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1    Introduction 

Background 

Many volatile compounds are released as a consequence of Army and 
civilian activities. These compounds may originate from air stripping of 
contaminated aquifers, manufacturing or processing procedures, or the use 
of products containing volatile constituents. Some of these compounds 
are innocuous, but others are toxic or objectionable because of their foul 
odors. Many, and possibly nearly all, of the organic compounds emitted 
into the air are biodegradable, and thus it is likely that practical technolo- 
gies can be developed to bring about their biodegradation. Indeed, a vari- 
ety of processes have been developed to destroy organic compounds in 
waste gases when those compounds support microbial growth. However, 
many of the organic pollutants of interest to the Army do not support 
growth but are rather cometabolized. 

Trichloroethylene (TCE)1 is an example of such a compound. TCE is 
widely used in the dry-cleaning industry and in the industrial industry as a 
degreasing solvent. It is a suspected human carcinogen and a widespread 
contaminant in soil and groundwater. 

TCE is quite resistant to microbial degradation, and no known microor- 
ganism is able to use TCE as a carbon and energy source. However, TCE 
was found to be a substrate for several oxygenases of low substrate speci- 
ficity, including ammonia mono-oxygenase, toluene diooxygenase, and sol- 
uble methane mono-oxygenase. The last enzyme is responsible for the 
oxidation of methane to methanol in bacteria known as methanotrophs. 

Methanotrophs are gram negative, strict aerobes able to grow on meth- 
ane as a sole source of carbon and energy. The degradation pathway of 
methane involves its oxidation to methanol, formaldehyde, formate, and 
carbon dioxide. Carbon necessary for cell metabolism is assimilated at the 
level of formaldehyde by one of two possible pathways, the ribulose mono- 
phosphate (RuMP) pathway and the serine pathway (Figure 1). All 

For convenience, symbols and abbreviations are listed in the Notation (Appendix B). 
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Methane 
Mono-oxygenase 

Methanol 
Dehydrogenase 

Formaldehyde 
Dehydrogenase 

Formate 
Dehydrogenase 

CHgOH HCHO 

ED+ PQQ      PQQHg 

Figure 1. 

HCOOH 

NAD+      NADH NAD+     NADH 

Electron       Carbon 
transport   assimilation 

/\ 
Typel&X Type II 

Ribulose Serins 
Monophosphate Pathway 

Pathway 

Pathways of methane metabolism by methanotrophic bacteria. EDH is the 
electron donor of methane mono-oxygenase. It is NADH if the enzyme is 
soluble methane mono-oxygenase, but its identity is unknown with paniculate 
methane mono-oxygenase. PQQ is the cofactor pyrrolo-quinoline quinone 

methanotrophs are able to form resting structures called cysts or 
exospores, and the bacterial cells have complex systems of internal mem- 
branes when grown with methane (Stanier et al. 1987). 

Methanotrophs can be divided into three groups, type I, type II, and 
type X, depending on several physiological and biochemical traits', includ- 
ing the structure of their internal membrane and the pathway of formalde- 
hyde assimilation. Type X was recently added to accommodate strains of 
Methylococcus capsulatus, which are the only group of methanotrophs 
capable of autotrophic C02 fixation (Green 1992). These strains were pre- 
viously categorized as type I methanotrophs (Whittenbury and Krie^ 
1984). ° 

The enzyme methane mono-oxygenase (MMO) catalyzes the oxidation 
of methane to methanol by the addition of one atom of oxygen (from 
molecular oxygen) to methane. The second atom of molecular oxygen is 
reduced to H20 at the expense of reducing power. There are two types of 
MMO. One is membrane bound and is called particulate MMO (pMMO). 
The other is soluble in the cytoplasm and is called soluble MMO (sMMO) 
Particulate MMO may contain a copper-containing cofactor, and it is syn- 
thesized preferentially to sMMO when copper is present in sufficient con- 
centration. In the absence of copper, some methanotrophs are able to 
synthesize sMMO, an enzyme which contains an iron cofactor (Fox et al 
1989). 
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Soluble MMO has a low substrate specificity and is able to oxidize 
(i.e., cometabolize) a variety of other compounds including TCE. Particu- 
late MMO is also able to oxidize TCE but at a much slower rate (DiSpirito 
et al. 1992). Not all methanotrophs are able to synthesize sMMO when 
copper is absent. Type II and type X methanotrophs are able to synthesize 
sMMO, but type I methanotrophs are not. The only known exception is 
the type I methanotroph Methylomonas methanica 68-1 (Koh, Bowman, 
and Sayler 1993). The studies discussed herein deal with conditions under 
which TCE is rapidly degraded. Therefore, the methanotrophs are grown 
under copper-limited conditions to favor the synthesis of sMMO. 

Several products are obtained from the oxidation of TCE by sMMO. 
The primary oxidation products of TCE are assumed to be TCE epoxide 
and chloral (2,2,2 - trichloroacetaldehyde). TCE epoxide is then spontane- 
ously and rapidly hydrolyzed to carbon monoxide, formate, glyoxylate, 
and dichloroacetate (Fox et al. 1990). The proportion of the different 
products varies depending on the species of methanotroph, and the fate of 
these products is discussed in the following paragraphs. 

Chloral was found to be biologically transformed to trichloroethanol 
and trichloroacetic acid by Methylosinus trichosporium OB3b, a type II 
methanotroph, presumably by the action of the enzyme methanol dehydro- 
genase (Newman and Wackett 1991). Carbon monoxide is a substrate of 
sMMO, and its oxidation to carbon dioxide was found to inhibit TCE oxi- 
dation both by exerting a demand for reducing factor (needed as cosub- 
strate for sMMO catalysis) and through competitive inhibition (Henry and 
Grbic-Galic 1991a). Formate is the usual substrate of the enzyme formate 
dehydrogenase in methanotrophs, and it may be the only degradation prod- 
uct of TCE that provides the cell with any benefit. 

An experiment on the biological oxidation of radiolabeled 
[1,2-   C]TCE by Methylocystis sp. strain M (a type II methanotroph) indi- 
cated that dichloroacetate and trichloroacetate accumulated in the me- 
dium. Glyoxylate accumulated during the mid-log phase and then was 
oxidized; carbon monoxide did not accumulate, but 14C-carbon dioxide 
did (Uchiyama et al. 1992). Nakajima et al. (1992) found that strain M 
was not able to utilize glyoxylate as the sole carbon source, and they sug- 
gest that glyoxylate was assimilated by cooxidation in strain M. When 
14C-TCE was degraded by a mixed culture from which strain M was iso- 
lated, dichloroacetate and glyoxylate were completely converted to CO-, 
but trichloroacetate was somewhat more resistant to further degradation 
(Uchiyama et al. 1992). 

Like many mono-oxygenases (Walsh 1979), sMMO requires a reducing 
cofactor (NADH) to catalyze the oxidation of a substrate by molecular 
oxygen (Fox et al. 1989). As a consequence, the oxidation of TCE or 
carbon monoxide by sMMO depletes the energy reserves of the cells. 
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In methanotrophs, the oxidation of formate to carbon dioxide is always 
coupled to the reduction of NAD+ to NADH (Anthony 1982), but 
methanotrophs do not seem to grow on formate (Whittenbury and Krieg 
1984). Therefore, formate can be considered to be a source of reducing 
factor but not a growth substrate. Alvarez-Cohen and McCarty (1991b) 
reported that the addition of formate resulted in increased initial rates of 
TCE transformation and an elevated total transformation capacity of TCE 
by a mixed methanotrophic culture in the absence of methane (i.e., by rest- 
ing cells). These effects presumably occurred because the addition of for- 
mate slowed the depletion of endogenous energy reserves of the cells, a 
depletion partially resulting from the use of reducing power during TCE 
oxidation. 

Similarly, Henry and Grbic-Galic (1991b) reported that during methane 
starvation, the addition of formate increased the rates of TCE transforma- 
tion by Methylomonas species, but this was not observed in experiments 
with a mixed culture of methanotrophs. These authors observed lipid stor- 
age granules in several of the cells and suggested that they served as an 
endogenous source of electrons for TCE oxidation during methane starva- 
tion. Earlier studies by Whittenbury, Phillips, and Wilkinson (1970) 
showed that such storage granules in methanotrophs contained polyhydro- 
xybutyrate (PHB). In addition, Henrysson and McCarty (1993) found a 
positive correlation between the PHB content of resting mixed cultures of 
methanotrophs and the transformation rate of TCE as well as between the 
amount of PHB and the activity of sMMO (assayed by measuring the oxi- 
dation rate of naphthalene by sMMO). 

In addition to the consumption of reducing power, the oxidation of 
TCE is detrimental to the bacterial cell. Studies on the purified sMMO of 
Methylosinus trichosporium OB3b by Fox et al. (1990) demonstrated a de- 
crease in sMMO activity following TCE oxidation. An oxidation product 
of TCE and not TCE itself was shown to be responsible for the inactiva- 
tion. Each component of the enzyme became radiolabeled following the 
oxidation of 14C-TCE, and it was suggested that a diffusible hydrolysis 
product of TCE epoxide formed covalent bonds with the components of 
sMMO. Similar results were obtained by Oldenhuis et al. (1991), who 
showed that cells of Methylosinus trichosporium OB3b became inacti- 
vated following the oxidation of ,4C-TCE. Various cell proteins became 
covalently radiolabeled, including the hydroxylase component of sMMO 

Objectives 

The objectives of the research were as follows: 

a. Devise a cometabolic system to bring about the degradation of 
volatlile organic compounds not supporting microbial growth. 
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b. Develop a means for maintaining the microbial population on a solid 
support or in a liquid system. 

c. Determine the organic products that are generated during the 
cometabolic biodegradation and establish a means to destroy those 
compounds. 

d. Establish whether there is a need for specialized microorganisms to 
degrade compounds sorbed to solid supports and establish a means 
for promoting the development of those microorganisms on the solid 
phase. 

e. Determine if there is a threshold for the biodegradation of volatile 
organic compounds that are cometabolized and that are degraded as 
a consequence of microbial growth. 

The following paragraphs briefly summarize how the above objectives 
were approached. 

Consistent with the first objective, the test compound was TCE, and its 
cometabolic transformation was performed by methanotrophs (and, at an 
early phase of the study, by propane oxidizers). 

There were only a few problems associated with maintaining the micro- 
bial population in a liquid system, and the biodegradation of TCE in the 
presence of several solid supports was investigated. 

Some analyses were performed to detect potential volatile products gen- 
erated during the cometabolic biodegradation of TCE. 

Attempts were made to study the biodegradation of TCE sorbed on 
granular activated carbon (GAC), but the analytical method was not reli- 
able. Additional studies were conducted on a procedure that consisted of 
extracting TCE from GAC using methanol and of the biodegradation by 
methanotrophs of TCE dissolved in methanol. 

A study was conducted to determine if there was a threshold concentra- 
tion below which TCE will not be cometabolized by different inocula of 
methanotrophs. 

In addition to the objectives, to facilitate the upscaling of a bioreactor, 
an intensive study was conducted on the kinetics of TCE degradation by 
methanotrophs, including the development of a computer program. How- 
ever, because of time constraints, only preliminary designs were made for 
a bioreactor. 
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2    Materials and Methods 

Chemicals 

Tnchloroethylene (TCE) (>99 percent pure, spectrophotometric grade), 
1,1,1-tnchloroethane (TCA) (99 percent), dichlorodimethylsilane (99 per- 
cent), and pentane (>99 percent) were from Aldrich Chemical Co., Mil- 
waukee, WS. Methane (grade 4.0), propane (grade 3.7), nitrogen (grade 
5.0), air (grade 0.1), and hydrogen (grade 5.0) were from Airco, The BOC 
Group, Inc., Murray Hill, NJ. Hexane (grade "optima") was from Fisher 
Scientific Co, Rochester, NY. 

Mineral Salts 

Following is the aqueous solution of mineral salts contained in grams 
per liter of distilled water: MgS04 • 7H,0, 0.5; Ca(NCL), • 4H,0, 0 3- 
NH4N03, 0.2; K2HP04, 0.7; NaH2P04, 0.2; Fe(N03)3 • 5H20, 0 007. The 
concentration of trace nutrients in the solution was in milligrams per liter 
ZnS04 • 7H20, 0.64; Na Mo04 • HO, 0.16; MnSO, • H,0, 0.48; H,BO 
0.2, Co(N03)2 • 6H20, 0.8; Ni(N03)2 • 6H20, 0.08; tl. 0.2. In addition?' 
0.024 ml of HN03 (70 percent) was added per liter of solution. 

The procedure used to prepare the aqueous solution of mineral salts 
was as follows. The distilled water and MgS04 • 7H O, Ca(NO )  • 4H O 
and NH4N03 were sterilized together by autoclaving at'121 °C for 25 min! 
Then phosphate salts, which were sterilized separately by autoclaving 
were added in the solution. Iron was then added to the salts solution from 
a stock that had been sterilized by filtration through a 0.2-|im pore-size fil- 
ter contained in a Nalgene disposable filter unit (Nalge, Inc., Rochester 
NY). The stock iron solution contained HN03 at a concentration of 0.066 
M. The stock solution of trace nutrients was prepared by adding the differ- 
ent salts to sterilized distilled water containing 0.066 M of HNO     It was 
expected that the low pH of the solution killed most of the microorgan- 
isms that may be present; nevertheless, this solution may not have been 
sterile. Autoclaving of the solution containing trace nutrients was avoided 
to prevent the possible precipitation of some of the salts. In addition this 
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stock was not filter-sterilized because some of the salts might have been 
retained by the filter (which was observed with iron and some filters). 
The stock of trace nutrients was clear following its preparation, but it 
turned yellow after 1 week. Its chemical composition thus may have 
changed with time. 

Microorganisms 

Enrichments of microorganisms able to degrade propane, pentane, and 
hexane were obtained from soil. The methane-degrading enrichment 
designated Ma was also obtained from soil. Enrichments Mb and Mc, 
which are able to grow on methane, were obtained from an expanded bed 
bioreactor fed with methane and were provided by W. J. Jewell of Cornell 
University. From these two enrichments, five strains able to grow on 
methane were isolated after purification on solid medium (strains Ml, M2, 
M3, M4, and M5). The methanotroph Methylococcus capsulatus (Bath) 
(MCB) and an unidentified but pure methanotrophic culture (Mx) were ob- 
tained from Cornell University. 

The pure bacterial cultures and enrichments able to grow on methane 
and propane were grown in test tubes loosely closed with screw caps and 
placed inside hermetically closed jars (BBL Gas Pack System from VWR 
Scientific Rochester, NY) containing a mixture of about 30-percent meth- 
ane and 70-percent air. These jars were incubated at 30 °C on a rotary 
shaker. The test tubes usually became turbid after 2 days of incubation 
when the carbon source was methane, but they only became turbid after 
about 6 days when the carbon source was propane. 

The purity of the cultures was checked periodically by streaking them 
on agar plates containing mineral salts and 1.6 percent of Bacto-agar 
(Difco Laboratories, Detroit, MI). These plates were placed inside the 
same jars used to grow the bacteria in test tubes. About 1 week of incuba- 
tion was necessary before bacterial colonies were clearly visible on the 
agar plates. Strain MCB never grew on these plates; therefore, its purity 
was never certain. Similarly, the microorganisms of the mixed culture Ma 
grew very poorly on the agar plates, and attempts to isolate pure cultures 
of methanotrophs from this mixed culture were not successful. 

The microorganisms were incubated at 30 °C on rotary shakers, but the 
analysis of the headspace of the experimental bottles was conducted at 
room temperature (about 24 °C). 
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8 

Batch System 

Almost all experiments were carried out in a batch system consisting of 
glass bottles (64 ml) (Qorpack clear Boston Rounds, Fisher Scientific, 
Rochester, NY) closed with screw caps with teflon-coated silicon septa or 
Mininert valves (Baxter Scientific Products, Edison, NJ). The bottles con- 
tained 8 mL of an aqueous solution of mineral salts. The microorganisms 
and the chlorinated compound were added to these bottles. TCE or TCA 
diluted in a small volume of water was added from a stock of TCE or TCA 
dissolved in water at a concentration equal or below 500 |ig/mL. 

Analytical Methods 

TCE and TCA were determined with a gas Chromatograph (GC) 
(Hewlett-Packard HP-5890A) fitted with a 25m HP-1 capillary column 
(crosshnked methyl silicone gum 0.2 mm x 0.33 jim film thickness), an 
electron-capture detector (ECD), and a split capillary inlet. All materials 
were from Hewlett Packard, Kennett Square, PA. The carrier gas was ni- 
trogen; the headpressure of the column was 25 psi with a corresponding 
flow rate of about 1.74 mL/min, and the oven temperature was 55 °C   Un- 
der these conditions the retention time of TCA was about 1.76 min and 
the retention time of TCE was about 2.08 min. 

The glass insert of the split injector of the GC was deactivated to elimi- 
nate the tailing of the TCA and TCE peaks. Deactivation was accom- 
plished by acid washing the insert overnight in concentrated sulfuric acid 
with Nochromix (an oxidizing agent manufactured by Godax Laborato- 
ries New York, NY), soaking the insert for a few seconds in a 10-percent 
(vol/vol) solution of dichlorodimethylsilane in hexane, and rinsing it with 
acetone. 

The first method used to analyze TCE and TCA in the experimental bot- 
tles involved the extraction of the chlorinated compound from the 8 ml of 
aqueous solution by adding 1.6 mL of hexane. Hexane was separated 
from the water and the microbial cells by centrifugation, and a 4-^iL sam- 
ple of this layer was analyzed by GC. The method, which was only used 
m preliminary experiments, had a detection limit of approximately 1 [ig of 
TCE or TCA per liter of water. Pentane was initially used instead of hex- 
ane m this method, but its use was quickly abandoned because its high 
volatility led to large experimental errors. 

The second method involved the analysis of the headspace of the ex- 
perimental bottles, and it was used only for the analysis of TCE   A vol- 
ume of 9 or 500 uL of the bottle headspace was removed with a gas-tight 
syringe and injected in the GC. The limit of detection of TCE in water 
was below 1 ng/L when the sampling volume was 9 jiL, and close to 
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2 ng/L when the sampling volume was 500 |0.L. Because of its simplicity 
and sensitivity, this method was used in almost all the experiments. 

At equilibrium, TCE will be present in the headspace of the bottle at a 
concentration proportional to its concentration in aqueous solution. The 
Henry constants H? (ratio of the concentration of the test compound in the 
air (grams per liter) to its concentration in the liquid (grams per liter)) of 
TCE at different temperatures were obtained from Gossett (1987). These 
constants were used to calculate the concentration of TCE in the aqueous 
solution as a function of the concentration of TCE in the headspace of the 
experimental bottle when only the concentration in the headspace was de- 
termined with the GC. 

Methane was analyzed by injecting a sample (9 |lL) of the headspace of 
the experimental bottle into the GC. The column used was an HP-1 capil- 
lary column (diameter of 530 m and length of 5 m) and methane was deter- 
mined with a flame ionization detector (FID). This column is not 
appropriate for separating gases, but methane was present in such large 
amounts in the bottles that its analysis was still accurate. A glass column 
(diameter of 2 mm and length of 6 ft) packed with Porapak Q 80/100 mesh 
was used for some analyses. Both columns were obtained from Hewlett 
Packard. 

A method to detect chloride ion released during TCE oxidation was de- 
veloped. This method "depends upon the displacement" by chloride ion 
"of thiocyanate ion from mercury (II) thiocyanate complex; in the pres- 
ence of iron (III) ion a highly coloured iron (III) thiocyanate complex is 
formed, and the intensity of its color is proportional to the original chlo- 
ride ion concentration" (Jeffery et al. 1989). The procedure given by Jef- 
fery et al. (1989) was modified somewhat for convenience and to increase 
the detection limit for chloride. The procedure used consisted of adding 
to 1.0 mL of a saturated solution of Hg(SCN)2 in ethanol 3.5 mL of the 
aqueous solution to be analyzed followed by the addition of 0.5 mL of 1.0 
M Fe(N03)3 • 9H20 dissolved in an aqueous solution of 4.5 M HN03. 

The detection limit was about 10 jiM of chloride ion in solution. The 
solution to analyze was obtained from the aqueous solution of the experi- 
mental bottles by removing the microbial material first by centrifugation, 
then by filtration through a syringe filter (0.22 Jim). 

However, this method to detect chloride was only used once because 
some organic material remaining in the filtered solution apparently re- 
acted with Hg(SCN)2 similarly to chloride ion, and the result was an over- 
estimate of the concentration of chloride in the solution. It is not known 
what organic compounds were responsible for this reaction, but the addi- 
tion of cysteine (which has a -SH functional group) to a solution to be ana- 
lyzed gave similar results as adding chloride ion to this solution. 
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3    Experiments 

Degradation of TCE and TCA by Bacteria 
Growing on Different Organic Compounds 

The purpose of the experiment was to investigate which bacterial en- 
richment was able to degrade TCE or TCA. The experimental bottles con- 
tained 8 mL of an aqueous solution of mineral salts and either 140 jug of 
TCE or 80 (ig of TCA per liter of aqueous solution. 

Four enrichments were used. They were grown on methane (enrich- 
ment Ma), propane, pentane, and hexane, respectively. The concentration 
of methane and propane in the air of the headspace of the experimental 
bottle was 20 and 40 percent, respectively. The concentration of pentane 
and hexane in the aqueous solution was 1.0 g/L. 

For each microbial enrichment, six experimental bottles were used. 
The time at which TCE was added to the experimental bottle varied   TCE 
was added either together with the microbial inoculum or 1 to 5 days later 
The size of the microbial inoculum was 40 uL. Ten days after the begin- 
ning of the experiment, the aqueous solution was analyzed for its content 
of TCE or TCA after extraction with hexane. 

All the microorganisms grew readily under the experimental condi- 
tions, except that the culture utilizing propane grew slowly. The enrich- 
ment growing on methane markedly reduced the concentration of TCE 
the value falling to approximately 1 ug/L in water. The propane degraders 
decreased the concentration of TCE by up to 50 percent, but significant 
degradation of TCE by the pentane and hexane degraders was not ob- 
served. None of the enrichments were able to appreciably reduce the con- 
centration of TCA. However, the error associated with the analytical 
method was more than 10 percent so that slight activity on either chlorin- 
ated compound would not have been detected. 

A more extensive degradation of TCE occurred in experimental bottles 
in which TCE was added less than 3 days after the inoculum of methane 
oxidizers, or when TCE was added together with propane oxidizers 
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Based on these results, only the biodegradation of TCE by methane- 
and propane-oxidizing bacteria was studied. 

Toxicity Level of TCE to Methane and Propane 
Oxidizers 

An experiment was conducted to determine the lowest aqueous concen- 
tration of TCE that inhibits microbial growth. In addition, TCE was 
added to the solution at different times following the addition of 40 pL of 
the inoculum. 

The inocula consisted of three mixed cultures (Ma, Mb, and Mc) and 
two pure cultures (MCB and Mx) of methane oxidizers and a culture of 
propane oxidizers. The headspace of the experimental bottles contained 
either 45-percent methane in the air or 45-percent propane in the air. The 
concentrations of TCE in the aqueous phase of the bottles were 0.12, 1.4, 
8.4, or 28.0 mg/L. 

When the concentration of TCE was 0.12 mg/L, four experimental bot- 
tles were used for each inoculum, but TCE was added at different times. 
When the carbon source was methane, TCE was added at the time of in- 
oculation or 1, 2, or 4 days later. When the carbon source was propane, 
TCE was added at the time of inoculation or 4 or 9 days later (two bottles 
were inoculated at 9 days). 

When the concentration of TCE was 1.4, 8.4, and 28.0 mg/L, only two 
experimental bottles were used for each inoculum and each TCE concen- 
tration. In the first bottle TCE was added to the microorganisms. TCE 
was added to the second bottle 4 days later when the bottle contained 
methane oxidizers or 10 days later when the bottle contained propane oxi- 
dizers. In addition, analyses were conducted of the contents of sterile bot- 
tles corresponding to each treatment to detect abiotic losses of TCE. The 
duration of the experiment was 12 days for methane degraders and 16 
days for propane degraders. 

Many measurements were made of the disappearance of TCE and meth- 
ane from the different bottles. However, appreciable abiotic losses of 
TCE from the experimental bottles were detected. For this reason, the 
data are not presented. One reason for the abiotic losses of TCE was the 
damage to the teflon layer of the septa that closed the bottles. As a conse- 
quence, these damaged septa permitted TCE to reach and sorb to the sili- 
cone side of the septum. Nevertheless, the following observations were 
made. 

When its concentration in the aqueous phase was 0.12 mg/L, TCE was 
degraded by all five inocula of methane degraders, and its final concentra- 
tion sometimes was below 1 |ig/L. Less extensive degradation of TCE 
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usually occurred when TCE was added after 4 days. In the presence of 
propane, degradation of TCE was slower than in the presence of methane, 
presumably because the bacteria grew more slowly; nevertheless, the TCE 
concentration fell to less than 1 u.g/mL. 

When the concentration of TCE was 1.4, 8.4, and 28.0 mg/L, its de- 
gradation could not be detected because of appreciable losses of TCE 
from the experimental bottles. However, observations of the turbidity in 
the bottles indicated that all the methanotrophic bacteria grew in the pres- 
ence of 1.4 or 8.4 mg of TCE per liter, but none could grow in the pres- 
ence of 28.0 mg of TCE per liter. Therefore, the toxic level of TCE in an 
aqueous solution for the methane oxidizers was between 8.4 and 
28.0 mg/L. 

Propane degraders were not able to grow in the presence of 1.4, 8.4, 
and 28.0 mg of TCE per liter. Growth was not detected after 19 days at 
these concentrations, whereas analysis of bottles without TCE indicated 
that, in the absence of TCE, these bacteria would give a turbid solution af- 
ter about 6 days. Apparently, the toxic level of TCE in aqueous solution 
for the mixed culture of propane oxidizers was between 0.12 and 1.4 mg/L. 

TCE Sorption on Dry GAC 

Air streams contaminated with TCE may contain 10 mg/kg of TCE. At 
equilibrium with water and at room temperature, this represents somewhat 
more than 30 g of TCE per liter in the aqueous phase. At this low concen- 
tration and in a bioreactor that is flushed with large volumes of air, a sin- 
gle-stage bioreactor might function far below its TCE-degrading capacity 
and be prone to drying. Therefore, this and the following experiments 
were devised to investigate whether TCE from contaminated air could be 
trapped by activated carbon and then degraded by methane- or propane- 
oxidizer bacteria. 

Three kinds of activated carbon were used: granular activated carbon 
(GAC) (mesh 6-14, Fisher Scientific Co, Rochester, NY), the same acti- 
vated carbon but crushed to a powder, and a fine activated carbon (grade 
G-60, Atlas Chemical Industries, Inc., Chemical Division, Wilmington 
DE). &     ' 

This experiment was devised to investigate the sorptive capacity of 
GAC towards TCE. The experiment consisted of adding different 
amounts of TCE to duplicate experimental bottles containing 500 mg of 
GAC and measuring the concentration of TCE in the headspace of the bot- 
tle at different times until equilibrium was reached. 

Approximately 6 days was necessary for equilibrium to be reached be- 
tween TCE sorbed to GAC and TCE in the headspace. The results ob- 
tained after 1 and 6 days are shown in Figure 2. The data indicate that 
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Figure 2.   Concentration of TCE in the air in equilibrium with different amounts of TCE 
sorbed to GAC 

10 mg of TCE per kilogram in the gas phase will be in equilibrium with 
the equivalent of 14 g of TCE sorbed on 100 g of initially uncontaminated 
GAC, or 14 percent. The data also show that after 1 day, TCE was still 
not in complete equilibrium with the GAC, especially with low amounts 
of TCE. 

TCE Sorption on Wet GAC 

This experiment was carried out to determine affinities for TCE of 
three kinds of dry or wet activated carbon. The experiment consisted of 
adding 6 U.L of TCE (8.8 mg TCE) to experimental bottles containing 
80 mg of three kinds of activated carbon: GAC, crushed GAC, and fine 
activated carbon. The concentration of TCE in the headspace of the bottle 
was measured a few minutes following the addition of TCE and 3 and 4 
days thereafter. On day 4, 8 mL of water was introduced into the experi- 
mental bottles so that the activated carbon was completely submerged, and 
the concentration of TCE in the bottle headspace was measured a few min- 
utes thereafter and 1 day later (day 5). 
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The results (Figure 3) indicate that GAC (crushed or not) apparently 
had a greater affinity for TCE than the fine activated carbon, as only 8 mg 
of TCE were present per kilogram of headspace in the bottles containing 
GAC and crushed GAC, whereas about 230 mg of TCE were present per 
kilogram of headspace in the bottles containing fine activated carbon. In 
addition, an appreciable amount of TCE was released to the headspace fol- 
lowing the addition of water. This release was apparently faster with 
crushed GAC and fine activated carbon. After 1 day, the concentration of 
TCE in the headspace of the experimental bottles was about 330 mg/kg in 
the presence of GAC, 650 mg/kg in the presence of crushed GAC, and 
8,300 mg/kg in the presence of fine activated carbon. 

