmax}
writeln('pause in MetMin, too many bisections');
readln;

100: {we are done}
end; {... of Metminj

{$P}
procedure derivs

(t: myreal;
var Met, dMdt: RealArrayNVAR); {Return the vector of derivatives dMdt at the point (t, Met).

Both dMdt and t}
{are vectors of size n <= nvar. The program will calculate the values of}
{each variable yi of the vector y at increments of x, and need to be provided}
{with the gradient dydx which is a function of both y and x. In our particular}
{case, there is only one y therefore the vectors y and dydx are of size 1}
var

a, b, TCEi, Celli: myreal;
begin

if MMin <= 0.0 then {This should not occur unless MetMin had a problem}
begin

writeln('problem in derivs, MMin <=0.0 = ', MMin,' the program will stop"); halt;
end;

if Met[1]<= MMin then
dMdt[1] := 0.0

{MMin is calculated as the amount of methane remaining in solution at time}
{going to infinity. Therefore if the numerical procedure attempt to use}
{methane values below MMin, I return the value of dMdt corresponding to}
{very large Met.}

else
begin

teta:=(VI + Hm*Va)*Km*rt/(VI + Ht*Va)/Kt/rm;
TCEi := TCEo * exp(teta * ln(Met[1] / Meto));

a := (-1 + main / rm / E) * (Met[1] - Meto) + (main * Km/ rm / E) * ln(Met[1] / Meto); b := (main / E + rt * tox / Y) *
(VI + Ht* Va)*Y/VI/rr (TCEi-TCEo);

Celli :=CeHo + Y*(Hm*Va + VI)/VI*a + b;
if Celli <= 0.0 then

Celli := 0.0;

Appendix A Computer Program A33

eSV: 'imT'Va+v,)'m'E' ^" Me'1] /,Km •"+Tcs'K<> *M°VK «i
end; (...of dertas)

procedure mmid
(var y, dydx: RealArrayNVAR; {vector of y and dydx}

n: integer; {size of vector y and dydx}
XnSc,?n°t; Tyrea,;, Jxs b the startin9 *•xs+htot tne endpoint)
nstep: integer; {dans bsstep sera <= 96}

{616} V3r y0Ut: RealArrayNVAR): Mxs+htot)}
var

step, i: integer;
x, swap, h2, h: myreal; {x= the intermediate x.}
{swap = an intermediate used to assign new value to yn at each step}
{h2 = 2.0 h, and h= the small step of the discretization of htot}

beg*™'y0: ARea,ArrayNVAR: (intermediate values, yn being a step "h" ahead of ym}

new(ym);
new(yn);

h := htot / nstep; {the discretization of htot in "nstep" steps}
for i :=1 ton do H'

begin
ymA[i]:=y{0;
ynAI0 := y[Q + h * dydx[i] {first step}

end;
x := xs + h;

ncnd?KVS(X*ynA'y0Ut): toutlsusedforthe temporary storage of derivatives It)
{s not how yout was defined however i.e. we just use yout instead of\
{defining a new variable just for this step» '

h2 := 2.0 * h;
for step := 2 to nstep do {general step}

begin
for i := 1 to n do

begin
swap:=ymA[0 + h2*yout[i];

ynA[i] := swap

{sTe?h"SaÄ^} °f ya ^ ^inCreaSeS »that ft fe *^ys a>
end;

x := x + h; {prepares x for the next step}
derivs(x, yn*. yout) {prepare yn and dydx forthe next step}

end, {... of the cycle through "nstep" steps}
for i := 1 to n do

{we are done and will output y(x+ htot)}
yout[i] := 0.5 * (ym A[i] + yn A[i] + h * yout[fJ) ;

dispose(yn);
dispose(ym);

{...Of

A34
Appendix A Computer Proaram

end; {... of mmid}

{$P}
procedure rzextr

(iesl: integer;
xest: myreal; {the step used in bsstep to determine y[iest]}
var yest, yz, dy: RealArrayNVAR;

n, nuse: integer); {"n"= nseq of bsstep. "nuse" = nuse of bsstep.}
{it is the iest time that we call rzextr from bsstep, and this corresponds to the}
{use of nseq[iest] in bsstep.}
{"yest" = the ypest] estimate of y by bsstep. "yz" = is the value of y extrapolated}
{by rzextr, i.e. it is an OUTPUT, "dy" = error estimated by rzextr from the difference}
{between the actual "yz" and the preceding one. This error will be used by bsstep}
{to estimate wether we have reached the required precision, and wether we can stop}

{This procedure input the estimated yest obtained by bsstep using xest. Then it }■
{fits a rational function to all the yest(xest) obtained so far (the xest are stored in}
{RzextrX vector and some constants of the procedure corresponding to yest are stored}
{in RzextrD. Both vector and matrix located outside of the routine), and uses this}.
{function to estimate what would be yest for xest tending to zero. In addition, the}
{routine estimate the error of yest.}

var
ml, k, j: integer; {food for loops}
yy, v, ddy, c, b1, b: myreal;
fx: array[1 ..RzextrNcol] of myreal;

begin
RzextrX[iest] := xest; {save the current xest}
if iest = 1 then {...this is the first point (yest, xest) to enter rzextr}

for j := 1 to n do {for the length of the vector y}
begin

yzfj] := yest[j]; {output = input, rzextr can not extrapolate from one point}
RzextrDQ, 1] := yestfj]; {save the current yest}
dy[j] := yest[j]; {the error is equal to the value (no way to estimate the error}

end
else

begin
if iest < nuse then {... we will take all the points in storage for the curve fit}

ml := iest
else {... we will only take the last "nuse" points}

ml := nuse;
for k := 1 to ml -1 do

fx[k +1] := RzextrXpest - k] / xest;
for j := 1 to n do {evaluate next diagonal in tableau}

begin
yy := yestfj];
v := RzextrDfj, 1];
c:=yy;
RzextrDQ, 1]:=yy;
fork:=2tom1 do

begin
b1:=fx[k]*v;
b:=b1-c;

Appendix A Computer Program A35

if b <> 0.0 then
begin

b:=(c-v)/b;ddy:=c*b;
c:=b1*b

end
else {care needed to avoid division by 0.}

ddy := v;
if k <> ml then

v := RzextrDfl, k]; RzextrDrj, k] := ddy;
yy := yy + ddy end;

dy[j] := ddy;
yzD]:=yy

end
end

end; {... of rzextr}

procedure bsstep
(var y, dydx: RealArrayNVAR;

n: integer;
varx: myreal; htry, eps: myreal;
var yscal: RealArrayNVAR; var hdid, hnext: myreal);
{all those variable have been explained in ODEINT}
{This Procedure makes a numerical integration from the vector y(x) to the vector}
I yix+ntry) The process consists in dividing the big step "htry" in "nseam" eauai «nheton \
ÄlS? y(Sh7' "!eq[0) iS eValU3ted US^ thhStoiAlI and^th?prodqedüS P-}

MMID (modified midpoint method 616). Then a new value "nseqp+11" is chosen and a)

vne^Npfrr(tX
h-
h-YSe,q[i+11" Ca,CUlated- ^ difference ^en yi!l and y "»1» y= at INPUT th.s is the starting value y(x), at OUTPUT it is the end value yfx+htiy)}

{by bsstep. The program permits to have y as a vector of dimension n if we olanl
{to solve several D.Equations at the same time.} aimens,on n » we plan}

{dydx« the vector (size n but for me n=1) of the partial derivatives at "time" x}
{n= the size of the vectors y and dydx, in my case n=1}
{x= the independent variable, in my case "time". It is the time at the beginning}

/htrv «£ A St?P' .and "V'J5 actual,y "yW"the 0UW value of Y will be y(x+htrv))
{htry= the Ax we try to reach. If we do not succeed after "imax" because of too}

{low accuracy, the procedure reduce htry and try again. This gives}
{hdid and hnext, see below.}

{eps= The accuracy is defined in absolute value by Ao = eps x yscalfi]}
{yscal= the vector against which the accuracy is compared, yscal = y[0+ AyTj]}
,..., [Odeint takes care of defining yscal before calling bsstep}
{hd.d= the step Ax actually used by the procedure to succeed in finding y(x+Ax)}

{within the accuracy standard.}
{hnext= the proposed next step, the next time we call bsstep from Odeint.}

{It is not necessarily hdid because to optimize}
{the calculations, hnext could be < or > than hdid J

label
99;

const
imax = 11; {max # of nseq, see below}

A36
Appendix A Computer Program

nuse = 7; {max # of points (y(x+htry, nseqfj]) taken for the extrapolation}
shrink = 0.95e0;
grow= 1.2e0; {the fractions to decrease or increase the step htry}

var
j, i: integer; {food for FOR and WHILE loops}
xsav, xest, h, errmax: myreal;
Maxh: myreal; {the maximum step to avoid having negative methane values}

