
RL-TR-94-216, Volume II (of two)
Final Technical Report
December 1994

NEURAL NETWORK FALSE
ALARM FILTER

fPElECTE
APR 0 6 1994 1

Raytheon Company

F. Aylstock, L. Elerin, J. Hintz, C. Learoyd, and R. Press

APPROVED FOR PUBLIC RELEASE; D/STR/BUT/ON UNLIM/TED.

Mm tfg
Rome Laboratory

Air Force Materiel Command
Griff iss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-216, Volume II (of two) has been reviewed and is approved for
publication.

APPROVED: jfczi^ 2A */2>/*2rf£

DALE W. RICHARDS
Projeet Engineer

FOR THE COMMANDER: *>wt^v ri*L/CE"~~
JOHN J. BART
Chief Scientist, Reliability Sciences
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (ERSR) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PurjfcrsporttTg.bijasnfartr*cc«scttanaf WarrrwrJon Is ssdmatsd to average 1 hour per response, ndudng the dm» far rsviBwiing instructions, searching existrig das sou-ces.
gaN^ardiise^'a^ths data needed and ujniieüig and rsvisw^t^
catection of iiurnlm, rxsjes-g suoosetlone for reducing th» burden, to Wsshhgtcn Headquarters Services, Dreetorate for rtormatlon Operations andRsports, 1215 Jefferson
Davis HioTwey Suts 1204, AiiTJWVA 22202-4302, ind to trie OfTk» of Msnegsrrwt art ^

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
December 1994

a REPORT TYPE AND DATES COVERED
Final Sep 92 - Sep 94

4. TITLE AND SUBTITLE
NEURAL NETWORK FALSE ALARM FILTER

6. AUTHOR(S)

F. Aylstock, L.
R. Press

Elerin, J. Hintz, C. Learoyd, and

5. FUNDING NUMBERS
C - F30602-92-C-0065
PE - 62702F
PR - 2338
TA - 02
WU - 5V

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)
Raytheon Company
Missile Systems Division
50 Apple Hill Drive
Tewksbury MA 01876-0901

9. SPONSOrWcG/MCtiTrORING AGENCY NAME(S) AND ADDRESSES)

Rome Laboratory (ERSR)
525 Brooks Road
Griffiss AFB NY 13441-4505

a PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-94-216, Vol II
(of two)

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Dale W. Richards/ERSR/(315) 330-3476

12a DISTWBUTION/AVAILAaLrrY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

1 a ABSTRACT (MS»*TUTI 200 words)

This effort identified, developed and demonstrated a set of approaches for applying
neural network learning techniques to the development of a real-time built-in test
(BIT) capability to filter out false-alarms from the BIT output. Following a
state-of-the-art assessment, a decision space of 19 neural network models, 9 fault
report causes and 12 common groups of BIT techniques was identified. From this space,
4 unique, high-potential combinations were selected for further investigation. These
techniques were subsequently simulated for application to a MILSATCOM system.
Detailed analyses of their strengths and weaknesses were performed along with cost/
benefit analyses. This study concluded that the best candidates for neural network
insertion are new systems where neural network requirements can be included in the
initial system design and that a major challenge is the availability or real data for
training of the networks. Volume I of this report documents the activities and
findings of the effort, including an extensive, annotated bibliography. Volume II
contains a tutorial overview of the neural networks, BIT techniques and false alarm
causes utilized in the final phases of this study.

14. SUBJECT TERM«
Reinforcement Network, Neural Networks, Built-in Test,
False Alarm, Backpropagation

17. SECURITY CLASSIFICATION

lMS§fflED
1 a SECURITY CLASSIFICATION

"IMSIlFIED
1a SECUJOT CLASSIFICATION

OF,_-_,_IFIEI)

14 r^P OF PAGES

1APMCEC0OE

20. UMTTATION OF ABSTRACT

UL

NSN7S40O1-280-SS00 Standard Form 298 t«ev 2 »9)
Prescrbeo by ANSI Sia Z39- > 8
298-102

TABLE OF CONTENTS

1. APPENDIX I. NEURAL NETWORK TUTORIALS 1-1
2. APPENDIX J. BIT/FAULT REPORT CAUSE TUTORIALS J-l

Accesion For

NTIS CRA&I
DTiC TAB
Unannounced
Justification

By
Distribution/

D
D

Availability Codes

Dist

A-

Avail and/'or
Special

i/ii

1. APPENDIX I. NEURAL NETWORK TUTORIALS

This appendix contains the neural network tutorials which were held during the down selection
portion of the NNFAF contract. A tutorial was held for each of the network models which were
selected (either as primary candidate or alternate) for the NNFAF demonstration approaches. The
five neural network models were: Adaptive Resonance Theory 1, Backpropagation,
Backpropagation Through Time, Reinforce, and Spatiotemporal Pattern Recognition.

1-1

FAF TUTORIAL: ART 1
ADAPTIVE RESONANCE THEORY (1)

S. Grossberg & G. Carpenter
Boston University

OVERVIEW
ARCHITECTURE
OPERATION
STRENGTHS/WEAKNESSES
ISSUES IN NETWORK DESIGN
EXAMPLE

1-2

OVERVIEW
• Unsupervised Learning

• Binary Input

• "SEMr-Adaptive (on-line) Learning (with NWare
TOOL)

• Vector classifier: accepts unknown input vector,
classifies according to which stored pattern it most
closely resembles

• If input doesn't match any stored pattern, new
category is created by storing a pattern like the
input vector

• If stored pattern matches input vector within
specified tolerance (vigilance), then stored pattern
is adjusted (trained) to "add" characteristics of
input vector

• NO STORED PATTERN IS EVER MODIFIED IF
VIGILANCE IS NOT SATISFIED (not like BP in
which any weights can be modified)

• Competitive (winner take all learning)

1-3

ARCHITECTURE

Gain2

Gainl

+
G2

Recognition (R) Layer
Performs Classification |_TM

I

disables

G1

B

Comparison (C) Layer
_SIM

X

Input Vector

Vigilance

LTM = Long Term Memory T = Top-down weights
STM = Short Term Memory R = R layer activation
B = Bottom-up weights C = C layer activation

1-4

ARCHITECTURE

CONNECTIVITY

Neuron

R Layer
0 0 ■ ■ * * Ü 0
rl r2 rj rn

C Layer

ooooooo
cl c2 ci cm

TTTTTTT

ooooooo
xl x2 xi xm

Input Vector X

n«# categories

Fully-connected, feedback (not
all shown). B & T weights on
the connections.

Presentation of input:
feedforward, one-to-one

m=# features or components
in input vector

1-5

ARCHITECTURE
• Input vector X

• Comparison Layer C (short-term memory, stores
important features of current pattern)

• Recognition Layer R (long-term memory, stores
learned prototype in weight matrix B)

• Full, feedback connections between C and R:
bottom-up (B) and top-down (T) weights

• C Layer outputs sent to R layer. No competition.

• R Layer classifies input vector. ONLY ONE R
neuron (the one with the weight vector B which best
matches the input vector) will fire. The others are
inhibited by lateral connections (lateral inhibition).

• Reset: measures closeness between C and X. If
they differ by more than vigilance (a real value,
0<vigilance<1), a reset signal is sent to disable the
neuron which fired in the R layer.

• Vigilance: controls classification granularity. If
high, fine distinction between classes. If low,
patterns will be more liberally grouped, less in
common but still in the same class.

