
WL-TR-95-3026

SYNTHETIC TERRAIN IMAGERY
FOR HELMET-MOUNTED DISPLAY, VOLUME 2

SOFTWARE DESIGN DOCUMENT

RAND WHILLOCK
BILL CORWIN
JEFF GROAT

HONEYWELL TECHNOLOGY CENTER
3660 TECHNOLOGY DRIVE
MINNEAPOLIS MN 55418

NOVEMBER 1994

FINAL REPORT FOR 06/01/92-03/01/95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

ÜGTEB S

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7562

19950425 096

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY
PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED
PROCUREMENT THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY
OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN
ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO
BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING
THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR
PERMISSION 'TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY

WAY BE RELATED THERETO.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

ANDREW PROBERT
STI PROJECT ENGINEER
COCKPIT DEVELOPMENT SECTION

\ JOSEPH C. VON HOLLE, LT COL, USAF
"""ADVANCED COCKPITS TTIPT LEADER
FLIGHT DYNAMICS DIRECTORATE

I u> £ L lit <L
RICHARD W. MOSS, CHIEF
COCKPIT DEVELOPMENT SECTION
ADVANCED COCKPIT BRANCH

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING
LIST OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE
NOTIFY WL/FIGP WRIGHT-PATTERSON AFB, OH 45433- 7511 TO HELP MAINTAIN

A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REQUIRED BY
SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC

DOCUMENT.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

J 3. REPORT TYPE AND DATES COVERED
j Software Design Document (6/92—3/95)

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
15 NOV 95

4. TITLE AND SUBTITLE
Synthetic Terrain Imagery for Helmet-Mounted display
Volume 2
Software Design Document

6. AUTHOR(S)

Rand Whillock, Bill Corwin, Jeff Groat

5. FUNDING NUMBERS

F33615-92-C-3601
PE 62201
PR 2403
WU 04
TA SI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
3660 Technology Drive
Minneapolis, Minnesota 55418

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Flight Dynamics Directorate
Wright Laboratory
Air Force Materiel Command
Wright Patterson AFB OH 45433-7562

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

WL-TR-95-3026

11. SUPPLEMENTARY NOTES

WL-TR-95-3025, VOLUME 1, AND WL-TR-95-3027, VOLUME 3, SOFTWARE USER'S MANUAL
ARE UNDER SEPARATE COVER.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The software that has been developed as part of the Synthetic Terrain Imagery
(STI) Helmet-Mounted Display program is written in C and is designed to execute
on a Silicon Graphics VGX Workstation. This software was developed for purposes
of evaluating the utility of synthetically derived representations of the local
terrain presented on a helmet-mounted display.

14. SUBJECT TERMS

Synthetic Terrain, Synthetic Vision, Helmet-Mounted Display,
Advanced Technology, Digital Terrain Elevation Data

15. NUMBER OF PAGES
106

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Paragraph

1.0 SCOPE

Page

1.1 Identification
1.2 System Overview

1.2.1 Program Overview
1.2.2 Program How
1.2.3 Interfaces

1.2.3.1 Inputs
1.2.3.1.1 Networked.
1.2.3.1.2 Standalone 2

1.2.3.2 Output 2
1.2.4 Rendering Routines 2
1.2.5 Data 6
1.2.6 Multiple Processes 6

1.3 Document Overview 6

2.0 REFERENCED DOCUMENTS 7

3.0 PRELIMINARY DESIGN 7
3.1 CSCI Overview 7

3.1.1 CSCI Architecture 8
3.1.2 Systems States and Modes 9
3.1.3 Processing Time Allocation 10

4.0 DETAILED DESIGN 10
4.1.1.1 Design specifications/constraints 10
4.1.1.2 Design 10
4.1.1.2-A Input/output data elements 10
4.1.1.2-B Local data elements 12
4.1.1.2-C Interrupts and signals 12
4.1.1.2-D Algorithms 13
4.1.1.2-E Error detection and recovery 17
4.1.1.2-F Data conversion 17
4.1.1.2-G Use of other elements 17
4.1.1.2-H Logic flow 18
4.1.1.2-1 Data structures 18

Appendix A Software Routines A-l
Appendix B Concept Paper B-l

Accession ¥or

Xll

By-
Distribution/

•HUP,

HTIS GRA&I Of
DTIC TAB D
Unamiounctd Q
Justifieation

AvslIaMlli? Ce<J.©8
Avail atxafb-S

Special»'

1.0 SCOPE

1.1 Identification

The software that has been developed as part of the Synthetic Terrain Imagery for
Helmet-Mounted Display program is written in C and is designed to execute on a Silicon
Graphics VGX Workstation. This software was developed for purposes of evaluating the
utility of synthetically derived representations of the local terrain presented on a helmet-
mounted display.

1.2 System Overview

The software samples data from a preprocessed database created from the U.S. Defense
Mapping Agency's Digital Terrain Elevation Data (DTED) database and renders, in
perspective view, the visual scene. An NTSC video signal drives a helmet-mounted
display.

1.2.1 Program Overview

The Synthetic Terrain Imagery for Helmet Mounted Display program was written
to present digital terrain elevation data to pilots in several different formats on an
HMD. The program can be run standalone, in which case it behaves like the
"flight" program that is provided by Silicon Graphics, or it can be integrated into
a simulation environment which communicates over the ethernet.

1.2.2 Program Flow

See section 3.1.2 for a flow diagram of the program.

1.2.3 Interfaces

1.2.3.1 Inputs

The STI program can be compiled for networked operation, where it gets
all inputs from other simulations, or it can be compiled for standalone
operation by including the -D STANDALONE flag on the compile line in
the makefile.

1.2.3.1.1 Networked

When compiled normally the STI program accesses terrain data in
global memory that has been loaded by another program. The STI
program opens the terrain data and sets a pointer to the global data
structure in the routine attach_tdb which is defined in the file
dma.c and called by the main program sti.c

The position and other data for own-ship is also pulled out of
global memory. (Actually the data comes in over the Ethernet and
is put into global memory by another program. From the STI point
of view the data comes from global memory.) The own-ship data
is pulled from global memory and processed by the routine
control.c. At this point the own-ship location coordinates are
converted from degrees to feet.

1.2.3.1.2 Standalone

When the -DSTANDALONE flag is included on the compile line
in the STI makefile, the program is compiled to run self contained
without any other programs running. In this situation the path to a
terrain data file must be passed as a parameter on the command
line. Own-ship data is calculated internally and the keyboard user
interface is active allowing the user to control the own-ship with
the mouse and keyboard.

1.2.3.2 Output

The video output of the STI program can take several different forms
depending on the command line options specified at start up. If no
command line options are given, the video will be full screen 60 HZ high
resolution. If the -s (for small window) option is given, the a window the
size of an NTSC signal will be opened in the lower left corner of the high
resolution monitor. If the -n (ntsc mode) option is given, the video is
changed to RS170, and a full sized window will be displayed. This is the
video format needed for most HMDs.

1.2.4 Rendering Routines (see section 4.1.1.3-D for detailed algorithms)

The STI program will currently render the terrain in any one of the following
formats (subroutines to render the formats in parenthesis):

Post tops. In this format the terrain is rendered by drawing a point at the top of
each post which is in the view volume, (drawpoints (pg. A-24))

••A l'Sl*. 1

• .
 . v. v/vvy. V'.Y>_•;.!

- . • • • . v • *• • • * e ;• '•: •. •. •- - • • • •«

• • • • • • •

C920574-0

Post tops

Square post tops (Tiles). This format will draw a square of variable size, as
prescribed by the global variable reclen, at the top of each post within the view
volume. The elevation data is bilinearly interpolated to obtain the z-value for
each corner of the square, so the slope of the square is oriented to the terrain,
(drawsquares (pg. A-27))

t>>* ^'-. AV-SMfv,

** <r C £,

a o x^ ^^ ^
C £7 a D D Q 'D,^ "^'

Z^7 £D CD D t^ \^. 'Q»

^z n n n n VN
C92057*O

Tiles

Wireframe mesh. This format is rendered as a set of grids which are fixed to the
terrain. It takes two passes through the elevation data to render the mesh. On the
first pass, it draws all lines running east-west, and the second pass draws the lines
running north-south, (drawmesh (pg. A-22))

CS20574-0

Wireframe Mesh

Hybrid mesh and tiles. A wireframe mesh (see above) is first drawn, and then
tiles are drawn in the center of the squares formed by the mesh. The tiles are
drawn by the same routine which draws the square post tops (see above), but
instead of putting the tiles at the post tops, they are offset to fill the gaps formed
by the mesh, (drawmesh (pg. A-22) & drawsquares (pg. A-27))

CS20574-0

Hybrid Mesh and Tiles

Emergent detail #1. The emergent detail formats are an attempt to provide more
detail as the pilot approaches the ground. When the height above ground level
(AGL) is greater than 2000 feet, a wireframe mesh is drawn, when agl is between
750 feet and 2000 feet a variant of the hybrid mentioned above is used with points
instead of squares in the gaps formed by the mesh. When AGL is below 750 feet,
the hybrid format is drawn, (drawmesh (pg. A-22), drawsquares (pg. A-27), and
drawpoints (pg. A-24))

Emergent detail #2. Above 2000 feet agl, Post tops are rendered. Between 750
and 2000, the mesh is drawn. Below 750 feet, the hybrid is drawn, (drawmesh
(pg. A-22), drawsquares (pg. A-27), and drawpoints (pg. A-24))

Optical expansion gradient. In this format, the terrain is rendered as lines running
parallel to the motion of the aircraft. The gradient is fixed to the aircraft, so the
elevation data must be bi-linearly interpolated to find points along each line that is
to be drawn, (drawgradient (pg. A-18))

C920574-0

Optical Expansion Gradient

Lighted polygons. The terrain is rendered as lighted shaded polygons using the
lighting utilities of the Silicon Graphics' graphics library. The color shading
scheme goes from blue in the low regions to green in the middle regions to red in
the upper regions (defined in the subroutine initmap (pg. A-40)). This is the only
format that uses the surface normals of the elevation posts. A representation of
this format is not shown in this document because of the reliance on color for
meaningful perception of depth to occur, (drawpolys (pg. A-25))

Shaded polygons. This format displays the terrain as Gouraud shaded polygons.
There is no lighting used. See the Description for Lighted polygons for the color
scheme. A representation of this format is not shown in this document because of
the reliance on color for meaningful perception of depth to occur, (drawpolys (pg.
A-25))

Orthogonal format. In this head referenced format, ridgelines are drawn at 1.5,
3.0,4.5 and 6.0 NM intervals. Four angular projection lines are then drawn at
+ 20° from the line of sight of the HMD. To facilitate drawing time, one set of
point arrays is drawn while a second set is being updated. (Draw_dma_grid (pg.
A-16))

BC-HMD-GD-T01

Orthogonal Format

Ridgelines and Post tops. This format renders the terrain as ridgelines plus the
post top format to add detail, (drawpoints (pg. A-24) and Draw_dma_ridge (pg.
A-17))

BC-HMD-02

Ridgelines with Posttops

Ridgelines and gradient. This format is similar to the orthogonal format. It draws
ridgelines with the optical expansion gradient. The difference between this and
the orthogonal format is that the spacing may be varied between the gradient lines
by changing the global variable skip, while the orthogonal format always has a
fixed spacing, (drawgradient (pg. A-18) and Draw_dma_ridge (pg. A-17))

BC-HMD-03

Ridgelines and Gradient

1.2.5 Data

The elevation data used for the simulation is DMA level 1 DTED pre-processed
into Lockheed's format. (Lockheed preprocesses the "raw" DMA array into 128-
by-128 sample tile to be used in a larger gaming area.) The format is designed to
create a regularly structured database, scaled in feet to improve the efficiency of
the rendering routines. See section 4.1.1.2-F for a more detailed description of the
format.

1.2.6 Multiple Processes

The STI program spawns two processes, both of which are spawned from the
main function (defined in STT.c). The first is loadtile, which reads the elevation
data from the disk and places it in the appropriate data structure. It communicates
with its parent process through the mpflag in the Tile_t structure. The other is
gridupdate, which calculates the lines for the orthogonal and ridgeline formats. It
also communicates with the parent process through the same flag in the Tile_t
structure.

