
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A WHOLESALE LEVEL CONSUMABLE ITEM

INVENTORY MODEL FOR NON-STATIONARY
DEMAND PATTERNS

by

Glenn C. Robillard

March 1994

Thesis Advisors: Thomas P. Moore
Alan W. McMasters

Approved for public release; distribution is unlimited.

19950322

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE A WHOLESALE LEVEL CONSUMABLE
ITEM INVENTORY MODEL FOR NON-STATIONARY
DEMAND PATTERNS

6. AUTHOR(S) Glenn C. Robillard

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 wotds)
The U.S. military presently manages about 88 billion dollars in spare and repair parts, consumables,
and other support items. Department of Defense (DOD) inventory models which help wholesale item
managers make inventory decisions concerning these items are based on the assumption that mean
demand remains constant over time. In DOD this assumption is rarely met. During periods of
declining demand, such as that associated with force reduction or equipment retirement, the inventory
models usually keep stock levels too high, generating excess material. Recently, the amount of excess
in DOD was estimated to be as high as 40 billion dollars. On the other extreme, during periods of
increasing demand, the models generally provide too little stock, resulting in poor weapons system
support. The purpose of this research was to develop an inventory model which does not rely on the
assumption that mean demand is stationary. Use of the model would be appropriate when a known or
predictable increase or decrease in mean demand is forecasted. Through simulation the model's
performance was evaluated and compared with that of the Navy's Uniform Inventory Control Program
(UICP) model. The results indicate that the proposed model significantly outperforms the existing
model when mean demand is non-stationary. Additionally, the results indicate that the proposed
model's performance is equal to or better than the existing Navy model under many stationary mean
demand scenarios.

14. SUBJECT TERMS Inventory Management, Inventory Models, Non-Stationary
Demand, Declining Demand, Inventory Simulation, Consumable Items

15. NUMBER OF
PAGES 273

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

A Wholesale Level Consumable Item Inventory Model
for Non-Stationary Demand Patterns

by

Author:

Approved by:

Glenn C. Robillard

Lieutenant, Supply Corps, United States Navy

B.S., University of Massachusetts, 1978

M.Ed., University of Massachusetts, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

March 1994

e..^»&Us^Ji
Glenn C. Robillard

\9%ryw^fi. fYkü2JZ_
Thomas P. Moore, Thesis Advisor

£U^ UJ. lAt(M*I&Z4
Alan W. McMasters, Thesis Co-Advisor

Gordon H^Bradleyi^cond Reader

Peter Purdue, Chairman

Department of Operations Research

li

ABSTRACT

The U.S. military presently manages about 88 billion dollars in spare and repair

parts, consumables, and other support items. Department of Defense (DOD)

inventory models which help wholesale item managers make inventory decisions

concerning these items are based on the assumption that mean demand remains

constant over time. In DOD this assumption is rarely met. During periods of

declining demand, such as that associated with force reduction or equipment

retirement, the inventory models usually keep stock levels too high, generating excess

material. Recently, the amount of excess in DOD was estimated to be as high as 40

billion dollars. On the other extreme, during periods of increasing demand, the

models generally provide too little stock, resulting in poor weapons system support.

The purpose of this research was to develop an inventory model which does not rely

on the assumption that mean demand is stationary. Use of the model would be

appropriate when a known or predictable increase or decrease in mean demand is

forecasted. Through simulation the model's performance was evaluated and compared

with that of the Navy's Uniform Inventory Control Program (UICP) model. The

results indicate that the proposed model significantly outperforms the existing model

when mean demand is non-stationary. Additionally, the results indicate that the

proposed model's performance is equal to or better than the existing Navy model

under many stationary mean demand scenarios.

in

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been

exercised for all cases of interest. While every effort has been made, within the time

available, to ensure that the programs are free of computational and logic errors, they cannot

be considered validated. Any application of these programs without additional verification is

at the risk of the user.

Accesion For

NTIS CRA&I m
DTIC TAB D
Unannounced D
Justification .

By
Distribution /

Availability Codes

Dist

m
Avail and/or

Special

IV

TABLE OF CONTENTS

I. INTRODUCTION l

A. OVERVIEW J

B. OBJECTIVES AND SCOPE OF THE RESEARCH 2

C. LITERATURE REVIEW 4

D. ORGANIZATION OF THE THESIS 9

H. THE UICP INVENTORY MODEL 10

A. INTRODUCTION 10

B. BASIC ASSUMPTIONS AND DEFINITIONS H

C. INVENTORY MODEL 13

D. FORECASTING QUARTERLY DEMAND IN UICP 16

UI. THE MODIFIED SILVER MODEL 18

A. INTRODUCTION 18

B. ASSUMPTIONS AND DEFINITIONS 19

C. MODEL DEVELOPMENT 22

1. Determination of the Reorder Point 22

2. Determination of the Order Interval (T) 23

3. Determination of the Order Quantity 24

D. PARAMETERS AND IMPLEMENTATION 27

1. Standard Deviation of Forecast Errors 27

2. Estimating Demand Variability 33

3. Normality Assumption for Forecast Errors 34.

4. Implementing Periodic Reviews 37

5. Estimating the Order Interval Length (T) 41

IV. SIMULATION 43

A. INTRODUCTION 43

B. ASSUMPTIONS 44

C. SIMULATION STRUCTURE AND DESIGN 45

1. Demand Observations 47

2. Forecasting 50

3. Levels Setting 51

4. Supply Demand Reviews 52

D. INITIALIZATION AND TERMINATION 55

1. Number of Replications 55

2. Seed Selection 57

3. System Parameters 59

4. Initial Conditions 60

5. Terminating Conditions 62

VI

V. RESEARCH METHODOLOGY AND RESULTS 64

A. OVERVIEW 64

B. EXPERIMENTAL FACTORS 65

1. Demand Profile 65

2. Demand and Lead Time Distribution 66

3. Unit Price 67

4. Other Parameters 67

a. Risk 67

b. Buffer 68

c. Maximum Order Cycle Length During Decline 71

C. SIMULATION RESULTS 72

1. Stationary Demand 72

2. Cyclic Demand 78

3. Declining Demand 81

4. Increasing Demand 86

D. DECISION ANALYSIS 90

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 98

A. SUMMARY 98

B. CONCLUSIONS 99

C. RECOMMENDATIONS 100

Vll

APPENDIX A. SIMULATION CODE 102

APPENDIX B. WELCH GRAPHS 212

APPENDK C. SCENARIO LISTING 214

APPENDK D. DEMAND PROFILE GRAPHS 218

APPENDDC E. EXPERIMENTAL RESULTS 221

APPENDDC F. STATIONARY DEMAND GRAPHS 250

APPENDIX G. CYCLIC DEMAND GRAPHS 251

APPENDK H. DECLINING DEMAND (STEEP TREND) GRAPHS 252

APPENDK I. DECLINING DEMAND (SLOW TREND) GRAPHS 253

APPENDIX J. INCREASING DEMAND (STEEP TREND) GRAPHS 254

APPENDK K. INCREASING DEMAND (SLOW TREND) GRAPHS 255

vm

LIST OF REFERENCES 256

INITIAL DISTRIBUTION LIST 259

IX

EXECUTIVE SUMMARY

In the past decade the Department of Defense's (DOD) inventory management of

secondary items has come under intense Congressional scrutiny. Secondary items are

consumable and repairable spare and repair parts and other support items that are

needed to maintain the readiness of the military forces' weapon systems and support

military personnel. The total value of this material was $88.1 billion in fiscal year

1991. The vast majority ($73 billion) of these items were stocked as demand-based

items.

Inventory models which help DOD wholesale item managers make inventory

decisions concerning these items are based on the assumption that mean demand

remains constant over time. Since, in reality, mean values for demand change over

time, the existing models cannot directly compensate for these changes. During

periods of declining demand, such as that associated with force reduction or equipment

retirement, the inventory models usually keep stock levels too high, generating excess

material. Recently, the amount of excess in DOD was estimated to be as high as $40

billion. On the other extreme, during periods of increasing demand, the models

generally provide too little stock, resulting in exceptionally poor levels of customer

service.

In this study an alternative replenishment strategy is proposed which does not

rely on the assumption that mean demand is stationary. The basis for the research is a

model developed by E.A. Silver for probabilistic demand with a time varying mean.

Silver's model is a three-stage procedure, determining when to order, the number of

periods to cover, and the order quantity. Although the model assumes demand is

probabilistic, the determination of the length of the order cycle is based upon the

deterministic Silver-Meal heuristic, selecting the order quantity so that total relevant

costs are minimized over the period that the replenishment quantity will support.

Silver's model is extended and modified as necessary to work within existing DOD

inventory information systems, to comply with DOD mandated constraints, and to

handle the uncertainty of a non-deterministic replenishment lead time. The resulting

model is called the modified Silver model. Since the model requires the ability to

forecast over a specified time horizon, use of the model would be appropriate when a

known increase or decrease in mean demand is forecasted.

Evaluation of the modified Silver model is based on a Monte Carlo simulation.

The baseline measurement is the performance of the current Navy Uniform Inventory

Control Program (UICP) model for consumable items under the same simulated

demand scenarios. Since the Navy model is based on the general DOD model, the

results should have direct applicability to other DOD components' (DLA, Army, Air

Force) models. Both simulations approximate the inventory management of a single

consumable item for as many as 120 quarters. The simulation experiments include a

variety of run characteristics, system parameter settings, and generated demand

profiles.

Testing of the modified Silver model using a stationary mean demand forecast

demonstrates comparable or slightly improved performance over the UICP model.

This supports the assertion that the models are nearly equivalent under the assumption

XI

that mean demand is stationary. Testing of the models when mean demand is varying

and estimates of the varying mean are included in the forecast clearly demonstrates

that the modified Silver model outperforms the existing UICP model. In declining

demand scenarios, the modified Silver model significantly reduces both excess

inventory at the end of the simulation interval and the total cost over the simulation

interval, with no reduction in average customer wait time. In increasing demand

scenarios, the model significantly reduces average customer wait time at an overall

lower total cost.

Xll

I. INTRODUCTION

A. OVERVIEW

In the past decade the Department of Defense's (DOD) inventory management of

secondary items has come under intense Congressional scrutiny. Secondary items are

consumable and repairable spare and repair parts and other support items that are

needed to maintain the readiness of the military forces' weapon systems and support

military personnel. The total value of this material was $88.1 billion in fiscal year

1991. The vast majority ($73 billion) of these items were stocked as demand-based

items [Ref. 1]. According to one General Accounting Office (GAO) report, DOD has

"wasted billions of dollars on excess supplies, burdened itself with the need to

maintain them, and failed to acquire the tools or expertise to manage them effectively"

[Ref. 2]. The same report estimated DOD's excess inventory at about $40 billion.

Within DOD, inventory control points (ICP's) have the primary responsibility

for the wholesale management of secondary items. The DOD model used for demand-

based requirements determination is an (s,S) inventory model. In determining

requirements three factors are considered - safety level, lead time requirements, and

the economic order quantity (EOQ). Safety levels and lead time requirements are

combined to determine the reorder level (s). If the inventory position (on-hand plus

on-order minus back-ordered stock) falls below the reorder level, then a replenishment

is made to bring the inventory position up to the order-up-to-level (S). The order-up-

1

to-level is primarily a function of the economic order quantity. A fundamental

assumption of the reorder point and economic order quantity formulas used by DOD is

that the demand rate is stationary over time. Unfortunately in most environments,

including DOD, this assumption is rarely met. Continued use of this assumption has

been linked by GAO to the buildup of excess inventories in the military supply system1

[Ref. 3]. GAO's findings include the recommendation for DOD to adopt a

replenishment strategy that can be used when the mean demand rate is non-stationary

over time. With the current and planned reduction in the size of the Department of

Defense, and the ensuing decline in secondary item demand, the need for such a

model has never been more pressing.

B. OBJECTIVES AND SCOPE OF THE RESEARCH

The primary objective of this research is to develop and test a model based on

economic order quantity principles for probabilistic time-varying mean demand with

stochastic lead times. The model will be used to determine both a reorder point and a

reorder quantity. In designing the model, the following elements are considered

crucial:

- The model should significantly reduce excess inventories yet still maintain
adequate levels of customer service.

'For a discussion of excess inventory in the Navy supply system, see I.illi and Husson's thesis
[Ref.4]. For a discussion of other contributing causes see Perry's study [Ref. 5] or the GAO report on the
shortcomings in requirements determination processes in the DOD [Ref. 6].

- The model should be designed to fit into existing inventory information
systems, such as the Navy's Uniform Automated Data Processing System for
Inventory Control Points (UICP), with minimal changes required in software
and no changes in hardware.

- The model should be tested over a wide range of scenarios, representing
increasing and declining demand, as well as a full range of demand
variability.

- The model should be simple to understand.

- The model should meet all DOD mandated constraints.

The basis for the research is a model developed by E.A. Silver for probabilistic

demand with a time varying mean [Ref. 7]. The model is extended and modified as

necessary to meet the above requirements. The resulting model is called the

"modified Silver model."

Evaluation of the new model is based on a Monte Carlo simulation. The

baseline measurement is the performance of the current Navy UICP model for

consumable items under the same simulated demand scenarios. Since the Navy model

is based on the general DOD model, the results should have direct applicability to

other DOD component (DLA, Army, Air Force) models.

The model has particular application to items experiencing a known or

predictable decline or increase in mean demand, such as with system retirement,

planned reductions or increases in component population, or engineering design

changes of the weapons system component that contains the item. Since all changes

in mean demand are not predictable, the effects of using the model when mean

demand is stationary is also studied.

C. LITERATURE REVIEW

There has been a considerable amount of development of inventory models when

mean demand is assumed to be stationary. There has also been a considerable amount

of attention paid to the deterministic version of the non-stationary demand problem.

However, the number of papers devoted to probabilistic, non-stationary demand is

very limited. Since we are concerned exclusively with non-stationary demand, several

of the more important papers for both the deterministic and the probabilistic case for

non-stationary demand are discussed in the following paragraphs.

The most often discussed procedure for the time-varying, deterministic case is

the Wagner-Whitin (W-W) dynamic lot-sizing algorithm [Ref. 8]. Although the

procedure provides a true optimal solution using a dynamic programming approach, it

has often been ignored for practical use because of the amount of computational effort

required and the possible need for a well defined ending point for the demand pattern

[Ref. 9: p. 231]. Consequently many heuristics have been developed which are both

easier to implement and computationally less demanding.

Of the several heuristic approaches, the Silver-Meal (S-M) heuristic [Ref. 9] has

received a significant amount of review. The heuristic is a simple modification of the

basic economic order quantity model for the discrete case. The strategy of the

heuristic is to select the order quantity so that the total relevant costs (ordering and

holding) are minimized for the time the replenishment quantity will last. In

performance tests of the S-M heuristic, the W-W algorithm, and the EOQ, the average

cost penalty for using the heuristic over the algorithm is less than 1%. Furthermore,

whenever the W-W algorithm significantly outperformed EOQ, so did the S-M

heuristic [Ref. 9: p. 237], Blackburn and Millen [Ref. 10] also showed that in a

rolling horizon implementation where a firm has limited information about the future,

the S-M heuristic is superior to the W-W algorithm in terms of cost effectiveness.

Ritchie and Tsado [Ref. 11] compared the S-M heuristic, among others, to a

marginal cost approach. Using the marginal cost approach, the economic order

quantity is determined by increasing the lot size as long as the marginal savings in

ordering costs are greater than the marginal cost increase in inventory holding costs.

In the case of a life-cycle demand pattern, tests indicated that the marginal cost

approach performed better than the S-M heuristic. The life cycle demand patterns

included a period of increasing demand followed by a stationary period followed by a

decreasing period. All comparisons were made to baseline W-W optimal values.

Cline, Foote and Schlegel [Ref. 12] compared the W-W algorithm, S-M

heuristic, along with the EOQ and several other less common heuristics, for a single-

stage lot-size production problem with probabilistic demand. They concluded that the

W-W algorithm clearly worked best if minimizing shortages is the criterion of choice.

Otherwise, the S-M heuristic or EOQ were among the equally good choices.

Several other papers in the literature deal with specific patterns of time varying

deterministic demand. Donaldson [Ref. 13] determines an optimal strategy for linear

increasing demand. Ritchie and Tsado [Ref. 14] show that using the EOQ in cases of

linear increasing demand results in only a small cost penalty when compared with

Donaldson's optimal value. In either case, because of their limited application these

works provide little insight into the general case of problems associated with this

study.

As indicated earlier, the amount of research dealing with non-stationary

probabilistic demand is much more limited. The inclusion of uncertainty in demand

alone can significantly complicate the problem from a conceptual viewpoint. Having

the additional uncertainty in replenishment lead time, as well as allowing for a time

varying mean demand only compounds this already complex problem.

In a 1978 paper, Silver [Ref. 7] provides a relatively simple approach to the

probabilistic lot-sizing problem, using in part, a deterministic technique to determine

the length of an order cycle. His model forms the basis of this research. Silver's

model is a three stage approach - deciding when to order, the number of periods the

order should cover, and the order quantity. The model assumes that replenishment

lead time is fixed. Silver's model is discussed in great detail in Chapter in of this

thesis.

Askin [Ref. 15] develops a similar, although somewhat more complex

procedure, where the probabilistic nature of demand is included in determining the

length of the order cycle. Using his approach, the length of the order cycle is

determined by finding the cycle length T that minimizes expected cost over the

forecast horizon. Again, replenishment lead time is assumed to be fixed. One

important assumption of his basic model is that once an order is placed for T time

periods, another order is not placed for another T periods. Askin offers a

modification to the model for an every-period-review approach but the model becomes

significantly more complex. In either case the probability distribution of demand must

be known.

More recently a near-myopic heuristic is provided by Bollapragda and Morton

[Ref. 16]. Myopic policies order as if left over inventory from the current order

could be salvaged at full value, allowing the problem to be solved easily without

extensive knowledge of the future or dynamic programming. In this case "extra" units

ordered during one replenishment cycle, if not used, could simply be applied to offset

the next period requirements. This could lead to serious problems in the case of

declining demand where there may be insufficient requirements to be offset. In such

cases they hypothesize the heuristic is near myopic. Their heuristic involves first

solving the optimal problem for a series of stationary demand problems and tabulating

the (s,S) results. The non-stationary problem is then approximated by the stationary

problem. This is done by averaging the demand parameters over an estimate of the

replenishment time and reading the corresponding (s,S) values from the stationary

tables. Bollapragda and Morton compare their "newsboy" heuristic and Asian's

procedure to a dynamic programming solution. Overall, the heuristic averaged 1.7%

error as compared to Asian's procedure, which averaged 2.0% error. The results

were presented for relatively low varying demand only (c//i=0.1 and 0.3).

Another approach to a trended economic order quantity is currently under

investigation for the Defense Logistics Agency (DLA) by analyst at the Defense

Electronic Supply Center [Ref. 17]. Although published results are unavailable,

research as been directed towards increasing or declining demand with either

exponential or linear trends. Based on the limited information available, a variable

safety level model is being developed where mean demand is assumed to follow one of

these preset curves. Curve parameters are obtained from a regression model. The

model then solves iteratively for a deterministic EOQ and a variable safety level.

Lilli and Husson [Ref. 4] specifically addressed the issue of declining demand

and the generation of excess assets. Using simulation, they first show that improved

forecasting alone will not completely solve the problem of excess assets following a

declining demand period. To eliminate excess inventories, they develop a model

which reduces both the order quantity and reorder level proportionally to the

population decline over the length of the declining cycle. The technique was

successful in reducing excess inventory, however, the improvement comes at the

expense of customer service.

Many of the theoretical papers discussed in the previous paragraphs provide

insight in dealing with changes in demand. The most important insight is the

complexity of the problem when demand is probabilistic. Silver's work appears to

provide the most straightforward and general application. Asian's improves on

Silver's model by including the probabilistic nature of demand in the determination the

length of the order cycle. The model is more complex though and requires explicit

knowledge of the demand distribution. Bollapragda and Morton provide a new

approach, although it also requires knowing the probability distribution of demand.

With the large scale inventory maintained by DOD, this requirement creates serious

drawbacks for either of the latter models.

D. ORGANIZATION OF THE THESIS

This thesis consist of six chapters. Chapter II provides an overview of the

current U1CP inventory model for consumable items. Chapter III provides a detailed

description of the modified Silver model. The first few sections are devoted to the

introduction of notation and model assumptions. The remainder of the chapter

describes the basic Silver model, extensions and modifications to the model, and the

estimation of model parameters. Chapter IV provides an overview of the simulation

software, followed by a detailed description of the simulation structure and

implementation assumptions. Chapter V provides the experimental design used to

compare model performance and presents the results of the simulation experiments.

Chapter VI presents the summary, conclusions, and recommendations of this research.

n. THE UICP INVENTORY MODEL

A. INTRODUCTION

The principal policy for the Department of Defense (DOD) concerning

procurement cycles and safety levels of supply for secondary consumable items is

provided in DOD Instruction 4140.39 [Ref. 18]. The objective of the policy

guidelines stated in this instruction is:

To minimize the total of variable order and holding costs subject to a constraint on
time weight-weighted, essentiality-weighted requisitions short.

The mathematical model specified in this instruction parallels the lot size reorder point

model for the backorders case as described by Hadley and Whitin [Ref. 19: p. 181-

195]. The model assumes demand is stochastic, and that the mean rate of demand

remains constant over time.

OPNAV Instruction 4440.23 [Ref. 20] further specifies policy within the Navy.

Partial documentation for the Navy specific inventory model, including computational

methods and constraints, can be found in NAVSUP Publication 553 [Ref. 21]. The

current system design and the specifications for the computer program that implements

the model are described in Functional Description (FD) PD-82 published by the

SPCC, Code 046 [Ref. 22]. The purpose of this chapter is not to reiterate these

documents, but simply to provide the reader with enough detail to have a general

understanding of the UICP consumable item inventory model.

10

B. BASIC ASSUMPTIONS AND DEFINITIONS

In order to understand the inventory model currently employed by SPCC for

consumable items, some basic assumptions and definitions are necessary.

Replenishment decisions are based on the decision variables, reorder quantity R and

order quantity Q, and inventory position (IP) which is defined to be the quantity on

hand plus on order minus the quantity backordered. With the continuous-review (Q,R)

policy used by the Navy, when the IP reaches or fells below the reorder quantity R,

the order quantity Q plus IP-R units are ordered for stock replenishment.

Each time an order is placed, certain setup or administrative ordering costs are

incurred (denoted here by A). DOD Instruction 4140.39 provides detailed guidance

about the types of costs associated with ordering an item for inventory. These costs

are divided into two categories, fixed and variable. Only variable costs, those that

will vary as a function of the number of times an order is placed, are to be included

in the determination of A. SPCC assigns administrative ordering cost based on the

type of item, procurement method, item mark code, and the dollar value of the order.

The item mark code is a categorization code based on forecasted quarterly demand and

unit price.

When material is physically held in stock certain variable holding costs are

incurred. The variable holding cost rate, denoted here by I, includes the costs

associated with capital, obsolescence, and storage. This rate is often expressed as a

fraction or percentage of unit cost per year; i.e., the cost to hold one dollar's worth of

material in inventory for one year. For consumable items, SPCC currently uses 0.23

11

for the value of I, which consists of 0.10 for capital (time preference), 0.12 for

obsolescence2, and 0.01 for storage costs.

Shortages occur when there is insufficient stock on-hand to fill a requisition,

resulting in a "backordered" requisition. Associated with each shortage are costs,

which may be time-weighted or independent of time. Time-weighted costs in the

military system are those costs which increase with the length of time the shortage

lasts. Time independent costs are incurred just once at the start of the shortage. An

example of such a cost is notifying the customer that the part is not in stock. In the

model used by SPCC the shortage cost is computed using the time-weighted method,

thus the units on the shortage cost rate (X) are dollars per requisition year short; i.e.,

X is the cost of being short one requisition for one year. In reality, X is an implied

shortage cost based on a specified service level and the available budget. The true

cost of a shortage is unknown.

Essentiality (E) is the relative importance of a given item in an inventory to the

military readiness of the weapon system of which it is a component. At SPCC this

value is assumed to have a uniform value of 0.5 for all items and thus can be ignored.

The model therefore uses a shortage cost to reflect, in some sense, a measurement of

an item's military essentiality.

2 This value is actually composed of 0.10 for obsolescence and 0.02 for pilferage and inventory
adjustments.

12

C. INVENTORY MODEL

The constrained optimization problem of minimizing total ordering and variable

holding costs subject to a constraint on time-weighted, essentiality-weighted

requisitions short can be written in a general, unconstrained form (the Lagrangian

function) as:

Find non-negative Q and R which minimize

Q 2 ü

where:

Q is the reorder quantity;
R is the reorder point;
A is the administrative ordering cost;
I is the holding cost rate;
X is the shortage cost;
E is the item essentiality;
D is mean demand in units per quarter;
C is unit cost;
fi is mean lead time demand;
B(Q,R) is the expected number of backorders (a function of Q and R);
S is the expected number of units per requisition.

The first term in this "cost equation" represents the average annual ordering

costs for the item. The second term represents the average annual holding costs

under long run steady state conditions. The final term in the equation represents the

essentiality-weighted average annual number of requisition-years of shortages

multiplied by the shortage cost rate X. The shortage cost rate (X) is, in reality, a

Lagrange multiplier. Because all real world factors cannot be integrated easily into

13

the total variable cost equation, the Navy imposes further constraints on the solutions

to this equation.

To determine an initial value for the reorder point R, the Navy model first

makes use of the optimality condition obtained by taking the partial derivative of

TVC(Q,R) with respect to R and setting the result equal to zero. Unfortunately, the

resulting expression contains an implicit function of Q and R, making it difficult to

solve the optimality condition explicitly for R. Instead, SPCC uses an approximation

technique to determine the value of R. The resulting optimality condition is simplified

to finding the smallest R such that:

l-F(R) = SIC

SIC+XE

where F(R) is the cumulative distribution function describing the probability that the

random variable representing lead time demand will be less than or equal to R. The

right hand expression is defined to be optimal risk. Risk is defined as the probability

of being out of stock during a procurement lead time (L). Substituting average

requisition frequency (S=D/W) into the above expression yields:

where P represents the unconstrained stock-out risk at (unconstrained) optimality.

This is the initial risk equation used at SPCC. Prior to determining the initial value of

R, the right hand side of the above equation is constrained by a maximum and

minimum risk value. Although these limits vary, the majority of consumable items at

14

SPCC are constrained between a minimum risk of 0.10 and a maximum risk of 0.35.

The so-called basic reorder level R* is the solution to the constrained risk equation.

The optimality condition for Q is determined by taking the partial derivative of

TVC(Q,R) with respect to Q and setting the result equal to zero. However, the

resulting expression is difficult to solve explicitly for Q. In practice SPCC first

determines Q using the deterministic economic order quantity equation:

where Q* is the called the unconstrained reorder quantity. SPCC then applies a series

of constraints to Q* resulting in an initial constrained or basic reorder quantity Qj.

These constraints ensure that the order quantity is at least 1, that a sufficient quantity

is ordered to ensure that the total procurement workload does not exceed the workload

capacity of the purchasing department, and that the order quantity be no greater than

six quarters' worth of demand. The latter constraint is a DOD mandated restriction.

Finally, additional constraints are applied to the basic reorder point R* and the
A

basic reorder quantity Qj to obtain the final constrained reorder point R and reorder
A

quantity Q. The first of these final constraints ensures that a minimum reorder level is

met, normally set to 0 or 1. Other constraints placed on the reorder level and reorder

15

quantity ensure that the safety levels are such that on-hand assets do not exceed the

shelf life quantity3 of the item.

D. FORECASTING QUARTERLY DEMAND IN UICP

Although NAVSUP Publication 553 [Ref. 21] provides a detailed description of

forecasting in UICP, recent changes have rendered this document inaccurate in this

regard. The recent changes in the demand forecasting process include the selection of

various parameters used and the trend detection technique employed.

The UICP system generally uses single exponential smoothing to forecast mean

quarterly demand and the mean absolute deviation of demand (MAD). At SPCC the

smoothing constant for both forecasts is currently set at 0.1. One exception to this

rule involves very low demand items where a power rule is used to forecast MAD.

Other exceptions occur when a significant change in mean demand is identified based

on the last quarterly observation or when recent observations indicate that demand is

trending up or down.

Prior to actually computing the next quarterly demand forecast, the most recent

quarterly demand observation is examined to determine if it falls within certain limits.

This process, called "step" filtering, is used to determine if there has been a

significant change in the mean, one that warrants discarding a majority of the

historical demand data and computing the forecast using only recent data. If the

The shelf life of an item is the life span of an item from the date of manufacture or inspection until
the next inspection date for continued usefulness or disposal. The shelf life quantify is the expected
quantity of demand to occur during the shelf life of an item. Shelf life items include batteries, chemicals,
gaskets, etc.

16

process is "out-of-filter;" i.e., the last two observations have exceeded upper or lower

control limits on the same side, the forecast is computed using only recent data. At

SPCC a four-quarter average is used to forecast demand and a power rule based on

this demand forecast [Ref. 23] is used to forecast MAD. If the observation is the

first observation to exceed the limits, then the observation is ignored and the previous

demand and MAD values are used. If the process is "in-filter" then the most recent

demand observation is subjected to a trend detection test.

SPCC has implemented a Kendall trend detection test developed by Boyarski and

Bissinger [Ref. 24]. This process uses a statistical test involving a "window" that

contains recent observed data to determine the likelihood that demand is trending. The

size of the observation "window" varies based on the mean and variability of demand.

The statistical test employed varies based on window size and the variability of

demand. If trending is detected then the next quarter's forecast is computed using

only the recent data. In this case SPCC forecasts demand using a four-quarter

average, while MAD is forecasted using a power rule. The following quarter the

forecasting process returns to single exponential smoothing unless another step or trend

is detected.

17

m. THE MODIFIED SILVER MODEL

A. INTRODUCTION

The modified Silver model is an extension of an inventory control model

described by Edward Silver [Ref. 7] for probabilistic demand with a mean that varies

significantly over time. A limitation of the Silver model which makes direct

implementation in DOD systems impractical is the assumption that procurement lead

time is fixed. The modified Silver model described extends Silver's model to

accommodate variability in procurement lead time.4 This variability is included in the

determination of the reorder point.

Because DOD constrains the maximum order quantity to be no more than six

quarters' worth of demand, the maximum order interval length is constrained in the

modified Silver model to six quarters. The Silver-Meal heuristic used in Silver's

model was changed to incorporate this constraint in the modified Silver model.

The remainder of this chapter describes the modified Silver model in detail.

Section B provides underlying assumptions and defines notation. Section C is devoted

to a discussion of the model. Section D provides some additional remarks concerning

the estimation of parameters and model implementation.

4The issue of fixed lead times is as much a contracting issue as a model consideration. In many
instances, procurement lead times can be considered nearly fixed. This is especially true when there are
few vendors, special purchase agreements exist, or firm lead times are specified in the contract. Inclusion
of lead time variation in the modified Silver model parallels, in many ways, its inclusion in the UICP
model.

18

B. ASSUMPTIONS AND DEFINITIONS

The modified Silver model most closely resembles a periodic review (R,s,S)

model where inventory position is checked every R time units.5 If the inventory

position (on hand + on order - backorders) is above the reorder point s, then no order

is placed. If the inventory position is at or below s, then an order is placed to bring

inventory position to level S [Ref. 9: p. 258]. However, in the classical model mean

demand is assumed to be stationary, enabling the decision variables s and S to be

computed and set for reasonably long periods of time (i.e., as long as no shift in mean

demand is detected). For the modified Silver model mean demand is assumed to vary

significantly over time, thus appropriate values of s and S would also be expected to

change, perhaps with each review cycle. In a periodic review system, the selection of

the value of the decision variable R, the time between reviews, generally corresponds

to some logical time interval; e.g., week or month. In our case the decision variable

R will be fixed at once a week, implying a policy of having a fixed time period

between supply demand reviews.6

In addition to the key assumption that mean demand varies over time, the

modified Silver model includes the following underlying assumptions:

5The reader is cautioned not to confuse the use of R in this section (time between reviews) and its use
in Chapter II (reorder point for the UICP model).

^ntil recently, SPCC conducted supply demand reviews on a bi-weekly basis, although reviews were
sometimes run less frequently to postpone the expenditure of funds. As of 01 October 1994, SPCC
conducts supply demand reviews on a monthly basis. This policy change was made to increase the time
allowed for administrative reorder review. The selection of weekly reviews for the simulation
implementation is to allow for the least amount of deviation of the UICP model from its continuous review
assumption while still maintaining a periodic review system.

19

As described above, calendar time is divided into fixed time periods of the
same length. Reviews will be conducted at the end of each period and
orders will arrive at the start of a period.

The mean and standard deviation of procurement lead time are known or
can be reasonably estimated.

At any review instance, demand forecasts exist for the next N time
periods, where N denotes the length of the forecast horizon.

The selection of the value of s does not depend on the value of S to be
used.

Demand forecast errors over intervals of length L+1, where L is mean
lead time, are Normally distributed with no bias (the'significance of an
interval of length L+1 will become apparent later in the discussion).

An estimate of the standard deviation of the demand forecast error can be
made for periods of length L+1.

Holding costs are charged only on inventory carried from one period to the
next.

Safety stock will be determined based on a desired service level specified
by a probability of no stockout during a replenishment cycle. Safety stock
is the average level of net stock on hand just before a replenishment
arrives. Safety stock provides a buffer or cushion against larger-than-
expected demand during the replenishment lead time.

Receipts of outstanding orders do not cross in time.

The following notation is used in the development of the model:

A - administrative order cost (dollars per order).
d; - forecasted demand for period i (units per period).
h - holding costs (dollars per unit per period).
IP - inventory position at the time of review (to).
k, - actual safety factor based on the current inventory position if an order is

not placed,
k, - required safety factor at the current review to attain the desired level of

service for L+1 time periods.
L - mean procurement lead time (in periods).
Q - the size of the replenishment quantity.

20

p
Si

T

to
r
XI
X2
X3

Oxi

0X2

°X3

- desired probability of no stockout per replenishment cycle.
- reorder point at time of review i.
- integer number of periods that the current order is expected to cover.
- the time of the current review (time 0).
- random variable representing procurement lead time.
- forecasted demand over the time interval to to L+1.
- forecasted demand over the time interval t„ to T-l.
- forecasted demand over the time interval T-l to L+T.
- standard deviation of procurement lead time
- standard deviation of forecast error over the interval to to L+1.
- standard deviation of forecast error over the interval to to T-l.
- standard deviation of forecast error over the interval T-l to time L+T.

Figure 3.1 provides a graphical representation of the various time intervals involved in

the modified Silver model. Note, however, that XI, X2, and X3 refer not to the

length of the associated interval but rather to the amount of forecasted demand over

the associated interval.

Order Interval = T Periods

t,=o T-l L L+l

V V

XI

X2

_J

X3

L + T-l L + T

FIGURE 3.1. Time Sequence, Forecast Intervals, and Forecasted Demands.

21

C. MODEL DEVELOPMENT

1. Determination of the Reorder Point

In deciding whether to place an order at the current review (to) it must be

determined if the inventory position (IP) is such that the specified service level will be

met for the next L+1 periods. That is, if an order is not placed at time to, the current

inventory position must provide adequate protection for a time interval of length L+1,

which would be the expected time of receipt of an order placed at the time of the next

review (to+1). Therefore, in determining the reorder point we are concerned about

the expected demand XL

Since forecast errors are assumed to be Normally distributed, the actual

safety factor [Ref. 25: p. 365] for an interval of length L+l is

k _ IP-X1 (3.1)
a ö '

where IP is the inventory position at time to. The required safety factor (i.e, the

safety factor necessary to provide the desired service level) depends only on the

probability of no stock-out, P, specified by the inventory manager. Again, under the

assumption that forecast errors are Normally distributed, the required safety factor k,

must satisfy

P(Z h kr) = 1-P , (3-2)

the probability that a standard Normal variable (Z) takes on value of k, or larger

22

[Ref. 9: Chap 7J. Therefore, an order should be placed at the current review period if

k, < k,; that is, if the actual safety factor is not sufficient to provide the desired level

of service for the next L+1 periods.

Since the inventory position is known at to, the values which must be

estimated in equation 3.1 are XI and axl. Forecasted demand, XI, is simply the sum

of the forecasts for each individual period in the interval from ^ to L+l. An estimate

for the standard deviation of forecast errors over the interval is given by the following

expression:

an N
1+1 2 . -j2 2 (3.3)
E °i + dXia*
i=l

where i=l is the first period following to, a;
2 is an estimate of the variance of the

demand forecast error for the i* period, dxl is the average period demand over the

interval associated with XI, and aT
2 is the variance of procurement lead time. The

derivation of equation (3.3) is provided in section D of this chapter.

2. Determination of the Order Interval (T)

The length of the order interval T is determined using the Silver-Meal

heuristic, which selects T such that the total relevant costs per unit time for the

duration of the replenishment quantity are minimized [Ref. 9: Chap 6]. The method

is a heuristic in that it selects T corresponding to the first minimum which occurs.

This minimum is not necessarily the global minimum. The heuristic selects the lowest

integer value of T that produces a local minimum of the function

23

A+XEG-W (3.4)
TRCUW) = tl

where TRCUT is defined to be total relevant cost per unit time. It should be noted

that in the implementation of the modified Silver model we select the value of T

which minimizes TRCUT(T) from among the values 1 to the forecast horizon (6

quarters). This is accomplished by computing TRCUT(T) for each of the values 1 to

the forecast horizon, and selecting that value of T corresponding to the smallest

TRCUT(T). The modification is an improvement over the heuristic in that it

guarantees the minimum over the forecast horizon, whereas the heuristic does not.

This modification in the heuristic was implemented because of the DOD constraint

which limits the maximum reorder amount to the expected demand over 6 quarters.

3. Determination of the Order Quantity

Determination of the order-up-to-level (S), and hence the order quantity

(Q), is a function of the length of the order cycle (T). Two distinct cases exist; one if

T= 1 and the other if T> 1. The differences between these cases will become

apparent from the following discussion.

The case for T=l is represented graphically in Figure 3.2. If T=l, then

we are planning the current replenishment to have only enough stock to meet our

specified service level through the first period following receipt of the order (i.e.,

period L+1). This is precisely the value of XI which was calculated in the

determination of the reorder point. In this case we simply order the deficit to the

24

current inventory position (IP) necessary to achieve the specified service level.

Equation (3.5) provides the value of the order quantity in this situation.

Q = Xl+kTan-IP .
(3.5)

Planned Next Order Point

t.. = 0

Order Interval T= 1 Period

L L-rl

XI

FIGURE 3.2. Order Interval for T=l.

The case for T> 1 is represented graphically in Figure 3.3. If T> 1, then

planning on the current order providing sufficient coverage for T periods after

receipt of the replenishment; i.e., we are planning not to place an additional order

we are

until time T assuming that T has a stationary mean. L. To reduce the possibility that

a reorder will occur at an earlier time period, say T-1, we can introduce a small

xc°

Planned Next Order
Poült Current Order Interval = T Periods

-+■-

r
4

T-1 T L

__! I. -l_

L+l
V

i

L + T-l L + T

-4--1—]—1—h
1

..... (| -|—

_l

i
XI (Currrnt)

I

XI (Planned Next)

FIGURE 3.3. Order Interval for T> 1

25

buffer [Ref. 7: p. 375] to the estimated inventory position at time T-l. As is usually

the case, buffer or safety stock is expressed as some multiple (denoted by b) of the

measure of uncertainty of forecast errors over the interval of concern.7 In this case

we are concerned with the interval from the present, to, until T-l, which has the

expected demand X2 (see Figure 3.1). Therefore it is reasonable to express this

buffer as a multiple of oX2. In addition, we are assuming that mean demand varies

over time, we should also expect the reorder point at time T-l to be different from the

current reorder point. The above argument can be expressed symbolically as:

(3.6)
sT-i+bax2 = IP+QX2

where:

IP is the present inventory position (time to);
Q is the size of the order quantity at time to;

X2 is forecasted demand over the interval t$ to T-l;
ST.J is the reorder point at time T-l;
crxj is the standard deviation of forecast error over the interval X2;
b is the coefficient of additional buffer stock for the interval X2.

Solving equation (3.6) directly for Q yields the following expression for the reorder

quantity:

Q = sT^+baX2+X2-IP . (3.7)

'inclusion of a buffer quantity obviously has tradeoffs; i.e., additional carrying costs versus the risk
of additional ordering and shortage costs. In practice, the amount of buffer should be a management
decision or "weighing" of these tradeoffs. Silver recommends a small buffer value, if any [Ref. 7:p. 375].
Our investigation via simulation indicates a very small penalty in terms of total costs for small buffer values
(b=0 to 0.9). Additional comments concerning selection of mis buffer are provided in Chapter IV.

26

Since the required safety factor k,at any time is dependent only on the specified

service level, from equations (3.1) and (3.2) it follows that the reorder point s^ can

be expressed as:

ST_, = X3+kron <3-8)

where X3 is the forecasted demand over the interval from time T-l to L+T.

Substituting equation (3.8) into equation (3.7) yields the order quantity equation for the

case when T>1:

Q = X3 +£,0^ +00,2 +X2-IP . (3.9)

An intuitive explanation of this equation follows. The quantity X2+X3 represents the

forecasted mean demand during the interval to to L+T. To this quantity we add safety

stock, some due to the variability of demand during the interval t«, to T-l and some

due to the variability of demand during the interval T-l to L+T. Since we currently

have IP units of stock, the order quantity (Q) is the difference between this sum and

our current value of IP.

D. PARAMETERS AND IMPLEMENTATION

1. Standard Deviation of Forecast Errors

Implementation of the modified Silver model requires estimation of three

standard deviations of forecast error corresponding to the demand forecast intervals

XI, X2, and X3, namely axl, o^, and <rx3. Several techniques exist for estimating the

27

Standard deviation of forecast error for demand intervals when the intervals are fixed

and mean demand is constant [Ref. 25: p. 366-368]. In the special case where the

interval is a procurement lead time which is probabilistic, and the distribution of

demand about its mean is independent of the distribution of lead time about its mean,

the standard deviation of lead time demand can be estimated by:

°LTD = ^La\+D2o2
x

(3.10)

where: aLTD=standard deviation of lead time demand;
L=mean lead time;
D=estimate of mean demand (forecast) for one period;
c1

2=estimated variance of forecast errors about the forecast D;
aT

2=estimated variance of lead time.