• Gains: control firing of neurons at each layer and
when layers should and should not interact
(resonate).

1-6

OPERATION
PHASES: Initialization, Recognition, Comparison,
Search, Learning

DO FOR every X:
• Initialization: init B, T, vigilance, etc. Go to
Recognition.

• Recognition: present input vector X. Compute C
activations by 2/3 rule. Send C activations to R
layer. Compute R activations. Determine winning R
layer neuron. Go to Comparison.

• Comparison: Send feedback from R to C. Set new
value of C (C=X LAND R). Compare C to X. If
closeness < vigilance, produce R reset, go to Search
to look for better match, ELSE go to Learning.

• Search: repeat Recognition/Comparison UNTIL:
- R layer neuron wins competition and vigilance

is satisfied. Go to Learning (found best match); OR
- All committed R layer neurons have been

disabled by reset. Create/commit new R layer
neuron, set to be like X. END DO

• Learning: (fast learning assumed: input vectors
are applied for a long enough period of time so that
weights reach their final values). Modify B and T to
include the common characteristics of X (the
networkhas learned something new about the given
class).

1-7

OPERATION
• After learning, the T weights are set to C (C = X
LAND R), so that they only contain the components
of the stored prototype which match the input vector.

• The stored prototype eventually represents the
logical intersection of all vectors of that class. The
essential / common / minimum features are kept.

STRENGTHS/WEAKNESSES
STRENGTHS:
• unsupervised, don't need to know the answers
beforehand
• non-linear separability (not sure of limit)
• solves stability-plasticity dilemma: retains old
knowledge while acquiring new
• if patterns close to each other, won't have to store
many templates (logical intersection)

WEAKNESSES:
• assumes that patterns that share a greater number
of input features should fall into the same category
• order of presentation of inputs will change the way
the system reacts
• noise/pattern distortion can cause improper
classification
• potential for large storage reqts
• fast in analog h/w, slow in serial digital h/w
(sequential search of all patterns for best match)
• may create more than "real" number of classes (this
is OK)

1-8

ISSUES IN NETWORK
DESIGN

TO OVERCOME WEAKNESSES, RECOGNIZE
IMPORTANCE OF:
• invariant feature encoding to avoid
misclassification due to noise
• feature selection and definition impacts which
categories are generated
• number of categories (need to have enough)
• input presentation order - voting scheme not an
option
• changing vigilance in real-time to avoid
misclassifications

NETWORK DEFINITION:
• number of input nodes = number of components in
input vector
• number of C layer nodes = number of input nodes
• number of R layer nodes (categories) = some
number > the projected number of categories

EXAMPLE

PI

P2

P3

P4

X X X

X X X

X X

X X X X

X X X X

X X

X X X

X X

X X X

X X

X X X

X

P5

P6

P7

P8

X X

X X X

X

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

MO

EXAMPLE
CLOSE ENOUGH = differ by LQ 2 pixels

• After P1: Memory contains P1.

• After P2: P2 was close enough to P1 to be in the
same class. Since you perform logical intersection
of input and stored memory, memory contains P1.

• After P3: P3 is not close enough to P1. Memory
contains P1 and P3.

• After P4: P4 is close enough to P1. P1 would be
changed to be P4. Memory contains P3 and P4.

• After P5: P5 is close enough to P4. P4 would be
changed to be P5. Memory contains P3 and P5.

• After P6: P6 is close enough to P3. P3 would be
changed to be P6. Memory contains P5 and P6.

• After P7: P7 is not close enough to any of them.
Memory contains P5, P6, P7.

• After P8: P8 is not close enough to any of them.
Memory contains P5, P6, P7, P8.

Ml

EQUATIONS

Vigilance: 0 < t < 1
Gain 1: = 1 if any X = 1 and no R = 1, else = 0
Gain 2: = 1 if any X = 1, else = 0
C: C = X if R inactive

C = X land Rj if Rj active

2/3 Rule Each C neuron receives 3 inputs:
(C Activation) • X

• Rj
• Gain 1

Two of these must = 1 in order for C neuron to be
active

R Activation: Netk = B C
Rk = 1 if Netk > threshold, else = 0
Rj is active only if Rj > max(R)

Learning: Only on a match:
tjj = Cj

b'J" = L - 1 + ||C|| where L > 1 (usual,y = 2)

Reset: jlxIN1

Init: tjj = 1

bjj = random; 0 < bjj < ^ where m = ||X||
X = 0, Gain 1 = Gain 2 = 0, R layer output = 0

1-12

FAF TUTORIAL: BACKPROPAGATION

Rumelhart, Hinton & Williams
(also Parker)

OVERVIEW
ARCHITECTURE
OPERATION
NETWORK PARAMETERS & TERMS
STRENGTHS/WEAKNESSES
ISSUES IN NETWORK DESIGN

1-13

OVERVIEW
Most well-known, widely-used model

Supervised Learning

Not limited to binary input

Multi-layer network, solves non-linearly separable
classifications

Sometimes known as "Generalized Delta Rule"

Learns an internal representation of the input, as
well as learning the output

Credit Assignment problem: If output is in error,
how do you determine which weight (connection) to
adjust? Different solution than ART: assumes all
nodes are partially responsible for the error.
Propagates the output error backward thru the
connections, thru all layers, to the input layer,
changing ALL weights.

• NOT Competitive (winner take all) learning

• Used for: pattern classification, data compression,
noise filtering, signal processing, stock market
prediction, converting English text to phonemes, etc.

1-14

ARCHITECTURE

FEEDFORWARD
CONNECTIVITY

/
/

/

bias (\

OUTPUT LAYER:
m nodes

HIDDEN
LAYER:
n nodes, n x m
connections

INPUT LAYER:
q nodes, q x n
connections

• Multi-layer: input, hidden, output

• At least ONE hidden layer required (usually 1 or 2)

• Feedforward, fully connected between adjacent
layers; connections have associated weights

1-15

OPERATION
PHASES: Training (learning), Testing (recall)

Training:
• Assign random real-valued weights to each
connection

. REPEAT FOR EACH TRAINING DATA SET UNTIL
CONVERGENCE OR UNTIL REPETITION LIMIT
REACHED:

- run training pattern thru network
- determine error (distance) between the actual

value output and the known desired output at each
output node

- using a steepest descent algorithm, back
propagate this error through the network, adjusting
weights. Weights which were further off are updated
more.
• At end of training, weights are saved to be used for
testing

Testing:
• WEIGHTS ARE NOT CHANGED
• single pass thru each test pattern
• run each pattern thru the network
• the values at the output nodes constitute a
classification, with the maximum value
corresponding to the best estimate of identification

1-16

OPERATION
TRANSFER FUNCTIONS

sigmoid, maps to (0..1) = #1+e-z)-1

1-e-z

tanh, maps to (-1..1) = z

NOTATION: u , ., kM. ...
. a: = current activation of node j in layer below i (child of i)
. aj = current activation of node i in layer above j (parent of j)
. wjj = weight on the connection joining node j to node i

THREE PHASES OF TRAINING:
. Present input vector, propagate forward to output layer by
calculating activations of nodes upward from input layer to output
layer, generate output vector:

aj = f(£wjj aj) where f is transfer function (assume
■

J
sigmoid)

• Backpropagate local error (recursive):
output units:
calculate scaled error: errorj = (tj ■ aj) aj (1 - aj)
change weights: AWJR = L (errorj) (ak) k child of j
hidden units:
calculate scaled error:
errorj = aj(1-ap * Jerrorj wij

i
change weights: Awjk = L (error]) (ak)fr child of j

• Update weights:
for all units, new WJJ = WJJ + AWJJ

1-17

NETWORK PARAMETERS/TERMS
• Initialization of Weights: if all weights started at
equal value and the solution requires that unequal
weights be developed, the system will never learn
because all the weight changes will be the same. Init
to random values.

