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1. APPENDIX I.   NEURAL NETWORK TUTORIALS 

This appendix contains the neural network tutorials which were held during the down selection 
portion of the NNFAF contract. A tutorial was held for each of the network models which were 
selected (either as primary candidate or alternate) for the NNFAF demonstration approaches. The 
five neural network models were: Adaptive Resonance Theory 1, Backpropagation, 
Backpropagation Through Time, Reinforce, and Spatiotemporal Pattern Recognition. 
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FAF TUTORIAL: ART 1 
ADAPTIVE RESONANCE THEORY (1) 

S. Grossberg & G. Carpenter 
Boston University 

OVERVIEW 
ARCHITECTURE 
OPERATION 
STRENGTHS/WEAKNESSES 
ISSUES IN NETWORK DESIGN 
EXAMPLE 
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OVERVIEW 
• Unsupervised Learning 

• Binary Input 

• "SEMr-Adaptive (on-line) Learning (with NWare 
TOOL) 

• Vector classifier: accepts unknown input vector, 
classifies according to which stored pattern it most 
closely resembles 

• If input doesn't match any stored pattern, new 
category is created by storing a pattern like the 
input vector 

• If stored pattern matches input vector within 
specified tolerance (vigilance), then stored pattern 
is adjusted (trained) to "add" characteristics of 
input vector 

• NO STORED PATTERN IS EVER MODIFIED IF 
VIGILANCE IS NOT SATISFIED (not like BP in 
which any weights can be modified) 

• Competitive (winner take all learning) 
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ARCHITECTURE 

Gain2 
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Input Vector 
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LTM = Long Term Memory T = Top-down weights 
STM = Short Term Memory R = R layer activation 
B = Bottom-up weights C = C layer activation 
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ARCHITECTURE 

CONNECTIVITY 

Neuron 

R Layer 
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Input Vector X 
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Fully-connected, feedback (not 
all shown).  B & T weights on 
the connections. 

Presentation of input: 
feedforward, one-to-one 

m=# features or components 
in input vector 
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ARCHITECTURE 
• Input vector X 

• Comparison Layer C (short-term memory, stores 
important features of current pattern) 

• Recognition Layer R (long-term memory, stores 
learned prototype in weight matrix B) 

• Full, feedback connections between C and R: 
bottom-up (B) and top-down (T) weights 

• C Layer outputs sent to R layer.  No competition. 

• R Layer classifies input vector.  ONLY ONE R 
neuron (the one with the weight vector B which best 
matches the input vector) will fire. The others are 
inhibited by lateral connections (lateral inhibition). 

• Reset:  measures closeness between C and X.  If 
they differ by more than vigilance (a real value, 
0<vigilance<1), a reset signal is sent to disable the 
neuron which fired in the R layer. 

• Vigilance: controls classification granularity.  If 
high, fine distinction between classes.  If low, 
patterns will be more liberally grouped, less in 
common but still in the same class. 

• Gains: control firing of neurons at each layer and 
when layers should and should not interact 
(resonate). 
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OPERATION 
PHASES:   Initialization, Recognition, Comparison, 
Search, Learning 

DO FOR every X: 
• Initialization:  init B, T, vigilance, etc. Go to 
Recognition. 

• Recognition: present input vector X. Compute C 
activations by 2/3 rule. Send C activations to R 
layer.  Compute R activations.  Determine winning R 
layer neuron. Go to Comparison. 

• Comparison: Send feedback from R to C. Set new 
value of C (C=X LAND R).  Compare C to X.  If 
closeness < vigilance, produce R reset, go to Search 
to look for better match, ELSE go to Learning. 

• Search:   repeat Recognition/Comparison UNTIL: 
- R layer neuron wins competition and vigilance 

is satisfied. Go to Learning (found best match); OR 
- All committed R layer neurons have been 

disabled by reset. Create/commit new R layer 
neuron, set to be like X. END DO 

• Learning: (fast learning assumed: input vectors 
are applied for a long enough period of time so that 
weights reach their final values). Modify B and T to 
include the common characteristics of X (the 
networkhas learned something new about the given 
class). 
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OPERATION 
• After learning, the T weights are set to C (C = X 
LAND R), so that they only contain the components 
of the stored prototype which match the input vector. 

• The stored prototype eventually represents the 
logical intersection of all vectors of that class. The 
essential / common / minimum features are kept. 

STRENGTHS/WEAKNESSES 
STRENGTHS: 
• unsupervised, don't need to know the answers 
beforehand 
• non-linear separability (not sure of limit) 
• solves stability-plasticity dilemma: retains old 
knowledge while acquiring new 
• if patterns close to each other, won't have to store 
many templates (logical intersection) 

WEAKNESSES: 
• assumes that patterns that share a greater number 
of input features should fall into the same category 
• order of presentation of inputs will change the way 
the system reacts 
• noise/pattern distortion can cause improper 
classification 
• potential for large storage reqts 
• fast in analog h/w, slow in serial digital h/w 
(sequential search of all patterns for best match) 
• may create more than "real" number of classes (this 
is OK) 
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ISSUES  IN   NETWORK 
DESIGN 

TO OVERCOME WEAKNESSES, RECOGNIZE 
IMPORTANCE OF: 
• invariant feature encoding to avoid 
misclassification due to noise 
• feature selection and definition impacts which 
categories are generated 
• number of categories (need to have enough) 
• input presentation order - voting scheme not an 
option 
• changing vigilance in real-time to avoid 
misclassifications 

NETWORK  DEFINITION: 
• number of input nodes = number of components in 
input vector 
• number of C layer nodes = number of input nodes 
• number of R layer nodes (categories) = some 
number > the projected number of categories 
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EXAMPLE 
CLOSE ENOUGH = differ by LQ 2 pixels 

• After P1:  Memory contains P1. 

• After P2: P2 was close enough to P1 to be in the 
same class. Since you perform logical intersection 
of input and stored memory, memory contains P1. 

• After P3:  P3 is not close enough to P1. Memory 
contains P1 and P3. 

• After P4:  P4 is close enough to P1.  P1 would be 
changed to be P4.  Memory contains P3 and P4. 

• After P5:  P5 is close enough to P4. P4 would be 
changed to be P5.  Memory contains P3 and P5. 

• After P6:  P6 is close enough to P3.  P3 would be 
changed to be P6.  Memory contains P5 and P6. 

• After P7: P7 is not close enough to any of them. 
Memory contains P5, P6, P7. 

• After P8:  P8 is not close enough to any of them. 
Memory contains P5, P6, P7, P8. 
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EQUATIONS 

Vigilance: 0 < t < 1 
Gain 1: = 1 if any X = 1 and no R = 1, else = 0 
Gain 2: = 1 if any X = 1, else = 0 
C: C = X if R inactive 

C = X land Rj if Rj active 

2/3 Rule Each C neuron receives 3 inputs: 
(C Activation) • X 

• Rj 
• Gain 1 

Two of these must = 1 in order for C neuron to be 
active 

R Activation: Netk = B   C 
Rk = 1 if Netk > threshold, else = 0 
Rj is active only if Rj > max(R) 

Learning: Only on a match: 
tjj = Cj 

b'J" = L - 1 + ||C|| where L > 1 (usual,y = 2) 

Reset: jlxIN1 

Init: tjj = 1 

bjj = random; 0 < bjj < ^ where m = ||X|| 
X = 0, Gain 1 = Gain 2 = 0,   R layer output = 0 
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FAF TUTORIAL:    BACKPROPAGATION 

Rumelhart, Hinton & Williams 
(also Parker) 

OVERVIEW 
ARCHITECTURE 
OPERATION 
NETWORK PARAMETERS & TERMS 
STRENGTHS/WEAKNESSES 
ISSUES IN NETWORK DESIGN 

1-13 



OVERVIEW 
Most well-known, widely-used model 

Supervised Learning 

Not limited to binary input 

Multi-layer network, solves non-linearly separable 
classifications 

Sometimes known as "Generalized Delta Rule" 

Learns an internal representation of the input, as 
well as learning the output 

Credit Assignment problem: If output is in error, 
how do you determine which weight (connection) to 
adjust? Different solution than ART: assumes all 
nodes are partially responsible for the error. 
Propagates the output error backward thru the 
connections, thru all layers, to the input layer, 
changing ALL weights. 