This is the equation currently used by SPCC to estimate lead time demand for items

with moderate to high mean demand. In the modified Silver case where forecast

intervals have different lengths and mean demand varies over time, equation 3.10

cannot be used directly, although a similar estimate can be developed.

To obtain an estimate for the standard deviations of forecast errors, we

first assume that the coefficient of variation, defined as the ratio of the standard

deviation of forecast error of a single period to its mean (forecast), is constant over

the forecast horizon [Ref. 7: p. 15]. This relationship can be expressed as follows:

= 0i _ o, (3.11)

° d, d.

28

where: c=coefficient of variation;
ax= estimate of the standard deviation of forecast error for the current

period;
d^current mean demand (forecast);
a;=estimate of the standard deviation of forecast error for the i* period

within the current forecast horizon; and
dj=estimated demand (forecast) for the i* period within the current

forecast horizon.

Alternatively, equation (3.11) can be expressed as:

o.=cd. (3-12)
i i

for the i* period of the forecast horizon. In the case where procurement lead time is

fixed and forecast errors in consecutive periods are assumed to be independent,

equation (3.12) can be used to develop the following estimates for the standard

deviations of forecast errors for the periods associated with XI, X2, and X3 [Ref. 7:

Appendix B]:

(3.13)
an = c^dl+d2

+...+dL+i

/.2 .2. J (3.14)
°X2 ~ C\<*l+d2+'"+(iT-l

ax3 ~ cydT-l+aT+...+aL+T .

Since the modified Silver model assumes that lead times are stochastic and

the demand forecasts XI and X3 occur over an interval that contain a mean lead time

period (both are of length L+l), a slightly more complicated approach must be

29

employed to estimate axl and axi. This will be accomplished by first estimating the

variance (and thus the standard deviation) of demand over a lead time and extending

this estimation to an interval of length L+1.

Using the conditional formula for variance [Ref. 26: Chapter 3], the

variance of lead time demand can be expressed as:

T T T

VarQTd) - E[Var(£di\^ + Var[E(£ dt\x)] (3-17)
i=l i=l i=l

where T is the random variable representing lead time, with known mean L and

variance ay2. A reasonable estimate for the expected value in the second term in the

right hand side of equation (3.17) is dLr, where dL is the average of the di5 i =1 to L.

Substituting this estimate into equation (3.17) and simplifying the first term in the right

hand side under the assumption that forecast errors in consecutive periods are

independent, yields:

T T

VarQTd) = E(£ a2
d) + Var(dL<z) . (3-18)

i=l i=l

Since dL is a constant, the second term in the right hand side of equation (3.18) can be

further simplified as:

T
2v j-2 2 Varied) =E£o2

d)+d-2o2
x. (3-19)

The first term on the right hand side of equation (3.19) is somewhat more difficult to

approximate. One way to approximate its value is through a Taylor expansion

30

[Ref. 27: p. 30-31]. Since T is a random variable with known mean L and variance

aT
2, the second order Taylor expansion about the mean of the function

m = E % (3-20)
i=l

IS

fa) =AL)+f'(L)(T-L) +e (3-21>

where e represents the error term. Ignoring the error term and taking the expected

value of equation (3.21) yields:

Substituting this result into equation (3.19) yields the following result as a

representation of lead time demand:

M£4>.Eoi*i#. <3-23)

We are actually interested in the variance of demand for an interval of length T+ 1.

Recognizing that this is simpiy the sum of a random variable and a constant, the same

argument presented above can be used to yield the following approximation for

demand over an interval of length r+1:

31

T+l 1+1
(3.24)

where dL+1 is the average of the di5 i= 1 to L+1. Rewriting equation (3.24) in terms

of the intervals associated with XI and X3, and expressing the results as a standard

deviation, yields the following:

'XI
\

i+i

i=l
%

2 + dlo\
(3.25)

and

'X3
>

L+T

j=r-i
i2 + ^o2.

(3.26)

where dxl and dx3 are average demand over the respective forecast intervals.

Substituting the result of equation (3.12) into the first term of the right hand side of

equations (3.25) and (3.26), gives the following:

and

'XI
\

Z.+1
2_2

c2Ed,2+dn<
i=l

(3.27)

'X3
^

c2 £ d} + rf>;
(3.28)

32

Equations (3.14), (3.27) and (3.28) are the equations which will be used to estimate

the standard deviations of forecast error in the modified Silver model.

2. Estimating Demand Variability

Being able to reasonably estimate demand variability in stochastic

inventory models is essential to the setting of safety levels. Over-estimation results in

larger than necessary safety stocks and associated inventory costs, while under-

estimation results in lower service levels than desired. In the modified Silver model

demand variability is expressed in terms of the coefficient of variation (denoted as c).

Although Silver provides guidance in the determination of this value [Ref. 7: p. 376-

377], none of the methods specified would be practical for implementation in existing

DOD systems given the large number of line items being managed. Rather, it would

be desirable to have a dynamic method to estimate variability which would make use

of existing data systems and time series analysis. To this end the modified Silver

model, as implemented in the computer simulation, defaults to the use of forecast

mean absolute deviation (MAD) to estimate the coefficient of variation (c).

The relationship between forecast MAD and demand variability when

forecast errors are assumed to be Normally distributed has long been accepted within

the Navy's inventory control system. Under the Normality assumption, the constant of

proportionality of MAD to the standard deviation is approximately 0.8 [Ref. 25:

p. 282-283]. Alternatively, the relationship can be stated as:

33

at = 1.25MAD . (3.29)

The practice of using equation (3.29) to estimate standard deviation has been shown to

be valid for most of the Navy's demand classes [Ref. 28: p. 1]. The primary

exception to this approximation is for low demand items.

Since a primary assumption of the modified Silver model is that forecast

errors are Normally distributed, a reasonable estimate for the coefficient of variation c

can be obtained by combining equations (3.11) and (3.29) to obtain:

125MAD.
c = 1 (3.30)

dx

where MADi is the forecast MAD for the next period and d! is the next period

forecast. Equation (3.30) is used in the modified Silver model to estimate the value of

c, which is then used in computing the standard deviations of forecast error for future

periods out to the forecast horizon.

3. Normality Assumption for Forecast Errors

The assumption that forecast errors are Normally distributed or at least

approximately Normal is reasonable in most cases [Ref. 25: Chap 19]. Since this

assumption is fundamental to the modified Silver model, it would be appropriate to

present some empirical evidence in support of it. With the exception of very low

demand items, the Normality assumption is also a key assumption in the existing UICP

model in the estimation of the variance of forecast errors.

34

In order to test the Normality assumption for a subset of the stationary

mean demand streams later used in analyzing the performance of the model, a

computer simulation was written which generated quarterly demand observations and

forecasts, and computed forecast errors. The forecasting procedure is a replication of

SPCC's forecasting procedure. Data was collected for 10 replications of 100 quarters

each (1000 data points) for each demand classification. These errors were then

analyzed for Normality using IBM Corporation's "A Graphical Statistical System"

(AGSS). Table 3.1 provides a summary for low to high demand cases with varying

degrees of variability generated from a Normal distribution.8 Table 3.2 provides a

summary of the analysis for several very low and low demand cases generated from a

Poisson distribution. In each table column one provides the mean assumed to generate

the demand stream. Column two of Table 3.1 gives the assumed variance of demand.

The remaining columns in each table provide distribution data for forecast errors.

Test results (p values) for the Chi-Square, Kolmogorov-Smirnov and Cramer-von

Mises goodness of fit tests are provided. An attained p value of less than 0.01 for any

test indicates the lack of a good fit. The data strongly supports the Normality

assumption when demand is generated from a Normal distribution, with the exception

of very highly variable demand. In the cases of very low and low demand Poisson

data the Normality assumption is even less accurate. The empirical results confirm

8 Since the distribution of forecast errors is a convolution of the demand distribution and the forecast
distribution, Normally distributed demand does not obviously lead to Normally distributed forecast errors.
In the case of linear, discrete, time-invariant systems such as that being tested here, it can be shown that
the forecast errors will also be Normally distributed [Ref. 25: p.275-278].

35

our intuitive expectations and the observed results reported elsewhere in this thesis. In

the case of demand generated from a Normal distribution, the underlying distribution

is actually a truncated Normal distribution since demand cannot be negative. When

the mean is close to zero or the variance is high, truncation is more prevalent. Since

the observed data distribution is skewed to the right of its mean, we would expect

forecast errors to display a similar skewness. In the case of demand generated from a

Poisson distribution, which is characteristically skewed to the right of its mean, one

would expect errors to be similarly skewed. The empirical results reported in the

Tables 3.1 and 3.2 support these expectations.

TABLE 3.1. NORMAL (TRUNCATED) DEMAND AND FORECAST ERROR

Mean
Demand

Var
Demand

Mean
Error

Sigma
Error

Skew Kurt Chi-Sq K-S c-v

2.0 2.0 0.061 1.484 0.231 2.806 0.028 0.267 >.15

4.0 2.6 0.067 1.742 0.106 2.978 0.455 0.732 >.15

4.0 10.2 -0.044 3.324 0.327 2.737 6.0xE-5 0.128 <.15

4.0 31.4 0.053 5.010 0.567 2.891 0.0 2.4xE-6 <.01

12.0 23.0 -0.030 5.193 -0.044 2.991 0.375 0.464 >.15

12.0 92.0 0.053 9.252 0.280 2.562 4.8xE-7 0.099 <.15

12.0 282.0 1.160 14.970 0.581 3.311 0.0 0.0 <.01

25.0 100.0 -0.198 10.919 0.020 2.994 0.960 0.950 >.15

25.0 400.0 -0.0% 19.760 0.340 3.160 0.010 0.251 >.15

25.0 1225.0 0.825 30.96 0.585 3.187 0.0 0.0 <.01

36

TABLE 3.2. POISSON DEMAND AND FORECAST ERROR

Mean
Demand

Mean
Error

Sigma
Error

Skew Kurt Chi-Sq K-S c-v

0.25 -0.011 0.485 1.747 6.372 0.0 0.0 <.01

0.75 -0.014 0.951 1.046 4.759 0.0 0.0 <.01

1.0 0.010 1.070 0.804 3.658 0.0 2.1xE-6 <.01

1.5 0.039 1.328 0.658 3.942 0.0 5.9xE-5 <.01

2.0 0.073 1.557 0.526 3.548 4.2xE-7 0.002 <.01

4. Implementing Periodic Reviews

Until this point in the discussion of the modified Silver model, the review

periods have been implicitly assumed to coincide with forecast intervals. That is, in

order to explain the mechanics of the model, we have assumed that the periodic

reviews have occurred at the start of a forecast period. This is not necessarily true in

reality. In the case of the Navy's inventory control system, reviews generally occur

every one, two or four weeks. Forecasting, on the other hand, is done quarterly.

This section discusses the adjustments that have to be made to the model to

accommodate this situation. We will examine two cases: one when T> 1 and the

other when T=l. In each case we assume that reviews are conducted on a weekly

basis, although the same procedures can be used if reviews are conducted less

frequently. For the purpose of this study each quarter is assumed to have 13 weeks.

When T> 1, forecast estimates are made as previously described with the

exception that partial forecast period data is used. Figure 3.4 provides a graphical

representation of this case. For example, if a review is held the 8* week of a quarter

when quarterly forecasting is employed, the demand forecast for the first period, du

37

will be 5/13th3 of the current quarter's forecast and 8/13*" of the next quarter's

forecast. The second period forecast, d2, will be calculated in a similar manner as

5113th5 of the next quarter's forecast and 8713th3 of the following quarter's forecast.

This procedure is continued until the appropriate number of intervals are collected;

e.g., L+l periods for XI. The same technique is used in determining the order

interval. Note that if an order is placed at time to, then the interval associated with the

demand forecast XI for each subsequent weekly review falls within the order interval

of the order placed at time to until time T-1 is reached. This important recognition

leads to the significant difference in the model's implementation when T=l.

l0 = °

i v i ►

d, T-1

i j

1

L

Order Interval = T Periods

L+l

1 1 !

L + T-l L + T

I

* ."*'
1 ! 1

"
1 i

Quarterly Forecast
Intei-vals

XI

1

dL+l

X2
1

X?

FIGURE 3.4. Review Periods Between Forecast Intervals (T> 1).

Figure 3.5 provides a graphical representation of the special case when

T= 1. The first time an order is placed for an interval of length T= 1, at time to, the

procedure is applied in a similar fashion as indicated when T > 1. However, recall

38

when T=l the only demand forecast computed is XL Then, again assuming reviews

are conducted on a weekly basis, for the next 12 reviews the review interval is fixed

to cover demand over the same time interval to to L+l from the previous order. That

is, the value of XI, from to to L+1, is simply updated at each review to reflect actual

demand which has occurred since time to. If the actual demand has been larger than

expected, an incremental order is generated to increase the order quantity of the

previous order. It is assumed that such incremental orders will occur infrequently

since buffer stock due to the variability of demand has already been included in the

computation of XI. Also, it is assumed that such incremental orders would be small

and that a change in the order quantity would be accepted by the procurement office if

in a pre-award stage, or by a contractor if a contract has already been issued. This

provision is necessary to prevent excessive ordering. In the case where T=l, a

subsequent review over a new interval of length L+l would look beyond the order

t0=° 1
M
+1

Quarterly Forecast
Inter'vals

t,.,-rl2 wks

Order Interval T= 1 Period

L L+l

 1-

i i

V, XI
i

V,+1 wk

t|. + 2wks

1 ' -

FIGURE 3.5. Review Periods Between Forecast Intervals (T=l).

39

interval of the last order, making it highly likely that a small order would be placed at

each review. Ideally, we do not wish to order again until time to+1 quarter. Recall

that in the basic model when we wished to reduce the probability of an order

occurring prior to the expected time of the next order, we included a small buffer

value in the order quantity computation. In this special case an analogous quantity is

also included in the order quantity computation. Here the same multiplier (b) is used

with an estimate of variability representing 1/13* of the quarterly variance.

Some final notes concerning this special case. First, an order cycle of

T=l only occurs when the dollar value of forecasted demand is high, thus the number

of items falling into this category should be limited. For example, under a steady

state assumption, if forecasted demand for an item is 4 units per quarter, the

administrative ordering cost is $850, and the annual holding cost rate is 0.23, then the

unit cost of the item must be greater than $3,696 to have an order interval of length

T=l (see Section 5 below). Secondly, an alternative approach was considered in

which the 12 weekly reviews following an order placed for an interval of length T=l

were suppressed to prevent additional orders. Simulation test results using this

procedure indicated very little difference in the total number of orders from the

procedure implemented above.9

In the simulation, incremental orders using the implemented procedure were counted as orders in
the count of total orders.

40

5. Estimating the Order Interval Length (T)

It is often useful to be able to estimate the length of the period that orders

will cover for given values of the system parameters. Since the order interval length

(T) for the Silver model is based on the Silver-Meal heuristic, the length of the order

cycle is a simple function of holding and administrative ordering costs and forecasted

demand. The behavior of the heuristic is easily analyzed in the case where mean

demand does not vary. This analysis is useful when making comparisons to the steady

state EOQ model.

Recall that the objective of the Silver-Meal heuristic is to select the lowest

integer value of T that produces a local minimum of the function

A+liE(t-l)dt (3.31)

TRCUW) = ^

where TRCUT is defined to be total relevant costs per unit time. Assume that the

holding costs (h) and administrative ordering costs (A) are fixed, and mean forecasted

demand (D) does not vary. An algebraic expression to determine the minimum value

of T when TRCUT(T) exceeds TRCUT(T-1) is given by the following inequality:

T T-l

A + ä£ (i-l)D A + *£ (i-l)Z) (3.32)

 tl > t» .
T T-l

41

Rearranging this expression in terms of T and substituting IC/4 (annual holding costs

expressed as a quarterly value) for the holding costs (h) results in:

JIT-l) > _§d_ (3.33)
ICD

which can be used to determine the length of the order cycle T for given system

parameters C, A and I, and a given stationary mean demand rate D.

Equation (3.33) can also be used to show the relationship between the

Silver-Meal heuristic and the EOQ when mean demand is stationary. Using the same

notation used throughout this chapter, recall from Chapter II the basic EOQ is given

by the following equation:

<? =
UD (3.34)

N ic '

The equation for the length of the order cycle is T=Q/D. Substituting equation (3.34)

for Q then gives the following equation for the EOQ order interval:

T = SA_ (3.35)
Nl/CD '

By comparing equations (3.33) and (3.35) we can see the approximate equivalent

relationship between the discrete Silver-Meal heuristic and the continuous EOQ model

for the order interval.

42

IV. SIMULATION

A. INTRODUCTION

To analyze the performance of the modified Silver model, a discrete event

Monte Carlo simulation was developed in two parts. In the first part, simulation code

was written to represent the UICP inventory control system.10 In the second part, the

UICP simulator code was copied and modified, replacing the UICP "levels" setting

program with the modified Silver model. The modifications included changes to the

forecast system to provide multi-period forecasts. The software was written in Turbo

PASCAL, Version 7.0 for IBM compatible personal computers.

Both simulations approximate the inventory management of a single consumable

item for as many as 120 quarters. The user may choose to have quarterly demand

data randomly generated using a Normal or Poisson distribution. The simulation

allows the user to specify run characteristics, system parameters, and demand profiles.

Several output options are available. An explanation of the basic functions of the

simulation models are provided in the remainder of this chapter. Appendix A provides

a complete listing of program code.

10 The simulation code was co-developed by the author and Lieutenant Commander
Donald C. Miller, a U. S. Navy Officer and graduate student at the Naval Postgraduate
School studying operations research.

43

B. ASSUMPTIONS

The UICP model computes both system measures of effectiveness and shortage

costs on a requisition basis. Although conceptually there is no restriction to having

varying requisition sizes, computationally it requires that the distribution of requisition

size be known. Additionally, maintaining time-weighted shortage statistics on a

requisition short basis is considerably more complicated when partial issues of

requisitions are allowed. To avoid these complications, it is assumed that each

requisition is for a single unit. Under this assumption, time-weighted units short and

time-weighted requisitions short are equivalent.

As discussed in Chapter III, although the Navy's UICP model is a continuous

review model, inventory reviews are actually done on a periodic basis, generally once

every two weeks or when adequate funds or computer time are available

[Ref. 21: Chapter 3J. Since this type of uncertainty is difficult to model, it is assumed

for modeling purposes that inventory reviews are held on a weekly basis. The same

assumption is made in the modified Silver model.

Simulation time has historically been measured using one of two approaches.

The first approach is called the next-event time advance, where future events are

maintained on a calendar and simulation time is advanced to the next event. The

second approach is called fixed-increment time advance, where time is advanced a pre-

specified time increment, independent of events [Ref. 29: Chapter 1]. In modeling an

inventory control system there are two primary events, issue and receipt of material.

In reality, these events occur on a near continuous calendar. Since the actual arrival

44

distributions of these events are unknown (i.e., Navy data about the time between

events is extremely difficult to obtain), the fixed-increment time advance approach is

used. Under this approach the simulation clock is updated every At time units and a

check is made to determine if any events have occurred during the previous interval.

If events have occurred they are assumed to have occurred at the end of the interval.

System states and statistics are updated accordingly.

Under this approach two considerations must be addressed. First, processing all

events in an interval as if they occurred at one instance in time reduces the accuracy

of the statistics gathered. Secondly, when two or more events occur during an

interval, a set of rules must be developed which specifies the order in which the events

are to be processed. Such rules may also lead to inaccuracies in the model's

measurement of reality. These problems can be made less severe by selecting a small

At time interval. Although a At of one day would provide the greatest accuracy, the

required data structures are very large and execution time would be very long. For

this reason, a relatively small At (one week) was chosen. When two or more events

occur during the same interval, receipts are assumed to occur first, followed by issues,

then ordering.

C. SIMULATION STRUCTURE AND DESIGN

The simulation programs are modular in design. Common functions and

procedures are organized in self contained packages called units. Program unique

processes are coded as program functions or procedures. The main program of each

45

Simulation acts as a "control loop," making sequential calls to procedures and

maintaining overall simulation flow.

The program units common to both the UICP simulator and the modified Silver

simulator (MOD Silver) are toolbox, unirand and pqueue. Toolbox contains useful

query and input/output (I/O) routines, as well as several statistical functions used to

compute means, variances and confidence intervals. Unirand contains the random

number generator and algorithms for generating probability distributions. These will

be discussed in more detail in the next section. Pqueue is used exclusively to maintain

outstanding stock orders and backordered requisitions. This event list is maintained as

a priority queue using a heap data structure [Ref. 30: Chapter 7]. The UICP

simulator makes use of one additional unit, pdunit, which contains procedures that

enable the simulation program to interface with SPCC's PC-versions of PD-82 and

PD-86. These latter two programs are written in COBOL and require extensive I/O

record layouts.

Both simulations contain common functions and procedures, some of which are

tailored to reflect unique parameter specifications. The common program functions

and procedures include:

Run Type:
A user interface procedure for entering simulation run specifications. These
specifications include the number of replications, the number of quarters per
replications, and the probability distribution to be used to generate demand.

Forecast
A procedure which replicates SPCC's forecasting procedures.

46

GetMarkCode:
A function which determines the item mark code. This is a code based on
forecasted quarterly demand and unit price. Mark code assignments are made
by UICP and affect the forecasting and the levels setting technique used for an
item [Ref. 21: Chapter 3].

LoadObserv.
A procedure used to generate demand and demand profiles.

SDR
The supply demand review process, a procedure which determines whether or
not a reorder should be placed.

Both LoadObserv and Forecast incorporate routines from SPCC's Demand Forecast

Simulation [Ref. 31], a PC-based FORTRAN simulator developed by SPCC for

demand and forecast analysis. The last three procedures, LoadObserv, Forecast and

SDR will be discussed in detail in separate sub-sections below.

Unique to the UICP simulation is a procedure called LoadLevels. Its primary

purpose is to determine the quarterly reorder quantity (Q) and reorder point (R) values

using the UICP computational procedures. In the modified Silver simulation these

quantities are determined in SilverModel, a sub-procedure of SDR.

There are also several other procedures and functions in each simulation which

are used primarily for collection of statistics, report generation, and I/O processing.

These include InitializeStatArrays, InitializeArrays, PrintHeader, CalcSimStats,

DisplaySimStats and DisplayQtrSimStats.

1. Demand Observations

In order to simulate the actual quarterly demand patterns experienced by

SPCC, random demand patterns were generated using a uniform random number

47

generator applied to either a Normal distribution for moderate to high demand items or

a Poisson distribution for low demand items. The random number generator used was

a prime modulus multiplicative linear congruential generator (modulus 231-1), based on

a generator by Marse and Roberts [Ref. 29: p. 447]. The generator can produce up to

21,474 unique streams of 100,000 random numbers each. The simulation code will

allow the user to specify up to 20,000 such streams. Each demand stream for a set of

parameters is called a replication. Summary or simulation statistics are collected

across all replications for a specified set of parameters.

The "polar method" [Ref. 29: p. 491] is used to transform the uniform

random numbers into standard Normal random variates (denoted here as X).

Normally distributed numbers (X') corresponding to the user specified mean (/i) and

variance (o2) are computed by the transformation X'=fi+oX. Since demand is

integral, a 0.5 rounding rule is employed. The algorithm used to generate Poisson (X)

random variates is based on the procedure of Law and Kelton [Ref. 29: p.503J which

involves summing Exponential (1/X) random variates.

Since events are processed on a weekly basis, quarterly demand is

randomly distributed to occur weekly throughout the quarter. This is accomplished by

associating with each unit of the quarterly demand observation a randomly generated

uniform integer ranging from 1 to 13, corresponding to the week in the quarter in

which that unit of demand occurs. The individual demanded units for each week are

summed for each of the 13 weeks giving the weekly demand observations.

48

Since the principal concern of this study is the performance of the two

models under non-stationary mean demand profiles, the user can specify up to 10 steps

or trend periods per demand stream. In each step or trend period the mean used to

generate demand is changed. If demand is being generated by a Normal distribution,

the variance is correspondingly transformed to maintain the same ratio of the standard

deviation to the mean (coefficient of variation), thus preserving the level of variability

that was initially specified. A step in the mean is simply a point where the current

quarterly mean is either increased or decreased by a non-negative multiplier.

Symbolically, if Dt is the current mean, then Dt+1=A * Dt, where A is non-negative

constant. The new mean remains in effect until another step or trend changes its

value.

The trend function is exponential, allowing the user to specify a full range

of convex, concave or linear patterns of growth or decline. Symbolically, the trend

function is of the form Dt=D0* (1 + A* t; B) where Dt is the mean demand for period t,

D0 is the mean demand of the initial trend quarter, tj is the number of quarters into the

current trend period, and A and B are the specified trend parameters [Ref. 31].

Selecting a trend exponent parameter (B) of one results in a linear trend that has slope

A. Figures 4.1 and 4.2 show graphs of trends produced for two different selections of

the trend parameters A and B.

49

UPWARD TREND
40

D 30
TJ

| 20
0)
Q
c 10
(0
a)
S 0

Mean

0 2 4 6 8 10 12 14 16 18 20
Trend Qtr

FIGURE 4.1. Increasing Demand; A=.02, B=2.

1

L
DOWNWARD TREND

30

c 25

^20

■

£ 15 h ^\
' —Mean

M
ea

n
D

e

5

 O
l

 O

\^

U

0 2 4 6 8 10 12 14 16 18 20
Trend Qtr

FIGURE 4.2. Declining Demand; A=-.01, B=1.5.

2. Forecasting

The simulation forecasting routine, Forecast, emulates the current

forecasting methods used in UICP to forecast the next quarter's demand. This system

was described in Chapter II.

50

Since the modified Silver model is capable of using forecast data beyond

one quarter, the forecasting system had to be modified to generate this future forecast

information. Since all steps and trends are specified prior to actually running the

simulation, this information can be used to generate future forecast. To avoid

providing unrealistic, "perfect" forecasts, all future forecast are based on the current

single quarter forecast provided from the UICP forecasting system. The subsequent

forecasts are the product of the current UICP forecast and the ratio of the mean used

to generate the future quarter's demand and the mean used to generate the mean of the

current forecast quarter. Therefore, if the forecast system has over or under estimated

the current forecast quarter's demand, all future projections will similarly be high or

low. Forecast are made each review cycle for the entire forecast horizon (mean lead

time + 6 quarters). If no trends or steps are specified, the current forecast is used for

each quarter within this horizon. This technique of generating future forecasts is

analogous to an item manager making future projections based on advance knowledge

of program changes which will result in an increase or decrease in the mean, where

the best estimate available of the process mean is the current forecast.

3. Levels Setting

The UICP system requires the computation of the reorder point (R) and

reorder quantity (Q) for each quarter. These "levels" are determined in the simulation

by the routine LoadLevels, which makes use of a compiled version of PD-82, UICP's

level setting program. System parameters are specified by the user while current

51

forecast and mark code data are provided by the simulation. A description of the

model used by PD-82 is provided in Chapter II.

The modified Silver model computes a potentially different reorder point

and reorder quantity for each supply demand review. A description of the model and

how it determines these values was provided in Chapter III.

4. Supply Demand Reviews

The term supply demand review (SDR) as used here should not be

interpreted to represent the full range of functions covered by UICP's SDR process

[Ref. 21: Chapter 3]. The simulation routine SDR does model the fundamental

procedure of UICP's SDR process; i.e., comparing current assets (inventory position)

to forecasted requirements and making a proper ordering decision. In the UICP

simulation model, inventory requirements are specified by the reorder point (R). In

the modified Silver model, inventory requirements are determined in a sub-procedure

called SilverModel. In each case, inventory position is computed as the current on

hand assets minus the backordered quantity plus the quantity on order.

In addition to asset and requirements comparison, the SDR routine contains

the basic timing routine, receipt and demand processing routines, and a majority of the

statistics of interest. As indicated earlier, the simulation uses a fixed-increment time

advance clock with a At time interval of one week. At the end of each week receipts

are processed first. Backorders, if any, are then filled on a first-in, first-out policy.

Time-weighted units short (TWUS) is collected on a weekly basis and later converted

to a daily basis to compute customer wait time statistics. Demands are then processed

52

and the inventory position is adjusted accordingly. Next the current assets to

requirement review is conducted to determine if a reorder is required. If so, a reorder

is generated with a randomly generated lead-time. Since outstanding orders are

maintained in a priority queue by due-in date, order cross-over is possible.

Since the actual distribution of lead times is unknown, it is assumed that

lead-times are approximately Normal about their mean. The default variance is the

same that is used in the UICP model when computing lead time demand; i.e.,

1.57*mean lead time. Since lead times of less than two quarters or more than three or

four years are not realistic [Ref. 23], the generated lead times are truncated at two and

fourteen quarters.

All statistics collected in the SDR routine are only for the steady state

statistics collection period specified at the start of the simulation run. These statistics

include average customer wait time (ACWT) in days, average customer wait time for

backordered requisitions (ACWTBO) in days, and the percentage of requisitions filled,

called supply material availability (SMA). Since it is assumed that each requisition is

for a single unit, the formulas for each of these measures of effectiveness (MOE's) are

as follows:

ACWT = TWUS

Total Demand

ACWTBO = TWUS

Backorders Filled

53

and, SMA = 1- Bac^or(^ers Tota^
Total Demand

where TWUS is given in days. These MOE's are computed on both a quarterly and a

cumulative basis.

Other statistics collected in the SDR routine are total cost, investment level

and inapplicable assets. Total cost is defined to be the sum of material, administrative

ordering, holding, and shortage costs. This cost is computed at the end of each

replication for the entire steady state collection period. The average quarterly

investment level is defined as the average on-hand plus on-order quantity (in units) for

a given quarter. On-order assets are included in this computation because funding is

obligated at the time of order. A cumulative average quarterly investment level is

computed for each replication, representing the average investment level over all

quarters. In this study, inapplicable or excess assets are defined to be any quantity in

excess of two years worth of demand. In the UICP simulation model where demand

is assumed to be constant, the current quarterly forecast is used to calculate the two-

year quantity. In the modified Silver model, the extended forecast is used in the

estimation of excess inventory. If the two-year projection period exceeds the forecast

horizon, the last forecast of the forecast horizon is used for each of the remaining

periods in calculating the two-year quantity.

54

D. INITIALIZATION AND TERMINATION

1. Number of Replications

Simulations are computer-based statistical experiments. Thus, if results are

to have any meaning, appropriate statistical techniques must be applied to the design

and analysis of the experiments. Estimating the behavior of a model from a single

simulation replication could lead to highly erroneous results if the variance of the

underlying process is large. That is, each replication is only a realization of a random

variable and an appropriate sized sample of such realizations must therefore be

selected in order to make any reasonable statistical inference regarding the model.

The selection of a sample size for the experiments presented in this thesis

was based on two considerations. First, in order to conduct a wide range of

experiments (92 scenarios for each model), consideration had to be given to computer

run time. In this case, the run time for a single replication of 115 quarters of the

UICP simulation is approximately 1.5 minutes on an IBM compatible 486-33 MHZ

personal computer (times vary slightly based on system configuration). This translates

into an approximate run time of 2.5 hours for every 100 replications. Since access to

multiple computers was only available at night, a total run time not exceeding the

available time was preferred. Secondly, it was desired that the number of replications

provide a reasonable measure of statistical significance with as little probability of

making a type H error as possible. Therefore, since protection against Type H errors

only increases with sample size, a maximum sample size was chosen for the time

55

available. This turns out to be 500 replications which corresponds to a run time of

approximately 12.5 hours for replications that are 115 quarters long.

There are several measures of the measurement error associated with a

given sample size. One measure, absolute error, is defined as the absolute value of

the difference of the estimated mean value and the population mean. Absolute error

can be used to determine the number of replications for a given level of significance a

by finding the number of replications which yield a confidence interval half length that

is less than or equal to the preselected absolute error value [Ref. 29: p. 536-537].

Alternatively, an attained absolute error level can be obtained for a given

a and a given number of replications. These attained values can then be further

viewed in terms of practical significance. Table 4.1 provides the mean of three

effectiveness measures for four UICP simulation runs of 500 replications each. In

each case demand was generated from a Normal distribution with a stationary mean.

System parameters were the same for all four runs with the exception of unit price

($250 and $100, respectively, for p=4 and /x=12), mean demand, and the variance of

demand. The results displayed include the mean value and the 95%Normal confidence

interval limits.

An attained absolute error value can easily be obtained from the data in

Table 4.1. These values are given in Table 4.2 below. For example, to interpret a

table value consider ACWT for the case where the mean is 12 and the variance is 23.

Based on the results of 500 replications, 95% of the time we would expect a

replication mean to have an absolute error of at most 0.21 days (1.35-1.14), and 5%

56

TABLE 4.1. MEAN AND CONFIDENCE INTERVAL LIMITS.

Measure of
Effectiveness /=2.<J

/i=4
i»2=31.4

ft=12
^=23

p=12
o2=282

ACWT
(Days)

1.08
0.86 (L)
1.29 (U)

8.60
7.35 (L)
9.86 (U)

1.14
0.92 (L)
1.35 (U)

8.4
7.23 (L)
9.60 (U)

Avg. Qtrly.
Investment
(Units)

69.80
69.39 (L)
70.22 (U)

102.43
101.0 (L)

103.85 (U)

206.30
205.23 (L)
207.36 (U)

294.18
290.37 (L)
297.98 (U)

Total Cost
(Dollars)

151,631
150,856 (L)
152,406 (U)

211,000
208,643 (L)
213,356 (U)

180,549
179,534 (L)
181,563 (U)

259,396
255,237 (L)
263,555 (U)

TABLE 4.2. ABSOLUTE ERROR VALUES.

Measure of
Effectiveness

M=4
a2=2.6

M=4
«^=31.4

n=u
a2=23

|t=12
^=282

ACWT
(Days)

0.21 1.26 0.21 1.2

Avg. Qtrly.
Invest. (Units)

0.42 1.42 1.06 3.8

Total Cost
(Dollars)

775 2356 1014 4159

of the time we would expect the absolute error to exceed 0.21 days. Note that while

the absolute error of total cost appears to be rather large ($1014), it is considerably

less than 1 % of the mean value.

2. Seed Selection

As previously discussed, the simulation models can generate up to 20,000

unique demand streams each of length 100,000. During the set-up phase of a

simulation run the user may select a starting seed from any one of the 20,000 seeds,

less the number of replications selected. The starting seed and all subsequent seeds

57

are generated automatically by the program. Alternatively, the user may choose to

manually input up to 100 individual seed values.

Seed selection for a simulation run is directly related to experimental

design and output analysis. When running a single model it is usually desired that

each replication is an independent realization of the random process, thus allowing the

experimenter to apply relatively simple data analysis techniques to the results.

Statistical "independence" results from selecting different seeds for each replication.

When comparing the performance of two different models though, independence may

not be as desirable. Although independent data allows for many direct statistical

comparison techniques, comparative model performance using exactly the same data

may be most preferable from many viewpoints. In the latter case, an analysis

technique for dependent samples would be employed for statistical comparisons.

For this study, independent demand streams were generated for each

simulation run or scenario using the first 500 seeds. Corresponding runs for each

model where made with identical demand streams11. Since model comparisons are

based on dependent samples, a paired-t test is employed to compare performance

measures [Ref. 32: p. 572-575].

"To ensure demand streams for each model are identical, all demands observations are generated at
the start of a replication. This is necessary since procurement lead times are generated from the same
random generator and different reorder distributions would corrupt the demand observation stream.

58

3. System Parameters

For the purpose of this study, the system parameter values shown below

are the default input parameter values and remain constant from quarter to quarter:

- The probability break point is 0. This code is used in UICP in the
determination of the probability distribution of lead time demand. In this case,
lead time demand is assumed to have a Normal distribution unless it is a very
low demand item (Mark Code 0), where it is assumed to have a Poisson
distribution.*

- The shelf life code is 0. This code is used in UICP to set the reorder level and
order quantity shelf life constraints for an item. In this case, the shelf life
constraints are disregarded.*

- The requisition size is fixed at one unit.
- The annual obsolescence rate is 0.12.
- The annual storage rate is 0.01.
- The annual time preference rate is 0.10.
- The minimum risk constraint is 0.10.*
- The maximum risk constraint is 0.35.*
- The low limit for the reorder point is one unit.
- The shortage cost is $1000.00 per unit-year short.
- The administrative cost of placing an order is $850.00

With the exception of requisition size, the default values given are representative of

those used by SPCC for many consumable items [Ref. 33]. The parameters marked

with an asterisk (*) are not used in the modified Silver model, although a specified

risk level is an input parameter in the Modified Silver model. Its determination is

discussed in more detail in the next chapter. The obsolescence, storage, and time

preference rates are expressed as a fraction of unit cost per year; i.e., the cost to hold

one dollar's worth of material in inventory for one year. Unit price, mean demand,

and the variance of demand vary with each scenario. Except when otherwise noted,

mean procurement lead time is set to 8 quarters and the variance of lead time is equal

to 1.57 times the mean.

59

4. Initial Conditions

Inherent to stochastic simulations is the initial transient or start-up

problem; i.e., performance measures for a terminating simulation depend explicitly on

the initial state of the system. A terminating simulation is one for which there is a

pre-specified event or occurrence that determines the length of each run or replication.

In our case, the event is the ending quarter specified by the user during the simulation

run setup. The technique most often used to deal with the initial transient problem is

called "warming up the model" or "initial-data deletion" [Ref. 29: p. 545]. Using this

technique, data is discarded or simply not collected for the random variables being

measured until transient means converge to the steady state mean. This technique is

employed in this study. A disadvantage of this approach is that a sizable portion of

the simulated data is discarded. This can be partially compensated for by setting

initial conditions as close as possible to either theoretic or expected steady state

conditions in order to accelerate convergence.

Although several techniques exist for determining the length of the warm-

up period, the method selected in this study is a rather simple, graphical procedure

attributable to B.L. Welch [Ref: 29: p. 545-546]. The technique involves graphing a

moving average of the results of n independent replications of a simulation and

determining the point at which the transient mean curve "flattens" out. This point is

the end of the warm-up period.

For the purpose of this study, the random variable selected for initial

transient analysis was quarterly investment, defined as the average quantity on hand

60

plus on order. Investment level was chosen since it is a direct function of two of the

principal simulation state variables. As indicated previously, the warm up period can

be reduced by the selection of appropriate initial starting conditions. For the UICP

simulation model, the initial on hand inventory was set to the expected steady state on

hand quantity for the EOQ model. This quantity is defined as one half of the initial

reorder quantity plus initial safety stock, where safety stock is equal to the reorder

point minus lead time demand [Ref. 29: p. 275]. The number of outstanding orders at

the start of the simulation is set equal to the integer value of the mean lead time

demand divided by the reorder quantity, rounded down. The total number of

outstanding orders is the product of this integer value and the reorder quantity [Ref. 4:

p. 32-33]. These initial outstanding orders are then scheduled to arrive at equal

intervals over an initial period that is the length of a mean lead time period. The

same initial conditions were manually entered for corresponding runs of the modified

Silver model.

Since this study involved running many demand profile scenarios, it was

not practical to analyze the warm-up period for each and every case. Rather, a

sample of scenarios was analyzed to determine a single, conservative starting point to

be applied to all scenarios. Seven stationary demand scenarios of 100 replications

each were analyzed for each model using a 20-quarter moving average window

(W=20). Based on this analysis, it was determined that a warm-up period of 25

quarters was sufficient. The fourteen Welch procedure graphs are contained in

Appendix B.

61

5. Terminating Conditions

Both the UICP and modified Silver simulation models are terminating

simulations. Because of this, several assumptions and adjustments need to be made to

ensure the statistics are not affected significantly by the termination event.

First, time-weighted units short (TWUS) is measured from the time a unit

is placed in a backorder status to the time it is actually filled. If a replication

terminates with units in a backorder status, it is assumed that all outstanding

backordered units will be filled by the next stock reorder due in.12 This allows for the

collection of TWUS for all backordered units.

Secondly, although the modified Silver model adjusts well to a final

forecast horizon, the UICP model assumes steady state conditions and will continue to

do so up to the final quarter. The modified Silver model satisfies requirements for a

specified forecast horizon. Since no demand is forecast past the last quarter, the

forecast horizon is incrementally reduced as the final quarter is approached. No

orders will be generated during the final mean lead time period since there are no

future requirements for an order to meet. Since the UICP model has no such stopping

mechanism, the user can specify the last quarter for which statistics are to be collected

in each simulation model. Although in this study where the focus is on declining

demand and there are generally excess assets on hand, reducing the likelihood for

additional orders near the end of a replication, the final statistics collection quarter for

12This procedure may lead to a slight underestimation of TWUS for any units backordered at the end
of a replication. In our case, where a majority of the cases studied involve declining demand, there are
generally few backorders at die end of a replication.

62

each model was set at minus ten quarters from the ending quarter. In our case

stopping at minus eight quarters from the ending quarter would be sufficient since the

modified Silver model stops ordering at minus a mean lead time from the ending

quarter, but ten quarters was more convenient for setting up run specifications.

63

V. RESEARCH METHODOLOGY AND RESULTS

A. OVERVIEW

Simulation experiments are a special case of experiments which, in general,

afford more control over inputs or factors than can usually be achieved in a physical

experiment with a system. In simulation modeling, experimental design is used to

decide which configurations to simulate so that the desired information can be obtained

with the least amount of simulating [Ref. 29: p. 657]. Since this research is directed

towards the comparative performance of two simulation models, each with numerous

parameters, the appropriate selection of factors is even more critical.

In designing the experimental settings for this study, demand profile, demand

distribution, unit price, and the distribution of replenishment lead times were selected

as experimental factors. Comparison of model performance is based on the following

output performance measures or responses:

- Average customer wait time (ACWT);
- Average customer wait time for backordered requisitions (ACWTBO);
- Supply material availability (SMA);
- Average quarterly investment level;
- Total cost (for the steady state collection period);
- Ending excess assets.

Because of the number of factors and the range of possible levels, a total of 92

experiments or scenarios were evaluated. A listing of the scenarios is contained in

Appendix C.

64

B. EXPERIMENTAL FACTORS

1. Demand Profile

For the purpose of this study, the various demand data streams or

"profiles" are classified as stationary, cyclic, declining or increasing. The cyclic

demand profile includes a period of initial increase corresponding to a build-up period

followed by a stationary period and then a declining period. Demand profiles are

further categorized by the character of the trend; i.e., linear, step or exponential, and

the length of the trend period. Step trend periods have a step change in the mean

demand followed by a stationary period, then another step change in the mean

demand followed by a stationary period, and so on, until the trend period is over.