See section 4.1.1.2-1.2 for a description of the Tile_t structure.

1.3 Document Overview

The purpose of this document is to describe the software program (STI).

This document is organized in accordance with Data Information specification DI-
MCCR-80012A.

2.0 REFERENCED DOCUMENTS

Appendix A is a complete listing of the headers for the subroutines for the STI software
program. The first two pages of Appendix A show the keyboard control commands for
the STI program when it is run "stand alone" on a Silicon Graphics workstation.

A "Concept Paper" detailing the technical efforts that are part of the Synthetic Terrain
Imagery for Helmet-Mounted Display program aids the reader in understanding this
software design document. The Concept Paper is included as Appendix B in this
document.

3.0 PRELIMINARY DESIGN

3.1 CSCI Overview

The following sections outline the organizational structure and data flow for the software
described in this document

3.1.1 CSCI Architecture

The following chart outlines the organizational structure of the software.

3.1.2 Systems States and Modes

The next illustrations provide an overview of the loop structure for the executable
code.

Control:

Ethernet X Yes /""Receive . „.,«„.
Enabled? >^^\ Ethernet) (4.1.1-2-A.4.1.1.2-I)

loadtile()4.1.1.2-D
gridupdate()4.1.1.2-D

(see below)

PostTops
Wireframe Mesh
Tiles
Grid + Tiles
Emergent Detail
Polygons
Optical Expansion Gradient
Turning Orthogonal
Ridgelines

BC421

Render:

PostTops
Wireframe Mesh
Tiles
Grid + Tiles
Emergent Detail
Polygons
Optical Expansion Gradient
Turning Orthogonal
Ridgelines

BC422

3.1.3 Processing Time Allocation

The design goal for the STI program is to update the image at a minimum 30 Hz
rate (less than 33 msec frame time). However, to facilitate cases where the
available throughput of the Silicon Graphics workstation is unable to render the
necessary number of polygons/lines (dependent on the size of the projected view
volume onto the terrain and the sample size of the terrain) this rate will decrease.
In less demanding conditions, the rate will increase to greater than 30 Hz thereby
reducing the latency of the image of the video frame buffer. Nominally, the STI
routines will meet this requirement but there are conditions where the effective
throughput is insufficient. Optimizing the clipping routines and judicious
sampling of the database as controlled by altitude and grazing angle serve to
mitigate these effects.

4.0 DETAILED DESIGN

4.1.1.1 Design specifications/constraints

The simulation runs on a Silicon Graphics 4D series computer. There are
multiple processes running, so there should be multiple CPUs, otherwise
there will be a performance penalty. The memory requirement is 32
Megabytes of memory. Again, the simulation will run with less memory,
but there will be a significant performance penalty.

4.1.1.2 Design

The simulation is written in the C programming language. The make
utility is used to compile the simulation. The simulation can be compiled
for standalone operation by including the _DSTANDALONE flag in the
makefile.

4.1.1.2-A. Input/output data elements

The data inputs to the STT simulation are specified in the targets.h and
terrain.h include files. This information is copied from global memory
during each iteration within control.c. Additional data is computed by the
routine Angle_computations called within control.c

10

Information specific to the terrain data is described in the include file
terrain_db.h written by Lockheed. This information is pulled from global
memory and put into local variables by the routine fillglobals called from
sti.c.

Global variables

float SWLATITUDE;

float SWLONGITUDE;

int LATRES;
int LNGRES;
double LATO;

double LNGO;

intxb;

int xe;
int yb;
int ye;
int hidden;
int skip;

int depth;
int fat;
float position[4];

float heading;
float dist;
float aspect;
float fov;
float reclen;

FILE *dmafp;
Tile_t tiles[2];

Tile_t *tile;

/* Latitude of SW corner of database
(in degrees) */

/* Longitude of SW corner of database
(in degrees) */

/* Number of points per degree Latitude */
/* Number of points per degree Longitude */
/* Latitude of SW corner of database

(in feet) */
/* Longitude of SW comer of database

(in feet) */
/* beginning x extent of tile to be drawn

index into elev. array*/
/* ending x extent of tile to be drawn */
/* beginning y extent of tile to be drawn */
/* ending y extent of tile to be drawn */
/* hidden point/line removal on/off */
/* distance (in posts) between displayed

posts */
/* depth-cueing on/off */
/* lines are fat/skinny */
/* ownship position, x, y, z, x-east, y-north,

z-up (in feet)*/
/* compass heading of ownship */
/* distance we can see (in feet) */
/* aspect ratio (x/y) of the display */
/* field of view in the y direction (degrees)*/
/* length of the side of polygonal posts

(feet)*/
/* file pointer to the terrain file */
/* elevation as it is read from disk

(ref. 4.1.1.2-1-2)*/
/* pointer to the current buffer of tiles */

/♦The field of view of helmet in x and y for
displaying symbology*/

float hmd_fov_xl, hmd_fov_yl, hmd_fov_x2, hmd_fov_y2;

/* declaration of the point arrays for the orthogonal and ridgeline algs. */
float h[2][5][300][3], vr[2][4][300][3], vl[2][4][300][3];
/* the number of points in each of the above arrays. */
int nph[2][5], npvr[2][4], npvl[2][4];

/* use a double buffered system for the DMA grids. While [toggle]
is being set up, [Itoggle] is being drawn. */
int toggle;
int format;

11

/* index which points to the current buffer being manipulated
by concurrent processes. */
int mpbuf;

struct target_type os;
FILE *tfile;
long fgmode;
float fgparms[5];

/* ownship data structure (ref. 4.1.1.2-1.4)*/
/* output timing file */
/* the fog mode currently being used */
/* parameters for the fogvertex call */

Formal parameters (see appendix A for parameters to subroutines)

4.1.1.2-B. Local data elements

Local data (see software listing)

4.1.1.2-C. Interrupts and signals

The interrupts and signals to control the simulation are commands
received over the ethernet, and operator inputs via the keyboard.

operator key commands:

ESC KEY:
F1KEY:
F2KEY:
F3KEY:
F4KEY:

F5KEY:

F6KEY:

F7KEY:
F8KEY:
F9KEY:
F10 KEY:
F11KEY:
F12 KEY:
I/O KEY:

UP/DOWN ARROW:

CKEY:
QKEY:
HKEY:
M/LKEY:
B/DKEY:
TKEY:
VKEY:

exit
set format to point post tops
set format to polygonal post tops
set format to wireframe mesh
set format to wireframe mesh with

polygonal posts in the center of the mesh
set format to emergent detail, grid > 2000,

grid plus points > 750 && < 2000, grid
plus square posts < 750

set format to emergent detail, points > 2000,
grid > 750 && < 2000, grid plus square
posts < 750

set format to Optical Expansion Gradient
set format to Lighted Polygons
set format to Elevation shaded Polygons
set format to GD's orthogonal format
set format to ridgelines + post tops
set format to ridgelines + gradient
increase/decrease the spacing between posts,

spacing can take on the values of 100,200,
400 or 800 meters,

increase/decrease the side length of the
polygonal posts

toggle depth cueing
toggle single or double width lines
toggle hidden point/line removal
increase/decrease the distance to local horizon
brighten/darken the STI
toggle display of terrain on/off
toggle variable local horizon on/off

12

The following key commands are for STANDALONE operation only:

S/A KEY: increase/decrease velocity
HOME KEY: return simulation to original position
L/RT MOUSE: slew the helmet
MIDDLE MOUSE: reset helmet to 0

MOUSE POSITION:
MOUSE-X: roll of the aircraft
MOUSE-Y: pitch of the aircraft

to turn, roll the aircraft about 90 degrees,
and then pull back on the mouse.

4.1.1.2-D. Algorithms

Coordinate system. The default coordinate system used in the STI program
assumes a flat earth with the x-axis running east-west, x is positive east.
The y-axis runs north-south, with north being positive. Z is the elevation
and is positive up. All x,y,z coordinates are specified in feet.

The coordinate transform functions used in the STI simulation assume a
flat earth model. The functions can be changed to use a universal trans-
Mercator model by including the line: #define UTM at the beginning of
the routines: loadtile, memory, and control. This model is more accurate
at the expense of a noticeable decrease in update rate.

Reading elevation data from disk. The routines loadtile and
managememory coordinate to copy elevation data from global memory
into local memory when needed. These routine also calculate additional
features that will be used when drawing the data. If the UTM flag is
defined, the x,y locations for each point are computed using a the
universal trans-Mercator projection.

Managememory. The routine managememory (pg. A-46) does the
memory management job for the STI program. As input it takes the
current position in feet, converts it into file blocks (according to GD's
format), and determines if a new tile must be loaded into memory. If a
new tile needs to be loaded, it calls the loadtile process indirectly through
the mpflag, blkrow, and blkcol fields of the current buffer of the tiles
array.

This routine always looks at the same buffer of the tiles array as loadtile,
so it can tell loadtile to start reading in a new tile, and also to catch the
signal from loadtile that it (loadtile) has completed the load. On the first
invocation, managememory must call loadtile and wait until loadtile has
finished so the global pointer tile can point to some real data. After the
first call, we never wait for loadtile. We simply check to see if it has
finished with the current load, and if it has do two things: first make sure
tile points to the current buffer (which contains the most recently loaded
data), and second check to see if we need to start loading another tile. If
another tile is needed, "swap" buffers and give loadtile the appropriate
parameters in the tiles array. Let loadtile do its thing while
managememory returns control to the calling routine. If loadtile wasn't
finished with it's current tile, simply return control to the calling routine.

13

Loadtile. Loadtile was written to be spawned as a separate process with
the sproc call. There are no formal parameters, but it communicates with
the parent process through several fields of the array tiles.

Loadtile loads the appropriate tile, block by block (calling loadblock (pg.
A-42)), into memory, sets the appropriate fields of the structure, and
computes the surface normals of the terrain at each elevation post.

A "double buffered" approach has been adopted to avoid the problems of
multiple processes concurrently accessing and modifying the same
memory locations. The parent process will use one buffer while loadtile
will modify the other buffer until processing is completed, at which time
the buffers are "swapped".

Loadtile will wait until the mpflag of the current buffer is set to
MP_CPUSTART. Once it is told to start, it will get the center row and
column in blocks from the blkrow and blkcol fields. Then it reads data
and computes normals. When all processing is done, it sets mpflag to
MP_CPUDONE, signaling the parent process that the tile is loaded and
ready for use. It then "swaps" buffers to wait for another
MPCPUSTART.

Clipping. The majority of the rendering algorithms use the view volume
computed by clip (pg. A-6). The view volume is described by the 4 global
variables xb, xe, yb, and ye. These represent beginning and ending indices
into the array of elevation data which is referenced by tile->elev.

Clip (pg. A-6) performs view volume clipping. For each corner of the
screen, calculates the equation of a line from the viewpoint to the corner in
3 space (this line is the intersection of two clipping planes), finds the point
on the line that is the far clipping distance away from the viewpoint, and
sets (or resets) the x and y extents of the view volume based on the x and y
coordinates of that point X and y of the viewpoint are also included in the
x and y extents to set the near clipping plane.

Sampling. tile->elev is a single dimensional pointer to the elevation data
to make the storage more dynamic, but represents a two dimensional array.
To get the address of a particular post at row i, column j, an offset is added
to tile->elev which is equal to i * the number of east-west posts in the
array + j. The number of east-west posts in the array is provided by the
ncols field of the tile_t structure. So the address of post (ij) = tile->elev +
i* tile->ncols+j;

The other global variable accessed by the majority of the rendering
algorithms is skip. This is the distance between posts which will be
drawn. The elevation data being used has a 100 meter resolution, so to
calculate the resolution at any skip value, simply multiply skip by 100
meters. For example, a skip of 4 will display posts with a 400 meter
resolution. Values that skip is allowed to take on are 1,2,4, and 8.

Hidden surface removal. Several of the formats need to have hidden
points/lines removed. This is accomplished by drawing the terrain as a
black surface just below the actual elevation data to allow the zbuffer to
correctly determine if the point or line should be drawn or not.