• Transfer Function: Why the sigmoid function?
Derivative exists (it is continuous); derivative
required for gradient descent learning method. Also,
the sigmoid derivative can be defined in terms of the
sigmoid function itself. (Tanh is the same)

• Learning Rate: In gradient descent, changing the
weight assumes that the error surface is locally
linear (locally is defined by size of learning rate). It
is important to keep learning rate low, to avoid
divergent behavior at points of curvature. The ideal
situation would be to step by infinitely small
increments, but time does not permit this. How to
solve this dichotomy?

• Momentum: includes the effect of past weight
changes on the current direction of movement in
weight space. It is used to avoid large changes in
either direction. It allows smaller learning rate but
faster learning.

• Epoch: number of iterations per training set
(convergence or limit)

1-18

STRENGTHS/WEAKNESSES

STRENGTHS:

• small storage reqts

• well-known

WEAKNESSES:

• many variables, trial and error

• slow training, many iterations thru data to
convergence, not sure when to stop, not sure it wil
ever converge (can cycle instead)

• overtraining, can learn "noise"

• local minima

1-19

ISSUES IN NETWORK
DESIGN

• Which transfer function to use
• Normalization of input
• Number of input nodes = number of components in
input vector
• Defining number of hidden nodes (heuristics) -
more hidden nodes will increase execution time, but
if too small, may miss local minima
• Number of output nodes = number of classes
• Typically each upper layer should have fewer
nodes than lower one
• Size must be reasonable (max 200-300 nodes for
s/w simulation)
• Momentum (how conservative you are in going
down the error slope) - allows smaller learning rate
constant with faster learning, but means more
storage used to store previous weights
• Storage: including bias, need (q+1)n + (n+1)m
weights
• Mix classes when training to avoid shocks
• How to speed up training time: use slightly noisy
data, increase size of hidden layer BUT keep size of
hidden layer reasonable, use variations of learning
algorithms
• What to do if network doesn't learn: start over with
new initial weights
• Avoid memorization (keep #hidden nodes > #output
nodes)

1-20

FAF TUTORIAL: BACKPROPAGATION THROUGH
TIME (BPTT)

Rumelhart, Hinton & Williams
Werbos

Williams & Zipser

• REVIEW OF BACKPROP
• ARCHITECTURE OF BPTT
• OPERATION OF BPTT
• WEAKNESSES

1-21

REVIEW OF BACKPROP

• Most well-known, widely-used model

• Supervised Learning, solves non-linearly separable
problems

• Learns an internal representation of the input, as
well as learning the output

• Credit Assignment problem: If output is in error,
how do you determine which weight (connection) to
adjust? Assumes all nodes are partially
responsible for the error. Propagates the output
error backward thru the connections, thru all layers,
to the input layer, changing ALL weights.

• Multi-layer: input, hidden, output

• At least ONE hidden layer required (usually 1 or 2)
• Feedforward, fully connected between adjacent
layers; connections have associated weights

1-22

REVIEW OF BACKPROP

FEEDFORWARD
CONNECTIVITY

/
/

/

bias Ö

OUTPUT LAYER:
m nodes

HIDDEN
LAYER:
n nodes, n x m
connections

INPUT LAYER:
q nodes, q x n
connections

1-23

REVIEW OF BACKPROP

PHASES: Training, Testing

Training:
• Assign random real-valued weights to each
connection

. REPEAT FOR EACH TRAINING DATA SET UNTIL
CONVERGENCE OR UNTIL REPETITION LIMIT
REACHED:

- run training pattern thru network
- determine error (distance) between the actual

value output and the known desired output at each
output node

- using a steepest descent algorithm, back
propagate this error through the network, adjusting
weights. Weights which were further off are updated
more.
• At end of training, weights are saved to be used for
testing

Testing:
• WEIGHTS ARE NOT CHANGED
• single pass thru each test pattern
• run each pattern thru the network
• the values at the output nodes constitute a
classification, with the maximum value
corresponding to the best estimate of identification

1-24

REVIEW OF BACKPROP

TRANSFER FUNCTIONS

sigmoid, maps to (0..1) = . e-z)-1

1-e"z

tanh, maps to (-1..1) = -—^

THREE PHASES OF TRAINING:
• Present input vector, propagate forward to output
layer by calculating activations of nodes upward from
input layer to output layer, generate output vector:

aj = f(XWU aj) where f is transfer function (assume
j

sigmoid)

• Backpropagate local error (recursive):
output units:
calculate scaled error: errorj = (tj - aj) * aj (1 - aj)
change weights: Awjk = L (errorj) (ak) k child of j
hidden units:
calculate scaled error:
errorj = aj(1-aj) * Xerrorj wij

i
change weights: Awjk = L (errorj) (ay)k child of j

• Update weights:
for all units, new wjj = wjj + Awjj

1-25

OVERVIEW OF BPTT

• Temporal supervised learning task: sequence
classification

• The input is the sequence to be classified

• The desired output is the correct classification,
which is to be produced at the end of the sequence.

• Gradient-based approach: part of the learning
algorithm involves computing the gradient of a
performance measure, and using the result to
determine the weight changes.

• Performance measure: measure of error between
actual & desired output

• Epochwise Operation: network runs from start
state to stopping time, then reset to start state for
next epoch. Starting states do not have to be the
same. Epoch boundary is barrier across which credit
assignment should not pass.

• Epoch Notation: (tO = start time, t1 = end time)
• Epochwise Learning Algorithm: weight updates are
performed only at epoch boundaries, not at every
time step

• Assumptions: semilinear units, discrete time

1-26

ARCHITECTURE OF BPTT

TIME INPUT UNIT ACTIVITIES

D D

t-1

EACH CONNECTION IS ASSUMED TO HAVE A DELAY OF 1 TIME STEP

t0+ 1 D D

to

1-27

OPERATION OF BPTT

• Real-Time BPTT:
Do at each time step t:
1. Add current state of network and current input pattern to
history buffer which stores history of network since time to
2. Inject error for current time. Backpropagation used to
compute all the errors and error derivatives for to < ti < t
3. All weights are changed accordingly.

Time

t

t-1

t-2

t-3

Input Unit Activities

tO+1

to

Targets

CZD
Step 1 =inject external
error;
Steps 2-4 = determine
virtual error for earlier
time steps

1-28

OPERATION OF BPTT

• Epochwise BPTT .
During each epoch, accumulate the history of network input and
network activity, along with history of target output values /
history of error. Do at each epoch:
1. Backpropagation used to compute all the errors and error
derivatives for to < t < t1
2. All weights are changed accordingly.
3. Reinitialize network and begin next epoch.

