
ffl Intelligent Systems Technology, Inc.

March 25, 1995

Defense Technical Information Center
ATTN: Acquisitions/OCP
Cameron Station, Bldg. 5
Alexandria, VA 22304-6145

Intelligent Systems Technology, Inc. is pleased to submit this SBIR Phase I
Final Technical Report for Contract No. DAAH01-94-C-R291 (Sequence
Number A002).

Sincerely,

Dr. Azad M. Madni
President and Chief Executive Officer

3100 Dannyhill Drive
Los Angeles, CA 90064

, Tel. and Fax (310) 838-4883
E-mail: istinc@aol.com

\%m 022
' DISTRI3UT1UN~STÄ^^TX'

Approved for public release;
Distribution Unlimited

"A Scalable, Customizable MCM
Design Process Manager"

Scientific and Technical Report
Phase I Final Technical Report

March 23,1995

Sponsored by: Advanced Research Projects Agency (DOD)
ESTO: Dr. Nicholas Naclerio

Issued by:

Under:

Principal Investigator:

ARPA Order 5916
ISTI-FTR508-01

U.S. Army Missile Command

Contract No. DAAH01-94-C-R291

Azad M. Madni, Ph.D.
(310)838-4883

Reporting period: August 23 to March 23,1995

Effective Date of Contract: August 23,1994

Contract Expiration Date: March 23,1995

Accesion For

By
Distribution /

NTIS CRA&I
DTIC TAB
Unannounced □
Justification

Ä

Availability Codes

Dist

m
Avail and/or

Special

Intelligent Systems Technology, Inc.
3100 Dannyhill Drive Los Angeles, CA 90064 Tel. and Fax: (310)838-4883 E-mail: istinc@aol.com

Approved for public release; distribution unlimited.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the

Advanced Research Projects Agency or the U.S. Government.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

ISTI-FTR508-01

6a. NAME OF PERFORMING ORGANIZATION

Intelligent Systems Technology, Inc.

6c. ADDRESS {City, State, and ZIP Code)

3100 Dannyhill Drive
Los Angeles, CA 90064

6b. OFFICE SYMBOL
(If applicable)

8a. NAME OF FUNDING/SPONSORING

Advanced Research Projects Agency
P.STYV Dr NaHerin

8c. ADDRESS (City, State, and ZIP Code)

37.01 North Fairfax Drive
Arlington, VA 22203-1714

8b. OFFICE SYMBOL
(If applicable)

lb. RESTRICTIVE MARKINGS

form Approved
OMB No. 0704-0188

3. DISTRIBUTION/AVAILABILITY OF REPORT

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION
U.S. Army Missile Command
AMSMI-RD-PC-GY

7b. ADDRESS {City, State, and ZIP Code)
Redstone Arsenal, AL 35898-5280

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

Phase I Final Technical Report "A Scalable, Customizable MCM Design Process Manager"

12. PERSONAL AUTHOR(S)
Madni, Azad M. and Madni, Carla Conaway

13a. TYPE OF REPORT

Phase I Final
13b. TIME COVERED

FROM94 Aug 23 TC95 Mar 23
16. SUPPLEMENTARY NOTATION

14. DATE OF REPORT (Year, Month, Day)

95 Mar 23
15. PAGE COUNT

76

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Collaborative Design; Process Management; Integrated

. Product-Process Representation; Design Automation;
Multi-perspective Visualization

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Despite the fact that multi-chip modules (MCMs) are a critical dual use technology, the rapid
commercialization of MCM-based systems depends on achieving an order of magnitude reduction in
NRE costs and development time as well as assuring first pass success in MCM design. Design
process management is one key requirement to achieve dramatic reduction in cycle time. Phase I of
this effort was devoted to creating a system concept and detailed design for a MCM Design Process
Manager (MCM-DPM), a software tool for managing collaborative design within a distributed
heterogeneous design environment. This report presents the architecture, key components,
functionalities, usage concept prototype, and implementation plan MCM-DPM. The unique aspects
of the MCM-DPM include: an integrated product-process representation, process tailoring to an
organizations "best practices" and existing EDA environment; multi-perspective design entry and
process visualization, dynamically defined process flows, and design process tracking and guidance
over multiple heterogeneous platforms.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
5g UNCLASSIFIED/UNLIMITED D SAME AS RPT.

22a. NAME OF RESPONSIBLE INDIVIDUAL

Azad M. Madni

O DTIC USERS

DD Form 1473. JUN 86

21. ABSTRACT SECURITY CLASSIFICATION

 Unclassified
22b. TELEPHONE (Include Area Code)

310-838-4883
22c. OFFICE SYMBOL

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Intelligent Systems Technology, Inc. \SL
TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

1. INTRODUCTION 4
1.1 The MCM Design Process Management Problem 4
1.2 Project Objectives 5
1.3 Related Work 6
1.4 Phase I Accomplishments 6
1.5 Report Roadmap 7

2. SYSTEM CONCEPT AND FUNCTIONALITY 8
2.1 System Concept 8
2.2 Realworld Design Scenarios 9
2.3 Initial Conditions 10
2.4 Product Functionality 11
2.5 Integrated Product-Process Representation 11
2.6 Model Tailoring 12
2.7 IPPR-Driven Design and Design Process Management 12
2.8 Dynamic Instantiation & Customization of the Reference Model 14
2.9 Collaborative Design Environment 15
2.10 Integration of Multi-Vendor MCM Design Tools 15
2.11 Compliance with Standards 16
2.12 Performance Metrics 16

3. MCM DESIGN PROBLEM-RELATED KNOWLEDGE ELICITATION 17

4. SYSTEM ARCHITECTURE 23
4.1 Reference Component Model Server 24
4.2 Reference Model Client 24
4.3 Process Manager Server 24
4.4 Process Manager Client 25
4.5 Designer Client 25
4.6 EDA Server 25
4.7 EDA Toolkit Server 26

5. SYSTEM IMPLEMENTATION 27
5.1 Implementation Strategies 27
5.2 Evaluation of Implementation Strategies 29
5.3 XShell-based Implementation 31
5.4 Constraint Capture and Handling 32

6. USAGE CONCEPT DEMONSTRATOR 36
6.1 Overview 36
6.2 Process Engineer-System Interaction 36
6.3 Designer-System Interaction 45
6.4 Manager-System Interaction 51

7. PHASE II IMPLEMENTATION PLAN 59
7.1 Task Summary 59
7.2 Work Plan 60

Intelligent Systems Technology, Inc. e
TABLE OF CONTENTS (CONT.)

8. CONCLUSIONS AND PHASE II PLANS 64

REFERENCES 65

APPENDIX A: EDA STATUS AND TRENDS A-l

J2 Intelligent Systems Technology, Inc.

LIST OF FIGURES

Figure 2-1. The MCM-DPM System Concept 8
Figure 2-2. Entry Perspective is a Function of Initial Conditions 9
Figure 2-3. The Integrated Product-Process Representation Schema Provides the

Basis for Creating Dynamically Defined Flows and Designer Guidance.. 11
Figure 2-4. Integration Representation - The Management Level 13
Figure 3-1. Summary of Results of Hughes Elicitation Sessions 18
Figure 3-2. Design Requirements Hierarchy 19
Figure 3-3. EDA Tool Hierarchy 20
Figure 3-4. Role Hierarchy 21
Figure 3-5. End Product Components Hierarchy 22
Figure 4-1. The MCM-DPM System Architecture 23
Figure 6-1. MCM-DPM Main Window 37
Figure 6-2. Process Hierarchy Editor 38
Figure 6-3. Create Activity Editor Window 38
Figure 6-4. Window to Specify Children of an Activity 39
Figure 6-5. "Filled-In" Create Activity Editor Window 39
Figure 6-6. Initial View of Activity Precedence Editor Window 40
Figure 6-7. Graphical Depiction of Activity Precedence Relationships 41
Figure 6-8. Activity Browse/Edit Window 42
Figure 6-9. Format of Activity Information Report 42
Figure 6-10. Sample Statistical Information Report 43
Figure 6-11. Format of Static Information Report 44
Figure 6-12. Activity Entry/Exit Window 45
Figure 6-13. Designer-System Interaction Flow 46
Figure 6-14. Reviewing New Assignment 47
Figure 6-15. Activity Selection Window 48
Figure 6-16. Perform Activity Window 49
Figure 6-17. Launching EDA Software Tool 50
Figure 6-18. Activity Sign-Off Window 51
Figure 6-19. Manager-System Interaction Flow 52
Figure 6-20. Sample Project Schedule Chart 53
Figure 6-21. Sample Project Timeline 54
Figure 6-22. Sample Data Input Window 54
Figure 6-23. Monitor Status of Process Activities 55
Figure 6-24. Monitor Activities Performance 56
Figure 6-25. Monitor Software Tool Usage ..56
Figure 6-26. Monitor Role Usage 57
Figure 6-27. Design Object Life Cycle Graph 58
Figure 7-1(a). Phase II Work Plan (Tasks 1 through 8) 59
Figure 7-1 (b). Phase II Work Plan Continued (Tasks 9 through 16) 60

in

12 Intelligent Systems Technology, Inc.

LIST OF TABLES

Table E-l. Key Issues 1
Table E-2. Unique Aspects of the Technical Approach 2
Table 1 -1. Historical Challenges to Design Process Management 4
Table 1-2. Phase I Accomplishments 7
Table 2-1. Design Perspectives 10
Table 2-2. Initial Conditions Define the Problem Statement 10
Table 2-3. Integrated Product-Process Representation Requirements 12
Table 2-4. Model Tailoring 12
Table 2-5. Qualitative Comparison Metrics •.... 16
Table A-l. Business Model Trends A-2

IV

Intelligent Systems Technology, Inc. 12
ACKNOWLEDGMENTS

We are indebted to Dr. Nicholas Naclerio for his guidance, encouragement, and support of this
project. We have thoroughly enjoyed the many working sessions at Hughes Microelectronics
Division with Mr. David Zarnow and Mr. Robert McBride. They have provided invaluable
insights into the MCM design process management problems and worked with us from the very
beginning to develop and refine a comprehensive set of requirements for the MCM Design
Process Manager. Their continuing support of our work is much appreciated.

Intelligent Systems Technology, Inc. K.
MCM DESIGN PROCESS MANAGER:

EXECUTIVE SUMMARY

Overview
MCM Design Process Manager (MCM-DPM) is a scalable, customizable MCM design process
management software that is currently being developed under a Phase I SBIR award from the
Advanced Research Projects Agency. The target application is Multichip Module design, the
target insertion environment is Hughes Newport Beach, and the initial group of end users include
Hughes, Motorola and IBM, the major contractors on the ARPA-sponsored Application-Specific
Electronic Modules (ASEM) Program. The overall goal of the MCM-DPM is to achieve dramatic
improvement in MCM design cycle time while also achieving MCM design quality objectives.

Motivation
As EDA environments evolve from managing only tools and data to managing the design process
itself, the concept of design flow has become a central issue. Design flow describes the
sequence of operations required to achieve design goals. However, most flow-based approaches
are limited in that they: (a) involve a fixed sequence of pre-specified operations; (b) restrict
designers to using only those flows, and (c) "hardwire" specific EDA tools to the flows. These
artificial and arbitrary constraints not only fail to reflect realworld design processes but also stifle
designer creativity and flexibility. This recognition coupled with the market demand for a
flexible design process management capability provided the impetus for the MCM-DPM.

Issues
There are several issues that have to be dealt with in creating a scalable, customizable MCM-
DPM. Table E-l presents a summary of the major issues.

Table E-l.
Key Issues

• Representing the design problem • Platform strategy
- syntactically transparent and semantically rich - targeting availability on Windows, Windows
- allow for monitoring, tracking, and measuring NT, and UNIX

progress on multiple products and their respective
design processes • MCM design segment selection

• Capability for creating and managing dynamic flows
- target site capabilities and host environment

- avoiding unrealistic "flow straight-jackets" • Process tailorability to different client processes
and business practices

• Balancing designer creativity with management
control

- supportable at Hughes in terms of available
toolkit and measurements

- multiple entry perspectives
- multiple entry and exit points • Persistent state
- multiple viable options at every step - survive system "crash"

• Tracking design process on multiple heterogeneous
- resume work where you left off upon "logon"

platforms • Schedule and cost controls
- remote tool invocation, operation, termination
- combination of UNIX, NT, Windows platforms

- earned-value tracking
- activity-based costing

• Tailoring requirements • Standards compliance
- company best practice, organizational structure, - MOTIF, CORBA 2.0, CFI

legacy data bases, EDA toolkits, computing - Windows, OLE 2.0, CFI
platforms

Intelligent Systems Technology, Inc. m
Approach
Our overall approach emphasizes innovation in MCM design process management while
leveraging commercial-off-the-shelf EDA toolkits, repositories, and standards. Our
"customers," i.e., Hughes Aircraft Company has been involved with us since project inception
and is contributing to specifying the functionality and features offered in the MCM-DPM. The
target toolkits are the Hughes DecoDesigner or Tanner Toolkit. The fact that these toolkits are on
a common platform and environment facilitates our Phase II integration task. Our overall goal is
to create a viable commercial product. Since realworld design environments consist of physically
dispersed teams collaboratively working within a heterogeneous computing environment over a
LAN or WAN, we have taken a scalable approach that will allow us to track the design process
within a distributed heterogeneous environment. To this end, we are working with our
customers in creating the MCM-DPM. The resultant prototype can be expected to reduce design
cycle time while facilitating the jobs of designers and managers alike. The unique aspects of our
technical approach are presented in the Table E-2 below.

Table E-2.
Unique Aspects of the Technical Approach

Design problem schema guides dynamic flow generation.

Integrated representation of product and process at multiple levels of abstraction assures
product-process compatibility after introducing changes, facilitates explicit status tracking of
resources and activities as well as the evolving state of the product, and allows accurate
estimation of earned value.

Strikes optimum balance between design flexibility and management control through
multi-perspective entry into the design process and multiple options after completion of each
activity.

1 Supports multiple design objectives (e.g. brand new design, verification of a specific aspect of
a design, resuming work on an unfinished "design object," and adapting a previous design).

1 Allows design process tracking over a LAN/WAN within a heterogeneous design
environment (multiple platforms, certain tools run only on certain platforms).

Product
The MCM-DPM, the end product will be written in C++. The system, which will be architected
within a client-server configuration will be supported by a COTS repository and communication
backbone. The commercial product, called ProcessEdge™/MCM will be available on Windows,
Windows NT, and UNIX platforms. The MCM-DPM will facilitate the MCM design process
by:

• managing roles, tools and data created during design;
• providing designers with multiple entry perspectives, i.e., goal, tool, data/product, or

flow, before converging on a specific activity;
• guiding designers through the design process with dynamically defined flows;
• automatically collecting performance data (metrics);
• orchestrating and coordinating activities of a collaborative design team;
• computing earned value, and tracking cost and schedule variances;
• providing electronic forms (i.e., templates) for WA, ACO, ECR, sign-offs;
• incorporating e-mail communications for non-realtime communications;
• allowing designers to work with different COTS MCM design toolkits.

Intelligent Systems Technology, Inc. m
Payoffs
The MCM-DPM will produce several payoffs. For the EDA community, it will offer the first
dynamic process flow-driven design process management system that tracks the process over a
LAN/WAN within a distributed heterogeneous design environment. For the MCM and ASEM
community, it will provide an effective means for significantly compressing design cycle time.
For ARPA, it will make a significant contribution to the Multichip Integration and ASEM
Programs while advancing the state-of-the-art in scalable process support technologies. For
Intelligent Systems Technology, Inc. (ISTI), it will result in a commercially viable product that
can be taken to several other vertical markets (e.g., manufacturing, banking, health care)
requiring workflow management.