{&&&&&& my addition &&&&&&&&}
ysav, dysav, yseq, yerr: ARealArrayNVAR;
nseq: array[1 ..imax] of integer;
goforit: boolean; {when wrong we escape the routine without having finished}

begin
new(ysav);
new(dysav);
new(yseq);
new(yerr);
nseq[1] := 2;
nseq[2] := 4;
nseq[3] := 6;
nseq[4] := 8;
nseq[5] := 12;
nseq[6] := 16;
nseq[7] := 24;
nseq[8] := 32;
nseq[9] := 48;
nseq[10] := 64;
nseq[11] := 96;
h := htry; {the big step to make by this run of the procedure}
xsav := x; {xsav is the initial value of x. This value will of course remain constant}

{for all nseq.}
for i := 1 to n do

begin {just saving the starting values}
ysav*fj]:=y[i];
dysav^p] := dydxfi]

end;
goforit := true;
while goforit = true do

{this loop turns on indefinitely unless we escape from it either by}
{GOTO or by displaying an error message, and turning goforit to false.}
{GOTO will be used when the discretization of h was small enough}

{to permit an estimation of y that is within precision limits.}
begin

{&&&&&&&&&&&&&&&&&& addition &&&&&&&&&&&&&&&&&&&&&&}
{Its purpose is to prevent ysav (methane) to be below its minimum value}
{when time go to infinity (MMin). If it were below MMin, then Cell would become}
{negative, and the corresponding derivative would be foolish. In derivs}

{I have stated that if Met < MMin the procedure will return the value}
{dMdt = 0.0. For that reason the test below will stop the program if)
{that happens. Note that MMin calculated by MetMin can not be lower than}

{a certain constant "limit" in this procedure, otherwise there are conditions}
{under which the actual MMin would be below the smallest real (extended)}

Appendix A Computer Program A37

{that Pascal supports.}

If dysavA[1] = 0.0 then

{to avoid division by zero in the following step}
begin begin

writelnfdysav = 0.0 in bsstep, Maxh can not be estimated, the program stops'); halt-
end;

Maxh := (MMin - ysavA[1]) / dysavA[1];
if h > Maxh then

h := Maxh;
{&&&&&&&&&&&&&&&&&& End of addition &&&&&&&&&&&&&&&&&&&&&&}

begin
mmid(ysavA, dysaVS n, xsav, h, nseqp], yseqA);

{given the big step to make (h), and the number of substeps (nseq[i]), mmid)
{give "yseq" the estimated y(xsav + h)} »HIJJ."»"WJ

xest:=sqr(h/nseq[i]);
{5?E?IRuVil' c*}?1^ a ««ve y(h/nseq[i]) for different nseq (it keeps}
rKim nfni31"^ 3t P[eYious nsec1in memory) and will extrapolate the value}
{yflim nseq->mf) each time we add a larger nseq. In reality, because the}
{error of mmid is in sqr(n/nseq) the routine use xest as variable. In addition)

t k Se,Wll0utpul "ye.rr"' an estimation of the error of the estimation.}
{step!} V Companng the es«irnated y(htry) obtained at two following}

rzextr(i, xest, yseqA, y, yerrA, n, nuse);
if i > 3 then {we enter the loop in which a possibility to stop exist, but to)

{prevent this to occur too soon due to a suspect early)
{convergence, this is only possible if i>3.}

begin
errmax := 0.0; {pas tres clair}
for j := 1 to n do

if errmax < abs(yerrArj] / yscalQ]) then
errmax := absfyerr^ij] / yscairj);

{errmax= 0 therefore this checks if yerrj is not equal to zero due to}
{truncation. I still do not see clearly what is done here}

errmax := errmax / eps; {if errmax is effectively zero, it remains so)
{scale accuracy relative to tolerance}

if errmax < 1.0 then
begin {the step has converged}

x := x + h;
hdid := h;

ftS*«,"6 dfne.the ,b'3 step "nne*t" »hat will be used as "htry" the next)
{time this routine is called by ODEINT}

if i = nuse then
hnext := h * shrink

else rf i = nuse -1 then
hnext := h * grow

else {...i is neither nuse nor nuse -1}
hnext := (h * nseq[nuse -1]) / nseqfi];

goto 99 {this is the normal return}
end {...of the test checking if the error is OK and defining "hnext"}

end {...of the test (i>3) that permits to enter the OK test}

A38
Appendix A Computer Program

end; {...of the loop that increases nseqi)
{if we are here, this means that we have reached nseq[imax] = 96 and still}
{do not have enough accuracy to exit. Therefore we must reduce "h" which was}
{previously defined as h:= htry.}

h := 0.25 * h;
for i := 1 to (imax - nuse) div 2 do {i.e. for 1 to 2 do. NOTE "div" is integer "/"}

h:=h/2; {idem to h:= h/4. This is a strange "for" because (imax-nuse)/2}
{may not be an integer depending on imax and nuse definition.}

{overall and because of the values of imax and nuse, we have divided h by 16}
if x + h = x then

begin
writeln('pause in routine BSSTEP');

writeln('step size underflow, h=0'); writeln('press <retum> to quit the program"); readln;
halt;

{goforit := false;}
end

end; {.. of while goforit = true loop}
99:

dispose(yerr);
dispose(yseq);
dispose(dysav);
dispose(ysav)

end; {... of bsstep}
{^%%%%%%%%%%%%%%%%°/o%%%%%%%%%%%%%%%%%%%%%%<>/0%%0/00/0'>/0)
{$P}

procedure odeint
(var ystart: RealArrayNVAR;

n: integer;
x1, x2, eps, hi, hmin: myreal; var nok, nbad: integer;

var Last_h: myreal;
var OdeintXp: FOROdeintXp; var OdeintYp: FOROdeintYp);
{page 613}
{ystart = a vector of starting values of the functions y*s. it is replaced by its value}
{at x2 at the end of the routine OUTPUT}
{n = the size of ystart, or the number of functions y to be integrated simultaneously}
{x1 and x2 = the limit of integration}
{eps = the accuracy: Ao = eps x yscalfl]}
{hi = a guessed first stepsize}
{hmin = the minimum allowed stepsize}
{nok, nbad = the number of good and bad (but retried and fixed) steps taken. OUTPUT}
{Last_h = the last step used by bsstep before we quit odeint. It will be used as "hi"}
{the next time we call Odeint.}

label
99;

const
maxstp = 10000;

{the maximum number of steps that will be made to go from x1 to x2}
tiny = 1.0e-30;

{to be added to a number to compensate for roundoff error}
var

Appendix A Computer Program A39

nstp, i: integer; {food for FOR loop}

xsav, x, hnext, hdid, h: myreal;

{xsav=the last x saved. x= is xi}
{hnext = the estimated next stepsize to carry out next bv the intenratirmi
Ked outESSS°K!" eTOr*aSSffÄut esSpSally}
ifhlZl ■ IbssteP- h= the stePsuggested to bsstep by odeint (usua v)
{the prev.ous hnext that bsstep suggested at the end oftewo*} (W

yscal, y, dydx: ARealArrayNVAR-

/odpin P T ?* = the VeCt0rS 0f the functions *•and their derivative dydxi.}
{odeint W.II only ou5)uty(x2), all the intermediate values y(xO yscalfxn andyn
/a*L Pn^HH^ °f °deint'3nd are theref0re «W^'ÖS'ÄSs}
SI ctrirä0f re,10^ ^tart wi" be redefined w|th the values of y(x2)}

be in B reSPOnSe °f the US6r t0 S°me ""^l
new(yscal);
new(y);
new(dydx);

x {those variable are dynamic, so "new" create their place in memory}

if x2 >= x1 then
h:=abs(h1)

else

nok ^'?S(h1,: {make sure we integrate in the right direction}

nbad := 0;
OdeintKount := 0; {no step stored}
for i := 1 to n do

ytO := ystart[i]; {y(x1) is loaded}
if OdeintKmax > 0 then

xsav := x - 2.0 * OdeintDxsav;

wfi!f te £? l0«'""51"6 that tne first ^ep will be stored later in the I

for nstp := 1 to maxstp do

{this is the main loop, which will run from x1 to x2 unless more than maxstp}
{steps are needed, in which case the program will stop}
begin K'

derivs(x, y\ dydxA);

foM Iflfn A*** ySCaI' bUt b8Step Wi" h3Ve t0 reca" * for fts own us*)
yscalA[0 := abs(y*[Q) + abs(dydxA[i] * h) + tiny;

{this line defines the scaling used to monitor accuracy. When v is lame fhPi
£e error is proportional to y, but when y comes to zero the eS is f}

{proport.or.al to the Ay represented by the step h. Otherwise ywoS never}

i fh3n Je-» ?™ t0 Z!L° b6CaUSe the a,lowed error would aIs° come to zero } {I think tiny" is just added to compensate for roundoff error}
if OdeintKmax > 0 then {... we are allowed to store the intermediate result}

if abs(x - xsav) > abs(OdeintDxsav) then {...we will store the result} '
rf OdeintKount < OdeintKmax -1 then {..we still have enough room}

