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Abstract: The behavior of nonlinear optical (NLO) groups linked to a polyphosphazene 

chain was studied by solid state NMR spectroscopy. A series of poly(organo- 

phosphazenes) was prepared with the general structure, 

[NP(RN(CH3)C6H4N02)jc(0{CH2CH20}2CH3)2.x]rt, wherex < 0.5 and the spacer 

group R = 0(CH2)2> 0(CH2)6> or OCH2(2-pyrrolidino) in addition to the stilbene- 

containing polyphosphazene, [NP{O(CH2)2N(CH3)C6H4CH=CHC6H4NO2}0.4 

{0(CH2CH20)2CH3) \^[n. Structural characterization for the above polymers was 

achieved by 31P NMR spectroscopy, differential scanning calorimetry and elemental 

microanalysis. Methoxyethoxyethoxy (MEE) cosubstituent poly(organophosphazenes) 

bearing 0(CH2)2N(CH3)C6H4N02 and 0(CH2)6N(CH3)C6H4N02 side groups were 



selected for study by room-temperature and variable-temperature solid state 31p and ^C 

NMR spectroscopy. The variable-temperature solid-state ^C NMR spectra indicated 

that the use of a longer spacer group between the polymer backbone and the aromatic 

portion of the NLO side group lowered the temperature at which chromophore motion is 

quenched. This implied that the use of such structures may accelerate the randomization 

of NLO side group orientation at ambient temperatures following poling. This behavior 

was mirrored in the solid state variable-temperature 31p NMR spectra which suggested 

that side chain and polymer backbone motion may be coupled. 



Introduction. 

A growing interest exists in the design and synthesis of polymeric materials for use 

in nonlinear optical (NLO) applications. 1 The synthesis of such materials has been 

accomplished in two ways. First, a small-molecule chromophore may be dissolved in a 

glassy,2'3 or crystalline polymer.4 Second, NLO-active groups can be covalently linked 

to macromolecules by either radiative cross-linking^ to a host polymer, by derivatization 

of a functionalized polymer,6>7 Dr by macromolecular substitution reactions. ° The 

occurrence of NLO effects is associated with an intramolecular charge transfer process 

which can exist in organic molecules with a donor-acceptor moiety. For second harmonic 

generation (SHG), or the conversion of light of frequency v to light of frequency 2v, non- 

centrosymmetric alignment of the donor-acceptor moieties (usually by electric field poling) 

is required. In the absence of a method of stabilization of the alignment, SHG is lost 

quickly as orientational randomization of the donor-acceptor moieties occurs. ° The rate 

of orientational randomization is some function of the quasi liquidity in the polymeric 

material, which in turn is connected with macromolecular flexibility and the free volume. 

Randomization of the NLO components is normally considered to be a detrimental 

property unless the material forms part of a device in which electric field generated 

alignment forms part of a working component *e 

Methods used to stabilize SHG in host - guest systems and in polymers that 

incorporate NLO groups as side chains include both a "freezing" of the alignment by 

cooling of the polymer or by radiation cross-linking, but these approaches generate 

additional challenges. An example of the first technique exists when the chromophore is 

poled in a host polymer above its Tg. "Rash cooling" to below the Tg is then carried out 

in an attempt to maintain the chromophore orientation. This method yields only modest 

success. For example, when 4-(dimethylamino)-4'-nitrostilbene is dissolved in poly(methyl 

methacrylate) and poled at 383 K, the system loses 80% of the SHG in 12 h after the 



material is allowed to cool to 298 K.2 Radiation cross - linking has been applied to 

polymers that contain side group NLO chromophores. For example, Tripathy, et. alß 

reported considerable success in stabilizing cinnamate-derivatized NLO chromophores by 

irradiation with UV light while poling. 

Thus, an understanding of chromophore motions in unpoled systems in the region 

of the Tg should yield insights into the molecular motions of poled polymers. In this work 

we have attempted to obtain an insight into this phenomenon through the synthesis and 

solid state NMR characterization of polyphosphazenes that bear pendent NLO 

chromophore side groups. 

