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ABSTRACT 

Standard uniformly spaced arrays are used to obtain direction information about 

jammers and other interference signals. In conventional systems the number of sources 

that can be identified by an array ofN elements is JV-1. Minimum redundancy arrays have 

the ability to handle more than JV-1 interferers (up to N(N-\)/2) with N elements or less. 

Thev require the use of nonuniformly spaced array elements. 

The existing method for finding the element locations for an optimum minimum 

redundancy array (MRA) is restricted by its processing time. For a 10 element array with 

an arrav length of 36d (d is the fundamental element spacing, typically one half 

wavelength), the number of possibilities is much greater than 6 xlO10. Thus, even with 

today's fast computers, finding the optimum MRA for a large arrays is not practical. A 

new element placement procedure is investigated based on the residue number system 

(RNS). The element locations are obtained from simple modulo computations, and by 

varying the base of the number systems, different configurations are generated. The 

residue array does not achieve the minimum redundancy of the optimum array, but has 

significantly lower redundancy than the conventional periodic array. The advantages and 

disadvantages of both methods are investigated, and the array response of each is 

compared 
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I. INTRODUCTION 

The determination of the direction of an emitter of electromagnetic radiation is an 

important component of electronic warfare. Direction Finding (DF) information is usually 

provided by a listening antenna. If the direction of the antenna's main beam (or null) is 

known, then when the received power is a maximum (or minimum), the antenna is 

assumed pointed at the emitter. The search can be done either mechanically by physically 

turning the antenna, or electronically by comparing phased signals from two closely 

spaced elements. 

Recently, electronic scanning has become the method of choice for high-performance 

DF systems. Array antennas can generally isolate emitters faster and more precisely. They 

also eliminate the need for moving parts, which is a serious problem for other types of 

large antennas Large antennas are required for high resolution; that is, to separate two 

closely spaced emitters. Arrays also have the advantage of being flexible because they are 

electronically controlled. Some radiation pattern characteristics can be modified by simply 

reprogramming the beam controller. On the other hand, for a reflector antenna, such a 

modification would require a redesign of the feed antenna. 

Conventional array antennas incorporate identical elements that are equally spaced. If 

A' elements are uniformly distributed along a length L (referred to as the "array baseline"), 

the interelement spacing is d = {N-\)IL. In order to obtain a good input match for the 

elements and to avoid grating lobes, d is generally restricted to the range 

0.25A.0 < d < 0.75^o (where X0 is the wavelength). 

If a linear array forms a conventional radiation beam, the beam width is 

approximately O.SSX0/L radians. Thus, to resolve two emitters that are separated by less 

than 1 degree apart can require an extremely large base line array. The attendant weight 

and beamforming network complexity can be reduced somewhat by thinning the array. 

Thinning can be done randomly (only practical when N» 1 ), or unequal spacings can be 

employed in the design of the array. 

In principle, reducing the number of elements does not reduce the resolution as long 

as the baseline remains unchanged. However, the number of emitter directions that can be 



determined simultaneously, denoted by M, depends on the number of elements. For the 

equally spaced N element array, M = N- 1. [1]. 

By making use of a theorem by Caratheodory [2], it can be shown that for a given 

number   of elements,   there   exists  a   distribution   of element   positions  which,   for 

uncorrelated sources, results in superior spatial spectrum estimators than are otherwise 

achievable. In fact, Moffet [3] has examined the so-called optimum Minimum-Redundancy 

Array (MRA), for which integer numbers of d occur only once. Such an array can have a 

baseline much larger than (N- \)d and can potentially resolve as many asM = N(N- l)/2 

emitters. This is a dramatic increase over the number for the conventional equally spaced 

array. 

The problem with the optimum MRA is twofold. First, the locations can only be 

determined by trial and error. For instance assume that our objective is to design an 

optimum MRA with N elements. In other words, disperse the N elements over a baseline, 

L with unequal spacings md, where m is an integer. Furthermore, all integers 

1 < m < ~d - 1 must occur once and only once, and none can be omitted. (This is denoted 

as the zero redundancy restricted case by Moffet). The solution is simply to search all 

possible element configurations and choose the one that satisfies the stated conditions. For 

a 10 element array with a baseline of 36t/, the number of possibilities is greater than 

b ' 1010 [3], Thus even with today's fast computers, finding the optimum MRA for large 

arrays is not practical. 

A second problem with the optimum MRA is that the element locations are strictly 

defined. In some cases, it may not be possible to place an element at a prescribed location 

because of the platform (aircraft or ship) geometry or other structural limitations. 

To circumvent the two problems described above, a new element placement 

procedure is investigated based on residue number systems (RNS). The element locations 

are obtained from simple modulo computations, and by varying the base of the number 

systems incorporated in the method, different configurations are generated. The residue 

array does not achieve the minimum redundancy of the optimum array, but has 

significantly lower redundancy than the conventional periodic array. In other words, some 

spacings may be repeated, while others are missing. The effect of these shortcomings on 



the array response is shown to be relatively minor if the number of missing spacings is 

small compared to the total number. 

In Chapter II array theory is reviewed with particular emphasis on the vector 

representation for antenna beamforrning. Array performance is governed by its covariance 

matrix, and it is shown that the DF problem can be reduced to a matrix eigenvalue 

problem. The response of a conventional array is computed as an example and reference 

for subsequent comparisons. 

Chapter III addresses the problem of element location selection. First, MRAs are 

introduced and the restricted and general cases defined. Next, the residue method is 

defined and data from several residue array configurations summarized in terms of a 

normalized redundancy ratio, Rn. This quantity is a measure of the redundancy of the 

residue array relative to the optimum MRA; thus Rn = 1 is ideal. 

Chapter IV presents simulation data for a range of array parameters. Chapter V 

presents conclusions and recommendations for further research. Computer code listings 

are included in the Appendices. 





II. ARRAY BEAMFORMING 

A.   INTRODUCTION 

An array antenna is formed by combining the outputs (or inputs) of a collection of 

individual smaller radiation elements. In most cases, the elements of an array are identical. 

This is not necessary, but it is often convenient, simpler, and more practical. The individual 

elements of an array may be of any form (wires, apertures, etc.). 

The total field of the array is determined by the vector addition of the fields radiated 

by the individual elements. To provide specialized radiation patterns, it is necessary that the 

fields from the elements of the array interfere constructively (add) in the desired signal 

directions and interfere destructively (cancel each other) in the direction of interferers. Ideally 

this can be accomplished, but practically it is only approached. In an array, there are five 

controls that can be used to shape the overall pattern of the antenna. These are: 

1. the geometrical configuration of the overall array ( linear, circular, rectangular, 

spherical, etc.), 

2. the relative displacement between the elements, 

3. the excitation amplitude of the individual elements, 

4. the excitation phase of the individual elements, and 

5. the relative pattern of the individual elements. 

The simplest and one of the most practical arrays is formed by uniformly distributing the 

elements along a line. This arrangement is the conventional linear array configuration. If all of 

the array elements are identical, the principle of pattern multiplication applies [4]. It states that 

the total array pattern is given by the product of an element factor (EF) and an array factor 

(AF). Thus. 

E(Q^) = EF(Q^)-AF(Q) (2-1) 

where £\6,4>) is the total radiated (or received) electric field intensity in the direction (9,(j)). 

The array gain pattern is proportional to the magnitude square of the electric field pattern 



G(e,<j>)~l£(e,(i))l: (2-2) 

In subsequent discussions the element factor is suppressed by considering isotropic radiating 

elements. This simplification gives 

G(9)~UF(0)I2. (2-3) 

B.   ARRAY FACTOR FOR AN EQUALLY SPACED ARRAY 

The array factor can be obtained by considering the elements to be point sources. 

Referring to Figure 1, if all elements are equally excited, the array factor is given by [4] 

AF = W() + w j ej(kdcos 9+ß) + W7ej2(kdcosQ+f>) + h w^ej(h'-\)(.kdcos Q+ß) 

AF = E w _]eJ{"~]){kdcos(j+P) (2-4) 
n=\ 

which can be written as 

AF= X w^e*"^ 
n=] 

(2-5) 

where  v|/= ^ot/cos0 + ß ,  ß = kodcosQs (Qs =   beam  scan  angle),  and ku-2n/Xn.  For a 

uniformly excited array all of the coefficients in (2-5) are equal (wn^ 1, n    1,2,...N). Thus, in 

this case, equation (2-5) can be written as 

AF = eM\'-WYv 
eJ< 1 - IV_p-/l 1 2 U|/ 

e ,y[(-v-i)/2| 
sin(-v|/) 

(2-6) 



Figure 1. Far-field geometry of TV-element array of isotropic sources 

positioned along the z-axis (From [4]). 