A40
Appendix A Computer Program

begin
OdeintKount := OdeintKount + 1;
OdeintXp[OdeintKount] := x; {we store the x value}
for i := 1 to n do

OdeintYp[i, OdeintKount] := yA[i]; {we store the yi value}
xsav := x {xsav represents the last x value that had been stored]}

end; {...of storage process started with "if OdeintKmax > 0"}
if(x + h-x2)*(x + h-x1)>0.0then

{...the step overshoot the end (x2), so we cut down the stepsize}
h := x2 - x;

{%%% here starts the calculations that will make one Ax step.}
{What we did before was defining the wanted accuracy, save intermediate}
{results if needed, and check that the step did not overshoot the}
{end of integration x2.%%%}

bsstep(yA, dydx\ n, x, h, eps, yscalA, hdid, hnext);
if hdid = h then

nok := nok + 1 {means we supplied bsstep with an appropriate "h"}
else

nbad := nbad +1;
if(x-x2)*(x-x1)>=0.0then

{...we are done}
begin

for i := 1 to n do
ystartp] := yA[i]; {ystart is changed to y(x2)}

if (OdeintKmax - OdeintKount) > 0 then {%%%%%de mon cru%%%%}
{...we save the final step, after checking we still have 1 place left}

begin
OdeintKount := OdeintKount + 1;
OdeintXpfOdeintKount] := x; {we store the last x value}
for i := 1 to n do

OdeintYp[i, OdeintKount] := yA[i]; {we store the last yi value}
{... of saving the last step}

Last_h := hnext; {I want to export the last}
{step in Odeint so that in its next call corresponding to the next big step}
{from time_obsi to time_obs(i+1) bsstep will start with an appropriate}
{first step.}

goto 99 {normal exit}
e nd; {...of the test checking if we were done}

{%%% we continue with the following if we are not done %%%}
if abs(hnext) < hmin then

{...the next h we were supposed to use is too small}
begin

writeln('pause in routine ODEINT);
writeln('stepsize is too small, the program will stop');
halt;

end; {... of test if hnext was getting too small}
h := hnext; {This value will be used in the next loop}

e nd; {of the main loop which will turn a maximum of "maxstp" steps}
writeln('pause in routine ODEINT — too many steps');
writeln('press <return> to continue and end the routine');
readln;

end;

Appendix A Computer Program A41

99:
dispose(dydx);
dispose (y);

dispose(yscal)

end; (...odeint)

procedure MetfromTime
(varTimeSample, Met_cal: InVector;

and the) *** '"le9e')' {'NPUT: ,he initial w*™«* and constants of the mode! (global variables),
{vector of the times at which observations were made.}

{OUTPUT: the concentrations of methane predicted by the model}
{at the different times at which we took some samples}

var

Last_h: myreal; {the last step carried out by bsstep in one run of odeint)
j: integer; '

hi: myreal; {To enable an update of hi without modifying)
{Odeint_h1}

begin
MMin := MetMin(MMinAcc);
Met[1] := Meto; {derivs is in my case defined with n=1. Met[1l is used)

{thJ*!iZ°«dlir\}0 cal<5tJla,e ,he me,hane concentrations at all}
ffitfS^S9?8- ^tLca,[1] fe on|y a P^1'0"1^ val"e of Met[1]} {at the üme at which a sample was taken.}

Met_cal[1] >: Meto; {There is no uncertainty on the first value of Met cal[1]}
{NOTE that Met.cal would be a (data, n) matrix if no1}

tteg := timeo; {defines tbeg needed for the first call of odeint)
hi := Odeint_h1;
forj:=ltodata-1do

{call odeint to estimate Met_cal of all observations (a number "data"))
begin "

nok := 0;
nbad := 0; {reset nok and nbad}
tend := TimeSample[j +1];

Ä tbe9, ,end' Odeint.eps. hi, Odeint.hmin, nok, nbad, LastJ, OdeintXp*. OdeintYp*);

hi := Last_h;

{by doing this I permit Odeint to start direcUy wfth an optimum "h" the)
{next time the routine is called.}

Met calD +1] := Met[1]; {Odeint output the value Met[1] which correspond to "tend")
end, {....of the loop to screen all the experimental sampling times)

end; {... of MetfromTime}
|%%}

procedure TCECellfromMet
(var Met, TCE, Cell: InVector;

data: integer); {INPUT the amount of methane, OUTPUT: TCE Cell corresDondinn tn Mo»
{TypICally, I use Met.cal, TCE_cal, and Cell_cal.) corresponding to Met}

var

A42
Appendix A Computer Program

teta, a, b: myreal;
i: integer;

begin
for i := 1 to data do

begin
if Met[i] / Meto <= 0.0 then

begin
writelnfMetl', i, T/Meto <= 0.0 in TCECellfromMet the program stops'); halt;

end;
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm;
TCEp] := TCEo * exp(teta * ln(Met[i] / Meto));

a>=(-1 + main/ rm/E)*(Met[i]- Meto) + (main* Km /rm/E)*ln(Metfj]/ Meto); b:=(main/E + rt*tox/Y)
(VI + Ht * Va) * Y / VI / rt * (TCE[i] - TCEo); Cellp] := Cello + Y * (Hm * Va + VI) / VI * a + b;

end; {.. of loop over all the data}
end; {...TCECellfromMet}

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
{$S CurveFit}
{ . ._ _ ...}

{%%%%%%%%%%%%%%%%%%%%%%%%V0%%%%%%%%%%%Vo%%%%%%%%%}
{$P}

procedure DefMetDeriv
(k: integer;

var lista: IntegerArrayMFIT;
vara:RealArrayMA;
mfit: integer;
var TimeSampIe, Met_cal: InVector;
var PDMet: MatDeriv;
data: integer);

{"lista"= the vector indicating which constant will be varied by MRQMIN. INPUT}
{a= the vector of constants INPUT}
{"mfit"= is the quantity of these constants. INPUT}
{Met_cal, TCE_cal, Cell_cal= the values calculated by the model. OUTPUT}
{PDMet, PDTCE, PDCell = the matrices of partial derivatives. OUTPUT}
{Its purpose is to define all the partial derivatives that will be needed for the}
{least square calculation. It would be wasteful to calculate the partial derivatives}
{separately for each time point, like MRQMIN expects FUNCS to do. Wasteful because}
{to calculate Met_cal[i] numerically, we will have to calculate all the Met_cal[j] for}
{j<i anyway. So it is better to do the numerical calculation once and store the results.}
{The routine also calculates the values of Met, TCE, and Cell at each timeTj].}
{Then FUNCS will simply read the results and give them to MRQMIN.}
{DefAIIDeriv will calculate all the derivative NEEDED by MRQMIN. i.e. not the partial}
{derivative with respect to a "constant" constant. Therefore, DefAIIDeriv will use}

{the first "mfit" data stored in "lista" to determine which derivatives are needed. Then}
{it will give the value zero to all the partial der. corresponding to "constant" constants.}
{Zero is indeed the correct value because it makes y independent of a variation of one}
{of these constants.}

{The calculations will be made for one set of constants i.e. for one particular vector "a".}
{The routine will COMPLETELY REDEFINE the Km, Kt, rm,... from the values of "a" given}
{as input. Therefore all the following calculations will be made using the values of}
{constants found in "a".}

{main OUTPUT:}

Appendix A Computer Program A43

(MeUal the actual values)

{PDMet the partial derivatives)
var

delta: myreal;
i, j, m, entry: integer;
VMetPD: "InVector;

KPnntiS cnee
Dn

eMl? 9alcu,lat.e the value o' one vector of the matrix PDMet.}
I can not use PDMet directly in -derivative" because this procedure only}

{input InVector vectors, and not matrices. Therefore MetPD will be used as}
1 . %%%%%%%%%%%%%%%%%}

procedure derivative (var TimeSample, Metcal: InVector;
delta: myreaO;

{This procedure assumes that we have already calculated the theoretical values}
{for methane using the current values for the constants. Those results}
{are expected to be found in the array Met_cal. Then}
{the procedure calculates new values for this record, but with one constant!
Sxx^f^ValUe t^™**«)- «*is constant is XXthenSi value}
RÄuo

e
ra

re^,lem
(
ab0ve can ,here,ore be considered to be 1 vector} {RMet(XX). The result of the first steps in this routine is a}

{new vector whose values are equal to RMet(XX + delta),}
{. The second step in the routine consists)
{in estimating the value of the derivatives of the vector with respect to XX bv l

SeÄ (nereiore trie OUTPUT of the procedure is the vector of the derivatives}
var ■'

i: integer;
begin

if delta = 0.0 then
begin

writeln('delta = 0.0 in "derivative"*); halt;
end; {I do not want to divide by zero later, better stop now)