• NOT Competitive (winner take all) learning 

• Used for:  pattern classification, data compression, 
noise filtering, signal processing, stock market 
prediction, converting English text to phonemes, etc. 
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ARCHITECTURE 

FEEDFORWARD 
CONNECTIVITY 

/ 
/ 

/ 

bias (\ 

OUTPUT LAYER: 
m nodes 

HIDDEN 
LAYER: 
n nodes, n x m 
connections 

INPUT LAYER: 
q nodes, q x n 
connections 

• Multi-layer:  input, hidden, output 

• At least ONE hidden layer required (usually 1 or 2) 

• Feedforward, fully connected between adjacent 
layers; connections have associated weights 
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OPERATION 
PHASES:  Training (learning), Testing (recall) 

Training: 
• Assign random real-valued weights to each 
connection 

. REPEAT FOR EACH TRAINING DATA SET UNTIL 
CONVERGENCE OR UNTIL REPETITION LIMIT 
REACHED: 

- run training pattern thru network 
- determine error (distance) between the actual 

value output and the known desired output at each 
output node 

- using a steepest descent algorithm, back 
propagate this error through the network, adjusting 
weights. Weights which were further off are updated 
more. 
• At end of training, weights are saved to be used for 
testing 

Testing: 
• WEIGHTS ARE NOT CHANGED 
• single pass thru each test pattern 
• run each pattern thru the network 
• the values at the output nodes constitute a 
classification, with the maximum value 
corresponding to the best estimate of identification 
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OPERATION 
TRANSFER  FUNCTIONS 

sigmoid, maps to (0..1) = #1+e-z)-1 

1-e-z 

tanh, maps to (-1..1) = z 

NOTATION: u ,     ., kM.   ... 
. a: = current activation of node j in layer below i (child of i) 
. aj = current activation of node i in layer above j (parent of j) 
. wjj = weight on the connection joining node j to node i 

THREE PHASES OF TRAINING: 
. Present input vector, propagate forward to output layer by 
calculating activations of nodes upward from input layer to output 
layer, generate output vector: 

aj = f( £wjj aj) where f is transfer function (assume 
■ 

J 
sigmoid) 

• Backpropagate local error (recursive): 
output units: 
calculate scaled error:   errorj = (tj ■ aj)   aj (1 - aj) 
change weights: AWJR = L (errorj) (ak) k child of j 
hidden units: 
calculate scaled error: 
errorj = aj(1-ap * Jerrorj wij 

i 
change weights: Awjk = L (error]) (ak)fr child of j 

• Update weights: 
for all units, new WJJ = WJJ + AWJJ 
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NETWORK   PARAMETERS/TERMS 
• Initialization of Weights: if all weights started at 
equal value and the solution requires that unequal 
weights be developed, the system will never learn 
because all the weight changes will be the same.  Init 
to random values. 

• Transfer Function: Why the sigmoid function? 
Derivative exists (it is continuous); derivative 
required for gradient descent learning method. Also, 
the sigmoid derivative can be defined in terms of the 
sigmoid function itself. (Tanh is the same) 

• Learning Rate:  In gradient descent, changing the 
weight assumes that the error surface is locally 
linear (locally is defined by size of learning rate).  It 
is important to keep learning rate low, to avoid 
divergent behavior at points of curvature. The ideal 
situation would be to step by infinitely small 
increments, but time does not permit this.  How to 
solve this dichotomy? 

• Momentum: includes the effect of past weight 
changes on the current direction of movement in 
weight space. It is used to avoid large changes in 
either direction.  It allows smaller learning rate but 
faster learning. 

• Epoch: number of iterations per training set 
(convergence or limit) 
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STRENGTHS/WEAKNESSES 

STRENGTHS: 

• small storage reqts 

• well-known 

WEAKNESSES: 

• many variables, trial and error 

• slow training, many iterations thru data to 
convergence, not sure when to stop, not sure it wil 
ever converge (can cycle instead) 

• overtraining, can learn "noise" 

• local minima 
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ISSUES  IN   NETWORK 
DESIGN 

• Which transfer function to use 
• Normalization of input 
• Number of input nodes = number of components in 
input vector 
• Defining number of hidden nodes (heuristics) - 
more hidden nodes will increase execution time, but 
if too small, may miss local minima 
• Number of output nodes = number of classes 
• Typically each upper layer should have fewer 
nodes than lower one 
• Size must be reasonable (max 200-300 nodes for 
s/w simulation) 
• Momentum (how conservative you are in going 
down the error slope) - allows smaller learning rate 
constant with faster learning, but means more 
storage used to store previous weights 
• Storage:  including bias, need (q+1)n + (n+1)m 
weights 
• Mix classes when training to avoid shocks 
• How to speed up training time: use slightly noisy 
data, increase size of hidden layer BUT keep size of 
hidden layer reasonable, use variations of learning 
algorithms 
• What to do if network doesn't learn: start over with 
new initial weights 
• Avoid memorization (keep #hidden nodes > #output 
nodes) 
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FAF TUTORIAL:    BACKPROPAGATION THROUGH 
TIME (BPTT) 

Rumelhart, Hinton & Williams 
Werbos 

Williams & Zipser 

• REVIEW OF BACKPROP 
• ARCHITECTURE OF BPTT 
• OPERATION OF BPTT 
• WEAKNESSES 
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REVIEW  OF  BACKPROP 

• Most well-known, widely-used model 

• Supervised Learning, solves non-linearly separable 
problems 

• Learns an internal representation of the input, as 
well as learning the output 

• Credit Assignment problem: If output is in error, 
how do you determine which weight (connection) to 
adjust?        Assumes all nodes are partially 
responsible for the error.  Propagates the output 
error backward thru the connections, thru all layers, 
to the input layer, changing ALL weights. 

