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ABSTRACT 

Future airborne radars will be required to detect targets in an interference 
background comprised of clutter and jamming. Space-time adaptive processing 
(STAP) refers to multidimensional adaptive filtering algorithms that simultaneously 
combine the signals from the elements of an array antenna and the multiple pulses 
of a coherent radar waveform, to suppress interference and provide target detec- 
tion. STAP can improve detection of low-velocity targets obscured by mainlobe 
clutter, detection of targets masked by sidelobe clutter, and detection in combined 
clutter and jamming environments. This report analyzes a variety of approaches 
to STAP problem. Optimum, or fully adaptive processing is reviewed. Computa- 
tional complexity and the need to estimate the interference from a limited amount 
of available data make fully adaptive STAP impractical. As a result, partially adap- 
tive space-time processors are required. A taxonomy of reduced-dimension STAP 
algorithms is presented where algorithms are classified based on the type of pre- 
processor employed. For example, beamspace algorithms use spatial preprocessing, 
while post-doppler approaches perform temporal (Doppler) filtering before adaptive 
processing. In some cases, the special structure of the clutter can be exploited to 
design preprocessors yielding minimum clutter rank. For each class, either sample- 
matrix-inversion (SMI) or subspace-based weight computation may be employed. 
Simulation results are presented to illustrate various performance metrics, includ- 
ing SINR, adapted patterns, minimum detectable velocity, and required degrees of 
freedom. 
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1.   INTRODUCTION 

Future airborne radars will be required to provide long-range detection of increasingly smaller 
targets. This function must be performed in overland or littoral environments where the ground 
clutter can be quite severe, and in the presence of hostile electronic countermeasures, or jamming. 
Future radars must therefore possess, in addition to sufficient power and aperture, the capability 
to suppress both clutter and jamming to near or below the noise level. Only then will the radar's 
sensitivity be fully utilized in signal environments containing unwanted interference. 

The problems of clutter and jamming suppression have dominated the minds of radar engi- 
neers since the beginnings of radar. The ground clutter seen by an airborne radar is extended in 
both range and angle; it also is spread over a region in Doppler due to the platform motion. A 
potential target may be obscured by not only mainlobe clutter that originates from the same angle 
as the target but also by sidelobe clutter that comes from different angles but has the same Doppler 
frequency. The effect of sidelobe clutter may be eliminated with low- enough antenna sidelobes on 
transmit and receive. Achieving very low-sidelobes in practice can be quite difficult, especially in 
the complex electromagnetic environment on an aircraft, and very expensive. In many cases the 
need to detect slow-moving targets prevents the radar from utilizing high-pulse repetition frequency 
(PRF) waveforms to avoid clutter completely. Displaced-phase-center-antenna (DPCA) processing 
[2, 1] was developed to solve the clutter problem in airborne surveillance radar. With DPCA the 
receive aperture is shifted from pulse to pulse to compensate for the platform motion. Outputs from 
different apertures with the same effective phase center are subtracted on a pulse-to-pulse basis to 
cancel the clutter. DPCA requires velocity-based control of the radar PRF. DPCA's sensitivity to 
element mismatch errors limits the clutter cancellation achievable in practice, and DPCA alone has 
no inherent provisions for suppressing jamming signals. 

Adaptive array processing [22, 23] techniques developed over the last 25-30 years have been 
successfully used to mitigate the effects of jamming on communication and radar systems. These 
techniques, by virtue of their adaptive nature, can provide nulling far below the sidelobe level 
limitation due to random errors. In an adaptive beamforming radar, however, special measures 
must be taken to avoid the inclusion of mainlobe clutter during the adaptation process. For 
example, the use of a special listening interval to sample the jamming [33] avoids this problem, 
but this solution takes away from the radar timeline and creates a vulnerability to a nonstationary 
jamming environment. Similarly, adaptive beamforming changes the receive antenna patterns and 
therefore affects the clutter, which must subsequently be suppressed. 

Space-time adaptive processing (STAP) refers to the extension of adaptive antenna techniques 
to processors that simultaneously combine the signals received on multiple elements of an antenna 
array (the spatial domain) and from multiple pulse repetition periods (the temporal domain) of a 
coherent processing interval (CPI). STAP is therefore a generalization of DPCA processing that 
utilizes many elements and pulses as well as data-adaptive combination of the various signals. 
STAP offers the potential to improve airborne radar performance in several areas.   First, it can 



improve low-velocity target detection through better mainlobe clutter suppression. Second, STAP 
can permit detection of small targets that might otherwise be obscured by sidelobe clutter. Third, 
STAP provides detection in combined clutter and jamming environments. Finally, STAP adds 
robustness to system errors and a capability to handle nonstationary interference. 

A basic illustration of space-time adaptive processing is given in Figure 1. A pictorial view 
of the interference environment seen by an airborne radar is shown in Figure 1(a). The signal- 
to-noise-ratio (SNR) resulting from clutter and a single jamming signal is shown as a function of 
angle and Doppler. Barrage noise jamming is localized in angle and distributed over all Doppler 
frequencies. The clutter echo from a single ground patch has a Doppler frequency that depends 
on its aspect with respect to the platform; clutter from all angles lies on the "clutter ridge" shown 
in Figure 1(a). Note that a mainlobe target competes with both mainlobe and sidelobe clutter as 
well as jamming. A space-time adaptive processor may be thought of as a two-dimensional filter 
that represents combined receive beamforming and target Doppler filtering. An example adapted 
response is shown in Figure 1(b). Note the high gain at the target angle and Doppler, and the 
deep nulls along both the jamming and clutter lines. Applying this filter to the data will suppress 
the interference and enable target detection. A bank of adaptive filters is then formed to cover all 
potential target angles and velocities. 

The first published work on space-time adaptive processing for radar was Brennan and Reed 
[3] from 1973, in which optimum space-time filtering was described. Other work has been done 
by Klemm [5, 6, 7, 8], who first tried to understand the fundamental degrees of freedom occupied 
by airborne clutter. The significant advances over the last two decades in digital signal processing 
technology have made the real-time implementation of STAP feasible with current or near-term 
technology. As a result, STAP is becoming a more active research area. Barile et al. [9] have 
considered some practical limitations to STAP performence. Richardson [43] has studied the rela- 
tionship between STAP and DPCA processing. DiPietro [12] has examined a STAP algorithm that 
utilizes several adjacent Doppler bins of data for adaptation. Cai and Wang [10] and Wicks [39] 
have described a novel approach where a subset of space-time filter outputs is adaptively weighted. 
Their architecture is coupled with a Generalized-Likelihood-Ratio Test (GLRT) that provides an 
embedded constant-false-alarm-rate (CFAR) property. Much of the recent work has been focused 
on a particular issue or algorithm. Many additional papers on adaptive detection and sensor array 
signal processing also have direct application to STAP. 
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Figure 1.    Space-time adaptive processing, (a) The power spectral density of the interfer- 
ence (clutter and jamming) seen by an airborne radar (b) Example adapted response. 



The primary aim of this report is to analyze a variety of approaches to the space-time pro- 
cessing, starting from a common set of assumptions and system parameters. To this end, some 
algorithms are examined that have been described in the references above; variations to these 
approaches as well as some new approaches are also considered. Fully adaptive STAP, where a sep- 
arate adaptive weight is applied to all elements and pulses, is addressed first. Fully adaptive STAP 
requires the solution to a system of linear equations of size MN, where N is the number of array 
elements and M is the number of pulses per CPI. For typical radar systems, the product MN may 
vary from several hundreds to tens of thousands. Fully adaptive STAP is impractical for two major 
reasons. First is the sheer computational power needed to solve large systems of equations in the 
time necessary for real-time radar operation. Second, the interference is typically unknown a priori 
and must be estimated from the limited data available from a radar dwell. As the dimension of the 
adaptive weight vector becomes larger, so does the amount of data required for a good estimate 
of the environment. The inherent nonstationarity of radar clutter further limits the amount of 
data over which the clutter can be assumed stationary, which in turn makes its estimation even 
more difficult. These concerns lead naturally to investigation of reduced-dimension, or partially 
adaptive, STAP architectures. A taxonomy of reduced-dimension STAP algorithms is presented 
in which algorithms are classified according to the domain in which the weight application occurs. 
The clutter seen by an airborne platform has a special structure induced by the platform motion; 
this structure is exploited in the design of some partially adaptive algorithms. 

The topic of this report is the use of adaptive processing for improved airborne radar system 
performance. Although it is not discussed herein, an adaptive capability may in fact impact basic 
aspects of radar system design. In the past, the need for ultralow sidelobes or high-PRF waveforms 
was driven largely by the need to avoid clutter. A capability to suppress clutter adaptively may 
allow the rethinking of conventional wisdom in some areas. For example, medium- or low-PRF 
waveforms (with better range information) may be permissible in systems that had been primarily 
high PRF. The lessening of requirements on overall sidelobe level may have beneficial effects on the 
resulting component tolerances required and therefore even the cost of future radar systems. 

The organization of this report is as follows. Chapter 2 defines the model for the signals 
received by an airborne radar utilizing an array antenna. Chapter 3 considers some fundamentals, 
including fully adaptive processing and a number of performance measures. Chapter 4 presents a 
theory for reduced-dimension adaptive processing and a framework for classifying STAP algorithms. 
Element-space approaches are discussed in detail in Chapter 5, and beamspace approaches are 
presented in Chapter 6. Chapter 7 provides additional performance comparisons. Finally, Chapter 8 
gives a summary and some areas for future work. For reference, a brief review of DPCA processing 
is provided in Appendix 3. 



2. AIRBORNE ARRAY RADAR SIGNAL ENVIRONMENT 

2.1 Introduction 

In this chapter, a model is developed for the signals received by an airborne pulsed-Doppler 
radar. The radar utilizes an array antenna with an independent receiver channel behind each 
element. The received signals will always contain a component due to receiver noise and may 
contain components due to both desired targets and undesired interference. Here, interference 
means either jamming, clutter, or both. The parameters for a generic radar system are used to 
derive expressions for each of these potential signal components. Since the clutter received by the 
airborne radar is the most complicated signal component, its development is the largest portion of 
the chapter. The results developed here form the basis for the analysis of the various space-time 
processing approaches that are discussed in the subsequent chapters of this report. 

Space-time processing is a multidimensional filtering problem. To avoid a proliferation of 
subscripts, matrix notation is used where possible. Although the concepts discussed in this chapter 
are not new, the formulation of multidimensional radar data and covariance matrices in terms of 
Kronecker and Hadamard matrix products may be new to some readers. 

2.2 Radar System Description 

The system under consideration is a pulsed Doppler radar residing on an airborne platform. 
The radar antenna is a uniformly spaced linear array antenna (ULA) consisting of N elements. 
These elements may be the beamformed columns of a rectangular planar array. The platform is 
at an altitude ha and moving with constant velocity vector va. The chosen coordinate system is 
shown in Figure 2. The angle variables <f> and 9 refer to true azimuth and elevation, and not the 
standard spherical coordinate system angles. A unit vector k pointing in the (<j>, 9) direction is 
given by 

k(4>,9) = cos9s'm<f>x + cosflcos^y + sinflz , (1) 

where x, y, and z are the unit vectors of a Cartesian coordinate system. Let the array orientation 
be specified by the interelement position vector d, so that the nth element, n = 0,..., N — 1, has 
position (at some reference time) 

r„ = nd  . (2) 

In this report, only horizontally oriented antennas are considered, and without loss of generality, 
d = dx is chosen, where d is the interelement distance. With this definition the chosen angle 
coordinates are referenced to the array normal. It is also assumed that the array elements are 
identical, with radiation (voltage) pattern denoted by f(<f>, 9) and power pattern g(<f>, 9) = |/(</>, 0)|2. 
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A fixed transmit pattern Gt(<f>,0) for the array is assumed, which may or may not be tapered 
to produce low sidelobes. The radar transmits a coherent burst of M pulses at a constant PRF 
fr = 1/Tr, where TT is the pulse repetition interval (PRI). The transmitter carrier frequency is 
f0 = c/A0, where c is the propagation velocity. The time interval over which the waveform returns 
are collected is commonly referred to as the coherent-processing interval (CPI). The CPI length is 
equal to MTT. A pulse waveform of duration Tp and bandwidth B is assumed. On receive, each 
element of the array has its own down-converter, matched filter receiver, and A/D converter, as 
shown in Figure 3. 

Since the receiver is a matched filter, the receiver bandwidth B is taken to be equal to that 
of the transmitted pulse. Matched filtering is done separately on the returns from each pulse, after 
which the signals are sampled by the A/D converter and sent to a digital processor. The digital 
processor performs all subsequent radar signal and data processing. For each PRI, L time (range) 
samples are collected to cover the range interval. With M pulses and N receiver channels, the 
received data for one CPI comprises LMN complex baseband samples. This multidimensional data 
set is often visualized as the Lx M x N cube of complex samples shown in Figure 4. This assembly 
will be referred to as the radar or CPI datacube. 

To facilitate this discussion, some notation must be developed for referring to portions of 
the radar data cube. First the mathematical conventions must be defined. Scalar quantities are 
denoted with italic typeface. Lowercase boldface quantities denote vectors and uppercase boldface 
quantities denote matrices. The operations of transposition, complex conjugation, and conjugate 
transposition are denoted by superscripts T, *, and H, respectively. MATLAB notation for sepa- 
rating the elements of a vector or matrix is employed, e.g., given scalars x and y, the vector [x; y] 
is a 2 x 1 column vector, while the vector [x,y] is a 1 x 2 row vector. Similarly, for two JV x 1 
vectors a! and a2, A = [ai,a2] is an N x 2 matrix while a = [ai;a2] is a 2JV x 1 vector. The 
symbols 0 and ® refer to the Hadamard and Kronecker1 matrix products [13], respectively. The 
notation T = diag(t) denotes a diagonal matrix whose main diagonal is the vector t. The notation 
x = vec(X) will define a vector x formed by stacking the columns of the matrix X. Also, the 
notation R = Toeplitz(c, r) denotes a Toeplitz matrix whose first column is the vector c and whose 
first row is the vector r. Finally, the E{} symbol denotes the expected value of a random quantity. 

Let xnmi be the complex sample from the nth element, mth pulse, at the /th sample time 
(range gate). Let xm); be the N x 1 vector of antenna element outputs, or a spatial snapshot, at 
the time of the /th range gate and mth pulse. Now let the N X M matrix X; consist of the spatial 
snapshots for all pulses at the range of interest, 

X, = Xo,J ,     Xi,, ,      ... ,     XM-i,|      • (3) 

^lso called the tensor product. 
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TABLE 1 

Symbols for Radar System Parameters 

Ar number of elements in array 

M number of pulses per CPI 

L number of range samples per PRI 

u0 = 2irf0 radar operating frequency 

A0 radar operating wavelength 

d interelement spacing 

Tr pulse repetition interval (PRI) 

/r pulse repetition frequency (PRF) 

Pt peak transmit power 

TP transmit pulse width (uncompressed) 

B instantaneous bandwidth 

Gt(0,4) full array transmit power gain 

Mfi element pattern (voltage) 

9{0A) element pattern (power) 

Lt system losses on transmit 

Lr system losses on receive 

No receiver noise power spectral density 

ha platform height 

va platform velocity 

For reference, Table 1 provides a list of the various radar system parameters. This matrix is 
represented by the shaded slice of the datacube in Figure 4. The rows of X/ represent the temporal 
(pulse-by-pulse) samples for each antenna element. Beamforming is an operation that combines 
the rows of X;, while combining the columns is a temporal, or Doppler filtering operation. It is 
convenient to write the data for a single range gate as a the /th MN x 1 vector Xh termed a 
space-time snapshot, by stacking the columns of X/: 

Xi = vec(X/) = [ xo,/ ;   xu ;    ... ;   XM-I,/ ] (4) 
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This report will work primarily with data from a single range gate, where it is understood that the 
components of the space-time snapshot may have a range dependency. For notational expediency, 
the / subscript will be omitted in much of what follows. The symbol x will refer to a space-time 
snapshot at the range of interest, and xm will be the spatial snapshot for the mth PRI at this 
range. The function of a surveillance radar is to ascertain whether targets are present in the data. 
Thus, given a space-time snapshot, the signal processor must make a decision as to which of the 
two hypotheses is true: 

X = Xu Ho'. Target absent 
(5) 

X = atvt + xu       Hi'' Target present 

The vector v( is the (known) response of the system to a unit amplitude target and at is the 
(unknown) target amplitude. The component xu encompasses any interference or noise component 
of the data. Three undesired components will be considered: clutter, jamming, and thermal noise. 
These three components are assumes to be mutually uncorrelated. The target component is viewed 
as a shift in the mean of the data, so that under either hypothesis the data has covariance matrix 

R« = E{xux") = Re + Rj+ Rn , (6) 

where the subscript identifies the particular component. In the next sections, a model is developed 
for the target response and for each interference and noise component, starting from the set of 
radar system parameters. 

2.3    Target 

A target is defined as a moving point scatterer that is to be detected. The component of the 
space-time snapshot at the range gate corresponding to the target range Rt will be derived. The 
target is also described by its azimuth 4>t, elevation 6t, relative velocity with respect to the radar vt, 
and radar cross-section (RCS) at. The derivation will begin by defining the transmitted waveform 
and stepping through the filtering that leads to the samples forming the space-time snapshot. The 
full array transmits a coherent burst of pulses 

s(t) = atu(t)ej("°t+^ , (7) 

where 

M-i 

u(t) =  Y, up(t - •Tr) (8) 
m=0 
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is the signal's complex envelope and up(t) is the complex envelope of a single pulse. The transmit 
signal amplitude is at, and a random phase rj>, uniformly distributed on [0,27r), is also included. 
The pulse waveform up(t) is of duration Tp and has unit energy, 

fTp\up{t)\2dt = l . (9) 
Jo 

The energy in the transmitted signal is then 

Et = /        \s(t)\2dt = MEP , (10) 
Jo 

where Ep = a2 is the energy transmitted in a single pulse. 

The target echo is received by each of the N elements. Ignoring relativistic effects, the target 
signal at the nth antenna element, sn(t), is given by [14] 

sn(t) = aru(t - rny'2,r</o+/'Nt-T»V* , (11) 

where aT is the echo amplitude and 

/. = f- (12) 

is the target Doppler frequency. It will be convenient at times to use the normalized Doppler 
frequency defined by 

*>t = ftTr =  £ . (13) 
Jr 

The target delay to the nth element, rn, consists of two components: 

r« = Tt + <, (14) 
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where rt = 2Rt/c is the round trip delay and 

, k(<f>t,6t)-rn nk(4>t,et)-d d . 
T   = • = : = —n- cosdt sm<pt (15) 

c c c 

is the relative delay measured from the phase reference to the nth element. It will also be convenient 
to define the target spatial frequency 

dt = k4>tA)-d=dcos0is[n(f>t (i6) 

so that the phase delay to the nth element may be expressed as 

-u)0T'n = n2xtit . (17) 

It is assumed that the transmitted waveform is narrowband; the relative delay term is in- 
significant within the complex envelope term of Equation (11). With this assumption, 

sn(t) = are
i*einMtu(t - ^t)e'a*/•*eia*/•, , (18) 

where several of the fixed phase terms have been absorbed into the random phase i/). This signal 
is now down-converted to baseband, matched filtered, and sampled with an A/D converter. 

After down-conversion the nth element signal is 

sn(t) = sn(t)e-j2*-f°t = are
j,i'ejnMtu(t-Tt)e

j2*-f't  . (19) 

Each pulse of the baseband signal is matched filtered separately with receiver filter 

h(t) = u;(-t). (20) 

The matched filter output for the nth channel is the signal 

M-l 

xn(t) = oy'V^' £ e^2^x(t -rt- mTT,wt), (21) 
m=0 
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where \(Ti f) is the waveform ambiguity function [15] 

/oo 
up(p)u;(p-TyWdp. (22) 

-oo 

Because of the pulse waveform normalization, 

X(0,0)=1. (23) 

Consider only the target range gate and let tm = rt + mTr, m = 0,..., M — 1 be the sample times 
from each PRI at this range gate. The target samples are thus given by2 

xnm = xn(*m) = aPe*x(0, ftW2**'*'"2•* . (24) 

Furthermore, assume that the pulse waveform time-bandwidth product and the expected range of 
target Doppler frequencies are such that the waveform is insensitive to target Doppler shift, i.e., 
that 

X(0,/)«1. (25) 

It is also convenient to group the received amplitude and the random phase term of Equation (24) 
into a single complex random amplitude at = are^. This leaves the simple expression 

xnm = atein•'eim2•* ,     n = 0'"-'iV-1      . (26) 

m = 0,...,M- 1 

The target amplitude is obtained directly from the radar equation. Let £t be the single-pulse 
signal-to-noise ratio (SNR) for a single antenna element on receive. This is given by 

i>«rpGt(M)g(M)Afo , 
?t" {4x)*N0L.E} ' {    } 

where the radar system parameters were given in Table 1. The target power is then given by 

£{|at|
2} = <72&, (28) 

!Neglect range straddling losses and also assume that there are no target range ambiguities. 
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where a2 is the thermal noise power per element. The target amplitude is then ar = v£t^- This 
target model is easily generalized to random amplitudes as well. For example, if it is assumed 
that the samples are zero mean complex Gaussian random variables, the target SNR would be 
exponentially distributed with mean £t and the target amplitude would be correspondingly Rayleigh 
distributed. 

Examination of Equation (26) shows that one exponential term depends on the spatial index 
n and the other depends on the temporal index m. The spatial snapshot for the mth pulse, 
xm = [x0<m] xi,m; ...; XN-i,m], can be written as 

xm = [x0<m;     Xi.mJ     •••;     ijv-i,m] = aejm2,ro"a(t?,) , (29) 

where the N x 1 spatial steering vector a(i?) is defined to be 

a(<M)= f 1;   <?*£"»'***•   . j(/V-l)^cos0sin4> ;    e ' x° (30) 

or 

a(0) =     1 ;   e>2** ;   ... ;   e^"1)2^ (31) 

The spatial steering vector assumes a Vandermonde form because of the uniform linear array 
geometry and the assumption of identical element patterns. If the element patterns are not identical, 
they must be included in the steering vector definition. 

The target data is assembled in the form of a space-time snapshot 

Xt    =   <*t a(tft);   e>'2"«"a(tft) ;   ...;   e><M-1>2*w«a(0«) 

=    atb(G7t)®a(0t), (32) 

where 

b(tcr) =     1 ;    e>2rw ; 0i(M-\)2-rw (33) 

is an M X 1 temporal steering vector. It is Vandermonde also, because the waveform is a uniform 
PRF and the target velocity is constant. 
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The MN x 1 space-time steering vector, 

v(tf,s7) = b(G7)®a(tf) . (34) 

is defined to be the response of a target at spatial frequency i? and normalized Doppler w.   If a 
target is in the data, it contributes a term 

Xt = ottvt  , (35) 

where vt = v(flt,wt) may also be called the target steering vector. 

2.4     Noise 

The first undesired signal that a potential target must contend with is noise. Assume that 
the only noise source is internally generated receiver noise, which is always present on each channel. 
Because each element has its own receiver, assume that the noise processes on each element are 
mutually uncorrelated. Furthermore, assume that the instantaneous bandwidth is large compared 
with the PRF.3 Therefore, noise samples on a single element taken at time instants separated by a 
nonzero multiple of the PRI are temporally uncorrelated. Let xnm be the noise sample on the nth 
element for the mth PRI. The first assumption above is a statement of spatial noise correlation 

E{xnumX'n2,m) = °"2<5ni-n2  , (36) 

where 

f1    ,m=0 
6m = { (37) 

[ 0    , m^O 

is the Kronecker delta and a2 is the noise power per element. The second assumption above leads 
to the temporal noise correlation 

E{xn,miX*nm2} = O Smi-m2 . (38) 

3This is not inconsistent with the narrowband assumption made previously, merely a statement 
that for the radar systems under consideration, fr « B « f0. 
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Equations (36) and (38) lead to the noise component of the space-time covariance matrix being the 
scaled identity matrix 

Rn = E {xnXn} = °2
IM ® IN = °

2
IMN • (39) 

In terms of the radar system parameters, the noise power a2 = N0B. For purposes of this analysis, 
a convenient normalization is to set a2 = 1 so that all signal levels can be referenced by their SNR 
per element and pulse. 

The noise model above is realistic only when the dominant source of noise is internally gener- 
ated receiver amplifier noise. If sky noise is a major contributor, a spatial correlation may need to 
be introduced into the model above. It will be shown later that preprocessing prior to adaptation 
will also introduce noise correlation between the various signals to be adaptively combined. 

2.5    Jamming 

In this section expressions are derived for the jamming contribution to a space-time snapshot 
vector and its covariance matrix. Only barrage noise jamming that originates from land-based 
or airborne platforms at long range from the radar will be considered. The jamming energy is 
assumed to fill the radar's instantaneous bandwidth. The narrowband assumption that a signal's 
propagation time across the array is small relative to 1/B, i.e. there is no signal decorrelation across 
the array, is again invoked. Conversely, a radar PRF is assumed that is significantly less than the 
instantaneous bandwidth so that the jamming decorrelates from one pulse to the next. In other 
words, the jamming is spatially correlated from element to element and temporally uncorrelated 
from pulse to pulse. Thus, jamming looks like thermal noise temporally, but like a point target or 
a discrete clutter source in the spatial domain. 