If the phase reference point is the physical center of the array, the argument of the exponential 

is zero and the array factor reduces to 

AF = 
sin(yM') 

sin(-v|/) 
(2-7) 

The maximum value of the array factor is equal to N. To normalize the array factors so that 

the maximum value of each is equal to unity, equation (2-7) is divided by A' 

AR 
sm(|vj;) 

sin(^\|/) 
(2-8) 



The closed form result of equation (2-8) only occurs because the elements are equally excited. 

If the excitations vary from element to element, the coefficients of the exponentials in equation 

(2-4) are not equal. 

C.   DEGREES OF FREEDOM 

Note that equation (2-4) is an Mh degree polynomial with coefficients {wj. There are 

a total of AM degrees of freedom because there are AM coefficients that can be chosen 

independently. In a typical design scenario, one degree of freedom is used to point the main 

beam in the direction of the desired signal, leaving N-2 degrees of freedom to the null 

emitters [1]. The polynomial representation of array patterns has been used extensively to 

synthesize the radiation patterns by the placement of the nulls on the complex plane [5]. 

D. COVARIANCE MATRIX OF AN ARRAY 
An array's response to multiple simultaneous sources can be determined using the 

representation shown in Figure 2. The complex weights {w„}are used to control the radiation 

pattern. A thinned array can be represented as an equally spaced array with the appropriate 

weights set to zero. 



Figure 2.  An /V-element adaptive array. 

The output of the nth element for a narrow-band signal, s(t), in the direction 9 at time / 

is 

x„(t) = s(t) e -jk<)dncosQ n„(t) (2-9) 

where dn is the distance of element n from the phase reference (chosen to be at element 1). 

Thermal element noise is assumed present and denoted nn (t). It is zero mean and Gaussian 

distributed with variance o2„ =N(>. 

The array output response is obtained by summing the contributions from all elements 

y(t) = X w„x„(t) (2-10) 
n=\ 



or, in vector notation, with T denoting transpose,' 

y(t) = WTX(t) (2-11) 

where 

WT = [W\ W2 ... W\<] (2-12) 

and 

m = x2(t) 

x,v(r) 

(2-13) 

The mean output power is obtained from the expected value of the output signal 

E {1X012} = E { y*(0y{t) } = E{[WT X(t)]* [X(t) W]} 

= w E{X(ty x(ty} w. 

(2-14) 

(2-15) 

Now define the autocorrelation or covariance matrix as 

Rxx = {X{tyx{t)T}. (2-16) 

The elements of the covariance matrix are given by 

Vectors and matrices are denoted by capital letters. 

10 



[RxAii = E {Xu)* Xj(t)}. (2-17) 

However, the noise is uncorrelated from element to element yielding 

RXX = RSS+Rnn. (2-18) 

The signal autocorrelation matrix is 

[Rsslj = E {(5(0 e-^-cose). (S(t) g-vM-cose^ 

_ p    ßßoid-dj) cos 6 (2-19) 

where f, = £ { \s(t)\2} is the signal power. The noise autocorrelation function is 

[R,!ll],J=E{nl(tynJ{t)}=NoI. (2-20) 

where / is the identity matrix. 

Up to this point the signal vector has only consisted of a single source. If A" sources 

are present sk(1), k = 1,2,.. .,K , with signal powers Pk, arriving from directions Qk, then 

xt{t) = I sk{t)e-^' cos9i- + W/(0 . (2-21) 

The corresponding covariance matrix has elements given by 

[Rxx],j = £ P5* e^' "^ ^ +M>5y (2-2) 
A'— 1 

where 5„ is the Kronecker delta. 

11 



E.   MATRIX DECOMPOSITION FOR DIRECTION OF ARRIVAL 

In vector form equation (2-21) can be written as 

X(f) = A*S(t)+N(t) (2-23) 

where 

N(t) = [n[(t)n2(t)...nN(t)]T 

S(t) = [s](t)s2(t)...sK(t)i 

(2-24) 

(2-25) 

The vector A contains the propagation delays 

A = [Ui U2---UK] (2-26) 

where Uk = U(Qk) and, for equally spaced elements, 

f 7(0) = 

.,jku c/]Cos() CJ" 

e .,jk{) d\- cos 6 

1 
}jkt)d cosQ 

yjk,)(S'-\)d cos Q 

(2-27) 

Thus, the signal correlation matrix can now be written as 

RXX=ARSSA' + N{II (2-28) 

where / stands for the complex conjugate transpose, and / represents the identity matrix. For 

an equally spaced array with N elements located at 0, d, 2d, ...,(N-\)d the size of the 

correlation matrix in equation (2-28) is Ar x N. In this case, the maximum number of emitters 

that can be detected cannot exceed (AM). 

12 



The matrix R^ is Hermitian and always positive definite if thermal element noise is 

present (No * 0). Thus R„ can be diagonalized using a rotation matrix E where 

ERrrE    — 

Xi       o 

0        lN 

(2-29) 

The matrix E is unitary (EE' = /) and its columns are the eigenvectors of Rxx, where 

E-\e\ ei ... eN]. (2-30) 

The signal covariance matrix is diagonalized by the same rotation matrix . For example, if 

there is only one signal present (K = 1) then 

ER^E' = A = 
X       0 

0        0 

(2-31) 

In light of equation (2-15) the weight vector for the single signal case is 

H/' = (constant)ei . (2-32) 

A measure of the array response is given by the spectral estimator 

/xe) 
I'-Wio)! e\U(d)\ 

(2-33) 

High values of P denote high array sensitivity; that is, a pattern notch or null at 9. Note that 

this is not the same condition that provides good signal-to-noise (high gain) for a conventional 

array. If more than one emitter is present the spectral estimator becomes 

13 



P(0) = 
[e\ eN-K]' U(Q)\2 

(2-34) 

The response for a conventional equally spaced array of 6 elements using ordinary 

beamforming is shown in Figure 3. In this case there is no ability to resolve two signals, the 

null locations are fixed relative to each other. Figure 4 shows the response of a Caratheodory 

array with four elements located at 0, d, 5d/2, and 3d. The emitter directions are at 35, 60, 

90,   100,   125 and  150 degrees respectively. Note that all of the emitters are essentially 

resolved (i.e., peaks at the proper angles), but the sensitivity is only 10 dB in some cases. 

-20 
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Figure 3.  Conventional equally spaced array with L = 6d, N = 6. 
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Figure 4.  Conventional processing scheme for a C-array with L - 6d, N = 4. 
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F. METHODS FOR IMPROVED SPATIAL SPECTRUM ESTIMATION 

Several processing methods exist to enhance the spectral estimation for multiple wave 

fronts. Two essentially equivalent techniques are the MUSIC method [6], and the theorem of 

Caratheodory (or C-arrays)[2]. They lead to asymptotically unbiased estimates of general 

signal parameters approaching the Cramer-Rao accuracy bound. 

Caratheodory's theorem in the context of finite moment problems is of special 

significance The most important property of the theorem is that, given a number of elements 

M + lthat satisfy c* = c„, there exists an integer K, \<K<M, and certain constants at>0, 

and cok, for k = 1, 2, ..., K, such that 

cm= iaA-e-^ + aoSy, m = /-/ = 0,1,2, ...,M. (2-35) 
A=l 

Furthermore, the integer K and the constants at and ecu- are determined uniquely Comparing 

equation (2-22) and equation (2-35), it is clear that the autocorrelation lags represented by 

equation (2-22) have a  Caratheodory representation as given in equation (2-35). Moreover, 

the similarity is exact if the //array element locations are spaced in such away that the set of 

integers (m) implied by the set of differences {d- d) = m(d) (i,j = 1,2, ..., TV) spans the integer 

set (0, 1, ...M). where Nmi~M< N(N-\)/2. With Ar elements there are (M + l) autocorrelation 

laes r(m), where 

r(m) = r(i -j) =   I Psk ejk" (d> ~J'} cosöi +M,8„ ,    m = 0, 1, 2, ...., M.     (2-36) 
k=\ 

The  Caratheodory  (C)   sequence  of length  TV defines  the  actual   element  location   set 

{d\.d2.. ..., d\} which are integer multiples of a fundamental spacing d. 

For the location of the directions of arrival, the autocorrelation matrix takes the form 

of a Toeplitz matrix 



Rxx — 

r(0) 
r'(l) 

r(l) 
r(0)      r(l) 

..     r{M) 
. r{M-\) 

r\M) r\M-X) r(0) 

(2-37) 

where r{m) is defined in equation (2-36). The matrix in (2-37) is called the augmented matrix, 

and is derived from the smaller matrix in equation (2-28). Using the matrix in equation (2-37) 

in a spatial spectrum algorithm, one can expect therefore to be able to handle a higher number 

of signal arrivals than could be handled using (2-28). This is shown explicitly for the specified 

case of a vector technique called Multiple Signal Classification (MUSIC) by Schmit[6], 

From equation (2-22) and (2-28) ARSSA' is of rank K and hence the lowest eigenvalue N„ 

of Rxx has a multiplicity of (M-K+l). By defining et as the corresponding eigenvectors where 

i = K+\,K+2, ...,M+\ 

Rxxe, = NQ et. (2-38) 

Using (2-28), this gives ATe, - 0 which implies 

f/'(0) e, = 0 (2-39) 

for    all       i = K+ l,A" + 2, ...,M+ land    k=\,2,...,K.    This   implies   further   that   the 

corresponding eigenvectors are orthogonal to signal direction vectors. 