This release of TCE following the addition of water may facilitate the 
biological degradation of TCE sorbed on dry GAC by decreasing the abil- 
ity of GAC to sorb TCE. In addition, the results show that if GAC is used 
as a solid packing in a wet bioreactor, its sorptive capacity for TCE will 
be substantially lower than its sorptive capacity in a dry environment. In 
addition, if a column of dry GAC is used to trap TCE from a contaminated 
air stream, its sorptive capacity is likely to vary depending on the water 
content of the air stream (Crittenden et al. 1988). 
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Degradation of TCE Sorbed to Activated Carbon 

An experiment was conducted to study the biological degradation of 
TCE sorbed on GAC. The first reason for the study was that GAC could 
be used as packing material in a bioreactor designed to decontaminate an 
air stream contaminated with low concentrations of TCE. The TCE in the 
airstream would be expected to be strongly sorbed to the GAC before the 
bacteria begin to degrade it (unless the GAC is already saturated with 
TCE). Therefore, it is important to determine whether TCE sorbed to 
GAC could be effectively degraded by bacteria or if it is not available for 
bacterial uptake. 

The second reason is that dry GAC columns could be used to trap TCE 
from a contaminated air stream, and then the contaminated GAC of the 
columns could be treated by a microbiological process. This procedure 
would avoid problems associated with flushing a bioreactor with huge 
amounts of contaminated air, because TCE would no longer be present in 
the air stream but would be sorbed to GAC. In addition, as mentioned 
above, some of the sorbed TCE would be released when the GAC is 
placed in the aqueous solution in the bioreactor, and TCE might thereby 
become more available to bacteria. 

Several bottles containing 8 mL of an aqueous solution of mineral salts 
and 8 mg of TCE sorbed to 80 mg of the three kinds of activated carbon 
used in the previous experiment were inoculated with methane- and pro- 
pane-degrading microorganisms. Because GAC has a large sorptive capac- 
ity for TCE, it was expected that only a small fraction of the TCE would 
be degraded. For this reason, measuring the amount of TCE remaining in 
the solution was not considered to be a sufficiently sensitive method. In- 
stead, it was planned to estimate TCE degradation by measuring the 
amount of chloride released to the aqueous solution following the oxida- 
tion of TCE. 

Unfortunately, organic constituents of the bacteria as well as sub- 
stances in the activated carbons also reacted with the chloride reagent 
(Hg(SCN)2) so that analyses could not be performed by such procedures. 

Extraction of TCE from GAC with Methanol 

A method was investigated to remove TCE from GAC. It consists of 
extracting the TCE with methanol. The TCE dissolved in methanol would 
then presumably be degraded by methanotrophs. An experiment was thus 
conducted to estimate how much TCE could be extracted from GAC by 
repetitive extraction with small volumes of methanol. 
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A volume of 40 uX TCE (59 mg) was added to two duplicate experi- 
mental bottles containing 500 mg of GAC, and the bottles were allowed to 
stand for 1 week to permit equilibrium to be reached between TCE in the 
headspace and TCE sorbed to GAC. Then 1 mL of methanol was added to 
the bottles, and after 1 hr and repetitive shaking, the methanol was re- 
moved from the bottles, and its content of TCE was measured. This proce- 
dure was repeated several times, although sometimes the methanol was 
removed after 1 day. 

The results in Figure 4 show that after six extractions with 6 mL of 
methanol, about 75 to 80 percent of the TCE could be extracted from the 
GAC. The first time methanol was added into the bottles, only about 0.4 
mL could be removed, the remainder being sorbed to the GAC. In the ex- 
tractions that followed the first one, usually all of the added methanol 
could be recovered. The concentration of TCE was 5.2 uX of TCE per mil- 
liliter of methanol or 0.0096 g of TCE per gram of methanol. 

Although it is difficult to extrapolate these results to conditions in 
which thorough extraction of TCE from GAC was achieved, the results 
suggest the concentration of TCE that might be obtained in a solution of 
methanol used for the extraction. This methanol can then be provided to 
methanotrophs in the expectation that they will degrade TCE while grow- 
ing on methanol. However, it was necessary first to investigate the 
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Figure 4.   Extraction with methanol of 59 mg TCE sorbed to 500 mg GAC 
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toxicity of methanol to methanotrophic bacteria. This is the subject of the 
next experiment. 

Methanol Toxicity to Methanotrophic Bacteria 

The concentration of methanol above which the growth of methanotro- 
phic bacteria on methanol will be adversely affected was assessed. Mixed 
cultures Ma, Mb, and Mc and pure cultures MCB, Mx, Ml, M2, and M3 
were grown in bottles containing 8 mL of an aqueous solution of mineral 
salts with 0.1, 0.5, 1.0, 2.0, and 5.0 percent (vol/vol) of methanol as the 
sole source of carbon and energy. 

A qualitative estimation of the growth of the bacteria was obtained by 
visually observing the turbidity of the aqueous solution in each bottle 1,3, 
and 6 days after the addition of 40 |i.L of the inocula. The extent of turbid- 
ity was designated 0 (no turbidity) or by an increasing number of plusses. 
After 1 day, all the mixed cultures (Ma, Mb, and Mc) had grown to their 
maximum turbidity when the concentration of methanol was up to 0.5 or 
1.0 percent, and less turbidity was observed at 2.0- or 5.0-percent metha- 
nol (Table 1). The pure cultures grew slower than the mixed cultures, and 
no growth was detected at 5.0-percent methanol. 

Table 1 
Methanol Toxicity. Turbidity in Bottles After 1 Day of Incubation 

Inoculum 

Methanol Concentration In Solution, percent 

0.1 03 1.0 2.0 5.0 

Ma ++++ ++++ I I I I + + 

Mb ++++ ++++ +++ + +                        I 

Mc ++++ ++++ +++ + +                        I 

MCB + + + + 0 

Mx + + + + 0 

M1 + + + + +                       I 

M2 0 0 0 0 0 

M3 + + + + •    I 
After 3 days, differences in turbidity were not observed at any concen- 

tration of methanol with mixed cultures Ma and Mc (Table 2); culture Mb 
was only somewhat less turbid at 5.0-percent methanol than at lower con- 
centrations. With the exception of strain Ml, no pure culture could grow 
at 5.0-percent methanol. In addition, with strains Mx, Ml, and M3 the 
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aqueous solution was less turbid at 2.0-percent methanol than at lower 
concentrations. 

Table 2 
Methanol Toxiclty. Turbidity in Bottles After 3 Days of Incubation 

Inoculum 

Methanol Concentration in Solution, percent 

0.1 0.5 1.0 zo 5.0                    I 

Ma ++++ ++++ IIII ++++ ++++                 I 

Mb ++++ ++++ ++++ ++++ +                       J 
1 Mc ++++ ++++ 1111 ++++ ■till 

SMCB + + + + 0 

Mx +++ +++ + + 0 

M1 + + + + +                       I 

IM2 + + + + 0 

M3 + + + + 0 

After 6 days, differences in turbidity were not evident at any concentra- 
tion of methanol in the bottles containing the mixed cultures Ma, Mb, and 
Mc (Table 3). Pure cultures MCB, Ml, and M3 showed a little turbidity at 
5.0-percent methanol, but strains Mx and M2 did not grow at that concen- 
tration. The sensitivity of the pure cultures to methanol varied, and they 
did not reach the turbidity obtained with mixed cultures, even at the low- 
est concentration of methanol (0.1 percent). 

Table 3 

Methanol Toxicity. Turbidity in Bottles After 6 Days of Incubation 

1 Methanol Concentration In Solution, percent 

1 Inoculum 0.1 0.5 1.0 ZO 5.0 

Ma ++++ ++++ i i i i ++++ ++++ 

1Mb ++++ ++++ i i i i ++++ ++++ 

Mc ++++ ++++ i i i i ++++ ++++                 I 
I MCB + + + + +                       I 

Mx +++ +++ + + 0 

M1 + + + + + . 

M2 + + + + 0 

M3 + + + + +                        I 
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Apparently, the pure cultures were more sensitive to methanol than the 
mixed cultures. This is not surprising considering that the mixed cultures 
are likely to contain some methylotrophic bacteria that grow efficiently on 
methanol, whereas methanotrophic bacteria (like the purified strains) 
grow slowly on methanol (Anthony 1986). The populations of the mixed 
cultures were probably composed mainly of methylotrophic bacteria, 
whereas the mixed cultures probably contain mainly methanotrophic bacte- 
ria when grown in the presence of methane. The concentration of metha- 
nol above which growth of the purified strains was substantially affected 
was apparently between 2.0 and 5.0 percent, but an effect on growth was 
even evident below these concentrations. 

Degradation of TCE by Methanotrophs Growing 
on Methanol 

An experiment was conducted to investigate whether methanotrophs 
would degrade TCE while growing on methanol. As mentioned above, the 
purpose of this experiment was to test if methanotrophs could be used to 
degrade a solution of methanol contaminated with TCE as obtained follow- 
ing the extraction with methanol of TCE sorbed to GAC. 

The microbial inocula consisted of three mixed cultures (Ma, Mb, and 
Mc) and four pure cultures (MCB, Mx, Ml, and M3). The inocula were 
grown in bottles containing 8 mL of an aqueous solution of mineral salts 
and about 250 g of TCE per liter of water. The concentration of methanol 
was 0.8 percent, which was not toxic to the organisms (see previous ex- 
periment). Some bottles also contained a small amount of methane (0.71 
or 0.016 percent in the air of the headspace). One of the purposes of the 
addition of methane was to test whether the presence of small amounts of 
methane would influence the degradation of TCE. The second purpose 
was to study the biodegradation of methane by methanotrophs growing on 
high concentrations of methanol. For this study, the degradation of meth- 
ane was only measured in the experimental bottles containing 0.71 percent 
of methane. Methane was introduced into the headspace of the bottle, 
either together with the inoculum or when the aqueous solution became 
turbid as a result of microbial growth. A control was also tested in which 
0.71 percent of methane but no methanol was present. 

All tests were conducted in triplicate, and eight sterile bottles were 
used as controls. The system was incubated for 15 days, and the contents 
of the bottles were analyzed six times during this period for TCE and 
sometimes methane and methanol. 

A total of 128 bottles were used in this experiment. Because TCE was 
not appreciably degraded in any of the bottles, only a few of the analytical 
results are presented. The percentage of TCE and methane remaining af- 
ter 15 days in the bottles inoculated with microorganisms Ma, Mb, and Mc 
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and also with microogranisms MCB, Mx, Ml, and M2 is shown in Fig- 
ures 5 and 6. An appreciable disappearance of TCE was not evident in 
most cultures containing methanol. In the few instances in which the con- 
centration of TCE had decreased, the maximum loss of TCE as a result of 
microbial activity was never more than about 60 percent of the amount 
added. An average of 25 percent of the TCE disappeared abiotically from 
the control bottles, indicating that similar losses of TCE may have oc- 
curred in the experimental bottles. Thus, most of the TCE missing from 
the experimental bottles may have disappeared abiotically and not as a re- 
sult of bacterial activity. 

From 70 to 90 percent of the methane (initially present at 0.71-percent 
methane in air) remained in experimental bottles that contained methanol, 
but only about 3 percent of the methane remained in experimental bottles 
in which methanol was absent. The only exception is one of the triplicate 
experimental bottles that was inoculated with strain Mx, in which 62 per- 
cent of the methane remained at the end of the experiment. The abiotic 
loss of methane from the experimental bottles was not assessed, but it may 
be responsible for the small amount of methane lost in the bottles contain- 
ing methanol. 

Most experimental bottles containing methanol were turbid due to mi- 
crobial growth after 2 days. The bottles containing 0.71-percent methane 
and no methanol were only slightly turbid, and they contained a much 
lower density of microbial cells than the bottles containing methanol. Bot- 
tles initially containing 0.016 percent of methane and no methanol did not 
show visible growth, and significant TCE disappearance was not evident, 
probably because the cell density was too low. 

In all bottles containing methanol, methanol was still present at high 
concentrations (about 0.5 percent in water) at the end of the test period 
(data not shown). It is likely that the bacteria had used most of the oxy- 
gen in the headspace and consequently could no longer oxidize methanol. 

The previous experiment on the toxicity of TCE to methanotrophs indi- 
cated that the inocula Ma, Mb, Mc, MCB, and Mx were able to degrade 
TCE while growing on methane. A preliminary test experiment (data not 
shown) indicated that strains MI and M3 were also able to degrade TCE 
while growing on methane. However, in a larger experiment dealing with 
the possible existence of a threshold for TCE degradation (an experiment 
that was made before the one described in this section), only inocula Ma, 
Mb, MCB, M2, and M3 were able to degrade TCE while growing on meth- 
ane, whereas inocula Mc, Mx, and M1 were not able to degrade TCE 
while growing on methane. In addition, an experiment conducted after the 
one described in this section indicated that, in the presence of methane, 
strains MCB, M3, and M4 but not strains Mx, Ml, and M5 could degrade 
TCE. 
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Figure 5.   Degradation of TCE (250 ug/l) and methane by methanotrophs (Ma, Mb, Mc) 
growing on 0.8-percent methanol (MeOH) and/or methane (0.71 percent or 
0.016 percent in air). The columns indicate the fraction (percent) of TCE and 
methane remaining in the experimental bottles after 15 days. Treatments: A, 
MeOH; B, MeOH + 0.71-percent methane that was added when the solution 
was turbid; C, MeOH + 0.71-percent methane that was added initially; D, 
0.71-percent methane (no MeOH); E, like B but with 0.016-percent methane, 
F, like C but with 0.016-percent methane; G, 0.016-percent methane (no 
MeOH); X, sterile control. TCE: ü ; Methane: d(only the experimental 
bottles initially containing 0.71 percent of methane were analyzed) 
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Figure 6.   Degradation of TCE (250 u.g/L) and methane by methanotrophs 
(MCB, Mx, M1, M3) growing on 0.8-percent methanol (MeOH) 
and/or methane (0.71 percent or 0.016 percent in air). See the 
definition of the treatments in Figure 5. TCE: £§§ ; methane- B 
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Consequently, it seems that microorganisms Mc, Mx, and Ml lost their 
ability to degrade TCE while growing on methane. This is surprising be- 
cause strain M3, which can degrade TCE, was isolated from the mixed cul- 
ture Mc. The reason for this loss of ability to degrade TCE is unknown. 

Thus, the apparent inability of some inocula (especially inocula Mx, 
Mc, and Ml) to degrade TCE while growing on methanol may simply be 
due to the inability of these inocula to degrade TCE under any conditions. 

It is known that the enzyme responsible for the primary oxidation of 
TCE is sMMO, which also catalizes the oxidation of methane to methanol. 
It is likely that the synthesis and expression of sMMO is tightly controlled 
by the cell to prevent unnecessary oxidation of methane to methanol 
which would lead to accumulation of methanol in the cell. One of these 
physiological controls may be sensitive to the concentration of methanol, 
and a high concentration of methanol in the aqueous medium may inhibit 
the synthesis of sMMO (or turned off the enzyme by some allosteric 
mechanism). Another explanation for the results is that sMMO has a 
weak capacity to oxidize methanol to formaldehyde, and methanol will 
therefore act as a competitive inhibitor of methane for sMMO, an effect 
that is increased by the high concentration of methanol. 

In summary, the data suggest that the degradation of TCE and methane 
by methanotrophs is strongly if not completely inhibited in the presence 
of high concentrations of methanol. Therefore, the use of high concentra- 
tions of methanol as a growth substrate for methanotrophs to cometabolize 
TCE in a bioreactor does not appear to be a feasible means to cometabo- 
lize TCE. 

Influence of Packing Material on the 
Cometabolism of TCE 

In a bioreactor designed to carry out the degradation of TCE by methan- 
otrophic bacteria, the identity of the packing material may influence the 
degradation process of TCE. Therefore, an experiment was conducted to 
study the degradation of TCE in bottles containing an aqueous solution of 
mineral salts, methanotrophic bacteria, TCE, and different possible pack- 
ing materials for a bioreactor. 

The materials were glass beads, ceramic saddles (6 mm) (both from 
Fisher Scientific Co, Rochester, NY), marble chips, untreated sand, com- 
busted sand, and a material probably made of ceramic and clay particles 
used for cat litter. These materials were thoroughly washed with water be- 
fore use, and a portion of each was kept several hours in a boiling aqueous 
solution of Na2EDTA (2 g/L), after which they were again washed exten- 
sively. The EDTA was used to remove any copper ions that might have 
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been present, as most methanotrophs are unable to cometabolize TCE 
when grown in the presence of substantial copper concentrations. 

The microbial inocula consisted of two enrichments (Ma and Mb) and 
one inoculum containing two pure cultures (M3 and M4). All inocula had 
the ability to cometabolize TCE when grown on methane. From 3 to 8 g 
of packing material was added to the bottles and these were supplemented 
with 4 mL of an aqueous solution of mineral salts. The inoculum and a 
mixture of methane and air (about 20-percent methane) was introduced. 
The bottles were incubated at 30 °C for 5 days, at which time the bottles 
were turbid from microbial growth. The bottles were then flushed with a 
fresh mixture of methane and air (about 20-percent methane), and TCE 
was added at a concentration of about 80 |Lig/L in water. Analyses for meth- 
ane and TCE were performed after 2 and 4 days. All tests were conducted 
in triplicate. 

The results in Figure 7 (no packing material, glass beads, and ceramic 
saddles) and Figure 8 (marble chips, combusted sand, untreated sand, and 
cat litter) show the concentrations of TCE remaining in water 2 and 4 days 
after the addition of TCE to the bottles. None of the packing materials 
tested sorbed significant amounts of TCE, as indicated by the absence of 
large differences in TCE concentrations obtained in sterile condition in 
the presence and absence of packing material. With all the packings 
treated with EDTA and with glass beads and ceramic saddles not treated 
with EDTA, more than 80 percent of the TCE had disappeared with all 
microbial inocula 2 days after the addition of TCE. A somewhat smaller 
(60 percent or more) amount of TCE was metabolized by two inocula (Mb 
and M3/M4) in the presence of marble chips, untreated and combusted 
sand, and cat litter that were not treated with EDTA. However, the third 
culture (Ma) had almost no activity on untreated and combusted sand and 
cat litter that were not treated with EDTA, and it had less activity on mar- 
ble chips untreated with EDTA than the two other inocula. 

These results indicate that some packings can indeed inhibit TCE de- 
gradation by some methanotrophs. However, this inhibition is overcome 
if the packing is treated with EDTA. It is assumed that the differences ob- 
served between the treatments were the consequence of the higher concen- 
tration of copper ions in the packings not treated with EDTA. The reason 
why one inoculum (Ma) was more sensitive to the treatment with EDTA 
than the other inocula is not known and was not investigated. 

Threshold in Cometabolism of TCE 
by Methanotrophs 

The purpose of these experiments was to determine whether there is a 
threshold for the biodegradation of volatile organic compounds cometabo- 
lized and degraded as a consequence of microbial growth. In this 
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Figure 7.   Degradation of 80 ng/L of TCE by methanotrophs in the presence 
of packing materials: no packing, glass beads, and ceramic 
saddles. The columns indicate the concentration of TCE 
remaining in the aqueous phase 2 and 4 days after the addition 
of TCE in the experimental bottles. Treatments: a—packing 
not treated with EDTA, day 2; b—packing not treated with 
EDTA, day 4; c—packing treated with EDTA, day 2; d—packing 
treated with EDTA, day 4 
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particular case, the test compound was TCE, and the microorganisms re- 
sponsible for its cometabolic degradation were all methanotrophs. 

The setup of the experiments consisted of bottles containing 20 to 
30 percent of methane in air and 8 mL of an aqueous solution of inorganic 
salts. TCE was added to the bottles so that its concentration in the aque- 
ous solution was either 100 or 1 |J.g/L. The inocula consisted of mixed cul- 
tures Ma, Mb, and Mc, and pure cultures MCB, Mx, Ml, M2, and M3. A 
small volume of inoculum (40 (lL) was added to each bottle, except for 
some bottles which remained sterile and were used to estimate the abiotic 
losses of TCE during the experiments and the sampling process. The ex- 
periments were conducted using four replicates for each bottle. Sampling 
was conducted daily during the first week and then at longer time inter- 
vals for the following week, and the frequency varied depending on the 
type of microorganism used. TCE was analyzed by headspace sampling 
by removing either 9 or 500 jiL of the bottle headspace, depending on the 
concentration of TCE remaining in the experimental bottle. The concentra- 
tion of methane in the headspace was also analyzed, although the analyses 
gave little useful information. 

A summary of the results is given in Figure 9. When acted on by micro- 
organisms Mb, MCB, M2, and M3, the concentration of TCE at the end of 
the experiments (in at least 2 of the 4 replicates) was below the detection 
limit of the analytical method (about 0.002 (J.g of TCE per liter of water). 
This occurred when the starting concentration of TCE was either 100 or 
1 Jig/L. In enrichment Ma, TCE was still detected at about 0.020 fig/L in 
all bottles. Microorganisms Mc, Mx, and Ml did not degrade TCE appre- 
ciably at either the 100- or l-|J.g/L concentration; these findings were sur- 
prising as Mc and Mx were apparently active on TCE in previous studies. 

The data in Figure 9 also show that the rates of TCE degradation varied 
among the inocula. The amount of TCE degraded after 4 days was more 
than 90 percent for inoculum Mb, about 80 percent for M2 and M3, 70 per- 
cent for Ma, and only 30 percent for MCB. The values of all four repli- 
cates agreed in all experiments, even though some of the replicates were 
sometimes losing some TCE abiotically because a few of the bottles were 
closed by a damaged septum. 

In summary, when the microorganisms were able to degrade TCE, they 
degraded it either below the detection limit (inocula Mb, MCB, M2, and 
M3) or to about 0.020 (ig/L (inoculum Ma). Consequently, if there is a 
threshold for TCE cometabolism by methanotrophs, it is at concentrations 
below about 0.002 |i.g/L of TCE in the aqueous phase. 
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Volatile Organic Products Generated During 
the Cometabolic Degradation of TCE 

Some of the experimental bottles used in the above experiment were 
analyzed by gas chromatography for any halogenated volatile hydrocar- 
bons that could have been produced during TCE degradation. The analy- 
sis of experimental bottles that initially contained 100 ug of TCE per liter 
of water were compared to the analysis of bottles that contained 1 ug of 
TCE per liter. The analysis was performed by injecting 500 uL of the bot- 
tle headspace in the same GC column that was used for TCE detection 
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The ECD is very sensitive to halogenated compounds, and it would detect 
volatile chlorinated compounds that could have been produced from TCE 
degradation. The analysis was made 17 days after the bottles were 
inoculated. 

Concentrated sulfuric acid (0.8 mL) was added to some of the bottles to 
be analyzed because some chlorinated carboxylic acids have been reported 
to be products of TCE degradation by methanotrophs. The low pH was ex- 
pected to facilitate their partitioning of these carboxylic acids to the head- 
space of the bottle. The retention time of potential degradation products 
of TCE in the GC column could have been quite important; therefore, the 
temperature of the oven was gradually increased after 2.3 min from 55 °C 
to 240 °C at a rate of 20 °C per minute, and the analysis was performed 
for about 20 min. 

The results obtained by analyzing some bottles inoculated with strain 
M2 are shown in Figure 10. The chromatograms, which were almost iden- 
tical for bottles initially containing 100 or 1 Hg/L of TCE, suggest that 
volatile compounds were not present. 

Similarly, no significant differences were observed between the chroma- 
tograms of bottles initially containing 100 or 1 (Xg of TCE per liter that 
had been inoculated with strain M3 and into which sulfuric acid was 
added (Figure 11). In addition, the chromatograms of Figure 11 were simi- 
lar to those of Figure 10. The very small peaks with a retention time of 
2.090 and 2.099 min on the two chromatograms of Figure 11 are those of 
TCE, and their sizes are consistent with TCE concentrations of about 
0.003 and 0.002 [ig/L in water, respectively. TCE peaks are not visible in 
the chromatograms of Figure 10 because the concentration of TCE remain- 
ing in those bottles was below the detection limit. 

These results indicate that no volatile chlorinated compounds originat- 
ing from TCE degradation were detected in the headspace. However, the 
microorganisms had 15 days to degrade TCE and perhaps some of its de- 
gradation products. 

Bioreactor Design 

A preliminary attempt was made to build a bench-top bioreactor that 
would purify air contaminated with low concentrations of TCE. The biore- 
actor is depicted in Figure 12 and consists essentially of a modified chro- 
matography column (C) (510 mm long, i.d. 25 mm, Ace Glass, Vineland, 
NJ) that contains either a suspension of bacterial cells in water or a pack- 
ing material coated with the cells. The contaminated air stream is intro- 
duced into the bottom of the column by using a long glass tube that is 
tightly fit at the top of the column. At the bottom of that tube is a porous 
fritted-glass sparger. The contaminated gas is prepared by passing air 
through a small column (A) packed with granular activated carbon loaded 
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with 10 percent (by weight) of TCE. The air emerging from the column 
contains approximately 4 mg/kg of TCE. 

The bioreactor contains additional tubing to permit further dilution of 
the contaminated air and to permit, when desired, the introduction of meth- 
ane into the air stream. The flow rates of the gases are controlled by mi- 
crometric valves. The analysis of the incoming and outgoing gas is made 
by using modified test tubes (B and D) closed by Mininert teflon valves 
through which the gas is sampled with a gas-tight syringe. Analysis is by 
gas chromatography. All material in contact with the contaminated gas is 
either glass or teflon. e* 

Because the input and output of the carbon source and the toxic com- 
pound occur in the gas phase, their flow does not wash out the microbial 
cells present in the liquid phase, which would occur in a conventional che- 
mostat in which the carbon source and toxic compound are carried by a 
stream of liquid. As a consequence, in such a bioreactor, a packing mate- 
rial to which microorganisms are sorbed is not required to prevent the 
wash-out of microbial cells due to the flux of the carbon source and the 
toxic compound. Such a packing material may be needed if it is necessary 
to renew the liquid in the bioreactor at a rate comparable with the growth 
rate of the bacteria, which might be required to remove water-soluble 
toxic products that accumulate in the liquid. 

The disadvantage of using a liquid suspension of bacterial cells is that 
the residence time of the bubbles of contaminated gas in the bioreactor is 
limited approximately to the time necessary for the bubbles to travel from 
the bottom to the top of the bioreactor. However, such a reactor would 
not be dried out by high flow rates of contaminated gases. In addition, be- 
cause the microrganisms are suspended in the aqueous solution, they can 
easily be replaced with fresh cultures, and the composition of the aqueous 
phase can be precisely controlled. 

If the bioreactor is filled with solid packing that is submerged in the 
aqueous solution, the residence time of the bubbles of contaminated gas 
will be somewhat similar to the residence time in the absence of a solid 
packing. In addition, the previous experiment in which different packing 
materials were tested did not suggest that the presence of packing material 
would increase the degradation of TCE in a batch system. Rather, the ex- 
periment showed that, without preliminary treatment with EDTA, some 
packing materials decreased the ability of methanotrophs to degrade TCE. 
Therefore, a bioreactor filled with solid packing submerged in the aqueous 
solution might not have an appreciable advantage over the same bioreac- 
tor without packing. 

In a bioreactor containing packing material that is not submerged with 
water and to which a biofilm of microorganisms is sorbed, the retention 
time of contaminated gas can be much higher than in a submerged bioreac- 
tor because the retention time will be proportional to the volume of gas 
found between the solid particles. However, such a bioreactor will be 
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subject to drying, and will be less flexible than a submerged bioreactor 
without solid packing because the microbial population will be more diffi- 
cult to replace or modifiy. 

Preliminary tests with the bioreactor filled with microorganisms sus- 
pended in an aqueous solution suggested that the minimum flow rate of 
contaminated gas allowed by the micrometric valves (about 2 mL/min) of 
the initial bioreactor design was too high for a reactor of the volume de- 
scribed here. There was no mixing system in the reactor, but when the 
flow of contaminated gas was rapid, the advection caused by the rising 
bubbles was sufficient to mix the reactor volume through its entire length 
and to prevent the settling of microbial cells. However, this rapid flow 
rate of gas exceeded the capacity of the bioreactor to degrade TCE effi- 
ciently, and the concentration of TCE in the output gas was about the 
same as in the input gas. 