Consider first a single jammer located at elevation Oj, azimuth <pj, and range Ry Let Sj 
denote the jammer's effective radiated power density (in W/Hz) in the direction of the radar. The 
jammer power spectral density received by one array element, J0, is then obtained from the range 
equation [17] as 

Jo~    (47r)2R2Lr   • (40) 
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The received jammer-to-noise ratio (JNR) at an element is then given by 

6 - T. • (41) 

where N0 is the receiver noise power spectral density. The jamming component of the spatial 
snapshot for the mth PRI is then 

xm = am ay , (42) 

where am is the jammer amplitude for the mth PRI and a.j = &((f>j,0j) is the jammer steering 
vector. The jammer space-time snapshot may be written as 

Xj = (Xj % &j , (43) 

where ctj = [a0 ; ax ; ... ; QM-I ] is a random vector containing the jammer amplitudes. The 
jammer samples from different pulses are uncorrelated. Further assume for simplicity that the 
jamming signal (aspect and power spectral density) is stationary over a CPI. Thus, 

E{amia*m2} = (T2tj 6mi-m2     or     E {a:af} = a2^ IM . (44) 

The jammer space-time covariance matrix is then 

Rj    =   E {XJX"} = <?% IM 9 aj-af = lM ® °2Zi a,af 

=    IM®*J, (45) 

where $j is the jammer spatial covariance matrix 

*i = £{xmx*} = <7
2fiaiaf . (46) 

The extension to multiple jamming signals is straightforward. Let J be the number of jamming 
sources, and let 0k,4>k and £jt be the elevation, azimuth, and JNR of the Arth jammer, respectively, 
for Jfc = 1,..., J. The result is again given by Equation (45), but the spatial covariance matrix is 
now given by 

*; = AySj-Af , (47) 
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where 

Ai=[a(0i,&),   &{92,<h),   •••,   *(0J,4>J)} (48) 

is an N x J matrix of the jammer spatial steering vectors and 3-j is the J x J jammer source 
covariance matrix. The jammer space-time covariance matrix from Equation (45) is block diagonal. 
Off-diagonal N x N blocks are zero because jamming samples from different PRIs are uncorrelated. 
The stationary assumption results in the blocks along the diagonal all being equal to a single spatial 
covariance matrix. Let the rank of the jammer spatial covariance matrix be 

p3 = rank(^j) . (49) 

Assume that the J jammer steering vectors are linearly independent. If no two jamming signals 
are perfectly coherent, then pj = J, and the jammer space-time covariance matrix has rank 

r, = rank(R_,) = Mrank(*j) = MJ . (50) 

The low rank nature of the jamming covariance matrix will be helpful in the design of efficient 
adaptive processing architectures. 

2.6     Clutter 

Radar clutter is generically defined as the echoes from any scatterers deemed to be not of 
tactical significance. For an airborne surveillance radar, the Earth's surface is the major source of 
clutter and is the only type of clutter to be considered in this report. Of the various sources of 
interference, clutter is the most complicated because it is distributed in both angle and range and 
is spread in Doppler frequency due to the platform motion. In this section, a model is developed 
for the ground clutter component of the space-time snapshot for a given range, and the properties 
of the clutter space-time covariance matrix are considered. The clutter in many cases is shown to 
be low rank. The effects of velocity misalignment (due to aircraft crab, for example) and intrinsic 
clutter motion are also modeled. 

2.6.1     General Clutter Model 

The return from a discrete ground clutter source has the same form as a target echo defined 
in Section 2.2. Since the ground is assumed to have zero inherent velocity, the relative velocity of 
a ground clutter source depends only on its aspect with respect to the radar and on the platform 
velocity. Unlike a target, ground clutter is distributed in range; it exists over a region extending 
from the platform altitude to the radar horizon. Ground clutter also exists over all azimuths and 
a region in elevation angle bounded by the horizon elevation. 
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Consider the clutter present at range Rc from the radar, as shown in Figure 5.  Assume a 
spherical earth with a 4/3 effective radius [16]. The elevation angle 0C to this clutter ring is 

6C = 0C(RC) = - sin 
_, {R2

C + ha(ha + 2ae) 

k     2Rc(ae + ha) 
sin •*(£•£)•        <51) 

where ae = 4/3re is the effective earth radius. The elevation angle is measured with respect to the 
horizontal at the antenna. The grazing angle ipc is formed by the ray from antenna to clutter patch 
and the surface tangent at the clutter patch,4 

ipc = ipc(Rc) = - sin 
_! (R2

C - ha{ha + 2ae) 
2Rcae 

w - sin -l Rc       ha 

2a.      2a. 
(52) 

The radar horizon range 

Rh = \J2aeha + hl& \/2aeha (53) 

is the range for which the grazing angle is zero. 

RADAR  [ 

Figure 5-    A ring of ground clutter for a fixed range. 

4For a flat-earth model, the elevation and grazing angles are the same and equal to - sin    {ha/Rc) 
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Let Ru = c/2fr be the radar's unambiguous range. Consider the clutter return for the Ith 
range gate, which corresponds to true range Rc where 0 < Rc < ftu. If the unambiguous range 
is greater than the horizon range, Ru > ft/,, the clutter is said to be unambiguous in range. In 
this case the clutter component of the space-time snapshot consists of clutter from at most one 
range. If the radar horizon is larger than the unambiguous range, some or all range gates will 
have clutter contributions from multiple ranges. The clutter in this case is said to be range- 
ambiguous. Let Ri = Rc + (i - l)Ru be the ith ambiguous range corresponding to the range gate 
of interest. Each ambiguous range has corresponding elevation and grazing angles 0, = 9C(R{) and 
ipi — i>c(Ri) found from Equation (51) and Equation (52). The clutter component consists of the 
superposition of returns from all ambiguous ranges within the radar horizon. Denote the number 
of range ambiguities by 7Vr. 

As an approximation to a continuous field of clutter, the clutter return from each ambiguous 
range will be modeled as the superposition of a large number Nc of independent clutter sources 
that are evenly distributed in azimuth about the radar. The location of the ikth clutter patch is 
described by its azimuth 4>k and ambiguous range .ft, (or elevation #,). The corresponding spatial 
frequency is 

k(fl,-,fo)-d      d       ... 
Vik = = - cos 9i sin fa • (54) 

The normalized Doppler frequency of the ikth patch will be denoted by nr.jt. The clutter component 
of the space-time snapshot is then given by 

Nr    Nc 

Xc = Y, 13aik v(,?«jt' CT'*) ' (55) 
«=i jt=i 

where a.jt is the random amplitude from the ikth clutter patch and v,fc = v(i?;jt,ccr,-fc). 

The power of each clutter contribution is obtained from the radar equation for area clutter 
[17]. Each patch represents an effective area bounded in azimuth by the granularity of the angle 
sampling, A<f> = 2x/Nc, and in range by the radar's range resolution AR = c/2B. The effective 
RCS of the ikth clutter patch is therefore 

0ik = °o(<t>k,0i) x Patch Area = a0(<f>k,Oi)RiA<f>ARsec^ , (56) 
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where o~o(<t>k,6i) is the area reflectivity of the ground at the location of the ikth patch. The 
dependence on position is necessary to account for clutter nonhomogeneities in range and angle. 
Various models for the clutter reflectivity have been proposed, depending on the terrain type, radar 
frequency, polarization, etc. For the simulations in this report, the constant gamma model [17], 

a0 = 7 sin 0C , (57) 

is used, where 7 is the terrain-dependent parameter. With the definitions above, the contribution 
from the z'Arth clutter patch has a clutter-to-noise ratio (CNR) given by 

c      PtTpGt{<t>k,0i)g(4>kA)>Zvik ,KO, 
«*" {4*)*N0LtR$ • (58) 

The clutter amplitudes satisfy £{|at-fc|2} = a2^. Assume that returns from different clutter 
patches are uncorrelated: 

E {<Xik<x)i} = o^&kSi-jSk-i • (59) 

The clutter space-time covariance matrix follows directly from Equations (55) and (59): 

Nr    Nc 

KC = E {xcXc} = *2 £ £ fov»vg . (60) 

Alternatively, Equation (60) can be expressed as 

Rc = °2 £ £ tik (b»bg) ® (a*a£), (61) 
i=i jt=i 

where b,* = b(wik) and a^ = a(i?,fc). Each scatterer contributes a term that is the Kronecker 
product of a temporal covariance matrix with a spatial covariance matrix. These two components 
are coupled because the clutter Doppler is a function of angle. The matrix Rc is an M x M block 
matrix, where each block is an N x N cross-covariance of the spatial snapshots from two PRIs. 
The pth row of Rc corresponds to element n(p) and pulse m(p), where 

n(p) = mod(p,iV) ,  m(p) = floor (~J . (62) 
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The pqth element of Rc can be written, from Equation (61), as 

lR'U = E E ^ exP 0" Kn(p) - »(?)) 27r<^ + (m(p) - m(q)) 2irzuik}} .       (63) 
i=l k=\ 

Since Equation (63) depends only on the difference between the pulse indices, the matrix Rc is block- 
Toeplitz. Moreover, Equation (63) depends only on difference n(p) - n(q) because the antenna is 
an ideal uniform linear array and the clutter patches were assumed mutually uncorrelated; each 
N x N block is itself Toeplitz. A matrix of this type is said to be Toeplitz-block-Toeplitz [19]. 

The expressions above apply to the general case of range-ambiguous clutter. The range- 
unambiguous case will be mainly considered in the remainder of this report, and the i subscript 
denoting ambiguous range will be dropped. The clutter covariance matrix can also be expressed 
compactly as 

Rc = VCECV* , (64) 

where 

Vc = [vx,    v2,    ...,    vNc] (65) 

is an MN x Nc matrix of clutter space-time steering vectors and 

Ec = a2diag([£i,...,6vJ) (66) 

contains the clutter power distribution. 

2.6.2     Clutter Ridges 

The aircraft platform motion induces a very special structure to the clutter due to the depen- 
dence of the Doppler frequency on angle. Consider again a single clutter patch located at azimuth 
4>c and range Rc (or elevation 6) and let k(6c,4>c) be a unit vector pointing from the platform to 
this patch. The clutter spatial frequency is 

k(6c,<j>c)-d      d       „   .    J 
tic =    •    i     = T- cos 6C sin 4>c • (67) 
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The Doppler frequency of the echo from this patch is defined by 

For this section, assume that the velocity vector is aligned with the array axis, as it would be with 
a side-mounted antenna array and no crab. Therefore, va = i;ax and the clutter Doppler frequency 
becomes 

2v 
fc(0c, 4>c) = -r-2- cosdc sin 4>c . (69) 

In terms of normalized Doppler and spatial frequency, 

Wc = fcTT = (%£) 0C . (70) 

The clutter Doppler frequency is a linear function of sin 4> and the normalized Doppler is linear in 
spatial frequency. With normalized coordinates the slope of the clutter line is 

fi.*&, (71) 

which represents the number of half-interelement spacings traversed by the platform during one 
PRI. For half-wavelength interelement spacing, 0 = 4ua/A0/r is equivalently the number of times 
the clutter Doppler spectrum aliases into the unambiguous Doppler space. 

Equation (68) or (70) defines the locus in an angle-Doppler space where clutter is present. 
This locus is referred to as the "clutter ridge," shown in Figure 1. Figure 6 shows two views of the 
clutter ridge for j3 = 1, which corresponds to the clutter exactly filling the Doppler space once. 

25 



150 

SIN(AZIMUTH) 

(a) 

SPATIAL FREQUENCY 

00 

Figure 6.    The 0 — I clutter ridge. The PRF is 300 Hz. (a) Doppler frequency vs. sin^>. 
(b) Normalized Doppler vs. spatial frequency. 

In general, the clutter ridge may span a portion of the Doppler space, or the whole Doppler 
space, depending on the platform velocity, the operating wavelength, and the radar PRF. Figure 7 
shows four examples. In these examples the PRF is fixed and the platform velocity varies. The 
default case of a stationary platform and zero Doppler clutter is shown in Figure 7(a). If fr > 4va/\0 

(or (3 < 1), the clutter is said to be unambiguous in Doppler. The /? = 1 case is shown in Figure 6; 
Figure 7(b) shows the /? = 0.5 ridge. If the clutter is unambiguous in Doppler, there may be 
a clutter-free region in Doppler, and there is at most one angle where the clutter has the same 
Doppler as a target. When fT < 4va/\0 or Q > 1, the clutter is said to be Doppler-ambiguous. In 
this case the clutter spectrum extends over a region larger than the PRF and folds over (aliases) 
into the observable Doppler space. Figures 7(c) and (d) show Doppler-ambiguous clutter ridges. In 
this case there may be multiple angles at which sidelobe clutter has the same Doppler as a target. 
Furthermore, as f3 increases, the mainlobe clutter occupies a larger portion of the Doppler space. 
The more Doppler-ambiguous the clutter, the more difficult it will be to suppress. For low-PRF 
radars operating at UHF, the case of Figure 7(d) is typical. 
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Figure 7. Clutter loci for different velocities, (a) Stationary platform, va — 0. (b) 
Doppler unambiguous, /3 = 0.5. (c) Doppler ambiguous, 0 = 1.5. (d) Doppler ambiguous, 
P = 2.67. 
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The space-time steering vector to a clutter patch can therefore be written as a function of 
angle (or spatial frequency) alone: 

vc(4>c) = v(<t>c, fM) or ve(0e) = v(tfc,/?0c) • (72) 

By substituting the clutter ridge equation into Equation (61), the clutter covariance matrix elements 
may be expressed as 

[RcU = E ff2& exp ti2n§>< t(n(p) - n(?)) + & (m(p) - m(?))]} • (73) 

It is sometimes useful to express the clutter covariance matrix, Equation (60), in integral form, 

Re =  I" sc(<j>)vc(c}>)v?(4>) d<t>, (74) 
J — TT 

where sc(<p) is the clutter power spectral density obtained from the radar equation. In the simple 
case of clutter power uniformly distributed in azimuth, sc(4>) = l/2;r, it can be shown that the 
elements of the clutter covariance matrix have closed form 

[Rc]p, = Jo (2?rd
A

COSg Hp) - n(q) + (5 (m(p) - m(q))]j  , (75) 

where JQ{Z) is the zeroth order Bessel function. 

2.6.3    Rank of the Clutter Covariance Matrix 

The rank of the clutter covariance matrix will now be considered, as it is an indicator of 
both the severity of the clutter scenario and the number of degrees of freedom required to produce 
effective cancellation. The special structure embodied in the clutter ridge suggests that the clutter 
is of low rank. Klemm [5] has hypothesized that the clutter rank is approximately equal to N + M. 
Based upon extensive computer simulation, Brennan and Staudaher [18] developed the following 
rule regarding the clutter rank. 
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Theorem 1  (Brennan's Rule):  The rank of the clutter covariance matrix is approximately given 

by 

rcx[N + (M- 1)0\ , (76) 

where (3, given by Equation (71), is the number of one-half interelement spacings traversed by the 
platform during one PRI. The brackets [J indicate rounding to the nearest integer. 

The rounding operation in Equation (76) is required as /3 is not necessarily an integer. When 
P is an integer, Equation (76) can be replaced by an equality, and a rigorous proof for this case is 
provided in Appendix A. 

To see why Brennan's rule holds, recall that each clutter patch contributes a term v(i?c,/3i?c) 
to the space-time snapshot. Examination of the clutter space-time steering vector shows that the 
phase of the clutter signal on the nth element and mth pulse is given by 

<^nm    =    2w{n + m(3)dc (77) 

=   "f [(n +mP)d] cos 6sm<f>. (78) 

The clutter Doppler makes the spatial snapshot for the mth pulse appear as though it is received 
by an array whose position has moved by mfld. Therefore, the effective position of the nth element 
for the mth pulse is 

dnm = (n + m/3)d . (79) 

Figure 8 illustrates this concept for the case N = 4,M = 3, and 0 — 1. Note that element #1 on 
pulse #0 is effectively at the same position as element #0 on pulse #1. Clutter observations are, 
in effect, repeated by different elements on different pulses as the platform moves during a CPI. 
Therefore, the number of independent clutter observations is less than the total snapshot dimension 
MN. Only independent observations contribute to the clutter rank. For the case in Figure 8, there 
are exactly N + M — 1 distinct observations, which is equal to the rank predicted by Brennan's rule. 
From Equation (76), the clutter rank increases linearly with /? or equivalently with the amount of 
Doppler ambiguity. Moreover, because the above argument did not rely on a range-unambiguous 
assumption, Brennan's rule holds for range-ambiguous clutter as well. 
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To further illustrate Brennan's rule, consider an example radar system whose parameters are 
given in Table 2. The radar operates at UHF and utilizes an 18 x 4 planar array antenna. The 
columns of this antenna are beamformed to form the elements (or channels) of the adaptive array. 
The element pattern is a cosine in azimuth, where in the backlobe region the pattern is scaled by 
an assumed backlobe level be, 

cos(f>,       -90° <(f>< 90° 
/W= • (80 

'   becos<t>,   90° <<£<270° 

This pattern is shown in Figure 9 for a nominal backlobe level of -30 dB. The radar PRF is 
300 Hz and 18 pulses are transmitted within a coherent processing interval. A uniform taper on 
the transmit pattern is assumed. Assume the platform altitude is 9 km and the range of interest 
is 130 km. A 7 = -3 dB is chosen for the reflectivity to model heavy land clutter. The clutter is 
divided among Nc = 361 clutter patches equally distributed in azimuth about the platform. Figure 
10 shows the resultant CNR from each patch. The total CNR per element per pulse is 47 dB. 

For this scenario the parameter 0 is varied by changing the platform velocity while keeping 
the PRF fixed. For each case the spectral decomposition 

Rc = EcAcEf , (81) 

is computed where Ac = diag(Aj,..., XMN) is a diagonal matrix of the eigenvalues {A;}. Bren- 
nan's rule says that only the first rc eigenvalues are nonzero. Figure 11 shows the results. The 
value obtained from Brennan's rule is indicated by the dashed lines. When /3 is an integer, the 
eigenspectrum exhibits a sharp cutoff, as the covariance matrix is singular. Note also that the rank 
becomes larger as the platform velocity is increased. The shape of the spectrum is determined by 
the transmit pattern and the clutter power distribution in angle. 

For noninteger /?, the eigenspectrum exhibits a gradual decrease as opposed to the sharp 
cutoff present in a singular matrix. In these cases the clutter covariance is no longer singular, 
although many of the eigenvalues are extremely small. Brennan's rule no longer provides the exact 
rank, but, from Figure 11 it does acccurately predict the knee in the eigenspectrum. In practical 
situations only a few of the eigenvalues beyond the knee may be significant, as most of them will 
be buried significantly below the thermal noise (at 0 dB level in Figure 11). 
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TABLE 2 

Radar System and Antenna Array Parameters for Example Scenario 

Radar System Parameter Value 

Operating Frequency 450 MHz 

Peak Power 200 kW 

Duty Factor 6% 

Transmit Gain 22 dB 

Column Receive Gain 10 dB 

Instantaneous Bandwidth 4 MHz 

Noise Figure 3dB 

System Losses 4dB 

PRF 300 Hz 

Number of Pulses / CPI 18 

Pulse Width 200 /is 

Antenna Array Parameter Value 

Number of Elements x 18 

Number of Elements z 4 

Element Pattern Cosine 

Element Gain 4dB 

Transmit Taper Uniform 

31 



SPACE 

_sz_ V7 

PULSE #0 

PULSE #1 

PULSE #2 

SLOPE P = 1 

"  TIME 
ELEMENT        ELEMENT        ELEMENT       ELEMENT 

#0 #1 #2 #3 

INDEPENDENT OBSERVATIONS 

Figure 8.    Effective array position for successive pulses of a CPI. N — 4, M = 3, 0 = 1. 
Clutter observations are repeated by different elements on different pulses. 

240 

180 

Figure 9.    The element pattern. A —30-dB backlobe level is assumed. 

32 



Thus, for noninteger /?, Brennan's rule may slightly underestimate the clutter rank. 

Brennan's rule is extremely useful and provides much insight into the characteristics of the 
clutter seen by an airborne platform. It will help motivate the processing algorithms in the next 
chapters. In practice, however, there are several other phenomena that tend to increase the clutter 
rank significantly beyond that predicted by Equation (76). Among these are the misalignment 
of the velocity vector and the array axis (e.g., due to aircraft crab), intrinsic clutter motion, and 
element pattern mismatches. The first two of these are considered in the next subsections. 

2.6.4    Velocity Misalignment 

The analysis leading to Brennan's rule assumed that the platform velocity vector va was 
perfectly aligned with the antenna array axis vector d. In practice, this may not be true for several 
reasons. With a side-mounted array antenna, the direction of motion may be slightly offset from 
the array axis due to aircraft crab. In a radar that utilizes a rotating antenna, misalignment is 
nearly always present; the array axis is only aligned with the velocity vector for the two instants 
during each scan when the array normal is perpendicular to the velocity vector. In forward-looking 
airborne interceptor radars, the antenna is typically mounted in the aircraft nose; in this case the 
array axis is approximately normal to the velocity vector. 

Expressions for clutter Doppler and spatial frequency in terms of arbitrary vtt and d were 
given in Equations (68) and (67). In general, two angles are required to specify the direction of each. 
Here it is assumed that both the velocity vector and array axis lie in the horizontal plane but differ 
in direction by an angle (f>a called the misalignment angle,5, as shown in Figure 12. The presence of 
misalignment, regardless of its source, is potentially troublesome if it is combined with significant 
clutter from the antenna backlobes. To see this, consider the single clutter patch at azimuth <f> 
in Figure 12. Due to the inherent symmetry of a linear array, this patch and its corresponding 
backlobe patch at 180° — <j> produce the same interelement phase shift, i.e., they appear to be at 
the same azimuth. However, if <f>a ^ 0, these two clutter patches have different Doppler frequencies 
and may require more adaptive degrees of freedom to cancel. 

5This assumption is not restrictive for surveillance platforms; for other types of radars where diving 
scenarios are typical, the more general expressions will be necessary. 
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Velocity misalignment produces a clutter ridge that, instead of being a line in the variables 
sin <f> and Doppler frequency, is an ellipse. Note from the figure or from Equation (68) that the 
clutter Doppler frequency with misalignment is 

fc(4>) = ^cos0sin(tf> + <£a) . (82) 

It is again convenient to work with normalized frequencies. The clutter spatial frequency and 
normalized Doppler are given by 

i? = 7/sin<^>   ,    ZJ = f3r]s\n(<t> + 4>a) , (83) 

where r\ = dcos0/\o. Manipulation of Equation (83) leads to the standard elliptical form 

/32tf2 - (2/3 cos <t>a)tfw + w1 - /3 V sin2 </>Q = 0 . (84) 

The presence of the -duo term above indicates that the major and minor axes of the clutter ellipse 
are rotated from the d and w axes by an angle ifra that satisfies [21] 

1-/32 

cot2Va= oa       ,    , (85) 
2/3 cos (f>a 

where the rotation angle is measured clockwise from the positive CT-axis. Let 2a and 26 be the 
lengths of the major and minor axes. A coordinate rotation through angle tpa applied to Equation 
(84) yields the results: 

a = /37?sin^aQ(/32 + l) + |c|) ,   b = /fysin^ Q(/32 + 1) - |c|) ,     (86) 

where 

c= -(/32- 1)cos2ipa-(3cos4>asin2ipa . (87) 
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Examples of clutter ridges with velocity misalignment are shown for different values of (j>a in 
Figure 13. For these plots (3 = 1. Equation (85) shows that the clutter ellipse will be rotated by 
45° from the +tu-axis. 

For each plot the portion of the ellipse corresponding to the half-space in front of the antenna 
is drawn with a solid line, while the portion corresponding to backlobe clutter is drawn with a 
dashed line. The aligned case is seen to be a degenerate ellipse where the frontlobe and backlobe 
portions lie on top of each other. As soon as the misalignment angle becomes nonzero, the backlobe 
portion of the clutter ridge becomes distinct; in essence there are two clutter ridges. One indicator 
of the separation between the backlobe and front lobe portions is the length of the minor axis. At 
4>a = 90°, the clutter ridge is a circle. Note also that at the target angle of i?t = 0, there is clutter 
at two Doppler frequencies, one from the front and one from the back. Therefore, severe backlobe 
clutter and misalignment may reduce the Doppler space available for detecting targets. Figure 14 
shows additional examples for ambiguous clutter. 

Figure 12.    Array geometry with velocity misalignment. 
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The number of potentially interfering clutter patches is doubled with velocity misalignment. 

All of the previous analysis leading to the clutter covariance matrix is still valid with misalign- 
ment, except that the Doppler frequencies of the individual clutter patches are given by Equation 
(82) instead of Equation (70). Brennan's rule, because it relies on a linear relationship between 
Doppler and spatial frequency, is no longer applicable when <j>a ^ 0. Whether misalignment causes 
a significant increase in the clutter severity is a strong function of the antenna backlobe level. If 
the backlobe level is very low, the clutter power on the backlobe ridge will have little impact. On 
the other hand, if the backlobe clutter is high, the rank of the clutter will approximately double 
because of the backlobe clutter ridge. 

Figure 15 shows the clutter eigenspectra for different values of the misalignment angle. The 
element pattern is that of Figure 9 and has a -30-dB backlobe level. The platform velocity 
corresponds to /3 = 1. 

For all nonzero (j>a, the number of nonzero eigenvalues is approximately doubled as expected 
due to the backlobe clutter ridge. The power distribution of the highest eigenvalues is changed 
slightly as the Doppler distribution of clutter power is altered by misalignment. For (f>a beyond 1° 
there does not seem to be much difference in the eigenspectra tails. The effect of backlobe level is 
shown in Figure 16. Here the backlobe level be from Equation(80) is varied as <j)a = 10° is fixed. 

Note that the tails of the eigenspectra show a decrease in level that is essentially linear with 
the backlobe level. This portion of the eigenspectra is due solely to the backlobe portion of the 
clutter ridge. With very low backlobes, the numerical rank of the clutter is only slightly higher than 
that predicted by Brennan's rule. If the backlobes are large the clutter rank will approximately 
double. These results suggest that more degrees of freedom will be required for effective clutter 
suppression when misalignment and severe backlobe clutter are present. 