MetfromTime(TimeSample, Metcal, data)-

ÄÄKTC! -A5 ** °'calc"la,in9for each time point a theoretical}
{KreS

for i := 1 to data do
MetcalJT] := (Metcafp] - Met_cal[i]) / delta;

end; {... of derivative}
{ . %%%%%%%%%%%%%%%%%}

procedure TestDelta;
{its purpose is to test if delta = 0.0.. ff it is, probably because one of the)
{constant is zero, then a default value is assigned to it.}

begin
if delta = 0.0 then

begin

ÄSS)SS^Sff£^!S^'h3S a de,ta ■ 2er°'" D^etDerivO; writelnca default va.ue
delta := defaultDelta;

end;
end; {...of TestDelta}

{ . %%%%%%%%%%%%%%%%%}

A44

Appendix A Computer Program

begin {of DefMetDeriv}
new(VMetPD);
for i := 1 to numb_obs do

begin
for j := 1 to numb_const do

PDMet[i, j] := 0.0;
VMetPDA[i] := 0.0;

end;
MetfromTime(TimeSample, Met_cal, data);

{Calculate the theoretical values of Met, TCE, and Cell using the}
{constants defined above.}

for i := 1 to mfit do
{will calculate the partial derivative corresponding to the "mfit" first}
{constants indicated in "lista".}

begin
{I must input a test because Meto, TCEo, and Cello may have different positions}
{in lista depending on their version. But I know we work with set "k"}

if lista[f] > 8 then {... ft may represent Hm, HI, or several Meto, TCEo, Cello, Va.VI}
begin

if (listaTJ] = 9) or (lista[i] = 10) then
begin

writeln('ERROR in DefMetDeriv lista points to Hm or Hf);
halt;

end
else if (listati] = SetConst[k, 2]) then entry := 9 {Meto}
else if (listaTJ] = SetConstfk, 3]) then entry := 10 {TCEo}
else if (listaTJ] = SetConst[k, 4]) then entry := 11 {Cello}

else if (lista[i] = SetConst[k, 5]) or (Iistap] = SetConst[k, 6]) then
begin

writeln('ERROR in DefMetDeriv, lista points to Va or VI');
halt;

end
else

begin
wrfteln('ERROR in DefMetDeriv, lista points to an unknown of this set:'); writeln('lista[\ i: 3,1 points to'
lista[i]: 4, * and the set # is :', k: 3); writelnCVous allez fitre justement puni YEK, YEK, YEKI! BOOMn-

haft;
end;

end {...of if lista >8}
else {Gsta <= 8}

entry := listaTJ];
case entry of

1: {Km is aTJistaTJJJ, when listaTJ] = 1}
begin

delta := a[Iista[iTj * RelDelA[lista[iTJ * fraction;
TestDelta;
Km := aflistapTJ + delta;

{I increase Km by a fraction of its previous relative increase}
{from the last call of MRQMIN. If there has not been an initial call to}
{MRQMIN, RelDelATJ] will be equal to "FirstAccr". This initialization}

Appendix A Computer Program A45

{must be done at the beginning of the program.}
derivative(TimeSample, VMetPD\ delta);

Km := allistapD; (give back its original value to Km)

2: {Kt}
begin

delta := a[Iista[i]] * RelDelA[lista[i]] * fraction; TestDelta;
Kt := a[lista[0] + delta;

derivative(TimeSample, VMetPD*. delta); Kt := aTjistap]];
end;

3: {rm}
begin

delta := a[lista[i]] * RelDelA[lista[iJ] * fraction; TestDelta-
rm := a[lista[ij] + delta;

derivative(TimeSample, VMetPD*. delta); rm := a[lista[i]];
end;

4: {rt}
begin

delta := a[lista[f]] * RelDelA[lista[0] * fraction; TestDelta-
rt:=a[lista[i]] +delta;

derivative(TimeSample, VMetPD*. delta); rt := a[lista[i]];
end;

5: {main}
begin

delta := a[lista[i]] * RelDelA[lista[G] * fraction; TestDelta-
main := a[lista[i]] + delta;
derivative(TimeSampIe, VMetPD*. delta); main := a[lista[n];

end;
6: {tox}

begin
delta := a[lista[i]] * RelDelA[lista[i]] * fraction; TestDelta-

tox := apistapH + delta;
derivative(TimeSample. VMetPD*. delta); tox := allistarm-

end;
7: {Y}

begin
delta := a[lista[i]] * ReIDelA[lista|i]] * fraction; TestDetta-

Y:=a[lista[0] +delta;
derivative(TimeSample, VMetPD*. delta); Y := a[lista[i]];

end;
8: {E}

begin
delta := a[lista[i]] * ReIDelA[lista[0] * fraction; TestDelta;

E:=a[lista[i]] +delta;
derivative(TimeSample, VMetPD\ delta); E := a[lista[i]];

end;
9: {Meto}

begin
delta := a[lista[i]] * ReIDelA[lista[|J] * fraction; TestDelta;
Meto := a[lista[i]] + delta; derivativefTimeSample, VMetPD*. delta);

A46
Appendix A Computer Program

Meto := a[lista[i]];
end;

10: {TCEo}
begin

delta := a[lista[i]] * RelDelA[lista[i]] * fraction; TestDelta;
TCEo := a[lista[i]] + delta; derivative(TimeSample, VMetPD*. delta);
TCEo := a[lista[i]];

end;
11: {Cello}

begin
delta := a[lista[iTJ * RelDelA[lista[fJ] * fraction; TestDelta;
Cello := a[iista[iJJ + delta; derivative(TimeSample, VMetPDA, delta);

Cello := a[lista[i]];
end;

end; {... of Case *** of}
for m := 1 to data do

{VMetPD will be loaded with partial derivatives corresponding}
{to constant "i", so I can now define the column Y of the matrix of partial}
{derivatives.}
{NOTE that in this definition, the column # follow "entry", and not the integer}
{values corresponding to a, aName, aMax, aMin. (at least for integer > 8.}
PDMet[m, entry} := VMetPDA[m];

end; {... of the loop over the "variable" constants of lista.}
{Concerning the "constant" constant of lista, all the partial diff.}
{corresponding to them had been set to zero at the beginning of}
{the procedure.}

dispose(VMetPD);
end; {... DefMetDeriv}

{%%}
{$P}

procedure PDTCEfromPDMet
(var PDMet, PDTCE: MatDeriv;

var Met, TCE: InVector;
ma, data: integer);

{INPUT: Met, TCE, PDMet, ma, data}
{OUTPUT: PDTCE}
{takes the matrix of partial derivatives PDMet and calculate the corresponding}
{matrix PDTCE}

var
teta: myreal;
i, m: integer;

begin
teta:=(VI + Hm*Va)*Km*rt/(VI + Ht*Va)/Kt/rm;

{call TCEfromMet as an alternative if I do not calculate TCE InVector}
{by writing TCE:= TCEfromMet(Met[i]);}

for i := 1 to data do
for m := 1 to ma do

PDTCETj, m] := teta * TCE[i] / Met[i] * PDMetfi, m];
end; {...PDTCEfromPDMet}

{%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o%%%%0/o%%0/o%0/o%%%%0/o0/o%}

Appendix A Computer Program A47

{$P}
procedure PDCellfromPDMet

(var PDMet, PDCell: MatDeriv;
var Met, TCE: InVector; ma, data: integer)-

{INPUT: Met, TCE, PDMet, ma, data)

(OUTPUT: PDCell]
Wri ^n^n Partial derivatives PDM* and calculate the corresponding}
{matrix PDCell. Uses equation 21 for dX/dc and dX/da = dX/dc*dc/da)

var '
dXdC: myreal;
i, m: integer;

begin

{I may want to call TCEfromMet as an alternative if I do not calculate TCE InVector}
{by writing TCE:= TCEfromMet(Met[i]);} 'nveciorj

fori:=1todatado
begin

PDCell[i, m] := dXdC * PDMetfl, m];
end; {... of loop over all data}

end; {...PDCellfromPDMet}

procedure OneSetSimpleCalc
(k: integer;

vara:RealArrayMA;
var TimeSample, Met.cal, TCE.cal, Cell.cal: InVector; var PDMet PDTCE PDCell- MatDprW-

KS n? 7" d°-f''the CalCUlati0nS (bef0re a CuiveFrt> that CSnd? l
to ONE set of values V with the current values of the vector "a" This is)

{done only using the Simple formula.}
{OUTPUT: Met.cal, TCE.cal, Cell.cal, PDMet, PDTCE, PDCell}

SK8 Mfn!5at Vw!nd,V1, Met0' TCEo-and Cell° can vary between sets}
mS » h

n0t-!leued t0 keep in memory PDMet, PDTCE, PDCe» because)
föJSSÄ^^0^?8^in the final PD* matrix *alS5 {be exported to mrqmm. Forthat reason at each "k", those matrices}

{will be erased by the calculation of the new PDmatrices}
begin '

CheckConst(a, aName, ma);