The bioreactor was not developed further, and attention was turned to 
mathematical simulation (described in the next chapter) to help in the de- 
sign and in estimating the flow rate required for proper functioning. 
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4 Kinetics of TCE 
Degradation by 
Methanotrophs 

A mathematical model was devised to simulate TCE degradation by 
methanotrophs in a batch system. Two reasons exist for developing such a 
model. First, the model may be considered as the mathematical translation 
of known or hypothesized phenomena, and testing the model is a way of 
evaluating whether those hypotheses are correct and/or if the phenomena 
described are sufficient to explain or predict TCE biodegradation by 
methanotrophs. If the model fails, then finding the reasons for its failure 
will help to increase the understanding of the process. Second, if the 
model is adequate, it can be used to predict the biodegradation of TCE in 
different environments, and it would facilitate the scaling-up of bioreac- 
tors and selecting conditions that would optimize the process. The model 
was intended to help the scaling up of the bioreactor described above. 

Consideration to how the model was derived is given here in order to 
provide a basis for considering the biological meaning of the different 
mathematical expressions of a model. 

Kinetic Model Derivation 

Kinetic models of biological systems are often applied without being 
fully derived from biological principles. This approach has the disadvan- 
tage that the biological meaning of mathematical expressions may be diffi- 
cult to understand. For this reason, the model proposed has been derived 
based on biological principles. However, this derivation is purely informa- 
tive. As will be discussed later, the mathematical expressions present in 
the final form of the model have already been described in the literature. 
In addition, the same mathematical expression may have different biologi- 
cal meanings, and, consequently, several biological reasons may be respon- 
sible for a phenomenon described by a mathematical expression. 
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The transformation of chemical compounds by bacterial cells is a com- 
plex phenomenon that depends on many factors. Therefore, a simple 
mathematical model to describe such transformations can only be derived 
if some restrictive assumptions are made, and these restrictions will obvi- 
ously limit the conditions under which the model is applicable. The 
model derived below will describe the transformation of TCE in a batch 
system consisting of a closed bottle containing an aqueous solution of inor- 
ganic salts, methane, and TCE. Air, as well as methane, will be present in 
the bottle headspace, and TCE will partition to this headspace. To sim- 
plify the derivation of the model, it is derived for a batch system without 
headspace, and the small modifications necessary to take into account the 
partitioning of methane and TCE in the headspace will be introduced later 
in the development. 

In methanotrophs, the enzyme sMMO is responsible for the initial oxi- 
dation of TCE, and nonenzymatic reactions are probably responsible for 
the later transformation of the oxidized TCE (TCE epoxide or other spe- 
cies) to other products. Thus, the primary goal of the mathematical model 
is to find an expression for EtJt), the concentration (in milligrams per li- 
ter) of enzymatically active sMMO present in the medium at time t. 

E(ot(t) is assumed to be proportional to the concentration of cells in the 
medium; therefore, if X(t) is the cell concentration (grams per milliliter) 
in the medium at time t, then EtJt) is equal to the product of a proportion- 
ality factor E multiplied by the cell concentration X(f) (Equation 1). 

*»,<'> = **(/) 
(1) 

E therefore represents the mass of enzymatically active sMMO per unit 
mass of microbial cells, and it will be considered constant in most of the 
conditions simulated by the model. However, depending on the medium 
and the environmental conditions, the cells may contain different amounts 
of enzymatically active MMO (i.e., different £). For example, it is ex- 
pected that E will decrease in the cell under conditions in which the 
growth-limiting factor is no longer methane but another substance needed 
for growth. To prevent the rate of methane oxidation exceeding the needs 
of the cell, it is expected that the cell will reduce the amount of active 
MMO (i.e., will reduce the value of E) either by deactivating the enzyme, 
by slowing the transcription of its gene, or by any other mechanism. 

The oxidation rate of TCE will be assumed to follow classical enzy- 
matic kinetics that take into account the competitive inhibition between 
TCE and methane for MMO (Equation 2) (Segel 1976). 

rate of TCE degradation = — = -r E     T 

dt T   tot 

KT    I +~    +T 

( 
r 

1 + 
K 

c 
V J (2) 
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where 

T = TCE concentration in the aqueous phase, g/mL 

t = time, hr 

rT = rate constant for TCE, L/hr 

Etot = total enzyme concentration, g/mL 

Kj = half-saturation constant for TCE, g/mL 

C = methane concentration in the aqueous phase, g/mL 

Kc = half-saturation constant for methane, g/mL 

In Equation 2, and in the following equations, T, C, X, and E    are func- 
tions of time, but for clarity the characters "(f)" have been omitted from 
the equations (i.e., E   (t) will be written E   ). 

The expression of Efot given by Equation 1 can be introduced into Equa- 
tion 2 to give Equation 3. 

rate of TCE degradation - —r- = -r EX 
dt T 

T 
c 

v j 

\ 
+ T 

(3) 

The rate of methane oxidation can be expressed by a similar equation 
(Equation 4) in which rT is the rate constant for methane (L/hr). Equa- 
tion 3 describes the rate of TCE degradation with methane as a competi- 
tive inhibitor, and Equation 4 describes the rate of methane degradation 
with TCE as a competitive inhibitor. 

rate of methane degradation = -—- = -r„EX 
at C 

KC 

f 

T 
\ J 

+ c 
(4) 

Equations 3 and 4 would be applicable to the kinetics of oxidation of 
TCE and methane if the enzyme sMMO were free in the aqueous solution. 
However, in these equations, sMMO is inside the microbial cells, and C 
and T are defined as the concentration of methane and TCE in the aqueous 
solution outside the cell. Therefore, it is assumed that methane and TCE 
concentrations inside and outside the cell are in equilibrium. In other 
words, it is assumed that the rate at which methane and TCE cross the cell 
wall and membrane is fast compared to the rate of their oxidation. If this 
assumption is not true, then the rates of TCE and methane oxidation in 
Equations 3 and 4 must be replaced by more complex equations that take 
into account the rates of TCE and methane crossing the cell wall and 
membrane. 

Chapter 4   Kinetics of TCE Degradation by Methanotrophs 37 



38 

It is likely that the concentrations of methane and TCE inside the cell 
(the concentrations of both compounds in contact with sMMO) will be dif- 
ferent from their concentration outside the cell in the aqueous phase (i.e., 
C and 7). Consequently, the values of KQ and KT in the equations are 
likely to be different from the values of similar constants obtained in a sys- 
tem in which the enzyme would be free in solution. This statement means 
that the values of KQ and KT estimated for the enzyme sMMO extracted 
from microbial cells will probably be different from the values of K   and 
KT estimated for living microbial cells. 

Molecular oxygen and NADH are also needed by MMO to carry on the 
oxidation of TCE and methane. It is difficult to introduce mathematical 
expressions describing the interaction and availability of NADH to 
sMMO, and it is assumed that the supply of NADH to sMMO is not limit- 
ing the rate of oxidation of either methane or TCE. Similarly, it is as- 
sumed that oxygen will be present in sufficient quantity and does not limit 
the oxidation rate of either methane or TCE. Both these assumptions will 
be checked in preliminary experiments. 

tion 5 
The variation with time of the cell concentration X(t) is given by Equa- 
n 5. 

dt dt      K b dt (5) 

where 

Y = cell yield: mass of cells created by unit mass of methane 
metabolized for growth, unitless 

ß =  maintenance constant, 1/time 

§ =  toxicity constant, or mass of cells killed per unit mass of 
TCE oxidized, unitless 

There are several biological interpretations of the terms of Equation 5, 
each of them corresponding to different biological assumptions. Only the 
interpretation most common in the literature is given below. 

It is assumed that the concentration of cells will increase in proportion 
to the amount of methane oxidized (dX/dt = -YdC/dt). However, it is also 
assumed that the cells need a certain amount of energy (maintenance en- 
ergy) to remain alive, and in the absence of methane or TCE, the concen- 
tration of active cells is assumed to decrease following first-order kinetics 
(dX/dt = -ßX). The oxidation of TCE by sMMO produces reactive prod- 
ucts that have been observed to damage the microbial cells. Moreover 
the oxidation of TCE (and of CO, one of its oxidation products) consumes 
NADH that could otherwise be used for cell biosynthesis or to provide en- 
ergy. Therefore, it is assumed that the oxidation of TCE is associated 
with a proportional decrease in microbial cell concentration, and in the 
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absence of methane and maintenance energy dX/dt = % dT/dt. Equation 5 
is obtained by adding the mathematical expressions of all those 
assumptions. 

Using a different derivation, it is also possible to obtain a somewhat dif- 
ferent form for Equation 5; i.e., dX/dt = -Y dC/dt - YaX + t, dT/dt, in 
which the constant ß is replaced by the product of two constants, one of 
them being Y. Depending on the results obtained with the mathematical 
model, this modified form of Equation 5 may be used instead of Equa- 
tion 5. 

The maintenance requirements will probably not remain constant dur- 
ing the entire growth cycle of the cells and at any methane concentration. 
When there is abundant methane available, the cells may have a different 
maintenance energy requirement than when methane is scarce. In this last 
situation, the cells may change their metabolism to conserve energy and 
metabolites; they may also begin to store energy or utilize nutrient re- 
serves accumulated when methane was abundant, or they may form rest- 
ing bodies, in which case their metabolism may change completely. 
Consequently, the presence of the parameter ß in Equation 5 is a simpli- 
fied way to try to take into account the maintenance metabolism of the 
cells. 

Similar to ß, the parameter Y (representing the cell yield) may vary at 
different methane concentrations, and under different environmental condi- 
tions. For example, Y will be low if the cells use much of the methane oxi- 
dized to store energy, but Y will be high if the cells use the stored energy 
to supplement the input of energy provided by the uptake of methane. 

A simple kinetic model often used to describe microbial growth on a 
single substrate is Monod kinetics. The presentation below will show how 
a Monod kinetics model describing the growth of microbial cells on meth- 
ane can be derived as a simplified case of the above model. 

If TCE is absent from the medium (7=0 and dT/dt = 0), Equation 4 re- 
duces to Equation 6. In addition, if the cells have no requirement for 
maintenance metabolism (i.e., ß = 0), Equation 5 reduces to Equation 7. 

dt  ~ ~rC        Kc + C (6) 

dX _       dC 
dt ~        dt (7) 

These two equations can be combined to form Equation 8 (by eliminat- 
ing dC/dt). The expression of Monod kinetics is obtained in Equation 9 
by replacing Yr^ in Equation 8 with a single constant, Umax, and by 
rearranging the result. 
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dX 
dt ~ 

YrcEX 
Kc 

C 
+ c 

1  dX 
= Umax 

c 
X  dt K^ + c 

(8) 

(9) 

These transformations indicate that even though the kinetic model of 
Equations 3, 4, and 5 was derived under quite limiting assumptions, it is 
still more general than Monod kinetics. 

The kinetic model of Equations 3, 4, and 5 was derived for the particu- 
lar case when no headspace was present in the system. The modifications 
necessary to take into account the presence of headspace in the system 
and the partitioning of methane and TCE to this headspace are given in 
Equations 10, 11, and 12 below. The only assumption made is that the 
equilibrium of methane and TCE between the aqueous and gaseous phases 
is fast compared to the degradation process. This assumption is reason- 
able if the system is shaken throughout the test period, in which case the 
equilibrium will be reached within minutes. 

dC 
dt 

-V. 

Vi + Hcv 
rcEX 

K, 
T 

\ ) 

+ c 
(10) 

dT 
dt V, + H V   rTEX 

l c   a 
K„ 
'^ 

+ T 

J 

dX         v 
Vl + H

c
Va  dC                       Vl + HrV    JT = -Y C       SSL _ßX + f _L T_a  dT 

y- dt     K s V. dt dt 
I I 

(11) 

(12) 

In Equations 10, 11, and 12, the definitions of T and C remain the same 
as in previous equations (concentrations in the aqueous phase), but the 
new parameters are as follows: 

V; = volume of liquid, mL 

Hc = Henry's constant of methane, unitless 

VQ =  volume of air in contact with the liquid, mL 

HT = Henry's constant of TCE, unitless 

40 
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It is possible to reduce this system of three differential equations to one 
differential equation (Equation 10) and two equations expressing T and X 
as functions of C (Equations 13 and 14). 

fc e = 
V   °J (13) 

X - X   = 
o 

V, + H V 
I c    a 

V. 

( 3 ^ 
~Y+     * rcE, 

(C 
ß*v ( r\ 

C  ) +  r In 
C 

K  °J (14) 

+ 
rTE 

+ ?, 
^ v, + HV 

l T   a 
(T - T ) 

o 

Three additional parameters were introduced in Equations 13 and 14: 

TQ = initial TCE concentration, g/mL 

CQ = initial methane concentration, g/mL 

XQ =  initial cell concentration, g/mL 

Equations 10, 13, and 14 are then solved using numerical methods. 
The results are theoretical predictions of the concentrations of methane 
(C(0), TCE (T(t)), and cells (X(t)) in the aqueous phase at different times 
following the addition of methane, TCE, and microbial cells in a batch sys- 
tem. Consequently, the solution of the system of equations can be written 
as follows: 

C(t) = C (T;rc,rT,Kc,KT,E,¥,$,$; 

V    V   Hr,H-C ,X ,T ) 
a      I      C      T     o      o     o (15) 

T(t) = T (t;rc,rT,Kc,KT,E,¥,$,{,; 

V,V.,Hr,H-C ,X ,T ) 
a      l      C      T      o      o      o (16) 

X(t) = X(t;rc,rT,Kc,KT,E,¥,$,$; 

V ,V.,Hr,H-C ,X ,T ) a      I       C      T      o      o      o (17) 

These relations indicate that the solutions of the system of Equations 
10, 13, and 14 require the knowledge of eight parameters to be estimated 
(rc, rT, Kc, KT, E, Y, ß, and £), four parameters that are known (Va, V;) 

Hc and HT), and three initial conditions (C , X , and T ). Once the eight 
parameters are known, any type of experiment can be simulated by 
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varying the values of the initial conditions, by varying V' and V. (which 
describe the volume of air and liquid in the system), and by varying H 
and HT (which are sensitive to the temperature). 

Review of Some Mathematical Models 

The following paragraphs give a brief literature review of a few mathe- 
matical models describing the cometabolic degradation of a substrate by 
bacterial cells. To facilitate comparison between the models, the equa- 
tions for these models are written using the same variables and parameters 
as the model of Equations 10, 13, and 14. In addition, to simplify the dis- 
cussion of the models, some details are sometimes omitted in the descrip- 
tion. The proposed model described by Equations 10, 13, and 14 is 
rewritten in a simpler way and called Model 1 (which consists simply of 
Equations 3, 4, and 5). 

dC 
dt 

dX 
dt 

-rcEX 

= -Y 
dC 

K^ 

\ 
-i 

\ 
+ c 

J 

dT 
T-vx^in Model 1 

dT 
dt -rTEX 

K„ 
'^c 

\ 

+ T 

J 

The variables and parameters used in the models are defined below 
Several interpretations are sometimes given for the parameters, and some 
of the parameters were already introduced and defined in the derivation of 
the model, but they are given a more general definition which remains con- 
sistent with their initial definition. 

/ = time 

C = methane or concentration of the growth substrate in the 
aqueous phase 

rc = rate constant for methane 

E =  mass of enzymatically active sMMO per unit mass of 
microbial cells, or (for Model 3) fraction of cells that are me- 
tabolically active for degrading either the growth substrate 
(C) or the cometabolic substrate (T) 

Kc = half-saturation constant for methane 
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T = TCE or concentration of the cometabolic substrate in the 
aqueous phase 

KT = half-saturation constant for TCE 

Y = cell yield: mass of cells created by unit mass of methane 
metabolized for growth 

ß = maintenance or decay constant 

% = toxicity constant: mass of cells killed per unit mass of 
cometabolic substrate oxidized, or additional demand 
exerted by cometabolism on cell metabolism 

rT = rate constant for TCE 

O = oxygen concentration in the aqueous phase 

X = concentration of microbial cells in the aqueous phase 

rQ = rate constant for oxygen 

K0 = half-saturation constant for oxygen 

F,G,H,J =  additional constants or groups of constants needed in some 
of the models (given without description of their meaning) 

Following this notation, dC/dt, dT/dt, and dX/dt describe the variation 
with time in concentrations in the aqueous phase of methane, TCE, and mi- 
crobial cells, respectively. Because the purpose of the model is to predict 
the variation with time in the concentration of TCE (or other cometabolic 
substrate) in a biological system, only dT/dt would be needed. However, 
dT/dt is a function of the concentration of microbial cells in the system, 
which in turn varies depending on the amount of methane degraded. 
Therefore, the expression of dX/dt and dC/dt is needed in addition to the 
expression of dT/dt. 

Methane and TCE compete for the active site of sMMO, and to avoid 
this competition and maximize the rate of transformation of TCE, bioreac- 
tor systems are developed in which methane is not present during TCE oxi- 
dation. As a consequence, several models were devised to simulate TCE 
degradation by resting cells of methanotrophs (i.e., in the absence of meth- 
ane). One of these models was developed by Alvarez-Cohen and McCarty 
(1991a) to simulate the biodegradation of TCE by a mixed culture of rest- 
ing cells in a batch system (Model 2). 

Model 2 assumes that TCE degradation will follow Monod kinetics, 
and the model takes into account the toxicity to the cell of the products of 
TCE oxidation, consistent with another study of the same authors (Al- 
varez-Cohen and McCarty 1991b). Alvarez-Cohen and McCarty (1991a) 
introduced in their model the constant T , the "transformation capacity," 
to represent the maximum mass of cometabolized compound that can be 
transformed per unit mass of resting cells. In Model 2, this constant has 
been replaced by x = 1/T . This model does not include a term for mainte- 
nance energy. In addition, because methane is absent, dT/dt does not need 
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to take into account the competitive inhibition of methane, and the oxida- 
tion rate of TCE is simply described by Michaelis-Menten kinetics. A rea- 
sonable fit was obtained between the experimental data and model 
predictions, confirming the validity of the concept of "transformation 
capacity." 

dC 
,     = 0 (no methane present within the system ) 

dX      . dT 
dt      * dt Model 2 

dT 
dt 

XT 
T KT+T 

Broholm, Christensen, and Jensen (1992) proposed a model to simulate 
the degradation of TCE by a mixed culture of methanotrophs in a batch 
system at 10 °C (Model 3). This temperature is consistent with the low 
temperatures found in groundwater, and TCE oxidation was slow in their 
experiments (the experiments were conducted for several weeks). The 
degradation of methane (dC/dt) was described assuming a competitive in- 
hibition by TCE. Similarly, the degradation of TCE (dT/dt) was described 
assuming a competitive inhibition by methane. The variation in cell den- 
sity dX/dt was assumed to be proportional to the amount of methane de- 
graded (dC/dt), and a maintenance constant was also present. However, 
unlike Model 2 and the proposed model (Model 1), Model 3 did not in-' 
elude an expression for TCE toxicity. 

The experiments of Broholm, Christensen, and Jensen (1992) were lim- 
ited to a study of the correlation between the rate of oxidation of methane 
and TCE. Their model successfully simulated the data obtained at meth- 
ane concentrations below 1.8 g/L but failed to simulate the data obtained 
at 3.2 g of methane per liter, supposedly because the growth conditions 
changed during the experiments. 

dC 
dt 

dX 
dt 
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XC 
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Semprini and McCarty (1991, 1992) devised a model to simulate the de- 
gradation of TCE in a semi-confined aquifer in which an indigenous popu- 
lation of methane-utilizing bacteria was stimulated by methane and 
oxygen addition. Only the latter version of their model (1992) is described 
here (Model 4). 

The model attempts to take into account the consumption of oxygen in 
the aquifer (dO/dt). Oxygen is provided as a nutrient in the field studies 
that the model simulates, and its availability is likely to influence the rate 
of TCE degradation. The expressions of dC/dt or dT/dt in their model 
seem somewhat empirical and do not appear to be general expressions of 
enzyme kinetics for multiple substrates (for example see Hammes 1982). 

dC 
dt 

= -Err 

Kr 

XC 
( \ 

V ) 

O 
K   + O 

o 

dX 
dt -yf-^^b Model 4 

dT 
dt 

= -Er„ 

K„ 

xT 

c 
\ J 

+T 

O 
K0 + 0 

dO 
dt dt r     K   + O 

The authors introduced a parameter (E) to express the fraction of the to- 
tal population active in the cometabolic transformation. This parameter is 
assumed to be 1.0 when the population is growing (dX/dt > 0) and de- 
creases following a first-order process (dE/dt = -a E, in which a is a con- 
stant) when the population is decreasing (dX/dt < 0). It is difficult to 
determine if the variation of E will really follow such an expression, and 
this is not supported by any study. However, this parameter has the same 
mathematical effect as the parameter E in the proposed model (Model 1), 
in which case it represents the amount of active sMMO present in one unit 
mass of cells. 

The variation in population size dX/dt follows kinetics similar to that 
of Model 3, except that an additional term [0/(KQ + O)] expresses that the 
cell decay (or maintenance requirements) will be maximum when oxygen 
is fully available but zero in the absence of oxygen. Alvarez-Cohen and 
McCarty (1991b) showed that resting methanotrophic cells were inacti- 
vated more rapidly when shaken in the presence of oxygen than when un- 
shaken. They proposed that shaking the cells increased their decay 
through endogenous respiration or predation, both of which probably 

Chapter 4   Kinetics of TCE Degradation by Methanotrophs 45 



require oxygen. Therefore, the term [0/(KQ + O)] would simulate this 
type of phenomenon. But their experiments were not conducted for more 
than 24 hr, and it seems reasonable to assume that in a longer time period 
and in the absence of oxygen, the methanotrophs will slowly die or per- 
haps form resting structures. Consequently, the expression by Alvarez-Co- 
hen and McCarty (1991b) of dX/dt may be limited to simulations of short 
time periods. In addition, unlike Model 2, Model 4 does not include a 
term to take into account the toxicity to the cells of products of TCE degra- 
dation. 

The variation in oxygen concentration (dO/dt) is assumed to be propor- 
tional to the amount of methane degraded, and it is apparently propor- 
tional to the amount of oxygen consumed by endogenous metabolism. 

Alvarez-Cohen and McCarty (1991b) then introduced this model in a 
spatial model at one dimension that considered the sorption of TCE onto 
aquifer solids (linear and reversible sorption) and the diffusion and trans- 
port of TCE in the aquifer (convection-dispersion equation). The model 
simulations agreed well with the field observations. 

Chang, Voice, and Criddle (1993) used Model 5 to simulate the biode- 
gradation of an aromatic compound by pure cultures. For example, one 
strain cometabolized p-xylene while growing on toluene as sole carbon 
and energy source. This model was described in detail by Criddle (1993) 
The model fit well with the experimental data, but the introduction of an 
acclimation period was necessary to provide a better fit of the biomass 
concentration. 

The expression of dC/dt is similar to the one described in Model 3, and 
it considers the competitive inhibition by TCE of methane uptake. 

dC 
dt = -/", 

Arc 
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dt       Y dt     ßX+^dt Model 5 
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The expression of dX/dt includes a decay constant (ß), as in Model * 
and also a toxicity constant ($), similar to the model of Alvarez-Cohen"' 
and McCarty (1991) (Model 2). The presence of this "toxicity" constant 
was justified to take into account a loss of biomass due to the consump- 
tion of reducing power during the oxidation of the cometabolic substrate 
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(e.g. p-xylene) by the dioxygenase. However, unlike TCE oxidation, men- 
tion was not made of the possibility that the products of the oxidation of 
the cometabolic substrate might be toxic to the cells. The expression of 
both dC/dt and dX/dt in Model 5, therefore, are similar to the one used in 
the proposed model (Model 1). 

The expression of dT/dt is more complex than in the other models, and 
it is related to the Luedeking-Piret (LP) model that describes the kinetics 
of product formation, which combines growth-associated and nongrowth- 
associated contributions (Bailey and Ollis 1986). The first term of the 
equation is similar to the expression derived for dC/dt; i.e., a competitive 
inhibition of the degradation of cometabolic substrate (7) by a growth sub- 
strate (C). 

The second term of the equation predicts an increase in the rate of de- 
gradation of cometabolic substrate at increasing rates degradation of 
growth substrate dC/dt. Criddle (1993) justifies this term by proposing 
that higher rates of degradation in the presence of a growth substrate 
might be attributed to elevated activity of catabolic enzymes when the 
growth substrate is present (induction) or to higher rates of oxidation of 
growth substrates compared to the rates for autooxidation of biomass. 
Nevertheless, it is difficult to understand biologically why the expression 
of the phenomena just described should have the mathematical formula- 
tion given by Criddle (1993). In addition, it is not clear why such an 
expression is not present in the equation describing the degradation of the 
growth substrate (dC/dt) because the same dioxygenase was assumed to be 
responsible for the oxidation of both the growth substrate and cometabolic 
substrate. 

Future Research 

Although funding from the Waterways Experiment Station has ended, it 
is hoped that funds will be found to continue the following investigations. 
It is proposed to use Model 1 to simulate the biodegradation of TCE by 
pure cultures of methanotrophs in a batch system at room temperature. 
One of the purposes is to assess if such a model will simulate TCE degra- 
dation in a bioreactor in which most of the environmental parameters can 
be controlled. Pure cultures of methanotrophs will be used to decrease the 
probability that factors not included in the model influence the experimen- 
tal results (e.g., predation by protozoa). The studies described above for 
Model 2 to 5 do not provide enough information for that purpose, either 
because the model was too simple (e.g. Model 2), mixed cultures were 
used (Models 2, 3, and 4), the environmental conditions were not optimal 
(e.g., low temperature in Model 3, limiting oxygen availability in Model 
4), too many external parameters influenced TCE degradation (e.g., move- 
ment of nutrients and TCE sorption in Model 4), or TCE degradation was 
not studied (Model 5). 
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In addition, even though most of the models described above give good 
fits to the experimental data, the more complicated models (Models 3, 4, 
and 5) were not tested under a large range of experimental conditions. 

The models assume that their parameters are constant. However, the 
more parameters included in a model, the higher the probability that the 
model will fit sets of experimental data obtained under somewhat similar 
conditions. A thorough investigation of the validity of the assumptions re- 
quires an investigation of the ability of the model to fit experimental data 
obtained under very different and even extreme conditions. However, 
Models 3, 4, and 5 were not tested under many different conditions, and it 
is not certain that the parameters obtained to fit the experimental data 
would remain adequate to fit experimental data obtained under quite differ- 
ent environmental conditions. Model 3 was tested under different starting 
methane and TCE concentrations, but the experimental conditions were 
still not adequate to find estimates for all the parameters individually 
(only the ratio r/KTT could be estimated, not /y or KT themselves). 

Therefore, the validity of Model 1 to predict TCE degradation by 
methanotrophs will be tested under very different conditions, and a statisti- 
cal method will be used to find the parameters that provide the best fit of 
the model to the experimental data obtained from all the different experi- 
ments together. The estimated variance of the parameters obtained from 
the statistics will provide quantitative information on the validity of the 
model, and indicate which parameters are most likely to vary in response 
to different environmental conditions. 

The following paragraphs briefly describe the methods that will be 
used to estimate the eight parameters (rc rv Kc Kv E, Y, ß, and £) of the 
kinetic model. Actually, only seven parameters need to be estimated be- 
cause E cannot be estimated independently of rQ and /y, and its value will 
be set to 1.0. The effect of the variation of E on the simulation will be as- 
sessed later in the study. 

The parameters will be estimated by fitting to the kinetic model the ex- 
perimental data that will be obtained in batch systems by using weighted 
least-squares methods. However, there are several problems associated 
with the determination of the parameters, and some of them are discussed 
below. 

Generally, parameters of a mathematical model describing the variation 
of an observed variable v at different values of an independent variable x 
would be obtained by fitting the model to one plot formed by plotting the 
experimental values of y obtained at different values of x. If N replicates 
of the experiment are run, the model can be fit to each plot of each repli- 
cate separately, and TV estimates of the parameters can be obtained. Then 
an average and a standard deviation of each parameter can be calculated 
from their N estimates (it is not valid to attempt fitting a model to an "av- 
erage plot" formed by the average of the N yi's obtained at similar xi from 
each replicate). 
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However, the model in this proposal has seven parameters to be esti- 
mated (actually 10 or more if one considers that the initial values C , Xo, 
and T are also parameters of the model that need to be evaluated, and that 
these three values will be different in different experiments). It is almost 
certain that no single plot obtained from the replicates of an experiment 
can give a valid estimate of each parameter, because the least-squares 
problem will be ill-conditioned (Beck and Arnold 1977). In other words, 
the estimation of the parameters from one single plot will almost always 
give enormous uncertainties (variance) in the estimation of some of the pa- 
rameters, and in most cases, the least-squares problem will have an infin- 
ity of solutions. 