2.6.5     Intrinsic Clutter Motion 

Another assumption made in the development thus far was that the echo from a single clutter 
patch does not fluctuate from pulse to pulse. This allowed the snapshot from a single scatterer to be 
expressed in terms of a space-time steering vector and eventually resulted in the convenient sum-of- 
outer-product form of the space-time covariance matrix given in Equation (60). Many factors, due 
to both the radar system design and the environment, may in practice cause small pulse-to-pulse 
fluctuations in the clutter return. The dynamics of a mechanically scanning antenna and any pulse- 
to-pulse instabilities of the radar system components will produce fluctuations. Natural variation 
in clutter reflectivity may occur with land clutter due to wind and with sea clutter due to the 
motion of ocean waves. Any source of fluctuation causes a broadening of the Doppler spectrum of a 
single clutter echo. The pulse-to-pulse fluctuations due to any of these sources will be referred to as 
intrinsic clutter motion (ICM). The presence of ICM requires a wider clutter notch or, equivalently, 
more adaptive degrees of freedom for effective cancellation. 
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Recall from Equation (55) the expression for the echo from the A;th clutter patch, 

Xc - akVk - akbk®ak. (88) 

Temporal fluctuation in the return is represented by replacing the single amplitude a above with 
the M x 1 vector 

dk =     ak<0 ;    afcii ;    ... ;    ak,M-i \  •> (89) 

where ak>m is the random amplitude for the fcth scatterer from the mth PRI. The result is a 
space-time snapshot including ICM, 

Xc = (a* 0 bfc) ® afc . (90) 

The fluctuation will be modeled as a wide-sense stationary random process, and the common 
assumption of a Gaussian Doppler spectrum will be used [17]. The temporal autocorrelation of the 
fluctuations is then also Gaussian in shape: 

7(m)^i;{a/+mar} = a26exp{-^m2)   , (91) 

where & is the clutter CNR from Equation (58). The spectral standard deviation KC is normally 
expressed in terms of a velocity standard deviation av, defined by 

a* = ~^r • (92) 

Measured values of av for various types of clutter and conditions are common in most radar systems 
textbooks [17]. The space-time covariance matrix for a single clutter patch including ICM is then 
given by 

Re = &(r* © bfcbj*) <g> afcaf  , (93) 
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whore 

Tk = E{aka%) = Toeplitz (7c(0); ...; lc(M - 11 (94) 

is the A/ x M covariance matrix of the fluctuations for the A;th patch. 

Superposition is invoked to yield the result when many independent clutter sources are 
present: 

Nc 

R,. = EWrt0b|;bf),.!ataf (95) 

It is assumed here that although the clutter patches are independent, they have the same intrinsic 
velocity spectrum. Note that the clutter covariance is no longer equal to a sum of outer products 
of space-time steering vectors. 

The effect of ICM on the clutter eigenspectrum is illustrated in Figure 17. The example 
system of Table 2 with zero crab angle and 0 = 1 is assumed. The velocity standard deviation is 
varied from 0 to 0.5 m/s. 
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Nonzero intrinsic clutter motion has little effect on the portion corresponding to the largest 
eigenvalues. As av increases, the tails of the eigenspectrum become larger as the rank of the 
covariance increases. ICM is another phenomenon that, if present, results in the actual clutter 
rank's being larger than what would be predicted by Brennan's rule. The increased rank will 
require broader nulls in Doppler frequency, which in turn means more adaptive degrees of freedom. 

2.7    Range-Doppler View of the Interference 

This analysis has concentrated on the components of the space-time snapshot corresponding 
to a single range gate. Because the snapshot comprises the samples from the array elements and 
from multiple pulses, the signals were characterized in terms of their angle and Doppler content. 
The full radar data cube consists of snapshots from all ranges. In practice, data from multiple 
ranges is averaged to derive estimates of the interference. Therefore, the range dependence of the 
various signal components must also be understood. 

The assumption of continuous barrage noise jamming results in a jamming signal that is 
present at all range gates. Moreover, assume that the jamming is stationary over the time scale of 
a PRI so that its statistics are independent of radar range; the jamming components of all range 
gates are identically distributed. Therefore, the jamming component of the radar datacube, like 
thermal noise, is assumed to occupy all of the range-Doppler space. 

Ground clutter, on the other hand, has a very definite range dependence. Not only does 
the clutter power depend on range through the radar equation, Equation (58), but its elevation 
angle is a function of range and its reflectivity in practice is a function of range, as real clutter 
is very nonhomogeneous. The extent of the clutter in angle and Doppler has been discussed; its 
extent in range is a function of the platform altitude and the radar PRF. For low-PRF systems, the 
clutter is typically ambiguous in Doppler, as shown in Figure 7, but unambiguous in range because 
the radar unambiguous range Ru is typically greater than the radar horizon R^. This situation is 
shown in Figure 18. Note that beyond the horizon, range gates are corrupted only by jamming and 
noise. This is significant for two reasons. First, no clutter cancellation is required for these ranges. 
Second, these range gates can be utilized to obtain jamming estimates that are uncorrupted by 
clutter. Ways in which this information can result in efficient adaptive processing architectures will 
be described in later sections. 
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The other extreme applies to a high-PRF waveform. In this case, shown in Figure 19, the 
clutter is unambiguous in doppler but ambiguous in range. Again, jamming spans all of range and 
Doppler, but a clutter-free region in Doppler exists. Other variants are possible with different PRF, 
frequency, and platform altitude combinations. 

2.8    Summary 

Beginning with a generic radar system model, a model has been developed for the signals 
received by an airborne radar. A space-time snapshot was defined to be the slice of the datacube 
corresponding to a single range gate. This data may contain a target component as well as undesired 
components due to noise, jamming, and clutter. The target signal is modeled as a random amplitude 
times a space-time steering vector that has the target's angle and Doppler. The undesired signal 
components are modeled as random processes and expressions for their covariance matrices are 
derived. The results are summarized below. 

A space-time snapshot may be decomposed as 

X = (*tvt + Xu . (96) 

where the undesired component 

Xu = Xc + Xj + Xn (97) 

consists of clutter, jamming, and thermal noise. These components are mutually uncorrelated, so 
that the interference plus noise covariance matrix is given by 

R* = E{XuXu) = Rc + Ri + Rn , (98) 

where 

R„    =   a2lMN (99) 

Rj    =   lM®AjS,-Af (100) 

Nc 

RC   =    £&(r*Ob*b?)®a*af . (101) 
fc=i 

For reference, the assumptions made in this chapter are summarized in Table 3. The model devel- 
oped in this chapter will serve as the input to various space-time adaptive processing algorithms. 
A general discussion of STAP and fully adaptive space-time processing will begin the next chapter. 
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TABLE 3 

Assumptions Made for Radar System and Signal Model 

ASSUMPTION PAGE NO. 

Radar System 

Non-relativistic velocities 

Narrowband waveforms and receivers (B « f0) 

Transmitted pulse insensitive to expected Doppler shifts 

Constant PRF waveform 

Constant platform velocity 

Array axis and platform velocity vector lie in the horizontal plane 

Uniform linear antenna array (possibly columns of a planar array) 

Identical element patterns 

13 

14 

15 

9 

7 

7,33 

7 

7 

Target Model 

Point target 

Constant velocity 

12 

12 

Noise Model 

Internally generated receiver noise is dominant source 

Noise signals on different elements are mutually uncorrelated 

Noise decorrelates over a PRI (fr « B) 

17 

17 

17 

Jamming Model 

Only continuous barrage noise jamming is considered 

Jamming signal decorrelates over a PRI 

Jamming may be assumed stationary over a CPI 

18 

18 

18 

Clutter Model 

Clutter from a single range approximated by large number of independent scatterers 

Constant gamma reflectivity model 

Gaussian intrinsic clutter motion spectrum 

ICM spectrum is the same for each clutter patch 

22 

23 

45 

47 
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3.   SPACE-TIME PROCESSING FUNDAMENTALS 

3.1 Introduction 

For the purposes of this report, a space-time processor is defined as a linear combiner that 
sums the spatial samples from the elements of an antenna array and the temporal samples from the 
multiple pulses of a coherent waveform. The major components of a STAP algorithm are described: 
the algorithm architecture, the weight training and application strategy, and the weight compu- 
tation approach. Fully adaptive space-time processing is discussed, which refers to a brute force 
approach whereby the signals at each element and pulse are adaptively weighted. If the statistics 
of the interference are known, fully adaptive STAP is optimum. A fully adaptive suboptimum ap- 
proach is also described. Various STAP algorithm performance metrics are defined and illustrated, 
with fully adaptive STAP as an example. Finally, the chapter concludes with a discussion of the 
limitations of fully adaptive STAP. These shortcomings lead in the next chapter to the consider- 
ation of reduced-dimension algorithms. Fully adaptive STAP (optimum), however, will serve as a 
useful performance bound on any suboptimum approach. The metrics developed here will prove 
useful in subsequent chapters as well. 

3.2 General Architecture and Assumptions 

The function of a surveillance radar is to search a specified volume of space for potential 
targets. Within a single coherent processing interval, the search is confined in angle to the sector 
covered by the transmit beam for that CPI, but otherwise it covers all ranges. Consider a fixed 
range gate which is to be tested for target presence. The data available to the radar signal processor 
consists of the M pulses on each of N elements. A space-time processor is defined to be a linear 
filter that combines all the samples from the range gate of interest to produce a scalar output. 
This process is depicted in Figure 20. The tapped delay line on each element represents the 
multiple pulses of a CPI, with the time delay between taps equal to the PRI. Thus, a space-time 
processor utilizes the spatial samples from the elements of an array antenna and the temporal 
samples provided by the successive pulses of a multiple-pulse waveform. The space-time processor 
can be represented by an MA^-dimensional weight vector w. Its output z can be represented as the 
inner product of the weight vector and the snapshot of interest, 

z = wH
X • (102) 

One way to view a space-time weight vector is as a combined receive array beamformer and target 
Doppler filter. Ideally, the space-time processor provides coherent gain on target while forming 
angle and Doppler response nulls to suppress clutter and jamming. As the clutter and jamming 
scenario is not known in advance, the weight vector must be determined in a data-adaptive way 
from the radar returns. A single weight vector is optimized for a specific angle and Doppler. 
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Since the target angle and velocity are also unknown a priori, a space-time processor typically 
computes multiple weight vectors that form a filter bank to cover all potential target angles and 
Doppler frequencies. 

A more complete picture of a space-time processor is shown in Figure 21. Here the full CPI 
datacube is shown, with the shaded slice of data, labeled "target data," representing the data at 
the range gate of interest. This shaded portion is exactly the data represented by the tapped delay 
line on each element in Figure 20. The space-time processor consists of three major components. 
First a set of rules called the training strategy is applied to the data. This block derives from the 
CPI data a set of training data that will be used to estimate the interference. The second step is 
weight computation. Based on the training data, the adaptive weight vector is computed. Typically, 
weight computation requires the solution of a linear system of equations. This block is therefore 
a very computation-intensive portion of the space-time processor. New weight computations are 
performed with each set of training data. Finally, given a weight vector, the process of weight 
application refers to the computing of the scalar output or test statistic. Weight application is 
an inner product, or digital beamforming, operation. The scalar output is then compared to a 
threshold to determine if a target is present at the specified angle and Doppler. The output of 
the processor is a separate scalar (or decision) for each range, angle, and velocity at which target 
presence is to be queried. Each of these blocks will be discussed in more detail. 
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Figure 20.    A general block diagram for a space-time processor. 
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Figure 21.    Data-domain view of space-time adaptive processing. 

Because the interference is unknown a priori, it must be estimated data-adaptively from the 
finite amount of data comprising the CPI. The processor accepts the CPI data and implements a 
set of training rules to derive a secondary data set, called the training data, to be used for weight 
computation. The goal of the training strategy is to obtain the best estimate of the interference 
that exists at the range gate under test. Typically, the data from several range gates near the range 
gate of interest are used. A training strategy is defined with a number of factors in mind. First, the 
number of range gates in the training set must be sufficient to guarantee an interference estimate 
good enough for effective nulling; this issue is taken up further in Section 3.5. In a stationary 
environment, the required number of samples is well understood. Secondly, the training set must 
be updated or changed in accordance with the nonstationarity of the interference. The training 
strategy and weight computation requirements are coupled, because for each change in the training 
set a new weight vector must be computed. Training strategies in nonstationary environments are 
less understood and tend to be more heuristic. Since the number of range gates in the CPI data is 
dependent on the PRI and on the instantaneous bandwidth, training strategies are most strongly 
affected by these two radar system parameters. 
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Given a training set, weight computation strategies fall loosely into three categories. The first 
category will be called sample matrix inversion, or SMI [24]. The SMI weight computation refers to 
all approaches that effectively compute the weight vector from the inverse of the sample covariance 
matrix of the training data. SMI also refers to the more numerically stable algorithms whereby the 
weights are computed from a QR-decomposition of the matrix of training set data. The members 
of the SMI class differ by the way in which the QR-decomposition is performed. The second class 
will be called subspace projection. Algorithms in this class first estimate the subspace spanned 
by the interference by performing an eigenanalysis of the sample covariance matrix or a singular 
value decomposition (SVD) of the matrix of training data. The weight vector is then computed by 
projecting the desired response into the subspace orthogonal to the interference subspace. In this 
way the weight vector is forced to null the interference. The third class, subspace SMI, combines 
attributes from the first two classes. Here the data is first projected into a lower dimension space 
by means of some transformation, then a small SMI problem is solved with the projected data (and 
steering vector) in the lower dimension space. The transform may be either fixed or data-adaptive. 
In contrast with subspace projection, subspace SMI preserves SINR optimality in the ideal case. 
Because the size of the SMI problem is reduced, computational and training requirements are 
lessened. SMI and training is discussed further in Section 3.5. 

Weight application is the formation of the processor output given the computed weight vectors. 
In practice, a single weight vector may be applied to data comprising many range gates. The 
design of the weight application regions is usually coupled with the training set design, with each 
application region corresponding to a single training set. Weight application is an inner product, 
or matrix-vector product, operation. The computational load of this portion of the space-time 
processor scales linearly with the weight vector dimension and the number of range gates. The 
number of range gates in turn depends on the radar PRF and its instantaneous bandwidth. 

The processor output scalar is compared to a threshold to determine target presence at each 
range-Doppler-angle cell. Typically, a background noise estimate is provided to the detector so 
that it provides constant-false-alarm rate (CFAR). The selection of a training region resembles 
the choice of a CFAR stencil; the training set or application region data may be used to set the 
CFAR constant. It has been shown that with appropriate normalization of an SMI weight vector, a 
CFAR property can be embedded into the weight computation. Different normalizations lead to the 
adaptive-matched-filter (AMF) detector [28] or the Generalized-Likelihood-Ratio (GLR) detector 
[29]. The detection performance of these two approaches is similar at moderate to high SNR, 
but subtle differences in performance at low target SNR and with respect to sidelobe targets have 
been documented [25, 10, 35]. The approach in this report will not presume a detector structure. 
A number of different STAP algorithm architectures will be considered, each of which may be 
implemented with various detection methods, e.g., AMF, GLR, or another type of CFAR. 

With this general breakdown of space-time processing in mind, consider the first STAP algo- 
rithm. 
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3.3    Fully Adaptive STAP 

A space-time processor that computes and applies a separate adaptive weight to every element 
and pulse is said to be fully adaptive. The weight vector for a fully adaptive processor is of size MN. 
Fully adaptive space-time processing for airborne radar was first proposed in Brennan et al. [4], 
and is a natural extension of adaptive antenna processing [22, 23] to a two-dimensional space-time 
problem. 

Assume that at the range of interest, a target signal is present in a background of interference. 
Let the target angle, Doppler, and amplitude be given by dt, ujt, and at, respectively. The data 
snapshot at the range of interest may be written, from Equation (96), as 

X = c*tvt + Xu, (103) 

where vt = h(at) ® a(^t) is the target steering vector and Xu denotes the interference (clutter, 
jamming) plus noise components of the data. It is well known that the optimum space-time filter 
[3] is given to within a scale factor by 

w = R-V , (104) 

where 

K* = E{XUX%} (105) 

is the interference-plus-noise covariance matrix. 

The weight vector in Equation (104) is optimum under several criteria [27]. It maximizes 
signal-to-interference-plus-noise-ratio (SINR), maximizes probability of detection for a given false 
alarm probability, and with the proper choice of scale factor minimizes output power subject to a 
unity gain constraint in the target direction. The optimum processor response has high sidelobes 
in both angle and Doppler, however, because of the implied windowing of the data. These high 
sidelobes make the optimum processor susceptible to the detection of sidelobe targets. 

It is sometimes desirable to consider a suboptimum fully adaptive processor given by 

w = R^g, . (106) 
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Here gt is not the target steering vector but a desired weight vector that may include tapering to 
obtain low sidelobes. One way to form gt is to apply a low-sidelobe window to an assumed target 
steering vector. Let t„ be an N x 1 vector containing the desired low-sidelobe angle response, and 
let tj, be the Mxl vector of the desired Doppler response. The vector 

t = t6<8>t„ (107) 

is a separable space-time window sequence. The vector 

gt = t0v, (108) 

will produce a low-sidelobe adapted pattern. The term "tapered fully adaptive" will be used when 
the steering vector is chosen in this way. The tapered fully adaptive algorithm is not strictly 
optimum in any sense. In a strong interference environment, however, the weight vector from 
Equation (106) approximates the best least squares fit to the desired response gt, subject to its 
having response nulls on the interference.6 This fact is the primary motivation for use of the tapered 
fully adaptive approach. 

A block diagram of fully adaptive STAP is given in Figure 22. Whatever the choice of steering 
vector, fully adaptive STAP requires the solution of an MiV-dimensional linear system of equations. 

The size of the linear system grows linearly with the size of the array or the length of the 
coherent processing interval. For many radar systems, the product MN is likely to range from 
several hundred to several thousand. The implementation of a fully adaptive approach is beyond 
current capabilities in real-time computing. The performance of fully adaptive STAP, however, 
will be considered here for two reasons. First, it allows illustration of a number of performance 
metrics that will be useful in the study of reduced-dimension algorithms. Second, the performance 
of optimum fully adaptive STAP will serve as a baseline to which the performance of suboptimum 
approaches can be compared. 

6This argument follows from a decomposition of the covariance matrix into interference and noise 
subspaces. As the interference-to-noise ratio approaches infinity, the weight vector reduces to 
a projection of the desired response vector onto the vector space orthogonal to the interference 
subspace. 
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3.4    STAP Performance Metrics and Fully Adaptive Performance 

To demonstrate fully adaptive STAP performance, return to the example airborne early warn- 
ing system described in Table 2. The flight parameters and interference scenario assumed are given 
in Table 4. Both clutter and jamming are present; these parameters amount to a JNR per element 
of 38 dB and a CNR per element per pulse of 47 dB. In this baseline scenario, assume the clutter 
is exactly unambiguous in Doppler and that there is no velocity misalignment or intrinsic clutter 
motion. More stressing environments will be considered in Chapter 7. With this scenario, the per- 
formance of both optimum fully adaptive and tapered fully adaptive STAP is considered under a 
variety of performance metrics. These metrics will also be used in subsequent chapters to compare 
various suboptimum STAP algorithms. 

3.4.1     Adapted Patterns 

Given the weight vector produced by a space-time processor, its response as a function of angle 
and Doppler is one indicator of the processor performance. This response is called the adapted 
pattern, defined by 

Pw(d,w) = \wHv(ti,w)\2 . (109) 

The adapted pattern is a two-dimensional angle-Doppler frequency response. For a uniform linear 
array and a fixed pulse repetition interval, the pattern is a two-dimensional (inverse) Fourier trans- 
form of the weight vector. Ideally, the adapted pattern has nulls in the directions of interference 
sources and high gain at the angle and Doppler of the presumed target direction. The shape and 
sidelobe levels of the adapted pattern are also of interest. In the absence of interference (noise 
only), the adapted pattern is commonly called the quiescent pattern. 

Figure 23 shows an adapted pattern for optimum STAP. The presumed target is located at 
0° azimuth with Doppler frequency 100 Hz. The pattern's mainlobe is at the target location. The 
jamming is suppressed by the deep vertical pattern nulls at the jammer azimuths. The pattern 
has a slanted null that spans the clutter ridge, thereby suppressing both mainlobe and sidelobe 
clutter. These pattern nulls suppress the interference at the output to well below thermal noise. 
Figure 23(b) shows the two principal cuts of this pattern. The azimuth pattern at the target 
Doppler represents the receive beamformer; it exhibits nulls at both the jammer azimuths and the 
azimuth where the sidelobe clutter has the same Doppler as the target. Note the high azimuth 
sidelobes due to the implied uniform taper of the target steering vector. The second cut shows the 
Doppler response at the target azimuth. The deep clutter null evident at zero Doppler suppresses 
mainlobe clutter. Jammer and clutter nulls present at other azimuths do not appear in this pattern 
cut. Note that the Doppler response also has high sidelobes due to the implied uniform taper of 
the temporal component of the target steering vector. 
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TABLE 4 

Platform and Interference Scenario for Baseline Scenario. 

Platform Parameters 

Platform altitude 9000 m 

Platform velocity 50 m/s 

Number of clutter foldovers 0 = 1 

Velocity misalignment angle 0° 

Interference Scenario 

Jamming 

Number of jammers 2 

Azimuth angles -40°, 25° 

Elevation angles 0°,0° 

ERPD lOOOW/MHz 

Range 370 km 

Clutter 

Number of patches 360 

Range 130 km 

Reflectivity y -3dB 

Intrinsic velocity av 0 m/s 
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The corresponding patterns for tapered fully adaptive STAP are given in Figure 24. The 
algorithm uses a separable space-time taper comprising a spatial 30-dB Chebyshev taper and a 
temporal 40-dB Chebyshev taper. The jammer and clutter nulls are again clearly evident. The 
pattern mainlobe is widened in both angle and Doppler because of the taper. The pattern cuts 
show the reduced sidelobe levels in both angle and Doppler. The price paid for the lower sidelobes 
is a widened mainlobe and a slight loss of SNR gain (1.79 dB in this case). When considering 
reduced-dimension algorithms, one consideration in the algorithm design will be to maintain low 
sidelobe adapted and quiescent patterns. 

3.4.2     SINR 

A common measure of processor performance is the output signal-to-interference-plus-noise 
ratio, or SINR. Divide the output signal into target and interference-plus-noise components, 

z = zt + zu = atw
Hvt + wHXu- (HO) 

Let pt = £{|zt|
2} and pu = £{|zu|2} be the output target power and output interference-plus-noise 

power. The SINR is then defined as 

SINR m EL = *26|w*v,|* 
pu wHR„w 

where £t is the target SNR on a single pulse for a single array element. Since a1 is the noise power 
per element, the quantity CT

2
& is the input target power per element per pulse. Substitution of the 

optimum weight vector into Equation (111) leads to the optimum SINR given by 

SINR0 = a2£t vf R^v( . (112) 

Similarly, tapered fully adaptive produces a suboptimum SINR given by 

giR-^gt 
SINRC =        _,;_!" • (113) 
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The above equations yield performance at a single angle and Doppler. Since the target 
velocity is unknown, the interest in SINR performance is as- a function of target Doppler. The 
Doppler space performance is considered by holding the target angle fixed and varying the target 
Doppler, computing a separate adaptive weight vector for each Doppler.7 Let vt(u) = b(o7)ig)a(t?t) 
and g/(a7) = t 0 vt(n7) be the untapered and tapered steering vectors for Doppler w. Therefore, 

\HT,-1, SINR0(w) = (T'ttVtWRZ^tiw) , (114) 

and 

g<(n7)Ru
1gt(CT) 

Figure 25 shows fully adaptive performance for the example scenario. The input SNR is taken 
to be 0 dB. Optimum fully adaptive STAP achieves about 25 dB SINR over the majority of the 
Doppler space. A perfect matched filter in an interference-free environment provides an SINR of 
10k>giO MN = 25.1 dB. In the presence of interference, optimum fully adaptive STAP is providing 
near maximum gain on target while suppressing both clutter and jamming to well below thermal 
noise. When the target is near 0 Hz or 300 Hz the SINR is very low, because in this case the target 
is close to the mainlobe clutter in both angle and Doppler. Performance degrades as the target 
falls into the response null that the processor has placed on the mainlobe clutter. 

The same figure also shows the performance of tapered fully adaptive STAP. A 30-dB Cheby- 
shev spatial taper and a 40-dB Chebyshev Doppler taper were taken as the desired response. The 
tapered fully adaptive performance is always slightly lower than the optimum. Otherwise, the 
shape of the curve is similar to the fully adaptive case. Over most of the Doppler space, the SINR 
achieved with tapered fully adaptive STAP is about 1.8 dB less than optimum. This difference is 
approximately equal to the combined angle and Doppler taper losses. This loss, and the widened 
response mainlobe, is the price paid for lower adapted pattern sidelobes. 

7To plot SINR versus target angle or versus angle and Doppler, one must also account for the angle 
dependence of the input SNR &, which follows the shape of the transmit pattern. 
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Figure 25.    SINR for the optimum and tapered fully adaptive STAPs. 

In the fully adaptive SINR plots of Figure 25, a separate weight vector was computed for 
every potential target Doppler. The resultant optimum SINR curve is a smooth upper bound on 
the performance achievable with any suboptimum STAP algorithm. In practice, however, a set 
of weight vectors would be computed to form a bank of space-time filters that cover the Doppler 
space. The number of filters is typically equal to M, the number of pulses in the CPI. Let zum be 
the Doppler to which the mth filter is tuned, and let wm be the corresponding weight vector. For 
example, with optimum fully adaptive STAP, 

wm = Ru
1v(rom) (116) 

Furthermore, let SINR^w) be the SINR achieved with the mth filter against a target at Doppler 
ZJ. The algorithm SINR is defined to be the SINR of the filter with maximum SINR, 

SINR{zv) = mzxSINRm(w) . (117) 

For targets whose Doppler is not at the center frequency of one of the Doppler filters, an additional 
straddling loss is incurred. 
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Figure 26.    SINR for the optimum and tapered fully adaptive STAPs, including Doppler 
straddling losses. 