These noise eigenvectors can be used to form a spectral estimator P(0) for the 

augmented matrix similar to (2-33) given by 

/>(0) 
!!^'-i.^--:.-Ä/.-i]'f'(H)l: 

(2-40) 
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which can always be computed for K<M.  Equation (2-40) implies that the maximum number 

of sources whose directions of arrival can be estimated using an augmented matrix is equal to 

NmVi. Here Nmax is the greatest multiple of the unit spacing d such that all multiples of the unit 

spacing < NmäX are present between pairs of elements array. In this case Nmixx > N and may be 

ashighasMW-l)/2. 

Figure 5 shows the spectrum of the C-array considered in Figure 4 obtained using the 

augmented matrix. It is apparent from a comparison of Figures 4 and 5 that there is an 

improvement in dynamic range (the signal peaks to the background level) relative to ordinary 

beamforming. 
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Figure 5. The improved spatial spectrum estimation using the augmented matrix 

for a C-array with L= 6d and N= 4. 



III. MINIMUM-REDUNDANCY LINEAR 

ARRAYS 

A.   INTRODUCTION 

As mentioned in the previous chapter, the linear array is one of the most important 

types of direction finding antennas. Existing work on the design of linear arrays has mainly 

been concerned with the problems of feeding many elements and with tapering the 

illumination of the aperture to obtain a desired beam shape or degree of sidelobe 

suppression. However, in arrays designed for the resolution of closely-spaced sources, the 

paramount requirement is to maximize the aperture dimensions and collecting area for a 

given number of elements. 

Moffet [3] has investigated the use of linear arrays in radio astronomy for 

observations of the sun. A diagram of a typical grating array (i.e.,periodic array) is shown 

in Figure 6(a). Equal-length branching transmission lines are used to combine the signals 

from the individual elements at a single receiver input. The spatial-frequency sensitivity 

diagram for the array is shown in Figure 6(b). Clearly there is a very high degree of 

redundancy present. In an A-element grating, the unit spacing (d) is present N- 1 times, 

twice-unit spacing (2d) is present N-2 times, and so forth out to the maximum spacing of 

(A;- IV, which is present just once. Higher resolution can be achieved for a given Ar if 

the number of redundant spacings were reduced, permitting the length of the array to be 

increased. 
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Figure 6. (a) Grating interferometer with TV =8. (b) Spatial sensitivity diagram 

for the grating interferometer. 

The high degree of redundancy in the periodic array permits the simple feeder 

arrangement shown in Figure 6(a). The antenna pattern has the form [sin(NX)/(NsmX)]2 

and the number of distinct emitters which can be resolved in a one-dimensional source 

distribution is approximately equal to TV. This is obtained when the angular width of the 

emitters are equal to the separation between the  lobes. The unit spacing d determines the 

size of the field over which the array produces an unambiguous picture of the source 

distribution. 
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B.   OPTIMUM MINIMUM-REDUNDENCY ARRAYS 

The minimum-redundancy array was considered by Arsac [7] who constructed the 

largest possible linear arrays for a given TV having zero redundancy. There are four such 

arrays shown in Figure 7. The first is the trivial case of a single-element. In the others 

there is one, and only one, pair of elements separated by each multiple of the unit spacing 

out to a maximum spacing equal to the distance between the end elements. Thus each of 

these arrays uniformly samples the spatial-frequency spectrum out to a baseline spacing 

L = \N(N-\)d = Nmaxd (3-D 

where ^N(N- 1) is the number of possible pairs of N distinct elements. Bracewell [8] has 

given an elegant proof of uniqueness; that is, these are the only linear arrays having zero 

redundancy for the specified N. 

CONFIGURATION SPATIAL SENSITIVITY 
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Figure 7. The four lowest N zero-redundancy linear arrays and their spatial sensitivity 

diagrams (From [7]). 
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It can be seen from Figure 7 that the zero-redundancy arrays sample the 

spatial-frequency spectrum at uniform intervals and with uniform sensitivity except for the 

zero spacing, or total power, component. The gain pattern which results has 

approximately the form [sm(NX)/(NsmX)], and gives the highest possible resolution for a 

given aperture length. The result of scanning a source distribution with such a pattern is 

to reject all spatial components in the source with spatial frequency greater than the 

maximum to which the array is sensitive, yielding an image of the source known as the 

principal solution. It is not necessary that the array sample the spatial-frequency spectrum 

of the source at exactly uniform intervals, but the grating sidelobes will become serious at 

a distance from the main lobe equal to the inverse of the maximum spacing between 

samples (measured in wavelengths). Processing of the data from an array is very much 

simplified if the sampling is done at uniform intervals. 

In an array with more than four elements, it is clear that there must be some 

configuration of the elements which leads to minimum redundancy while still retaining 

coverage of the spatial-frequency spectrum. A firm upper limit for the minimum 

redundancy is set by the rather simple division of the elements of the array into two equal 

groups, shown schematically in Figure 8(a) for the case N - 8. This is the compound 

grating interferometer [9]. With the branching feeder arrangement shown in Figure 8(a), 

the receiver sees the correlated signal between the narrow-spaced half of the elements and 

the wide-spaced half, giving uniform coverage of the spatial-frequency spectrum out to 

(Ar_ A)d (for even values of N). By accepting a more complex receiving arrangement in 

which the signals from the antennas are individually correlated with each other, the 

spacing between elements in the wide-spaced half may be increased to (A72 + \)d, giving 

coverage out to (A'74 + Nil -\)d. This arrangement is shown in Figure 8(b). 



l/4N2d 

■ 1/2 Nd ► 

K- 

?? ? . ?     ^J 

\ 
Single Corrdalor 

(a) 

+ + + * 
(b) 

Figure 8. (a) Compound grating interferometer with branching feeds and a single 

correlation detector, (b) Modified compound grating interferometer. 

The redundancy factor R, may be defined by the ratio of the number of pairs to 

>'^ max ^  ' e.. 

Rr = 
■/'max 

(3-2) 
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For large values of TV, the redundancy approaches N21{2 Amax). The configuration in Figure 

8(a) has a redundancy of 1.75 (0.5 x 8 x 7/16) and that in Figure 8(b) a redundancy of 

1.47 (0.5 x 8 x 7/19). The \6d and \9d are the length of each compound grating 

respectively. 

The arrangement in Figure 8(b) has appreciable advantage only for limited values 

of TV; for large values of TV, the aperture width tends toward ^d for either arrangement. 

Since the number of distinct pairs N(N-1)'2 tends toward N2.1, the redundancy factor in 

these compound grating arrays is always < 2. 

A plot of the redundancy Rr as a function of N for a fixed length L shows that the 

redundancy decreases with N until it reaches a certain minimum value referred to as the 

minimum redundancy. Beyond this point the redundancy goes up. An example of this is 

shown in Figure 9 where the length of the array is kept constant at L = \9d and the 

number of elements is varied from N= 2 to 19. The lowest value of Rr was found to be 

1.1538 at A =6. 

a. 8- 

«6. 

a. 

10      12      14     16      18      20 

Number of Elements N 

Figure 9. The redundancy R, vs the number of elements N with the length 
fixed at L = 19d. 
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Finding the array configuration giving the lowest possible redundancy for a given 

number of elements is not a trivial matter. Leech [10] has examined this identical problem 

in the theory of numbers, and gives some solutions for N< 11. He demonstrated that in the 

limit of large N, the minimum redundancy lies between 1.217 and 1.332. 

1.      Restricted Case vs General Case 

There are two categories of MRAs: (1) the restricted case and, (2) the general case. 

In the restricted case, the whole distance of the array (L) is uniformly covered. This 

means that the spatial frequency spectrum is uniformly covered up to a spacing Nmaxd, i.e. 

the distance between the end elements of the array. An example of this case is shown in 

Figure 10. In this case the configurations 1-1-9-4-3-3-2 and 1-3-6-6-2-3-2 all have NmaXd 

equal to the actual length of the array L which is 23d. 

Figure 10.   The two restricted minimum-redundancy eight-element arrays. 

