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PICOSECOND PHASE CONJUGATION: 

NEW APPLICATIONS, DEVICES, AND MATERIALS 

Jack Feinberg 
Department of Physics 

University of Southern California 
Los Angeles, California 90089-0484 

(213)740-1134 

A) Summary of Overall Progress: 

FIRST YEAR: 
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In the first year of this AFOSR grant we submitted 6 papers. These projects span 

a wide variety of topics, as described below: 

1) X. S. Yao and J. Feinberg, "Temporal shaping of optical pulses using beam 
coupling in a photorefractive crystal," Optics Letters 18,622-624 (1993). 

This is one of three papers describing our successful experiments to use a 
photorefractive crystal to alter the temporal shape of picosecond light pulses. 
Such shaped pulses may be used for launching solitons into long-range 

communication fibers. Under our previous AFOSR contract, we published a 
theory predicting that pulses can be shaped in time by mixing them with other 
pulses in a photorefractive crystal. Our present experiments demonstrate such 

temporal beam shaping. We selectively carve holes or add peaks onto the 

pedestal of a picosecond pulse, where the holes and the peaks have a temporal 

width of a few picoseconds, as shown in Figure 1 below. 

J 
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Figure 1: A picosecond peak is "grafted" onto a longer pulse using 
two-wave mixing in a photorefractive crystal of barium titanate. 
Left plots (al-a4): measured shapes; Right plots (bl-b4): predicted 
shapes. The relative delay between the two interacting light beams 
is changed between each of the four rows, and this shifts the 
position of the peak by a few picoseconds. 
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2) X. S. Yao and J. Feinberg, "Photorefractive pulse coupling in the frequency 
domain," Optics Letters 18,104-106 (1993). 

In our previous AFOSR contract, we presented a detailed theory 

predicting how pulses can be shaped in time by mixing them with other pulses in 
a photorefractive crystal. The experiments on temporally shaped pulses shown 
in Figure 1 above show qualitative agreement between theory and experiment, 
but a more accurate comparison can be performed in the frequency domain. 
When optical pulses couple in a photorefractive crystal their frequency spectra is 

altered. This affects their temporal shape, but sometimes only in subtle ways that 
are difficult to measure. Here we measure the frequency spectrum of light pulses 
directly, both before and after coupling in a photorefractive crystal, and compare 
our measurements with theory. Figure 2 shows that the agreement between 
experiment and theory is quite good. (The roll-off of the data in the wings is 

caused by the finite size of the photorefractive crystal). 

U 
u 

% 
O 

-1.0 -0.5 0.0 0.5 

Frequency (THz) 

Figure 2: Gain vs. frequency for a picosecond light pulse that has 
coupled with another picosecond light pulse in a photorefractive 
crystal. 

Our experiments also show that the light diffracted from a photorefractive 

grating suffers a phase shift that depends quadratically on the delay time 
between the pulses interacting in the photorefractive crystal. This result is a 

direct confirmation that the average power gain of the input light beam is 
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proportional to the magnitude squared of the second-order field correlation 

function, as we had previously predicted. A rival theory, which predicted that 
the average power gain of the signal beam is proportional to the fourth-order 

field correlation function, cannot provide any phase information and so cannot 

predict the observed dependence of the phase shift on the relative delay time. 

3) X. S. Yao and J. Feinberg, "Simple in-line method to measure the dispersion of 
an optical system," Applied Physics Letters 62,811-813 (1993). 

In the course of our work on shaping pulses, we invented a simple and 

accurate method to measure the dispersion of an arbitrary optical system. Such 

measurements are critical for designing and aligning femtosecond laser systems. 

Our method uses the final laser beam itself to diagnose the optical system, and 
thereby ensures that the final beam traverses the exact same path as the 
diagnostic beam. We interfere the light beam with a separate light beam inside a 
spectrometer. The resulting spectrum yields the quadratic and cubic dispersion 

terms of the optical system. We demonstrate this technique on an optical system 

formed by a pair of gratings. 

4) V. V. Eliseev, A. A. Zozulya, G. D. Bacher, and J. Feinberg, "Self-bending of 
light beams in photorefractive phase conjugators," Journal of the Optical 
Society of America-B 9,398-404 (1992). 

This paper describes the details of self-pumped phase conjugation in 

photorefractive crystals. A single beam input into a photorefractive crystal will 
produce a host of new, stimulated beams, including a phase-conjugate beam. In 

a continuation of work begun in our previous AFOSR contract, we show why 

these stimulated light beams appear to follow curved paths inside the crystal. 
These apparently curved paths are formed by a series of straight-line segments, 

with beams propagating in both directions along these segments. These line 
segments arise from the amplification of scattered light inside the crystal. As 
they form, these line segments create new interaction regions which generate 
new line segments, thereby making the final light path appear curved. We 

present a detailed theory of this effect, including predictions for the coupling 

strength required for these curved light paths to form.    We also show 
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photographic evidence that the curved beam paths are composed of a series of 

straight-line segments. 

5) R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, 
"Intensity dependence of the photogalvanic effect in barium titanate," 
Journal of the Optical Society of America-B 9^1704-1713 (1992). 

Even a uniform beam of light causes charges to migrate in a preferred 

direction in some photorefractive crystals, such as barium titanate. This charge 

migration causes a measurable current, called the photogalvanic current. This 

paper explains in detail how the photogalvanic current alters the gain available 

for light beams in photorefractive crystals. Studying the photogalvanic current is 
somewhat complicated due to our discovery that in addition to the expected 

uniform current in the crystal, there is also a spatially varying current in the 
crystal caused by spatial variations of the incident light pattern. This spatially- 
varying current competes, with and, in general, dominates the spatially-uniform 

current. This spatially-varying term has been ignored in the past, and has led 
previous researchers to predict the wrong sign for the photogalvanic current. In 
fact, it is the spatially-varying current that controls charge transport in barium 

titanate crystals. 

6) V. Dominic and J. Feinberg, "Growth rate of second-harmonic generation in 
glass," Optics Letters 17,1761-1763 (1992). 

One can obtain blue light from existing laser diodes by frequency 

doubling their infrared light beam in an inorganic crystal, such as lithium 

triborate. However, such frequency-doubling crystals are expensive. Wouldn't it 

be nice to replace the expensive crystal by an inexpensive glass fiber? Because 

the core of an optical fiber is macroscopically centrosymmetric, two-wave sum 

frequency generation (and in particular second-harmonic generation) is not 

expected to occur in an optical fiber. However, in 1987 Österberg and Margulis 
reported rather efficient (5%) second-harmonic generation of 1.064 |im light 
inside a germanium-doped optical fiber that had been illuminated by intense 

infrared light for many hours.1 Stolen and Tom2 showed that by injecting both 
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infrared and green light into the fiber, the preparation time of the fiber could be 

shortened from many hours to just a few minutes. 
In this paper we study the growth rate of the light-induced second-order 

nonlinearity in germanium-doped optical fiber preforms. The purpose of this 
work is to understand the physical mechanism responsible for the light-induced 

changes in the glass. We seed the glass with both infrared light and green light 

(Nd:YAG and doubled Nd:YAG) to create the second-order nonlinearity, and 

measure its formation rate while varying the intensity of either the fundamental 

or second-harmonic seeding beams. We find that the formation rate varies as a 
power law of the intensities, but with an exponent larger than predicted by 
recent models.3 In particular, we find that the rate coefficient increases with the 

intensity of the infrared seeding beam as Io8"12, and with the intensity of the 
green seeding beams as I2CD

2
-
5
~

3
-
5

- Our results imply that the defect responsible 
for the optical nonlinearity of the glass is 4 infrared photons (4 eV ) deep, and 
that the nonlinearity is due to the competition of different multiphoton ionization 

pathways. 

[1]    U. Österberg and W. Margulis, Opt. Lett. 11, 516 (1986); Opt. Lett. 12, 57 
(1987). 

[2]    R. H. Stolen and H. W. K. Tom, Opt. Lett. 12,585 (1987). 
[3]    E. M Dianov, P. G. Kazansky, and D. Yu Stepanov,   Sov. J. Quantum 

Electron. 19,575 (1989); E. M. Dianov, P. G. Kazansky, and D. Yu Stepanov, 
Sov. Lightwave Commun. 1,247 (1991). 

SECOND YEAR: 
In the second year of this project we continued our work on picosecond 

phase conjugation and branched out into two new areas: phase conjugation of 
laser diodes and the physics of second harmonic generation in glass. It was a 

productive year; we submitted or published additional papers as follows: 

7) V. Dominic and J. Feinberg, "Spatial shape of the dc electric field produced by 
intense light in glass," Optics Letters 18,784-786 (1993). 

The photorefractive effect can occur not only in crystals (such as BaTi03) 

but in glasses as well. A light beam and its second harmonic can create a semi- 

permanent dc electric field inside glass. This dc electric field, of magnitude 10+6 

V/m, is responsible for the production of second-harmonic light in the glass. In 
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this paper we map out the transverse spatial shape of this photoinduced dc field 

inside a bulk sample of germanium-doped fused silica glass. 
There has been a considerable effort since 1987 to understand how an 

apparently centrosymmetric material like glass can act as a frequency doubler. 
We now know that the incident light creates a dc electric field inside the glass, 
breaking its inversion symmetry. This photoinduced dc electric field acts 

through the symmetry-allowed third-order susceptibility x™ of tne glass to 

produce the required second-order nonlinearity ;£(2), 

pH-lwcOtCo) = 3l°h-2co;(0,co,Q)-Edc (1) 

where E& is the photoinduced dc electric field. 

Here we report a measurement of the transverse spatial shape of the 

photoinduced dc electric field. We use the polarization properties of z™ to 

carefully map the spatial shape of the dc electric field Eic. We guess a final 

charge distribution: 

P(x,y) =  (p0y/w)exp[-(x2 + y2)/w2], (2) 

which is the vertical derivative of a cylindrically symmetric Gaussian function of 
width w. The charge density p0is unspecified. We choose the parameter w=4.5 

urn to match our data. Figure 1 shows the dc electric field Edc caused by such a 

charge distribution. Figure 2 shows transverse maps of the predicted and 
measured signal strengths using the proposed field shape. Although the finite 

size of our probing limits our resolution, our spatial map clearly shows the 

symmetry of the dc field. This dc field shape can predict the results of six 
different experiments. In all of these experiments we find excellent agreement 

between our predictions and our measurements. 
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Figure 3. The dc electric field produced from the charge 
distribution given by Eq. (2) above. With this dc field shape we 
successfully predicted the results of six experiments. 
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Figure 4. Comparison between the predicted and the measured 
dependence of the signal on the probe beam position. The glass 
sample was a Ge-doped optical fiber preform. The probe and the 
analyzer polarizations are oriented either vertically (top) or 
horizontally (bottom). 
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8) S. MacCormack and J. Feinberg, "High-brightness output from a laser-diode 
array coupled to a phase-conjugating mirror," Optics Letters 18, 211-213 
(1993). 

Although laser diode arrays can produce impressive amounts of 

optical power, they usually simultaneously operate on many transverse modes, 

which makes their far-field pattern a mess. Their poor beam quality makes laser 
diode arrays ill suited for many applications, such as launching intense light into 

single-mode waveguides or pumping mini- laser systems. 
Here we couple a laser diode array to an external, photorefractive 

phase conjugator, and thereby force the array to operate on a single transverse 

mode. Even while running close to its maximum rated output power, this device 

now puts out a near diffraction-limited beam. 
We obtain single-lobed, near diffraction limited output from a 20-element 

laser diode array coupled to an apertured, photorefractive phase conjugator. At 
low driving currents the output beam is diffraction limited and contains 75% of 
the total output power emanating from the array, as shown in Figure 3 below. 

At high driving current a 1.5 x diffraction-limited lobe contains 490 mW, or 54% 

of the output power. 
Subsequent analysis of the frequency spectrum of the locked array 

revealed a rich assortment of array modes. This result implies that previous 
theories on the behavior of lasers locked to external phase conjugators are 

incorrect. In fact, the correct description of the device now appears to be that of a 

Fabry Perot cavity with gain that is injected by external light. The injected beam 

rattles back and forth between the two mirrors, extracting gain, and then exits at 

an angle opposite to the injecting beam. 
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Figure 5. Output of a laser diode array while (a) free running, or (b) with 
phase-conjugate feedback, or (c) with phase-conjugate feedback and 
higher array driving current. (Curves (b) and (c) are displaced vertically 
for clarity.) When the laser is free running its output beam spews out 
over a wide angular range, as seen in trace (a). However, when the 
conjugator feeds back a small portion of the laser's light, the output beam 
narrows to make the sharp output peak seen at +2°. The smaller peak at 
-2° is the light going into the phase conjugator. 
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THIRD YEAR 

We continued our investigations into frequency doubling in glass. We also 
pusued our experiments to obtain high-poser coherm laser diode arrays, as 
shown in the following papers. 

9) V. Dominic and J. Feinberg, "Light-induced second-harmonic generation in 
glass via multiphoton ionization," Physical Review Letters 71, 3446-3449 
(1993). 

In our previous paper in JOSA-B we showed a new method for mapping 

out the dc electric field created in glass when the glass is illuminated by intense 
light at both green and infrared wavelengths. In this paper we improved our 

spatial resolution and so provide exquisitely detailed maps of the dc field locked 

inside the glass. We map the two components of this electric field separately, and 

so build a complete spatial map of the dc field. An example of the data is shown 

in Fig. 6 below. 

We also calculate the probability that the incident light beams can eject 

electrons from their trapped sites in the glass under a variety of input light 
polarizations. We then performed these experiments and show that these 
calculated photogalvanic current can explain the various measured dc field 

patterns. 
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Figure 6. Strength of the second-harmonic signal versus transverse 
position The top two rows are the experimental data displayed in two 
formats. The bottom row is calculated from a charge distribution that is 
the spatial derivative of a Gaussian along the y direction. 
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10) V. Dominic, Patrick Lambelet, and J. Feinberg, "Measurement of the phase of 
second-harmonic generation in SK5 glass," Optics Letters 20, 444-446 
(1995) 

Here we measure the phase 6 between the green light that induces second- 

harmonic generation in glass and the green light produced by the glass itself. We 

find that the phase shift is 90° ± 7°. At first this seems a surprising result, because 

a small vector added in quadrature to an existing vector changes only the vector's 

phase but not its amplitude, to first order. However, as we will show in a 
subsequent publication, the finite time response of the glass enables the green 

light to grow in strength. 

<4H 
• i—< 

00 

OH 

-20 -10 0 10 

Position   (jam) 

Figure 7. Measured phase shift 6 versus the probing beam 
position near the center (position = 0) of the seeded spot. For 
horizontal scans (dashed line) the phase shift is independent of the 
position. However, for vertical scans (solid line), the phase shift 
experiences 180° jumps on the outskirts of the seeding light beams, 
where the dc dipole electric field reverses sign. 
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In this paper we also show that the phase 8 of the generated green light 
undergoes an abrupt transition at the edges of the light-seeded regions of the 

glass sample, as seen in Fig. 6. This discontinuity is caused by the reversal in the 

direction of the dc electric dipole field at the top and bottom of the dipole field, 

as can be seen by inspecting the dc dipole field in Figure 3 above. This 

measurement confirms that there is indeed a dc electric field locked inside the 
glass, and lays to rest competing theories of second-harmonic generation in glass. 

11) S. MacCormack and J. Feinberg, "Injection locking a laser-diode array with a 
phase-conjugate beam," Optics Letters 19,120-122 (1994). 

We show that it is possible to make a broad-area laser emit a coherent and 

spatially clean light beam by injecting the laser with light from another 
semiconductor laser. The trick is to use a mutually-pumped phase conjugator to 

connect the two lasers. The conjugator automatically directs light from the 

injecting laser precisely to the lasing region of the slave laser. The slave laser 
then becomes single frequency and emits into a nearly diffraction limited beam. 
We are presently scaling up these injecting experiments to arrays of broad area 

lasers (laser bars) having substantially higher power. 
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Figure 8. Optical set up for injecting light from a single-mode 
master laser into a slave laser array. The BaTiC>3 crystal acts as a 
mutually pumped phase conjugator to direct the injecting laser 
beam precisely into the lasing regions of the slave laser array. 
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Figure 9. Far field light patterns from the slave laser. In trace (a) 
the slave laser is free running, and it emits a wide swath of light. In 
trace (b) the slave is injected with light from the master laser, and 
the slave laser now emits a narrow, intense output beam. 
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C) Current Problems or Unusual Developments: 

None. 

D) Changes from Original Proposal: 

None. 
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Injection locking a laser-diode array with 
a phase-conjugate beam 

Stuart MacCormack and Jack Feinberg 

Departments of Physics and Electrical Engineering, University of Southern California, Los Angeles, California 90089-0484 

M. H. Garrett 

Centre de Recherche en Optoelectroniques, Sandoz-Huningue S.A., Avenue de Bale, Huningue 68330, France 

Received July 16, 1993 

We use a mutually pumped phase conjugator to guide the output beam of a single-mode laser diode into the active 
region of a high-power laser-diode array. This injected beam locks the frequency of the array, causing it to emit 
a single, 1.45 times diffraction-limited, continuous-wave output beam containing 85% of the array's total output 
power. ' Phase-conjugate injection dramatically improves the coupling into the laser array, so that less than a 
milliwatt of injected power is sufficient to lock all the array's 450-mW output to the frequency of the master laser. 

Injecting light from a single-mode laser into a laser- 
diode array can narrow the array's output spectrum 
and produce a nearly diffraction-limited output 
beam.1 Over a narrow range of wavelengths and 
injection angles, the laser array becomes a slave to 
the master laser's injecting beam; it simply becomes 
a waveguide with optical gain and amplifies the 
injected beam at the expense of the array's own 
free-running modes. However, this occurs only if 
the master laser beam's frequency, position, and 
incident angle are just right,2 and these constraints 
place great demands on the master laser beam's 
frequency stability, shape, and alignment. Here 
we demonstrate an injection-locking scheme that 
overcomes these problems: we use a mutually 
pumped phase conjugator to aim the master laser 
beam precisely into the gain region of the laser array. 

A mutually pumped phase conjugator couples two 
optical beams and directs each beam down the throat 
of the other.3,4 The two incident light beams typi- 
cally have slightly different frequencies and so are not 
coherent with each other. The conjugator transfers 
spatial and phase information from one beam to the 
other, so that the two beams leave the device as 
phase-conjugate replicas of each another. We use 
a photorefractive crystal of barium titanate as our 
mutually pumped phase conjugator. The ~l-s re- 
sponse time of this conjugator automatically adjusts 
to gradual changes in either the position or the angle 
of incidence of the two input beams. Using a mu- 
tually pumped phase conjugator to direct the laser 
beams eases the problem of beam alignment and 
shape by a factor of -1000, from one of micrometers 
and millidegrees into one of millimeters and degrees. 

Figure 1 shows our experimental setup. The slave 
laser is an off-the-shelf, 1-W laser-diode array (SDL 
2462-P1) mounted on a temperature-controlled heat 
sink and operated at a wavelength of —800 nm. 
We conservatively operate the laser at a current of 
1.0 A (equal to 2.1 times the threshold current), where 
it produces a continuous-wave, free-running output 
power of 450 mW.   (We operate the laser below its 

maximum rated output power to suppress oscillation 
on its free-running modes. Alternatively, we could 
reduce the slave laser's output coupler reflectivity 
and thereby increase the self-oscillation threshold.) 
A high-numerical-aperture lens collects the horizon- 
tally polarized output beam and directs it toward a 
cylindrical and spherical lens pair. This lens com- 
bination generates a pseudo twin-lobed far-field pat- 
tern with a width of -10 mm. One lobe is incident 
upon an adjustable slit placed in the far field. Light 
transmitted through the slit is weakly focused by a 
spherical lens into an approximately 1 mm x 1 mm 
spot on one a face of the BaTi03 crystal. Its external 
angle of incidence is 65° to the crystal face normal. 
Our blue-colored BaTi03 crystal (named Bleu) mea- 
sures 6.1 mm X 6.6 mm X 5.9 mm and is mounted 
with its c axis in the vertical plane. (Blue BaTi03 
has an enhanced photorefractive response at near- 
infrared wavelengths compared with the usual pale- 

To spectrometer 
and Rericon 

i Injection-locked 
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BaTi03 crystal 
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Fig. 1. Experimental setup. The combination of a Fara- 
day polarizer and a A/2 plate isolates the single-mode 
master laser. The slit selects one lobe of the array slave 
laser. Both the master and slave laser beams enter the 
BaTi03 crystal and fan toward its top face. (The crystal's 
+c axis faces up, normal to the plane of this figure.) The 
inset shows a side view of the BaTi03 crystal and the 
bird-wing pattern made by the laser beams. 
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yellow BaTi03.
5) We use a half-wave plate to make 

the array's output polarization parallel to its direction 
of spatial coherence, which is perpendicular to the 
plane of the laser gain region.6-7 

The master laser is a 100-mW, temperature- 
tuned, single-mode laser (SDL 5412-H1). We tem- 
perature tune this master laser's frequency to 
he anywhere within the slave laser's 2-nm-wide, 
free-running output spectrum. Its polarized out- 
put is collected by a high-numerical-aperture lens 
and directed through a half-wave plate and a 
Faraday isolator to make it an extraordinary ray 
at the barium titanate crystal. (The Faraday 
isolator prevents light from the slave laser from 
feeding back into the master laser and causing 
frequency instabilities. Good optical isolation is 
especially important here since a fraction of the 
array's output is converted into the phase-conjugate 
replica of the master laser's beam.) We direct 
~8 mW of output from the master laser into the 
BaTi03 crystal face opposite the a face entered by 
the slave laser and positioned closer to the crystal's 
positive c face than to the slave laser's input beam. 
This injected beam makes an external angle of 55° to 
the crystal face normal. We use asymmetric beam 
positions because the narrow-frequency, master laser 
beam fans more strongly in the crystal than does the 
broad-bandwidth, slave laser beam. We perform 
beam power, frequency, and shape measurements 
on reflections from optical flats placed in the paths 
of the master and slave laser beams. We analyze 
the optical beams' frequencies with a Spex 0.75-m 
double-grating spectrometer and a Newport SR-200 
spectrum analyzer (finesse > 10,000). We monitor 
the beams' shapes with a 512-element scanning 
linear photodiode array placed in the far field. 

Within a few seconds after the master and the 
slave laser beams illuminate the crystal, the beams 
bend and join to form an asymmetric bird-wing mutu- 
ally pumped phase conjugator.4 The conjugator di- 
rects the master laser beam into the phase-conjugate 
replica of the slave laser beam. This injected beam 
now has the same spatial and phase profile as one 
of the preferred transverse array modes of the free- 
running array and so has the optimum angle ^and 
profile for injection locking the array.8 Once* the 
array is injection locked, the array switches to emit 
predominantly a single lobe that appears at an angle 
equal to but opposite that of the injected beam. 

As shown in Fig. 2, this strong output lobe is ac- 
companied by a weaker secondary lobe that continues 
to illuminate the bird-wing conjugator. These two 
lobes compete and reach a stable steady state. For 
example, if the power directed into the conjugator 
decreases as a result of greater locking efficiency, 
then the conjugator becomes less efficient. This de- 
creases the power injected into the array, which in 
turn decreases the power directed into the output 
lobe, thereby restoring the equilibrium. We found 
that directing too much master laser power (>30 mW) 
into the conjugator can make the injection locking 
too efficient, so that all the array's output suddenly 
switches into the output lobe at he expense of the 
secondary lobe.   With no light now coming from the 

array to the conjugator, the conjugator turns off, and 
locking ceases. 