Figure 26 shows fully adaptive STAP performance including straddling losses. For each curve 
a bank of M = 18 filters is formed. Optimum STAP, with its implied uniform taper, results 
in space-time filters with narrower Doppler responses, and therefore more straddling losses, than 
tapered fully adaptive. 

3.4.3    SINR Loss 

It is often very useful to express STAP performance relative to what could be obtained in the 
absence of interference. In a noise-only environment, the optimum processor is simply 

w = vt , (118) 

which is a space-time matched filter. The optimum output signal-to-noise ratio, denoted SNR0, is 
then 

SNR0 = MN£t (119) 

The gain of MN represents coherent spatial and temporal integration over JV elements and M 
pulses. 
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Figure 27.    SINR loss for the fully adaptive STAP. 

The SINR loss, LSINR, of a space-time processing algorithm is defined to be its performance 
relative to the matched filter SNR in an interference-free environment. Thus, 

LSINR(^) = 
SINR(w) 

SNR0 
(120) 

Note that LSINR lies between 0 and 1. SINR loss is useful because it incorporates many of the 
factors contributing to performance loss in a single quantity. In addition to the losses incurred 
by suppressing the interference, SINR loss as defined above includes both taper losses and filter 
straddling losses. It will be shown in Section 3.5 how the effect of covariance estimation can also 
be incorporated into the SINR loss metric. SINR loss can be a useful way to translate space-time 
processor performance to a radar system's detection performance by including it as an additional 
loss factor in the radar equation. For example, if Rmax is the radar's noise-limited detection range, 
the system would achieve better than half this detection range for all scenarios where the SINR 
loss is greater than 12 dB. 
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Figure 27 shows the SINR loss for the fully adaptive STAP algorithms considered above. 
As expected, the optimum STAP produces an SINR loss of near 0 dB for most of the Doppler 
space. These curves are just scaled versions of the SINR plot of Figure 25, and their explanation 
is the same. SINR loss will be one of the primary metrics used to compare various suboptimum 
algorithms. 

3.4.4     SINR Improvement Factor 

Another way to present STAP algorithm performance is as a gain in SINR relative to that 
which exists on a single element and a single pulse. Let SINRm be the SINR on a single element 
for a single pulse. This is given by 

S,NR*=E$I>" rdrr, • * <121> 
where £c and £j are the input CNR and JNR on a single element for a single pulse. Let & = £c+£j be 
the input interference-to-noise ratio. Typically the clutter and jamming are very large, so SINRm 

is a very small quantity. 

The SINR improvement factor, ISINR, is defined as 

Ww> --SndfcT ' (122) 

A convenient general rule can be derived for cases where the interference is large and the STAP 
algorithm provides near optimum performance. In this case, 

ISINR = MN{1 + £,) « MN& . (123) 

Thus the SINR improvement factor is typically large, and it increases as the interference becomes 
stronger. SINR improvement factor includes not only the amount of interference rejection but also 
the coherent gain on target due to both receive beamforming and Doppler filtering. 
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Figure 28.    SINR improvement factor for the optimum and tapered fully adaptive STAP. 

Figure 28 shows the SINR improvement factors for the example scenario. The input interference- 
to-noise ratio is 48.1 dB, with 47 dB CNR and 38 dB JNR. Over the center of the Doppler space the 
optimum SINR achieves an SINR improvement of 73.2 dB. Note that the approximate relationship 
does apply (73.2 » 48.1 + 25.1). These curves are scaled replicas of the SINR plots of Figure 25. 

Alternative definitions of SINR improvement factor are also possible. For instance, one 
may wish to express STAP performance with respect to some nonadaptive or reference processing 
scheme. In this case the corresponding improvement factor is given by 

ISINR(^) = 
SINRjw) 

SINRTe{{zj) 
(124) 

where SINRTef(w) denotes the performance of the reference processing scheme. 

3.4.5     Minimum Detectable Velocity and Usable Doppler Space Fraction 

The SINR performance as a function of Doppler can be used to derive figures of merit that 
describe the velocity coverage provided by a space-time processing algorithm. To begin, define the 
acceptable SINR performance to be an SINR loss of LSINR = x. With x = -12 dB, acceptable 
performance is at least 50% of the maximum detection range. Similarly, x = —5 dB defines 
acceptable to be at least 75% of the radar's noise-limited detection range. 

72 



The minimum detectable velocity (MDV) tis defined as the velocity closest to that of the 
mainlobe clutter at which acceptable SINR loss is achieved. Let /L(Z) and fu(x) be the Doppler 
frequencies below and above the mainlobe clutter Doppler at which the acceptable SINR loss is 
achieved. Define the minimum detectable Doppler /mjn as 

Un(x)=\Uu{x)-fL{*)), (125) 

which is equal to one-half of the width of the mainlobe clutter notch.  The minimum detectable 
velocity it then defined as 

MDV(x) = ^Un . (126) 

A target whose velocity differs from the mainlobe clutter velocity by less than the MDV falls far 
enough into the clutter notch that acceptable performance is not achieved. 

Another important quantity is the fraction of the Doppler space over which acceptable per- 
formance is achieved. This metric will be called the usable Doppler space fraction (UDSF). This 
metric is useful in choosing multiple PRFs to cover a velocity regime larger than the unambigu- 
ous velocity of a single CPI. The presence of antenna crab and backlobe clutter may cause the 
space-time processor to place nulls at Doppler frequencies other than that of mainlobe clutter. In 
this case, the MDV alone is insufficient to determine the amount of Doppler space where SINR 
performance is still acceptable. The UDSF may be thought of as the probability that the SINR 
loss is greater than the acceptable value, assuming that the target Doppler frequency is uniformly 
distributed over the Doppler space. Now define FL(X) = FT{LSINR(TV) < x} to be the cumulative 
distribution of the SINR loss. The UDSF is then given by 

UDSF(x) = 1 - FL(x) . (127) 

For many cases where the SINR loss exhibits only a null on the mainlobe clutter, the simpler 
expression 

UDSF{x) = 1 - ^^ (128) 
IT 

applies. 
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TABLE 5 

MDV and UDSF for fully adaptive STAP 

Optimum Tapered Fully Adaptive 

MDV(-12 dB) 1.2 m/s 2.0 m/s 

UDSF(-12 dB) 96.0 % 94.9 % 

MDV(-5 dB) 2.7 m/s 3.8 m/s 

UDSF(-5 dB) 94.1 % 92.1 % 

For the example scenario, the MDV and UDSF can be derived from Figure 27. Table 5 shows 
the results for two levels of acceptable SINR loss. The requirement for low sidelobes causes a loss 
in MDV in addition to the loss in SINR performance. 

3.5    Sample Support and SMI 

In the examples thus far the weights were derived with assumed knowledge of the covariance 
matrix R^. In practice, R,j must be estimated from the finite data available. Sample matrix 
inversion (SMI) algorithms are considered [24] where Ke snapshots are used to form the sample 
covariance matrix estimate of Ru: 

1   Kc 

(129) 
e /=i 

Typically, the training samples Xi cover a range interval surrounding but not including the range 
gate of interest. The SMI weight vector is then computed from 

w = Ru  
xgt (130) 

Because of the covariance estimate, the SMI weight vector is suboptimum. An additional per- 
formance loss is incurred due to covariance estimation; this loss depends both on the number of 
samples and on the relationship between g< and the target steering vector. 
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The theory of covariance estimation and its effect on SMI is well developed. In their defining 
work on SMI [24], Reed, Mallett, and Brennan (RMB) quantified the expected performance of SMI 
as a function of the number of samples, given a matched steering vector gt = vt. Mismatches 
between the target steering vector and the vector gt used for weight computation may occur by 
design (because of tapering), because of imperfect knowledge of the target direction (angle and 
Doppler), or both. Boroson [31] and Kelly [30] have extended the analysis to a general mismatched 
steering vector. Let SINRC be the SINR assuming known covariance, from Equation (113). The 
SINR obtained with the SMI weight vector, Equation (130), is 

S'm° = 5fcffift« ' (131) 
gf Ku  ttuitu gt 

a random quantity depending on the snapshots used for the covariance estimate. Define a new 
random variable 

SINR* ,*nnS 
P=UNRC ^ 

to be the loss in performance, relative to that with perfect covariance knowledge, due to covariance 
estimation. Under the assumptions of i.i.d. Gaussian snapshots, it has been shown by Boroson and 
by Kelly that the expected value of this loss is 

E{p} = Ke + 1- Ndo[ + — 
Pc Ke + 1 

where JVd0f is the weight vector dimension. The quantity pc above is defined by 

(133) 

igWvl8 -Sim 
Pc ~ (g^ftXvfR^vt) " SINR.  • {l6*> 
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and is a measure of the mismatch between g< and vt; it is also the loss in performance relative to 
optimum given perfect covariance knowledge. With a matched steering vector, pc = 1 and p is a 
beta random variable [24] whose expected value is given by 

In this case the expected loss is independent of the interference scenario and depends only on the 
number of samples Ke and the weight vector dimension. From Equation (135), it is found that for 
effective performance in a stationary environment, between 2iVd0f and 5Ndo( independent samples 
are required for covariance estimation. In the general mismatched steering vector case, the expected 
loss is also dependent on the interference scenario through pc, although for small taper or direction 
mismatches, this dependence is weak. 

The above theory can be used to include the effects of covariance estimation in any of the 
SINR-derived performance metrics. For example, the SINR loss of Equation (120) may be modified 
as follows: 

«* = -{3£}-*{»(S&) 
=   p(Ke)Lsjm.(w,oo) , (136) 

where XSINR^^OO) is the SINR loss with known covariance [Equation (120)]. 

To illustrate the impact of covariance estimation, consider a fully adaptive SMI approach 
with the example system, where iV^f = MN = 324. Figure 29 shows the expected SINR loss 
from Equation (136). A matched steering vector (optimum fully adaptive) is assumed. With only 
A'e = 324 samples, a performance loss of more than 20 dB is incurred due to insufficient data for 
good covariance estimation. At least 2Nd0{ — 3 = 645 samples are required to achieve within 3 dB 
of the known covariance result. 

By reducing the adaptive weight dimensionality, the performance with a given amount of data 
can be dramatically improved. The sample support issue is made more difficult by the nonstationary 
nature of real radar clutter and jamming. Nonhomogeneity in range, combined with the clutter 
power and elevation angle dependence on range, all effectively reduce the number of range gates over 
which the clutter scenario is effectively stationary. The range interval covered by a given number of 
samples depends on the instantaneous bandwidth of the radar. As the bandwidth becomes smaller, 
there are fewer samples available to span a given range interval or, conversely, the larger the range 
extent covered by a given number of samples. The need for adequate covariance estimation is one 
major factor motivating reduced-dimension STAP algorithms. Most of the analysis of this report is 
done assuming known covariance but with the underlying purpose of reducing the dimensionality 
as much as possible. This will ensure that performance with limited data is close to optimum. 

76 



It should be understood that in Equation (133), no target signal was assumed present in 
the snapshots used to form the SMI weight vector. This assumption is critical to the convergence 
result of Equation (133). It is valid for most radar system scenarios, where the target signals are 
small and confined to a single range gate, and especially where the training method excludes the 
range gate under test from the training set. The presence of a strong target signal can dramatically 
increase the number of samples required for a specified level of performance. This issue was first 
studied by Miller [22] and more recently investigated by Feldman [32]. 

3.6    Computational Complexity 

The fully adaptive weight vector of Equation (104) is the solution to a linear system of 
equations whose dimension is MN. For modest-size radars, the product MN may vary from several 
hundred to several thousand, depending on the antenna array length and the CPI size. Computing 
a single weight vector requires on the order of (MN)3 operations. Typically, M separate weight 
vectors are computed to form a bank of filters to cover the Doppler space at each receive beam 
pointing angle. For radars with a narrow transmit beam, two or three (sum, difference, blanking) 
receive beams are typically formed with each CPI, yielding a total of ZM space-time weight vectors 
for each CPI. This process is repeated for each training set used to cover the range interval of the 
radar. 

The sheer computational load required to solve the large systems of linear equations required 
by fully adaptive STAP, in the time necessary for real-time radar operation, is simply beyond 
the capabilities of current digital processor technology. This is another factor that makes fully 
adaptive STAP impractical and, along with sample support considerations, motivates research into 
reduced-dimension STAP algorithms. The next chapters investigate ways to break the fully adaptive 
problem into smaller dimension adaptive problems that can be solved with both reasonably sized 
processors and a limited amount of training data. 
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4.   PARTIALLY ADAPTIVE STAP 

4.1     Introduction 

The fully adaptive approaches considered in the last chapter are impractical for reasons of 
computational complexity and the sample support required for weight training.8 This chapter 
considers reduced-dimension or partially adaptive STAP algorithms. The objective is to break a 
prohibitively large problem down into a number of smaller, more manageable adaptive problems 
while achieving near-optimum performance. A generic partially adaptive structure is presented, 
consisting of a data transformation or preprocessor matrix followed by reduced-dimension adaptive 
processing. The theory of partially adaptive nulling in the presence of low rank interference is 
reviewed. Conditions for which a reduced-dimension processor, with known covariance, provides 
performance equal to fully adaptive STAP are derived. The reduced-dimension processor may 
actually provide better performance with limited data because it will incur much less estimation 
loss. These results are then applied to the STAP problem. A taxonomy is developed of partially 
adaptive algorithms that are classified according to the domain in which adaptive weighting occurs 
or, equivalently, by the type of preprocessing done first. 

4.2    A Generic Architecture 

A partially adaptive processor takes a large set of input signals, transforms them to a relatively 
small number of signals, and then solves a reduced-dimension adaptive filtering problem with the 
transformed data. A general architecture that describes this process is shown in Figure 30. The 
input data is an MA^-dimensional space-time snapshot. 

This data is transformed to a new flxl vector x by means of an MN x D preprocessor 
matrix T, 

X = THX- (137) 

Throughout this chapter the tilde symbol, ", denotes a quantity (data, steering vector, covariance, 
etc.) in the reduced-dimension space of the data after preprocessing. In general, the transformed 
data may be decomposed as 

X = «vt + *u , (138) 

8The development in this section has benefited greatly from discussions with A. Steinhardt, S. 
Krich, E. Baranoski, and D. Marshall. 
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where vt = THvt is the transformed target steering vector and xu = THXu 1S tne interference- 
plus-noise component. 

After data transformation, the D x I adaptive weight vector 

w = R^gt (139) 

is computed, where 

RU = E{XUX"} = T
H

KUT (140) 

is the D x D covariance matrix of the transformed data and g( is a D x 1 desired response or target 
steering vector. Given a desired response gt for a fully adaptive processor, the new desired response 
is defined as 

gt = THgt (141) 
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Figure 30.    A generic partially adaptive STAP architecture. 
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Applying the computed weights yields the final output 

z = \vHx = (Tvffx • (142) 

The partially adaptive weight vector w may be projected back to the full dimensionality to produce 
the composite MN x 1 vector 

wpa = Tw , (143) 

which represents the cascade of both the preprocessor and the adaptive weighting. The composite 
weight vector is useful for comparing the performance of fully and partially adaptive processors. 

The major issue to be addressed is the design of T. If T is invertible, there is no loss 
of performance [23] but no reduction in dimensionality, either. It is desirable to design T with 
D « MN as small as possible while at the same time achieving as close to fully adaptive (optimum) 
performance as possible. 

4.3    Exploiting Low-Rank Interference 

It was shown in Chapter 2 that the interference covariance matrix is or in many cases may 
be approximated as low rank. This section will show that low-rank interference may be exploited 
to achieve significant reduction in the adaptive problem dimensionality with little or no sacrifice 
in performance relative to the fully adaptive case. The general theory of adaptive nulling with 
reduced rank interference will be presented, followed by its application to the STAP problem. 

Assume that the interference-plus-noise covariance matrix consists of two components, 

Ru = R.! + R2 . (144) 

Assume that Ri is full rank and is either known a priori or can be estimated separately from R2. 
This latter condition requires the existence of data without the R2 component present. Second, 
assume that R2 is low rank, i.e., 

r2 = rank(R2) < MN , (145) 
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and has spectral decomposition 

R2 = E2A2E^  , (146) 

where A2 is an r2 x r2 diagonal matrix of the nonzero eigenvalues of R2 and E2 is the MN X r2 

matrix of the corresponding eigenvectors. In the simplest case, think of Ri being noise and R2 as 
being low rank interference. In general, the preprocessor T may decrease the interference rank but 
it cannot increase it. 

Under these assumptions, the fully adaptive weight vector from Equation (106) is derived by 
substituting (146) into Equation (144) and applying the matrix inversion lemma: 

wfa = R^gt - Rr!E2 (E^R^1E2 + AJ1)"1 E^R^g, . (147) 

Close inspection of Equation (147) shows that Wfa may also be written as the matrix-vector product 

wfa= [RT^gt, Rr^Jc , (148) 

where c is the (r2 + 1) x 1 coefficient vector 

c=[l;    -(EfRr'Ea + A^^E^Rr1^]   . (149) 

Equation (148) shows that the fully adaptive weight vector lies entirely in an (r2 + l)-dimensional 
subspace comprising the desired response and the E2 interference subspace:9 

wfa C span {R^ [gf , E2]} . (150) 

For example, with Ri = I and the matched steering vector gt = v«, Equation (150) shows that the 
optimum weight vector lies in the target-plus-interference subspace [32]. 

9Assume the desired response vector (target steering vector) has a component orthogonal to the 
R2 interference subspace; if not, no algorithm will work. 
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This observation suggests the partially adaptive architecture of Figure 31(a), where the data 
is first sent through transform 

T = R"XB , (151) 

whose outputs are then adaptively combined with a weight vector w. Here B is an MN x D "beam" 
matrix to be determined. The following theorem provides a condition for the optimum design of 
B. 

Theorem 2 // the matrix B is designed to satisfy 

span {[ gt,    E2 ]} C span {B} , (152) 

then the partially adaptive processor of Figure 31(a) achieves performance, with known covariance, 
equal to that of the fully adaptive processor. 

Another way of stating the condition Equation (152) is to require 

Pfl[g«,   E2] = [gt,   E2] , (153) 

where P# = B(B^B)_1BW is a projection matrix that projects a vector onto the subspace spanned 
by the columns of B. 

This result should not be surprising given Equation (150); a rigorous proof is provided in 
Appendix 2. To illustrate the power of Theorem 2, consider Ri = I and gt = vt. By choosing B 
to span both the target and interference subspaces, optimum performance can be achieved with 
only r2 + 1 adaptive degrees of freedom. The matrix B can be viewed as a target "beam" plus a 
set of interference cancellation "beams." The interference cancellation beams, because they span 
the interference subspace, produce output signals with maximum interference power. Therefore the 
interference is suppressed with minimum distortion to the target (quiescent) beam: optimum SINR 
results! Practically, the advantages are that one only needs sufficient data to support a D x D 
covariance estimation, where D = (r2 + 1). Given a fixed amount of data, the performance of the 
partially adaptive approach may in fact be better than fully adaptive, where losses due to imperfect 
covariance estimation will be much greater. Theorem 2 also applies when gt ^ vt and shows 
that by including the desired response in the beam matrix, tapered fully adaptive performance 
(near-optimum SINR and adapted pattern) can be achieved with a reduced dimension processor. 
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An alternate form for a partially adaptive processor, shown in Figure 31(b), is often useful. 
Here the preprocessor is divided into two stages. The first portion is a whitening filter that cleanses 
the Ri component of the data. The matrix T then projects the whitened data into a lower dimension 
space, and the projected data is adaptively weighted with w to produce the output. 

The whitening filter is chosen to be the matrix RJ~ , which exists because Ri is nonsingular.10 

The whitening filter is known because it is assumed that Ri is known or can be estimated. Let the 
— 1/2 — 1/2 whitening filter output be rj = Rj x and let h< = Rj g* be the whitened desired response. 

The covariance matrix (interference plus noise) of the whitened data is then 

SU = I + S2  , (154) 

S2 = R^1/2R2RJ"1/2 . (155) 

Since the whitening filter is invertible, it does not alter the rank of any data component. The 
interference S2 has rank r2 and spectral decomposition 

S2 = F2r2Ff . (156) 

The eigenvectors before and after whitening are related by 

span {F2} = span {Rr1/2E2}   , (157) 

which follows by examining the nullspace of S2 from Equations (155) and (156). The main issue is 
how to design the preprocessor T after whitening. The following variation of Theorem 2 provides 
a condition for the optimum design of T in Figure 31(b). 

Theorem 3 // the preprocessor T is designed to satisfy 

span{[ht,    F2]} C span {T} , (158) 

then the partially adaptive processor of Figure 31(b) achieves performance, with known covariance, 
equal to that of the fully adaptive processor. 

10From a computational viewpoint, it may be better to construct the whitening filter from the 
Cholesky factor of Ri. 
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Another way of stating the condition in Equation (158) is to require 

Pr[ht,   F2] = [h«,   F2] , (159) 

where PT = T(T//T)_1T;/ is the projection matrix for T. 

The proof takes two steps. First, the whitening filter is invertible and therefore does not 
alter the performance. Second, the processor after whitening is a special case of Figure 31(a), with 
Ri = I. Theorem 2 is applied and the proof is complete. An important result from Theorem 
3 is that in the presence of colored noise, the pertinent interference subspace is the subspace of 
the whitened data. The condition in Equation (158) is in terms of the whitened eigenvectors and 
response vector. It can also be stated, utilizing Equation (157), as 

span {Rr1/2 [g« , E2]} C span{T} . (160) 

This observation also follows by noting that the processors of Figure 31 are identical if, in Fig- 
ure 31(b), T = R^1/2B. 

Theorems 2 and 3 are very powerful. They provide the foundation for many partially adaptive 
approaches. Beamspace nulling and subspace-based adaptive processing are examples of approaches 
that can be derived from this theory. Unfortunately, the interference subspace is typically unknown 
a priori, so the optimum a priori design of the preprocessor is impossible. Limited prior knowl- 
edge may allow one to design a nonadaptive transform that encompasses the range of expected 
interference scenarios. In this case the dimensionality is reduced, but not to the degree possible 
with perfect information. With no a priori knowledge, the interference subspace must be estimated 
data-adaptively. For large problem sizes, the process of subspace estimation may also be compu- 
tationally prohibitive. For this reason it is useful to also view the transform T in Figure 30 as a 
filter that nonadaptively suppresses a portion of the interference. In so doing, both a reduction in 
data dimensionality and a reduction in effective interference rank may be achieved. Theorems 2 
or 3 may then be applied to gain further dimensionality reduction prior to the final SMI weight 
computation. 

4.4     Application to STAP 

The interference-plus-noise component of the data typically has three mutually uncorrelated 
components: clutter, jamming, and noise. It was shown in Chapter 2 that the space-time covariance 
matrix is given by 

Ru = Rc + Rj + R„ . (161) 
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The noise, being typically dependent only on the receiver characteristics, is well known a priori and 
full rank. Much less is known a priori about the clutter and jamming, except that they are of low 
rank. Therefore, one application of the above theory is to identify 

Rj = R„   and   R2 = Rc + Rj (162) 

and to use an architecture such as Figure 31(a). With reasonable assumptions such as those of 
Chapter 2, R„ is white both spatially and temporally white, so that the processors of Theorems 2 
and 3 default to the same architecture. In this case adaptive nulling simultaneously rejects both 
clutter and jamming. Theorem 2 states that fully adaptive performance can be achieved if the 
preprocessor matrix contains the span of the combined clutter-plus-jamming subspace. 

In some cases, limited a priori information may be exploited to obtain clutter-free data from 
which an estimate of the jamming-plus-noise component can be made. For example, it was seen in 
Chapter 2 that depending on the radar waveform, there may be clutter-free range gates (beyond the 
horizon with low PRF) or clutter-free Doppler frequencies (with medium or high PRF). Another 
way to derive clutter-free samples of the signal environment is for the radar to operate in a passive 
receive-only mode for a brief time prior to the transmission of the first pulse of a CPI [33]. If the 
jamming can be assumed stationary enough so that a jammer-plus-noise estimate obtained in these 
ways is accurate for the time interval that also contains the target and clutter, a second application 
of the above theory results. In this case, the association 

Rx = Rji + R„   and   R2 = Rc (163) 

is made. The partially adaptive structures of Theorems 2 and 3 split the interference cancellation 
into two steps. The first step optimally nulls the jamming and projects the data into a lower di- 
mension, then the second stage adaptively suppresses the clutter. Because the jamming is typically 
not known a priori, the first step will also require adaptivity. An architecture of this form is called 
a two-step nulling (TSN), or sequential nulling architecture [34, 37]. At first glance it appears that 
a large dimensional problem must be solved in the first step, as the space-time jamming covariance 
matrix is of dimension MN. However, both the block diagonal nature of Rj and the low-rank nature 
of the spatial jammer covariance matrix may be used to advantage; in essence, jammer nulling re- 
quires only spatial adaptation (small dimension) whose weights will at most need to be recomputed 
for each PRI. When it is feasible, two-step nulling may produce significant reductions in required 
adaptive degrees of freedom. 
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The large dimensionality of the fully adaptive space-time processing problem and the fact that 
the interference is mostly unknown a priori lead toward an architecture whose first step provides 
nonadaptive filtering to reduce the dimensionality prior to adaptive processing. This process is 
illustrated in Figure 32, which provides a final block diagram for a partially adaptive space-time 
processor. After nonadaptive filtering, assume the dimensionality has been reduced to a point that 
weight computation is feasible. It may be beneficial to utilize Theorems 2 and 3, in which case 
the next step is a subspace projection that provides additional dimensionality reduction. Finally, 
a weight vector is computed by solving an SMI problem with the final reduced-dimension data. 
This architecture encompasses both simultaneous and two-step nulling approaches. With some 
approaches, a final stage of nonadaptive processing may be required, as indicated by the dashed 
block. With this framework in mind, a number of approaches will be considered, classified by the 
type of transformation performed in the Ti block of Figure 32. 