Exponential trend periods are either concave upwards or concave downwards.

Concave upward trends have an initial slow trend rate followed by a higher trend rate.

Concave downward trends have an initial high trend rate followed by a slower trend

rate. Concave trend patterns are displayed graphically in Figure 5.1. The minimum

trend period length is eight quarters and the maximum trend period length is twenty

quarters. Representative realizations of the sixteen demand profiles used in this study

are numbered and graphically displayed in Appendix D. With the exception of the

mean level of demand, the same demand profile characteristics are used for both

Normally and Poisson generated demand. The profile number is cross referenced to

scenario under the profile heading in the scenario listing in Appendix C. In all cases

the models are allowed to reach steady state conditions prior to implementation of any

non-stationary mean condition.

65

;

i \ \

i
Concave Downward Concave Upward

; /

/

1 ^/-'' /

Concave Upward Concave Downward

FIGURE 5.1. Exponential Trend Patterns.

2. Demand and Lead Time Distribution

In stochastic inventory systems, the distributions of both demand and

replenishment lead time are critical elements in determining system behavior. First,

theoretical model assumptions and parameters are usually based on some assumed

demand and lead time probability distribution. Extreme variation from these assumed

distributions may significantly affect model performance. Secondly, safety stock is a

direct function of the variability of demand and lead time. Excessive safety stock can

be costly and insufficient safety stock can reduce customer support.

In this study, demands are generated from a Poisson or a Normal

probability distribution. Mean demand levels are categorized as very low (/*=0.25 or

1.0), low (/z=4), moderate (ji = 12) or high (j*=25). For Normally generated

66

demand, variability levels are categorized as low (o7/i=0.4), moderate (a//x-0.8), or

high (a/11=1.4).

The distribution parameters for replenishment lead time are also varied.

The default mean lead time is 8 quarters with a variance of 12.56 (1.57 times the

mean). Model performance is also evaluated under two other alternatives, one where

mean lead time is reduced to 4 quarters and a second where lead time is fixed at 8

quarters (deterministic case).

3. Unit Price

As discussed in Chapter III, the approximate length of an order cycle for

the modified Silver model is a function of unit price, mean demand, holding and

ordering cost rates. Since holding and ordering cost rates are fixed in this case, the

length of an order cycle is simply a function of mean demand and unit price.

Therefore, to compare model performance with regards to order cycle length, unit

price is varied for different levels of mean demand. For the modified Silver model, a

low dollar value level yields longer order cycle lengths (4-6 periods), while a higher

dollar value yields shorter order cycle lengths (1-3 periods).

4. Other Parameters

a. Bisk

In the UICP model a constrained risk value is computed each quarter

by the model. In the modified Silver model the risk value is an input parameter and

remains constant from quarter to quarter. In comparing the two models, the selection

67

of an appropriate risk value for the modified Silver model is important because of the

dependent relationship between risk, investment level and system effectiveness. This

dependence leads to two approaches in selecting a risk value. The first is to select

risk to meet a constraint for some performance measure such as ACWT or SMA,

allowing the investment level to be determined by the model. The second is to select

risk to meet some specified investment level, allowing the performance measures to

be determined by the model. In this study, the latter approach is employed; i.e., the

risk value is selected such that the average investment level is approximately equal to

the attained average investment level of the corresponding UICP simulation run.

Since investment levels vary significantly with demand that is trending, the investment

levels for non-stationary demand scenarios were based on stationary demand test

scenarios with the same initial demand distribution parameters.

b. Buffer

Unique to the modified Silver model is a buffer quantity, expressed

as the product of a coefficient (denoted as b) and the standard deviation of forecast

error over the interval associated with forecasted demand X2, from the present

review, to, until time T-l. As indicated in Chapter HI, the amount of buffer, if any,

should be a management decision involving the trade-off between investment level and

the number of replenishments. No attempt is made in this study to optimize the

selection of the coefficient (b) for each scenario. Rather, a series of simulation runs

were made to determine the range of coefficient values that would keep the penalty

small in terms of total cost. The test was conducted for ten stationary demand

68

scenarios. Experimental factors included the distribution of both demand and

replenishment lead time and unit price (denoted as C). Unit price was selected as a

factor to compare model performance with regards to order cycle length. Statistics

were collected for 80 quarters. For each scenario, independent simulations of 645

replications were run for buffer coefficient values from 0.0 to 3.0 in 0.1 increments.

Thus, for each scenario a total of 31 x 645 = 19,995 replications were run. Mean

total cost values were then analyzed to determine ranges of coefficient values that

were statistically equivalent based on a standard analysis of variance test. The null

hypothesis stated that all means within the selected coefficient range were equal, while

the alternative hypothesis stated that at least one mean was not equal. Table 5.1

summarizes the test results for a selection of ranges. A table entry of E indicates

statistical acceptance of the null hypothesis at a 0.05 significance level. The general

finding is that for small values of the buffer coefficient (0.0 - 0.6), there is little

penalty in terms of overall cost. It should be noted that even in those cases of Poisson

demand where statistical equivalence was not attained, the difference of the highest

and lowest cost was less than two percent of the lowest cost value.

The trade-off to increased investment for a larger buffer value is a

reduction in the number of replenishment orders. For the ten test scenarios, Table 5.2

provides the mean number of total orders for selected values of the buffer coefficient.

In all cases, even a relatively small change in the buffer coefficient can have an

appreciable effect upon the total number of orders. Although in this simulation study

there is no constraint on total procurement workload, such constraints do exist in real

69

TABLE 5.1. COMPARISON TEST ON MEAN TOTAL COST.

SCENARIO COEFFICIENT (b) RANGE

0.0-
0.6

0.0-
0.9

0.0-
1.5

0.0-
1.9

0.0-
2.5

0.0-
3.0

H-l (Poisson), Lead Time =8 qtrs, C=1000 - - - - - -

H = l (Poisson), Lead Time =8 qtrs, C=5000 - - - - - -

/t=12, 0^=23, Lead Time =8 qtrs, C=100 E - - - - -

H=12, cr2=282> Lead Time =8 qtrs, C=100 E E E - - -

H = 12, d1=23. Lead Time =8 qtrs, C=450 E E E - - -

M=12,o2=282, Lead Time =8 qtrs, C=450 E E E - - -

M = 12, o2=23, Lead Time =4 qtrs, C=100 E - - - - -

M=12, o2=282, Lead Time =4 qtrs, C=100 E E E - - -

li = \2, a2=23, Lead Time =8 qtrs (Fixed), C = 100 E - - - - -

Ii = l2, 62=2%2, Lead Time =8 qtrs (Fixed), C = 100 E E E E E E

TABLE 5.2. MEAN NUMBER OF REPLENISHMENT ORDERS •

SCENARIO MEAN ORDER COUNT

Coefficient (b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

H=l (Poisson), Lead Time =8 qtrs, C=1000 12.5 10.1 8.5 7.3 6.3 5.7 5.1

p=l (Poisson), Lead Time =8 qtrs, C=5000 31.6 22.8 18.1 15.1 13.1 11.5 10.1

H = 12, <T
2
=23, Lead Time =8 qtrs, C=100 18.0 15.4 13.6 12.0 10.8 9.9 9.0

M = 12, o2=282, Lead Time =8 qtrs, C=100 15.1 12.6 10.8 9.6 8.3 7.7 7.1
M=12, <T

2
=23, Lead Time =8 qtrs, C=450 54.8 43.1 35.3 30.2 26.5 23.5 21.0

H= 12,^=282, Lead Time =8 qtrs, C=450 38.2 29.0 23.3 19.8 16.7 15.4 13.7

^ = 12, a2=23, Lead Time =4 qtrs, C=100 18.9 16.1 14.2 12.4 11.3 10.2 9.3
M=12, o2=282, Lead Time =4 qtrs, C=100 18.1 15.0 12.6 11.1 9.6 8.8 7.6
H = \2, (^=23, Lead Time =8 qtrs (Fixed), C = 100 18.2 15.6 13.7 12.1 10.9 9.9 9.1
ji=12, <72=282, Lead Time =8 qtrs (Fixed), C=100 16.5 13.7 11.6 10.2 8.9 8.3 7.6

life. Therefore, imposing a management decision in the study to restrict total orders

would be reasonable. With this is mind, a fixed buffer coefficient value of 0.5 was

selected because it seems to provide a reasonable balance between investment level

and the total number of orders per year.

70

c. Maximum Order Cycle Length During Decline

To comply with the DOD maximum order quantity constraint, the

default setting for the maximum order cycle length for the modified Silver model is 6

quarters. An additional input parameter allows the user to further tighten this

constraint during periods of declining demand. Although such a constraint is not

necessary from a theoretical viewpoint, it does have some practical appeal from a

management perspective.

When a period of declining demand is first forecasted (i.e., a

declining demand pattern is detected within the forecast horizon), it is possible for the

modified Silver model to increase the investment level for several quarters prior to

actually reducing levels in response to the decline. This occurs in cases where the

order cycle length has normally been less than the maximum length, and because of

the declining forecast, the model's heuristic determines that a longer order cycle is

more optimal. If the decline is gradual, then the order quantity and thus investment

level may be greater. This creates a temporary increase or "hump" in investment at

the start of a declining period. Although the longer order cycle has a lower total cost,

there may be a genuine concern about increasing the average investment level as you

are about to enter a period of declining demand. Thus, given this concern and the

general uncertainty of mean demand information during non-stationary periods, the

user is allowed to restrict the maximum order cycle length to less than 6 quarters just

before or during periods of declining demand. This parameter has been set to a

default value of 4 quarters for all simulation runs.

71

In some cases, a similar phenomena occurs at the end of the decline

period. In these cases, as the model detects the impending return to stationarity of the

mean demand, the maximum order cycle constraint for the declining demand is

removed. Since demand is at a lower level, the order cycle length may increase

significantly (i.e., from 4 to 6 quarters), causing a temporary increase or "hump" in

investment. Since this new order cycle length has a lower cost and we've reached a

new period of stationary demand, the model is allowed to perform under its normal

assumptions. In the case where demand declines to zero, this phenomenon does not

occur.

C. SIMULATION RESULTS

1. Stationary Demand

The first simulation series examines the effects of mean demand, demand

variability, procurement lead time, and unit price on model performance. The series

consist of thirty-two simulation runs (see Appendix C, experiments 1 through 32).

Steady state statistics are collected for 80 quarters. In each case, mean demand is

stationary during all 80 quarters. Model comparison is based on a paired t-test of the

difference of the means (sample size=500) for cumulative measures of effectiveness13.

^Cumulative measures of effectiveness, as opposed to quarterly, represent aggregate performance.
For instance, cumulative ACWT at any point in time is defined to be total TWUS up to mat point in time
divided by the total demand up to mat point in time. Similarly, cumulative SMA represents the percentage
of total requisitions that have been satisfied when submitted (i.e., the percentage of total requisitions not
backordered when submitted up to that point in time).

72

Table 5.3 provides a summary of the results for Normally generated

demand. The table columns correspond to the measures of effectiveness identified in

the bottom row of the table. The first five columns have measures which were

defined in Chapter IV, Section C. The sixth column, "Excess," refers to the amount

of ending excess inventory. The table indicates which model performed better for

each effectiveness measure. An "S" signifies the modified Silver model and a "U"

signifies the UICP model. A dash indicates that the mean values were statistically

equivalent at a 0.01 significance level.

The results clearly indicate that in most low to high demand cases, the

modified Silver model will outperform or perform equally as well as the UICP model

when the mean demand is stationary. Performance improves slightly with a higher

demand rate or a lower unit cost. In the two scenarios where the UICP model

statistically outperformed the modified Silver model in one or two single measures, the

practical differences were relatively small, as is the case in many of the comparisons.

This results from a large sample size and the resulting power of the statistical test.

The mean values, differences and p-values of all performance measures are

listed by experiment number in Appendix E (Table E-l). This data provides additional

insight into the comparative performance of the models not readily apparent in the

Table 5.3. For example, by comparing the mean values for each performance

measure for experiments 6, 7 and 8, the reader can see that both models perform

similarly with increased demand variability. Note also by comparing the total number

of orders in the last column of Table E-l, that the number of orders is significantly

73

higher in many cases for the modified Silver model when the unit cost is high (see

experiments 13 through 22). In this study, since administrative ordering costs are

included in total cost, model performance is not measured separately in terms of the

total number of orders.

Because cumulative data can sometimes be misleading, both cumulative

and quarterly effectiveness data are displayed graphically for a representative

stationary mean demand scenario (experiment #14) in Appendix F.

TABLE 5.3. PAIRED T-TEST COMPARISON (a=0.01) FOR NORMAL
DEMAND WITH STATIONARY MEAN.
Exp# Mean Variance Low Dollar Value High Dollar Value

1 2 3 4 5 6 1 2 3 4 5 6

3, 14 Low (4) Low (2.6) - - - s S - S S S s - s
4, 15 Low (4) Mod (10.2) S s s - - - S S - s u s
5, 16 Low (4) High (31.4) - s s s s s - u u s - s
6, 17 Mod (12) Low (23) s s s s - s s s s s s s
7, 18 Mod (12) Mod (92) s s s - s - s s s s s -

8, 19 Mod (12) High (282) s s s s s s s - - s - -

9,20 High (25) Low (100) s s s s s - s s s s s s
10,21 High (25) Mod (400) s s s s s - s s s s - -

11,22 High (25) High (1225) s s s s s - s s - s - -

Col. l=ACWTBO Col. 2=ACWT Col. 3 = SMA Col. 4=Investment Col. 5=Total Cost Col.6=Excess

Table 5.4 provides a similar summary of the results for Poisson generated

demand. In this case the results are less conclusive than those noted above. One

hypothesis to explain this inconsistency is that the assumption made in the modified

Silver model that forecast variability can be measured using MAD is especially bad for

very low levels of demand (see Chapter HI). To test this hypothesis, a series of

additional tests were conducted for the Poisson demand scenarios where the variances

74

of forecasted demands XI and X3 for the modified Silver model were calculated using

the same power rule that is used by SPCC in the UICP model's computation of the

variance of lead time demand for very low demand items. This power rule was

derived by SPCC using regression analysis and is expressed as: lead time demand

variance =3.869 (lead time demand) 1-378. In the modified Silver case, demand XI or

X3, covering an interval of length L+1, is used instead of lead time demand. Table

5.5 gives the results for these additional tests. The results indicate that MAD should

not be used with very low mean demand levels. It should also be noted that the use of

the same coefficient and exponent in the modified Silver model does not imply that

these values are correct. Rather, it is meant to suggest that a similar power rule

computation might be developed for the modified Silver model for use with very low

demand items.

TABLE 5.4. PAIRED T-TEST COMPARISON (a=0.01) FOR POISSON
DEMAND WITH STATIONARY MEAN.
Exp# Mean Variance Low Dollar Value High Dollar Value

1 2 3 4 5 6 1 2 3 4 5 6

1, 12 0.25 0.25 - S S S S S - S S S S S

2, 13 1 1 U U U u u - - - - S - -

Col. l=ACWTBO Col. 2=ACWT Col. 3=SMA Col. 4=Investment Col. 5=Total Cost Col. 6=Excess

TABLE 5.5. PAIRED T-TEST COMPARISON (a=0.01) FOR POISSON
DEMAND WITH STATIONARY MEAN AND POWER RULE.
Exp# Mean Variance Low Dollar Value High Dollar Value

1 2 3 4 5 6 1 2 3 4 5 6

1, 12 0.25 0.25 S S S S S S S S S - - S

2, 13 1 1 - - - S - S - - - S S s
Col. l=ACWTBO Col. 2=ACWT Col. 3=SMA Col. 4=Investment Col. 5=Total Cost Col. 6= Excess

75

Table 5.6 provides a summary of the results when procurement lead time

is varied. In the first series lead time is probabilistic with a mean of four quarters and

a variance of 6.28 (1.57 times mean). In the second series lead time is fixed at eight

quarters. The unit prices are the same as those used in the low dollar cases in the

above experiments. The effects of varying lead time on the performance of the

modified Silver model are consistent with the behavior of the UICP model under the

same conditions.

TABLE 5.6. PAIRED T-TEST COMPARISON (a=0.01) FOR STATIONARY
DEMAND WITH VARYING LEAD TIME.

Exp # Mean Variance Mean Lead Time =4 Qtrs
(Variable)

Lead Time=8 Qtrs
(Fixed)

1 2 3 4 5 6 1 2 3 4 5 6

23,28 1 1 (Poisson) U U u s - - U U - - - -

24,29 Low (4) Low (2.6) s s S s s - -

25,30 Low (4) High (31.4) - S s s s s s S s s s s
26,31 Mod (12) Low (23) s s s s - s s s s s - -

27,32 Mod (12) High (282) s s s s s s s s s s s s
Col. l=ACWTBO Col. 2=ACWT Col. 3=SMA Col. 4=Investment Col. 5=Total Cost Col. 6=Excess

Although results for all of the performance measures are presented in

Table E-l of Appendix E, Table 5.7 provides the reader a summary of the effects of

varying lead time on mean ACWT. A close examination of the results in Table 5.7

suggests some inconsistencies with expected behavior, although the results are

consistent between models. For instance, one would expect ACWT to be considerably

less for the case when mean lead time is four quarters (variable) than when mean lead

time is eight quarters (variable). This, however, is only true for the high variance

demand cases. In the low variance demand cases ACWT increased as mean lead time

76

was reduced. This unexpected behavior results from a simulation assumption rather

than a model assumption. Recall from Chapter IV that observed lead times are

generated from a Normal distribution truncated at two and fourteen quarters. In the

case where a mean of four quarters is used to generate lead times, the observed mean

lead time will be greater than four, since four is near the lower truncation point.

Since safety stock is based, in part, on expected lead time, safety stock will be

underestimated. In the case where the expected lead time is four quarters, the

simulation results for ACWT may be somewhat higher than expected. If the variance

of demand is high the additional safety stock due to the variability of demand appears

to offset the underestimation resulting from a higher than assumed mean lead time. In

the case of a mean lead time of eight quarters (the default mean lead time), the

shifting upward of the observed mean lead time will be less evident since eight is more

central to both truncation points. Results similar to those shown in Table 5.7 were

obtained for the other performance measures. However, the reader should note that

the relative investment levels between scenarios (see Appendix E) are consistent with

expected behavior.

TABLE 5.7. MEAN ACWT (IN DAYS) FOR STATIONARY DEMAND WITH
VARYING LEAD TIMES.

Mean Variance UICP MODIFIED SILVER

LT=8
Var

LT=4
Var

LT=8
FK

LT=8
Var

LT=4
Var

LT=8
FK

1 1 (Poisson) 4.39 5.45 2.60 6.82 6.99 4.72

Low (4) Low (2.6) 1.08 1.33 0.78 1.0 1.10 0.48

Low (4) High (31.4) 8.60 6.39 11.91 7.25 5.20 10.43

Mod (12) Low (23) 1.14 1.33 0.83 0.72 0.87 0.48

Mod (12) High (282) 8.42 6.43 13.94 6.04 4.36 10.13

77

In this section it has been shown that the modified Silver model's

performance is equal to or better than the UICP model for most stationary mean

demand scenarios. The primary exception is for the Poisson demand case. In this

case, though, it has been shown that modifying the model assumption of using MAD

to estimate forecast variability will lead to significant improvements. It has also been

shown that both models behave similarly when the distribution of procurement lead

time is varied.

2. Cyclic Demand

The next simulation series involves eight cyclic demand scenarios (see

Appendix C, experiments 33 through 40) and two generated demand profiles (see

Appendix D, profiles 2 and 3). In the case of Poisson demand, the mean is initially

set at 0.25 units per quarter, increases to 2 units per quarter, and declines back to a

mean of 0.25 units per quarter. For Normal demand, the mean is initially set at 4

units per quarter, increases to 32 units per quarter, and declines back to a mean of 4

units per quarter. In each case, the trends are exponential. Trend periods are further

characterized by their length. A steep or short trend period is 8 quarters in length and

a slow or long trend period is 20 quarters in length. The trend starting (T/S Qtr) and

ending quarters (T/E Qtr), and parameters are listed by experiment number in

Appendix C. Statistics are collected for a total of 85 quarters. For all experiments,

the model comparisons are based on a paired t-test on the differences of the means

(sample size=500).

78

Table 5.8 provides a summary of the results for all 8 scenarios. Table 5.9

provides the mean difference (Modified Silver - UICP) and percentage change in

ACWT, total costs and ending excess for each scenario. Again, all measures are as

defined in Chapter IV, Section C. The mean values, differences and p-values of all

performance measures are listed by experiment number in Appendix E (Table E-2).

Cumulative and monthly effectiveness data are displayed graphically in Appendix G

for a representative cyclic demand scenario (experiment #35).

TABLE 5.8. PAIRED T-TEST COMPARISON (a=0.01) FOR CYCLIC
DEMAND.
Exp# Mean Variance Steep Trends (8 qtrs) Slow Trends (20 qtrs)

1 2 3 4 5 6 1 2 3 4 5 6

33,37 0.25 (P) 0.25 S S S s s s S S S s s s
34,38 4 (N) Low (2.6) S S s s s s s S s s s s
35,39 4 (N) Mod (10.2) s S s s s s s S s s s s
36,40 4 (N) High (31.4) s S s s s s s s s s s s
Col. l=ACWTBO Col. 2=ACWT Col. 3 = SMA Col. 4=Investment Col. 5=Total Cost Col. 6=Excess

TABLE 5.9. MEAN DD7FERENCE AND PERCENT CHANGE IN ACWT,
TOTAL COSTS AND ENDING EXCESS FOR CYCLIC DEMAND.
Exp# Mean Variance Steep Trend (8 qtrs) Slow Trend (20 qtrs)

ACWT
(Days)

Total
Costs ($)

Excess
(Units)

ACWT
(Days)

Total
Costs ($)

Excess
(Units)

33,37 0.25 (P) 0.25 -18.91
(-36.9%)

-20,213
(-7.8%)

-6.70
(-43.2%)

-29.20
(-53.3%)

-18,581
(-6.8%)

-9.90
H8.0%)

34,38 4 (N) Low (2.6) -24.16
(-77.8%)

-121,176
(-27.1%)

-142.24
(-54.2%)

-34.15
(-90.6%)

-171,830
(-33.4%)

-231.67
(-59.0%)

35,39 4 (N) Mod (10.2) -27.88
(-63.7%)

-141,981
(-26.2%)

-150.76
(-44.9%)

-40.89
(-79.7%)

-200,816
(-32.6%)

-209.66
(-46.2%)

36,40 4 (N) High (31.4) -30.80
(-51.2%)

-180,483
(-25.1%)

-175.92
(-39.8%)

-*8.09
(-71.8%)

-256,938
(-32.1%)

-203.94
(-37.5%)

79

The data indicates that the modified Silver model performs significantly

better than the UICP model when mean demand is non-stationary. This is evident

even in the case of Poisson demand. It should be noted that, in reality, planned

program requirements would be the reason for some anticipated increases in demand.

Planned program requirements are non-recurring requirements for material that cannot

be forecasted by the UICP system using past demand observations [Ref. 21J. Funding

these requirements would partially offset the large differences in performance

measures realized between the UICP model and the modified Silver model..

In addition to running the modified Silver model with variable forecasts,

eight simulation runs were performed with an unmodified or "fixed" forecast (i.e.,

future forecasts are assumed to be the same as the present forecast). The purpose of

these runs is to compare model performance with the same forecast process and

assumptions used by the UICP model. Table 5.10 provides a summary of the results

for these additional runs. These runs are identified by the same experiment number

suffixed with an "F." A complete set of results are contained in Appendix E (Table

E-5). The results are consistent with previous results with stationary mean demand;

the modified Silver model will perform equal to or better than the UICP model given

the same, stationary forecast information, with the possible exception of very low

demand items.

80

TABLE 5.10. PAIRED T-TEST COMPARISON (a=.01) FOR CYCLIC
DEMAND AND MODIFIED SDLVER WITH STATIONARY MEAN
ASSUMPTION.
Exp# Mean Variance Steep Trends (8 qtrs) Slow Trends (20 qtrs)

1 2 3 4 5 6 1 2 3 4 5 6

33F,37F 0.25 (P) 0.25 - - u s U s
34F,38F 4 (N) Low (2.6) S s s s s s S S S S S s
35F.39F 4 (N) Mod (10.2) S s s s s s s S S S s s
36F.40F 4 (N) High

(31.4)
s s s s s s s s S s s s

Col. l=ACWTBO Col. 2=ACWT Col. 3=SMA Col. 4= Investment Col. 5=Total Cost Col. 6=Excess
(P) - Poisson Demand (N) - Normal Demand

3. Declining Demand

The third simulation series examines model performance when mean

demand is declining. The series consist of thirty-six simulation runs (see Appendix C,

experiments 41 through 76) and nine generated demand profiles (see Appendix D,

profiles 4 through 12). For Poisson demand, the mean is initially set at 1 unit per

quarter and declines to a stationary mean demand of approximately 0.25 units per

quarter. For Normal demand, the mean is initially set at 25 units per quarter and

declines to a stationary mean demand of approximately 6 units per quarter. An

exception is made in eight cases where mean demand is made to decline to zero.

Trend periods are either exponential, step or linear. The trend parameters are listed

by experiment number in Appendix C. The length of the trend periods are defined in

the same way as in the previous section. The steep or short trend periods begin at

quarter 52 and end at quarter 59. The slow or long trend periods begin at quarter 40

and end at quarter 59. Data is collected for a total of 40 quarters (from quarter 26 to

81

quarter 65) which includes 6 quarters of stationary mean demand following quarter 59.

For all experiments, model comparisons are based on a paired-t test on the differences

of the means (sample size=500).

In a declining demand scenario the overall effectiveness of reducing

investments can be measured by the impact on customer service and the ending level

of excess stock. Ideally, stock levels should be reduced in such a manner that safety

stock will provide an adequate buffer during the period of decline to maintain the same

level of customer service that is normally achieved. In our case, given the number of

scenarios, ACWT will be used as the measure of customer service.

Tables 5.11 and 5.12 provide results for the steep and slow decline

scenarios, respectively. The notation is the same as that used in the previous sections,

with the exception of column designations. The mean values, differences and p-values

of all performance measures are listed by experiment number in Appendix E (Table E-

3). As in the previous section, the data indicates that the modified Silver model

performs significantly better than the UICP model when mean demand is non-

stationary. In this declining demand case, the reduction in excess and total cost

achieved by the modified Silver model are appreciable, with little, if any, practical

impact on the level of customer service provided. This is true even in the case of

Poisson demand where the underlying model assumptions may be significantly

incorrect.

In interpreting the results, the following observations should be made.

First, although the results often indicate a statistical difference in ACWT, in all cases

82

TABLE 5.11. PAIRED T-TEST COMPARISON (a=0.01) FOR DECLINING
DEMAND WITH STEEP TREND.
Exp# Mean Var Concave

Up
Linear Concave

Down
Concave
Up(0)

1 2 3 1 2 3 1 2 3 1 2 3

45,53,61,69 0.25 (P) 0.25 u s S U S s U S s - S s
46,54,62,70 25 (N) 100 s s s S S s S S s S S s
47,55,63,71 25 (N) 400 - s s - S s s S s s S s
48,56,64,72 25 (N) 1225 s s s s S s - s s s s s
Col. 1=ACWT Col. 2=Total Cost Col. 3= Excess (P) - Poisson Demand (N) - Normal Demand

TABLE 5.12. PAIRED T-TEST COMPARISON (a=0.01) FOR DECLINING
DEMAND WITH SLOW TREND.
Exp# Mean Var Concave

Up
Linear Concave

Down
Concave
Up(0)

Step

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

41,49,57,65,73 0.25 (P) 0.25 u S S U S s U S S U S S U S s
42,50,58,66,74 25 (N) 100 s S S S S s S S s s S S s s s
43,51,59,67,75 25 (N) 400 - S S s s s s S s - S S - s s
44,52,60,68,76 25 (N) 1225 - S s - s s - S s - S S - s s
Col. 1=ACWT Col. 2=Total Cost Col. 3= Excess (P) - Poisson Demand (N) - Normal Demand

the actual difference is less than 2 days.14 Secondly, the amount of ending excess

decreases for both models as the length of the declining period increases. This is

expected as a longer declining period should result in a greater portion of the excess

inventory being used up. Thirdly, the performance of the modified Silver model in

reducing ending excess is a function of the variability of demand. In the case of

14 Since we would like maintain ACWT at the same level normally achieved, it is also useful to
compare the results from a declining demand scenario with a stationary mean demand scenario with similar
system parameters. For example, if we compare the results of the declining demand experiment #67
(ACWT=3.37) with those of the stationary demand experiment #10 (ACWT=3.25), we see virtually no
change in ACWT.

83

Normal demand, the average percent reduction in ending excess compared to the

UICP model is 53.4%, 42.1% and 35.9%, respectively for low, moderate and highly

variable demand. For the Poisson demand case the average percent reduction is

33.4%. There is little variation in the percent reduction as a result of the type of

decline pattern.

Table 5.13 summarizes the results for the linear declining demand cases.

The mean difference is defined as the difference between the mean for the modified

Silver model and the mean for the UICP model (Modified Silver - UICP). A negative

value indicates that the modified Silver model value is lower. The percentage change

is defined as the percent change in the mean for the modified Silver model from the

UICP model. A negative percentage indicates a reduction for the modified Silver

model from the UICP model. The results are similar for the other scenarios. Since

there is a significant difference in the behavior of the models with the length of the

declining cycle, cumulative and monthly effectiveness data are displayed graphically

for both a steep trend (experiment #71) and a slow trend (experiment #59) declining

demand scenario in Appendices H and I, respectively.

As in the previous section, a corresponding series of additional simulation

runs were done with an unmodified forecast process. Tables 5.14 and 5.15 provide

summaries for these additional runs. These "fixed" runs are identified by the same

experiment number suffixed with an "F." The results are consistent with previous

results using a stationary mean demand assumption. That is, with the exception of

Poisson demand scenarios, the modified Silver model performs equal to or better than

84

TABLE 5.13. MEAN DIFFERENCE AND PERCENT CHANGE IN ACWT,
TOTAL COST AND ENDING EXCESS FOR DECLINING DEMAND WITH
LINEAR TREND.

Mean Variance Steep Trend (8 qtrs) Slow Trend (20 qtrs)

ACWT
(Days)

Total Cost
($)

Excess
(Units)

ACWT
(Days)

Total Cost
($)

Excess
(Units)

1 (P) 1 1.97
(62.1%)

-5,383
(-0.65%)

-4.67
(-33.7%)

1.71
(39.1%)

-6,870
(-9.1%)

-4.16
(-34.3%)

25 (N) Low (100) -0.63
(-0.6%)

-18,436
(-10.7%)

-146.08
(-54.0%)

-0.68
(-66.6%)

-18,972
(-12.6%)

-97.55
(-53.4%)

25 (N) Mod (400) -0.11
(-2.9%)

-16,234
(-8.2%)

-129.47
HI .9%)

-1.62
(-40.5%)

-21,643
(-12.3%)

-98.09
(-42.3%)

25 (N) High (1225) -1.13
(-12.8%)

-20,434
(-8.1%)

-143.11
(-37.2%)

0.06
(0.7%)

-22,741
(-9.9%)

-118.04
(-36.8%)

(P) - Poisson Demand (N) - Normal Demand

TABLE 5.14. PAIRED T-TEST COMPARISON (a=.01) FOR DECLINING
DEMAND WITH STEEP TREND AND MODHTED SDLVER WITH
STATIONARY MEAN ASSUMPTION.

Exp# Mean Var Concave
Up

Linear Concave
Down

Concave
Up(0)

1 2 3 1 2 3 1 2 3 1 2 3

45F,53F,61F,69F 0.25 (P) 0.25 u u - U U - U u u - - -

46F,54F,62F,70F 25 (N) 100 s s s S s s s s s S s s

47F,55F,63F,71F 25 (N) 400 - s s s - s s s s s s s

48F,56F,64F,72F 25 (N) 1225 s s s s s s s s s s s s

Col. 1=ACWT Col. 2=Total Cost Col. 3=Excess (P) - Poisson Demand (N) - Normal Demand

TABLE 5.15. PAIRED T-TEST COMPARISON (a=.01) FOR DECLINING
DEMAND WITH SLOW TREND AND MODHTED SH.VER WITH
STATIONARY MEAN ASSUMPTION.

Exp# Mean Var Concave
Up

Linear Concave
Down

Concave
Up(0)

Step

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

41F,49F,57F,65F,73F 0.25 (P) 0.25 u u - U - - U - - U - - U U -

42F,50F,58F,66F,74F 25 (N) 100 s s s s s s s s s s S s s s s
43F,51F,59F,67F,75F 25 (N) 400 - s s s s s s s s - s s s s s
44F,52F,60F,68F,76F 25 (N) 1225 - s s s s s - s s - s s - s s

Col. 1= ACWT Col. 2=Total Cost Col. 3=Excess (P) - Poisson Demand (N) - Normal Demand

85

the UICP model on all measures of effectiveness. A complete set of results are

contained in Appendix E (Table E-6).

As further evidence of the ability of the modified Silver model to maintain

a specified level of customer service while reducing investment levels, one can

compare the results of the modified Silver model with modified forecasts to the

modified Silver model with fixed forecasts. Although there is a significant difference

in the performance of the model under the two forecast assumptions in terms of total

cost and ending excess (see Tables E-3 and E-6), the average difference in ACWT for

all scenarios is less than 0.41 days.

4. Increasing Demand

The final simulation series examines model performance when mean

demand is increasing. The series consists of sixteen simulation runs (see Appendix C,

experiments 77 through 92) and four demand profiles (see Appendix D, profiles 13

through 16). In the case of Poisson demand, the mean is initially set at 0.25 units per

quarter and increases to a stationary mean demand of 2.0 units per quarter. For

Normal demand, the mean is initially set at 4 units per quarter and increases to a

stationary mean demand of 32 units per quarter. In each case, trend periods are

exponential. The trend parameters are listed by experiment number in Appendix C.

The lengths of the trend periods are the same as in the previous sections. The steep

or short trend periods begin at quarter 52 and end at quarter 59. The slow or long

trend periods begin at quarter 40 and end at quarter 59. Data is collected for a total

of 65 quarters (from quarter 26 to quarter 90), allowing sufficient time for the

86

processes to return to a steady state condition following the increase period. For all

experiments, model comparisons are based on a paired t-test on the differences of the

means (sample size=500).

In an increasing demand scenario overall effectiveness can best be

measured by the impact of investment levels on customer service. Investment levels

must be increased to maintain a specified service level without generating excess

safety levels. Again, as was the case for declining demand scenarios, model

performance will be measured in terms of ACWT, total cost, and ending excess.

Table 5.16 provides results for both steep and slow trend periods. With

the exception of column designations, the notation is the same as the notation that was

used in the previous sections. The mean values, differences and p-values of all

performance measures are listed by experiment number in Appendix E (Table E-4).

As in the previous sections, the data indicates that the modified Silver model performs

significantly better than the UICP model when mean demand is non-stationary.

TABLE 5.16. PAIRED T-TEST COMPARISON (a=0.01) FOR INCREASING
DEMAND.
Exp # Mean Var Steep Trend (8 qtrs) Slow Trend (20 qtrs)

Concave
Upward

Concave
Down

Concave
Upward

Concave
Down

1 2 3 1 2 3 1 2 3 1 2 3

81,89,77,85 0.25 (P) 0.25 S S - S - - S - - S U -

82,90,78,86 4 (N) 2.6 S S s s s s S s s s s s
83,91,79,87 4 (N) 10.2 s S s s s s s s s s s s

84,92,80,88 4 (N) 31.4 s s s s s s s s s s s s

Col. 1=ACWT Co . 2=Total Cost Col. 3=Excess (P) - Poisson Demand (N) - Normal Demand

87

Table 5.17 summarizes the results for the concave upward increasing

demand profile scenarios. Similar results were obtained for the concave downward

scenarios. As in the previous section, since there is a difference in the behavior of

the models with the length of the increasing trend period, cumulative and monthly

effectiveness data are displayed graphically for both a steep trend (experiment #83)

and a slow trend (experiment #79) increasing demand scenario in Appendices J and K,

respectively.

TABLE 5.17. MEAN DIFFERENCE AND PERCENT CHANGE IN ACWT,
TOTAL COST, AND ENDING EXCESS FOR INCREASING DEMAND.
Mean Variance Concave Upward

Steep Trend (8 qtrs)
Concave Upward
Slow Trend (20 qtrs)

ACWT
(Days)

Total Cost
($)

Excess
(Units)

ACWT
(Days)

Total Cost
($)

Excess
(Units)

0.25 (P) 0.25 -35.43
(-61.8%)

-1,456
(-0.9%)

0.21
(5.2%)

-16.10
(-37.6%)

165
(0.1%)

-2.19
(-4.7%)

4 (N) Low (2.6) -44.35
(-90.5%)

-137,538
(-35.1%)

-14.92
(-27.2%)

-26.82
(-79.5%)

-87,956
(-24.1%)

-7.66
(-14.1%)

4 (N) Mod (10.2) -54.47
(-81.5%)

-177,773
(-37.1%)

-9.98
(-9.5%)

-28.38
(-64.2%)

-97,573
(-22.8%)

-8.46
(-7.3%)

4 (N) High (31.4) -61.59
(-73.8%)

-231,835
(-34.1%)

-12.91
(-7.9%)

-32.70
(-50.6%)

-129,052
(-22.0%)

-8.97
(-4.7%)

(P) - Poisson Demand (N) - Normal Demand

In the increasing demand case, the modified Silver model results in a

lower ACWT at a lower total cost. The percent reduction in ACWT is a function of

both the length of the trend period and the variability of demand. The longer the

trend period the more time the forecast system has to react to the trend, resulting in a

slightly better performance of the UICP model. As the variability of demand

increases, the percent reduction in ACWT decreases. The overall reduction in ACWT

88

ranges from approximately 38% in the case of Poisson Demand to more than 95% for

low varying Normal demand with a steep trend. However, as in the cyclic demand

cases, one would expect some planned program requirements to be established under

UICP in anticipation of increases in demand, partially offsetting the poorer

performance of the UICP model.

Finally, a series of additional simulation runs were done using an

unmodified forecasting process, as in the previous sections. Table 5.18 summarizes

the results for these additional runs. The results are consistent with previous results

using a stationary mean demand forecasting process. That is, with the exception of

Poisson demand scenarios, the modified Silver model outperforms or performs equally

as well as the UICP model. A complete set of results for this last series is listed in

Appendix E (Table E-7).

TABLE 5.18. PAIRED T-TEST COMPARISON (a=.01) FOR INCREASING
DEMAND AND MODIFIED SDLVER MODEL WITH STATIONARY MEAN
ASSUMPTION.
Exp# Mean Var Steep Trend (8 qtrs) Slow Trend (20 qtrs)

Concave
Upward

Concave
Down

Concave
Upward

Concave
Down

1 2 3 1 2 3 1 2 3 1 2 3

81F,89F,77F,85F 0.25 (P) 0.25 U

82F,90F,78F,86F 4 (N) 2.6 S S s S s S S S S S s s
83F,91F,79F,87F 4 (N) 10.2 s S s S s s s S S s s s
84F,92F,80F,88F 4 (N) 31.4 s S s s s s s S s s s s
Col. 1=ACWT Col. 2=Total Cost Col. 3=Excess (P) - Poisson Demand (N) - Normal Demand

89

D. DECISION ANALYSIS

Until now, results have been presented in a simple comparative format indicating

which model outperformed the other under various specific performance measures.

Little direct insight has been offered as to whether the data is sufficient to justify the

replacement of one model with the other. Although implementation of a new model is

certainly a management decision that involves many more factors than just the

measures of effectiveness outlined in this thesis, a simple approach is offered here to

facilitate such a decision making process.

The problem we are faced with is commonly referred to as multiple criteria

decision making (MCDM). That is, the decision maker is faced with making a

decision in the presence of multiple criteria or attributes, some of which may conflict.

In this case the main performance measures that are in conflict are ACWT and total

cost.

One common MCDM approach is called simple additive weighting. Using this

procedure, the decision maker first assigns importance weights to each attribute. Each

attribute is then scaled onto some comparable measurement scale. The final scoring of

an alternative is simply the sum of the product of the weights and their corresponding

scaled attribute values. [Ref. 34: Chapters 1-2]

In our case, assume that a decision will be based on the following three

attributes: ACWT, total cost, and ending excess. Scaling is necessary since the first

attribute is measured in days, the second in dollars, and the third in units. Although

several techniques exist for scaling attributes with incommensurable units, a simple

90

and appealing approach is to use a linear scale transformation [Ref. 34: Chapter 2].

Since our attributes are "cost" type data (i.e., the smaller the value the greater the

preference) each attribute is scaled by dividing its value into the smallest

corresponding attribute value from all alternatives. Therefore the smallest value will

receive a scaled value of 1.0 and all others values will be less than or equal to 1.0.

The appealing advantage of this technique is that it is simple and that the relative order

of magnitude of each value is maintained under the transformation.

The disadvantage is that the results can be misleading if the attribute values are

truly not comparable [Ref. 34: p. 101-102]. This is precisely the problem in our case.

Using this technique to scale our attributes, it is possible for a relatively small

difference in ACWT for small attribute values to receive the same scaled value as a

relatively large difference in total cost. For example, consider an ACWT of 2 days

for one model and 1.8 days for the other. The model with the lower ACWT would

receive a value of 1.0 and the other would receive a value of 0.9. Consider at the

same time, that total costs are 270,000 and 300,000 dollars, respectively for the two

models. In this case the corresponding scaled values would again be 1.0 and 0.9.

Thus, a difference of 0.2 days will receive the same relative value as a difference of

$30,000 where, in reality, 0.2 days is probably less significant than $30,000.

Since we are comparing only two models, one alternative scaling procedure is to

scale all attributes to a common scale based on the differences in the attribute values.