Polyphosphazenes have several advantages for the study of chromophore motion 

in polymeric materials. These include: (1) different cosubstituent groups can be readily 

incorporated into polyphosphazenes by macromolecular substitution, and this allows 

properties such as the Tg to be tailored over a broad range; (2) the relative ease of side 

group incorporation allows a wide variety of NLO chromophores to be covalently linked 

to the polymer backbone, and provides a vehicle for the products to be examined by solid- 

state NMR; (3) the phosphorus - nitrogen backbone contains no carbon atoms; hence, 

l^C NMR studies of pendent side chains are not complicated by the backbone elements; 

(4) the polymer backbone motion can be studied unambiguously by solid-state 31p NMR 

spectroscopy. In this paper we discuss the synthesis of mixed-substituent 

poly(organophosphazenes) that bear chromophores 1-4 (see Chart 1) and analyze the 

chromophore motion of polymers 8 and 9 (see Scheme 1) by solid-state variable- 

temperature NMR. 

Chart 1 and Scheme 1 near here 

Results and Discussion 

Side Group Synthesis. Chromophores 1-3 were prepared^-11 by the reaction 

between 4-fluoronitrobenzene and the appropriate amine in DMSO solvent in the presence 

of K2CO3 as a hydrofluoride acceptor (see Scheme 2). Chromophore 4 was synthesized 



in two steps (see Scheme 3). First, 4-fluorobenzaldehyde was allowed to react with N- 

(methylamino)ethanol under the above conditions to give intermediate aldehyde 11. 

Stilbene 4 was obtained by the condensation of 11 with 4-nitrophenylacetic acid. 

Chromophores 1 - 4 were characterized by ^H and 13C NMR spectroscopy and mass 

spectrometry (see the Experimental section). 

Schemes 2 and 3 near here 

Polymer Synthesis. The synthetic route to high polymeric phosphazenes 7-10 is 

shown in Scheme 1. Poly(dichlorophosphazene) (6) was prepared by the thermal ring- 

opening polymerization of hexachlorocyclotriphosphazene (5).12"14 The substitution 

reactions of 6 were carried out in three steps. The synthesis and purification of polymer 8 

will be given as a representative example. Polymer 8 was prepared by allowing 1 equiv of 

sodium methoxyethoxyethoxide to react with 6 to form a partially-substituted polymer 

with the idealized structure [NPCHCXCI^CK^O^CI^}]^. This macromolecular 

intermediate was then treated with 0.5 equiv of the sodium salt of 1 to replace 

approximately 50% of the remaining chlorine atoms. Lastly, a fully substituted, chlorine - 

free polymer was obtained by allowing an excess of Na(OCH2CH2)2OCH3 to replace all 

the remaining chlorine atoms to give a polymer with the idealized structure 

[NP(OCH2CH2N(CH3)C6H4 - p -N02)o.5 {(OCH2CH2)20CH3} i<5]n. Total chlorine 

replacement and side group loadings were confirmed by the elemental analytical data (see 

Table 1). 

Table 1 Near Here 

This synthetic route was used for several reasons: (1) The initial addition of the 

sodium salt of the chromophores to poly(dichlorophosphazene) in THF resulted in the 

formation of an insoluble precipitate which could not be induced to undergo further 

reaction. (2) The use of 2,2,2-trifluoroethoxy cosubstituents (side groups that were used 

in earlier phases of our NLO work** and were found to generate soluble NLO 

polyphosphazenes) may bring about the displacement of NLO side groups during the 



second step of the substitution reaction. (3) The ^C resonance of the CF3 carbon in the 

trifluoroethoxy side group is a quartet centered at ca 115 ppm, which overlaps the ^C 

resonances of the aromatic ring in the NLO cosubstituent (4) The glass transitions of 

methoxyethoxyethoxy cosubstituent polymers 7-10 are easily detected by DSC. These 

data are essential for the study of the molecular dynamics of polymers near the glass 

transition temperature. 

Although the methoxyethoxyethoxy cosubstituent facilitates solid state NMR 

characterization, polymers 7-10 were insoluble in common organic solvents after isolation 

from the THF dialysis. This insolubility is attributed to the high polarity of the donor- 

acceptor side chains, which may result in stacking of the NLO groups in the solid 

state. 15,16 fhis behavior is similar to that found in side-chain liquid crystalline 

polyphosphazenes. 

Solid State NMR Studies. 