Many preprocessor types are possible. The input data originates from a sampling in time from 
the pulses of the CPI and in space at the locations of the antenna array elements. Combinations of 
spatial and temporal filtering compose the different types of transforms. A convenient classification, 
in terms of four basic categories, is shown in Figure 33. Each quadrant shows a box representing the 
data for a single range gate after a different type of transform. For example, with no transformation, 
a matrix of element by PRI data composes a space-time snapshot. One way to reduce the problem 
dimensionality in this domain would be to utilize all elements but only a small number of PRIs. 
Algorithms of this type are referred to as element-space pre-Doppler, because full element adaptivity 
is retained and Doppler processing will be done after adaptation. 

Spatial filtering (beamforming or subarraying) may be performed on the element outputs 
of each PRI prior to adaptation. In so doing the space-time snapshot is transformed into a new 
snapshot consisting of angle beam-by-PRI data. Algorithms that perform beamforming prior to 
adaptation are referred to as beamspace algorithms. Beamspace algorithms have long been utilized 
for reducing DOF in spatial nulling and angle estimation applications. Beamspace approaches can 
also reduce the required degrees of freedom for canceling the clutter seen by an airborne radar. 
Beamspace approaches are also amenable to two-step nulling. STAP approaches that adapt with 
beamformed data from a small subset of PRIs will be termed beamspace pre-Doppler algorithms. 
This class is represented by the lower left block of Figure 33. 
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In an analogous fashion, temporal filtering (Doppler processing) may be performed on the 
data from each array element prior to adaptive processing. This operation transforms the space- 
time snapshot into a snapshot of Doppler bin and element data. STAP algorithms that operate on 
a subset of this data are termed element-space post-Doppler algorithms, as the adaptation occurs 
after Doppler processing. Post-Doppler algorithms will require solving a separate adaptive problem 
for each Doppler bin. Because the clutter Doppler frequency depends on angle, Doppler filtering 
serves to localize clutter in angle. Modern radar systems are very stable from pulse to pulse, making 
possible nonadaptive Doppler filters with extremely low sidelobes (> 80 dB). Doppler filtering can 
therefore isolate the clutter interfering with a target to just those angular regions of the clutter 
ridge corresponding to the Doppler filter mainlobe. For this reason, post-Doppler algorithms can 
significantly reduce the number of adaptive degrees of freedom required. 

Finally, the lower right corner of Figure 33 represents algorithms where both spatial and tem- 
poral preprocessing of the data is done prior to adaptation. Think of such processing as cascading 
a beamformer on each PRI with a Doppler filter bank on each beam. A subset of the resultant 
angle-Doppler filter outputs will then be adaptively processed to produce the final outputs. This 
class is therefore called beamspace post-Doppler algorithms. One example of a beamspace post- 
Doppler algorithm is to perform a two-dimensional DFT of the input data prior to adaptations. 
Many other examples exist. With beamspace post-Doppler, the idea is to localize the interference 
both temporally and spatially prior to adaptation so that very few outputs need to be combined 
adaptively. 

The next two chapters will study the algorithms of each of these four classes. Chapter 5 
considers element space approaches, and Chapter 6 covers beamspace algorithms. 
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5.   ELEMENT-SPACE STAP 

5.1     Introduction 

This chapter considers element-space STAP architectures whereby every element is adap- 
tively weighted. Element-space approaches retain full spatial dimensionality but reduce the overall 
problem size by reducing the number of temporal degrees of freedom prior to adaptation. Full 
element-space adaptivity provides the flexibility to handle a completely unknown jamming envi- 
ronment and also the potential for effective clutter cancellation at all angles. Because they retain 
full spatial adaptivity, element-space approaches are also robust to channel mismatch errors. Typ- 
ically, element-space architectures aim to suppress clutter and jamming simultaneously. By their 
nature, element-space techniques may be impractical for very large arrays. Element-space pre- 
Doppler STAP will be considered first. In this approach, adaptive weighting is done a few pulses 
at a time, with final Doppler filtering performed after space-time adaptation. Then, element-space 
post-Doppler techniques will be considered, where a separate Doppler filter bank is applied to the 
pulses from each element. The outputs of a small number of filters on each element form the degrees 
of freedom for low dimension space-time adaptation. The issue of Doppler filter design is addressed, 
and a number of different post-Doppler architectures are discussed. 

5.2    Element-Space Pre-Doppler STAP 

The first algorithm class considered is element-space pre-Doppler STAP. The basic idea is to 
adaptively combine the data from only a few (typically 2 or 3) pulses at a time rather than all 
the pulses of the CPI. Utilizing more than one pulse provides the temporal adaptivity required for 
clutter cancellation, while retaining full spatial adaptivity provides a means to handle jamming 
simultaneously. Adaptive processing is then followed by a fixed (nonadaptive) Doppler filter bank 
that provides coherent integration over the full CPI and the means for velocity estimation. This 
architecture was first put forth by Brennan [18], who termed it the "adapt then filter" approach. 

To be more precise, define a sub-CPI to be a subset of the CPI comprising K successive 
pulses. Given M pulses in a CPI, there are M' = M — K + 1 sub-CPIs. Number them from 0 to 
SI' - 1, with the Oth sub-CPI consisting of pulses 0,..., K — 1, the pth sub-CPI consisting of pulses 
p p+ K — 1, and so on.   A ATV-dimensional space-time adaptive weight vector is computed 
and applied to each sub-CPI. The M' output pulses are subsequently passed through a standard 
Doppler filter bank. Because successive sub-CPIs utilize overlapping sets of pulses, outputs from 
successive sub-CPIs will be temporally correlated. 

Figure 34 shows two block diagrams for element-space pre-Doppler: Figure 34(a) shows a 
sub-CPI portion, while Figure 34(b) shows a full CPI depiction. Now, consider the Oth sub-CPI, 
consisting of pulses 0,...,K — 1. Recall that xm specifies the TV x 1 spatial snapshot for the mth 
PRI. 
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The sub-CPI snapshot vector x 1S tne KN x 1 vector 

X = {*®IN)
H
X, (164) 

where 

J = 
IK 

0(M-K)XA' 

(165) 

is an M x K selection matrix that chooses the first K pulses from the CPI. The notation 0|Xm 

refers to an / x m matrix of zeros. For this architecture, the matrix J ® Iff is the preprocessor of 
Figure 30. The sub-CPI snapshot contains an interference-plus-noise component xu = (2®IN)

H
XU 

and, if a target is present, the target component 

Xt   =   a«(J ® lN)HVt = atJ
Hbt ® at 

=   atb( ® at = atvt , 

(166) 

(167) 

where vt = bt ® a«, bt = b(rot), and b(ro) = b(c7; K) is a A'-pulse temporal steering vector. The 
sub-CPI adaptive weight vector is computed as 

w = Ru gt , (168) 

where R„ is the AW x KN interference-plus-noise covariance matrix and gt is a A7V x 1 sub-CPI 
desired response. Note that the problem size has been reduced by a factor of M/K relative to fully 
adaptive STAP. 

The sub-CPI covariance matrix has all the properties described in Chapter 2, but with K 
substituted for M. It may be broken up into clutter, jamming, and thermal noise components: 

R„ = Rc + Rj + Rn (169) 

The sub-CPI jammer covariance matrix has rank, from Equation (50), 

fj = Kpj . (170) 
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Similarly, under the conditions for which Brennan's rule applies, the rank of Rc is 

fc = N + (K- 1)0 (171) 

Finally, the sub-CPI noise covariance matrix is both spatially and temporally white. Although 
the interference within the sub-CPI is still less than full rank, its rank (mainly the clutter) becomes 
a larger fraction of the snapshot dimension as K becomes smaller. 

The desired response for pre-Doppler STAP is chosen with the subsequent Doppler processing 
in mind. As the outputs of the sub-CPI adaptations will be Doppler filtered, it is desirable for the 
temporal component of the sub-CPI response to maximally cover the Doppler space. Therefore, 
a sensible choice is a binomial taper steered to the center of the Doppler space. This choice 
concentrates all the nulls of the quiescent Doppler response to the Doppler frequency of the mainlobe 
clutter, and prevents extraneous nulls in Doppler from being placed at other Dopplers where target 
detection is desired. With this motivation, the sub-CPI desired response is taken to be 

gt= (tt0b(c7fc))®(t„0a(^)) (172) 

In this equation, tj, is the K x 1 binomial taper and Wj denotes the Doppler frequency in the center 
of the Doppler space, relative to the mainlobe clutter Doppler. That is, if mainlobe clutter has 
Doppler we, the binomial response will be steered to CC7{> = wc + 1/2. For example, with K = 3 and 
the mainlobe clutter at zero Doppler, Wb = 1/2 and 

lb © b(c76) = 
"1" • 1 • • 1 - 

2 0 -1 = -2 
.lj . 1 . . 1 . 

(173) 

is just a 3-pulse MTI canceller impulse response. A spatial taper t„ is included in Equation (172) 
for completeness. 

Now consider the full CPI. There are several ways in which one might train and apply the 
weights. In the simplest case, a single KN-dimensional adaptive weight vector is computed and 
this weight vector is applied to each sub-CPI. Training samples for this single weight computation 
may be derived from within a single sub-CPI or from multiple sub-CPIs. More generally, one could 
compute and apply a separate adaptive weight vector for each sub-CPI. After the first sub-CPI, 
the weights are updated with each subsequent PRI of data. This more rapid updating may be 
useful to combat a changing interference environment (due to antenna rotation, for example) but 
also requires that the computations be done more rapidly. Assume the general case of a separate 
adaptive problem for each sub-CPI from here on. A full CPI block diagram of the architecture was 
given in Figure 34(b). 
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The pth sub-CPI snapshot consisting of pulses p,... ,p + K — 1 may be written 

x, = (JP 8 IN)
H

 X , (174) 

where 

Jp = 

OpxA' 

IK 

°{M-K-p)xK 

(175) 

The pth sub-CPI weight vector is given by 

wP = RUpgt , (176) 

where R„p is the pth sub-CPI covariance matrix. The desired response gt does not change from one 
sub-CPI to the next. The sub-CPI weight vectors can be decomposed into their spatial beamformer 
components for each pulse. Let 

w, - [ wPio ;   wPil ;   • • • ;   WPIK-I (177) 

so that wPifc represents the spatial weight vector for the Arth pulse of pth sub-CPI. The output signal 
from the pth sub-CPI is then 

K-\ 

VP = *pXp = Yl •P,k*P+k , P = 0 : M' - 1 
fc=o 

Assemble the outputs from all sub-CPIs into an M' x 1 vector 

(178) 

y = [j/o;   j/i;   •••;   yM--i] = v/Hx» (179) 
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where W is an MN x M' matrix containing the weights from all sub-CPIs. This matrix is given by 

W = 

w0,o 0       0     ••• 0 

w0,i      wi)0     0     • • • 0 

W0,K-1 '"• 0 

0 

"», WM-A',1 

0 •. 

0 0 WM-K.K-1 

(180) 

If the weight vectors for each sub-CPI are equal, W has the block-Toeplitz structure characteristic 
of a temporal convolution with a Ar-pulse space-time filter. 

The sub-CPI output signals are processed by a length M' Doppler filter bank. Let U = 
[uo, Ui,..., UM'] be an M' x M' DFT matrix, and let tj be an M' x 1 taper for the Doppler filters. 
The Doppler filter bank is represented by the matrix 

F=     fb,   fi,   •••,   tw_x     =dia«(trf)U*  , (181) 

where the mth Doppler filter is given by fm = tj 0 u^. With this convention, the Doppler filter 
output is 

z = ZQ ,     Z\ ,     • • •  ,     2Af'-l = F"y , (182) 

where the signal zm = f^fy is the final output for the mth Doppler bin. The output signal can also 
be expressed in terms of the full dimension snapshot as 

zm = i^WH
X = w£*  , (183) 

where 

wm = Wf„ (184) 
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is the mth bin composite weight vector that represents all of the processing steps (adaptive and 
fixed) involved in producing the final output. 

The algorithm's SINR performance may now be computed. Assume the target is at angle i?j 
and Doppler w. By utilizing the composite weight vectors in Equation (111), the SINR in each 
Doppler bin is given by the same formulas used for fully adaptive STAP, 

aw-w = *.iffi«„,)i'. (185) 
w£Ruwm 

For each potential target Doppler, take the maximum over all Doppler filters: 

SINR(VJ) = max SINRm(w) . (186) 
m 

It may be more convenient to compute SINR in the lower dimension space. Let Ruy = WWRUW 
be the temporal covariance matrix of the interference-plus-noise signals into the Doppler filter bank, 
and let 

vy(0,w) = WHv(0,w) (187) 

be the target vector at the same place. The SINR can also be found from 

This latter expression involves only M'-dimensional matrix-vector products, as opposed to the 
MA^-dimensional computations involved in Equation (185). 

To illustrate the performance of element-space pre-Doppler STAP, consider again the radar 
system example of Table 2 and the interference scenario of Table 4. Let K = 2 so that with each 
sub-CPI, a 2N = 36-dimensional weight vector is computed. Figure 35(a) and (b) show the adapted 
pattern from a single sub-CPI and the principal pattern cuts in angle and Doppler. The pattern 
exhibits deep nulls at the two jammer azimuths and a null along the clutter ridge as expected. The 
azimuth cut corresponds to a 150-Hz Doppler frequency and shows reduced pattern response at 
s'm4> = ±1, where the clutter has this same Doppler and is suppressed. The Doppler cut shows 
that at the target azimuth, the only null is that at 0 Hz required to suppress the clutter. 
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Another view of the sub-CPI weight vector is shown in Figure 36. Here w is broken down into 
the spatial weight vector components for each PRI, from Equation (177). The individual weight 
magnitudes are plotted versus element number. For PRI #1, the weight on element #0 is zeroed, 
and the receive aperture is shifted right of the array physical center. For PRI #2 the receive aperture 
is shifted left by zeroing the weight for the rightmost element of the array. The shapes of the two 
responses are identical but shifted from one another by an interelement spacing. Thus, the 2-pulse 
STAP adaptively implements DPCA processing [2] with spatially adaptive beamformers to cancel 
the clutter while simultaneously suppressing the two jamming signals. With DPCA processing, the 
outputs of fully formed beams are combined temporally to cancel the clutter; no inherent capability 
to suppress jamming below the nominal sidelobe level exists. 

The sub-CPI response plotted in Figure 35(b) provides coverage over much of the Doppler 
space. It also colors the thermal noise into the subsequent Doppler filter bank. For this example, 
assume a 40-dB Chebyshev Doppler filter bank. The composite adapted pattern for Doppler bin 
5 (93.75 Hz), from Equation (184), is plotted in Figure 37. The clutter and jammer nulls are still 
present, and the response has its maximum focused at both the angle and Doppler of a potential 
target. The corresponding SINR loss is shown in Figure 38. Both the K = 2 and K = 3 cases 
are shown, and optimum fully adaptive STAP is included for reference. Because of the angle and 
Doppler tapers assumed, the pre-Doppler curves exhibit about a 3-dB loss over most of the Doppler 
space. Because the noise is temporally colored, the low-order Doppler filters contain less noise than 
those for bins in the middle of the Doppler space. As a result, the SINR is significantly better close 
to the mainlobe clutter (MDV) than might be expected from examining a sub-CPI response alone. 
For this case of zero intrinsic clutter motion, K = 3-pulse pre-Doppler exhibits a wider notch at the 
mainlobe clutter Doppler because of the wider notch implied by the 3-pulse binomial steering vector. 
When intrinsic clutter motion is present, K = 2 pulses are insufficient and the K = 3 will provide 
substantially better performance. When pre-Doppler is implemented with a separate adaptation 
for each sub-CPI, differences between sub-CPI weight vectors will modulate the target (and any 
interference residue) prior to Doppler filtering. These differences are likely to be more predominant 
at Doppler frequencies close to mainlobe clutter. Simulations have shown that diagonal loading 
or subspace projection may be required to maintain the desired MDV performance. Finally, any 
clutter residue left after adaptive processing will be coherently integrated by the Doppler filter 
bank. H the CPI is very long, the potential for this residue to be integrated back above thermal 
noise merits addditional consideration. 

The results of this section illustrate one way of achieving near-optimum performance with a 
partially adaptive space-time processing architecture. 
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5.3     Element-Space Post-Doppler 

Whereas pre-Doppler STAP reduces the dimensionality by processing only a few pulses at a 
time, this section considers techniques where all the pulses of the CPI are filtered prior to adap- 
tation. A conventional radar does Doppler filtering after beamforming. Here, Doppler filtering is 
performed separately on the signals from each array element. A different adaptive problem will be 
solved in each target Doppler bin, utilizing the signals from all elements. This class of algorithms, 
represented in the upper right corner of Figure 33, is called element-space post-Doppler STAP. The 
basic idea is that Doppler filtering, with the capability for very low Doppler sidelobes, can localize 
the clutter in angle and thereby reduce the required number of adaptive degrees of freedom. First, 
a post-Doppler technique will be considered that utilizes only spatial adaptive processing; then 
approaches that employ space-time adaptation after Doppler processing will be looked at. 
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5.3.1    Post-Doppler Adaptive Beamforming 

The first post-Doppler algorithm considered utilizes a single Doppler filter bank on each 
element. Adaptive spatial beamforming is then performed separately within each Doppler bin.11 

This approach, termed post-Doppler adaptive beamforming, is shown in Figure 39. Because the 
spatial and temporal processing steps are separated in this architecture, it has also been referred to 
as "factored post-Doppler" or just "factored STAP." It is assumed that Doppler filtering suppresses 
mainlobe clutter nonadaptively and localizes the competing sidelobe clutter in angle. Within each 
Doppler filter, the adaptive processing places spatial nulls both at the angles of jamming signals and 
at the angles where the sidelobe clutter Doppler falls within the Doppler passband. Doppler filters 
containing mainlobe clutter are lost. If performance is acceptable, this is an excellent approach 
because a significant reduction in dimensionality has been achieved. This approach only requires 
solving M separate JV-dimensional adaptive problems. 

Let the Doppler filter bank on each element be represented by the M x M matrix F = 
[fb,fi, - • .,fjtf-i]- Filters with very low Doppler sidelobes are required to suppress mainlobe clutter 
nonadaptively, so assume a tapered DFT filter bank 

F = diag(td)U* , (189) 

where tj is an M x 1 low sidelobe taper and U is the M x M DFT matrix. 

Focus on the adaptive processing for the mth Doppler bin. Let xm be the N x 1 spatial 
snapshot obtained by collecting the mth Doppler bin outputs from each element, 

Xm = (fm®lN)HX   • (190) 

Note that for this architecture, the preprocessor of Figure 30 is simply (fm ® Ijv). The filtered 
spatial snapshot consists of the interference-plus-noise component 

*«m = (tf®I*)x« (191) 

nStrictly speaking, this approach is not really a space-h'me adaptive algorithm, as the adaptive 
weights are spatial only. 
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and, if a target is present, a component 

Xtm    =   (f%®lN)H(atVt) 

=    (a,f£bt)a« 

=    &tm*t > 

(192) 

(193) 

(194) 

where u,m = atf^bt is the Doppler-filtered target amplitude and at is the target spatial steering 
vector. 
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Compute the adaptive weight vector 

wm = R^g, , (195) 

where the mth bin spatial covariance matrix is given by 

Rum = E{xumxL} = (fm®lN)HRu(fm®lN)    • (196) 

The vector gt = t„ ©a< is the desired spatial response, where t0 is an N x 1 spatial taper. Equation 
(195) requires the solution of an iV^-dimensional linear system, and this procedure is repeated for 
each of the M Doppler bins. 

To see the effect of Doppler filtering, derive the component interference covariance matrices 
by substituting the results of Chapter 2 into Equation (196). The noise component is given by 

Rnm = f£fm a2 IN . (197) 

Similarly, 

R;m=f£fm*j (198) 

is the jammer component, provided that the jamming is stationary across the CPI. Since both 
noise and jamming are temporally white, their spatial covariance matrices are simply scaled by the 
Doppler filter white noise gain f„ fm. The noise is full-rank N and the jamming has rank pj. The 
clutter spatial covariance matrix (for the mth Doppler bin) is 

Rcm     =     (fm®lN)//VcScVf(fm®I7V) 

Nc 

Ron    =    5>2&|f£b*|3afca? . (199) 

The contribution from the fcth scatterer to the mth bin output may be expressed in terms of the 
filtered clutter-to-noise-ratio 

Lk = &|f£bfc|
2 . (200) 
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Equation (199) can then be expressed compactly as 

R^ = AeE^Af , (201) 

where Ecm = ^2diag(£mi,... ,fm/yj and Ac is the N x Nc matrix of the clutter spatial steering 
vectors. Although clutter exists over all azimuth, the clutter covariance will be of low numerical 
rank if the Doppler processing is effective in suppressing most of the clutter nonadaptively. The 
approximate clutter rank will then depend on both the clutter power spectral density and on the 
Doppler filter frequency response. Thus the effective clutter rank may vary with Doppler bin. 

Once the adaptive weights are computed from Equation (195), the output of the mth bin is 
given by zm = w^xm or equivalently, zm = w£(x, where the composite weight vector is given by 

wm = (fm 0 lAf)wm = fm 0 wm  . (202) 

This latter form of the composite weight vector, being the Kronecker product of a temporal filter 
(fixed) and a spatial filter (adaptive), is characteristic of a factored space-time processor. Once the 
adaptive weights are computed, algorithm performance is computed in the usual way. 

The performance of post-Doppler adaptive beamforming is illustrated against the example 
system and scenario of Tables 2 and 4. Performance will depend on the clutter left after Doppler 
filtering, so results are shown for different Doppler filter sidelobe levels, assuming Chebyshev win- 
dowed filters. Consider first a single Doppler bin; bin 6 centered at 100 Hz is chosen. With /3 = 1, 
this Doppler bin corresponds to a sidelobe clutter patch centered at 42° azimuth. Assuming a 40- 
dB sidelobe Doppler filter, Figure 40 shows the clutter power spectrum and the resultant adapted 
pattern. Figure 40(a) shows that the largest clutter input to the adaptive processor arrives from 
a region centered at 42°. However, a significant amount of mainbeam clutter leaks through the 
Doppler sidelobes at or slightly above thermal noise. Nulling this clutter spatially causes loss of 
gain on target and poor performance, as evidenced by the pattern of Figure 40(b). Although the 
dominant sidelobe clutter region and the two jamming signals are nulled, so is the target. Figure 41 
shows the results with 80-dB Chebyshev Doppler filters. In this case the Doppler filter sidelobes 
suppress mainlobe clutter well below thermal noise prior to adaptation. The adaptive beamformer 
need only react to the competing sidelobe clutter, which is nulled while maintaining nearly full 
gain on target. The resultant pattern is shown in Figure 41(b). Note also the two point nulls 
placed on the jamming signals at —40° and 25°. Although performance is much better with a very 
low-sidelobe Doppler filter, the heavier taper results in additional taper loss and a slightly wider 
region of sidelobe clutter that must be nulled spatially. 
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Finally, SINR loss performance is plotted in Figure 42. Doppler sidelobes of 80 dB or lower 
are required to achieve reasonable performance over any of the Doppler space. 

With sufficient taper the algorithm achieves about 4 dB of loss over the middle of the Doppler 
space, which is mostly attributable to the heavy taper. Note also the very wide notch over which 
performance is low, even with heavy taper. This poor performance at Dopplers approaching that of 
the mainbeam clutter is due to mainlobe clutter leakage through the skirts of the wide Doppler filter 
mainlobe. At least one-third of the Doppler space is lost with this approach and the corresponding 
minimum detectable velocity is poor. 
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Figure J^2.    SINR loss as a function of Doppler filter sidelobc level. 
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The reasons for the relatively poor performance of post-Doppler adaptive beamforming are 
a consequence of parameters of the example radar system, particularly the CPI length (Doppler 
resolution) and the aperture size (number of elements). Post-Doppler adaptive beamforming is 
predicated on the ability of Doppler filtering to both reject mainbeam clutter and to confine the 
competing sidelobe clutter within a narrow angular region. The relatively poor Doppler resolution 
available with a short CPI is made worse by the need for low Doppler sidelobes. As a result, the 
portion of the Doppler space truly free of mainlobe clutter is limited, and in those regions a wide 
angular region of sidelobe clutter must be suppressed adaptively. This requires many spatial degrees 
of freedom. These realities have been illustrated with an unambiguous clutter scenario; the results 
are worse when the clutter is ambiguous in Doppler. For these reasons, the post-Doppler adaptive 
beamforming approach is better suited to radar systems with longer CPIs and many spatial degrees 
of freedom. 

5.3.2    Multiwindow Post-Doppler STAP 

The poor performance of factored post-Doppler can be improved by providing the architecture 
with temporal adaptivity. This is done by considering the adaptive combination of multiple Doppler 
filters from each element. Each filter may be thought of as a different windowing of the M pulses 
of data, so such an architecture is called multiwindow post-Doppler STAP. A block diagram of the 
processing for a single target Doppler bin is given in Figure 43. For the given Doppler bin, each 
element has an identical bank of K filters. The default K = 1 case is simply factored post-Doppler. 
Typically, K need only be two or three, and the adaptive problem dimension is reduced by a factor 
of M/K. The filtered KN signals are adaptively weighted to produce the output for this Doppler 
bin, and the process is repeated for each Doppler bin. 