Once the array is injection locked, the angular 
width of the output lobe changes according to the 
width of the far-field aperture. We adjust this aper- 
ture to optimize the power in the array's output 
lobe while still keeping its divergence near the 0.29° 
diffraction limit of the array's 200-/i.m-wide emitting 
region. For example, with the adjustable aperture 
set to produce an output beam divergence of 1.5 times 
the diffraction limit, the output beam has an elliptical 
Gaussian profile and contains 85% of the array's total 
output (384 mW). The remaining output power is 
in the secondary lobe, with practically no emission 
outside these two locked lobes. When the array is 
locked, the angular position of the main lobe remains 
constant, even with small perturbations to the far- 
field aperture width, ambient temperature, or posi- 
tion of the master laser beam. The stability of the 
locked far-field lobe intensity is good. Over periods 
of hours, we measure peak-to-peak fluctuations of 
less than 10% in the main lobe intensity. These 
intensity fluctuations arise predominantly from the 
20% fluctuations in the conjugator's transmissivity. 
We observe no steering of the far-field lobe with small 
changes in the master laser's drive current. 

The free-running array lases on many longitudinal 
modes simultaneously. However, the injection- 
locked array operates only at the master laser's 
single wavelength. (Frequency pulling and changes 
in the far-field profile were previously observed 
for two arrays coupled by a mutually pumped 
phase conjugator.9) No other output frequencies 
are present to within the 20-dB sensitivity of our 
spectrometer. Figure 3 shows that the bandwidths 
of the master and slave laser outputs are identical 
to within the 750-MHz resolution of our spectrum 
analyzer. Overlapping the master and slave laser 
outputs on a CCD camera produces stable high- 
visibility interference fringes, implying that the 
two lasers are locked and coherent with each 
other. (We have shown previously that the bird- 
wing conjugator performs well even with mutually 
coherent input beams.10)   In our experiments, we 

Far-field angle (Degrees) 

Fig. 2. Far-field spatial pattern of the diode array (a) 
when free running and (b) when injection locked. The 
FWHM of the main lobe in (b) is 0.38°, which is 1.45 
times the diffraction limit (a Strehl ratio of 0.37). The 
total output power for each case is 450 mW. 



122        OPTICS LETTERS / Vol. 19, No. 2 / January 15, 1994 

(b) 

(a) 

79« 

^~JUHAA>W 
799 800 801 

Wavelength (nm) 
802 803 

a 
s 

(c) 

-10 70       20 

(d) 

■10 10 
-T- 

20 

Frequency (GHz) 

Fig. 3. Diode-array spectra measured with a 1.4-m spec- 
trometer when (a) free running and (b) locked. Once 
the array is locked, (c) and (d) show the high-resolution 
spectra of the slave and master laser output beams, 
respectively; their frequency bandwidth is narrower than 
the 750-MHz resolution of our spectrum analyzer. 

observe no contribution to the light injected into 
the array from any backscattering gratings in the 
BaTi03 crystal. 

Consider the injection-locking process as the 
amplification of a signal beam in a Fabry-Perot 
amplifier.11 We can then judge the effectiveness 
of different geometries by comparing the values of 
their small-signal gain, G, defined as the ratio of the 
power contained in the locked lobe to the injected 
power, for operation in the unsaturated regime. 
For conventional injection-locking geometries, G 
typically ranges from 19 to 23 dB.12-13 However, 
we are not operating in the unsaturated regime. As 
discussed above, increasing the power incident upon 
the crystal from the master laser does not necessarily 
increase the power injected into the array. Never- 
theless, even when operating in a saturated regime, 
we obtain a locked output of >380 mW for an injected 
signal of 0.50 mW, corresponding to a saturated gain 
of 29 dB. Below this injection level the spatial shape 
of the output lobe deteriorates. 

In our experiments the small-signal gain G is large 
because our injected signal is the phase-conjugate 
replica of one of the natural modes of the slave 
laser array. Consequently, it is efficiently coupled 
into the slave laser waveguide and has an ideal 
overlap with the gain profile of the laser. This leads 
to efficient gain extraction and to saturation of the 
amplification even with small injected power. If we 
permit a somewhat degraded output beam shape and 
compute the locking efficiency using the total output 
power of the slave array (i.e., both the output and the 
secondary lobes), then we can boast of a frequency- 
locked output of 450 mW for an injected power of 
0.27 mW, which corresponds to a gain of 32 dB. 

At steady state our bird-wing conjugator typically 
transforms ~5% of each incident beam into a phase- 
conjugator replica of the other beam. For example, 
in the setup shown in Fig. 1 the power from the 
master laser incident upon the BaTi03 crystal was 
8.2 mW, while the power deflected by the conjugator 
toward the slave laser was 0.50 mW, which gives a 
phase-conjugate transmission of 6%. A transmissiv- 
ity as large as 35% has been observed for mutually 
pumped phase conjugators in the near infrared,14 but 
we were unable to achieve such large values in our 
experiments. 

We have shown that a phase-conjugate injection 
beam significantly improves the ease of alignment 
and the efficiency of locking a laser-diode array. The 
ability of a small injected power to lock a laser array 
becomes important for locking higher-power laser 
diodes or locking multiple laser arrays. In these 
cases, the success of injection locking will depend 
on the power available from the single-mode mas- 
ter laser. With conventional injection locking the 
currently available 100-mW single-mode lasers could 
lock a maximum of -10 W of slave laser output. 
However, with phase-conjugate injection locking the 
same 100-mW laser has the potential for locking slave 
laser arrays of as much as 100 W. 

We gratefully acknowledge support by grant 
F49620-92-J-0022 from the U.S. Air Force Office 
of Scientific Research. 
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Focusing an intense laser beam and its second harmonic into a SK5 glass slab transforms the glass into a 
frequency doubler. We present a new method to measure the optical phase between the second-harmonic beam 
that transformed the glass and the second-harmonic beam subsequently generated by the glass. We find this 
phase shift to be A0 = -90° ± 7°. A spatial map of this phase confirms that the internal dc electric field locked 
inside the glass resembles a dipole electric field. 

Frequency doubling in glass should be forbidden, 
because glass has macroscopic inversion symmetry. 
However, in 1986 Österberg and Margulis1 observed 
frequency doubling in a glass optical fiber after il- 
luminating the fiber with intense infrared light for 
several hours. A year later Stolen and Tom2 showed 
that launching some frequency-doubled green light 
into a fiber along with the infrared light dramatically 
increased the speed of the process, from 10 h to 5 min. 
It is now understood that the incident fundamental 
and frequency-doubled light beams cause a dc electric 
field to build up in the glass and that this semiper- 
manent dc electric field not only breaks the inversion 
symmetry of the glass but also permits periodic phase 
matching of the frequency-doubling process.3"5 

Here we measure the relative phase shift A0 be- 
tween the frequency-doubled green beam used to 
seed the glass and the frequency-doubled green beam 
generated inside the glass. Why is this phase shift 
worth measuring? Because it provides a check on 
the validity of current theories of second-harmonic 
generation in glass. Recent experiments6-8 have 
measured these two green beams to be out of phase 
by 90°, which, at first glance, is precisely the wrong 
value for this process to be able to bootstrap up and 
grow in strength. (Adding a small vector at 90° to 
an existing vector only rotates the vector's direction 
but does not increase its magnitude.) We find that, 
in fact, the phase Ad is near -90° in our Schott SK5 
glass sample. However, even with Ad = -90°, the 
seeding process's finite time response can permit ex- 
ponential growth of the dc electric field with time.9-11 

We present a new technique to measure the phase 
shift between the seeding and the glass-generated 
green light beams. Our technique is similar to 
the methods discussed in Refs. 6-8, except that, 
as shown in Fig. 1, we use three frequency-doubling 
elements to avoid perturbing the original seeding 
beam, namely: (i) a doubling crystal [lithium tri- 
borate (LBO)] located before the glass sample, which 
makes the original green seeding beam, (ii) the glass 
sample, which creates the green signal beam, and 
(iii) another doubling crystal [potassium titanyl phos- 
phate (KTP)] located after the glass sample, which 
provides a green reference beam. In order to de- 
termine the relative phase of beams (i) and (ii), we 

measure two separate interference patterns, namely, 
(a) that between beams (i) and (iii) and (b) that 
between beams (ii) and (iii). The phase shift Ad be- 
tween the green seed (i) and the green signal (ii) is 
then obtained from the relative displacement of the 
two interference patterns (a) and (b). 

Notice that, instead of attenuating the seeding 
green beam, we simply block it and replace it with 
the infrared seeding beam, which we then double 
in a KTP crystal after the infrared light has passed 
through the glass sample. Any phase shift imparted 
by the green-blocking filter to the infrared beam then 
appears on both the SK5-generated and the KTP- 
generated second-harmonic beams and so is automat- 
ically canceled. 

We use a mode-locked (76-MHz repetition rate) and 
Q -switched (1-kHz pulse rate) Nd:YAG laser (Coher- 
ent Antares). Some of the infrared (A = 1.064 ^m) 
light from the laser is frequency doubled in a LBO 
crystal that is noncritically phase matched, so that 
the green and the infrared beams follow the same 
optical path, as shown in Fig. 1. The polarization of 
the infrared and the green seeding beams is verti- 
cal, and we adjust their powers to 3 W and 2 mW, 
respectively. At the focus these powers correspond 
to 4 X 1011 and 4 X 108 W/cm2 of peak power for 
the infrared and the green beams, respectively. We 
seed a virgin location in our Schott SK5 sample for 
10 min.   We then acquire interference pattern (a) be- 

Green- 
blocking 

Filter 

Fig. 1. Second-harmonic light generated in the KTP 
crystal interferes with that generated in either (a) the 
LBO crystal (green-block filter removed) or (b) the 
seeded SK5 glass sample (green-block filter present). 
Translating the glass prism shifts the phase of the green 
beam (from either LBO or SK5) compared to that of the 
green beam from the KTP crystal. The direction of the 
prism's arrow corresponds to the positive axis of Fig. 2. 
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tween the green beams generated in the LBO and 
KTP crystals by translating a prism and sampling 
the intensity pattern as it sweeps past our aper- 
tured detector. (For the beam power and exposure 
time used, the green generated by the SK5 sam- 
ple is too weak to affect this interference pattern; 
the ratio of the glass-produced green and the LBO- 
produced green is less than 1(T3). We then block 
the green seeding beam from the LBO crystal with 
a green-blocking-infrared-passing filter. We mea- 
sure interference pattern (b) of the green beams gen- 
erated by the glass sample and by the KTP crys- 
tal, as shown in Fig. 2. (We are careful always to 
return the prism to its original position and elimi- 
nate backlash.) Because the green beam generated 
in the KTP crystal is common to both interference 
patterns (a) and (b), comparing these two interfer- 
ence patterns reveals the phase shift between the 
LBO-generated green (the seeding beam) and the 
SK5-generated green (the glass signal beam). We 
measured this phase shift twelve times and found 
an average phase shift A0 = -90° ± 7°, where the 
minus means that the glass-produced green beam is 
in advance of the seeding green beam (as previously 
observed by Koch and Moore7). 

Our technique is insensitive to nonlinear-optical 
phase shifts caused by self-phase modulation and 
cross-phase modulation so long as the infrared power 
is the same for both fringe-shift measurements. This 
is because any self-phase modulation of the infrared 
beam or cross-phase modulation of the infrared on 
the green beam will be common to both interference 
patterns (a) and (b) and so will cancel. Unfortu- 
nately, when we insert our green-blocking filter to 
eliminate the LBO-generated green and acquire in- 
terference pattern (b) we unavoidably decrease the 
infrared power by 10%. To check the importance of 
this effect, we seeded the glass sample and then mea- 
sured the phase shift with different powers for the 
infrared reading beam. We observed a slight phase- 
shift dependence of 2°/W, which imparted a negligible 
error (<1° of phase shift) to our experiments. 

Recent theories of second-harmonic generation 
in glass make different predictions for how the 
phase shift A0 measured here will vary with the 
transverse position of the probing beam.1213 There- 
fore we varied the position of the probing beam to 
construct a spatial map of the phase shift A 9, as 
follows. First we seeded one spot in the glass 
sample, using y-polarized green and infrared beams. 
We then probed at different locations, using a single 
y-polarized infrared probing beam and translating 
the sample perpendicular to the direction of the prob- 
ing beam. Figure 3 shows that the measured phase 
shift remained A 6 = -90° in the center of the seeded 
spot and along a horizontal scan through the center 
but underwent an abrupt step of 180° as we scanned 
in the vertical direction. This dependence of A0 on 
the position of the probing beam is precisely that 
expected if the electric field locked in the crystal (and 
causing the glass's frequency doubling) comes from 
the dipole field shown in Fig. 4.12 Imagine probing 
this transverse dc field pattern near its center, where 
the dc electric field is directed up (+y direction).    In 

this central region the y component of this dipole dc 
electric field points up everywhere; however, if the 
probing beam is moved sufficiently above or below 
the edges of the dipole, the y component abruptly 
switches sign and points down. Switching the sign of 
the dc electric field imparts an extra 180° phase shift 
to the green beam generated in the glass sample [as 
we show in Eq. (2) below] and so causes the abrupt 
phase jumps seen in the data of Fig. 3. In contrast, 
translating the probe beam horizontally along the 
center-line scans a y component of the dc field that 

•.                  •> en #                 »\ 
&5-0 -\     7^ C t    / 

■C  4.5 - V         i fr, t        I 
PH  4.0 -  \        t H i      1 
*  3.5 -    \     / + \    1 
LO  3.0 -     \   1 X, w 
^  2.5 T          V, 
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Fig. 2. (a) By translating a phase-shifting glass prism, 
we map out the interference pattern between the green 
beams from the LBO and KTP crystals, (b) We then 
block the green seeding beam (from the LBO crystal) 
and measure the interference pattern between the green 
beams from the SK5 glass sample and the KTP crystal. 
The phase shift between these two patterns gives the 
desired phase shift A0 between the seeding and the 
generated green beams in the SK5 glass sample. 

-20 -10 0 10 20 
Position (|im) 

Fig. 3. Measured phase shift A0 versus the probing 
beam position near the center (position 0) of the seeded 
spot. For a horizontal scan (triangles) the phase shift 
is independent of the position. However, for a vertical 
scan (circles) the phase shift experiences 180° jumps on 
the outskirts of the seeding light beams, where the dc 
dipole electric field reverses sign (see Fig. 4). 
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Fig. 4. Shape of the light-induced dc electric field trans- 
verse to the direction of the seeding beams when both of 
the seeding beams are vertically polarized (from Ref. 12). 
Note that along the vertical axis of symmetry (x = 0) the 
dc field switches direction from up to down at the outskirts 
of the dipole pattern, near y = ±6 (im. In contrast, along 
the horizontal axis of symmetry (y = 0) the dc field points 
up everywhere. This dipole electric field explains the 
phase-shift data seen in Fig. 3. 

always points in the same direction (+y). Therefore 
we expected and observed no jumps in the measured 
phase shift A 8 as we scanned the horizontal position 
of the probing beam in the glass, as shown in Fig. 3. 
Notice that the x component of the dc electric field 
is negligible along centered horizontal and vertical 
scans, so it does not affect the measured phase. We 
measured the same phase map even when we reduced 
the green seeding intensity by a factor of 200, which 
was the lower limit for our detection system. 

In these experiments the intensity of the glass- 
generated green is always much less than that of the 
LBO-generated green that seeded the glass. There- 
fore the LBO-generated green beam sets the phase 
of the dc field in the glass, and the weak, glass- 
generated green beam does not affect its own gen- 
eration. In this case, the seeding fields at co and 2w 
create a dc electric field in the glass given by2 

Edc = TE*E*E^° exV[i(k2w 

= \r\E*E*E™° exp[i(k2 

2kjz] 

- 2kjz + £</>[-], (1) 

where z is the direction of light propagation, T is 
the growth rate constant, <j>r is the spatial phase 
shift between the three-field interference term and 
the dc electric field, and E\*° is the optical field 
of the green seeding beam. We wish to determine 
<j>r-. The coupled-wave equation for dc-field-induced 
second-harmonic generation is 

dz 
= i- 

2n2a,c 
x

mEicE„EwexV[i{2K-k2ui)z]. 

(2) 

Inserting Eq. (1) into Eq. (2) and keeping only the 
phase-matched terms in the interaction, we find that 

d£.fr 
dz 2n2 

Xw\r\\EJ4E™0exp(i<f>r).     (3) 

The measured phase shift &6 between the glass- 
generated green and the LBO-generated seeding 
green will be A6 = 4>r + 90° because of that fac- 
tor of i in Eqs. (2) and (3). Our measurements yield 
a value A0 = -90°, which implies that <f>r = -180°, 
so that the dc field induced inside the SK5 glass is 
spatially in phase with the three-field interference 
term -E*2E2lll. This result confirms the spatially 
local response seen in Ge-doped fused silica67 and in 
the Soviet glass ZhS-4.8 

Compared with previous techniques, our experi- 
mental technique offers several advantages for 
studying the phase of the frequency-doubled light 
generated by glass. Because we do not disturb 
the seeding beam, we can map out the phase at 
different locations in the sample. We observe a 
180° discontinuity in the phase of the green light 
generated in the glass sample as we move the optical 
probe toward the edge of the seeded region in the 
vertical direction but not in the horizontal direction. 
These results confirm that the original green and 
infrared seeding beams create a dipole-like charge 
distribution in the glass. 
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Irradiating glass by intense light at frequencies o> and 2m generates a semipermanent dc electric field 
in the glass that transforms the glass into a phase-matched optical-frequency doubler. We map out this 
dc electric field over a wide variety of experimental conditions. We show that its symmetries are predict- 
ed by a theory based on the interference of competing multiphoton ionization channels. 

PACS numbers: 32.80.Fb, 32.80.Rm, 42.65.Ky, 42.70.Ce 

Intense light containing frequencies a and la can pro- 
duce a semipermanent, spatially periodic dc electric field 
in glass [1-4]. This strong dc field (~104 V/cm) then 
enables phase-matched second-harmonic generation in 
the glass [5]. A fundamental question is: What micro- 
scopic mechanism produces this strong dc electric field? 
Explanations invoke either light-induced currents [6-8] 
or structural orientation [5,9]. Our data support the 
former; the intense light beams at frequency w and 2a 
cause electrons to be ejected with an angular distribution 
that is not inversion symmetric and which varies periodi- 
cally in space [10-12]. In this Letter we map out the ac- 
tual dc electric fields and show, in four different cases, 
that these fields are well described by a theory based on 
the interference of different multiphoton ionization chan- 
nels. 

We produce the dc electric field by irradiating a 4 mm 
thick glass sample (Schott SK-5) with the fundamental 
Ol -1.064 urn) and the second-harmonic light beams of a 
(^-switched, mode-locked Nd:YAG laser. The peak 
powers of the infrared and green beam are typically 2 and 
0.02 MW, respectively. Both colors are focused to the 
same spot (to within 0.5 /im) either in the bulk or on the 
surface of the glass by a lens (/=25 mm) designed to be 
achromatic at our two wavelengths. After several 
minutes of intense laser irradiation we block the two 
seeding beams; any charges that moved during laser irra- 
diation are then trapped in place in the glass. We probe 
the glass sample with a strongly focused infrared beam 
and detect any second-harmonic light produced by the 
glass sample. By inducing the dc field on the surface of 
the glass and probing with a tightly focused infrared 
beam we significantly improve the spatial resolution of 
the dc field maps compared to our previous work [4]. 

The strength of the generated second-harmonic optical 
field passing through a polarization analyzer ea is 

E2o>ccCa iXxyyx 'C(a * Ca )Cdc 

+ 2Xxx)yy^o,(ca • edc )) EicEaEtt (1) 

where the circumflex denotes the (possibly complex) unit 
polarization vector, and EAc and Ea represent the com- 
plex amplitudes of the dc electric field and the infrared 
optical probing field, respectively. By prudently choosing 

the reading polarization and the analyzer polarization we 
can map out the individual components of the dc electric 
field. 

We created four different dc electric field patterns by 
irradiating separate regions of the glass sample with dif- 
ferently polarized green and infrared seeding beams, as 
follows: (1) Both seeding beams were y polarized; (2) 
the infrared beam was y polarized and the green beam 
was x polarized; (3) the infrared and green seeding 
beams had the same circular polarization; and (4) the in- 
frared and green seeding beams had opposite circular po- 
larizations. 

Figure 1 shows maps of the measured second-harmonic 
power for case 1. With a y-polarized probing beam and a 
y-polarized analyzer we measure the y component of the 

.10 0 w 
Horizontal Positiun I iim) 

10 0 10 
Horizontal Position (urn) 

FIG. 1. Strength of the second-harmonic signal versus trans- 
verse position after case 1 seeding (see text): (a) |(£dc),l2 and 
(b) |(£dc)*l2. The top two rows are the experimental data 
displayed in two formats. The bottom row is calculated from a 
charge distribution that is the spatial derivative of a Gaussian 
along the y direction. 
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FIG. 2. Strength of the second-harmonic signal versus trans- 
verse position after case 2 seeding (see text): (a) |(£dc)yl2 and 
(b) |(£dc)*l2. The data are identical to that in Fig. 1 except 
that x and y are now switched, as predicted by theory. 
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FIG. 3. Strength of the second-harmonic signal versus trans- 
verse position after case 3 seeding (see text): (a) Ifdclcounterciock 
and (b) |£<iclciock- The insets show one-quarter period of a 
spiraling charge pattern and the associated spiraling dc fields. 
Case (a) picks out any counterclockwise spiraling dc field, 
which is strongest at the center of the spiraling charge pattern. 
Case (b) picks out any clockwise spiraling dc field, which is 
strongest at the perimeter of the spiraling charge pattern. 

dc electric field, (Edc)y. Figure 1 (a) shows the magni- 
tude \(Edc)y\2 in the x-y plane: We find a strong central 
hill, with two smaller hills positioned vertically above and 
below, and the signal decreases to nearly zero between 
the hills. For Fig. 1 (b) we measured the variation of the 
x component of the dc field, (£dc)x, using a probing 
beam and analyzer that were both x polarized. Now we 
find four strong peaks, with the signal weak in the inter- 
connecting valleys. The central peak in Fig. 1 (a) is a fac- 
tor of 3 larger than the strongest of the four peaks in Fig. 
1 (b). These patterns are consistent with charges that had 
separated along the y direction in the glass, creating a di- 
poleiike electric field [4]. Predicted maps using this ad 
hoc field are shown for comparison. 

In case 2 the two seeding beams have different polar- 
izations; the infrared seeding beam is y polarized while 
the green seeding beam is x polarized. Figure 2 shows 
that the light-induced dc electric field is now oriented pri- 
marily along the x direction; i.e., the charges have mi- 
grated along the polarization direction of the ^incident 
green beam. 

In case 3 we use right circularly polarized infrared and 
green seeding beams. Now we expect a helical dc field 
pattern, as sketched in the inset of Fig. 3. The direction 
of the dc electric field rotates one full turn after traveling 
in the z direction by the phase-matching periodicity dis- 
tance (0.532 /im)/(n2<B-"«.)==36 pirn, where the «'s are 
the refractive indices at 2a and co. Inspection of Eq. (1) 
shows that the combination right-circular probing beam 
and right-circular polarization analyzer projects out the 
spatially counterclockwise-spiraling component of the dc 
field. Figure 3(a) shows the resulting spatial map: a 
compact, solitary bump in the center. A left/left probing 
experiment detects any clockwise-spiraling dc field, and 
the resulting spatial map [Fig. 3(b)] resembles a volcano. 
These maps are expected for a spatially spiraling charge 

distribution, because its dc field rotates in one direction at 
the center but rotates in the opposite direction off center 
(see insets). [The signal does not drop completely to zero 
at the center of Fig. 3(b) due to the finite size of our 
probing beam.] We confirmed the signal contours shown 
in all the above figures with numerical calculations that 
account for the spatial shape of the dc electric field and 
the propagation of the Gaussian probing beams [4]. 