Intelligent Systems Technology, Inc. 12
1. INTRODUCTION

1.1 The MCM Design Process Management Problem
The commercialization of Multi-chip Module-based products can be dramatically accelerated by
reducing the cost and design cycle time of multi-chip modules (MCMs). These are two of the five
key objectives of ARPA's Multi-chip Integration program which is directed to achieving a ten-
fold improvement in NRE costs and cycle time while assuring first pass success in MCM design.
The key drivers of NRE cost and design cycle time reductions are equipment, materials,
processes, and design process management. Data collected at Hughes Aircraft Company on some
recent projects indicate that design cycle time, i.e., elapsed time, tends to be roughly an order of
magnitude greater than actual worked time. Analysis of such data revealed that dead times and
waiting times were principally responsible for this difference. With the introduction of manual
design process management practices at Hughes Newport Beach, design cycle time was greatly
improved. Today, design process management has been identified as a key requirement in MCM
design with the potential of dramatically improving team productivity and design cycle time with
commensurate reduction in costs.

MCM design is a complex process with multiple design iterations and complex tradeoffs. MCM
designs are driven by specific objectives or needs - higher speed, smaller size, lower power
and/or reduced cost - that is not expected to be met with conventional packaging methods.
Design is typically done by a collaborative group with geographically dispersed members.
Members of the group need to concurrently access design data from their various locations. The
EDA tools that are used during design come from different vendors. Designers tend to work on
more than one design at a time. Different companies have their own "best practice" process
which they follow during design. Occasionally, available EDA tools affect design flow in that
some design tools are based on "postulate a layout-analyze-iterate" design paradigm while the
more recent tools'are based on "capture all known requirements-synthesize-refine" design
paradigm.

Given the complexity of the design process, design process management has been
understandably an elusive goal in electronic design automation. There are several technical
deficiencies and economic issues that have to be successfully tackled before creating a successful
design process management solution (Table 1-1).

Table 1-1.
Historical Challenges to Design Process Management

■ Absence of an underlying process management methodology.
' Incomplete, representation of the problem.
' Lack of customizability in the process management software.
' Expensive runtime license of commercial-off-the-shelf repositories.
1 Absence of relevant data collection procedures.
■ Absence of standards-compliant communication backbone.

The methodological deficiency stems from the fact that the design process with conventional
EDA tools tends to be ad hoc and primarily defined by the available EDA tools, i.e., tool-driven.
As such, the design process with existing EDA tools continues to be implicit, hard-coded, and
tool-driven, rather than explicit, reconfigurable, and task-driven.

Intelligent Systems Technology, Inc. BE
The representation problem is concerned with the semantic "completeness" of the design problem
representation. The explicit representation of all key aspects of the design process is required for
process tailoring, tracking, measurement, intervention, and feedback. Relieving designers from
having to deal with low level details of coordination and synchronization allows them to
concentrate on the more innovative aspects of design. This recognition is a central theme in
design process management.

Direct monitoring of the operations performed by the various tools (residing on different
platforms) on the different "design objects" is key to tracking progress. Without this capability,
tool invocation and termination events have to be used to infer the beginning and completion of
activities. This approach is clearly inadequate because one has to infer the
commencement/completion of an activity on the basis of tool invocation and termination, rather
than direct knowledge of actual object manipulation.

Tracking "earned value" is another important aspect of design management. To date, project
management tools are unable to provide up-to-date, accurate information about MCM design
progress in terms of product evolution and process progress. As a result, design decisions are
often based on outdated and unrealistic information.

Successful implementation of an MCM Design Process Manager (MCM-DPM) has the potential
of significantly reducing both elapsed time as well as optimizing resource utilization - the two
key drivers of cycle time and cost. Recent advances in integrated product-process representation,
dynamic process flow modeling, object-oriented modeling approaches, distributed object
management environments, and metrology have made it feasible to implement design process
management within electronic design automation environments. This recognition provided the
impetus for the work reported in this document.

1.2 Project Objectives
The overall goal of this effort is to develop, evaluate, and commercialize the MCM-DPM, a
scalable, customizable design process management software for use in Defense as well as
commercial MCM design applications. The specific objectives of Phase I are to:

1. Specify a MCM design problem representation methodology.
2. Specify functionality, architecture, and metrics for MCM design process management.
3. Develop and demonstrate "proof-of-concept" prototype.
4. Create a Phase II implementation and transition plan.

The first objective is concerned with creating a scalable, semantically complete, integrated and
customizable representation of the MCM design problem. This representation provides the
foundation for design process management, as well as metrics specification. Specifically, the
integrated representation is key to monitoring/tracking, querying and measuring the progress of
individual designs when multiple "product' are being designed. Customizability is key to
tailoring a reference model to each customer's organization and design practices. Finally,
compliance with evolving standards (e.g., CFI) is important for software portability and third
party tool integration. The second objective is concerned with the design of the MCM-DPM. A
prerequisite to achieving this objective is capturing and analyzing existing manual design process
management practices. Such analysis is central to identifying deficiencies in existing practices,
and targeting improvement opportunities. A central issue in satisfying the second objective is
creating an architecture that leverages standards-compliant COTS distributed object management
tools and repositories. The third objective is concerned with communicating the design process

Intelligent Systems Technology, Inc. E
management concept to sponsors, customers, end users and developers to elicit meaningful
feedback before embarking on Phase II. The fourth objective is concerned with developing a
Phase II implementation plan that identifies the key tasks, their inter-relationships, as well as key
demonstration milestones.

1.3 Related Work
Related work is ongoing both in academe as well as industry. The Bibliography includes a list of
relevant work in this area. Minerva, a prototype design process manager developed at the
Carnegie-Mellon University, offers four levels of abstraction (i.e., problem, CAD task,
resource, component) to represent the overall design process. Minerva's overall benefit is
realized when it is incorporated into a CAD framework (e.g., Odyssey), that supports resource
and CAD task management.

Hercules, also from Carnegie-Mellon, is a task management software that employs task schema
as the basis for dynamically defined process flows and multiple entry perspectives. However,
these software prototypes are research environments with no commercialization plans. Neither
tool has been applied to the MCM design management problem.

Knapp's Design Planning Engine (DPE) is a research prototype that generates plans for invoking
CAD tools to realize design functions. DPE employs planning at the design task level, rather
than at the process level. DPE does not offer process customization facilities.

The Engineering Process Management System (EPMS) from Syscon Corporation is another
related development. EPMS is focused on workflow automation within an electronic shared-data
information environment. Its ultimate goal is enterprise integration. Since EPMS is not
specifically designed for design process management, its representation capabilities are not well
suited for design.

Mentor Graphics Corporation (MGC) has developed PCB-Process Builder, a collection of product
data management tools that provide printed circuit board (PCB) designers and project managers
with off-the-shelf design process management capabilities. Based on MGC's WorkXpert workflow
management family of products, PCB-Process Builder consists of PCB-Process Toolkit, FlowXpert
and XpertBuilder. The PCB Toolkit contains MGC-recommended customizable concurrent board
design process flows. FlowXpert is a multi-user application that offers a graphical view of design
flows, task and data tracking, automated design steps, and a history of actions taken to complete the
design. It allows project managers to view design progress and detect occurrence of potential data
bottlenecks. XpertBuilder is a graphical drag and drop tool that enables engineers to define or
modify process flows, and describe the relationships and dependencies between the flow steps.
(PCB-Process Builder with three FlowXperts is priced at $30K. The products are also available
individually with PCB-Process Toolkit at $5K, FlowXpert at $5K, and XpertBuilder at $15K.) Once
again, the fact that design flow is prescribed a priori is a deficiency with this tool in so far as MCM
design is concerned, given the rich set of tradeoffs and iterations that are the defining characteristics
of MCM design.

1.4 Phase I Accomplishments
In Phase I, we created a complete set of requirements for the MCM-DPM with Hughes
personnel. We then created a comprehensive model of the MCM design problem. We elicited
the requisite knowledge to populate the model (see Appendix B for results of a sample
elicitation). We then storyboarded, reviewed, and refined the usage concept with end users at

Intelligent Systems Technology, Inc. BE
Hughes Aircraft Company. We also evaluated multiple implementation approaches before
adopting one that met our requirements. Table 1-2 summarizes the technical accomplishments in
Phase I.

Table 1-2.
Phase I Accomplishments

1 Elicited a complete set of requirements for MCM Design Process Manager including the requirements
for tailoring the product-process representation.

1 Created a semantically complete MCM design problem schema to capture problem domain constraints
as well as guide the design process.

1 Created a design process management approach based on dynamically defined flow, multi-perspective
design process entry, and multiple entry and exit points.
- realtime instantiation, customization, and management of design process flows

' Populated the problem schema with domain-specific as well as Hughes-specific data.
• Evaluated and identified several COTS software packages in support of design process management
(GUI, repository, object request broker technology for distributed computing systems).

1 Created concept of operation prototype in the form of a series of Windows '95 screens.
1 Developed a Phase II implementation plan.

1.5 Report Roadmap
Section 2 describes the system concept and functionality of the MCM-DPM. Section 3 presents
the architecture of the MCM-DPM. Section 4 presents the MCM-DPM system implementation.
Section 5 presents the Phase I Prototype in the form of Windows '95 screens with appropriate
explanations. Section 6 presents the Phase II implementation plan.

Intelligent Systems Technology, Inc. e
2. SYSTEM CONCEPT AND FUNCTIONALITY

2.1 System Concept
Ideally, the design process and its management should drive MCM tool specification and
development. However, in reality there are several different MCM toolkits already on the
market. Hence, the design process management software.should be capable of working with
these toolkits regardless of the underlying methodology embodied in these tools. In general,
MCM toolkits are based on one of two different design metaphors. The first is the traditional
approach based on "postulate (a layout)-analyze-iterate." The tools based on this design
approach tend not to concurrently optimize electrical, thermal and packaging tradeoffs. As a
result, the process flow tends to have several iteration loops as and when conflicts and constraint
violations are discovered due to interactions between electrical, thermal, and packaging
considerations. The second approach is based on "known requirements capture-synthesize-
refine" paradigm. In this approach, multiple factors involved in design are identified and
considered simultaneously during design optimization. Tools patterned on this paradigm (e.g.,
Interconnectix tools) circumvent those design iterations that result from sequential consideration
of design factors. In other words, the latter approach is based on concurrent optimization of
tradeoffs while the former is based on sequential optimization. The MCM Design Process
Manager (MCM-DPM) is being designed to work with either approach, i.e., it is methodology-
independent.

The next important consideration has to do with designer perspective. Designers "enter" the
design process from different perspectives before converging on and performing a design
activity. The designer can undertake the design process with the intent to create a design from
scratch, create a partial redesign, verify an aspect of the design, or complete the design of an
unfinished component. The MCM-DPM will offer a common user interface to achieve these
objectives. It will provide a graph-based, graphical visualization interface that conveys: (a) the
status of activities, roles, tools; (b) the state of the design process in terms of roles, data, tools,
and design objects in use at any point in time; and (c) the state of the evolving product.

The MCM-DPM employs an integrated representation of the design problem that relates design
goals, process, product, tools, roles, and data. This representation serves as the reference model
to guide the design process, provides the basis for constructing dynamic process flows, and
enables the accurate computation of "earned value." Figure 2-1 provides an overview of the key
components involved in the MCM-DPM system concept.

Figure 2-1. The MCM-DPM System Concept.

Intelligent Systems Technology, Inc. m
2.2 Realworld Design Scenarios
There are different realworld design scenarios that drive the requirements of the MCM-DPM.
The designer may be undertaking a previously encountered problem or a brand new problem.
For the former, the designer is interested in opportunity for reuse of past solutions. Occasionally
legacy information in the form of previous designs or flows can be reused completely or in part,
thereby simplifying the design process. For a brand new problem, the designer may enter and
examine the design process from different perspectives before converging on an activity (Figure
2-2). To this end, MCM-DPM, will offer four different entry perspectives: goal/requirements,
activity, data/product, and flow. When the designer enters the process from a goal, data/product,
and flow perspective, he/she eventually converges on a specific activity and then selects an
appropriate tool. If the designer picks a specific flow to follow, he/she could make minor
modifications to the flow or its parameters. The resulting activity sequence is then pursued by
the designer.

problem stated as

QED-

a design goal

need to perform

-HZED-

stSST ^[T^O-HEEEI-*£1I]
tackled before

new design or
major change to
existing design

H^| IPPD j^JActivity] H Tool 1

a specific task/activity
»|Activity|—*-| Tool |

previously encountered problem I
Cnnnnrtnnitv for reuse, nf flow'l *" I

accept flow "as is" or
make minor changes

»-|Activity|—►! Tool |

resuming work on a componen

design or starting with fairly
stable product specification

H Data ► Activity Tool

Figure 2-2. Entry Perspective is a Function of Initial Conditions

Table 2-1 compares and contrasts the different approaches in terms of their prerequisites, their
applicability to the design process, and their appropriate context.

Intelligent Systems Technology, Inc. e
Table 2-1.

Design Perspectives
\ Candidate
\ Approaches

ComparisonV
Criteria \

Goal-Driven Tool-Enabled Data-Driven Plan/Flow-Enabled

Starting Point designer selects a goal;
goal is associated with
a task in task schema

designer selects
tool-entity or
tool-instance

designer selects existing
data, e.g., initial product
spec, design object as
starting point

designer selects a flow
from a flow library

Design
Context(s)

used when attacking a
new design problem or
subproblem

used when interested in
performing a specific
task or verifying a
certain performance,
e.g., thermal analysis

used when product spec is
reasonably stable or when
resuming work with a
design object; reuse
product

used when repeating a
common design
activity; reuse activity

Prerequisites knowledge of goal;
goal embedded in a
task schema

availability of tool or
tool instance

access to data associated
with design object or
product breakdown
structure, e.g., pointer to
data in CAD tool data base

required flow available
in flow library

Comments essentially solving the
problem from scratch
with or without legacy
constraints

used to spotcheck or
verify results of a
specific process step

frequent starting point
when work in progress with
a specific design object

reuse of previously
defined flows reduces
time and incidence of
errors

2.3 Initial Conditions
The initial conditions can dramatically change the design process. Initial conditions pertain to the
state of the product as well as the state of its design and manufacturing processes. The possible
initial conditions and the accompanying problem statement are shown in Table 2-2.

Table 2-2.
Initial Conditions Define the Problem Statement

Problem
Type Initial Condition Problem Statement Solution Type

I Fairly stable product
specifications

Create process for designing
and/or manufacturing the product.

Process innovation

n Initial product specs &
process specs./tech.
constraints

Create conflict-free final product
and process design.

Concurrent product-
process optimization

m Design goal Create a confict-free product and
process design from scratch.

Invention

The majority of MCM design problem will fall under the category of a Type II problem, i.e.,
product design objectives exist in the form of initial product specifications, MCM tools exist with
some default process sequence, and the design objective is to create an MCM design that satisfies
product specifications using available tools in the proper sequence.

10

Intelligent Systems Technology, Inc. m
2.4 Product Functionality
Broadly speaking, MCM-DPM will be a distributed, integrated MCM design environment that
will enable a group of designers to design MCMs rapidly and efficiently. Specifically, MCM-
DPM will support:

• integrated product-process representation;
• dynamic instantiation and customization of the reference MCM product-process model;
• a collaborative design environment implemented within a platform-independent computer

network for group coordination and cooperation;
• integration of MCM design tools from different EDA vendors;
• relevant standards such as CFI, CORBA 2.0, MOTIF/Windows.

2.5 Integrated Product-Process Representation
The basis for our MCM-DPM is an integrated product-process-based representation of the MCM
design problem (Figure 2-3). This representation, in principle, consists of three interrelated
parts: a product specification, a process specification, and a set of "integration" relations that
establish the production and consumption relationships between components of the product and
process specifications. The requirements for an integrated representation of the MCM design
problem are presented in Table 2-3.