• Multi-layer:  input, hidden, output 

• At least ONE hidden layer required (usually 1 or 2) 
• Feedforward, fully connected between adjacent 
layers; connections have associated weights 
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REVIEW  OF  BACKPROP 

FEEDFORWARD 
CONNECTIVITY 

/ 
/ 

/ 

bias Ö 

OUTPUT LAYER: 
m nodes 

HIDDEN 
LAYER: 
n nodes, n x m 
connections 

INPUT LAYER: 
q nodes, q x n 
connections 
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REVIEW  OF  BACKPROP 

PHASES:  Training, Testing 

Training: 
• Assign random real-valued weights to each 
connection 

. REPEAT FOR EACH TRAINING DATA SET UNTIL 
CONVERGENCE OR UNTIL REPETITION LIMIT 
REACHED: 

- run training pattern thru network 
- determine error (distance) between the actual 

value output and the known desired output at each 
output node 

- using a steepest descent algorithm, back 
propagate this error through the network, adjusting 
weights. Weights which were further off are updated 
more. 
• At end of training, weights are saved to be used for 
testing 

Testing: 
• WEIGHTS ARE NOT CHANGED 
• single pass thru each test pattern 
• run each pattern thru the network 
• the values at the output nodes constitute a 
classification, with the maximum value 
corresponding to the best estimate of identification 

1-24 



REVIEW  OF  BACKPROP 

TRANSFER  FUNCTIONS 

sigmoid, maps to (0..1) = .    e-z)-1 

1-e"z 

tanh, maps to (-1..1) = -—^ 

THREE PHASES OF TRAINING: 
• Present input vector, propagate forward to output 
layer by calculating activations of nodes upward from 
input layer to output layer, generate output vector: 

aj = f( XWU aj) where f is transfer function (assume 
j 

sigmoid) 

• Backpropagate local error (recursive): 
output units: 
calculate scaled error:  errorj = (tj - aj) * aj (1 - aj) 
change weights: Awjk = L (errorj) (ak) k child of j 
hidden units: 
calculate scaled error: 
errorj = aj(1-aj) * Xerrorj wij 

i 
change weights: Awjk = L (errorj) (ay)k child of j 

• Update weights: 
for all units, new wjj = wjj + Awjj 
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OVERVIEW  OF   BPTT 

• Temporal supervised learning task:  sequence 
classification 

• The input is the sequence to be classified 

• The desired output is the correct classification, 
which is to be produced at the end of the sequence. 

• Gradient-based approach:  part of the learning 
algorithm involves computing the gradient of a 
performance measure, and using the result to 
determine the weight changes. 

• Performance measure:  measure of error between 
actual & desired output 

• Epochwise Operation:  network runs from start 
state to stopping time, then reset to start state for 
next epoch. Starting states do not have to be the 
same. Epoch boundary is barrier across which credit 
assignment should not pass. 

• Epoch Notation: (tO = start time, t1 = end time) 
• Epochwise Learning Algorithm: weight updates are 
performed only at epoch boundaries, not at every 
time step 

• Assumptions: semilinear units, discrete time 
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ARCHITECTURE  OF   BPTT 

TIME INPUT UNIT ACTIVITIES 

D   D 

t-1 

EACH CONNECTION IS ASSUMED TO HAVE A DELAY OF 1 TIME STEP 

t0+ 1 D   D 

to 
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OPERATION  OF  BPTT 

• Real-Time BPTT: 
Do at each time step t: 
1. Add current state of network and current input pattern to 
history buffer which stores history of network since time to 
2. Inject error for current time.   Backpropagation used to 
compute all the errors and error derivatives  for to < ti < t 
3. All weights are changed accordingly. 

Time 

t 

t-1 

t-2 

t-3 

Input Unit Activities 

tO+1 

to 

Targets 

CZD 
Step 1 =inject external 
error; 
Steps 2-4 = determine 
virtual error for earlier 
time steps 
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OPERATION  OF  BPTT 

• Epochwise BPTT . 
During each epoch, accumulate the history of network input and 
network activity, along with history of target output values / 
history of error.  Do at each epoch: 
1. Backpropagation used to compute all the errors and error 
derivatives for to < t < t1 
2. All weights are changed accordingly. 
3. Reinitialize network and begin next epoch. 

"ime Input            Ur lit Activities             Targ 

 ^r- 

ets 

) 

) 

tl i 
^ 1 

h 
V®   ® 

i     ^"C 

LVCII  I IUI I IUCI o 
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tl-1 c error from previous 

^ step; 

tl-2 ( y^~ c ) 

) 

Odd numbers inject 

^ I ico © external error 

tl-3 c 
XXX 

to+i ( , **"( ) 

^ h I 
to ( >*-( ) 

WEAKNESSES 

. STORAGE REQTS/COMPUTATION TIME: 
dependent upon selection of time granularity and 
temporal pattern length 
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FAF TUTORIAL:   REINFORCE 

R. J. Williams 

OVERVIEW 
ARCHITECTURE 
REINFORCE ALGORITHMS 
NETWORK ISSUES 
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OVERVIEW 

. DEFINITION OF REINFORCEMENT LEARNING 
(as distinguished from supervised or unsupervised 
learning:) 

The performance of the entire system is judged on 
the basis of a single scalar value, called 
REINFORCEMENT, received from the environment, 
as its evaluation of system performance. 

At one extreme, the signal may have 2 values: 
success/failure 

A more informative signal would have a continuum of 
values, indicating a graded degree of success 

GENERAL OBJECTIVE OF LEARNING:   the system 
must maximize some function of the reinforcement 
signal 

The computation of reinforcement by the 
environment is problem specific AND IS ASSUMED 
TO BE UNKNOWN TO THE LEARNING SYSTEM. 
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OVERVIEW 

. ASSOCIATIVE REINFORCEMENT LEARNING: 

The environment provides additional information 
beyond the reinforcement signal itself. 
The system learns to ASSOCIATE OUTPUTS WITH 
INPUTS (INPUT-OUTPUT MAPPING). 
The system determines what action to perform (what 
the OUTPUT should be) based on the additional 
information from the environment and on the 
REINFORCEMENT signal. 

• Why interesting? 
These systems require (for training feedback) a 

SINGLE SCALAR REINFORCEMENT SIGNAL 
provided to the entire net. 

They statistically move along the gradient of a 
natural performance measure for these problems 
(analogous to backprop). 

They can be implemented "simply" even in a 
temporal context. 
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OVERVIEW 

ASSOCIATIVE 
REINFORCEMENT 
LEARNING 

Evaluative feedback 
(system presented with 
scalar signal) 

Must discover output: must 
search all possible actions to 
discover which is better. 
Output cannot be a determin- 
istic function of input; the 
operation of the system has 
certain random components. 

SUPERVISED 
LEARNING 

Instructive feedback 
(system presented 
with desired output) 

Knows output: no 
autonomous 
search capability 
required 

Random operation consistent with theory of 
stochastic learning automata. 
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Outputs 

Feedforward 
Connections 

OVERVIEW 

Reinforcement 

(Context) 
Inputs 
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OVERVIEW 
A network of associative stochastic learning automata and its 
training environment for a restricted associative reinforcement 
learning task.   In the network setting, individual automata are 
called UNITS, the vector of actions selected by the network is its 
OUTPUT, and the context input is called INPUT.   The operation 
of this system consists of the following four phases: 

1. The environment picks an input pattern for the network 
randomly (the distribution of which is assumed to be independent 
of prior events within the network/environment system). 

2. As the input pattern to each unit becomes available, it picks 
an action randomly according to the distribution of actions 
corresponding to the particular input pattern.  Thus, "activation" 
passes thru the network from input side to output side. 

3. After all the units at the output side have selected their 
actions, the environment picks an evaluation randomly according 
to a distribution corresponding to the particular network output 
pattern chosen and the particular network input. 

4. Each unit changes its internal state according to some specific 
function of its current state, the action just chosen, its input, and 
the reinforcement.   The precise manner in which the 
reinforcement signal is used by the units depends upon the 
learning algorithm to be applied.   In the simplest case, the 
reinforcement signal is simply broadcast to all units, but the use 
of additional units or interconnections designed to help in the 
learning process is also possible. 