To circumvent this problem, the parameters will not be estimated by 
minimizing separately the sum of squares of each replicate of each experi- 
ment, as suggested above. Rather, the parameters will be found by mini- 
mizing one single sum of weighted-squares (total sum of weighted squares 
(Total SWS)) formed by adding the sum of squares of all the replicates in 
all the experiments. In addition, the experiments will be carefully de- 
signed so that the minimization of Total SWS will not be ill-conditioned. 
Weights will be included in the sum of squares to acknowledge the fact 
that the errors associated with the measurement of methane or TCE are 
relative and not absolute. The weights will be determined by estimating 
the inverse variance of the relative error associated with methane and TCE 
measurements, and plots of residuals will be examined at the end of the 
calculations to ensure that the weights were correctly chosen. 

The minimization of Total SWS will be made using the Levenberg-Mar- 
quardt method (Seber and Wild 1989) and will involve repeating numeri- 
cal calculations to evaluate the solutions of Equations 10, 13, and 14, for 
each plot of each replicate. A computer program written in Pascal lan- 
guage is being developed to handle the calculations. 

The numerical calculations will require the determination of initial esti- 
mates of the parameters. These estimations will be made by running ex- 
periments under extreme values of methane, TCE, or cell concentrations 
that permit the use of a simplified version of the mathematical model. 
The purpose will be to obtain experimental conditions such that some pa- 
rameters can be obtained by fitting a simplified version of the model to 
one single plot of an experiment. 

It is planned to include all the initial values of the variables C , X , and 
To in the calculations, and each experiment will have its own initial condi- 
tions. These initial values will be treated like additional parameters, and 
they will increase the complexity of the calculations. 

Depending on the time required for the calculations (which will be 
done with a desktop computer), it may be necessary to simplify the 
method to estimate the parameters. 
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Some preliminary experiments will be conducted to estimate the con- 
centration of oxygen in the headspace of the experimental bottles above 
which oxygen concentration has no influence on the rate of oxidation of 
methane and TCE. Then, all experiments will be conducted with excess 
oxygen. 

Similar kinds of experiments will be conducted to ensure that in no cir- 
cumstances the concentrations of inorganic salts will become so low that 
they influence the oxidation rates of either methane or TCE. 

Several experiments then will be conducted to estimate the parameters 
of the kinetic model. The conditions of each experiment will be carefully 
chosen in such a way as to avoid that the least-squares calculations be ill- 
conditioned and that the estimation has the best possible accuracy. 

It is expected that some limitations of the model will become apparent 
during the estimation of its parameters. Those limitations and, more gen- 
erally, the validity of the assumptions made during the derivation of the 
model will be studied more closely by conducting additional experiments. 
If feasible, some modifications of the model will be proposed to circum- 
vent the weaknesses of some assumptions. 

The assumptions concerning the nonlimiting availability of NADH to 
sMMO will be assessed by supplying reducing power to the cells indi- 
rectly in the form of formic acid. Methanotrophs cannot grow on formate 
but the compound can provide the cell with NADH following the oxida- 
tion of formate to carbon dioxide by formate dehydrogenase. An absence 
of increase in the rate of oxidation of TCE (or methane) following the ad- 
dition of formate to the medium will be consistent with a nonrate limiting 
availability of NADH to sMMO. 

Several experiments will also be conducted to study how the microbial 
oxidation of TCE will be affected under specific conditions not simulated 
by the model, including conditions of limiting oxygen or inorganic nutri- 
ent availability. The possible inhibitory effect of ammonia as a competi- 
tive inhibitor of MMO (Carlsen et al. 1991) will also be assessed. 

All the above experiments will be conducted with the same strain of 
methanotroph, and additional studies may be done with other pure and 
mixed cultures of methanotrophs to determine whether the model applies 
to mixed cultures as well as to other pure cultures. The effect of preda- 
tion by protozoa will be studied by using eukaryotic inhibitors. Some 
methanotrophs are not able to oxidize TCE, and the effect of their pres- 
ence in a mixed culture containing TCE oxidizers will be assessed. 

The information from these studies will be used to suggest the condi- 
tions under which TCE will be oxidized most efficiently. 
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Computer Program 

The computer program in Pascal language was developed to a point at 
which it was possible to start its testing by fitting artificial data values. 
However, much work is still needed to debug it, increase its calculation 
speed if possible, and make it easier to use. The program as given in Ap- 
pendix A is therefore not completed, even though it seems to work with 
simple data sets. The following paragraphs give a general overview of the 
program. Several of the procedures used in the program were obtained 
from Press et al. (1989) and were often slightly modified. 

The program starts by opening an input file listing primary estimates 
for the parameters to be estimated by the program. In addition, for each 
parameter, minimum and maximum values are listed; their purpose is to 
prevent the calculations from diverging too much during the first itera- 
tions. The experimental data are listed in the file after the estimates of 
parameters. 

The parameters giving the minimum Total SWS are estimated itera- 
tively by starting from the primary estimates using the method of Mar- 
quardt (Press et al. 1989). Each iteration of the Marquardt algorithm 
requires calculation of the theoretical values predicted by the mathemati- 
cal model that correspond to each experimental datum, together with the 
calculation of the partial derivatives with respect to each of the parame- 
ters at each experimental datum. Because the mathematical model is only 
described by differential equations that cannot be solved analytically, the 
amount of calculation required for each iteration of the Marquardt algo- 
rithm is quite important. The integration of the differential equations of 
the model were made by using the Burlisch-Stoer method (Press et al. 
1989), but the procedure iteratively driving this algorithm had to be modi- 
fied to prevent the calculations from diverging under certain conditions. 

The complete listing of the program, together with an example of an in- 
put file, is given in Appendix A. Many comments are added in the listing 
to help in understanding the program, but the program itself is not com- 
plete and still has several bugs. The program was written in Think Pascal 
4.0 (Symantec Corporation, Cupertino, CA). 
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49.033345 
52.8784187 
55.7942666 
57.457014 
60.7307919 

SET2 

Sdata 
5 

TimeSample 
0 
0.45327017 
0.89038831 
1.52003874 
2.12478607 

SET3 

Sdata 
8 

TimeSample 
0 
15.9046115 
31.3827736 
54.7909271 
79.9585203 
109.610773 
134.757759 
239.95195 

SET4 

Sdata 
8 

TimeSample 
0 
0.44685132 
0.91063316 
1.65238176 
2.48172788 
3.47070542 
4.30248463 
7.64232658 

2.6 
2 
1.4 
1 
0.2 

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

Meto vers. 
1 

TCEo vers.    Cello vers. 
1 2 

Va vers. 
2 

VI vers. 
2 

Met 
4 
3.6 
3.2 
2.6 
2 

obs TCE obs Cell_obs 
100 
-1 
-1 
-1 
-1 

MetSig        TCESig       CellSig 

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

Meto vers. 
2 

Met_obs 
0.02 
0.018 
0.016 
0.013 
0.01 
0.007 
0.005 
0.001 

TCEo vers.    Cello vers. 
1 2 

Va vers. 
1 

VI vers. 
1 

TCE obs Cell_obs 
100   ■ 

MetSig TCESig        CellSig 

@@@@@@@@@@@@@@@@@@@@@@@@@@@@(g)(g) 

Meto vers. 
3 

Met 
0.2" 

obs 

TCEo vers. 
1 

TCE obs 

18 
16 
13 
1 
07 
05 
01 

Cello vers. 
3 

Cell_obs 
10 

Va vers. 
2 

VI vers. 
2 

MetSig TCESig        CellSig 
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Pascal nropram 

program TCE; 

const 
numb_obs = 20; {the number of "time" observation expected in ONE set) 

{including time zero. BUT IN A SINGLE SET ONLY i e ft) 
{is the max # of elements of TimeSample} 

fiTtTii m?8 l1^'™111 number of differential equations solved simultaneously} 
{i.e. the max. size of the vectors y and dydx.} " 

nstepp = 200; 

{maximum number of intermediate steps in x stored. (612)} 

IM«™"!?-00"81 = 60; {the "^ number of constants used by the model} 
{NOTE that I only need room for one version of Meto, Cello TCEo ) 

Because in the XMatDeriv the different Meto's are in the same) 
{column (idem for TCEo and Cello.} 

{%%% for rzextr %%%} 

Rzextrlmax = ll; {must be equal to imax inside of bsstep} 
RzextrNmax = 10;   {must be equal to nvar} 
RzextrNcol = 7;       {must be equal to nuse inside of bsstep} 

{%%% for marqmin and related %%%%} 
ndatap = 200;   {the maximum number of observations} 

m!nN A™ THE SET?'With the additi0n °f the TCE'S' MEPS- CELL'S. unlike numb obs} 
map - 50; {the max. numb, of constants to be fitted. I must take} 

(for each set f*'' may h3V6 dlfieren[ versions of Met0- Cell°. TCEo,} 
{%%% for CurveFft} 

itermax = 60; {the maximum # of iterations in the least squares} 
{%%% To work with several sets of observations %%%%%} 

maxSet = 20;    {the maximum # of sets expected. It is also the} 
{max # of different initial values Meto, TCEo, and Cello) 

type "' 
myreal = extended; 
myinteger = integer; 
InVector = array[1 ..numb_obs] of myreal; 

M JnK?lly
a
,he ^eCt°r «?ntÜn,n9 the observations or their theoretical values} 

MatDenv = array[1 ..numb_obs, 1 ..numb_const] of myreal; 
{typically the matrix containing the values of the partial derivatives} 
{with respect to each constant corresponding to each observation} 

XMatDeriv = array[1 ..ndatap, 1 ..numb_const] of myreal; 
{The equivalent of MatDeriv but for all the observations } 
{Met, TCE, and Cell together.} 

RealArrayNVAR = array[1 ..nvar] of myreal; 
FOROdeintXp = array[1 ..nstepp] of myreal; 
FOROdeintYp = array[1 ..nvar, 1..nstepp] of myreal; 

{%%% for marqmin and related %%%%} 
RealArrayNDATA = array[1 ..ndatap] of myreal;   {vector of observations to be} 
{fitted. NOTE that ft is not InVector if I use Mrqmin simultaneously for Met TCE) 
{and Cell. In that case ndatap might be 3 times numb_obs.} ' 

IntegerArrayNDATA = array[1..ndatap] of integer; 
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RealArrayMA = array[1..map] of myreal; 
StringArrayMA = array[1 ..map] of string[32]; {the vector of the constants name} 
{If this vector is of size 8 or 12,1 get an error when doing "stringof(Meto.i)"} 
{in Define. It might be that even if i is <10, the system want it to be} 

{able to use the maximum value of i.} 
IntegerArrayMFIT = array[1 ..map] of integer; RealArrayMAbyMA = arrayfj ..map, 1 ..map] of myreal; 
{the matrix of covariance} 

RealArrayMAbyl = array[1 ..map, 1 ..1 ] of myreal;       {a type needed for GAUSSJ} 
RealArrayNPbyNP = RealArrayMAbyMA;        {those 3 declarations are for} 

RealArrayNPbyMP = RealArrayMAbyl; {compatibility with the procedure} 
IntegerArrayNP = IntegerArrayMFIT; {GaussJ} 
SetlnVector = array[1..maxSet] of AlnVector; 

{SetMatDeriv = array[1..maxSet] of MatDeriv;} 
SetlntegenS = array[1 ..maxSet, 1 ..6] of integer; 
Setlnteger5 = array[1 ..maxSet,  1..5] of integer; 
Setlnteger3 = array[1 ..maxSet,  1..3] of integer; 
string32 = string[32]; {the type of a file name} 

var 
k: integer; 
word: string32; 
sort: text; {the internal name of the output file} 
OutputFile: string32;  {used when I want to output my results to a file} 
screen, simple: boolean; 

{TRUE= I want the output on the screen, and the model used is the simple one} 
time, Mace: myreal; {used to test MetFromTime} 
ma, mf it: integer; {ma = the number of constants} 

{mfit = the number of constants to enter the statistic} 
{ExpConst: RecConst;} 

fini: boolean; 

M W, DP: integer; {The minimum width for writing the output} 
{and the decimal places for writing the output} 

Met, dMdt: RealArrayNVAR; 
{are the y and dydx needed by odeint,} 
{odeint will calculate such a vector for each experimental time} 

{Those variables are all declared as dynamic variables} 
Met_cal, TCE_cal, Cell_cal: AlnVector; 
TimeSample: SetlnVector; {an array of pointers to InVector's} 
Met_obs. TCE_obs, Cell_obs: AlnVector; 

{those are the vectors of observations or theoretical values} 
MetSig, TCESig, CellSig: AlnVector; 

{the vectors of standard deviations corresponding to Met, TCE, and Cell} 
PDMet, PDTCE, PDCell: AMatDeriv; 

{Matrices of partial derivatives created as dynamic variable because I do not have} 
{ enough room, probably in the stack (error page 524, "global data exceeds 32 K....)} 

TimeX Xobs Xcal, Xsig: ARealArrayNDATA;     {time, observations, predicted, sigma of obs.) 
{MetoX, TCEoX, CelloX: ARealArrayNDATA;} ' 

{not needed yet} 
PDX: AXMatDeriv; 

{the 3just above are the equivalent of the 3 above them, but for} 
{use by mrqmin, and include ALL the observations together in the} 
{same vectors.} 
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SetX: AlntegerArrayNDATA; 
jSetX[i] is the adress of the data forming the iest element of the) 

fJÄ "X"/or "$$} input-To actuaI|yfind ,he adress,} 
nedSetToX matrix which indicates the regions between 2 T 

{that a)rrespond to each Set, and within as Set at which Met. VCE ) 
{or Cell. SetX .s defined at the same time as SetToX in MakeMrqVector} 

Km, Kt, rm, rt, Y, tox, main: myreal; 
{constants (parameters) to be estimated} 

timeo, TCEo, Meto, Cello, E, Hm, Ht, Va, VI, teta: myreal; 
{lhose constants will remain constant, whereas the above "constant" 1 
{(parameters) will be estimated statistically from thefSSStoEf^ } 

dMdti, TCEi, Celli, Meti: myreal; 
{dMdt, TCE, and Cell, from discrete value of Meti} 
{data: integer;} 

{number of experimental observations; replaced by SetConst[k 11} 
n: integer;     {the size of the vectory, typically 1, and <nvar} 
tbeg tend: myreal;    {the time at beginning and end of an ODEINT call} 
i, j: mteger;{food for loops} ' 
reponse: string[8]; 
SigPrecMet, SigPrecTCE, SigPrecCell: myreal- 
{the relative errors associated with the observations Are } 
{defined in the INPUT file and read in Define} 

aName: String Array MA; 
{aName = The vector of strings containing the name of the constants 
{used in the program at a location correspondingTo tSaS "T 

a, amin, amax: RealArrayMA; 
{a= the vector of constants.} 
{amin= the minimum acceptable values for a.} 
{amax= the maximum acceptable values for a} 

lista: IntegerArrayMFIT; 
MMin, MMinAcc: myreal; 

{A first guess forthe minimum value that Methane will reach} 
(i.e. when X = 0), and the minimum accuracy required to} 

{detect this minimum, in fraction of the minimum.} 
q,,o/T/

y
0?fl'"      .    .     fused for some ^"9 wfth a simple Funcs} 

{%%% for derivative %%%%} 
FiistAccr: myreal; {1/fraction * the relative amount by which a constant will be \ 

{increased in DefAIIDeriv before the FIRST call to MRQMIN} } 

{i.e. ReIDelA[i]:= FirstAccr*a[i]. (default about 01 Jj       IN"} 

fraction: myreal; {it multiplies the relative increase (or decrease) obtained! 
from a prevrcus call or MRQMIN, and the result will be used to} ^ 

{estimate the partial derivatives in DefAIIDeriv. (defauft 0 01)} 

SS*17rea,:  <a de,autt value assigned to delta if ft is zero in MetAIIDerivs} 

J?J <   o?   'myrea,: {a defaU,t va,ue defined in DefRunCons} ' {%%%forOdeint(612)%%%} ' 
OdeintKmax, OdeintKount: myinteger 
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OdeintYp: AFOROdeintYp; 
{those two arrays are to store intermediate results, which are stored at} 
{intervals = OdeintDxsav.} 
{NOTE: OdeintDxsav and  OdeintKmax must be defined in the main program} 
{before calling odeint} 

nok, nbad: integer; 
{%%% for ConsOdeint %%%} 

{the accuracy Odeint_"eps" defined by Ao = eps x ysca![i]} 
Odeint_eps: myreal; 

{a guessed first step size (Odeintjrl)} 
Odeint_h1: myreal; 

{the minimum allowed stepsize (Odeint_hmin)} 
Odeint_hmin: myreal; 

{%%% for rzextr (621) %%%} 
RzextrX: array[1 ..Rzextrlmax] of myreal; 

{rzextr use these external arrays to store "xest" which is the square of the} 
{step used during the iest call of the routine. Similarly, it will use the} 
{matrix below to store the estimated y calculated with xest during the iest step} 

RzextrD: array[1..RzextrNmax, 1 ..RzextrNcot] of myreal; 
{%%% for marqmin and related (577) %%%%} 

MrqminOchisq: myreal; 
{= the value of the sum of square at the end of marqmin} 

{i.e. it is the MINIMUM sum of square.} 
Mychisq: myreal; 

{a "chisq" that keeps the previous value of chisq and is not modified by} 
{ Mrqmin. I use it to determine if the iteration was succesful or not} 

MrqminBeta: RealArrayMA; 
{= -1/2* gradient of the sum of square with respect} 
{to the "constants" to evaluate} 

RelDelA: RealArrayMA; 
{RelDelA = The vector containing by how much the constants in "a"} 
{had been increased (relatively) by the last call of MRQMIN.} 

ndata: integer; 
{The number of data that will be fitted together, it may be larger} 
{than "data" if I put the observations of methane and TCE together} 

covar, alpha: ARealArrayMAbyMA; 
chisq, alamda: myreal; 

{%%% To work with several sets of observations %%%%%} 
numbSet, numbMeto, numbTCEo, numbCello, numbVa, numbVI: integer; 

SetConst: Setlnteger6; 
{SetConst= a matrix which describes the # of data (1st col), the address in "a"} 
{of Meto (2), TCEo(3), Cello(4), Va(5), Vl(6) used by each set (in rows)} 

SetVer, SetVerToA: Setlnteger5; 
{SetVer= a matrix which describes the version of Meto (1), TCEo(2), Cello(3)} 

{Va(4), Vl(5) used by each set (in rows)} 
{SetVerToA= a matrix to make the transition between SetVer and SetConst} 

{in row: the version #; in column: Meto(1), TCEo(2), CeIlo(3)} 
{Va(4),andVI(5).} 

{For a given version, the element gives the address in "a" of the} 
{ constant corresponding to the column heading.} 

{NOTE that these two matrices have just one column less than SetConst} 
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{because the latter has a column for "data" in addition. For this reason} 
{Meto is in position 1 in the 2 matrices, but in postion 2 in SetConst) 

SetToX: Setlnteger3; 

72*!!!?!!? ke®p?,!ra*for each set of ^ Position of its Met, TCE, and Cell) 
{observations in the larger vector Xobs) 

oldFreeHeap, oldStack: longint; 
(Used by HeapStack procedure} 
J%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%yyyy. 

r—JL~—._—.  
procedure HeapStack 

(where: string32); 

{Kfh?SSKSÄ2?e merry and Sutack space available-ln addition} 
8 Ivt «f    .  «JCe botween those results and the same obtained the } 

/ 5™ ™*f" °f HeaPSlack- Forthat reason "oldFreeHeap" and "oldStack"} 
(P GLOBAL variables) must be initialize the first time we call the procedure.} 

MinWid: integer; 
actualFreeHeap, actualStack: tongint; 

begin 
ShowText; 
MinWid := 7; 

actualFreeHeap := FreeMem; actualStack := StackSpace- 

chr(9), • Stack = ■, actuaS': MilS);        ( )h (     66 He3p = 'Chr(9)" ^'FreeHeap : MinWid. 
oldFreeHeap := actualFreeHeap; 
oldStack := actualStack; 

end;    {HeapStack} 

,XtUre ?efine: ,{lts role fe t0 read the value of the constants and} 

f ISXSEZSS*in the fi,e "entre"'and t0 define the ™espondin9} 
var 

entre: text; 
word, mystring: string; 
d, i, j, k, m, t: integer; 
title, oldfile: string; 
Wrect: red;   {see the loop "with" below to see how it is defined} 
chart, char2, char3, char4: char; 

begin 
SetRect(Wrect, 10, 50, 600, 450); 

*0*SnS l?^imevns!ons sont donr|ees depuis le coin haut gauche} 
SetTextRect(Wrect); {set the dimensions of the interactive window} 

writelnCSelect the INPUT file (<return>)'); 
readln; 
Reset(entre, OldFileNameCselect an input file')); 
{page 334, open a file in read only} 

readln(entre, title);        {first line} 
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{skip any character before a tab in the line} 

{skip the line with titles} 
{"m" will be used to create SetVerA below} 

if Pos('entre', title) <> 1 then 
begin 

writeln('wrong file or problem'); 
writelnfpress return and the program will quit'); 
readln; 
halt; 

end; 
readln(entre); {skip the 2nd One.} 
readln(entre, title); {3th One} 
if PosCCONSTANTS', title) o 1 then 

begin 
writeln('could not find the line starting with "CONSTANTS"'); 

halt; 
end; 

chaM :=T; 
repeat 

read(entre, chart) 
untilord(char1) = 9; 
readln(entre, ma); 
readln(entre); 
m := ma; 
if ma > numb_const then 

begin 
writeln('ma =', ma: 3,' is > numb_const = \ numb_const: 3); 

writeln('i.e. there are too many constants, especially:'); writeIn('Meto"s, TCEo"s, Cello"s'); 
haft; 

end; 
{%%%%%%% Start reading the constants: first the position in the constants vector,} 
{aName, the name of the constant, aMax, a, aMin.} 

for i := 1 to ma do {"ma" est une valeur PROVISOIRE typiq. 10} 
begin 

aNamelO :="; 
read(entre, chart); 
repeat 

aName[i] := StringOf(aName[i], chart); 
read(entre, chart); 

{that way the tab will not be included in aName} 
untilord(chart) = 9; {i.e. atab} 

readln(entre, k, aMax[i], a[i], aMinp]); 
if k o i then 

wr*rteln('error in "Define": constant[\ i: 2,"] has position', k: 2); end;     {.. of loop over all the 
constants} 

readln(entre); 
{%%%%% start reading the relative error of the observations. These values} 
{are used if numbers <= 0 are input in the Sig matrices} 

readln(entre, title); 
if Pos('ERRORS\ title) <> 1 then 

begin 
writeln('could not find the heading "ERRORS" in the INPUT file'); 
halt; 
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end; 
readln(entre); 

readln(entre, SigPrecMet, SigPrecTCE, SigPrecCell); 

readln(entre); 
{%%%%% start reading the different versions of Meto, TCEo, Cello, and Va/VI %%%%%} 
{It is also here that I start defining the matrix SetVerToA} 

readln{entre, title); 
if PosfSET INFO', title) <> 1 then 

begin 
writelnCcould not find the heading "SET INFO" in the INPUT file')- halt- 

end; 
readln(entre); 

readln(entre, numbSet, numbMeto, numbTCEo, numbCello, numbVa, numbVI); readln(entre)- 
if numbset > maxSet then l       '' 

begin 
writelnfnumbset =', numbset: 3, • is > maxSet =', maxSet: 3)- halt- 

end; 

{%%%%% for each Set I will keep its corresponding TimeSample in memory %%%%) 
HeapStack('before TimeSample inft. in Define'); 
for k := 1 to numbSet do 

new(TimeSample[k]); 
HeapStackCafter TimeSample init. in Define')- 
readln(entre, title); 
if Pos(Version#', title) o 1 then 

begin 

writelnCcould not find the heading "version*- for Meto in the INPUT file1)- halt- 
end; ' 

for i := 1 to numbMeto do 
{V is the version number as entered in SetVerToA} 

begin 
ma := ma +1; 
readln(entre, charl, aMinfma], a[ma], aMax[ma]); 
aName[ma] := stringoffMeto', charl); 
SetVerToA[i, 1] := ma; 

end; 
readln(entre); 
readln(entre, title); 
if Pos('version#\ title) o 1 then 

begin 

writelnCcould not find the heading "version*" for TCEo in the INPUT file1); halt- 
end; '      ' 

for i := 1 to numbTCEo do 
begin 

ma := ma +1 ; 
readln(entre, chad, aMin[ma], a[ma], aMax[ma]); 
aNamefma] := stringof(TCEo', charl); 
SetVerToA[i, 2] := ma; 

end; 
readln(entre); 
readln(entre, title); 
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if Pos(Version#', title) o 1 then 
begin 

writelnCcould not find the heading "version*" for Cello in the INPUT file'); halt; 
end; 

for i := 1 to numbCello do 
begin 

ma:=ma + 1; 
readln(entre, chaM, aMin[ma], a[ma], aMax[ma]); aNamefma] := stringofCCello', charl); SetVerToATi, 3] := 
ma; 

end; 
readln(entre); 
readln(entre, title); 
if Pos(Version#', title) o 1 then 

begin 
writeln('could not find the heading "version*" for Va in the INPUT file'); halt; 

end; 
for i := 1 to numbVa do 

begin 
ma := ma +1; 
readln(entre, chad, aMin[ma], a[ma], aMax[ma]); 
aName[ma] := stringof('Va', charl); 
SetVerToA[i, 4] := ma; 

end; 
readln(entre); 
readln(entre, title); 
if PosCversion*1, title) <> 1 then 

begin 
writeln('could not find the heading "version* for VI" in the INPUT file'); halt; 

end; 
for i := 1 to numbVI do 

begin 
ma:=ma + 1; 
readln(entre, chart, aMinfma], a[ma], aMaxfma]); 

aName[ma] := stringof(VI', chart); SetVerToAp, 5] := ma; 
end; 

{%%%%%% Start reading the data specific to each set, %%%%} 
{it is here that I start defining "SetVer",the 1st column of "SetConst" (data),} 
{TimeX, Xobs, and Xsig. The same intermediate vectors Met_obs, TCE_obs, Cell_obs} 
{are used for each set.} 
t > 0; 
for k := 1 to numbSet do * 

begin {the first thing is to check I am reading the right line} 
readln(entre); {skip a line before reading the next set} 
if k > 99 then 

begin 
writeln('in Define, "k" =', k : 4,' is > 99 i.e. more than 99 sets'); halt; 

end; 
d:=kdiv10; 
if d > 0 then {...i larger than 9} 

begin 
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chart :=chr(48+d); 
char2 := chr(48 + k mod 10); 
mystring := stringoffSET, chart, char2); 

end      (reste de la division par 10} 
else 

begin 
chart := chr(48 + k); 

mystring := stringoffSET, chart); 

end; {lexpecttoseeSET3ifk:=3andSET12ifk-=12} 
readln(entre, title); 
if Posfmystring, title) o 1 then 

begin 
writelnCcould not find in INPUT the line starting with \ mystring: MW)- halt- 

end; 

readln(entre);      {skip the line of title for the following variables-} 
{data (1), Metoversion(l), TCEo (2), Cello (3), Va (4) VI (5)} 

rrIa3n((enS;SetCOnS,fk• U ^^ U ^^ 2)' SetVerfk' *■ SetVe^ ^.SetVefk, 5]); 
readln(entre);      {skip the line of title for the following variables) 
forj:=i to SetConstfk, 1]do 

begin 

c3$gw\TlrTieSamp,eIk^- Me,-obs™ TCE_obs^, CelLobs^]); readln(entre, MetSigAffl, TCESigA
D1, 

jlfthe sigma value is <= 0.0, it indicates that no value has been calculated} 
Therefore a default value is assigned. SigPrecXXX represents the relative} 

(error associated with the measurement of XXX} 
if MetSigAD] <= 0.0 then 

MetSigArj > SigPrecMet * Met_obsA[fl- 
ifTCESigAfj]<=0.0then 

TCESigAfl] := SigPrecTCE * TCE_obsAR]- 
ifCeHSigAD]<=0.0then 

CellSigA[j] := SigPrecCell * Cell_obsArj]- 
if j > 1 then 

if (TimeSample[k]Arj <= TimeSample[k]A[j -1]) then 
{The times must be in increasing order otherwise the} 
{calculations procedures will crash} 

begin 
writeln(Tim^ 

ena; {...of test} 
end;        {of loop "j" reading the observations for set "k"} 

{%%%%% Now I will load the observations in the big vectors TimeX, Xobs, Xsig %%%) 
for. := 1 to SetConstfk, 1] do     {loop over all the "time" of Set "k"} ' 

begin ' 