"ime Input Ur lit Activities Targ

 ^r-

ets

)

)

tl i
^ 1

h
V® ®

i ^"C

LVCII I IUI I IUCI o

determine virtual
tl-1 c error from previous

^ step;

tl-2 (y^~ c)

)

Odd numbers inject

^ I ico © external error

tl-3 c
XXX

to+i (, **"()

^ h I
to (>*-()

WEAKNESSES

. STORAGE REQTS/COMPUTATION TIME:
dependent upon selection of time granularity and
temporal pattern length

1-29

FAF TUTORIAL: REINFORCE

R. J. Williams

OVERVIEW
ARCHITECTURE
REINFORCE ALGORITHMS
NETWORK ISSUES

1-30

OVERVIEW

. DEFINITION OF REINFORCEMENT LEARNING
(as distinguished from supervised or unsupervised
learning:)

The performance of the entire system is judged on
the basis of a single scalar value, called
REINFORCEMENT, received from the environment,
as its evaluation of system performance.

At one extreme, the signal may have 2 values:
success/failure

A more informative signal would have a continuum of
values, indicating a graded degree of success

GENERAL OBJECTIVE OF LEARNING: the system
must maximize some function of the reinforcement
signal

The computation of reinforcement by the
environment is problem specific AND IS ASSUMED
TO BE UNKNOWN TO THE LEARNING SYSTEM.

1-31

OVERVIEW

. ASSOCIATIVE REINFORCEMENT LEARNING:

The environment provides additional information
beyond the reinforcement signal itself.
The system learns to ASSOCIATE OUTPUTS WITH
INPUTS (INPUT-OUTPUT MAPPING).
The system determines what action to perform (what
the OUTPUT should be) based on the additional
information from the environment and on the
REINFORCEMENT signal.

• Why interesting?
These systems require (for training feedback) a

SINGLE SCALAR REINFORCEMENT SIGNAL
provided to the entire net.

They statistically move along the gradient of a
natural performance measure for these problems
(analogous to backprop).

They can be implemented "simply" even in a
temporal context.

1-32

OVERVIEW

ASSOCIATIVE
REINFORCEMENT
LEARNING

Evaluative feedback
(system presented with
scalar signal)

Must discover output: must
search all possible actions to
discover which is better.
Output cannot be a determin-
istic function of input; the
operation of the system has
certain random components.

SUPERVISED
LEARNING

Instructive feedback
(system presented
with desired output)

Knows output: no
autonomous
search capability
required

Random operation consistent with theory of
stochastic learning automata.

1-33

Outputs

Feedforward
Connections

OVERVIEW

Reinforcement

(Context)
Inputs

1-34

OVERVIEW
A network of associative stochastic learning automata and its
training environment for a restricted associative reinforcement
learning task. In the network setting, individual automata are
called UNITS, the vector of actions selected by the network is its
OUTPUT, and the context input is called INPUT. The operation
of this system consists of the following four phases:

1. The environment picks an input pattern for the network
randomly (the distribution of which is assumed to be independent
of prior events within the network/environment system).

2. As the input pattern to each unit becomes available, it picks
an action randomly according to the distribution of actions
corresponding to the particular input pattern. Thus, "activation"
passes thru the network from input side to output side.

3. After all the units at the output side have selected their
actions, the environment picks an evaluation randomly according
to a distribution corresponding to the particular network output
pattern chosen and the particular network input.

4. Each unit changes its internal state according to some specific
function of its current state, the action just chosen, its input, and
the reinforcement. The precise manner in which the
reinforcement signal is used by the units depends upon the
learning algorithm to be applied. In the simplest case, the
reinforcement signal is simply broadcast to all units, but the use
of additional units or interconnections designed to help in the
learning process is also possible.

• All units receive identical reinforcement.

• Other strategies are possible: adaptively generated,
individually tailored reinforcement signals for individual units or
groups of units, as a function of current NON-reinforcement
environmental input.

• RESTRICTED associative reinforcement learning task: each
unit makes exactly one action selection corresponding to each
reinforcement value received. The actions (outputs) are
independent of prior history, and therefore of time.

1-35

ARCHITECTURE

NOTATION for Quasilinear Stochastic Units:
xj is the input pattern to that unit. The pattern is
a tuple whose individual elements are either the
outputs of certain other units, or certain inputs
from the environment.

yi is the output of the ith unit in the network, yj
is drawn from a distribution depending upon XJ
and the connection weights WJJ.

Yj is the set of possible output values yj of the ith

unit.

Xj is the set of possible values of the input vector
xj to the ith unit.

For each i, gj = Pr {yj = E|W, xj}, a probability
mass function determining the value of y as a
function of the weights and the input:

Assume mass function has single parameter pj,
Pi = f(si)
si = 5>ij Xj
f(sj) is usually the sigmoid function

1-36

ARCHITECTURE

yi

Wl

xj xj

Deterministic Quasilinear Unit Stochastic Quasilinear Unit

• Bernoulli Unit: any unit whose purely stochastic
component consists of a Bernoulli random number
generator, with input to this component representing
the Bernoulli parameter p, regardless of the
particular nature of the deterministic component of
the unit's computation.

1-37

REINFORCE ALGORITHMS

. EXPECTED REINFORCEMENT PERFORMANCE
CRITERION

The performance measure which will be optimized is
the expected value of the reinforcement signal,
conditioned on a particular choice of parameters of
the learning system (E).

ASSUMPTIONS: stationary distribution of input
inputs are independent from trial to trial
stationary distribution of r

Given these assumptions, E is a well-defined
deterministic function WHICH IS UNKNOWN TO THE
LEARNING SYSTEM. The learning system must
search the parameter space for a point where E is
maximum.

ALSO NOTE that since the weight matrix W
represents the network parameters, we will be
finding the WEIGHTS which maximize E.

1-38

REINFORCE ALGORITHMS

. RESTRICTED REINFORCE ALGORITHM: At the
end of each trial, r is received by the network and W
is adjusted according to the specific learning
algorithm.

• Learning algorithm: AWJJ = ocjj (r - bjj) ejj
where
ocij is a learning rate factor
bjj is a reinforcement baseline
ejj is characteristic eligibility of WJJ (5ln gj/öwjj)
(r-bjj) is reinforcement offset

Reinforcement baseline is assumed to be
conditionally independent of y, given W and x

The Learning Rate is assumed to be non-negative
and constant and not dependent upon the input x
(but may be dependent upon i and/or j).

REward Increment = Nonnegative Factor x Offset
Reinforcement x Characteristic Eligibility

1-39

REINFORCE ALGORITHMS

• Just as backprop performs local optimization of an
error measure, REINFORCE does essentially the
same for the natural performance measure E.

• Associative Reward/Inaction algorithm: Bernoulli
quasilinear units with logistic squashing function,
constant learning rate and reinforcement baseline =
0:

AWJJ = ocr(yj - pj)xj

. REINFORCMENT COMPARISON

This leads to faster and more reliable learning
Rewards actions which lead to better than usual
reinforcement and penalizes actions which lead to
worse than usual reinforcement.

A prediction of what reinforcement value to expect
on a particular trial is used as the basis for
comparison.

Prediction is computed as an exponentially weighted
average of past reinforcement values. It is adaptive.

For associative tasks, it is desirable to try to predict
reinforcement as a function of the input.
AWJJ = oc(r - rPred) (yj ■ pj) XJ, where rPred is the

predicted reinforcement for the current input
pattern

1-40

REINFORCE ALGORITHMS

. EXTENDED REINFORCE ALGORITHMS: Extend
algorithm to problems which have temporal credit-
assignment component: a network is trained on an
episodic basis, where each episode consists of k
time steps, during which the units may recompute
their outputs and the environment may alter its non-
reinforcement input at each time step. A single r
value is delivered to the net at the end of each
episode.