14

Silicon Graphics' graphics library calls referenced.
• cpack - specifies RGBA color with a single packed 32-bit integer
• c3f - sets the RGB values for the current color vector
• n3f - specifies the surface normal of the vertex
• v3f - transfers a 3-D vertex to the graphics pipe
• bgnline, endline - delimit the vertices of a line
• bgnpoint, endpoint - delimit the interpretation of vertex routines as

points
• bgntmesh, endtmesh - delimit the vertices of a triangle mesh
• bgnqstrip, endqstrip - delimit the vertices of a quad strip

Post tops. To draw the post tops, first draw the hidden surface, set the
color of the terrain, and put the graphics into a point drawing state using
the bgnpoint (SG graphics library) call. Loop through all of the posts
within the view volume that are "skip" distance apart, and send the vertex
of that post down the graphics pipeline using the v3f (SG graphics library)
call. When all points to by drawn have been processed, the endpoint
command signal is sent (SG graphics library). A variation of this
algorithm is used by the emergent detail formats. Instead of turning on the
point at the post tops, the points in the middle of the square determined by
the four surrounding post tops is turned on. Set a temporary floating point
array to the x, y, z values of the point to be drawn, and send that down the
graphics pipeline with the v3f (SG graphics library) call.

Square post tops (Tiles'). Draw the hidden surface, set up the scalar values
to do a bi-linear interpolation of the elevation data, and sets the color of
the terrain. For each post that is within the view volume at "skip" distance
from its neighbors, define a polygon which has four points (equidistant
from the post and aligned to the grid) with a side length of "reden".
Reden is a global variable that is allowed to be altered by using the up and
down arrow keys on the keyboard. Do a bilinear interpolation to get the z-
values for the current x, y position. When all four points are defined, put
the graphics in polygon mode with the beginpolygon (SG graphics library)
call, pass the four vertices down the graphics pipe, and issue the
endpolygon (SG graphics library) call to take the graphics out of polygon
mode. This format is also used in the emergent detail formats, and the
hybrid format, where a square is drawn between the posts instead of at the
post tops. To do this, simply add an offset to the x and y values before
finding the z-values.

Wireframe mesh. Draw the hidden surface, and set the terrain color. For
each line to be drawn in the east-west direction, set the graphics into line
drawing mode with the bgnline (SG graphics library) call. Start at the first
post within the view volume along this line, and send each post "skip"
distance apart down the graphics pipe using the v3f (SG graphics library)
call. When all east-west lines have been drawn, repeat the process for the
north-south lines.

Hybrid mesh and tiles. See the algorithms for the wireframe mesh and tile
formats above.

Emergent detail #1. See the algorithms for the wireframe mesh, post tops,
and tile formats above.

Emergent detail #2. See the algorithms for the wireframe mesh, post tops,
and tile formats above.

15

Optical expansion gradient. This format accesses different global
variables to be able to draw the scene, dist is accessed to determine haw
long the lines are to be drawn, heading is accessed to determine the correct
orientation of the lines, and position is accessed to compute the starting
point for each line. Draw the hidden surface, and set the terrain color.
Compute an imaginary horizontal line perpendicular to the current
heading that runs through the position point. This line provides the
starting x and y coordinates for each line to be drawn. For each point on
this line which is skip distance from its neighbor and within the view
volume, set the graphics into line drawing mode with the bgnline (SG
graphics library) call, and step along the line parallel to the heading to get
the x, y values of the next point Call getelev (pg. A-31) to do a bilinear
interpolation of the data for the z-value. Pass the vertex of the point to the
graphics pipeline with the v3f (SG graphics library) call. When the line
extends beyond the view volume, start on the next point on the imaginary
line.

Shaded polygons. Get the first two rows of elevation data within the view
volume. Set the graphics in quad strip mode by using issuing the
bgnqstrip (SG graphics library) command. Step down the rows and draw
each polygon defined by the two rows. Set the color at each post based on
its elevation (using elevcolor (pg. A-28)), and send the vertex down the
pipe using the v3f (SG graphics library) call. Exit quad strip mode with
the endqstrip (SG graphics library) command. When the first two rows are
finished, use the second and third rows, then the third and fourth, and so
on until all rows in the view volume have been drawn.

Lighted polygons. To draw light shaded polygons, a light model has been
set up in lightc. The algorithm is then the same as drawing shaded
polygons with the addition of specifying the surface normals at each point
passed down the pipe with the n3f (SG graphics library) call. All surface
normals have been calculated by loadtile (pg. A-43) when the data was
read from the disk.

Orthogonal format. The ridgeline extraction system is incorporated into
Setup_dma_grid, which is called by spawned process gridupdate.
Setup_dma_grid handles both the ridgeline extraction and the turning
ortho extraction, the latter by calling Get_high_intersections. Both these
routines return lines as sets of xyz points to be drawn, using a
"doublebuffer" system described more fully below.

Ridgelines and Post tops. See the algorithm for the post top and
orthogonal format

Ridgelines and gradient. See algorithm for the optical expansion gradient
and orthogonal format.

Gridupdate. Gridupdate is a SPAWNED PROCESS that handles the
updates to the GD STI format data extraction systems. It calls
Setup_dma_grid (pg. A-62) to compute the points for the orthogonal turn
and ridgeline formats.

Setup dma grid. Depending on whether the STI format is ortho or a
ridgeline extraction system, calls Get_high_intersections or
Ridgeline_extract for angles off the current line of sight extracting the

16

information needed to draw the lines representing the format and storing
them in the h, vr, and vl arrays. When the array is through updating, flips
toggle to allow access to the new data.

4.1.1.2-E. Error detection and recovery

In the main (pg. A-44) function, if there are any errors opening the
ethernet connection, opening the terrain file, or if the processes could not
be spawned, the program will exit gracefully and return to the shell. In the
loadtile (pg. A-43) function, the process will exit if a block of memory
could not be allocated or read. The getelev (pg. A-31) function checks for
several errors. If the Tile_t structures *tile does not point to relevant data,
the function returns 0.0, and if the x,y coordinates are not contained in the
current tile in memory, out of bounds array indices will be detected, and
0.0 is returned.

4.1.1.2-F. Data conversion

The GD format DMA data is a 32 Mbyte file containing elevations
covering about a 3.5 x 3.5 degree area of the world. A utility,
Convert_DMA_to_GD_format.c is provided to convert 16 standard DMA
elevation files into this format. The files to be converted are listed in
"file_list" a separate file. The order is very important, and is described
fully in the routine. If you are missing a file needed for an area (not all
areas exist), the word "zeroit" may be used to define a lxl degree area of
elevation zero, (see the Convert_DMA_to_GD_format.c file for further
information).

4.1.1.2-G. Use of other elements

Along with the routines detailed int section 4.1.1.2-D, there are a variety
of utilities used throughout the software which provide basic functionality.
Note that some of the math routines are duplicated. This is due to the fact
that the routines have been written to take either floating point or double
precision parameters.

Math routines:
perform vector normalization

normalize_vector (double)
normalize (float) .

dot product
inner_prod

cross product
outer_prod (double)
cross (float)

Matrix operations
set_rotation
rotate_vector
initmat
mpymat

three dimensional distance
hypot3

convert from compass angles to cartesian coordinates
cnv_angle

17

computes a vector between two points
pp2v

Graphics routines:
make_chars
grafstr
centstr

4.1.1.2-H. Logic flow

See processing flow diagram.

4.1.1.2-1. Data structures

The following are data structures defined for the STI program.

4.1.1.2-1.1 Post type is the definition of an elevation data post It
specifies the position of the data post, and its surface normal. The loadtile
process reads the elevation data from the disk, and sets the different fields
of the data structure based on what was read from the disk. The rendering
routines then access the vertices and normals of the data posts as required.

typedef struct

float nx; /* x component of the surface normal (feet)*/
float ny; I* y component of the surface normal (feet)*/
float nz; /* z component of the surface normal (feet)*/
float nw; /* unused */
float vx; I* x component of the vertex (feet)*/
float vy; /* y component of the vertex (feet)*/
float vz; /* z component of the vertex (feet)*/
float vw; /* height of the black surface for hidden

pt/line removal */
} Post_t;

4.1.1.2-1.2 The Tile type structure fully describes the block of
elevation data resident in RAM. The STI program uses two of these
structures. First, there is an array of size two of these structures. This is to
facilitate the "double buffered" approach for multiprocessing. The loadtile
process will read data from the disk and set up the structure in one buffer
while the rest of the program uses the data in the other buffer. When
loadtile is finished loading the current tile, the buffers are swapped, and
then loadtile starts loading a new tile while the rest of the program uses the
previously loaded tile. The second structure of this type is a pointer. It is
always set to point to the most recently loaded buffer of the array
mentioned above. This is done so all of the routines don't have to have to
keep track of which buffer they are supposed to be using. (See
descriptions of managememory and loadtile for further information about
the "double buffered" multiprocessing approach.)

18

typedef struct
{

int mpflag;

int nrows;

int ncols;

int blkrow;

int blkcol;

float wedge;
float sedge;
float minelev;
float maxelev;

Post_t *elev;
} Tile_t;

/* flag for communication between
processes */

/* number of rows of data posts in
this tile */

/* number of columns of data posts
in this tile */

/* row number of the center block
from the data file */

/* column number of the center
block from data file */

/* western edge (in feet) of the tile */
/* southern edge (in feet) of the tile */
/* minimum elevation (in feet) of this tile */

/* maximum elevation (in feet) of
this tile */

/* pointer to the array of elevation posts */

4.1.1.2-1.3 The following structure is one of the two structures which
are passed over the ethernet. This allows the simulation to get ownship
flight parameters. Note that this structure contains a subset of the
target_type described below. Also note that the HMD rotation data is
provided over the ethernet by the simulation driving the STI program.

The air_pos data is specified in feet, and is relative to an arbitrary origin.
The wedge and sedge fields of the terrain_type packet (see below) are
offsets specified in the same coordinate system.

struct etherown_type
{

* Right model structure *

int
int
int
int

double
double
double
double
double

double
double
double
double
double

id;
flags;
index; /* target index */
type; /* target type */

air_pos[3];
u0[3];
ul[3];
u2[3];
velocity[3];

filt_throttle;
fuel;
fuel_flow;
g_norm;
mach;

/* x, y, z position (feet) */
/* unit vector defining right wing */
/* unit vector defining nose */
/* unit vector normal to airframe. */

};
double lookx, looky, lookz; /* HMD rotations (degrees) */

19

4.1.1.2-1.4 The target_type structure more fully describes the flight
parameters of ownship. The values which correspond to the same fields of
the etherown_type are extracted from the etherown_type packet which is
sent over the ethernet. The remaining fields can be calculated from the
data which was provided over the ethernet.

struct target_type

* Flight model structure *

int id;
int flags;
int index; /* target index */
int type; /* target type */

double air pos[3];
double u0[3];
double ul[3];
double u2[3];
double velocity [3];

double filt_throttle;
double fuel;
double fuel_flow;
double g_norm;
double mach;
double lookx, looky, lookz; /* HMD rotations

/* The following variables are USEFUL but can be DERIVED from the
above data; they are NOT sent over ethernet... */

double compass;
double ground_course;

double ground_speed;

double airspeed;
double roll_angle;
double dive_angle;
double frame_dive;
double side_slip;
double aoa;
double radar_alt;

double stpt_x, stpt_y;

int alt, vel;

/* steerpoint symbol
location in HUD
coordinates. */

/* flags for altimeter option, (RADAR, BARO,
AUTO) and as/ option (CAL, TAC, GROUND). */

};

20

4.1.1.2-1.5 And finally, the terrainjype packet is used to describe the
preprocessed DTED file. The only parts of the terrainjype packet that are
currently used are the wedge and sedge values.