HMeLobsA[i]> 0.0 then       {-This is a valid "Met" observation to include in Xobs} 

t:=t+1; 
SetXA[t] := i; 

TimeXA[t] := TimeSample[k]A[0; XobsA[t] := Met_obsA[i]; XsigA[t] := MetSigA[i]- 
end;     {...of test to see if we have a valid Met_obs at [i]} 

end;        {...of Loop I over "data" of one set} 
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SetToX[k, 1 ] := t;     {record the position of the last Met_obs of set "k"} 
for i := 1 to SetConstfk, 1] do 

begin 
if TCE_obsAfi] > 0.0 then       {...This is a valid "Met" observation to include in Xobs) 
begin 

t:=t+1; 
SetXA[t] := i; 

TimeXA[t] := TimeSamplefkffi]; XobsA[t] := TCE_obsA[i]; XsigA[t] ;*TCESigA[i]; 
end;    {...of test to see if we have a valid TCE_obs at [k,i]} 

end;        {...of Loop I over "data" of one set} 
SetToXfk, 2] := t;    {record the position of the last TCE_obs of set "k"} 

for i := 1 to SetConstfk, 1] do 
begin 

if Cell_pbsA[i] > 0.0 then      {...This is a valid "Met" observation to include in Xobs}" 
begin 

t:=t + 1; 
SetXA[t] := i; 

TimeXA[t] := TimeSample[k]A[iJ; XobsA{t] := Cen_obsA[i]; XsigA[t] := CellSigA[i]; 
end;     {...of test to see if we have a valid Met_obs at fk,f]} 

e nd;        {...of Loop I over "data" of one set and vector Cell_obs} 
SetToX[k, 3] := t;     {record the position of the last Cell_obs of set "k"} 

end;        {... %%%% of loop K reading the data from each set %%%%} 
ndata:=t; {this last t is also the total number of observations.} 

{%%%% The big vectors TimeX, Xobs, and Xsig are now defined %%%} 
{%%%%%% Now I must define the matrix SetConst, that indicates for each set the} 
{corresponding position in "a" of each constant Meto, TCEo, Cello, Va, and Vl%%%%%} 
{The first column (the number of data) is the same in SetVer and SetVerA} 

for k := 1 to numbSet do 
begin 

for i := 1 to 5 do 
SetConstfk, i +1] := SetVertoAfSetVerfk, i], fj; {in SetConst, i= 1 is data, 2 is Meto, 3 is TCEo 4 

is Cello, 5 is Va, 6 is VI} 
{In SetVertoA and SetVer, the position is one integer less.} 
{SetVerfk.i] is the version of T that the set V uses.} 

end; 
{%%%% Below we define the vector RelDelA %%%} 

for i := 1 to ma do 
begin 

if afi] = 0.0 then 
RelDelAfi] := RelDelADefault 

{RelDelADefautt is a default value defined in DefRunCons} 
else 

RelDelAfi] := RrstAccr * afi]; 
{This vector represents the "accroissement" of the constants from the calculations} 
{of MRQMIN. But it will be needed for DefAIIDeriv before the first call of MRQMIN} 
{because the amount by which the "variable" constants will be varied to estimate} 

{numerically the partial derivative depends on RelDelA. Therefore I initialize this} 
{vector with an arbitrary value of "FirstAccr", defined as a constant in the main} 
{program.} 

end; 
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close(entre);    {close the input file} 
end;       {....Define} 

|^%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 

($P| 

procedure DefKmfromA 
(k: integer; 

vara:RealArrayMA); 
{Its role is to redefine the constants Km, Kt, rm from the values of the vector a} 

f?n«?.f«e Value have been modified by MRQM'N- This is necessary because} 
S3?        i *°* **h "a"and not wit" the individual names of the constants ) 
Br new^alSj ^ WOfk With the '"^a* n^es, a^J need}" * 

{"k" is the number of the Set concerned by those constants This is immrtanti 
{because Meto, TCEo, Cello, Va, and VI are different from ea?h set}   ^} 

begin 
Km := a[1J; 
Kt := a[2]; 
rm := a[3]; 
rt := a[4]; 
main := a[5]; 
tox := a[6]; 
Y:=a[7]; 
E:=a[8]; 
Hm := a[9]; 
Ht:=a[10]; 

Vlt°ä^fcon?Ä;211: TCE0 " a[SetC0nSttk' 3«: Cell° := ^etConstfk, 4]]; Va := a[SetConsttk, 5]]; 
end;     {...RedefConst} 

procedure DefLista 
(var lista: IntegerArrayMFIT; 

constants}     ™ "^ mte9er); {a"interaCtive procedure t0 define tne veclor ""sta" which indicates which 

{oMhe c^nstamsrted * MRQM'N' * ^ ""^ *" °Pp0rtUnily to ehanBe the vaIues) 

ffiSW Va,arld y? a-re n0-.1 part of the constant vector "a"- "^e reason} 
LnH 2, iS      P^.to "ntroduce them in the compensation. So why Hm 
and Ht belongs to a"? Just for convenience, otherwise they are not} 

{found in any particular vector.} ' 
var 

Wrect: red; 
i, k: integer; 
word: string[2]; 
iabon: boolean; 

label 
99; 

begin 
iabon := true; 
SetRect(Wrect, 10, 50, 600, 450); 
{toutes les dimensions sont donnees depuis le coin haut gauche} 
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SetTextRect(Wrect); {set the dimensions of the interactive window} 
writeln('defining LISTA and MODIFYING some constants'); 

writelnC <enter> to INCLUDE ALL CONSTANTS'); writeln(~M" to MODIFY and SELECT constants ')■ 
readln(word); 
if not ((word = "M") or (word = 'm')) then begin 

for i := 1 to 8 do 
listap] := i; 

mfit := ma - 2 - numbVa - numbVI; for i := 9 to mfit do 
listalö := i + 2; {by default, I put first all the constants in the statistic,} 

{except Hm and Ht (9, and 10) for which NO DERIVATIVES are available} 
{and which can not be included in lista.} 

goto 99; 
end;     {...of no modifications and default definition of Lista} 

writeln('<enter> «= put in LISTA, value NOT MODIFIED"); 
writelnCE" = EXCLUDED from LISTA'); 

writelnfM" = MODIFY and included IN LISTA'); k := 0; 
while iabon do 

begin 
for i := 1 to ma do 

begin 
writeln('constant', aName[i],' =', a[i]: MW); readln(word); 

if not ((word = "E") or (word = "e")) then 
{if we accept the constant, then it is loaded into lista} 

begin 
if (word = 'm*) or (word = 'M') then begin 
writeln('enter new value'); readln(a[i]); 

end;  {of if M} 
if not ((i = 9) or (i = 10) or (i > ma - numbVa - numbVI)) then {A test to prevent constants Hm, Ht, Va, VI to 

enter the stat.} 
begin 

k:=k + 1; 
lista[k] := i; end;    {of Hm, Ht test} 

end;       {of Not Excluded} 
end;        {for i, loop over all the constants} 

mfit := k; 
writeln('these are the constants selected and their values'); writelnfpress <enter> if OK, "n" for NO and to 
redo the loop'); 
for i := 1 to mfit do 

writeln(aName[lista[i]],' = ', a[lista[i]]); 
readln(word); 
if not ((word = 'N') or (word = 'rf)) then 

iabon := false 
else 

k:=0; 
end;     {iabon} 

99: 
end;    {...DefLista} 

{$P} 
procedure DefRunCons; 
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{this procedure defines and changes some constants used by Odeint} 
|ajand MetM.n in an interactive way. i.e. constant used to run the program} 

100; 

var 
fini: boolean; 
reponse: string; 
Wrect: rect; 

begin 
SetRect(Wrect, 10, 50, 600, 450)- 
SetTextRect(Wrect); 
OdeintKmax := 100; {Max number of steps to save} 
Ode.ntDxsav :=   0.1; {Save each step of xsav} 
Odeint_eps := 0.000001;      {accuracy} 
Odeint_h1 :=0.01; {a guessed first step} 
Odeint_hmin :=   0.000001;    {min. allowed stepsize} 

1~    1 n 1
D°e"6: {the relative error «*****> for MMin} 

„ _ i.'"  -°e"8: „   „ <the relative enror acceptable for SimpleMetfromTime} 
1' . <for Odemt and Bsstep: the number of partial} 

{differential eauuations to be solved} 
MW:= 14; {Minimum width to print the data} 
pP:=6; {digits after the point} 
FirstAccr:=0.01; {1/fradion * the relative amount by which a constant will hp i 'BAS"*«-:    «*««-«-b.i 
fraction := 0.0001; {ft multiplies the relative inaease (or decrease) obtain^ 

{rom a previous call or MRQMIN, and the result will be used to) ^ 
{est.mate the partial derivatives in DefAIIDeriv} } 

RefoelADei^^ 
tZn,Z      / •   n? :      {a defau[t Va,ue assi9ned t0 ReIDeIA vector} 
J2TET     In e Wh6n the °™P°*"no constant is zero. It serves} 
{the same purpose as defaultDefta: preventing divisions by zero) 

wntelnCMODIFYING some of the MAIN CONSTANTS m"v 
readin(reponse); v    '   '' 
if (reponse o V) and (reponse o'/) then 

goto 100;      {we go to the end of the procedure} 
fini := false; 
while not fini do 

begin 

if (reponse = V) or (reponse = •/) then 
begin 

write('enter new value »>'); 
readln(OdeintKmax); 

end; 

if (reponse = T) or (reponse = y) then 
begin 
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: eps x yscal[i]'); writeln('Odeint_eps=', Odeint_eps : 

change it?   Y/<ret>");readln(reponse); 

write('enter new value >»'); 
readln(OdeintDxsav); 

end; 
writelnfthe accuracy Odeint_"eps" defined by Ao ■■ 
MW: DP,'  change it? Y/<ret>'); readln(reponse); 

if (reponse = "Y") or (reponse = y) then 
begin 

write('enter new value >»"); 
readln(Odeint_eps); 

end; 
writelnfa guessed first step size'); 

writelnCOdeint_h1=',Odeint_h1 :MW:DP,' changeit?   Y/<ret>');readln(reponse); 
if (reponse = T) or (reponse ="/) then 

begin 
writefenter new value >»*); 
readln(Odeint_h1); 

end; 
writeln('the minimum allowed stepsize'); 

writeln('Odeint_hmin=', Odeint_hmin : MW: DP, 
if (reponse = V) or (reponse = y) then 

begin 
write('enter new value >»'); 

readln(Odeint_h1); 
end; 

write!n(The relative error acceptable for MMin'); 
writeln('MMinAcc=', MMinAcc: MW, * change it ?   Y / < ret >"); readln(reponse); 

if (reponse = V) or (reponse «= y) then 
begin 

write('enter new value >»"); 
readln(MMinAcc); 

end; 
writeln(The relative error acceptable for SimpleMetfromTime'); writeln('Macc=', Mace: MW,' 
Y / < ret >'); readln(reponse); 

if (reponse = "Y") or (reponse ='/) then 
begin 

write('enter new value »>"); 
readln(Macc); 

end; 
writeln('FirstAccr, defined by RelDelA[i]:= FirstAccr*a[i] used in Derivative"); writeln('FirstAccr= " 
MW,' changeit?   Y/<ret>");readln(reponse); 

if (reponse = *Y) or (reponse ='/) then 
begin 

wr"rte('enter new value »>'); 
readln(RrstAccr); 

end; 
writeln(*fraction, the fraction of Aa used as "delta" in Derivative'); writeln(f raction=', fraction: MW,' change 
it ?   Y / < ret >"); readin(reponse); 

if (reponse = T) or (reponse ='/) then 
begin 

write('enter new value >»'); 

change it ? 

, FirstAccr: 
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readln(fraction); 
end; 

rf (reponse = 'V) or (reponse = y) then 
begin 

writefenter new value >»'); 
readln(defaultDelta); 

end; 

if (reponse = T) or (reponse = y) then 
begin 

write("enter new value »>'); 
readln(RelDelADefault); 

end; 

wrrtelnCdo you want to change the number of digits displayed?'); writelnf and/or START AGAIN?   Y/ 

readln(reponse); 
if (reponse = T) or (reponse = y) then 

begin 
write('enter an integerforthe number of digits >»')■ readln(DP)- 

end 
else 

fini := true; 
end; 

100: 
end;     {...DefRunCons} 

^******%%%%%%%%%%%%%%«%%%%%%%%%WMMHt%%%%%W6%%} 

procedure SelectChoice 
(var sort: text; 

"sort" undefineVd}SCreen' '^ b°°lean): {" We Want t0 Print on the ««en. "screen" will be true, and 
{m!ie-^ise "l?66?"wi" be ,alse and "^rt" will be the pointerto an ODenedl 
{file. The problem is that I can not assign a type as variable} ^ ^ 

word: string[4]; 
title: string[36]; 
Wrect: rect; 
k: integer; 
allTCEo: myreal; 

begin 
screen := true; 

simple := false; 

writelnCOUTPUT: on SCREEN (<retum>) or on a FILE ("F") 7); readln(word)- 
if (word = T) or (word = 'F) then 

screen:» false; 
if screen then 

begin 
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SetRect(Wrect, 10, 50, 600, 450); 
SetTextRect(Wrect); {set the dimensions of the interactive window} 

end;     {... of preparing the screen} 
if not screen then 

{I will print on a new file} 
begin 

writeln(TITLE, less than 36 characters'); 
readln(title); 
Rewrite(sort, title); 

end; {... of naming and opening the output file} 
for k := 1 to numbTCEo do 

allTCEo := a{SetConst[k, 3]]; 
if (main = 0) and (allTCEo = 0.0) then 

begin 
simple := true; 
writelnCmain = 0.0 and all the TCEo =  0.0 => the SIMPLE MODEL will be used'); 
writeln; 

end 
else 

begin 
writelnfCOMPLETE (<retum>) or SIMPLE model ("ST) ?'); 
readln(word); 
if (word = 's') or (word = 'S") then 

simple := true; 
end; 

end;        {SelectChoice} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 
{$P} 

procedure CheckConst 
(var a: RealArrayMA; 

var aName: StringArrayMA; 
ma: integer); 

{its role is to insure the constants have appropriate values before} 
{doing heavy calculations. This procedure will be called each time} 
{the constant vector "a" is changed} 
{None of the constants may be smaller than zero, and several can not be} 
{equal to zero, otherwise they will crash the program.} 

var 
i, prob: integer; 
problem: IntegerArrayMFIT; 

begin 
prob := 0; 
for i := 1 to ma do 

begin 
if a[i] <= 0.0 then 
{all the constants susceptible to give problems are those <= 0.0} 

if not ((a[i] = 0.0) and (aMin[i] < 0)) then {...the only cases which are OK are those inside the 
statement of not.} 
{As a code, aMinfj] < 0 means that a[i] can be = to 0. But no constants} 
{at all are allowed to be < O.i.e. it is a CODE} 
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begin 
prob := prob + 1; problem[prob] := i; 

end; 

end;   {... of loop over the constants] 

if prob > 0 then 
|...we have constants values which will crash the program} 

begin 
for i := 1 to prob do 

prSfnT"513"1''aNameIprob,em™ : MW''" •• «Pmbtonfln : MW); writeln(These values wiii crash the 
halt; 

end; 
end;        {... CheckConst}. 

procedure OUTconstants 
(screen: boolean; 

var sort: text; 
vara:RealArrayMA; 

var aName: StringArrayMA; ma, MW, DP: integer)- 
{OUTconstants will print the value of the constants, either on the screen if screen} 
to  *    ■ °S,n V9 named whose P°inter fe "sort- if screen is FALSE1 {a= the vector of constants values,} ' 

{aName= the vector of constant names,} 
{ma= the total number of constants.} 
{fl?In' !? file.mUSt be °pened before caSS"0 '"e procedure, (see OUTCovar)} {ALSO, I do not output the Va's, and Vl's} 

var 

P^cedt^fe^^ 
var 

i: integer; 
begin 

writeln(fichier); 
writeln(fichier); 

writeln(fichier, "constants of the model"); 
writeln(fichier); 
for i := 1 to ma do 

PrtnSSHSf'" aNamePl: MW' Chr(9,•m: MW: DP): end: <~ <* ** htemai procedure   ' 

L—_ —-—*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%, 
oegin {... of OUTconstants} 

if not screen then 
{I will print on the file "sort"} 

PrintConstants(sort) 
else        {I will print on the screen} 

begin 
SetRect(Wrect, 10, 50, 600, 450); 

Wfvlot^m?"^"5 S,0nt donnees dePuis le °°'m ha"t gauche} SetTextRect(Wrect);    {set the dimensions of the interactive window} 
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PrintConstants(output); 
end;     {... of printing on screen} 

end;        {...OUTconstants} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/oo/0%o/o'>/oo/oo/A 
{$P} 

procedure OUTcovar 
(screen: boolean; 

var sort: text; 
varcovar: RealArrayMAbyMA; var aName: StringArrayMA; ma, MW, DP: integer); 
{This procedure will output the values of the matrice of covariance.} 
{INPUT = "covar", the matrix of covariance, "ma" the number of constants (which} 
{determines the size of the matrix), "aName" the vector of the constants name.} 
{screen= if "true" then the procedure print on the screen, if "false" it prints on a file,} 
{whose name will be "title". Note that internally this file is called "fichier".} 

{MW= the minimum width used to print the data.} 
{DP= the number of decimal places.} 

var 
Wrect: red; 

{ %%%%%%%%%%%%%%%%%%%%%%%%%%%} 
procedure PrintCovar (var fichier: text); 

var 
i, j: integer; 

begin 
writeln(fichier, 'covariance Matrix'); 
writeln(fichier); 
for i := 1 toMWdo 

write(fichier,' •); {write MW spaces} 
write(fichier, chr(9)); 
for i := 1 to ma do 

{print the titles} 
write(fichier, aNamefl]: MW. chr(9)); 

writeln(fichier); 
for i := 1 to ma do 

begin {print the row [i] of the covariance matrix for Met} 
write(fichier, aNamep]: MW, chr(9)); 
forj:=1 tornado 

write(fichier, Covar[i, fl: MW, chr(9)); {print the element "j" of row "i"} 
writeln(fichier); {go to next row} 

end; {...of writing row[i]} 
end;    {...internal procedure PrintCovar} 

{ ___%%%%%0/o0/o%%0/o%%%%%%%%%%%%%%%%%} 
begin      {... of OUTcovar} 

if not screen then 
{I will print on a file} 

PrintCovar(sort) 
else {I will print on the screen} 

begin 
SetRect(Wrect, 10, 50, 600, 450); 
SetTextRect(Wrect);    {set the dimensions of the interactive window} 
PrintCovar(output); 
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end;    {... of printing on screen} 
end;   {...OUTcovar} 

procedure OUTPDmatrix 
(screen: boolean; 

theSet: integer; 
var sort: text; 
var TimeSample: InVector; 
var PDM: MatDeriv; 
var aName: StringArrayMA; 

var SetConst: Setlnteger6; ma, MW, DP: integer)- 
{This procedure will output the predicted values of ONE (PDM) of the matrices of) 
{partial denvative: PDMet, PDTCE, or PDCell} mamces oi) 
{Also, this will be done for ONE SET.} 
{/Sl!f-n" kj^' tf}e results are Printed on the screen, if FALSE thev are) 
data   the nnmhT^fdh

aS "»f (externallv- but «** "*>«" ££5^* 
/Mnrc .1    ^        °f observat,ons and the size of those InVector.} 

{NOTE, the file must be opened before calling the procedure, (see OUTCovar)} 

L 
Wrect: rect; 

-—-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%) 
procedure PnntPredicted (var fichier: text) • 

var 
i, j: integer; 

begin 
writeln(fichier); 

write(fichier, time': MW, chr(9)); 
for i := 1 to 8 do 

Jffi!he.1"
ame of the constants on top of their corresponding PD) 

write(fichier, aName[i]: MW, chr(9)); 
writeln(fichier, 'Meto': MW, chr(9), TCEo': MW, chr(9), 'Cello' • MW)- 

writeln(fichier); '      '' 
for i := 1 to SetConstftheSet, 1] do 

begin 
write(fichier, TimeSamplep]: MW, chr(9)); 

forj:=lto11do 
write(fichier, PDMfi, j]: MW, chr(9)); 

writeln(fichier); 
end; 

end;       {... of internal procedure PrintPredicted) 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%) 

begin {... of OUTPDmatrix} ' 
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if not screen then 
{I will print on a new file) 

PrintPredicted(sort) 
else        {I will print on the screen} 

begin 
SetRect(Wrect, 10, 50, 600, 450); 

SetTextRect(Wrect);    {set the dimensions of the interactive window} 
PrintPredicted(output); 

end;     {... of printing on screen} 
end;        {....OUTPDmatrix} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 
($P) 

procedure OUTOneSetObsCal 
(var comment: string; 

screen: boolean; 
var sort: text; 
var theSet: integer; 

varTimeSample, Met_cal, TCE_cal, Cell_cal: InVector; varMet_obs, TCE_obs, Cell_obs: InVector; 
var MetSig, TCESig, CellSig: InVector; MW, DP: integer); 
{This procedure will output the predicted values of the vector methane, TCE, and Cell} 
{If "screen" is TRUE, the results are printed on the screen, if FALSE, they are} 
{printed in a file named as "title" (externally, but called "sort" internally.} 
fdata= the number of observations and the size of those InVector.) 

{NOTE that the procedure does not make any calculations, it just output the content} 
{of the vectors calculated previously.} 
{comment = any comment we want to print before the data. Is a Var parameter, the} 
{best way is to create it like "comment := stringof('Sef, k3);"} 

{NOTE, the file must be opened before calling the procedure, (see OUTCovar)} 
var 

Wrect: red; 
{ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 

procedure PrintOneSet (var fichier: text); 
var 

wi, i, j: integer; 
begin 

j:=theSet; 
writeln(fichier); 
writeln(fichier, comment); 
writeln(fichier); 
wi:=10; {the MW for below) 

writer:wi,chr(9),*data    ':wi,chr(9),'Meto    ':wi,chr(9),'TCEo    ,:wi,chr(9));writelnfCello   ':wi 
chr(9),Va     ":wi,chr(9),"VI     ":wi); 
writefversion": wi, chr(9), "n.a.": wi, chr(9), SetVerfJ, 1]: wi, chr(9). SetVerfl, 2]: wi, chr(9)); writeln(SetVerfi, 
3]: wi, chr(9), SetVerö, 4]: wi, chr(9), SetVerTj, 5]: wi); 
write(Value': wi, chr(9), SetConstrj, 1]: wi, chr(9), a[SetConstß, 2]]: wi, chr(9), a{SetConst[j, 31]: wi, 
chr(9)); writeln(a[SetConstfj, 4]]: wi, chr(9), a[SetConstö, 5]]: wi, chr(9), a[SetConst[i, 6]]: wi); 

writeln; 
writeln(fichier, 'Observed and predicted values for methane, TCE, and Cells'); 
writeln(fichier); 
writeln(fichier, time": MW, chr(9), 'Met_obs': MW, chrf.9), *Met_caT: MW, chr(9), "MetSig": MW); 
for i := 1 to SetConst[theSet, 1] do 
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begin 
writeffichier, TimeSample[i]: MW); 

S'^ ^MeL0bS[|,]: MW): write(fichier' chr(9)' Mel-ca,Iil: MW): writeln(fichier, chr(9), MetSigp] 

end; 
writeln(fichier); 

writeln(fichier, time': MW, chr(9), TCE^bs1: MW, chr(9), TCE_car: MW, chr(9), TCESig': MW)- for i = 1 
to SetConst[theSet, 1] do 

begin 
writeffichier, TimeSamplep]: MW); 

Äf!cJlier;1I*?
9)- TCE_obs[i]: MW); write(fichier, chr(9), TCE_cal[i]: MW); writeln(fichier, chr(9), 

ivtoig[ij :MW); 
end; 

writeln(fichier); 
wnteln(fchier lime': MW, chr(9), 'CelLobs': MW, chr(9), 'CelLcar: MW, chrp), 'CellSig1: MW); for i := 1 to 
oeiuonst[tneset, 1] do 

begin 
write(fichier, TimeSamplep]: MW); 

VMW)fiChier'Chr(9)' Cell-obs[i]: MW): write(fichier, chr(9), Cell_cal[i]: MW); writelnffichier, chr(9), CellSigfi] 

end; 
end;        {... of internal procedure PrintOneSet} 

{ ^%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0%%%o/0l 
begin {... of OUTOneSetObsCal} 

if not screen then 
{I will print on a new file} 

PrintOneSet(sort) 
else        {I will print on the screen) 

begin 
SetRect(Wrect, 10, 50, 600, 450); 

{toutes les dimensions sort donnees depuis le coin haut gauche} 
SetTextRect(Wrect);    {set the dimensions of the interactive window} 
PrmtOneSet(output); 

end;    {... of printing on screen} 
end;        {....OUTOneSetObsCal} 

{%%%%%%%%%%%%o/0%o/oo/oo/^^^^^ 
{$P} 

procedure OUTAIISetObsCal 
(var TimeX, Xobs, Xcal, Xsig: RealArrayNDATA; 

SetlntegfrSV5'61 Se,lnVector; var SetX: '"tegerArrayNDATA; var SetConst: SetlntegerB; var SetToX: 

{Will print the observed and calculated values of all the sets} 
var 

k, t, i, m: integer; 
comment: string; 

begin 
t:=0; 

{initializes the observations matrices to -1, and the variance matrices to -1.} 
{Remember that these matrices exist only for one set at a time, unlike} 
{TimeSample which is a SetlnVector which include all the TimeSample) 
{corresponding to each Set.} 
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for k := 1 to numbSet do 
begin 

for i := 1 to numb_obs do 
begin 

Met_obsA[i] := -1; TCE_obsA[i] := -1; Cell_obsA[i] := -1; Met_calA[il := -1; TCE_calA[i] := -1; Cell_calA[i] := -1; 
MetSigA[i] := -1; 
TCESigA[i] := -1; Ce!ISigA[i] := -1; 

end; 
comment := Stringof('Data from Set', k: 4); 

{A comment to be printed before each set, see below} 
if k = 1 then 

m:=0 
else 

m:=SetToX[k-1,3]; 
{a test necessary for the first call from i:=1 to SetToX[k,1]} 

fori:=m + 1toSetToXTk, 1]do {loop for Met over all the "Met" of Set "k"} 
begin 

t:=t + 1; 
Met_obsA[SetX[t]] := Xobs[t]; 

Met_ca!A[SetX[t]] := Xcal[t]; MetSigA[SetX[t]] := XSig[t]; 
end; 

for i ;= SetToX[k, 1]+ 1 to SetToX[k, 2] do    {loop for TCE over all the "time" of Set "k"} 
begin 

t := t +1; 
TCE_obsA[SetX[t]] := Xobsft]; 

TCE_calA[SetX[tD := Xcal[t]; TCESigA[SetX[t]] := XSig[t]; 
end; 

for i := SetToXfk, 2] +1 to SetToX[k, 3] do    {loop for Cell over all the "time" of Set "k"} 
begin 

t:=t + 1; 
Cell_obsA[SetX[t]] := Xobs[t]; 

Cell_calA[SetX[t]] := Xcaltf]; CellSigA[SetX[t]] := XSig[t]; 
end; 

OUTOneSetObsCal(comment, screen, sort, k, TimeSamplelkp, Met_calA, TCE_calA, Cell_calA, 
Met_obsA, TCE_obsA, Cell_obsA. MetSig*. TCESig\ CellSigA, MW, DP); {Will print the theoretical and 
experimental results on the screen if "true"} 

{or in a file that will be named like "title" if "false".} 
e nd;     {... of loop over all the K sets} 

end;        { OUTAIISetObsCal} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0%o/0o/oo/oo/oo/o] 
{$P} 

procedure CheckDefine; {Its role is to check if the procedure Define did} 
{a good job assigning the data. It will print the variable on the screen} 

var 
GetScreen: boolean; 
word: string; 

■ k, i, m, wi: integer; 
Wrect: red;    {see the loop "with" below to see how it is defined} 

begin 
with Wrect do 
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begin 

top := 50; left := 10; bottom := 450; right := 600 
end; 

SetTeXtR6Ct(Wr6Ct): (set the dimensions of the interactive window) 

I , ,  pHECK,NG IF ™E CONSTANTS ENTERED ARE CORRECT") ■ 
wntelnc aName-: MW, chr(9), "a': MW. chr(9), "aMax": MW, chr(9), "aMirf: MW); 

ion .= i to ma do 

JOSSES^ 23$:W: °P' *» —«: W:«". *«. =Minp,: MW: DP,; 
readln; 
GetScreen := screen; 
screen := true; 

ff^Sn^1 rely.?nthe vaJue of "screen"to know where to print } {In CheckDefme, I want the results on the screen, so I save the oriainal) 
{value and restore it after OUTAIISetObsCal}     ,6gi5aveine(ln9ina|) 