Room Temperature l^C NMR Spectroscopy. Polymers 8 and 9 were selected 

for detailed characterization by variable temperature 13C and 31P magic angle spinning 

(MAS) NMR. Since chromophore orientation is a requirement for second-order NLO 

polymers, the focus of this investigation was on qualitative studies of side chain and main 

chain dynamics. Polymers 8 and 9 were very similar, with the exception of the number of 

carbon atoms in the spacer unit that connects the chromophore to the main chain (2 CH2's 

for 8 vs. 6 CH2's for 9). At a given temperature, the chromophore with the longer spacer 

would be expected to be the more mobile species. This expectation was confirmed, but the 

room temperature and variable-temperature 31P NMR results indicated an additional 

effect. The NMR results are reported below in detail for polymer 8. The results for 

polymer 9 are then explained briefly with emphasis on the differences between the two 

materials. 



The 13C MAS NMR spectra obtained at room temperature for polymer 8 and 

crystalline chromophore 1 are compared in Figure 1. Peaks in the spectra of 

chromophores 1 and 3 were identified by comparison with solution spectra as well as by 

acquisition of interrupted decoupling spectra (not shown). The MAS spectrum of solid 

chromophore 1 showed two clear characteristics of a rigid molecule. The pairs C3,C5 and 

C2,C6 had different isotropic shifts due to their inequivalent locations in the unit cell. 

Secondly, the chemical shift anisotropy of the aromatic carbon atoms was unaveraged, as 

reflected by the intensities of the spinning sidebands.  These features were absent from the 

13C MAS spectrum of polymer 8 at 298 K (Figure 1). Note that each pair C3,Cs and 

C2,Cö in the polymer collapsed to a single line, and that the sideband intensity is 

negligible. These results demonstrate that reorientation of the aromatic group in the 

macromolecular system with respect to its local chemical environment was rapid on a time 

scale of ca. 5 ms, and that its reorientation with respect to the direction of the applied 

magnetic field was rapid on a time scale of ca. 200 us. These time scales are the 

reciprocals of the resonance frequency differences for the 2 and 6 carbons and the MAS 

spinning speeds, respectively. 

Figure 1 near here 

Variable Temperature l^C NMR Spectroscopy. Variable temperature 13C 

MAS spectra of polymer 8 were obtained using both Bloch decay and cross polarization17 

over a temperature range of 153 to 298 K and are reported in Figures 2 and 3 

respectively.   These two different types of spectra should be regarded as complementary. 

At lower temperatures, where the chromophore is immobile, the 13C Ti's of the aromatic 

carbon atoms were longer than the pulse delay used in the Bloch decay spectra, and the 

signals from these carbon atoms were absent because of saturation (see Figure 2). At 

higher temperatures, the mobility of the chromophore precluded efficient cross 

polarization of the aromatic carbons, but aromatic isotropic peaks and spinning sidebands 

were seen clearly at lower temperatures in the cross polarization spectra (see Figure 3). 



The signals from the aromatic carbon atoms were very broad at intermediate temperatures 

in both types of spectra. In the Bloch decay spectrum at 253 K, the aromatic signals were 

barely recognizable, and they were broad in CP spectra above ca. 193 K. This behavior is 

well known in MAS NMR studies of mobile materials, 18'19 g^ jt was use^ previously to 

characterize the time scale of chromophore reorientation for a simple small-molecule 

doped polymer system. 20 Magic angle spinning provides coherent averaging of chemical 

shift anisotropy, while molecular motion is an incoherent averaging process. When both 

effects are present and operate at similar time scales, a conflict arises such that line 

narrowing does not occur. The aromatic ring in polymer 8 underwent large amplitude 

motion on a time scale of ca. 200 |is in the vicinity of 233 K. The broadening of the 65-75 

ppm signals from the MEE side chains at 233 K and below was attributed to a freezing in 

of conformational inequivalence. 

Figures 2 and 3 Near Here 

Variable Temperature 31p NMR Spectroscopy. The variable temperature 31P 

MAS spectra of polymer 8 (Figure 4) were readily assigned based on previous studies of 

phosphazene polymers in solution and in the solid phased 1~23 Most of the 31P nuclei 

resonated at an isotropic shift of -8.0 ppm, but those with one MEE side chain and one 

chromophore side chain provided the downfield shoulder at -2.9 ppm. Careful line fitting 

indicated that the chromophore content is 8% of all side groups or 16% of all main chain 

units. Small spinning sidebands were evident at 298 K, but these became much more 

pronounced when the sample was cooled to 233 K and lower temperatures, which 

indicated that the polymer backbone became rigid at this temperature. 