In the general case, the actual length of the array can be greater than Nmäxd. The 

remaining spacings, which number ^N(N- \) -Nm&x are not all redundant since some 

exceed NmiiKd. In this case, the coverage of the spatial-frequency spectrum is uniform only 

up to Nmmd. An example of this is shown in Figure 11. The configuration 8-10-1-3-2-7-8 

has a total length of 39J with a redundancy of 1.17, while the value of NmhX is only 24. 

10 

Figure 11.   The general minimum-redundancy eight-element arrays. 
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The additional resolution afforded by the larger overall length of the general array 

might be welcome, even though the spatial-frequency coverage is incomplete above 

Nm!iXd, providing enough space is available. In other applications, where there is not as 

much space to provide the extra length, the restricted array will be more attractive. Table 

1 gives examples of restricted and general array configurations for TV = 5 to 11. 

Restricted Array 

N N max R Configuration 

5 9 1.11 -1-3-3-2- 

6 13 1.16 -1-5-3-2-2- 

7 17 1.24 -1-3-6-2-3-2- 

8 23 1.22 -1-3-6-6-2-3-2- 

9 29 1.24 -1-3-6-6-6-2-3-2- 

10 36 1.25 -1-2-3-7-7-7-4-4-1- 

11 43 1.3 -1-2-3-7-7-7-7-4-4-1- 

General Array 

N N max R Configuration 

5 9 1.11 -4-1-2-6- 

6 
i 

13 1.16 -6-1-2-2-8- 

7 18 1.17 _ 14_1.3-6-2-5- 

8 24 1.17 -8-10-1-3-2-7-8- 

10 37 1.22 -16-1-11-8-6-4-3-2-22- 

11 45 1.24 -18-1-3-9-11-6-8-2-5-28- 

Table l.   Some minimum-redundancy array configurations (After [3]). 
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2.     Advantage and Disadvantage of MRA's 

Looking at Figures 6, 10 and 11 it is possible to compare the eight-element arrays so 

as to deduce the advantages and disadvantages of each. One obvious advantage with the 

MRA of Figures 10 and 11 is that it gives more than three times the coverage of the 

spatial-frequency spectrum for equal values of unit spacing d, i.e., for equal grating lobe 

separations. The price for this greater coverage is a more complicated signal processing 

system and higher sidelobes. This can be overcome by the adjusting the correlator outputs. 

This is an easy modification for an array with digital beamforming. Using a digital 

computer, the beam can be tailored to have any desired sidelobe level by choosing 

appropriate weighting of the various correlator outputs representing different element 

separations. Another advantage of this system is that in the computer the electrical path 

lengths from each antenna to the correlators may be determined after the fact and 

corrections may be applied for any changes in these lengths. This eliminates the tedious 

adjustment of the feed lines in a grating array in which the signals from each antenna must 

be added together in exactly the right phase before detection. 

A disadvantage of the minimum-redundancy array is that its resolution is not 

easily increased except by adding more elements and rearranging the array to the optimum 

configuration for the new number of elements. With the compound grating arrays, 

increased resolution is readily obtained by combining observations with different array 

configurations. For instance, the resolution of the array in Figure 8(a) may be doubled by 

taking an additional observation with the    separation between the narrow-spaced and 

wide-spaced halves of the array increased by an amount equal to the length of the original 

array, ^N2 d. The two observations are combined coherently to achieve double the original 

resolution with the same grating lobe spacing. 

It has already been mentioned that it is not an easy matter to work out the 

minimum-redundancy configuration for a large value of TV. Leech [10] described several 

short cuts. A "brute force" search for the optimum ten-element array with Ar
max=36 would 
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present approximately 6x 1010 number of possible configurations even in the restricted 

case. 

C.   THE RESIDUE NUMBER SYSTEM (RNS) 

1.     Introduction 

The ancient study of the residue numbering system, or RNS, begins with a verse from 

a third-century book, Suan-ching, by Sun Tzu [11]: 

We have things of which we do not know the number, 

If we count them by threes, the remainder is 2, 

If we count them by fives, the remainder is 3., 

If we count them by sevens, the remainder is 2, 

How many things are there'7 

The answer. 23. 

This 1700-year-old number system has been attracting a great deal of attention 

recently. Digital systems structured into residue arithmetic units may play an important 

role in ultra-speed, dedicated, real-time systems that support pure parallel processing of 

integer-valued data. It is a "carry free" system that performs addition, subtraction, and 

multiplication as concurrent (parallel) operations, side-stepping one of the principal 

arithmetic delays: managing carry information. 

There are many applications that attempt to exploit the unique RNS properties. They 

include the study of error codes, the building of a special-purpose digital correlator and 

designing a general-purpose computing machine among others. Experimentally, these early 

efforts met with little success because winding the custom core memory required 

specialized residue mappings. The technology of the 60's was insufficient to support the 

unique demands of the RNS. 

Since the mid-70's the situation has changed; technology and theory have been 

slowly converging. In the west, over 100 major papers have been published on RNS. In 



addition, scholars in the former Soviet Union are actively investigated residue arithmetic. 

In this particular application residue arithmetic itself is not used, but the low redundancy 

patterns obtained by "overlaying" several RNSs are used to place array elements. 

2.     RNS Encoding For Arrays 

The RNS is defined in terms of a set of pairwise relatively prime moduli. If TV denotes 

the moduli set, then 

N={NUN2,...,NL}, GCD(NiNj)=\, for i*j (3-3) 

where GCD denotes the greatest common divisor. Any integer in the residue class ZL, 

where ZL is the ring of integers in modulo I, [0,1, ...,L- 1] 

and 

L = N]xN2x...xNL (3-4) 

has a unique I-tuple representation given by 

XKNSMX\,X2,...,XL) (3-5) 

where X: = Xmod.u and M is the base integer, is called the /'th residue of X. 

An example that illustrates the representation of a number X in a RNS is shown in 

Table 2. From Table 2: 

3 RNS^(0, 3, 3) 

7RNS->(1,3, 2) 

11 RNS->(1, 2, 0) 

60RNS^(0, 0, 0) 
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X Wi=3 #2=4 #3=5 

0 0 0 0 

1 1 1 1 

2 2 2 2 

3 0 3 3 

4 1 0 4 

5 2 1 0 

6 0 2 1 

7 1 3 2 

8 0 0 3 

58 1 2 3 

59 2 3 4 

60 0 0 0 

Table 2. An example to illustrate the encoding procedure for 

(#, =3,#2=4./V? =5). 
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3.     Incorporation of RNS into Array design 

This thesis examines the possibility of using RNS patterns to generate low redundancy 

arrays and to compare their performance to the optimal minimum redundancy array. The 

method of element placement is based on superimposing the locations of several arrays of 

different base lengths. For instance, bases 2 and 5 give element locations indicated by "0" 

in Table 3. Each row in Table 3 represents an increment ofd. Thus, the prescribed element 

placements are Od, 2d, Ad, 5d, 6d, &/, \0d. The length of the array is 

/, = (A'i x AS)c/= (2 x 5)d= \0d and the number of elements is N = 7. 

)cation N\=2 ^2=5 Element Position 

Od 0 0 * 

\d 1 1 
2d 0 2 * 

3d 1 3 
Ad 0 4 * 

5d 1 0 * 

6d 0 1 * 

Id 1 2 
Sd 0 "> 

j 
* 

9d 1 4 
\0d 0 0 ^ 

Table 3.   Element positioning in an array using 2 bases (N} -2, N2 -5). 
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Using the above element placements the redundency ratio (Rr) and the maximum 

number of received emitters (AW) can be found. They are compared to the periodic array 

and the optimum minimum redundancy array in Table 4. The normalized redundancy ratio 

Rn is the ratio of the redundancy factor of the array to that of the periodic array 

(Rp = Nil) It can be seen that the optimum MRA has lower redundancy than both the 

RNS and the periodic arrays. However, this is for a relatively small number of elements 

and a small array length. Moreover, the computation time to search the optimum 

configuration in this example is not a factor because of the small number of elements. For 

large numbers of elements certain combinations of bases yield redundancies closer to the 

optimum, and the processing time is much faster than that for the optimum. 

Array Type Rr Nlmx Rr, = RrIRp 

RNS 3.5 6 0.78 

Optimum MRA 2.1 10 0.47 

Periodic Array 4.5 10 1 

Table 4. Comparison of redundancy ratios for two bases. 
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The procedure can be extended to three bases as shown in Table 5. The prescribed 

element locations are Od, 2d, 3d, Ad, 6d, 8c/, 9d, 10c/, \2d, \Ad, \5d, 16c/, 18c/, 20d, 21c/, 

22d, 24d. The length of the array is L = (N] xN2 xN3 )d=(2x3x4)d = 2Ad and the number 

of elements is N =17. Once again, using the above element placements, the redundancy 

ratio (Rr) and the maximum number of received emitters (Nmax) can be found and 

compared to the periodic array and the optimum minimum redundancy array. The results 

are shown in Table 6. 