For example, we might assume that differences in ACWT of less than 2 days, total

cost less than 1.0% and ending excess less than 1 unit are comparable, and should

91

receive the same scaled value. From this baseline, we could develop a sliding scale to

cover the full range of attribute values. Obviously developing such a scale would be a

management function requiring much judgement and expert opinion. But, for

illustrative purpose, consider the following such scaling system:

iCWT Total Cost Excess Excess Scale
Days) (Dollars) (max > 10) (max < 10) (+/-)

0-2 0-1% 0-5% 0-1 0
2-5 1-5% 5-10% 1-2 1

5-10 5-10% 10-15% 2-3 2
10-20 10-15% 15-25% 3-4 3
20-30 15-20% 25-35% 4-5 4
30-40 20-25% 35-45% 5-6 5
40-50 25-30% 45-55% 6-7 6
50-60 30^0% 55-65% 7-8 7
60-70 40-50% 65-75% 8-9 8
70-80 50-75% 75-85% 9-10 9
>80 >75% >85% 10

For each range of differences in a performance measure, a corresponding scale value

is assigned. For example, if the difference in ACWT is greater than 5 but less than or

equal to 10, a scaled value of 2 would be assigned. In our case, if the difference

favors the modified Silver model then the scale value assigned will be positive. If the

UICP model performed best, the scaled value is negative. Note that the scale for

ending excess has been split into a percent difference column and a unit difference

column depending on whether the largest value being compared is less than 10 units.

This is to avoid having very large percentage values for small actual differences in

excess. All percentages are computed as the ratio of the difference to the largest

92

absolute attribute value. To these scaled values we apply performance weights and

sum to attain a global performance value. A value of zero would indicate comparable

performance. The more positive the number the better the modified Silver model

performed. Similarly, the more negative the better the UICP model performed.

Thus, for a given set of management weight factors, comparative model performance

can be expressed in a single value.

Using this scaling technique, Table 5.19 provides the global performance

measure values for four different management weighting systems for each of the first

twenty-two stationary mean demand scenarios. The columns correspond to the

management weighting system identified below the table. The corresponding attributes

are ACWT, total cost, and ending excess, in that order. For example, Column 1

provides equal weighting to all three attributes, while Column 2 provides twice as

much weight on ACWT as it does the other two attributes. Similarly, Column 3

provides twice as much weight on total cost and Column 4 provides twice as much

weight on ending excess. Although the original comparison data for the experiments is

presented in Tables 5.3 and 5.4, this type of display may be more beneficial for a

decision maker. For example, if the current management philosophy considers total

cost to be twice as important as either ACWT or the amount of ending excess, and

that global performance measure values of 1.0 or greater provide significant incentive

to warrant replacement of the current model, a decision might be made based the data

in Column 3 to implement the modified Silver model even under a stationary mean

demand assumption for low dollar value items with high demand. Similarly, a

93

decision might also be made to implement the modified Silver model under a

stationary mean demand assumption for low dollar items with low or moderate

demand and high variability.

Applying the same technique to non-stationary demand profiles may also be

instructive even though the individual differences are more distinguishable. Table

5.20 provides global performance measure values for declining demand scenarios.

The original data was presented in Tables 5.11 and 5.12. Although it is clear that the

modified Silver model performs significantly better than the UICP model in each

scenario, the magnitude of the improvement is more evident. The reader may also

find it instructive to note that in developing Table 5.20, the mean scaled values for

ACWT, total cost, and ending excess are 0.03, 2.53, and 5.78, respectively. Reading

these values back through the scale provides a convenient measure of the average

performance of the two models for each measure. Thus, for declining demand, one

should expect a 5-10%decrease in total cost and a 40-50% reduction in excess, with

no significant change in ACWT.

Tables 5.21 and 5.22 provide composite performance measures for cyclic and

increasing demand scenarios, respectively. The original comparison data for these

scenarios was presented in Tables 5.8 and 5.16. Again, using the mean scaled values,

for cyclic demand we attain average reductions from the modified Silver model of 30

days in ACWT, approximately 20% in total cost, and about 45% in total excess. For

increasing demand the mean scaled values indicate an average reduction of about 40

days in ACWT, 20% in total cost, and 5%in ending excess. Note in the latter case

94

ending excess is reflective of the near equivalent investment levels of the two models

after returning to a stationary mean condition following the increasing trend period.

The tables provided in this section are only offered as a possible decision tool.

The weighting systems used may or may not reflect current reality. In practice, a

management organization may need to include other cost or criteria into the decision

making process. Interpretation of the table values also requires some judgement.

Certainly, a composite or global performance measure of 5.0 should be considered

highly significant when read back through the scaling table. On the other hand, one

may be hesitant to consider a value of less than 1.0 as significant enough to warrant

any immediate changes to the system given other potential cost areas not specifically

addressed. The tables also provide important comparative information for decision

making. For example, based on Column 2 for steep decline in Table 5.20, it is

evident that if customer service (ACWT) is management's primary concern then

perhaps there are only marginal gains to be had by implementing the new model. On

the other hand, based on Column 4 of the same table, if management's primary focus

is on reducing excess following a period of decline, there is much more to be gained

by implementing the new model.

95

TABLE 5.19. COMPOSITE PERFORMANCE MEASURE BASED ON
MANAGEMENT WEIGHTING CRITERIA FOR STATIONARY DEMAND.

Exp# Mean Variance Low Dollar Value High Dollar Value

1 2 3 4 1 2 3 4

1, 12 0.25 (P) 0.25 .67 .80 .80 .40 .67 .80 .80 .40

2, 13 1 (P) 1 -.33 -.60 -.20 -.20 0.00 0.00 0.00 0.00

3, 14 4 (N) Low (2.6) .33 .20 .20 .60 .67 1.20 .40 .40

4, 15 4 (N) Mod (10.2) 0.00 0.00 0.00 0.00 .33 .20 .20 .60

5, 16 4 (N) High (31.4) 1.00 .60 1.0 1.4 0.00 -.40 0.0 .40

6, 17 12 (N) Low (23) 1.00 0.60 0.60 1.80 1.00 .60 .60 1.80

7, 18 12 (N) Mod (92) .67 .80 .80 .40 1.33 1.2 .80 2.00

8, 19 12 (N) High (282) 1.00 1.00 1.00 1.00 0.33 .20 .20 .60

9,20 25 (N) Low (100) 1.00 .60 1.00 1.40 1.67 1.00 1.00 3.00

10,21 25 (N) Mod (400) 2.00 1.60 2.00 2.40 .67 .80 .40 .80

11,22 25 (N) High (1225) 1.33 1.20 1.60 1.20 0.00 0.00 0.00 0.00

(P) - Poisson (N) - Normal ACWT / Total Cost / Ending Excess Weighting:
Col.l =0.33/0.33/0.33 Col. 2=0.50/0.25/0.25 Col. 3=0.25/0.50/0.25 Col. 4=0.25/0.25/0.50

TABLE 5.20. COMPOSITE PERFORMANCE MEASURE BASED ON
MANAGEMENT WEIGHTING CRITERIA FOR DECLINING DEMAND.

Exp# Mean Variance Steep Decline Slow Decline

1 2 3 4 1 2 3 4

45,41 0.25 (P) 0.25 2.33 1.40 2.20 3.40 2.33 1.40 2.20 3.40

53,49 0.25 (P) 0.25 1.67 1.00 1.00 3.00 2.33 1.40 2.20 3.40

61,57 0.25 (P) 0.25 2.33 1.40 2.20 3.40 2.33 1.40 2.20 3.4

69,73 0.25 (P) 0.25 2.67 1.60 2.80 3.60 2.00 1.20 2.00 2.80

46,42 25 (N) Low (100) 3.33 2.00 3.20 4.80 3.33 2.00 3.20 4.80

54,50 25 (N) Low (100) 3.33 2.00 3.20 4.80 3.33 2.00 3.20 4.80

62,58 25 (N) Low (100) 3.00 1.80 2.60 4.60 3.33 2.00 3.20 4.80

70,66 25 (N) Low (100) 3.67 2.20 3.40 5.40 3.67 2.20 3.80 5.00

47,43 25 (N) Mod (400) 3.00 1.80 3.00 4.20 3.00 1.80 3.00 4.20

55,51 25 (N) Mod (400) 2.67 1.60 2.40 4.00 3.00 1.80 3.00 4.20

63,59 25 (N) Mod (400) 2.67 1.60 2.40 4.00 3.00 1.80 3.00 4.20

71,67 25 (N) Mod (400) 3.33 2.40 3.20 4.40 3.00 1.80 3.00 4.20

48,44 25 (N) High (1225) 2.67 1.60 2.80 3.60 2.67 1.60 2.80 3.60

56,52 25 (N) High (1225) 2.33 1.40 2.20 3.40 2.33 1.40 2.20 3.40

64,60 25 (N) High (1225) 2.33 1.40 2.20 3.40 2.33 1.40 2.20 3.40

72,68 25 (N) High (1225) 3.00 1.80 3.00 4.20 2.67 1.60 2.80 3.60

(P) - Poisson (N) - Normal ACWT / Total Cost / Ending Excess Weighting:
Col.l =0.33/0.33/0.33 Col. 2=0.50/0.25/0.25 Col. 3=0.25/0.50/0.25 Col. 4=0.25/0.25/0.50

96

TABLE 5.21. COMPOSITE PERFORMANCE MEASURE BASED ON
MANAGEMENT WEIGHTING CRITERIA FOR CYCLIC DEMAND.

Exp# Mean Variance Steep Decline Slow Decline

1 2 3 4 1 2 3 4

33,37 0.25 (P) 0.25 3.00 3.00 2.20 3.80 4.00 4.00 3.20 4.80

34,38 4(N) Low (2.6) 4.67 4.40 4.40 5.20 6.33 5.80 6.60 6.60

35.39 4(N) Mod (10.2) 4.33 4.20 4.20 4.60 5.33 5.60 4.80 5.60

36,40 4(N) High (31.4) 5.33 5.20 5.60 5.20 5.00 6.00 6.40 5.60

(P) - Poisson (N) - Normal ACWT / Total Cost / Ending Excess Weighting:
Col.l =0.33/0.33/0.33 Col. 2=0.50/0.25/0.25 Col. 3=0.25/0.50/0.25 Col. 4=0.25/0.25/0.50

TABLE 5.22. COMPOSITE PERFORMANCE MEASURE BASED ON
MANAGEMENT WEIGHTING CRITERIA FOR INCREASING DEMAND.

Exp# Mean Variance Steep Decline Slow Decline

1 2 3 4 1 2 3 4

81,77 0.25 (P) 0.25 1.67 3.00 1.00 1.00 0.67 1.20 0.40 0.40

89,85 0.25 (P) 0.25 1.67 3.00 1.00 1.00 1.33 2.40 0.80 0.80

82,78 4(N) Low (2.6) 5.67 5.80 6.20 5.00 3.67 3.80 4.20 3.00

90,86 4(N) Low (2.6) 5.33 5.60 6.00 4.40 4.00 4.00 4.40 3.60

83,79 4(N) Mod (10.2) 5.00 5.80 5.80 3.40 3.30 3.60 4.0 2.40

91,87 4(N) Mod (10.2) 5.00 5.80 5.80 3.40 4.00 4.40 4.80 2.80

84,80 4(N) High (31.4) 5.33 6.40 6.0 3.60 3.30 4.0 4.0 2.0

92,88 4(N) High (31.4) 5.33 6.40 6.00 3.60 3.67 4.20 4.60 2.20

(P) - Poisson (N) - Normal ACWT / Total Cost / Ending Excess Weighting:
Col.l =0.33/0.33/0.33 Col. 2=0.50/0.25/0.25 Col. 3=0.25/0.50/0.25 Col. 4=0.25/0.25/0.50

97

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A. SUMMARY

The Navy's existing UICP (s,S) inventory model for demand based consumable

items is based in part on the economic order quantity. One key assumption of the

model is that mean demand remains stationary over time. In reality, this assumption

is often violated. In order to partially compensate for this, the reorder point and order

up-to-level are periodically recalculated using newly forecasted mean demand. This

procedure works well enough as long as the increase or decrease in mean demand is

gradual. However, if the trend is steep, the existing model can significantly under- or

overestimate s and S. In an increasing demand environment, the result can be

exceptionally poor levels of customer service. In a declining demand environment,

such as that associated with a major ship decommissioning program, the result can be

the creation of substantial amounts of excess inventory.

In this thesis, we have proposed an alternative inventory model which does not

rely on the assumption of a stationary mean. The model is an extension of Silver's lot

sizing heuristic for stochastic demand with a time varying mean [Ref. 7J. Our

modified Silver model includes provisions for stochastic lead times and a modified

version of the Silver-Meal heuristic for determining the length of an order cycle. The

model uses the existing UICP forecasting system to obtain a single period forecast but

allows the inclusion of predicted or known increases or declines in future forecasts.

98

Decision rules for implementation, including recommendations for the values of

various variables and parameters, have also been discussed.

Evaluation of the modified Silver model is based on a Monte Carlo simulation.

The baseline measurement is the performance of the current Navy Uniform Inventory

Control Program (UICP) model for consumable items under the same simulated

demand scenarios. Both simulations approximate the inventory management of a

single item for as many as 120 quarters. The simulation experiments include a variety

of run characteristics, system parameter settings, and generated demand profiles.

Testing of the modified Silver model using a stationary mean demand forecast

demonstrated comparable or slightly improved performance over the UICP model.

This supports the assertion that the models are nearly equivalent under the assumption

that mean demand is stationary.

B. CONCLUSIONS

Simulation tests of each model clearly demonstrated that the modified Silver

model outperforms the existing UICP model when mean demand is varying and

estimates of the varying mean are included in the forecasts. In declining demand

scenarios, the modified Silver model significantly reduced both excess inventory and

total cost with no reduction in average customer wait time. In increasing demand

scenarios, the model significantly reduced average customer wait time at an overall

lower total cost.

99

In many cases inventory managers are presented information regarding program

changes which will have a significant impact on the future mean rate of demand.

Being able to use this information in determining inventory levels is critical if the

manager wishes to maintain an adequate level of customer service while avoiding

embarrassing and costly excess or deficit inventory positions. The current UICP

inventory model lacks the capability to accept a varying mean demand forecast. The

modified Silver model is a suitable alternative which is both simple to understand and

readily implementable within the existing inventory information system.

C. RECOMMENDATIONS

This study has not examined the issue of varying the point in time at which

modified forecasting is implemented when using the modified Silver model. Under

normal circumstances, knowledge of future trends may not be available until nearly

the moment the trend commences. Therefore, it is recommended that additional

research be done to determine the extent to which the performance of the modified

Silver model may be degraded by late forecasts of changes in mean demand. It should

be noted though, since the UICP and modified Silver models are generally comparable

when the same steady state forecasting process is used, one can reasonably expect the

modified Silver model with late forecasting to perform no worse than the current

model.

There is strong evidence to suggest that the use of forecasted mean absolute

deviation to estimate the variance of forecasted lead time demand is erroneous in the

100

case of very low demand items. Additional research should include the formulation of

a power rule for this variance similar to that used in UICP.

The current model has been developed and tested only for consumable items.

Since the current UICP model includes an economic reorder quantity determination for

the procurement of repairable items, some future research should examine the potential

applicability and integration of the modified Silver model into the UICP repairables

model.

In addition to the modified Silver model described in this thesis, other

deterministic inventory models exist that may, with appropriate modifications, perform

well for time varying stochastic demand with stochastic lead times. One such model,

the Wagner-Whitin algorithm, is known to guarantee optimality for the deterministic

case in terms of minimizing the total cost of ordering and holding inventory

[Ref. 9: p. 227J, although it can be expected to require significantly increased

computation time and has more theoretical complexity. A list and description of such

alternative models is found in Tersine [Ref. 35: Chapter 4], or Silver and Peterson

[Ref. 9: Chapter 6].

101

APPENDIX A. SIMULATION CODE

{$M $4000,0,0} {$r + } {$N + ,E + } {$G + } {Q + }
program Mod Silver Simulator (input.output);

uses dos, crt, toolbox, unirand, pqueue;

type quarterArray = array [1.. 120] of real;
weeklyArray = array [1..1560] of real;
qtrlntArray = array [1.. 120] of integer;
changeRealArry = array [1..10] of real;
changelntArry = array [1 ..10] of integer;
descriptType = string[40];
statRecord = record

Mean:real;
Variance:real;
CIHigh:real;
CILow:real;

end;
qtrStatArry= array [1.. 120] of statRecord;

const COEFF1 = 1.386;
POWER1 =0.746;
COEFF2 = 3.869;
POWER2=1.378;
MAXPLT=14.0;
MINPLT=2.0;
ERROR = 1.00000000000000E-0010;

var wklyObserv:weeklyArray;
observ, frcst, mad, meanDmdArry, varDmdArryrquarterArray;
steplndArry, trndlndArry,mkCodeArry:qtrlntArray;
qtrACWTBOArry,qtrACWTArry,qtrSMAArry,qtrlnvestArry,qtrlnappArry:qtrStatArry;
cumACWTBOArry,cumACWTArry,cumSMAArry:qtrStatArry;
observType,distrType,outputType,seedType,wkDataType,qtrDataType,
repStatType,frcstDataType,silverSSType:char;
numberRep,i,n,s,numberOfReps,numberOfQtrs,numberOfWks,markCode,initlnv,
initOS,initOrders,simCount,startSSQtr,endSSQtr,initSSOH,initSSOS,
initSSOrders:integer;
meanDemand, varDemand:real;
trendOn,StepOn,nmbrSteps, nmbrTrends,ROLowConst,maxQtrs,minQtrs,maxDecl,
seedlndex,negBinS:integer;
TWUS:longint;
unitPrice,PLT,P1,adminCost,obsol,timePref,storage,shortCost,
frcstErrCoeff,bufferMult,PLTSigMuRatio:real;

102

inputfile,outputfile:text;
realval,negBinP:real;
stop:boolean;
startstep, startrnd, endtrnd: changelntArry;
stepmult, trendcoeff, trendpower: changeRealArry;
hourl ,minute1 .second 1 ,hdSed ,hour2,minute2,second2,hdSec2:word;
outFileName:string;
OSHeap, BOHeap: PriorityQueueType;
ACWTBO,ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,
inappAsset,inappVal:real;
simACWTBO, simACWT, simSMA, simlnvest, simOrderCount,simLastOH,
simLastOS^imACWTBOVa^simACWTVar.simSMAVar.simlnvestVaosimOrderCountVar,
simLastOHVar,simLastOSVar,simTotalCost,simTotalCostVar,simlnapp,simlnappvar,
simlnappVal,simlnappValVar,simlnitSSOH,simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,simlnitSSOrdersVar:real;
runDescript:descriptType;
currSeed:longint;

procedure Frontscreen;

begin
clrscr;
writeln;
writeln;
writeln;
writeln;
writeln;
writeln;
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
Delay« 1500); {For 1500 ms}
clrscr;

end;

***********************»»»»»••»*»*M

MODIFIED
SILVER MODEL

SIMULATOR
FOR CONSUMABLES

*');
); *»

*»

* G. C. Robillard LT,SC *');

Revised: 9/01/93 *');

procedure runtype (var distrType,outputType,wkDataType,qtrDataType,
frcstDataType,repStatType,silverSSType:char;

var numberOfQtrs,numberOfWk.s,numberOfReps,negBinS,
seedlndex,startSSQtr,endSSQtr:integer;

var meanDemand, varDemand,negBinP:real;
var inputfile,outputfile: text;
var frcst,mad: quarterArray;
var seeds:seedArryType;

103

var outFileName:string;
var runDescript:descriptType);

var done: boolean;
i,maxStart:integer;
demandlnFile: string;

begin
writeln;
writeln (■ ••• THIS SCREEN WILL ALLOW SELECTION OF RUN TYPE OPTIONS
done: = FALSE;
writeln;
writeln; writeln;
write ('Enter the number of replications (from 1 to 20000) to be run : ');
numberOfReps: = Getjntegerd ,20000);
writeln;
repeat

writeln ('Random Number Generator Seed Selection: ');
writeln;
writeln (' 1 - Default Seeds (unique seed for each replication)');
writeln (' 2 - Select Seeds (max number of replications is 100)');
writeln;
write ("Choice: ');
seedtype: = readkey;
writeln (seedtype);
writeln;
case seedtype of

T: begin
done: = TRUE;
maxStart: = 20001 -NumberOfReps;
writeCEnter Random Seed Start Index (1 to ',maxStart:2,'): ');
seedlndex: = Getjntegerd, maxStart);
end;

'2': begin
done: = TRUE;
if NumberOfReps > 100 then NumberOfReps: = 100;
for i : = 1 to numberOfReps do begin

write ('Enter Seed value for replication ',i,' : ');
seeds[i]: = GetJ.onglntd,2147483646);
writeln;

end; {for}
end

end
until done = TRUE;
clrscr;
writeln (' '*** RUN SELECTION OPTIONS CONTINUED ♦♦**');
writeln;
writeln;
writeCEnter Run Description: ');
readln (runDescript);
writeln;

104

♦ * » M

write ('Enter the number of simulation quarters (max 120): ');
numberOf Qtrs: = Getjntegerd, 120);
numberOfWks: = 13*NumberOfQtrs;
writeln;
write ('Enter the start of simulation SS (collect stats) quarter (max ',numberOfQtrs:3,*): '

);
startSSQtr: = Getjntegerd ,numberOfQtrs);
writeln;
write ("Enter the end of simulation SS (collect stats) quarter (max ',numberOfQtrs:3,'): '

);
endSSQtr: = GetJnteger(startSSQtr,numberOfQtrs);
writeln;
done: = FALSE;
repeat

writeln (Type of Distribution: ');
writeln;
writeln (' 1 - Normal');
writeln (' 2 - Poisson');
writeln (' 3 - Neg Binomial');
writeln;
write ('Choice: ');
distrType: = readkey;
writeln (distrType);
writeln;
case distrType of

•1': begin
done: = TRUE;
write ('Enter quarterly mean demand: ');
meanDemand: = Get_Real(0.0001,999999.0);
writeln;
write {'Enter demand variance: ');
varDemand: = Get_Real(0.0001,999999.0);
writeln
end;

'2': begin
done: = TRUE;
write ('Enter quarterly mean demand: ');
meanDemand: = Get_Real(0.0001,999999.0);
varDemand: = meanDemand;
writeln;
end;

'3': begin
done: = TRUE;
repeat

writeln;
write ('Enter parameter p (0 < p < 1): ');
negBinP: = Get_Real(0.0001,0.9999);
writeln;
write ('Enter parameter s (s = 1,2,3 ...) : ');
negBinS: = Getjntegerd ,100);

105

writeln;
meanDemand: = (negbinS + (1 -negBinP))/negBinP;
varDemand: = (negBinS + (1 -negBinP))/(sqr(negBinP));
writelnCThe quarterly mean is: ',meanDemand:8:2);
writelnCThe demand variance is: ',varDemand:8:2);
writeln;
writeCChange Initial Neg Binomial Parameters? (Y or N): ');

until not(Get_Answer);
end;

end
until done = TRUE;
frcst[1]: = meanDemand;
mad[1]: = COEFF1 *exp(P0WER1 *ln(frcst[1]));
done: = FALSE;
clrscr;
writeln (' •••• RUN SELECTION OPTIONS CONTINUED ****');
repeat

writeln;
writeln ('Send Output to: ');
writeln;
writeln (' 1 - Screen');
writeln (' 2 - File');
writeln;
write ('Choice: ');
outputType: = readkey;
writeln (outputType);
case outputType of

'1': begin
done: = TRUE;
assign(outputfile,'con');

end;
'2': begin

done: = TRUE;
repeat

writeln;
write ('Enter Path and Filename: ');
readln (outFileName);
writeln;
writeln ('Path and FileName entered: ',outFileName);
writeln;
write ('Change Path and FileName entered? (Y or N): ');

until not(Get_Answer);
assign(outputfile,outFileName);

end;
end;

until done = TRUE;
clrscr;
writeln (' **** RUN SELECTION OPTIONS CONTINUED ****');
wkDataType: = '0';
writeln;

106

write!'Include Weekly SDR Data? (Y or N): *};
if Get_Answer then wkDataType: =' 1';
qtrDataType: = '0';
writeln;
writeCInclude Quarterly SDR Data? (Y or N): ');
if Get_Answer then qtrDataType: =' 1';
frcstDataType: = '0';
writeln;
writeC Include Quarterly demand and forecast Data? (Y or N): ');
if Get_Answer then frcstDataType: =' 1 ';
repStatType: = '0';
writeln;
writeClnclude Replication Statistics? (Y or N): *);
if Get_Answer then repStatType: =' 1';
silverSSType: = '0';
writeln;
writeCRun Silver Model Using Fixed Future Forecasts? {Y or N): *);
if Get_Answer then silverSSType: =' 1';

end;

procedure RunAgain (var outputfile:text;var runDescript:descriptType;
outputType:char;
var frcst,mad:quarterArray;
var stop:boolean;
var outFileNamerstring);

var demandlnFile: string;
done1:boolean;

begin
stop: = FALSE;
clrscr*
writeln (' **** RE-RUN SIMULATION OPTIONS SCREEN ♦•*♦•);
writeln; . t
writelnCRe-running the simulation will maintain the same run-type parameters, but will);
writelnCallow the user to change the destination (output) file and vary NUN');
writeln ('and model parameters.');
writeln;
writeC Do you wish to re-run the simulation? (Y or N): ');
if Get_Answer then begin

writeln;
writeCChange Run Description? (Y or N): ');

if Get_Answer then begin
writeln;
write {'Enter Run Description: ');
readln (runDescript);

end;
if outputType= '2' then begin

writeln;
writeCChange Output File? (Y or N): ');

107

if GetAnswer then begin
repeat

writeln;
write ('Enter Output Path and Filename: *);
readln (outFileName);
writeln;
writeln ('Path and FileNarne entered: ',outFileName);
writeln;
write ('Change Path and FileNarne entered? (Y or N): ');

until not(Get_Answer);
assign(outputfile,outFileName);

end;
end;

end else begin
stop: = TRUE;

end;
clrscr;

end;

procedure lnitlnput(var unitPrice,PLT,P1 ,adminCost,obsol,timePref,storage,shortCost,
frcstErrCoeff,bufferMult,PLTSigMuRatio,meanDemand:real;
var ROLowConst,maxQtrs,minQtrs,maxDecl,

initlnv,initOS,initOrders:integer);

begin
unitPrice: = 100.00; {unit price}
PLT: = 8; {procurement leadtime}
PI: = 0.1; {probability of stockout}
adminCost: = 850.00;
obsol: = 0.12;
timePref: = 0.10;
storage: = 0.01;
shortCost: = 1000.00;
ROLowConst: = 1 ;
maxQtrs: = 6;
minQtrs: = 1 ;
maxDecl: = 4;
frcstErrCoeff: = 0.0;
bufferMult: = 0.5;
PLTSigMuRatio: = (sqrtd .57*PLT))/PLT;
initlnv: = round(meanDemand * (PLT+ 3));
if initlnv < 1 then initlnv:=1;
initOS: = round(3 * meanDemand);
if initOS < 1 then initOS: = 1 ;
initOrders: = 1;

end;

procedure InputEditfvar unitPrice,PLT,P1 ,adminCost,obsol,timePref,storage,shortCost,
frcstErrCoeff.bufferMult.PLTSigMuRatiOrmeanDemandireal;

108

var ROLowConst,maxQtrs,minQtrs,maxDecl,initlnvJnitOS,initOrders:integer);

var editChoicerchar;
donerboolean;
f rcstErrString: string;

begin
done: = FALSE;
repeat
clrscr*
writel'nC ♦*** THIS SCREEN ALLOWS EDITING OF DEFAULT NUN INPUT PARAMETERS

* * * # 11.

writeln;
writeln;
writeln (' A. Unit Price : ',unitPrice:8:2,' J. Admin Order : ',adminCost:8:2);
writeln (' B. Buffer Mult (B): \bufferMult:8:2,' K. R/O Constr : ',ROLowConst:8);
writeln (' C. Frcst Error (C): '.frcstErrCoeff^^,' L. Obsol Rate : ',obsol:8:2);
writeln (* D. PLT Sig/Mu : ',PLTSigMuRatio:8:2,' M. Time Pref Rate: '»timePref^^);
writeln (' E. Max Qtrs : \maxQtrs:8,' N. Storage Rate : ',storage:8:2);
writeln (' F. Max Decl Qtrs : '»maxDechS,' 0. Shortage Cost: ',shortCost:8:2);
writeln (' G. Min Qtrs : ',minQtrs:8,' P. Init Inv OH : *,initlnv:8);
writeln (' H. Procur LT : \PLT:8:2,' Q. Init Qty OS : ',initOS:8);
writeln (' I. Risk : ',P1:8:2f' R. Init Num Order: \initOrders:8);
writeln;
writeln (' Hit ENTER to accept current values ');
write (' or letter of field to change: ');
editChoice: = upcase(readkey);
writeln(editChoice);
case editChoice of

'A' : begin
writeln;
write ('Enter new Unit Price: ');
unitPrice: = Get_Real(0.0,999999.0);

end;
'B' : begin

writeln;
write ('Enter new Buffer Multiple: ');
bufferMult: = Get_Real(0.0,999999.0);

end;
'C : begin

writeln;
writelnC»** Note: Default = 0.0 (Calculate Using MAD) ***');
writeln;
write ('Enter new Forecast Error Coeff of Variation: ');
frcstErrCoeff: = Get_Real(0.0,999999.0);

end;
'D' : begin

writeln;
write ('Enter new PLT Std Deviation to Mean Ratio: ');
PLTSigMuRatio: = Get_Real(0.0,3.0);

end;

109

'E' : begin
writeln;
write ('Enter new Maximum Quarters Constraint: ');
maxQtrs: = Getjntegerd ,16);

end;
•F' : begin

writeln;
write ('Enter new Maximum Quarters during Decline Constraint: '};
maxDecl: = Getjntegerd ,maxQtrs);

end;
'G' : begin

writeln;
write ('Enter new Minimum Quarters Ordering Constraint: ');
minQtrs: = Getjntegerd ,maxQtrs);

end;
'H' : begin

writeln;
write ('Enter new Procurement Leadtime Forecast: ');
PUT: = GetJteal(0.0,15.0);
PLTSigMuRatio: = (sqrtd .57*PLT))/PLT;
initlnv: = round(meanDemand*PLT);
if initlnv < 1 then initlnv: = 1 ;

end;
T : begin

writeln;
write ('Enter new Probability of Stockout (Risk): ');
P1: = Get_Real(0.0,0.9999);

end;
'J' : begin

writeln;
write ('Enter new Admin Order Cost: ');
adminCost: = Get_Real(0.0,999999.0);

end;
'K' : begin

writeln;
write ('Enter new System Reorder Level Low Limit Constraint: ');
ROLowConst: = Getjnteger(0,9999);

end;
'L' : begin

writeln;
write ('Enter new Obsolescence Rate: ');
obsol: = Get_Real(0.0,999999.0);writeln;

end;
'M' : begin

writeln;
write ('Enter new Time Preference Rate: ');
timePref: = Get_Real(0.0,99999.0);

end;
'N' : begin

writeln;

110

write ('Enter new Storage Cost Rate: ');
storage: = Get_Real(0.0,99999.0);

end;
'0' : begin

writeln;
write ('Enter new Shortage Cost: ');
shortCost: = Get_Real(0.0,99999.0);

end;
•P* : begin

writeln;
write ('Enter new Initial Inventory On Hand Qty: ');
initlnv: = Get_lnteger(0,9999);

end;
*Q' : begin

writeln;
write ('Enter new Initial Outstanding Qty: ');
initOS: = Get_lnteger(0,9999);

end;
'R' : begin

writeln;
write ('Enter new Initial Number of Orders: ');
initOrders: = Get_lnteger(0,9999);

end;

chr(13): done: = TRUE
end;
until done = TRUE;
clrscr;

end;

function GetMarkCode (t,oldMark:integer; frcst, unitPrice:real):integer;

begin
if t= 1 then begin

if frcst < 0.25 then getMarkCode: = 0;
if (frcst > = 0.25) and (frcst < 2.0) then begin

if (unitPrice > = 300.00) then begin
getMarkCode: = 3;

end else begin
getMarkCode: = 1;

end;
end;
if frcst > = 2.0 then begin

if (unitPrice*frcst) > = 600.0 then begin
getMarkCode: = 4;

end else begin
getMarkCode: = 2

end;
end;

111

end else begin
getMarkCode: = oldMark;
if oldMark = 0 then begin

if frcst > = 0.5 then begin
if (unitPrice > = 300.00) then begin

getMarkCode: = 3;
end else begin

getMarkCode: = 1 ;
end;

end;
if frcst > = 3 then begin

if (unitPrice'frcst) > = 600.0 then begin
getMarkCode: = 4;

end else begin
getMarkCode: = 2

end;
end;

end;
if (oldMark= 1) or (oldMark = 3) then begin

if frcst > = 3 then begin
if (unitPrice'frcst) > = 600.0 then begin

getMarkCode: = 4;
end else begin

getMarkCode: = 2
end;

end else if unitPrice < = 200 then begin
getMarkCode: = 1;

end else if unitPrice > = 400 then begin
getMarkCode: = 3;

end;
if frcst < = 0.25 then getMarkCode: = 0;

end;
if (oldMark =2) or (oldMark = 4) then begin

if frcst < = 1.0 then begin
if (unitPrice > = 300.00) then begin

getMarkCode: = 3;
end else begin

getMarkCode: = 1 ;
end;

end else if (unitPrice'frcst) > = 800.00 then begin
getMarkCode: = 4;

end else if (unitPrice'frcst) < = 400.00 then begin
getMarkCode: = 2;

end;
if frcst < = 0.25 then getMarkCode: = 0;

end;
end

end;

procedure InrtializeStatArraysfvar qtrACWTBOArry,qtrACWTArry,qtrSMAArry,

112

qtrlnvestArry,qtrlnappArry,cumACWTBOArry,
cumACWTArry,cumSMAArry:qtrStatArry);

var t:integer;

begin
for t: = 1 to numberOfQtrs do begin

qtrACWTBOArryftJ.Mean: = 0.0; qtrACWTBOArry ft]. Variance: = 0.0;
qtrACWTBOArry[t].CIHigh: = 0.0; qtrACWTBOArry[t].CILow: = 0.0;
qtrACWTArryftl.Mean: = 0.0; qtrACWTArryft].Variance: = 0.0;
qtrACWTArryM.CIHigh: = 0.0; qtrACWTArry[t].CILow: = 0.0;
qtrSMAArry[t].Mean: = 0.0; qtrSMAArry[t].Variance: = 0.0;
qtrSMAArry[t].CIHigh: = 0.0; qtrSMAArry[t].CILow: = 0.0;
qtrlNVESTArryftl.Mean: = 0.0; qtrlNVESTArryft].Variance: = 0.0;
qtrINVESTArryftl.CIHigh: = 0.0; qtrlNVESTArryft]. CILow: = 0.0;
qtrlnappArry[t].Mean: = 0.0; qtrlnappArryft].Variance: = 0.0;
qtrlnappArry[t].CIHigh: = 0.0; qtrlnappArry[t].CILow: = 0.0;
cumACWTBOArry[t].Mean: = 0.0; cumACWTBOArryftl.Variance: = 0.0;
cumACWTBOArry[t].CIHigh: = 0.0; cumACWTBOArryftl.CILow: = 0.0;
cumACWTArryftl.Mean: = 0.0; cumACWTArryft].Variance: = 0.0;
cumACWTArryftl.CIHigh: = 0.0; cumACWTArryft].CILow: = 0.0;
cumSMAArryftJ.Mean: = 0.0; cumSMAArryft].Variance: = 0.0;
cumSMAArry[t].CIHigh: = 0.0; cumSMAArryft].CILow: = 0.0;

end;
end;

procedure InitializeArrays (var observ,meanDmdArry,varDmdArry:quarterArray;
var steplndArry, trndlndArry.mkCodeArry: qtrlntArray;
numberOfQtrs,numberOfWks:integer;
meanDemand:real;
var wklyObserv:weeklyArray);

var t:integer;

begin
for t: = 1 to numberOfQtrs do begin

observft]: = 0.0;
meanDmdArryft]: = 0.0;
varDmdArryft]: = 0.0;
steplndArryft]: = 0;
trndlndArry[t]: = 0;
mkCodeArry[t]: = 0;

end;
for t: = 1 to (numberOfWks) do begin

wklyObserv[t]: = 0.0;
end;

end;

procedure LoadObserv (var observ,frcst,mad,meanDmdArry,varDmdArry:quarterArray;
var wklyObserv:weeklyArray;

113

observType,distrType:char;
numberOfQtrs,numberOfWks,repNum,simCount:integer;
var trendlnd,steplnd,nmbrSteps, nmbrTrends:integer;
meanDemand, varDemandrreal;
var inputfile:text;
var startstep, startrnd, endtrnd: changelntArry;
var stepmult, trendcoeff, trendpower: changeRealArry);

var SS:char;
i, t, min, startQtr, endQtr,observWeek,s:integer;
randnorm, currMeanDmd, initTrendMean, coeffVar,qtrCum,qtrMean,
wkObserv,qtrObserv,p:real;
demandlnFile:string;

begin
if (repNum = 1) and (simCount = 1) then begin

for i: = 1 to 10 do begin
startstep[i]: = 0; startrnd[i]: = 0; endtrnd[i]: = 0;
stepmult[i]: = 0.0; trendcoeff[i]: = 0.0; trendpower[i]: = 0.0;

end;
nmbrSteps: = 0;
nmbrTrends: = 0;

end; {if}
currMeanDmd: = meanDemand;
coeff Var: = sqrt(varDemand)/meanDemand;
for t: = 0 to (numberOfQtrs) do begin

if (t = 0) and (repNum = 1) and (simCount=1) then begin
SS: = 'Y';
writeln;
writeCDo you wish to vary mean demand rate over time? (Y or N): ');
if GetAnswer then begin

SS: = 'N';
steplnd: = 0;
trendlnd: = 0;
clrscr;
writeln;
writeln (' *** Mean Demand Variants *** ');
writeln;
writeln ('You have the option to vary mean demand rate over time. If the normal');
writeln ('distribution was selected, variance will also change to maintain your');
writeln ('original variance to mean ratio. You may choose between step change');
writeln ('or trend or any combination of the events. If more than one event is');
writeln ('chosen to occur at the same time, step changes will occur first.');
writeln (*A maximum of 10 occurances of each event is allowed. Time of);
writeln {'variation is specified by quarter.');
writeln ;

SS: = 'Y*;
write ('Do you still wish to vary mean demand rate over time? (Y or N): ');

114

if Get_Answer then begin
SS: = 'N';
clrscr;
writelnC *** Step Changes Screen ***');
writeln;
write ('Do you wish to have step increases or decreases? (Y or N):);
if Get_Answer then steplnd: = 1;
if steplnd = 1 then begin

writeln;
writeCEnter the number of steps changes desired (max 10): ');
nmbrSteps: = Getjntegerd, 10);
writeln;
writelnf'The step function is of the form: Mean(t) = A * Mean(M).);
writelnCYou must specify the value of "A" for each step.');
min: = 1;
for i: = 1 to nmbrSteps do begin

writeln;
writeln ('Step ',i,':');
writeln;
write ('Step Qtr: ');
startQtr: = Get_lnteger(min,numberOfQtrs);
startstepli]: = startQtr;
writeln;
write ('Step Multiplier (A): ');
stepmultm: = Get_Real(0.00001,9999.0);
writeln;
min: = startQtr;

end;
end;
clrscr;
writelnC *** Trend Setting Screen ***');
writeln;
write ('Do you wish to have trends? (Y or N):');
if Get_Answer then trendlnd: = 1 ;
if trendlnd = 1 then begin

writeln;
writeCEnter the number of trend periods desired (max 10): ');
nmbrtrends: = Getjntegerd, 10);
writeln;
writelnCThe trend function is of the form:');
writelnC Mean(t) = InitTrendMean * (1 + A * t(0) •* B)');
writelnCwhere t(0) is reset to "1" at the beginning of each trend period');
writelnCand InitTrendMean is the Mean at the beginning of the trend period.');
writelnC Parameters A and B must be specified for each trend period.*);
min: = 1 ;
for i: = 1 to nmbrtrends do begin

writeln;
writeln ('Trend \i,':');
writeln;
write ('Start Qtr: ');

115

startQtr: = Get_lnteger(min,numberOfQtrs);
startrnd[i]: = startQtr;
writeln;
write ("End Qtr: ');
endQtr: = Get_lnteger(startQtr,numberOfQtrs);
endtrnd[i]: = endQtr;
writeln;
write (Trend coefficent (A): '};
trendcoeffti]: = Get_Real(-9999.0,9999.0);
writeln;
write ('Trend power (B): ');
trendpower[i]: = Get_Real(-9999.0,9999.0);
writeln;
min: = endQtr + 1;

end;
end;

end;
clrscr;
end;

end else if t > 0 then begin
if SS='Y' then begin

meanDmdArrytt]: = meanDemand;
if (distrType= '1') or (distrType= '3') then begin

varDmdArrytt]: = varDemand;
end else begin

varDmdArrytt]: = currMeanDmd;
end;

end else begin
if steplnd = 1 then begin

for i: = 1 to nmbrSteps do begin
if t = startstepti] then currMeanDmd: = stepmult[i]*currMeanDmd;

end;
end;
if trendlnd = 1 then begin

for i: = 1 to nmbrTrends do begin
if t = startrnd[i] then initTrendMean: = currMeanDmd;
if (t > = startrndti]) and (t < = endtmdfi]) then begin

currMeanDmd: = initTrendMean*(1 + trendcoeffti]*
(exp(trendpower[i]*ln(t-startrnd[i] +1))));

if currMeanDmd < 0.0 then currMeanDmd: = 0.0;
end;

end;
end;
meanDmdArrytt]: = currMeanDmd;
if (distrType="T) or (distrType='3') then begin

varDmdArrytt]: = sqr(coeffVar*currMeanDmd);
end else begin

varDmdArrytt]: = currMeanDmd;
end;

end;