{/o/ /o/o/o Start pnnting the data as loaded in the "X" vectors %%%%%%} 
for k := 1 to numbset do ' 

begin 
writelnCSef, k: 3); 

if k = 1 then m := 0 
else 

m:=SetToXfk-1,3]; 
{a test necessary for the first call from i:=1 to SetToX[k 11} 

for i := m +1 to SetToXPc 1] do {Met data) 
begin 

ifi = m + 1then {fiistline} 
writelnCSef, k: 3,' Methane*); 

begin 

ifi = SetToX[k,l] + ithen 
writeln('Sef, k: 3,'TCE'); 

wrte.nCT,meX^: MW, chr(9), Xobs*[i]: MW, chr(9), Xcal^: MW, chr(9), Xstfg: MW)- end- 
for i .= SetToXIk, 2] +1 to SetToX[k, 3] do    {Cell data) 

begin ' 
tfi = SetToX[k,2] + 1then 

writelnCSef, k: 3,'Cells'); 

^ZJinr® •'MW' Chr(9)•XObsA[i]: MW'*«»■ ^ ••MW- *W. ***fll: MW)- end- wntelnCpress <return> to continue"); ;'      ' 
readln; 

end;       {... of loop K over all sets} 
screen := GetScreen; 
readln; 
writelnCtype   <return> to continue") • 
writelnCOR  "H"    to stop the program"); 
writelnCOR "N" to call DefUsta to change the constants V 
readln(word); 
if (word = 'N') or (word = 'n") then 
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DefListaflista, mfit); 
if (word = 'H') or (word = 'h') then 

halt; 
end;     {...of ChecKDefine} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0} 
{$P} 

procedure Initialize; 
begin 

DefRunCons; 
{Define some constants and ask if we want to change any of them} 
{Some of those constants are immediately needed by Define} 

Define; 
{This procedure will read the constants "a" and observations from the} 
{file of our choice and assign those values in the program so that} 
(they correspond to their definition. WARNING the input file must} 
(have a stricly defined structure for this work to succeed.} 

DefLista(lista, mfit); 
{Defines the vector "lista" which list the constants to introduce in the} 
{statistics, and provide an opportunity to change the constants. Also} 
{defines the number of those constants, "mfit".} 

CheckDefine; 
{This procedure will print on the screen the constants and observations} 
{as the program has loaded them. Any mistake will be seen at that point.} 
{A mistake in selecting the constants may be corrected by calling Lista.} 

CheckConst(a, aName, ma); 
{Will screen all the constants for values <= 0.0 that may crash the program} 

SelectChoice(sort, screen, simple); 
{An interactive procedure to determine where the results must be output.} 

end; {...Initialize} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 
{$S EquaDiff} 
I**"***************««**»******«***«*****»*«»«*«»« i 

{$P} 
procedure SimpleMetfromTime 

(var TimeSample, Met_cal: InVector; 
data: integer); 

{Will calculate Methane from TimeSample. The model is t = f(Met), and} 
{I use a bisection method to find Met = g(t).} 
{Will return the methane concentration for a given time in conditions} 
{under which we can use the simplified equation for methane degradation, i.e.:} 

{1- TCEo = zero (No TCE present)} 
{2- main = zero, the equation does not take maintenance into account.} 

{The accuracy of the calculation will be somewhat similar to Odeint, see below.} 
const 

jmax = 100; {limit the number of bisection iteration} 
label 

100; 
var 

dm: myreal; 
{dm is the difference between M2 and M1 in bisection} 
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L 

i, j: integer {food for bop} 
M,M1,time:myreal; 

Foncmid: myreal; 

(a value to store the intermediate values of Cell(Mi)} 
0/_0/ O/O/ O/ O/ O/ 0/ O/n/ «■>/ «/ «/ %%%%%%%%%%%%%%%%%%o/oo/oo/o%o/o] 

function Fonc (Met: myreal): myreal; 
var 

phi, Cell: myreal; 
begin 

phi:=(Vl + Hm*Va)/VI; 
Cell := Cello + phi * Y * (Meto - Met); 

Me^C-TimÄ 
L _%%%%%%%%o/0%o/0o/o6/oo/oo/oo/oo/oo/oo/oo/oo/oo/oo/o} 

begin 
Mace := Odeint_eps; 

{I will take the same level of accuracy as Odeint for Bsstep, but Odeint uses) 
{Ä!i^^Ä7bein9: A0=eps *m+mi whereas} 

m'ü^?^35 firf *"° V,f Lues the extreme of methane, i.e. Meto and zero) 
£bnSmetoda

}
IUeS""'** UMdl°9ethert0fi"dthezero ^the> 

M1 := Meto; 
M := Meto;     {in case time = 0.0) 
dM := 0; 
for i := 1 to data do     {... loop over all the data) 

begin 
time := TimeSamplep]; 
if time = 0.0 then 

goto 100; {this should only occur once. I MUST include a test before) 
{calling th.s procedure or MetfromTime to insure that the times are in) 
{increasing order otherwise both procedure will crash) 

dM:=M1;      {M1-0.0} 
{JüüL"if V- and, ??l£? more accurate vahJe "M" to take the larger} 
{expectation of M. Otherwise I might be below the next methane) 

{calculated rf the times are very close together} 
for j := 1 to jmax do        {iteration for one point) 

begin      {... loop over many iterations) 
dM := dM * 0.5; 

M := M1 - dM; {| am going at decreasing methane cone, and increasing) 
time. But if Met decreases, Fonc(Met,time) will increase. At the beginning} 
Fonc(Meto) < 0 [zero - time] therefore if Fonca > 0, that means the new) 

{point M is on the other side of the zero.) 
Foncmid := Fonc(M); 
if Foncmid <= 0.0 then        {... M will be the new M1) 

M1 := M; {Means that Fonc(M) being >= 0.0, M is still "a" M1) 
if (abs(dM) < Mace * M) or (Foncmid = 0.0) then 

goto 100; 
end; {normally we only reach this end if j=jmax) 

{we will not have more than jmax iterations, the loop will stop and} 
{output the value obtained so far.) 
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writelnfSimpleMetFromTime, too many bisections: time =', time : MW,' Met_cal[\ i: 2, ] = ', M • 
MW);100:        {we are done for this iteration} 

Met_cal[i]:=M; 
end;        {....of the loop over all the data} 

end;     {... of SimpleMetfromTime} 

{$P} 
procedure SimpleTCECellfromMet 

(var Met, TCE, Cell: InVector; 
data: integer); 

{INPUT the amount of methane, OUTPUT: TCE, Cell corresponding to Met} 
{Typically, I use Met_cal[k], TCE__cal[k], and Cell_cal[k], and data = SetConst[k,1].} 
{NOTE that TCE is supposed to be zero in Simple} 

var 
i: integer; 
teta: myreal; 

begin 
for i := 1 to data do 

begin 
if Met[i] / Meto <= 0.0 then 

begin 
writelnCMeti/Meto <= 0.0 in SimpleTCECellfromMet the program stops'); halt; 

end; 
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm; 
TCE[i] := TCEo * exp(teta * ln(Met[i] / Meto)); 
Cell[G > Cello + Y * (Hm * Va + VI) / VI * (Meto - Met[f]); 

end;     {...of loop over all the data} 
end;        {...SimpleTCECellfromMet} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%) 
{$P} 

procedure SimpleDefMetDeriv 
(vara:RealArrayMA; 

ma: integer; 
varTimeSample, Met_cal: InVector; var PDMet: MatDeriv; 

data: integer); 
{a= the vector of constants INPUT} 
{ma = is the quantity of constants. INPUT} 
{Met_cal= the values calculated by the model. INPUT} 
{PDMet = the matrix of partial derivatives. OUTPUT} 
{This procedure will input "time" and output the corresponding Met, TCE, Cell,} 
{and all partial derivatives, corresponding to time.} 
{NOTE, Met_cal MUST HAVE BEEN DEFINED BEFORE CALLING THIS ROUTINE} 

var 
i, j, m: integer; 

Denom, teta, phi, Met, TCE, Cell, time: myreal; 
{time = the independent variable} 
{Met, TCE, Cell= the calculated values at "time"} 
{ma= the number of constants in vector "a"} 

begin 
for i := 1 to numb obs do 

Appendix A     Computer Program A29 



forj:=l to numb_const do 
PDMet[i,j]:= 0.0; 

for i := 1 to data do 

begin     (T is one row corresponding to TimeSampiern) 
, if TimeSamplefi] < 0.0 then 

begin 

writeln(TimeSamp!er, i: 2, T.' is < zero in SimpleDefAIIDerivs'); half 
end; 

time := TimeSamplep]; 
Met := Met_cal[i]; 
phi:=(VI + Hm*Va)/Vl; 
Cell := Cello + phi * Y * (Meto - Met); 
Denom := (Km / Met +. (Km + Cello / Y / phi + Meto) * phi * Y / Cell)- 
{The denominator of all partial derivatives is identical) 
Met_cal[i] := Met; 

{1 is Km} 

PDMetfi, 1] := (-LN(Met / Meto) + LN(Cell / Cello)) / Denom- 
(o is rmj * 

{7isY}  PDMet[i'3]:='E*Y*(Ce,,0/Y/Phi + Meto)*time/Denom; 

Meto)*p™et?-M^ 
{8 is E} 

{9 is Meto}DMe,[i'8J := 'm *Y* (Ce,,°'Y/Phi + Met0) *time' Denom= 

Y / Cell) rSüS:91 := ("E *"" *time *Y + Km ' Met0 + LN^''/Cello) + (Km + Celto/Y/phi + Meto)*Phi* 
{11 is Cello} 

Ce.to-1/Celof/De]™rn;E4mMime/pW 

end;    {... of loop over all the rows} 
end;     {...SimpleDefMetDeriv} 

procedure SimplePDCellfromPDMet 
(var PDMet, PDCell: MatDeriv; 

var Met: InVector; ma, data: integer)- 
{INPUT: Met, PDMet, ma, data} 
{OUTPUT: PDCell} 

{SSÄSSf °f Partial denVatiVeS PDMet 3nd Ca,CUlate the «^responding} 
var 

i, m: integer; 
begin 

for i := 1 to data do 
for m := 1 to ma do 

function MetMin 
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{MetMin will not look for a smaller value) 
{I limit the number of bisection iteration} 

(Mace: myreal): myreal; 
{This procedure will find the value of Met when X = 0. Its OUTPUT is "out") 
{its INPUT is Mace, the desired accuracy in fraction of the output value.} 
{HOWEVER, if MMin is < limit, the procedure output MMin = "limit".} 
{It is useless to calculate a value below that with the risk of using it} 
{and getting underflowed.} 

const 
step = 100; {the number by which M1 will be multiplied for} 

{eventually getting Cell(M1) and Cell(M2) of opposite} 
{signs, "step" MUST BE > 1.0} 

StartGuess = 1.0e-120;        {the first value by which we start to find MMin} 
{ITMUSTBE<Meto} 

limit = 1.0e-4900; 
jmax = 40; 

label 
100; 

var 
dm: myreal; 

{dm is the difference between M2 and M1 in bisection} 
j: integer; {food for loop} 
fact, M, M1, M2: myreal; 

{M1, M2: two values of Met such that Celli(M1)*Celli(M2)<0 (opposite signs)} 
{fact= the factor by which M1 will have to be multiplied so that we} 
{eventually get a Celli of opposite sign i.e. we found M2.} 
Cella, Cellb: myreal; 
{two value to store the intermediate values of Cell(Mi)} 
done: boolean; 

function Cell (Met: myreal): myreal; 
var 

a, b, teta, TCEi: myreal; 
begin 

if Met / Meto = 0.0 then 
begin 

writelnfMet/Meto = 0.0 in functon Cell of MetMin*); 
MetMin := limit; 
goto 100; 

end; 
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm; 
TCEi := TCEo * exp(teta * ln(Met / Meto)); 
a := (-1 + main / rm / E) * (Met - Meto) + (main * Km / rm / E) * ln(Met / Meto); 

b:=(main/E + rt*tox/Y)*(VI + Ht*Va)*Y/VI/rt*(TCEi-TCEo); 
Cell := Cello+ Y*(Hm*Va + VI)/VI* a + b; 

end; 
begin 

{The first goal is to find two values of Celli one negative the other positive.} 
{Then those two values will be used together to find the zero using the} 
{bisection method.} 

if Meto = 0.0 then 
begin 

writeln('Meto = 0.0 in MetMin, the program is stopped'); halt; 
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end; 
{just a test to prevent problems if Meto is badly assigned} 

M1 := StartGuess; 

Cella :=Cell(M1); 

if Cella=0.0 then 
begin 

writelnCCella = 0.0"); MetMin := M1; 
goto 100; {we are done EH! (celui qui meprise I'improbable, etc...)} 

end; 
if Cella > 0.0 then 

fact :=1/step; 
{we will decrease M1 by a factor of 1/step until we find a neg. Cell value) 

if Cella < 0.0 then 
fact := step; 

{we will increase M1 by a factor of step until we find a neg. Cell value) 
done := false; 

repeat 
M2:=M1; 
M1 := M2 * fact; 
if M1 <= limit then 

begin 
wrfteln('Before bisection MetMin <= ', limit); 

MetMin := limit; 
goto 100 

end; 
Cellb:=Cell(M1); 
if Cellb = 0.0 then 

begin 
wrftelnfCellb = 0.0'); MetMin := M1; 
^goto 100; {we are done EH! (celui qui meprise llmprobable, etc...)} 

until Cella * Cellb < 0.0; 
{%%%% Now we use M1 and M2 for a bisection %%%%} 

if fact > 1.0 then      {i.e. fact = step so M2<M1} 
begin 

M:=M1; 
M1:=M2;M2:=M; 

end; 
{now M2 > M1, and I know that Cell(M2) > 0, CelI(M1) < 0} 

dM := M2 - M1 ; 
for] := 1 tojmaxdo 

begin 
dM := dM * 0.5; 
M:=M1+dM; 

if M/Meto = 0.0 then        {ne devrait pas arriver} 
begin 

writelnCMMin is underflowed, it will be set to "limiT); 
MetMin := limit; 
goto 100; 

end; 
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Cella := Cell(M); 
if Cella <= 0.0 then {... M will be the new M1} 

M1 := M; {Means that Cell(M) being <= 0.0, M is still "a" M1} 
if (abs(dM) < Mace * M) or (Cella = 0.0) then 

{Mace is the relative accuracy of MetMin so the variation dm must be smaller} 
{than Macc*M} 

begin 
if Cella < 0.0 then MetMin := M + dM 

else 
MetMin := M; 

{I want the UPPER limit of MetMin, such that Cell will be positive. If Cell} 
{is negative, I risk calculating log of negative numbers later} 

goto 100; 
end; 

end;        {normally we only reach this end if j=jmax} 
writeln('pause in MetMin, too many bisections'); 
readln; 

100:        {we are done} 
end;     {... of Metminj 

{$P} 
procedure derivs 

(t: myreal; 
var Met, dMdt: RealArrayNVAR); {Return the vector of derivatives dMdt at the point (t, Met). 

Both dMdt and t} 
{are vectors of size n <= nvar. The program will calculate the values of} 
{each variable yi of the vector y at increments of x, and need to be provided} 
{with the gradient dydx which is a function of both y and x. In our particular} 
{case, there is only one y therefore the vectors y and dydx are of size 1} 
var 

a, b, TCEi, Celli: myreal; 
begin 

if MMin <= 0.0 then    {This should not occur unless MetMin had a problem} 
begin 

writeln('problem in derivs, MMin <=0.0 = ', MMin,' the program will stop"); halt; 
end; 

if Met[1]<= MMin then 
dMdt[1] := 0.0 

{MMin is calculated as the amount of methane remaining in solution at time} 
{going to infinity. Therefore if the numerical procedure attempt to use} 
{methane values below MMin, I return the value of dMdt corresponding to} 
{very large Met.} 

else 
begin 

teta:=(VI + Hm*Va)*Km*rt/(VI + Ht*Va)/Kt/rm; 
TCEi := TCEo * exp(teta * ln(Met[1] / Meto)); 

a := (-1 + main / rm / E) * (Met[1] - Meto) + (main * Km/ rm / E) * ln(Met[1] / Meto); b := (main / E + rt * tox / Y) * 
(VI + Ht* Va)*Y/VI/rr (TCEi-TCEo); 

Celli :=CeHo + Y*(Hm*Va + VI)/VI*a + b; 
if Celli <= 0.0 then 

Celli := 0.0; 
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eSV: 'imT'Va+v,)'m'E' ^" Me'1] /,Km •"+Tcs'K<> *M°VK «i 
end;   (...of dertas) 

procedure mmid 
(var y, dydx: RealArrayNVAR; {vector of y and dydx} 

n: integer; {size of vector y and dydx} 
XnSc,?n°t; Tyrea,;, Jxs b the startin9 *•xs+htot tne endpoint) 
nstep: integer; {dans bsstep sera <= 96} 

{616} V3r y0Ut: RealArrayNVAR): Mxs+htot)} 
var 

step, i: integer; 
x, swap, h2, h: myreal;      {x= the intermediate x.} 
{swap = an intermediate used to assign new value to yn at each step} 
{h2 = 2.0 h, and h= the small step of the discretization of htot} 

beg*™'y0: ARea,ArrayNVAR:    (intermediate values, yn being a step "h" ahead of ym} 

new(ym); 
new(yn); 

h := htot / nstep;     {the discretization of htot in "nstep" steps} 
for i :=1 ton do H' 

begin 
ymA[i]:=y{0; 
ynAI0 := y[Q + h * dydx[i] {first step} 

end; 
x := xs + h; 

ncnd?KVS(X*ynA'y0Ut): toutlsusedforthe temporary storage of derivatives It) 
{s not how yout was defined however i.e. we just use yout instead of\ 
{defining a new variable just for this step» ' 

h2 := 2.0 * h; 
for step := 2 to nstep do {general step} 

begin 
for i := 1 to n do 

begin 
swap:=ymA[0 + h2*yout[i]; 

ynA[i] := swap 

{sTe?h"SaÄ^} °f ya ^ ^inCreaSeS »that ft fe *^ys a> 
end; 

x := x + h; {prepares x for the next step} 
derivs(x, yn*. yout)   {prepare yn and dydx forthe next step} 

end,    {... of the cycle through "nstep" steps} 
for i := 1 to n do 

{we are done and will output y(x+ htot)} 
yout[i] := 0.5 * (ym A[i] + yn A[i] + h * yout[fJ) ; 

dispose(yn); 
dispose(ym); 

{...Of 
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end;     {... of mmid} 

{$P} 
procedure rzextr 

(iesl: integer; 
xest: myreal; {the step used in bsstep to determine y[iest]} 
var yest, yz, dy: RealArrayNVAR; 

n, nuse: integer); {"n"= nseq of bsstep. "nuse" = nuse of bsstep.} 
{it is the iest time that we call rzextr from bsstep, and this corresponds to the} 
{use of nseq[iest] in bsstep.} 
{"yest" = the ypest] estimate of y by bsstep. "yz" = is the value of y extrapolated} 
{by rzextr, i.e. it is an OUTPUT, "dy" = error estimated by rzextr from the difference} 
{between the actual "yz" and the preceding one. This error will be used by bsstep} 
{to estimate wether we have reached the required precision, and wether we can stop} 

{This procedure input the estimated yest obtained by bsstep using xest. Then it }■ 
{fits a rational function to all the yest(xest) obtained so far (the xest are stored in} 
{RzextrX vector and some constants of the procedure corresponding to yest are stored} 
{in RzextrD. Both vector and matrix located outside of the routine), and uses this}. 
{function to estimate what would be yest for xest tending to zero. In addition, the} 
{routine estimate the error of yest.} 

var 
ml, k, j: integer; {food for loops} 
yy, v, ddy, c, b1, b: myreal; 
fx: array[1 ..RzextrNcol] of myreal; 

begin 
RzextrX[iest] := xest; {save the current xest} 
if iest = 1 then {...this is the first point (yest, xest) to enter rzextr} 

for j := 1 to n do {for the length of the vector y} 
begin 

yzfj] := yest[j];   {output = input, rzextr can not extrapolate from one point} 
RzextrDQ, 1] := yestfj];   {save the current yest} 
dy[j] := yest[j];      {the error is equal to the value (no way to estimate the error} 

end 
else 

begin 
if iest < nuse then      {... we will take all the points in storage for the curve fit} 

ml := iest 
else {... we will only take the last "nuse" points} 

ml := nuse; 
for k := 1 to ml -1 do 

fx[k +1] := RzextrXpest - k] / xest; 
for j := 1 to n do       {evaluate next diagonal in tableau} 

begin 
yy := yestfj]; 
v := RzextrDfj, 1]; 
c:=yy; 
RzextrDQ, 1]:=yy; 
fork:=2tom1 do 

begin 
b1:=fx[k]*v; 
b:=b1-c; 
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if b <> 0.0 then 
begin 

b:=(c-v)/b;ddy:=c*b; 
c:=b1*b 

end 
else      {care needed to avoid division by 0.} 

ddy := v; 
if k <> ml then 

v := RzextrDfl, k]; RzextrDrj, k] := ddy; 
yy := yy + ddy end; 

dy[j] := ddy; 
yzD]:=yy 

end 
end 

end;     {... of rzextr} 

procedure bsstep 
(var y, dydx: RealArrayNVAR; 

n: integer; 
varx: myreal; htry, eps: myreal; 
var yscal: RealArrayNVAR; var hdid, hnext: myreal); 
{all those variable have been explained in ODEINT} 
{This Procedure makes a numerical integration from the vector y(x) to the vector} 
I yix+ntry) The process consists in dividing the big step "htry" in "nseam" eauai «nheton \ 
ÄlS? y(Sh7' "!eq[0) iS eValU3ted US^ thhStoiAlI and^th?prodqedüS     P-} 

MMID (modified midpoint method 616). Then a new value "nseqp+11" is chosen and a) 

vne^Npfrr(tX
h-
h-YSe,q[i+11" Ca,CUlated- ^ difference ^en yi!l and y "»1» y= at INPUT th.s is the starting value y(x), at OUTPUT it is the end value yfx+htiy)} 

{by bsstep. The program permits to have y as a vector of dimension n if we olanl 
{to solve several D.Equations at the same time.} aimens,on n » we plan} 

{dydx« the vector (size n but for me n=1) of the partial derivatives at "time" x} 
{n= the size of the vectors y and dydx, in my case n=1} 
{x= the independent variable, in my case "time". It is the time at the beginning} 

/htrv «£ A    St?P' .and "V'J5 actual,y "yW"the 0UW value of Y will be y(x+htrv)) 
{htry= the Ax we try to reach. If we do not succeed after "imax" because of too} 

{low accuracy, the procedure reduce htry and try again. This gives} 
{hdid and hnext, see below.} 

{eps= The accuracy is defined in absolute value by Ao = eps x yscalfi]} 
{yscal= the vector against which the accuracy is compared, yscal = y[0+ AyTj]} 
,...,   [Odeint takes care of defining yscal before calling bsstep} 
{hd.d= the step Ax actually used by the procedure to succeed in finding y(x+Ax)} 

{within the accuracy standard.} 
{hnext= the proposed next step, the next time we call bsstep from Odeint.} 

{It is not necessarily hdid because to optimize} 
{the calculations, hnext could be < or > than hdid J 

label 
99; 

const 
imax = 11;   {max # of nseq, see below} 
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nuse = 7; {max # of points (y(x+htry, nseqfj]) taken for the extrapolation} 
shrink = 0.95e0; 
grow= 1.2e0; {the fractions to decrease or increase the step htry} 

var 
j, i: integer; {food for FOR and WHILE loops} 
xsav, xest, h, errmax: myreal; 
Maxh: myreal; {the maximum step to avoid having negative methane values} 

{&&&&&& my addition &&&&&&&&} 
ysav, dysav, yseq, yerr: ARealArrayNVAR; 
nseq: array[1 ..imax] of integer; 
goforit: boolean; {when wrong we escape the routine without having finished} 

begin 
new(ysav); 
new(dysav); 
new(yseq); 
new(yerr); 
nseq[1] := 2; 
nseq[2] := 4; 
nseq[3] := 6; 
nseq[4] := 8; 
nseq[5] := 12; 
nseq[6] := 16; 
nseq[7] := 24; 
nseq[8] := 32; 
nseq[9] := 48; 
nseq[10] := 64; 
nseq[11] := 96; 
h := htry;    {the big step to make by this run of the procedure} 
xsav := x;    {xsav is the initial value of x. This value will of course remain constant} 

{for all nseq.} 
for i := 1 to n do 

begin      {just saving the starting values} 
ysav*fj]:=y[i]; 
dysav^p] := dydxfi] 

end; 
goforit := true; 
while goforit = true do 

{this loop turns on indefinitely unless we escape from it either by} 
{GOTO or by displaying an error message, and turning goforit to false.} 
{GOTO will be used when the discretization of h was small enough} 

{to permit an estimation of y that is within precision limits.} 
begin 

{&&&&&&&&&&&&&&&&&&   addition &&&&&&&&&&&&&&&&&&&&&&} 
{Its purpose is to prevent ysav (methane) to be below its minimum value} 
{when time go to infinity (MMin). If it were below MMin, then Cell would become} 
{negative, and the corresponding derivative would be foolish. In derivs} 

{I have stated that if Met < MMin the procedure will return the value} 
{dMdt = 0.0. For that reason the test below will stop the program if) 
{that happens. Note that MMin calculated by MetMin can not be lower than} 

{a certain constant "limit" in this procedure, otherwise there are conditions} 
{under which the actual MMin would be below the smallest real (extended)} 
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{that Pascal supports.} 

If dysavA[1] = 0.0 then 

{to avoid division by zero in the following step} 
begin begin 

writelnfdysav = 0.0 in bsstep, Maxh can not be estimated, the program stops'); halt- 
end; 

Maxh := (MMin - ysavA[1]) / dysavA[1]; 
if h > Maxh then 

h := Maxh; 
{&&&&&&&&&&&&&&&&&&  End of addition &&&&&&&&&&&&&&&&&&&&&&} 

begin 
mmid(ysavA, dysaVS n, xsav, h, nseqp], yseqA); 

{given the big step to make (h), and the number of substeps (nseq[i]), mmid) 
{give "yseq" the estimated y(xsav + h)} »HIJJ."»"WJ 

xest:=sqr(h/nseq[i]); 
{5?E?IRuVil' c*}?1^ a ««ve y(h/nseq[i]) for different nseq (it keeps} 
rKim nfni31"^ 3t P[eYious nsec1in memory) and will extrapolate the value} 
{yflim nseq->mf) each time we add a larger nseq. In reality, because the} 
{error of mmid is in sqr(n/nseq) the routine use xest as variable. In addition) 

t k Se,Wll0utpul "ye.rr"' an estimation of the error of the estimation.} 
{step!} V Companng the es«irnated y(htry) obtained at two following} 

rzextr(i, xest, yseqA, y, yerrA, n, nuse); 
if i > 3 then    {we enter the loop in which a possibility to stop exist, but to) 

{prevent this to occur too soon due to a suspect early) 
{convergence, this is only possible if i>3.} 

begin 
errmax := 0.0;      {pas tres clair} 
for j := 1 to n do 

if errmax < abs(yerrArj] / yscalQ]) then 
errmax := absfyerr^ij] / yscairj); 

{errmax= 0 therefore this checks if yerrj is not equal to zero due to} 
{truncation. I still do not see clearly what is done here} 

errmax := errmax / eps; {if errmax is effectively zero, it remains so) 
{scale accuracy relative to tolerance} 

if errmax < 1.0 then 
begin       {the step has converged} 

x := x + h; 
hdid := h; 

ftS*«,"6 dfne.the ,b'3 step "nne*t" »hat will be used as "htry" the next) 
{time this routine is called by ODEINT} 

if i = nuse then 
hnext := h * shrink 

else rf i = nuse -1 then 
hnext := h * grow 

else {...i is neither nuse nor nuse -1} 
hnext := (h * nseq[nuse -1]) / nseqfi]; 

goto 99 {this is the normal return} 
end       {...of the test checking if the error is OK and defining "hnext"} 

end {...of the test (i>3) that permits to enter the OK test} 
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end; {...of the loop that increases nseqi) 
{if we are here, this means that we have reached nseq[imax] = 96 and still} 
{do not have enough accuracy to exit. Therefore we must reduce "h" which was} 
{previously defined as h:= htry.} 

h := 0.25 * h; 
for i := 1 to (imax - nuse) div 2 do      {i.e. for 1 to 2 do. NOTE "div" is integer "/"} 

h:=h/2; {idem to h:= h/4. This is a strange "for" because (imax-nuse)/2} 
{may not be an integer depending on imax and nuse definition.} 