Finally, we prepared the sample with seeding beams 
having opposite circular polarizations (case 4), and mea- 
sured a peak signal strength that was 400 times weaker 
than the peak signal strengths in cases 1-3 above, and 
with a dc field that spiraled in the opposite direction than 
the dc field in case 3. However, the purity of our circular 
polarizations was only —95%, and any leakage of the op- 
posite circular polarization of the green beam would pro- 
duce the mirror image of case 3. 

We also performed separate experiments to confirm the 
orientation of the dc electric field. We position the prob- 
ing beam at each pattern's center of symmetry, rotate 
both the probing beam's linear polarization and the linear 
analyzer to an angle <D, and measure the signal strength 
as a function of <J>. Figure 4 shows our measurements 
plotted in cylindrical coordinates, where the radial dis- 
tance is the strength of the measured second-harmonic 
signal. The solid lines are fits using Eq. (1), assuming 
that the dc electric field at the center is purely in the y 
direction for case 1 [Fig. 4(a)] and purely in the x direc- 
tion for case 2 [Fig. 4(b)]. The fit for case 3 [Fig. 4(c)] 
allows the Cartesian components of the dc electric field to 
be spatially out of phase (as expected for a spiraling 
field), so that the maximum of the x component of the 
field occurs at a different z plane than the maximum of 
the y component. The fit gave a ratio of (EdcV(£dc)jc 
= 1.1 ± 0.2  (instead of the expected  1) and a spatial 
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FIG. 4. Polar maps of the measured (circles) and predicted 
(solid lines) dc electric field strength at the center of Figs. 1, 2, 
and 3. (a) In case 1 the field is completely along y. (b) In case 
2 the field is completely along i. (c) In case 3 the dc field 
spirals with z. 

phase shift between the field components of 87.2° ± 1.5° 
(instead of the expected 90°). 

These spatial maps, as well as the far-field maps of Di- 
anov et al. [3], convincingly rule out structural orienta- 
tion models since these models predict signals that mono- 
tonically decrease with distance from the beam center. In 
contrast, we observe spatial structure in the measured sig- 
nal consistent with a dc electric field produced by charge 
separation. 

Photogalvanic current models [6,7] predict a dc current 
jpg proportional to [13] 

jpg« ta(e0)-c(B)e2(U 

+ 2b€ti€t-iiJ\E*E:E2a)exp(/Afcz), (2) 

where A* ~k2a-2ka. Equation (2) contains the distinct 
combinations of vectors in an isotropic media that give 
another vector which uses all three of the optical fields 
Eja, Eja, and E2acla precisely once and that varies as 
exp(/A£z). The dc electric field arising from this current 
possesses all of the symmetries of our data. However, 
this form of jpg lacks many of the details contained in 
richer, more complete theories. We expand the multipho- 
ton ionization model [8] here and show that the polariza- 
tion dependences of Eq. (2) are recovered. We assume 
that electrons in the glass are ejected after absorbing ei- 
ther a single green photon or two infrared photons, and 
that these two ionization channels interfere. In fact, the 
number of absorbed photons is larger than this in glass 
[14]. However, our experiments here probe only the 
exp(/A£z) component of the charge distribution, in fact, 
only its transverse symmetries, and this phase-matched 
component is always produced by the interference of 
channels having one unmatched green photon and two 
unmatched infrared photons. We have also derived the 
expected photoelectron angular distributions for cases 
having additional photons [15] and find that, even when 
we include the proliferation of possible angular momen- 
tum states, we obtain the same transverse symmetries. 

For simplicity we assume an j-type ground state, non- 
resonant ionization, the dipole approximation, classical 
fields, hydrogenic intermediate state wave functions, and 
no spin-orbit coupling. We make the standard partial- 
wave expansion of the electron wave-function final state 

[Case 2 
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FIG. 5. Plots of the probability for ejecting electrons in the 
x-y plane at different z planes for cases 1 through 4 above. The 
charges are asymmetrically ejected primarily along y for case 1, 
x for case 2, in a spiral for case 3, and in a spiral of opposite 
handedness for case 4. 

[16]. We let z be the propagation direction and the opti- 
cal polarization vectors lie in the x-y plane. The continu- 
um state can be reached by either of two ionization paths, 
and in these experiments we cannot distinguish which 
path was taken. Consequently, the two paths interfere to 
produce the following angular distribution: 

l!L*\M}P + M}P\2, 
ail 

(3) 

where MJP and M}P are the one- and two-photon matrix 
elements, respectively. The cross terms in the expansion 
of Eq. (3) vary periodically along the propagation direc- 
tion z. These terms are not inversion symmetric; they 
eject the electrons in a preferred direction, and create the 
spatially periodic, transverse, dc electric field. 

Figure 5 shows plots of the probability of electron ejec- 
tion vs azimuthal angle * for the four different cases. If 
the infrared and the green beams are both y polarized 
(case 1), then in the plane transverse to the propagation 
direction the noncentrosymmetric term in the angular 
distribution is 

da 
dil noncentro 

= lQ + ö'sin2<I>} {ß"sin<t>} exp(iAkz)+c.c., 

(4) 

where the bracketed terms arise from two- and one- 
photon ionization, respectively. The complex £>'s include 
the radial overlap integral, the summation over inter- 
mediate states, and the scattering phase shift. In Eq. (4) 
the preferential direction of electron ejection is seen to 
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vary sinusoidally with z between +y and -y (because of 
the sin* term in the second bracket) in agreement with 
our data, that is, the charges separate along the y direc- 
tion, creating a dipole field. Case 1 was also studied in 
Refs. [2-4,11,12,17] and their data are consistent with 
the simple analysis given here. 

For case 2, where the infrared light is y polarized but 
the green light is x polarized, theory gives a result identi- 
cal to Eq. (4) but with cos<D substituted for sin<t> in the 
second bracketed term. In agreement with our data, the 
preferential direction of electron ejection has now 
switched to vary periodically between +x and -x. 

For case 3, where both the green and the infrared are 
right circularly polarized, we find 

da 
du 

~{Q'"e"t]c\pQAkz)+c.c. (5) 
noncentro 

Now the preferential direction of electron ejection rotates 
in the x-y plane periodically with z, and so produces a 
helical dc field. Our theory predicts that this helical field 
spirals with the same spatial handedness as the green cir- 
cular polarization (so long as we are in a normally disper- 
sive wavelength range, where nia-na>0), and this is 
what we observe. 

Finally, if the infrared is right and the green is left cir- 
cularly polarized we obtain 

da 
du 

■{ß'V3*}exp(/Aitz)+c.c. (6) 
noncentro 

Now the electron ejection pattern has become three lobed 
and spirals in the opposite direction from case 3. This 
three-lobed ejection pattern is inefficient in producing an 
electric field in the x-y plane (and, in fact, produces a 
zero electric field at the center). The dc field is expected 
to be small in this case, as we observe. 

In conclusion, we find excellent agreement between the 
predictions of photocurrent models and the measured spa- 
tial shapes of the dc electric field induced in glass samples 
by intense light beams at frequencies a> and 2m. Our 
data rule out structural reorientation models. The sym- 
metries contained in the photocurrent model can be de- 
rived from the interference of two multiphoton ionization 
channels. We also note the universality of the sym- 
metries observed here; we found similar dc electric field 
shapes in all the glass samples that we tried to date, in- 
cluding a Ge02-doped Si02 optical fiber preform, and 
samples of Schott Glass SK4 and BK.7. 
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Note added.—Since the submission of this manuscript 

we have learned of similar measurements [17] that con- 
firm our cases 1 and 2. 
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We obtain single-lobed, near-diffraction-limited output from a 20-element laser-diode array coupled to an 
apertured photorefractive phase conjugator. At low driving currents the output beam is diffraction limited and 
contains 75% of the total output power emanating from the array. At high driving current a 1.5X diffraction- 
limited lobe contains 490 mW of power, or 54% of the output power. By studying the near-field emission 
pattern and the frequency spectrum of the laser, we confirm that the apertured conjugator selects a narrow 
range of output array transverse modes. 

Although laser-diode arrays can produce impressive 
amounts of optical power, they usually simultane- 
ously operate on many transverse modes, which 
makes their far-field pattern a mess.1'2 Their poor 
beam quality makes laser-diode arrays ill suited for 
many applications, such as launching intense light 
into single-mode waveguides and pumping minilaser 
systems. 

Here we couple a laser-diode array to an exter- 
nal, photorefractive phase conjugator and thereby 
force the array to operate on a single transverse 
mode. Even while running close to its maximum 
rated output power, this device now puts out a near- 
diffraction-limited beam. 

A number of external devices have been used pre- 
viously to modify the far-field emission profile of 
laser-diode arrays. Spatial filters within the ex- 
ternal cavity can force the array to operate in 
its fundamental, in-phase transverse mode.34 Simi- 
larly, a mirror aligned to retroreflect one side of the 
output beam can enhance operation of a modified 
high-order array transverse mode,5"7 although the 
resulting device is then extraordinarily sensitive to 
alignment, temperature, and .output power. Optical 
phase conjugation is an ideal way to feed light 
back into a laser-diode array, because the conjugator 
automatically returns the light to the high-gain 
region of the diode. A laser-diode array coupled 
to an off-axis phase-conjugating mirror gave near- 
diffraction-limited single-lobed output in the far 
field.8 However, that system was not self-starting, 
requiring an external light source, and the stability 
and reflectivity of the phase conjugator limited the 
system's output power. In this Letter we describe 
a laser-diode array plus phase conjugator that 
overcomes all of these problems. 

Figure 1 shows the optical setup. A 1-W, 20-stripe, 
laser-diode array (Spectra Diode Labs 2461-P1 with 
no special coatings) is mounted on a heat sink to 
maintain the laser's temperature at 10 °C. The ar- 
ray of lasers forms a line in the horizontal plane, and 
the laser's output is polarized along this line. The 
output of the array has poor spatial coherence along 
a line parallel to the array but near-perfect spatial 

coherence along a line perpendicular to the array. 
The laser output is collected by an 8-mm focal-length 
lens (N.A., 0.5) and passes through a half-wave plate, 
which rotates the polarization through 90° and makes 
the light's axes of coherence and polarization parallel. 
A prism positioned in the far-field plane (generated 
by the f = 100 mm lens) picks off one half of the 
quasi-twin-lobed output beam. Two mirrors oriented 
at 45° to the plane of the table direct the light into a 
BaTi03 crystal. The two 45° mirrors rotate both the 
light's polarization and coherence axes by 90° into the 
horizontal plane. This arrangement of mirrors and 
wave plates ensures that the polarization and the 
coherence axes of the light lie in the plane defined 
by the BaTi03 crystal's c axis and the direction of 
the incident beam, which is necessary for the crystal 
to operate as a CAT conjugator.9 (An alternative 
and simpler arrangement is to eliminate the two 45° 
mirrors and instead rotate the crystal so that its c 
axis points out of the plane of the table.) 

The chromium-doped BaTi03 crystal (named 
CROW) measures 5.8 mm X 5.2 mm X 2.9 mm, with 
the c axis along the longest dimension, and operates 

To beam diagnostics 

Unobstructed clean 
output beam 

Cylindrical lens 

Fig. 1. Laser-diode array coupled to a self-pumped phase 
conjugator. The half-wave plate rotates the plane of 
polarization, and the two 45° mirrors align the coherence 
plane and the plane of polarization parallel to the BaTi03 
crystal's c axis. The right-angled prism and the vertical 
razor edge R form an adjustable aperture in the far field. 
The angle of incidence of the signal beam on the crystal 
is 0 = 60°. 
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Fig. 2. Array far-field pattern under free-running con- 
ditions [curve (a)], with phase-conjugate external cavity 
feedback at a low drive current (1.7/th) [curve (b)], and 
with phase-conjugate feedback at the maximum drive 
current (3.1/th) [curve (c)]. The main lobe in curve (b) 
has a FWHM of 0.317°, which corresponds to 1.09 times 
the diffraction limit (a Strehl ratio of 0.44). Curve (c) 
corresponds to an output power of 910 mW, and the main 
lobe has a FWHM of 0.43°, 1.48 times the diffraction limit 
(a Strehl ratio of 0.30). 

as a self-pumped CAT conjugator. A spherical and 
cylindrical lens pair generates a 1.5-mm square 
beam at the crystal face. All the transmission 
optics, excluding the prism, are antireflection coated 
at the laser wavelength. A razor edge and the 
vertical prism edge form a variable spatial filter in 
the far field. The frequency spectrum of the laser 
output is analyzed by a Spex 0.75-m double-grating 
spectrometer with a resolution of —0.01 nm. We 
record either the near-field or the far-field beam 
profile by a 512-element linear photodiode array. 

When we first switch on the laser, its output is that 
of a usual, free-running laser-diode array: a poorly 
defined, twin-lobed, far-field pattern (~40 times the 
diffraction limit of the 200-yum emitting region) hav- 
ing a broad frequency spectrum. After a short de- 
lay (typically 20 s), the phase conjugator turns on, 
and one of the farfield lobes grows at the expense 
of the other one. After an additional ~50 s the 
phase-conjugate reflectivity attains its steady-state 
level, and the laser settles into single-lobed operation. 
With a drive current of 0.8 A (1.77th), the angular 
width of this output lobe in the far field is 2.9 times 
the diffraction limit. Narrowing the width of the 
aperture then produces a diffraction-limited beam at 
this drive current, as shown in Fig. 2(b). Once the 
phase-conjugate mirror turns on, it can track in real 
time small changes in the laser's far-field profile or in 
the aperture's position. The most efficient operation 
of the external cavity always occurs for an emission 
angle centered close to 2.2°. For the case of high- 
power operation of the cavity, the prism and razor 
edges are positioned at far-field angles of -1.98° and 
-2.58°.   The array maintains single-lobe emission 

for all driving currents. The maximum driving cur- 
rent is 1.5 A (3.1/th), which produced a total array out- 
put power of 910 mW. We limit the driving current 
to 1.5 A to avoid the possibility of intensity damage to 
the array facet. At high output powers the far-field 
lobe width gradually increases up to 1.48 times the 
diffraction limit at the maximum array drive current. 
In addition, at high drive currents a larger fraction of 
the array output lies outside the locked array mode 
and appears as a background intensity in the far field. 
These effects may be due to self-focusing of the light 
in the laser gain medium, increased free-running 
mode competition, and the decreased phase-conjugate 
reflectivity (discussed below) that accompanies the 
higher laser drive currents. At the 1.5-A maximum 
drive current, the main lobe contains 493 mW of 
power (of which 406 mW is contained in a Gaussian 
spike of width 1.48 times the diffraction limit). 

The phase-conjugate reflectivity of the CAT conju- 
gator decreases from 35% at small driving currents, 
close to the lasing threshold, to 14% at the high- 
est measured drive current. This, in conjunction 
with the increasing signal power, causes the power 
fed back to the laser from the conjugator to re- 
main roughly constant at —13 mW over the range of 
drive currents investigated. The total laser output 
is approximately 3% higher with the conjugator than 
without it at the same driving current. 

The external cavity output exhibits surprising in- 
tensity stability (<0.5% fluctuations) over a time 
scale ranging from a few seconds to hours. The 
dynamic response of the phase-conjugate mirror com- 
pensates for gradual changes in the drive current, 
operating wavelength, or ambient temperature with 
no degradation in the single-lobed profile. The dark- 
storage time of this particular BaTi03 crystal exceeds 
12 h, so that, once the phase conjugator turns on and 
establishes single-lobe laser emission, the conjugator 
will then turn on instantly the next day, and the laser 
will immediately display a single-mode output, even 
if the laser had been switched off overnight. 

When the conjugator first turns on, it pulls the 
laser's output spectrum —2 nm toward the red and 

795 796 
Wavelength (nm) 

797nm 

Fig. 3. Frequency spectrum of the array output show- 
ing the longitudinal modes under free-running conditions 
[curve (a)] and with phase-conjugate external cavity feed- 
back [curve (b)]. The conjugator shifts and narrows the 
frequency spectrum. Note the absence of fine splitting 
in curve (b), indicating that the laser is operating on one 
array mode (or perhaps a few adjacent modes). 
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Fig. 4. Array near-field profile under free-running condi- 
tions [curve (a)] and with external cavity feedback [curve 
(b)]. The drive current was 1 A. Note the increased 
intensity modulation present with phase-conjugate feed- 
back, indicating that the laser is running on only a few 
array modes. 

narrows the spectrum to a few longitudinal modes 
under a stable, 0.5-nm Gaussian envelope (FWHM), 
as Fig. 3 shows. This frequency width is close to 
the expected ~l-nm-wavelength Bragg selectivity of 
the grating self-formed inside the CAT conjugator. 
For comparison, we also tried replacing the phase- 
conjugate mirror with an ordinary high-reflectivity 
plane mirror and adjusted the lens pair to form 
a focus at this mirror. With careful (and finicky) 
alignment, at a drive current of 1 A we were able 
to generate a near-diffraction-limited far-field lobe 
containing 34% of the array output. However, this 
simple mirror was less successful at higher drive cur- 
rents; at 1.5 A the output lobe could not be narrowed 
below 1.75 times the diffraction limit, and the lobe 
contained only 25% of the array's total output. 

The far-field aperture, and to a lesser extent the 
phase-conjugate mirror, presents a small angular 
window through which the array can receive optical 
feedback. Because each array mode has a slightly 
different emission angle for its main far-field lobes,1'2 

the far-field aperture enhances the mode (or closely 
spaced modes) whose emission angle is directed at 
the aperture window. By adjusting the position and 
the width of the aperture, it is possible to enhance a 
single array mode at the expense of the other modes 
and so produce a sharp, twin-lobed structure in the 
far-field. The array modes v = 19 and v = 20 for 
a 20-element array are predicted to have emission 
angles of 2.18° and 2.29°, respectively. These com- 
pare well with the main lobe emission angles of 2.18° 
and 2.24° measured from the data in Fig. 2. This 
suggests that the array is operating primarily on the 
v = 19 mode, with some of the v = 20 mode creeping 
in at higher powers. 

The phase conjugator ensures that all the light fed 
back to the laser is coupled into natural modes of 
the laser. In close analogy to conventional injection 
locking of a laser-diode array,10 the asymmetry of 
the feedback in this external cavity causes a pref- 

erential direction of emission at the same angle as 
the aperture window but on the opposite side of the 
normal to the array facet. The assumption that the 
laser is operating on but a few closely spaced array 
transverse modes is further confirmed by the absence 
of any observable fine splitting in the longitudinal 
mode spectrum shown in Fig. 3 and by the increase 
in the spatial modulation of the near-field intensity 
pattern when the conjugator is present, as shown in 
Fig. 4. An alternate explanation for the single-lobe 
output pattern is given in Ref. 11, in which all of 
the laser's array modes are assumed to be operating 
but locked together in phase. However, if this were 
true then the near-field pattern would lack the spatial 
modulation clearly seen in Fig. 4. 

In summary, we have presented a technique for 
obtaining stable, near-diffraction-limited output from 
a high-power laser-diode array. Because the laser 
emits only a small fraction of its output into the 
conjugator, we envisage that the output power can 
be significantly increased without damaging the con- 
jugator. The ability of the phase conjugator to feed 
light back to precisely the high-gain region of the 
laser should permit the extension of this technique 
to much larger arrays or to more-complicated, higher- 
power diode-laser structures, and this is the current 
direction of our investigations. 
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A light beam and its second harmonic can create a semipermanent dc electric field inside glass.    This dc electric 
field is responsible for the unexpected production of second-harmonic light in the glass.    We determine the 
transverse spatial shape of this photoinduced dc field inside a bulk sample of germanium-doped fused-sihca glass. 

There has been a considerable effort since 1986 to 
understand how an apparently centrosymmetric ma- 
terial such as a glass fiber1 or a bulk glass sample2 

can act as a frequency doubler. We now know that 
the incident light creates a dc electric field inside the 
glass, breaking its inversion symmetry.3-6 This pho- 
toinduced dc electric field acts through the symmetry- 
allowed third-order susceptibility %{3) of the glass to 
produce the required second-order nonlinearity *(2>, 

f (2'(-2<u; a), a>) = 3^(3)(-2w; w, a>, 0) • Edc,     (1) 

where Edc is the photoinduced dc electric field. The 
experiments of Mizrahi et al.4 elegantly demonstrate 
that the polarization properties of x <2) obey Eq. (1) as 
long as xfL = 3xl%y> which is true for nondispersive 
materials. 

Here we report a measurement of the transverse 
spatial shape of the photoinduced dc^ electric field. 
We use the polarization properties of x(2) to map the 
spatial shape of the dc electric field Edc- Unfortu- 
nately, the finite size of our probing beam smears 
out the finer details of the induced field. Although 
our spatial map lacks fine resolution, it does clearly 
show the symmetry of the dc field. With this dc field 
we find excellent agreement between our predictions 
and our measurements. 

We performed our experiments not in glass fibers 
but in germanium-doped fused-silica optical fiber 
preforms.7 Bulk samples offer several advantages 
over optical fibers: there are no modal constraints; 
we can probe regions adjacent to the original 
focal spot; and we can perform many experiments, 
each in virgin material, by simply translating 
the sample between experiments. We confined our 
experiments to the core region of the preform, because 
the cladding region was birefringent. In contrast, 
linearly polarized light transmitted through the core 
region maintained its polarization to better than 
3000:1, regardless of orientation. 

Our laser was a mode-locked and Q -switched 
Nd:YAG operating at A = 1.064 fim. A lithium 
triborate crystal frequency doubled some of infrared 
light to produce a green beam collinear with the 
infrared beam. We controlled the power levels of 
these two colors independently, using two harmonic 
wave plates and a vertically oriented polarizer.   A 

25-mm focal-length achromatic lens focused both 
colors into the glass sample. Even though we took 
special precautions (a noncritically phase-matched 
doubling crystal and an achromatic lens), in general 
the two colors focused at slightly different spots. 
However, by rotating the achromatic lens we could 
almost perfectly overlap the infrared and green 
beams (to within 0.5 /im) inside the sample. 

Typically, we irradiated our 3-mm-thick glass sam- 
ples with 3 W of average infrared power and 1 mW of 
average green power for a period of 10 - 60 min. The 
laser was Q switched at 1 kHz and mode locked at 
76 MHz, with -23 mode-locked pulses [each -100 ps 
(FWHM) long] inside the 300-ns (FWHM) Q -switch 
envelope. The beam waists (1/e2 of intensity radius) 
were 9.7 fim for the infrared and 7.4 yu,m for the 
green, and the resulting peak intensities were 4.4 X 
10u and 3.6 X 108 W/cm2, respectively. 

After seeding, we studied the frequency-doubling 
ability of our glass samples by permanently blocking 
the incident green beam and reducing the power of 
the infrared beam (now used as a reading beam) 
to avoid infrared-induced erasure. We recollimated 
light coming from the sample and then separated the 
transmitted infrared reading beam from the sample- 
generated second-harmonic green beam by using a 
harmonic beam splitter, a hot mirror, a BG40 absorp- 
tion filter, and a 0.532-/zm interference filter.   The 
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Fig. 1. The dc electric field produced from the charge dis- 
tribution given by Eq. (2) below. With this dc field shape 
we successfully predicted the results of six experiments. 
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Fig. 2. Comparison of the predicted and observed sec- 
ond-harmonic signals for the case of a vertically oriented 
reading beam probing different regions of the photoin- 
duced dc field and viewing through a vertically oriented 
polarizer. 
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Fig. 3. Same as Fig. 2, except here we flipped both the 
reading-beam polarization and the analyzing polarizer to 
horizontal. The contour plots show a four-peaked distri- 
bution. The peaks are imperfectly resolved because of 
the finite size of the probing beam. 

green light was detected by a photomultiplier tube. 
We could alter the polarization of the reading infrared 
beam with a wave plate (A/2 at 1.064 /xm) in front of 
the achromatic focusing lens, and we could measure 
the polarization of the generated green beam with 
an analyzing polarizer placed immediately after the 
recollimating objective. 