116

if distrType = "T then begin
randnorm: = GetNormal;
qtrObserv: = round(meanDmdArry[tJ + (randnorm*sqrt(varDmdArry[t])));
if qtrObserv < 0.0 then qtrObserv: = 0.0;
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntd 3);
wklyObserv[(t-1 }* 13 + observWeek]: =

wklyObserv[(t-1) * 13 + observWeek] + 1 ;
end;

end else if distrType= '2' then begin
qtrObserv: = GetPoisson(meanDmdArry[t]);
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntd 3);
wklyObserv[(t-1)* 13 + observWeek]: =

wklyObserv[(t-1)* 13 + observWeek] + 1;
end;

end else if distrType = '3' then begin
p: = (meanDmdArry[t])/(varDmdArry[t]);
s: = round((sqr(meanDmdarry[t]))/(varDmdArry[t]-meanDmdArry[t]));
if (p> ERROR) and (p<(1-ERROR)) then begin

qtrObserv: = GetNegBin(p,s);
end else begin

qtrObserv: = 0.0;
end;
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntd 3);
wklyObserv[(t-1)* 13 + observWeek]: =

wklyObserv[(t-1)* 13 + observWeek] + 1 ;
end;

end;
observ[t]: = qtrObserv;

end; {else,if}
end; {for}
clrscr;

end;

procedure Forecast (var observ, frcst, mad:quarterArray;
var steplndArry, trndlndArry.mkCodeArry: qtrlntArray;
numberOfQtrs,repNum:integer; unitPrice:real);

const ALPHA = 0.1 ;
STEPBOUND1=3.0;
STEPBOUND2 = 2.0;

var upper, lower, sum, sampleMean, sampleStdDev, stdDevToMean:real;
uplnd, downlnd, steplnd, trendlnd, trendUp,
trendDn, t, i, j, W, S, table:integer;
kendTest, lowDemand:boolean;

117

begin
writelnCRunning Replication # ',repNum);
mkCodeArryfl]: = getMarkCode (1,0,frcst[1],unitPrice);
uplnd: = O;downlnd: = 0;
for t: = 2 to numberOfQtrs do begin {Compute quarterly forecast}

lowDemand: = FALSE;
trendlnd. = 0;
steplnd: = 0;
if ((mkCodeArry[t-1] = 0) or (mkCodeArryft-1] = 1) or <mkCodeArry[t-1] =3)) then

lowDemand: = TRUE;
if lowDemand then begin

upper: = STEPBOUND1 *frcst[t-1];
lower: = 0.0;

end else begin
upper: = frcst[t-1] + 1.25*mad[t-1]*STEPBOUND2;
lower: = frcst[t-1 H .25*mad[t-1]*STEPBOUND2;

end;
if (lowDemand and (observft-1] < 5)) or

«observ[t-1] < upper) and (observ[t-1] > = lower)) then begin
uplnd: = 0;
downlnd: = 0;
frcstft]: = ALPHA'observft-1] + (1 -ALPHA) *frcst[M];
madft]: = ALPHA*(abs(observ[t-1]-frcst[M])) + (1 -ALPHA)*mad[M J;

end else begin
if ((observ[t-1] > upper) and (uplnd = 1)) or

((observ[t-1] < lower) and (downlnd=D) then begin
if t>4 then begin

frcstft]: = (observft-4] + observ[t-3] + observ[t-2] + observ[t-1])/4;
end else if t = 4 then begin

frcstft]: = (observft-3] + observft-2] + observft-1])/3;
end else if t = 3 then begin

frcstft]: = (observft-2] + observft-1])/2;
end;
if frcstft] > ERROR then begin

madft]: = COEFF1 *exp(POWER1 *ln(frcst[t]));
end else begin

madft]: = 0.0;
end;
steplnd: = 1;
uplnd: = 0;
downlnd: = 0;

end else begin
if ((observft-1] > upper) and (uplnd = 0)) then begin

uplnd: = 1;
frcstft]: = frcstft-1];
madft]: = madft-1];

end else begin
if ((observft-1] < lower) and (downlnd = 0)) then begin

downlnd: = 1;
frcstft]: = frcstft-1];

118

madtt]: = mad[t-1];
end;

end;
end;

end;
if (t> 4) and (steplnd = 0) then begin {Conduct Kendall Trend Test}

sum: = 0.0;
if t < = 8 then begin

for i: = 1 to t-1 do begin
sum: = sum + observ[i];

end;
sampleMean: = sum/(t-1);
sum: = 0.0;
for i: = 1 to t-1 do begin

sum: = sum + sqr(observ[i]-sampleMean);
end;
sampleStdDev: = sqrt(sum/(t-2));

end else begin
for i: = t-8 to t-1 do begin

sum: = sum + observ[i];
end;
sampleMean: = sum/8;
sum: = 0.0;
for i: = t-8 to t-1 do begin

sum: = sum + sqr(observ[i]-sampleMean);
end;
sampleStdDev: = sqrt(sum/7);

end;
if sampleMean > 0.0 then begin

stdDevToMean: = sampleStdDev/sampleMean
end else begin

StdDevToMean: = 99999.0
end;
kendTest: = false;
if (sampleMean > = 3.0) and (stdDevToMean < = 1.75) then begin

kendTest: = true;
if stdDevToMean > 1.0 then begin

table: = 3;
end else begin

table: = 2;
end;

end;
if ((sampleMean > = 1.0) and (sampleMean < 3.0)) and

(stdDevToMean < = 1.75) then begin
kendTest: = true;
if stdDevToMean > 1.25 then begin

table: = 3;
end else begin

table: = 2;
end;

119

end;
if ((sampleMean > = 0.125) and (sampleMean < 1.0)) and

(stdDevToMean < = 2.00) then begin
kendTest: = true;
table: = 2;

end;
if kendTest=true then begin {Conduct Kendall S-Test for Trend}

W: = 8;
if (sampleMean > = 3.0) and (sampleMean < 9.0) then begin

if (stdDevToMean < 0.30) then W: = 6;
end;

if (sampleMean > = 9.0) and (sampleMean < 20.0) then begin
if (stdDevToMean < 0.93) then W: = 6;
if (stdDevToMean < 0.28) then W: = 4;
end;

if (sampleMean > = 20.0) then begin
if (StdDevToMean < 0.53) then W: = 6;
if (StdDevToMean < 0.28) then W: = 4;
end;

if W > (t-1) then W: = ((M) div 2)'2;
S: = 0;
for i: = (t-W) to (t-2) do begin {Compute Kendall S-Statistic}

for j: = (i + 1) to (t-1) do begin
if observ[i] < observlj] then S: = S + 1;
if observ[i] > observtj] then S: = S-1;

end;
end; {for}
if table = 2 then begin

if W = 4 then begin
trendUp: = 4; trendDn: = -4;

end;
if W = 6 then begin

trendUp: = 9; trendDn: = -9;
end;
if W = 8 then begin

trendUp:= 13; trendDn: = -13;
end;

end else begin
if W = 4 then begin

trendUp: = 6; trendDn: = -6;
end;
if W = 6 then begin

trendUp: = 11; trendDn: = -11;
end;
if W = 8 then begin

trendUp: = 16; trendDn: = -16;
end;

end; {if}
trendlnd: = 0;
if S > = trendUp then trendlnd:= 1;

120

if S < = trendDn then trendlnd: = 1 ;
if trendlnd = 1 then begin

sum: = 0.0;
for i: = (t-4) to (t-1) do begin

sum: = sum + observli];
end;

f rcsttt]: = sum/4;
if frcsttt] > ERROR then begin

mad[t]: = C0EFF1 #exp(POWER1 *ln(frcst[t]));
end else begin

mad[t]: = 0.0;
end;

end; {if}
end; {if}

end; {if}
mkCodeArryft]: = getMarkCode (t,mkCodeArry[M 3,frcst[t],unitPrice);
steplndArry[t]: = steplnd;
trndlndArry[t]: = trendlnd;
end; {for}

end;

procedure SDR(var OSHeap,BOHeap:PriorityQueueType;
var wklyObserv:weeklyArray;
var frcst,meanDmdArry,observ,mad:quarterArray;
var numberOfQtrs,initlnv,initOS,initOrders,startSSQtr,endSSQtr,

initSSOH,initSSOS,initSSOrders:integer;
var meanDemand:real;
var TWUS:longint;
var ACWTBO,ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,

inappAsset,inappVal:real;
wkDataType,qtrDataType,outputType,silverSSType:char;
unitPrice,PLT,P1,adminCost,obsol,timePref,storage,shortCost,
frcstErrCoeff,bufferMult,PLTSigMuRatio:real;
ROLowConst,maxQtrs,minQtrs,maxDecl:integer;
varqtrACWTBOArry,qtrACWTArry,qtrSMAArry,qtrlnvestArry,
qtrlnappArry,cumACWTBOArry,cumACWTArry,cumSMAArry:qtrStatArry;

numberRep:integer);

var wklyBO,wkJyOS:datarecord;
amtBO^mtRecv.receiptwklyDemand.date^Oqt^endQtr,
T1 Parti ,T1 Part2,lastT1 Order: integer;
tw^qtr^izeOS^izeBO^rderQty.initOrderQtyMnteger;
randnorm,randPLT,wklylnvest,qtrlnvest,replnvest,holdCost,cumSSHoldCost,
twoYearAmt,qtrlnapp,intLength,startlnt,SSOrderCount:real;
flag1,flag2:boolean;
BOFill,dmdTot,SSOSTot,OSCurr,BOTot,BOCurr,OHcurr,IPcurr:integer;
oldCumACWTBO.oldCumACWT^IdCumSMA^IdQtrlnvest^ldQtrACWTBO.oldQtrlnapp,
oldQtrACWT,oldQtrSMA,ACWTBOvalue,ACWTvalue,SMAvalue:real;
qtrTWUSArry,qtrBOTotArry,qtrBOFillArry:qtrlntArray;

121

procedure SilverModel (qtr,IPcurr,numberOfQtrs:integer;
holdCost,PLT,P1,adminCost,frcstErrCoeff,
bufferMult:real; ROLowConst,maxQtrs,minQtrs,maxDecl:integer;
var frcst,meanDmdArry,mad,observ:quarterArray;
var orderQty,lastT10rder,T1 parti ,T1 Part2:integer;
wk: integer;
silverSSTypexhar);

var ka,kr,frcstTotal,cut,minCut,X1 ,X2,X3,sigmaX1 ,sigmaX2,sigmaX3,X1 mu,X3mu,
sumSqXI ,sumSqX2,sumSqX3,C,B,D,PLTBuffer,partial1 ,partial2:real;
i,j,T,endLTqtr,horizQtrs:integer;
qtrFrcstArry:quarterArray;

function GetC(qtr,wk:integer;madVal,frcstVa!:real;
var frcst,observ:quarterArray):real;

const MADWGHT= 1.0;

var t:integer;
sum,sumSq,mean:real;

begin
if frcstVal > 1.0 then begin

if wk = 13 then begin
if qtr > = 8 then begin

sum: = 0.0;
for t: = qtr-7 to qtr do begin

sum: = sum + f rcsttt];
end;
mean: = sum/8;
sumSq: = 0.0;
for t: = qtr-7 to qtr do begin

sumSq: = sumSq + sqr(observ[t]-mean);
end;
if (sumSq < ERROR) or {mean < ERROR) then begin

GetC: = (1.25*madVal/frcstVai);
end else begin

GetC: = MADWGHT*(1.25*madVal/frcstVal) +
(1-MADWGHT)*((sqrt(sumSq/7))/mean);

end;
end else begin

GetC: = (1.25*madVal/frcstVal);
end;

end else begin
if qtr > 8 then begin

sum: = 0.0;
for t: = qtr-8 to (qtr-1) do begin

sum: = sum + f rcstlt];
end;

122

mean: = sum/8;
sumSq: = 0.0;
for t: = qtr-8 to (qtr-1) do begin

sumSq: = sumSq + sqr(observ[t]-mean);
end;
if (sumSq < ERROR) or (mean < ERROR) then begin

GetC: = (1.25*madVal/frcstVal);
end else begin

GetC: = MADWGHT*(1.25*madVal/frcstVal) +
(1-MADWGHT)*((sqrt(sumSq/7))/mean);

end;
end else begin

GetC: = (1.25*madVal/frcstVal);
end;

end;
end else begin

GetC: = (1.25#madVal/frcstVal);
end;

end; {GetC}

begin
B: = bufferMult;
C: = frcstErrCoeff;
if wk= 13 then begin

if ((qtr + round(PLT) + 1) < = numberOfQtrs) and (meanDmdArry[qtr+ 1] > ERROR) and
(frcst[qtr+1] > ERROR) then begin
endLTqtr: = qtr + round(PLT);
horizQtrs: = maxQtrs;
if (frcstErrCoeff = 0.0) then begin {default}

C: = GetC(qtr,wk,mad[qtr+ 1],frcst[qtr+ 1],frcst,observ);
end;
if (numberOfQtrs-endLTqtr) < maxQtrs then

horizQtrs: = numberOfQtrs-endLTqtr;
if silverSSType = '0' then begin

for i: = (qtr+ 1) to (endLTqtr + horizQtrs) do begin
qtrFrcstArryti]: = (meanDmdArry[i]/meanDmdArry[qtr+ 1])*frcst[qtr+ 1];

end;
for i: = (endLTqtr + 1) to (endLTQtr +horizQtrs) do begin

if qtrFrcstArryti] < qtrFrcstArryfendLTqtr] then horizQtrs: = maxDecl;
end;

end else begin
for i: = (qtr+ 1) to (endLTqtr + horizQtrs) do begin

qtrFrcstArryti]: = frcstlqtr + 1];
end;

end;
X1: = 0.0;
sumSqX1: = 0.0;
if lastTI Order < 13 then begin

T1 Parti : = T1 Parti-1;

123

for i: = (qtr +1) to (qtr + round(PLT)) do begin
X1: = X1 + qtrFrcstArryN];
sumSqXI: = sumSqXI + sqr(qtrFrcstArry[i]);

end;
X1: = X1 + (T1Part2/13)*qtrFrcstArry[qtr + round(PLT) + 1];
sumSqXI: = sumSqXI + sqr((T1 Part2/13)*qtrFrcstArry[qtr + round(PLT) + 1]);
X1 mu: = XI /(round(PLT) + (1 -<lastT1 Order/13)));

end else begin
for i: = (qtr + 1) to (qtr + round(PLT) + 1) do begin

X1: = X1 + qtrFrcstArryfi];
sumSqXI: = sumSqXI + sqr(qtrFrcstArryfiJ);

end;
XI mu: = XI /(round(PLT) + 1);

end;
if XI > ERROR then begin

sigmaX1: = sqrt(sqr(C)*(sumSqX1) + sqr(X1mu)*sqr(PLTSigMuRatio*PLT));
ka: = (IPcurr-X1)/sigmaX1; { actual safety factor }

end;
kr: = Zlnv(P1); { required safety factor}
if (ka < kr) and (X1 > ERROR) then begin {then place an order}

T: = 1;
for i: = 1 to horizQtrs do begin

frcstTotal: = 0.0;
for j: = 1 to i do begin

frcstTotal: = frcstTotal + (j-1)*qtrFrcstArry[endLTqtr + i];
end;
cut: = (adminCost + holdCost*frcstTotal)/i;
if i= 1 then begin

minCut: = cut;
end else if cut < minCut then begin

minCut: = cut;
T: = i;

end;
end; {for}
if T < minQtrs then T: = minQtrs;
if T= 1 then begin

if lastTI Order > = 13 then begin
orderQty: = round(X1 +B*sqrt(sqr(C*qtrFrcstArry[qtr+ 1])/13) +

kr*sigmaX1)-IPCurr;
lastTI Order: = 0;
T1Part1:=1-wk;
T1Part2: = wk;

end else begin
X1: = 0.0;
sumSqX1: = 0.0;
for i: = (qtr + 1) to (qtr + round(PLT) + 1) do begin

X1: = X1 + qtrFrcstArryfi];
sumSqX1: = sumSqX1 +sqr(qtrFrcstArry[i]);

end;
X1 mu: = XI /(round(PLT) + 1);

124

if XI > ERROR then
sigmaXI: = sqrt(sqr(C)* (sumSqXI) + sqr(X1 mu)*sqr(PLTSigMuRatio*PLT));

orderQty: = round(X1 +B*sqrt(sqr(C*qtrFrcstArry[qtr+ 1])/13) +
kr*sigmaX1)-IPCurr;

lastTI Order: = 0;
T1 Parti : = 1-wk;
T1 Part2: = wk;

end;
end else begin

lastTI Order: = 13;
T1 Parti : = 0;
T1Part2: = 0;
X2: = 0.0;
sumSqX2: = 0.0;
for i: = (qtr+1) to (endLTqtr+T-1-round(PLT)) do begin

X2: = X2 + qtrFrcstArry [i];
sumSqX2: = sumSqX2 + sqr(qtrFrcstArry[i]);

end;
sigmaX2: = C*sqrt(sumSqX2);
X3: = 0.0;
sumSqX3: = 0.0;
for i: = {endLTqtr + T-round(PLT)) to (endLTqtr + T) do begin

X3: = X3 + qtrFrcstArry [i];
sumSqX3: = sumSqX3 + sqr(qtrFrcstArry[i]);

end;
X3mu: = X3/(round(PLT) + 1);
sigmaX3: = sqrt(sqr(C)*(sumSqX3) + sqr(X3mu)*sqr(PLTSigMuRatio*PLT));
orderQty: = round(X3 + kr*sigmaX3 + B*sigmaX2 + X2-IPcurr);

end;
if orderQty < ROLowConst then orderQty: = ROLowConst;

end; {if}
end; {if}

end else begin
partial1: = 1-wk/13;
partial2: = wk/13;
if ((qtr-partial1 + round(PLT) + 1) < = numberOfQtrs) and (meanDmdArryfqtr] > ERROR)

and
(frcst[qtr] > ERROR) then begin
endLTqtr: = qtr + round(PLT);
horizQtrs: = maxQtrs;
if (frcstErrCoeff = 0.0) then begin

C: = GetC(qtr, wk,mad[qtr],frcst[qtr],frcst,observ);
end;
if (numberOfQtrs-endLTqtr) < maxQtrs then

horizQtrs: = numberOfQtrs-endLTqtr;
if silverSSType = '0' then begin

for i: = qtr to (endLTqtr + horizQtrs) do begin
qtrFrcstArry ti}: = (meanDmdArry[i]/meanDmdArry[qtr])*frcst[qtr];

end;
for i: = (endLTqtr + 1) to (endLTQtr + horizQtrs) do begin

125

if qtrFrcstArry[i] < qtrFrcstArrytendLTqtr] then horizQtrs: = maxDecl;
end;

end else begin
for i: = qtr to (endLTqtr + horizQtrs) do begin

qtrFrcstArryti]: = frcsttqtr];
end;

end;
X1: = 0.0;
sumSqX1: = 0.0;
if lastTI Order < 13 then begin

T1 Parti : = T1 Parti -1;
if T1 Parti > 0 then begin

for i: = (qtr) to (qtr+ round(PLT)-1) do begin
X1: = X1 + (partiall'qtrFrcstArryti]+ partial2*qtrFrcstArry[i-M]);
sumSqX 1: = sumSqX 1 + sqr(partial 1 * qtrFrcstArry [i] +

partial2 ' qtrFrcstArryti + 1]);
end;
X1: = X1 + partial1*qtrFrcstArry[qtr + round(PLT)] +

((T1 Part2)/13)'qtrFrcstArry[qtr + round(PLT) + 1];
sumSqX1: = sumSqX1 + sqr(partial1 *qtrFrcstArry[qtr + round(PLT)] +

((T1Part2)/13)'qtrFrcstArry[qtr + round(PLT) + 1]);
X1 mu: = X1 /(round(PLT) + (1 -(lastTI Order/13)));

end else begin
for i: = (qtr) to (qtr + round(PLT)-1) do begin

X1: = X1 + (partiall 'qtrFrcstArryti] + partial2'qtrFrcstArry[i + 1]);
sumSqXI: = sumSqXI + sqr(partial1 * qtrFrcstArry[i] +

partial2 * qtrFrcstArry[i+ 1]);
end;
X1: = X1 + ((T1Part2 + T1Part1)/13)*qtrFrcstArry[qtr + round(PLT)];
sumSqX1: = sumSqX1 +

sqr(((T1 Part2 + T1 Parti)/13)*qtrFrcstArry[qtr + round(PLT)]);
X1 mu: = X1 /(round(PLT) + (1 -(lastTI Order/13)));

end;
end else begin

for i: = (qtr) to (qtr-i- round(PLT)) do begin
X1: = X1 + (partiall'qtrFrcstArryti]+ partial2*qtrFrcstArry[i+1]);
sumSqXI: = sumSqXI + sqr(partial1 * qtrFrcstArryti] +

partial2'qtrFrcstArryti + 1]);
end;
X1 mu: = X1 /(round(PLT) + 1);

end;
if X1 > ERROR then begin

sigmaXI: = sqrt(sqr(C)*(sumSqX1) + sqr(X1mu)*sqr(PLTSigMuRatio*PLT));
ka: = (IPcurr-X1)/sigmaX1; { actual safety factor}

end;
kr: = Zlnv(P1); { required safety factor }
if (ka < kr) and (X1 > ERROR) then begin { then place an order }

T: = 1;
for i:= 1 to horizQtrs do begin

frcstTotal: = 0.0;

126

for j: = 1 to i do begin
frcstTotal: = frcstTotal + (j-1)*(partiall *qtrFrcstArry[endLTqtr + i-1] +

partial2*qtrFrcstArry[endLTqtr + i]);
end;
cut: = (adminCost + holdCost*frcstTotal)/i;
if i= 1 then begin

minCut: = cut;
end else if cut < minCut then begin

minCut: = cut;
T: = i;

end;
end; {for}
if T < minQtrs then T: = minQtrs;
if T= 1 then begin

if lastTI Order > = 13 then begin
orderQty: = round(X1 + B*sqrt(sqr(C*qtrFrcstArry[qtr])/13) +

kr*sigmaX1HPCurr;
lastTI Order: = 0;
T1Part1: = 1-wk;
T1Part2: = wk;

end else begin
X1: = 0.0;
sumSqX1: = 0.0;
for i: = (qtr) to (qtr + round(PLT)) do begin

X1: = X1 + (partiall *qtrFrcstArry[i] + partial2*qtrFrcstArry[i+1]);
sumSqXI: = sumSqXI + sqr(partial1 *qtrFrcstArry[i] +

partial2*qtrFrcstArry[i+ 1]>;
end;
X1mu: = X1/(round(PLT} + 1);
if X1 > ERROR then

sigmaXI: = sqrt(sqr(C)*(sumSqX1) + sqr(X1 mu)*sqr(PLTSigMuRatio*PLT));
orderQty: = round(X1 + B*sqrt(sqr(C*qtrFrcstArrylqtr])/13) +

kr'sigmaXD-IPCurr;
lastTI Order: = 0;
T1 Parti : = 1-wk;
T1 Part2: = wk;

end;
end else begin

lastTI Order: = 13;
T1 Parti : = 0;
T1Part2: = 0;
X2: = 0.0;
sumSqX2: = 0.0;
for i: = qtr to (endLTqtr + T-2-round(PLT)} do begin

X2: = X2 + (partiall *qtrFrcstArry[i] + partial2*qtrFrcstArry[i+1]);
sumSqX2: = sumSqX2 + sqr(partial1*qtrFrcstArry[i] +

partial2*qtrFrcstArry[i +1]);
end;
sigmaX2: = C*sqrt(sumSqX2);
X3: = 0.0;

127

sumSqX3: = 0.0;
for i: = (endLTqtr + T-1-round(PLT)) to (endLTqtr + T-1) do begin

X3: = X3 + (partiall *qtrFrcstArry[i] + partial2*qtrFrcstArry[i + 1]);
sumSqX3: = sumSqX3 + sqr(partial1*qtrFrcstArry[iJ +

partial2*qtrFrcstArryti+ 1]);
end;
X3mu: = X3/(round(PLT) + 1);
sigmaX3: = sqrt(sqr(C)*(sumSqX3) + sqr(X3mu)*sqr(PLTSigMuRatio*PLT));
orderQty: = round(X3 + kr*sigmaX3 + B*sigmaX2 + X2-IPcurr);

end;
if orderQty < ROLowConst then orderQty: = ROLowConst;

end; {if}
end; {if}

end; {if}
end; {SilverModel}

begin
holdCost: = unitPrice*(obsol + timePref + storage)/4;
lnitializePriorityQueue(OSHeap);lnitializePriorityQueue(BOHeap);
OHCurr: = initlnv;
initOrderQty: = 0;
if initOS = 0 then initOrders: = 0;
if (initOrders > 0) then begin

initOrderQty: = initOS div initOrders;
intl_ength:= (13* PLT)/initOrders;
startlnt: = 0.0;
for i: = 1 to initOrders do begin

wklyOS.Qty: = initOrderQty;
wklyOS.Week: = round((startlnt + (i*intLength))/2);
lnsertPriorityQueue(OSHeap,wklyOS);
startlnt: = startlnt+ intLength;

end;
end;
initOS: = initOrderQty* initOrders;
OSCurr: = initOS;
IPCurr: = OHCurr + OSCurr;

if (qtrDataType = '1') or (wkDataType = '1') then begin
writeln(outputfile);
writeln(outputfile,'SDR Data Initial OH lnv:= \initlnv);
writelnfoutputfile,'-

end;

for t: = 1 to numberOfQtrs do begin
qtrTWUSArry[t]: = 0;
qtrBOTotArry[t]: = 0;

128

qtrBOFNIArry[t]: = 0;
end;
BOCurr: = 0;
replnvest:= 0.0;
date: = 1 ;
lastT"! Order: = 13;
T1 Parti : = 0;
T1part2: = 0;

for qtr: = 1 to numberOfQtrs do begin

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if wkDataType = ' 1' then begin

writeln(outputfile);
writeln(outputfile,'QTR WK REC DEM BO OS OH IP ORDCNT');

end;
end;

if qtr=startSSQtr then begin
initSSOH: = OHCurr;
initSSOS: = OSCurr;
initSSOrders: = SizePriorityQueue(OSHeap);
cumSSHoldCost: = 0.0;
SSOSTot: = 0;
SSOrderCount: = 0.0;

end;
qtrlnvest: = 0.0;
wklylnvest:= 0.0;

for wk: = 1 to 13 do begin
wklyDemand: = round(wklyObserv[date]);
receipt: = 0;
amtRecv: = 0;
amtBO: = 0;
wklyBO.Qty: = 0;
wklyBO.Week: = date;
wklyOS.Qty: = 0;
flagl: = FALSE; flag2: = FALSE;

if not (EmptyPriorityQueue(OSHeap)) then begin {receive}
repeat

if CurrWeek(OSHeap) = date then begin
amtRecv: = ExtractQty(OSHeap);
receipt: = amtRecv;
OSCurr: = OSCurr - amtRecv;
while (amtRecv > 0) and not (EmptyPriorityQueue(BOHeap)) do begin

if CurrQty(BOHeap) < = amtRecv then begin
amtBO: = CurrQty(BOHeap);
amtRecv: = amtRecv - amtBO;
BOCurr: = BOCurr - amtBO;

129

if (CurrWeek(BOHeap) mod 13) = 0 then begin
BOqtr: = (CurrWeek(BOHeap) div 13);

end else begin
BOqtr: = (CurrWeek(BOHeap) div 13) +1;

end;
qtrBOFHIArryfBOqtr]: = qtrBOFillArrytBOqtr] + amtBO;
qtrTWUSArryfBOqtr]: = qtrTWUSArryfBOqtr] + (amtBo*(date -

ExtractWeek(BOHeap)));
end else begin

BOHeap.HeapArray[1].Qty:= BOHeap.HeapArraytU.Qty - amtRecv;
if {BOHeap.HeapArray[1].Week mod 13) = 0 then begin

BOqtr: = {B0Heap.HeapArray[1].Week) div 13;
end else begin

BOqtr: = ((B0Heap.HeapArray[1].Week) div 13) +1;
end;
qtrTWUSArry[BOqtr]: = qtrTWUSArryfBOqtr] + (amtRecv* (date -

BOHeap.HeapArraytl]. Week));
BOCurr: = BOCurr - amtRecv;
qtrBOFillArrytBOqtr]: = qtrBOFillArrytBOqtr] + amtRecv;
amtRecv: = 0;

end; {if}
end; {while}
0HCurr: = 0HCurr + amtRecv;

end;
if EmptyPriorityQueue(OSHeap) then flag2:= TRUE
else if currWeek(OSHeap) <> date then flag 1: = TRUE;

until flagl or flag2;
end; {if receive}

if wklyDemand > 0 then begin {issue}
if wklyDemand > OHCurr then begin

wklyBO.Qty:= wklyDemand - OHCurr;
OHCurr: = 0;
lnsertPriorityQueue(BOHeap,wklyBO);
qtrBOTotArrytqtr]: = qtrBOTotArrytqtr] + wklyBO.Qty;
BOCurr: = BOCurr + wklyBO.Qty;

end else begin
OHCurr: = OHCurr - wklyDemand;

end;
end; {if issue}

orderQty: = 0; {order}
IPCurr:= OHCurr + OSCurr - BOCurr;
lastTI Order: = lastTI Order + 1;
SilverModel (qtr,IPcurr,numberOfQtrs,

holdCost,PLT,P1,adminCost,frcstErrCoeff,
bufferMult,ROLowConst,maxQtrs,minQtrs,maxDecl,
f rest, mean DmdArry, mad, observ, orderQty,
lastTI Order,T1 Parti ,T1 Part2,wk,

130

silverSSType);
if orderQty>0 then begin

wklyOS.Qty: = orderQty;
randnorm: = GetNormal;
randPLT: = abs(PLT+(randnorm*PLTSigMuRatio*PLT));
if randPLT > MAXPLT then begin

randPLT: = MAXPLT;
end else if randPLT < MINPLT then begin

randPLT: = M1NPLT
end;
wklyOS.Week: = date + round(randPLT*13) + 1;
lnsertPriorityQueue(OSHeap,wklyOS);
OSCurr:= OSCurr + wklyOS.Qty;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

SSOrderCount: = SSOrderCount + 1.0;
SSOSTot:= SSOSTot + wklyOS.Qty;

end;
end; {if}

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if wkDataType = ' 1' then begin

writeln(outputfile,qtr:3,date:5,receipt:6,wklyDemand:6,BOCurr:6,
OSCurr:6,OHCurr:6,IPCurr:6,SSOrderCount:6:0);

if (outputType = *V) and ((wk mod 13) = 0) then HitToCont;
end;

end;

receipt: = 0;
date: = date + 1 ;
wklylnvest:= wklylnvest + OSCurr + OHCurr;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

cumSSHoldCost: = cumSSHoldCost + OHCurr*holdCost/13;
end;

end; {for week}

qtrlnvest: = wklylnvest/13;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

replnvest:= replnvest + qtrlnvest;
end;

oldQtrlnvest: = qtrlnvestArrytqtr].Mean;
qtrlnvestArry[qtr].Mean: = NewMean(qtrlnvestArry[qtr].Mean,qtrlnvest,numberRep);
qtrlnvestArry[qtr].Variance: = NewVar(qtrlnvestArrylqtr].Mean,oldQtrlnvest,

qtrlnvestArry[qtr].Variance,qtrlnvest,numberRep);

twoYearAmt: = 0.0;
endQtr: = qtr + 8;
if qtr<numberOfQtrs then begin

if (numberOfQtrs-qtr) < 8 then begin
endQtr: = numberOfQtrs;

131

if silverSSType = '0' then begin
if meanDmdArry[qtr+ 1] > 0.0 then begin

for i: = (qtr+ 1) to (endQtr) do begin

twoYearAmt: = twoYearAmt+ (meanDmdArry[i]/meanDmdArry[qtr+ 1])*frcst[qtr+ 1];
end;
twoYearAmt: = twoYearAmt +

(8-(numberOfQtrs-qtr))*(meanDmdArry[endQtr]/meanDmdArrytqtr+1])*frcst[qtr+1];
end;

end else begin
twoYearAmt: = 8*frcst[qtr + 1];

end;
end else begin

if silverSSType = '0' then begin
if meanDmdArry[qtr+ 1] > 0.0 then begin

for i: = (qtr + 1) to (qtr + 8) do begin

twoYearAmt: = twoYearAmt + (meanDmdArry[i]/meanDmdArry[qtr+ 1])*frcst[qtr+ 1];
end;

end;
end else begin

twoYearAmt: = 8*frcst[qtr + 1];
end;

end;
end;
qtrlnapp: = OHCurr-twoYearAmt;
if qtrlnapp < 0.0 then qtrlnapp: = 0.0;
oldQtrlnapp: = qtrlnappArry [qtr]. Mean;
qtrlnappArryfqtr].Mean: = NewMean(qtrlnappArry[qtr].Mean,qtrlnapp,numberRep);
qtrlnappArryfqtr]. Variance: = NewVar(qtrlnappArry[qtr]. Mean,oldQtrlnapp,

qtrlnappArry[qtr].Variance,qtrlnapp,numberRep);

if qtr = endSSQtr then begin
invest: = replnvest/(endSSQtr-startSSQtr+ 1);
lastOH: = OHCurr;
lastOS: = OSCurr;
inappAsset: = qtrlnapp;
inappVal: = qtrlnapp *unitPrice;
orderCount: = SSOrderCount;

end;

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if (wkDataType= '1') then begin

writeln(outputfile);
writeln(outputfile,'QTR DMD OH IP OS BO INVEST');

end else if qtrDataType = ' 1' then begin
if (qtr= 1) or (((qtr-1) mod 20) = 0)then begin

writeln(outputfile);
writeln(outputfile,'QTR DMD OH IP OS BO INVEST');

132

end;
end;
if qtrDataType = ' 1' then

writeln(outputfile,qtr:3,observ[qtr]:6:0,OHCurr:6,IPCurr:6,
OSCurr:6,BOCurr:6,qtrlnvest:8:2);

if (outputType = 'V) and (qtrDataType ='1') and (((qtr-1) mod 20) = 0) then
HitToCont;

end;

end; {for qtr}

if not (EmptyPriorityQueue(OSHeap)) then begin {adjust final qtr TWUS}
while not (EmptyPriorityQueue(BOHeap)) do begin

amtBO: = CurrQty(BOHeap);
if (CurrWeek(BOHeap) mod 13) = 0 then begin

BOqtr: = (CurrWeek(BOHeap) div 13);
end else begin

BOqtr: = (CurrWeek(BOHeap) div 13) + 1;
end;
qtrBOFHIArryfBOqtr]: = qtrBOFillArry[BOqtr] + amtBO;
qtrTWUSArryfBOqtr]: = qtrTWUSArryfBOqtr] +

(amtBo*(OSHeap.HeapArray[1].Week - ExtractWeek(BOHeap)));
end; {while}

end;

for t: = 1 to numberOfQtrs do begin
if qtrBOFillArry[t] > 0 then begin

oldQtrACWTBO: = qtr ACWTBOArryW. Mean;
ACWTBOvalue: = (7*(qtrTWUSArry[t]/qtrBOFillArry[t]));
qtrACWTBOArry[t].Mean: = NewMean(qtrACWTBOArry[t].Mean,

ACWTBOvalue,numberRep);
qtrACWTBOArrytt].Variance: = NewVar(qtrACWTBOArry[t].Mean,oldQtrACWTBO,

qtrACWTBOArry[t].Variance,ACWTBOvalue,numberRep);
end; {if}
oldQtrACWT: = qtrACWTArry[t].Mean;
if observft] > 0 then begin

ACWTvalue: = (7*(qtrTWUSArry[t]/observ[t]));
end else begin

ACWTvalue: = 0.0;
end;
qtr ACWTArryft]. Mean: = NewMean(qtrACWTArry[t].Mean,

ACWTvalue,numberRep);
qtrACWTArry[t].Variance: = NewVar(qtrACWTArry[t].Mean,oldQtrACWT,

qtr AC WTArry [t]. Variance, AC WTvalue, numberRep);;
oldQtrSMA: = qtrSMAArry[t].Mean;
if observlt] > 0 then begin

SMAvalue: = (1 -(qtrBOTotArry[t]/observ[tl));
end else begin

SMAvalue: = 1.0;
end;

133

qtrSMAArry[t].Mean: = NewMean(qtrSMAArry[t].Mean,
SMAvalue,numberRep);

qtrSMAArryltJ. Variance: = NewVar(qtrSMAArry[t].Mean,oldQtrSMA,
qtrSMAArry[t].Variance,SMAvalue,numberRep);

end; {for}

dmdTot: = 0;
TWUS: = 0;
BOTot: = 0;
BOFill: = 0;

for qtr: = startSSQtr to endSSQtr do begin

dmdTot: = dmdTot + round(observ[qtr]);
TWUS: = TWUS + qtrTWUSArryfqtr];
BOTot: = BOTot + qtrBOTotArry[qtr];
BOFill:= BOFILL + qtrBOFillArry[qtr];

if BOFill <> 0 then begin
ACWTBO: = 7*(TWUS/BOFill);

end else begin
ACWTBO: = 0.0;

end; {if}
if dmdTot <> 0 then begin

ACWT: = 7*(TWUS/dmdTot);
SMA: = 1 - BOTot/dmdTot;

end else begin
ACWT: = 0.0;
SMA: = 1.0;

end; {if}

oldCum ACWTBO: = cumACWTBOArrytqtr].Mean;

cumACWTBOArry[qtr].Mean: = NewMean(cumACWTBOArry[qtr].Mean,ACWTBO,numberRep
);

cumACWTBOArry[qtr].Variance: = NewVar(cumACWTBOArry[qtr].Mean,oldCumACWTBO,
cumACWTBOArry[qtr].Variance,ACWTBO,numberRep);

oldCumACWT: = cumACWTArry[qtr].Mean;
cumACWTArry[qtr].Mean: = NewMean(cumACWTArry[qtrJ.Mean, ACWT,numberRep);
cumACWTArry[qtr].Variance: = NewVar(cumACWTArry[qtr].Mean,oldCumACWT,

cumACWTArry[qtr].Variance,ACWT,numberRep);
oldCumSMA: = cumSMAArry[qtr].Mean;
cumSMAArry[qtr].Mean: = NewMean(cumSMAArry[qtr].Mean,SMA,numberRep);
cumSMAArry[qtr]. Variance: = NewVar(cumSMAArry[qtr].Mean,oldCumSMA,

cumSMAArry[qtr].Variance,SMA,numberRep);
end; {for}

totalCost: = (initSSOH + initSSOS + SSOSTot)*unitPrice + SSOrderCount*adminCost +
cumSSHoldCost+(TWUS/52»shortCost);

134

end; {SDR}

procedure PrintHeader(unitPrice,PLT,P1,adminCost,obsol,timePref,storage,
shortCost,frcstErrCoeff,bufferMult,
PLTSigMuRatio,meanDemand, varDemand,negBinP:real;
ROLowConst,maxQtrs,minQtrs,maxDecl,negBinS,seedlndex,
initlnv,initOS,initOrders:integer;
var outputfile:text;outputType,distrType,silverSSType:char;
outFileName:string;runDescript:descripf!"ype;
nmbrSteps,nmbrTrends,startSSQtr,endSSQtr:integer;
stepMult,trendCoeff,trendPower:changeRealArry;
startStep,starTrnd,endTrnd:changelntArry);

var i: integer;
distrUsed:string[7];
Year, Month, Day, Dayof week: word;

begin
distrUsed: =' Normal';
ifdistrType = '2'then distrUsed: = 'Poisson';
if distrType = '3' then distrUsed: = *Neg Binomial';
if outputType = '2' then begin

writelnfoutputfile," *** \outFileName,' ***');
writeln(outputfile);
GetDate(Year,Month,Day,Dayofweek);
if silverSSType = '0' then begin

writelnfoutputfile,' Date: ',Month,'-',Day,'-',Year,' Model: MOD SILVER
(VARIABLE FORECASTS)');

end else begin
writelnfoutputfile,' Date: ',Month,'-*,Day,'-',Year,' Model: MOD SILVER (FIXED

FORECASTS)');
end;

end;
writeln(outputfile);
writelnfoutputfile,' Description: *,runDescript);
writelnfoutputfile);
writeln(outputfile,' Initial simulation settings ');
writeln(outputfile);
writeln(outputfile,' Random number generator seed type: ',seedtype);
if seedType =' 1' then begin

writeln(outputfile,' Random number seed start index: \seedlndex:6);
end;
writelnfoutputfile,' Type of demand distribution: ', distrUsed);
if distrType = '3' then begin

writeln(outputfile," Neg Binomial Parameters: p = *,negBinP:6:2);
writeln(outputfile,' s = ',negBinS:6);

end;
writelnfoutputfile,' Mean Demand: \meanDemand:6:2);
writelnfoutputfile,* Var Demand: ',varDemand:6:2);

135

writelnloutputfile,' Number of quarters to simulate: ',number0fQtrs:5);
writelnloutputfile,' Start Sim Steady State quarter: \startSSQtr:5);
writeln(outputfile,' End Sim Steady State quarter: ',endSSQtr:5);
writelnloutputfile,' Number of replications of simulation to run: \numberOfReps:5);
writelnloutputfile,' Number of steps: ',nmbrSteps:5);

if nmbrSteps > 0 then begin
for i: = 1 to nmbrSteps do begin

writelnloutputfile,' Step: ',i:2,' Step Qtr: ',startStep[i]:4,
' Mult: *,stepMult[i]:7:4);

end;
end; {if}
writelnloutputfile,' Number of trends: ',nmbrTrends:5);
if nmbrTrends > 0 then begin

for i: = 1 to nmbrTrends do begin
writelnloutputfile,' Trend:',i:2," Start Qtr: ',starTrnd[i]:3,

' Stop Qtr: ',endTrnd[i]:3,
' Coeff: ',trendCoeff[i]:7:4,' Power: ',trendPower[i]:7:4);

end;
end; {if}
writelnloutputfile);
if outputType = ' 1' then begin

HitToCont;
clrscr;

end;
writelnloutputfile,' Initial parameter settings ');
writeln loutputfiie,' A. Unit Price : ',unitPrice:8:2,' J. Admin Order :

',adminCost:8:2);
writeln loutputfiie,' B. Buffer Mult (B): ',bufferMult:8:2,' K. R/O Constr :

',ROLowConst:8);
writeln loutputfiie,' C. Frcst Error (C): ',frcstErrCoeff:8:2,' L. Obsol Rate :

',obsol:8:2);
writeln loutputfiie,' D. PLT Sig/Mu : ',PLTSigMuRatio:8:2,' M. Time Pref Rate:

',timePref:8:2);
writeln loutputfiie,' E. Max Qtrs : ',maxQtrs:8,' N. Storage Rate : ',storage:8:2);
writeln loutputfiie,' F. Max Decl Qtrs : *,maxDecl:8,' 0. Shortage Cost:

',shortCost:8:2);
writeln loutputfiie,' G. Min Qtrs : ',minQtrs:8,' P. Init Inv OH : \initlnv:8);
writeln loutputfiie,' H. Procur LT : ',PLT:8:2,' Q. Init Qty OS : *,initOS:8);
writeln loutputfiie,'I. Risk : ',P1:8:2,' R. Init Num Order: \initOrders:8);

if outputType = ' 1' then begin
HitToCont;
clrscr;

end;
end; {printheader}

procedure DisplayFrcstOutput (var observ, frcst, mad :quarterArray;