5 £%£$£?«"*> ,0r Va'UeS <= °-°thal ™* crash «» program}

{var aName: StringArrayMA;}
{ma: integer}

DefKmfromA(k, a);
{vara:RealArrayMA}
{Redefine the constants Km, Kt,... from the current values of "a"}
{"a" will be changed by each step of the least squares.}
{Even more importantly, this function defines the Meto, TCEo Cello)

{va, VI needed by each set i.e. as a function of "k"}
SimpleMetfromTime(TimeSample, Met_cal, SetConst[k, 1])-

{var TimeSample, Met_cal: InVector;}

A48

Appendix A Computer Program

{data: integer}
SimpleTCECellfromMet(Met_cal, TCE_cal, Cell_cal, SetConst[k, 1]); {var Met, TCE, Cell: InVector; }

{data: integer}
SimpleDefMetDeriv(a, ma, TimeSample, Met_cal, PDMet, SetConst[k, 1]);

{var a: RealArrayMA;}
{ma: integer;}
{var TimeSample, Met_cal: InVector;}
{var PDMet: MatDeriv}

{data: integer}
{it defines all the derivative and the expected Met, TCE and Cell from}
{the simple formula.}
SimplePDCellfromPDMet(PDMet, PDCell, Met_cal, ma, SetConst{k, 1]); {var PDMet, PDCell: MatDeriv;}
{var Met: InVector;}
{ma, data: integer}
PDTCEfromPDMet(PDMet, PDTCE, Met_cal, TCE_cal, ma, SetConst[k, 1]); {var PDMet, PDTCE:
MatDeriv;}

{var Met, TCE: InVector;}
{ma, data: integer}

{This procedure is the one of the complete model. There is no such}
{procedure for Simple, because by definition TCE is zero in it.}
{But of course if I put TCEo = 0.0,1 will not get anything from this.}

end; {...OneSetSimpIeCalc}
{%%o/0}
{$P}

procedure OneSetCalc
(k: integer;

var a: RealArrayMA;
var TimeSample, Met_cal, TCE_caI, Cell_cal: InVector; var PDMet, PDTCE, PDCell: MatDeriv);
{This procedure will do all the calculations (before a CurveFft) that correspond}
{to ONE set of values"k" and with the current values of the constant vector "a".}
{This is done only using the complete formula.}
{Remember that Va and VI, Meto, TCEo.and Cello can vary between sets}
{Also, I do not need to keep in memory PDMet, PDTCE, PDCell, because}
{their results will be compressed in the final PDX matrix that will}
(be exported to mrqmin. Forthat reason at each "k", those matrices}
{will be erased by the calculation of the new PDmatrices.}

begin
CheckConst(a, aName, ma);

{Will screen all the constants for values <= 0.0 that may crash the program}
{var a: RealArrayMA}

{var aName: StringArrayMA;}
{ma: integer}

DefKmfromA(k, a);
{var a: RealArrayMA}
{Redefine the constants Km, Kt,... from the current values of "a".}
{"a" will be changed by each step of the least squares.}
{Even more importantly, this function defines the Meto, TCEo, Cello,}

{Va, VI needed by each set i.e. as a function of "k"}
{MetfromTime(TimeSample, Met_cal, SetConst[k,1]);}

{var TimeSample, Met_cal: InVector;}
{data: integer}

Appendix A Computer Program A49

{It is useless to call MetfromTime now because DefMetDeriv calls it anyway}
DefMetDeriv(k, lista, a, mfit, TimeSample, Met_cal, PDMet, SetConstfk, 1]);

{k: integer}

(var lista: IntegerAnrayMFIT}
(vara:ReaIArrayMA;}
{mfit: integer;}
{var TimeSample, Met_cal: InVector;}
{var PDMet: MatDeriv. Remember PDMet will be recreated each time i e}

{its value will not be kept in memory}
{data:integer}

{it defines all the derivative and the expected Met, TCE and Cell from}
{tne simple formula.} '

TCEC{edtfSSr}LCa,'TCELCal' Ce'LCa1, Se,C0nstfk'1»: <var Met ■TCE • Cell: InVector; }

PDCel^mP^PDMet, PDCeil, Met_ca., TCE.cal, ma, SetConst[k, 1]); {var PDMet. PDCell:

{var Met, TCE: InVector;}
{ma, data: integer}

MaK^™*™* ""^ "^ ^-^ ^ Set°0nS^ 1» <var PDM<* ™TCE:
{var Met, TCE: InVector;}
{ma, data: integer}

end; {...OneSetCalc}

procedure DefFunclnput
(simple: boolean;

vara:RealArrayMA;
varSetToX:Setlnteger3;
var SetX: IntegerArrayNDATA;
var ndata: integer; {var because I calculate it}
varXcal: RealArrayNDATA;
varPDX:XMatDeriv);

{Will make all the calculations for all the sets given a certain constant)
{vector "a"}

{INPUT: as GLOBAL variable: TimeSample (i.e. for each set); SetConst}
{(pointers to "a")} '

jsimple= if true, I use the simple model, if wrong I use the complete model}
{a= the vector of all the constants with their current values}
{SetTox, SetX = are used to transform the calculations results into vectors}

{of dimensions adequate for mrqmin use. They are defined in)
{MakeMrqVector.}

{ndata = the total # of observations input in mrqmin (Met+TCE+CEII)}

{Xcal= the vector of the predicted values (it correspond to Xobs, the}
{observed values}

{PDX= the matrix of the PD with respect to the constants}
var

c, k, i, t, m, b: integer;
begin

A50

Appendix A Computer Program

t := 0;
for k := 1 to numbSet do

begin
if simple then

OneSetSimpleCalc(k, a, TimeSample[k]A, Met_calA, TCE_calA, Cell_calA, PDMetA, PDTCEA, PDCellA) else
OneSetCalc(k, a, TimeSample[k]A, Met_calA, TCE_calA, Cell_calA, PDMetA, PDTCEA, PDCellA);

{These procedure calculate everything for ONE set i.e. also Metcal, TCEcal...}
{Note that they are sensitive to "k" and will automatically choose the right}
{Meto, TCEo, Cello, Va, and VI corresponding to "k".}

{%%%% below, I start creating the INPUT stuff for Mrqmin %%%%%%}
if k = 1 then

m:=0
else

m^SetToXIk-1,3];
{a test necessary for the first call from i:=1 to SetToX[k,1]}

f or i := m +1 to SetToX[k, 1] do {Met data}
begin

t:=t + 1;
Xcalft] := Met_calA[SetX[t]];
for c := 1 to 11 do

PDX[t, c] := PDMetA[SetXIt], c];
{NOTE that PDMet, PDTCE, and PDCell are precisely defined from}
{1 to 11:9,10,11 being for Meto, TCEo, Cello. The separations of}
{PD belonging to different versions of Meto, TCEo, and Cello will}
{be made in Funcs, not in this routine.}
end;

for i := SetToXlk, 1] +1 to SetToX[k, 2] do {TCE data}
begin

t:=t + 1;
Xcalft] := TCE_calA[SetX[tD;
fore >1 to 11 do

PDX[t, c] := PDTCEA[SetX[t], c];
end;

for i := SetToXTk, 2] +1 to SetToXlk, 3] do {Cell data}
begin

t:=t + 1;
Xcaltf] := Cell_calA[SetX[t]];
fore :=1 to 11 do

PDX[t, c] := PDCellA[SetX[t], c];
end;

end; {... of loop K over all sets}
end; {... of DefFunclnput}

{%%%%%%%%%%%%%%%%o/0o/oo/o.^^^^
{$P} '

procedure Funcs
(pos: integer;

vara:RealArrayMA;
varXcal: RealArrayNDATA;
varPDX:XMatDeriv;
ma: integer;

Appendix A Computer Program A51

var yfrt: myreal; {it is a bad mistake not to put "var": see below!
var dyda: RealArrayMA); '

{INPUT}

(pos=the position of the independent variable (timeX) in its vector. We need}
{to know for each time yfrt and dyda are needed, but we only need the }

ÄtfrÄ lime' n°} ^ absolute value- Le-the absol"te value)
fSSS^'SSSS^mpos',0 read in the matrices and '"Vector>

{a= the vector of "constant"}
{Xcal= the vector of predicted (calculated) values}
{PDX= the matrix (11 columns ONLY) of partial derivatives}
K'afial wyk °! Funcs is to take out of the 9,10, and 11 columns!
{of PDX the partial derivatives corresponding to different version}

{of Meto, TCEo, Cello.}
{ma= the number of constants in vector "a"}

^McTSfJ? ^Ca-USe d^a Wi" £ave ,he partial derivatives with}
{OUTPUT? S and Cell0->>>>>»}

lÄT^T?ICUlated Va'Ue 3t "timeX[P°s^ Pa9e 577 there is no "Var" before ft i e}
{bv «?n^a TPHraTeterrUld be "NTERNAL to the procedure and not modified)
{by funcs. Therefore yfrt would not be output by funcs even though ™alüe)