Integrated Product-Process Representation

Goals / "^ satisfied by
Requirements

achieved by

Figure 2-3. The Integrated Product-Process Representation Schema Provides the Basis for
Creating Dynamically Defined Flows and Designer Guidance

11

Intelligent Systems Technology, Inc. E
Table 2-3.

Integrated Product-Process Representation Requirements

Be easy to understand by MCM designers and managers.

Model MCM process decomposition and product breakdown structure as well as their interactions.

Fit within an integrated representation that related goals, product, process, roles, tools, data, and
measurements.

Provide the basis for constructing dynamic process flows.

Describe resources (labor, technology), scheduling, costing, quality control, and others.

Support visualization through multiple, interacting process enactment views (graphic or textual).

Incorporate pointers that establish the semantic links to the real computer files that store the
product or product component design, e.g., CAD file within an existing EDA/CAD tool.

Provide the basis for MCM process management, costing, earned-value analysis, and enactment.

■ Provide the basis for integrating multi-vendor EDA tools.

The single most important component of the integrated representation is the set of relations
between products and processes. These relations, of an object-oriented class, serve a two-fold
purpose: 1) They define the conceptual production and consumption relationships between the
components of the design (i.e., product) specification and components of the process
specification. For example, a typical production relation might contain a part, i.e., a product
component, and a design activity, implying that the part is produced by that particular design
activity. 2) They link and provide access to the product components and the process fragments.
Through these relations, we can establish the semantic relationships between the product and
process representations.

2.6 Model Tailoring
The models underlying the MCM-DPM are customizable to different organizations, design
environments, computing platforms, management best practices, and legacy data and tools (Table
2-4).

Table 2-4.
Model Tailoring

Different toolkits (Mentor, Cadence, Intergraph, Interconnectix, Tanner Research).
Different platforms (UNIX, Windows, Windows NT).
Different management practices (Hughes, Motorola, IBM).
Different organizational structure (functional, product-oriented, process-centered).
Different legacy designs and flows.

2.7 IPPR-Driven Design and Design Process Management
The impetus for our Integrated Product-Process Representation (IPPR) approach stems from the
recognition that current MCM design approaches are oriented exclusively to individual designer
support or manager support. For example, the user/tool-driven approach, which supports tool
integration and automation, provides MCM designers with unlimited flexibility. However, the
design process using this approach is invisible to the other members (i.e., other designers,

12

Intelligent Systems Technology, Ine, DF
manager) of the collaborative design team. The lack of visibility into individual user activities
with this approach makes it extremely difficult to manage and coordinate design activities. On
the other hand, the process-driven approach emphasizes a formal and pre-defined MCM design
reference model. This approach requires MCM designers to follow a predefined process during
MCM design. While this approach facilitates management and control of the design process,
MCM designers are forced to work with several predetermined constraints that no longer hold or
cease to be applicable as the MCM design progresses. In addition, process inflexibility stifles
designer creativity with this approach. Process management based on the integrated product-
process representation approach overcomes the shortcomings of the preceding two approaches
while capitalizing on their respective strengths.

The integrated product-process representation (Figure 2-4) consists of:
1) process model with scheduling, costing, and other pertinent information;
2) process flow model with decomposition and execution dependency ordering;
3) product model with decomposition;
4) product-process model interaction relationships;
5) multiple process representation interface;
6) graphical visualization perspectives.

Object
Description

Computer
File

Product
Description

produced_by

Process
Description

Figure 2-4. Integration Representation - The Management Level

A key aspect of the integrated product-process representation is support for multiple dynamic
instantiation and customization of the representation. Generally speaking, the design process
model defined thus far consists of high level models that are largely independent of a specific
product design. While these process models are useful for offline process guidance and
conventional project management, they cannot be easily adapted for online realtime process
management and execution. This is because the flow in these process models are generally
defined without iteration loops and, therefore, are unable to reflect realworld design iterations.
Also, these process models do not include any product description and, therefore, cannot support
simultaneous performance and quality assessment/measurement of the evolving product design.
As such, it is not uncommon for such predefined process models to become reference
"shelfware," rather than an active guidance mechanism during design.

On the other hand, linking extraneous product information to a process model may make the
process model unmanageable. Also, one can expect several design iterations and product-related

13

Intelligent Systems Technology, Inc. e
tradeoffs to occur before a product specification/design is finalized. These design iterations lead
to an explosion in the number of process iterations and branches. Consequently, attempts to
define a process model prior to achieving stable product specification/design are impractical.

To circumvent these problems, our solution is based on dynamic instantiation and customization
of integrated product-process models for design management. It consists of the following steps:

1) A set of model fragments consisting of product components and their design process
flows is defined. Since the product components selected at this point are primitive
components that invariably are commercial-off-the-shelf items, their design process
flows are relatively uncomplicated and, consequently, easy to manage. The outcome of
this step is a component reference library that is (re)used during product design.

2) To start product design, the product manager selects a high-level design process
description (based on, for example, the company's general design guidelines) and
initiates the first process step which creates a top-level product design description. This
description is communicated to the designers. The designers expand on the product
design, and, at the same time, instantiate the design process model as additional product
components are designed and/or selected. This dynamic instantiation continues as long
as the product design continues to expand. New process steps are continually added or
deleted depending on the specific changes in the product design.

3) At any point during design, a complete process model can be constructed and used to
guide the design progress as well as estimate costs and compute earned value. It is
important to realize that the process model is valid only as long as the prevailing
product design is valid. When an existing product design is updated resulting in a new
product design, the corresponding process model is also updated. When this happens,
the management support tools (e.g., simulation, scheduling, cost estimation, earned
value tracking) must be re-run to update the predictions/assessments.

4) Finally, there are multiple entry perspectives into the design process (Figure 2-2). For
example, the designer can enter the design process from the product or the process
point of view. A designer may choose the process point of view when he/she wants to
follow a pre-defined process and continue to work on it. Alternatively, the designer
may choose to start MCM design directly from the product point of view . In this case,
the design process manager will show the current MCM design and allow the designer
to work on his/her assigned part of the MCM design. In either situation, the design
process manager will continually update the process and product representation based
on the designer's selection and update of the MCM design. This approach reflects
realworld situation which requires a critical balance between designer flexibility and
management control. The next section provides a sample usage scenario.

This model-based approach reflects realworld design situations which demand a critical balance
between designer flexibility and management control.

2.8 Dynamic Instantiation & Customization of the Reference Model
The concept of dynamic instantiation and customization of the reference MCM product-process
model stems from the realization that realworld MCM design processes are intrinsically complex,
highly dynamic and inexorably tied to the state and status of the product. Compounding the
problem is the fact that they vary from company to company based on starting conditions and
legacy requirements. As a result, attempts to define a priori a detailed, enactable MCM design
process cannot succeed. What is needed is a dynamic approach that continually (and
automatically) updates the design process description with changes in product design.

14

Intelligent Systems Technology, Inc. K
To this end, MCM-DPM will offer dynamic instantiation and customization with the following
functionalities:

• create MCM reference models that are based on generic design process guidelines and
generic MCM product design specification;

• instantiate the reference model to fit into a specific MCM design situation at the
beginning of a project;

• expand the instantiated model as more detailed product design description is created.
Where possible, the expansion will be automatic, i.e., new process fragments that are
responsible for the expanded product design will be added to the instantiated process
model without human intervention;

• when reference model exists for a new product design, the instantiated process model
will be customized and the user will be asked to create a new reference model.

2.9 Collaborative Design Environment
A collaborative design environment for group coordination and cooperation, will be implemented
within a platform-independent computer network. MCM-DPM will provide a collaborative
design environment for MCM design with design process management capabilities. Compared
to the existing EDA frameworks, MCM-DPM will offer several additional capabilities including:

execution of the instantiated process model to guide the MCM design process;
use of enactment progress information to coordinate individual designer activities,
including notification of readiness of specific activities, propagating state/status
changes, and updating product status;
use of execution progress information for management including progress report
generation, tracking, and schedule control;
MCM-DPM will be implemented within a distributed computer network (LAN or
WAN) to support geographically dispersed MCM design teams;
MCM-DPM will be implemented without reliance on a particular computer platform,
i.e., it will be platform-independent. To achieve this, COTS software components will
be carefully selected for incorporation within MCM-DPM.

2.10 Integration of Multi-Vendor MCM Design Tools
EDA environments today have to employ third party tools to support the entire MCM design
process. While various standards bodies are attacking the tool integration problem, progress has
been slow. In light of this fact, MCM-DPM is being designed to offer a preliminary solution to
the problem by providing a transparent integration mechanism that can achieve CFI objectives
without user intervention. In other words, MCM-DPM will deliver CFI-compatible tool
integration in a user-friendly fashion. Specifically, the product will support:

• flexible integration mechanisms for different types of EDA tools such as file-based or
data-based tools,

• dynamic and logical invocation of EDA tools during MCM design (physical invocation
means a designer has to know the physical path of an EDA tool as well as its invocation
parameters),

• flexible reconfiguration of EDA tools when a designer chooses a different, but
comparable EDA tool to replace the default tool predefined in MCM-DPM.

15

Intelligent Systems Technology, Inc. m
2.11 Compliance with Standards
Standards compliance (e.g., CAD Framework Initiative standards) is particularly important in
MCM design since the design process involves several different EDA vendors. As far as
standards are concerned, we have focused on two areas:

• platform-independent implementation so that MCM-DPM can be rapidly ported to a
specific platform as and when the need arises;

• the software, hardware, API, and interfaces used in MCM-DPM will comply with
existing and emerging industrial standards.

2.12 Performance Metrics
We have defined a set of metrics to evaluate the impact and utility of MCM-DPM in executing
and managing the MCM design process. First and foremost, the MCM-DPM approach will be
compared to current "best practice." The quantitative comparison metrics will be design cycle
time, design iterations, resource utilization efficiency, cost, and accuracy of earned value
tracking. The comparison will also be based on qualitative factors such as user acceptance,
designer flexibility, and management control (Table 2-5).

Table 2-5.
Qualitative Comparison Metrics

MCM designer acceptance.
MCM product manager acceptance.
Designer flexibility.
Management control.
Group coordination and collaboration support.
Multi-vendor tool integration support.
Distributed and multi-format MCM design data support.

The feasibility of MCM-DPM will also be established through integration with Hughes
DecoDesigner Toolkit or the Tanner Toolkit. This integration will serve a three-fold purpose: (1)
it will allow us to test whether MCM-DPM can successfully support tool invocation with the
DecoDesigner Toolkit or the Tanner Toolkit; (2) it will allow us to test whether MCM-DPM can
be used as an integration mechanism for loosely coupled MCM design tools. This could provide
an alternative tool integration approach from that used in conventional EDA frameworks; and (3)
the overall value of MCM-DPM will be determined by "loading" the Hughes MCM design
process into the MCM-DPM, inserting the resultant software into an "instrumented" Hughes
MCM design environment, and measuring improvement on key performance metrics.

16

Intelligent Systems Technology, Inc. H
3. MCM DESIGN PROBLEM-RELATED

KNOWLEDGE STRUCTURE

The system concept and design of the MCM Design Process Manager (MCM-DPM) is based on
several joint working sessions with subject matter experts at Hughes Microelectronics Division,
Newport Beach, California. Our objective was to capture their design process, a representative
breakdown of the MCM design, their tool suite, the various individuals (roles) involved in the
design process, the various interim products created, design metrics, design management
metrics, and earned value milestones. We were specifically interested in separating their "best
practice" (e.g., reviews, when they were held, activity entry and exit criteria, and design
completion criteria) form the generic MCM design process. Our intent was to be able to create
the Hughes process from the generic MCM design process through process tailoring and object
specialization.

Figure 3-1 shows the results of elicitation sessions devoted to capturing the MCM design
problem (goals, process fragments, tools, roles, interim product, end product breakdown,
earned value, design metrics, and process management). Figure 3-2 presents MCM Design
Requirements Hierarchy. Customer requirements are often stated in these terms, i.e., the
customer assigns values or constraints to this set of variables. Figures 3-3 and 3-4 present class-
instance hierarchies for EDA tools and roles. Figure 3-5 presents a breakout of the end products,
i.e., the footprint, nets, plots, files, and documentation.

The tools typically run on different platforms, e.g., the DecoDesigner-based on Mentor Graphics
toolkit and supporting third-party tools run on UNIX platforms. Tanner Toolkit runs on the PC
under DOS with Windows release expected shortly. The Hughes design team hopes to "mix and
match" the different toolkits and tools as necessary. Their cycle time analysis has clearly
indicated a pressing requirement for design process management.

17

Intelligent Systems Technology, Inc.

E^

H£

I 8

CD

g.2p
E C rt)
R © -o
~° 5
42 0- 2
c^co
o c ®

2 w -5 o 0) 3
1LDU.

a i
o 5

SQ.

Q.C
o «

ö £
Q. 3
E Q.

B
_7 E

co ^

5^1

ro 2 S
iSl
S co

v so

O 3 er

O 0)
* E
_ <v -.

ß
£•42
•S E
co a:

u. s
O >

li
O 0.

o a»
H >

§1

So
If
£1
a. tc

s x

S o
m tr

II € o
a> DC

S o

.1 S

cO

i S
o x

C " © t-
D1.5 C D)

■= 8 t S
ujuj a

-f-

O o

it

2 3

II

|5m

3 O
m er

.- 6

ill
o O tc
a) ^

o to .51

tun m

CC o
S c

E o

Ü Ü (

s 5:

Öl CD

a. a.

Q. C

4—

if«.

(0 cpz

S3«

S =
C E o ss
£•«•5 5

> co er <

Zinc
: s 8 J

? e

O >
On

li
O 0.

Q >

-f—

>Ü5

*i

>*< W ©

« O r= O
< m u. a.

öS o<
2 ü

c 'S

co £

» 1
o <

a

5 ...
■S 'S

»I™

■sis

o g
o rt
?5:
o -a
O ¥

< LL Q

£ B

™ S
^E
_ 0)
52

_ <u
$ CC

äJO ffl
>-£ |
W 0) t

11
? CC
o -c

v.s w £
Eo.ui
© O- <n
2T < <0

•2 8>J3
o <2 fö
< U. Q

__ ©
< 5

■Sw
o ©

cc o

3 ro -:

(0 c '
tvj « CC

o £
? o
O Q.
O D-

«5
E a ©
ai.b io
=: u. cd

.2 BijS

E e

^E
_. ©

il cc

4—

■j= er
co er

c
o

tu

c
o

J3

ca

E
e
3

&0

ai V u
O a .£.
s 2 -° 5iO Ü2

x

3
60

18

Intelligent Systems Technology, Inc.

►
o
'E
i_
CD
T

CD
D)
CO

Jd
O
CO
Q.

Q.
O
1-
XI
o
(5

| |

c
0)
E
o
5

IPS. o m
e
□>
'in

a

ü s

c
(D
E
c

> c
fUl.

►
0)
N

CO

X >- N

1 1 1

c _o
o
CD > c
o
ü

c g

D
c o
ü 2 o

55 1 1

► ►
C0 o ü CD

k- 2 O
tu Q.

CD
w n^n^

o

CD

O c
CD

I-Si ► WM

(1>
CD

CD
a to

Q.
CO 1 1 1

Cl> CD
t- t- ffl co
tn tn

' 1
CD

15
CO
>>
ü
CD f0

rt

t

g.
&
a

.£? 'S u a
CN

i

2
3
Ml

19

Intelligent Systems Technology, Inc.

o
o
I-
c
o>
35

S

* 4

a> o c «
_c
0)

to
O
T3
C

* *

r^H

T
a
o o
in
ü

!E

S
o

HO: *-»
c
a>
S

c
.2
■*—

CO
i_
XI
_1

ü
CD

|

3
o
C0
_1

ü
CD

1

E
i_

r:
o

<
ü
CD
2

Q.