In an isotropic material Eq. (1) shows that the 
measured signal is proportional to only the vertical 
component y • Edc of the dc electric field if the infrared 
reading beam polarization and the green analyzer 
polarization are both vertical. If we flip both the 
reading polarization and the analyzer polarization to 
be horizontal, then the measured second-harmonic 
signal is proportional to only the horizontal compo- 
nent x ■ Edc of the dc field. By translating the sample 
we can probe the variation of * • Edc and y ■ Edc in 
the x-y plane. We perform two such spatial scans, 
one for each transverse component of the dc field. 

Because the original writing beams were vertically 
polarized, we expect vertical charge separation inside 
the glass.   We guess a final charge distribution: 

p(x, y) = (p0y/w)exp[-(x2 + y2)/w2], (2) 

which is the vertical derivative of a cylindrically 
symmetric Gaussian function of width w. The 
charge density p0 is unspecified. We choose the 
parameter w = 4.5 /u.m to match our data. Figure 1 
shows the dc electric field caused by such a charge 
distribution. We note that a charge density of ~1014 

electrons/cm3 produces an electric-field strength of 

104 V/cm. (Fields of this size are induced in fibers.5) 
We performed many experiments, over a range 
of writing-beam powers (infrared, 0.5-4 W; green, 
0.1-40 mW), and found that the dc field was always 
shaped as shown in Fig. 1. 

Ideally, the probe beam should be infinitely small 
in the mapping experiments, but ours is not. It is 
a simple matter, however, to use the guessed dc 
field shown in Fig. 1 and the known size of our 
probing beam to predict the results of the field- 
mapping measurements. Figure 2 gives a side-by- 
side comparison of the predicted and the observed 
signal for the case of a vertically polarized probe and 
a vertically oriented analyzer. Figure 3 shows the 
corresponding comparison for the case of a horizon- 
tally polarized probe and a horizontal analyzer.   The 

Fig. 4. Photographs of the observed and predicted 
far-field mode patterns. We oriented the analyzing 
polarizer horizontally and photographed the far-field 
pattern of generated green ligh t. The arrow indicates the 
reading beam's polarization. 
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Fig. 5. Comparison of the observed (circles) and pre- 
dicted (curves) second-harmonic signals versus the read- 
ing beam's polarization using either (a) a vertical analyzer 
or (b) a horizontal analyzer. 

measured ratio of the maximum signal using vertical 
polarization to the maximum signal using horizontal 
polarization is 8.3, while the computed ratio is 8.0. 
The agreement between theory and experiment is 
quite good both for the spatial shape and for the 
relative strength of the signals. We believe that the 
slight asymmetry in the experimental data of Fig. 3 is 
caused by the not-quite-perfect overlap of the writing 
beams. From the agreement between the theoretical 
prediction and the observed signal, we conclude that 
Fig. 1 represents the optically induced dc field quite 
well. 

The far-field mode technique, described by Driscoll 
and Lawandy,6 offers an elegant method to confirm 
this field shape. In contrast to our field-mapping 
scans, their technique works best when the probe 
beam is much larger than the dc field pattern. 
We performed such far-field mode measurements 
by simply replacing the photomultiplier tube with 
a CCD camera and recording the shape of the 
far-field mode pattern of the generated second- 
harmonic signal. We observed the mode patterns 
through either a vertically or a horizontally oriented 
analyzer. Figure 4 shows a comparison between the 
theoretically predicted far-field mode shape and the 
observed mode shape using a horizontal analyzer and 
with various polarizations of the reading beam. We 
also calculated the far-field mode pattern by taking 
the Fourier transform of the near field produced by 
the polarization density P(2w) = 3e0^

(3) : EwEwEdc, 
where e0 is the permittivity of free space, Ew is 
the optical infrared field envelope, and Edc is the 
electric-field shape. Note that the agreement shown 
in Fig. 4 is quite good. We performed a more 
complete comparison between theory and experiment 
by slowly rotating the polarization of the reading 
beam and videotaping the resulting green far-field 
mode patterns. We simultaneously displayed, on 
a split screen, the calculated and measured mode 
patterns, which agreed in all important aspects. 

There is one complication worth discussing. The 
far-field mode shapes depended on the intensity of 
the writing beams. At lower writing intensities the 
charges did not separate so far in the vertical direc- 

tion in a given amount of time, and so they produced a 
more spatially compact dc field. Reading this com- 
pact field with a vertical analyzer then produced a 
far-field pattern with two lobes separated vertically. 
At higher writing intensity, or with a longer expo- 
sure time, the charges separated further, producing 
a vertically elongated single lobe pattern. 

To confirm further the field shape shown in Fig. 1, 
we launched the infrared reading beam into the 
center of the dc field pattern and measured the 
generated signal strength while slowly rotating 
the reading beam's polarization. Using Eq. (1), the 
condition x^L — 3*«yy, tne known size of our probing 
beam, and the field shape shown in Fig. 1, we 
predicted the dependence of the second-harmonic 
signal strength on the reading beam's polarization. 
Figure 5 shows these results, along with the ex- 
perimentally measured values. We normalized the 
data taken with the vertical analyzer for the best fit 
and then used the same normalization factor for the 
data taken with a horizontal analyzer. Again, the 
agreement is exceptionally good. 

A two-color light beam (fundamental and its sec- 
ond harmonic) induces a dc electric field inside a 
glass fiber or a bulk glass sample. This field per- 
mits second-harmonic generation in an originally cen- 
trosymmetric material. By scanning a probe beam 
across the field distribution and using simple polar- 
ization relationships, we map out the dc electric field. 
We then invent a simple charge distribution whose dc 
electric field agrees with the observed dc field. This 
charge distribution (the derivative of a Gaussian) 
predicts not only our spatial scanning results but 
also the generated far-field mode patterns and the 
dependence of the generated signal on the reading 
beam's polarization. 
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We study the growth rate of the light-induced second-order nonlinearity in germanium-doped optical fiber 
preforms. We seed the glass with both infrared light and green light (Nd:YAG and doubled Nd:YAG) to 
create the second-order nonlinearity and measure its formation rate while varying the intensity of either the 
fundamental or the second-harmonic seeding beams. We find that the formation rate varies as a power law of 
the intensities, but with an exponent larger than predicted by recent models. 

Because the core of an optical fiber is macro- 
scopically centrosymmetric, second-harmonic gener- 
ation is not expected to occur. However, in 1986 
Österberg and Margulis reported rather efficient (5%) 
second-harmonic generation inside a germanium- 
doped optical fiber that had been illuminated by 
intense infrared light for many hours.1 Stolen and 
Tom2 showed that by injecting both infrared and 
green light into the fiber, the preparation time of the 
fiber could be shortened from many hours to just a 
few minutes. 

What breaks the inversion symmetry of the glass? 
Recent experiments indicate that the incident light 
gradually produces a spatially periodic3 dc electric 
field in the glass.4,5 This dc electric field induces a 
second-order nonlinearity: 

X(2)(-2a>;a>,a>) = 3*(3)(-2<y;a, <w,0)£dc. (1) 

Phase matching can be achieved if the dc field (Edc) 
periodically changes direction along the fiber length. 
Many theories have been postulated to explain the 
origin of this spatially periodic dc field.26-9 How- 
ever, these different models predict different depen- 
dencies of the growth rate of the dc field on the 
intensity of the injected optical beams. To discrim- 
inate among these models we measured the depen- 
dence of the growth rate of the second-harmonic 
signal on the intensity of the injected light beams. 

We found it simpler to perform our experiments 
in glass fiber preforms instead of in the fibers them- 
selves. Our preform sample had an outer diameter 
of 12.5 mm and a 3.4-mm-diameter germanium-doped 
core.10 The germanium concentration decreased 
abruptly at the core-cladding interface and then fell 
exponentially with distance, with occasional rings of 
higher index. These rings result from the fabrication 
process, and they aberrate optical beams transmitted 
through them. We performed our experiments far 
enough away from the core to avoid these aberrations. 
We worked in the cladding region so that we could 
fit many more experiments into one rotation of the 
sample. We verified that the dependence of the 
growth rate on intensity was the same in the core 
region as in the cladding region of the preform. 

Before starting each experiment we rotated the 
sample to a new, unused portion of the preform. 
Because the doping was cylindrically symmetric, 
the germanium density remained constant from 
experiment to experiment. 

We used a seeding technique2 in which we focused 
both the fundamental and some externally generated 
second-harmonic light into the sample. (In the 
absence of a second-harmonic seeding beam no 
second-harmonic generation was observed from the 
preform.) A mode-locked and Q-switched Nd:YAG 
laser had a Q-switch repetition rate of 1 kHz, 
with —23 mode-locked pulses under the 300-ns 
Q-switch pulse envelope. Its 1.064-fim light was 
doubled in a noncritically phase-matched lithium 
triborate crystal to produce second-harmonic light 
collinear with the fundamental light. We controlled 
the power levels of the fundamental and second- 
harmonic seeding beams independently with two 
harmonic wave plates. The paths of our seeding fun- 
damental (/«,) and second-harmonic (J2o)) beams were 
never separated to ensure that their relative phase 
remained stable during seeding.11 We checked this 
phase stability and found that it exceeded 4 h. 

A spinning wheel (~5 Hz) in front of the sample 
periodically blocked the green seeding beam (with 
both a cold mirror and an RG780 absorption filter), 
so that any green light generated in the sample could 
be measured. Light reflected from the cold mirror 
triggered the data-acquisition system. The power in 
each incident infrared and green pulse was monitored 
with photodiodes, and the generated green light was 
monitored with a photomultiplier. All these detec- 
tors were carefully checked for linearity over their 
range of detected intensities. A 25-mm focal-length 
achromatic lens focused the infrared and the green 
to the same location within the glass preform. The 
infrared and green beams were measured to be 9.7 
and 7.4 fim (radius at 1/e2 of intensity), respectively, 
at the focus. 

We acquired two types of data sets: (1) we held 
the infrared power constant and varied the green 
power level, and (2) we held the green constant and 
varied the infrared power level. For both types of ex- 
periment, we measured the early-time growth of the 
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Time (minutes) 

Fig. 1. Quadratic growth of the second-harmonic gener- 
ation (SHG) signal during seeding. The solid curve is a 
fit using Eq. (3). The inset shows the same data plotted 
log-log with the best fits using Eq. (2) (dotted curve) and 
Eq. (3) (solid curve). 

second-harmonic signal and fitted its dependence to 
a quadratic function of time, as shown in Fig. 1. We 
fitted the data up to the point where it began to sat- 
urate, i.e., where the growth was no longer quadratic 
in time, which could take longer than 40 min at low 
infrared and green intensities. We performed fits 
using two different fitting functions: 

Cduced = n2 + offset, (2) 
produced = T{t _  T[1  _ exp(_,/T)]}2  + offset, (3) 

where offset is a small dc voltage produced by our 
detection system. We found that Eq. (3) fitted the 
data better than did Eq. (2), especially at early times, 
as shown in the inset of Fig. 1. We derived Eq. (3) by 
assuming that an initially unoccupied level must first 
be populated (with a time constant r) before the inter- 
nal dc electric field can begin to form. This idea was 
inspired by recent suggestions that metastable ley- 
els may be involved in the induced second-harmonic 
generation effect.12'13 We found experimentally that 
r varied from three minutes at low intensities to less 
than a second at high intensities. 

For all feasible power levels, we determined the 
growth rate T and then fitted it to a power law in 
the optical intensities: either AIJ for the infrared 
or Bl2J for the green. Figure 2 shows the dramatic 
variation of T with the infrared seeding intensity 
and the less dramatic variation of T with the green 
seeding intensity. Figure 3 shows the results of ac- 
cumulating many such power-law dependencies; we 
plot the exponent x in T = Ma

x as a function of the 
green seeding intensity in Fig. 3(a), and the exponent 
y in T = BI2J versus infrared seeding intensity in 
Fig. 3(b). We found that the exponent y varied from 
y = 3.5 at low infrared intensity to y = 2.5 at high 
infrared intensity. In contrast, the exponent x var- 
ied from x = 12.5 at low green seeding intensity to 
x = 8 at high green seeding intensity. 

How do our data compare with the recent the- 
ories of second-harmonic generation? The models 
of Dianov et al6 and Anderson et al.9 postulate a 
spatially oscillating photogalvanic (Jpg) current to 
explain the generation of the dc electric field. At 
early times the current flows unchecked and the dc 
electric field grows linearly in time:   Eic « jpgt.   In 

our experiments we measured the second-harmonic 
signal power, which is proportional to |^(2)|2 of Eq. (1), 
so that according to the current models,89 we mea- 
sured Ijpgl2. The predicted intensity dependencies 
for our parameter T from the model of Ref. 8 is then 

r <* {i2jj}ij (4) 

while from the model of Ref. 9 it is 

r «{hJAv/iJ + vJJh» + hJ)}U ■     (5) 

In relations (4) and (5) the terms inside the braces 
are proportional to |jpg|

2, while the reading process 
itself imparts the additional quadratic variation (IJ) 
to the measured growth rate T. This extra quadratic 
variation is not normalized out of the data displayed 

Peak IR Intensity (W/cm ) 

Peak Green Seeding Intensity (W/cm ) 

Fig. 2. (a) Dependence of the rate T on the infrared 
seeding power, with the green seeding power held fixed 
at 6 mW. (b) The dependence of the rate Y versus 
the green seeding power, with the infrared power held 
constant at 3 W. 
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Fig. 3. (a) Dependence of the infrared power-law ex- 
ponent x on the green seeding set-point intensity, (b) 
Dependence of the green power-law exponent y on the 
infrared set-point intensity. 



in Figs. 2 and 3. If we include this built-in quadratic 
dependence on /„, then the anisotropic photoioniza- 
tion model9 predicts a power law r «Iu

x with the 
exponent in the range of x = 4-8. Another model8 

gives x = 4. The trend in Fig. 3 is consistent with 
the model of Anderson et al., in that the power- 
law exponent drops to a lower value as the green 
seeding intensity is increased. However, even at the 
highest obtainable green intensity we still observe 
x = 8. These data clearly indicate a higher-order 
dependence on la than predicted by either model. 

There have been reports14-16 of the intensity de- 
pendence of seeded second-harmonic generation in 
germanium-doped fused silica. Kamal et al.16 per- 
formed experiments similar to the ones reported here; 
however, their experiments were carried out in a 
specially grown fiber. If their data are analyzed with 
the rate parameter T discussed here, they observed 
x « 4 for the dependence of the rate on infrared 
intensity and y « 3 for the dependence on green 
intensity. Their observed dependence of the rate 
on the green intensity agrees with ours, but their 
infrared dependence is quite different. 

Lawandy and Selker15 reported a distinct infrared 
intensity threshold below which no second-harmonic 
generation was observed in samples that had been 
seeded for only 20 min. Our data also show a dra- 
matic dependence of the second-harmonic effect with 
the infrared intensity, but at intensities 100 times 
greater than the threshold cited in Ref. 15. Rather 
than observing a threshold intensity below which no 
effect occurs, we find that at low infrared intensities 
the formation rate of the dc electric field simply 
becomes extremely slow. 

Our observed green intensity scaling data are 
not in gross disagreement with the anisotropic 
photoionization model of Anderson et al.9 However, 
the infrared scaling data require more infrared 
photons than this model postulates. We examined 
our experiment to see if systematic errors caused the 
higher-than-expected Ia variation. First we checked 
whether the beam spot size entering the focusing 
lens changed as we adjusted the infrared power. 
We measured the infrared beam profile and found 
no systematic variation of the beamwidth to within 
experimental error (0.6%). Additionally, we checked 
to see if self-focusing or thermal lensing changed 
the focal spot size as the power was varied, and 
we found no variation. We intentionally displaced 
the infrared beam from the green seeding beam 
by ~6 yu,m at the focus to determine whether 
thermal beam steering contributed to the intensity 
dependence and found that although the infrared 
power-law exponent x was lower with the beams 
offset, it was still within the error bar of Fig. 3(a). 

Because the diameters of our tightly focused optical 
beams change as they propagate through the glass 
preform, their intensity varies in both the transverse 
directions and along the propagation direction and 
therefore so should the growth rate. However, we 
performed numerical calculations and found that the 
measured signal should still grow quadratically in 
time. Because only the most intense part of the 
beam contributes to the signal at early times, the 

intensity scaling laws of the early-time growth rate 
are not affected. Another complication is that our 
laser is Q switched and mode locked, so that there 
is a range of peak intensities present under the en- 
velope, and our measured rate is an average over all 
these peak intensities. This averaging over intensi- 
ties could mask an even more dramatic dependence 
of the generation rate on optical intensity. 

In summary, we measured the buildup rate of the 
second-harmonic signal in germanium-doped fused- 
silica optical fiber preforms. The second-harmonic 
signal rises quadratically in time. The rate coef- 
ficient increases with the intensity of the infrared 
seeding beam as /a,8'12 and with the intensity of 
the green seeding beams as 72o,25_35. Both the /„, 
and I2a) power laws are faster than predicted by the 
model of Dianov et al.8 The variation of the rate 
with the intensity of the green seeding light seems to 
agree with the model of Anderson et al.9 reasonably 
well. However, the variation of the rate with the 
intensity of the infrared seeding light is too rapid to 
be explained by this model. 

We thank Robert M. Pierce for his experimental 
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support from the Joint Services Electronics Program, 
and Jack Feinberg acknowledges research support 
from the U.S. AFOSR. 
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A crystal of BaTi03 illuminated by a spatially periodic light intensity pattern will exhibit both uniform and spa- 
tially periodic photogalvanic currents. The modulated part of the intensity produces a spatially period photo- 
galvanic current, which creates a spatially periodic electric field in the crystal. This field, measured by 
two-beam coupling, is spatially in phase with the light pattern and increases monotonically with intensity, 
saturating at -450 V/cm. The spatially uniform photogalvanic current produced by the average light intensity 
creates a spatially uniform electric field, which is surprisingly small (=10 V/cm) across a nominally open- 
circuited BaTi03 crystal at high optical intensity. We explain the observed intensity dependence of two-beam 
coupling by proposing that photogalvanic currents arise with different strengths from at least two trap levels in 
the crystal. 

1.    INTRODUCTION 
Light can cause electric charge to move in a preferential 
direction in crystals that lack inversion symmetry. In 
general the direction of this photogalvanic current de- 
pends on the direction of polarization of the incident light 
beam and the symmetry group of the crystal. Let a 
monochromatic light wave with an optical electric field 
«opt(x,« = Re[Eopt(x)exp(-iftrf)] be incident upon a crys- 
tal lacking a center of symmetry. In general the magni- 
tude and the direction of the photogalvanic current 
density jK are related to the complex electric-field enve- 
lope Eopt(jc) by1 

jre(x) = /3:Eopt(x)Eopt*(x), (1) 

where ß is a phenomenological, third-rank photogalvanic 
tensor that must have the same symmetry as the point 
group of the crystal and where, since the current is a real 
quantity, ßXliV = ßXri*. Currents obeying Eq. (1) have 
been detected in numerous ferroelectric crystals, such as 
LiNb03> LiTa03,

2'3 and BaTi03,
4 and even in nonfer- 

roelectric crystals such as Bii2Si02o, GaAs, and Te.2,3 

For the particular case of light beams polarized along 
only one of the optical axes of a ferroelectric crystal, the 

product of the two optical electric fields in Eq. (1) can be 
expressed in terms of the intensity of the incident light. 
In this case Glass et al.5 found that the observed jpg 

and the absorption a of a lithium niobate crystal were re- 
lated by 

j«(7) = pi = CKal. (2) 

Here c is the unit vector in the direction of the permanent 
polarization of the ferroelectric crystal, and K, now known 
as the Glass constant, is a proportionality factor that 
was found to be relatively independent of the light inten- 
sity. This photogalvanic current was attributed to an 
asymmetry of the potential well holding the trapped 
charge carrier, which causes charges located in trap sites 
to move preferentially in a given direction on excitation or 
on recombination. 

It has been observed that in some photorefractive crys- 
tals, such as barium titanate, the absorption coefficient a 
of the crystal changes appreciably with intensity.8 In 
view of this relation a natural question arises: How can 
Eq. (2) be modified to account for this light-induced ab- 
sorption? The light-induced absorption of barium ti- 
tanate has been explained quite successfully by assuming 
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photoexcitation of charge carriers from at least two differ- 
ent kinds of trap sites located in the band gap of the crys- 
tal, each having its own absorption cross section.7. In 
like manner, we suggest that the charge excited from dif- 
ferent kinds of trap sites makes different contributions to 
the total photogalvanic current. Since both the absorp- 
tion and the photogalvanic current from each kind of trap 
site are proportional to the number of those trap sites that 
are occupied, and since the density of occupied trap sites 
is intensity dependent, the total photogalvanic effect 
should have the form 

fs(/) = p(/)7 = c<c(7)a(7)7, (3) 

where now both the absorption a(7) and K(7) are intensity 
dependent. 

Although the current densities produced by the photo- 
galvanic effect are typically small (~10_9-10-13 A/cm2), 
they can noticeably affect the coupling of light beams in 
photorefractive crystals. Here we study the photogalvanic 
effect, using two-beam coupling in barium titanate. In 
Section 2 we derive expressions for beam coupling in a 
photorefractive crystal in the presence of the photogal- 
vanic effect. We extend the usual band-conduction model 
to include multiple levels of trap sites, with each level con- 
tributing its own photogalvanic current. Section 3 de- 
scribes our photorefractive coupling experiments in 
barium titanate. We show how the measured coupling of 
light beams depends on the total light intensity and on the 
magnitude of the grating wave vector, and we fit the data 
to a model with two trapping levels. In Appendix A 
we treat the more general case of photorefractive beam 
coupling with arbitrary beam polarizations and crystal 
configurations. 

2.   THEORY 

Photogalvanic Currents from Multiple Levels 
Consider the case with only one incident light polarization 
and electrical currents only along c, the direction of per- 
manent polarization of a ferroelectric BaTi03 crystal. 
Assume that each time a localized charge is optically ex- 
cited from a trap site there is a tendency for it to move a 
distance dopt away from the trap site along the +c axis. 
There may also be a tendency for charges to move a'dis- 
tance dtherm on thermal excitation as well as a distance drec 

on recombination into an empty trap site. If there is only 
one level of trap sites from which photoexcitation can oc- 
cur, then the model of Glass et al.5 can be reexpressed in 
the form 

jps(j) = ec{da^sINF + dthermßNF + d™ynNE), (4) 

where e is the unit charge; s, ß, and y, respectively, are the 
optical excitation, thermal excitation, and recombination 
rate constants; 7 is the total light intensity; and NF and 
NE are the number densities of trap sites that are full or 
empty of the charge carrier, respectively. At steady state 
the excitation and the recombination rates of the free 
charges are balanced, giving 

n = (sl+ ß)NF/(yNE). (5) 

Combining Eqs. (4) and (5), and using the second law of 
thermodynamics to make the total curent vanish in the ab- 
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sence of optical excitation, we find that dthenn = -d"° and 
that the total photogalvanic current can be expressed as 

jpg(jr) = eSsIN'toT* ~ d™) = ecsINFd, (6) 

which involves only optical excitation. Here d is the ef- 
fective photogalvanic transport distance, defined by 
d = d»»' - d"16™. 