• All units receive identical reinforcement. 

• Other strategies are possible:   adaptively generated, 
individually tailored reinforcement signals for individual units or 
groups of units, as a function of current NON-reinforcement 
environmental input. 

• RESTRICTED associative reinforcement learning task:   each 
unit makes exactly one action selection corresponding to each 
reinforcement value received.   The actions (outputs) are 
independent of prior history, and therefore of time. 
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ARCHITECTURE 

NOTATION for Quasilinear Stochastic Units: 
xj is the input pattern to that unit. The pattern is 
a tuple whose individual elements are either the 
outputs of certain other units, or certain inputs 
from the environment. 

yi is the output of the ith unit in the network, yj 
is drawn from a distribution depending upon XJ 
and the connection weights WJJ. 

Yj is the set of possible output values yj of the ith 

unit. 

Xj is the set of possible values of the input vector 
xj to the ith unit. 

For each i, gj = Pr {yj = E|W, xj}, a probability 
mass function determining the value of y as a 
function of the weights and the input: 

Assume mass function has single parameter pj, 
Pi = f(si) 
si = 5>ij Xj 
f(sj) is usually the sigmoid function 
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ARCHITECTURE 

yi 

Wl 

xj xj 

Deterministic Quasilinear Unit Stochastic Quasilinear Unit 

• Bernoulli Unit: any unit whose purely stochastic 
component consists of a Bernoulli random number 
generator, with input to this component representing 
the Bernoulli parameter p, regardless of the 
particular nature of the deterministic component of 
the unit's computation. 
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REINFORCE   ALGORITHMS 

. EXPECTED REINFORCEMENT PERFORMANCE 
CRITERION 

The performance measure which will be optimized is 
the expected value of the reinforcement signal, 
conditioned on a particular choice of parameters of 
the learning system (E). 

ASSUMPTIONS:       stationary distribution of input 
inputs are independent from trial to trial 
stationary distribution of r 

Given these assumptions, E is a well-defined 
deterministic function WHICH IS UNKNOWN TO THE 
LEARNING SYSTEM.  The learning system must 
search the parameter space for a point where E is 
maximum. 

ALSO NOTE that since the weight matrix W 
represents the network parameters, we will be 
finding the WEIGHTS which maximize E. 
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REINFORCE   ALGORITHMS 

. RESTRICTED REINFORCE ALGORITHM:   At the 
end of each trial, r is received by the network and W 
is adjusted according to the specific learning 
algorithm. 

• Learning algorithm: AWJJ = ocjj (r - bjj) ejj 
where 
ocij is a learning rate factor 
bjj is a reinforcement baseline 
ejj is characteristic eligibility of WJJ (5ln gj/öwjj) 
(r-bjj) is reinforcement offset 

Reinforcement baseline is assumed to be 
conditionally independent of y, given W and x 

The Learning Rate is assumed to be non-negative 
and constant and not dependent upon the input x 
(but may be dependent upon i and/or j). 

REward Increment = Nonnegative Factor x Offset 
Reinforcement x Characteristic Eligibility 

1-39 



REINFORCE   ALGORITHMS 

• Just as backprop performs local optimization of an 
error measure, REINFORCE does essentially the 
same for the natural performance measure E. 

• Associative Reward/Inaction algorithm:  Bernoulli 
quasilinear units with logistic squashing function, 
constant learning rate and reinforcement baseline = 
0: 

AWJJ = ocr(yj - pj)xj 

. REINFORCMENT COMPARISON 

This leads to faster and more reliable learning 
Rewards actions which lead to better than usual 
reinforcement and penalizes actions which lead to 
worse than usual reinforcement. 

A prediction of what reinforcement value to expect 
on a particular trial is used as the basis for 
comparison. 

Prediction is computed as an exponentially weighted 
average of past reinforcement values.  It is adaptive. 

For associative tasks, it is desirable to try to predict 
reinforcement as a function of the input. 
AWJJ = oc(r - rPred) (yj ■ pj) XJ, where rPred is the 

predicted reinforcement for the current input 
pattern 
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REINFORCE   ALGORITHMS 

. EXTENDED REINFORCE ALGORITHMS:    Extend 
algorithm to problems which have temporal credit- 
assignment component: a network is trained on an 
episodic basis, where each episode consists of k 
time steps, during which the units may recompute 
their outputs and the environment may alter its non- 
reinforcement input at each time step. A single r 
value is delivered to the net at the end of each 
episode. 

One way to adapt a network algorithm for temporality 
is to use the "unfolding in time mapping". The 
learning algorithm becomes: 

k 
Awjj = ccjj (r - bjj)   5>ij(t) 

where 
ocfj js a learning rate factor 
bjj is a reinforcement baseline independent of y 
ejj is characteristic eligibility of wjj (din gj/dwjj) 

evaluated at time t, depends on the input x 
to the ith unit at time t-1 

(r-bjj) is reinforcement offset 

The learning rate is assumed to be non-negative 
and constant. 

1-41 



REINFORCE   ALGORITHMS 
This algorithm has a "plausible on-line 
implementation using a single accumulator for each 
parameter wij in the network." The purpose of this 
accumulator is to form the eligibility sum, each term 
of which depends only on the operation of the 
network as it runs in real time, and not on the 
reinforcement signal eventually received. 

This is in contrast to BPTT, which requires 
accumulating pairwise products of activations with 
error signals, requiring large amounts of additional 
storage which grows linearly with the number of time 
steps per episode. 

REward Increment = Nonnegative Factor x Offset 
Reinforcement x Cumulative Eligibility 

• Informational Connections: may be added to the 
network. 

Signals received on these lines would be used to 
compute the reinforcement baseline.  For example, 
the reinforcement baseline might try to track the 
reinforcement received as a function of these 
informational inputs. A unit may only receive such 
connections from units on which it has no ultimate 
influence. 

Using this technique might provide more tailored 
credit assignment; or might help the scaling 
problems inherent in simpler reinforcement schemes 
in which all units are reinforced alike. 
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REINFORCE   ALGORITHMS 

• Backpropagating Through a Model: 

Train a second network, called an internal model, to 
compute the average reinforcement received as a 
function of input to and output of the first basic 
network. The first network must be run in an 
exploratory mode to cover a sufficiently large portion 
of the input/output pairs. 

After the second network has learned to compute the 
reinforcement signal provided by the environment, 
the basic network can be trained by having it 
hillclimb toward a maximum of the internal 
reinforcement signal. This can be performed by 
backpropagation. 

The unknown mapping used by the environment to 
compute the reinforcement is eventually replaced by 
a known differentiable mapping which provides a 
reasonable approximation to it. 
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NETWORK   ISSUES 

• Where/How is the R signal generated? 

• Connectivity: how to connect, how many units to 
choose, how to layer, is layering meaningful? 

• Training vs. testing: don't present reinforcement 
during testing? 

• How to determine learning rate, reinforcement 
baseline... 

• Paper provides some hints for optimizing, 
improving convergence 
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FAF TUTORIAL:   SPATIOTEMPORAL PATTERN 
RECOGNITION  (SPR) 

Hecht-Nielsen 

.    OVERVIEW 

.    ARCHITECTURE 
•    NEURALWORKS IMPLEMENTATION 
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OVERVIEW 
• Network inputs/outputs are explicit functions of 
time 

• Network transforms the input pattern x(t) into a 
time-varying class output y(t). 