/* This is the terrain parameter structure used for terrparm. */
struct terrain_type
{

int id;
int flags;

/* the terrain flags... */
int wedge, sedge, terrain;
char terrain_path[80]; /* pathname to the current terrain file,

w/out extension */
/* synthetic terrain format. */
/* hidden surface removal, on/off */
/* depthcuing on/off */
/* sampling resolution of terrain. */
/* side length of the square posts (feet). */
/* toggle double width on/off. */
/* distance top far clipping plane. */

};

int
int

synterr;
hidden;

int
int
int

depth;
skip;
reclen;

int fat;
int faredge;

21

APPENDIX A
Software Routines

To run:

% STI -ens terrain.dma

Options:
-e enables GD's ethernet protocol. Don't need to supply a file name with this option because

a filename is asked for over the ethernet.
-n sets the video output of the computer to RS-170A video format
-s displays the terrain in a RS-170A sized window

Note:
The terrain file is needed in all cases except when using the ethernet.

operator key commands:

ESCKEY:
F1KEY:
F2KEY:
F3KEY:
F4KEY:

F5KEY:

F6KEY:

F7KEY:
F8KEY:
F9KEY:
F10KEY:
F11KEY:
F12KEY:
I/OKEY:

UP/DOWNARROW:
CKEY:
PKEY:
QKEY:
HKEY:
M/LKEY:
B/DKEY:
TKEY:
VKEY:

exit
set format to point post tops
set format to polygonal post tops
set format to wireframe mesh
set format to wireframe mesh with polygonal

posts in the center of the mesh
set format to emergent detail, grid > 2000, grid plus points

> 750 & < 2000, grid plus square posts < 750
set format to emergent detail, points > 2000, grid > 750 &

< 2000, grid plus square posts < 750
set format to Optical Expansion Gradient
set format to Lighted Polygons
set format to Elevation shaded Polygons
set format to GD's orthogonal format
set format to ridgelines + post tops
set format to ridgelines + gradient
increase/decrease the spacing between posts.

spacing can take on the values of 100,200,400 or 800 meters,
increase/decrease the side length of the polygonal posts
toggle depth cueing
toggle horizon line on/off
toggle single or double width lines
toggle hidden point/line removal
increase/decrease the distance to local horizon
brighten/darken the STI
toggle display of terrain on/off
toggle variable local horizon on/off

A-l

S/AKEY: increase/decrease velocity
HOMEKEY: return simulation to original position
L/RTMOUSE: slew the helmet
MIDDLEMOUSE: reset helmet to 0

MOUSE POSITION:
MOUSEX: roll of the plane
MOUSEY: pitch of the plane

to turn, roll the plane about 90 degrees, and then pull
back on the mouse.

A-2

ROUTINE:
Angle_computations

FILE:
ethernetx

DESCRIPTION:
The data in the packet sent over the ethernet contains
the unit vectors determineing the A/C orientation, the
velocity vector, and other mathematical data. This routine
derives the compass heading, pitch and roll, airspeed,
groundspeed, AOA, dive angle, ground course and other
"aircraft" data from the raw vector data. BOTH types are
used by the system, and to preserve ethernet bandwidth
the larger set of data is derived from the smaller.

PARAMETERS:
os wind calc_all_values

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

A-3

ROUTINE:
centstr

FILE:
grf.c

DESCRIPTION:
Draws a character string at current location. Leaves the
current location at the end of the string. Draws the string
from the center of the first letter.

PARAMETERS:
None

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-4

/*
** ROUTINE:
** chgtercolor
**

** DESCRIPTION:
** Changes the terrain color from its current value.
**

** PARAMETERS:
** val i relative value to change the terrain color
**

** GLOBALS ACCESSED:
** tercol o packed RGB color
** intensity i/o current green intensity of terrain
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/11 original
*/

A-5

/*
** ROUTINE:
** clip
**

** DESCRIPTION:
** Performs view volume clipping. For each comer of the screen,
** calculates the equation of a line from the viewpoint to the
** comer in 3 space (this line is the intersection of two clipping
** planes), finds the point on the line that is the local horizon
** distance away from the viewpoint, and sets (or resets) the x and
** y extents of die view volume based on the x and y coordinates of
** that point, x and y of the viewpoint are also included in the x
** and y extents to set the near clipping plane.
**

** PARAMETERS:
pos[3] i viewpoint position

normalized vector pointing to the right
normalized line of sight vector
normalized vector pointing up
field of view in screen y direction
aspect ratio of screen x to screen y
distance to the local horizon

v0[3]
vl[3]
v2[3]

**
**
**
**

** fov
** aspect
** dist
**

** GLOBALS ACCESSED:
** xb o beginning x extent of view volume
** xe o ending x extent of view volume
** yb o beginning y extent of view volume
** ye o ending y extent of view volume
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 1.0 dc robohm 92/10 modified so it uses the three unit
** vectors, removed procedure calls, and
** directly sets the x and y extents.
*/

A-6

/*
** ROUTINE:
** closedmafile
**

** DESCRIPTION:
** Closes the file pointed to by dmafp, if dmafp points to a file.
**

** PARAMETERS:
** None
**

** GLOBALS ACCESSED:
** dmafp i file pointer to open dted file
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-7

/*
** ROUTINE:
** colour
**

** DESCRIPTION:
** Sets the current color based on index given.
**

** PARAMETERS:
** index i determines which color to set
**

** GLOBALS ACCESSED:
** tercol o packed RGB color of the terrain
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/11 added index for terrain color
*/

A-8

DESCRIPTION:
Polls the keyboard for operator input, updates the position of the
plane, updates the tile block in memory, sets up the viewing
transformation, clips the terrain to the view volume, and draws
the graphics for the current position. This process is continued
in a loop until the operator presses the escape key to exit. Once
the ethernet code from GD is integrated, the mouse will no longer
be used to update the position of the plane.

/*
** ROUTINE:
** control
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

** PARAMETERS:
** enet i
**

** mode i

operator key commands:
ESCKEY:
F1KEY:
F2KEY
F3KEY
F4KEY

F5KEY:

F6KEY:

F7KEY:
F8KEY:
F9KEY:
F10KEY:
F11KEY:
F12KEY:
I/OKEY:

UP/DOWNARROW:

CKEY:
PKEY:
QKEY:
HKEY:
M/LKEY:
B/DKEY:
TKEY:
VKEY:

S/AKEY:
HOMEKEY:
L/RTMOUSE:
MIDDLEMOUSE:

exit
set format to point post tops
set format to polygonal post tops
set format to wireframe mesh
set format to wireframe mesh with polygonal

posts in the center of the mesh
set format to emergent detail, grid > 2000,

grid plus points > 750 && < 2000, grid plus
square posts < 750

set format to emergent detail, points > 2000,
grid > 750 && < 2000, grid plus square posts < 750

set format to Optical Expansion Gradient
set format to Lighted Polygons
set format to Elevation shaded Polygons
set format to GD's orthogonal format
set format to ridgelines + post tops
set format to ridgelines + gradient
increase/decrease the spacing between posts.

spacing can take on the values of 100,200,400
or 800 meters,

increase/decrease the side length of the
polygonal posts

toggle depth cueing
toggle horizon line on/off
toggle single or double width lines
toggle hidden point/line removal
increase/decrease the distance to local horizon
brighten/darken the STI
toggle display of terrain on/off
toggle variable local horizon on/off

increase/decrease velocity
return simulation to original position
slew the helmet
reset helmet to 0

flag to determine ethernet use, or standalone
0 for standalone, !0 for ethernet
graphics mode, NTSC size or full screen

A-9

**
**

**

** GLOBALS ACCESSED:
** depth o depth cueing on or off
** dist o distance to local horizon
** fat o fat lines on or off
** heading o heading of the plane
** hidden o hidden points/lines on or off
** position o position of the plane
** reclen o sidelength of polygonal posts
** skip i/o spacing between posts
**

** USER ROUTINES CALLED:
clip
chngtercolor

** cnv_angle
** fastlight
** getelev
** initmat
** managememory
** render
** rotmat
**

** GD ROUTINES CALLED:
** Angle_computations
** Draw_new_hmd
** Radar_alt
** rcv_ethernet
** Send_ctrl_msg_to_hud
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/09 added code to interface ethernet.
** 1.0 dcrobohm 92/09 renamed from animate to control
** 1.1 dcrobohm 92/11 added for fog for depth cueing

A-10

/*
** ROUTINE:
** cnv_angle
**

** DESCRIPTION:
** Converts an angle from a compass heading to cartesian coordinates,
** and vice-versa and returns the result.
**

** PARAMETERS:
** angle i angle in degrees to be converted
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

.** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-ll

/*
** ROUTINE:
** cross
**

** DESCRIPTION:
** Computes the cross product of two vectors.
**

** PARAMETERS:
** vl i vector 1
** v2 i vector 2
** c o contains vl x v2
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-12

/*
** ROUTINE:
** depthcoef
**

** DESCRIPTION:
** Sets the coeficients for doing linear depth cueing, color values
** can range from O..Oxff.
**

** PARAMETERS:
** dist i distance over which the colors are linearly mapped
** mine i minimum color, this color will be displayed at
** distance dist from viewer
** maxc i maximum color, this color will be displayed at
** the viewer position
**

** GLOBALS ACCESSED:
** cl o coeficient. out = in * cl + c2;
** c2 o coeficient. out = in* cl+c2;
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-13

/*
** ROUTINE:
** depthcolor
**

** DESCRIPTION:
** Returns the color according to depth. If depth is true, depth
** cueing is on, so find the distance in the x,y plane (note we are
** not using 3D distances) and return the color according to
** coir = dist * cl + c2. Otherwise, return the maximum color,
** which is defined to be c2. The return value is of the format suited
** for the cpack call (i.e. OxAABBGGRR).
**

** PARAMETERS:
** pnt[3] i point for which color needs to be determined
** depth i flag to tell if depth cueing is on or off
**

** GLOBALS ACCESSED:
** cl i coeficient. out = dist * cl + c2;
** c2 i coeficient. out = dist * cl + c2;
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-14

/*
** ROUTINE:
** dot
**

** DESCRIPTION:
** Returns the dot product of two vectors.
**

** PARAMETERS:
** vl i vector 1
** v2 i vector 2
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-15

ROUTINE:
Draw_dma_grid

FILE:
GDrender.c

DESCRIPTION:
Takes the arrays as set up by Setup_dma_grid and
Get_high_intersections and draws them.

PARAMETERS:
None

GLOBALS ACCESSED:
toggle

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-16

ROUTINE:
Draw_dma_ridge

FILE:
GDrender.c

DESCRIPTION:
Takes the arrays as set up by Setup_dma_grid and
Ridgeline_extract and draws them.

PARAMETERS:
None

GLOBALS ACCESSED:
toggle

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-17

/*
** ROUTINE:
** drawgradient
**

** DESCRIPTION:
** Draws the terrain as an optical expansion gradient. Queries the
** elevation data to get the elevation of points along lines running
** parallel to the motion of the plane and draws those lines.
**

** PARAMETERS:
** None
**

** GLOBALS ACCESSED:
** dist i to determine how long the lines are
** heading i to get the orientation of the lines
** position i to get the starting point of each line
** skip i to get the spacing between the lines
**

** USER ROUTINES CALLED:
** cnv_angle
** colour
** getelev
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/11 removed call to depthcolor, and added
** call to colour since fog is now being
** used for depth cueing instead of
** computing the color at each vertex

A-18

ROUTINE:
Draw_hmd_alt_tape

FILE:
hmd.c

DESCRIPTION:
Draws the digital altitude readout.

PARAMETERS:
altitude radar

GLOBALS ACCESSED:
none

USER ROUTINES CALLED:
grafstr

REVISION HISTORY:
0.0 GD original.

NOTES:
Radar is a flag for whether altitude is baro or radar.

A-19

ROUTINE:
Draw_hmdmagheading_tape

FILE:
hmd.c

DESCRIPTION:
Draws the heading scale.

PARAMETERS:
planeheading head_adj

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
grafstr

REVISION HISTORY:
0.0 GD original.

NOTES:

A-20

ROUTINE:
Draw_hmd_thermo

FILE:
hmd.c

DESCRIPTION:
Draws the "thermometer" style radar altimeter.

PARAMETERS:
alt

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
grafstr

REVISION HISTORY:
0.0 GD original.