If there are multiple levels of trap sites, with each con- 
tributing to the photogalvanic effect, then by assuming 
detailed balance we obtain 

«(7) = ecI^djSjN/d) - p(7)7, (7) 

where the subscript j identifies the trap-site level. With 
multiple levels the photogalvanic current is no longer lin- 
ear in the light intensity, because the number densities 
JV/(7) are, in general, intensity dependent; this makes 
p(7) = ecljdjSjNfd) a function of the light intensity. 

Two-Beam Coupling 
Conceptually, the simplest method for measuring the pho- 
togalvanic current predicted by Eq. (7) would be to illumi- 
nate a crystal uniformly with light and measure any 
resulting dc current by using electrodes attached to the 
crystal. However, in practice the photogalvanic current 
can be measured with more precision and with fewer ex- 
perimental complications (such as electrode contact poten- 
tials) in photorefractive crystals by studying the effect of 
the photogalvanic current on the coupling of two light 
beams in the crystal. In a photorefractive crystal, light 
rearranges charges in the crystal, producing a static elec- 
tric field. If the light pattern is spatially periodic, as 
from the interference of two light beams, there will be a 
component of the resulting static electric field with the 
same periodicity. This space-charge field alters the re- 
fractive index of the crystal by means of the Pockels ef- 
fect, and this periodic refractive-index pattern can act as 
a grating to couple the incident light beams. Depending 
on the relative phase of the space-charge field with re- 
spect to the light intensity pattern, the grating can couple 
the amplitudes or the phases (or both) of the incident light 
beams. 

Consider the case of coupling between two ordinary po- 
larized optical beams, which we call the probe and the ref- 
erence beams. Using a multiple-level band-conduction 
model with a single type of charge carrier (holes) and 
Eq. (7), we show in Appendix A that in the undepleted- 
pump approximation (for reference intensity much larger 
than probe intensity) the amplitude of the probe beam, 
Ep(z), will evolve with propagation distance z according to 

Ep(z)«JSp(0)exp(*-2), (8) 

where the electro-optic coupling coefficient g°° depends on 
the magnitude of the grating wave vector kg according to 

w      „    kßT 
g^ikgj) = — ra„rd ri3  

i){I)[kg + ikiTi(t(I)] + ikpg(I) + tfeApg(J) 
* 1 + {{kjkt + ikdri(tU) - iKai!om{I)]}/[k0M)]) 

In Eq. (9) nori is the ordinary index of refraction, ru is the 
appropriate Pockels coefficient, and kB T/e is the thermal 
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Fig. 1. Experimental setup for measuring the two-beam 
coupling. 

energy per unit charge. The quantities ka(I), kdTmU), 
i,(I), JfepgU), ÄApg, and Äuniform(/) have complicated intensity 
dependences, and their analytic expressions are given in 
Appendix A. However, their physical origin can be de- 
scribed rather simply, as follows: 

k0(I) is the total inverse Debye screening length, which 
depends on the density of the full and the empty trap 
sites of all the levels. Since optical excitation redis- 
tributes charges among the various levels, k0(I) is inten- 
sity dependent. 

The term kdHtt(.I) = [e/(kBT)]E0(D accounts for the 
drift of charges in any uniform electric field E0(I). This 
electric field may be externally applied or internally devel- 
oped, such as by a spatially uniform photogalvanic cur- 
rent, as we discuss below. 

The term TJ(7) is the optical-to-thermal ratio of the 
charge-excitation rates averaged over all the various trap 
levels and weighted by their effective number density. At 
low light intensities the thermal excitation rate domi- 
nates, and TJ(J) tends to zero. At high light intensities 
the thermal excitation rate can be neglected, and T)(7) ap- 
proaches unity. 

The terms kvg{I), k^(I), and fcunif„rm(/) all arise from 
the photogalvanic effect, but each has a slightly different 
origin, as we show below. Let the total light intensity in 
the crystal be written as 

j(z) = /„(I + m cos kgz), (10) 

where m is the modulation of the light interference pat- 
tern. Expanding Eq. (7) in a Taylor series around the 
average light intensity 70, we obtain 

j"s[/(Z)] = p[I(«)]«z) 

= p[J0(l + m cos kgz)]Io(l + m cos kgz) 

= pUoUo + p(h)hm cos kgz 

I-h) AI 
I0

2m cos kgZ 

+ (terms of higher order in m). (11) 

The first term on the right-hand side of Eq. (11) produces 
the term kmi{orm(I) in Eq. (9) and represents the effect of 
spatially uniform photogalvanic currents. The second 
term produces the term fcpg(J) and is due to spatially vary- 
ing optical charge excitation. Finally, the third term pro- 
duces the term fcipg in Eq. (9); it accounts for the spatial 
variation of the effective photogalvanic coefficient p(7) 
caused by the spatially varying distribution of charges 
among the various trapping sites.   If there were only one 
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kind of trapping site this term would vanish, since in that 
case p would be independent of intensity. 

In the experiments described below we use small beam- 
crossing angles, so that kg « k0. In this case Eq. (9) 
takes a simpler form: 

g°°{kg,l) = ^-n0li
3r13^-{n(I)[kg + ikdm(I)] 

+ ikvAI) + ik^U)}. (12) 

3.    EXPERIMENT 

Two-Beam Coupling 
According to Eq. (8), the amplitude of the probe beam is 
altered by the real part of the coupling coefficient gR° = 
Re(^eo), whereas the phase of the probe beam is altered by 
the imaginary part g,*0 - lm(gm). Both the real and the 
imaginary parts of the coupling coefficient can be mea- 
sured by two-beam coupling experiments.9,10 Let the 
phase of the input probe beam be modulated by a known 
amplitude fi at a frequency O with an electro-optic modu- 
lator, as shown in Fig. 1. The phase modulation dithers 
the position of the interference pattern. If the frequency 
0 is large enough, the crystal will not be able to follow 
these rapid variations, and an average, stationary grating 
will build up in the crystal. A portion of the reference 
beam will diffract from the grating and beat with the 
transmitted phase-modulated probe beam, producing 
intensity fluctuations at harmonics of O. For /i « 1, a 
coupled-wave analysis gives10 

(13) 

(14) 

yO) = 2/4,° exp(£Ä/)sin(£(Z), 

2,(20) = (;u72)/p0[exp(£*Z)cos(#n - 1], 

where 2P(0) and 7„(20) are the magnitudes of the inten- 
sity fluctuations at the frequencies O and 20 and Ip is the 
intensity that the transmitted probe beam would have if 
there were no coupling. By measuring Ip°, 7P(0), and 
7P(20) and solving Eqs. (13) and (14), we can obtain gR and 
g,. Notice that in Eqs. (13) and (14) we omitted the super- 
script eo on the coupling coefficient g; these equations do 
not depend on the physical origin of the coupling coeffi- 
cient. In general, there may be processes other than the 
electro-optic effect that couple the light beams in photore- 
fractive crystals. For example, the different polarizabili- 
ties of the full and the empty trapping sites can couple the 
light beams, as described in Ref. 10. If accurate measure- 
ments of the purely electro-optic coupling are to be 
obtained, then the effects of these other coupling mecha- 
nisms must be removed, as they are in the experiments 
described below. 

We measured coupling in a 5.29 mm X 5.47 mm X 
7.34 mm barium titanate crystal (called FREE) at A = 
488 nm by using the phase-modulation technique de- 
scribed above. This crystal has a dark yellow appearance 
and exhibits marked light-induced absorption.8 The 
crystal's c axis was aligned parallel to the grating wave 
vector, and the beams were polarized perpendicular to the 
plane of incidence (ordinary polarization). The diameters 
of the reference and the probe beams (where the intensity 
dropped to 1/e of the maximum) were 2.14 and 0.76 mm, 
respectively, and the power ratio of these two beams was 
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Fig. 2. Imaginary g{* and real gR°° parts of the purely electro- 
optic coupling in the crystal FREE versus kg at a fixed, high in- 
tensity (13 W/cm2). A = 488 nm, T = 17.7 ± 0.2°C. The inset 
shows the polarization of the beams and the direction of the grat- 
ing wave vector. 

kept fixed at 570:1. This gives an intensity ratio of 72:1 
for these two beams, resulting in a modulation m = 0.23. 
The crystal was cemented with silver paint to a copper 
block, which in turn was immersed in a cuvette filled with 
water, with the temperature of the whole assembly regu- 
lated by a Peltier cooler. Such temperature regulation is 
required because absorption of the incident light tends to 
heat the crystal, which changes the thermal excitation 
rates of the various trapping levels as well as other crystal 
parameters. 

For kg « ko, Eq. (12) predicts that the real and the 
imaginary parts of the electro-optic coupling are 

0)      „    kBT 
gR°(kg)  = — Word rU T)kg, 

2c 
(15) 

e 

kB_T 

e 
8" = ^-nordVia-2- (adrift +  kvg+  &4pg) . (16) 

Zc 

Figure 2 shows both the real and the imaginary parts of 
the measured electro-optic coupling versus kg at a fixed, 
high optical intensity (7 = 13 W/cmz). As expected, gR*° 
changes linearly with ks, whereas gi°° is constant. From 
the slope of gÄ

M we obtain 7j(7)r13 = 12 X 10'12 m/V Us- 
ing the crystal parameters given in Ref. (8) and the 'ex- 
plicit intensity dependence of TJ given in Appendix A for a 
two-level model,1112 we estimate that at the intensity used 
the optical-to-thermal ratio excitation-rate factor has a 
value of TJ(7) » 0.93, which implies a Pockels coefficient 
Tu « 13 X 10~12 m/V. This value differs from the non- 
holographic, undamped value r13 = 19.4 X 10~12 m/V 
obtained by Ducharme et al.13 at a slightly different wave- 
length (A = 515 nm). This discrepancy could be due to 
electron-hole competition,14 which has not been included 
in our model and which would reduce the total space- 
charge field, or to an alteration of the effective r13 coeffi- 
cient through the elasto-optic effect,15 or to the remote 
possibility that 180° domains exist, leaving the crystal 
only partially poled. 

The imaginary part of the coupling is caused by the 
component JSinpha8e of the space-charge field that is spa- 
tially in phase with the light intensity pattern. Accord- 
ing to Eq. (16) this component owes its existence both to 
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the spatially oscillating photogalvanic current and to the 
spatially uniform photogalvanic current. At the light in- 
tensity used in this experiment the magnitude of this 
component of the field is given by 

E 
kBT 

in phase (^drift +  kpg +  Äipg)  -  gf 
2c 

arioTi r13 

(17) 

Using the value r13 = 13 X 10~12 m/V obtained above, we 
find that at this intensity E^ham = 450 V/cm along the -c 
direction. The magnitude of this periodic field is in 
agreement (within factors of 2) with that obtained in 
BaTi03 by other researchers.16"18 

Figure 3 shows the intensity dependence of the imagi- 
nary part of the electro-optic coupling for two different 
internal beam-crossing half-angles (0int = 0.3° and 
0.nt = o.8°) of the optical beams. At these small angles 
trap gratings, which are caused by the polarizabilities of 
the trap sites, contribute significantly to the measured 
coupling.10 In the data shown in Fig. 3 we have already 
subtracted the coupling produced by these trap gratings, 
using a procedure given in Ref. 10. We see that at both 
beam-crossing angles the intensity dependence of the 
imaginary part of the coupling is practically identical, as 
predicted by Eq. (16). 

Competing Photogalvanic Terms 
From these measurements alone we cannot distinguish 
the effects of the various terms in parentheses in Eq. (16) 
or (17). However, assume for simplicity that we have only 
two levels from which photoexcitation of holes may oc- 
cur: a deep donor level and a shallow acceptor level. In 
Appendix A we show that 

KM) 
el 

kBTmn0(I) 
[sAdANA/U) + sDdDND/(I)],  (18) 

where n0 is the average density of free holes in the valence 
band, /xj is the hole mobility parallel to the crystal's c axis, 
and the subscripts A and D refer to the acceptor and donor 
levels, respectively. The drift term fedrift in Eq. (16) de- 
pends on the boundary conditions of the crystal. If the 
crystal is shorted and there is no externally applied elec- 
tric field, then EQ = 0, making kdritt = 0.    If instead the 

o.oi 

Intensity (W/cm ) 

Fig. 3. gi"0 in crystal FREE versus light intensity I at two inter- 
nal beam crossing half-angles 6xt. The solid curve is the best fit 
to the two-level model discussed in the text. The other curves 
are best fits assuming that only one of the levels contributes to 
the photogalvanic effect.   A = 488 nm; T = 17.7 ± 0.2°C. 
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crystal is an open circuit, then the spatially uniform part 
of the photogalvanic current causes charge to pile up on 
the ±c faces of the crystal, eventually creating a spatially 
uniform photovoltaic electric field E^ inside the crystal: 

Eo(I) = £Pv(/) - - 
(TO) 

I 
ti\\n0tf) 

[sAdANA/U) + sDdDND/(I)]. 

(19) 

Here a (I) is the total conductivity and the angle brackets 
denote spatial averaging. Combining Eq. (19) with the 
definition Adrift (/) = [e/(kBT)]EaU) shows that under 
open-circuit conditions 

Adrift = _Apg, (20) 

so that at high intensities, where T/(J) approaches unity 
(negligible dark conductivity), two of the terms in Eq. (16) 
should exactly cancel, leaving only g/M « fcApg. But at 
high intensity this term vanishes as well, because the 
light-induced redistribution of charges among the various 
levels at any given location saturates at high intensity. 
Although Eq. (20) was derived for the special case of a 
two-level model with a single charge carrier, in Appendix 
B we show, using open-circuit conditions and a few gen- 
eral assumptions, that the steady-state spatially oscillat- 
ing currents produced directly by the photogalvanic effect 
and indirectly by the induced photovoltaic field are always 
of the same magnitude and of opposite sign. In other 
words, in open-circuit conditions and at optical intensities 
at which the dark conductivity can be neglected, the pho- 
togalvanic effect should have no net influence on the 
steady-state space-charge field. 

But this null effect is not what we observe! Although, 
mathematically, at high intensity gt

m should approach 
zero, experimentally we observe that it approaches its 
maximum value instead. This discrepancy could be ex- 
plained if, for some reason, the uniform photovoltaic field 
created by the spatially uniform part of the photogalvanic 
current did not build up to the expected amount. We 
measured this field externally with a high-impedance 
(>1014 Q.) electrometer, taking precautions not to short 
the crystal faces inadvertently, and obtained the value 
Epv « 10 V/cm in the +c direction,19 which is much smaller 
than the observed 450-V/cm amplitude of the spatially 
varying space-charge field. The magnitude of this exter- 
nally measured field agrees with previously published val- 
ues.20 When we measured the photogalvanic current 
directly, we found that it flowed in the -c direction, 
which is consistent with the sign of the field measured by 
the electrometer, since at steady state the field should op- 
pose the photogalvanic current. This is also the correct 
direction to account for the sign of our holographically 
measured gi*0, provided that the coupling is due mainly to 
the spatially oscillating photogalvanic current term Apg. 
We confirmed this conclusion by applying an external field 
along the +c direction and observing a decrease of gi°°, 
whereas gi*0 increased when a field was applied along the 
—c direction. 

We do not understand why the uniform electric field Epv 

is so low under apparently open-circuit conditions, al- 

though we considered several possibilities. The simplest 
explanation is that the crystal is in a closed circuit and not 
in an open circuit. Other researchers have also noticed 
that Epv never builds up to the total amount expected for a 
closed circuit, and they have attributed this phenomenon 
to some kind of shorting mechanism.16,21 In our exper- 
iments the silver paint that mounts the crystal may have 
provided an adequate pathway to short out the ±c faces of 
the crystal, as could have the water bath around the crys- 
tal. However, when we performed similar experiments, 
but with the crystal mounted on an insulating block in air 
with no silver paint, we found no change in the measured 
value of the imaginary part of the coupling with or with- 
out a wire electrically connecting the ±c faces. A second 
shorting mechanism could be that the surface conductiv- 
ity of the crystal is somehow significantly higher than the 
bulk conductivity, thereby permitting the circuit to be 
shorted through the crystal surface. For example, Günter 
claims that in LiNb03 the surface conductivity can be a 
few hundred times that of the bulk.21 For either the crys- 
tal surfaces or the silver paint to be effective in shorting 
out the bulk, the charges must first reach the surfaces of 
the crystal. To see if they do, we numerically calculated 
the steady-state distribution of charge and the resulting 
electric field produced by an incident Gaussian beam for 
the case of the crystal surrounded by a perfect insulator 
and also for the case of a crystal surrounded by a perfect 
conductor. We made a few reasonable simplifications to 
make this calculation practical: Diffusion was ne- 
glected, the photoconductivity and the photogalvanic cur- 
rent were assumed to be linearly proportional to the light 
intensity, and the intensity of the probe beam was ne- 
glected. However, we retained the dark conductivity as 
well as the variation of conductivity with direction in the 
crystal.22,23 For the beam size and crystal dimensions 
used, our calculation predicts that only small amounts of 
charge reach the four surfaces surrounding the light 
beam. It is still possible that charge flows down the light 
beam and connects the entrance and the exit faces of the 
crystal, although this conduction path is perpendicular to 
the direction of the photovoltaic field. There might also 
be an internal short circuit if either the conductivity or 
the photogalvanic current itself were a function of kg. 
For example, electron conduction, while not large enough 
to create a significant, spatially periodic, space-charge 
field, might be sufficient to short out the spatially uni- 
form field. However, one can show that if this were true 
then gi*0 would vary appreciably with kg; yet the data in 
Figs. 2 and 3 clearly show that gj°° does not vary with kg. 
Finally, there is a more exotic explanation, which is that 
there are clamped and undamped values of the photogal- 
vanic tensors and that these differ widely, akin to the 
variation between clamped and undamped Pockels coeffi- 
cients.15 The spatially oscillatory current would then act 
through the clamped value of the photogalvanic effect, 
while the spatially uniform current would act through the 
undamped value, thereby accounting for the failure of 
these two effects to balance. 

Notwithstanding the above excuses for the small size of 
the externally measured value of 2?pv, we tried to deter- 
mine £pv by another method. We connected the crystal to 
an electrometer with silver print electrodes and measured 
the photogalvanic current while illuminating the crystal 
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with a single light beam. We also determined the conduc- 
tivity a of the same crystal through grating decay mea- 
surements. From Ohm's law we obtain Epv(I) = 
-j^D/a-d), which gives a value of 15 V/cm at high optical 
intensities. This value is similar to the electrometer 
reading mentioned above. However, both of these mea- 
surements use external electrodes and so may underesti- 
mate both the £pv and the 7Pg present in the bulk of the 
crystal. For example, in order to permit the current mea- 
surements to be made correctly with external electrodes, 
the beam should uniformly illuminate the entire crystal; 
otherwise the current that actually reaches the surfaces of 
the crystal can be significantly reduced, as we explain be- 
low. The large size of our crystal did not allow us to illu- 
minate it at a high intensity. We compromised by using a 
1/e beam diameter of 6 mm, which is slightly smaller than 
the 7.34-mm distance between the c faces of the crystal. 
A further complication is that transverse illumination 
(light propagation perpendicular to the electrodes) always 
causes a dark fringe at the electrode surfaces, which re- 
sults from the interference between the incident beam 
and the Fresnel reflection off the surface.24 This dark 
region reduces the amount of the internally generated 
current that reaches the external electrodes. Finally, pol- 
ing of our crystal produced scratches and microcracks on 
its c faces, which inhibit good electrical contact. 

Consequently we do not know whether the small size of 
j™ measured with external electrodes is a true measure of 
the internal Epv. However, we do know from our mea- 
sured values of gi"0 that inside the crystal the effect of any 
spatially uniform field is overwhelmed by the effect of the 
spatially varying photogalvanic current. 

Finally, we also considered the possibility that the ob- 
served imaginary25 part of the coupling was due to pyro- 
electric currents and not to the photogalvanic effect. 
However, these currents would contribute only to the real 
part of the coupling and at a level orders of magnitude 
smaller than what we observe. 

Two-Level Model 
Although the two-level model developed here cannot ex- 
plain the dominance of the spatially varying photogalvanic 
current over the spatially uniform photogalvanic current, 
it can account for the intensity dependence shown^in 
Fig. 3. Let us assume that the crystal is in a closed cir- 
cuit, so that we can ignore the spatially uniform photogal- 
vanic current and set £pv = 0. We assume that holes can 
be either optically or thermally excited from the shallow 
acceptor traps but can be excited only by light from the 
deep donor traps. The model for the intensity depen- 
dence of the population of both levels of trap sites is given 
in Appendix A; it requires four parameters, which we have 
previously measured for this BaTi03 sample (FREE) by 
both induced absorption and holographic experiments.8 

The only two extra parameters needed for performing the 
curve fits are terms proportional to the average photogal- 
vanic transport distances dA and dD and to the recombina- 
tion constants yA and yD. Since this crystal absorbs light 
strongly, the intensity of the light beam decreases consid- 
erably between the crystal's entrance and exit faces. We 
took this variation of light intensity with propagation dis- 
tance into account in our curve fit, which is shown by the 
solid curve in Fig. 3.   This fit yields the values 
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From these measurements we cannot extract the values of 
the photogalvanic transport distance dA and do, because 
we do not know yA and yD. However, we can estimate 
their order of magnitude. If we assume that the recombi- 
nation rates to both trap levels are approximately equal, 
then we can set 

W    _    All    _ W\ 
TDND     7A ND       2 

where r is the time that an excited hole remains in the 
valence band. Using mr » 2 X 10"10 cm2/V,26 we esti- 
mate that dA and dD are of the order of 1 nm. 

We also tried fitting our data to a two-donor-level model 
in which only one of the levels contributes to the photogal- 
vanic current. The dashed and dashed-dotted curves in 
Fig. 3 are these curve fits, and it is evident that in this 
model both levels must be photogalvanically active to ex- 
plain the data best. 

Direct-Current Measurements 
The data in Fig. 3 show that the photogalvanic coupling 
can be described well by a two-level model. This model 
gives a nonlinear dependence of the photogalvanic current 
on light intensity, which, in principle, should be detectable 
by measuring the spatially uniform component of the pho- 
togalvanic current directly. We measured the photogal- 
vanic current directly on the same crystal (FREE) by 
connecting an electrometer to its c faces with silver paint 
electrodes. We do not have confidence in these measure- 
ments on the crystal FREE because the data were not 
reproducible and for the reasons stated above. Conse- 
quently we measured the photogalvanic current in another 
crystal (CHIP) with light-induced absorption characteris- 
tics similar to those of FREE but of smaller size (along a, 
3.65 and 5.63 mm; along c, 4.93 mm) and of better surface 
quality.    The (1/e) beam diameter was 10.7 mm, more 

1000 

Pg 6 
J 

(pA/cm2) 

100 

two-level model fit 
linear fit 

t-mr -i—j  i j tiii' -i—j  i i i>ii[ 
'O.oi      ' ' '' ' o.i      ~    ' i 

Intensity (W/cm > 
Fig. 4. Photogalvanic current measured externally with an elec- 
trometer in crystal CHIP versus light intensity /. The solid line 
is the best fit to the two-level model; the dotted line is a best fit to 
a simple linear dependence of the photogalvanic current on inten- 
sity.   A = 488 nm; T = 21.4 ± 0.2°C. 
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than twice the crystal length in the c direction. The 
large amount of power absorbed by the crystal prevented 
us from taking measurements at the same temperature at 
which the coupling measurements were taken (17.7CC), so 
we used the lowest temperature that our setup could pro- 
vide, 21.4 ± 0.2°C. These data are shown in Fig. 4. The 
solid line is a fit with the four parameters obtained from 
light-induced absorption experiments in this crystal and 
the two photovoltaic parameters obtained previously for 
FREE. The only unknown parameter is an overall scal- 
ing factor. We see that, although the two-level model 
gives a better fit to the data than does a simple one-level 
(linear) model, it is necessary to measure the current over 
a 2-order-of-magnitude range in order to see any signifi- 
cant difference between the two models. In contrast, 
with the holographic measurements shown in Fig. 3 the 
different predictions of the two models are more obvious. 