{partial denvatives defined by DefAllDenV} 'nances or j

El* thl^e!, ?Sfined SUbr°Utine that Wi" provide mrc'min with »he} (£e
0

PTd,Cted by the model- and the Partial derivative of the)
{model with respect to the constants at the "time" time[pos] \

ffiSJSn^,10^ ha,S 3nly ca,culated the Partial derivatives with respect)
{to ^constants described in "lista", all the other derivatives were se?S 0 0.}

102;
var

i, k, myset: integer;
begin

for i := 1 to ma do
dydafi] := 0.0;

yfrt := Xcalfpos];
for i := 1 to 8 do

dydafi] := PDXfpos, i];

f°fokr i=Jll to™ do56' d° {findi"9 ,n WhlCh Set (mySe,) thiS d3ta belon9s}

begin

{the double loop K, I, starts with the lowest values of SetToX)
if pos <= SetToXIk, 0 then '
begin

myset := k;
goto 102;

A52

Appendix A Computer Program

end;
end;

102:
{SetConst[myset, 2] (for example) gives the adress in the vector "a"}
{of the version of Meto used by the Set "myset".}

dyda[SetConst[myset, 2]] := PDX[pos, 9]; {Meto}
dyda[SetConst[myset, 3]] := PDX[pos, 10]; {TCEo}
dyda[SetConst[myset, 4]] := PDX[pos, 11]; {Cello}

end; {funcs}
{%%%%%%%%%%%%%%%%%%%%%%°/0o/0%o/0o^^^
{$P}

procedure gaussj
(var a: RealArrayNPbyNP;

n: integer;
var b: Real Array NPbyMP; m: integer);
{a= the matrix A (n X n) of A«X=B}
{n= the size of A}
{b= is the matrix B(nXm) of A«X=B.}
{m= the number of columns of B, i.e. 1 in my case}
{This procedure solve the system of linear equations A«X=B. X and B}
{are of same size.}
{The method used is Gauss-Jordan Elimination with full pivoting. The}
{matrix a will be output as its inverse, and b will be output as X the)
{results of the equations.}

var
big, dum, ph/inv: myreal;

i, icol, irow, j, k, I, II: integer; indxc, indxr, ipiv: AlntegerArrayNP;
{Those 3 arrays are used for bookkeeping on the pivoting.)
{ipiv= a vector of integer keeping track of which column has already been}
{processed}

begin
new(indxc);
new(indxr);
new(ipiv);
forj:=1tondo

ipivA[j] := 0;
for i := 1 to n do

begin {AAA}
big := 0.0;
for j" := 1 ton do

begin {BBB %%not necessary to put begin %%}
if ipivA[j] o 1 then

for k := 1 to n do
begin {CCC, %%not necessary to put begin %% iph/A[j] <> 1}

if ipivA[k] = 0 then
if abs(a[j, k]) >= big then

begin
big := abs(a[j, k]);
irow := j;
fool .:= k

Appendix A Computer Program A53

end
else if ipiv*[k] > 1 then {abs(afl,kl) < big}
begin

writelnfpause 1 in GAUSSJ - singular matrix'); readln;
halt;

end
end {CCC for...k, this loop was taken if ipivA[j] <> 1}

{Incedently this is the end of the loop searching in one row)
end; {BBB for...j}

{This is the end of the loop searching in one column}
pv*[icof] := ipiv*[icoi] +1; {icol = k, see above}
if irow o icol then {...we need to interchange the rows)

begin {DDD}
for I := 1 to n do

{This loop changes the row of the matrix A}
begin

dum := afirow, f];
afirow, I] := a[icol, 0; a[icol, 0 := dum

end;
for I := 1 to m do

{This loop changes the row of the matrix B}
begin

dum := bfirow, rj; bfirow, I] := bficol, Q; bficol, Q := dum
end

end; {DDD}
indxr^i] := irow;
indxc^i] := icol;

{T is from loop AM above, indx r & c keep in memory the position of the)
{pivot when the loop T was made $$} '
if a[icol, icol] = 0.0 then

begin
writelnCpause 2 in GAUSSJ - singular matrix1); readln-

hart
end;

pivinv:=i.o/a[icol, icoO;
aficol, icol] .= 1.0;
for I := 1 ton do

aficol, I] := aficol, I] * pivinv;
for I := 1 tomdo

bficol, f] := bficol, I] * pivinv;
for II :=1 ton do

if II o icol then
begin

IT-" ^"' ^ {afM-ico^ fe the elemer|t to set to zero} a|n, icoij ;= 0.0;
for I := 1 to n do

afll, f] := afll, Q - aficol, 0 * dum; for I := 1 to m do
bfll, I] :=bfll,0-bficol, 0* dum end

end; {AAA}
for I := n downto 1 do

A54
Appendix A Computer Program

if indxrA[l] <> indxcA[l] then
for k := 1 to n do

begin
dum := a[k, indxr^Q];
a[k, indxrA[l]] := a[k, indxcA[l]];
a[k, indxcA[l]] := dum

end;
dispose(ipiv);
dispose(indxr);
dispose(indxc)

end; {...gaussj}

{$P}
procedure covsrt

(varcovar: RealArrayMAbyMA;
ma: integer;

var lista: IntegerArrayMFIT; mfit: integer);
{Page 564. The purpose of this procedure, which is used in MRQMIN, is to transform}
{the mfit X mfit matrix of covariance into an extended ma X ma matrix}
{of covariance sorted into the proper rows and columns and with zero}
{variance and covariances set for variables which were held frozen, e.g.}
{the variance of constant ai will be the element covarfj.i]. The resulting}
{matrix which is again covar will therefore contain several zeros.}

var
j, i: integer;
swap: myreal; {temporary storage of element [1,1]}

begin
forj :=1 toma-1 do

fori:=j + l tornado
covar[i,j]:= 0.0;

for i := 1 to mfit -1 do
begin

forj :=i + 1 to mfit do
if listafj] > list a[i] then

covar[lista[j], lista[i]] := covarfj, j] else
covar[lista[i], HstaOU := covarfi, j] end;

swap:=covar[1,1];
forj := 1 tornado

begin
covar[1, j] := covarfj, JJ; covarfj, JJ := 0.0;

end;
covar[lista[1], lista[1]] := swap; {the real position of the old [1,1]}
forj:=2tomfrtdo

covarflistatj], listarj]] := covar[1, j];
for j:= 2 to ma do

for i := 1 to j -1 do
covarfj, j] := covarTj, i];

end; {...covsrt}

{$P}

Appendix A Computer Program A55

procedure mrqmin
(varx, y, sig: RealArrayNDATA;

ndata: integer; var a: RealArrayMA; ma: integer;

var lista: IntegerArrayMFIT; mfit: integer;
varcovar, alpha: RealArrayMAbyMA; varchisq, alamda: myreal)-
{page 577}
{""INPUT*"" The following variables control the calculations}
{x= the vector of independent variable (time).}
{y= the vector of observations.}
{sig= the vector of variance (inverse sqrt(weight))}
{ndata = the number of observations <= ndatap (a constant)}
{ma= the total number of constants, <= map (a constant)}
{lista= a vector containing the addresses (integer) of the constants in "a'.But only}
{the first "mfit" ones will be fitted by mrqmin, the remaining "ma" - "mfit"}
{ones will not be touched by the routine. Lista is a way for the user to}
indicate to mrqmin that the experimental data should be used only to fit)

{certain constants and not all of them.}
{mfit= the number of elements in vector lista}

Those variables will be defined inside the procedure} {"♦"OUTPUT**
{and their purpose is to give the output, i.e. No specific values are needed}
{at input as these vanables will be redefined inside the procedure}

te^£e matnX*°f n™?™that wil1 be "sed to find the error of the constants.}
{cnisq= the sum of square. If the iteration is succesful, its output value will be}

{updated to the new value. If the iteration}
{succeeded, a new value is given to both variables, and if the iteration fails }
{ chisq is reset to the value that MrqminOchisq had before the iteration}'

•INPUT/OUTPUT*« Those variables are changed by the procedure, and}
{are also controlling the calculation. Therefore unlike the OUTPUT variables)
{their input value is also important.} '

{alamda = the lambda factor in Marquardt method. If its value is negative that}
{tells Mrqmin it is the first time the procedure is called, and-Mrqmin must)
{therefore read the vector lista. if alamda equal zero, that indicates Mrqmin}
that we have reached our solution, and we would like it to compute the)
covariance matrix so that we can calculate the error of the estimate in}
another routine. Finally, the value of alamda will decrease if the iteration)
was succesful, but it will increase rf the iteration fail and the new "chisa")

. {is larger than the previous one.}
{a= the vector of the constants. If the iteration is succesful, its output values will be}
{updated to the new values. But unlike "chisq" its values are needed at input the}
{next time we call Mrqmin.} K '

{alpha= "alpha" as output of Mrqcof is NOT the actual "pseudo-Hessian" which}
{r^ ?btajned bv augmenting its diagonal elements by the "trick" of Marquardt}
I p^. is simply the double Product of first derivatives. Moreover, "alpha")
{is a mfitXmfit matrix and not maXma.}