• Network output at t depends on current and 
previous inputs 

• Two basic types: pattern classification / control 

• Example of pattern classifier in the speech domain: 
Given an input stream with objects (words) in it, the 
output is the class to which the most recently 
recognized word belongs 

• Example of control: the components of x are the 
system state variables (plant sensor outputs) and the 
components of y are the plant control signals. The 
goal is to maximize performance by minimizing some 
cost functions. 

• Goal of SPR: to develop networks that are 
insensitive to certain transformation of the input 
patterns 

• Want to know ways to measure the distance 
between 2 patterns 

• SPR pattern is a trajectory or path in n-dimensional 
space, parameterized by time 
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OVERVIEW 

• Typical goal: provide a classification for a 
relatively brief s-t pattern: the classification occurs 
after the entire pattern has been entered into the 
system 

. CUEING: 
A CUED CLASSIFIER is told when the input pattern 
begins/ends. In speech this is known as the 
"isolated word recognition problem"; pauses 
between words can be detected; therefore the words 
can be isolated. 

AN UNCUED CLASSIFIER deals with a continuous 
stream of s-t pattern input. IT must figure out 
when/where the pattern begins / ends. 

Two problems in uncued patterns: obscuration and 
interference. 
Obscuration: patterns of interest are obscured by 
other elements 
Interference: for example, mixing sounds from 
different sources 

ASSUME:  No obscuration or interference; otherwise 
problem is intractable. 
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OVERVIEW 

• SPATIOTEMPORAL WARPING: transformation of 
s-t pattern. S-t pattern classifiers must be 
insensitive to warping transformations. 
1. Time Warp: speeds up or slows down the 
movement of pattern x along its trajectory (translates 
it forward or backward in time) 
Pattern still traverses the same trajectory, but at a 
different speed 
Ratio of speeds before/after warping is dO/dt where 0 
is a monotonically increasing smooth scalar function 
of time x(0(t)) 
2. Entire path changes (example in speech, the pitch 
changes) 

• In principle, an s-t pattern of finite duration , not 
subjected to s-t warping transformations, can be 
treated as a spatial pattern. 
• An s-t warped version of a pattern can be viewed as 
a different spatial pattern of the same class as the 
original 
• if a time window of a fixed number N of spatial 
samples is used, the total pattern time durations can 
sometimes be ignored. "Time vignettes" each 
classified individually. 
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OVERVIEW 

S-T Pattern Distance Measurement uses 
matched filter: 

oo 

Hv(u,t) = infT€C   J"n(T-t) |u(x) - TV(T)| dx 
- oo 

where \i is a time windowing function, focuses 
the distance measurement on the time interval 
[t-a,tj.  H is the distance between pattern u and 
the best matching warped portion of v, over the 
time interval [t-a,t]. 

• Nearest Matched Filter Classifier: 
• Given a training set of patterns P = (v1, 
b1),(v2,b2) (vn,bn) where bk is an element of 
{1,2,...,M}, the set of pattern classifications. 
• Use the training set patterns as the reference 
patterns for N matched filters. The input pattern 
u is fed to all the matched filters in parallel. All 
use the same warping function. The outputs of 
the classifier at time t are (1) the class # 
associated with the reference pattern having the 
smallest matched filter output, and (2) the actual 
filter output value. 

• Problem:   ENORMOUS TRAINING SET (many 
pattern examples!) 

• Advantages:  near Bayesian performance; 
individual matched filters are insensitive to noise 
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ARCHITECTURE 

0   0© 
0   0© 

zlrl 

z2r2 

z3r3 

u1(t)u2(t)..un(t) 

z(i-1)(t) 

ul(t) 

zi(t) 

u2(t) un(t) 

SPR processing element (node). Input comes from previous processing 
element in row, as well as from pattern u(t). These inputs cause a 
"braked flywheel" to spin up. The output zi of the unit is 1 if the 
flywheel is spinning faster than threshold T; otherwise the output is 0. 
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ARCHITECTURE 

• Each row implements a matched filter function for 
the training set reference pattern. 

• t is an integer variable; time increment chosen to be 
small. 

• Basic idea: output of the final processing element 
of one row should be a binary indicator of whether or 
not the s-t pattern u has just completed aproximately 
traversing the path in space defined by the s-t 
example pattern v (in the proper direction and at a 
speed within selected time warp limits of the speed 
of v at each point in the trajectory. 
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EQUATIONS   (Hecht-Nielsen) 

MATCHED FILTER:  suitable for single 
dimensional signals.  u=input scalar, tuned 
to scalar signal v 

oo 

Hv(u,t) =   Jix(x-t) V(T) dx 
- OO 

GENERALIZED (to n-dimensional signals) 
MULTIDIMENSIONAL MATCHED FILTER: 
s-t pattern u, tuned to s-t pattern v, over 
warp class C: 

oo 

Hv(u5t) = inf jeC   J[x(x-t) |u(x) - TV(T)| dx 
- oo 

where JI is a time windowing function, focuses 
the distance measurement on the time interval 
[t-a,t].  H is the distance between pattern u and 
the best matching warped portion of v, over the 
time interval [t-a,t]. 
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EQUATIONS  (Hecht-Nielsen) 
SPATIOTEMPORAL  PATTERN  RECOGNIZER 
NETWORK:  approximately implements a type of 
nearest matched filter classifier 

C = 0(t) for which 0.5 < de /dt < 2.0 
Time window = time length of pattern (with total 
time integrals of 1.0) 

Transfer Function:  z\\ = U(x|j(t) - an) 
where 

xii(t) = a||(-C|iX|i(M) + d|-, U(pF|j - |v|j - u(t)|] z|(j-i)(t- 
1))) 

0<x|j(t)<1 
zio (t)=1 
U(p) = 1 if p>0, 0 if p < 0 
oc|i(q)=q if q >0, O if q < 0 

v = constant vector, c and O < 1 
c5 d, O determine flywheel dynamics, matched to 

typical range of change rates of u & v patterns 
a = threshold 
1/c controls speed of x activation 
O/c controls speed of x decay 
"¥ = radius of sphere around v 
a = attack function 
d = flywheel driving torque 
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NEURALWORKS 
IMPLEMENTATION 

One Row for each Class 
One Column for each Time Slice 

Class A 

Class B 

Avalanche Network. 
Inputs must be normalized. 
Kohonen learning rule used to adapt weights connected to input 
layer: 
W = W + A(X-W) where X is input vector, A is learning rate. 

Weighted sum I computed in standard fashion.  Consists of: 
• Dot product of input vector with associated weight vector 

(both normalized) 
• Input from prior processing element in activation chain. 

This input predisposes the PE to activity. 
• Global bias term r.   Used to normalize overall activity in 

the network.   Sets a variable threshold against which PEs 
compete; assures best match winner. 
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NEURALWORKS 
IMPLEMENTATION 

New output computing using I: 
X'i = Xj + A(-a * Xj + b * [l]+ ■ r + dXPrev 

where: x' is the new output 
x is the previous output 
I is the weighted sum 
A(u) is the attack function A(u) = u if u > 0, c*u if 

u < 0 
[u] is a threshold function, = u if u > 0, = 0 if u < 

0 
a is a decay term for the PE output 
b regulates the importance of a new input 
c controls the delay of the attack function 
d is the amount of pre-condition from prior PE 

r calculation: 

S=   Ex 
r = Max (r + d * (e - T) + f * s , 0) 

where: S is total network activity 
s is change in total network activity 
T is a threshold or target power level. 
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NEURALWORKS 
IMPLEMENTATION 

Avalanche of activity through the chain: 
Y1 through Yn represent the activity of succeeding 
PEs in detection chain. 