Discussion 
Finally, we explain the intensity dependence of the photo- 
galvanic effect in a different way. Since &Apg contributes 
only a small correction to the coupling, and only at inter- 
mediate optical intensities, we focus our discussion on k^, 
which makes the dominant contribution to gi*°. Let a 
hole be excited into the valence band from any trap site. 
Once this charge carrier has reached thermal equilibrium 
with the lattice, it will have forgotten from which site it 
was excited and will diffuse by a random walk. Neglect- 
ing the time required for thermalization, the mean-square 
distance that the hole diffuses before recombining into an 
acceptor trap site or a donor trap site is given by 

A/ = (kBT/e)fiTA, 

AD
2 = (kBT/e)prD, 

(21a) 

(21b) 

where TA and TD are the average times that the hole spends 
in the valence band before it recombines into an acceptor 
or a donor trap site, respectively. From Eqs. (18) and (21) 
and the intensity dependence of the free charge carriers 
given in the Appendix A (Eq. A27), we find that 

k«V) - 
kBT 

e 

sAI 

A/(I) sAI + ßA     A 

dD   ] 
(22) 

i.e., for a given photogalvanic transport distance dA or dD, 
the smaller the mean-square diffusion length the larger 
will be the effect on the photogalvanic current on beam 
coupling. Because a spatially varying optical intensity 
redistributes charges among the trapping levels, it alters 
the lifetimes TA,Z> and the corresponding diffusion lengths 
AA,D

2
 (D- This effect adds an additional intensity depen- 

dence to the imaginary part of the coupling coefficient. 

4.   CONCLUSIONS 
Using a band-conduction model, we have shown that photo- 
galvanic currents should alter the phase shift of photo- 
refractive gratings both directly, by creating a spatially 
oscillating current, and indirectly, by creating a spatially 
uniform electric field. For an open-circuited crystal, at 
optical intensities for which thermal excitation can be ne- 
glected, these two effects should exactly cancel. How- 
ever, we observe that in a nominally open-circuited crystal 
the effect of the spatially uniform electric field and its 

associated drift current are anomalously small compared 
with the effect of the spatially oscillating current. Al- 
though results of only one crystal sample were presented 
in this paper, we have analyzed other barium titanate 
crystals, and all exhibit similar behavior. 

To explain the intensity dependence of the imaginary 
part of the measured two-beam coupling, we have general- 
ized Glass's model of the photogalvanic effect to include 
the effects of multiple trap sites. Assuming that the drift 
current is negligible, we account for the intensity depen- 
dence of the imaginary part of the coupling by using only 
two different levels of trap sites. We find two contribu- 
tions to the intensity dependence: First, because the 
photogalvanic transport distances of the two levels are dif- 
ferent, the light-induced redistribution of charge among 
the levels changes the net photogalvanic current. Second, 
because the diffusion length of the mobile charge changes 
with light intensity, light can alter how much a given pho- 
togalvanic current affects photorefractive beam coupling. 

APPENDIX A 
We extend the band-conduction model to include charge 
excitation and recombination from multiple levels. For 
simplicity we consider a single type of charge carrier (elec- 
trons or holes, but not both). Our starting equations are 
a generalization of those presented in Ref. 8, but with the 
addition of a photogalvanic current for each level. The 
equations are 

dNf 
dt 

(ft + vEoptEopt*)JV/ - yjNfn, 

J = enix Es kB Tß-Vn+ j" 

wf+^ Sn     V -j 
— + - 
dt        e 

0, 

V.(6„i-E)=e2(&FiV/+ £>/), 

(Al) 

(A2) 

(A3) 

(A4) 

where Nf and Nf, respectively, are the densities of the^'th 
sites that are empty or full of the mobile charge and n is 
the density of charges in the appropriate band. The rate 
of optical excitation from the jth level into the appropriate 
band is s,:EoptEopt*. Note that we have generalized s, to a 
second-rank tensor in order to describe the polarization 
dependence of the optical excitation. The thermal excita- 
tion rate and the recombination constant for thej'th level 
are denoted by ft and y, respectively. In Eq. (A2) j is the 
total current density, kBT is the thermal energy, e is the 
charge constant, fi is the mobility tensor of the charge car- 
rier, ESc is the space-charge electric field, and jre is the 
total photogalvanic current. In Eq. (A4) e is the relative 
static dielectric tensor of the crystal and e0 is the permit- 
tivity of vacuum. We have neglected the density of free 
carriers in Eq. (A4) because it is small for the cw intensi- 
ties considered here. In Eqs. (A2) and (A3) the upper or 
the lower sign applies according to whether the charge 
carriers are holes or electrons, respectively. The factors 
£/ and ijf in Eqs. (A3) and (A4) denote the sign of the 
charge at a full or an empty site of the jth level. The 
values of £/ and £/ will depend on whether the site is an 
electron donor or acceptor and on the type of charge car- 
rier.   For example, if the mobile charges are holes, then 
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£/ = 0 and tjf = -1 for acceptor levels, while |/ = +1 
and fjE = 0 for donor levels. These £, terms are a book- 
keeping device used to ensure charge neutrality, but they 
play no role in our subsequent results since they appear 
only as a difference in the formulas. In general 
€iF ~ 6* = +1 for holes and £F - £f = —1 for electrons. 

Assume that each type of trap site has a different con- 
tribution to the total photogalvanic current j"* . Let the 
total electric field at any position x and any time t be 
given by «opt(x,*) = Re[Eopt(x)exp(-f<uO]. Then jpg 

should have the phenomenological form 

J*(x) = eSiV/^E^E^x), (A5) 

where % is the third-rank photogalvanic tensor of the trap 
sites of the jth level. We changed the notation from ß to 
XJ, since in Eq. (A5) the number density has been factored 
out. There is a difference in form between Eq. (A5) and 
Eq. (7) of the text: here we do not explicitly write Xj 
in terms of an optical excitation tensor and a photo- 
galvanic displacement vector, because this cannot be done 
(or cannot be done in a simple way) for arbitrary beam 
polarizations. 

Let two monochromatic quasi-plane waves, a reference 
beam and a probe beam, interact in a photorefractive me- 
dium.   Then 

E0pt(x) = Er(x)er exp(ikr • x) + Ep(x)ep exp(ikp • x), 

where EriP(x) are slowly varying envelopes and er,P are the 
polarization unit vectors of the reference and the probe 
beams, respectively. If \EP\ « \Er\, we can linearize 
Eqs. (AU-CA5), by expanding N/-F, n, j, and E into first 
order in exp(ikg • x): 

tyF'E = Nj./E + MNj/'B exp(JkÄ • x)], 

n = n0 + Re[rti exp(ikg • x)], 

j = jo + Re[ji exp(ikg • x)], 

E = E0 + Re[E! exp(jkÄ • x)], 

where the grating wave vector is defined by 

Kn — KD        Kr (ai/c) (npsp - nrsr). 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

In Eq. (A10) np,r are the indices of refraction for the beams 
traveling in the directions of the unit vectors spr. Solving 
Eqs. (A1)-(A5), we find that the steady-state, spatially 
varying space-charge field depends on the grating wave 
vector according to 

Ei = ±ik 

where 

kaT (*, ± ikdM)[2mjk0f/k0
2) ± i^f^K 

Nj 
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kg Tn0(K, 

el 

**/* s.)i iNj/k, g ' Xj'-eper > 

JLRsj> 

+ \Er\2kg-%:erer*), 

s 2E„Er%:epe* 
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(A14) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

Note that in Eq. (A19) m, is not the modulation of the light 
intensity pattern; it is the modulation of the optical exci- 
tation from the jth level. 

The coupling is obtained by using the usual coupled- 
mode analysis and the space-charge field given in Eq. (All). 
In the undepleted-pump approximation we find that the 
coupling that is due to the electro-optic effect is 

Ep (z) = Ep (0)exp(gMz), (A20) 

e* • [e(<u) • 7? • Et • e(«)] • erEr.      (A21) 

Substitution of Eq. (All) into Eq. (A21) gives us the k„ 
dependence of the coupling for an arbitrary orientation 
and polarization of the incident beams. For the case con- 
sidered in the text, ep — er, and kjc, and we obtain 

g™ = 
id) 

2npc 

j 

7717/(7) , 

^mjk,j - 2 A../2 nfy 
k0

2 

= m[2 
Sjl 

,7 sji + ß/SJ 

(A22) 

ksj - TJ(/)2äV 

(A23) 

where m is the modulation of the light intensity pattern 
and 

vd) = 2 
Sjl     k0f 

7 sjl + ßj kQ
2 (A24) 

i[^Zmjk,j - 'Zk.j'Zmj-^ 
j        j        «o 

1 + ftkglkg ± iki ik uniform )]Ao2} 
(All) 

adrift — 
e   (kg ■ ß ' Ep) 

kBT (£g- ß -kg)' 

kBTe0(fig • e • &g) 
Nf 

(A12) 

(A13) 

From the previous equations we get 

g°°(kg,I)=—nord
3r13  

2c e 
w    y(I)[kg + iA!jrift (7)] + ik„(I) + ik^JJ) 

1 + {kg[kg + ikim(I) 

which is Eq. (9) of the text. 

JÄuniform(7)]Ao2(7)} 
(A25) 
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All of these quantities depend on the light intensity, 
either directly or indirectly (through n0, Nj.0

F,s, or E0); 
however, in order to find their intensity dependence the 
number of active levels must be specified. The simplest 
multiple-level model that will show any intensity depen- 
dence is one with two active levels, a donor level and an 
acceptor level. We allow optical excitation of holes from 
both of them into the valence band; however, significant 
thermal excitation of holes can occur only from the shal- 
low acceptor level. Let the total number of acceptor and 
donor sites be designated by NA and ND. Under these as- 
sumptions £/ = &* = 0, £/ = -1, and &F = +1, and 
bulk charge neutrality demands that 

NA.,
F + ND 

F _ NA (A26) 

where we have assumed again that the density of free 
holes is negligible compared with the density of occupied 
traps.   From Eq. (Al), 

Tlo — 
(sAI + ßA)NA./    SDIND./ 

7ANAI0
E yDND./ ' 

From Eqs. (A26)-(A27) we get 

(A27) 

JSD.0F = — ,   (A28) 

where 

G(I) m 1 
yAsD     sAI 

yDsA sAI + ßA 
(A29) 

For the curve fits shown in the text we used NA/ND = 
0.96 ± 0.02, ßA/sA = 0.73 ± 0.06 W/cm2, and yAsD/y„sA = 
0.033 ± 0.007, which were obtained independently from 
induced absorption measurements.8 

Finally, we relate £re to the photogalvanic transport dis- 
tances dA and dD. Since the beams are polarized along 
theje axis of the crystal and since kÄ ||c, the only elements 
of x that come into play are *31 of the acceptor and the 
donor levels.   Let #A31 = sAdA and *Q3i =■ sDdD.   Then 

el 
kwW = L n. _ ,TdsAdANA.i0

E(I) + sDdDND.,0
F(I)], 

(A30) 

kgTfi^noU) 

which is Eq. (18) of the text. 

APPENDIX B 

In this appendix we prove that for a crystal in an open 
circuit the photogalvanic effect makes no net contribution 
to the steady-state space-charge field. 

We show that, under very general conditions, the photo- 
galvanic effect should have no net effect on the steady- 
state space-charge electric field of a photorefractive 
crystal if the crystal is an open circuit. 

Let the photorefractive crystal be illuminated by an in- 
tensity pattern given by I(x) = In(l + m cos kgz), and let 
the grating wave vector be along the crystal's c axis. For 
small crossing angles we can neglect diffusion currents, so 
that the magnitude j'total (z) of the total current density is 
given by 

p*{z) = jirit\z) + jK(z) 

-<r(x)E(z) + p(z)I(z), (Bl) 

where./'*1" (z) and./'1* (z) are the magnitudes of the current 
densities that are due to drift and to the photogalvanic 
effect, respectively. If we assume that the conductivity a 
and the photogalvanic current depend on the local inten- 
sity (i.e., we ignore spatial dispersion), then jpg (z) = 
p[7(z)]/(z) and <r(z) = o-dark + a[I(z)]I(z), where o-dark is 
the dark conductivity and a(I) is a proportionality factor 
that does not vary much with light intensity. Expanding 
the space-charge field, conductivity, and photogalvanic 
current in powers of m cos kgx yields 

E(z) = E0 + Eim cos kgz + ..., 

Cr(z) = OTdark + a(I0)Io 

fa+($\A 
p(z)=p(70) + fe 

Iofn cos kgz + .. 

Iom cos kgz +  

(B2) 

(B3) 

(B4) 

Substituting Eqs. (B2)-(B4) into Eq. (Bl) and equating 
terms that have equal powers of m cos kgx, we obtain 

En = —" p(/o)/o 
(B5) 

CTdark + 0,{.Ia)In 

E pUo)h + I0
2(dp/dD\h + E0[a(I0)I0 + 70

2(da/d/)|,J 

»"dark + a(Ia)In 

(B6) 

In Eqs. (B5)-(B6) we assume that the crystal and its sur- 
roundings constitute an open circuit. 

Experimentally it is observed that at high cw intensities 
(where dark conductivity can be neglected) the photocon- 
ductivity and photogalvanic currents are nearly linear 
with intensity, implying that both (dp/d/)|7o and (da/d/)|/o 

are small. With both terms set to zero and dark conduc- 
tivity neglected, Eqs. (B5) and (B6) give 

i?i(high intensity) « - 

= 0 

p(Jo)Jo - p(Io)I0 

a(I0)Io 

(B7) 

This result implies that for a crystal that is in an open 
circuit the spatially oscillating photogalvanic current ex- 
actly balances the spatially oscillating drift current in- 
duced by the uniform photovoltaic field acting on the 
spatially modulated conductivity. 
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Stimulated photorefractive phase conjugators often exhibit well-defined curved beam paths that cannot be ex- 
plained by simple beam fanning. We propose a model of these apparently curved paths as a series of straight- 
line segments, with beams propagating in both directions along these segments. These line segments spring 
from the amplification of scattered light between regions of the crystal already containing counterpropagating 
pump beams. As these line segments form, they create new interaction regions that generate new segments, 
thereby making the final beam path appear to be curved. Application of our model to a single-interaction- 
region mutually pumped phase conjugator shows that the threshold coupling strength required for the appear- 
ance of these new segments is only slightly higher than the threshold for the phase conjugator itself. 

INTRODUCTION 
Light beams appear to follow curved paths inside photo- 
refractive phase conjugators. Here we propose a detailed, 
though necessarily simplistic, description of how these 
light beams spring up inside a photorefractive crystal. 
We show that their curved paths are in fact a sequence of 
straight-line segments that connect many four-wave mix- 
ing regions inside the crystal. 

In recent years a variety of photorefractive devices have 
been demonstrated that rely on stimulated light beams to 
perform optical phase conjugation. These self-pumped 
and mutually pumped phase conjugators (which include 
the cat mirror,1 the double phase-conjugate mirror,2 the 
bird-wing,3 the frog-legs,4 and the bridge conjugators,5 and 
the unnamed geometry of Eason and Smout6) are all 
closely related7 and differ only in the number and angle of 
their input beams. 

Figure 1 is a photomicrograph of stimulated beams in- 
side a cat conjugator.1 The stimulated beams have col- 
lapsed into narrow filaments (for reasons that will not be 
discussed here). These filaments appear to follow curved 
paths, but on close inspection the curves are seen to con- 
sist of a series of straight-line segments connected by 
distinct bends. Our model requires that the filaments 
themselves consist of counterpropagating waves. We 
show that two separated regions inside the crystal, each 
having its own pair of counterpropagating waves, can find 
each other with new light beams, provided that the total 
round-trip reflectivity of a small seed wave between these 
regions is greater than unity. Our model predicts a se- 
quence of such couplings, so that the path of the filaments 
eventually resembles a curved trajectory. 

Consider the case of two counterpropagating beams that 
are already present inside a photorefractive crystal, as 
shown in Fig. 2. If a reflecting surface, such as a mirror 
or a wedding ring, is placed nearby, then a beam of light 
will spring up between the crystal and the reflecting sur- 
face, provided that the photorefractive coupling strength 
exceeds a certain threshold.8 These stimulated beams 
grow and reach steady state when the reflectivity of the 
photorefractive phase conjugator declines to 1/M, where M 
is the reflectivity of the mirror. The crystal acts as a 
phase conjugator with gain: It returns light from the 
mirror back to the mirror. If the mirror surface is re- 
placed by a second photorefractive crystal that is also 
pumped by two counterpropagating beams, then a beam of 
light can spring up between the two crystals; they will 
find each other and direct counterpropagating light beams 
from one to the other,9 as shown in Fig. 2b. Instead of 
two crystals one could consider two separate regions in- 
side the same crystal, as shown in Fig. 2 c. In that case a 
pair of counterpropagating beams can spring up between 
these two regions. These new counterpropagating beams 
would then make new interaction regions available, per- 
mitting new beams to spring up, as shown in Fig. 3. This 
bifurcation can occur repeatedly, with each new pair of 
counterpropagating beams serving as a springboard for 
the generation of more such beam pairs. 

STIMULATED SCATTERING AND PHASE 
CONJUGATION 
When a single laser beam traverses a photorefractive crys- 
tal, imperfections and defects in the crystal scatter the 
incident light.   The scattered light can coherently inter- 
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Fig. 1. Photomicrograph of stimulated beams inside a BaTi03 
cat conjugator, showing the segmented bent trajectories of the 
light beams. 

n/ 

t 

r*\ 

Fig. 2. a, Light beams (stippled arrows) springing up between a 
pumped crystal and the normal to a mirror, b, Light beams 
springing up between two pumped crystals, c, Light beam 
springing up between separate pumped regions of a single crys- 
tal, with the pumping beams connected by a photorefractive grat- 
ing inside the crystal. 

fere with the incident beam to create a multitude of pho- 
torefractive gratings in the crystal. A subset of the light 
scattered from these gratings reinforces the originally 
scattered beams, and these beams grow exponentially 
with distance in the crystal and emerge in a broad fan 
of light. 

Now let two (preferably mutually incoherent) laser 
beams be incident upon the right- and the left-hand crys- 
tal boundaries with optical intensities IR and h, respec- 
tively. Let the two beams intersect inside the crystal as 
shown in Fig. 3a. Because the two beams are mutually 
incoherent, they will not interfere with each other. How- 
ever, each incident beam will interfere with its own 
randomly scattered beams to create its own armada of 
photorefractive gratings inside the crystal.   The particu- 

lar grating that diffracts beam R into the phase conjugate 
of beam L will also diffract beam L into the phase conju- 
gate of beam R by time-reversal symmetry.2, Because 
this grating is common to both beams, it is preferentiall;* 
reinforced. In the simplest such mutually pumped phase 
conjugator (the geometry of Fig. 3a) the intensity trans- 
mission To of the device, defined as the fraction of the 
light input into one face that emerges phase conjugate to 
the beam at the other face, is found by solving the follow- 
ing equations2: 

To = 
cV2 + g-1/2)2 - (g1 -l/2\2 

c = tanh(G0c/2), 

(1) 

(2) 

where q = IR/IL is the ratio of intensities of the two 
incident beams and G0 is the amplitude-coupling strength 
(dimensionless) in the region. These equations yield non- 
trivial solutions only if the coupling strength exceeds a 
threshold value G0 ä [(q + l)/{q - l)]ln q. 

NEW BEAMS 
Just above threshold the configuration of a single- 
interaction region turns out to be unstable: Arbitrarily 
weak beams will grow between two new regions of the 
nonlinear medium, with each region pumped by two coun- 
terpropagating waves as shown in Fig. 3b. The threshold 
for this instability occurs when the round-trip reflectivity 
of a weak seeding beam between the right- and the left- 
hand regions in Fig. 3b exceeds unity: 

ÄrightÄwi^l. (3) 

In inequality (3) Äright is the phase-conjugate intensity re- 
flectivity for the beam incident upon the right-hand re- 

Top Region 

Top Region 

Left 
Region 

Right 
Region 

Fig. 3. Schematic of beam paths in a mutually pumped phase 
conjugator, a, before bifurcation, b, after one bifurcation, and, 
c, after a second bifurcation. The circles indicate interaction 
regions. 
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Fig. 4. Coupling strength at threshold versus incident beam 
ratio q for a mutually pumped phase conjugator with no bifurca- 
tions (solid curve; see Fig. 3a) and one bifurcation (dotted curve; 
see Fig. 3b). 

gion from the left-hand region, and RMt is the same upon 
the left-hand region. Near threshold, these reflectivities 
can be computed from the traditional four-wave mixing 
equations with undepleted pumping beams, as in Ref. 10; 
here the usual counterpropagating pumping beams are 
taken to be the conjugate pairs IL and IL

C in the left-hand 
region and h and IR

C in the right-hand region.   We obtain 

R 

R 

^1L       [1 - exp(-Gieft)]2 

lcft~/L
c[l + (VJ,c)exp(-Gleft)]

2' 

IR       [1 - exp(-Gright)]2 

right 
//[l + (V^c)exp(-Gright)]2 

In general, the values of coupling strengths in the vari- 
ous regions are all different. However, for simplicity we 
here take them all to be the same, Go = Gieft = Gright = G, 
for the remainder of our analysis. Even in this case we 
show that the system tends to generate new beams and 
that (except near threshold) these new beams increase the 
overall phase-conjugate reflectivity of the device. 

Figure 4 shows the calculated threshold for phase conju- 
gation versus the incident beam ratio q when there is only 
one interaction region and also shows the threshold for 
the system to bifurcate once to create three intercon- 
nected regions. Note that a single interaction region 
becomes unstable for a coupling strength that is even 
slightly larger than the single-region threshold, and a new 
path forms that bypasses the original interaction region. 
For example, for the case q = 1 the single-region thresh- 
old (no bifurcations) is G^""*""" = 2, while the three- 
region threshold (one bifurcation) is only slightly larger: 
^(3-regions) _ 2.026. For even larger values of G the sys- 
tem may undergo further bifurcation, as shown in Fig. 3c. 
This process will continue, with new beams springing up 
to connect new interaction regions and so to carve out a 
path, made of many straight-line segments, that approxi- 
mates a curved trajectory. Because there is no unique 
path for the bifurcation, it is possible for different paths 
to be favored sequentially. This variability would cause 
the phase-conjugate signal to oscillate in time, as has been 
observed in the bird-wing and cat conjugators.11"13 
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COUPLED-WAVE EQUATION 

We analyze the three-region geometry of Fig. 3b by in- 
specting the slowly varying amplitudes Aj (j = 1,2,3,4) of 
the electromagnetic waves in each of the three interaction 
regions. For the geometry of Fig. 5 these amplitudes 
vary according to10 

dAi 

dx 

dA3 

=  VAA 

= -vA2, 

dA2* 

dx 

dA4 

dx '"" dx 

v = (y/IoXAxAS + A2*A3). 