The analysis of multiwindow post-Doppler follows in much the same way as for post-Doppler 
adaptive beamforming. Let m denote the target Doppler bin of interest, and let Fm be an M x K 
matrix whose columns form a set of M-pulse FIR filters that are applied to the signals on each 
element. The matrix Fm is assumed to be of full column rank K, but the columns of Fm are 
not necessarily orthogonal. The filtered signals on each element are collected to form a KN x 1 
space-time snapshot for the mth bin 

Xm = (Fm ® IN)HX • (203) 

This snapshot contains an interference-plus-noise component xUm and> under the target-present 
hypothesis, a target component given by 

Xtm = <xt(F% <g> IJV)V( = at F^b, ® at  . (204) 
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The mth bin adaptive weight vector is computed from 

Wm = RUmg* . (205) 

where 

"•um — ^{XumXumJ (206) 

is the KN x KN interference-plus-noise covariance matrix. Given an MN x 1 desired response gt 

optimized for the mth bin Doppler frequency wm, gt is chosen according to Equation (141): 

gt = (Fm 0 IN)   gt . (207) 
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Finally, the output for the mth bin is 

zm = w£* = w£* , (208) 

where 

wm = (fm $ IN) wm (209) 

is the mth bin composite weight vector. 

The major issue is the design of the Doppler filter matrix Fm. There are two requirements. 
First Fm must pass targets with Doppler frequencies in the band centered at ccrm. Second, Fm 

should be chosen in a way that minimizes the number of adaptive degrees of freedom required for 
interference cancellation. To this end, consider the covariance matrix after multiwindow Doppler 
processing. The thermal noise component has covariance 

Rnm = <72F£fm g IN  . (210) 

Because Fm is full rank, the rank of the noise covariance after filtering is also full; 

fn = rank(Rnm) = KN . (211) 

The noise after filtering, however, may be temporally correlated if columns of Fm are not orthogonal. 
Similarly, the jammer component has covariance matrix 

Rjm = f£fm 9 *j (212) 

and the rank of the jammer interference is 

fj = KPi . (213) 

The jamming component is also temporally correlated according to the correlation between different 
filters. Neither fn nor fj depends on the detailed structure of Fm aside from the assumption of full 
rank. 
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The clutter component of Rum is given by 

Ren,   =   (Fm®Ijv)*VcEcV?(Fm®Ijv) 

=    E^(Fmb^Fm)®a,af (214) 

Unlike the noise and jamming covariance matrices, the clutter covariance has a rank that is a 
function of the Doppler filter matrix Fm. Therefore, Fm will be designed such that the clutter rank 
after filtering is minimum. 

Chapter 2 showed that, under the assumptions of no velocity misalignment and zero intrinsic 
clutter motion, the clutter rank is given by Brennan's rule, Equation (76). A similar rule for the 
clutter rank after Doppler filtering provides a condition for the design of the Doppler filter matrix 

Theorem 4 // the assumptions of Brennan's rule are satisfied, and if there exists a K x K non- 
singular matrix Q and a length M' = M — K + 1 vector f = [/o; /i;...; f\t'-i] such that 

FmQ = 

/o 

h 

L   o 

o 

/o 
h 

IM'-I 

= Toeplitz ([f; 0(/r_1)xl] , [/0 , 0lx(Ar_1)])   ,(215) 

then 

fc = TB,nk(Rcm) = N + (K-l)0 (216) 

This theorem will be referred to as the post-Doppler version of Brennan's rule. If Theorem 4 
is satisfied, the Doppler filtering is equivalent to performing a convolution with an M'-pulse filter f. 
On each element, M pulses are filtered with f and the K meaningful output samples are retained. 
Each output corresponds to filtering a different M'-pulse sub-CPI. Figure 44 illustrates the idea for 
N = 4, M = 3, K = 2, and (3 = 1. The two outputs formed from each element are labeled "Filter 
1" and "Filter 2." In accordance with Equation (215) for Q = I#, each filter processes a different 
M' = 2 pulse sub-CPI. As long as Filter 1 and Filter 2 have the same response, clutter observations 
are repeated by different filters on different elements. The clutter rank is equal to the number of 
independent clutter observations, which can be seen from the figure to be given by Equation (216). 
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The special case 

f=[l;0(A/'-i)xi] (217) 

has already been encountered; this is just pre-Doppler STAP, where no filtering is performed prior 
to adaptation. 

Theorem 4 is proven by first considering only Q = I#.   In this case, if Equation (215) is 
satisfied, the filtered steering vector from Equation (204) has form 

(Fm®Itf)*v(tf,n7)   =   F£b(ti7;M)®a(tf) (218) 

=    (fHb(*7; M'j) b(G7; K) ® a(t?) (219) 

=    (fHb{xsj;M'j)v(4,vj) , (220) 

where 

v(tf, tu) = b(w; #) ® a(tf) (221) 

is a K-pulse space-time steering vector. The quantity iHh{zj\ M') is the response of filter f to a 
signal at Doppler w. The clutter covariance, Equation (214), can now be written as 

Rcm = £ ^ lf"b(^; M')fvkvj? , (222) 
k=i 

or, in more compact form, 

where Vc is a KN x Nc matrix of clutter space-time steering vectors, 

Hem = <r2diag(£ml,..., £mNc) , (224) 
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and 

Uk = tk\iHb(wk;M')\ /\|2 (225) 

is the filtered CNR for the kth clutter patch. Assume that after filtering, there is nonzero power 
along the full clutter ridge. Application of Brennan's rule to Equation (223) yields 

fe = N + (K- 1)0 , (226) 

thus proving the Q = IK case. The generalization to an arbitrary nonsingular Q follows directly, 
as multiplication by a nonsingular matrix does not change the rank, and the proof is complete. 

Consider two implementations of the Doppler filter matrix. The first architecture corresponds 
to Q = IK and is shown in Figure 45. 

FILTER #1 

' I TME 

PULSE #0 

PULSE #1 

PULSE #2 

ELEMENT        ELEMENT        ELEMENT       ELEMENT 
#0 #1 #2 #3 

  INDEPENDENT OBSERVATIONS 

Figure 44-    Muliiwindow post-Doppler form of Brennan's rule. Example for N = 4, M 
3, K = 2, and 0=1. The grouping of pulses for the two filters satisfies Theorem 3. 
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Each element has a bank of M'-pulse Doppler filters that produces K output pulses for each 
filter (Doppler bin). For each Doppler bin, an adaptive processor combines the K pulses from each 
element to produce the output signal for that bin. This architecture was first studied by Brennan 
[18], who used the name filter then adapt. One may also view the Doppler filter bank as a set of 
K length M' FFTs, with each FFT processing a different Af'-pulse sub-CPI. For example, with 
K = 2, one FFT would process pulses 0 : M — 2, and the second would process pulses 1 : M — 1. 
This viewpoint of staggered sub-CPIs leads to the alternative name PRI-staggered post-Doppler12 

that will be used. PRI-staggered post-Doppler satisfies conditions of Equation (215) with either 
uniformly weighted or tapered Doppler filters. Let U = [uo,ui,.. .,UM-I| be an M' x M matrix 
formed from the first M' rows of the M x M DFT matrix, and let t/ be an M' x 1 Doppler filter 
taper. The Doppler filter bank for PRI-staggered is given by 

F = [fb,   i\,    ...,   fM-i] = diag(t/)U, (227) 

where 

fm = t/ © um (228) 

is the mth bin Doppler filter impulse response.  The Doppler filter matrix Fm for PRI-staggered 
post-Doppler is then 

Fm = Toeplitz ([fm ; 0(A-_1)xl] , [/m0 , 0lx(tf_1}])   . (229) 

The second architecture considered is shown in Figure 46. Here a single length M Doppler 
filter bank is present on each element. The mth bin output is formed by adaptively combining the 
spatial samples from a cluster of K adjacent Doppler bins centered at the mth bin center frequency. 
This approach is called adjacent-bin post-Doppler. DiPietro [12] has examined this technique; he 
refers to it as "extended factored STAP." To specify the form of Fm for adjacent-bin post-Doppler, 
let U be the M x M DFT matrix and let t/ be an M x 1 taper. The Doppler filter bank is 
represented by the matrix 

F = diag(t/)U* . (230) 

12The author believes that this name was originally coined by Dr. William Ballance of Hughes 
Aircraft Company. 
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Figure 45.    Block diagram for PRI-staggered post-Doppler STAP. 

For example, when K is odd, i.e., K = 2P + 1, the mth bin output adaptively combines 
aignals from Doppler bins m — P,. ..,m+ P, 

Fm = [fm-F )     • • •  >     fm i     • • •  i     fm+P ]    • (231) 

The adjacent filters are defined to wrap around the Doppler space edges. When K is even, the 
output bin frequencies are typically defined to lie halfway between the filter bank center frequencies 
so that the filter clusters are symmetric about the output bin frequencies. 
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Figure 46.    Block diagram for adjacent-bin post-Doppler STAP. 

If no Doppler tapering is employed, adjacent-bin post-Doppler can be shown to satisfy Equa- 
tion (215). However, if the Doppler filters are tapered, or if the frequency spacing between filters is 
reduced through zero-padding, the minimum rank condition, Equation (215), of Theorem 3 is gen- 
erally not achieved. In these cases, adjacent-bin post-Doppler may require more adaptive degrees of 
freedom than PRI-staggered post-Doppler. Examples will be shown for adjacent bin post-Doppler 
with and without a low-sidelobe taper. Aside from the required number of degrees of freedom, 
adjacent-bin post-Doppler has some computational advantages over PRI-staggered post-Doppler. 
Fewer Doppler FFTs and therefore less data buffering are required with adjacent-bin post-Doppler. 
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Further examination of Theorem 4 reveals an interesting duality between multiwindow post- 
Doppler STAP and displaced-phase-center-antenna (DPCA) processing. DPCA performs non- 
adaptive processing spatially, with the aim of forming identical beams that utilize spatially shifted 
subapertures of the array. These beams are then delayed with respect to each other and subtracted 
to compensate for the platform motion. Multiwindow post-Doppler, on the other hand, performs 
nonadaptive processing temporally; the outputs from each element are subsequently beamformed. 
Theorem 4 says that if shifted temporal subapertures (sub-CPIs) are processed with identical filters, 
minimum clutter rank is achieved. PRI-staggered post-Doppler may be thought of as standard 
DPCA, while adjacent-bin post-Doppler is more analogous to a DPCA based on sum and difference 
beams [2]. Because modern radars are extremely stable temporally, multiwindow post-Doppler 
STAP performance is not limited to the same degree that element pattern errors limit DPCA 
performance. Being adaptive by design, multiwindow post-Doppler can suppress sidelobe clutter, 
as well as suppressing clutter and jamming simultaneously. 

5.3.3    Performance Results 

Consider once again the example scenario of Table 4 to illustrate multiwindow post-Doppler 
STAP performance. The clutter in this case is Doppler-unambiguous with /3 = 1. Let K — 2 so that 
a 36-dimensional adaptive problem is solved in each Doppler bin. First, Figure 47 shows a number 
of clutter covariance eigenspectra. The left column shows results for PRI-staggered post-Doppler, 
while the right column shows adjacent-bin post-Doppler. Each row corresponds to the covariance 
matrix for a different Doppler bin. Each plot has several curves that correspond to different Doppler 
filter tapers. In these plots the eigenspectra are computed after temporally whitening the data to 
account for the noise correlation induced by the nonorthogonal Doppler filters. 

In all cases, the clutter rank for PRI-staggered post-Doppler is fc = 19, as predicted by The- 
orem 4. The exact shape of the eigenspectra depends on the filter shape and the clutter power 
spectral density in Doppler (angle). Generally, as the Doppler sidelobes are lowered, the eigenspec- 
trum shows a wider region of larger eigenvalues followed by a plateau of smaller eigenvalues. The 
level of this plateau generally falls as the Doppler sidelobe level is reduced. Moving from Doppler 
bin zero toward the center of the Doppler space, the amount of mainbeam clutter that gets through 
the filter is reduced so the largest eigenvalue becomes smaller. Turning now to the adjacent bin 
post-Doppler plots, the clutter eigenspectra exhibit a sharp drop only when a uniform taper is 
used. In this case Theorem 4 is satisfied and the clutter rank is 19. With tapered Doppler filters, 
adjacent bin post-Doppler no longer satisfies the theorem and the clutter rank is larger (and nearly 
full). Still, as the Doppler sidelobe level is reduced, the number of eigenvalues that are significant 
with respect to thermal noise is also reduced. Based on these plots, it can be expected that with 
only K = 2, PRI-staggered will provide better performance for moderate tapers. 
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SINR loss performance is shown in Figure 48. With uniform taper, performance of PRI- 
staggered and adjacent-bin post-Doppler are nearly identical. With 30-dB taper, the increased 
clutter rank for adjacent-bin post-Doppler manifests itself as a severe performance loss over most 
of the Doppler space. PRI-staggered, as expected, maintains excellent performance over the whole 
Doppler space. The difference between the two is lessened as the Doppler taper increases, but is 
still noticeable with 60-dB Doppler sidelobes. At 80- dB Doppler sidelobes, the two approaches 
again perform similarly. The conclusion is that PRI-staggered post-Doppler generally outperforms 
adjacent-bin post-Doppler given the same number of degrees of freedom and Doppler sidelobes 
(and resultant taper loss). Adjacent-bin post-Doppler is more sensitive to the Doppler taper, as 
its degrees of freedom are not ideally oriented to canceling the clutter ridge. Additional examples, 
including ambiguous clutter, velocity misalignment, and intrinsic clutter motion, support this con- 
clusion. However, as more degrees of freedom are used (K increases) or as the CPI length increases, 
the performance differences between PRI-staggered and adjacent-bin become less pronounced. 

The above examples illustrate post-Doppler performance in an environment of combined 
clutter and jamming, where it was assumed that the jamming was stationary over the CPI. Because 
post-Doppler algorithms combine all pulses prior to adaptation, a jamming scenario that changes 
from pulse to pulse will require more degrees of freedom than will stationary jamming. Pre-Doppler 
approaches where the weights are updated every pulse are better suited to a rapidly varying jamming 
environment. On the other hand, post-Doppler approaches that reject a large portion of the clutter 
ridge nonadaptively may have more degrees of freedom available to suppress jamming would than 
a pre-Doppler approach, which must suppress the full clutter ridge. 
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6.   BEAMSPACE STAP 

6.1    Introduction 

So far, this report has only considered approaches that adaptively combine signals from all 
the antenna array elements. Dimensionality reduction was achieved through adaptively processing 
only a few pulses at a time or by adaptively combining a small number of filtered outputs on 
each element. In many cases, additional dimensionality reduction can be achieved by beamforming 
the signals on each element prior to adaptation. Beamforming in this context is a spatial-only 
operation. Beamforming may reduce the dimensionality by localizing the significant interference to 
a few signals (beams) and providing additional suppression of the interference outside of the angular 
region of interest. Architectures that adaptively combine signals after some initial beamforming 
will be called beamspace architectures. 

Within the STAP context, beamspace adaptation may reduce the dimensionality required 
for clutter and jammer suppression. The clutter return is typically largest in the direction of the 
transmit pattern mainlobe. Thus, a cluster of receive beams centered at the transmit direction will 
localize the clutter in this area and provide additional sidelobe clutter suppression. The mainlobe 
clutter portion of the ridge can then be handled adaptively with fewer degrees of freedom than a 
full element-space technique. Jamming is typically localized to a few discrete angles. Beamspace 
jammer nulling works best if one has the ability to steer beams in the approximate jammer direc- 
tions. This in turn requires approximate knowledge of the jammer locations, which may or may 
not be available a priori. If it is, beam selection may be done a priori; if not, it may be possible to 
select beams data-adaptively. 

If both clutter and jamming are present, the clutter may make the data-adaptive selection of 
beams for jammer nulling difficult. However, if clutter-free data (ranges or Doppler bins) are avail- 
able, a beamspace architecture may be implemented using the two-step nulling approach described 
in Section 4.4. In the first step, the clutter-free data is used to derive an adaptive beamspace 
transform that cancels jamming as part of the beamspace preprocessing. The resulting output 
signals are then adaptively combined in a second step to suppress clutter and produce the final 
output. The jammer nulling first step can be a separate beamspace nulling problem in itself. When 
two-step nulling is feasible, it may provide significant reduction in adaptive problem size, along 
with commensurate reductions in computational complexity and training requirements. 

In practice, the potential for beamspace processing is dependent on the radar system param- 
eters, the sidelobe levels that can be achieved, and on the a priori knowledge available. 

Two sections divide the beamspace discussion: pre- and post-Doppler. Beamspace pre- 
Doppler algorithms will be considered first. This class of techniques is the dual of the multiwindow 
post-Doppler algorithms that were discussed in the last section. 
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Beamforming is simply the application of spatial windows to the element data. The exact 
dual would be to retain full temporal adaptivity after beamforming; instead, the report will move 
directly to sub-CPI adaptation seeking greater dimensionality reduction. Beamspace post-Doppler 
algorithms are then presented. In this architecture, clutter is very effectively localized through both 
spatial and temporal processing prior to adaptation. With each class, there are both "displaced- 
filter" and "adjacent-filter" counterparts to the multiwindow post-Doppler approaches discussed in 
the last chapter. 

6.2    Beamspace Pre-Doppler STAP 

This section considers beamspace pre-Doppler STAP, represented by the lower left corner of 
the chart in Figure 33. This approach is illustrated in the block diagrams of Figure 49. Here the 
problem dimensionality is reduced in two ways. First, the element data is preprocessed with an 
N x K3 beamformer matrix G to produce a small number K3 of beam outputs. Second, only the 
beam outputs from a small, AVpulse, sub-CPI are adaptively processed at one time. The sub-CPI 
processing is shown in Figure 49(a). The adaptive problem dimensionality is K — KaKt- Typically 
Kt « M and K, « N so that a significant reduction in problem size is achieved. As with its 
element-space counterpart, a separate adaptive problem is solved for each sub-CPI, and the sub- 
CPI outputs are coherently processed with an M' = M - Kt + 1-pulse Doppler filter bank. A full 
CPI depiction of beamspace pre-Doppler is shown in Figure 49(b). An analysis will be presented 
in terms of a general beamformer matrix and then the issues of how to select beams in practice 
discussed. 

6.2.1     Basic Analysis 

The analysis proceeds in much the same way as for element-space pre-Doppler. To begin, 
consider only the first sub-CPI containing the returns from pulses 0 : Kt — I. Let x denote the 
KtKa x 1 beamspace sub-CPI snapshot, 

X = (J 8 G)HX • (232) 

Recall that the matrix J, defined in Equation (165), is an M x Kt selection matrix that chooses 
the first Kt pulses from the CPI. This snapshot consists of an interference-plus-noise component 
Xu and, if a target is present, the target component 

X% = (J 8 G)    (Q(V«) = atbt 8 GH&t , (233) 

where bt = b(wt; Kt) is the target's sub-CPI temporal steering vector. 
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The sub-CPI adaptive weight vector is computed from 

w = Rz'ut , (234) 

where R„ = E{xuX.u} is the KtKa x K\K, beamspace sub-CPI interference-plus-noise covariance 
matrix and ut is a KtK, x 1 desired response. The desired response for beamspace pre-Doppler 
is chosen as follows. Let g* be the desired sub-CPI response for element space pre-Doppler, from 
Equation (172). The beamspace desired response is taken to be 

u(   =    (l*,®G)    lt (235) 

=    (tfc 0 b(wb)) <g> GH(t. 0 at). (236) 

The binomial-tapered temporal component of u( is identical to that of element space pre-Doppler. 
The spatial component is modified by the beamspace transform in a way, Equation (141), that 
preserves the quiescent spatial response. 

To consider the full CPI, let the pth sub-CPI snapshot be 

Xp = (J, 0 GfX , (237) 

where Jp is the selection matrix, Equation (175). The pth sub-CPI weight vector 

wp = R^u, (238) 

is computed and applied to produce the sub-CPI output yp = \VpXp- It is useful to think of the 
sub-CPI weight vector in terms of its constituent spatial components. Let wPt)t be the Ka x 1 vector 
of beam weights for the kth pulse of the pth sub-CPI. The sub-CPI weight vector is rearranged to 
form the Ks x Kt weight matrix 

Wp = [wp>o , wPil , ... , wPiKt] (239) 

so that 

wp = vec(Wp)  . (240) 
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The sub-CPI output can then be written as 

yP = [(JP 8 G)wp]H X = [(IM ® G) vec(Wpjj)]" * 

The sub-CPI outputs are assembled into a vector y, 

where 

y= [(IM®G)w]"x , 

W   =    [vec(WoJj),   vec(W!Jf),   •••,   vecCW^.ijr,_x) ] 

w0,o 0 0 0 

w0,i Wi,0 0 0 

•0,K,-1 ••. 0 

0 

•. 

0 "-. '• 

0 ... 0 •M-K,,K,-l 

(241) 

(242) 

(243) 

(244) 

is of size MKS x M'. Finally, the sub-CPI outputs are passed through a length M' Doppler filter 
bank denoted by F = [fb,fi, • • • ,ffcf']- The final output of the mth Doppler bin is given by 

^m = fmy = wmx, 

where the beamspace pre-Doppler composite weight vector is given by 

wm = (IM g G)Wf„ 

(245) 

(246) 

The SINR performance can then be computed from Equations (185) and (186) in the usual ways. 
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6.2.2    Beamformer Matrix Design 

This section considers the design of the beamformer matrix G. As usual, the goal is maximum 
performance with minimal effort; i.e., use of as few beams as possible. Assume that G is of full 
column rank Ka> but the columns need not be orthogonal. To understand the effect of beamforming, 
examine the interference and noise components of the beamspace sub-CPI snapshot. Without loss 
of generality, the discussion will focus on the first sub-CPI from Equation (232). The results of 
Chapter 2 are used freely. 

The thermal noise component of the data has covariance matrix 

R„   =   (J®G)HRn(J®G) (247) 

=   <72JHJ 8 GHG = a2lKt 8 GHG . (248) 

As G is full rank, the noise covariance R„ is also full rank, 

fn = KtKa . (249) 

The noise may not be spatially white, however, due to the coloring induced by the beamformer 
matrix. Similarly, the sub-CPI jammer covariance matrix is given by 

R,    =   J 8 GHRj(J 8 G) (250) 

=   IK.SG^G (251) 

=    IKt 8 (G"Aj)SjAf G  , (252) 

where Equation (45) has been used. The jammer rank is at most fj = Ktpj, but it may be less if 
the beamformer nulls some of the jamming signals. 

The clutter component is again the most interesting. From Equation (61), 

Rc   =   (J 8 G)HRe(J 8 G) (253) 

NC 

=    ^a2a(JHbfcb^J)®(GHaJtafG) (254) 

=   2>2&(b*b?)8(G*afca?G). (255) 
Jt=i 
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Notice that the expression above is very similar to Equation (214) from the multiwindow 
post-Doppler discussion. The clutter covariance rank will depend on the beamformer matrix. The 
minimum clutter rank is achieved with a beamformer matrix that satisfies the following analogue 
of Theorem 4, referred to as the beamspace version of Brennan's rule. 

Theorem 5 // the assumptions of Brennan's rule are satisfied, and if there exists a K, x K, 
nonsingular matrix Q and a length N' = N — Ka + 1 vector g = [go; gi\...; gpi'-i] such that 

GQ = 

5o 

9\ 

9N'-i 
9o 
9\ 

9N'-i 

= Toeplitz ([g; 0(Jff_1)xl] , [g0, 0ix(K.-i)])   .(256) 

then the clutter rank is minimum and equal to 

fc = rank(Rc) = K, + (Kt - 1)0 , (257) 

The proof of Theorem 5 follows the exact same steps as the proof of Theorem 4 and is not included 
here. The Toeplitz form of Equation (256) represents the identical beamforming (with g) of over- 
lapping iV'-element subapertures, with each subaperture shifted by one interelement spacing from 
the previous one. This processing is depicted in Figure 50 for the case N = 4, Ks — 2, Kt = 3. 
Note that beam #2 on pulse 0 and beam #1 on pulse 1 are observations from effectively the same 
point in space. If the beamformer matrix obeys the condition of Theorem 5, these two observations 
are identical, and only one contributes to the clutter rank. The number of independent clutter 
observations is four, which equals that given by Equation (257). 

The conditions for which minimum clutter rank is achieved are equivalent to the conditions 
for which perfect DPCA clutter cancellation is possible. The beamformer matrix of Equation (256) 
with Q = \K, is precisely that required by DPCA. In fact, DPCA is simply a special case of 
beamspace pre-Doppler space-time processing, whereby the weights are fixed as opposed to being 
computed data-adaptively. Appendix 3 contains a discussion of DPCA processing for reference. 
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Because of this equivalence, the Q4 = IA% form of beamspace pre-Doppler will be referred to as 
displaced phase center pre-Doppler or displaced-beam pre-Doppler. Displaced-beam pre-Doppler 
is the dual of PRI-staggered post-Doppler STAP. Theorem 5 also gives the minimum number 
of beams required for clutter cancellation. Partially adaptive STAP theory says the number of 
adaptive degrees of freedom must be greater than the clutter rank, 

K > fc + 1 (258) 

By utilizing Equation (257) and K = K„KU the equivalent condition 

K. >/3 + 
Kt-1 

(259) 

results.   The required number of beams (or effective phase centers) increases linearly with the 
effective platform motion (or Doppler ambiguity). 
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Figure 50.    Beamspace version of Brennan's rule for the case N = 4, Kt = 3, K, = 2, 
and f3= 1. 
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In practice, constructing a set of beamformers to satisfy Theorem 5 is much more difficult 
than constructing a set of Doppler filters to satisfy Theorem 4. The reason is that the spatial errors 
due to antenna element mismatches are typically relatively high (say 20 - 50 dB). In contrast, 
the temporal errors due to pulse-to-pulse instability can be kept to very low (80 - 100 dB) levels 
in modern solid-state radars. Moreover, the need to suppress jamming spatially may result in 
adaptive beamformers that are altered from the form required for minimum clutter rank. However, 
Theorems 4 and 5 provide a great deal of insight into the clutter characteristics and to the duality 
between different STAP architectures. 