One way to adapt a network algorithm for temporality
is to use the "unfolding in time mapping". The
learning algorithm becomes:

k
Awjj = ccjj (r - bjj) 5>ij(t)

where
ocfj js a learning rate factor
bjj is a reinforcement baseline independent of y
ejj is characteristic eligibility of wjj (din gj/dwjj)

evaluated at time t, depends on the input x
to the ith unit at time t-1

(r-bjj) is reinforcement offset

The learning rate is assumed to be non-negative
and constant.

1-41

REINFORCE ALGORITHMS
This algorithm has a "plausible on-line
implementation using a single accumulator for each
parameter wij in the network." The purpose of this
accumulator is to form the eligibility sum, each term
of which depends only on the operation of the
network as it runs in real time, and not on the
reinforcement signal eventually received.

This is in contrast to BPTT, which requires
accumulating pairwise products of activations with
error signals, requiring large amounts of additional
storage which grows linearly with the number of time
steps per episode.

REward Increment = Nonnegative Factor x Offset
Reinforcement x Cumulative Eligibility

• Informational Connections: may be added to the
network.

Signals received on these lines would be used to
compute the reinforcement baseline. For example,
the reinforcement baseline might try to track the
reinforcement received as a function of these
informational inputs. A unit may only receive such
connections from units on which it has no ultimate
influence.

Using this technique might provide more tailored
credit assignment; or might help the scaling
problems inherent in simpler reinforcement schemes
in which all units are reinforced alike.

1-42

REINFORCE ALGORITHMS

• Backpropagating Through a Model:

Train a second network, called an internal model, to
compute the average reinforcement received as a
function of input to and output of the first basic
network. The first network must be run in an
exploratory mode to cover a sufficiently large portion
of the input/output pairs.

After the second network has learned to compute the
reinforcement signal provided by the environment,
the basic network can be trained by having it
hillclimb toward a maximum of the internal
reinforcement signal. This can be performed by
backpropagation.

The unknown mapping used by the environment to
compute the reinforcement is eventually replaced by
a known differentiable mapping which provides a
reasonable approximation to it.

1-43

NETWORK ISSUES

• Where/How is the R signal generated?

• Connectivity: how to connect, how many units to
choose, how to layer, is layering meaningful?

• Training vs. testing: don't present reinforcement
during testing?

• How to determine learning rate, reinforcement
baseline...

• Paper provides some hints for optimizing,
improving convergence

1-44

FAF TUTORIAL: SPATIOTEMPORAL PATTERN
RECOGNITION (SPR)

Hecht-Nielsen

. OVERVIEW

. ARCHITECTURE
• NEURALWORKS IMPLEMENTATION

1-45

OVERVIEW
• Network inputs/outputs are explicit functions of
time

• Network transforms the input pattern x(t) into a
time-varying class output y(t).

• Network output at t depends on current and
previous inputs

• Two basic types: pattern classification / control

• Example of pattern classifier in the speech domain:
Given an input stream with objects (words) in it, the
output is the class to which the most recently
recognized word belongs

• Example of control: the components of x are the
system state variables (plant sensor outputs) and the
components of y are the plant control signals. The
goal is to maximize performance by minimizing some
cost functions.

• Goal of SPR: to develop networks that are
insensitive to certain transformation of the input
patterns

• Want to know ways to measure the distance
between 2 patterns

• SPR pattern is a trajectory or path in n-dimensional
space, parameterized by time

1-46

OVERVIEW

• Typical goal: provide a classification for a
relatively brief s-t pattern: the classification occurs
after the entire pattern has been entered into the
system

. CUEING:
A CUED CLASSIFIER is told when the input pattern
begins/ends. In speech this is known as the
"isolated word recognition problem"; pauses
between words can be detected; therefore the words
can be isolated.

AN UNCUED CLASSIFIER deals with a continuous
stream of s-t pattern input. IT must figure out
when/where the pattern begins / ends.

Two problems in uncued patterns: obscuration and
interference.
Obscuration: patterns of interest are obscured by
other elements
Interference: for example, mixing sounds from
different sources

ASSUME: No obscuration or interference; otherwise
problem is intractable.

1-47

OVERVIEW

• SPATIOTEMPORAL WARPING: transformation of
s-t pattern. S-t pattern classifiers must be
insensitive to warping transformations.
1. Time Warp: speeds up or slows down the
movement of pattern x along its trajectory (translates
it forward or backward in time)
Pattern still traverses the same trajectory, but at a
different speed
Ratio of speeds before/after warping is dO/dt where 0
is a monotonically increasing smooth scalar function
of time x(0(t))
2. Entire path changes (example in speech, the pitch
changes)

• In principle, an s-t pattern of finite duration , not
subjected to s-t warping transformations, can be
treated as a spatial pattern.
• An s-t warped version of a pattern can be viewed as
a different spatial pattern of the same class as the
original
• if a time window of a fixed number N of spatial
samples is used, the total pattern time durations can
sometimes be ignored. "Time vignettes" each
classified individually.

1-48

OVERVIEW

S-T Pattern Distance Measurement uses
matched filter:

oo

Hv(u,t) = infT€C J"n(T-t) |u(x) - TV(T)| dx
- oo

where \i is a time windowing function, focuses
the distance measurement on the time interval
[t-a,tj. H is the distance between pattern u and
the best matching warped portion of v, over the
time interval [t-a,t].

• Nearest Matched Filter Classifier:
• Given a training set of patterns P = (v1,
b1),(v2,b2) (vn,bn) where bk is an element of
{1,2,...,M}, the set of pattern classifications.
• Use the training set patterns as the reference
patterns for N matched filters. The input pattern
u is fed to all the matched filters in parallel. All
use the same warping function. The outputs of
the classifier at time t are (1) the class #
associated with the reference pattern having the
smallest matched filter output, and (2) the actual
filter output value.

• Problem: ENORMOUS TRAINING SET (many
pattern examples!)

• Advantages: near Bayesian performance;
individual matched filters are insensitive to noise

1-49

ARCHITECTURE

0 0©
0 0©

zlrl

z2r2

z3r3

u1(t)u2(t)..un(t)

z(i-1)(t)

ul(t)

zi(t)

u2(t) un(t)

SPR processing element (node). Input comes from previous processing
element in row, as well as from pattern u(t). These inputs cause a
"braked flywheel" to spin up. The output zi of the unit is 1 if the
flywheel is spinning faster than threshold T; otherwise the output is 0.

1-50

ARCHITECTURE

• Each row implements a matched filter function for
the training set reference pattern.

• t is an integer variable; time increment chosen to be
small.

• Basic idea: output of the final processing element
of one row should be a binary indicator of whether or
not the s-t pattern u has just completed aproximately
traversing the path in space defined by the s-t
example pattern v (in the proper direction and at a
speed within selected time warp limits of the speed
of v at each point in the trajectory.

1-51

EQUATIONS (Hecht-Nielsen)

MATCHED FILTER: suitable for single
dimensional signals. u=input scalar, tuned
to scalar signal v

oo

Hv(u,t) = Jix(x-t) V(T) dx
- OO

GENERALIZED (to n-dimensional signals)
MULTIDIMENSIONAL MATCHED FILTER:
s-t pattern u, tuned to s-t pattern v, over
warp class C:

oo

Hv(u5t) = inf jeC J[x(x-t) |u(x) - TV(T)| dx
- oo

where JI is a time windowing function, focuses
the distance measurement on the time interval
[t-a,t]. H is the distance between pattern u and
the best matching warped portion of v, over the
time interval [t-a,t].