136

var steplndArry, tmdlndArry,mkCodeArry:qtrlntArray;
numberOfQtrs,initlnv,repNum:integer;
outputType:char);

var t:integer;

begin
writeln (outputfile);
writeln(outputfile,'Replication Number ',repNum);
writeln(outputfile);
writeln(outputfile,'Quarterly Forecast Data');
writeln(outputfile,' ');
for t: = 1 to numberOfQtrs do begin

if (t= 1) or (((t-1) mod 20) = 0)then begin
if (outputType='1') and (t> 1) then HitToCont;
writeln (outputfile);
writeln (outputfile/QTR OBS FRCST MAD MK ST TR');

end;
writeln (outputfile,t:3,observ[t]:6:0,frcst[t]:8:2,mad[t]:8:2,

mkCodeArry[t]:3, steplndArry[t]:3,tmdlndArry[t]:3);
end;
writeln (outputfile);
if outputType= '1' then HitToCont;

end;

procedure DisplayRepStats (var ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,
lastOS,totalCost,inappAsset,inappVal:real;
outputTypexhar);

begin
if (numberRep = 1) or (outputType = '1') then begin

writeln(outputfile);
writeln

(outDutfile ****»**••**••**••••*•*******»******•*******•*****************

writeln(outputfile,' Rep# ACWTBO ACWT SMA INVEST End OH Tot Cost
Inapp');

end;
writelnfoutputfile.numberRepiB.ACWTBO^^^CWTry^.SMAiy^JnvestrS^^astOHtSiO,'

MotalCost: 10:2,inappAsset:8:0);
if outputType ="T then begin

delay(1500);
clrscr;

end;
end;

{procedure DisplayRepStats (var ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,
lastOS,totalCost,inappAsset,inappVal:real;
outputTypexhar);

begin

137

writeln(outputfile);
writeln

(outnutfilp '***********•***•********••********•*•***********************

writeln(outputfile,'Replication # ',numberRep:3,' Final Statistics');
writeln(outputfile,' ACWTBO ACWT SMA Orders INVEST End OH End OS');

writeln(outputfile,ACWTBO:7:2,ACWT:7:2,SMA:7:2,orderCount:8:0,lnvest:8:2,lastOH:8:0,l
astOS:8:0);

writeln(outputfile,' Total Cost INAPP INAPP Value');
writeln(outputfile,totalCost: 10:2,inappAsset:8:0,inappVal: 10:2);

writeln (outnutf ilp '*************•»*•***•*•*•*•****•***********************

if outputType =' 1' then begin
delay(1500);
clrscr;

end;
end;}

procedure CalcSimStats(ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,lastOS,
totalCost,inappAsset,inappVal, initSSOH, initSSOS,
initSSOrdersrreal;
var n: integer;
var simACWTBO,simACWT,simSMA,simlnvest,

simOrderCount,simLastOH,simLastOS,
simTotalCost,simACWTBOVar,simACWTVar,
simSMAVar,simlnvestVar,simOrderCountVar,
simLastOHVar,simLastOSVar,
simTotalCostVar,simlnapp,
simlnappVar,simlnappVal,simlnappValVar,
simlnitSSOH,simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,
simlnitSSOrdersVanreal);

var oldSimACWTBO,oldSimACWT,oldSimSMA,oldSimlnvest,oldSimOrderCount,
oldSimLastOH,oldSimLastOS,oldSimTotalCost,oldSimlnapp,oldSimlnappVal,
oldSimlnitSSOH,oldSimlnitSSOS,oldSimlnitSSOrders:real;

begin
if n = 0 then begin

simACWTBO: = 0.0;simACWT: = 0.0;simSMA: = 0.0;simlnvest: = 0.0;
simOrderCount: = 0.0;simLastOH: = 0.0;simLastOS: = 0.0;simTotalCost: = 0;
simlnapp: = 0.0;simlnappVal: = 0.0;
simACWTBOVar: = 0.0;simACWTVar: = 0.0;simSMAVar: = 0.0;
simlnvestVar: = 0.0;simOrderCountVar: = 0.0;simLastOHVar: = 0.0;
simLastOSVar: = 0.0;simTotalCostVar: = 0.0;
simlnappVar: = 0.0;simlnappValVar: = 0.0;
simlnitSSOH: = 0.0;simlnitSSOS: = 0.0;simlnitSSOrders: = 0.0;

138

simlnitSSOHVar: = 0.0;simlnitSSOSVar: = 0.0;simlnitSSOrdersVar: = 0.0;
end;

n: = n+ 1;
oldSimACWTBO: = simACWTBO;oldSimACWT: = simACWT;oldSimSMA: = simSMA;
oldSimlnvest: = simlnvest;oldSimOrderCount: = simOrderCount;
oldSimLastOH: = simLastOH;oldSimLastOS: = simLastOS;
oldSimTotalCost: = simTotalCost;oldSimlnapp: = simlnapp;
oldSimlnappVal: = simlnappVal;oldSimlnitSSOH: = simlnitSSOH;
oldSimlnitSSOS: = simlnitSSOS;oldSimlnitSSOrders: = simlnitSSOrders;

simACWTBO: = NewMean(simACWTBO,ACWTBO,n);
simACWT: = NewMean(simACWT,ACWT,n);
simSMA: = NewMean(simSMA,SMA,n);
simlnvest: = NewMean(simlnvest,lnvest,n);
simOrderCount: = NewMean(simOrderCount,orderCount,n);
simLastOH: = NewMean(simLastOH,lastOH,n);
simLastOS: = NewMean(simLastOS,lastOS,n);
simTotalCost: = NewMean(simTotalCost,totalCost,n);
simlnapp: = NewMean(simlnapp,inappAsset,n);
simlnappVal: = NewMean(simlnappVat,inappVal,n);
simlnitSSOH: = NewMean(simlnitSSOH,initSSOH,n);
simlnitSSOS: = NewMean(simlnitSSOS,initSSOS,n);
simlnitSSOrders: = NewMean(simlnitSSOrders,initSSOrders,n);

SimACWTBO Var: = NewVar(simACWTBO,oldSimACWTBO,simACWTBOVar, AC WTBO,n);
simACWTVar: = NewVar(simACWT,oldSimACWT,simACWTVar,ACWT,n);
simSMAVar: = NewVar(simSMA,oldSimSMA,simSMAVar,SMA,n);
simlnvestVar: = NewVar(simlnvest,oldSimlnvest,simlnvestVar,lnvest,n);

simOrderCountVar: = NewVar(simOrderCount,oldSimOrderCount,simOrderCountVar,orderCou
nt,n);

simlastOHVar: = NewVar(simLastOH,oldSimLastOH,simLastOHVar,lastOH,n);
simlastOSVar: = NewVar(simLastOS,oldSimLastOS,simLastOSVar,lastOS,n);
simTotalCostVar^NewVarlsimTotalCost^ldSimTotalCost^imTotalCostVar^otalCostn);
simlnappVar: = NewVar(simlnapp,oldSimlnapp,simlnappVar,inappAsset,n);
simlnappValVar: = NewVar(simlnappVal,oldSimlnappVal,simlnappValVar,inappVal,n);
simlnitSSOHVar: = NewVar(simlnitSSOH,oldSimlnitSSOH,simlnitSSOHVar,initSSOH,n);
simlnitSSOSVar: = NewVar(simlnitSSOS,oldSimlnitSSOS,simlnitSSOSVar,initSSOS,n);
simlnitSSOrdersVar: = NewVar(simlnitSSOrders,oldSimlnitSSOrders,

simlnitSSOrdersVar,initSSOrders,n);

end;

procedure DisplayQtrSimStats (var qtrACWTBOArry,qtrACWTArry,qtrSMAArry,
qtrlnvestArry,qtrlnappArry,cumACWTBOArry,
cumACWTArry,cumSMAArry:qtrStatArry;numberOfReps,
numberOfQtrs:integer;runDescript:descriptType;
silverSSType:char;var startSSQtr,endSSQtr:integer);

139

var trinteger;
statOutFile:text;
statFileName:string;

begin
clrscr;
writeCWrite Quarterly Statistics to a File? (Y or N): ');
if GetAnswer then begin

repeat
writeln;
write ('Enter Path and Filename: ');
readln (statFileName);
writeln;
writeln ('Path and FileName entered: ',statFileName);
writeln;
write ('Change Path and FileName entered? (Y or N): ');

until not(Get_Answer);
assign(statOutFile,statFileName);
rewrite (statOutFile);
for t: = startSSQtr to endSSQtr do begin

Conflnv(qtrACWTBOArry[t].Variance,qtrACWTBOArry[t].Mean,
qtrACWTBOArry[t].CIHigh,qtrACWTBOArry[t].CILow,numberRep);

Conflnv(qtrACWTArry[t].Variance,qtrACWTArry[t].Mean,
qtrACWTArry[t].CIHigh,qtrACWTArry[t].CILow,numberRep);

Conflnv(qtrSMAArry[t].Variance,qtrSMAArrytt].Mean,
qtrSMAArry[t].CIHigh,qtrSMAArry[t].CILow,numberRep);

Conflnv(qtrlnvestArry[t].Variance,qtrlnvestArry[t].Mean,
qtrlnvestArrytt].CIHigh,qtrlnvestArry[t].CILow,numberRep);

Conflnv(cumACWTBOArry[t].Variance,cumACWTBOArrytt].Mean,
cumACWTBOArryMXIHigh,cumACWTBOArry[t].CILow,numberRep);

Conflnv(cumACWTArry[t].Variance,cumACWTArry[t].Mean,
cumACWTArry[t].CIHigh,cumACWTArry[t].CILow,numberRep);

Conflnv(cumSMAArry[t].Variance,cumSMAArry[t].Mean,
cumSMAArry[t].CIHigh,cumSMAArry[t].CILow,numberRep);

Conflnv(qtrlnappArry[t].Variance,qtrlnappArry[t].Mean,
qtrlnappArry[t].CIHigh,qtrinappArry[t].CILow,numberRep);

end;
if silverSSType = '0' then begin

writeln(statOutFile,' MOD SILVER (VARIABLE FORECASTS)');
end else begin

writeln (statOutFile," MOD SILVER (FIXED FORECASTS)');
end;
writeln(statOutFile,' Description: VunDescript);
writeln(statOutFile);
writeln(statOutFile,' QUARTERLY DATA:*);
writeln (statOutFile,1 QTR ACWTBO Cl ACWT Cl ');
for t: = startSSQtr to endSSQtr do begin

writeln(statOutFile,t:4,
qtrACWTBOArry[t].Mean:8:2,

140

qtrACWTBOArry[t].CILow:8:2,
qtrACWTB0Arry[t].CIHigh:8:2,
qtrACWTArry[t].Mean:8:2,
qtrACWTArry[t].CILow:8:2,
qtrACWTArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
write!n(statOutFile,' QTR SMA Cl Invest CD;
for t: = startSSQtr to endSSQtr do begin

writeln(stat0utFile,t:4,
qtrSMAArry[t].Mean:8:2,
qtrSMAArry[t].CILow:8:2,
qtrSMAArrytt].CIHigh:8:2,
qtrlnvestArry[t].Mean:8:2,
qtrlnvestArry[t].CILow:8:2,
qtrlnvestArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,' CUMULATIVE QUARTERLY DATA:');
writeln(statOutFile/ QTR ACWTBO Cl ACWT Cl ');
for t: = startSSQtr to endSSQtr do begin

writeln(stat0utFile,t:4,
cumACWTBOArry[t].Mean:8:2,
cumACWTBOArry[t].CILow:8:2,
cumACWTBOArry[t].CIHigh:8:2,
cumACWTArry[t].Mean:8:2,
cumACWTArry[t].CILow:8:2,
cumACWTArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,' QTR SMA Cl Qtrly INAPP Cl');
for t: = startSSQtr to endSSQtr do begin

writeln(stat0utFile,t:4,
cumSMAArry[t].Mean:8:2,
cumSMAArry[t].CILow:8:2,
cumSMAArry[t].CIHigh:8:2,
qtrlnappArry[t].Mean:8:2,
qtrlnappArry[t]. CILow: 8:2,
qtrlnappArry[t].CIHigh:8:2);

end;

close(statOutFile);
end;

end;

procedure DisplaySimStats {var simACWTBO, simACWT, simSMA, simlnvest,
simOrderCount, simLastOH, simlastOS.simTotalCost,
simACWTBOVar, simACWTVar, simSMAVar,
simlnvestVar,simOrderCountVar,
simLastOHVar,simlastOSVar,simTotalCostVar,

141

simlnapp,simlnappVar,simlnappVal,
simlnappValVar,simlnitSSOH,simlnitSSOS,
simlnitSSOrders.simlnitSSOHVa^simlnitSSOSVar,
simlnitSS0rdersVar:real;

var n:integer;
initlnv,initOS,initOrders,initSSOH,
initSSOS,initSSOrders:integer;
outputTyperchar; hourl ,minute1 ,second1 ,hdSec1,
hour2,minute2,second2,hdSec2:word);

var simACWTBOHi^imACWTHi^imSMAHi^imlnvestHi^imOrderCountHi,
simLastOHHi,simLastOSHi,simACWTBOLo,simACWTLo,simSMALo,
simlnvestLo,simOrderCountLo,simLastOHLo,simLastOSLo,
simTotalCostHi,simTotalCostLo,simlnappLo,simlnappHi,
simlnappValLo,simlnappValHi, simlnitSSOHHi,simlnitSSOHLo,
simlnitSSOSHi,simlnitSSOSLo,simlnitSSOrdersHi,
simlnitSSOrdersLo:real;

begin

Conflnv(simACWTBOVar, simACWTBO, simACWTBOHi,simACWTBOLo,n);
Conflnv(simACWTVar, simACWT, simACWTHi, simACWTLo,n);
Conflnv(simSMAVar, simSMA, simSMAHi, simSMALo,n);
Conflnv(simlnvestVar, simlnvest, simlnvestHi, simlnvestLo,n);
Conflnv(simOrderCountVar, simOrderCount, simOrderCountHi,

simOrderCountLo,n);
Conflnv(simLastOHVar, simLastOH, simLastOHHi, simLastOHLo,n);
ConflnvfsimLastOSVar, simLastOS, simLastOSHi, simLastOSLo,n);
ConfInv{simTotalCostVar, simTotalCost, simTotalCostHi, simTotalCostLo.n);
Conflnv(simlnappVar,simlnapp, simlnappHi, simlnappLo,n);
Conflnv(simlnappValVar,simlnappVal, simlnappValHi, simlnappValLo,n);
Conflnv(simlnitSSOHVar, simlnitSSOH, simlnitSSOHHi, simlnitSSOHLo.n);
Conflnv(simlnitSSOSVar, simlnitSSOS, simlnitSSOSHi, simlnitSSOSLo,n);
Conflnv(simlnitSSOrdersVar, simlnitSSOrders, simlnitSSOrdersHi,

simlnitSSOrdersLo,n);

writeln
(outDutfile ***
 '**•,;

writeln (outputfile,'lnit OH Qty: ',initlnv:8,
• Init SS OH Qty: '.simlnitSSOH^^,' (',simlnitSSOHLo:0:2,

,,,,simlnitSSOHHi:0:2,,),);
writeln (outputfile,'Init OS Qty: ',initOS:8,

' Init SS OS Qty: '^imlnitSSOS.-S^,' r,simlnitSSOSLo:0:2,
y.simlnitSSOSHhO^,*)');

writeln (outputfile/lnit Orders: ',initOrders:8,
' Init SS Orders: ',simlnitSSOrders:8:2,' C,simlnitSSOrdersLo:0:2,

y,simlnitSSOrdersHi:0:2,T);

142

writeln(outputfile);
writeln(outputfile,'Simulation Final Statistics');
writeln(outputfile);
writelnfoutputfile,' ACWTBO ACWT SMA Orders INVEST End OH End OS');
writeln(outputfile,' ,,simACWTBO:7:2,simACWT:7:2,simSMA:7:2/simOrderCount:8:2,

simlnvest:8:2,simLastOH:8:2,simLastOS:8:2);
writeln(outputfile,'Low %simACWTBOLo:7:2,simACWTLo:7:2,simSMALo:7:2,

simOrderCountLo:8:2,simlnvestLo:8:2,simLastOHLo:8:2,
simLastOSLo:8:2);

writeln(outputfile,'High ',simACWTBOHi:7:2,simACWTHi:7:2,simSMAHi:7:2,
simOrderCountHi:8:2,simlnvestHi:8:2,simLastOHHi:8:2,
simLastOSHi:8:2);

writeln(outputfile);
writelnfoutputfile,' Total Cost INAPP INAPP Value');
writeln(outputfile,' ',simTotalCost:10:2,simlnapp:8:2,simlnappVal:10:2);
writeln(outputfile,'Low ',simTotalCostLo:10:2,simlnappLo:8:2,simlnappValLo:10:2);
writeln(outputfile,'High ',simTotalCostHi:10:2,simlnappHi:8:2,simlnappValHi:10:2);

if n<30 then begin
writeln(outputfile);
writeln(outputfile,'Caution! The confidence level is based on a normality assumption.*);
writelnfoutputfile,'Your sample has only *,n:3,' values');

end;
writeln

(outDutfile •***•*»••*•**••**••••*****•**•*****•*************************

writeln(outputfile,'Sim Start Time ',hour1 ,':',minute1 ,':',second1 ,':',hdSed,
' Sim End Time ■,hour2,':',minute2,':',second2,*:',hdSec2);

if outputType =' 1' then HitToCont;
end;

begin {main}
textcolor(14);
stop: = FALSE;
simCount: = 0;
Frontscreen;
Runtype (distrType,outputType,wkDataType,qtrDataType,frcstDataType,

repStatType,silverSSType,numberOfQtrs,numberOfWks,numberOfReps,

negBinS,seedlndex,startSSQtr,endSSQtr,meanDemand,varDemand,negBinP,inputfile,outputfi
le,

frcst,mad,seeds,outFileName,runDescript);
repeat

rewrite (outputfile);
simCount: = simCount + 1 ;
currSeed: = 0;
n: = 0;
GetTimel hourl ,minute1 ,second1 ,hdSec1);

143

lnitializeStatArrays(qtrACWTBOArry,qtrACWTArry,qtrSMAArry,
qtrlnvestArry,qtrlnappArry,cumACWTBOArry,
cumACWTArry.cumSMAArry);

for numberRep := 1 to numberOfReps do begin
if seedType = ' 1' then begin

if numberRep = 1 then begin
for s: = 1 to seedlndex do begin

currSeed: = GetNextSeed(currSeed);
end;
SetSeed(currSeed);

end else begin
currSeed: = GetNextSeed (currSeed);
SetSeed(currSeed);

end;
end else begin

SetSeed(seeds[numberRep]);
end;
InitializeArrays (observ,meanDmdArry,varDmdArry,steplndArry, trndlndArry,

mkCodeArry,numberOfQtrs,numberOfWks,meanDemand,
wklyObserv);

LoadObserv (observ,frcst,mad,meanDmdArry,varDmdArry,wklyObserv,
observType,distrType,numberOfQtrs,
numberOfWks,numberRep,simCount,trendOn,stepOn,nmbrSteps,
nmbrTrends, meanDemand,varDemand,inputfile,
startstep, startrnd, endtrnd,stepmult, trendcoeff,
trendpower);

if numberRep = 1 then begin
if simCount=1 then lnitlnput(unitPrice,PLT,P1,adminCost,obsol,

timePretstorage^hortCostjfrcstErrCoef^bufferMult,
PLTSigMuRatio,meanDemand,ROLowConst,
maxQtrs,minQtrs,maxDecl,initlnv,initOS,initOrders);

lnputEdit(unitPrice,PLT,P1,adminCost,obsol,timePref,storage,shortCost,
frcstErrCoeff,bufferMult,PLTSigMuRatio,meanDemand,
ROLowConst,maxQtrs,minQtrs,maxDecl,initlnv,initOS,initOrders);

end;
if numberRep= 1 then PrintHeader(unitPrice,PLT,P1,adminCost,obsol,

timePref, storage, shortCost,
frcstErrCoeff,bufferMult,PLTSigMuRatio,
meanDemand,varDemand,negbinP,
ROLowConst,maxQtrs,minQtrs,maxDecl,negBinS,
seedlndex,initlnv,initOS,initOrders,
outputf ile, outputType,
distrType.silverSSType,
outFileName,runDescript,
nmbrSteps,nmbrTrends,startSSQtr,
endSSQtr,stepMult,
trendCoeff,trendPower,startStep,
starTrnd,endTrnd);

Forecast (observ,frcst,mad, steplndArry, trndlndArry,
mkCodeArry,numberOfQtrs,numberRep,unitPrice);

144

if frcstDataType="T then DisplayFrcstOutput (observ, frcst, mad,
steplndArry, trndlndArry,
mkCodeArry,numberOfQtrs,initlnv,
numberRep.outputType);

SDR(OSHeap,BOHeap,wklyObserv,frcst,meanDmdArry,observ,mad,
numberOfQtrs,initlnv,initOS,initOrders,startSSQtr,endSSQtr,
initSSOH,initSSOS,initSSOrders,meanDemand,TWUS,ACWTBO,
ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,
inappAsset,inappVal,wkDataType,
qtrDataType,outputType,silverSSType,unitPrice,PLT,P1,adminCost,
obsol,timePref,storage,shortCost,frcstErrCoeff,bufferMult,PLTSigMuRatio,

ROLowConst,maxQtrs,minQtrs,maxDecl,qtrACWTBOArry,qtrACWTArry,qtrSMAArry,
qtrlnvestArry,qtrlnappArry,
cumACWTBOArry,cumACWTArry,cumSMAArry,numberRep);

if repStatType = 'V then DisplayRepStats (ACWTBO, ACWT, SMA, Invest,
orderCount,

lastOH,lastOS,totalCost,
inappAsset,inappVal,
outputType);

CalcSimStats(ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,lastOS,
totalCost,inappAsset,inappVal,initSSOH,initSSOS,
initSSOrders,n,simACWTBO,simACWT,simSMA,simlnvest,

simOrderCount,simLastOH,simLastOS,simTotalCost,
simACWTBOVar,simACWTVar,simSMAVar,simlnvestVar,
simOrderCountVar,simLastOHVar,simLastOSVar,
simTotalCostVar,simlnapp,simlnappVar,
simlnappVal,simlnappValVar,simlnitSSOH,simlnitSSOS,
simlnitSSOrders,simlnitSSOHVar,simlnitSSOSVar,
simlnitSSOrdersVar);

end; {for}
GetTime(hour2,minute2,second2,hdSec2);
DisplaySimStatsf simACWTBO,simACWT,simSMA,simlnvest,simOrderCount,

simLastOH,simLastOS,simTotalCost,
simACWTBOVar, simACWTVar,
simSMAVar, simlnvestVar.simOrderCountVar,
simLastOHVar,simlastOSVar,simTotalCostVar,
simlnapp,simlnappVar,simlnappVal,simlnappValVar,
simlnitSSOH,simlnitSSOS,simlnitSSOrders,simlnitSSOHVar,
simlnitSSOSVar,simlnitSSOrdersVar,
n,initlnv,initOS,initOrders,initSSOH,
initSSOS,initSSOrders,outputType,hour1 ,minute1,
second 1 ,hdSed ,hour2,minute2,second2,hdSec2);

close (outputfile);
DisplayQtrSimStats(qtrACWTBOArry,qtrACWTArry,qtrSMAArry,

qtrlnvestArry,qtrlnappArry,
cumACWTBOArry.cumACWTArry,
cumSMAArry.numberOfRepSjnumberOfQtrs,
runDescript,silverSSType,startSSQtr,endSSQtr);

RunAgain (outputfile,runDescript,outputType,

145

frcst,mad,stop,outFileName);
until stop;
textcolor(15);

end. {main}

146

{$M $4000,0,0} {$r+} {$N + ,E + } {$G + } {Q + }
program UICP_Simulator (input,ouput);

uses dos, crt, toolbox, unirand, PDUnit, pqueue;

type quarterArray = array 11.. 120] of real;
weeklyArray = array [1..1560] of real;
qtrlntArray = array [1.. 120] of integer;
changeRealArry = array [1 ..10] of real;
changelntArry = array [1 ..10] of integer;
pd82field = string[15];
descriptType = string[40];
statRecord = record

Mean:real;
Variance:real;
CIHigh:real;
CILow:real;

end;
qtrStatArry = array [1 ..120] of statRecord;

const COEFF 1 = 1.386;
POWER1 =0.746;
COEFF2 = 3.869;
POWER2=1.378;
MAXPLT=14.0;
MINPLT=2.0;
ERROR = 1 .OOO00O0OOOOO00E-0O1O;

var wklyObserv:weeklyArray;
observ, frcst, mad, meanDmdArry, varDmdArry, EOQArry, ROLevelArry,
APSRArry, attainRisk, SSADDBO, SSADD, SSSMA:quarterArray;
steplndArry, trndlndArry,mkCodeArry:qtrlntArray;
cumACWTBOArry,cumACWTArry,cumSMAArry:qtrStatArry;
qtrACWTBOArry,qtrACWTArry,qtrSMAArry,qtrlnvestArry,qtrlnappArry,
qtrSSADDBOArry,qtrSSADDArry,qtrSSSMAArry:qtrStatArry;
observType,distrType,outputType,seedtype,wkDataType,qtrDataType,
PDDataType,RunPD86Type,repStatType:char;
numberRep,i,n,s,numberOfReps,numberOfQtrs,numberOfWks,markCode,initlnv,
initOS,initOrders,simCount,seedlndex,negBinS,startSSQtr,endSSQtr,
initSSOH,initSSOS,initSSOrders:integer;
meanDemand, varDemand,PLTSigMuRatio,realval,negBinP,meanRisk:real;
trendOn,StepOn,nmbrSteps, nmbrTrends:integer;
TWUSrlongint;
inputfile,outputfile:text;
stringval:pd82field;
stop:boolean;
startstep, startrnd, endtrnd: changelntArry;
stepmult, trendcoeff, trendpower: changeRealArry;
hourl ,minute1 ,second1 ,hdSec1 ,hour2,minute2,second2,hdSec2:word;
outFileNamerstring;

147

OSHeap,BOHeap:PriorityQueueType;
ACWTBO,ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,
inappAsset,inappVal:real;
simACWTBO, simACWT, simSMA, simlnvest, simOrderCount,simLastOH,
simLastOS:real;
simACWTBOVar,simACWTVar,simSMAVar,simlnvestVar,simOrderCountVar,
simLastOHVar,simLastOSVar,simTotalCost,simTotalCostVar,
simlnapp,simlnappvar,simlnappVal,simlnappValVar,simMeanRisk,
simMeanRiskVar,simlnitSSOH,simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,simlnitSSOrdersVar:real;
runDescript:descriptType;
currSeed:longint;

procedure Frontscreen;

begin
clrscr;
writeln;
writeln;
writeln;
writeln;
writeln;
writeln;
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
writeln ('
Delay! 1500); {For 1500 ms}
clrscr;

end;

* UICP LEVELS FORECASTING *');

****** M

SIMULATOR
FOR CONSUMABLES

*

* G. C. Robillard LT,SC
*

Revised: 9/02/93

• •i

*')
•')
");

h***********4

');
');

^ ****** ri

procedure runtype (var distrType,outputType,wkDataType,qtrDataType,
PDDataType, Run PD86Type, repStatType: char;

var numberOfQtrs,numberOfWks,numberOfReps,
negBinS,seedlndex,startSSQtr,endSSQtr:integer;

var meanDemand, varDemand,negBinP:real;
var inputfile.outputfile: text;
var frcst,mad: quarterArray;
var seeds:seedArryType;
var outFiieName:string;
var runDescript:descriptType);

var done: boolean;
i,maxStart:integer;
demandlnFile: string;

148

begin
writeln;
writeln (' •** THIS SCREEN WILL ALLOW SELECTION OF RUN TYPE OPTIONS ••*');
done: = FALSE;
writeln;
writeln; writeln;
write {'Enter the number of replications (from 1 to 20000) to be run : ');
numberOfReps: = Getjntegerd ,20000);
writeln;
repeat

writeln ('Random Number Generator Seed Selection: ');
writeln;
writeln (' 1 - Default Seeds (unique seed for each replication)');
writeln (' 2 - Select Seeds (max number of replications is 100)');
writeln;
write ('Choice: ');
seedtype: = readkey;
writeln (seedtype);
writeln;
case seedtype of

■1': begin
done: = TRUE;
maxStart: = 20001 -NumberOfReps;
writeCEnter Random Seed Start Index (1 to ',maxStart:2,'): ');
seedlndex: = Getjntegerd,maxStart);
end;

'2': begin
done: = TRUE;
if NumberOfReps > 100 then NumberOfReps: = 100;
for i : = 1 to numberOfReps do begin

write ('Enter Seed value for replication \i,' : ');
seeds[i]: = Get J-onglntd,2147483646);
writeln;

end; {for}
end

end
until done = TRUE;
clrscr;
writeln (' **** RUN SELECTION OPTIONS CONTINUED ****');
writeln;
writeln;
writeCEnter Run Description: ');
readln (runDescript);
writeln;
write ('Enter the number of simulation quarters (max 120): ');
numberOfQtrs: = Getjntegerd, 120);
numberOfWks: = 13#NumberOfQtrs;
writeln;
write ('Enter the start of simulation SS (collect stats) quarter (max ',numberOfQtrs:3,'): '

);

149

startSSQtr: = Getjntegerd ,numberOfQtrs);
writeln;
write ('Enter the end of simulation SS (collect stats) quarter (max ',numberOfQtrs:3,'): '

endSSQtr: = Get_lnteger(startSSQtr,numberOfQtrs);
writeln;
done: = FALSE;
repeat

writeln (Type of Distribution: ');
writeln;
writeln (' 1 - Normal');
writeln (' 2 - Poisson');
writeln (' 3 - Neg Binomial');
writeln;
write ('Choice: ');
distrType: = readkey;
writeln (distrType);
writeln;
case distrType of

T: begin
done: = TRUE;
write ('Enter quarterly mean demand: ');
meanDemand: = Get_Real(0.0001,999999.0);
writeln;
write ('Enter demand variance: ');
varDemand: = Get_Real(0.0001,999999.0);
writeln
end;

'2': begin
done: = TRUE;
write ('Enter quarterly mean demand: ');
meanDemand: = Get_Real(0.0001,999999.0);
varDemand: = meanDemand;
writeln;
end;

'3': begin
done: = TRUE;
repeat

writeln;
write ('Enter parameter p (0 < p <1): ');
negBinP: = Get_Real(0.0001,0.9999);
writeln;
write ('Enter parameter s (s = 1,2,3 ...) : ');
negBinS: = Getjntegerd ,100);
writeln;
meanDemand: = (negbinS + (1 -negBinP))/negBinP;
varDemand: = (negBinS + (1 -negBinP))/(sqr(negBinP));
writelnCThe quarterly mean is: ',meanDemand:8:2);
writelnCThe demand variance is: \varDemand:8:2);
writeln;

150

writeCChange Initial Neg Binomial Parameters? (Y or N): ');
until not(Get_Answer);
end;

end
until done = TRUE;
frcstM]: = meanDemand;
mad[1]: = COEFF1 *exp(POWER1 *ln(frcst[1]));
done: = FALSE;
clrscr-

writeln (' **** RUN SELECTION OPTIONS CONTINUED ••♦*');
repeat

writeln;
writeln ('Send Output to: ');
writeln;
writeln (' 1 - Screen');
writeln (' 2 - File');
writeln;
write ('Choice: ');
outputType: = readkey;
writeln (outputType);
case outputType of

"T: begin
done: = TRUE;
assign(outputfile,'con');

end;
'2': begin

done: = TRUE;
repeat

writeln;
write ('Enter Path and Filename: ');
readln (outFileName);
writeln;
writeln ('Path and FileName entered: ',outFileName);
writeln;
write ('Change Path and FileName entered? (Y or N): ');

until not(Get_Answer);
assign(outputfile,outFileName);

end;
end;

until done = TRUE;
clrscr*
writeln (' ••••RUN SELECTION OPTIONS CONTINUED •*••');
wkDataType: = '0';
writeln;
writer Include Weekly SDR Data? (Y or N): ');
if Get_Answer then wkDataType: =' 1';
qtrDataType: = '0';
writeln;
writeCInclude Quarterly SDR Data? (Y or N): ');
if Get_Answer then qtrDataType: =' 1 ';

151

PDDataType: = '()';
writeln;
writeClnclude Quarterly demand, forecast and PD82/86 Data? (Y or N): ');
if Get_Answer then PDDataType: = "^;
RunPD86Type:=•0•,•
writeln;
writeCRun PD86 Steady State Projections ? (Y or N): ');
if Get_Answer then RunPD86Type: =' 1 ';
repStatType: = *0';
writeln;
writeClnclude Replication Statistics? (Y or N): ');
if Get_Answer then repStatType: =' 1';

end;

procedure RunAgain (var outputfile:text;var runDescript:descriptType;
outputType:char;
var frcst,mad:quarterArray;
var stop:boolean;
var outFileName:string);

var demandlnFile: string;
done 1: boolean;

begin
stop: = FALSE;
clrscr;
writeln {' **** RE-RUN SIMULATION OPTIONS SCREEN ****');
writeln;
writelnCRe-running the simulation will maintain the same run-type parameters, but will');
writelnCallow the user to change the destination (output) file and vary NUN');
writelnCand model parameters.');
writeln;
writeCDo you wish to re-run the simulation? (Y or N): ');
if Get_Answer then begin

writeln;
writeCChange Run Description? (Y or N): ');

if GetAnswer then begin
writeln;
write ('Enter Run Description: ');
readln (runDescript);

end;
if outputType = '2" then begin

writeln;
writeCChange Output File? (Y or N): ');
if GetAnswer then begin

repeat
writeln;
write ('Enter Output Path and Filename: ');
readln (outFileName);
writeln;

152

writeln ('Path and FileName entered: *,outFileName);
writeln;
write ('Change Path and FileName entered? <Y or N): ');

until not(Get_Answer);
assign(outputfile,outFileName);

end;
end;

end else begin
stop: = TRUE;

end;
clrscr;

end;

function GetMarkCode (t,oldMark:integer; frcst, unitPrice:real):integer;

begin
if t= 1 then begin

if frcst < 0.25 then getMarkCode: = 0;
if (frcst > = 0.25) and (frcst < 2.0) then begin

if (unitPrice > = 300.00) then begin
getMarkCode: = 3;

end else begin
getMarkCode: = 1;

end;
end;
if frcst > = 2.0 then begin

if (unitPrice*frcst) > = 600.0 then begin
getMarkCode: = 4;

end else begin
getMarkCode: = 2

end;
end;

end else begin
getMarkCode: = oldMark;
if oldMark = 0 then begin

if frcst > = 0.5 then begin
if (unitPrice > = 300.00) then begin

getMarkCode: = 3;
end else begin

getMarkCode: = 1 ;
end;

end;
if frcst > = 3 then begin

if (unitPrice*frcst) > = 600.0 then begin
getMarkCode: = 4;

end else begin
getMarkCode: = 2

end;
end;

153

end;
if (oldMark= 1) or (oldMark = 3) then begin

if frcst > = 3 then begin
if (unitPrice*frcst) > = 600.0 then begin

getMarkCode: = 4;
end else begin

getMarkCode: = 2
end;

end else if unitPrice < = 200 then begin
getMarkCode: = 1;

end else if unitPrice > = 400 then begin
getMarkCode: = 3;

end;
if frcst < = 0.25 then getMarkCode: = 0;

end;
if (oldMark=2) or (oldMark = 4) then begin

if frcst < = 1.0 then begin
if (unitPrice > = 300.00) then begin

getMarkCode: = 3;
end else begin

getMarkCode: = 1 ;
end;

end else if (unitPrice*frcst) > = 800.00 then begin
getMarkCode: = 4;

end else if (unitPrice'frcst) < = 400.00 then begin
getMarkCode: = 2;

end;
if frcst < = 0.25 then getMarkCode: = 0;

end;
end

end;

procedure InitializeStatArraysfvar qtrACWTBOArry,qtrACWTArry,qtrSMAArry,
qtrlnvestArry,qtrlnappArry,cumACWTBOArry,
cumACWTArry,cumSMAArry:qtrStatArry);

var t:integer;

begin
for t: = 1 to numberOfQtrs do begin

qtrACWTBOArryftl.Mean: = 0.0; qtrACWTBOArry[t].Variance: = 0.0;
qtrACWTBOArry[t].CIHigh: = 0.0; qtrACWTBOArrYttJ.CILow: = 0.0;
qtrACWTArryftl.Mean: = 0.0; qtrACWTArrytt].Variance: = 0.0;
qtrACWTArry[t].CIHigh: = 0.0; qtrACWTArry[t].CILow: = 0.0;
qtrSMAArry[t].Mean: = 0.0; qtrSMAArrytt].Variance: = 0.0;
qtrSMAArrytt].CIHigh: = 0.0; qtrSMAArrytt].CILow: = 0.0;
qtrlNVESTArry[t].Mean: = 0.0; qtrlNVESTArryft].Variance: = 0.0;
qtrlNVESTArry[t].CIHigh: = 0.0; qtrllMVESTArry[t].CILow: = 0.0;
qtrlnappArry[t].Mean: = 0.0; qtrlnappArry[tJ.Variance: = 0.0;

154

qtrlnappArry[t].CIHigh: = 0.0; qtrlnappArryW.CILow: = 0.0;
cumACWTBOArry[t].Mean: = 0.0; cumACWTBOArryft]. Variance: = 0.0;
cumACWTBOArry[t].CIHigh: = 0.0; cumACWTBOArry[t].CILow: = 0.0;
cumACWTArry[t].Mean: = 0.0; cumACWTArry[t].Variance: = 0.0;
cumACWTArry[t].CIHigh: = 0.0; cumACWTArry[t].CILow: = 0.0;
cumSMAArry[t].Mean: = 0.0; cumSMAArry[t].Variance: = 0.0;
cumSMAArry[t].CIHigh: = 0.0; cumSMAArry[t].CILow: = 0.0;

end;
end;

procedure InhtiaiizeArrays (var observ,meanDmdArry,varDmdArry, EOQArry,
ROLevel, APSRArry, attainRisk, SSADDBO,
SSADD, SSSMA:quarterArray;
var steplndArry, trndlndArry,mkCodeArry: qtrlntArray;
numberOfQtrs,numberOfWks:integer;
meanDemand:real;
var wklyObserv:weeklyArray);

var t:integer;

begin
for t: = 1 to numberOfQtrs do begin

observ[t]: = 0.0;
meanDmdArrytt]: = 0.0;
varDmdArryW: = 0.0;
EOQArry[t]: = 0.0;
ROLevel[t]: = 0.0;
APSRArry[t]: = 0.0;
attainRisk[t]: = 0.0;
SSADDBO[t]: = 0.0;
SSADD[t]: = 0.0;
SSSMA[t]: = 0.0;
steplndArry[t]: = 0;
trndlndArry[t]: = 0;
mkCodeArrytt]: = 0;

end;
for t: = 1 to (numberOfWks) do begin

wklyObserv[t]: = 0.0;
end;

end;

procedure LoadObserv (var observ,frcst,mad,meanDmdArry,varDmdArry:quarterArray;
var wklyObserv:weeklyArray;
observType,distrType:char;
numberOfQtrs,numberOfWks,repNum,simCount:integer;
var trendlnd,steplnd,nmbrSteps, nmbrTrends:integer;
meanDemand, varDemand:real;
var inputfile:text;
var startstep, startrnd, endtrnd: changelntArry;

155

var stepmult, trendcoeff, trendpower: changeRealArry);

var SS:char;
i, t, min, startQtr, endQtr,observWeek,s:integer;
randnorm, currMeanDmd, initTrendMean, coeffVar,qtrCum,
wkObserv,qtrObserv,p:real;
demandlnFile:string;

begin
if (repNum = 1) and (simCount = 1) then begin

for i: = 1 to 10 do begin
startstep[i]: = 0; startrnd[i]: = 0; endtrndfi]: = 0;
stepmult[i]: = 0.0; trendcoeff[i]: = 0.0; trendpower[i]: = 0.0;

end;
nmbrSteps: = 0;
nmbrTrends: = 0;

end; {if}
currMeanDmd: = meanDemand;
coeffVar: = sqrt(varDemand)/meanDemand;
for t: = 0 to (numberOfQtrs) do begin

if (t = 0) and (repNum = 1) and (simCount= 1) then begin
SS: = 'Y";
writeln;
writeCDo you wish to vary mean demand rate over time? (Y or N): ');
if GetAnswer then begin

SS: = 'N';
steplnd: = 0;
trendlnd: = 0;
clrscr;
writeln;
writeln (' *** Mean Demand Variants *** ');
writeln;
writeln ('You have the option to vary mean demand rate over time. If the normal');
writeln ('distribution was selected, variance will also change to maintain your');
writeln ('original variance to mean ratio. You may choose between step change');
writeln ('or trend or any combination of the events. If more than one event is');
writeln {'chosen to occur at the same time, step changes will occur first.');
writeln ('A maximum of 10 occurances of each event is allowed. Time of);
writeln ('variation is specified by quarter.');
writeln ;

SS: = 'Y';
write ('Do you still wish to vary mean demand rate over time? (Y or N): ');
if Get_Answer then begin

SS: = 'N';
clrscr;
writelnC *** Step Changes Screen ***');
writeln;
write ('Do you wish to have step increases or decreases? (Y or N): ');