NOTES:

A-21

/*
** ROUTINE:
** drawmesh
**

** DESCRIPTION:
Draws the terrain as a square grid wireframe mesh. **

**

** PARAMETERS:
** none
**

** GLOBALS ACCESSED:
**
**
**
**
**
**
**

skip
tile
xb
xe
yb
ye

determines the resolution of the data samples
for the elevation data, and array bounds
beginning x extent of view volume
ending x extent of view volume
beginning y extent of view volume
ending y extent of view volume

** USER ROUTINES CALLED:
** colour
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/11 removed call to depthcolor, and added

call to colour since fog is now being
used for depth cueing instead of
computing the color at each vertex

**
**
**

A-22

ROUTINE:
Draw_new_hmd

FILE:
hmcLc

DESCRIPTION:
Draws the hmd symbology over the STI formaL

PARAMETERS:
os, lookvec, hmd_los

GLOBALS ACCESSED:
hmd_fov_xl hmd_fov_x2 hmd_fov_yl hmd_fov_y2
offset

USER ROUTINES CALLED:
Draw_hmd_airspeed
Draw_hmd_thermo
Draw_hmd_alt_tape
Draw_hmdmagheading_tape
Draw_steerpoint

REVISION HISTORY:
0.0 GD original.

NOTES:

A-23

/*
** ROUTINE:
** drawpoints
**

** DESCRIPTION:
** Draws the terrain as post tops. Simply turns on one pixel at the
** desired position. If offset is FALSE, draws the point at the post top,
** otherwise, draws the point in the center of the four surrounding
** posts.
**

** PARAMETERS:
** offset i flag to determine if the point are to be drawn
** at the posts, or offset between the posts
**

** GLOBALS ACCESSED:
** skip
** tile
** xb
** xe
** yb
** ye
**

** USER ROUTINES CALLED:
** colour
** getelev
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/11 removed call to depthcolor, and added
** call to colour since fog is now being
** used for depth cueing instead of
** computing the color at each vertex

determines the resolution of the data samples
for the elevation data, and array bounds
beginning x extent of view volume
ending x extent of view volume
beginning y extent of view volume
ending y extent of view volume

A-24

/*
** ROUTINE:
** drawpolys
**

** DESCRIPTION:
** Draws the terrain as elevation shaded polygons depending on the
** value of the light flag.
**

** PARAMETERS:
** light i flag to determine light shading
**

** GLOBALS ACCESSED

xe
yb
ye

** skip
** tile
** xb
**
**
**
**

** USER ROUTINES CALLED:
** elevcolor
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

determines the resolution of the data samples
for the elevation and normal data, and array bounds
beginning x extent of view volume
ending x extent of view volume
beginning y extent of view volume
ending y extent of view volume

A-25

ROUTINE:
Draw_steerpoint

FILE:
hmd.c

DESCRIPTION:
Draws the steerpoint symbol.

PARAMETERS:
OS

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
grafstr
flex_limit_symbol

REVISION HISTORY:
0.0 GD original.

NOTES:

A-26

/*
** ROUTINE:
** drawsquares
**

** DESCRIPTION:
** Draws the terrain as square post tops. If offset is FALSE, draws the
** square at the post top, otherwise, draws the square in the center
* * of the four surrounding posts.
**

** PARAMETERS:
** offset i
**
**

** GLOBALS ACCESSED:
**
**
**
**
**
**
**

flag to determine if the squares are to be drawn
at the posts, or offset between the posts

skip
tile
xb
xe
yb
ye

determines the resolution of the data samples
for the elevation data, and array bounds
beginning x extent of view volume
ending x extent of view volume
beginning y extent of view volume
ending y extent of view volume

REVISION HISTORY
0.0 dc robohm
1.0 dc robohm

** USER ROUTINES CALLED:
** colour
**
**
**
**
**
**
**
**
**
**
**
**
**
**

*/

1.1 dc robohm

92/09 original
92/10 rewrote the subroutine to remove
subroutine calls, now do the bilinear
interpolation within this subroutine so
we only have to set up the coefficients
once for every frame, instead of once
for each of the four comer points of
each square in the frame.
92/11 removed call to depthcolor, and added
call to colour since fog is now being
used for depth cueing instead of
computing the color at each vertex

A-27

/*
** ROUTINE:
** elevcolor
**

** DESCRIPTION:
** Returns the color from sti_colrmap based on the given elevation.
** the format of the color is suitable for the cpack call (i.e.
** OxAABBGGRR).
**

** PARAMETERS:
** z i elevation for which the color is needed
**

** GLOBALS ACCESSED:
** sti_colrmap i contains the elevation colors
**

** USER ROUTINES CALLED:
** none
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-28

** ROUTINE:
** fastlight
**

** DESCRIPTION:
** Fastlight is provided so the light may be bound after the
** tansformation matrix has been set up. This is so the light
** remains fixed to the ground as opposed to being fixed in
** viewer space.
**

** PARAMETERS:
** None
**
** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-29

ROUTINE:
flex_limit_symbol

FILE:
hmd.c

DESCRIPTION:
Limits the coordinates passed to it to the passed down
field of view; returns true if position was limited.

PARAMETERS:
pos (xy), fovxl, fovx2, fovyl, fovy2

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-30

/*
** ROUTINE:
** getelev
**

** DESCRIPTION:
** Does a bi-linear interpolation of the DTED to get and return the
** elevation at point x,y. If point x,y is not contained in the
** current tile, 0.0 is returned. Uses the global variable skip to
** use only the posts that would be present had the data been at
** skip * 100 resolution.
**

** PARAMETERS:
** x i x position (in feet) of desired elevation
** y i y position (in feet) of desired elevation
**

** GLOBALS ACCESSED:
** skip i determines which posts are used for interpolation
** tile i access wedge, sedge, nrows, and ncols to
** determine where this point is in relation to
** the current elevation tile, and elev to
** determine the elevation.
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-31

ROUTINE:
Get_high_intersections

FILE:
GDrender.c

DESCRIPTION:
Get_high_intersections projects from point down los. It stores
the point encountered at the highest visual angle so far as it projects.
As the projection proceeds, the distance traversed along the HMD
los and across it is tracked. As these distances cross the
horizontal and vertical criteria passed down by Setup_dma_grid,
the current point is added to the appropriate array (h, vl or vr)
to extend that line.

PARAMETERS:
point —the starting point of the projection.
los —unit vector defining line of sight to look down.
near —distance criteria for nearest horizontal line.
il —distance criteria for 2nd horizontal line.
i2 —for 3rd horizontal line.
far -for 4th horizontal line
si —for first vertical line out.
(note: Get_high_intersections is called SEPARATELY to
determine the grid to the left and right of the LOS.)
s2 —next vertical line out.
s3, s4 —next vertical line criteria.
vdf —proportion of the projected line in the

-direction of the LOS.
hdf —proportion of the projected line normal to the LOS.
h -array holding the horizontal line points.
v —array holding the vertical line points.
nph —number of points in the horizontal line arrays.
npv —number of points in the vertical line arrays.
flag —determines if left or right of LOS.

GLOBALS ACCESSED:
toggle

USER ROUTINES CALLED:

REVISION HISTORY:
0.0 GD original.

NOTES:

A-32

ROUTINE:
grafstr

FILE:
grf.c

DESCRIPTION:
Draws a character string at current location. Leaves the
current location at the end of the string. Draws the string
from the lower left corner of the first letter.

PARAMETERS:
none

GLOBALS ACCESSED:
none

USER ROUTINES CALLED:
none

REVISION HISTORY:
0.0 GD original.

NOTES:

A-33

ROUTINE:
gridupdate

FILE:
GDrender.c

DESCRIPTION:
SPAWNED PROCESS that handles the updates to the GD STI
format data extraction systems.

PARAMETERS:
none

GLOBALS ACCESSED:
none

USER ROUTINES CALLED:
Setup_dma_grid

REVISION HISTORY:
0.0 GD original.

NOTES:

A-34

/*
** ROUTINE:
** hide
**

** DESCRIPTION:
** Performs hidden point/line removal by drawing the terrain with
** black polygons. The vw coordinate of the post type was originally
** intended as a buffer to more efficiently align the data in memory,
'** since it is already in memory, use it to cheat the zbuffer by
** setting it to less than vz coordinate (the actual elevation).
** When the black polygons are drawn, use the vw coordinate for
** elevation instead of vz.
**

** PARAMETERS:
** None
**
** GLOBALS ACCESSED:
** skip
** tile
** xb

xe
yb
ye

determines the resolution of the data samples
for the elevation data, and array bounds
beginning x extent of view volume
ending x extent of view volume
beginning y extent of view volume
ending y extent of view volume

**
**
**
**
** USER ROUTINES CALLED:
** colour
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/10 added code to always draw the black
** squares with a valley, due to the
** nature of the original method, sometimes
** there would be peaks in the squares, and
** sometimes there would be valleys.
** the peaks would obscure anything drawn
** between the posts, so a method was needed
** to draw only valleys.

A-35

ROUTINE:
hypot3

FILE:
math.c

DESCRIPTION:
Fast 3-D hypotenuse routine.

PARAMETERS:
a,b,c

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:
Returns sqrt of a*a + b*b + c*c.

A-36

ROUTINE:
inner_prod

FILE:
math.c

DESCRIPTION:
Returns the inner product of 2 vectors.

PARAMETERS:
vector 1, vector2

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:
Although similar to dot, the GD version uses
type double instead of float.

A-37

/*
** ROUTINE:
** initgraphics
**

** DESCRIPTION:
** Initializes the graphics window in preparation for displaying the
** different STT formats. Also queues up the different devices that
** will be used by the control() routine. Some of the parameters to
** the graphics calls are hardwired to the vgx's #defines, but should
** be set according to getgdesc() calls.
**

** PARAMETERS:
** name i name of window to be opened
** mode i ifmode = NTSC, sets up the graphics for
** an ntsc signal, any other value is the full
** screen of the standard 60 HZ monitor
**

** GLOBALS ACCESSED:
** aspect i/o aspect ratio of screen x to screen y
** fov i/o field of view in screen y direction
**

** USER ROUTINES CALLED:
** initlight
** initmap
**

** GD ROUTINES CALLED:
** make_chars
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-38

/*
** ROUTINE:
** initlight
**

** DESCRIPTION:
** Sets up the lighting model for doing light shaded polygons. The
** model, light, and material are defined and bound.
**

** PARAMETERS:
** None
**

** GLOBALS ACCESSED:
** matl i material used for lighting calculations
** litl i light used for lighting calculations
** modi i model used for lighting calculations
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-39

/*
** ROUTINE:
** initmap
**

** DESCRIPTION:
** Initializes an elevation based color map of the format needed to
** pass to the cpack call (i.e., OxAABBGGRR). Not space efficient,
** because it sets a long for each integral elevation from -100 feet
** to 4400 feet, but it eliminates the need to do some calculations
** at run time. Try to vary the colors to provide some texturing.
**

** PARAMETERS:
** None
**

** GLOBALS ACCESSED:
** sti_colrmap o long colormap of format OxBBGGRR
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-40

/*
** ROUTINE:
** initmat
**

** DESCRIPTION:
** Takes a 4 X 4 double array and initializes it to an identity matrix.
**

** PARAMETERS:
** mat[4][4] o matrix to be initialized
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-41

/*
** ROUTINE:
** loadblock
**

** DESCRIPTION:
** Loads a block of data from the file pointed to by fp into the array
** block. If either the row or the column does not lie within the
** terrain file, the array is filled with zeros. Routine is based
** on GD's Load_Terrain_Block. Remember, the blocks are stored in
** column major order within the file, and the data is stored column
** major within the block.
**

** PARAMETERS:
** fp i file pointer to opened terrain file in GD format
** row i desired block row in file pointed to by fp
** col i desired block col in file pointed to by fp
** block o filled with elevation posts from the block
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-42

/*
** ROUTINE:
** loadtile
**

** DESCRIPTION:
** Loads the appropriate tile, block by block, into memory, sets the
** appropriate fields of the structure, and computes the surface
** normals of the terrain at each elevation post.
**

** Loadtile was written to be spawned as a separate process with the
** sproccall. There are no formal parameters, but it communicates
** with the parent process through several fields of the array tiles.
**