1-52

EQUATIONS (Hecht-Nielsen)
SPATIOTEMPORAL PATTERN RECOGNIZER
NETWORK: approximately implements a type of
nearest matched filter classifier

C = 0(t) for which 0.5 < de /dt < 2.0
Time window = time length of pattern (with total
time integrals of 1.0)

Transfer Function: z\\ = U(x|j(t) - an)
where

xii(t) = a||(-C|iX|i(M) + d|-, U(pF|j - |v|j - u(t)|] z|(j-i)(t-
1)))

0<x|j(t)<1
zio (t)=1
U(p) = 1 if p>0, 0 if p < 0
oc|i(q)=q if q >0, O if q < 0

v = constant vector, c and O < 1
c5 d, O determine flywheel dynamics, matched to

typical range of change rates of u & v patterns
a = threshold
1/c controls speed of x activation
O/c controls speed of x decay
"¥ = radius of sphere around v
a = attack function
d = flywheel driving torque

1-53

NEURALWORKS
IMPLEMENTATION

One Row for each Class
One Column for each Time Slice

Class A

Class B

Avalanche Network.
Inputs must be normalized.
Kohonen learning rule used to adapt weights connected to input
layer:
W = W + A(X-W) where X is input vector, A is learning rate.

Weighted sum I computed in standard fashion. Consists of:
• Dot product of input vector with associated weight vector

(both normalized)
• Input from prior processing element in activation chain.

This input predisposes the PE to activity.
• Global bias term r. Used to normalize overall activity in

the network. Sets a variable threshold against which PEs
compete; assures best match winner.

1-54

NEURALWORKS
IMPLEMENTATION

New output computing using I:
X'i = Xj + A(-a * Xj + b * [l]+ ■ r + dXPrev

where: x' is the new output
x is the previous output
I is the weighted sum
A(u) is the attack function A(u) = u if u > 0, c*u if

u < 0
[u] is a threshold function, = u if u > 0, = 0 if u <

0
a is a decay term for the PE output
b regulates the importance of a new input
c controls the delay of the attack function
d is the amount of pre-condition from prior PE

r calculation:

S= Ex
r = Max (r + d * (e - T) + f * s , 0)

where: S is total network activity
s is change in total network activity
T is a threshold or target power level.

1-55

NEURALWORKS
IMPLEMENTATION

Avalanche of activity through the chain:
Y1 through Yn represent the activity of succeeding
PEs in detection chain.

Y1

Y2

Y3

Yn

tO tl tn

1-56

2. APPENDIX J. BIT/FAULT REPORT CAUSE TUTORIALS

This appendix contains the BIT and fault report cause tutorials which were held throughout the
NNFAF contract. A tutorial was held for each of the BIT techniques and fault report causes which
were selected for the NNFAF demonstration approaches. The BIT techniques were error
correcting (Viterbi), activity detection, and parity. The fault report causes were temperature,
vibration, and G-load.

J-l

BIT TECHNIQUE and FAULT
REPORT CAUSE TUTORIAL

Error Correcting BIT
with Temperature Fault Report Cause

**

Fault Report Cause

TEMPERATURE

failure threshold

1/5
t/5 ~^t c3 intermittent

1 1 1 1 I 1 1 I 1
time scale = 5 seconds to 1 hour

•Threshold line represents typical hardware response to the
temperature curve. Hardware will pass BIT tests when the
temperature curve is below the threshold and will fail BIT tests
when the temperature curve is above the threshold.

• An individual system's hardware will exhibit the same
temperature curve/threshold relationship, but the threshold (of
BIT failure) will vary. The threshold depicted above shows the
boundary between an intermittent failure zone and a false alarm
zone. The BIT reports of any system that responds to
temperature with a threshold above the threshold in the figure
will be false alarm signatures. BIT reports that respond to
temperature with a threshold below the threshold in the figure
will be intermittent failure signatures.

J-2

Error Correcting BIT Signatures
.«s

failure threshold

"8 H
£ B t error detected and corrected
C ü O — — — -

c3 ■ I I I I I
time scale = 1 mS to 10 mS

• Error correcting BIT techniques provide reports with three
states:

1. No error
2. Error detected and corrected
3. Error detected but not correctable

•These three states provide enhanced information compared to
pass/fail reports from a typical BIT technique.

• The error detected and corrected threshold is located relative
to a fault report cause curve the same as a pass/fail threshold.
The error detected but not correctable threshold provides
additional information in the BIT report. It is a more severe
failure than the error detected and corrected failure.

J-3

Error Correcting BIT Techniques

A Channel

Input Data
A = (Ai, A2, ..., Am)
Ai = (ail, ai2,..., ain)

A = transmit data block
Ai = one data word
m = # of input words
n = bits in data word

Output Data
B = (Bl, B2, ..., Bm)
Bi = (bil, Di2, ..., bin)

Two types of techniques:
1. Block Code: Data word is independent

of other data words.

2. Convolutional Code: Data word is
dependent on other data.

Convolutional Encoding
Uses shift register to accept inputs and generate outputs.

Ex.

X.
AT

► yi
y2

s1 s2 S3

¥:

Outputs
YU(y1,y2,y3)

Internal State
S = (s1,s2, s3)

y3

• Y = F(s1, s2, s3) where input x = s1

• Therefore, Yt = F(xt, xt-1, xt-2)
Y is a function of the present and
past 2 input states.

J-4

Convolutional Code Decoding/Viterbi
•Dynamic Programming: finds minimum distance between
received code word and possible code words.

Trellis Diagram Example:
Y Decode B

Initial Next
state state Each line represents a valid

path to the next state

Valid paths determined by
algorithm

Circles represent states

•When decoding - distance to each state is determined. The
shortest distance path is chosen as the correct data. If the
shortest distance path is zero, then no error occurred.

•The number of previously received data states (j) used to
determine valid data, is defined by the algorithm.

•Bt = F(yt, yt-1 yt-j) j = depth of algorithm

J-5

Block Codes

HAMMING CODE:

•Additional bits are added to data bits to generate a
valid code word.

• Modulo 2 matrix multiplication can be applied to the
code words to detect errors.

• Hamming codes are defined by two parameters (n, k)
where n is the total number of code word bits and k is
the number of data bits.

• Example: (7, 3) Hamming code. Data = (D1, D2, & D3),
Parity = (P1, P2, P3, & P4)

•The capabilities of error detection and correction
codes are related to the minimum difference between
valid code words, referred to as the Hamming distance.
This number is equal to the number of 1's resulting from
XORing two code words.

J-6

(7, 3) Hamming Code Example
Pi =
p2 =
p3 =
p4 =

Di XOR Ds
Di XOR D2
D2 XOR Ds
Di XOR D2 XOR Ds

Total set of valid code words:

Data bits (Di,

0 0
D2, &D3)

0
Parity bits (Pi
0 0

, P2, P3
0

&P4)
0

0 0 1 1 0 1 1
0 1 0 0 1 1 1
0 1 1 1 1 0 0
1 0 0 1 1 0 1
1 0 1 0 1 1 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

Hamming distance for this example is 4. If 1, 2, or 3 bits are corrupted
then the corrupted word will not match any code word.