Y1 

Y2 

Y3 

Yn 

tO       tl tn 
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2. APPENDIX J.    BIT/FAULT REPORT CAUSE TUTORIALS 

This appendix contains the BIT and fault report cause tutorials which were held throughout the 
NNFAF contract. A tutorial was held for each of the BIT techniques and fault report causes which 
were selected for the NNFAF demonstration approaches. The BIT techniques were error 
correcting (Viterbi), activity detection, and parity. The fault report causes were temperature, 
vibration, and G-load. 
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BIT TECHNIQUE and FAULT 
REPORT  CAUSE  TUTORIAL 

Error Correcting BIT 
with Temperature Fault Report Cause 

******************************************************** 

Fault Report Cause 

TEMPERATURE 

failure threshold 

1/5 
t/5 ~^t c3 intermittent 

1 1 1 1 I 1 1 I 1 
time scale = 5 seconds to 1 hour 

•Threshold line represents typical hardware response to the 
temperature curve. Hardware will pass BIT tests when the 
temperature curve is below the threshold and will fail BIT tests 
when the temperature curve is above the threshold. 

• An individual system's hardware will exhibit the same 
temperature curve/threshold relationship, but the threshold (of 
BIT failure) will vary. The threshold depicted above shows the 
boundary between an intermittent failure zone and a false alarm 
zone. The BIT reports of any system that responds to 
temperature with a threshold above the threshold in the figure 
will be false alarm signatures. BIT reports that respond to 
temperature with a threshold below the threshold in the figure 
will be intermittent failure signatures. 
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Error Correcting BIT Signatures 
.«s 

failure threshold 

"8 H 
£ B t      error detected and corrected 
C   ü   O     —    — —    - 

c3 ■        I        I        I        I        I 
time scale = 1 mS to 10 mS 

• Error correcting BIT techniques provide reports with three 
states: 

1. No error 
2. Error detected and corrected 
3. Error detected but not correctable 

•These three states provide enhanced information compared to 
pass/fail reports from a typical BIT technique. 

• The error detected and corrected threshold is located relative 
to a fault report cause curve the same as a pass/fail threshold. 
The error detected but not correctable threshold provides 
additional information in the BIT report. It is a more severe 
failure than the error detected and corrected failure. 
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Error Correcting BIT Techniques 

A Channel 

Input Data 
A = (Ai, A2, ..., Am) 
Ai = (ail, ai2,..., ain) 

A = transmit data block 
Ai = one data word 
m = # of input words 
n = bits in data word 

Output Data 
B = (Bl, B2, ..., Bm) 
Bi = (bil, Di2, ..., bin) 

Two types of techniques: 
1. Block Code: Data word is independent 

of other data words. 

2. Convolutional Code: Data word is 
dependent on other data. 

Convolutional Encoding 
Uses shift register to accept inputs and generate outputs. 

Ex. 

X. 
AT 

► yi 
y2 

s1 s2 S3 

¥: 

Outputs 
YU(y1,y2,y3) 

Internal State 
S = (s1,s2, s3) 

y3 

• Y = F(s1, s2, s3)     where input x = s1 

• Therefore, Yt = F(xt, xt-1, xt-2) 
Y is a function of the present and 
past 2 input states. 
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Convolutional Code Decoding/Viterbi 
•Dynamic   Programming:     finds   minimum   distance   between 
received code word and possible code words. 

Trellis Diagram Example: 
Y Decode B 

Initial     Next 
state     state Each line represents a valid 

path to the next state 

Valid paths determined by 
algorithm 

Circles represent states 

•When decoding - distance to each state is determined. The 
shortest distance path is chosen as the correct data. If the 
shortest distance path is zero, then no error occurred. 

•The number of previously received data states (j) used to 
determine valid data, is defined by the algorithm. 

•Bt = F(yt, yt-1 yt-j)        j = depth of algorithm 

J-5 



Block Codes 

HAMMING CODE: 

•Additional    bits   are   added   to   data   bits   to   generate   a 
valid   code   word. 

• Modulo   2    matrix   multiplication   can    be   applied   to   the 
code   words   to   detect   errors. 

• Hamming   codes   are   defined   by   two   parameters   (n,   k) 
where   n   is   the   total   number   of   code  word   bits   and   k   is 
the   number   of   data   bits. 

• Example:     (7,   3)   Hamming  code.     Data  =   (D1,   D2,   &   D3), 
Parity = (P1,  P2,  P3, & P4) 

•The    capabilities    of    error    detection     and     correction 
codes    are    related    to    the    minimum    difference    between 
valid   code   words,   referred   to   as   the   Hamming   distance. 
This   number   is   equal   to   the   number   of   1's   resulting   from 
XORing   two   code  words. 
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(7, 3) Hamming Code Example 
Pi = 
p2 = 
p3 = 
p4 = 

Di XOR Ds 
Di XOR D2 
D2 XOR Ds 
Di XOR D2 XOR Ds 

Total set of valid code words: 

Data bits (Di, 

0         0 
D2, &D3) 

0 
Parity bits (Pi 
0        0 

, P2, P3 
0 

&P4) 
0 

0         0 1 1 0 1 1 
0          1 0 0 1 1 1 
0          1 1 1 1 0 0 
1          0 0 1 1 0 1 
1          0 1 0 1 1 0 
1       1 0 1 0 1 0 
1       1 1 0 0 0 1 

Hamming distance for this example is 4. If 1, 2, or 3 bits are corrupted 
then the corrupted word will not match any code word. 

If 1 bit is corrupted, then only one valid word will have a Hamming 
distance from the corrupted word of 1 and all others will be larger. That 
valid word is the correct word if only 1 or 2 bit errors are expected. 

For example, if the code word 010 0111 is corrupted to form 011 0111, 
then the Hamming distance from valid words is as follows: 

Total set of valid code words: Hamming distance from 011 0111 

000 0000 5 
001   1011 3 
010 0111 1 
011   1100 3 
100  1101 5 
101  0110 3 
110  1010 5 
1 1 1  0001 3 

010 0111 is the valid code word because only 1 or 2 bits were assumed 
to be erroneous. If two bits are corrupted, then the (7, 3) code can detect 
the error but several valid words may have a distance of 2 and the error 
cannot be fixed. 
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Signature of Hamming Code BIT 
Technique with Temperature Fault 

Report Cause 

non-correctable error detected Threshold 2 

error detected and correcte Threshold 1 

iliiiiii itniiiii iiiiiiii iiiniiii niiiiii iiiiiiiii inn 
zrrer Error Correcting BIT Technique report 

Failure detection states0: No error 
1: Error detected and corrected 
2: Error detected but not correctable 

Threshold 1 and 2 will vary relative to each other for different systems. If 
they are lower than the thresholds shown then they represent a system with 
an intermittent failure. If they are above the thresholds shown then the system 
may only have a false alarm. 
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Hamming Code BIT Report with 
Temperature 

non-correctable error detected Threshold 2 

error detected and correcte Threshold 1 

MM Ml Ml I III MINI MM I II II II III Ml INI Ml MM Ml I 

Erfror Correcting BIT Technique report 

BIT Reports: 

Functional system with thresholds above depicted thresholds: 
0000000000000000000 10 11011000000000000 

Functional system with false alarm with threshold as shown above: 
0000000000000001 1 101 1 10101 1 1 1000000000 

System with intermittent failure (thresholds lower than shown above): 
00000000011110112122102221101110101000 
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BIT TECHNIQUE and FAULT 
REPORT  CAUSE  TUTORIAL 

Activity Detection BIT with Temperature Fault Report 
Cause 

******************************************************** 

failure threshold 

Fault Report Cause 

TEMPERATURE 

time scale = 5 seconds to 1 hour 

•Threshold line represents typical hardware response to the 
temperature curve. Hardware will pass BIT tests when the 
temperature curve is below the threshold and will fail BIT tests 
when the temperature curve is above the threshold. 