Location N\=2 N2=3 N3=A Element Position 

Od 0 0 0 * 

\d 1 1 1 

2d 0 2 2 * 

3d 1 0 3 * 

Ad 0 1 0 * 

5d 1 2 1 

6d 0 0 2 * 

Id 1 1 
8c/ 0 2 0 * 

9d 1 0 1 * 

lOd 0 1 2 * 

\\d 1 2 3 
\2d 0 0 0 * 

\3d 1 1 1 

\Ad 0 2 2 * 

15c/ 1 0 # 

\6d 0 1 0 * 

\ld 1 2 1 
18c/ 0 0 2 * 

19c/ 1 1 3 
20c/ 0 2 0 * 

21c/ 1 0 1 * 

22c/ 0 1 2 * 

23c/ 1 2 3 

24c/ 0 0 0 * 

Table 5. Element positions in a residue array formed using 3 bases 

(N = 2,M=3,N%=4). 

33 



Array Type Rr vVmax Rn = RrIRp 

RNS 6.18 24 0.54 

Optimum MRA 5.67 24 0.49 

Periodic Array 11.5 24 1 

Table 6.   Comparison of redundancy ratios for three bases. 

The results in Table 6 show an improvement in the redundancy of the RNS array 

to that of the optimum for a relatively high number of elements and long baselines. 

However, an inspection of the element positions (last column in Table 5) shows the 

repetition of a fundamental pattern. This is due to the fact that the spacing dictated by 

each base has a period, and therefore, when all are superimposed, the total configuration 

will have a period. The repetition is more noticeable in the example of Table 5 because 

one base (A',= 4) is the integer multiple of another (N= 2). 
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IV. SIMULATION RESULTS 

A.   DATA 

The effectiveness of the RNS approach to generating array configurations is 

evaluated for several examples. The redundancy factor (Rr) and the number of the received 

emitters Nmax for the RNS method are compared to those of the optimum method. Also, 

the antenna responses for both methods are plotted and compared. In this chapter the 

length will simply be denoted by the integer multiple of d. 

Example 1: 

The number of elements is N= 9 and the length of the array Z= 12. Table 7 shows 

the three bases and element locations. Table 8 shows a comparison of the redundancy and 

the number of received emitters for the RNS and the optimum methods. 

Location A/, =2 N2 = 2 N3 = 3 Element Position 

Od 0 0 0 * 

\d 1 1 1 

2d 0 0 2 * 

3d 1 1 0 * 

Ad 0 0 1 * 

5d 1 1 2 
6d 0 0 0 * 

Id 1 1 1 
Sd 0 0 2 * 

9d 1 1 0 * 

\0d 0 0 1 * 

\\d 1 1 2 

\2d 0 0 0 * 

Table 7. Element positioning in an array using 3 bases 
(Ni = 2,N2 = 2,N3=3). 



Array Type Rr N J' max 

RNS 3.6 10 

Optimum MRA 3 12 

Table 8. Comparison for example 1. 

The antenna responses for the RNS and optimum cases are as shown in Figure 12 

and Figure 13 respectively. For the optimum case A/
max= 12 and the emitter directions are 

20, 35, 50, 60, 70, 80, 100, 110, 120, 130, 145, and 165 degrees. For the RNS array 

A'miN= 10 and the emitter directions are the same as those for the optimum. In this case the 

array response directions differ from the actual emitter directions because the matrix is 

overdetermined (number of emitters > A7
max). If two emitters are removed, the response 

directions are exactly the same as the emitter directions as shown in Figure 14. In this case 

the emitter directions are 30, 45, 60, 70, 80, 100, 110, 130, 140, and 160 degrees. 
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Figure 12. The RNS antenna response for Ar= 9, L = 12. 

36 



Ö SQ     4Ü     BÖ     SD     T00~120   140   160 

Theta in Degrees 

Figure 13. The optimum antenna response for N = 9, L - 12. 

The results of Table 8, Figure 12 and Figure 13 indicate that the redundancy and the 

number of the received emitters are slightly better in the optimum array than for the RNS 

array for this particular set of emitters. 

37 



1 r 

-10 

-20 
CD 
T3 

o 

f-4Q 

-50^ 

-6Q 

-70.. 

-80 
0 

! 

: 

I 

I j 
:      ■ 

■ 

1         ; 

\ / 
i 

_ \j' ■   '.  f '■     i i      ., , .    :' " W ^_ 
v ',      ; 

" i               1 ;  ' \     / 

"20     40     60     80     100   120   140   160   180 

Theta in Degrees 
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Example 2: 

The number of elements is A^= 13 and the length of the array L= 18. Note that this 

is just an extension of the array in Example 1. Table 9 shows the three bases and the 

element locations. Table 10 compares of the redundancy ratio and the number of received 

emitters for the RNS and the optimum arrays. 

cation N}=2 N2 = 3 Ni = 3 Element Position 

Od 0 0 0 * 

\d 1 1 1 

2d 0 2 2 * 

3d 1 0 0 * 

Ad 0 1 1 * 

5d 1 2 2 

6d 0 0 0 # 

Id 1 1 1 

Sd 0 2 2 ^ 

9d 1 0 0 # 

lOd 0 1 1 * 

Wd 1 2 2 

\2d 0 0 0 * 

\3d 1 1 1 

\4d 0 2 2 * 

I5d 1 0 0 % 

\6d 0 1 1 JJC 

\ld 1 2 2 

\%d 0 0 0 ^ 

Table 9. Element positioning in an array using 3 bases 
(Nr =2,N2 = 3,Nj=3). 
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Array Type Rr AUx 

RNS 4.88 16 

Optimum MRA 4.33 18 

Table 10. Comparison for example 2. 

The antenna responses for the RNS  and  optimum cases are as shown in Figure 15 and 

Figure 16, respectively, for 18 emitters. The emitter directions are 10, 30, 40, 50, 55, 60, 

70, 75. 80, 100, 105, 110, 115, 125, 130, 140, 150 and 170 decrees. 
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Figure 15. The RNS antenna response forJV= 13, L- 18. 
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Figure 16. The optimum antenna response for TV = 13, L = 18. 
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Figure 17 is a plot of the RNS antenna response for its maximum number of received 

emitters Nm^= 16. The new emitter directions are 10, 30, 40, 50, 60, 70, 75, 80, 100, 

105, 110, 120, 130, 140, 150, and 160 degrees. 

o_ 

-10.. 

-2Q 

~°       i  ■'' 
■-   -40.''' 

o   -50 

-60 

-70 

-8Q 

-90 

-100 
0       20     40     60     80     100   120   140    160    180 

Theta in Degrees 

Figure 17. The RNS antenna response for TV = 13, L = 18 and /Vmiy 
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Example 3: 

The number of elements is N = 17 and the length of the array L = 24. Table 11 

shows the three bases and element locations. Table 12 shows a comparison of the 

redundancy ratio and the number of received emitters for the RNS and the optimum 

arrays. 

Location Ni=2 N2 = 3 N3=4 Element Position 

Od 0 0 0 * 

Id 1 1 1 

2d 0 2 2 * 

3d 1 0 3 * 

Ad 0 1 0 * 

5d 1 2 1 

6d 0 0 2 * 

Id 1 1 

8t/ 0 2 0 * 

9d 1 0 1 * 

lOd 0 1 2 * 

lid 1 2 3 

\2d 0 0 0 ^ 

13d 1 1 1 

\4d 0 2 2 * 

15 J 1 0 3 * 

\bd 0 1 0 * 

\ld 1 2 1 

\%d 0 0 2 * 

\9d 1 1 3 

20d 0 2 0 ^ 

2ld 1 0 1 * 

22d 0 1 2 * 

23d 1 2 3 
24d 0 0 0 ^ 

Table Element positioning in an array using 3 
(Ni =2,JV2 = 3,N3=4). 

bases 

43 



Array Type Rr Mnax 

RNS 6.18 22 

Optimum MRA 5.67 24 

Table 12. Comparison for example 3. 

The antenna responses for the RNS and optimum cases are shown in Figure 18 and 

Figure 19 respectively. They are the responses for 24 emitters. The emitter directions are 

20, 30, 40, 45, 50, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 140, 

150, 160, and 178. 
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Figure 18. The RNS antenna response for N= 17, L- 24. 
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Figure 19. The optimum antenna response for N= 17, L - 24. 
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Figure 20 is a plot of the RNS antenna response for its maximum number of received 

emitters Nmax= 22. The new emitter directions are 10, 25, 30, 40, 50, 60, 65, 70, 75, 80, 

85, 90, 95, 100, 105, 110, 120, 125, 130, 140, 150 and 160 degrees. 