CD
O

O
O
2

3
oc
o
ü
CD

|

o
o
1X5

CO
CD
o
CD
2

c
3
co

LL

ü
CD

>
o
o
o
2

| 1 1 1 1

o

M
"o o
H
<
Q
W
<r>

i

e D

S3

20

Intelligent Systems Technology, Ine,

<D
<U
C

5)
c

LU
4-*

o
c
s
to
je

(0
(D

05
O

T>
C

9)
C
O)
c

LU

"5
o

o
c
(0

-o

LU J*
V)

o
DC

E
Rt
a>
I-
c
O)

■tf)
V
Q

IS!

_c
'ö>
c

LU

15 u
'E
«5
x:
o

o

0)
::.C
o>

"in
<u
Q

J3
O c

(0
~3

i*

WO).
O)
(B
c
(B ±

B

3
"o

3

21

Intelligent Systems Technology, Inc.

c
0)
c
o
a
E
o
o
4-1

iO;
3
73
O
o.
•o
c

LU

I
Q

^^
a>

'—' LL

rn h-
n X
<3 LU

H
U
LU

u.
F 5
CO LL
o +■•

iz c
C/J O

< 0.

_J
0)

<

•
a.

•

<n
o
n co
a> o
> Q.
©

CD
Q. >,
O CB
H _J

r^^n

o c
(0

CÖ o

o

c u
c o ft
6 o u
- ü
3

•o
o

c w

u
3

22

Intelligent Systems Technology, Inc. E
4. SYSTEM ARCHITECTURE

In the previous sections, we have presented the requirements and system concept for the MCM
Design Process Manager (MCM-DPM). In this section, we present the system architecture and
key components. The MCM-DPM is a process management tool that supports the concurrent
execution of multiple MCM design activities using the modeling and execution approach
described in earlier sections. In general, the MCM-DPM provides a distributed and integrated
MCM design environment that enables a Collaborative design team to design MCMs with faster
cycle times and lower costs. Specifically, the MCM-DPM will support:

— integrated process/product representation as described earlier;
~ dynamic instantiation and customization of a reference MCM design process model;
— a collaborative environment for group coordination, which is implemented within a

platform-independent computer network;
— integration of EDA tools from different vendors to support MCM design;
— in doing the above, the MCM-DPM will comply with the existing and forthcoming

industrial standards (e.g., CORBA 2.0, CFI).

The MCM-DPM architecture is shown in Figure 4-1. Each component is described in the
following paragraphs.

Reference
Model Building

Figure 4-1. The MCM-DPM System Architecture.

23

Intelligent Systems Technology, Inc. 12
4.1 Reference Component Model Server
The Reference Component Model Server provides modeling, customization, and tailoring of
processes and products in support of design process management. First and foremost, it
manages access to reference process/product component models that are stored in the Process
Asset Data Base. Second, it supports concurrent manipulation of these product-process
component models by a team of users. The kinds of manipulation include: definition and
modeling, customization, and tailoring of product-process components. The Reference
Component Model Server accesses the Process Asset Data Base for product-process component
models. It serves the Reference Model Client and the Process Manager Client with reference
product-process component models.

The Process Asset Data Base provides a repository for storing product-process component
models. These component models describe various reference MCM design processes. These
reference models vary in terms of the levels of specificity, the specific company policies, and/or
the design technologies employed in the process. At the same time, the Process Asset Data Base
provides semantic relationships to distinguish between and to organize different but similar
reference MCM product-process models. Furthermore, the data base organization will support
high-level reuse of these reference models. The access to the Process Asset Data Base is solely
controlled by the Reference Component Model Server.

4.2 Reference Model Client
The Reference Model Client provides the user interface to define, customize, and tailor reference
MCM design product-process component models, which can be instantiated to support a
particular MCM design process instance. The Reference Model Client will support state-of-the-
art approaches for model definition and customization through its graphical user interface (GUI).
The model definition and customization capabilities will include different graphical views of a
reference model (e.g., process decomposition tree, process flow, product decomposition), click-
and-drop, and drag-and-drop. Users of the Reference Model Client are MCM design process
engineers. These individuals have the responsibility to define/create MCM design process
descriptions that are compatible with their respective company's policies, relevant MCM design
technologies, and requisite levels of specificity. The inputs to the Reference Model Client are
technological, organizational, and project-related. The output of the Reference Model Client is a
set of MCM product-process component models that can be instantiated in realworld MCM
projects. There could be multiple processes of the Reference Model Client at any point in time.

4.3 Process Manager Server
The Process Manager Server provides the major capabilities for MCM design management.
These capabilities include dynamic product-process instantiation, process execution, project
coordination, progress tracking, and measurement, and process history collection. It is the
responsibility of the Process Manager Server to create a project, and execute it based on a
customized and dynamic product-process model instance. The Process Manager Server controls
the access to the Project Asset Data Base. It stores and retrieves customized process and product
descriptions, process and progress management information, and collected process history to and
from the Project Asset Data Base. It servers the Process Manager Client for the management
information and the Designer Client for the design information respectively.

The Project Asset Data Base provides a repository for information about individual MCM design
projects. This information includes customized product and process descriptions, process and

24

Intelligent Systems Technology, Ine, DP
progress management information, and process history data. The use of the Project Asset Data
Base is solely controlled by the Process Manager Server.

4.4 Process Manager Client
The Process Manager Client provides the user interface(s) for managing MCM design processes.
MCM design management involves dynamic instantiation of process flows and product
decomposition, tracking and control of process progress, and collection of process history data.
The Process Manager Client invokes the Process Manager Server to accomplish these functions
and to support its state-of-the-art GUI. Users of the Process Manager Client are MCM design
managers whose responsibilities also include project management. Information regarding
individual MCM design projects as well as their subsequent changes are the inputs to the Process
Manager Client. The outputs of the Process Manager Client are project progress reports,
measurement data, and historic data, i.e., audit trail. There could be multiple processes of the
Process Manager Client at any point in time, with each process associated with a concurrently
operating MCM manager.

4.5 Designer Client
The Designer Client provides user interfaces for enacting MCM design processes. The execution
of a MCM design process involves: 1) following the guidance of the process model during
MCM design, 2) continually expanding and refining the MCM product design, and 3) invoking
MCM design tools on MCM design data (so-called tool integration). The Designer Client
provides logical and collaborative workspaces (data and tools) for MCM designers to perform
MCM design by following the instantiated process model. On the other hand, it is also a
dynamic driver that automatically records the process progress, update the process state, and
prompts other designers with proper job assignment. The Designer Client sends requests to the
Process Manager Server to perform these functions. Users of the Designer Client are MCM
designers. Inputs to the Design Client are design data and activities; its outputs are updates to
both the MCM design (i.e., the product model) and the process model. There could be multiple
processes of the Designer Client, each associated with a concurrently working MCM designer.

4.6 EDA Server
The EDA Server provides MCM design data and tool management. In fact, the EDA Server will
be a COTS EDA toolkit integrated into the MCM-DPM. At this time, the candidate EDA toolkits
being considered for integration are the Hughes DecoDesigner for UNIX platforms and Tanner
toolkits for Windows platforms. These toolkits are currently in use in our target environment at
Hughes, Newport Beach. The EDA Server is accessed by the Designer Client when a designer,
executing a process step, invokes an EDA tool on a particular design object. At this time, the
EDA Server provides a copy of the design object and "starts" the EDA tool which manipulates
the object. The output of the EDA Server is a MCM design fragment that is stored in the EDA
product data base.

The EDA Product Data Base provides a repository for storing MCM design data. The data is the
output of a MCM design process. Depending on the EDA toolkit, there are different ways for
implementing such a data repository. For example, for the Tanner toolkit, the data repository
will take the form of a set of PC binary files with proprietary data format. In other instances,
COTS or proprietary data bases could be more appropriate. To some extent, the MCM-DPM
does not need to access the internal implementation details of the EDA Product Data Base Server.
Rather, it needs the capability to access the various pointers to the different design objects used

25

Intelligent Systems Technology, Inc. 12
and to transfer these pointers to the appropriate EDA design tools when needed. The use of the
EDA Product Data Base Server will be solely controlled by the EDA Server.

4.7 EDA Toolkit Server
The EDA Toolkit Server provides a set of software tools to support MCM design activities.
Most likely, it will be a collection of EDA tools from different EDA vendors. In this case, these
tools will typically support different parts of the MCM design process. At the present time, we
are focusing on the DecoDesigner or Tanner toolkit to demonstrate the feasibility of our MCM
design process management concept. (Both these toolkits are available and in use in our target
environment). To some extent, the MCM-DPM will not need to access the internal
implementation details of the EDA Toolkit Server. It only needs to be able to invoke individual
EDA tools and pass necessary parameters to it. The use of the EDA Toolkit Server will be solely
controlled by the EDA Server.

26

Intelligent Systems Technology, Inc. \&

5. SYSTEM IMPLEMENTATION

In this section we present our system implementation approach including standards compliance,
repository strategy, platform strategy, integration strategy, and heterogeneity strategy. We then
identify the different types of constraints and present our approach to handling them. We
conclude with an evaluation of three different implementation options and present our rationale
for the selected option.

The basic requirements for the MCM-DPM are:
a) integrated representation of MCM product and process;
b) execution and management of MCM design process, including process tracking,

guidance, notification, and coordination within a distributed environment;
c) integration of EDA tools from different vendors;
d) support of heterogeneous MCM design environments.

5.1 Implementation Strategies
Our overall implementation approach is to leverage existing state-of-the-art software technology
wherever possible to reduce development time and cost, and to comply with industrial standards
in all areas that pertain to the MCM Design Process Manager (MCM-DPM). The individual
strategies within this overall approach include standards compliance strategy, heterogeneity
strategy, tool integration strategy, and repository strategy.

5.1.1 Standards Compliance Strategy
We will comply with industrial standards in all areas that concern the MCM-DPM including
GUI, repository, tool integration, and communication network. The MCM-DPM provides
process management services to MCM designers through a network of computers. The chosen
network protocol will be EINet-based because it consists of standard network services in the
EDA domain.

5.1.2 Integration Strategy
Our strategy is to support multiple cooperating users with EDA tools and data that can be
encapsulated for integration and then presented to the users through synchronous and
asynchronous user interfaces. To this end, we will leverage the capabilities of XShell, a COTS
Distributed Object Management Environment (DOME) for tool encapsulation and integration.

5.1.3 Heterogeneity Strategy
One of the key requirements for the MCM-DPM is to support a heterogeneous design
environment, in which different design tools run on different computing platforms. For
example, the circuit layout tool under MS Windows on a PC creates a VLSI circuit that is fed to a
thermal analysis tool under X-Window on a SUN workstation. It is crucial for the MCM-DPM
to support such transparent transporting and sharing of data.

To this end, our heterogeneity strategy supports a multi-layered implementation: the first layer is
the physical network layer where a set of computers of different platforms are networked to form
a LAN (a WAN in the future). In reality, either NetWare, Ethernet, or TCP/IP network system
can be used since they all support heterogeneous computer networks.

The second layer is the repository layer where data under the purview of the MCM-DPM are
stored and accessed. Such a repository should support distributed and heterogeneous data

27

Intelligent Systems Technology, Inc. K1

management. The candidate OODB we've selected for the MCM-DPM , i.e., ObjectStore,
satisfies this requirement.

The third layer is the process server layer where process instances are enacted and monitored. At
this time, we envision that there will be only one process server per EDA design environment.
However, the server will be able to communicate with clients that reside on computers of
different platforms within the environment. A very important capability of the process server is
to choose appropriate computer platform for a given design activity and to shift the activity to the
platform since the tool used in that activity runs only on that platform. The selected DOME
satisfies this requirement.

The final layer is the client layer where actual design work is carried out. Since the clients reside
on computer platforms from different vendors, it is very important to implement those clients for
both UNIX workstations or PCs. To this end, our platform strategy is designed to ensure the
simultaneous platform availability of the clients at very low cost.

Since the MCM-DPM implementation will be platform-independent, we have two choices for our
platform strategy: (1) implement first on PC, then migrate to UNIX, (2) implement first on a
UNIX workstation then migrate to PC. Each option is discussed next.

1) PC Implementation With a Pre-defined Migration Path to UNDC. This option calls for
the use of Microsoft's Visual C++ in MS Windows or Windows/NT to implement the
MCM-DPM. This implementation, as claimed by Microsoft, will support both Win 16-
type and Win32-type computers such as Motorola 80*86, Apple Macintosh, and DEC's
Alpha workstation including operating systems such as MS Windows, Windows/NT,
OS/2, Power PC, and Power Mac. Later, we will use a Visual C++-based migration
tool, such as Bristol Technology's WIND/U, to port the software to UNIX
workstations, (e.g., as SUN Sparc, SGI, HP 9000, and AIX 6000). Furthermore,
since the two steps can be performed in parallel, the MCM-DPM can be made available
on UNIX-based workstations shortly after the PC version. Compared to other
implementation strategies, this strategy offers a high degree of platform availability at
relatively low cost.

We have elected to go with Visual C++ as our GUI builder as opposed to using
platform-independent GUI builders such as XVT that help migration through multiple
compilations of the same code on different platforms. We based our choice on the fact
that since Microsoft is actively developing and marketing Microsoft Visual C++ as a
multiple platform development toolkit, it is highly questionable whether these small
GUI builder can survive. As such, taking Microsoft Visual C++ is a safe and low cost
approach to platform-independent implementation strategy.

2) UNIX-based Downward Migration. This strategy calls for developing the software
first on a UNIX platform such as SUN workstation (or LINIX on PCs) and then
migrating it to Windows-based PCs. The main disadvantages of this approach are the
high cost associated with development on UNIX workstations, if that is the starting
point, and the incompatibility between UNIX workstations and PCs. On the other
hand, UNIX workstations have the largest installed base in the EDA community. Also,
initial development could be done on PCs under LUNIX and then migrated to
Windows.

28

Intelligent Systems Technology, Inc. K
5.1.4 Repository Strategy
Repository is an integral part of the MCM-DPM for storing process, product, and project data.
At the same time, our software has to interact with existing EDA tools that have their own
data/product repository. As such, the repository requirements for the MCM-DPM are mixed.
On the one hand, the MCM-DPM needs its own repository. On the other hand, it has to be
integrated with repositories associated with EDA tools. Furthermore, these different repositories
could reside in a distributed computer network.

Our strategy for the MCM-DPM repository will be executed in of two stages: During the first
stage, we will select and use an object-oriented data base (OODB) for storing information that is
created and used within the MCM-DPM. Examples of such information include: the integrated
product-process representation, and some project-related information. After carefully evaluating
existing OODB products on the market, we have chosen ObjectStore from Object Design, Inc. as
our repository. For the past few years, ObjectStore has been the market leader in OODB arena
and its benchmark has consistently outperformed those of its competitors. We will build object-
oriented representation on top of ObjectStore and provide access mechanisms as part of MCM-
DPM's data servers. The second stage is to selectively integrate legacy data repositories
associated with EDA tools with ObjectStore. This stage involves building relationships and
access mechanisms from our repository, i.e., ObjectStore, to the EDA repositories without
compromising the contents of the EDA repositories.

5.2 Evaluation of Implementation Strategies
There are three possible implementation strategies for the MCM-DPM's process server (that
includes primarily the process management engine):

1. In-house development.
2. Use of a COTS workflow management tool.
3. Use of XShell, a Distributed Object Management Environment (DOME).

In the following paragraphs, we review the pros and cons of these three approaches before
adopting one as our implementation strategy.

1. In-house development. With in-house development, we can create a prototype that
satisfies all the requirements. We have already discussed the key technical issues and
presented the design of the MCM-DPM in earlier sections. So we could certainly
pursue this route. However, the two main disadvantages of this strategy are 1) the
high cost of the development and 2) the long delivery time. As a result, we have
eliminated this option from further consideration.