The beamspace analog of adjacent-bin post-Doppler, called adjacent-beam pre-Doppler, uti- 
lizes a set of adjacent beams, each of which uses the full aperture. Let G be an TV x N matrix 
beamformer whose columns are beamformers steered to different angles, and let J be an N x Ks se- 
lection matrix that chooses the columns of G corresponding to a cluster of adjacent beams centered 
at the transmit direction. Adjacent-beam pre-Doppler utilizes the beamformer matrix 

G = GJ (260) 

for clutter cancellation. With no tapering, adjacent-beam post-Doppler satisfies Equation (256) 
with Qs / If(3. When tapering on receive is employed, the adjacent-beam approach may not 
satisfy Theorem 5. As with element-space post-Doppler algorithms, performance with adjacent 
beams (for the same number of beams) may be worse than that achievable with displaced beams. 

6.2.3     Performance Examples 

The performance of beamspace pre-Doppler will be illustrated first in a clutter-only environ- 
ment. The example system of Table 2 and the example clutter scenario of Table 4 are assumed. 
With R't = 2, the number of beams is varied. The resulting SINR loss performance is shown in 
Figure 51. With displaced beams, performance is excellent for as few as two beams, as predicted 
by Equation (259). Because of this, performance changes very little as additional beams are added. 

Figure 51(c) shows a similar result with tapered beamformer. As Theorem 5 is still satisfied, 
performance is excellent again as the number of DOF is always larger than the clutter rank. The 
adjacent beam case is shown in Figures 51(b) and (d). With no taper, the clutter rank is given by 
Equation (257) and two beams are sufficient. With a taper, however, the adjacent-beam approach 
does not work well with only two beams. In this case performance suffers at Dopplers close to the 
mainlobe clutter. The adjacent beam approach requires at least four beams before its performance 
is equivalent to that of the displaced-beam case with only two beams. 

Performance against ambiguous clutter is shown in Figure 52. With /3 = 2 there are two 
azimuths at which clutter has a given Doppler. At least Ks = 3 beams are required. Similarly, 
when f3 — 3, at least four beams are needed to attain reasonable performance over most of the 
Doppler space. These results are in agreement with Equation (259). Note also how the mainlobe 
clutter notch widens as /? increases. 

143 



50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

50 100 ISO 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

(a) (b) 

6-15 
_j 

oc 
z 
(0.20 

f—\ 
'Bums 

— 2 
— a 

4 

— S 
— t 

50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

(c) (<0 

Figure 51. SINR loss performance for beamspace pre-Doppler STAP in a clutter-only 
scenario, (a) Displaced beams, untapered. (b) Adjacent beams, untapered. (c) Displaced 
beams, 30-dB Chebyshev taper, (d) Adjacent beams, 30-dB Chebyshev taper. 
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6.2.4    Jammer Cancellation: A Two-Step Nulling Approach 

The beamspace architectures discussed thus far have not yet addressed jamming interference. 
For best performance, beamspace architectures typically require beams that are pointed toward the 
dominant interference sources. If jamming signals he outside the region covered by the beam cluster 
for clutter cancellation, jamming will degrade performance. One way to deal with jamming is to 
form additional beams that are pointed toward any jamming signals. This is possible if a priori 
information on the approximate jammer locations are known. Without a priori knowledge, one 
may derive jammer information data-adaptively. Doing this, however, is subject to contamination 
by any clutter present unless clutter-free data exists or can be derived (through Doppler filtering, 
perhaps). 

Assuming that additional jammer-cancellation beams have been allocated, the beamformer 
matrix may be partitioned as 

G = Gc,Gj   , (261) 

where G, is an N x Kj matrix containing beamformers pointed in the approximate jammer direc- 
tions. Here Gc is the N x Kc beamformer matrix used before. Each additional jammer beam adds 
Kt adaptive degrees of freedom, for a total increase in dimensionality of KjKt. 

If appropriate clutter-free data can be obtained, another way of dealing with jamming is to 
implement a two-step nulling architecture as described in Section 4.4. This approach is illustrated 
in Figure 53. The clutter-free data is used to estimate the spatial jammer-plus-noise covariance 
matrix 

*jn = $; + a2IN  . (262) 

Within each sub-CPI, #;n is used to construct adaptive beamformers that null the jamming as 
part of the beamspace transformation. The resulting beam outputs, with the jamming removed, 
are then used for adaptive clutter suppression as before. Thus, interference cancellation occurs in 
two steps, the first being to suppress jamming and the second to remove the clutter. 
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Figure 52.     Displaced-beam pre-Doppler STAP performance with ambiguous clutter and 
no jamming. A 30-dB Chebyshev taper is assumed, (a) ft = 2. (b) 0 = 3. 
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Figure 53.    A two-step nulling approach to beamspace pre-Doppler STAP. 

The exact form of the adaptive beamspace transform depends on whether a displaced-beam 
or adjacent-beam approach is used. With displaced-beam pre-Doppler, a separate jammer-nulling 
weight vector must be formed for each subaperture. Let Jp be an N x N' selection matrix that 
chooses the elements for the pth subaperture, where p = 0 : Ks — 1. The adaptive beamformer 
gP = [gP,o; • • -;5p,N'-i] is computed from 

SP = (
J
J*;»

J
P)     S? > (263) 

where g7 is the N' x 1 subaperture desired response.   Assume that g, is a tapered JV'-element 
beamformer steered to the target direction, 

g, = t 0 a(0t; N') (264) 
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The resulting beamformer matrix is then 

9o,o 0 

9o,i 

G = 
9o,N'-i 

0 

9K,-i,o 

9K,-1,1 

9K,-i,N'-\. 

(265) 

The beamformer matrix for a two-step-nulling form of adjacent-beam pre-Doppler is found similarly. 
Let Gq be the desired beams in the absence of jamming. With jamming, the beamformer matrix is 
instead given by Within each sub-CPI, <&,-„ is used to construct adaptive beamformers that null the 
jamming as part of the beamspace transformation. The resulting beam outputs, with the jamming 
removed, are then used for adaptive clutter suppression as before. Thus, interference cancellation 
occurs in two steps, the first being to suppress jamming and the second to remove the clutter. 
Within each sub-CPI, $,„ is used to construct adaptive beamformers that null the jamming as 
part of the beamspace transformation. The resulting beam outputs, with the jamming removed, 
are then used for adaptive clutter suppression as before. Thus, interference cancellation occurs in 
two steps, the first being to suppress jamming and the second to remove the clutter. 

G = *£G, (266) 

Once the adaptive beamformer matrix G is found from Equations (265) or (266), the beamspace 
snapshots (with jamming removed) are formed. Clutter nulling and subsequent Doppler filtering 
proceed exactly as before.  In practice, any jamming that is not suppressed in the first step, for 
whatever reason, may have a severe impact on the clutter nulling performance. 

The two-step nulling architecture is attractive for several reasons. First, it does not increase 
the dimensionality of the clutter nulling step. Instead, it adds a jammer nulling problem that 
must be solved for every PPJ. Typically, jammer nulling is a low-dimensional problem. However, 
two-step-nulling is predicated on the ability to obtain clutter-free jamming samples that are valid 
estimates of the jamming that occurs during the time interval when clutter is present. This in turn 
may depend on the radar system parameters and the characteristics, particularly the short-term 
stationarity of the expected jamming signals. 
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Figure 54-     Generic block diagram for beamspace post-Doppler. Single Doppler bin pro- 
cessing is shown. 

A novel two-step nulling approach that utilizes a sparse selection of elements and pulses for 
adaptation is described by Baranoski [36]. His approach, called sparse network processing, more 
closely resembles element-space pre-Doppler processing because of the way the selected signals are 
combined. 

6.3    Beam-Space Post-Doppler STAP 

This section discusses the fourth and final quadrant of the algorithm taxonomy that was 
presented in Figure 33. Preprocessors consisting of a bank of space-time filters are considered. 
These filters may be formed by cascading spatial beamformers on each pulse with Doppler filters 
on each beam; this class is therefore called beamspace post-Doppler STAP. A generic block diagram 
is shown in Figure 54. The filtered signals are then adaptively combined to produce the Doppler bin 
output. This process is then repeated for each Doppler bin. Combined beamforming and Doppler 
filtering can provide substantial suppression of portions of the interference, thereby localizing the 
interference prior to adaptation. Significant reductions in the number of adaptive degrees of freedom 
are possible with beamspace post-Doppler processing. 
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Beamspace post-Doppler techniques are the extensions of the beamspace pre-Doppler and 
element-space post-Doppler approaches to two-dimensional preprocessors. Both "displaced-filter"and 
"adjacent-filter" methods awill be developed and other types of filter allocation discussed. 

6.3.1     Basic Analysis 

As with all post-Doppler approaches, beamspace post-Doppler requires solving a separate 
adaptive problem in each target Doppler bin. Let Tm be the MN x K preprocessor for the mth 
bin adaptation, where K\s the size of the reduced-dimension snapshot. Attention will be restricted 
to preprocessors of two types: 

1. Tm = Fm ® G (267) 

2. Tm = (F®G)Jm. (268) 

In Equation (267), Fm is an M x Kt matrix of Doppler filters, G is N x A', matrix of 
beamformers, and K = KtKa. This type of preprocessor is said to be separable because it may 
be implemented by cascading multiple beamformers on each pulse with multiple Doppler filters 
on each beam (or vice versa). Separability in this sense is more general than factored processing; 
factored processing is a special case when Kt = 1. The second type of preprocessor is formed by 
choosing a subset of the outputs of a separable processor. In Equation (268), F is M x M, G 
is N x N, and Jm is an MN x K selection matrix that picks a subset of angle-Doppler filters. 
A transform of this second type is separable only if the selection matrix is itself separable. Both 
preprocessor types can be implemented with two-step nulling if appropriate clutter-free data exists 
to design the beamformer portion of the preprocessor adaptively. 

The separable preprocessor, Equation (267), will be focused on first. Assume that both Fm 

and G are of full column rank. The transformed snapshot for the mth bin is given by 

Xm = (Fm ® Gfx • (269) 

The snapshot xm consists of an interference-plus-noise component xUm an<i> if a target is present, 
the target component 

Xtm = (Fm ® G)H (atvt) = atf%bt ® G%  . (270) 

The adaptive weight vector for the mth Doppler bin is computed from 

wm = R-^u, , (271) 
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where R„m is now the K,Kt x K,Kt interference-plus-noise covariance matrix and ut is a K,Kt x 1 
desired response. The desired response is chosen according to Equation (141), 

ut= (Fm®G)Hg(. (272) 

The final output of the mth Doppler bin is given by 

Zm = w^m = w£* , (273) 

where the beamspace post-Doppler composite weight vector is given by 

wm = (Fm ® G)wm . (274) 

The SINR performance can then be computed from Equations (185) and (186) in the usual ways. 

Consider the space-time covariance matrix after preprocessing. The thermal noise component 
has covariance matrix 

R»m = <r2F£Fm 9 G"G . (275) 

The noise is still full rank but is now colored both spatially and temporally by the preprocessor. 
The jamming signals produce a covariance matrix 

Rjm = F£Fm®GH*;-G. (276) 

The jamming is colored temporally and filtered spatially by the beamformer matrix. 

Finally, the clutter covariance matrix after preprocessing is found to be 

Nc 

Rcm = '£i a
2Zk F£b*b?Fm ® GHa,af G . (277) 

it=i 

For given Ka and Kt, the rank of the clutter covariance depends upon both Fm and G. A beamspace 
post-Doppler version of Brennan's rule provides conditions for the design of the preprocessor that 
result in minimum clutter rank. 
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Theorem 6 // the assumptions underlying Brennan's rule hold and if the following two conditions 

1.   There exists a K, X Ka nonsingular matrix Qs and a length N' = N — Ka + 1 vector 

g = [9o;gi;---;gN'-i] such that 

go o 

01 

GQS = 
gN<-\ 

go 
9l 

(278) 

o gN'-i 

2.   There exists a Kt X Kt nonsingular matrix Qt and a length M' = M - Kt + 1 vector 
f such that 

FmQt = 

/o 

A 

/M'-I 

0 

/o 
/i 

(279) 

0 /A/'-I 

are satisfied, then the clutter rank is minimum and equal to 

fc = rank(Rcm) = K, + (fft - 1)/? . (280) 

Thus, if the space-time preprocessor possesses a Toeplitz structure in space and time, the clutter 
rank is given by Equation (280). Theorem 6 is illustrated in Figure 55 for the case N = 4,M = 
3, Ks = Kt = 2, and (3=1. Here N' = 3 and M' = 2. The element-pulse groupings for filters 2 and 
3 are effectively from the same position; therefore, they produce the same clutter signal. As clutter 
observations are repeated by different filter outputs, the clutter rank is less than full. In this case it 
is three, which is as predicted by Equation (280). If Theorem 6 is satisfied, the transform Fm ® G 
is equivalent to a two-dimensional convolution of the M x N input snapshot with the M' x N' 
space-time filter 

h = f®g, (281) 

where the KaKt meaningful output samples form the signals to be adaptively combined. 
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The proof of Equation (277) follows as before. Only Q, = IK, and Qt = I*:, need to be 
considered. If Equations (278) and (279) are satisfied, a target component after preprocessing has 
form 

F%b(w) ® G"a(t?) = (f*b(w; M'))b(w) ® (gHa(^; N'))a{4) , 

where b(w) = b(w; Kt) and a(t?) = a(tf; if,). The clutter covariance matrix is then 

where 

fc=i 

fc=i 

(282) 

(283) 

(284) 

& = &|fHb(B7*;M')|2|g"a(i>*;tf')l 
'\|2 (285) 
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Figure 55. Beamspace post-Doppler variation on Brennan's Rule. N = 4, M = 3, K, = 
Kt = 2, 0 = 1. 7/<Ae conditions are satisfied, clutter observations are repeated by different 
outputs. 
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is the filtered CNR for the kth clutter patch and vjt = bt ® a* is a AVpulse, A's-element 
space-time steering vector. Application of Brennan's rule to Equation (284) yields the desired 
result. The extensions to nonsingular Q3 and Qt follow directly, as multiplication by a nonsingular 
matrix will not change the rank. 

In practice, the numerical rank of the clutter covariance matrix may be even less than Equa- 
tion (280), as parts of the clutter ridge may be suppressed to well below thermal noise by the 
combined angle and Doppler sidelobes of the preprocessor. 

To differentiate between beamspace post-Doppler approaches, the special case Q4 = IK,,QI — 
\Kt will be referred to as displaced-filter beamspace post-Doppler. Another appropriate name, in 
view of Figure 55 and Equation (281), might be space-time filter-then-adapt. 

6.3.2    Adjacent-filter beamspace post-Doppler 

Now consider the case where the preprocessor is given by Equation (268), 

Tm = (F ® G)Jm . (286) 

This type of architecture has been studied by Cai and Wang [10], and Wicks [39], and is shown in 
Figure 56. In their algorithm, the input snapshot is passed through a two-dimensional DFT that 
may be represented as 

T = F ® G, (287) 

where 

F = diag(t/)U^  ,   G = diag(t5)U^ . (288) 

L*\j and U^r are M x M and N x N DFT matrices, respectively, and t/,ts are tapers in Doppler 
*nd angle. The output for the mth bin target filter is formed by adaptively combining the signals 
from a subset of Km filters denoted by the MN x Km selection matrix Jm. The chosen subset must 
contain the target filter. The performance of this approach will depend on the preprocessor filter 
&idelotx>s and on the subset selection method. 
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The snapshot for the mth bin adaptation is given by 

X   =    ((F®G)Jm)"x 

=   Jl(F®GfX • (289) 

The issue is now one of filter selection, i.e. the choice of Jm for each Doppler bin. 

One selection strategy is to choose a rectangular block of filters that is centered on and 
includes the target filter. In this strategy, adjacent-filter beamspace post-Doppler, Km = KsrnKtm, 
where Ksm is the number of angle beams and Ktm is the number of Doppler filters in the mth 
block. This selection method is illustrated in Figure 57. The 2D-DFT provides a grid of filters 
whose center frequencies (steering directions and Dopplers) are indicated by the circles. For the 
target filter at zero azimuth and 100-Hz Doppler (Doppler bin 6), the rectangle indicates the 3x3 
block of Km = 9 filters that are adaptively weighted. The block moves with the target filter as each 
Doppler (or angle) bin is processed. The adjacent filter selection strategy is the approach suggested 
by Cai and Wang [10]. 

The adjacent-filter selection matrix is separable, 

Jm=Jim®J•, (290) 

where 3tm and Jjm are appropriate M x Kt and N x K3 selection matrices. This property leads 
to the separable preprocessor 

Tm = Fm ® G, (291) 

where 

Fm = FJ(m   and   G = GJjm   . (292) 

It can be shown that the preprocessor for adjacent-filter beamspace post-Doppler satisfies Theo- 
rem 6 when the 2D-DFT is not tapered. 
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Figure 57.    Filter selection for adjacent-filter beamspace post-Doppler. Key: 'o'-available 
filters, '<g> '-target filter. The box encircles the selected filters for K,m = 3, Ktm = 3. 

There are many other methods of filter selection. Given a target filter, one could choose the 
interference cancellation filters to be those filters with maximum interference power. Alternately, 
one could select the set of filters that have maximum cross-correlation with the target filter. Yet 
another method is to select those filters whose center frequencies are closest to the expected location 
of the clutter ridge. The post-Doppler beamspace architectures discussed thus far have utilized 
either displaced space-time filters or adjacent space-time filters. A set of filters from adjacent 
beams but displaced temporally, or vice versa, could also be considered. One of these methods may 
be appropriate for a specific application. 

Jamming or combined clutter and jamming can be handled the same ways as for the beamspace 
pre-Doppler approaches. Simultaneous jammer and clutter suppression is best performed when 
some filters have high gain in the jammer directions. A filter-selection method should therefore 
have provisions to select filters specifically for jammer degrees of freedom. If a two-step nulling ar- 
chitecture is preferred, the spatial beamformer portion of the beamspace post-Doppler preprocessor 
will be adaptively computed to null the jamming prior to clutter suppression in each Doppler bin. 
Two-step nulling with adjacent and displaced beams was discussed in Section 6.2.4. 
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6.3.3    Performance Results 

The performance of displaced and adjacent-filter beamspace post-Doppler will be compared 
first in an environment of clutter only. The example system and clutter scenario of Tables 2 
and 4 is assumed. Figure 58 shows SINR loss plots for the case K = 4 degrees of freedom, 
with Ktm = Ksm = 2. Note that with uniform taper, both displaced filter and adjacent filter 
post-Doppler provide near optimum performance with four adaptive degrees of freedom. Results 
are also shown for tapered filters, assuming 30-dB (Jhebyshev in both angle and Doppler. While 
the displaced-filter approach, which satisfies Theorem 6 regardless of taper, suffers only a small 
taper loss over the whole Doppler space, the adjacent-filter approach suffers a significant loss in 
performance at Doppler frequencies close to mainlobe clutter. Figures 59 and 60 show similar plots 
as the dimensionality is increased to Kam = 3, Ktm = 3, and then Ksm = 4, Ktm = 4. As the 
number of selected filters increases, the relative difference between displaced and adjacent filter 
approaches lessens, as there are plenty of degrees of freedom to suppress the clutter. 

Now add the jamming scenario of Table 4. Figures 61 through 63 compare performance 
with and without two-step nulling (TSN), assuming the displaced-filter beamspace post-Doppler 
approach. In those curves with two-step nulling, the beamspace portion of the preprocessor is 
computed adaptively, assuming clutter-free data is available. Thus, the first jammer nulling step 
is an 18-element spatially adaptive solution. The plots are for different numbers of degrees of 
freedom in the beamspace post-Doppler nulling. Without TSN, jamming and clutter must be 
nulled simultaneously, which requires more degrees of freedom than nulling clutter alone. Having 
only Ktm = Ksm = 2 is not have enough and performance without TSN is poor. With TSN and the 
jamming removed prior to clutter nulling, performance is nearly equal to that of the clutter-only 
case. As more adaptive degrees of freedom are added, realizing that the clutter in this case obeys 
Theorem 6, more excess degrees of freedom are available to deal with the jamming. With K = 16 
or Ktm = Ksm = 4, beamspace post-Doppler without TSN has enough degrees of freedom to handle 
the combined clutter and two-jammer environment. For a fixed number of degrees of freedom, it 
has also been observed that the performance without TSN may also vary with the tapering on the 
preprocessor. Heavy tapering can suppress much of the clutter nonadaptively, thereby allowing the 
adaptive weights to better suppress jamming. 
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Figure 58.    Dcainspacc post-Doppler in a clutter-only environment.   K = 4,   K„ 
Ktm - 2. 

Ks=Kt=3 

ffl"10 

ID 

CO 

8-15 
-I 
oe 
z 
tO_20 

-25 

-30 

 Optimum 
 Displaced-Uniform 

 Displaced-Tapered 
 Adjacent-Uniform 

Adjacent-Tapered 

50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

Figure 59.    Beamspace post-Doppler in a clutter-only environment.    K  = 9,   A,, 
Ktm - 3. 
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Figure 60.    Beamspace post-Doppler in a clutter-only environment.   K = 16,   Ks 
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Figure  61.    Beamspace  post-Doppler in  a  clutter-plus-jamming environment.     K 
4, K,m = Aim = 2. 
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Figure  62.    Beamspace  posl-Doppler in  a  clutter-plus-jamming environment.     K 
9, K,m — Ktm = 3. 

Ks=Kt=4 

CD 
-10 

•o 
*•"* 

8? o- -1b 
-I 
cc 
z 
03 -20 

-25 

-30 

NoTSN 
WithTSN 

50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

Figure  63.    Beamspace  post-Doppler in  a  clutter-plus-jamming environment.     K 
16, K,m = Ktm - 4. 
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7.   ADDITIONAL PERFORMANCE RESULTS 

The previous chapters have been devoted to detailed discussions of particular space-time 
processing approaches. This chapter presents simulation results that are chosen to illustrate relative 
performance for some other typical scenarios. This chapter is not meant to be a comprehensive 
evaluation leading to a "best" approach. Rather, it is intended to highlight some of the important 
issues that should be considered when selecting an approach for a specific radar system platform. 

Although partially adaptive STAP architectures have been categorized into four major classes, 
a large number of variations, depending on bin or beam selection, the inclusion of two-step nulling, 
etc., have been discussed. This discussion will consider the optimum fully adaptive approach and 
one algorithm from each of the four classes. The algorithms to be examined are: 

1. Optimum fully adaptive 

2. Element-space pre-Doppler 

3. Element-space post-Doppler: PRI-staggered post-Doppler 

4. Beamspace pre-Doppler: Displaced beams with two-step nulling 

5. Beamspace post-Doppler: Displaced filters with two-step nulling. 

All steering vectors, beamformers, and Doppler filters are designed with a 30-dB Chebyshev ta- 
per. Some approaches are more dependent on the specific taper than others. For the beamspace 
approaches, assume that appropriate clutter-free data exists so that ideal two-step nulling can be 
implemented. By definition, the beamspace approaches are lower dimension than element-space 
approaches with the same number of temporal degrees of freedom. For the same level of per- 
formance, the beamspace approaches have the advantage of less computational complexity and 
training requirements. 

The baseline system and scenario of Tables 2 and 4 will be used again. Recall that the major 
attributes of this example system are low PRF, UHF, with a short CPI (18 pulses or 50 ms) and a 
moderate-size aperture of 18 elements. The baseline scenario consists of heavy clutter, 47 dB CNR 
per element, and two jamming sources that combine for a 38-dB JNR per element. In addition 
to SINR loss, minimum detectable velocity (MDV) and usable Doppler space fractions (UDSF), 
which were defined in Chapter 3, will be tabulated. These quantities are computed at 5-dB and 
12-dB cutoff points, representing values of SINR loss that would cause a loss in range coverage of 
25% and 50%, respectively. 

For the baseline scenario, the performance of the five algorithms is plotted in Figure 64. 
In this case all four partially adaptive approaches provide near-optimum performance. The post- 
Doppler approaches have slightly better MDV, resulting in better UDSF. In this case the beamspace 
approaches with only nine degrees of freedom perform as well as their element-space counterparts. 
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SO 100 ISO 200 250 
TARGET DOPPLEH FREQUENCY (Hz) 

300 

(a) 

Algorithm #DOF MDV(m/s) UDSF 

-5 dB -12 dB 5 dB -12 dB 

Optimum 324 2.74 1.14 0.94 0.97 

Elem-Pre 54 7.81 5.11 0.84 0.89 

Elem-Post 54 4.42 2.44 0.91 0.95 

Beam-Pre 9 8.26 526 0.81 0.89 

Beam-Post 9 4.74 2.58 0.90 0.94 

(b) 

Figure 6^.     Performance for example system, 0=1, no misalignment, no intrinsic clutter 
motion, (a) SINR loss, (b) MDV and UDSF performance. 

171 



For the second scenario, the platform velocity is increased so that (5 = 2.6; all other parameters 
are held fixed. The results are plotted in Figure 65. As the increased slope of the clutter ridge 
causes mainlobe clutter to spread over a larger region in Doppler, the resultant nulls in the SINR 
loss curves are wider, and a little more of the Doppler space is lost. Both element-space techniques 
perform well, as expected. Beamspace approaches with K„ = 3 and Ka = 5 are shown. With only 
three beams, the Doppler-ambiguous clutter is nearly full rank. Performance suffers mainly around 
the mainlobe clutter notch, as evidenced by the poorer MDV and UDSF. With Ks — 5 beams, the 
beamspace performance is restored to nearly that of the element-space approaches. 