156

if Get_Answer then steplnd: = 1;
if steplnd = 1 then begin

writeln;
writeCEnter the number of steps changes desired (max 10): ');
nmbrSteps: = Getjntegerd, 10);
writeln;
writelnCThe step function is of the form: Mean(t) = A * Mean(t-1).');
writelnCYou must specify the value of "A" for each step.');
min: = 1;
for i: = 1 to nmbrSteps do begin

writeln;
writeln ('Step \i,':');
writeln;
write ('Step Qtr: ');
startQtr: = Get_lnteger(min,numberOfQtrs);
startstepli]: = startQtr;
writeln;
write ('Step Multiplier (A): ');
stepmultfi]: = Get_Real<0.00001,9999.0);
writeln;
min: = startQtr;

end;
end;
clrscr;
writelnC *** Trend Setting Screen ***');
writeln;
write ('Do you wish to have trends? (Y or N):');
if Get_Answer then trendlnd: = 1 ;
if trendlnd = 1 then begin

writeln;
writeCEnter the number of trend periods desired (max 10): ');
nmbrtrends: = Getjntegerd, 10);
writeln;
writelnCThe trend function is of the form:');
writelnC Mean(t) = InitTrendMean * (1 + A • t(0) ** B)');
writelnC where t(0) is reset to "1" at the beginning of each trend period');
writelnCand InitTrendMean is the Mean at the beginning of the trend period.');
writelnC Parameters A and B must be specified for each trend period.');
min: -1 ;
for i: = 1 to nmbrtrends do begin

writeln;
writeln ('Trend \i,':');
writeln;
write ('Start Qtr: ');
startQtr: = Get_lnteger(min,numberOfQtrs);
startrnd[i]: = startQtr;
writeln;
write ('End Qtr: ');
endQtr: = Get_lnteger(startQtr,numberOfQtrs);
endtrnd[i]: = endQtr;

157

writeln;
write (Trend coefficent (A): ');
trendcoeffti]: = Get_Real(-9999.0,9999.0);
writeln;
write ('Trend power (B): ');
trendpower[i]: = Get_Real(-9999.0,9999.0);
writeln;
min: = endQtr+ 1;

end;
end;

end;
end;

end else if t > 0 then begin
if SS='Y' then begin

meanDmdArrytt]: = meanDemand;
if (distrType="T) or (distrType='3') then begin

varDmdArryft]: = varDemand;
end else begin

varDmdArry[t]: = currMeanDmd;
end;

end else begin
if steplnd = 1 then begin

for i: = 1 to nmbrSteps do begin
if t = startstepti] then currMeanDmd: = stepmult[i]*currMeanDmd;

end;
end;
if trendlnd = 1 then begin

for i: = 1 to nmbrTrends do begin
if t = startrndfi] then initTrendMean: = currMeanDmd;
if (t > = startrndfi]) and (t < = endtrndfi]) then begin

currMeanDmd: = initTrendMean* (1 + trendcoeffti]*
(exp(trendpower[i]*ln(t-startrnd[i] + 1))));

if currMeanDmd < 0.0 then currMeanDmd: = 0.0;
end;

end;
end;
meanDmdArryft]: = currMeanDmd;
if (distrType="T) or (distrType = '3'} then begin

varDmdArryft]: = sqr(coeffVar*currMeanDmd);
end else begin

varDmdArryft]: = currMeanDmd;
end;

end;
if distrType = *1' then begin

randnorm: = GetNormal;
qtrObserv: = round(meanDmdArry[t] + (randnorm*sqrt(varDmdArry[t])));
if qtrObserv < 0.0 then qtrObserv: = 0.0;
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntd 3);
wkly0bserv[(t-1)* 13 + observWeek]: =

158

wklyObserv[<t-1)* 13 + observWeek] + 1 ;
end;

end else if distrType = '2' then begin
qtrObserv: = GetPoisson(meanDmdArry[t]);
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntdS);
wklyObserv[(M)* 13 + observWeek]: =

wklyObserv[(M)• 13 + observWeek] + 1;
end;

end else if distrType='3' then begin
p: = (meanDmdArry[t])/(varDmdArry[t]);
s: = round((sqr(meanDmdarry[t]))/(varDmdArry[t]-meanDmdArry[t]}};
if (p> ERROR) and (p<(1-Error» then begin

qtrObserv: = GetNegBin(p,s);
end else begin

qtrObserv: = 0.0;
end;
for i: = 1 to round(qtrObserv) do begin

observWeek: = GetUniformlntf 13);
wklyObserv[(t-1)* 13 + observWeek]: =

wklyObserv[(t-1)* 13 + observWeek] + 1 ;
end;

end;
observft]: = qtrObserv;

end; {else,if}
end; {for}
clrscr;

end;

procedure Forecast (var observ, frcst, mad:quarterArray;
var steplndArry, trndlndArry,mkCodeArry: qtrlntArray;
numberOfQtrs,repNum:integer; unitPrice:real);

const ALPHA = 0.1;
STEPBOUND1=3.0;
STEPBOUND2 = 2.0;

var upper, lower, sum, sampleMean, sampleStdDev, stdDevToMean:real;
uplnd, downlnd, steplnd, trendlnd, trendUp,
trendDn, t, i, j, W, S, table:integer;
kendTest, lowDemand:boolean;

begin
writelnCRunning Replication # ',repNum);
mkCodeArry[1]: = getMarkCode (1,0,frcst[1],unitPrice);
uplnd: = 0;downlnd: = 0;
for t: = 2 to numberOfQtrs do begin {Compute quarterly forecast}

lowDemand: = FALSE;
trendlnd: = 0;
steplnd: = 0;

159

if ((mkCodeArry[t-1] = 0) or <mkCodeArry[t-1] = 1) or (mkCodeArrytt-1] =3)) then
lowDemand: = TRUE;

if lowDemand then begin
upper: = STEPBOUND1 *frcsttt-1];
lower: = 0.0;

end else begin
upper: = frcst[t-1] + 1.25*mad[t-1]*STEPBOUND2;
lower: = frcst[t-1]-1.25*madtt-1]*STEPBOUND2;

end;
if (lowDemand and (observtt-1] < 5)) or

((observ[t-1] < upper) and (observ[t-1] > = lower)) then begin
uplnd: = 0;
downlnd: = 0;
frcsttt]: = ALPHA*observ[M] + (1 -ALPHA) *frcst[t-U;
mad[t]: = ALPHA* <abs(observtt-1]-frcst[t-1])) + (1 -ALPHA)* mad [t-1];

end else begin
if ((observ[t-1J > upper) and (uplnd=D) or

((observ[t-1] < lower) and (downlnd=D) then begin
if t>4 then begin

frcsttt]: = (observ[t-4] + observ[t-3] + observtt-2] + observtt-1])/4;
end else if t = 4 then begin

frcsttt]: = (observ[t-3] + observ[t-2] + observ[t-1])/3;
end else if t = 3 then begin

frcsttt]: = (observ[t-2] + observ[t-1])/2;
end;
if frcsttt] > ERROR then begin

madtt]: = COEFF1 *exp(POWER1 *ln(frcsttt]));
end else begin

madtt]: = 0.0;
end;
steplnd: = 1;
uplnd: = 0;
downlnd: = 0;

end else begin
if Uobserv[t-1] > upper) and (uplnd = 0)) then begin

uplnd: = 1;
frcsttt]: = frcsttt-1];
madtt]: = mad[t-1];

end else begin
if ((observtt-1] < lower) and (downlnd = 0)) then begin

downlnd: = 1;
frcsttt]: = frcsttt-1];
madtt]: = mad[t-1];

end;
end;

end;
end;
if (t>4) and (steplnd = 0) then begin {Conduct Kendall Trend Test}

sum: = 0.0;
if t < = 8 then begin

160

for i: = 1 to t-1 do begin
sum: = sum + observti];

end;
sampleMean: = sum/(t-1);
sum: = 0.0;
for i:=1 to t-1 do begin

sum: = sum + sqr(observ[i]-sampleMean);
end;
sampleStdDev: = sqrt(sum/(t-2));

end else begin
for i: = t-8 to t-1 do begin

sum: = sum + observ[i];
end;
sampleMean: = sum/8;
sum: = 0.0;
for i: = t-8 to t-1 do begin

sum: = sum + sqr(observ[i]-sampleMean);
end;
sampleStdDev: = sqrt(sum/7);

end;
if sampleMean > 0.0 then begin

stdDevToMean: = sampleStdDev/sampleMean
end else begin

StdDevToMean: = 99999.0
end;
kendTest: = false;
if (sampleMean > = 3.0) and (stdDevToMean < = 1.75) then begin

kendTest: = true;
if stdDevToMean > 1.0 then begin

table: = 3;
end else begin

table: = 2;
end;

end;
if «sampleMean > = 1.0) and (sampleMean < 3.0)) and

(stdDevToMean < = 1.75) then begin
kendTest: = true;
if stdDevToMean > 1.25 then begin

table: = 3;
end else begin

table: = 2;
end;

end;
if ((sampleMean > = 0.125) and (sampleMean < 1.0)) and

(stdDevToMean < = 2.00) then begin
kendTest: = true;
table: = 2;

end;
if kendTest=true then begin {Conduct Kendall S-Test for Trend}

W: = 8;

161

if (sampleMean > = 3.0) and (sampleMean < 9.0) then begin
if (stdDevToMean < 0.30) then W: = 6;
end;

if (sampleMean > = 9.0) and (sampleMean < 20.0) then begin
if (StdDevToMean < 0.93) then W: = 6;
if (stdDevToMean < 0.28) then W: = 4;
end;

if (sampleMean > = 20.0) then begin
if (stdDevToMean < 0.53) then W: = 6;
if (StdDevToMean < 0.28) then W: = 4;
end;

if W > (t-1) then W: = ((M) div 2)*2;
S: = 0;
for i: = (t-W) to (t-2) do begin {Compute Kendall S-Statistic}

for j: = (i + 1) to (t-1) do begin
if observfi] < observfj] then S: = S+ 1 ;
if observfi] > observlj] then S: = S-1;

end;
end; {for}
if table = 2 then begin

if W = 4 then begin
trendUp: = 4; trendDn: = -4;

end;
if W = 6 then begin

trendUp: = 9; trendDn: = -9;
end;
if W = 8 then begin

trendUp: = 13; trendDn: = -13;
end;

end else begin
if W = 4 then begin

trendUp: = 6; trendDn: = -6;
end;
if W = 6 then begin

trendUp: = 11; trendDn: = -11;
end;
if W = 8 then begin

trendUp: = 16; trendDn: = -16;
end;

end; {if}
trendlnd: = 0;
if S > = trendUp then trendlnd: = 1;
if S < = trendDn then trendlnd: = 1;
if trendlnd = 1 then begin

sum: = 0.0;
for i: = (t-4) to (t-1) do begin

sum: = sum + observfi];
end;

frcst[t]: = sum/4;
if frcstlt] > ERROR then begin

162

madft]: = C0EFF1 *exp(P0WER1 *ln(frcst[t]));
end else begin

mad[t]: = 0.0;
end;

end; {if}
end; {if}

end; {if}
mkCodeArryft]: = getMarkCode (t,mkCodeArrytt-1],frcst[t],unitPrice);
steplndArry[t]: = steplnd;
trndlndArrytt]: = trendlnd;
end; {for}

end;

procedure LoadLevels (var frcst, mad, observ, EOQArry, ROLevelArry,
APSRArry, attainRisk, SSADDBO, SSADD, SSSMA:quarterArray;
var qtrSSADDBOArry,qtrSSADDArry,
qtrSSSMAArry:qtrStatArry;
var mkCodeArray.qtrlntArray;
var numberOfQtrs:integer;
prbBrkPt,numberRep:integer; meanDemand,PLTSigMuRatio:real;
var meanRisk:real;
PDDataType,RunPD86Type:char);

var A023B,BRLDC,B011A,B019A,B023C,B023D,B073,M,PPV,APSR,B014A,
B019,B021,BRLDCU: real;

PD82str1: string[24];
PD82str2, PD82str3, PD82str4, PD82str5, PD82str6, PD82str7,
PD82str8: string[255];

PD86str1: string[24];
PD86str2, PD86str3, PD86str4, PD86str5, PD86str6, PD86str7,
PD86str8: string[255];
PD86str9: string[60];

infile,outfile:text;
LTVar,oldQtrSSADDBO,oldQtrSSADD,oldQtrSSSMA:real;
t: integer;

begin
meanRisk: = 0.0;
for t: = 1 to numberOfQtrs do begin

gotoXY(1,3);
writeCQuarter # ',t);
assign (infile,'c:\tp\pd82in.fil');
reset (infile);
read(infile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (infile);
B023D: = frcstlt]; {current quarterly forecast}

163

A023B: = meanDemand;
if t>4 then begin

A023B: = (observ[t-4] + observ[t-3] + observ[t-2] + observ[t-1])/4;
end else if t = 4 then begin

A023B: = (observ[t-3] + observ[t-2J + observft-1])/3;
end else if t = 3 then begin

A023B: = (observft-2] + observ[t-1])/2;
end;

if A023B < = 0.0 then A023B:= 1.0;
strTemp: = copy(PD82str2,46,15); B011 A: = StringToReal(StrTemp);
B023C: = B011A*B023D;
PPV: = B023C;
delete (PD82str2,1,15);
insert (NumToString(A023B),PD82str2,1);
delete (PD82str2,121,15);
insert (NumToString(B023D),PD82str2,121);
delete (PD82str2,106,15);
insert (NumToString(B023C),PD82str2,106);
delete (PD82str5,91,15);
insert (NumToString(PPV),PD82str5,91);
M: = mkCodeArryft]; {current mark code}
delete (PD82str4,241,15);
insert (NumToString(M),PD82str4,241);
if (mkCodeArryft] = 2) or (mkCodeArryft] = 4) then begin

LTVar: = sqr(PLTSigMuRatio*B011A); {default = 1.57*B011A}
B019A: = B011 A*(sqr(mad[t])* 1.57) + (sqr(frcst[t]))*LTVar;

end else begin
if abs(B023C) < ERROR then B023C: = 0.0;
if B023C = 0.0 then begin

B019A: = 0.0
end else begin

B019A: = COEFF2*exp(POWER2*ln(B023C»
end;

end;
delete (PD82str2,76,15);
insert (NumToString(B019A),PD82str2,76);
if mkCodeArryft] = 0 then begin

BRLDC: = 3;
end else begin

if prbBrkPt = 0 then begin
BRLDC: = 5;

end else begin
if B023C < prbBrkPt then begin

BRLDC: = 4;
end else begin

BRLDC: = 5;
end;

end;
end;
delete (PD82str2,16,15);

164

insert (NumToString(BRLDC),PD82str2,16);
assign (outfile,'c:\tp\pd82in.fil');
rewrite (outfile);
writeln(outfile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (outfile);
SwapVectors;
exec ('c:\tp\PPD82KR0.exe','c:\tp pd82rn.fi! pd82out.fil ');
SwapVectors;
if DosError <> 0 then begin

writeln;
Sound(220);
delay (300);
NoSound;
writeln ('Dos error #', DosError);
HitToCont;

end;
assign (infile,'c:\tp\pd82out.fil');
reset (infile);
read(infile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (infile);
strTemp: = copy(PD82str7,196,15); B019: = StringToReal(StrTemp);
ROLevelArry[t]: = B019;
strTemp: = copy(PD82str7,226,15); B021: = StringToReal(StrTemp);
EOQArry[t]: = B021;
strTemp: = copy(PD82str7,121,15); BRLDCU: = StringToReal(StrTemp);
strTemp: = copy(PD82str7,61,15); APSR: = StringToReal(StrTemp);
APSRArry[t]: = APSR;
strTemp: = copy(PD82str7,181,15); B014A: = StringToReal(StrTemp);
attainRisk[t]: = B014A;
meanRisk: = meanRisk + B014A;

if (PDDataType = '1') or (RunPD86Type = '1') then begin
lnitPD86File;
SwapVectors;
exec Cc:\tp\PPD86KR4.exe,,'c:\tp pd86in.fil pd86out.fil ');
SwapVectors;
if DosError <> 0 then begin

writeln;
Sound(220);
delay (300);
NoSound;
writeln ('Dos error #', DosError);
HitToCont;

end;
assign (infile,'c:\tp\pd86out.fil');
reset (infile);
read(infile,PD86str1, PD86str2, PD86str3, PD86str4, PD86str5, PD86str6,

PD86str7, PD86str8, PD86str9);

165

close (infile);
strTemp: = copy(PD86str8,166,15); SSADDBOft]: = StringToReal(StrTemp);
strTemp: = copy(PD86str8,181,15); SSADDtt]: = StringToReal(StrTemp);
strTemp: = copy(PD86str8,196,15); SSSMA[t] : = StringToReal(StrTemp);

oldQtrSSADDBO: = qtrSSADDBOArry[t].Mean;

qtrSSADDBOArry[t].Mean: = NewMean(qtrSSADDBOArry[t].Mean,SSADDBO[t],numberRep);
qtrSSADDBOArry[t].Variance: = NewVar(qtrSSADDBOArry[t].Mean,oldQtrSSADDBO,

qtrSSADDBOArry[t].Variance,SSADDBO[t],numberRep);
oldQtrSSADD: = qtrSSADDArryftl.Mean;
qtrSSADDArry[t].Mean: = NewMean(qtrSSADDArry[t].Mean,SSADD[t],numberRep);
qtrSSADDArry[t].Variance: = NewVar(qtrSSADDArry[t].Mean,oldQtrSSADD,

qtrSSADDArry[t].Variance,SSADD[t],numberRep);
oldQtrSSSMA: = qtrSSSMAArryftl.Mean;
qtrSSSMAArry[t].Mean: = NewMean{qtrSSSMAArry[t].Mean,SSSMA[t],numberRep);
qtrSSSMAArry[t].Variance: = NewVar(qtrSSSMAArry[t].Mean,oldQtrSSSMA,

qtrSSSMAArry[t].Variance,SSSMA[t],numberRep);

end;
end;
meanRisk: = meanRisk/numberOfQtrs;

end;

procedure SDR(var OSHeap,BOHeap:PriorityQueueType;
var wklyObserv:weeklyArray;
var EOQArry,ROLevelArry,observ:quarterArray;
var numberOfQtrs,initlnv,initOS,initOrders,startSSQtr,endSSQtr,

initSSOH,initSSOS,initSSOrders:integer;
var PLT,meanDemand,PLTSigMuRatio,

obsol,timePref,storage,shortCost,adminCost:real;
var TWUS:longint;
var ACWTBO,ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,

inappAsset,inappVal:real;
wkDataType,qtrDataType,outputType:char;
var qtrACWTBOArry,qtrACWTArry,qtrSMA,qtrlnvestArry,qtrlnappArry,

cumACWTBOArry,cumACWTArry,cumSMAArry:qtrStatArry;
numberRep:integer);

var wklyBO,wklyOS:datarecord;
amtBO,amtRecv,receipt,wklyDemand,date,BOqtr,endQtr:integer;
i,t,wk,qtr,sizeOS,sizeBO:integer;
randnorm,randPLT,wklylnvest,qtrlnvest,replnvest,
holdCost,cumSSHoldCost,qtrlnapp,two Year Amt,intLength,startlnt,SSOrderCount: real;
flag1,flag2:boolean;
BOFill,dmdTot,SSOSTot,OSCurr,BOTot,BOCurr,OHcurr,IPcurr:integer;
oldCumACWTBO,oldCumACWT,oldCumSMA,oldQtrlnvest,oldQtrACWTBO,oldQtrlnapp,
oldQtrACWT,oldQtrSMA,ACWTBOvalue,ACWTvalue,SMAvalue:real;

166

qtrTWUSArry,qtrBOTotArry,qtrBOFHIArry:qtrlntArray;

begin
holdCost: = unitPrice* (obsol + timePref + storage)/52;
lnitializePriorityQueue(OSHeap);lnitializePriorityQueue(BOHeap);
initlnv: = round(EOQArry[1]/2 + ROLevelArry[1]-(meanDemand * PLT));
if initlnv < 1 then initlnv:= 1;
OHCurr: = initlnv;
initOS: = round(PLT * meanDemand);
if initOS < 1 then initOS: = 1;
initOrders: = round(initOS/EOQArry[1]);
initOS: = initOrders*round(EOQArry[1]);
OSCurr: = initOS;
intLength:= (13*PLT)/initOrders;
startlnt: = 0.0;
for i: = 1 to initOrders do begin

wklyOS.Qty: = round(EOQArry[1]);
wklyOS.Week: = round((startlnt + |i*intLength))/2);
lnsertPriorityQueue(OSHeap,wklyOS);
startlnt: = startlnt + intLength;

end;
IPCurr: = OHCurr + OSCurr;

if (qtrDataType = '1') or (wkDataType = '1') then begin
writeln(outputfile);
writeln(outputfile,'SDR Data Initial OH lnv:= '.initlnv);
writeln(outputfile,' ')»

end;

for t: = 1 to numberOfQtrs do begin
qtrTWUSArry[t]: = 0;
qtrBOTotArry[t]: = 0;
qtrBOFillArry[t]: = 0;

end;

BOCurr: = 0;
replnvest:= 0.0;
date: = 1 ;

for qtr: = 1 to numberOfQtrs do begin

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if wkDataType = ' 1' then begin

writeln (outputf ile) ;
writeln(outputfile,'QTR WK REC DEM BO OS OH IP ORDCNT1};

end;
end;

if qtr = startSSQtr then begin
initSSOH: = OHCurr;

167

initSSOS: = OSCurr;
initSSOrders: = SizePriorityQueue(OSHeap);
cumSSHoldCost: = 0.0;
SSOSTot: = 0;
SSOrderCount: = 0.0;

end;
qtrlnvest: = 0.0;
wklylnvest:= 0.0;

for wk: = 1 to 13 do begin
wklyDemand: = round(wklyObserv[date]);
receipt: = 0;
amtRecv: = 0;
amtBO: = 0;
wklyBO.Qty: = 0;
wklyBO. Week: = date;
wklyOS.Qty: = 0;
flagl: = FALSE; flag2: = FALSE;

if not (EmptyPriorityQueue(OSHeap)) then begin {receive}
repeat

if CurrWeek(OSHeap) = date then begin
amtRecv: = ExtractQty(OSHeap);
receipt: = amtRecv;
OSCurr: = OSCurr - amtRecv;
while (amtRecv > 0) and not (EmptyPriorityQueue(BOHeap)) do begin

if CurrQty(BOHeap) < = amtRecv then begin
amtBO: = CurrQty(BOHeap);
amtRecv: = amtRecv - amtBO;
BOCurr:= BOCurr - amtBO;
if (CurrWeek(BOHeap) mod 13) = 0 then begin

BOqtr: = (CurrWeek(BOHeap) div 13);
end else begin

BOqtr: = (CurrWeek(BOHeap) div 13) + 1 ;
end;
qtrBOFillArry[BOqtr]: = qtrBOFillArry[BOqtr] + amtBO;
qtrTWUSArry[BOqtr]: = qtrTWUSArry[BOqtr] + (amtBo*(date -

ExtractWeek(BOHeap)));
end else begin

BOHeap.HeapArray[1].Qty:= BOHeap.HeapArrayfll.Qty - amtRecv;
if (BOHeap.HeapArray[1J.Week mod 13) = 0 then begin

BOqtr: = (BOHeap.HeapArray[1].Week) div 13;
end else begin

BOqtr: = ((BOHeap.HeapArray[1].Week) div 13) +1;
end;
qtrTWUSArry[BOqtr]: = qtrTWUSArry[BOqtr] + (amtRecv* (date -

BOHeap.HeapArrayM]. Week));
BOCurr: = BOCurr - amtRecv;
qtrBOFillArrytBOqtr]: = qtrBOFillArryfBOqtr] + amtRecv;
amtRecv: = 0;

168

end; {if}
end; {while}
OHCurr: = OHCurr + amtRecv;

end;
if EmptyPriorityQueue(OSHeap) then flag2:= TRUE
else if currWeek(OSHeap) < > date then flag1: = TRUE;

until flagl or flag2;
end; {if receive}

if wklyDemand > 0 then begin {issue}
if wklyDemand > OHCurr then begin

wklyBO.Qty: = wklyDemand - OHCurr;
OHCurr: = 0;
lnsertPriorityQueue(BOHeap,wklyBO);
qtrBOTotArryfqtr]: = qtrBOTotArrylqtr] + wklyBO.Qty;
BOCurr: = BOCurr + wklyBO.Qty;

end else begin
OHCurr: = OHCurr - wklyDemand;

end;
end; {if issue}

IPCurr: = OHCurr + OSCurr - BOCurr; {order}
if IPCurr < = ROLevelArrytqtr] then begin

wklyOS.Qty: = round(ROLevelArry[qtr] + EOQArry[qtr]) + BOCurr-
(OHCurr + OSCurr);

randnorm: = GetNormal;
randPLT: = abs(PLT+(randnorm*PLTSigMuRatio*PLT));
if randPLT > MAXPLT then begin

randPLT: = MAXPLT;
end else if randPLT < MINPLT then begin

randPLT: = MINPLT
end;
wklyOS.Week: = date + round(randPLT*13) + 1;
lnsertPriorityQueue(OSHeap,wklyOS);
OSCurr: = OSCurr + wklyOS.Qty;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

SSOrderCount: = SSOrderCount + 1.0;
SSOSTot:= SSOSTot + wklyOS.Qty;

end;
end; {if}

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if wkDataType = ' 1' then begin

writeln(outputfile,qtr:3,date:5,receipt:6,wklyDemand:6,BOCurr:6,
OSCurr:6,OHCurr:6,IPCurr:6,SSOrderCount:6:0);

if (outputType = '1') and ((wk mod 13) = 0) then HitToCont;
end;

end;

169

receipt: = 0;
date: = date + 1 ;
wklylnvest: = wklylnvest + OSCurr + OHCurr;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

cumSSHoldCost: = cumSSHoldCost + OHCurr* holdCost;
end;

end; {for week}

qtrlnvest:= wklylnvest/13;
if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin

replnvest:= replnvest + qtrlnvest;
end;

oldQtrlnvest: = qtrlnvestArry[qtr].Mean;
qtrlnvestArrytqtr]. Mean: = NewMean(qtrlnvestArry[qtr].Mean,qtrlnvest,numberRep);
qtrlnvestArrytqtr]. Variance: = NewVar(qtrlnvestArry[qtr].Mean,oldQtrlnvest,

qtrlnvestArrytqtr]. Variance, qtrlnvest,numberRep);

twoYearAmt: = 0.0;
if qtr<numberOfQtrs then begin

twoYearAmt: = 8*f rcsttqtr + 1];
end;
qtrlnapp: = OHCurr-twoYearAmt;
if qtrlnapp < 0.0 then qtrlnapp: = 0.0;
oldQtrlnapp: = qtrlnappArryfqtr]. Mean;
qtrlnappArryfqtr]. Mean: = NewMean(qtrlnappArry[qtr]. Mean,qtrlnapp,numberRep);
qtrlnappArryfqtr]. Variance: = NewVar(qtrlnappArry[qtr].Mean,oldQtrlnapp,

qtrlnappArryfqtr]. Variance,qtrlnapp,numberRep);

if qtr = endSSQtr then begin
invest: = replnvest/(endSSQtr-startSSQtr +1);
lastOH: = OHCurr;
lastOS: = OSCurr;
inappAsset: = qtrlnapp;
inappVal: = qtrlnapp*unitPrice;
orderCount: = SSOrderCount;

end;

if (qtr > = startSSQtr) and (qtr < = endSSQtr) then begin
if (wkDataType="T) then begin

writeln(outputfile);
writeln(outputfile/QTR DMD OH IP OS BO INVEST');

end else if qtrDataType = ' 1' then begin
if (qtr= 1) or (((qtr-1) mod 20) = 0)then begin

writeln(outputfile);
writeln(outputfile,'QTR DMD OH IP OS BO INVEST');

end;
end;
if qtrDataType = ' 1' then

writeln(outputfile,qtr:3,observ[qtr]:6:0,OHCurr:6,IPCurr:6,

170

OSCurr:6,BOCurr:6,qtrlnvest:8:2);
if (outputType = T) and (qtrDataType ='T) and (((qtr-1) mod 20) = 0) then

HitToCont;
end;

end; {for qtr}

if not (EmptyPriorityQueue(OSHeap)) then begin {adjust final qtr TWUS}
while not (EmptyPriorityQueue(BOHeap)) do begin

amtBO: = CurrQty(BOHeap);
if (CurrWeek(BOHeap) mod 13) = 0 then begin

BOqtr: = (CurrWeek(BOHeap) div 13);
end else begin

BOqtr: = (CurrWeek(BOHeap) div 13 + 1);
end;
qtrBOFillArrylBOqtr]: = qtrBOFillArryfBOqtr] + amtBO;
qtrTWUSArrylBOqtr]: = qtrTWUSArryfBOqtr] +

(amtBo*(OSHeap.HeapArray[1].Week - ExtractWeek(BOHeap)));
end; {while}

end;

for t: = 1 to numberOfQtrs do begin
if qtrBOFillArry[t] > 0 then begin

oldQtrACWTBO: = qtrACWTBOArryftl.Mean;
ACWTBOvalue: = (7*(qtrTWUSArry[t]/qtrBOFillArry[t])l;
qtrACWTBOArryltJ.Mean: = NewMean(qtrACWTBOArry[t].Mean,

ACWTBOvalue.numberRep);
qtrACWTBOArry[t].Variance: = NewVar(qtrACWTBOArry[t].Mean,oldQtrACWTBO,

qtrACWTBOArry[t].Variance,ACWTBOvalue,numberRep);
end; {if}
oldQtrACWT: = qtr ACWTArryttl. Mean;
if observ[t] > 0 then begin

ACWTvalue: = <7*(qtrTWUSArry[t]/observ[t]));
end else begin

ACWTvalue: = 0.0;
end;
qtrACWTArryltl.Mean: = NewMean{qtrACWTArry[t].Mean,

ACWTvalue,numberRep);
qtrACWTArrylt]. Variance: = NewVar(qtrACWTArry[t].Mean,oldQtrACWT,

qtrACWTArry[t].Variance,ACWTvalue,numberRep);
oldQtrSMA: = qtrSMAArry[t].Mean;
if observtt] > 0 then begin

SMAvalue: = (1-(qtrBOTotArry[t]/observ[t]));
end else begin

SMAvalue: = 1.0;
end;
qtrSMAArry[t].Mean: = NewMean(qtrSMAArry[t].Mean,

SMAvalue,numberRep);
qtrSMAArrylt]. Variance: = NewVar(qtrSMAArry[t].Mean,oldQtrSMA,

qtrSMAArry[t].Variance,SMAvalue,numberRep);

171

end; {for}

dmdTot: = 0;
TWUS: = 0;
BOTot: = 0;
BOFill: = 0;

for qtr: = startSSQtr to endSSQtr do begin

dmdTot: = dmdTot + round(observ[qtrJ);
TWUS: = TWUS + qtrTWUSArrylqtr];
BOTot: = BOTot + qtrBOTotArryfqtr];
BOFill: = BOFILL + qtrBOFillArryfqtr];

if BOFill <> 0 then begin
ACWTBO: = 7* (TWUS/BOFill);

end else begin
ACWTBO: = 0.0;

end; {if}
if dmdTot <> 0 then begin

ACWT: = 7*(TWUS/dmdTot);
SMA: = 1 - BOTot/dmdTot;

end else begin
ACWT: = 0.0;
SMA: =1.0;

end; {if}

oldCumACWTBO: = cumACWTBOArry [qtr]. Mean;

cumACWTBOArry[qtr].Mean: = NewMean(cumACWTBOArry[qtr].Mean,ACWTBO,numberRep
);

cumACWTBOArrYtqtrJ.Variance: = NewVar(cumACWTBOArry[qtr].Mean,oldCumACWTBO,
cumACWTBOArry[qtr].Variance,ACWTBO,numberRep);

oldCumACWT: = cumACWTArrytqtr]. Mean;
cumACWTArrytqtr]. Mean: = NewMean(cumACWTArry[qtr]. Mean, ACWT,numberRep);
cumACWTArry[qtr].Variance: = NewVar(cumACWTArry[qtr].Mean,oldCumACWT,

cumACWTArrytqtr]. Variance,ACWT,numberRep);
oldCumSM A: = cumSMAArrylqtr]. Mean;
cumSMAArrytqtr]. Mean: = NewMean(cumSMAArry[qtr]. Mean, SMA,numberRep);
cumSMAArryfqtr]. Variance: = NewVar(cumSMAArry[qtr].Mean,oldCumSMA,

cumSMAArry[qtr].Variance,SMA,numberRep);
end; {for}

totalCost: = (initSSOH + initSSOS + SSOSTot)*unitPrice + SSOrderCount'adminCost+
cumSSHoldCost + (TWUS/52*shortCost);

end; {sdr}

172

procedure PrintHeader(prbBrkPt,negBinS,seedlndex:integer;meanDemand, varDemand,
PLTSigMuRatio,negBinP:real;
var outputfile:text;outputType,distrType:char;
outFileName:string;runDescript:descriptType;
nmbrSteps,nmbrTrends,startSSqtr,endSSQtr:integer;stepMult,trendCoeff,
trendPower:changeRealArry;startStep,starTrnd,
endTrnd:changelntArry);

var i: integer;
distrUsed:string[7];
infile:text;
Year, Month, Day, Dayof week: word;
C028 : stringtU;

A023B,B010,B011A,B020,B023C,B023D,B055,B057,B058,B061,B073,C008C,D025E,
MSLQD,SCR,TD,TSDRS,V015R,V022,V101 A,V102,V1034,V295: real;

PD82str1: string[24];
PD82str2, PD82str3, PD82str4, PD82str5, PD82str6, PD82str7,
PD82str8: string[255];

begin
distrUsed: = ' Normal';
if distrType = '2' then distrUsed: = 'Poisson';
if distrType = '3' then distrUsed: ='Neg Binomial';
if outputType = '2' then begin

writeln(outputfile,' *** ',outFileName,' ***');
writelnloutputfile);
GetDate(Year,Month,Day,Dayof week);
writelnloutputfile,' Date: '^onth/^Day/^Year,* Model: UICP - EOQ ');

end;
writeln(outputfile);
writeln(outputfile,' Description: ',runDescript);
writeln(outputfile);
writelnfoutputfile,' Initial simulation settings ');
writeln(outputfile);
writelnloutputfile,' Random number generator seed type: ',seedtype);
if seedType =' 1' then begin

writeln(outputfile,' Random number seed start index: ',seedlndex:6);
end;
writelnloutputfile,' Type of demand distribution: ', distrUsed);
if distrType = '3' then begin

writeln(outputfile,' Neg Binomial Parameters: p = ',negBinP:6:2);
writelnloutputfile,' s = \negBinS:6);

end;
writelnloutputfile,' Mean Demand: \meanDemand:6:2);
writelnloutputfile,' Var Demand: \varDemand:6:2);
writelnloutputfile,' Number of quarters to simulate: *,numberOfQtrs:5);

173

writeln(outputfile,' Start Sim Steady State quarter: ',startSSQtr:5);
writeln(outputfile,' End Sim Steady State quarter: ',endSSQtr:5);
writelnfoutputfile,' Number of replications of simulation to run: *,numberOfReps:5);
writeln(outputfile,' Number of steps: \nmbrSteps:5);
if nmbrSteps > 0 then begin

for i: = 1 to nmbrSteps do begin
writeln(outputfile,' Step: ',i:2,' Step Qtr: ',startStep[i]:4,

1 Mult: \stepMult[i]:7:4);
end;

end; {if}
writelnfoutputfile,' Number of trends: ',nmbrTrends:5);
if nmbrTrends >0 then begin

for i: = 1 to nmbrTrends do begin
writeln(outputfile,' Trend:',i:2,' Start Qtr: ',starTrnd[i]:3,

' Stop Qtr: \endTrnd[i]:3,
' Coeff: ',trendCoeff[i]:7:4,' Power: \trendPower[i]:7:4);

end;
end; {if}
writeln(outputfile);
if outputType = '1' then begin

HitToCont;
clrscr;

end;
writeln(outputfiIe,' Initial parameter settings ');
assign (infile,'c:\tp\pd82in.fil');
reset (infile);
read(infile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (infile);
C028: = copy(PD82str1,5,1);

strTemp: = copy(PD82str2,46,15); B011A: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,91,15); B020: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,121,15); B023D: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,181,15); B055: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,211,15); B057: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,226,15); B058: = StringToReal(StrTemp);
strTemp: = copy(PD82str3,1,15); B061: = StringToReal(StrTemp);
strTemp: = copy(PD82str3,31,15); B073: = StringToReal(StrTemp);
strTemp: = copy(PD82str3,76,15); C008C: = StringToReal(StrTemp);
strTemp: = copy(PD82str3,121,15); D025E: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,31,15); MSLQD: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,181,15); SCR: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,211,15); TD: = StringToReal(StrTemp);
StrTemp: = copy(PD82str5,226,15); TSDRS: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,241,15); V015R: = StringToReal(StrTemp);
strTemp: = copy(PD82str6,16,15); V022: = StringToReal(StrTemp);
strTemp: = copy{PD82str6,106,15); V101 A: = StringToReal(StrTemp);
strTemp: = copy(PD82str6,121,15); V102: = StringToReal(StrTemp);
strTemp: = copy(PD82str6,136,15); V1034: = StringToReal(StrTemp);

174

strTemp: = copy(PD82str6,166,15); V295: = StringToReal(StrTemp);

writeln (outputfile,' Prob Break: \PrbBrkPt:8, ' Min Risk : ',V022:8:2);
writeln (outputfile,' Shelf Life: ',C028,' Max Risk :',V102:8:2);
writeln (outputfile,' Reqn Size :',B073:8:0, ' Ord Cost : \V015R:8:2);
writeln (outputfile,' Unit Price: \B055:8:2, ' MSLQD : *,MSLQD:8:2);
writeln (outputfile,' Procur LT :',B011 A:8:2, ' Proc Meth :',D025E:8:0);
writeln (outputfile,' PLT Sig/Mu:',PLTSigMuratio:8:2, ' Shortage :',V1034:8:2);
writeln (outputfile,' Essential : ',C008C:8:2, ' R/0 Low : \B020:8:2);
writeln (outputfile,' Mfg Set-Up: ',B058:8:2, ' R/O Constr: ',V295:8:2);
writeln (outputfile,* Obsol Rate: ',B057:8:2, ' Stor Rate : ',SCR:8:2);
writeln (outputfile,' Disc Rate : ',B061:8:2, ' Time Pref : ',V101A:8:2);
writeln (outputfile,' Time SDRS : *,TSDRS:8:2, ' Today DT : ',TD:8:0);

rf outputType = '1' then begin
HitToCont;
clrscr;

end;
end; {printheader}

procedure DisplayPDOutput (var observ, frcst, mad, EOQArry, ROLevelArry,
APSRArry, attainRisk, SSADDBO, SSADD, SSSMA:quarterArray;
var steplndArry, trndlndArry,mkCodeArry:qtrlntArray;
numberOfQtrs,initlnv,repNum:integer;
outputType:char);

var t:integer;

begin
writeln (outputfile);
writeln(outputfile,'Replication Number ',repNum);
writeln(outputfile);
writeln(outputfile,'PD82/86 Data');
writeln(outputfile,' ';

for t: = 1 to numberOfOtrs do begin
if (t= 1) or (((t-1) mod 20) = 0)then begin

if (outputType = '1') and (t> 1) then HitToCont;
writeln(outputfile);
writeln (outputfile,"QTR OBS FRCST MAD Q R/O ADDBO ADD SMA

MKSTTR APSRAttR');
end;
writeln (outputfile,t:3,observtt]:6:0,frcst(t]:8:2,mad[t]:8:2,

EOQArry[t]:6:0,ROLevelArry[t]:6:0,
SSADDBO[t]:8:2,SSADD[t]:8:2,SSSMA[t]:6:2,mkCodeArry[t]:3,
steplndArry[t]:3,trndlndArry[t]:3,APSRArrytt]:6:2,
attainRisk[t]:5:2);

end;
writeln (outputfile);

175

if outputType= 'V then HitToCont;
end;

procedure DisplayRepStats (var ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,
lastOS,totalCost,inappAsset,inappVal:real;
outputTypexhar);

begin
if (numberRep = 1) or {outputType = '1') then begin

writeln(outputfile);
writeln

(outDutfile '********************•**•**•»******•******•••*••***•••*•***•*
* ♦ # * »i.

writelnfoutputfile,' Rep# ACWTBO ACWT SMA INVEST End OH Tot Cost
Inapp');

end;
writelnloutputfile^umberRepiB.ACWTBO^^.ACWT^.^^MA^^Jnvest.-S^JastOHiS.-O,'

*,totalCost: 10:2,inappAsset:8:0);
if outputType =' 1' then begin

delay (1500);
clrscr;

end;
end;

procedure CalcSimStats(ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,lastOS,
totalCost,inappAsset,inappVal,meanRisk,initSSOH,
initSSOS,initSSOrders:real;
var n:integer;
var simACWTBO,simACWT,simSMA,simlnvest,

simOrderCount,simLastOH,simLastOS,
simTotalCost,simACWTBOVar,simACWTVar,
simSMAVar,simlnvestVar,simOrderCountVar,
simLastOHVar,simLastOSVar,
simTotalCostVar,simlnapp,
simlnappVar,simlnappVal,simlnappValVar,
simMeanRisk.simMeanRiskVar.simlnitSSOH,
simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,
simlnitSSOrdersVar:real);

varoldSimACWTBO,oldSimACWT,oldSimSMA,oldSimlnvest,oldSimOrderCount
oldSimLastOH,oldSimLastOS,oldSimTotalCost,oldSimlnapp,oldSimlnappVal,
oldSimMeanRisk,oldSimlnitSSOH,oldSimlnitSSOS,oldSimlnitSSOrders:real;

begin
if n = 0 then begin

simACWTBO: = 0.0;simACWT: = 0.0;simSMA: = 0.0;simlnvest: = 0.0;
simOrderCount: = 0.0;simLastOH: = 0.0;simLastOS: = 0.0;simTotalCost: = 0;
simlnapp: = 0.0;simlnappVal: = 0.0;
simACWTBO Var: = 0.0;simACWTVar: = 0.0;simSMAVar: = 0.0;