2. Use of a COTS Workflow Management Tool. This strategy is based on selecting and
integrating a COTS workflow management tool into the MCM-DPM. This workflow
tool would serve as the process server engine. Workflow management products have
existed on the market since 1994. Some of these tools have been successfully deployed
in certain application areas. Examples of these products include Lotus Notes from
Lotus Development, Inc., WorkMan from Reach Software, Inc., Processlt from
AT&T, and InConcert from Xsoft.

The two main advantages of this strategy are: 1) fast prototyping and demonstration by
leveraging an existing COTS workflow tool; and 2) lower development costs. In this
case, the main development issue is how to integrate the tool into the MCM-DPM to

29

Intelligent Systems Technology, Inc. E
support all necessary requirements. This strategy, therefore, does not require a major
software engineering undertaking.

The disadvantages of this strategy include 1) dependency on the tool. Since the tool
will provide process management capabilities, satisfaction of some MCM-DPM
requirements will depend on the capabilities of the tool selected. For example, if the
tool does not support distributed process tracking over a network, the MCM-DPM will
be unable to provide this capability, a critical requirement for design process
management. Most of the existing COTS workflow tools do not comply with the EDA
standards simply because they are designed for application domains other than EDA.
For example, there are COTS tools that support distributed workflow management.
However, the communication protocols used in these tools are not CORBA compatible.
As such, it will be very difficult for the MCM-DPM built on top of such tools to
comply with EDA standards.

Use of XShell. XShell from Expersoft, Inc., is a DOME that supports the
development of distributed software systems. The key features of XShell include:
transparent distributed processing and communication, automatically generated remote
object interfaces, dynamic CPU process creation and management, object-oriented
model for parallel and asynchronous processing, simple and natural extensions to C++,
and CORBA compliance. Last October, ARPA awarded a two-year, $24 million grant
to a consortium, of which Expersoft is a member, to build a CORBA-compliant
distributed object management infrastructure for commercial and defense applications.

The implementation strategy, based on leveraging the capabilities of XShell, will create
a high-level process management engine on top of XShell's distributed object
management environment. This entails 1) building a distributed object hierarchy for the
integrated MCM product and process representation, 2) enhance XShell's distributed
CPU process creation and management capabilities to support high-level distributed
MCM design process creation and management, and 3) build a non-programmer user
interface to distributed process creation and management for MCM designers and
managers. In sum, this strategy expands XShell's existing capabilities to high-level
distributed process management.

The advantages of this strategy include: 1) industrial-strength implementation. This
strategy, if successfully executed, will create an industrial-strength, standards-
compliant, general-purpose solution and implementation to the problem of distributed
process management. Such a general solution is expected to greatly improve the
productivity of MCM design. It is also applicable to other application domains (e.g.,
board design, manufacturing, complex systems development, ship building); 2)
compliance with EDA standards. As indicated earlier, XShell is a front-runner among
COTS products planning on delivering a CORBA 2.0 compliant solution. XShell also
complies with other existing EDA standards such as object-oriented design, analysis,
programming, and networking. By using a product with high-level standards
compliance, the MCM-DPM will comply with all applicable EDA standards without
engaging in a heavy implementation effort.

The disadvantages of this strategy are: 1) significant software engineering effort. This
strategy requires large-scale object-oriented programming effort. XShell is an object-

30

Intelligent Systems Technology, Inc. H
oriented programming tool, and C++ tool in particular. As with other C++ tools, it
requires high-level programming and integration skills which typically take a long time
to acquire. 2) preferred development on high-end computer hardware. At this time,
XShell is most reliable on UNIX workstations. Therefore, if we adopt the XShell
route, we believe it is a wise choice to start development on UNIX workstations, and
possible a UNIX-based LAN. This option would require a somewhat larger computer
hardware investment.

5.3 XShell-based Implementation
As indicated earlier, we currently plan on leveraging XShell for implementing a truly distributed
process management mechanism. This section describes our technical approach for this strategy.

XShell is a distributed object management environment that provides distributed object definition
and dynamic CPU process creation and management. Our strategy leverages these two
capabilities. First, we will use the distributed object definition facilities of XShell to specify our
integrated MCM product and process representation. However, since XShell is not an object-
oriented repository, we will still use an object-oriented database to physically store the MCM
product and process representation. This strategy requires the integration of XShell with an
object-oriented database. Fortunately, XShell and ObjectStore has been integrated by Expersoft.
We plan on leveraging this integrated software package. The combination of XShell and
ObjectStore provides a sound basis for high-level distributed MCM design process management.

The key to this strategy is to expand XShell's capabilities to create and manage distributed
objects (realized as CPU processes). At this time, XShell creates, tracks, and manages
distributed objects within a distributed, heterogeneous environment, such as LAN of PCs, Macs,
and UNIX workstations. Our strategy calls for a mechanism to create, track, and manage MCM
design processes within a distributed, heterogeneous environment. Our approach, therefore,
requires the expansion of XShell's distributed "CPU process" object creation and management
facilities to manage high-level MCM design processes. Achieving this objective requires the
cooperation from Expersoft's technical staff, which we have. In fact, we have started .
discussions with Expersoft regarding this required expansion.

For the MCM Design Process Manager to provide a total, recoverable view of the current (and
previous) states in the development process, certain monitoring and distribution requirements
must be met. First, whenever key distributed events occur, they must be monitored to allow for
fault tolerance as well as to provide information for dynamically reconfiguring the distribution of
distributed objects for optimal CPU/Network Bandwidth utilization. Second, all events that
result in a change of state to the model must be logged so that the system can be "rolled back" to
a previous state at any time. Third, system state changes in a distributed environment may cause
a cascade of distributed actions to occur across the network. Most if not all functionality must be
asynchronous in nature to prevent any process from being halted while waiting for the effects of
all the distributed actions to be completed. The proper use of event logging and asynchronous
communication (with event queueing) will allow applications to continue processing requests
while a service is being performed for them elsewhere on the network.

Expersoft's XShell has built in tools/objects for event logging, asynchronous communications
(with event queueing) as well as integration with OODB technology for the persistence of
model/system state. A Monitoring and Distribution Object (MDO) may be built to include all of
the functionality described above as regards to the monitoring and logging of model/system state.

31

Intelligent Systems Technology, Inc. E
But this MDO has no subcomponent/implementation specific behaviors. Once this Monitoring
and Distributed Object has been written and tested, all other implementation specific objects
dealing with every facet of the development process may be derived from the MDO and inherit its
monitoring and distribution capabilities. Many of the MDO's capabilities may be inherited
directly from Expersoft's XShell class library.

This design will allow experts in specific fields of the development process to build application
specific objects without regard to monitoring and distribution functionality. They will simply
inherit that functionality. Also, monitoring processes may be built based on MDO functionality
that will automatically handle fault conditions based on system wide or application specific
administrative policies. The monitoring processes may also be used to update, maintain, or view
model/system state and/or functionality.

5.4 Constraint Capture and Handling
In this section we answer several key questions associated with capturing and handling the
different constraints in MCM design process management. In the following paragraphs, we
present the key questions followed by our response to each question.

1. How are constraints captured including both allowable and disallowable process sequences ?

In the MCM-DPM system, constraints are conditions that are attached to the various relations
between object classes. They determine whether or not a search is allowed to traverse the links
where the constraints reside.

Currently the MCM-DPM supports four types of constraints:
1.1 Data Constraint for a task/activity. It specifies the input data needed to start a

task/activity. Data constraints include data classes, data location, data format, and the
tool class that manipulates the data. Semantically, a task/activity cannot be started
until its data constraints are satisfied, i.e., the data are available for the task/activity.

1.2 Precedence Constraint for a task/activity. This constraint prescribes a partial order of
tasks/activities (process steps) for process execution, i.e., one task can't start until
another task finishes. However, precedence constraints alone do not determine the
actual execution "flow" of the process. The execution "flow" depends on the
satisfaction of all constraints including entry and exit criteria. Semantically, a
task/activity can't be started until all its predecessors are complete.

1.3 Resource Constraint for a task/activity. This constraint specifies the resources needed
to start a specific task/activity. Examples of resources include: people, data, tools,
equipment, funds. Semantically, a task/activity can't be started until its resource
constraints are satisfied, i.e., the informational and financial resources are available to
undertake the task/activity.

1.4 Integration Constraint for a task/activity. This constraint specifies the necessary
platform (hardware and software) requirements for starting a task/activity. It is
actually a subclass of resource constraints. However, due to the fact that integration
constraints are generally design-independent but platform-specific, it is separated out
to support system integration activities. An integration constraint specifies the class
of hardware and software platform (UNIX workstation with X-Windows) needed for

32

Intelligent Systems Technology, Inc. ffi

a task/activity to commence. Semantically, a task/activity cannot be started until it
resides in a hardware and software environment that satisfies the integration
constraint. Overall, the actual process flow is determined by the satisfaction of all
existing constraints, not just process sequence (i.e., prescribed process precedence or
ordering). It is entirely possible that occasionally some of the process sequence will
be disallowed due to the fact that one (or more) other constraint is violated. In other
words, process precedence or ordering is necessary but not sufficient for a process
sequence to be considered admissible for execution.

2. What is the strategy and protocol for achieving communication between Windows and
UNIX platforms?

There are two ways of approaching this problem. The first is based on loosely coupled
communication. The second is based on tightly coupled communication. Each solution and its
characteristics are discussed next.

1). Loosely Coupled Communication. We can build a domain-specific communication
protocol on top of OODB for the MCM-DPM server and clients to communicate.
However, this communication protocol will only support loosely-coupled
communication, rather than tightly-coupled real-time data exchange. Generally
speaking, tightly-coupled real-time data exchange requires sophisticated
communication protocol such as OLE and CORBA. However, if the product is
targeted to MCM design on a common platform, then we can get by with a loosely-
coupled communication protocol. Such a protocol would entail:

1) heterogeneous data communication between different computer platforms,
2) tool invocation among computer platforms of same type, and
3) automatic conversion of limited data formats.

At this time, to create an advanced MCM-DPM prototype based on Tanner Toolkit or
Hughes DecoDesigner, we don't see the need for dynamic data exchange and
arbitrary data format conversion.

2). Tightly Coupled Communication. Tightly coupled realtime data exchange requires a
more sophisticated communication protocol (e.g. OLE 2.0, CORBA 2.0-compliant).
These capabilities are typically provided by DOME systems. An industrial-strength
DOME that is expected to deliver CORBA 2.0-compliant solution in May 1995 is
XShell from Expersoft. XShell supports distributed heterogeneous environments
with capabilities for remote tool invocation and distributed CPU process creation and
tracking. The latter capability provides the necessary communication "backbone" to
construct and track distributed design processes. In addition, XShell (and distributed
object management environments (DOMEs) of this genre) provide the necessary
execution engine for design process management. The solution based on this
approach not only fully addresses the MCM design problem involving heterogeneous
platforms and tools within a LAN (or WAN), but is also scalable to other applications
(e.g., board level design) and requirements of other related programs (e.g., RASSP).

33

Intelligent Systems Technology, Inc. \SL
In the interest of creating a scalable design process management environment that can
support heterogeneous design environments and higher level applications, the tightly
coupled communication approach is preferred.

3. What is the strategy for automating data collection and keeping data up-to-date in the
tool/database?

There are two aspects to this problem: data update and Integrated Product-Process (data)
Representation update. Data update will be under the purview of and controlled by EDA tools as
it is today. In other words, the MCM-DPM will not interfere with existing EDA tools in so far as
data management is concerned. For example, in the case of the Tanner Toolkit from Tanner
Research, the tools manage the creation and access of data files that reside on a PC.

On the other hand, the update of data representation is part of the MCM-DPM's responsibility.
There are three situations where data representation can be updated during process management:

3.1. Update data representation as the result of task completion. Once a task is complete,
its result will be either a) a new data file, b) an updated data file, or c) update to the
product database. In this case, the Integrated Product-Process Representation will be
automatically updated as follows:

a) a new data object will be created with a pointer to the new data file; then
appropriate links will be created to associate the data object with other objects
in the representation; Also, the development state of the data object will be set
to the initial value;

b) the development state of the data object that points to the updated data file will
be updated;

c) the development state of the data object that points to the updated database
section will be updated.

This set of steps handle the change propagation of the representation on the data side.
There is also change propagation of the representation on the process side. The issue
here is to update the development state of the process that is being enacted. When a
task has just been completed, its state will be updated to 'complete'. Subsequently,
the development states of the task's successors might be updated to 'ready' if all their
constraints are satisfied at that point in time. The timing of change propagation is
either when a task has just been completed or a task's constraints have been checked
for the purpose of starting the task.

In addition, the collection of task completion information will also be used to create a
"design history", which includes evolution of both design data and process
execution. This historical information will support in the understanding of design
rationale as well as continuous process improvement.

3.2 Update of data representation directly by designers. In this case, a designer
modifies/expands the product representation in order to add a component to the MCM
design (e.g., add a new circuit). In this case, both the data and data representation
will be updated in a manner similar to that described above. The modification will be

34

Intelligent Systems Technology, Inc. H
directly on the product while the update to the process will be accomplished
automatically by the MCM-DPM under normal circumstances.

3.3. Update of data representation directly by process engineers. In this case, a process
engineer modifies/expands the process representation in order to, for example, add a
new management subprocess. In this case, only the data representation will be
updated since the data side (MCM design data) doesn't have to be updated. The
modification will be directly on the process while the update to the data will be
accomplished automatically by the MCM-DPM under normal circumstances.

To the extent possible, our design of the MCM-DPM will attempt to collect dynamic
data and to maintain the integrity of the integrated representation. Clearly, our
objective here is to free MCM designers from the burden of detailed data collection
and to help them concentrate on the MCM design task.

35

Intelligent Systems Technology, Inc. 12
6. USAGE CONCEPT DEMONSTRATOR

6.1 Overview
This section presents the usage concept in terms of a series of Windows '95 screens. The usage
concept demonstrator that accompanies this report consists of a Macintosh-based PowerPoint®
3.0 presentation on 3.5" disk. The demonstrator is a color version of the screens presented in
this section with explanatory charts introducting each segment.

The purpose of this demonstrator is to convey the MCM Design Process Manager (MCM-DPM)
usage concept, key functionalities, design entry perspectives, dynamic flow construction, and
designer and manager perspectives to the sponsor and end users for their evaluation and
feedback. The results will be used to refine the usage concept.

The various screens are constructed to reflect the unique aspects of the MCM-DPM, specifically
the representation of the design problem within a design problem schema and the use of the
schema to create dynamic process flows. The design process in the MCM-DPM is incrementally
defined as the designer engages in the design process. The different entry perspectives (i.e.,
goal, activity, tool, data/product, flow) are shown in the various user-system interaction screens
(Figures 6-1 to 6-27). These figures collectively define the usage concept of the MCM-DPM.
The following subsections present user-system interactions for the process engineer, the
designer, and the project manager.

6.2 Process Engineer-System Interaction
This subsection presents the model building capabilities of the MCM-DPM. Specifically, it
covers how the process engineer would enter organization-specific information required to
undertake an MCM design project. It is the responsibility of the process engineer to create all
elements of the Integrated Product-Process Representation (IPPR) to satisfy the customer's
product requirements. The process engineer accomplishes this in one of two ways: 1) he creates
the IPPR from scratch or 2) he tailors an existing IPPR that is stored in the MCM-DPM library.
In either case, the MCM-DPM system provides full editing capabilities for the process engineer
to specify and interrelate: project goals, design requirements, initial description of end product
components, process activities and their functional relationships, data items, interim products,
software tools, equipment, roles, and design modifiers. It also provides static and statistical
model analysis capabilities so that the process engineer can ascertain the completeness and
correctness of the entire IPPR. Figures 6-1 to 6-12 depict the process engineer-system
interactions.