** A "double buffered" approach has been adopted to avoid the problems
** of multiple processes concurrently accessing and modifying the same
** memory locations. The parent process will use one buffer while
** loadtile will modify the other buffer until processing is completed,
** at which time the buffers are "swapped".
**

** Loadtile will wait until the mpflag of the current buffer is set to
** MP_CPUSTART. Once it is told to start, it will get the center row
** and column in blocks from the blkrow and blkcol fields. Then it
** reads data and computes normals. When all processing is done, it
** sets mpflag to MP_CPUDONE, signalling the parent process that the
** tile is loaded and ready for use. It then "swaps" buffers to wait
** for another MP_CPUSTART.
**

** PARAMETERS:
** None
**

** GLOBALS ACCESSED:
** tiles i/o accesses mpflag, blkrow, and blkcol fields of
** the current buffer for next tile to be loaded,
** and loads the elevation data into the elev field.
**

** USER ROUTINES CALLED:
** cross
** loadblock
** normalize
** pp2v
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-43

/*
** ROUTINE:
** main (STI)
**

** DESCRIPTION:
** The executive of the STI program, opens the DTED file, opens the
** ethernet connection, launches the tile loader as a separate process,
** initializes the graphics, and passes control to the controller.
** On return from the controller, resets the graphics, kills the
** loadtile process, closes the ethernet connection, and closes the
** DTED file.
**

** PARAMETERS:
** filename i name of the blocked DTED file. (GD's format)
** -ntsc i optional, sets up the run in ntsc mode.
** -small i optional, displays in an ntsc sized window
** -ethernet i optional, enables ethernet
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** closedmafile
** control
** initgraphics
** gridupdate (spawned as a separate process)
** loadtile (spawned as a separate process)
** opendmafile
** resetgraphics
**

** GD ROUTINES CALLED:
** udpbclose
** udpbopen
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
** 0.1 dcrobohm 92/09 added ethernet initialization.
*/

A-44

ROUTINE:
make_chars

EDLE:
grf.c

DESCRIPTION:
Creates the graphical text font used by the HMD as objects.

PARAMETERS:
None

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-45

/*
** ROUTINE:
** managememory
**

** DESCRIPTION:
** Does the memory management job for the STI program. As input it
** takes the current position in feet, converts it into file blocks
** (according to GD's format), and determines if a new tile must be
** loaded into memory. If a new tile needs to be loaded, it calls
** loadtile indirectly through the mpflag, blkrow, and blkcol fields
** of the current buffer of the tiles array.
**

** This routine always looks at the same buffer of the tiles array
** as loadtile, so it can tell loadtile to start reading in a new
** tile, and also to catch the signal from loadtile mat it has
** completed the load. On the first invocation, managememory must
** call loadtile and wait until loadtile has finished so the global
** pointer tile can point to some real data. After the first call,
** we never wait for loadtile. We simply check to see if it has
** finished with the current load, and if it has do two things:
** first make sure tile points to the current buffer (which contains
** the most recently loaded data), and second check to see if we need
** to start loading another tile. If another tile is needed, "swap"
** buffers and give loadtile the appropiate parameters in the tiles
** array. Let loadtile do its thing while managememory returns
** control to the calling routine. If loadtile wasn't finished with
** its current tile, simply return control to the calling routine.
**

** PARAMETERS:
** x i east - west position in feet
** y i north - south position in feet
**

** GLOBALS ACCESSED:
** tile o pointer to the current tiles buffer.
** tiles i/o mpflag, blkrow, and blkcol fields provide
** communication with the loadtile process.
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-46

/*
** ROUTINE:
** mpymat
**

** DESCRIPTION:
** Performs matrix multiplication c = a * b. originally set a
** temporary matrix to a * b, then sets c = tmp, in case c is
** the same matrix as a or b.
**

** PARAMETERS:
** a[4][4] i a matrix
** b[4][4] i b matrix
** c[4][4] o resultofa*b
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-47

/*
** ROUTINE:
** normalize
**

** DESCRIPTION:
** Normalize a vector to unit length. Replaces the original vector
** with the unitized one.
**

** PARAMETERS:
** v i/o vector to be normalized
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-48

ROUTINE:
normalize_vec

FILE:
math.c

DESCRIPTION:
Normalizes a vector to unit length.

PARAMETERS:
vector

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
hypot3

REVISION HISTORY:
0.0 GD original.

NOTES:
Although similar to normalize, the GD version uses type double instead of float.

A-49

/*
** ROUTINE:
** opendmafile
**

** DESCRIPTION:
** Opens the given dma file for reading, and sets dmafp to point to
** the file pointer.
**

** PARAMETERS:
** name i name of DTED file to open
**

** GLOBALS ACCESSED:
** dmafp o file pointer to the dted file
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-50

ROUTINE:
outer_prod

FILE:
math.c

DESCRIPTION:
Computes the outer product of 2 vectors.

PARAMETERS:
vector 1, vector2, result

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:
Although similar to cross, the GD version uses
type double instead of float.

A-51

/*
** ROUTINE:
** pp2v
**

** DESCRIPTION:
** Determines the vector between two points.
**

** PARAMETERS:
** pi i point 1
** p2 i point 2
** v o vector from point 1 to point 2
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-52

ROUTINE:
Radar_alt

FILE:
ethernet.c

DESCRIPTION:
Radar_alt determines 1) if the radar altimeter CAN
determine the radar altitude and, if so,
2) what the radar altitude is.

PARAMETERS:
OS

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

A-53

ROUTINE:
rcv_ethernet

FILE:
ethernetc

DESCRIPTION:
Rcv_ethemet picks up and decodes pakets sent to the
open socket Only packets with the correct id code, i.e.
one = thisship will be recognized. There are 3 data packets
that are used by the STI system: TERRAIN type, which include
such things as the terrain file to load, the x coordinate
of the western edge of the database, the y coordinate of the
southern edge of the database, and the STI parameters, and
2) the TARGET type, which reads a packet of etherown type
into a structure of target_type. (The first portion of
target_type is identical to etherown_type). Angle_computations
then expands the data to fill the rest of the target
structure.

PARAMETERS:
None

GLOBALS ACCESSED:
os terrparm gc_steering wind planetime netfd thisship terrain_name

USER ROUTINES CALLED:
getelev
Radar_alt
Angle_computations

REVISION HISTORY:
0.0 GD original.

NOTES:

A-54

/*
** ROUTINE:
** render
**

** DESCRIPTION:
** Takes as input, the desired format to be drawn, and calls the
** appropriate routines to display that format. The symbolic
** constants for the formats are defined in def.h.
**

** PARAMETERS:
** format i the format of the terrain display
**

** GLOBALS ACCESSED:
** fat i flag to determine if lines are 1 or 2 pixels
** hidden i flag to determine if we need to do hidden
** point/line removal
** position i to get height AGL for progressive format
**

** USER ROUTINES CALLED:
** Draw_dma_grid
** Draw_dma_ridge
** drawgradient
** drawmesh
** drawpoints
** drawpolys
** drawsquares
** hide
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-55

/*
** ROUTINE:
** resetgraphics
**

** DESCRIPTION:
** Resets the graphics to a reasonable state when the simulation is
** completed.
**

** PARAMETERS:
** mode i if mode = NTSC, an ntsc signal was being
** output, so it must be reset to the standard
** 60 HZ monitor
**

** GLOBALS ACCESSED:
** None
**

** USER ROUTINES CALLED:
** None
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-56

ROUTINE:
Ridgeline_extract

FILE:
GDrender.c

DESCRIPTION:
Ridgeline extract is very similar to Get_high_
intersections, but instead of storing the point representing the
highest visual angle to date based on crossing some criteria,
Ridgeline extract stores the point whenever a ridgeline is crossed,
that is, whenever the visual angle to the projected point is less
than the angle to the previous point Logic then tries to correlate
the point with a ridgepoint from the previous projection; if one is
found, the point is added to its array; else a new array is started.
If, after the projection reaches "far" there is an array of points
which was NOT added to, it is "closed" and the remainder of the
array made available for re-use. These points are stored in the
same h and vl arrays used by Get_high_intersections, allowing up
to 8 separate ridges along one angle.

PARAMETERS:
point -the starting point of the projection.
los —unit vector defining line of sight to look down.
far —for 4th horizontal line
vdf -proportion of the projected line in the

-direction of the LOS.
h -array holding the horizontal line points.
v —array holding the vertical line points,
nph —number of points in the horizontal line arrays,
npv —number of points in the vertical line arrays.
last_hratio -last visual anlel from previous projection.
last_vratio -same for the vl array.

GLOBALS ACCESSED:
toggle

USER ROUTINES CALLED:

REVISION HISTORY:
0.0 GD original.

NOTES:

A-57

ROUTINE:
rotate_vector

FILE:
math.c

DESCRIPTION:
Rotates a vector using passed matrix.

PARAMETERS:
vector, rot_mat

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:
See set rotation above.

A-58

/*
** ROUTINE:
** rotmat
**

** DESCRIPTION:
** Rotates the matrix by a radians around the given axis. This routine
** multiplies the matrices in the same order as SGI's rot() call.
**

** PARAMETERS:
** a i angle (in radians) to rotate the matrix by
** axis i axis about which the matrix is to be rotated
** mat[4][4] o matrix to be initialized
**

** GLOBALS ACCESSED:
** None
**
** USER ROUTINES CALLED:
** initmat
** mpymat
**

** REVISION HISTORY
** 0.0 dcrobohm 92/09 original
*/

A-59

ROUTINE:
rotvec2d

FILE:
GDrender.c

DESCRIPTION:
Rotvec2d is a 2 dimensional version of rotate_vector.
Since it assumes rotation around "z", and only affects the
xy of the vector, it can be optimized for 2d use.

PARAMETERS:
ang, vec

GLOBALS ACCESSED:

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-60

ROUTINE:
set_rotation

FILE:
math.c

DESCRIPTION:
Sets up the matrix for vector rotation using rotate_vector.

PARAMETERS:
u, angle, rot_mat

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:
Sets up the matrix to rotate around unit vector u by angle
radians and returns it in rot_mat. Better than rotating
directly, since frequently several vectors will need to be
rotated identically.

A-61

ROUTINE:
Setup_dma_grid

FILE:
GDrender.c

DESCRIPTION:
Depending on whether the STI format is ortho or a ridgeline
extraction system, calls Get_high_intersections or
Ridgeline_extract for angles off the current line of
sight, extracting the information needed to draw the
lines representing the format and storing them in the
h, vr, and vl arrays. When the array is through updating, flips
toggle to allow access to the new data.

PARAMETERS:
os eye_ul newar far format

GLOBALS ACCESSED:
h, vl, vr, nph, npvr, npvl, toggle

USER ROUTINES CALLED:
Get_high_intersections
Ridgeline_extract

REVISION HISTORY:
0.0 GD original.

NOTES:

A-62

ROUTINE:
udpbread

FILE:
udpb.c

DESCRIPTION:
Reads a packet from the open socket.

PARAMETERS:
netfd buffer len

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-63

ROUTINE:
udpbopen

FILE:
udpb.c

DESCRIPTION:
Opens the socket for the UDP protocol ethernet system. The
socket opened must be defined in the /etc/services file of the
system.

PARAMETERS:
service (string: name of the service).

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
Getbroadcast
Gethostaddr

REVISION HISTORY:
0.0 GD original.

NOTES:
Getbroadcast and Gethostaddr were modified from the code
provided by Silicon Graphics in the
/usr/people/4Dgifts/examples/network directory.

A-64

ROUTINE:
udpclose

FILE:
udpb.c

DESCRIPTION:
Closes the open socket.

PARAMETERS:
netfd

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-65

ROUTINE:
udpwrite

FILE:
udpb.c

DESCRIPTION:
Writes a packet to the open socket.

PARAMETERS:
netfd buffer len

GLOBALS ACCESSED:
None

USER ROUTINES CALLED:
None

REVISION HISTORY:
0.0 GD original.