•An    individual    system's    hardware   will   exhibit   the   same 
temperature      curve/threshold      relationship,      but     the 
threshold    (of    BIT    failure)    will    vary.        The    threshold 
depicted     above     shows     the     boundary     between     an 
intermittent  failure  zone  and   a  false  alarm  zone.     The   BIT 
reports    of    any    system    that    responds    to    temperature 
with   a   threshold   above   the   threshold   in   the   figure   will 
be   false   alarm   signatures.      BIT   reports   that   respond   to 
temperature   with   a   threshold   below   the   threshold   in   the 
figure    will    be    intermittent   failure   signatures. 
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Pass/Fail BIT Signatures 

«5 

failure threshold 

OH ■ I I I I I 1 
time scale = 1 mS to 10 mS 

»Pass/Fail BIT techniques provide reports with two states: 
1. No error 
2. Error detected 

Activity Detector BIT Techniques 

A 

Input Data 
A = (Al, A2, ..., Am) 
Ai = (ail, ai2, ..., ain) 

A = transmit data block 
Ai = one data word 
m = # of input words 
n = bits in data word 

BIT 
Function A 

^   BIT Results 
(pass or fail) 

Output Data is 
unaltered input data 
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Activity Detector 
Signals are constantly monitored for state changes. Once a state 
change occurs activity is triggered and recorded in a register for 
the respective signal. Periodically, the activity detector status 
register is checked and reset. If any status register signals do 
not confirm that activity occurred, then a failure is reported. 

A 

Function periodically 
performed 

Periodically 
check register 
and verify 
activity 

R.eset register 

Check for 
activity 

Latch activity in 
a register 

Report status 
(at same rate that 
register checked) 

Activity Detector Example 
An   implementation   of   an   activity   detector   latch   is   shown   below: 

+ 5 D-Latch 

Status that function 

Signal being 
monitored for 
activity 

Reset of activity detector after 
function checks for activity 

periodically checks 

This example of an activity detector is triggered by a low to high 
state signal transition. 
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Activity Detector Example 

Example of activity detection using the activity detector from the 
previous page 

Activity ' Status Periodic Check 
Input data Register (1 = fail) of Activity 

(D1,D2,D3,D4) (SI, S2, S3, S4) Register (0 = P) 

0   0 0 0 0 0 0 0 X 
0  0 1 0 0 0 1 0 X 
0   1 1 1 0 1 1 1 X 
0   1 0 0 0 1 1 1 X 
1   0 0 1 1 1 1 1 X 
0  0 1 0 1 1 1 1 0 Pass Report 

0  0 0 0 0 0 0 0 X 
0  0 0 1 0 0 0 1 X 
1   0 0 0 1 0 0 1 X 
0   1 0 0 1 1 0 1 X 
0   1 0 1 1 1 0 1 X 
1 1 0 0 1 1 0 1 1 Fail Report 
0 0 1 0 0 0 1 0 X 
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Signature of Activity Detection BIT 
Technique with Temperature Fault 

Report Cause 

error detected Threshold 

BIT Technique 
report 

Failure detection states 0: No error 
1: Error detected 

The threshold will vary for different systems. If it is lower than 
the threshold shown then it represents a system with an 
intermittent failure. If it is above the threshold shown then the 
system may only have a false alarm. 
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Activity Detection BIT Report with 
Temperature 

error detected Threshold 1 

1111111111111111111111111111 1111111111111111111111111111 

BTT 'Technique 
report , 

Possible BIT Reports in response to the curve above: 

Functional system with thresholds above depicted thresholds: 
0000000000000000000 10 110 11000000000000 

Functional system with false alarm with threshold as shown above: 
0000000000000001 1 101 1 10101 1 1 1000000000 

System with intermittent failure (thresholds lower than shown above): 
00000000011110111111101111101110101000 
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BIT TECHNIQUE and FAULT 
REPORT CAUSE TUTORIAL 

Parity BIT with G-Load Fault Report Cause 
******************************************************** 

Fault Report Cause 

G-LOHD 

Failure Boundary 

intermittent 

t ■      I      1      I      I      1 
• Boundary line represents typical hardware response to the 
environment curve. Hardware is more likely to pass BIT tests 
when the environment curve is below the boundary and will fail 
BIT tests when the environment curve increases above the 
boundary. 

•An individual system's hardware will exhibit the same 
environment (G-Load) curve/boundary relationship, but the 
threshold (of BIT failure) will vary. The figure depicted above 
shows the boundary between an intermittent failure zone and a 
false alarm zone. The BIT reports of any system that respond to 
G-Load with a threshold above the boundary in the figure will be 
false alarm signatures. BIT reports that respond to G-Load with 
a threshold below the boundary in the figure will be intermittent 
failure signatures. 
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Pass/Fail BIT Reporting 

o 
C/3 ■— 
3 ,« 

£ 3 failure threshold 
5.C 
« SP       —   —   —   — 

21 
3 
es 

PL, I       I       I       I       I       I 
time scale = .1 to 1 sec. ^r 

Each division represents an individual report of 
BIT status. 

•Pass/Fail BIT techniques provide reports with two states: 

1. No error 
2. Error detected 

• BIT is unlikely to report a failure unless the magnitude of a fault 
report cause (FRC) is above the failure threshold. 

J-17 



Parity BIT Techniques 

A 
Parity 

Generator 

Input Data 
Ai = (an, ai2, ..., ain) 

Ai = one data word 
n = bits in data word 

A + parity bit 

A 
Output Data is 
original input data 

BIT Results 
(pass or fail) 

Parity 
A parity generator is used to compute a parity (in this example it 
is a 1 bit even parity). The parity bit is added to the data word 
prior to being stored or transmitted. When the data word (with 
parity) is received or read, the correct parity is confirmed. 

Transmission Media 

Parity Generator 

Active High 
Fault bit 

-^  

Parity Checker 
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Parity Generation Example 
Input data Parity bit 

(Ail , Ai2, Ai3, ...Ai8) (Aip) 

0 0 0 0 0 1 0 0 1 
0 0 1 0 0 1 1 0 1 
0 1 1 1 0 0 1 1 1 
0 1 0 0 0 1 1 1 o  l 
1 0 0 1 1 0 1 1 1 
0 0 1 0 1 0 1 1 0 
0 0 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 1 0 
1 0 0 0 1 0 0 1 1 
0 1 0 0 1 0 0 1 1 
0 1 0 1 1 1 0 1 1 
1 1 0 0 1 1 0 1 1 

Parity bit 
generated by 

using exclusive 
OR addition of 

all data bits. 