{overall and because of the values of imax and nuse, we have divided h by 16} 
if x + h = x then 

begin 
writeln('pause in routine BSSTEP'); 

writeln('step size underflow, h=0'); writeln('press <retum> to quit the program"); readln; 
halt; 

{goforit := false;} 
end 

end; {.. of while goforit = true loop} 
99: 

dispose(yerr); 
dispose(yseq); 
dispose(dysav); 
dispose(ysav) 

end;     {... of bsstep} 
{^%%%%%%%%%%%%%%%%°/o%%%%%%%%%%%%%%%%%%%%%%<>/0%%0/00/0'>/0) 
{$P} 

procedure odeint 
(var ystart: RealArrayNVAR; 

n: integer; 
x1, x2, eps, hi, hmin: myreal; var nok, nbad: integer; 

var Last_h: myreal; 
var OdeintXp: FOROdeintXp; var OdeintYp: FOROdeintYp); 
{page 613} 
{ystart = a vector of starting values of the functions y*s. it is replaced by its value} 
{at x2 at the end of the routine OUTPUT} 
{n = the size of ystart, or the number of functions y to be integrated simultaneously} 
{x1 and x2 = the limit of integration} 
{eps = the accuracy: Ao = eps x yscalfl]} 
{hi = a guessed first stepsize} 
{hmin = the minimum allowed stepsize} 
{nok, nbad = the number of good and bad (but retried and fixed) steps taken. OUTPUT} 
{Last_h = the last step used by bsstep before we quit odeint. It will be used as "hi"} 
{the next time we call Odeint.} 

label 
99; 

const 
maxstp = 10000; 

{the maximum number of steps that will be made to go from x1 to x2} 
tiny = 1.0e-30; 

{to be added to a number to compensate for roundoff error} 
var 
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nstp, i: integer; {food for FOR loop} 

xsav, x, hnext, hdid, h: myreal; 

{xsav=the last x saved. x= is xi} 
{hnext = the estimated next stepsize to carry out next bv the intenratirmi 
Ked outESSS°K!" eTOr*aSSffÄut esSpSally} 
ifhlZl ■     IbssteP- h= the stePsuggested to bsstep by odeint (usua v) 
{the prev.ous hnext that bsstep suggested at the end oftewo*}   (        W 

yscal, y, dydx: ARealArrayNVAR- 

/odpin P T ?* = the VeCt0rS 0f the functions *•and their derivative dydxi.} 
{odeint W.II only ou5)uty(x2), all the intermediate values y(xO yscalfxn andyn 
/a*L Pn^HH^ °f °deint'3nd are theref0re «W^'ÖS'ÄSs} 
SI ctrirä0f re,10^ ^tart wi" be redefined w|th the values of y(x2)} 

be in B      reSPOnSe °f the US6r t0 S°me ""^l 
new(yscal); 
new(y); 
new(dydx); 

x {those variable are dynamic, so "new" create their place in memory} 

if x2 >= x1 then 
h:=abs(h1) 

else 

nok ^'?S(h1,: {make sure we integrate in the right direction} 

nbad := 0; 
OdeintKount := 0; {no step stored} 
for i := 1 to n do 

ytO := ystart[i];  {y(x1) is loaded} 
if OdeintKmax > 0 then 

xsav := x - 2.0 * OdeintDxsav; 

wfi!f te £? l0«'""51"6 that tne first ^ep will be stored later in the I 

for nstp := 1 to maxstp do 

{this is the main loop, which will run from x1 to x2 unless more than maxstp} 
{steps are needed, in which case the program will stop} 
begin K' 

derivs(x, y\ dydxA); 

foM Iflfn A*** ySCaI' bUt b8Step Wi" h3Ve t0 reca" * for fts own us*) 
yscalA[0 := abs(y*[Q) + abs(dydxA[i] * h) + tiny; 

{this line defines the scaling used to monitor accuracy. When v is lame fhPi 
£e  error is proportional to y, but when y comes to zero the eS is f} 

{proport.or.al to the Ay represented by the step h. Otherwise ywoS never} 

i fh3n Je-»   ?™ t0 Z!L° b6CaUSe the a,lowed error would aIs° come to zero } {I think tiny" is just added to compensate for roundoff error} 
if OdeintKmax > 0 then    {... we are allowed to store the intermediate result} 

if abs(x - xsav) > abs(OdeintDxsav) then   {...we will store the result} ' 
rf OdeintKount < OdeintKmax -1 then  {..we still have enough room} 
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begin 
OdeintKount := OdeintKount + 1; 
OdeintXp[OdeintKount] := x;     {we store the x value} 
for i := 1 to n do 

OdeintYp[i, OdeintKount] := yA[i];   {we store the yi value} 
xsav := x      {xsav represents the last x value that had been stored]} 

end; {...of storage process started with "if OdeintKmax > 0"} 
if(x + h-x2)*(x + h-x1)>0.0then 

{...the step overshoot the end (x2), so we cut down the stepsize} 
h := x2 - x; 

{%%% here starts the calculations that will make one Ax step.} 
{What we did before was defining the wanted accuracy, save intermediate} 
{results if needed, and check that the step did not overshoot the} 
{end of integration x2.%%%} 

bsstep(yA, dydx\ n, x, h, eps, yscalA, hdid, hnext); 
if hdid = h then 

nok := nok + 1 {means we supplied bsstep with an appropriate "h"} 
else 

nbad := nbad +1; 
if(x-x2)*(x-x1)>=0.0then 

{...we are done} 
begin 

for i := 1 to n do 
ystartp] := yA[i];       {ystart is changed to y(x2)} 

if (OdeintKmax - OdeintKount) > 0 then {%%%%%de mon cru%%%%} 
{...we save the final step, after checking we still have 1 place left} 

begin 
OdeintKount := OdeintKount + 1; 
OdeintXpfOdeintKount] := x;   {we store the last x value} 
for i := 1 to n do 

OdeintYp[i, OdeintKount] := yA[i]; {we store the last yi value} 
{... of saving the last step} 

Last_h := hnext; {I want to export the last} 
{step in Odeint so that in its next call corresponding to the next big step} 
{from time_obsi to time_obs(i+1) bsstep will start with an appropriate} 
{first step.} 

goto 99 {normal exit} 
e nd; {...of the test checking if we were done} 

{%%% we continue with the following if we are not done %%%} 
if abs(hnext) < hmin then 

{...the next h we were supposed to use is too small} 
begin 

writeln('pause in routine ODEINT); 
writeln('stepsize is too small, the program will stop'); 
halt; 

end;     {... of test if hnext was getting too small} 
h := hnext; {This value will be used in the next loop} 

e nd; {of the main loop which will turn a maximum of "maxstp" steps} 
writeln('pause in routine ODEINT — too many steps'); 
writeln('press <return> to continue and end the routine'); 
readln; 

end; 
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99: 
dispose(dydx); 
dispose (y); 

dispose(yscal) 

end; (...odeint) 

procedure MetfromTime 
(varTimeSample, Met_cal: InVector; 

and the) *** '"le9e')' {'NPUT: ,he initial w*™«* and constants of the mode! (global variables), 
{vector of the times at which observations were made.} 

{OUTPUT: the concentrations of methane predicted by the model} 
{at the different times at which we took some samples} 

var 

Last_h: myreal;       {the last step carried out by bsstep in one run of odeint) 
j: integer; ' 

hi: myreal;       {To enable an update of hi without modifying) 
{Odeint_h1} 

begin 
MMin := MetMin(MMinAcc); 
Met[1] := Meto;       {derivs is in my case defined with n=1. Met[1l is used) 

{thJ*!iZ°«dlir\}0 cal<5tJla,e ,he me,hane concentrations at all} 
ffitfS^S9?8- ^tLca,[1 ] fe on|y a P^1'0"1^ val"e of Met[1]} {at the üme at which a sample was taken.} 

Met_cal[1] >: Meto;    {There is no uncertainty on the first value of Met cal[1]} 
{NOTE that Met.cal would be a (data, n) matrix if no1} 

tteg := timeo; {defines tbeg needed for the first call of odeint) 
hi := Odeint_h1; 
forj:=ltodata-1do 

{call odeint to estimate Met_cal of all observations (a number "data")) 
begin " 

nok := 0; 
nbad := 0;     {reset nok and nbad} 
tend := TimeSample[j +1]; 

Ä tbe9, ,end' Odeint.eps. hi, Odeint.hmin, nok, nbad, LastJ, OdeintXp*. OdeintYp*); 

hi := Last_h; 

{by doing this I permit Odeint to start direcUy wfth an optimum "h" the) 
{next time the routine is called.} 

Met calD +1] := Met[1];    {Odeint output the value Met[1] which correspond to "tend") 
end, {....of the loop to screen all the experimental sampling times) 

end;        {... of MetfromTime} 
|%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 

procedure TCECellfromMet 
(var Met, TCE, Cell: InVector; 

data: integer); {INPUT the amount of methane, OUTPUT: TCE Cell corresDondinn tn Mo» 
{TypICally, I use Met.cal, TCE_cal, and Cell_cal.) corresponding to Met} 

var 
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teta, a, b: myreal; 
i: integer; 

begin 
for i := 1 to data do 

begin 
if Met[i] / Meto <= 0.0 then 

begin 
writelnfMetl', i, T/Meto <= 0.0 in TCECellfromMet the program stops'); halt; 

end; 
teta := (VI + Hm * Va) * Km * rt / (VI + Ht * Va) / Kt / rm; 
TCEp] := TCEo * exp(teta * ln(Met[i] / Meto)); 

a>=(-1 + main/ rm/E)*(Met[i]- Meto) + (main* Km /rm/E)*ln(Metfj]/ Meto); b:=(main/E + rt*tox/Y) 
(VI + Ht * Va) * Y / VI / rt * (TCE[i] - TCEo); Cellp] := Cello + Y * (Hm * Va + VI) / VI * a + b; 

end;    {.. of loop over all the data} 
end;        {...TCECellfromMet} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
{$S CurveFit} 
{ . ._ _ ...} 

{%%%%%%%%%%%%%%%%%%%%%%%%V0%%%%%%%%%%%Vo%%%%%%%%%} 
{$P} 

procedure DefMetDeriv 
(k: integer; 

var lista: IntegerArrayMFIT; 
vara:RealArrayMA; 
mfit: integer; 
var TimeSampIe, Met_cal: InVector; 
var PDMet: MatDeriv; 
data: integer); 

{"lista"= the vector indicating which constant will be varied by MRQMIN. INPUT} 
{a= the vector of constants INPUT} 
{"mfit"= is the quantity of these constants. INPUT} 
{Met_cal, TCE_cal, Cell_cal= the values calculated by the model.    OUTPUT} 
{PDMet, PDTCE, PDCell = the matrices of partial derivatives.    OUTPUT} 
{Its purpose is to define all the partial derivatives that will be needed for the} 
{least square calculation. It would be wasteful to calculate the partial derivatives} 
{separately for each time point, like MRQMIN expects FUNCS to do. Wasteful because} 
{to calculate Met_cal[i] numerically, we will have to calculate all the Met_cal[j] for} 
{j<i anyway. So it is better to do the numerical calculation once and store the results.} 
{The routine also calculates the values of Met, TCE, and Cell at each timeTj].} 
{Then FUNCS will simply read the results and give them to MRQMIN.} 
{DefAIIDeriv will calculate all the derivative NEEDED by MRQMIN. i.e. not the partial} 
{derivative with respect to a "constant" constant. Therefore, DefAIIDeriv will use} 

{the first "mfit" data stored in "lista" to determine which derivatives are needed. Then} 
{it will give the value zero to all the partial der. corresponding to "constant" constants.} 
{Zero is indeed the correct value because it makes y independent of a variation of one} 
{of these constants.} 

{The calculations will be made for one set of constants i.e. for one particular vector "a".} 
{The routine will COMPLETELY REDEFINE the Km, Kt, rm,... from the values of "a" given} 
{as input. Therefore all the following calculations will be made using the values of} 
{constants found in "a".} 

{main OUTPUT:} 
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(MeUal   the actual values) 

{PDMet     the partial derivatives) 
var 

delta: myreal; 
i, j, m, entry: integer; 
VMetPD: "InVector; 

KPnntiS cnee
Dn

eMl? 9alcu,lat.e the value o' one vector of the matrix PDMet.} 
I can not use PDMet directly in -derivative" because this procedure only} 

{input InVector vectors, and not matrices. Therefore MetPD will be used as} 
1 . %%%%%%%%%%%%%%%%%} 

procedure derivative (var TimeSample, Metcal: InVector; 
delta: myreaO; 

{This procedure assumes that we have already calculated the theoretical values} 
{for methane using the current values for the constants. Those results} 
{are expected to be found in the array Met_cal. Then} 
{the procedure calculates new values for this record, but with one constant! 
Sxx^f^ValUe t^™**«)- «*is constant is XXthenSi value} 
RÄuo

e
ra

re^,lem
(
ab0ve can ,here,ore be considered to be 1 vector} {RMet(XX). The result of the first steps in this routine is a} 

{new vector whose values are equal to RMet(XX + delta),} 
{. The second step in the routine consists) 
{in estimating the value of the derivatives of the vector with respect to XX bv l 

SeÄ ( nereiore trie OUTPUT of the procedure is the vector of the derivatives} 
var ■' 

i: integer; 
begin 

if delta = 0.0 then 
begin 

writeln('delta = 0.0 in "derivative"*); halt; 
end;     {I do not want to divide by zero later, better stop now) 

MetfromTime(TimeSample, Metcal, data)- 

ÄÄKTC! -A5 ** °'calc"la,in9for each time point a theoretical} 
{KreS 

for i := 1 to data do 
MetcalJT] := (Metcafp] - Met_cal[i]) / delta; 

end;    {... of derivative} 
{ . %%%%%%%%%%%%%%%%%} 

procedure TestDelta; 
{its purpose is to test if delta = 0.0.. ff it is, probably because one of the) 
{constant is zero, then a default value is assigned to it.} 

begin 
if delta = 0.0 then 

begin 

ÄSS )SS^Sff£^!S^'h3S a de,ta ■ 2er°'" D^etDerivO; writelnca default va.ue 
delta := defaultDelta; 

end; 
end;    {...of TestDelta} 

{ . %%%%%%%%%%%%%%%%%} 
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begin {of DefMetDeriv} 
new(VMetPD); 
for i := 1 to numb_obs do 

begin 
for j := 1 to numb_const do 

PDMet[i, j] := 0.0; 
VMetPDA[i] := 0.0; 

end; 
MetfromTime(TimeSample, Met_cal, data); 

{Calculate the theoretical values of Met, TCE, and Cell using the} 
{constants defined above.} 

for i := 1 to mfit do 
{will calculate the partial derivative corresponding to the "mfit" first} 
{constants indicated in "lista".} 

begin 
{I must input a test because Meto, TCEo, and Cello may have different positions} 
{in lista depending on their version. But I know we work with set "k"} 

if lista[f] > 8 then      {... ft may represent Hm, HI, or several Meto, TCEo, Cello, Va.VI} 
begin 

if (listaTJ] = 9) or (lista[i] = 10) then 
begin 

writeln('ERROR in DefMetDeriv lista points to Hm or Hf); 
halt; 

end 
else if (listati] = SetConst[k, 2]) then entry := 9 {Meto} 
else if (listaTJ] = SetConstfk, 3]) then entry := 10 {TCEo} 
else if (listaTJ] = SetConst[k, 4]) then entry := 11 {Cello} 

else if (lista[i] = SetConst[k, 5]) or (Iistap] = SetConst[k, 6]) then 
begin 

writeln('ERROR in DefMetDeriv, lista points to Va or VI'); 
halt; 

end 
else 

begin 
wrfteln('ERROR in DefMetDeriv, lista points to an unknown of this set:'); writeln('lista[\ i: 3,1 points to' 
lista[i]: 4, * and the set # is :', k: 3); writelnCVous allez fitre justement puni YEK, YEK, YEKI! BOOMn- 

haft; 
end; 

end {...of if lista >8} 
else {Gsta <= 8} 

entry := listaTJ]; 
case entry of 

1:     {Km is aTJistaTJJJ, when listaTJ] = 1} 
begin 

delta := a[Iista[iTj * RelDelA[lista[iTJ * fraction; 
TestDelta; 
Km := aflistapTJ + delta; 

{I increase Km by a fraction of its previous relative increase} 
{from the last call of MRQMIN. If there has not been an initial call to} 
{MRQMIN, RelDelATJ] will be equal to "FirstAccr". This initialization} 
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{must be done at the beginning of the program.} 
derivative(TimeSample, VMetPD\ delta); 

Km := allistapD;    (give back its original value to Km) 

2:     {Kt} 
begin 

delta := a[Iista[i]] * RelDelA[lista[i]] * fraction; TestDelta; 
Kt := a[lista[0] + delta; 

derivative(TimeSample, VMetPD*. delta); Kt := aTjistap]]; 
end; 

3:      {rm} 
begin 

delta := a[lista[i]] * RelDelA[lista[iJ] * fraction; TestDelta- 
rm := a[lista[ij] + delta; 

derivative(TimeSample, VMetPD*. delta); rm := a[lista[i]]; 
end; 

4:      {rt} 
begin 

delta := a[lista[f]] * RelDelA[lista[0] * fraction; TestDelta- 
rt:=a[lista[i]] +delta; 

derivative(TimeSample, VMetPD*. delta); rt := a[lista[i]]; 
end; 

5:     {main} 
begin 

delta := a[lista[i]] * RelDelA[lista[G] * fraction; TestDelta- 
main := a[lista[i]] + delta; 
derivative(TimeSampIe, VMetPD*. delta); main := a[lista[n]; 

end; 
6:      {tox} 

begin 
delta := a[lista[i]] * RelDelA[lista[i]] * fraction; TestDelta- 

tox := apistapH + delta; 
derivative(TimeSample. VMetPD*. delta); tox := allistarm- 

end; 
7:      {Y} 

begin 
delta := a[lista[i]] * ReIDelA[lista|i]] * fraction; TestDetta- 

Y:=a[lista[0] +delta; 
derivative(TimeSample, VMetPD*. delta); Y := a[lista[i]]; 

end; 
8:      {E} 

begin 
delta := a[lista[i]] * ReIDelA[lista[0] * fraction; TestDelta; 

E:=a[lista[i]] +delta; 
derivative(TimeSample, VMetPD\ delta); E := a[lista[i]]; 

end; 
9:     {Meto} 

begin 
delta := a[lista[i]] * ReIDelA[lista[|J] * fraction; TestDelta; 
Meto := a[lista[i]] + delta; derivativefTimeSample, VMetPD*. delta); 
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Meto := a[lista[i]]; 
end; 

10:       {TCEo} 
begin 

delta := a[lista[i]] * RelDelA[lista[i]] * fraction; TestDelta; 
TCEo := a[lista[i]] + delta; derivative(TimeSample, VMetPD*. delta); 
TCEo := a[lista[i]]; 

end; 
11:       {Cello} 

begin 
delta := a[lista[iTJ * RelDelA[lista[fJ] * fraction; TestDelta; 
Cello := a[iista[iJJ + delta; derivative(TimeSample, VMetPDA, delta); 

Cello := a[lista[i]]; 
end; 

end;     {... of Case *** of} 
for m := 1 to data do 

{VMetPD will be loaded with partial derivatives corresponding} 
{to constant "i", so I can now define the column Y of the matrix of partial} 
{derivatives.} 
{NOTE that in this definition, the column # follow "entry", and not the integer} 
{values corresponding to a, aName, aMax, aMin. (at least for integer > 8.} 
PDMet[m, entry} := VMetPDA[m]; 

end;     {... of the loop over the "variable" constants of lista.} 
{Concerning the "constant" constant of lista, all the partial diff.} 
{corresponding to them had been set to zero at the beginning of} 
{the procedure.} 

dispose(VMetPD); 
end;     {... DefMetDeriv} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 
{$P} 

procedure PDTCEfromPDMet 
(var PDMet, PDTCE: MatDeriv; 

var Met, TCE: InVector; 
ma, data: integer); 

{INPUT: Met, TCE, PDMet, ma, data} 
{OUTPUT: PDTCE} 
{takes the matrix of partial derivatives PDMet and calculate the corresponding} 
{matrix PDTCE} 

var 
teta: myreal; 
i, m: integer; 

begin 
teta:=(VI + Hm*Va)*Km*rt/(VI + Ht*Va)/Kt/rm; 

{call TCEfromMet as an alternative if I do not calculate TCE InVector} 
{by writing TCE:= TCEfromMet(Met[i]);} 

for i := 1 to data do 
for m := 1 to ma do 

PDTCETj, m] := teta * TCE[i] / Met[i] * PDMetfi, m]; 
end;        {...PDTCEfromPDMet} 

{%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o%%%%0/o%%0/o%0/o%%%%0/o0/o%} 
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{$P} 
procedure PDCellfromPDMet 

(var PDMet, PDCell: MatDeriv; 
var Met, TCE: InVector; ma, data: integer)- 

{INPUT: Met, TCE, PDMet, ma, data) 

(OUTPUT: PDCell] 
Wri ^n^n Partial derivatives PDM* and calculate the corresponding} 
{matrix PDCell.  Uses equation 21 for dX/dc and dX/da = dX/dc*dc/da) 

var ' 
dXdC: myreal; 
i, m: integer; 

begin 

{I may want to call TCEfromMet as an alternative if I do not calculate TCE InVector} 
{by writing TCE:= TCEfromMet(Met[i]);} 'nveciorj 

fori:=1todatado 
begin 

PDCell[i, m] := dXdC * PDMetfl, m]; 
end;     {... of loop over all data} 

end;        {...PDCellfromPDMet} 

procedure OneSetSimpleCalc 
(k: integer; 

vara:RealArrayMA; 
var TimeSample, Met.cal, TCE.cal, Cell.cal: InVector; var PDMet PDTCE PDCell- MatDprW- 

KS n? 7" d°-f''the CalCUlati0nS (bef0re a CuiveFrt> that CSnd? l 
to ONE set of values V with the current values of the vector "a" This is) 

{done only using the Simple formula.} 
{OUTPUT: Met.cal, TCE.cal, Cell.cal, PDMet, PDTCE, PDCell} 

SK8 Mfn!5at Vw!nd,V1, Met0' TCEo-and Cell° can vary between sets} 
mS »   h

n0t-!leued t0 keep in memory PDMet, PDTCE, PDCe» because) 
föJSSÄ^^0^?8^in the final PD* matrix *alS5 {be exported to mrqmm. Forthat reason at each "k", those matrices} 

{will be erased by the calculation of the new PDmatrices} 
begin ' 

CheckConst(a, aName, ma); 

5 £%£$£?«"*> ,0r Va'UeS <= °-°thal ™* crash «» program} 

{var aName: StringArrayMA;} 
{ma: integer} 

DefKmfromA(k, a); 
{vara:RealArrayMA} 
{Redefine the constants Km, Kt,... from the current values of "a"} 
{"a" will be changed by each step of the least squares.} 
{Even more importantly, this function defines the Meto, TCEo Cello) 

{va, VI needed by each set i.e. as a function of "k"} 
SimpleMetfromTime(TimeSample, Met_cal, SetConst[k, 1])- 

{var TimeSample, Met_cal: InVector;} 
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{data: integer} 
SimpleTCECellfromMet(Met_cal, TCE_cal, Cell_cal, SetConst[k, 1]); {var Met, TCE, Cell: InVector;    } 

{data: integer} 
SimpleDefMetDeriv(a, ma, TimeSample, Met_cal, PDMet, SetConst[k, 1]); 

{var a: RealArrayMA;} 
{ma: integer;} 
{var TimeSample, Met_cal: InVector;} 
{var PDMet: MatDeriv} 

{data: integer} 
{it defines all the derivative and the expected Met, TCE and Cell from} 
{the simple formula.} 
SimplePDCellfromPDMet(PDMet, PDCell, Met_cal, ma, SetConst{k, 1]); {var PDMet, PDCell: MatDeriv;} 
{var Met: InVector;} 
{ma, data: integer} 
PDTCEfromPDMet(PDMet, PDTCE, Met_cal, TCE_cal, ma, SetConst[k, 1]); {var PDMet, PDTCE: 
MatDeriv;} 

{var Met, TCE: InVector;} 
{ma, data: integer} 

{This procedure is the one of the complete model. There is no such} 
{procedure for Simple, because by definition TCE is zero in it.} 
{But of course if I put TCEo =  0.0,1 will not get anything from this.} 

end; {...OneSetSimpIeCalc} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0} 
{$P} 

procedure OneSetCalc 
(k: integer; 

var a: RealArrayMA; 
var TimeSample, Met_cal, TCE_caI, Cell_cal: InVector; var PDMet, PDTCE, PDCell: MatDeriv); 
{This procedure will do all the calculations (before a CurveFft) that correspond} 
{to ONE set of values"k" and with the current values of the constant vector "a".} 
{This is done only using the complete formula.} 
{Remember that Va and VI, Meto, TCEo.and Cello can vary between sets} 
{Also, I do not need to keep in memory PDMet, PDTCE, PDCell, because} 
{their results will be compressed in the final PDX matrix that will} 
(be exported to mrqmin. Forthat reason at each "k", those matrices} 
{will be erased by the calculation of the new PDmatrices.} 

begin 
CheckConst(a, aName, ma); 

{Will screen all the constants for values <= 0.0 that may crash the program} 
{var a: RealArrayMA} 

{var aName: StringArrayMA;} 
{ma: integer} 

DefKmfromA(k, a); 
{var a: RealArrayMA} 
{Redefine the constants Km, Kt,... from the current values of "a".} 
{"a" will be changed by each step of the least squares.} 
{Even more importantly, this function defines the Meto, TCEo, Cello,} 

{Va, VI needed by each set i.e. as a function of "k"} 
{MetfromTime(TimeSample, Met_cal, SetConst[k,1]);} 

{var TimeSample, Met_cal: InVector;} 
{data: integer} 

Appendix A     Computer Program A49 



{It is useless to call MetfromTime now because DefMetDeriv calls it anyway} 
DefMetDeriv(k, lista, a, mfit, TimeSample, Met_cal, PDMet, SetConstfk, 1]); 

{k: integer} 

(var lista: IntegerAnrayMFIT} 
(vara:ReaIArrayMA;} 
{mfit: integer;} 
{var TimeSample, Met_cal: InVector;} 
{var PDMet: MatDeriv. Remember PDMet will be recreated each time i e} 

{its value will not be kept in memory} 
{data:integer} 

{it defines all the derivative and the expected Met, TCE and Cell from} 
{tne simple formula.} ' 

TCEC{edtfSSr}LCa,'TCELCal' Ce'LCa1, Se,C0nstfk'1»: <var Met ■TCE • Cell: InVector;    } 

PDCel^mP^PDMet, PDCeil, Met_ca., TCE.cal, ma, SetConst[k, 1]); {var PDMet. PDCell: 

{var Met, TCE: InVector;} 
{ma, data: integer} 

MaK^™*™* ""^ "^ ^-^ ^ Set°0nS^ 1» <var PDM<* ™TCE: 
{var Met, TCE: InVector;} 
{ma, data: integer} 

end;        {...OneSetCalc} 

procedure DefFunclnput 
(simple: boolean; 

vara:RealArrayMA; 
varSetToX:Setlnteger3; 
var SetX: IntegerArrayNDATA; 
var ndata: integer; {var because I calculate it} 
varXcal: RealArrayNDATA; 
varPDX:XMatDeriv); 

{Will make all the calculations for all the sets given a certain constant) 
{vector "a"} 

{INPUT: as GLOBAL variable: TimeSample (i.e. for each set); SetConst} 
{(pointers to "a")} ' 

jsimple= if true, I use the simple model, if wrong I use the complete model} 
{a= the vector of all the constants with their current values} 
{SetTox, SetX = are used to transform the calculations results into vectors} 

{of dimensions adequate for mrqmin use. They are defined in) 
{MakeMrqVector.} 

{ndata = the total # of observations input in mrqmin (Met+TCE+CEII)} 

{Xcal= the vector of the predicted values (it correspond to Xobs, the} 
{observed values} 

{PDX= the matrix of the PD with respect to the constants} 
var 

c, k, i, t, m, b: integer; 
begin 
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t := 0; 
for k := 1 to numbSet do 

begin 
if simple then 

OneSetSimpleCalc(k, a, TimeSample[k]A, Met_calA, TCE_calA, Cell_calA, PDMetA, PDTCEA, PDCellA) else 
OneSetCalc(k, a, TimeSample[k]A, Met_calA, TCE_calA, Cell_calA, PDMetA, PDTCEA, PDCellA); 