-vAS, 

(4) 

In Eqs. (4) I0 = 2J=iA/, 0 < x < I, and y = G/l is the 
coupling coefficient per unit length. Here we will con- 
sider only the case of a purely real coupling coefficient y 
(which corresponds to a 90° phase shift between the light 
pattern and the resulting refractive-index pattern in the 
photorefractive crystal).14 For this case the wave ampli- 
tudes Aj can all be taken as real without loss of generality. 

The boundary conditions on the four wave amplitudes 
Aj differ here from those usually used. Consider the 
right-hand region shown in Fig. 3b, with the beams 
named as in Fig. 5. The usual boundary condition is to 
set the conjugate-wave amplitude to be zero at the right- 
hand boundary: A3(l) = 0. Instead, here we let the 
conjugate wave be seeded by scattered light, so that 
A3(l) = emA2(l). The finite seed in the right-hand (and 
left-hand) regions is required if the curved beam path is 
to dominate at large coupling strengths. Physically this 
seed is caused by the scattering from crystal defects of 
wave 2 into wave 3. We let the total amount of scattering 
remain constant but let the seeding parameter em « 1 
determine the fraction of the scattered light from 
amplitude A2(l) that is scattered into precisely the 
amplitude A3(l). In the left-hand region we use a similar 
seeded boundary condition, and for simplicity we set the 
scattering strength to be the same in both of these regions. 
We set the phase of these scattered beams so that the light 
scattered from the left-hand region exactly reinforces the 
grating forming in the right-hand region and vice versa. 

In the top region we could also replace the usual 
boundary conditions for a double-phase-conjugate mirror 
with the seeded boundary conditions, but we found that 
for e « 1 the presence of finite seeding beams in this top 
region has a negligibly small influence on the behavior of 
the various waves except when the coupling coefficient is 
quite near the threshold G = Gg-region). Therefore we set 
e = 0 in the top region but keep e finite in the other 
two regions. 

x=0 x=/ 

Fig. 5.   Assignment of the interacting waves in a four-wave mix- 
ing region. 
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Coupling Strength 

Fig. 6. Calculated transmission (throughput) of a mutually 
pumped phase conjugator with no bifurcation (i.e., the one-region 
geometry of Fig. 3a) and with one bifurcation (i.e., the three- 
region geometry of Fig. 3b) versus coupling coefficient G, for 
equal-intensity incident beams put into the device {q = l)k The 
bifurcated data correspond to seeding values of e of 0, 10 , and 
10~3.   The inset shows the region near threshold. 

2.0 2.5 4.5 5.0 3.0        3.5        4.0 

Coupling Strength 

Fig. 7. Diffraction efficiency of the grating in the left-hand (or 
the right-hand) interaction region (Fig. 3b) versus coupling 
strength G for q = 1. The curves correspond to seeding values of 
e of 0, 10~4, and 10~3. 

In Fig. 3b light entering from the bottom left-hand 
corner has the choice of two different paths before it exits 
at the bottom right-hand corner; the paths are a single 
diffraction from the grating at the top or two successive 
diffractions at the left- and the right-hand regions. 
These two paths will interfere provided that the differ- 
ence in their lengths is within the coherence length of the 
incident laser beam. For the case of a purely real cou- 
pling coefficient y this interference will always be exactly 
constructive irrespective of the lengths of these two opti- 
cal paths. For example, consider the beam that propa- 
gates from the left-hand region directly to the right-hand 
region. This beam will always add constructively to the 
beam coming from the top region (as in two-beam energy 
coupling). A similar interference will also occur for the 
two light beams propagating from right to left, since they 
will traverse exactly the same two paths in the opposite 
direction.   To show this quantitatively, consider Fig. 3b. 

In the center of the right-hand region, let the phase of the 
beam incident from below be denoted by <fot, where the 
first subscript denotes the region and the second indicates 
the incident beam's approximate direction. The phase of 
this beam when it reaches the left-hand region by way of 
the top is 4>L\, = 4>R\ + kd, where k is the wave-vector 
magnitude in the crystal and d is the path length from 
right to top to left. Similarly, the phase of the beam that 
starts in the center of the left-hand region and travels to 
the center of the right-hand region via the path left to top 
to right is <£fll = 4>LI + kd. Because this path has the 
same optical length in both directions, these two equa- 
tions can be combined to yield </>Rl + 4>RI = 4>LI + 4>LU 

which is the condition for degenerate oscillation in a 
double-phase-conjugate resonator.15 Therefore the seed 
beam that starts in the right-hand region, is phase conju- 
gated in the left-hand region, and then is phase conju- 
gated again in the right-hand region will be precisely in 
phase with the initial seed. 

RESULTS 
When bifurcations occur, new beams spring up, and the 
overall transmission T of the system changes. For the 
case of equal-intensity input beams (q = 1) the depen- 
dence of the transmission on the coupling strength G is 
shown in Fig. 6. Here the effect of the additional beam 
path is seen in the sharp jump in the transmission when G 
increases above the first bifurcation threshold <3th~regl0ns) 

as shown in the inset of Fig. 6. The bifurcation increases 
the overall transmission of the device because the portion 
of the input not diffracted by the grating in the left-hand 
region will still be partially redirected by the grating at 
the top and will recombine coherently with the diffracted 
beam in the right-hand region. The original grating 
serves to catch some of the light that slips through the new 
gratings and to redirect it into the phase-conjugate beam. 

Consider the symmetric case of equal-intensity input 
beams (q = 1). Define T* to be the fraction of beam h 
that is input into the left-hand side of the crystal and is 
deflected by the left-hand interaction region into the 
right-hand interaction region (i.e., the intensity diffraction 
efficiency of beam 2 into beam 4 described in Appen- 
dix A). Then we obtain T* = (T"'2 - T0

1/2)/(l " ?V2), 
where T0 is defined just above Eq. (1) and T is the overall 
intensity transmission of the entire three-region device. 
Figure 7 illustrates the dependence of the diffraction effi- 
ciency T* of either the left- or the right-hand region (these 
two diffraction efficiencies are equal when q = 1) on the 
coupling strength G for several different values of the 
seeding parameter e. For any finite value of e, T* asymp- 
totically approaches unity for high coupling strength, but 
the form of the approach depends on the value of the seed. 
For q = 1 and for large values of the coupling strength, we 
find that 

T* = 2G exp(-G) + 
e(l - T*) 1/2 

exp(G). (5) 

As T* approaches 1, an increasing amount of light is 
channeled between regions, the left- and the right-hand 
interaction regions, so that the A-shaped pattern in 
Fig. 8a begins to resemble the sawed-off pattern of 
Fig. 8b.   Note that Fig. 8b can be viewed as two mutually 
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Fig. 8.   Appearance of the beams of Fig. 3b for a, small coupling 
strength G and b, large G. 

c 
o 
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03 

Coupling Strength 
Fig. 9. Transmission in the one-region geometry of Fig. 3a, and 
in the three-region geometry of Fig. 3b versus coupling coeffi- 
cient T for unequal incident beam intensities {q = 2). The 
curves for the geometry of Fig. 3b correspond to seed values of e 
of 0, 10"4, and 1(T3.   The inset shows the region near threshold. 

pumped phase conjugators sharing a common set of 
beams, and both the dynamic behavior and the stationary 
states of such a system have been shown to be critically 
dependent on the values of the seeds.  • 

In order to explore the behavior of the system with un- 
equal input beam intensities (q * 1), we repeated our 
analysis for the case of q = 2. The equations are less 
symmetric now, and each interaction region has a dif- 
ferent diffraction efficiency. Nevertheless, the overall 
transmission of the device is quite similar to the q = 1 
case, as is shown in Fig. 9. However, with q = 2 there is 
now a small region of G just beyond threshold in which the 
overall transmission decreases when the additional beams 
appear, as is shown in the inset of Fig. 9. In Fig. 10 we 
plot the diffraction efficiencies of each of the left- and the 
right-hand regions versus the coupling strength. The 
stronger beam is input on the left and the weaker beam on 
the right. Note that the diffraction efficiency is larger in 
the region with the weaker input beam. The asymmetry 
in the strength of the two bifurcation gratings is evi- 
dent in Fig. 10, especially near threshold. Just above 
threshold we found a region of G for which the system 
oscillates between two states, first bifurcating and then 
relaxing back to the initial unbifurcated state. 

For g*l there is no longer a simple relation among the 
various grating efficiencies as in Eq. (5). We find nu- 
merically that the asymptotic behavior as G -» °° of each 
region's diffraction efficiency is similar to the q = 1 case, 
so that for any finite seed the bifurcation path dominates 

as G becomes large. 
In summary, we have presented a simple model to ex- 

plain the bending of light beams in various self-pumped 
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and mutually pumped phase conjugators. This model 
attributes the growth of curved beam paths inside the 
crystal to a series of straight-line segments caused by cou- 
plings between adjacent regions inside the crystal, each 
pumped by counterpropagating waves. We have shown 
that including a small but finite amount of scattered light 
is crucial for describing this self-bending. The bifurca- 
tion occurs even when the gratings in all three regions are 
taken to have the same coupling strength. In practice 
one should include the dependence of coupling strength on 
both the crossing angle and the orientation of the light 
beams inside the crystal, which can make the bifurcation 
path even more favorable. Also, we note that there are 
usually a multitude of possible bifurcation paths that com- 
pete for the available light energy and that the light path 
could oscillate repeatedly between them. 

APPENDIX A:    MATHEMATICS 
Consider a four-wave mixing region, described by the set 

of equations18 

dA2* dAi 
—— = KA4, , 
dx dx 

dA3 = -KAZ, 

= «A,*, 

= -KAI*. 

(Al) 

dx '"" dx 

v = (y/IoKAxAS + A2*A3). 

The values of waves 1, 2, and 4 are fixed at the beginning 
of the interaction region, 

A1(0),Ai(0),A2(l), 

and wave 3 is seeded: 

A,(l) = ell2A2(l). (A2) 

We assume that y is real.    In this case the fields can be 
taken to be real.   We introduce the variable 

z =  [ dx'v(A1A4 + A2A3) =  I   vdx'. 
Jo       h Jo 

& °-J 
Left Region }e = iQ-3 

Right Region ' 

Coupling Strength 

Fig. 10. Diffraction efficiency of the gratings in the left- and 
the right-hand interaction regions versus r for q = 2. Here the 
stronger beam is incident upon the crystal from the right and the 
weaker beam is incident from the left. The curves correspond to 
seeding values of e = 0 and e = 10   . 
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Fig. 11. Diagram of the three-interaction-region geometry, with 
the beams used in the analysis labeled. All beams in the right- 
hand region are primed. Note that the left- and the right-hand 
regions are laid out as mirror images. 

The output amplitudes become a function of z: 

AX(Z) = AJWCOSCZ,) + A4(0)sin(z,), 

A4(l) = -Al(0)sin(z/) + A4(0)cos(z(), 

A2(0) = A2(Z)[cos(z,) sin(z,)], 

A3(0) = A2(Z)[sin(z,) - e1'2 cos(z,)], (A3) 

where Z/ = z(x = I). 
Integrating Eqs. (Al) to obtain expressions for Ai(x)/ 

A4(x) and A3(x)/A2(x), as in Ref. 10, and substituting 
Eqs. (A3) for the amplitudes, we obtain 

(A4) tanh(Ga) = -b, 

where 

G = 'yl, 

A 
a = 

' 2{h + h + h) 

b = 
U-h + h + 2 cot(z/)[A1(0)A4(0) + emI2] 

A2 = (h + hf + h2 + 2h(h - /4)cos(2z,) 

+ 4/2Ai(0)A4(0)sin(2z;) 

+ 4/2e
1/2[(/4 - /i)sin(2z() 

+ 2Ai(0)A4(0)cos(2z/)]. 

Here h = AftO), h = A4
2(0), J2 s A2\l). If the three in- 

put fields are known, then Eq. (4) can be solved for z;. 
The expressions for a and b are given here only to the 
lowest order in e. One may write exact expressions, but 
since e « 1 there would be no advantage. 

For the three-region geometry of Fig. 3b, there are 
three equations (A4) (one for each region), which are cou- 
pled by the boundary conditions. Since the presence of 
the seeding light has no effect on the top region except 
near threshold, we neglect the seeds in this region and use 
Eq. (2) from the text to calculate its transmission. The 
boundary conditions are as follows: 

Left-hand region, 

A2(l) = IL
m, 

A1(0) = To1'2A2'(0), 

A4(0) = A3'(0); 

right-hand region, -u ~ 

A2'(/) = /R
1/2, -^ ;  ''•"- 

At'(0) = ToMMO), «■■>■;   '   '* 

A4'(0) = A3(0). 

Here all the primed amplitudes refer to the right-hand re- 
gion and the unprimed amplitudes refer to the left-hand 
region as indicated in Fig. 11. Note that the left- and the 
right-hand regions are laid out as mirror images, so that 
the external beams are input at x = I in both of these 
regions. T0 is the intensity transmission of the double 
phase conjugator in the top region, where A2(0) and A2'(0) 
are its two input beams. From Eq. (3) these boundary 
conditions are rewritten as 

Left-hand region, 

A2(l) = hm, 

Ai(0) = (JfiTo)1/2[cos(z2 sin(z2)], 

Ml) = V/2[sin(z2) + em cos(z2)], 

where z2 = z(x = I); 
Right-hand region, 

A2'(l) = In112, 

Ai'(0) = (hTo^lainizi) - e1'2 cos(Zl)], 

MV) = hm[sin(Zl) + em cos(z1)], 

where Zy = z (x = I). 

One determines zx and z2, and all other quantities are 
expressed through them. We could solve these equations 
analytically only for a few special cases. For example, if 
q = \ (IL = IR = I) and Tt = T2 = T, then further analytic 
results can be obtained. In this case Zi = z2 = z. Since 
the system is left-right symmetric for input beams with 
equal intensities, q is always equal to 1 for the top region, 
regardless of the values of e and G, and the transmission 
of the top region depends only on G. 

For q = 1 one can solve for z in Eq. (4) by using the 
boundary conditions 

A2(l) = I112, 

AM = (T0/)1/2[cos(z) - e112 sin(z)], 

A4(0) = 71/2[sin(z) + e1'2 cos(z)]. 

The overall transmission of the device is then given by 

_ [A1(0)cos(z) + A4(0)sin(z)]2 

/ 

= [sin2(z) + To1'2 cos2(z) + e1/2(l - To1/2)sin(z)cos(z)]2. 
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We describe a simple in-line method to measure the dispersion of an optical system. The light 
beam passing through the optical system interferes with a reference beam in a spectrometer, and 
the resulting spectrum yields the quadratic and cubic dispersion terms of the system. We 
demonstrate this technique on an optical system made of grating pairs. 

The group velocity dispersion of an optical system (for 
example, a laser cavity or a grating pair) changes the shape 
and duration of ultrashort pulses passing through the sys- 
tem. Because the amount of dispersion varies markedly 
with the particular path taken by the pulses as they pass 
through the system, it is preferable to use the aligned laser 
pulses themselves to measure the dispersion parameters of 
the system. In this letter, we describe such an in-line tech- 
nique to determine the quadratic and higher order disper- 
sion terms of an optical system. We note that our method 
is simple, accurate, sensitive, and can easily be applied to 
measure the dispersion of a femtosecond-laser cavity. 

Our method is based on that of Shang1 and others2,3 

for measuring the chromatic dispersion of an optical fiber. 
We split a wide bandwidth optical beam into two. We send 
one beam through the optical system whose dispersion is to 
be measured. The other beam is sent through air (or 
through a material with known dispersion). The two 
beams are recombined by a beamsplitter and sent into a 
spectrometer, where each of the corresponding frequency 
components of the two beams interferes. This spectral in- 
terference pattern yields the dispersion of the optical sys- 
tem, as we show below. 

Note that because the coherence length of the optical 
beams may be very short, if their path lengths are suffi- 
ciently unequal the two beams may not spatially interfere 
at the entrance of the spectrometer. Nevertheless, each of 
their frequency components can interfere in the spectro- 
meter, depending on the spectrometer's spectral resolution. 
For example, if the spectrometer has a spectral resolution 
of 1 cm-1 (~30 GHz), then a spectral interference pat- 
tern will be obtained for relative path differences as long as 
1 cm, even though the coherence length of the wide band 
source may only be a few microns. In our experiments, we 
use the subpicosecond pulses from a sync-pumped dye la- 
ser as the light source. We purposely choose the path dif- 
ference of the two beams to be larger than the coherence 
length of the pulses but smaller than the inverse of the 
spectrometer's resolution in cm-1. Because the two beams 
do not need to interfere outside of the spectrometer, the 
relative path delay does not have to be fixed at a precise 
value, in contrast to previous methods.4- 

Let the normalized power spectrum P(Aco) be defined 
as the ratio of the spectrum of the combined beam to the 

"'Present address: Jet Propulsion Laboratory, Mail Stop 298-100, 4800 
Oak Grove Dr., Pasadena, CA 91109. 

spectrum of the reference beam, then we obtain:1- 

P(A<y) =P0{ 1+m COS[*0(T) +rA(o+ß(Aw)2 

+ y(Aco)i]} (1) 

where P0 is a real constant, m is the modulation of the 
spectral interference pattern, V0(T) >s a phase, r is the 
group delay between the reference arm and the sample 
arm, Aco is the frequency measured from the center fre- 
quency COQ, ß is the quadratic dispersion term of the optical 
system, and y is the cubic dispersion term. In deriving Eq. 
(1), we assume that the dispersive element has no 
frequency-dependent attenuation. 

Values for both the quadratic dispersion term ß and 
the cubic dispersion term y can be obtained by curve fitting 
the measured normalized spectrum P(Aa) to Eq. (1). The 
signs of ß and y can be determined by adjusting the path 
lengths of the two arms so that the reference beam clearly 
arrives before the signal beam, for example, so that the 
time delay T in Eq. (1) is positive, and then constraining 
the curve fit to only positive values of r. The resulting signs 
of ß and y from the curve fit will then be correct. 

We demonstrate our technique by measuring the dis- 
persion of grating pairs.7-9 Grating pairs have proved use- 
ful for pulse compression,9"" pulse shaping,12-14 pulse en- 
coding and decoding,15 as well as dispersion 
compensation.16 The various dispersion parameters of grat- 
ing pairs can be calculated analytically,7'16 although, to the 
best of our knowledge, no direct measurement of such val- 
ues has been published to date. In principle, such disper- 
sion parameters can be inferred by comparing the width of 
the autocorrelation trace of a known light pulse before and 
after traversing a grating pair. However, the change in the 
pulse's temporal shape caused by traversing a grating pair 
strongly depends on the frequency chirp and the amplitude 
envelope of the input light pulse, and these quantities are 
difficult to measure. Even if we knew the precise shape and 
chirp of our input pulse, taking the autocorrelation of the 
output pulse tends to smear out subtle pulse shape changes 
caused by the optical system, and this limits the accuracy 
of autocorrelation for determining the dispersion parame- 
ters of an optical system. However, using the spectral in- 
terference method described above, we can easily and ac- 
curately determine the dispersion parameters of a grating 
pair. 

Figure 1 shows the incoming laser beam was split into 
two by the first grating of the grating pair. The zero-order 
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FIG. 1. In-line measurement of a grating pair's dispersion properties. The 
optical path length difference is chosen to be larger than the coherence 
length of the two beams so that they do not interfere outside of the 
spectrometer. However, in the spectrometer, each frequency component 
from the two beams interferes to create a spectral interference pattern. 

beam reflected from the first grating was used as the refer- 
ence beam. The first-order diffraction was sent to a second 
grating aligned parallel to the first. The beam diffracted in 
first order off the second grating was retroreflected by a 
mirror Ml to double pass the grating pair in order to dou- 
ble the group velocity dispersion and to eliminate spatial 
walkoff of the different temporal frequency components. 
Both of the gratings were mounted on a precision optical 
rail so that the spacing between them could be accurately 
varied. The mirror Ml was mounted together with the 
second grating to avoid changing the direction of the re- 
flected beam when sliding the second grating on the rail. 
Also, the retroreflecting mirror Ml was tilted downwards a 
bit so that the backward going beam could be picked off by 
mirror M2 which lay below the incident beam in the plane 
of the figure. The grating spectrometer had a spectral res- 
olution of 1 cm-1. Its output spectrum was measured by a 
512 element linear detector array and displayed on a digital 
oscilloscope. Data were transferred to a computer and fit to 
Eq. (1). By closing a shutter placed in the path of the 
sample beam, the spectrum of just the laser source could 
also be measured. The ratio of these two spectra is the 
normalized interferometric spectral curve P(A<u) defined 
inEq. (1). 

Figure 2(a) shows spectral curves measured with the 
shutter open and closed, and Fig. 2(b) shows the normal- 
ized interferometric spectrum P(Aco) obtained by taking 
the ratio of the two curves in Fig. 2(a). The effect of chirp 
(or group velocity dispersion) can be seen from the spec- 
tral curve; its periodicity changes as a function of fre- 
quency. Also shown is the fit to the data of Eq. (1). Al- 
though there are 6 parameters in Eq. (1), the amplitude P0 

and the modulation m are not critical and are fixed once 
having been chosen properly. Consequently, there are only 
four parameters to be determined from fitting 250 data 
points. 

Figures 3(a) and 3(b) show how the quadratic and 
cubic dispersion terms vary with the spacing L between the 
midpoints of the two gratings. (The grating spacing L was 
measured along the direction of the optical rail, as indi- 
cated in Fig. 1.) The measured ß is negative and scales 
linearly with the grating separation L, in agreement with 
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FIG. 2. (a) Dotted line: The laser spectrum. Solid line: A typical spectral 
interference pattern, (b) circles: the normalized spectral interference pat- 
tern (the ratio of the two curves above), solid line: its fit. The spectral 
curve's periodicity changes with frequency due to the dispersion of the 
grating pair. 

analytical results.7,16 For each L, we also tried varying the 
relative delay between the two beams and then fitting each 
set of data to Eq. (1). The values of the quadratic disper- 
sion term obtained from our curve fits are consistent from 
set to set, while the values of the cubic dispersion term are 
small and fluctuate. Our measurement accuracy increases 
with the spectral width of the light source; our laser was 
sufficiently broad to accurately determine the quadratic 
dispersion term ß but not the cubic term y. (On the other 
hand, if the spectral width of the laser pulses is too narrow 
to measure y, then y will have little effect on these pulses 
and its value is unimportant.) By using a light source with 
a wider spectral width, for example a LED or a femtosec- 
ond laser, the cubic dispersion term y can also be measured 
accurately. Figure 3(b) shows that despite the inaccuracy 
in y, its sign and magnitude are consistent with theory. ' 

We also measured the quadratic dispersion term ß of a 
Martinez type8,9 grating pair aligned to have nominally 
zero dispersion. Such a grating pair can be made into a 

13 14 15 16 17 

Grating separation (cm) 

FIG. 3. (a) The quadratic dispersion parameter ß, and (b) the cubic 
dispersion parameter y of the grating pair as a function of the separation 
L between the two gratings. 
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This method may also be applied to measure the dis- 
persion coefficients of a laser cavity having many dispersive 
elements, and thus may prove useful in the design and 
characterization of ultrashort pulse systems. In principle, 
high-order dispersion terms can be measured if the spectral 
width of the light source is sufficiently broad. 