-1C !... I - 

-2Q 
CD : 

c       i i 
i             ' i  :: 

o -30  | 
o      ; 

0-      i ; 

i il ';             |   '', 

!       '   !   1 

1       Hi! 

 ii ! 
[■   -*  

;: - 

-4C 1  
'0 [ 1 il i:i    / xwf 

!   i ^ : 
-5( 1. 
 \"i 4 ■jm vjfyjjijl- i 

! 1- r!~ \-\ ; - 
v 

1 
\   i " i i     i " 

i / ^ 
-60 

-7GL 
0  20  40  60  80  100 120 140" 160 180 

Theta in Degrees 

Figure 20. The RNS antenna response for N= 17, L = 24 and Nmi= 22. 
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Example 4: 

The number of elements isN = 23 and the length of the array L= 30 . Table 13 shows 

the three bases and the element locations. Table 14 shows a comparison of the redundancy 

ratio and the number of received emitters for the RNS and the optimum arrays. 

Location N}=2 N2 = 3 N3 = 5 Element Position 

Od 0 0 0 * 

\d 1 1 1 

2d 0 2 2 * 

2d 1 0 * 

Ad 0 1 4 * 

5d 1 2 0 * 

6d 0 0 1 * 

Id 1 1 2 

Sd 0 2 3 * 

9d 1 0 4 * 

\0d 0 1 0 * 

lid 1 2 1 

\2d 0 0 2 * 

\3d 1 1 3 

\4d 0 2 4 * 

\5d 1 0 0 * 

\bd 0 1 1 * 

\ld 1 2 2 

18c/ 0 0 * 

\9d 1 1 4 

20d 0 2 0 * 

2\d 1 0 1 * 

22d 0 1 2 * 

23d 1 2 J 

24d 0 0 4 ^ 

25d 1 1 0 ^ 

26d 0 2 1 # 

21d 1 0 2 * 

2Sd 0 1 3 * 

29d 1 2 4 
30d 0 0 0 # 

Table 13. Element positioning in an array using 3 bases 

(N i=2,N2 = 3,N3=5) 
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Array Type Rr Mnax 

RNS 9.03 28 

Optimum MRA 8.43 30 

Table 14. Comparison for example 4. 

The antenna responses for the RNS case and the optimum case are shown in Figure 21 

and Figure 22 respectively. The emitter directions are 5, 15, 30, 35, 40, 45, 50, 55, 60, 

65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145,150, 155, 

165 and 178. 
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Figure 21. The RNS antenna response for N=23, L- 30. 
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Figure 22. The optimum antenna response for TV = 23, Z, = 30. 
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Figure 23 is a plot of the RNS antenna response for its maximum number of received 

emitters Nm^=28. The new emitter directions are 10, 20, 35, 40, 45, 50, 55, 60, 65, 70, 

75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 160 and 170 

degrees. 
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Figure 23. The RNS antenna response for 7V= 23. L = 30 and Nnv = 28. 

50 



Example 5: 

The number of elements isN= 19 and the length of the array! = 36. Table 15 shows 

the three bases and the element locations. Table 16 shows a comparison of the redundancy 

ratio and the number of received emitters for the RNS and optimum arrays. 
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Location #i=3 Af2 = 3 TV3=4 Element Position 
Od 0 0 0 * 

\d 1 1 1 

2d 2 2 2 

2d 0 0 3 * 

Ad 1 1 0 * 

5d 2 2 1 

6d 0 0 2 * 

Id 1 1 o 
J 

8c/ 2 2 0 * 

9d 0 0 1 * 

\0d 1 1 2 
lie/ 2 2 3 
\2d 0 0 0 * 

13c/ 1 1 1 
14c/ 2 2 2 
\5d 0 0 3 * 

16c/ 1 1 0 * 

\ld 2 2 1 
18c/ 0 0 2 * 

19c/ 1 1 -> 
J 

20c/ 2 2 0 % 

21c/ 0 0 1 * 

22c/ 1 1 o 

23c/ 2 2 _1 

24c/ 0 0 0 * 

25c/ 1 1 1 
26c/ 2 2 2 

27c/ 0 0 3 * 

28c/ 1 1 0 * 

29c/ 2 2 1 
30c/ 0 0 2 * 

31c/ 1 1 -» 
j 

32c/ 2 2 0 * 

33c/ 0 0 1 * 

34c/ 1 1 2 

35c/ 2 2 
36c/ 0 0 0 * 

Table 15. Element positioning in an array using 3 bases 
(Nx =3,N2 = 3,N3 =4). 
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Array Type Rr -''max 

RNS 5.7 30 

Optimum MRA 4.75 36 

Table 16. Comparison for example 5. 

The antenna responses for the RNS case and the optimum case are shown in Figure 

24 and Figure 25 respectively. The emitter directions are 5, 10, 15, 20, 25, 30, 35, 40, 45, 

50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 

150, 155, 160. 165, 170, 175 and 178 degrees. 
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Figure 24. The RNS antenna response for JV= 19, L - 36. 
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Figure 25. The optimum antenna response for A'= 19, L = 36. 
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Figure 25 is a plot of the RNS antenna response for its maximum number of received 

emitters 7Vmax= 30. The new emitter directions are 15, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 135, 140, 145, 150, 155, 165 and 

178 degrees. 
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Figure 26. The RNS antenna response for N= 19, L = 36 and 7V'niax= 30. 
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B.   SUMMARY OF SIMULATION RESULTS 

Example 1 shows that for a relatively small number of elements (N < 10) and short 

array lengths (L < 16), the optimum method is suitable since it gives a lower redundancy 

ratio than the RNS (3 versus 3.6) with little computational penalty (5 minutes on a Sun 

Sparc 10 for the MRA versus less than 1 second for the RNS array). The antenna response 

is similar for both arrays except that the optimum is capable of resolving two more 

emitters than the RNS array. When the number of elements is increased to N = 13 and the 

length of the array to L = 18 as in Example 2, the redundancy ratio is slightly better for 

the optimum (4.33 versus 4.88). However, it takes approximately 2 hours on the Sun 

Sparc 10 to arrive at MRA configuration while the RNS calculation is still less than 1 

second. The antenna response is similar for both cases with the exception that an extra 

two emitters can be handled in the optimum case. 

In Example 3 the number of elements is increased further to N = 17 and the length of 

the array to L = 24. The redundancy ratio for the optimum is 5.67 versus 6.18 for the 

RNS. The cpu time for the optimum redundancy solution was approximately 24 hours on 

the Sun Sparc 10, but less than 1 second for the RNS array. The difference in emitter 

responses for the optimum and the RNS is two more emitters in favor of the optimum. 

With the number of elements N = 23 and the length of the array is L = 30 in example 4, 

the redundancy ratio for the optimum case is 8.43 versus 9.03 for the RNS. It took 

approximately 48 hours to obtain the optimum redundancy arrangement, but only several 

seconds to arrive at the RNS arrangement. Once again, the difference in the antenna 

response is due to the two extra emitters that the optimum method can accommodate. 

Finally, the number of elements is reduced to N= 19 and the length of the array increased 

to L = 36. The redundancy ratio for the optimum is found to be 4.75. It took 96 hours to 

arrive at this array. The difference in the number of the received emitters is 6 in favor of 

the optimum, hence, the difference in the antenna response. 

Appendix B contains a table of additional values of .ft., Nm^ and L for a wide range 

of RNS bases taken in combinations of three. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The important parameters used to establish the effectiveness of low redundancy 

arrays are the number of elements, N, the number of emitters that can be resolved, /Vnm, 

and the length of the array, L. The previous chapter has shown that determining the 

optimum configuration is computationally intensive and not practical for large numbers of 

elements. 

In this thesis, a method was described that uses residue number systems to generate 

element locations for a linear aperiodic array which increases the array's direction finding 

capability well beyond the conventional limit of AM. The RNS redundancy ratio compares 

favorably to that of the optimum MRA and is capable of resolving nearly as many received 

emitters as the optimum. The RNS array design processing time is negligible and the 

arrays are easily determined for large numbers of elements and long baselines. 

In order for any array to be able to detect A/nm emitters, the covariance matrix 

should have Or/, \d. 2d, ..., Nnmd with no integer multiple missing. For example an array 

with elements located at 0, \d, 2d, 3d, Ad, 6d, Id has 5rf missing, which implies Nmix= 4. 

Thus, if N does not include at least a Id then Nm= 0 and the redundancy ratio is 

N(N-1 )/2A/
nux = <*>. This is the origin of the infinities in Appendix B. 

The data in Appendix B does not give any indication that an optimum RNS array 

exists. As the bases TV,, N2, and N, are increased, the length, /Vmx, and Rr also increase. 