36

Intelligent Systems Technology, Inc. 12
MCM-DPM Main Window. The main window of the MCM-DPM system (Figure 6-1) allows
the user to immediately navigate to any other part of the system. The row of quick-buttons
across the top of the window provide access to each of the elements of the IPPR with just one
click. The bottom of the window gives the user instant access to local e-mail facilities that exist
between the team members and the design team manager.

f\ MCM Design Process Manager
HDMI Physical Design Process

FTP*

X file Edit View Help
lOl Ba--I O Goals I Design Rqints. End Product Processes! Precedence Data/Products Tools/Equip Rolos | Vars/Conds

Start E-mail... Manager... 2-21-95 11:45AM

Figure 6-1. MCM-DPM Main Window

Building/Editing a Hierarchy. Many of the elements of the IPPR are represented as hierarchies.
Specifically, the goals, design requirements, end product components, process activities, data
items, interim products, software tools, equipment, roles, and design modifiers are all
conveniently represented as hierarchies. Figure 6-2 shows how a completed hierarchy of
process activities appears in the MCM-DPM. The higher level items can be "unfolded" to reveal
the multi-level elements of the hierarchy. The window is scrollable both vertically and
horizontally for viewing the entire hierarchy. The user can print a hard copy of the hierarchy, if
needed.

37

Intelligent Systems Technology, Inc. H
f,\ MCM Design Process Manager

HDMI Physical Design Process
Ppp^

X file Edit View Help

Q| [fe& 13 Goals I Design Rqints. | End Product | Processes Precedence Dataproducts Tools/Equip! Roles Vars/Conds I

fclle HPlP
Process Hierarchy Editor PnTxl

HDMI Physical Desiqn Process!

Preliminary Design Review I Component Captuie ▼
T

Top-Level Placement i

Get Default Files
Copy Parts From DecoDesigner Parts Library
Build Components

■DecoDesigner Naming Convention
■Create Board Part
■Create Wirebond and Surface Mount Pads

-Create Edge Connector Part
-Create Remaining Components

Create a Parts Catalog
Approve Parts
Map Symbols

-Component Placement
-Setup Placement
-Interactive Placement
-Automatic Placement

■-Check Placement
Add Manufacturing Aids

-Add Optional Rework Lines
-Generate Output Files

-Verify Probe Points
-Extract GDSII Stream File
-Make Top-level Plots

T
Thermal Analysis T

-Generate Data Files
[-Generate ASCII Parts File|
L-Generate Neutral File

-Import Design
-Assign Thermal Properties

-Assign Board Thermal Rel
^Assign Component Charal
tComponent Power Dissf

Component Thermal Re!
Mssign Boundary Conditioj

-Perform Thermal Analysis
-Generate Thermal Report

Create...: Copy... Edit.: Delete | import... | Save. Close |

| Start | E-mail... Manager.. 2-21-95 11:45AM

figure 6-2. Process Hierarchy Editor

The hierarchy shown in Figure 6-3 (and all hierarchies throughout the MCM-DPM system) is
created using an interactive series of windows to elicit the elements of the hierarchy and to
specify their parent-child relationships. The user can create an activity by clicking on the
"Create" button on the Hierarchy Editor Window. The following window will be presented.
The activity name and description is specified and parent-child relationships to other existing
activities can be created via this window.

Activity Editor — Create E^Jl
JEile Help

Activity Name Component Capture

Description

Store I

Write description here.

store name here

Children... | Parent... |
IHDMI Physical Design Process llll

Save Details..] Cancel

Figure 6-3. Create Activity Editor Window

38

Intelligent Systems Technology, Inc. e
When the user clicks on the "Children..." button, the "Children <activity name>" window is
opened (Figure 6-4). This window allows the user to easily specify the children of an activity.
It also allows the user to quickly create another activity to be also be included as a child of the
originally-specified activity (by clicking on the "Create" button).

Children -- Component Capture iriaxi
Get Default Files
Copy Parts From DecoDesigner Parts Library
Build Components
Create a Parts Catalog
Approve Parts
Map Symbols

«Add |

«Insert

Remove >>l

« Add All |

Clear All» |

HDMI Physical Design Process
— Preliminary Design Review
— Component Capture
— Get Default Files
— Copy Parts From DecoDesigner Parts Library
— Build Components
— Create a Parts Catalog
— Approve Parts
— Map Symbols
— Top-Level Placement
— Thermal Analysis
— Top-Level Verification
— Top-Level Design Review

Accept Cancel I Create

Figure 6-4. Window to Specify Children of an Activity

The results of the specifying the parent-child relationships as depicted in the previous figures is
shown in Figure 6-5. In addition, these changes are instantly reflected graphically in the
Hierarchy Editor window.

Activity Editor -- Create

Figure 6-5. "Fil

File Help
i-inix

Activity Name Component Capture

Description Write description here.

Store store name here

Parent... Children...

HDMI Physical Design Process Get Default Files
Copy Parts From DecoDesigner Parts
Build Components
Create a Parts Catalog

Save Details. Cancel |

ed-In" Create Activity Editor Window

39

Intelligent Systems Technology, Inc. 12
Building/Editing Activity Precedence Graph. Once the process hierarchy (of activities) is
created, the process engineer can specify the precedence relationships between the various
activities. The Activity Precedence Editor window is used for this purpose. Initially, the screen
in this window shows the activities as specified in the hierarchy in a vertical column (no
precedence relationships specified) (Figure 6-6).

f,t MCM Design Process Manager
HDMI Physical Design Process

nnax
X file Edit View Help

JD| Bifr| O Goals I Design Rqmts. End Product Processes ||Precedence] Data/Products | Tools/Equip Roles |

File Help
Activity Precedence Editor pas

ill Preliminary Design Review T A
Activity List

1 Preliminary Design Review
2 Component Capture
3 Top-Level Placement
4 Thermal Analysis
5 Top-Level Verification
6 Top-Level Design Review
7 Routing
8 Electrical Parasitic Analsyis
9 Design Verification
10 Routing Design Reviev
11 Fabrication Preparati
12 Final Design Review

LU
Start E-mail. Manager... 2-21-95 11:45AM

'. ^igure 6-6. Initial View of Activity Precedence Editor Window

40

Intelligent Systems Technology, Inc. Df
The process engineer then uses the editing facilities of the window to graphically specify the
functional relationships between the activities (Figure 6-7). This is done at every level of the
hierarchy.

f\ MCM Design Process Manager
HDMI Physical Design Process

X file Edit View Help
Dl 1^1 Q Goals I Design Rqints. End Product Processes|| Precedence| Data/Products] Tools/Equip Boles |

Eile Help
Activity Precedence Editor HfS"B

111 Top-Level Verification

Activity List
1 Preliminary Design Review
2 Component Capture
3 Top-Level Placement
4 Thermal Analysis
5 Top-Level Verification
6 Top-Level Design Review
7 Routing
8 Electrical Parasitic Analsyis
9 Design Verification
10 Routing Design Reviev
11 Fabrication Preparation
12 Final Design Review

T Ä

on* in

9

<\
Start E-mail... Manager. 2-21-95 11:45AM

Figure 6-7. Graphical Depiction of Activity Precedence Relationships

Activity Browsing/Editing. The process engineer links each activity created to other elements of
the IPPR as applicable. Activities to be performed by the designer during the execution of the
design process are associated to specific goals, design requirements, tools/equipment, and roles.
In addition, each activity has entry criteria composed of data/product inputs and pre-
conditions, and exit criteria composed of data/product outputs and post conditions. Figure 6-8
shows the window created when an activity in the precedence graph is selected. This window is
where the process engineer provides the information that links the activity to other elements of
the IPPR, and ultimately where the designer browses/reviews the information about an activity
that he/she is going to perform.

41

Intelligent Systems Technology, Inc. e
Browse/Edit -- Top-Level Verification

File HelP
UCJx^

rActivity Description^
Activity description is written here. This tells the
designer what the activity is about.

Time Allotted:

32 jhiöürsl y|

Costs.

Schedule...

rActivity Entry-

Pre-Conditions Inputs

Activity Exit

Post-Conditions Outputs

Model Relationships-

Goals | Design Rqmts. | Tools/Equip. | People |

• L-Edit DRC
■ Cadence Dracula
- Equip 1
• Equip 2

Edit... |

Save... Close

Figure 6-8. Activity Browse/Edit Window

The process engineer can also print a report that summarizes, for each activity, the relationships
between an activity and other elements of the model as specified (Figure 6-9).

I Activity Information for HDMI Physical Design Process Model

1 Activity: Top-Level Placement 1

Goals: Satisfy Manufacturing Assembly Requirements

Design Requirements: Electrical Performance
Thermal Performance
Size
Weight
Speed

End Product Components: Device Location

Data Items/Interim Products: Top-Level Plots and Part Replacement

Tools/Equipment: L-Edit
L-Edit SPR
MGC Layout

Roles: Designer

Variables/Conditions: Activity 3 = complete

Schedule: 3/27/95 to 4/5/95
5 days

Costs: $3,570.00

Figure 6-9. Format of Activity Information Report

42

Intelligent Systems Technology, Inc. S
Static and Statistical Model Analysis. In addition to providing editing capabilities, the MCM-
DPM provides both static and statistical analysis capabilities to the process engineer. The
statistical information (Figure 6-10) gives the process engineer information about the model
elements, precedence graph structure, and activity-related numbers.

Statistical Information About HDMI Physical Design Process Model

Total Model Elements

Total Number of Goals/Subgoals:
Total Number of Design Requirements:
Total Number of End Product Components:
Total Number of Process Activities:
Total Number of Data Items/Interim Products:
Total Number of Tools/Equipment:
Total Number of People:
Total Number of Variables/Conditions:

Total Number of Eleme

Precedence Graph Structure

Number of Decomposition Levels:
Number of Activities without Subactivities:
Number of Activities without Predecessors:
Number of Activities without Successors:

12
16
17
26
15
32

5
12

For Each Activi

Type
Goals
Design Requirements
End Product Components
Data Items/Interim Products
Tools/Equipment
People
Variables/Conditions

Max Number
4
6
4
12
4
2
8

Min Number
1
1
0
1
1
1
0

Avg Number
2.50
3.50
2.13
7.25
2.50
1.50
1.50

Figure 6-10. Sample Statistical Information Report

43

Intelligent Systems Technology, Inc. m
The MCM-DPM performs a static analysis of the IPPR along several dimensions. Figure 6-11
shows some of the information produced in this report to aid the process engineer in determining
the correctness and completeness of the model.

Static Analysis About HDMI Physical Design Process Model

Activities Missing Some Information

Activities without Goals: <Activity Name>

Activities without Design Requirements: <Activity Name>

Activities without End Product Components: <Activity Name>

Activities without Data Items/Interim Products: <Activity Name>

Activities without Tools/Equipment: <Activity Name>

Activities without Roles: <Activity Name>

Activities without Variables/Conditions:

Model Elements Not Asociated With Any Activity

Goals Not Included in any Activity:

<Activity Name>

<Goal Name>

Design Requirements Not Included in any Activity: <Design Requirement Name>

End Product Components Not Included in any Activity: <End Product Component Name>

Data Items/Interim Products Not Included in any Activity: <Data Item/Interim Product Name>

Tools/Equipment Not Included in any Activity: <Tools/Equipment Name>

Roles Not Included in any Activity: <Role Name>

Variables/Conditions Not Included in any Activity:

Precedence Graph Structure Problems

Illegal Precedence Relation:

<Variable/Condition Name>

None Found

Illegal Iteration and Branch Pairs: None Found

Endless Precedence Cycle: None Found

Figure 6-11. Format of Static Information Report

Tnput/Output Transformations. The MCM-DPM maintains a hierarchy of "Stores", i.e.,
locations for each data item, interim product, end product component, software tool, and
equipment. The process engineer uses the capabilities shown in Figure 6-12 to specify the
relationships between activity entry elements and activity exit elements. These relationships
include updating, "absorbing", and using the elements during the performance of an activity.
This information allows the MCM-DPM to track the life cycle of every design object during the
design process.

44

Intelligent Systems Technology, Inc. LS
5* MCM Design Process Manager

HDMI Physical Design Process
■ pi] El

X file Edit View Help
Dl &| Ql Qoals I Design Rqmts. I End Product Processes Precedence Data/Products Tools/Equip | Roles Vars/Conds

Activity Entry/Exit HUE
0 Updated To... 0 Absorbed By... 0 t

r Activity 3: Top-Level Placement I "I
Store; Store A | D
Data Item X

Store: Store B I IP L Store: Store B | |P

;§ Interim Product X i Interim Product X 1

Störe: «Store F:»...-:i:::::,,| |p
Interim Product Y ;•

Store: Store C I EP ! Store: Store C I EP
1 End Product Comp. X End Product Comp. Y

Store: Store D I &T Store: SlürSG-"? P
is Software Tool 1 Name

I" | EQ i Activity 3 = complete

Var2 = Time_Y - Time_X
Equipment X

Activity 2 = complete
!! van = x

Var2 = Time_Y

<L i^asm

I Start I E-mail... I Manager... 2-21-95 11:45 AM

Figure 6-12. Activity Entry/Exit Window

When the process engineer has finished creating/tailoring the IPPR, the MCM-DPM system is
ready to support the manager and designers in executing the MCM design process. In the
execution mode, the manager specifies the project schedule and cost associated with each
activity. The manager also assigns each task to the design team members (i.e., roles). When
this is complete, the MCM-DPM guides the team members (i.e., designers) through their
individual tasks. Additional information about manager-system interactions are discussed in
Section 6.4. The following section will present the interaction of the designer with the MCM-
DPM.

6.3 Designer-System Interaction
This subsection presents the interactions between the designer and the MCM design process
manager. The MCM-DPM usage concept is conveyed through a series of screens that follow.
These screens depict how the designer might enter the system, evaluate his/her assignments,
determine the course of action for a particular assignment, make any necessary modifications to
the IPPR, perform the activities associated with his/her assignment, evaluate the results, and
continue with the guidance on design objectives provided by the MCM-DPM. Figure 6-13
presents the designer's MCM-DPM usage concept.

45

Intelligent Systems Technology, Inc. H
Designer
Logs On

X. Reviews "New"
Assignment

Negotiates Assignment
Scope and Schedule

with Manager

Accepts New
Assignment

Reviews Status of All
Current Assignment(s)

Selects MCM
Design Assignment

MCM DPM Presents
Top-Level Activity
Precedence Graph

Examines IPPD
Model Components

Selects Next
Activity to Perform

•goal
• design rqmts.
■ product components
»process activities

• data/interim products
• software tools
• equipment

Negotiates Change
with Manager/
Team Members

T
Saves Changes to

Model (if acceptable)

Selects, Launches, Uses,
and Quits EDA Tool

No

No Determine Change(s) Required
(goals, design requirements)

Signs Off
Activity

No

Signs Off
Assignment

Figure 6-13. Designer-System Interaction Flow

46

Intelligent Systems Technology, Inc. 12
Evaluating Designer Assignments. The designer enters the system and evaluates his/her
assignments. In doing so, he may discover that a new assignment has been given to him. In that
case he selects to review the new assignment (Figure 6-14). He may choose to negotiate changes
of scope and schedule with the manager before accepting the assignment. He does this via the
manager e-mail facilities.

New Assignment
File Help

DnJxI

New Assignment - Task Name

Task Description-
This is a scrolling text field - it contains a textual
description of the task to be assigned to this designer.

Schedule: start

Time Allotted:

View Task Flow

02/15/95 end 02/25/95

days|| ▼_ 04

View Tools

View Requirements j View Resources

View Technologies I View Products

Accept Assignment | Cancel

Figure 6-14. Reviewing New Assignment

After reviewing new assignments, if any, designers can review the status of all of current
assignments. They can select the assignment they will work on at that time. The MCM-DPM
presents the designer with the top-level activity precedence graph for that project.

47

Intelligent Systems Technology, Inc. es
Design Process Guidance. The Activity Selection window is a color-coded activity precedence
graph. This graph guides the designer through the design process by identifying the "ready"
activities assigned to him (Figure 6-15). The designer can simply select the next available
activity and perform the required action(s).