{MrqminBeta= is the vector ((observed-predicted)*9chi/dconstant.}
{It fe NOT in the interface of the procedure, but is a GLOBAL variable)
{of the main program.}

{Each time the procedure mrqmin is called, it makes ONE set of calculation.}
{It starts with a guess of the constants, which can be either the first}
{one, or a previous result of a mrqmin run, and compute a new set of}
{constants. Then the user has to decide if it is needed to make a tighter}

{estimation of the best fit or to stop. This is the role of the driver "CurveRt"}
{The vector "lista" which indicates the constants to introduce in the}

A56
Appendix A Computer Program

{calculation need only be read once, the first time mrqmin is called.}
{To indicate to mrqmin that it is the first time, the user will just}
{give a NEGATIVE VALUE TO ALAMDA, as a SIGNAL. Then the subroutine}
{automatically initialize alamda to 0.001. At the end of the first call}
{of mrqmin, alamda will be multiplied by 10 if the resulting chisquare}

{is higher than the previous one (i.e. the routine failed to find a minimum),}
{or divided by 10 if the chisquare is lower. To indicate to mrqmim that no more}
{calculations are required and that we just want to get back the covariance}
{matrix, we set ALAMDA = 0.0.}

label
99;

var
k, kk, j, ihit: integer;

{ihit= used in the loops checking the vector lista}
atry, da: ARealArrayMA;

{atry= the new vector of constants obtained by the procedure. It will be the}
{new values exported only if the new chisq obtained isJower than the initial one.}

oneda: ARealArrayMAby1;
{oneda= the vector beta given as a one column matrix, to be compatible with}
{the call of GAUSSJ.}

{ %%%%%%%%%%%%%%}
procedure mrqcof (var x, y, sig: RealArrayNDATA;

vara:RealArrayMA;
var lista: IntegerArrayMFIT; var alpha: RealArrayMAbyMA; var beta: RealArrayMA;
{beta = the vector beta is in fact -1/2* gradient (p 573)}

var chisq: myreal);
{All the variables except beta are the same as in the main procedure.}
{The purpose of mrqcof is to evaluate the Hessian matrix (alpha), and}
{the gradient (to get beta) from the user defined procedure "funcs"}
{which actually calculates the partial derivatives.}

var
k, j, i: integer; {Foodforforloop!}
ymod, wt, sig2i, dy: myreal;

{ymod= the calculated value at "time" x[i]. It will be compared}
{to its corresponding experimental observation for the evaluation}
{of the sum of square. Its value is provided by "funcs".}

{wt= is the weight*one of the partial derivative}
{sig2i = the weight itself}
{dy = the difference between the observed y[i] and}
{theoretical ymod value}

dyda: ARealArrayMA;
{vector of partial derivative of ymod with respect to the constants}

begin
new(dyda);
DefFunclnput(simple, a, SetToX, SetX\ ndata, XcalA, PDXA);
for j :=1 tomfrtdo

begin
{initialize alpha and beta to zero. This is necessary for the algorithm below.}

for k := 1 to j do
alphaö, k] := 0.0;

beta[j] := 0.0
end; {...of"j"}

Appendix A Computer Program A57

I

chisq := 0.0;

for i := 1 to ndata do
begin

Funcs(i, a, XcalA, PDXA, ma, ymod, dydaA);
sig2i := 1.0 / (slg[i] * sig[i]); {define the weight of data # Q
dy := y[i] - ymod; {le "vT}
for j := 1 tomtit do

begin

wt := dyda*[lista[j]] * sig2i; {dyda w.r.to one of the constant}
for k := 1 to j do {the columns 1 to j}

alphaü, k] := alphafl, k] + wt * dydaA[lista[k]];
beta[j]:=beta[j] + dy*wt;

end; {... of "j" the summation which partially defined}
{half of alpha and all beta}

chisq := chisq + dy * dy * sig2i {partially define the sum of square}
* e- o. , {-tf"'" the summation over all the experimental data}
for j := 2 to mfrt do {the columns 2 to rrfS}

{define the other half of matrix alpha, the right of the diagonal}
fork:=ltoj-ldo {the rows 1toM}

alphafk, j] := alphafj, k];
dispose(dyda)

end; {... of internal routine mrqcof}
 %%%%%%%%%%%0/Oo/Oo/0}

begin {... of mrqmin}
new(da);

neSne)da): ^ matrbC Wilh °ne °0lUmn'the VeCt0r "da"'used by GaussJ>
if alamda < 0.0 then

b69»h ^ '1thiS fe the ,irSt time we run the routine. we must initialize} {the vector of constants to compute}
kk:=mfit + 1;
forj:=itomado

{screen lista over all its length. Its role is mainly to check if}
fttaJKJS13 has,b«en Pr°PenV defined by the user. In particular}
{that the address of the same constant is not given twice}

begin {BBB}
ihit := 0;

fork:=1 tomfitdo

KemTthe elementS V-™*® of ,ista t0 determine if "j" belongs}

if listafk] = j then {... "j- is a "variable" constant}
ihit := ihrt +1; '

if ihit = 0 then

»oThi L"tCr^f!ant"1
C0,nstant by defau,t-lts address therefore belongs} {to the last [mfit..ma] elements of lista.} y '

begin
listafkk] := j;
kk:=kk + 1

end {...ihit = 0}
else if ihit > 1 then

A58
Appendix A Computer Program

{There are two elements of lista with the address "j". This is not acceptable}
begin

wrfteln('pause 1 in routine MRQMIN'); writeln('lmproper permutation in LISTA1);
readln;
halt

end
end; {BBB}

if kk o ma +1 then
{kk > ma+1 if there are less Variable" constants in lista than "ma"}
{in that case the loop BBB automatically give more "constant"}
{constants than it should}

begin
writeln('pause 2 in routine MRQMIN");
writeln('lmproper permutation in LISTA1);

readln;
halt

end;
alamda := 0.001;
mrqcof(x, y, sig, a, lista, alpha, MrqminBeta, chisq);
Mychisq := chisq; {de mon cru. Used internally to CurveFit}
MrqminOchisq := chisq;

end; {AAA}
{#######The steps above are only done the first call of mrqmin.}
{The next steps are the actual calculations.#####}

for j := 1 tornado
atryA[j] := affl; for j := 1 to mfrt do

begin {CCC}
for k := 1 to mfit do

covarfj, k] := alpha[j, k]; covarfj, J := alphaTj, j] * (1.0 + alamda);
{covar is the Hessian matrix as modified by the Marquardt method)
onedaA[j, 1] := MrqminBetarj]

end; {CCC}
gaussj(covar, mfit, onedaA, 1);

{gaussj will solve the system: covar-X=oneda for X on output}
{covar is replaced by the matrix inverse and oneda by X}

for j := 1 to mfit do
daA[j] := onedaAfj, 1]; {the accroissement vector}

if alamda = 0.0 then
begin

covsrt(covar, ma, lista, mfit);
goto 99

end; {...of IF alamda = 0}
for j := 1 to mfit do

begin
atryA[lista[j]] := a[lista[fl] + daArj; •

{I test if the constant proposed in atry are within the limits of}
{aMin and aMax.}

if ((atiyA[listaffl] <= 0.0) or (atryA[lista[j]] <= aMin[Iista[}]]) or (atryA[lista[fl] >= aMax[lista[j]])) and not
((atryA[hsta[|]] = 0.0) and (aMin[lista[fl] < 0.0)) then begin

writeln('atry of ', aNameflistaO]]: 5,' is ', atryA[lista[j]]: MW);
wr'rteln('a ', a[lista[j]]: MW);

Appendix A Computer Program A59

if a[lista[j]] = 0.0 then
RelDelA[listaO]] := (atryA[lista[j]] - a[lista[j]]) * FirstAccr else

RelDelA[lista[|]] := (atryA[lista[fl] - a[lista[f / a[lista[j]];

end; (...of defining the constants to try)
mrqcof(x, y, sig, atryA, lista, covar, daA, chisq);
if chisq < MrqminOchisq then

begin
alamda := 0.1 * alamda;

MrqminOchisq := chisq; for j := 1 to mf'it do
begin

fork:=1 to mf it do
alphafj, k] := covarQ, k]; MrqminBetaffl := daArj; a[üsta[fl] := atryA[listaffl]

end
end

else
begin

alamda := 10.0 * alamda;
chisq := MrqminOchisq

end;
99:
dispose(atry);
dispose(oneda);
dispose(da)

end; {... of mrqmin}
j%%}
{$P}

procedure CurveFit
(vararRealArrayMA);
{The purpose of CurveFit is to drive Mrqmin. This is necessary because Mrqmin}

only makes one iteration. Its role will be first to provide Mrqmin with the)
necessary inputs which are the same throughout the iterations, then}