Figure 4 Near Here 

The corresponding 13C and 31P spectra for polymer 9 (Figures 5-7) showed the 

same overall behavior. The notable difference was that the longer spacer group lowered 

by 30 to 40 degrees the temperature at which chromophore and main chain motion were 

quenched relative to the counterpart with a shorter spacer. Again, good correlation 



existed between the temperature profiles observed for the 13C and 31P spectra, and this 

suggested that the chromophore and main chain motions may be coupled processes. 

Figures 5-7 Near Here 

Conclusions. 

Several conclusions can be drawn from the room-temperature and variable- 

temperature solid-state 31P and ^C NMR spectra. The room temperature CP/MAS 

NMR spectrum of free chromophore 1 showed features characteristic of a rigid molecule, 

such as spinning sidebands and different isotropic shifts of carbon atom pairs C3, C5 and 

c2> c6- Wnen chromophore 1 was attached to a flexible polyphosphazene backbone as in 

polymer 5, all the characteristics of a rigid molecule are lost and the aromatic group was 

found to be undergoing reorientation with respect to its local chemical environment on a 

time scale of ca. 5 ms. Moreover, chromophore reorientation with respect to the direction 

of the applied magnetic field is rapid on a time scale of 200|is. 

Variable-temperature solid state 31p and ^C NMR of polymer 8 yielded 

additional insights into the backbone and side chain motions, respectively. The use of 

Bloch decay in the solid state variable-temperature ^C NMR spectra showed that the 

aromatic chromophore motion was quenched at ca. 233 K, which was confirmed by the 

complimentary technique of cross polarized ^C NMR. A similar effect of temperature on 

the polymer backbone was noted at ca. 233 K when polymer 8 was subjected to solid 

state variable-temperature 31p NMR. 

Lastly, when polymer 9 was analyzed under the same conditions, both backbone 

and side chain motion were found to be quenched at ca. 30 to 40 degrees lower than for 

polymer 8. This behavior was attributed to the more flexible spacer group in polymer 9. 

However, because both chromophore and polymer backbone motion were affected at the 

same temperature in polymers 8 and 9, chromophore and backbone motion may be a 

coupled process. 
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From the viewpoint of retention of NLO group orientation following poling, the 

results suggest the following: As expected, a polymer which possesses a longer spacer 

unit between the aromatic portion of the NLO side group and the backbone gives a 

material in which the NLO side groups are more mobile than when a shorter spacer group 

is present. Second, because polymer backbone and side group motions may be coupled, 

the use of a flexible skeletal system and mobile side groups to solubilize the polymer may 

be counter - productive with respect to the retention of NLO properties after poling. 

Thus, for the polymers studied, polymer 8 must be cooled to below 233 K and polymer 9 

below 193 K before rapid chromophore randomization is eliminated, which implies a 

higher room - temperature mobility for the NLO groups of polymer 9. Of course, the more 

flexible, and more rapidly randomized system may, in fact, be more appropriate for use in 

applications where the switching on and off of the poling field is an integral feature of the 

device. 
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Experimental. 

Hexachlorocyclotriphosphazene 5 (provided by Ethyl Corp.) was recrystallized 

from heptane and sublimed (60 °C, 0.05 mmHg) before use. Poly(dichlorophosphazene) 6 

was prepared according to a previously published procedure.^ Tetrahydrofuran was 

distilled from sodium benzophenone under an atmosphere of dry argon. 

Methoxyethoxyethanol was distilled from calcium hydride before use. The other reagents 

(Aldrich, Lancaster, Pfaltz & Bauer) were used as received. All manipulations of 

chlorophosphazene reagents before substitution reactions were carried out under an inert 

atmosphere of dry argon by using standard Schlenk and drybox techniques. Dialysis was 

accomplished with Spectra-Por cellulose membranes (MW cutoff 12,000-14,000, VWR). 

Solution-state high field 31P (146 MHz), 13C (90 MHz) and XH (360 MHz) NMR 

13 spectra were obtained with a Bruker WM360 spectrometer. Solution-state    C (50 MHz) 

and  H (200 MHz) NMR spectra were also obtained with a Bruker WP200 spectrometer 

13 31 or a Bruker ACE200 spectrometer. Both     C and    P NMR spectra were proton 

31 decoupled unless otherwise specified. Liquid-state    P NMR spectra were referenced to 

external 85% H~P04 with positive shifts recorded downfield from the reference. Solution- 

1 13 state   H and    C NMR spectra were referenced to external tetramethylsilane. 