If 1 bit is corrupted, then only one valid word will have a Hamming
distance from the corrupted word of 1 and all others will be larger. That
valid word is the correct word if only 1 or 2 bit errors are expected.

For example, if the code word 010 0111 is corrupted to form 011 0111,
then the Hamming distance from valid words is as follows:

Total set of valid code words: Hamming distance from 011 0111

000 0000 5
001 1011 3
010 0111 1
011 1100 3
100 1101 5
101 0110 3
110 1010 5
1 1 1 0001 3

010 0111 is the valid code word because only 1 or 2 bits were assumed
to be erroneous. If two bits are corrupted, then the (7, 3) code can detect
the error but several valid words may have a distance of 2 and the error
cannot be fixed.

J-7

Signature of Hamming Code BIT
Technique with Temperature Fault

Report Cause

non-correctable error detected Threshold 2

error detected and correcte Threshold 1

iliiiiii itniiiii iiiiiiii iiiniiii niiiiii iiiiiiiii inn
zrrer Error Correcting BIT Technique report

Failure detection states0: No error
1: Error detected and corrected
2: Error detected but not correctable

Threshold 1 and 2 will vary relative to each other for different systems. If
they are lower than the thresholds shown then they represent a system with
an intermittent failure. If they are above the thresholds shown then the system
may only have a false alarm.

J-8

Hamming Code BIT Report with
Temperature

non-correctable error detected Threshold 2

error detected and correcte Threshold 1

MM Ml Ml I III MINI MM I II II II III Ml INI Ml MM Ml I

Erfror Correcting BIT Technique report

BIT Reports:

Functional system with thresholds above depicted thresholds:
0000000000000000000 10 11011000000000000

Functional system with false alarm with threshold as shown above:
0000000000000001 1 101 1 10101 1 1 1000000000

System with intermittent failure (thresholds lower than shown above):
00000000011110112122102221101110101000

J-9

BIT TECHNIQUE and FAULT
REPORT CAUSE TUTORIAL

Activity Detection BIT with Temperature Fault Report
Cause

**

failure threshold

Fault Report Cause

TEMPERATURE

time scale = 5 seconds to 1 hour

•Threshold line represents typical hardware response to the
temperature curve. Hardware will pass BIT tests when the
temperature curve is below the threshold and will fail BIT tests
when the temperature curve is above the threshold.

•An individual system's hardware will exhibit the same
temperature curve/threshold relationship, but the
threshold (of BIT failure) will vary. The threshold
depicted above shows the boundary between an
intermittent failure zone and a false alarm zone. The BIT
reports of any system that responds to temperature
with a threshold above the threshold in the figure will
be false alarm signatures. BIT reports that respond to
temperature with a threshold below the threshold in the
figure will be intermittent failure signatures.

J-10

Pass/Fail BIT Signatures

«5

failure threshold

OH ■ I I I I I 1
time scale = 1 mS to 10 mS

»Pass/Fail BIT techniques provide reports with two states:
1. No error
2. Error detected

Activity Detector BIT Techniques

A

Input Data
A = (Al, A2, ..., Am)
Ai = (ail, ai2, ..., ain)

A = transmit data block
Ai = one data word
m = # of input words
n = bits in data word

BIT
Function A

^ BIT Results
(pass or fail)

Output Data is
unaltered input data

j-ii

Activity Detector
Signals are constantly monitored for state changes. Once a state
change occurs activity is triggered and recorded in a register for
the respective signal. Periodically, the activity detector status
register is checked and reset. If any status register signals do
not confirm that activity occurred, then a failure is reported.

A

Function periodically
performed

Periodically
check register
and verify
activity

R.eset register

Check for
activity

Latch activity in
a register

Report status
(at same rate that
register checked)

Activity Detector Example
An implementation of an activity detector latch is shown below:

+ 5 D-Latch

Status that function

Signal being
monitored for
activity

Reset of activity detector after
function checks for activity

periodically checks

This example of an activity detector is triggered by a low to high
state signal transition.

J-12

Activity Detector Example

Example of activity detection using the activity detector from the
previous page

Activity ' Status Periodic Check
Input data Register (1 = fail) of Activity

(D1,D2,D3,D4) (SI, S2, S3, S4) Register (0 = P)

0 0 0 0 0 0 0 0 X
0 0 1 0 0 0 1 0 X
0 1 1 1 0 1 1 1 X
0 1 0 0 0 1 1 1 X
1 0 0 1 1 1 1 1 X
0 0 1 0 1 1 1 1 0 Pass Report

0 0 0 0 0 0 0 0 X
0 0 0 1 0 0 0 1 X
1 0 0 0 1 0 0 1 X
0 1 0 0 1 1 0 1 X
0 1 0 1 1 1 0 1 X
1 1 0 0 1 1 0 1 1 Fail Report
0 0 1 0 0 0 1 0 X

J-13

Signature of Activity Detection BIT
Technique with Temperature Fault

Report Cause

error detected Threshold

BIT Technique
report

Failure detection states 0: No error
1: Error detected

The threshold will vary for different systems. If it is lower than
the threshold shown then it represents a system with an
intermittent failure. If it is above the threshold shown then the
system may only have a false alarm.

J-14

Activity Detection BIT Report with
Temperature

error detected Threshold 1

1111111111111111111111111111 1111111111111111111111111111

BTT 'Technique
report ,

Possible BIT Reports in response to the curve above:

Functional system with thresholds above depicted thresholds:
0000000000000000000 10 110 11000000000000

Functional system with false alarm with threshold as shown above:
0000000000000001 1 101 1 10101 1 1 1000000000

System with intermittent failure (thresholds lower than shown above):
00000000011110111111101111101110101000

J-15

BIT TECHNIQUE and FAULT
REPORT CAUSE TUTORIAL

Parity BIT with G-Load Fault Report Cause
**

Fault Report Cause

G-LOHD

Failure Boundary

intermittent

t ■ I 1 I I 1
• Boundary line represents typical hardware response to the
environment curve. Hardware is more likely to pass BIT tests
when the environment curve is below the boundary and will fail
BIT tests when the environment curve increases above the
boundary.

•An individual system's hardware will exhibit the same
environment (G-Load) curve/boundary relationship, but the
threshold (of BIT failure) will vary. The figure depicted above
shows the boundary between an intermittent failure zone and a
false alarm zone. The BIT reports of any system that respond to
G-Load with a threshold above the boundary in the figure will be
false alarm signatures. BIT reports that respond to G-Load with
a threshold below the boundary in the figure will be intermittent
failure signatures.

J-16

Pass/Fail BIT Reporting

o
C/3 ■—
3 ,«

£ 3 failure threshold
5.C
« SP — — — —

21
3
es

PL, I I I I I I
time scale = .1 to 1 sec. ^r

Each division represents an individual report of
BIT status.

•Pass/Fail BIT techniques provide reports with two states:

1. No error
2. Error detected

• BIT is unlikely to report a failure unless the magnitude of a fault
report cause (FRC) is above the failure threshold.

J-17

Parity BIT Techniques

A
Parity

Generator

Input Data
Ai = (an, ai2, ..., ain)

Ai = one data word
n = bits in data word

A + parity bit

A
Output Data is
original input data

BIT Results
(pass or fail)

Parity
A parity generator is used to compute a parity (in this example it
is a 1 bit even parity). The parity bit is added to the data word
prior to being stored or transmitted. When the data word (with
parity) is received or read, the correct parity is confirmed.