TA MCM Design Process Manager

HDMI Physical Design Process
Xfile Edit View Help

Processes II Precedence! Data/Products I Tools/Equip Roles I Vars/Conds Ql 1^ D Goals I Design Rqmts. End Product

Eile Help
Activity Selection EHx

Hl Top-Level Verification Ready IT[AI;
i i Ready

i i Suspended

isa Blocked

wmm Assigned to Anoi

I In-Progress

■■I Partially Complete

^| Complete

i i None

Activity List
1 Preliminary Design Review

2 Component Capture

3 Top-Level Placement

4 Thermal Analysis

5 Top-Level Verification

6 Top-Level Design Review

7 Routing

8 Electrical Parasitic Analsvis

9 Design Verification

10 Routing Design Review
11 Fabrication Preparation

12 Final Design Review

IhUH 6
RVT*«1^

H"3

u.
Start | E-mail... | Manager... 2-21-95 11:45AM

igure 6-15. Activity Selection Window

Although the designer may select an activity from the Activity Precedence Graph display, he/she
may decide to first examine the other components of the IPPR. For example, the designer may
want to view the end product component hierarchy to gain a better understanding of the overall
product to be created before attempting his assigned activities. Or in another example, the
designer may have preliminary data from earlier attempts at the activity that cause him/her to
introduce a change to the IPPR. He would utilize the e-mail facilities to communicate his
suggestions to the other team members and, if approved, make the changes to the model.

48

Intelligent Systems Technology, Inc. H
Figure 6-16 shows the window that appears when the designer selects an activity to perform.
This window shows the inputs, outputs, tools and equipment, and design modifiers associated
with the selected activity.

Perform - Top-Level Verification -Inlx
^Ble Relp

C
<: w r.
m a.

I
§•

en

ft

Description Status Stored Description Status Stored

Top-Level GDSII.. Available <file path name> k

▼ I

DRC Tech. File Incomplete <file path name> AJ

7J
Open/Use Edit/Update

fools/Equipment-

Description Status Stored Description Value

L-Edit DRC Available <file path name> A Variable Name 1 ###
Variable Name 2 "string"

AJ

3
Cadence Dracula Available <file path name>
Equip 1
Equip 2

Available Equip. Rm. 101
Available SW Lab 3

Open/Use Edit/Update

Save Results... | Close |

Fig ure6-16. Perform Activj ty Window

49

Intelligent Systems Technology, Inc. 2
To select an EDA software tool, the designer simply highlights it on the list of tools/equipment.
The MCM-DPM opens the EDA tool for the designer and maintains the relevant information at
the bottom of the window (Figure 6-17). To return to the MCM-DPM system, the user either
quits the EDA tool or clicks on the MCM-DPM button at the bottom of the window.

;■'-• i.J

\.-, . :V:?^.. .■•■■
i\;fov - . •• ■■■■-.<:■■ Of.!-/.,

'■'"'" '■'■ ■'■■■: Vy^'^-L' "..

mm***?-' •• >.-.-:.^C^»'.' J

EDA Tool Window

[■ • v. :*&.•• M. »*• " *'
v».jEa-,i.-r<'i' -: •. "••

| .. .• • * ."w> .

[• iti'pH' J i ' ,.ftAa^L& - .

• -■«■•'l'-'rv'» •- ■:■■■:&■!

Activity: | Top-Level Verification | Tool: | Cadence Dracula Store: <Host Name>

Start E-mail. MCM/DPM 2-21-95 11:45AM

Figure 6-17. Launching EDA Software Tool

50

Intelligent Systems Technology, Inc. 12
When the designer has completed the activity with acceptable results, he/she signs-off the activity
using the window below (Figure 6-18) and selects the next available activity from the Activity
Precedence Graph. However, if the assignment is also complete, he/she returns to reviewing the
status of other assignments and begins the design process for the next project.

Sign-Off -- Top-Level Verification JDIX

•Outputs -

Description Status Stored

DRC Technology File Complete <file path name

EditUp.-lat-:l

Variables/Conditions

T

Description Ending Value

\ Variable Name 1 ###
t Variable Name 2 "string"

Edit Update

■•Goals-

Verify Compliance with Manufacturing

Description Status

Edit/Update

■" Design Requirements"

Description Status

Requirement Name 1 Satisfied

Edit/Update

Results:
O Satisfactory

O Unsatisfactory

Q Inconclusive

O Incomplete

Sign-Off Summary-
Describe what was done and the results
achieved. Describe any problems encountered.

Time Used:

[04 ||[däxs] T

I

Siqn-Off Cancol

igure 6-18. Activity Sign-Off Window

6.4 Manager-System Interaction
This subsection presents the functionality and decision support offered by the MCM-DPM for the
design team manager. Specifically, it shows and discusses how the manager would utilize the
scheduling and job costing functions of the MCM-DPM system to assign the various tasks
created by the process engineer to the various members of the design team. It also describes how
the manager can monitor the realtime status, trends, historical data, and statistical information of
any design object in the IPPR. The manager also has access to the editing capabilities offered by
the MCM-DPM in order to resolve problems during the execution process. The manager could
modify elements of the IPPR to resolve resource bottlenecks, reassign roles, or circumvent
system failures, for example. Figure 6-19 describes the manager's usage concept for the MCM-
DPM.

51

Intelligent Systems Technology, Inc. 12
Manager specifies and

communicates design problem,
performance metrics to team

MCM-DPM offers design
— problem template;
performance metrics template

Manager assigns tasks and
authorizes work

I

£
Manager

tracks/monitors
workplan and schedule

system verifies
1 availability of team

members

Manager monitors
activities at each node

I System Monitoring
and Tracking

I

1
Manager tracks

resources, product(s),
and earned value

Problem Identification
| and Resolution

Manager Activities
specifies design problem (H)
communicates design problem to design team (A)
assigns tasks (H)
authorizes work (H)
monitors progress (A)
resolves conflicts/bottlenecks (HITL)
responds to designer requests/queries (H)
monitors compliance with workplan and schedule (HITL)
schedules meetings (H)
approves work-in-progress (H)
tracks earned value (A)
anticipates and circumvents problems (HITL)

Resolve Problem
(manager-in-the-loop)

Verify design
completion and

signoff

LEGEND

H : human activity, system supports with menus, forms, etc
A : automated activity
HITL : human-in-the-loop

Figure 6-19. Manager-System Interaction Flow

52

Intelligent Systems Technology, Inc. e
Schedule, cost, and resource utilization information is provided by the manager to the MCM-
DPM system through integration with project management facilities. Figures 6-20 through 6-22
show a sample project schedule chart, sample project timeline, and sample data input window
which is used to enter schedule, cost, and resource information for each activity in the IPPR.

Z\ MCM Design Process Manager

HDMI Physical Design Process
■ Ei

X File Edit View Help

Ql b] B Goals [Design Rqmis End Product Processes Flows Data/Products I Tools/Equip! Roles I VarsVCond. I

Eile He»
Project Schedule Chart I=1D1X

4/5/95 4/20/95

Thermal
Analysis

3/20/95 3/20/95 3/20/95 3/23/95 3/23/95 3/27/95 3/27/95
0 Mechanical Engineer 14*.

f Start Project J_ Preliminary Design
Review

Component
Capture

Top-Level
Placement

Design Team Designer 4 Designer

Top-Level
Verification

Designer

Earliest Start Latest Finish

Legend

Resource Duration

fl
Report,,. |

m
ISJ!

Closo |

I Start I E-mail... I Manager. 2-21-95 11:45 AM

'. 5igure 6-20. Sample Project Schedule Chart

53

Intelligent Systems Technology, Inc. H
f,\ MCM Design Process Manager

HDMI Physical Design Process
UlLtSl

X file Edit View Help

Dl &>\ B Goals | Design Rqmts. End Product Processes Flows] Flows Data/Products I Tools/Equip | Roles j VarsJCond. |

Figure 6-21. Sample Project Timeline

file Help!
Component Capture - Project Information

■General Information -

Activity Duration

[_4_|)doys"l| T[

Leveling Priority

100 |

Rnlc Work-Days Number °.o Effort Duration

Designer 0.25 1.00 25 4 M i
sj
.'i

(100 = Highest Priority. 0 = Do Not Level)

Dates -
Earliest Start | 3/23/95 | Latest Finish | 3/27/95 | % Done [0

Actual Start | 3/23/95 | Actual Finish | 3/27/95 |

rCosts
Fixed Cost 0.00 I Fixocl Income 0.00 |

Actual Cost [O.qoJ Actual Income | 0.00 |

HI

Report... | Close

Figure 6-22. Sample Data Input Window

54

Intelligent Systems Technology, Inc. e
Figure 6-23 shows a sample color-coded window that allows the manager to view the current
status of any activity in the IPPR. The manager can view a similar window for the goals
hierarchy, the design requirements hierarchy, the data/interim products hierarchy, the
tools/equipment hierarchy, the roles hierarchy, and the list of design modifiers.

T\ ProcessEdge™/DPM BlpRl
HP Ml Physical Design Process

Xfile Edit View Help

ÖI Status... Monitor... Hi'jh-lcvol Model

Goals I Design Rqmts. Components Processes Precedence ; Dataproducts j Tools/Equip | Roles Vars/Conds |

Status - Process Activities Prix
iile Ue!e_

| Ready

| Suspended

ISS Blocked I j In-Progress

Km Partially Complete

[Complete

I None

I Preliminary Design Review
■ ~—, i r

iTop-Lcvel Placement » I I Thermal Analysis H

Get Default Files

Copy Parts From DeooDesigner Parts Library

Build Components

- >eate a Parts Catalog |

Create Board Part I

ireate Wirebond and SürfaceMount Padsl

:reate Edge Conneclor'Part

reate Remaining Compönents|

-\D£| rove Parts

Hdäp Symbols

Create... |

I I

copy- 1 Edit.. Delete Report... Close

I Start | E-mail... Manager... 11:45 AM

Figure 6-23. Monitor Status of Process Activities

55

Intelligent Systems Technology, Inc. ffl

Figures 6-24 through 6-26 show how the manager is able to monitor, in realtime, the status,
performance/usage histograms, and statistics related to process activities, software tools, and
human resources (roles).

Monitor Activities Pll

Figure 6-24. Monitor Activities Performance

Monitor Tool Usage

Figure 6-25. Monitor Software Tool Usage

56

Intelligent Systems Technology, Inc. ra

Monitor Role Usage

Figure 6-26. Monitor Role Usa,

57

Intelligent Systems Technology, Inc. 12
The MCM-DPM allows the manager to monitor the life cycle of any design object in the IPPR.
Figure 6-27 shows the color-coded window that traces the transformations of an object between
activities in the design process.

lA MCM Design Process Manager PUP
HDMI Physical Design Process

X File Edit View Help
Dl G*l B Goals) Design Rqmts. [End Product Processes | Precedence Data/Products | Tools/Equip Roles |

I Design Object Life Cycle Graph ■ ■TnTx
rnü RÜ5
(T) Interim Product 1 Name | [j| Activity ^gp Store Q Design Object

■ Activity List

f -«—^ x X ,»^-^ 1 J V^ -• X. ' J

4
1 Preliminary Design Heview

2 Component Capture
3 Top-Level Placement
4 Thermal Analysis
5 Top-Level Verification
6 lop-Level Design Heview

ÄÄ iH ^§) Store List
1 Store 1 L1 -Ki>HsJ-<i>~ 2 K X

■■1

1

2 Store 2
3 Store 3 £><V 4 Store 4
5 Store 5

^ Design Object List
1 Interim Product 1

2 Interim Product 2

NI mm- ■"" '-^sf^^>mmmKs^mmmmmm iH^^^PPI^
I Start | E-mail... | Manager... 2-21-95 11:45 AM

figure 6-27. Desi gn Object Life Cycle Graph

58

Intelligent Systems Technology, Inc. H
7. PHASE II IMPLEMENTATION PLAN

This section is divided into three major subsections. Subsection 7.1 presents a summary of tasks
to be performed in Phase II. Subsection 7.2 provides a detailed discussion of each task in terms
of inputs, approach, and outputs.

7.1 Task Summary
The Phase II work plan is organized into fifteen tasks that specifically respond to the objectives
defined in the previous section. Figures 7-1(a) and 7-1(b) presents the work plan and the inter-
relationships between the work tasks.

Phase II Proposal, SOW Kickoff Project

£
0

Develop Detailed
Design

0

1
Develop GUI

Prototype

• system decomposition
• module specification
• interface specification

Develop Integrated
Representation in OODB

f
Develop

Reference Model
©

• GUI design
• conventions
• storyboards
• prototype

0

• domain repress
• data base
•object hierarchy
• relationships

enfati

Demonstrate Concept
and GUI Prototype

©

Develop Data
Base Server

process modeling
instantiation
dynamic product-process update
integrity verification
reference component model server

©
Develop GUI

data base schema
data base setup
examples
access

\ r • process asset data base server

Integrate GUI and
Repository

 ?
Figure 7-1(a). Phase II Work Plan (Tasks 1 through 8)

•GUI classes
•layouts
•methods

0

J Demonstrate GUI
Usage With Repository

©

59

Intelligent Systems Technology, Inc. E
Develop Process

Server
@

Develop Client

■ process enactment and update mechanisms
■ concurrency control
■ project management function
■ process manager server

Integrate Standalone
MCM DPM

10)
■ process enactment execution
■ coordination
■ history collection
• exception handling

1 management interface
1 reference model client
> process manager client
• designer client

*®
Demonstrate and Transfer

Standalone MCM DPM to Hughes

£ ®
Integrate with EDA

Toolkit
12)

Develop/Adapt
Integration Mechanism

1 tool communication
• tool distribution
• product data access and integration
• EDA product data base server
■ EDA toolkit server

Create Integrated
MCM DPM

©
• tool and data integration
• EDA server

©
Demonstrate and Transfer

Integrated MCM DPM

Integrate and Test
Final Prototype I©

Final Demonstration and
Transfer

• final integration
• testing
• validation example

©
0

Prepare & Submit
Project Report ©

Figure 7-1(b). Phase II Work Plan Continued (Tasks 9 through 16)

7.2 Work Plan
This subsection provides details of the sixteen tasks and five demonstrations that lead to a robust
implementation of the MCM Design Process Manager.

Task 1. Kickoff Project
The objective of this task is to review the proposed effort and make necessary adjustments to the
schedule to make maximum impact on the ASEM program and MCM contractor needs.
Specifically, we will present the MCM Design Process Manager System Concept and
implementation in suitable detail. We will review our approach to process tailoring to meet the
requirements of the various contractors. The product of this task will be a streamlined SOW
directed to rapid product development with well-defined demonstration milestones and delivery
schedule.

Task 2. Developed Detailed Desi gn
Based on the architectural design completed in Phase I, this task will create a detailed system
decomposition, module specification, and interface specification. The set of documents created
during the performance of this task will describe the details of the software architecture and
design of the MCM Design Process Manager.

60

Intelligent Systems Technology, Inc. K
Task 3. Develop User Interface Prototype
The purpose of this task is to design and prototype the Graphical User Interface (GUI) for the
MCM Design Process Manager. During the performance of this task, the selected GUI
development toolkit will be purchased and installed. The user interface conventions and the
MCM Design Process Manager concept of operation will be storyboarded. Finally, a GUI
prototype will be implemented and demonstrated.

Task 4. Develop Integrated Representation in the Selected Object-Oriented Data Base
The purpose of this task is to implement an integrated MCM product-process representation in
terms of an. OODB. The OODB implementation of the integrated MCM product-process
representation include data base object classes and relationships that describe MCM design
products and processes. The output of this task is the object hierarchy for the integrated MCM
product and process representation. At the conclusion of this task, we will give our first
demonstration.

Demonstration I. The purpose of this demonstration is to present the overall system concept,
the object-oriented database, and the GUI prototype of the MCM Design Process Manager.