{throughout the iterations to re-give the input/output to the procedure (this)
{is done simply by recalling the procedure with the same interface). In addition)

by analyzing the convergence of "chisq" towards a minimum, decide when we)
{have reached it with enough accuracy}

label
101;

var
word: string[12];
iteration: integer;

begin
alamda := -1.0;

{to indicate to Mrqmin that this is the first iteration}
for iteration := 1 to rtermax do

begin

mrqmin(TimeXA, XobsA, XsigA, ndata, a, ma, fista, mfrt, cova^, alphaA, chisq, alamda)-
ff Mychisq > chisq then {..the step was successful}

begin
Mychisq := chisq;
writelnCin CurveFit, iteration', iteration: 3,' alamda = \ alamda: MW, 'chisq = \ chisq : MW);

A60
Appendix A Computer Program

if not screen then {I want this info together with OUTconstant in the file}
writeln(sort, "in CurveFit, iteration', iteration: 3, 'alamda = ', alamda: MW, 'chisq = ', chisq : MW);

OUTconstants(screen, sort, a, aName, ma, MW, DP);
{Will print the values of the constant vector a on the screen if "true"}
{or in a file previously opened if "false".}

writeln('press any key to continue, "n" to stop the iteration');
readln(word);
if (word = 'n1) or (word = 'N') then

goto 101;
e nd; {of if the step was successful}

{it the step is not successful, then nothing is displayed and the program tries again}
end; {... of iterations}

{if we reach this point it is because we did "itermax" iterations}
writeln('more than', iteration : 3,' iterations in CurveFit. STOP");

halt;
101:
{normal exit}

alamda := 0.0;
mrqmin(TimeXA, Xobs\ XsigA, ndata, a, ma, lista, mfrt, covar*. alphaA, chisq, alamda); {Here Mrqmin is only
used to compute the covar matrix}

end; {...CurveFit}
{%%%%%%%%%%%%%%%%%%%%%%%%%%%^^
{%%%o/0o/0o/o}

{$P}

begin {beginning of the main program.}
oldFreeHeap := FreeMem;
oldStack := StackSpace; {Needed by procedure HeapStack}

{NOTE the pointers to TimeSample[k] are defined in a loop in "Define"}
HeapStack('Beginning of program');
new(Met_obs);
new(TCE_obs);
new(Cell_obs);
new(MetSig);
new(TCESig);
new(CellSig);
new(Met_cal);
new(TCE_cal);
new(Cell_cal);
new(PDMet);
new(PDTCE);
new(PDCell);
new(covar);
new(alpha);
new(OdeintXp);
new(OdeintYp);
new(SetX);
new(TimeX);
new(Xobs);
new(XcaO;

Appendix A Computer Program A61

new(Xsig);

new(PDX);

HeapStack('end of main program');
Initialize;

CurveFit(a);
{interactive procedure, will find the best estimated of a!

wntelnfafter AllCalculations, Methane PD^ '

{varTimeSamplerSetlnVector}
{SetX: IntegerArrayNDATA;}
{SetConst: Setlnteger6;}
{SetToX: Setlnteger3}

OUTconstants(screen, sort, a, aName, ma, MW DP)-
{Will pnnt the values of the constant vector a on the screen if "trup-l
{or in a file that will be named like "title" if "false"} }

{screen: boolean;}
{var sort: text;}

{vara:RealArrayMA;}
{var aName: StringArrayMA-}
{var ma, MW, DP: integer);}

for k := 1 to numbset do
begin

dispose(TimeSample[k]); end; {of dispose loop K}
dispose(Met_obs); '
dispose(TCE_obs);
dispose(Cell_obs);
dispose(MetSig);
dispose(TCESig);
dispose(CellSig);
dispose(Met_cal);
dispose(TCE_cal);
dispose(Cell_cal);
dispose(PDMet);
dispose(PDTCE);
dispose(PDCell);
dispose(covar);
dispose(alpha);
dispose(OdeintXp);
dispose(OdeintYp);
dispose(SetX);
dispose(TimeX);
dispose (Xobs);
dispose(Xcal);
dispose(Xsig);
dispose(PDX);

end.

A62
Appendix A Computer Program

Appendix B
Notation

C Methane or growth substrate concentration in the aqueous
phase, mg/L.

CQ Initial methane concentration, g/L.

E Mass of enzymatically active sMMO per mass unit of
microbial cell, or (for Model 3) fraction of cells that are
metabolically active for degrading either the growth
substrate (C) or the cometabolic substrate (7), unitless.

ECD Electron capture detector.

Em Total enzyme concentration, g/mL.

F Additional constant or groups of constants needed by some
of the models (given without description of their meaning).

FID Flame ionization detector.

G Additional constant or groups of constants needed by some
of the models (given without description of their meaning).

GAC Granular activated carbon.

GC Gas Chromatograph.

H Additional constant or groups of constants needed by some
of the models (given without description of their meaning).

Hc Henry's constant of methane, unitless.

HT Henry's constant of TCE, unitless.

J Additional constant or groups of constants needed by some
of the models (given without description of their meaning).

Appendix B Notation B1

Kc Half-saturation constant for methane, mg/L.

K0 Half-saturation constant for oxygen, mg/L.

Kj, Half-saturation constant for TCE, mg/L.

Ml A pure culture of methane-oxidizing bacteria.

M2 A pure culture of methane-oxidizing bacteria.

M3 A pure culture of methane-oxidizing bacteria.

M4 A pure culture of methane-oxidizing bacteria.

M5 A pure culture of methane-oxidizing bacteria.

Ma A mixed culture of methane-oxidizing bacteria.

Mb A mixed culture of methane-oxidizing bacteria.

Mc A mixed culture of methane-oxidizing bacteria.

MCB Methylococcus capsulatus (Bath), a pure culture of methane-
oxidizing bacteria.

MMO Methane mono-oxygenase.

Mx A pure culture of methane-oxidizing bacteria.

O Oxygen concentration in the aqueous phase, mg/L.

PHB Poly-hydroxybutyrate.

pMMO Paniculate methane mono-oxygenase.

rC Rate constant for methane, L/hr.

r0 Rate constant for oxygen, L/hr.

rT Rate constant for TCE, L/hr.

sMMO Soluble methane mono-oxygenase.

T Concentration of TCE or substrate of cometabolism in the
aqueous phase, mg/L.

t Time, hr.

TCA 1,1,1-trichloroethane.

B2
Appendix B Notation

TCE Trichloroethylene.

T Initial TCE concentration, mg/L.

Total SWS Total sum of weighted squares.

V Volume of air in contact with the liquid, mL.

V. Volume of liquid, mL.

X Concentration of microbial cells in the aqueous phase, mg/L.

X Initial cell concentration, g/L.

Y Cell yield: mass of cells created by unit mass of methane
metabolized for growth, unitless.

ß Maintenance or decay constant, unitless.

4 Toxicity constant: mass of cells killed per unit mass of
cometabolic substrate oxidized, or additional demand
exerted by cometabolism on cell metabolism, unitless.

Appendix B Notation B3

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

cmg
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
February 1995

3. REPORT TYPE AND DATES COVERED
Final report

TITLE AND SUBTITLE
Microbial Degradation of Volatile Anthropogenic Organic Chemicals

AUTHOR(S)

Martin Alexander, Francois Roch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Soil, Crop, and Atmospheric Sciences
Cornell University
Ithaca, NY 14853

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

5. FUNDING NUMBERS

PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Miscellaneous Paper EL-95-2

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Experiments were conducted to study the degradation of trichloroethylene (TCE) by bacteria able to grow on methane
(methanotrophs) and to consider specific aspects relative to the ultimate design of a bioreactor to purify air streams
contaminated with TCE that could originate from air stripping of contaminated aquifers.

A procedure was investigated that consisted of initially sorbing TCE from the gas phase to granular activated carbon
(GAC). The GAC then was treated by first extracting TCE from the GAC by using methanol and then providing the methanol
containing TCE to methanotrophs. The experiments indicated that neither TCE nor methane could be significantly degraded
by methanotrophs in the presence of a high but nontoxic concentration of methanol in water.

A study was conducted to determine whether there is a concentration of TCE (a threshold) below which methanotrophs
growing on methane would not be able to degrade TCE. TCE was degraded below a concentration of about 2 parts per
trillion, and thus no threshold was found.

The degradation of TCE by methanotrophs in the presence of different packing materials was assessed. The results showed
that some packing materials inhibited TCE degradation unless they were first washed with an aqueous solution of
ethylenediaminetetraacetic acid (EDTA).

(Continued)

14. SUBJECT TERMS

Degradation
Granular activated carbon
Methane

Methanotrophs
Trichloroethylene

15. NUMBER OF PAGES

124

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

13. (Concluded).

A mathematical model was derived to simulate the biodegradation of TCE by methanotrophs growing on
methane. One purpose of the model is to help in the design of a bioreactor to purify air streams contaminated with'
low concentrations of TCE. A computer program was written for that purpose.