Transmission Media

Parity Generator

Active High
Fault bit

-^

Parity Checker

J-18

Parity Generation Example
Input data Parity bit

(Ail , Ai2, Ai3, ...Ai8) (Aip)

0 0 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0 1
0 1 1 1 0 0 1 1 1
0 1 0 0 0 1 1 1 o l
1 0 0 1 1 0 1 1 1
0 0 1 0 1 0 1 1 0
0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 1 1
0 1 0 0 1 0 0 1 1
0 1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 1 1

Parity bit
generated by

using exclusive
OR addition of

all data bits.

0 0 10 0 110 1

Parity Verification Example
Input data Pa rity bit Parity test results

(Ail , Ai2, Ai3, ...Ai8) (Aip) (fault bit)

0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 1 1 0 1 0 Pass Report

0 1 0 1 0 0 1 1 1 1
0
1

1
0

0
0

0
1

0
1

1
0

1
1

1
1

0
1

0
0

Parity test bit
generated by

using exclusive
0 0 1 0 1 0 1 1 0 0 OR addition of
0 0 0 0 0 1 0 0 1 0 all data bits

0 0 0 1 0 0 0 1 0 0 (including parity
bit).

1 0 0 0 1 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0
0 1 0 1 1 1 1 1 1 1 Fail Report
1 1 0 0 1 0 0 1 1 1
0 0 1 0 0 1 1 0 1 0

Bold type represents corrupted data.

J-19

Behavior of Parity BIT Technique with
G-Load Fault Report Cause

Probability of Failure

Failure Threshold for
System Under Analysis

G-Load

Increasing^ High PaiJe Alarm/Intermittent
Probability of Failure Report Failure Boundary

^ow but Increasing
Probability of failure Report

SvstemOK

false alarm

time

J-20

Parity BIT Reports with G-Load
Signature

False Alarm/Intermittent
Boundary

 .ThiQsbpJÄ

ijniillll i BIT Technique
report

Possible BIT Reports in response to the curve above:

Functional system with threshold above depicted boundary:
00000000000000000100110110000000000000

False Alarm/Intermittent
Boundary

/

^N /

/ Threshold \

l lll 1 II 1 IIII 1 1 II 1 II 1 II 1 II 1 II 1II 1 II 1111II1111II1II11
BIT Technique
report

System with intermittent failure (threshold lower than boundary):
00000000000000010111111110111000000000

J-21

Parity BIT Report with G-Load
Signature

False Alarm/Intermittent
Boundary

III Mill Mill llllll Mill Mill Mill IIMI IIIIIMIIM Mill I

MT BIT Technique
report

Functional system with threshold at boundary (false alarm):
00000000000000000101111101110000000000

J-22

BIT TECHNIQUE and FAULT
REPORT CAUSE TUTORIAL

Parity BIT with Vibration Fault Report Cause
**

Fault Report Cause

UIBRRTION

Failure Boundary

intermittent

•Boundary line represents typical hardware response to the
environment curve. Hardware is more likely to pass BIT tests
when the environment curve is below the boundary and will fail
BIT tests when the environment curve increases above the
boundary.

•An individual system's hardware will exhibit the same
environment (vibration) curve/boundary relationship, but the
threshold (of BIT failure) will vary. The figure depicted above
shows the boundary between an intermittent failure zone and a
false alarm zone. The BIT reports of any system that respond to
vibration with a threshold above the boundary in the figure will be
false alarm signatures. BIT reports that respond to vibration with
a threshold below the boundary in the figure will be intermittent
failure signatures.

J-23

Pass/Fail BIT Reporting

D
Vi
3

■ 3

Si
3

P-

failure threshold

eg I I I I I
time scale = 1 mS to 10 mS Vd J

Each division represents an individual report of
BIT status.

•Pass/Fail BIT techniques provide reports with two states:
1. No error
2. Error detected

• BIT is unlikely to report a failure unless the magnitude of a
fault report cause (FRC) is above the failure threshold.

Fault Report Cause

probability of fault report
increases with environment
magnitude above threshold

hresnold

BIT Technique
report

time scale = 10 mS

J-24

Parity BIT Techniques

A
Parity

Generator

Input Data
Ai = (an, ai2, ..., ain)

Ai = one data word
n = bits in data word

A + parity bit Output Data is
original input data

BIT Results
(pass or fail)

Parity
A parity generator is used to compute a parity (in this example it
is a 1 bit even parity). The parity bit is added to the data word
prior to being stored or transmitted. When the data word (with
parity) is received or read, the correct parity is confirmed.

Transmission Media

Parity Generator

Even Parity
bit

Active High
Fault bit

-^

Parity Checker

J-25

Parity Generation Example
Input data Parity bit

(Ail,Ai2,Ai3,...Ai8) (Aip)

0 0 0 0 0 1 0 0 1
0 0 10 0 1 1 0 1 Parity bit

0 111 0 0 1 1 1 generated by

0 10 0 0 1 1 1 0 using exclusive
OR addition of

10 0 1 1 0 1 1 1 all data bits.

0 0 10 1 0 1 1 0
0 0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0
10 0 0 1 0 0 1 1
0 10 0 1 0 0 1 1
0 10 1 1 1 0 1 1 i

■

110 0 1 1 0 1 1
0 0 10 0 1 1 0 1

Parity Verification Example
Input data Parity bit Parity test results

(Ail,Ai2,Ai3,...Ai8) (Aip) (fault bit)

0 0 0 0 0 1 0 0 1 0
0 0 10 0 1 1 0 1 0 Pass Report
0 10 10 0 1 1 1 1
0 10 0 0
10 0 11

1
0

1
1

1
1

0
1

0
0

Parity test bit
generated by

using exclusive
0 0 10 1 0 1 1 0 0 OR addition of
0 0 0 0 0 1 0 0 1 0 all data bits

0 0 0 10 0 0 1 0 0 (including parity
bit).

10 0 0 1 0 0 1 l 0
0 10 0 1 0 0 1 i 0
0 10 11 i l 1 i 1 Fail Report
1 10 0 1 0 0 1 i 1
0 0 10 0 1 1 0 i 0

Bold type represents corrupted data

J-26

Behavior of Parity BIT Technique with
Vibration Fault Report Cause

Probability of Failure

J-27

Parity BIT Report with Vibration
Signature

False Alarm/Intermittent
Boundary

I I l l l I l I I 11 I I I I I I I I l l 11 l l l l I l I I I I I 11 I I I I I I I I 1 I 1 11 I I I I I I I t BIT Technique
report

Possible BIT Reports in response to the curve above:

Functional system with threshold above depicted boundary:
0000000000000000000101100 1000000000000

J-28

Parity BIT Report with Vibration
Signature

False Alarm/Intermittent
Boundary

Mini in II in ii in ill M in M ill ill ll Ml 11 Ml III II 111 II I i BIT Technique
report

System with intermittent failure (threshold lower than boundary):
0011010111000000010111110100000011001

J-29

Parity BIT Report with Vibration
Signature

False Alarm/Intermittent
Boundary

Nil II ill Ml ll III ll III III ll III Ml ll III ll 111 Ml ll III III M i BIT Technique
report

Functional system with threshold at boundary (false alarm):
00 11000010000000010110 11010100001000 1

i'U.S. GOVERNMENT PRINTING OFFICE: 1995-61Ü-126-50115

J-30

MISSION

OF

ROMELABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