In conclusion, we have demonstrated an in-line 
method to measure the dispersion coefficients of a grating 
pair (or other optical system). This method is direct, ac- 
curate, and relatively easy in comparison with other meth- 

FIG 4 Measurement of the dispersion parameter of a Martinez-type 
grating pair arranged for zero dispersion, (a) Second harmonic genera- 
Son autocorrelation «races of pulses before and after go.ng through the 
grating pair. Notice that the two traces appear almost identica (b) Spec- 
tral interferometric pattern. A chirp (variation in periodicity) .s clearly 
seen. A curve fit yields a dispersion of 0=0.043 ps . 

pulse shaping apparatus12'15 by inserting a phase or an 
amplitude mask between the two gratings. First, we tried 
to measure ß conventionally by comparing the autocorre- 
lation of our laser pulses before and after the grating pair. 
Figure 4(a) shows that these two traces were almost iden- 
tical, implying that ß^0. We then applied our spectral 
interferometric method using the same laser pulses; the 
periodicity variation of the resulting spectral interference 
pattern can be seen clearly in Fig. 4(b), which yields a 
value of 0=0.043 ps2. This demonstrates that the spectral 
interferometric method described here is more sensitive 
and more accurate in characterizing a dispersive optical 
system than is comparing the autocorrelation shape of la- 
ser pulses before and after the system. 
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We performed experiments to verify the theory of photorefractive pulse coupling in the frequency domain. In 
particular, we confirm that the phase added to the diffracted pulse depends quadratically on the relative delay 
between the two input pulses. 

A theory to describe the coupling of trains of picosec- 
ond pulses in a photorefractive crystal was recently 
published,1 and a test of this theory was performed 
in the time domain.2 Although these temporal mea- 
surements showed good agreement with theory, a 
more definitive test can be performed in the frequency 
domain. In particular, one can drop the assumptions 
of Ref. 1 that all the optical pulses have the same 
amplitude and that the phase fluctuations of the 
pulses have a particular (Gaussian) form. Here we 
compare theory and experiment by measuring the 
frequency spectrum of optical pulses before and after 
coupling in a photorefractive crystal. In particular, 
we confirm the peculiar prediction1 that the phase 
of the diffracted pulse depends quadratically on the 
relative delay between the incoming pump and signal 
pulses. 

After a beam of weak signal pulses intersects with 
a beam of strong pump pulses in a photorefractive 
crystal, the field amplitude of the signal pulses is1 

#shapedW = EsignalW  +  GMfexp^L)  -   l]Epump(t) , 

(1) 

where rj is the two-beam coupling coefficient, L is the 
interaction length of the two beams, Eshaped(t) is 
the field amplitude of the shaped signal pulse after 
the crystal, and Esigaal(t) and Epump(t) are the ampli- 
tudes of the signal pulse and the pump pulse before 
the crystal, respectively. In Eq. (1), the complex cor- 
relation function G(r) is 

G(T) 
-/. 

Esignal(t)EnumM - T)dt/I0 signaK-/—pump^ 

\G(T)\exp[i<pdm(T)] (2) 

In Eq. (2), I0 is proportional to the total intensity in 
the crystal and is a constant both in time and in 
space. We take the ensemble average (denoted by 
the overbar) because the laser pulses are not identical 
and the crystal's response time is much longer than 
the time between pulses. 

In Eq. (1), the second term is the diffracted portion 
of the pump pulse, which is added to the signal pulse 
(the first term) to alter the temporal shape of the 
signal pulse. Because G(T) is complex, the diffracted 
portion of the pump pulse receives an additional 
phase </>diff(7") before it is added to the signal pulse. 

In order to verify Eq. (1), we need to compare 
the theoretical value of the phase (pamir) with the 
experimentally measured value, and this is difficult 
to do in the time domain. However, we can accu- 
rately determine (ßdmir) from the measured frequency 
spectrum of the shaped signal pulses as follows. 

The field envelopes Eshaped(t), Esignal(t), and Epump{t) 
can be expressed in the frequency domain by taking 
a Fourier transform: 

E(t) = :r- /    F{ü))exp(-i(ot)doj, 
2TT J _« 

(3) 

where F((D) is the complex spectral amplitude of a 
pulse. Substituting Eq. (3) into Eq. (1), we obtain 
the spectral power gain of the signal beam: 

l-Fshaped(w) 

\FsignJo>)\2 

= O(T){1 + &(T)cos[0diff(r) - no - ßco2]} ,   (4) 

where3 

^diffM 
1 

tan ß_ 
a 4(a2 + ß2) 

(5) 

In deriving Eq. (4), we assume that the signal pulse 
is derived from the pump pulse by sending the 
pump pulse through a Treacy grating pair,4 so that 
•FsignaiM = AiFpump(w)exp(ißcü2), where ß is the chirp 
parameter of the grating pair. We also assume that 
the laser pulses have a Gaussian frequency spectrum 
with a spectral width parameter a: |irpump(w)|2 = 
A2 exp(-aw2).   Here Ax and A2 are real constants. 

In Eq. (4), a(r) and b(r) are real functions of the 
relative delay r and the coupling gain coefficient 77. 
b(r) is positive when the crystal is oriented so that 
the signal beam gains energy and negative when the 
signal beam loses energy. The value of a(r) is always 
positive.   Their exact values are not of interest here. 

If the theory of photorefractive pulse coupling is 
correct, then a plot of the measured spectral power 
gain versus frequency should fit to Eq. (4). Namely, 
the spectral power gain should be a sinusoidal func- 
tion of frequency with a varying periodicity, its pe- 
riodicity should increase linearly with the relative 
delay of the two beams, and the variation in the 
periodicity should depend on the chirp parameter 
ß.   Most importantly, the previously elusive phase 
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Fig. 1. Experimental setup for measuring the change in 
the optical spectrum of the signal pulses that is due to 
photorefractive pulse coupling. The grating pair chirps 
the signal pulses before they intersect with the pump 
pulses in the BaTi03 crystal. Mirror Ml is tilted down- 
ward a bit so that the backward-going beam could be 
picked off by mirror M2, which lies below the incident 
beam in the plane of the figure. By opening and closing 
the shutter, we measure the spectra of the signal beam 
with and without beam coupling. The pump laser is not 
transform limited; it has a frequency-time product of 
AJ<AT = 1. 

5 o a. 
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The signal beam intersected with an unaltered pump 
beam in the photorefractive BaTi03 crystal at a full 
exterior crossing angle of 14°. After the two beams 
coupled in the crystal, the frequency spectrum of the 
signal beam was analyzed and stored by a 1-cm x 

resolution spectrometer system. By either blocking 
or unblocking the pump beam, we could measure the 
spectra of the signal beam without and with pho- 
torefractive coupling. The ratio of these two mea- 
surements is the normalized spectral power gain of 
Eq. (4). 

Figure 2 shows typical experimental spectral power 
gain curves and their theoretical fits for the cases 
in which the BaTi03 crystal was oriented to make 
the signal beam gain energy [Fig. 2(a)] or lose energy 
[Fig. 2(b)]. Zero frequency in these figures corre- 
sponds to the center frequency of the laser pulses, 
which was arbitrarily chosen to be at the peak of 
the laser power spectrum. As predicted by Eq. (4), 
the spectral gain curves are sinusoidal functions of 
frequency with a changing periodicity. The reason 
that the amplitudes of the measured curves diminish 
in the wings of the graph while the theoretical curves 
do not is that the theory of Ref. 1 assumed that the 
photorefractive gratings written by the various fre- 
quency components were indistinguishable and that 
all frequency components of a pulse were perfectly 
phase matched to the photorefractive grating. How- 
ever, in our experiment, the spectral width of the 
pulses was sufficiently wide to violate these condi- 
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Fig. 2. Power gain of the signal pulse as a function of 
optical frequency, (a) The crystal is oriented so that the 
signal beam loses energy, (b) the crystal is rotated 180° 
so that the signal pulse now gains energy. As predicted, 
the gain of the signal beam is a sinusoidal function of 
frequency with a varying periodicity. The solid curve is 
a fit to the data (circles). The roll-off in the wings is 
discussed in the text. 

4>m(r) can now be determined, and, according to 
Eq. (5), this phase should vary quadratically with the 
delay time T between the two beams. 

Figure 1 shows how double passing a Treacy grat- 
ing pair4 imparted a linear frequency chirp to the 
signal beam's pulses and so broadened their temporal 
profile without changing their frequency spectrum. 

-1.0 1.0 

Fig. 3. 

-0.5 0.0 0.5 

Frequency (THz) 
~*a. „. Spectral gain curve as a function of the relative 
delay T between the pump and the signal pulses. Here 
the crystal is oriented so that the signal beam loses 
energy. The value of (/WM determines the position of 
the center lobe of each gain curve. We obtain a value of 
<£diff(r) for each delay r by curve fitting the corresponding 
gain curves. 
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Fig. 4. Phase famM of the spectral gain as a function 
of delay r, as determined by curve fits such as shown in 
Fig. 3. The crystal is oriented for the signal pulse (a) 
to gain energy and (b) to lose energy. The data (filled 
circles) are fitted to a quadratic function of the delay (solid 
curve). Both the data and the fits are in good agreement 
with the theoretical calculations (dotted curve). 

tions. Nevertheless, the parameters that we obtain 
from the curve fitting, namely the delay r (which 
determines the periodicity), the chirp parameter ß 
(which determines the periodicity variation), and the 
phase of the cosine function (which determines the 
center of the curve), are all insensitive to the ampli- 
tude of the cosine wave. Therefore, despite the fall- 
off in amplitude, we could accurately fit these three 
parameters. 

We measured a series of spectral gain curves for 
different time delays and fit each curve to theory. 
Figure 3 is an example for the case in which the 
crystal was oriented to make the signal beam lose 
energy. To analyze our data, we first used a spectral 
interferometric method5 to measure independently 
the chirp parameter ß of the grating pair. Namely, 
we replaced the BaTiO., crystal with a beam splitter 
and obtained ß from curve fitting the spectral inter- 
ference pattern of the chirped and unchirped pulses.5 

The value of ß that we obtained was -0.54 ps2. We 
found that the chirp parameter ß of the grating pair 
obtained from each curve fit in Fig. 3 was identical to 
that obtained by the spectral interferometric method 
and that the phase (j>dm(r) of the curves indeed had 
a quadratic dependence on the delay, as shown in 
Fig. 4. The phases obtained by curve fitting were 
0diff(r) = -0.58 + 0.43T

2
 for the case when the signal 

beam gained energy and 4> astir) = -0.66 + 0.45r2 for 
the case when the signal beam lost energy, where 
T is in picoseconds. For comparison, the phase cal- 
culated from Eq. (5) was  4>dm(r) = -0.72 + 0.45T

2 

for both cases. We used an a coefficient of 0.069 
and 0.076 ps2 in the calculation for the two cases, 
respectively, which we obtained by measuring the 
widths of the laser power spectra in the correspond- 
ing experiments. From Fig. 4 one can see that the 
quadratic coefficients predicted by the theory of Ref. 1 
are close to those obtained from curve fitting. 

On the other hand, the constant term in the ex- 
pressions for 4>di!t(r) obtained theoretically and from 
the data are not in as good agreement. This is 
because in deriving Eq. (5) we assume that the power 
spectrum of the laser is a Gaussian function of fre- 
quency, which makes it symmetric and gives it a 
well-defined center. However, the actual measured 
spectra are asymmetric and have a poorly defined 
center frequency (or zero frequency). 

The quadratic phase dependence of the diffracted 
field on the relative delay is a direct confirmation 
that the average power gain of the signal beam is 
proportional to the magnitude squared of the second- 
order field correlation function, as predicted by Ref. 1. 
A different theory,6 which predicts that the average 
power gain of the signal beam is proportional to the 
fourth-order field correlation function, cannot provide 
any phase information and so cannot predict the 
observed dependence of <f>ditt(r) on r. 

In summary, we have experimentally confirmed the 
predictions of Ref. 1 that describe the interaction of 
short optical pulses in a photorefractive crystal. We 
expect that this theory can prove useful for analyzing 
photorefractive effects and their applications with 
short optical pulses. 

We gratefully acknowledge support from the Joint 
Services Electronics Program and U.S. Air Force Of- 
fice of Scientific Research contract F49620-92-J-0022. 
We thank V. Dominic for his legendary expertise. 
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We coupled trains of subpicosecond laser pulses in a photorefractive crystal to confirm that such coupling alters 
the temporal shapes of the optical pulses.    Our measured pulse shapes are in good agreement with theory. 

Photorefractive crystals are candidates for mea- 
suring,1'2 shaping,3 and storing4 ultrashort optical 
pulses. When two optical pulses couple in a photore- 
fractive crystal, their temporal shapes are altered. 
In a previous paper we predicted the expected change 
in the temporal shape of a weak signal pulse,3 and in 
this Letter we experimentally measure such pulse- 
shape changes. In particular, we consider the case 
in which the two interacting pulses have the same 
frequency spectrum but quite different temporal 
widths. If the photorefractive crystal is oriented so 
that the signal beam gains energy from two-beam 
coupling in the crystal, then our calculations predict 
(and our experiments here confirm) that a sharp 
spike is added onto the signal pulse's envelope. If 
the crystal is instead oriented so that the signal 
beam loses energy, then a hole appears in the wide 
temporal envelope of the signal pulse. 

In our experiments we derive both the pump and 
the signal pulses from a Kiton-red dye laser (A = 
603 nm) that is synchronously pumped by a mode- 
locked and frequency-doubled cw Nd:YAG laser at a 
repetition rate of 76 MHz. A Treacy grating pair5 

stretches the signal pulses in time, as shown in Fig. 1. 
The beam reflected from the first grating (i.e., the 
zero-order diffraction) serves as the pump beam. Be- 
cause the pump beam's pulses are simply reflected 
from the grating, they have the same temporal shape 
as the dye-laser's pulses. These pump pulses travel 
through a delay line to intersect the signal pulses in 
a photorefractive BaTi03 crystal. 

We allow many (109) pairs of laser pulses from the 
pump beam and the signal beam to slowly build a 
photorefractive grating in the crystal. (It takes ap- 
proximately 15 s.) The total average optical power 
entering the crystal is ~15 mW, and the beam diam- 
eter is 1 mm, which yields a fluence of —20 nJ/cm2. 
At this fluence any free-carrier gratings in the pho- 
torefractive crystal can be safely neglected.6 

The BaTi03 crystal named "Swiss" is oriented so 
that its surface normal makes an angle of 36° with 
the bisector of the two incident light beams, with the 
pump beam lying nearer to the surface normal. The 
polarizations of the two beams are extraordinary, and 
their full crossing angle is 14° outside the crystal. 
The coupling coefficient for the signal beam can be 
switched from positive (gain) to negative (loss) by 

rotating the crystal by 180° about a vertical axis. 
The measured intensity gain of the signal beam in 
the crystal is typically 16. We use a vibrating motor 
mounted beneath the BaTi03 crystal to conveniently 
switch the beam coupling on or off; turning on the 
motor vibrates the crystal sufficiently to eliminate 
all beam coupling. 

We measure the temporal shapes of our beams 
using an intensity cross-correlation method7 in a 
second-harmonic-generating (SHG) crystal. For con- 
venience we use the pump pulse transmitted through 
the BaTi03 crystal as the short reference pulse of our 
cross correlator. 

Figure 2 shows the measured pulse shapes of the 
signal beam after the BaTi03 crystal. In these plots 
the crystal is oriented so that the signal beam gains 
energy. For each successive plot in Fig. 2 the pump 
beam's delay is increased by 1.32 ps with respect to 
the signal beam. One can see that a sharp spike 
is added onto the signal pulse and that the spike's 

l-picosecond 
laser pulses 

Grating 
X 

To cross correlator 

Fig. 1. Experimental setup for measuring pulse-shape 
changes caused by two-beam coupling in a photorefractive 
crystal. The signal pulse was first broadened by a factor 
of 12 using a grating pair and then made to intersect a 
strong pump pulse in a BaTi03 crystal. Mirror Ml was 
tilted slightly downward to deflect the backward-going 
beam slightly below the forward-going beam, where it 
could be picked off by mirror M2. The shape of the 
signal pulse was measured by using cross correlation in 
a second-harmonic-generating crystal. 
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Experiment Theory 

Time delay (ps) Time delay (ps) 

Fig. 2. Pulse shaping using beam coupling in a BaTi03 
crystal. The crystal is oriented so that the signal beam 
gains energy from the pump beam. Before entering the 
crystal, the signal pulses had been temporally stretched 
by a factor of 12 by a Treacy grating pair. Left column, 
experimental data: The dashed curve is the temporal 
profile of the original signal pulses (actually the cross 
correlation of the signal and the pump). The circles are 
the shaped signal pulses after the crystal. The BaTi03 
crystal added a sharp spike (corresponding to the sharp 
pump pulse) onto the signal pulse. The pump beam's 
delay was increased by 1.32 ps for each successive graph, 
and the position of the spike moved accordingly. Right 
column, theoretical curves: The dashed curve is the cal- 
culated temporal profile (cross correlation of the signal 
and the pump) of the original signal pulses. The solid 
curve is the temporal profile of the shaped pulses. 

location changes as the relative delay between the 
two beams changes. 

In Fig. 3 we rotate the BaTi03 crystal by 180°, so 
that the signal beam now loses energy to the pump 
beam by two-wave mixing. As expected, a dip is now 
carved out of the wider pulse wherever the short 
pump pulse overlaps it 

In the experiments above we measure not the 
actual temporal profile of the shaped pulse but the 
average intensity cross correlation of the shaped 
pulse and the pump pulse after the photorefractive 
crystal8: 

/
2
»(T) " (" |2WdWI2l£sharp(' - r)\2dt,       (1) 

J -oo 

where I2W
(T) is the second-harmonic signal from the 

SHG crystal and Eshaped{t) and E3hajp(t) are the optical 
electric-field envelopes of the shaped and the sharp 
pulses incident upon the SHG crystal. The overbar 
in relation (1) denotes an ensemble average, which 
is required because the speed of our detector is much 
slower than the pulse repetition rate and because our 
laser pulses are not identical.   Although in general 

laser pulses may fluctuate both in amplitude and in 
phase, here we choose (as in Ref. 3) to model our 
laser pulses as having deterministic amplitudes but 
randomly varying phases. We express3,9 the optical 
electrical field as EaiiarP(t) = ü^sharpW^sharpW, where 
E0 is the real peak field amplitude of a pump pulse, 
Taharp(t) is the complex normalized deterministic field 
envelope of a pump pulse, and UgharpW represents the 
phase fluctuations of a pump pulse. For the pulse 
considered here, the envelope of the short pump pulse 
is relatively unchanged by its passage through the 
photorefractive crystal, so that T3haxp(t) = Tpump(£), 
where Tpamp(t) is the normalized field envelope of the 
pump pulse incident upon the photorefractive crystal. 

Reference 3 provides the following equation for the 
remaining factor leaped in relation (1): 

l^shapedWI2 = AITwideW + £eff(r)Taharp(* - T)\
2
 , (2) 

where T^deit) is the deterministic normalized am- 
plitude of the wide signal pulse incident upon the 
photorefractive crystal and A is a real constant. In 
Eq. (2), the first term on right-hand side is the deter- 
ministic field envelope of the transmitted signal beam 
and the second term is the diffracted field envelope 
from the pump beam. The effective complex field 
gain parameter geff{r) in Eq. (2) is defined as 

?eff(r) = (<irwidelT7<ITsharpl2>1/2) 
x[exp(,7L)-l]yS(T)lr3(T)l, (3) 

where L is the crystal length and 77 is the two- 
beam field coupling gain per unit length.   The angle 
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Fig. 3. Similar to Fig. 2, except that here the BaTi03 
crystal had been rotated by 180° to make the signal beam 
lose energy to the pump beam through two-beam coupling. 
A dip was carved out of the wider signal pulse whenever 
the sharp pump pulse overlapped it, and the position of 
this dip changed according to the relative delay between 
the pump beam and the signal beam. From (a) to (b) 
this delay was changed by 0.68 ps, and from (b) to (c) 
the delay was changed by an additional 1.16 ps. For 
the corresponding theoretical calculations we used the 
same experimentally determined parameters as in Fig. 2, 
except now 17 L = -1.38 (corresponding to the signal 
beam's losing energy to the pump beam). 
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brackets stand for a time average. In Eq. (3), y&ir) 
is the deterministic envelope correlation function, 
which is set by the overlap of the two pulses, and 
■YI2(T) is the mutual coherence function,10 which takes 
into account the effect of random phase fluctuations 
of the optical field from pulse to pulse. These two 
functions are defined as 

ri
D

2(r) = (T^e(t)T:harp(t - TM(\T*u.(t)\2) 

x (ITW*)!2)]172, (4) 

y*(T) = U,»ideW«Lrp(* ~ T). (5) 

To calculate |£8haped(*)l2, the incoming laser pulse's 
deterministic amplitude Tahaiv{t) and phase fluctua- 
tions must first be determined. We measured the 
spectral width of our dye laser pulses to be Af = 
1.75 THz, and their temporal width to be TP = 1 ps. 
(The large value of the product TPLP = 1.75 indi- 
cates that the dye-laser pulses had either chirp or 
phase fluctuations, or both.) For simplicity, we as- 
sume that T3harp(£) is a chirped Gaussian: TshaTp(t) = 
exp[-cs(l + ix)t2~\, where x accounts for any chirp 
present on the sharp laser pulses and a = 2 In 2/TP

2
. 

We use an in-line method11 to measure the disper- 
sion parameter ß of the Treacy grating pair: We in- 
terfere, in a 1-m grating spectrometer, the stretched 
signal beam with an unstretched beam, and then 
curve fit the resulting spectral interference pattern. 
We obtain ß = -0.54 ps2. We then calculate the 
chirp parameter x by measuring the stretching ratio 
q of the pulses before and after the grating pair and 
comparing the measured value q = 12 with the theo- 
retical value12 q = [1 + 2*(4a0) + (4aß)2(l + x2)]V2 

to obtain x = -3.4. T^W is then calculated from 
Tsharp(*) and ß.12 

The phase fluctuations of the pulses are charac- 
terized by a phase coherence time rs defined by 
Eq. (31) of Ref. 3. We determine rs for our pulses by 
measuring their spectral widths and comparing them 
with the theoretical value12 Av = (2 In 2/TTTP)[1 + 
X2 + {Tp/Tsff

2 to obtain rs = 0.55 ps. The mutual 
coherence function y^(r) is then calculated12 from TS. 

Finally, using relations (1) and (2) and our experi- 
mentally determined parameters 'TP 1 ps, TS = 
0.55 ps, x = -3.37, ß = -0.54 ps2, and \r,L\ = 1.38, 
we obtain the theoretical curves shown in Figs. 2 and 
3. These curves have no free parameters, yet they 
agree reasonably well with our experimental curves. 
However, for large delay |r|, the height of the spike 
and the depth of the dip in the theoretical curves de- 
crease slightly faster than those of the corresponding 
experimental curves, probably because the temporal 
shapes of the signal and pump pulses are not truly 
Gaussian. 

Note that the dips in the experimental curves 
in Fig. 3 are not so deep as previously predicted.3 

When calculating the curves in Ref. 3, we assumed 
that the pulses from the laser were transform limited, 
i.e., that the laser pulses had no phase fluctuations 
(rs = 00) and no chirp (x = 0). However, in our actual 
experiments the dye-laser pulses had both phase 
fluctuations and chirp. Our analysis12 shows that 
in order for the pulse-shaping technique to be most 
effective, the initial laser pulses should be transform 
limited. 

Photorefractive pulse shaping can be used to gen- 
erate dark optical pulses. However, photorefractive 
pulse shaping is not so flexible as the method pro- 
posed by Weiner et al.13 for generating arbitrarily 
shaped pulses. 

In summary, we have demonstrated temporal pulse 
shaping using two-beam coupling in a photorefractive 
crystal. We have measured the temporal shape of 
a temporally stretched pulse after it coupled with 
a strong, nonstretched pulse in a photorefractive 
BaTi03 crystal and found good agreement with 
theory. 
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