Task 5. Develop Data Base Server
This task will implement access and service functions of the data base server including data base
setup, consistency and completeness checking manipulation, search, queries, examples, and
access methods. There are two data base servers in the MCM Design Process Manager: the
Process Asset Data Base Server which oversees access to the integrated MCM product-process
representation, and the Project Asset Data Base Server which oversees access to the MCM
product data bases.

Task 6. Develop Reference Process Model
This task will define and analyze a set of MCM reference process models and components in the
OODB. This reference model is based on the information collected during Phase I. It will also
implement the Reference Component Model Server with functions that enable process modeling,
instantiation, dynamic product-process update, and integrity verification.

Task 7. Develop GUI
The objective of this task is to implement the GUI for the MCM Design Process Manager,
including GUI classes, layouts, and methods.

Task 8. Integrate GUI and Repository
The objective of this task is to integrate the GUI and repository created in previous tasks. At the
conclusion of this task we will give a demonstration of the GUI and the repository
functionalities.

Demonstration II. The purpose of this demonstration is to show the key features of the
repository for the integrated MCM product-process representation and GUI for the MCM Design
Process Manager.

Task 9. Develop Process Server
This task will implement the Process Server of the MCM Design Process Manager including
process execution engine (the development strategy will be chosen during detailed design),
process update mechanism, concurrency control, and project management functions.

61

Intelligent Systems Technology, Inc. H
Task 10. Develop Client Software
This task will implement three different MCM Design Process Manager clients (Reference Model
Client, Process Manager Client, and Designer Client) for process execution, coordination,
history collection, exception handling, and management interface The Reference Model Client is
responsible for creating process instances to be executed. The Process Manager Client is a
management interface for monitoring, controlling, and managing MCM design activities. The
Designer Client is a development interface for MCM designers to perform MCM design
activities.

Task 11. Integrate Standalone MCM Design Process Manager fDPM)
The objective of this task is to create a "standalone" MCM Design Process Manager, i.e., the
software will not be integrated with EDA toolkits. This software will be demonstrated to end
users and sponsor for their evaluation and feedback.

Task 12. Integration Software with EDA Toolkit
The objective of this task is to interface the MCM Design Process Manager software to the
selected EDA toolkit. Specifically, we will establish mechanisms for tool communication, tool
distribution, product data access and integration, EDA Product Data Base Server, and EDA
Toolkit Server.

Demonstration III. The purpose of this demonstration is to show end users and sponsors the
major MCM Design Process Manager functionalities in a standalone mode.

Task 13. Develop Integration Mech an i sm
The purpose of this task is to implement the tool and data integration mechanisms for the MCM
Design Process Manager embodied in the EDA Server.

Task 14. Create Integrated MCM Design Process Manager
The objective of this task is to integrate the process management, the EDA toolkit, and the
integration mechanism within a fully functional MCM Design Process Manager. At the
conclusion of this task, we will be ready to demonstrate the operation of the integrated MCM
Design Process Manager.

Demonstration IV. The purpose of this demonstration is to showcase the capabilities of the
integrated MCM Design Process Manager working with the selected EDA toolkit.

Task 15. Integrate and Test the MCM Desi gn Process Manager
The purpose of this task is to perform final integration, testing, and validation with example
scenarios and data in order to make the MCM Design Process Manager into a workable
environment. At the conclusion of this task, we will give a final demonstration of the total
system with real examples and transfer the working software to Hughes, Newport Beach EDA
environment.

Demonstration V. The purpose of this demonstration is to show the complete implementation
and full range of capabilities of the MCM Design Process Manager with realworld MCM design
examples.

62

Intelligent Systems Technology, Inc. E
Task 16. Prepare and Submit Project Report
This task will revise and finalize the development documents that were initially created during the
earlier development activities. The set of documents includes: system requirements
specification; detailed design specification; system modules and interface specification, test plan,
guide, and history; system installation guide; and user's guide. The report will also provide a
detailed commercialization plan including product positioning strategy, alliances with EDA
vendors, marketing, distribution, and sales strategies, and sample brochures.

Task 17. Present Progress at ASEM and EP&I Conference
This task is concerned with presenting the work-in-progress and demonstrating the software
functionality of the MCM Design Process Manager to the ASEM community and to participants
in the Electronic Packaging and Interconnect Conference. These two conferences will provide a
forum to showcased our evolving product and its capabilities to a fair segment of the potential
customer base. Their review and feedback will help us in creating a more responsive product for
their needs.

63

Intelligent Systems Technology, Inc. E
8. CONCLUSIONS AND PHASE II PLANS

In this Phase I Final Technical Report, we have presented the overall system concept, key
tradeoffs, architecture, system components, and functionalities of the MCM Design Process
Manager (MCM-DPM). We have also developed a series of computer screens based on
Windows '95 "look and feel" to convey the key functionalities and features of the prototype for
user and sponsor evaluation and feedback. For transparent communication, remote object
invocation, and distributed object management we have selected XShell, a Distributed Object
Management Environment (DOME) that is supposed to have a CORB A 2.0-compliant version by
May 1995. For our repository, we have selected ObjectStore, an object-oriented repository from
Object Design. XShell and ObjectStore have been successfully integrated and can be bought as
an integrated package. This combination provides us with the capability for low-level process
execution with persistent storage of state information. Nevertheless, the C++ software
development effort with this approach is significant in creating the design process management
layer on top of XShell. We have worked out the particulars of this development effort with
XShell developers, who will work with us as necessary during the integration phase. Our target
host environment is Hughes Aircraft Company, Newport Beach, CA. Their MCM design
environment consists of their DecoDesigner toolkit as well as the Tanner Toolkit. Our solution
will be compatible with either toolkit.

Our Phase II proposal provides a detailed implementation plan, key demonstration and
integration milestones, and transition plan. Phase II will conclude with an operational prototype
demonstrable within the Hughes environment. One of our key goals is to maintain the price of
our client software around $1,000 to $1,200. To achieve this goal we will be working out a
reduction in runtime license with Expersoft (and Object Design). We have already started talks
on this subject. Expersoft has indicated their willingness to reduce their current runtime license
fees from $500 to a lower figure.

64

12 Intelligent Systems Technology, Inc.

REFERENCES

Brockman, J.B., Cobourn, T.F., Jacome, M.F., and Director, S.W. The Odyssey CAD Framework.
IEEE DATC Newsletter on Design Automation, Spring 1992.

Brockman, J.B. and Director, S.W. A Schema-based Approach to CAD Task Management.
Proceedings of the Third IFIP WG 10.2 Workshop on Electronic Design Automation
Frameworks. Edited by T. Rhyne and FJ. Rammig, Elsevier Science Publishers, 1992.

Brockman, J.B. and Director, S.W. The Hercules CAD Task Management System. Proceedings of
the International Conference on Computer-Aided Design. IEEE, 1991, pp. 254-257.

Brockman, J.B. and Director S.W. "The Hercules CAD Task Management System."
Proceedings off the IEEE International Conference on Computer-aided Design. IEEE, 1991.

Bryant, R.E., Beatty, D., Brace, K. Cho, K. and Sheffler, T. COSMOS: A Compiled Simulator for
MOS Circuits. Proceedings of the 24th ACM/IEEE Design Automation Conference. ACM,
1987, pp. 9-16.

Buckley, K.F. "Engineering Process Management System Springboard for CE." Proceedings
of CE and CALS Exposition. June 1993.

Casotto, A., Newton, A.R., and Sangiovanni-Vincentelli, A. Design Management based on Design
Traces. Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM, 1990, pp.
136-141.

Chiueh, T. and Katz, R. A History Model for Managing The VLSI Design Process. Proceedings of
the International Conference on Computer-Aided Design. IEEE, 1990, pp. 358-361.

Curtis, B., Kellner, M.I., and Over, J. in Process Modeling Communications of the ACM, vol,
35, no. 9, pp. 75-90, September, 1992.

Jacome, M.F. and Director, S.W. "Design Process Management for CAD Frameworks." 29th
ACM/IEEE Design Automation Conference, pp. 500-505, 1992.

Jacome, M.F. and Director, S.W. Design Process Management for CAD Frameworks. Proceedings
of the 29th ACM/IEEE Design Automation Conference. IEEE Computer Society Press, 1992,
pp. 500-505.

Knapp, D.W. and Parker. "A Design Utility Manager: The ADAM Planning Engine."
Proceedings of the 23rd ACM/IEEE Design Automation Conference. ACM Press, pp. 48-
54, 1989.

Liebisch, D.C. and Jain, A. JESSI Common Framework Design Management - The Means to
Configuration and Execution of the Design Process. Proceedings of First European Design
Automation Conference. GI/ACM/IEEE/IFIP, 1992, pp. 552-557.

Madni, A.M. A Scalable, Customizable MCM Design Process Manager. Intelligent Systems
Technology, Inc. Quarterly Progress Report, SBIR Phase I, Contract No. DAAH01-94-C-
R291, December 5, 1994.

Madni, A.M. A Conceptual Framework and Enabling Technologies for Computer-aided
Concurrent Engineering (CACE). Plenary address & Invited Paper, Second International
Conference on Human Aspects of Advanced Manufacturing and Hybrid Automation.
August 12-16, 1990(b).

Madni, A.M. HUMANE: A Knowledge-Based Simulation Environment for Human-Machine
Function Allocation. Proceedings of IEEE National Aerospace & Electronics Conference,
Dayton, Ohio, May 1988.

Rumsey, M. and Farquhar, C. Unifying Tool, Data and Process Flow Management. Proceedings of
First. European Design Automation Conference. GI/ACM/IEEE/IFIP, 1992, pp. 500-505.

ten Bosch, K.O., Bingley, P., and van der Wolf, P. Design Flow Management in the NELSIS CAD
Framework. Proceedings of the 28th ACM/IEEE Design Automation Conference. ACM, 1991,
pp. 711-716.

65

Intelligent Systems Technology, Ine, 12
van den Hamer, P. and Treffers, M.A. A Data Flow Based Architecture for CAD Frameworks.

Proceedings of the International Conference on Computer-Aided Design, IEEE, 1990, pp.
482-485.

van der Wolf, P., Sloof, G.W., Bingley, P., Dewilde, P. Meta Data Management in the NELSIS CAD
Framework. Proceedings of the 27th ACM/IEEE Design Automation Conference. ACM, 1990,
pp. 142-145.

66

Intelligent Systems Technology, Inc. m
APPENDIX A: EDA STATUS AND TRENDS

EDA Integration and Interoperability Status
The CAD Framework Initiative (CFI) is an international cooperative effort within the electronic
industry to define standard system interfaces and services that facilitate integration of design
automation tools and design data. CFI provides an effective alternative to proprietary solutions.
It also provides a vehicle for organizations to collectively invest in standard solutions that serve
their individual tool-integration problems. CFI 1.0 standards, first piloted in 1992, are finally
being certified and offered commercially. Initial CFI efforts have focused primarily on Design
Representation and ASIC Logic Design. CFI is just beginning to look at process management
but standards in this area are not expected for quite some time.

Today both users and EDA vendors recognize a growing "technology gap" between EDA
capabilities and submicron process/fabrication demands. Despite the interoperability problems,
users continue to buy the "best" individual tools and worry interoperability later. This is not
surprising given that the cost of fixing interoperability failures is much less than the cost of
missing a market opportunity.

Standards are having a mixed reception. While standards are seen by small suppliers and point-
tool providers as enablers and facilitators, they are viewed by major EDA suppliers as "bad for
business," because they limit the ability of the major EDA suppliers to control accounts. As a
result, closed environments are still the norm. But the one definitive trend is away from the
"frameworks" approach and towards "interoperability." This again is not surprising when one
considers the fact that Intel spent significant effort and time to adopt a commercial framework but
found itself still locked-in.

Traditional EDA architectures and process flows implied in most existing toolkits do not readily
support "new" design processes based on integrated product development, concurrent
optimization, and collaborative design. Finally, cultural and organizational issues inhibit rapid
change and flexibility in use of EDA solutions.

Collett Survey
The recent Collett Survey has several interesting results that have both technical and business
implications.

.• The ratio of engineers to CAD support staff is a key indicator of time to problem
resolution. This ratio, which averages 8:1 in industry is 5:1 at semiconductor houses.
The survey found that semiconductor houses have lower ratios, do more complex
designs, and experience significant interoperability and performance issues but overcome
them more quickly. Others doing less complex designs experience fewer interoperability
issues, but take longer to solve them because they have higher ratios.

• On the average, specification changes stretch design cycle times by over 2 to 8 months
while interoperability issues add only 1 to 2 months.

• Typical gate count that stands at $80K today is expected to grow to $160K in 18 months.
• Interoperability-related non-productive time associated with non-value-added activities

such as moving files, running translators, accounts for 15% of the design effort — a $4
billion problem!

A-l

Intelligent Systems Technology, Inc. \SL
• 75% of the users surveyed indicated that "out-of-the-box" EDA integration is either

below average or unacceptable with time-to-market pressures and system performance
goals creating the greatest amount of dissatisfaction.

• The most time consuming loops in the design cycle is logic design ... and the most often
executed loop is logic design.

• The mean time to bring up a new tool is 17.5 days.
• While VHDL usage is growing, Venlog usage is not.
• For each dollar spent on tools, customers spend an additional $2.50 (on the average) for

maintenance and support.
• Typical corporate EDA budget: 20% EDA tools; 40% EDA personnel-related expenses

(e.g., salaries $773 million); 40% maintenance of EDA hardware and software.
• EDA personnel-related expenses breakdown: 22% administration; 29% management

of methodology, technology, and processes; 20% library management; 12% glue
software development; 13% application software development.

EDA Business Model is in Transition
The EDA Business Model is evolving along each of the three key dimensions: The System
Model; The Licensing Model; The Distribution and Support Model. We present these trends in
Table A-1.

Table A-1.
Business Model Trends

Model Type Traditional New

System Model Monolithic, fully-integrated,
single supplier

"Plug and play"

Licensing Model Per-project or short-term lease;
Node-locked or floating Pay for use

Distribution and
Supplier Model Direct sales; bundled

maintenance and upgrades
VAR; Time and materials

It is also becoming increasingly clear that a revenue stream is needed to support new-product
R&D. The bottom line is that the evolution of the new EDA Supplier Business Model can be
influenced but only through our purchasing decisions.

Industry Trends
Platform strategy typically varies with the EDA vendor's tool positioning. Very high end and
middle, of the road tool vendors are expected to pursue Windows NT and traditional UNIX
workstation. For example, Intergraph design tools are being offered on Windows NT whereas
Mentor and Cadence continue to offer their software on UNIX workstations. Low end tools
such as from Tanner Research will be offered on Windows platforms. In general, new small
high-value solution providers that emphasize agility are expected to find common ground on NT
first, then migrate to UNIX. Despite these developments, UNIX is expected to remain a
platform of choice, but is expected to see increasing competition form lower cost, more
interoperable solutions on Windows and Windows NT platforms.

Despite the fact that data management is necessary now more than ever before, few EDA vendors
and uses have taken it seriously until now. Today, the EDA user industry acknowledges that
development teams on large, complex projects have little chance to being successful without data

A-2

Intelligent Systems Technology, Inc. 12
management. A successful data management strategy is absolutely essential t corporate success
in a highly competitive, time-to-market driven enterprise. Despite the successes of product data
management systems such as Sherpa, significant work remains ahead. Specifically, the
enterprise scalability of product data management systems and their interface to design process
management systems continue to be fuzzy.

EDA Outlook
Market "seat saturation" spells the end of an era characterized by high-dollar EDA suppliers.
Growth is expected to occur in high-value provides characterized by low-cost, "best of breed,"
multi-platform solutions. Platform-supported interoperability is expected to overcome ultimately
EDA-erected barriers. Real interoperability is expected to spur a surge in innovation in the 3 to 5
year time frame. Finally, EDA users are expected to close the EDA-technology gap with
continued use and generation of new requirements.

A-3