The values of these parameters are always superior to those for the periodic array, but 

inferior to those for the optimum MRA. At this point it is not clear if the moderate 

decrease in Rr warrants the accompanying increase in beamforming network complexity 

and other practical design considerations. These questions should be addressed in future 

research. 

It was noted earlier that periodic patterns of subarrays are present in RNS arrays 

especially when small bases are present. There is also symmetry in the element locations 

with respect to the center of the array. Therefore it may be possible to replace subarrays 
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containing the basic repetitive pattern with a single element, yet still maintain the presence 

of all integer multiples of d. This possibility should be investigated in future research. 
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APPENDIX A. COMPUTER CODES 

% Program 1. 
% This program 'test.m' computes the optimum array configuration. The required 
% inputs are the number of array elements N and the length of the array M. 

clear 
whitebg 
global N 
global M 
global NNmax 
N=input('What is the number of array elements?') 
M=input('What is the distance between the first and the last elements?') 
qs=input('Do you want to test a special arrangement?','s') 
if qs=='y' 
dr=input('What is this arrangement') 
end 
N0=10A(-30/10); 
Ns=12; 
theta=[20 35 50 60 70 80 100 110 120 130 145 165]; 
PS=[1,1, 1,1,1,1,1,1,1,1,1,1]; 
minredl 
i=sqrt(-1); 
fork1=0:NNmax 
fork2=0:NNmax 
if k1==k2 
R(k1+1,k2+1)=N0; 
else 
R(k1+1,k2+1)=0; 
end 
fork3=1:Ns 
R(kl+l,k2+l)=R(kl+1,k2+1)+Ps(k3)*exp(-i*pi*(k1-k2)*cos(theta(k3)*pi/180)); 
end 
end 
end 
[E,L]=eig(R); 
clg 
ee=[]; 
[11 ,l2]=sort(abs(diag(L))); 
plot(flipud(l1)),grid; 
ns=input('what is the dimension of the noise space?') 
for ke=1 :ns 
ee=[ee,E(:J2(ke))] ; 

59 



end 
w=linspace(0,pi,1200); 
for k2=1:1200 
for k1=1:NNmax+1 
Sh(k1,1 )=exp(i*pi*(k1 -1 )*cos(w(k2))); 
end 
ss=conj((ee'))*Sh; 
y(k2)=1/(ss'*ss); 
end 
plot(180*w/pU0*log10(y/max(y)),'-'),grid 
xlabel(Theta in Degrees') 
ylabel('Power in Degrees') 
if qs=='y' 
testmat=zeros(N*(N-1 )/2,1); 
for i=1:N 
for j=i+1 :N 
testmat(dr(j)-dr(i))=1; 
end 
end 
prod=1; 
for i=1:N*(N-1)/2 
prod=prod*testmat(i); 
if prod==0 
Nr=i-1 
Rr=N*(N-1)/(2*Nr) 
break 
end 
end 
end 
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%   Program 2. 
% This program'minredl.m'calculates the minimum redundancy configuration 
%  for a given N and M as given in the main program test.m. 

global d 
global N, 
global M 
global uplim 
global Nmax 
global NNmax 
global dminred 
NNmax=-10000; 
d=[]; 
clear lowlim; 
n=N-2; 
d(1)=0; 
d(N)=M; 
for i=1 :N-2 
lowlim(i)=i; 
uplim(i)=M-(N-(1+i)); 
end 
d=[d(1) lowlim d(N)] 
incr1(2); 
Rmin=N*(N-1)/(2*NNmax) 
dminred 
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% Program 3. 
% This program 'incrl .m' test the elements one at a time to check for minimality 
% of the redundancy and keeps the configuration that has the minimum 
% redundancy. 

function incr(ind) 
global d, 
global N, 
global M, 
global uplim 
global testmat 
global Nmax 
global NNmax 
global dminred 
if ind<=(N-1) 
ml=d(ind-1)+1; 
mup=uplim(ind-1); 
for i=ml:mup 
d(ind)=i; 
incrl (ind+1) 
end 
end 
if (ind==N) 
testmat=zeros(N*(N-1)/2,1); 
for i=1 :N-1 
forj=i+1 :N 
testmat(d(j)-d(i))=1; 
end 
end 
prod=1; 
for i=1 :N*(N-1)/2 
prod=prod*testmat(i); 
if testmat(i)==0 
Nmax=i-1; 
if(Nmax>=NNmax) 
NNmax=Nmax; 
dminred=d; 
end 
break 
end 
end 
if prod==1 
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NNmax=N*(N-1)/2 
dminred=d 
end 
end 
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% Program 4. 
% This program'testl 11.m' does the same operation as that of 'test.m except 
% that the element configuration comes from the modulo combination which is 
% provided by 'modOtest' program. 

clear 
whitebg 
global N 
global M 
global NNmax 
testOOO 
N0=10A(-30/10); 
Ns=36; 
theta=[5;10;15;20;25;30;35;40;45;50;55;60;65;70;75;80;85;90;95;100;105;110;1 
15;120;125;130;135;140;145;150;155;160;165;170;175;178]; 
Ps=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
i=sqrt(-1); 
for k1=0:NNmax 
for k2=0:NNmax 
if k1==k2 
R(k1+1,k2+1)=N0; 
else 
R(k1+1,k2+1)=0; 
end 
fork3=1:Ns 
R(kl+1,k2+1)=R(k1+l,k2+1)+Ps(k3)*exp(-i*pi*(k1-k2)*cos(theta(k3)*pi/180)); 
end 
end 
end 
[E,L]=eig(R); 
clg 
ee=[]; 
[H,l2]=sort(abs(diag(L))); 
plot(flipud(l1)),grid; 
ns=input('what is the dimension of the noise space?') 
for ke=1 :ns 
ee=[ee,E(:,l2(ke))] ; 
end 
w=linspace(0,pi,1200); 
for k2=1:1200 
for k1=1:NNmax+1 
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Sh(k1,1)=exp(i*pi*(k1-1)*cos(w(k2))); 
end 
ss=conj((ee'))*Sh; 
y(k2)=1/(ss'*ss); 
end 
plot(180*w/pi,10*log10(y/max(y));-'),grid 
xlabel('Theta in Degrees') 
ylabelj'Power in dB') 
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%    Program 5. 
%   This program 'testOOO.m' calculate the redundancy ratio and the maximum 
%    number of received emitters for the modulo method. 

global N 
global M 
global NNmax 
modOtest 
N=max(size(dr)); 
M=dr(N)-dr(1); 
for 1=1 :N 
for j=i+1 :N 
testmat(dr(j)-dr(i))=1; 
end 
end 
prod=1; 
for i=1 :max(size(testmat)) 
prod=prod*testmat(i); 
if prod==0 
NNmax=i-1 
Rr=N*(N-1)/(2*NNmax) 
break 
end 
end 
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% 
% 
% 

Program 6. 
This program 'modOtest.m' determines the element location using the 
modulo method to use with 'testl 11 .m'. 

N1 =input('what is the spacing N1 ?') 
N2= input('what is the spacing N2?') 
N3=input('what is the spacing N3?') 
Nsize=N1*N2*N3+1; 
v1=zeros(1,Nsize); 
v2=v1; 
v3=v1; 
dr=D; 
for i=1 :Nsize 
v1(i)=rem(i-1,N1); 
v2(i)=rem(i-1,N2); 
v3(i)=rem(i-1,N3); 
if(v1(i)==0)|(v2(i)==0)|(v3(i)==0); 
dr=[dr(i-1)]; 
end 
end 
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APPENDIX B. RESIDUE ARRAY PERFORMANCE DATA 

This appendix contains residue array performance data for three bases (N^ 2, 3, 
..., 15; N2= 3, 4, ..., 16; N3= 3). It gives the redundancy ratio of the residual array to that 
of the periodic array (RJR), the number of elements N, and the length of the array L in 
fundamental spacing units d. 
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Nx 2 3 4 5 6 7 8 