NOTES:

A-66

INTRODUCTION

APPENDIX B
Concept Paper

The objective of this effort is to evaluate the utility of a synthetically derived terrain
image on a pilot's helmet-mounted display (HMD) from stored digital terrain data for the
purpose of improved Situation Awareness.

In order to accomplish the stated objective, it will be necessary to consider the technology
issues associated with the display of synthetic terrain imagery (STI) formats. In addition,
considerable effort is required (design and evaluation) to assure that the pilot can easily
interpret the terrain formats while flying high speed tactical missions.

The purpose of this Concept Paper is to document the rationale for the approach taken by
the Honeywell/General Dynamics team in the pursuit of program goals.

The remainder of this brief is organized as follows:

Mission Requirements: Outiines the mission needs that impact the terrain format design
User Needs: Review STI issues associated with spatial situation awareness
Format Concepts: Presentation of the STI formats developed for testing
PVI Analysis: Discussion of the integration of STI formats with conventional

alphanumeric symbology
Recommended Approach: Outlines the STI formats that will be taken into testing

MISSION REQUIREMENTS

The capability to employ day tactics on night missions has always been recognized as
extremely beneficial, but only recently has the technology evolved to the point where this
is now becoming feasible.

The operational requirements for the night close air support/batüefield air interdiction
(CAS/BAI) mission remain the same as for day missions. For example, the aircraft must
penetrate the threat environment and navigate to the target area. Once there, the pilot
must acquire the target, properly maneuver the aircraft to deliver selected weapons, and
safely egress.

An effective night attack system would allow the pilot to ingress the target area at low
altitude and then use a delivery mode such as Continuously Computed Impact Point
(CCIP) for weapons employment. This delivery mode, which requires the pilot to
visually acquire the target, is difficult enough during day operations but nearly impossible
at night without an effective night attack system. Egress from the target area will again
be at low altitude to minimize detection by enemy threats.

An effective night attack system should allow the pilot to utilize tactics similar to those
used during the day. For example, a conventional daytime CAS scenario begins with a
low-level ingress to a contact point to receive target information from a Forward Air
Controller (FAQ. This target information consists of a "9-line briefing" which includes:

• location of IP
• heading and distance to target
• target location

B-l

target elevation
target description
how the target will be identified (smoke, laser, etc.)
location of friendly troops
threat location
egress direction

The attack aircraft proceeds to the IP to attack the assigned target. Ingress to the target
area will be at low altitude taking advantage of terrain features. Radio emissions are
minimized to mask the intended approach to the target.

Since ingress altitude is usually low to avoid detection, a pop-up maneuver is required to
aid in target acquisition. At four to five nautical miles from the target, a 3 to 4G turn is
executed to offset the target 30-40 degrees left or right of the nose. An offset attack is
used to allow the pilot more time for target acquisition and better control of the apex
altitude during the pop, based on target/aircraft attack geometry. Weapon release is
accomplished in a low angle dive delivery followed immediately by a hard turn to avoid
the weapon fragmentation pattern. Chaff/flare expendables and hard maneuvering are
also required after weapon release to defeat enemy defenses.

To provide mutual support and increase the number of bombs on target, a formation of
two aircraft will normally be employed. When two aircraft are used to attack a target,
each member of the formation must have knowledge of the other aircraft's position
during the low altitude ingress, target attack, and egress. The wingman's position during
the ingress can be from line abreast to as much as 60 degrees aft of the leader based on
the threat and surrounding terrain. When the leader offsets, the wingman will offset to
gain separation in both attack heading and time from the leader. This will normally
require the wingman to delay his pull-up or arc the target at 3-4 nautical miles prior to
beginning his pop-up maneuver. This separation varies the attack axis and helps the
wingman avoid die fragmentation of the leader's weapons. The egress maneuvers are
similar with the intent of providing mutual support as quickly as possible coming off the
target.

For guided munitions such as Maverick (AGM-65) missiles, the attack profile would be
similar to those previously described except the range for offset/arcing of the target area
would be greater and the altitude in the climb would be the minimum required to acquire
the target Since the field-of-view of guided munitions is very narrow, it is critical that
the target be present in the weapons field-of-view for manual designation, or
automatically locked-on when line-of-sight is established for a successful first pass
attack. To minimize closure on the target, and hence maximize stand-off range, an offset
attack near the weapons azimuth lock-on limits should be employed. This wül allow
multiple weapons to be employed at targets in close proximity, minimize the total time
that the aircraft is exposed to surface-to-air threats, and keep the aircraft at the greatest
standoff distance from the target.

To successfully accomplish the above mission at night, the pilot must be able to acquire
the intended target in sufficient time to complete the attack profile. For employing
conventional weapons, a night vision system must provide sufficient resolution to have
three miles visibility in most conditions and provide sufficient warning of obstacles and
cultural features. During the attack phase, the system must have sufficient resolution to
locate a target at ranges of 4 to 5 nautical miles and provide target recognition prior to
weapon release. Positive target acquisition in narrow field-of-view must occur between 2
to 3 nautical miles to allow 8 to 10 seconds to position the aircraft for weapons delivery.

B-2

Weapons release will occur at ranges slightly less than 1 nautical mile from dive angles
of 5 to 10 degrees.

Azimuth requirements for utilizing a Head-Steered Infra Red (HSIR) sensor will exceed
60 degrees during several segments of the attack profile. For example, during target
ingress, the wingman could require azimuth angles exceeding 90-degrees to determine the
leader's position. The wingman's azimuth to the target may exceed 60-degrees while
maneuvering to retain the appropriate interval and spacing from the leader by delaying
the pull-up in the target area. The leader may also require more than 90-degree azimuth
coverage to acquire the wingman's position during the egress for mutual support and
rejoin.

In addition to an effective night vision system, there are two other key elements needed to
ease pilot workload during night operations—accurate navigation and positive target
acquisition. Accurate navigation can be provided by incorporating a Digital Terrain
System (DTS) which will reduce the time spent on navigation. The DTS can also provide
covert terrain-following (TF) capability, an all attitude predictive ground proximity
warning system, and passive ranging. This system will also form the basis for a Synthetic
Terrain Imaging system.

An effective data link system can ease the target acquisition problem. This system would
use the UHF or VHF radio to receive data link information from either a ground observer
or similarly equipped fixed wing/rotary aircraft. Using a data link transmission, the FAC
passes the "9-line brief directly to the Fire Control Computer and graphically displays it
to the F-16 pilot. The pilot now has IP/target location, desired run-in heading, target
type, and location of fnendlies displayed without the need for lengthy voice
communications and subsequent manual entry of targeting data.

USER NEEDS

Goals for the terrain images are: formats sufficient for terrain awareness during high
speed low altitude flight, day or night, when the horizon is indistinct or obscured, and
height above the surface cannot be judged visually. Display formats should provide
terrain awareness over any surface. The formats should project minimal imagery
necessary to provide the pilot with sufficient visual cues to determine approximate height
above the surface, approximate distance to points on the surface, the motion of the
aircraft relative to the surface, and, the relative proximity, shape, and size of terrain
features. The terrain image needs to be detailed only enough to provide awareness of
general terrain features. The pilot needs to perceive the terrain, but not have the image
block or interfere with his view of the outside world or the cockpit. The image should be
available in the full field of view of the HMD, and must be available not only in the
direction of flight, but off-axis enough to permit aggressive, high-G maneuvering for
terrain masking during the navigation phases of flight, as well as during offensive and
defensive maneuvering. Enhancements of the raw terrain image with other features to
add to the pilot's total situation awareness should be explored. The design effort must
involve the consideration of pilot visual perception, and other human factors.

The intent of the STI for HMD program is to provide the pilot with earth references to
reduce the possibility of disorientation, particularly with respect to sky/ground
orientation. In order to achieve the desired program goal, "synthetically" derived terrain
depiction's will be rendered on the HMD to show the relative position of the earth
(spatial relationship to aircraft and proxmitiy) and gross features of the terrain.

B-3

It is useful to examine how STI formats can aid in the fulfillment of mission
requirements. The following Table identifies the elements of the STI system (including
Off-Axis Attitude Awareness Symbology) that aid the pilot in accomplishing the mission
requirements.

Low Altitude Right

Navigation

Terrain Masking

Weapon Delivery

Pop-up Maneuver

Target Acquisition

&
«P

JfP
X&

8? &

,rf* &

jP & .O
j? <f ^

^
^ ^

•iP"-
^c ̂

XXX X
X

X X
X__X X
X X X X
X

STI aids to Mission Requirements

It has long been known that without reference to outside cues pilots will quickly become
disoriented. Jarvi (1981), in a report investigating spatial disorientation in F-15 pilots,
compiled a list of factors that contribute to disorientation, including:

Autokinesis
Fascination
Target Hypnosis
illusory Effects Due to Inadequate Stimuli
Improper Grouping of Lights at Night
Illusions of Relative Motion
Illusory Horizons

It is the intent of the current program to overcome visual factors that contribute to spatial
disorientation by rendering a synthetic image of terrain (or water) so the pilot has a clear,
unambiguous, indication of orientation with respect to the earth. A reasonable concern
with the current project is the addition of symbology to a display which already has a
number of discrete elements for fear overwhelming the pilot. To state this more directly,
the pilot may not have the attentional resources required to interpret the STI. Recentiy
Weinstein and Wickens (1992) have shown that an "ecologically" valid display (contact
analog of the out-the-window visual scene) allowed for the most efficient time-sharing.

B-4

FORMAT CONCEPTS

Helmet-Mounted Display Symbology

The STI formats will be overlaid with the HMD symbol set that was developed by
General Dynamics during the "Night Attack Program Pilot-Vehicle Interface Study."
The HMD symbol set is shown below:

Expanded HMD
Symbol Set

Original HMD
Symbology Set

Boresight Cross +
Centercross i

"i

Horizon Line ~f Up Pointer

A/G Target Designator

Target Locator Line

CCIP Reticle

7

0

*

X

Bomb Fall Line with
Solution Cues

Breakaway Cross

Flight Path Market 1 I

Pull-up Anticipation Cue

FLIR Polarity
Airspeed
Altitude
Warning
Fuel
FLIR Overheat
LOW error
FLIR Gain
FLIR Level

BH
350 C
R 1,000
WARN
FUEL
OVHT
LAG
G03
L45

NFOV Corners* n

TFCue

Angle of Attack (ADA) Error Bracket

Pitch Scale

Heading Scale

Radar Thermometer Scale

101 |10
5l I 5

51 : 5

, X i1 . ,
22 23 24

-15

^10

^8

"^6
^■4

I-I2

—"O—

Off-Axis TFCue and FPM

Smaller Centercross

TF Warnings

TERPROM Status Window

LJ
NFOV corners are generated by the FLIR and are embedded in the raster picture

An example of the "Night Attack" symbology in the HMD is shown below.

J-
I

OBST
LOFT
NO TURN

K001

030D03

C910911-09

B-5

Target
Locator

HMD Center
Cross

SOI
Symbol

AirSpeed
and Format

Horizon
Line

FLIR
Polarity

Off-Axis
Attitude

Awareness
Svmbol

Altitude
and Source

Slant
Range

Range to STPT
and Current

STPT Number

Manual
TFBox

C910911-4

Synthetic Terrain Imagery Formats

It is important to identify the elements of the terrain image that aid in the determination
of spatial orientation to assure that the STI formats contain these elements. Weinstein
and Wickens (1992) have provided a concise review of the format characteristics of a
contact analog display:

Optical Flow: The accelerating flow of texture down the visual field
Splay: Parallel lines with a common vanishing point
Compression: The foreshortening of a projection as it is slanted away from the

frontal plane

A key element in the presentation of the STI presentation is the frame of reference for the
rendering of the terrain image, it can either be geographically fixed or aircraft centered.
If the format is observer centered then the presentation will always have the cockpit as
the center of orientation (a bit like the early, Ptolemy, view of the Universe). The
geographically fixed presentation requires that the format elements (e.g., lines, points of
light, tiles) be linked to the ground.

B-6

The first two formats, Ridgelines and the Optical Expansion Gradient, are aircraft
centered formats. The remaining formats are geographically fixed.