Elemental analyses were by Galbraith Laboratories (Knoxville, TN). Chemical 

ionization (CI) mass spectra were obtained with a Kratos MS-25 spectrometer. Glass 

transition temperatures were determined by differential scanning calorimetry using a 

Perkin-Elmer 7 thermal analysis system equipped with a Perkin-Elmer 7500 computer. 

Heating rates of 10 - 40 °C/min. under a nitrogen atmosphere were used. 

Room temperature ^C MAS NMR spectra of polymers 8 and 9 and the 

chromophores 1 and 3 were acquired on a CMX-360 spectrometer operating at 90.5 MHz 

for 13Q Single pulse (Bloch decay) excitation experiments were performed on the 

polymer samples while spinning at 2000 Hz. Cross polarization experiments were carried 
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out with the chromophore samples spinning near 5000 Hz. l^C and 31p variable 

temperature studies on polymers 8 and 9 were performed on a Chemagnetics CMX-300 

instrument with the samples spun at a controlled rate of 2700 Hz. The samples were 

cooled to -120 °C and were then incrementally raised in temperature with at least 5 

minutes equilibration time before the first experiment Reproducible results without any 

detectable hysteresis were obtained from multiple temperature cycles. Both single pulse 

(10 s recycle delay) and CP experiments (4 ms contact time, Is recycle delay) were 

acquired in the variable temperature study. Reduction of background signal from the 

Vespel MAS spinning module was accomplished by the use of composite excitation pulse 

sequences^ in all CP and Bloch decay experiments. 

Synthesis of 4-[2-hydroxyethyl)methylamino]nitrobenzene (1): Compound 1 

was prepared by a modified literature procedure7>9-l 1 4-Fluoronitrobenzene (10.0 g, 

70.9 mmol) and K2CO3 (10.0 g, 70.9 mmol) were added to DMSO (100 mL). N- 

methylaminoethanol (6.0 g, 80 mmol) was added over 10 min with stirring. The reaction 

mixture was warmed to 60 °C for 12 h, after which it was poured into water (500 mL). 

The yellow precipitate was collected by vacuum filtration, washed with water (500 mL), 

and recrystallized from toluene. !H NMR (CDCI3,200 MHz) 8.1 (d, 2H), 6.6 (d, 2H)S 

3.85 (q, 2H), 3.6 (t, 2H), 3.1 (s, 3H), 2.0 (t, 1H). ^C NMR (CDC13) 153.8,137.0, 

126.2, 110.4,60.0, 54.4, 39.4. MS mlz calcd 196, mlz found 197 (CI, MH+). Yield: 89%. 

mp 101.5-102.5 °C. 

Synthesis of l-(4-nitrophenyI)-2-pyrrolidinemethanol (2)2^ and 4-[6- 

hydroxyhexyI)methylamino]nitrobenzene (3): Compounds 2 and 3 were prepared in a 

manner similar to compound 1, with the use of (s) -(+) -pyrrolidine - 2- methanol for 2 

and 6-(methylamino)hexanol for 3. Characterization for 2: 53% yield *H NMR (300 MHz, 

CDCI3) 8.1 (2H, d, / = 9 Hz), 6.6 (2H, d, / = 9 Hz), 4.0 (1H, q, br,), 3.7 (1H, m), 3.6 

(2H, m), 2.1 (4H, m), 1.5 (1H, t,/= 6 Hz). ^C NMR (DMSO - d6) 151.8,135.2, 

125.9, 111.2, 60.5, 60.3,48.3,27.7,22.4. mp 114-116 °C (Lit mp, 116 °C). MS mlz 
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calcd 222, m/z found, 222 (EI, M+). Characterization for 3: *H NMR (300 MHz, CDCI3) 

8.1 (2H, d, / = 8 Hz), 6.6 (2H, d, J = 8 Hz), 3.6 (2H, q, / = 6 Hz), 3.4 (2H, t, / = 7 Hz), 

3.1 (3H, s), 1.7 (4H, m), 1.6 (4H, m), 1.2 (1H, t, / = 5 Hz). ^C NMR (90 MHz, CDCI3) 

153.5, 145.7,126.3,110.1, 62.7,52.6,38.7, 32.6,26.9, 26.8, 25.6. MS m/z calc 252; m/z 

found 252 (El). Anal Calcd. C, 61.90, H, 7.94, N, 11.11. Found, C, 62.01, H, 8.19, N, 

10.88. 