N2 

3 
ratio 

elements 
L 

0.5417 
13.0000 
18.0000 

00 

10.0000 
27.0000 

0.3167 
19.0000 
36.0000 

0.2775 
22.0000 
45.0000 

00 

19.0000 
54.0000 

0.2353 
28.0000 
63.0000 

0.2227 
31.0000 
72.0000 

4 
ratio 

elements 
L 

0.5152 
17.0000 
24.0000 

0.3167 
19.0000 
36.0000 

0.2976 
25.0000 
48.0000 

0.3895 
37.0000 
60.0000 

0.2803 
37.0000 
72.0000 

0.3590 
49.0000 
84.0000 

0.2722 
49.0000 
96.0000 

5 
ratio 

elements 
L 

0.6024 
23.0000 
30.0000 

0.2775 
22.0000 
45.0000 

0.3895 
37.0000 
60.0000 

0.2507 
36.0000 
75.0000 

0.2447 
43.0000 
90.0000 

0.3149 
58.0000 
105.0000 

0.3095 
65.0000 
120.0000 

6 
ratio 

elements 
L 

0.4902 
25.0000 
36.0000 

oo 
19.0000 
54.0000 

0.2803 
37.0000 
72.0000 

0.2447 
43.0000 
90.0000 

oo 
37.0000 
108.0000 

0.2068 
55.0000 
126.0000 

0.1955 
61.0000 
144.0000 

7 
ratio 

elements 
L 

0.5536 
31.0000 
42.0000 

0.2353 
28.0000 
63.0000 

0.3590 
49.0000 
84.0000 

0.3149 
58.0000 
105.0000 

0.2068 
55.0000 
126.0000 

0.2032 
64.0000 
147.0000 

0.2623 
85.0000 
168.0000 

8 
ratio 

elements 
L 

0.4783 
33.0000 
48.0000 

0.2227 
31.0000 
72.0000 

0.2722 
49.0000 
96.0000 

0.3095 
65.0000 
120.0000 

0.1955 
61.0000 
144.0000 

0.2623 
85.0000 
168.0000 

0.1896 
81.0000 

192.0000 

9 
ratio 

elements 
L 

0.4744 
37.0000 
54.0000 

00 

28.0000 
81.0000 

0.2696 
55.0000 
108.0000 

0.2352 
64.0000 
135.0000 

oo 
55.0000 

162.0000 

0.1985 
82.0000 
189.0000 

0.1877 
91.0000 

216.0000 

10 
ratio 

elements 
L 

0.4713 
41.0000 
60.0000 

0.2056 
37.0000 
90.0000 

0.3041 
65.0000 
120.0000 

0.2333 
71.0000 
150.0000 

0.1802 
73.0000 

180.0000 

0.2527 
103.0000 
210.0000 

0.2273 
113.0000 
240.0000 

11 
ratio 

elements 
L 

0.5118 
47.0000 
66.0000 

0.1995 
40.0000 
99.0000 

0.3160 
73.0000 

132.0000 

0.2822 
86.0000 
165.0000 

0.1748 
79.0000 

198.0000 

0.2424 
112.0000 
231.0000 

0.2348 
125.0000 
264.0000 

12 
ratio 

elements 
L 

0.4667 
49.0000 
72.0000 

00 

37.0000 
108.0000 

0.2645 
73.0000 

144.0000 

0.2306 
85.0000 
180.0000 

oo 
73.0000 

216.0000 

0.1946 
109.0000 
252.0000 

0.1840 
121.0000 
288.0000 

13 
ratio 

elements 
L 

0.5010 
55.0000 
78.0000 

0.1902 
46.0000 
117.0000 

0.3051 
85.0000 
156.0000 

0.2715 
100.0000 
195.0000 

0.1667 
91.0000 

234.0000 

0.2354 
130.0000 
273.0000 

0.2223 
145.0000 
312.0000 

14 
ratio 

elements 
L 

0.4634 
57.0000 
84.0000 

0.1867 
49.0000 
126.0000 

0.2878 
89.0000 
168.0000 

0.2674 
107.0000 
210.0000 

0.1635 
97.0000 

252.0000 

0.1930 
127.0000 
294.0000 

0.2150 
153.0000 
336.0000 

15 
ratio 

elements 
L 

0.4621 
61.0000 
90.0000 

00 

46.0000 
135.0000 

0.2615 
91.0000 
180.0000 

0.2280 
106.0000 
225.0000 

oo 
91.0000 

270.0000 

0.1924 
136.0000 
315.0000 

0.1818 
151.0000 
360.0000 

16 
ratio 

elements 
L 

0.4610 
65.0000 
96.0000 

0.1809 
55.0000 
144.0000 

0.2608 
97.0000 
192.0000 

0.2608 
121.0000 
240.0000 

0.1584 
109.0000 
288.0000 

0.2250 
157.0000 
336.0000 

0.1813 
161.0000 
384.0000 

70 



JVi 9 10 11 12 13 14 15 

N2 

3 
ratio 

elements 
L 

oo 
28.0000 
81.0000 

0.2056 
37.0000 
90.0000 

0.1995 
40.0000 
99.0000 

00 

37.0000 
108.0000 

0.1902 
46.0000 
117.0000 

0.1867 
49.0000 
126.0000 

oo 
46.0000 
135.0000 

4 
ratio 

elements 
L 

0.2696 
55.0000 
108.0000 

0.3041 
65.0000 
120.0000 

0.3160 
73.0000 
132.0000 

0.2645 
73.0000 
144.0000 

0.3051 
85.0000 
156.0000 

0.2878 
89.0000 
168.0000 

0.2615 
91.0000 
180.0000 

5 
ratio 

elements 
L 

0.2352 
64.0000 
135.0000 

0.2333 
71.0000 
150.0000 

0.2822 
86.0000 
165.0000 

0.2306 
85.0000 
180.0000 

0.2715 
100.0000 
195.0000 

0.2674 
107.0000 
210.0000 

0.2280 
106.0000 
225.0000 

6 
ratio 

elements 
L 

00 

55.0000 
162.0000 

0.1802 
73.0000 
180.0000 

0.1748 
79.0000 
198.0000 

oo 
73.0000 
216.0000 

0.1667 
91.0000 
234.0000 

0.1635 
97.0000 
252.0000 

oo 
91.0000 
270.0000 

7 
ratio 

elements 
L 

0.1985 
82.0000 
189.0000 

0.2527 
103.0000 
210.0000 

0.2424 
112.0000 
231.0000 

0.1946 
109.0000 
252.0000 

0.2354 
130.0000 
273.0000 

0.1930 
127.0000 
294.0000 

0.1924 
136.0000 
315.0000 

8 
ratio 

elements 
L 

0.1877 
91.0000 
216.0000 

0.2273 
113.0000 
240.0000 

0.2348 
125.0000 
264.0000 

0.1840 
121.0000 
288.0000 

0.2223 
145.0000 
312.0000 

0.2150 
153.0000 
336.0000 

0.1818 
151.0000 
360.0000 

9 
ratio 

elements 
L 

oo 
82.0000 
243.0000 

0.1730 
109.0000 
270.0000 

0.1678 
118.0000 
297.0000 

oo 
109.0000 
324.0000 

0.1600 
136.0000 
351.0000 

0.1569 
145.0000 
378.0000 

00 

136.0000 
405.0000 

10 
ratio 

elements 
L 

0.1730 
109.0000 
270.0000 

0.1716 
121.0000 
300.0000 

0.2138 
151.0000 
330.0000 

0.1696 
145.0000 
360.0000 

0.2099 
175.0000 
390.0000 

0.1986 
185.0000 
420.0000 

0.1676 
181.0000 
450.0000 

11 
ratio 

elements 
L 

0.1678 
118.0000 
297.0000 

0.2138 
151.0000 
330.0000 

0.1654 
144.0000 
363.0000 

0.1645 
157.0000 
396.0000 

0.2003 
190.0000 
429.0000 

0.2008 
203.0000 
462.0000 

0.1626 
196.0000 
495.0000 

12 
ratio 

elements 
L 

oo 
109.0000 
324.0000 

0.1696 
145.0000 
360.0000 

0.1645 
157.0000 
396.0000 

oo 
145.0000 
432.0000 

0.1568 
181.0000 
468.0000 

0.1538 
193.0000 
504.0000 

oo 
181.0000 
540.0000 

13 
ratio 

elements 
L 

0.1600 
136.0000 
351.0000 

0.2099 
175.0000 
390.0000 

0.2003 
190.0000 
429.0000 

0.1568 
181.0000 
468.0000 

0.1561 
196.0000 
507.0000 

0.1886 
235.0000 
546.0000 

0.1549 
226.0000 
585.0000 

14 
ratio 

elements 
L 

0.1569 
145.0000 
378.0000 

0.1986 
185.0000 
420.0000 

0.2008 
203.0000 
462.0000 

0.1538 
193.0000 
504.0000 

0.1886 
235.0000 
546.0000 

0.1525 
225.0000 
588.0000 

0.1520 
241.0000 
630.0000 

15 
ratio 

elements 
L 

oo 
136.0000 
405.0000 

0.1676 
181.0000 
450.0000 

0.1626 
196.0000 
495.0000 

oo 
181.0000 
540.0000 

0.1549 
226.0000 
585.0000 

0.1520 
241.0000 
630.0000 

00 

226.0000 
675.0000 

16 
ratio 

elements 
L 

0.1521 
163.0000 
432.0000 

0.1960 
209.0000 
480.0000 

0.1924 
229.0000 
528.0000 

0.1490 
217.0000 
576.0000 

0.1869 
265.0000 
624.0000 

0.1779 
281.0000 
672.0000 

0.1473 
271.0000 
720.0000 
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