Now add intrinsic clutter motion to the scenario of Figure 65. Choose a velocity standard 
deviation ov = 0.2 m/s that could represent antenna scan modulation, for example. The intrinsic 
motion broadens the clutter ridge in Doppler, which also results in wider clutter notches and a loss 
in Doppler space coverage. The results are shown in Figure 66. 

The combinaton of ICM and Doppler-ambiguous clutter causes a significant loss in the Doppler 
space to all algorithms. Again, observe that post-Doppler techniques generally provide slightly 
better UDSF, particularly at small values of SINR loss. 

To complicate the scenario more, add velocity misalignment. Misalignment increases the 
clutter rank, so one can expect low-dimension algorithms catered to DPCA conditions to suffer. 
The degradation is particularly severe if strong backlobe clutter is present. The baseline system 
assumes a one-way backlobe level of —30 dB, which produces a backlobe clutter-to-noise ratio of 
— 13 dB per element per pulse. Subsequent spatial and temporal integration with 18 elements and 
18 pulses is sufficient to increase the backlobe clutter level above thermal noise. 

First assume the misalignment angle to be 10°; the clutter ridge for this scenario was given 
in Figure 14. Performance results are given in Figure 67. The strong backlobe clutter results in 
a second notch at the backlobe clutter Doppler frequency of 230 Hz. The need to suppress (even 
slightly) the backlobe clutter notch further reduces the amount of Doppler space with desirable 
performance. Pre-Doppler algorithms are degraded more than post-Doppler approaches; with both 
ICM and backlobe clutter, three temporal degrees of freedom are insufficient to place broad nulls 
at two Doppler frequencies. A significant loss in both MDV and UDSF is observed. When close to 
mainlobe clutter, post-Doppler algorithms benefit from the suppression of backlobe clutter achieved 
through the Doppler filter sidelobes. As a result, the difference in MDV and UDSF between pre- 
and post-Doppler algorithms is more pronounced. 
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When misalignment is present, a small improvement in backlobe level can improve perfor- 
mance significantly. Figure 68 considers the same scenario as Figure 67 but with a backlobe reduced 
to —40 dB. The result is a 20-dB reduction in backlobe clutter level, which is sufficient to effec- 
tively eliminate the problem. The SINR loss shows only a very slight dip at the backlobe clutter 
Doppler; performance over this part of the Doppler space is restored. Finally, consider the system 
of Figure 68, with the —40-dB backlobe but at a misalignment angle of 90°; this corresponds to a 
forward-looking scenario. The results are shown in Figure 69. With the low backlobe there is again 
only one notch in the SINR curves. The MDV and UDSF are noticeably better than in Figure 69, 
because the Doppler spread of the mainlobe clutter depends on the misalignment angle. In the 
forward-looking direction, the slope of the clutter ridge at the look direction is actually zero, as 
shown in the clutter ridge of Figure 13(d). The resulting Doppler spread over the angular extent 
of the mainlobe is minimum. Therefore, the clutter can be suppressed with a much narrower null 
in Doppler than for the sidelooking cases of Figures 67 and 68. 

These results were intended to provide a few comparative results for a single set of radar 
system parameters. They were chosen to illustrate some of the major issues. There are certainly 
other areas for more detailed comparative analysis. This report concludes with a summary and 
some suggestions for further study. 
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SO 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

(a) 

Algorithm #DOF MDV ' (m/s) UDSF 

-5dB -12 dB -5 dB -12 dB 

Optimum 324 5.55 2.32 088 0.95 

Elem-Pre 54 11.48 6.48 0.76 0.86 

Elem-Post 54 8.88 3.63 0.82 0.92 

Beam-Pre 9 27.11 10.74 0.43 0.78 

Beam-Post 9 26.20 10.39 0.47 0.79 

Beam-Pre 15 11.52 5.85 0.76 0.88 

Beam-Post 15 9.22 3.94 0.81 0.92 

(b) 

Figure 65.     Performance for example system, j3 = 2.6,  no misalignment,  no intrinsic 
clutter motion, (a) SINR loss, (b) MDV and UDSF. 
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SO 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

(a) 

Algorithm #DOF MDV (m/s) UDSF 

-5 dB -12 dB -5dB -12 dB 

Optimum 324 11.59 7.01 0.76 0.85 

Elem-Pre 54 18.40 8.50 0.61 0.82 

Elem-Post 54 15.06 8.35 0.69 0.82 

Beam-Pre 15 19.12 10.63 0.53 0.78 

Beam-Post 15 17.14 9.71 0.62 0.80 

(b) 

Figure 66.     Performance for example system, (3 — 2.6, <rv  = 0.2 m/s intrinsic clutter 
motion, no velocity misalignment, (a) SINR Loss (b) MDV and UDSF. 
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50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

(a) 

Algorithm #DOF MDV (m/s) UDSF 

-5dB -12 dB -5 dB -12 dB 

Optimum 324 11.47 6.93 0.69 0.86 

Elem-Pre 54 27.23 10.10 0.16 0.79 

Elem-Post 54 15.04 8.73 0.54 0.78 

Beam-Pre 15 21.80 12.45 0.24 0.74 

Beam-Post 15 17.18 9.71 0.44 0.81 

(b) 

Figure 67.     Performance for example system, /3 = 2.6, av  — 0.2 m/s intrinsic clutter 
motion, 10° velocity misalignment, (a) SINR loss, (b) MDV and UDSF. 
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50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hi) 

300 

(a) 

Algorithm #D0F MDV (m/s) UDSF 

-bdB -12 dB -5dB -12 dB 

Optimum 324 11.45 6.93 0.77 0.86 

Elem-Pre 54 16.73 8.63 0.60 0.83 

Elem-Post 54 14.08 8.20 0.70 0.84 

Beam-Pre 15 21.33 9.66 0.51 0.81 

Beam Post 15 16.96 967 064 0.81 

(b) 

Figure 68. Performance for example system with —40-dB backlobe, 0 = 2.6, <r„ = 0.2 
m/s intrinsic clutter motion, 10° velocity misalignment, (a) SINR loss, (b) MDV and 
UDSF. 
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50 100 150 200 250 
TARGET DOPPLER FREQUENCY (Hz) 

300 

(a) 

Algorithm #D0F MDV (m/s) UDSF 

-5dB -12 dB -5 dB -12 dB 

Optimum 324 5.96 3.81 0.88 0.93 

Elem-Pre 54 9.70 5.91 0.80 0.88 

Elem-Post 54 7.81 5.20 0.84 0.90 

Beam-Pre 15 12.04 731 0.76 0 85 

Beam-Post 15 8.06 5.34 0.84 0.89 

(b) 

Figure 69. Performance for example system with —40-dB backlobe, ft = 2.6, cv = 0.2 
m/s intrinsic clutter motion, 90° velocity misalignment, (a) SINR loss, (b) MDV and 
UDSF. 
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8.   SUMMARY AND FUTURE WORK 

This report has been devoted to space-time adaptive processing for airborne radar systems. 
From a generic radar system description, a model was developed for the signals received by the 
elements of an airborne radar antenna array. A space-time adaptive processor was defined to be an 
adaptive filter that simultaneously combines the signals from multiple array elements and multiple 
pulses of a coherent processing waveform. The issues of computational complexity and sample 
support for covariance estimation motivated the search for reduced-dimension, or partially adaptive, 
STAP algorithms that are both computation- and data-efficient. Adaptive array processing and 
partially adaptive array theory were utilized to develop a taxonomy of reduced-dimension STAP 
architectures. Approaches were classified by the type of preprocessor transform or, equivalently, 
by the data domain in which adaptive weighting occurs. Different combinations of spatial and/or 
Doppler filtering prior to adaptation comprise the four classes of architectures. Within each class, a 
number of variations were studied that involve different preprocessor designs or different approaches 
to cancelling jamming. The clutter seen by an airborne radar has a special structure induced by 
the platform motion; this structure can in many cases be exploited to design preprocessors that 
result in efficient STAP architectures. 

Generally speaking, beamspace architectures (pre- or-post-Doppler) result in lower-degree- 
of-freedom processors than element-space techniques. However, beamspace architectures must in- 
corporate a robust method for handling jamming and combined clutter-and-jamming scenarios. 
Two-step, or sequential, nulling was discussed as a potential solution for those systems where ap- 
propriate clutter-free data can be obtained. Element-space approaches, provided with sufficient 
data for training, are inherently more flexible because full spatial adaptivity is retained. However, 
they require more adaptive degrees of freedom and therefore are likely only practical for small or 
moderately sized antenna arrays. Pre-Doppler approaches provide a more rapid adaptation capa- 
bility than post-Doppler techniques. Post-Doppler algorithms provide slightly better Doppler space 
coverage and are more robust in scenarios with velocity misalignment and backlobe clutter. 

Several issues relevant to a STAP implementation were not discussed in this report. One issue 
is the optimization of training strategies, considering the nonhomogeneous nature of radar clutter, 
and the constraints imposed by a target digital processor. The whole topic of mapping a STAP 
algorithm onto a digital processor was not discussed. Seemingly similar algorithms may impose 
dramatically different requirements on buffer memory, interprocessor communication bandwidth, 
latency, etc. The analysis herein focused on reducing the dimensionality for a single adaptive weight 
computation. The total computational complexity of a STAP algorithm depends not only on the 
number of adaptive weights but also, through the training method and the radar parameters, on 
the number of adaptive problems that must be solved for each CPI. The choice of an algorithm in 
practice should certainly be made with the target digital processor architecture in mind. 
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While STAP is but one portion of the airborne radar signal and data processing, an adap- 
tive capability impacts several other functions. Achieving large levels of interference suppression 
in practice requires channel equalization to mitigate degradation due to channel mismatch. As 
discussed in Chapter 3, the weight computation can be done in conjunction with CFAR detection. 
This area merits further consideration, including post-detection data processing to edit clutter 
discretes and sidelobe targets. Finally, STAP will impact estimation of the angle and Doppler of 
target detections. Some work has been reported on maximum likelihood estimation for use with 
STAP [42]. 

The STAP architectures discussed in this report have considered adaptation in space and 
time on a PRI scale. In a wideband system seeking wideband jammer cancellation, or if multipath 
jamming must be cancelled [40, 42], additional adaptation in time on the scale of range gates may 
be necessary. The resulting architecture would have three dimensions of adaptivity: space, time 
(PRI), and time (range), or angle, Doppler, and instantaneous frequency. The investigation of 
efficient adaptive architectures for these scenarios is a subject for future work. 

The motivation for this report has been the airborne early warning radar problem. Although 
not discussed herein, it is believed that the adaptive algorithms developed here have application to 
a wide variey of radar platforms. In fact, the inclusion of an adaptive capability may have an impact 
on basic aspects of radar system design. The ability to adaptively suppress clutter and jamming is 
a powerful capability that may impact basic aspects of radar system design. In the past, the need 
for ultra-low sidelobes or high-PRF waveforms has been driven largely by the need to suppress 
interference. The ability to do this adaptively may allow the rethinking of conventional wisdom in 
some areas. For example, medium- or low-PRF waveforms (with better range information) may 
be permissible in systems that had been primarily high PRF. A STAP capability also offers the 
potential for low-velocity target detection to some systems that currently are only able to operate 
in clutter-free zones. Investigations of the applicability of STAP as defined herein to other classes 
of radar systems is another area for future investigation. 
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APPENDIX    A 
PROOF OF BRENNAN'S RULE 

In Chapter 2 an approximate rule for the rank of the clutter covariance matrix was provided. 
This rule, originally put forth by Brennan and Staudaher [18], was based on extensive analysis of 
simulation data. This appendix proves a special case of Brennan's rule, for (3 equal to an integer. 

Theorem 1  (Brennan's rule): If the interpulse motion per half-interelement spacing ft = 2vaTT/d 
is an integer less than or equal to N, then the rank of the clutter covariance matrix is 

rc = N + (M-l)(3 . 

The assumptions are that the platform velocity vector is aligned with the linear array axis and 
that the element patterns are identical. The proof begins with the clutter covariance matrix from 
Equation (60): 

Rc = VcBcVf , (A.l) 

where Vc is an MN x Nc matrix of the space-time steering vectors to each clutter patch, Sc is a 
diagonal matrix of the power from each patch, and Nc is the number of clutter patches. Assume 
that a number of clutter patches is large Nc > MN. Because Sc is positive definite, 

rc = rank(Rc) = rank(Vc) (A.2) 

and only Vc needs to be considered. 

The linear relationship, Equation (70), between clutter Doppler and spatial frequency means 
that when (3 is an integer, all elements of the space-time steering vector v(d,-cj(d)) are integer 
multiples of the same base quantity z = exp(j27n?). Let Zk = exp(j2wdk) correspond to the kth 
scatterer. Assume that the patches are distributed such that the {zk} are distinct.13 

13This is guaranteed if the scatterers are distributed over [-90°, 90°] and the interelement spacing 
is a half-wavelength. 
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The clutter steering vector matrix Vc is then given by 

Vc = 

1 

~i 

JV-l 

AM-i)0 
z\ 

AM-1)0+1 

1 

22 

JV-l 

AM-1)0 
z2 
(M-1)0+1 

AM-1)0+N-1       (M-l)0+N-l 

1 

ZNC 

zN~1 

AM-\)0 
ZNC 

(M-1)0+1 
ZNC 

(M-1)0+N-1 

(A.3) 

Of the MN elements in the kth column, only the Oth through the (N — 1 + (M — l)/3) powers of Zk 
are represented. The rank of Vc is invariant under a permutation of its rows; rearrange the rows 
so that the distinct elements of each column occupy the top rows and the replicated entries occupy 
the bottom rows. The result is the new matrix Vr: 

Vc = 

,2 
~1 

AM-\)0+N-\ 

ZNC 

ZNC 

(M-1)0+N-1 

repeated rows 

Ur 

repeated rows 

•(A.4) 
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The upper partition of Vc, denoted by Uc, is a Vandermonde matrix of dimension TV + 
(M — l)/3 x Nc. The columns of Uc are linearly independent because the zjt are distinct; therefore 
Uc is of full rank [20]. The repeated rows in Vc do not contribute to its rank. This yields the 
results 

rc = rank(Uc) = min(iV + (M - l)/3, Nc) = N + {M - l)/3 . (A.5) 

Equation (A.5) is the desired result, and the proof is complete. 

One can also prove that the clutter covariance matrix is of rank less than MN for certain 
rational values of f3 by using a Vandermonde argument similar to the proof above [41]. Even for these 
special cases, however, the eigenspectra exhibit a knee that is accurately predicted by the general 
form of Brennan's rule, and eigenvalues beyond this knee are very small and likely insignificant. 
For this reason these special cases are not of much practical interest, and the additional details are 
omitted. 
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APPENDIX B 
PROOF OF THEOREM 2 

Chapter 4 considered a covariance matrix consisting of two components,14 

R-u = Ri + R2 ? (B-l) 

with Ri being full rank and R2 of low rank r2 < MN with spectral decomposition 

R2 = E2A2E^ . (B.2) 

A partially adaptive processor with preprocessor T = Rj"1B was suggested, where B is an MN X D 
beam matrix with D < MN. The beam matrix is also assumed to be of full column rank. The 
following theorem provided conditions for the design of the matrix B under which the performance 
of the partially adaptive processor, with known covariance, will be identical to that of a fully 
adaptive processor. 

Theorem 2 // the matrix B is designed such that 

span{[gt,    E2]} C span{B} , (B.3) 

then the partially adaptive processor of Figure 31(a) achieves performance equal to that of the fully 
adaptive processor. 

Another way of stating the condition Equation (B.3) is to require 

Ps[gt,    E2] = [gt,    E2] , (B.4) 

where PB = B(B/^B)_1B,/ is a projection matrix. 

To prove this theorem, the composite weight vector wpa = Tw will be shown to equal the fully 
adaptive weight vector if Equation (B.3) holds. The output signals and therefore the performance 
will then be the same for both processors. 

14 The proof in this section follows a path first suggested by D. Marshall. 
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The fully adaptive weight vector was shown in Equation (147) to be 

wfa = Rr'gt - Rr!E2 (E^/Rr1E2 + A2-
J
) * E? RT^ 

The partially adaptive weight vector is given by 

w= Ru
lgt , 

(B.5) 

(B.6) 

where 

Ru = THRUT = B^R^R^R^B (B.7) 

and gt = THgt = B^RT^gf. The composite partially adaptive weight vector is then 

wpa = Tw = R^BR^B^R^g, . (B.8) 

R"1 is first found by substituting Equations (B.l) and (B.2) into Equation (B.7) and applying the 
matrix inversion lemma: 

,-i (B^R^B)
-
 - (B^R^B)" B^R^E 

E^R^B (B^R^B)"1 B^R^EJ + A"1 

E^R^B (B^R^B) 

2 x 

-l 

-l 
(B.9) 

Equation (B.8) is then used to obtain the following cumbersome expression for the composite 
weight vector: 

wpa   =   R-1B(B//R-1B)"1B//Rr1gt- 

R^B (B^R^B)"1 B^R^EJ x 

E^R^B (B^R^B)"1 BH
R-

X
E2 + A-1 

E^R^B (B^R^B)"1 B^R^gt . (B.10) 
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This last result applies for an arbitrary B.   To satisfy the condition of Equation (B.3) in 
Theorem 2 requires first that D > r2 + 1 and that B has form 

B=    gu   E2,   F    C, (B.ll) 

where C is a D x D invertible matrix. Also, F is an MN x (D - r2 - 1) matrix of additional degrees 
of freedom that turn out to be irrelevant here. It is seen from Equation (B.10) that because C is 
invertible, it cancels itself out in all places; therefore, C = I is taken without loss of generality. 

The rest of the proof is easily seen once the following equality is observed: 

ID    =    (B^R^B)   ^^B 

=    (B^B)"1 B^Rf1 [ gt,   E2,   F 

Equating the two sides in Equation (B.12) reveals that 

(B^Rr^-VRr^ = 

(B^R^B)  ^"R^Ei   = 

°(D-l)xl 

'lxr2 

0 (D-ri-l)xr2 

so that 

R-1B(BHRf1B)   'B^R^gt   =   R^gi 

R^B (B//
R-

1
B)~

1
B

//
R1

_1
E2   =   R^Ea . 

This last result, when substituted into Equation (B.10), yields 

wpa = Rj-'gt - RrXE2 (EfRj-1E2 + A^-1)"1 Ef R^g 

From Equation (B.5), wpa = Wfa and the proof is complete. 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 
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APPENDIX    C 
DISPLACED PHASE CENTER ANTENNA (DPCA) PROCESSING 

For a number of years, DPCA processing has referred to a class of techniques for suppressing 
the ground clutter seen by an airborne radar. This appendix reviews the basic DPCA concept. 
Many different variations on the DPCA theme have been considered for airborne and space-based 
radars; this discussion will focus on the type of DPCA described by Staudaher [2]. A DPCA 
processor is a fixed space-time processor, and the conditions for DPCA clutter cancellation are 
closely related to Brennan's rule for the clutter rank. Further analysis of the conditions under 
which STAP and DPCA are equivalent is given by Richardson [43]. 

Assume an array aligned with the platform velocity vector. Furthermore, assume that he 
platform velocity is matched to the radar PRF to satisfy the DPCA condition 

va = ^-   or   0 = 1. (C.l) 

The DPCA condition above states that effectively, the array moves one interelement spacing per 
pulse repetition interval (see Figure 8). The basic DPCA idea is to displace the receive beam phase 
center on a pulse-by-pulse basis to compensate for the platform motion. Outputs from different 
beams with the same effective phase center are subtracted to suppress the clutter much like an 
MTI canceler. The key to effective clutter cancellation is that the receive beams from different 
subapertures of the array have exactly the same pattern so that cancellation is achieved at all 
angles. 
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Figure C-l.    Block diagram for DPCA processing. 
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A block diagram of a DPCA processor is shown in Figure C-l. Two receive beams are formed 
by applying a beamformer matrix 

G = [gi,   82] (C.2) 

to each pulse of data. Typically, the receive phase center of gi is shifted to the left of the array 
physical center, while that of g2 is shifted to the right. Beam 1 is then delayed by one pulse- 
repetition interval and subtracted from beam 2. This operation, called DPCA cancellation, is a 
two-beam, two-pulse space-time filter. This process is repeated for each two-pulse sub-CPI, and the 
resulting M' = M - 1 outputs are then coherently integrated in the length M' doppler filter bank. 
Because the DPCA canceler occurs after initial beamforming of the data and doppler processing 
occurs after DPCA cancellation, DPCA is a beamspace pre-doppler space-time (fixed, nonadaptive) 
processor. 

To examine the angle doppler response of a DPCA processor, focus on a single two-pulse 
sub-CPI. Let x denote the 2N x 1 sub-CPI space-time snapshot, from which 

X = (I2 8 G)HX (C.3) 

is the 2x2 beamspace sub-CPI snapshot, as in Section 6.2. The DPCA canceler may be represented 
by the fixed weight vector 

w = 

r 0 
1 

-1 
L 0 

(C.4) 

The DPCA canceller output is then 

z = wHx = [(I2 8 G)w]H X = •HX , 

where the composite sub-CPI weight vector is 

(C.5) 

w = (I2 8 G)w = g2 

-gl 
(C.6) 
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The angle-Doppler response of the DPCA processor, through the canceler, may then be 
written as 

P(tf,G7)   =   w"v(^zu) = g2"a(tf) - e^gf^) 

=   F2(ti)-e>2*wFi(#), (C.7) 

where Fi(fl) = g(/a(t?) and i^(^) = ?>2&(^) are the patterns of the two beamformers. Ideally, the 
DPCA beamformers should satisfy 

gi = g2 = 
0 

Lg 
(C.8) 

where g is an (N — l)-element beamformer. In this case the two beamformers are equivalent 
to a single beamformer that processes two overlapping subapertures that are displaced by one 
interelement spacing. Therefore, 

F2(t?) = e?•Fx{-&) (C.9) 

The DPCA response may then be found from Equation (C.7) to be 

P(0,zu) = Fi(0) (ej2^ - e]2rw) (CIO) 

This is the response of a two-pulse processor; at any angle a single null in doppler frequency exists. 
The locus of this null is where the bracketed quantity in Equation (C.10) equals zero. From this 
the DPCA canceler has a null at 

^nullW = 0   • (C.ll) 

This is exactly the equation for the clutter ridge for (3 
nulls the clutter ridge completely. 

= 1 and no misalignment.   Thus, DPCA 
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Another way to view DPCA is to note that the beamformer Equation (C.8), satisfies The- 
orem 5; the resulting clutter subspace has dimension 2 + (2 - 1) = 3. The DPCA weight vector, 
Equation (C.4), lies in the subspace orthogonal15 to the clutter subspace [43]. This is another way 
of saying that DPCA forms a space-time filter that completely nulls the entire clutter ridge. It can 
be shown that for two-pulse DPCA, the full CPI composite weight vector is a projection of the 
space-time steering vector into the subspace orthogonal to the clutter. 

One way to derive beamformers that satisfy Equation (C.8) is by a proper combination of 
sum and difference beams. Let g, and gj denote sum and difference beamformers, and let their 
corresponding patterns be denoted F^d) and Fd(t?). If the sum and difference patterns satisfy 

= tan 7Ti? , (C.12) 

then a set of DPCA beamformers can be formed by applying the 2x2 matrix transform 

T = 
1     1 

L -3   3 
(C.13) 

as follows: 

G = [gs ,    gd]T = [g, - jgd ,    gs + jgd]   • (C.14) 

To see this, consider the corresponding patterns 

Fx(tf)    =   Fs{4)-jFd(4) = F.(4){l-jtan*4) 

F2(tf)    =   Ft(4) + jFd(4) = F,(4)(l + jtmiird) (C.15) 

lsIn this case, the dimension of the beamspace sub-CPI snapshot is 4, the clutter subspace is of 
dimension 3, so its orthogonal subspace has dimension 1. 
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Equations (C.15) and (C.12) are combined to yield 

which is the desired result. Because a sum pattern utilizes a symmetric taper and the difference 
pattern is antisymmetric, the matrix combiner, Equation (C.13), results in two beamformers whose 
phase centers are displaced to the left and right of the array physical center. 

The sum and difference-beam form of DPCA may also be modified to provide some means 
for maintaining mainlobe clutter cancellation in mismatched conditions where the DPCA condition 
does not hold or velocity misalignment exists. Redefine the transform T above as 

T(K) = 
1        1 

L-JK     JK 
(C.17) 

where K is a gain control that adjusts the displacement between the two DPCA beamformers. With 
TACCAR adjustment of the clutter doppler and linear control of K with velocity and the cosine of 
the misalignment angle, it can be shown that the DPCA filter can be made to match the slope of 
the clutter ridge at the mainbeam look direction. Therefore, even in mismatched conditions, the 
two-beam, two-pulse DPCA can provide some level of clutter cancellation. 

A full-CPI analysis of DPCA follows in the same way as for beamspace pre-doppler STAP 
but with the sub-CPI weight vectors given by Equation (C.4) rather than by Equation (234). 

The DPCA processor, being a fixed space-time filter, requires precise antenna and system 
calibration to provide high levels of clutter cancellation. In practice, several factors cause the 
performance of DPCA to degrade. Among these are imperfect array calibration, element pattern 
mismatches, velocity-PRF combinations that do not satisfy the DPCA condition, and velocity 
misalignment. Even with appropriate control as suggested above, DPCA performance in practice 
can fall far short of the ideal case. Moreover, DPCA has no inherent capability to suppress jamming 
beyond what the nominal sidelobe level provides. Whereas DPCA seeks to provide complete clutter 
cancellation, STAP optimizes SINR. Because it is data-adaptive, STAP does not require the above- 
mentioned conditions to achieve clutter cancellation. As a result, STAP is both more flexible and 
more robust against clutter and can suppress both jamming and clutter simultaneously. 
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