Synthesis of 2-[methyl[4-[2-(4-nitrophenyl)ethenyIphenyl]aminoethanoI (4): 

Stilbene 4 was synthesized according to a literature procedure.26 1H NMR (CDCI3, 300 

MHz) 8.2, 2H, d, / = 9 Hz), 7.6 (2H, d, J = 9 Hz), 7.4 (2H, d, / = 9 Hz), 7.2 (1H, d, / = 

16 Hz), 6.9 (1H, d, / = 16 Hz), 6.8 (2H, d, J = 9 Hz), 3.9 (2H, q, J = 6 Hz), 3.6 (2H, t, / 

= 6Hz),3.1(3H,s), 1.65(lH,t,/ = 6Hz). 13CNMR (DMSO-d6) 145.2,145.0, 

128.6, 126.2, 124.0,123.4,120.7,111.6, 58.1,54.0, 38.5. MS m/z calcd 298.1317; m/z 

found 298.1321. 

Synthesis of 4-[(2-hydroxyethyl)methylamino]benzaldehyde (11): Aldehyde 

11 was prepared according to a literature procedure.26 *H NMR (CDCI3, 300 MHz) 9.7 

(1H, s), 7.7 (2H, d, J = 8 Hz), 6.8 (2H, d, J = 9 Hz), 3.9 (2H, d, J = 6 Hz), 3.6 (2H, d, / = 

6 Hz), 3.1 (3H, s), 1.6 (1H, br). 13C NMR (CDCI3,75 MHz). MS m/z calcd, 196; m/z 

found 196 (El). 

Synthesis of polymers 7-10: The synthesis of polymer 8 will be given as a 

representative example. Fifty mL of a solution of sodium methoxyethoxyethoxide 

(prepared from methoxyethoxyethanol (2.06 g, 17.2 mmol) and sodium hydride (0.41 g, 

17.2 mmol)) in THF (100 mL) was added over 2 min to a warm solution of 

poly(dichlorophosphazene) (1.0 g, 8.6 mmol) in THF (500 mL). The solution was stirred 

at 40 °C for 2 h and the sodium salt of 1 (prepared from alcohol 1 (1.68 g, 4.3 mmol) and 

NaH (0.10 g, 4.3 mmol) in THF (50 mL)) was added over 2 min and the again stirred at 

40 °C for an additional 2 h. Finally, 50 mL of the solution of sodium 

methoxyethoxyethoxide was added and the solution was stirred overnight at room 
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temperature. The entire reaction mixture was dialyzed against water for 4 d and then 

against THF for 7 d. The polymer was isolated by rotary evaporation followed by vacuum 

drying at 50 °C overnight. 
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Figure Captions 

1. Assigned 13C MAS NMR of chromophore (1) and the chromophore-incorporated 

polymer (8) at room temperature. Asterisks denote spinning sidebands. 

2. Variable temperature 13C Bloch Decay MAS NMR spectra of polymer 8 (4s pulse 

delay, 400 transients). The expanded region shows the broadening of the aromatic 

chromophore signals with decreasing temperature. 

3. Variable temperature 13C CP-MAS NMR spectra of polymer 8 (4 ms contact time, 

2s pulse delay, 800 transients). The expanded region shows a reappearance of the 

aromatic chromophore signal at 193 K. 

4. Variable temperature 3 lP Bloch Decay MAS NMR spectra of polymer 8 (10s 

pulse delay, 64 transients). Spinning sidebands are denoted by asterisks. 

5. Variable temperature 13C Bloch Decay MAS NMR spectra of polymer 9. 

Broadening of the aromatic chromophore signals was seen at a lower temperature 

than for polymer 8. 

6. Variable temperature 13C CP-MAS NMR spectra of polymer 9. The expanded 

region shows a reappearance of the aromatic chromophore signal at a temperature 

20 degrees lower (153 K) than for polymer 8. 

7. Variable temperature 31P Bloch Decay MAS NMR spectra of polymer 9. The 

spinning sidebands, denoted by asterisks, appear at a lower temperature (193 K) 

than for polymer 8. 



18 

Table 1. Characterization data for polymers 7-10. 

Polymer      Cosubstituent     Te (K) 

7 4 

8 1 

9 3 

10 2 

ff(K) Cosubstituent Exptl. Elem. Anal. 

Loading (%) %C    %H    %N   %C1 

201 20 52.14   7.26  7.04  0.008 

211 20 43.95    6.97    7.86  0.014 

201 20 47.55    8.43   5.29 0.031 

209 20 49.37    7.75   7.37   0.016 
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