{These procedure calculate everything for ONE set i.e. also Metcal, TCEcal...} 
{Note that they are sensitive to "k" and will automatically choose the right} 
{Meto, TCEo, Cello, Va, and VI corresponding to "k".} 

{%%%% below, I start creating the INPUT stuff for Mrqmin %%%%%%} 
if k = 1 then 

m:=0 
else 

m^SetToXIk-1,3]; 
{a test necessary for the first call from i:=1 to SetToX[k,1]} 

f or i := m +1 to SetToX[k, 1 ] do        {Met data} 
begin 

t:=t + 1; 
Xcalft] := Met_calA[SetX[t]]; 
for c := 1 to 11 do 

PDX[t, c] := PDMetA[SetXIt], c]; 
{NOTE that PDMet, PDTCE, and PDCell are precisely defined from} 
{1 to 11:9,10,11 being for Meto, TCEo, Cello. The separations of} 
{PD belonging to different versions of Meto, TCEo, and Cello will} 
{be made in Funcs, not in this routine.} 
end; 

for i := SetToXlk, 1] +1 to SetToX[k, 2] do    {TCE data} 
begin 

t:=t + 1; 
Xcalft] := TCE_calA[SetX[tD; 
fore >1 to 11 do 

PDX[t, c] := PDTCEA[SetX[t], c]; 
end; 

for i := SetToXTk, 2] +1 to SetToXlk, 3] do    {Cell data} 
begin 

t:=t + 1; 
Xcaltf] := Cell_calA[SetX[t]]; 
fore :=1 to 11 do 

PDX[t, c] := PDCellA[SetX[t], c]; 
end; 

end;       {... of loop K over all sets} 
end;     {... of DefFunclnput} 

{%%%%%%%%%%%%%%%%o/0o/oo/o.^^^^ 
{$P} ' 

procedure Funcs 
(pos: integer; 

vara:RealArrayMA; 
varXcal: RealArrayNDATA; 
varPDX:XMatDeriv; 
ma: integer; 
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var yfrt: myreal; {it is a bad mistake not to put "var": see below! 
var dyda: RealArrayMA); ' 

{INPUT} 

(pos=the position of the independent variable (timeX) in its vector. We need} 
{to know for each time yfrt and dyda are needed, but we only need the } 

ÄtfrÄ lime' n°} ^ absolute value- Le-the absol"te value) 
fSSS^'SSSS^mpos',0 read in the matrices and '"Vector> 

{a= the vector of "constant"} 
{Xcal= the vector of predicted (calculated) values} 
{PDX= the matrix (11 columns ONLY) of partial derivatives} 
K'afial wyk °! Funcs is to take out of the 9,10, and 11 columns! 
{of PDX the partial derivatives corresponding to different version} 

{of Meto, TCEo, Cello.} 
{ma= the number of constants in vector "a"} 

^McTSfJ? ^Ca-USe d^a Wi" £ave ,he partial derivatives with} 
{OUTPUT? S and Cell0->>>>>»} 

lÄT^T?ICUlated Va'Ue 3t "timeX[P°s^ Pa9e 577 there is no "Var" before ft i e} 
{bv «?n^a TPHraTeterrUld be "NTERNAL to the procedure and not modified) 
{by funcs. Therefore yfrt would not be output by funcs even though  ™alüe) 

{partial denvatives defined by DefAllDenV} 'nances or j 

El* thl^e!, ?Sfined SUbr°Utine that Wi" provide mrc'min with »he} (£e
0 

PTd,Cted by the model- and the Partial derivative of the) 
{model with respect to the constants at the "time" time[pos] \ 

ffiSJSn^,10^ ha,S 3nly ca,culated the Partial derivatives with respect) 
{to ^constants described in "lista", all the other derivatives were se?S 0 0.} 

102; 
var 

i, k, myset: integer; 
begin 

for i := 1 to ma do 
dydafi] := 0.0; 

yfrt := Xcalfpos]; 
for i := 1 to 8 do 

dydafi] := PDXfpos, i]; 

f°fokr i=Jll to™ do56' d°      {findi"9 ,n WhlCh Set (mySe,) thiS d3ta belon9s} 

begin 

{the double loop K, I, starts with the lowest values of SetToX) 
if pos <= SetToXIk, 0 then ' 
begin 

myset := k; 
goto 102; 
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end; 
end; 

102: 
{SetConst[myset, 2] (for example) gives the adress in the vector "a"} 
{of the version of Meto used by the Set "myset".} 

dyda[SetConst[myset, 2]] := PDX[pos, 9];    {Meto} 
dyda[SetConst[myset, 3]] := PDX[pos, 10]; {TCEo} 
dyda[SetConst[myset, 4]] := PDX[pos, 11]; {Cello} 

end;     {funcs} 
{%%%%%%%%%%%%%%%%%%%%%%°/0o/0%o/0o^^^ 
{$P} 

procedure gaussj 
(var a: RealArrayNPbyNP; 

n: integer; 
var b: Real Array NPbyMP; m: integer); 
{a= the matrix A (n X n) of A«X=B} 
{n= the size of A} 
{b= is the matrix B(nXm) of A«X=B.} 
{m= the number of columns of B, i.e. 1 in my case} 
{This procedure solve the system of linear equations A«X=B. X and B} 
{are of same size.} 
{The method used is Gauss-Jordan Elimination with full pivoting. The} 
{matrix a will be output as its inverse, and b will be output as X the) 
{results of the equations.} 

var 
big, dum, ph/inv: myreal; 

i, icol, irow, j, k, I, II: integer; indxc, indxr, ipiv: AlntegerArrayNP; 
{Those 3 arrays are used for bookkeeping on the pivoting.) 
{ipiv= a vector of integer keeping track of which column has already been} 
{processed} 

begin 
new(indxc); 
new(indxr); 
new(ipiv); 
forj:=1tondo 

ipivA[j] := 0; 
for i := 1 to n do 

begin {AAA} 
big :=    0.0; 
for j" := 1 ton do 

begin {BBB      %%not necessary to put begin %%} 
if ipivA[j] o 1 then 

for k := 1 to n do 
begin   {CCC, %%not necessary to put begin %% iph/A[j] <> 1} 

if ipivA[k] = 0 then 
if abs(a[j, k]) >= big then 

begin 
big := abs(a[j, k]); 
irow := j; 
fool .:= k 
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end 
else if ipiv*[k] > 1 then {abs(afl,kl) < big} 
begin 

writelnfpause 1 in GAUSSJ - singular matrix'); readln; 
halt; 

end 
end      {CCC for...k, this loop was taken if ipivA[j] <> 1} 

{Incedently this is the end of the loop searching in one row) 
end;        {BBB  for...j} 

{This is the end of the loop searching in one column} 
pv*[icof] := ipiv*[icoi] +1;     {icol = k, see above} 
if irow o icol then      {...we need to interchange the rows) 

begin {DDD} 
for I := 1 to n do 

{This loop changes the row of the matrix A} 
begin 

dum := afirow, f]; 
afirow, I] := a[icol, 0; a[icol, 0 := dum 

end; 
for I := 1 to m do 

{This loop changes the row of the matrix B} 
begin 

dum := bfirow, rj; bfirow, I] := bficol, Q; bficol, Q := dum 
end 

end;        {DDD} 
indxr^i] := irow; 
indxc^i] := icol; 

{T is from loop AM above, indx r & c keep in memory the position of the) 
{pivot when the loop T was made $$} ' 
if a[icol, icol] = 0.0 then 

begin 
writelnCpause 2 in GAUSSJ - singular matrix1); readln- 

hart 
end; 

pivinv:=i.o/a[icol, icoO; 
aficol, icol] .= 1.0; 
for I := 1 ton do 

aficol, I] := aficol, I] * pivinv; 
for I := 1 tomdo 

bficol, f] := bficol, I] * pivinv; 
for II :=1 ton do 

if II o icol then 
begin 

IT-" ^"' ^      {afM-ico^ fe the elemer|t to set to zero} a|n, icoij ;= 0.0; 
for I := 1 to n do 

afll, f] := afll, Q - aficol, 0 * dum; for I := 1 to m do 
bfll, I] :=bfll,0-bficol, 0* dum end 

end; {AAA} 
for I := n downto 1 do 
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if indxrA[l] <> indxcA[l] then 
for k := 1 to n do 

begin 
dum := a[k, indxr^Q]; 
a[k, indxrA[l]] := a[k, indxcA[l]]; 
a[k, indxcA[l]] := dum 

end; 
dispose(ipiv); 
dispose(indxr); 
dispose(indxc) 

end; {...gaussj} 

{$P} 
procedure covsrt 

(varcovar: RealArrayMAbyMA; 
ma: integer; 

var lista: IntegerArrayMFIT; mfit: integer); 
{Page 564. The purpose of this procedure, which is used in MRQMIN, is to transform} 
{the mfit X mfit matrix of covariance into an extended ma X ma matrix} 
{of covariance sorted into the proper rows and columns and with zero} 
{variance and covariances set for variables which were held frozen, e.g.} 
{the variance of constant ai will be the element covarfj.i]. The resulting} 
{matrix which is again covar will therefore contain several zeros.} 

var 
j, i: integer; 
swap: myreal;       {temporary storage of element [1,1]} 

begin 
forj :=1 toma-1 do 

fori:=j + l tornado 
covar[i,j]:=    0.0; 

for i := 1 to mfit -1 do 
begin 

forj :=i + 1 to mfit do 
if listafj] > list a[i] then 

covar[lista[j], lista[i]] := covarfj, j] else 
covar[lista[i], HstaOU := covarfi, j] end; 

swap:=covar[1,1]; 
forj := 1 tornado 

begin 
covar[1, j] := covarfj, JJ; covarfj, JJ :=    0.0; 

end; 
covar[lista[1], lista[1]] := swap;    {the real position of the old [1,1]} 
forj:=2tomfrtdo 

covarflistatj], listarj]] := covar[1, j]; 
for j:= 2 to ma do 

for i := 1 to j -1 do 
covarfj, j] := covarTj, i]; 

end; {...covsrt} 

{$P} 
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procedure mrqmin 
(varx, y, sig: RealArrayNDATA; 

ndata: integer; var a: RealArrayMA; ma: integer; 

var lista: IntegerArrayMFIT; mfit: integer; 
varcovar, alpha: RealArrayMAbyMA; varchisq, alamda: myreal)- 
{page 577} 
{""INPUT*""       The following variables control the calculations} 
{x= the vector of independent variable (time).} 
{y= the vector of observations.} 
{sig= the vector of variance (inverse sqrt(weight))} 
{ndata = the number of observations <= ndatap (a constant)} 
{ma= the total number of constants, <= map (a constant)} 
{lista= a vector containing the addresses (integer) of the constants in "a'.But only} 
{the first "mfit" ones will be fitted by mrqmin, the remaining "ma" - "mfit"} 
{ones will not be touched by the routine. Lista is a way for the user to} 
indicate to mrqmin that the experimental data should be used only to fit) 

{certain constants and not all of them.} 
{mfit= the number of elements in vector lista} 

Those variables will be defined inside the procedure} {"♦"OUTPUT** 
{and their purpose is to give the output, i.e. No specific values are needed} 
{at input as these vanables will be redefined inside the procedure} 

te^£e matnX*°f n™?™that wil1 be "sed to find the error of the constants.} 
{cnisq= the sum of square. If the iteration is succesful, its output value will be} 

{updated to the new value. If the iteration} 
{succeeded, a new value is given to both variables, and if the iteration fails } 
{ chisq is reset to the value that MrqminOchisq had before the iteration}' 

•INPUT/OUTPUT*«        Those variables are changed by the procedure, and} 
{are also controlling the calculation. Therefore unlike the OUTPUT variables) 
{their input value is also important.} ' 

{alamda = the lambda factor in Marquardt method. If its value is negative that} 
{tells Mrqmin it is the first time the procedure is called, and-Mrqmin must) 
{therefore read the vector lista. if alamda equal zero, that indicates Mrqmin} 
that we have reached our solution, and we would like it to compute the) 
covariance matrix so that we can calculate the error of the estimate in} 
another routine. Finally, the value of alamda will decrease if the iteration) 
was succesful, but it will increase rf the iteration fail and the new "chisa") 

. {is larger than the previous one.} 
{a= the vector of the constants. If the iteration is succesful, its output values will be} 
{updated to the new values. But unlike "chisq" its values are needed at input the} 
{next time we call Mrqmin.} K ' 

{alpha= "alpha" as output of Mrqcof is NOT the actual "pseudo-Hessian" which} 
{r^ ?btajned bv augmenting its diagonal elements by the "trick" of Marquardt} 
I   p^. is simply the double Product of first derivatives. Moreover, "alpha") 
{is a mfitXmfit matrix and not maXma.} 

{MrqminBeta= is the vector ((observed-predicted)*9chi/dconstant.} 
{It fe NOT in the interface of the procedure, but is a GLOBAL variable) 
{of the main program.} 

{Each time the procedure mrqmin is called, it makes ONE set of calculation.} 
{It starts with a guess of the constants, which can be either the first} 
{one, or a previous result of a mrqmin run, and compute a new set of} 
{constants. Then the user has to decide if it is needed to make a tighter} 

{estimation of the best fit or to stop. This is the role of the driver "CurveRt"} 
{The vector "lista" which indicates the constants to introduce in the} 
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{calculation need only be read once, the first time mrqmin is called.} 
{To indicate to mrqmin that it is the first time, the user will just} 
{give a NEGATIVE VALUE TO ALAMDA, as a SIGNAL. Then the subroutine} 
{automatically initialize alamda to 0.001. At the end of the first call} 
{of mrqmin, alamda will be multiplied by 10 if the resulting chisquare} 

{is higher than the previous one (i.e. the routine failed to find a minimum),} 
{or divided by 10 if the chisquare is lower. To indicate to mrqmim that no more} 
{calculations are required and that we just want to get back the covariance} 
{matrix, we set ALAMDA = 0.0.} 

label 
99; 

var 
k, kk, j, ihit: integer; 

{ihit= used in the loops checking the vector lista} 
atry, da: ARealArrayMA; 

{atry= the new vector of constants obtained by the procedure. It will be the} 
{new values exported only if the new chisq obtained isJower than the initial one.} 

oneda: ARealArrayMAby1; 
{oneda= the vector beta given as a one column matrix, to be compatible with} 
{the call of GAUSSJ.} 

{ %%%%%%%%%%%%%%} 
procedure mrqcof (var x, y, sig: RealArrayNDATA; 

vara:RealArrayMA; 
var lista: IntegerArrayMFIT; var alpha: RealArrayMAbyMA; var beta: RealArrayMA; 
{beta = the vector beta is in fact -1/2* gradient (p 573)} 

var chisq: myreal); 
{All the variables except beta are the same as in the main procedure.} 
{The purpose of mrqcof is to evaluate the Hessian matrix (alpha), and} 
{the gradient (to get beta) from the user defined procedure "funcs"} 
{which actually calculates the partial derivatives.} 

var 
k, j, i: integer; {Foodforforloop!} 
ymod, wt, sig2i, dy: myreal; 

{ymod= the calculated value at "time" x[i]. It will be compared} 
{to its corresponding experimental observation for the evaluation} 
{of the sum of square. Its value is provided by "funcs".} 

{wt= is the weight*one of the partial derivative} 
{sig2i = the weight itself} 
{dy = the difference between the observed y[i] and} 
{theoretical ymod value} 

dyda: ARealArrayMA; 
{vector of partial derivative of ymod with respect to the constants} 

begin 
new(dyda); 
DefFunclnput(simple, a, SetToX, SetX\ ndata, XcalA, PDXA); 
for j :=1 tomfrtdo 

begin 
{initialize alpha and beta to zero. This is necessary for the algorithm below.} 

for k := 1 to j do 
alphaö, k] :=   0.0; 

beta[j] := 0.0 
end;     {...of"j"} 
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chisq := 0.0; 

for i := 1 to ndata do 
begin 

Funcs(i, a, XcalA, PDXA, ma, ymod, dydaA); 
sig2i := 1.0 / (slg[i] * sig[i]);    {define the weight of data # Q 
dy := y[i] - ymod; {le "vT} 
for j := 1 tomtit do 

begin 

wt := dyda*[lista[j]] * sig2i; {dyda w.r.to one of the constant} 
for k := 1 to j do    {the columns 1 to j} 

alphaü, k] := alphafl, k] + wt * dydaA[lista[k]]; 
beta[j]:=beta[j] + dy*wt; 

end;       {... of "j" the summation which partially defined} 
{half of alpha and all beta} 

chisq := chisq + dy * dy * sig2i      {partially define the sum of square} 
* e-    o.     ,       {-tf"'" the summation over all the experimental data} 
for j := 2 to mfrt do {the columns 2 to rrfS} 

{define the other half of matrix alpha, the right of the diagonal} 
fork:=ltoj-ldo {the rows 1toM} 

alphafk, j] := alphafj, k]; 
dispose(dyda) 

end;     {... of internal routine mrqcof} 
 %%%%%%%%%%%0/Oo/Oo/0} 

begin      {... of mrqmin} 
new(da); 

neSne)da): ^ matrbC Wilh °ne °0lUmn'the VeCt0r "da"'used by GaussJ> 
if alamda < 0.0 then 

b69»h     ^ '1thiS fe the ,irSt time we run the routine. we must initialize} {the vector of constants to compute} 
kk:=mfit + 1; 
forj:=itomado 

{screen lista over all its length. Its role is mainly to check if} 
fttaJKJS13 has,b«en Pr°PenV defined by the user. In particular} 
{that the address of the same constant is not given twice} 

begin      {BBB} 
ihit := 0; 

fork:=1 tomfitdo 

KemTthe elementS V-™*® of ,ista t0 determine if "j" belongs} 

if listafk] = j then    {... "j- is a "variable" constant} 
ihit := ihrt +1; ' 

if ihit = 0 then 

»oThi L"tCr^f!ant"1
C0,nstant by defau,t-lts address therefore belongs} {to the last [mfit..ma] elements of lista.} y ' 

begin 
listafkk] := j; 
kk:=kk + 1 

end {...ihit = 0} 
else if ihit > 1 then 
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{There are two elements of lista with the address "j". This is not acceptable} 
begin 

wrfteln('pause 1 in routine MRQMIN'); writeln('lmproper permutation in LISTA1); 
readln; 
halt 

end 
end; {BBB} 

if kk o ma +1 then 
{kk > ma+1 if there are less Variable" constants in lista than "ma"} 
{in that case the loop BBB automatically give more "constant"} 
{constants than it should} 

begin 
writeln('pause 2 in routine MRQMIN"); 
writeln('lmproper permutation in LISTA1); 

readln; 
halt 

end; 
alamda := 0.001; 
mrqcof(x, y, sig, a, lista, alpha, MrqminBeta, chisq); 
Mychisq := chisq;       {de mon cru. Used internally to CurveFit} 
MrqminOchisq := chisq; 

end; {AAA} 
{#######The steps above are only done the first call of mrqmin.} 
{The next steps are the actual calculations.#####} 

for j := 1 tornado 
atryA[j] := affl; for j := 1 to mfrt do 

begin   {CCC} 
for k := 1 to mfit do 

covarfj, k] := alpha[j, k]; covarfj, J := alphaTj, j] * (1.0 + alamda); 
{covar is the Hessian matrix as modified by the Marquardt method) 
onedaA[j, 1] := MrqminBetarj] 

end; {CCC} 
gaussj(covar, mfit, onedaA, 1); 

{gaussj will solve the system: covar-X=oneda for X on output} 
{covar is replaced by the matrix inverse and oneda by X} 

for j := 1 to mfit do 
daA[j] := onedaAfj, 1];      {the accroissement vector} 

if alamda = 0.0 then 
begin 

covsrt(covar, ma, lista, mfit); 
goto 99 

end;     {...of IF alamda = 0} 
for j := 1 to mfit do 

begin 
atryA[lista[j]] := a[lista[fl] + daArj;    • 

{I test if the constant proposed in atry are within the limits of} 
{aMin and aMax.} 

if ((atiyA[listaffl] <= 0.0) or (atryA[lista[j]] <= aMin[Iista[}]]) or (atryA[lista[fl] >= aMax[lista[j]])) and not 
((atryA[hsta[|]] = 0.0) and (aMin[lista[fl] < 0.0)) then begin 

writeln('atry of ', aNameflistaO]]: 5,' is ', atryA[lista[j]]: MW); 
wr'rteln('a ', a[lista[j]]: MW); 
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if a[lista[j]] = 0.0 then 
RelDelA[listaO]] := (atryA[lista[j]] - a[lista[j]]) * FirstAccr else 

RelDelA[lista[|]] := (atryA[lista[fl] - a[lista[f / a[lista[j]]; 

end;  (...of defining the constants to try) 
mrqcof(x, y, sig, atryA, lista, covar, daA, chisq); 
if chisq < MrqminOchisq then 

begin 
alamda := 0.1 * alamda; 

MrqminOchisq := chisq; for j := 1 to mf'it do 
begin 

fork:=1 to mf it do 
alphafj, k] := covarQ, k]; MrqminBetaffl := daArj; a[üsta[fl] := atryA[listaffl] 

end 
end 

else 
begin 

alamda := 10.0 * alamda; 
chisq := MrqminOchisq 

end; 
99: 
dispose(atry); 
dispose(oneda); 
dispose(da) 

end;     {... of mrqmin} 
j%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%} 
{$P} 

procedure CurveFit 
(vararRealArrayMA); 
{The purpose of CurveFit is to drive Mrqmin. This is necessary because Mrqmin} 

only makes one iteration. Its role will be first to provide Mrqmin with the) 
necessary inputs which are the same throughout the iterations, then} 

{throughout the iterations to re-give the input/output to the procedure (this) 
{is done simply by recalling the procedure with the same interface). In addition) 

by analyzing the convergence of "chisq" towards a minimum, decide when we) 
{have reached it with enough accuracy} 

label 
101; 

var 
word: string[12]; 
iteration: integer; 

begin 
alamda := -1.0; 

{to indicate to Mrqmin that this is the first iteration} 
for iteration := 1 to rtermax do 

begin 

mrqmin(TimeXA, XobsA, XsigA, ndata, a, ma, fista, mfrt, cova^, alphaA, chisq, alamda)- 
ff Mychisq > chisq then       {..the step was successful} 

begin 
Mychisq := chisq; 
writelnCin CurveFit, iteration', iteration: 3,' alamda = \ alamda: MW, 'chisq = \ chisq : MW); 
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if not screen then {I want this info together with OUTconstant in the file} 
writeln(sort, "in CurveFit, iteration', iteration: 3, 'alamda = ', alamda: MW, 'chisq = ', chisq : MW); 

OUTconstants(screen, sort, a, aName, ma, MW, DP); 
{Will print the values of the constant vector a on the screen if "true"} 
{or in a file previously opened if "false".} 

writeln('press any key to continue, "n" to stop the iteration'); 
readln(word); 
if (word = 'n1) or (word = 'N') then 

goto 101; 
e nd;     {of if the step was successful} 

{it the step is not successful, then nothing is displayed and the program tries again} 
end;     {... of iterations} 

{if we reach this point it is because we did "itermax" iterations} 
writeln('more than', iteration : 3,' iterations in CurveFit. STOP"); 

halt; 
101: 
{normal exit} 

alamda := 0.0; 
mrqmin(TimeXA, Xobs\ XsigA, ndata, a, ma, lista, mfrt, covar*. alphaA, chisq, alamda); {Here Mrqmin is only 
used to compute the covar matrix} 

end;        {...CurveFit} 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%^^ 
{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%o/0o/0o/o} 

{$P} 

begin {beginning of the main program.} 
oldFreeHeap := FreeMem; 
oldStack := StackSpace;     {Needed by procedure HeapStack} 

{NOTE the pointers to TimeSample[k] are defined in a loop in "Define"} 
HeapStack('Beginning of program'); 
new(Met_obs); 
new(TCE_obs); 
new(Cell_obs); 
new(MetSig); 
new(TCESig); 
new(CellSig); 
new(Met_cal); 
new(TCE_cal); 
new(Cell_cal); 
new(PDMet); 
new(PDTCE); 
new(PDCell); 
new(covar); 
new(alpha); 
new(OdeintXp); 
new(OdeintYp); 
new(SetX); 
new(TimeX); 
new(Xobs); 
new(XcaO; 
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new(Xsig); 

new(PDX); 

HeapStack('end of main program'); 
Initialize; 

CurveFit(a); 
{interactive procedure, will find the best estimated of a! 

wntelnfafter AllCalculations, Methane PD^ ' 

{varTimeSamplerSetlnVector} 
{SetX: IntegerArrayNDATA;} 
{SetConst: Setlnteger6;} 
{SetToX: Setlnteger3} 

OUTconstants(screen, sort, a, aName, ma, MW DP)- 
{Will pnnt the values of the constant vector a on the screen if "trup-l 
{or in a file that will be named like "title" if "false"} } 

{screen: boolean;} 
{var sort: text;} 

{vara:RealArrayMA;} 
{var aName: StringArrayMA-} 
{var ma, MW, DP: integer);} 

for k := 1 to numbset do 
begin 

dispose(TimeSample[k]); end; {of dispose loop K} 
dispose(Met_obs); ' 
dispose(TCE_obs); 
dispose(Cell_obs); 
dispose(MetSig); 
dispose(TCESig); 
dispose(CellSig); 
dispose(Met_cal); 
dispose(TCE_cal); 
dispose(Cell_cal); 
dispose(PDMet); 
dispose(PDTCE); 
dispose(PDCell); 
dispose(covar); 
dispose(alpha); 
dispose(OdeintXp); 
dispose(OdeintYp); 
dispose(SetX); 
dispose(TimeX); 
dispose (Xobs); 
dispose(Xcal); 
dispose(Xsig); 
dispose(PDX); 

end. 
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Appendix B 
Notation 

C Methane or growth substrate concentration in the aqueous 
phase, mg/L. 

CQ Initial methane concentration, g/L. 

E Mass of enzymatically active sMMO per mass unit of 
microbial cell, or (for Model 3) fraction of cells that are 
metabolically active for degrading either the growth 
substrate (C) or the cometabolic substrate (7), unitless. 

ECD Electron capture detector. 

Em Total enzyme concentration, g/mL. 

F Additional constant or groups of constants needed by some 
of the models (given without description of their meaning). 

FID Flame ionization detector. 

G Additional constant or groups of constants needed by some 
of the models (given without description of their meaning). 

GAC Granular activated carbon. 

GC Gas Chromatograph. 

H Additional constant or groups of constants needed by some 
of the models (given without description of their meaning). 

Hc Henry's constant of methane, unitless. 

HT Henry's constant of TCE, unitless. 

J Additional constant or groups of constants needed by some 
of the models (given without description of their meaning). 
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Kc Half-saturation constant for methane, mg/L. 

K0 Half-saturation constant for oxygen, mg/L. 

Kj, Half-saturation constant for TCE, mg/L. 

Ml A pure culture of methane-oxidizing bacteria. 

M2 A pure culture of methane-oxidizing bacteria. 

M3 A pure culture of methane-oxidizing bacteria. 

M4 A pure culture of methane-oxidizing bacteria. 

M5 A pure culture of methane-oxidizing bacteria. 

Ma A mixed culture of methane-oxidizing bacteria. 

Mb A mixed culture of methane-oxidizing bacteria. 

Mc A mixed culture of methane-oxidizing bacteria. 

MCB Methylococcus capsulatus (Bath), a pure culture of methane- 
oxidizing bacteria. 

MMO Methane mono-oxygenase. 

Mx A pure culture of methane-oxidizing bacteria. 

O Oxygen concentration in the aqueous phase, mg/L. 

PHB Poly-hydroxybutyrate. 

pMMO Paniculate methane mono-oxygenase. 

rC Rate constant for methane, L/hr. 

r0 Rate constant for oxygen, L/hr. 

rT Rate constant for TCE, L/hr. 

sMMO Soluble methane mono-oxygenase. 

T Concentration of TCE or substrate of cometabolism in the 
aqueous phase, mg/L. 

t Time, hr. 

TCA 1,1,1-trichloroethane. 
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TCE Trichloroethylene. 

T Initial TCE concentration, mg/L. 

Total SWS        Total sum of weighted squares. 

V Volume of air in contact with the liquid, mL. 

V. Volume of liquid, mL. 

X Concentration of microbial cells in the aqueous phase, mg/L. 

X Initial cell concentration, g/L. 

Y Cell yield: mass of cells created by unit mass of methane 
metabolized for growth, unitless. 

ß Maintenance or decay constant, unitless. 

4 Toxicity constant: mass of cells killed per unit mass of 
cometabolic substrate oxidized, or additional demand 
exerted by cometabolism on cell metabolism, unitless. 
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