0     0    10   0    110 1 

Parity Verification Example 
Input data Pa rity bit Parity test results 

(Ail , Ai2, Ai3, ...Ai8) (Aip) (fault bit) 

0 0 0 0 0 1 0 0 1 0 
0 0 1 0 0 1 1 0 1 0 Pass Report 

0 1 0 1 0 0 1 1 1 1 
0 
1 

1 
0 

0 
0 

0 
1 

0 
1 

1 
0 

1 
1 

1 
1 

0 
1 

0 
0 

Parity test bit 
generated by 

using exclusive 
0 0 1 0 1 0 1 1 0 0 OR addition of 
0 0 0 0 0 1 0 0 1 0 all data bits 

0 0 0 1 0 0 0 1 0 0 (including parity 
bit). 

1 0 0 0 1 0 0 1 1 0 
0 1 0 0 1 0 0 1 1 0 
0 1 0 1 1 1 1 1 1 1 Fail Report 
1 1 0 0 1 0 0 1 1 1 
0 0 1 0 0 1 1 0 1 0 

Bold type represents corrupted data. 
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Behavior of Parity BIT Technique with 
G-Load Fault Report Cause 

Probability of Failure 

Failure Threshold for 
System Under Analysis 

G-Load 

Increasing^ High PaiJe Alarm/Intermittent 
Probability of Failure Report Failure Boundary 

^ow but Increasing 
Probability of failure Report 

SvstemOK 

false alarm 

time 
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Parity BIT Reports with G-Load 
Signature 

False Alarm/Intermittent 
Boundary 

 .ThiQsbpJÄ 

ijniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiillll i BIT Technique 
report 

Possible BIT Reports in response to the curve above: 

Functional system with threshold above depicted boundary: 
00000000000000000100110110000000000000 

False Alarm/Intermittent 
Boundary 

/ 

^N     / 

/    Threshold              \ 

l lll 1 II 1 IIII 1 1 II 1 II 1 II 1 II 1 II 1II 1 II 1111II1111II1II11 
BIT Technique 
report 

System with intermittent failure (threshold lower than boundary): 
00000000000000010111111110111000000000 
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Parity BIT Report with G-Load 
Signature 

False Alarm/Intermittent 
Boundary 

III Mill Mill llllll Mill Mill Mill IIMI IIIIIMIIM Mill I 

MT BIT Technique 
report 

Functional system with threshold at boundary (false alarm): 
00000000000000000101111101110000000000 

J-22 



BIT TECHNIQUE and FAULT 
REPORT  CAUSE  TUTORIAL 

Parity BIT with Vibration Fault Report Cause 
******************************************************** 

Fault Report Cause 

UIBRRTION 

Failure Boundary 

intermittent 

•Boundary line represents typical hardware response to the 
environment curve. Hardware is more likely to pass BIT tests 
when the environment curve is below the boundary and will fail 
BIT tests when the environment curve increases above the 
boundary. 

•An individual system's hardware will exhibit the same 
environment (vibration) curve/boundary relationship, but the 
threshold (of BIT failure) will vary. The figure depicted above 
shows the boundary between an intermittent failure zone and a 
false alarm zone. The BIT reports of any system that respond to 
vibration with a threshold above the boundary in the figure will be 
false alarm signatures. BIT reports that respond to vibration with 
a threshold below the boundary in the figure will be intermittent 
failure signatures. 
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Pass/Fail BIT Reporting 

D 
Vi 
3 

*■*    3 

Si 
3 

P- 

failure threshold 

eg I       I       I       I       I 
time scale = 1 mS to 10 mS Vd J 

Each division represents an individual report of 
BIT status. 

•Pass/Fail BIT techniques provide reports with two states: 
1. No error 
2. Error detected 

•    BIT is unlikely to report a failure unless the magnitude of a 
fault report cause (FRC) is above the failure threshold. 

Fault Report Cause 

probability of fault report 
increases with environment 
magnitude above threshold 

hresnold 

BIT Technique 
report 

time scale = 10 mS 
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Parity BIT Techniques 

A 
Parity 

Generator 

Input Data 
Ai = (an, ai2, ..., ain) 

Ai = one data word 
n = bits in data word 

A + parity bit Output Data is 
original input data 

BIT Results 
(pass or fail) 

Parity 
A parity generator is used to compute a parity (in this example it 
is a 1 bit even parity). The parity bit is added to the data word 
prior to being stored or transmitted. When the data word (with 
parity) is received or read, the correct parity is confirmed. 

Transmission Media 

Parity Generator 

Even Parity 
bit 

Active High 
Fault bit 

-^  

Parity Checker 
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Parity Generation Example 
Input data Parity bit 

(Ail,Ai2,Ai3,...Ai8) (Aip) 

0     0   0   0 0 1 0 0 1 
0     0    10 0 1 1 0 1 Parity bit 

0     111 0 0 1 1 1 generated by 

0     10    0 0 1 1 1 0 using exclusive 
OR addition of 

10    0    1 1 0 1 1 1 all data bits. 

0     0    10 1 0 1 1 0 
0     0    0    0 0 1 0 0 1 
0     0    0    1 0 0 0 1 0 
10   0   0 1 0 0 1 1 
0     10   0 1 0 0 1 1 
0     10    1 1 1 0 1 1 i 

■ 

110   0 1 1 0 1 1 
0     0    10 0 1 1 0 1 

Parity Verification Example 
Input data Parity bit Parity test results 

(Ail,Ai2,Ai3,...Ai8) (Aip) (fault bit) 

0     0    0   0    0 1 0 0 1 0 
0     0    10    0 1 1 0 1 0 Pass Report 
0     10    10 0 1 1 1 1 
0      10   0    0 
10    0    11 

1 
0 

1 
1 

1 
1 

0 
1 

0 
0 

Parity test bit 
generated by 

using exclusive 
0     0    10    1 0 1 1 0 0 OR addition of 
0     0    0    0    0 1 0 0 1 0 all data bits 

0     0    0    10 0 0 1 0 0 (including parity 
bit). 

10    0   0    1 0 0 1 l 0 
0      10    0    1 0 0 1 i 0 
0      10    11 i l 1 i 1 Fail Report 
1      10    0    1 0 0 1 i 1 
0     0    10    0 1 1 0 i 0 

Bold type represents corrupted data 
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Behavior of Parity BIT Technique with 
Vibration Fault Report Cause 

Probability of Failure 
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Parity BIT Report with Vibration 
Signature 

False Alarm/Intermittent 
Boundary 

I I l l l I l I I 11 I I I I I I I I l l 11 l l l l I l I I I I I 11 I I I I I I I I 1 I 1 11 I I I I I I I t BIT Technique 
report 

Possible BIT Reports in response to the curve above: 

Functional system with threshold above depicted boundary: 
0000000000000000000101100 1000000000000 
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Parity BIT Report with Vibration 
Signature 

False Alarm/Intermittent 
Boundary 

Mini in II in ii in ill M in M ill ill ll Ml 11 Ml III II 111 II I i BIT Technique 
report 

System with intermittent failure (threshold lower than boundary): 
0011010111000000010111110100000011001 
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Parity BIT Report with Vibration 
Signature 

False Alarm/Intermittent 
Boundary 

Nil II ill Ml ll III ll III III ll III Ml ll III ll 111 Ml ll III III M i BIT Technique 
report 

Functional system with threshold at boundary (false alarm): 
00 11000010000000010110 11010100001000 1 

i'U.S. GOVERNMENT PRINTING OFFICE:      1995-61Ü-126-50115 
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MISSION 

OF 

ROMELABORA TORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