Ridgelines —

C9Z057-17

This is format an outgrowth of the work Honeywell conducted on the Quiet Knight
program. Discrete range-bins from the aircraft are sampled. Within each range-bin the
highest points are identified and a line is drawn laterally connecting the peaks.

Optical Expansion Gradient—

?ips
C920574-01

This approach is an analog of the splay lines in an attitude direction indicator (ADI). The
implementation of this approach, similar to Ridgelines, requires an observer centered (as
opposed to a geographically fixed) approach. This is because the vanishing point must
always be centered on the flight path vector of the aircraft. The highest points, at a fixed
spacing, are then represented by perturbations in the splay lines of die gradient.

B-7

Contact Analog Grid—

C92057443

The geographically fixed presentation scheme looks as though a large net were laid
across the earth. The grid is deformed by topographic surface features.

Contact Analog Grid with Tiles —

C920574-03

This presentation scheme is identical to the Contact Analog Grid with the addition of
Tiles in the open area within each grid. The tiles are oriented perpendicular to the surface
normal of the local square.

B-8

Tiles —

%-£v£>yÄ
■ v« ■ *l'-«lkas« « ^ Q Q ^- « » s a a an ■ ■ «mm« m_ » QB ^ » o a^^
^?°JJD"a ■a'fc-o. a o -■ i •» •ä "«■ —_£ ■ ••maoouon a ^

O Q Ci ^^ ■<=». ""

D O ^Z^ 'vX

r~i m r~\ r\ v\
CS20574-04

This presentation scheme is identical to the Contact Analog Grid with Tiles except the
grid is missing.

Posttops —

C920574-02

The Posttops format consists of lighting each sample point in the DTED database at the
appropriate elevation in the perspective view volume.

B-9

Emergent Detail—

An approach to cueing the pilot to critical altitude changes (i.e., penetration of the
"harddeck") is change formats. The use of emergent detail is intended to cue the pilot to
a change in situation without requiring a great deal of cognitive processing.

The use of emergent detail to cue terrain proximity is not new (Reardon and Warren,
1989), but the application to an HMD would be unique. An example strategy for the use
of emergent detail would be to present Posttops when above 2,000 feet AGL. The
Posttops would change to the Contact Analog Grid below 2,000 feet, and Tiles would be
added to the Grid below 500 feet AGL.

* I • » • r^fife/M
\s'/ \

Above 2,000 ft AGL Below 2,000 ft AGL

PILOT-VEHICLE INTEGRATION

Below 500 ft AGL

Acceptance of the display, in terms of subjective pilot opinion, is pivotal for
implementation of STI in helmet-mounted displays in an operational environment.
Display factors that will affect pilot acceptance of the display include Depth Cueing,
Sampling Density, View Volume, and Anti-Aliasing. All of these factors will have an
impact on processing requirements and graphics throughput which in turn impact real-
time performance of the display.

Depth Cueing

By varying the intensity of STI elements (distant portions of the terrain are shown
dimmer) the real-world phenomenon of blurring of distant objects can be achieved. It is
also a means by which terrain entering the display view volume can "gracefully" come
into view, as opposed to the sudden appearance of a new STI elements. Depth cueing
requires that a light source and appropriate shading algorithms are executed.

Sampling Density

The data base supplying terrain information, U.S. Defense Mapping Agency's Digital
Terrain Elevation Data (DTED), provides terrain elevation in 100 meter increments.
Therefore the greatest resolution available to STI is 100 meters. Sampling density has a
direct effect on speed of graphics processing, the higher the density sampled the slower
the graphics processing (more data slows the processing).

B-10

View Volume

The "distance" from the closest terrain depiction to the STI horizon is called the view
volume of the display. View volume can be selected, ranging from 1 to 6 nautical miles.
View volume has a direct effect on speed of graphics processing, the greater the view
volume the slower the graphics processing (more data slows the processing).

Anti-Alisaing

There are a number of subjective factors that contribute to the perception of display
quality. A key element is the "smooth" rotation transition of a line from horizontal to
vertical. Aliasing occurs when a line becomes "jagged" during this rotation. There are
different methods by which anti-aliasing can be accomplished, including adding separate,
dedicated, processing hardware.

Real-Time Operation (Update Rate)

During preliminary format development it became clear that maintaining an update rate
of at least 15hz is difficult when the STI format was rendered from the highest sample
density (100 meter spacing) with a large view volume (6 miles). In the current
implementation sample density can be set to one of the following settings (100,200,400,
or 800 meter). The view volume can vary, in tenth of a mile increments between 1 and 6
miles.

One of the key elements in the initial tests in the PVI development station at General
Dynamics will be to determine the lowest acceptable update rate for the display.

RECOMMENDED APPROACH

The Honeywell/General Dynamics team will conduct evaluations of the Synthetic Terrain
Imagery formats in both part-task and full mission simulation. Operationally oriented
mission scenarios will be flown under varied terrain and visibility conditions to determine
if STI aids the pilot with spatial orientation. Mechanization's for controlling STI
viewability/intensity will also be investigated.

PART-TASK SIMULATION

In an attempt to eliminate unnecessary test conditions for the actual evaluation, General
Dynamics will utilize in-house test pilots and former F-16 pilots to determine which STI
techniques have high potential. The following Table is the initial "cut" at the relative
merits and disadvantages to each approach.

B-ll

Pro Con
STI FORMATS

Ridgelines Previous flight test
experience Quiet Knight

Aircraft centered "SQUIRM"

Optical
Expansion

Gradieni

Looks like the OEG on an
analog Attitude Direction
Indicator (ADI)

From altitude, with -90*,
the splay lines provide
minimal info

Contacl
Analog

Grid

Intuitive

Grid & Tiles Terrain features stand out
Can be a "virtual" VR world

May be too cluttered for
un-aided target acquisition

Tiles Tile orientation atone may
be adequate for terrain SA

Obscures terrain information
with low sampling density

Posttops Visually least intrusive
Terrain features hard to
discern

Relative Merits of STI Formats

For the actual evaluation, the F-16 SPO, as well as selected active duty F-16 pilots will be
exposed to the high potential STI formats in a part-task simulation evaluation.

FULL-MISSION SIMULATION

The best techniques will be transferred to the dome where they can be evaluated utilizing
combat mission profiles. Each participating pilot will evaluate the STI techniques. Each
mission will be verbally debriefed and a questionnaire completed. Additionally,
objective mission data will be collected and compared to the subjective data obtained
from the questionnaires. Conclusions and recommendations will then be derived based
on the objective and subjective data collected.

B-12

Selected Readings
Biberman, L. M. and Alluisi, E. A. (1992). Pilot errors involving head-up displays

(HUDs), helmet-mounted displays (HMDs), and night vision goggles (NVGs).
IDA Paper P-2638. Institute for Defense Analyses, Alexandria, VA.

Haber, R. N. (1987). Why low-flying fighter planes crash: Perceptual and attentional
factors in collisions with the ground. Human Factors, 29(5), 519-532.

Hale, S. and Piccione, D. (1989). Pilot assessment of the AH-64 helmet mounted display
system. Proceedings of the Fifth International Aviation Psychology Symposium,
pages 307-312.

Ikeda, M. and Takeuchi, T. (1975). Influence of foveal load on the functional visual
field. Perception & Psychophysics, 18(4), 255-260.

Jarvi,D.W. (1981). Investigation of spatial disorientation of F-15 Eagle pilots.
Technical Report ASD-TR-81-5016, Directorate of Equipment Engineering, Air
Force Systems Command, Wright-Patterson AFB, OH.

Malcolm, R. (1984). Pilot disorientation and the use of a peripheral vision display. In:
Aviation, Space, and Environmental Medicine, Aerospace Medical Association,
Washington, D.C.

Newman, R. L. (1987). Responses to Roscoe, "The trouble with HUDs and HMD."
Human Factors Society Bulletin, Vol 30..

Poppen,! R. (1936). Equilibratory functions in instrument flying. The Journal of
Aviation Medicine, 7, Aero Medical Association of the United States.

Reardon, K. .A. and Warren, R. (1989). Effect of emergent detail on descent-rate
estimations in flight simulators. Proceedings of the Fifth International Aviation
Psychology Symposium, pages 714-719.

Roscoe, S. N. (1987). The trouble with HUDs and HMDs. Human Factors Society
Bulletin, Vol. 30.

Roscoe, S. N. (1987). The trouble with virtual images revisited. Human Factors Society
Bulletin. Vol.30.

Weinstein, L. F. and Wickens, C. D. (1992). Use of Nontraditional Flight Displays for
the Reduction of Central Visual Overload in the Cockpit The International
Journal of Aviation Psychology, 2(2), 121-142.

Weintraub, D. J. (1987). HUDs, HMDs, and common sense: Polishing virtual images.
Human Factors Society Bulletin, Vol. 30.

Williams, L. J. (1982). Cognitive load and the functional field of view. Human Factors,
24(6), 683-692.

Williams, L. J. (1985). Tunnel vision induced by a foveal load manipulation. Human
Factors, 27(2), 221-227.

B-13

Addendum to Appendix B
(cited from Jarvi, 1981)

VISUALLY INDUCED SPATIAL DISORIENTATION

Orientation from the external scene during flight depends upon perception of complex
and continually changing patterns of visual stimuli. The validity and accuracy of both the
perception and the interpretation of these cues is a function of the aviator's experience
and training. Attitude is judged by reference to the horizon or when nearer the ground, by
the verticals of buildings, masts, and trees. Distance and depth are determined principally
by monocular cues such as parallactic displacement, aerial perspective, apparent size, and
by changes in both detail and color with distance (Benson, 1965).

Unfortunately, outside visual references are often reduced by smoke, haze, fog, inclement
weather, or darkness. In such situations the pilot's interpretation of visual cues becomes
more difficult, illusory visual information may occur, and visual phenomena themselves
may contribute to disorientation. Examples of these types of spatial disorientation
(adapted from Peters, 1968) are listed below:

(a) Autokinesis. This illusion consists of an apparent motion of isolated lights
viewed in a meager visual framework. If an isolated light is viewed continually in the
dark, it will appear to wander about at random over a small area. The apparent motion
may extend as much as 15 degrees and is indistinguishable from real motion. Pilots have
reported attempts to join up with a formation of stars, buoys, lights on bridges, and street
lights which appeared to be moving and were interpreted as other aircraft.

(b) Fascination. This is a condition in which the pilot fails to respond
adequately to a clearly defined stimulus situation in spite of the fact that all of the
necessary cues are present for a proper response, and the correct procedure is well known
to him.

(c) Target Hypnosis. Target hypnosis is a form of fascination and is
characterized by a pilot becoming so intent on destroying the target during an attack that
he fails to pull up in time to avoid striking the ground, usually with fatal consequences.

(d) Illusory Effects Due to Inadequate Stimuli. Restriction of the visual field
by smoke, dust, haze, fog, rain, or darkness can produce gross discrepancies between
physical entities and their appearance as perceived by the pilot. The pilot's attempt to
restructure the physical entity from his meager perception of it may result in a false
identification and consequent disorientation.

(e) Improper Grouping of Lights at Night. The tendency to group items in he
perceptual field can contribute to illusory effects. A small cluster of isolated lights on the
ground on a dark night with a high overcast may be interpreted as the lights of a
formation flight.

(f) Illusions of Relative Motion. Experience of illusions of relative motion are
numerous. To an observer in a fast aircraft crossing the path of a much slower aircraft at
a different altitude, the slower aircraft appears to be flying sideways and backwards.
Illusions of relative motion can be especially provocative and potentially hazardous
during formation flights at high altitude or at night when cues to forward speed are
absent.

B-14

(g) Illusory Horizons. The primary cue to the vertical is the visible horizon;
using this cue the pilot can orient his aircraft properly and with great precision. Under
conditions of restricted visibility the horizon may become obscure or occulted. Under
these conditions the pilot may rely on some other indicator which he believes to represent
the horizontal. Under certain other conditions and in perfectly clear weather the pilot
may orient his aircraft improperly despite using the visible horizon as a reference.
Various types of disorientation may be produced by reliance on fictitious horizons (e.g.,
tilted cloud banks; depressed horizons due to high altitude flight; confusion between city
lights and stars).

B-15