176

simlnvestVar: = 0.0;simOrderCountVar: = 0.0;simLastOHVar: = 0.0;
simLastOS Var: = 0.0;simTotalCostVar: = 0.0;
simlnappVar: = 0.0;simlnappValVar: = 0.0;
simMeanRisk: = 0.0;simMeanRiskVar: = 0.0;
simlnitSSOH: = 0.0;simlnitSSOS: = 0.0;simlnitSSOrders: = 0.0;
simlnitSSOHVar: = 0.0;simlnitSSOSVar: = 0.0;simlnitSSOrdersVar: = 0.0;

end;

n: = n+ 1;
oldSimACWTBO: = simACWTBO;oldSimACWT: = simACWT;oldSimSMA: = simSMA;
oldSimlnvest: = simlnvest;oldSimOrderCount: = simOrderCount;
oldSimLastOH: = simLastOH;oldSimLastOS: = simLastOS;
oldSimTotalCost: = simTotalCost;oldSimlnapp: = simlnapp;
oldSimlnappVal: = simlnappVal;
oldSimMeanRisk: = simMeanRisk;
oldSimlnitSSOH: = simlnitSSOH;
oldSimlnitSSOS: = simlnitSSOS;
oldSimlnitSSOrders: = simlnitSSOrders;

simACWTBO: = NewMean(simACWTBO,ACWTBO,n);
simACWT: = NewMean{simACWT,ACWT,n);
simSMA: = NewMean{simSMA,SMA,n);
simlnvest: = NewMean(simlnvest,lnvest,n);
simOrderCount: = NewMean(simOrderCount,orderCount,n);
simLastOH: = NewMean(simLastOH,lastOH,n);
simLastOS: = NewMean(simLastOS,lastOS,n);
simTotalCost: = NewMean{simTotalCost,totalCost,n);
simlnapp: = NewMean(simlnapp,inappAsset,n);
simlnappVal: = NewMean(simlnappVal,inappVal,n);
simMeanRisk: = NewMean(simMeanRisk,meanRisk,n);
simlnitSSOH: = NewMean(simlnitSSOH,initSSOH,n);
simlnitSSOS: = NewMean(simlnitSSOS,initSSOS,n);
simlnitSSOrders: = NewMean(simlnitSSOrders,initSSOrders,n);

simACWTBOVar: = NewVar(simACWTBO,oldSimACWTBO,simACWTBOVar,ACWTBO,n);
simACWTVar: = NewVar(simACWT,oldSimACWT,simACWTVar,ACWT,n);
simSMAVar: = NewVarfsimSMA^IdSimSMA^imSMAVar.SMA^);
simlnvestVar: = NewVar(simlnvest,oldSimlnvest,simlnvestVar,lnvest,n);

simOrderCountVar: = NewVar(simOrderCount,oldSimOrderCount,simOrderCountVar,orderCou
nt,n);

simlastOHVar: = NewVar{simLastOH,oldSimLastOH,simLastOHVar,lastOH,n);
simlastOSVar: = NewVar(simLastOS,oldSimLastOS,simLastOSVar,lastOS,n);
simTotalCostVar: = NewVar(simTotalCost,oldSimTotalCost,simTotalCostVar,totalCost,n);
simlnappVar: = NewVar(simlnapp,oldSimlnapp,simlnappVar,inappAsset,n);
simlnappValVar: = NewVar(simlnappVal,oldSimlnappVal,simlnappValVar,inappVal,n);
simMeanRiskVar: = NewVar(simMeanRisk,oldSimMeanRisk,simMeanRiskVar,meanRisk,n);
simlnitSSOHVar: = NewVar{simlnitSSOH,oldSimlnitSSOH,simlnitSSOHVar,initSSOH,n);
simlnitSSOSVar: = NewVar(simlnitSSOS,oldSimlnitSSOS,simlnitSSOSVar,initSSOS,n);
simlnitSSOrdersVar: = NewVar(simlnitSSOrders,oldSimlnitSSOrders,

177

simlnitSSOrdersVar,initSSOrders,n);

end;

procedure DisplayQtrSimStats (var qtrACWTBOArry,qtrACWTArry,qtrSMAArry,
qtrlnvestArry,qtrlnappArry,cumACWTBOArrY,
cumACWTArry,cumSMAArry,
qtrSSADDBOArry,qtrSSADDArry,
qtrSSSMAArry:qtrStatArry;numberOfReps,
numberOfQtrs:integer;runDescript:descriptType;
RunPD86Type:char;var startSSQtr,endSSQtr:integer);

var t:integer;
statOutFilertext;
statFileName:string;

begin
clrscr;
writeCWrite Quarterly Statistics to a File? (Y or N): ');
if GetAnswer then begin

repeat
writeln;
write ('Enter Path and Filename: ');
readln (statFileName);
writeln;
writeln ('Path and FileName entered: ',statFileName);
writeln;
write ('Change Path and FileName entered? (Y or N): ');

until not(Get_Answer);
assign(statOutFile,statFileName);
rewrite (statOutFile);
for t: = startSSQtr to endSSQtr do begin

Conflnv(qtrACWTBOArry[t].Variance,qtrACWTBOArrytt].Mean,
qtrACWTBOArry[t].CIHigh,qtrACWTBOArry[t].CILow,numberRep);

Conflnv(qtrACWTArry[t].Variance,qtrACWTArry[t].Mean,
qtrACWTArry[t].CIHigh,qtrACWTArrytt].CILow,numberRep);

Conf lnv(qtrSM AArrylt]. Variance,qtrSM AArry [t] .Mean,
qtrSMAArry[t].CIHigh,qtrSMAArry[t].CILow,numberRep);

Conflnv(qtrlnvestArry[t].Variance,qtrlnvestArry[t].Mean,
qtrlnvestArry[t].CIHigh,qtrlnvestArry[t].CILow,numberRep);

Conflnv(cumACWTBOArry[t].Variance,cumACWTBOArrytt].Mean,
cumACWTBOArry[t].CIHigh,cumACWTBOArry[t].CILow,numberRep);

Conflnv(cumACWTArry[t].Variance,cumACWTArry[t].Mean,
cumACWTArry[t].CIHigh,cumACWTArry[t].CILow,numberRep);

Conflnv(cumSMAArry[t].Variance,cumSMAArry[t].Mean,
cumSMAArry[t].CIHigh,cumSMAArry[t].CILow,numberRep);

Conflnv(qtrlnappArry[t].Variance,qtrlnappArry[t].Mean,

178

qtrlnappArry[t].CIHigh,qtrinappArrytt].CILow,numberRep);

ACWT

end;
writeln(statOutFile,' UICP (EOQ) MODEL');
writeln(statOutFile,' Description: \runDescript);
writeln(statOutFile);
writeln(statOutFile,* QUARTERLY DATA:');
writeln(statOutFile,' QTR ACWTBO Cl
for t: = startSSO.tr to endSSQtr do begin

writeln(statOutFile,t:4,
qtrACWTBOArry[t].Mean:8:2,
qtrACWTBOArry[t].CILow:8:2,
qtrACWTBOArry[t].CIHigh:8:2,
qtrAC WTArrytt]. Mean: 8:2,
qtrACWTArry[t].CILow:8:2,
qtrACWTArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,' QTR SMA Cl Invest
for t: = startSSQtr to endSSQtr do begin

writeln(stat0utFile,t:4,
qtrSMAArry[t].Mean:8:2,
qtrSMAArry[t].CILow:8:2,
qtrSMAArry[t].CIHigh:8:2,
qtrlnvestArry[t].Mean:8:2,
qtrlnvestArry[t].CILow:8:2,
qtrlnvestArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,' CUMULATIVE QUARTERLY DATA:');
writeln(statOutFile,' QTR ACWTBO Cl ACWT
for t: = startSSQtr to endSSQtr do begin

writeln(statOutFile,t:4,
cumACWTBOArry[t].Mean:8:2,
cum AC WTBOArry [t]. CILow: 8:2,
cumACWTB0Arry[t].CIHigh:8:2,
cumACWTArry[t].Mean:8:2,
cum AC WTArryft]. CILow: 8:2,
cumACWTArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,' QTR SMA Cl
for t: = startSSQtr to endSSQtr do begin

writeln(statOutFile,t:4,
cumSMAArry[t].Mean:8:2,
cumSMAArry[t].CILow:8:2,
cumSMAArry[t].CIHigh:8:2,
qtrlnappArry[t].Mean:8:2,
qtrlnappArry[t].CILow:8:2,
qtrlnappArry[t].CIHigh:8:2);

Cl ');

CD;

Cl ');

Qtrly INAPP Cl');

179

end;

if RunPD86Type = "[' then begin
for t: = startSSQtr to endSSQtr do begin

Conflnv(qtrSSADDBOArry[t].Variance,qtrSSADDBOArry[t].Mean,
qtrSSADDBOArry[t].CIHigh,qtrSSADDBOArry[t].CILow,numberRep);

Conflnv(qtrSSADDArry[t].Variance,qtrSSADDArry[t].Mean,
qtrSSADDArry[t]XIHigh,qtrSSADDArry[t].CILow,numberRep);

Conflnv(qtrSSSMAArry[t].Variance,qtrSSSMAArry[t].Mean,
qtrSSSMAArry[t].CIHigh,qtrSSSMAArry[t].CILow,numberRep);

end;
writeln (statOutFile);
writeln(statOutFile,' QTR SSADDBO Cl SSADD Cl ');
for t: = startSSQtr to endSSQtr do begin

writeln(stat0utFile,t:4,
qtrSSADDBOArry[t].Mean:8:2,
qtrSSADDBOArry[t].CILow:8:2,
qtrSSADDBOArry[t].CIHigh:8:2,
qtrSSADDArry[t].Mean:8:2,
qtrSSADDArry[t].CILow:8:2,
qtrSSADDArry[t].CIHigh:8:2);

end;
writeln(statOutFile);
writeln(statOutFile,* QTR SSSMA Cl ');
for t: = startSSQtr to endSSQtr do begin

writeln(statOutFile,t:4,
qtrSSSMAArry[t].Mean:8:2,
qtrSSSMAArry[t].CILow:8:2,
qtrSSSMAArry[t].CIHigh:8:2);

end;
end;
close(statOutFile);

end;
end;

procedure DisplaySimStats (var simACWTBO, simACWT, simSMA, simlnvest,
simOrderCount, simLastOH, simlastOS,simTotalCost,
simACWTBOVar, simACWTVar, simSMAVar,
simlnvestVar,simOrderCountVar,
simLastOHVar,simlastOSVar,simTotalCostVar,
simlnapp,simlnappVar,simlnappVal,simlnappValVar,
simMeanRisk,simMeanRiskVar,siminitSSOH,simlnitSSOS,
simlnitSSOrders,simlnitSSOHVar,simlnitSSOSVar,
simlnitSSOrdersVanreal;

var n:integer;
initlnv,initOS,initOrders,
initSSOH,initSSOS,initSSOrders:integer;
outputType:char; hourl ,minute1 ,second1 ,hdSec1,
hour2,minute2,second2,hdSec2:word);

180

var simACWTBOHi,simACWTHi,simSMAHi,simlnvestHi,simOrderCountHi,
simLastOHHi,simLastOSHi,simACWTBOLo,simACWTLo,simSMALo,
simlnvestLo,simOrderCountLo,simLastOHLo,simLastOSLo,
simTotalCostHi,simTotalCostLo,simlnappLo,simlnappHi,
simlnappValLo,simlnappValHi,simMeanRiskHi,simMeanRiskLo,
simlnitSSOHHi,simlnitSSOHLo,simlnitSSOSHi,simlnitSSOSLo,
simlnitSSOrdersHi,simlnitSSOrdersLo:real;

begin

Conflnv(simACWTBOVar, simACWTBO, simACWTBOHi,simACWTBOLo,n);
Conflnv(simACWTVar, simACWT, simACWTHi, simACWTLo,n);
Conflnv(simSMAVar, simSMA, simSMAHi, simSMALo,n);
Conflnv(simlnvestVar, simlnvest, simlnvestHi, simlnvestLo,n);
Conflnv(simOrderCountVar, simOrderCount, simOrderCountHi,

simOrderCountLo,n);
Conflnv(simLastOHVar, simLastOH, simLastOHHi, siml_astOHLo,n);
Conflnv(simLastOSVar, simLastOS, simLastOSHi, simLastOSLo,n);
ConflnvlsimTotalCostVar, simTotalCost, simTotalCostHi, simTotalCostl_o,n);
Conflnv(simlnappVar,simlnapp, simlnappHi, simlnappLo,n);
Conflnv(simlnappValVar,simlnappVal, simlnappValHi, simlnappValLo,n);
Conflnv(simMeanRiskVar,simMeanRisk, simMeanRiskHi, simMeanRiskl_o,n);
Conflnv(simlnitSSOHVar, simlnitSSOH, simlnitSSOHHi, simlnitSSOHLo.n);
Conflnv(simlnitSSOSVar, simlnitSSOS, simlnitSSOSHi, simlnitSSOSLo,n);
Conflnv(simlnitSSOrdersVar, simlnitSSOrders, simlnitSSOrdersHi,

simlnitSSOrdersLo,n);

writeln
{outputf ile, •*♦•*•••*••*»•***•*»*•****•*****♦*******••******************
♦**#**#**#»#M.

writeln (outputfile,'lnit OH Qty: ',initlnv:8,
' Init SS OH Qty: ',simlnitSSOH:8:2,' <',simlnitSSOHLo:0:2,

V,simlnitSSOHHi:0:2,')');
writeln (outputfile,'Init OS Qty: ',initOS:8,

' Init SS OS Qty: ',simlnitSSOS:8:2,' C,simlnitSSOSLo:0:2,
,,,,simlnitSSOSHi:0:2,T};

writeln (outputfile,'lnit Orders: ',initOrders:8,
' Init SS Orders: '.simlnitSSOrdersiS^,' (\simlnitSSOrdersLo:0:2,

,,,,simlnitSSOrdersHi:0:2,,^');

writeln(outputfile);
writeln(outputfile,*Simulation Final Statistics');
writeln (outputf ile);
writeln(outputfile,' ACWTBO ACWT SMA Orders INVEST End OH End OS');
writeln (outputf ile,' ',simACWTBO:7:2,simACWT:7:2,simSMA:7:2,simOrderCount:8:2,

simlnvest:8:2,simLastOH:8:2,simLastOS:8:2);
writeln(outputfile,'Low ',simACWTBOLo:7:2,simACWTLo:7:2,simSMALo:7:2,

simOrderCountLo:8:2,simlnvestLo:8:2,simLastOHLo:8:2,

181

siml_astOSLo:8:2);
writeln(outputfile,'High ,,simACWTBOHi:7:2,simACWTHi:7:2,simSMAHi:7:2,

simOrderCountHi:8:2,simlnvestHi:8:2,simLastOHHi:8:2,
simLastOSHi:8:2);

writeln(outputfile);
writeln(outputfile,' Total Cost INAPP INAPP Value Mean Risk');
writeln(outputfile,'

*,simTotalCost: 10:2,simlnapp:8:2,simlnappVal: 10:2,simMeanRisk: 10:2);
writeln{outputfile,'Low

'.simTotalCostLo: 10:2,simlnappLo:8:2,simlnappVaILo: 10:2,simMeanRiskLo: 10:2);
writeln(outputfile,'High

•,simTotalCostHi:10:2,simlnappHi:8:2,simlnappValHi:10:2,simMeanRiskHi:10:2);

if n<30 then begin
writeln(outputfile);
writelnloutputfile,'Caution! The confidence level is based on a normality assumption.');
writeln(outputfile,'Your sample has only ',n:3,' values');

end;
writeln

(outmiffilp '•*»*»****•*»*••**•**

writeln(outputfile,'Sim Start Time ',hour1 ,':',minute1 ,':',second1 ,':',hdSed,
' Sim End Time ,,hour2,':',minute2,':',second2,,:',hdSec2);

if outputType = '1' then HitToCont;
end;

begin {main}
textcolor(14);
stop: = FALSE;
simCount: = 0;
Frontscreen;
Runtype (distrType,outputType,wkDataType,qtrDataType,PDDataType,RunPD86Type,

repStatType,numberOfQtrs,numberOfWks,numberOfReps,negBinS,

seedlndex^tartSSQtr^ndSSQ^meanDemand.varDemand.negBinPJnputfilcoutputfile,
frcst,mad,seeds,outFileName,runDescript);

repeat
rewrite (outputfile);
simCount: = simCount + 1;
currSeed: = 0;
n: = 0;
GetTime{ hourl ,minute1 .second 1 ,hdSed);
lnitializeStatArrays(qtrACWTBOArry,qtrACWTArry,qtrSMAArry,

qtrlnvestArry,qtrlnappArry,cumACWTBOArry,
cumACWTArry.cumSMAArry);

for numberRep : = 1 to numberOfReps do begin
if seedType = ' 1' then begin

if numberRep = 1 then begin

182

for s: = 1 to seedlndex do begin
currSeed: = GetNextSeed(currSeed);

end;
SetSeed(currSeed);

end else begin
currSeed: = GetNextSeed (currSeed);
SetSeed(currSeed);

end;
end else begin

SetSeed(seeds[numberRep]);
end;
InitializeArrays (observ,meanDmdArrY,varDmdArry,EOQArry,

ROLevelArry,APSRArry,attainRisk,
SSADDBO,SSADD,SSSMA,
steplndArry, trndlndArry,mkCodeArry,
numberOfQtrs,numberOfWks,meanDemand,
wklyObserv);

LoadObserv (observ,frcst,mad,meanDmdArry,varDmdArry,wklyObserv,
observType,distrType,numberOfQtrs,numberOfWks,numberRep,
simCount,trendOn,stepOn,nmbrSteps, nmbrTrends,
meanDemand,varDemand,inputfile,startstep,
startrnd, endtrnd,stepmult, trendcoeff, trendpower);

if numberRep = 1 then begin
if simCount=1 then lnitPD82Fi!e (prbBrkPt,PLTSigMuRatio,

obsol,timePref,storage,
shortCost,adminCost);

PD82Edit(prbBrkPt,unitPrice,PLT,PLTSigMuRatio,
obsol,timePref,storage,shortCost,adminCost);

end;
if numberRep =1 then PrintHeader(prbBrkPt,negBins,seedlndex,

meanDemand,varDemand,
PLTSigMuRatio,negBinP,
outputfile,outputType,distrType,
outFilelMame,runDescript,nmbrSteps,
nmbrTrends,startSSQtr,endSSQtr,
stepM ult,trendCoeff,
trendPower,startStep,starTrnd,
endTrnd);

Forecast (observ,frcst,mad, steplndArry, trndlndArry,
mkCodeArry,numberOfQtrs,numberRep,unitPrice);

LoadLevels (frcst, mad, observ, EOQArry, ROLevelArry,
APSRArry, attainRisk,
SSADDBO, SSADD, SSSMA,
qtrSSADDBOArry,qtrSSADDArry,qtrSSSMAArry,
mkCodeArry,numberOfQtrs, prbBrkPt, numberRep,
meanDemand,PLTSigMuRatio,meanRisk,PDDataType,RunPD86Type);

if PDDataType='1' then DisplayPDOutput (observ, frcst, mad, EOQArry,
ROLevelArry, APSRArry,
attainRisk, SSADDBO, SSADD,
SSSMA, steplndArry, trndlndArry,

183

mkCodeArry,numberOfQtrs,initlnv,
numberRep.outputType);

SDR(OSHeap,BOHeap,wk.lyObserv,EOQArry,ROLevelArrv,observ,numberOfQtrs,
initlnv,initOS,initOrders,startSSQtr,endSSQtr, initSSOH,
initSSOS,initSSOrders,PLT,meanDemand,
PLTSigMuratio,obsol,timePref,
storage,shortCost,adminCost,TWUS,ACWTBO,
ACWT,SMA,lnvest,orderCount,lastOH,lastOS,totalCost,inappAsset,
JnappVal,wkDataType,qtrDataType,outputType,qtrACWTBOArry,qtrACWTArry,
qtrSMAArry,qtrlnvestArry,qtrlnappArry,cumACWTBOArry,cumACWTArry,
cumSMAArry,numberRep);

if repStatType = '1' then DisplayRepStats (ACWTBO, ACWT, SMA, Invest,
orderCount,

lastOH,iastOS,totalCost,
inappAsset,inappVal,outputType);

CalcSimStats(ACWTBO, ACWT, SMA, lnvest,orderCount,lastOH,lastOS,
totalCost,inappAsset,inappVal,meanRisk,
initSSOH, initSSOS,initSSOrders,n,
simACWTBO,simACWT,simSMA,simlnvest,
simOrderCount,simLastOH,simLastOS,
simTotalCost,simACWTBOVar,simACWTVar,
simSMAVar,simlnvestVar,simOrderCountVar,
simLastOHVar,simLastOSVar,
simTotalCostVar,simlnapp,
simlnappVar,simlnappVal,simlnappValVar,simMeanRisk,
simMeanRiskVar,simlnitSSOH,simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,simlnitSSOrdersVar);

end; {for}
GetTime(hour2,minute2,second2,hdSec2);
DisplaySimStats(simACWTBO,simACWT,simSMA,simlnvest,simOrderCount,

simLastOH,simLastOS,simTotalCost,
simACWTBOVar, simACWTVar,
simSMAVar, simlnvestVar,simOrderCountVar,
simLastOHVar,simlastOSVar,simTotalCostVar,
simlnapp,simlnappVar,simlnappVal,simlnappValVar,
simMeanRisk,simMeanRiskVar,
simlnitSSOH,simlnitSSOS,simlnitSSOrders,
simlnitSSOHVar,simlnitSSOSVar,simlnitSSOrdersVar,
n,initlnv,initOS,initOrders,
initSSOH,initSSOS,initSSOrders,
outputType,hour1 ,minute1,
secondl ,hdSec1 ,hour2,minute2,second2,hdSec2);

close (outputfile);
DisplayQtrSimStats (qtrACWTBOArry,qtrACWTArry,qtrSMAArry,

qtrlnvestArry,qtrlnappArry, cumACWTBOArry.cumACWTArry,
cumSMAArry,qtrSSADDBOArry,qtrSSADDArry,
qtrSSSMAArry,numberOfReps,numberOfQtrs,
runDescript,RunPD86Type,startSSQtr,endSSQtr);

RunAgain (outputfile,runDescript,outputType,

184

frcst,mad,stop,outFileName);
until stop;
textcolor(15);
clrscr;

end. {main}

185

* * *

*This Unit provides a toolbox of useful functions functions and *
•procedures for data input. *

* * *\

unit toolbox;

Interface

Uses CRT;

type pd82field = string[15];

var strTemp:pd82field;

function GetAnswer.boolean;
procedure HitToCont;
function Getlnteger (low,high:integer):integer;
function Get_Real(low,high:real):real;
function NumToString (var value:real):pd82field;
function StringToReal (var S:pd82field):real;
function Get_Longlnt (low,high:longint):longint;
function NewMean(var mean, sample:real; n:integer):real;
function NewVar(var mean, oldMean, oldVar, sample:real; n:integer):real;
procedure ConflnvfcurrVar, currMean:real;var upper, lower:real; n:integer);

Implementation

const ERROR = 1.00000000000000E-0010;

function Get Answer; {Returns a Boolean result for a yes/no query}

var Char_ln:Char;
Correct: Boolean;

begin
Correct: = False;
repeat

Charjn: = ReadKey;
write (Charjn);
case Charjn of

'YVy^begin
writeln ('es');
GetAnswer: = True;
Correct: = True

end;
'N'/n', chr(13):begin

if (Charjn = 'N') or (Charjn = *n') then begin

186

writeln Co');
end else begin

writeln;
write ('No');

end;
GetAnswer: = False;
Correct: = True

end;
else begin

writeln;
Sound(220);
delay (300);
NoSound;
writeln ('** Un-recognizable answer **');
writeln ("Enter Y or N,');
writeln ('Re-enter your answer: ')

end
end; {case}

until Correct;
end; {GetAnswer}

procedure HrtToCont;

var dummy:char;

begin
writeln;
write (' Hit any key to continue');
dummy: = readkey;
end;

{Gets an integer input between low and high, prompts until one is received}
function Get Integer (low,high:integer):integer;

var numberString: string[10];
error, numberValue: integer;

begin
repeat

readln (numberString);
val (numberString, numberValue, error);
if error < > 0 then begin

writeln;
Sound(220);
delay (300);
NoSound;
write (■*** Invalid number, enter an integer: ')

end else if (numberValue < low) or (numberValue > high) then begin

187

writeln;
Sound(220);
delay (300);
NoSound;

writeln ('*** Invalid Range - value must be a positive integer');
write ('between '.low,' and ',high,' Enter number: ');
error: = 1 ;
end;

until error=0;
Getjnteger: = numberValue;

end; {function}

{Gets an longint input between low and high, prompts until one is received}
function Get Longint (low,high:longint):longint;

var numberString: stringHO];
error: integer;
numberValue: longint;

begin
repeat

readln (numberString);
val (numberString, numberValue, error);
if error < > 0 then begin

writeln;
Sound(220);
delay (300);
NoSound;
write (■•*• Invalid number, enter an integer: ')

end else if (numberValue<low) or (numberValue>high) then begin
writeln;
Sound(220);
delay (300);
NoSound;
writeln ('*** Invalid Range - value must be a positive integer');
write ('between ',low,' and ',high,' Enter number: ');
error: = 1;
end;

until error = 0;
GetLonglnt: = numberValue;

end; {function}

{Gets a real value between low and high, prompts until one is received}
function Get_Real(low,high:real):real;

var Number_String:string;
Erroninteger;
Number Value:real;

188

begin
repeat

readln (NumberString);
val (NumberString, NumberValue, Error);
if Error < > 0 then begin

Sound(220);
delay (300);
NoSound;
writeln C**You must enter a valid real number** ');

end else if (Number_Value<low) or (Number_Value>high) then begin
writeln;
Sound(220);
delay (300);
NoSound;
writeln (**** Invalid Range - value must be a real value');
write ('between ',low:0:2,' and ',high:0:2,' Enter number: ');
error: = 1 ;

end;
until Error =0;
Get_Real: = Number_Value;

end; {Get_Real}

function NumToString (var value:real):pd82field;

const digits = 16;
decimals = 8;

var i:integer;
S: string[16I;

begin
str (value:digits:decimals,S);
for i: = 1 to 16 do
if S[i] = ' 'then S[i]: = '0'

else if S[i] = '.' then delete (S,i,1);
NumToString: = S
end;

function StringToReal (var S:pd82field):real;

var R1, R2: real;
S1:string[7];
S2:string[8I;
errorl, error2:integer;

begin
S1: = copy(S,1,7);
S2: = copy(S,8,8);
val(S1 ,R1,errorl);
val(S2,R2,error2);
StringToReal: = R1 + (R2/100000000);

189

end;

function NewMeanfvar mean, sample:real; n:integer):real;

var calcMean:real;

begin
if n< 1 then begin

NewMean: = sample;
end else begin

calcMean: = (((n-1 }*mean) + sample)/n;
if calcMean < ERROR then begin

NewMean: = 0.0;
end else begin

NewMean: = calcMean;
end;

end;

end;

function NewVar(var mean, oldMean, oldVar, sample:real; n:integer):real;

var calcVar: real;

begin
if n < 2.0 then begin

NewVar: = 0.0;
end else begin

calcVar: = (((n-2)*oldVar) + ((n-1)* sqr(oldMean))-
(n*sqr(mean)) + (sqr(sample)))/(n-1);

if calcVar < ERROR then begin
NewVar: = 0.0;

end else begin
NewVar: = calcVar;

end;
end;

end;

procedure Conflnv(currVar, currMean:real;var upper, lowenreal; n:integer);

begin
if (n>0) and (currVar > ERROR) then begin

lower: = currMean-(1.96*sqrt(currVar/n));
upper: = currMean + (1.96*sqrt(currVar/n));

end else begin
lower: = 0.0;
upper: = 0.0;

end;
if lower < 0.0 then lower: = 0.0;
if upper < 0.0 then upper: = 0.0;

190

end;

end. {Unit Toolbox}

191

unit unirand;

interface

type seedArryType = array [1.. 100] of longint;

var seedsrseedArryType;

procedure SetSeed (seedrlongint);

function GetSeed:longint;

function GetNextSeed (lastSeed:longint):longint;

function RandomUniform:real;

function GetPoisson(var meanDemand:real):integer;

function GetNormahreal;

function GetGeometric(p:real):integer;

function GetNegBin(p:real;s:integer):integer;

function GetUniformlnt(high:integer):integer;

function Zlnv (p:real):real;

implementation

var a:longint;

procedure SetSeed (seedrlongint);

begin
a: = seed

end; {procedure}

function GetSeed:longint;

begin
GetSeed: = a

end; {procedure}

function RandomUniform:real;

const B2E15:longint = 32768;
B2E16:longint= 65536;

192

Modlus:longint= 2147483647;
Multl :longint= 24112;
Mult2:longint=26143;

var Hi15,Hi31 ,Low15,Lowprd,Ovflow,Zi:longint;

begin
Zi: = a;
Hi15: = Zidiv B2E16;
Lowprd: = (Zi-Hi15 * B2E16) * Multl;
Low15: = Lowprd div B2E16;
Hi31: = Hi15 * Multl + Low15;
Ovflow: = Hi31 div B2E15;
Zi: = (((Lowprd - Low15 * B2E16) - Modlus) +

(Hi31 - Ovflow * B2E15) * B2E16) + Ovflow;
if Zi < 0 then Zi: = Zi + Modlus;
Hi15:= Zidiv B2E16;
Lowprd:= (Zi - Hi15 * B2E16) * Mult2;
Low15: = Lowprd div B2E16;
Hi31:= Hi15 * Mult2 + Low15;
Ovflow: = Hi31 div B2E15;
Zi: = (((Lowprd - Low15 * B2E16) - Modlus) +

(Hi31 - Ovflow * B2E15) * B2E16) + Ovflow;
if Zi < 0 then Zi: = Zi + Modlus;
a: = Zi;
RandomUniform:= (2 * (Zi div 256) + 1) / 16777216.0;

end;

function GetNextSeed (lastSeed:longint):longint;

const M:extended = 2147483647.0;
a:extended = 715.0;
b:extended= 1058.0;
c:extended= 1385.0;

var Z:extended;

begin
Z: = lastSeed;
if lastSeed = 0 then begin

Z: = 1973272912.0;
GetNextSeed: = round(Z);

end else begin
Z: = (A*Z)/M;
Z: = (Z-round(Z-0.5))*M;
Z: = (B*Z)/M;
Z: = (Z-round(Z-0.5))*M;
Z: = (C*Z) /M;
Z: = (Z-round(Z-0.5))*M;
GetNextSeed: = round(Z);

193

end;
end;

function GetPoissonfvar meanDemand:real):integer;

var alpha,beta, U1 :real;
i: integer;

begin
beta: = 1.0;
i: = -1;
repeat

i: = i + 1;
alpha: = exp(-meanDemand);
U1: = RandomUniform;
beta : = beta *U1;

until beta < alpha;
GetPoisson: = i

end;

function GetNormahreal;

varU1,U2,V1,V2,W,Y:real;

begin
repeat

U1: = RandomUniform;
U2: = RandomUniform;
V1: = 2*U1-1; V2: = 2*U2-1;
W: = sqr(V1) + sqr(V2);

until W < = 1.0;
Y: = sqrt((-2'ln(W))/W);
GetNormal: = V1*Y;

end;

function GetGeometric(p:real):integer;

var U:real;
i: integer;

begin
i: = 0;
U: = RandomUniform;
while not(U < = p) do begin

i: = i + 1 ;
U: = RandomUniform;

end;
GetGeometric: = i;

end;

194

function GetNegBin(p:real;s:integer):integer;

var X,i:integer;

begin
X: = 0;
for i: = 1 to s do begin

X: = X + GetGeometric(p);
end;
GetNegBin: = X;

end;

function GetUniformlnt(high:integer):integer;

begin
GetUniformlnt: = round((high-1)*RandomUniform) + 1;

end;

function Zlnv (p:real):real;

var trreal;

begin
t: = sqrt(-2*ln(p));
Zlnv: = t-((2.515517 + 0.802853*t + 0.010328*sqr(t))/

(1 + 1.432788*t + 0.189269*sqr(t) + 0.001308*exp(3'ln(t))|);
end;

end. {unit unirand}

195

unit pQueue;

interface

const MAXPQUEUESIZE = 300;

type dataRecord = record
Qty: integer-
Week: integer;
end;

HeapArrayType = array [1..MAXPQUEUESIZE] of datarecord;
PriorityQueueType = record

heapSize:integer;
heapArray:HeapArrayType

end;

{must be called before the priority queue is first used}
{also resets the priority queue so it is empty}
procedure InitializePriorityQueue (var pQueue.-PriorityQueueType);

{error if called when it already has MAXPQUEUESIZE elements}
procedure InsertPriorityQueue (var pQueue:PriorityQueueType; data:datarecord);

{returns the element with the smallest (next time) value}
{error if no elements in the priority queue}
function CurrWeek (pQueue:PriorityQueueType):integer-
function CurrQty (pQueue:PriorityQueueType):integer;

{removes and returns the element with the smallest (next time) value}
{error if no elements in the priority queue}
function ExtractQty (var pQueue:PriorityQueueType):integer;
function ExtractWeek (var pQueue:PriorityQueueType):integer;

function EmptyPriorityQueue (pQueue:PriorityQueueType):boolean;

function SizePriorityQueue (pQueue:PriorityQueueType):integer;

implementation

{error if the binary trees that are children of the index do not satisfy the
heap property}
procedure Heapify (var pQueue:PriorityQueueType; i:integer);

var left,right,smallest:integer;
tempVandataRecord;

begin
with pQueue do begin

left: = 2* i;
right: = (2*i)+1;

196

smallest: = i;
if (left < = heapSize) then begin

if (heapArray [left].Week < heapArrayNl.Week) then begin
smallest: = left

end
end;
if (right <= heapSize) then begin

if (heapArray[right].Week < heapArraylsmallest].Week) then begin
smallest: = right

end
end;
if smallest < > i then begin

tempVar: = heapArrayti];
heapArray[i]: = heapArraytsmallest];
heapArray [smallest]: = tempVar;
Heapify (pQueue,smallest)

end
end {with}

end; {procedure}

{removes and returns the element with the smallest (next time) value}
{error if no elements in the priority queue}
function HeapExtractWeek (var pQueue:PriorityQueueType):integer;

begin
with pQueue do begin

HeapExtractWeek: = heapArrayH J.Week;
heapArray[1]: = heapArraytheapSize];
heapSize: = heapSize-1 ;
Heapify (pQueue, 1)

end {with}
end; {procedure}

{removes and returns the element with the smallest (next time) value}
{error if no elements in the priority queue}
function HeapExtractQty (var pQueue: PriorityQueueType): integer;

begin
with pQueue do begin

HeapExtractQty: = heapArray [1].Qty;
heapArray[1]: = heapArray[heapSize];
heapSize: = heapSize-1;
Heapify (pQueue, 1)

end {with}
end; {procedure}

{error if called when it already has MAXPQUEUESIZE elements}
procedure Heaplnsert (var pQueue:PriorityQueueType; data:datarecord);

197

var index, parent:integer;
done:boolean;

begin

with pQueue do begin
done: = false;
heapSize: = heapSize + 1 ;
index: = heapSize;
parent: = index div 2;
if parent = 0 then begin

done: = TRUE
end else if (heapArray[parent].Week < = data.Week) then begin

done: = TRUE
end;
while (index > 1) and (not done) do begin

heapArray[indexJ: = heapArraylparent];
index: = parent;
parent: = index div 2;
if parent = 0 then begin

done: = TRUE
end else if (heapArray[parent].Week < = data.Week) then begin

done: = TRUE
end

end; {while}
heapArray[index]: = data
end {with}

end;{procedure}

procedure InitializePriorityQueue (var pQueue:PriorityQueueType);

var index:integer;

begin
pQueue. heapSize: = 0

end; {procedure}

procedure InsertPriorrtyQueue (var pQueue: PriorityQueueType; data:dataRecord);

begin
Heaplnsert (pQueue, data)

end; {procedure}

function CurrWeek (pQueue:PriorityQueueType):integer;

begin
CurrWeek: = pQueue.heapArrayH]. Week;

end; {function}

198

function CurrQty (pQueue:PriorityQueueType):integer;

begin
CurrQty: = pQueue.heapArray[1 l.Qty;

end; {function}

function ExtractQty (var pQueue:PriorityQueueType):integer;

begin
ExtractQty: = HeapExtractQty (pQueue)

end; {function}

function ExtractWeek (var pQueue: PriorityQueueType):integer;

begin
ExtractWeek: = HeapExtractWeek (pQueue)

end; {function}

function EmptyPriorityQueue (pQueue:PriorityQueueType):boolean;

begin
EmptyPriorityQueue: = pQueue.heapSize = 0

end; {function}

function SizePriorityQueue (pQueue:PriorityQueueType):integer;

begin
SizePriorityQueue: = pQueue.heapSize

end; {function}

end. {unit}

199

unit PDUnit;

Interface

uses dos, crt, toolbox;

var prbBrk.Pt:integer;
unitPrice, PLT, obsol, timePref, storage, shortCost,adminCost:real;

procedure lnitPD82File (var prbBrkPt:integer;var PLTSigMuRatio,
obsol,timePref,storage,shortCost,adminCost:real);

procedure PD82Edit(var prbBrkPt:integer; var unitPrice,PLT,PLTSigMuRatio,
obsol,timePref,storage,shortCost,adminCost:real);

procedure lnitPD86File;

Implementation

procedure lnitPD82File (var prbBrkPt:integer;var PLTSigMuRatio,
obsol,timePref,storage,shortCost,adminCost:real);

var AAC,AL,B067A,B067G,C028,DRLI,DO31 C,D125N,ERRI,F024,HQDI,MARLI,PVPI,RII,RO,
YR7POC,Y006A,Y006B,EOQIND,PVUI : char;

D120, FILLER : string [2];

A023B,BRLDC,B010,B011A,B012F,B019A,B020,B023C,B023D,B023F,B023H,BG,B055,
B055A,B057,B058,B058A,B061,B070,B073,B093,B280,C008C,DOPTC,DTC,D025E,
F009,HQD,H0141,H0142,H0143,H0144,H0145,H0146,H0147,H0148,H0149,H01410,
H01411,H01412,H01413,H01414,H01415,H01416,H01417,H01418,H01419,H01420,

ILRJMECY.M.MOQQAD^SLQAD^SLQD^RFIDR^OSQ^DQ^PV.QDH^FIDR^RIYAYABY

RSV,RT,SCR,SSOH,TD,TSDRS,V01 5R,V016,V022,V039,V041 R,V042R,V043R,V044,

V101 A, VI02, V1034, V108, V295,LILT,LILY,PCR3,Q1 B,Q2B,RMNAST,SER,YDR,MNQQAD,
APSR,ARCI,BOQ,BRLCI,BRLDCU,BRLQ,BRPLQ,BRQ,B014A.B019,B019B,B021 ,B021 A,
ERR,MONDO,OQCI,POC,PPVBNDO,PZO,RCI,RLCI,RPLCI,RQCI,VPSR: real;

PD82str1: string[24];
PD82str2, PD82str3, PD82str4, PD82str5, PD82str6, PD82str7,
PD82str8: string[255J;

outfilertext;

begin

{initialization values}
AAC: = *N'; AL^'N'; B067A: = 'N'; B067G: = 'N'; C028: = '0'; DRLI: = 'N'; D031C: = ' ';

200

D^O—W; D125N: = ' '; ERRI: = 'N'; F024: = " '; HQDI: = ' '; MARLI: = 'Y';
PVPI: = *Y'; RII: = 'N'; RO: = 'N'; YR7POC:= ' '; Y006A: = 'Nr; Y006B: = 'N';
EOQIND^'N'; PVUI: = ' '; FILLER: = '
A023B:= 1.0;
BRLDC: = 5.0;
B010: = 0.0;
B011A: = 8.0;
B012F: = 0.0;
B019A: = 20.0;
B020: = 1.0;
B023D: = 1.0;

{system requisition average}
{basic reorder level distribution code}

{contract prod lead time}
{contract proc lead time}

{non cred group proc variance}
{system reorder level low limit qty}
{gross sys demand end of lead time}

B023C: = B011 A*B023D; {gross sys demand during lead time}
B023F: = 0.0; B023H: = 0.0; BG: = 0.0;

{unit price}

{obsolescence rate}
{manufac set-up costs}

{discount rate}

B055: = 100.00;
B055A: = 0.0;
B057: = 0.12;
B058: = 600.0;
B058A: = 0.0;
B061: = 1.0;
B070: = 0.0;
B073: = 1.0; {expected units per requisition}
B093: = 0.0; B280: = 0.0;
C008C: = 0.5; {average item essentiality}
DOPTC: = 0.0;DTC: = 0.0;
D025E: = 0.0; {procurement method}
F009: = 0.0; HQD: = 0.0; H0141: = 0.0; H0142: = 0.0; H0143: = 0.0; H0144: = 0.0;
H0145: = 0.0; H0146: = 0.0; H0147: = 0.0; H0148: = 0.0; H0149: = 0.0; H01410: = 0.0;
H01411: = 0.0; H01412: = 0.0; H01413: = 0.0; H01414: = 0.0; H01415: = 0.0;
H01416: = 0.0;
H01417: = 0.0; H01418: = 0.0; H01419: = 0.0; H01420: = 0.0; ILR: = 0.0; IMECY: = 0.0;
M: = 1.0; {mark code}
MOQQAD: = 6.0; {max order qty attrition qtrs demand}
MSLQAD: = 99.0; {max number safety level qtrs attrition}
MSLQD: = 20.0; {max number of safety level qtrs demand}
NRFIDRT: = 0.0;
OSQ: = 0.0; {non-parametric order stat qtrs}
PDQ: = 8.0; {past qtrs demand}
PPV: = B023D*B011 A; {proc problem var (mean)}
QDH: = 0.0; {quarters demand history}
RFIDRT: = 0.0; RIYAYABY: = 0.0;
RSV: = 0.0;
RT: = 0.0;
SCR: = 0.01;
SSOH: = 0.0;

{today's date}
{time between SDR's in qtrs}
{mark code 1 and 2 order costs}

{requisition size variance}

{storage cost rate}

TD: = 93001.0;
TSDRS: = 0.08;
V015R: = 850.00;
V016: = 850.00;
V022: = 0.1;
V039: = 0.0;

{min risk}

201

V041R: = 850.00; {low value annual demand order cost}
V042R: = 1920.00; {negotiated procurement order cost}
V043R: = 1790.00; {advertised procurement order costs}
V044: = 8000.00; {max unpriced order cost}
V101 A: = 0.1; {procurement interest rate}
V102: = 0.35; {max risk}
V1034: = 1000.00; {shortage cost}
V108: = 0.1; {repair time preference rate}
V295: = 1.0; {reorder level constraint}
LILT: = 0.0; LILY: = 0.0; PCR3: = 0.0; Q1B: = 0.0; Q2B: = 0.0; RMNAST: = 0.0; SER: = 0.0;
YDR: = 0.0;
MNQQAD: = 1.0; {min order qty attrition qtrs demand}
APSR: = 0.0; ARCI: = 0.0; BOQ: = 0.0; BRLCI: = 0.0; BRLDCU: = 0.0; BRLQ: = 0.0;
BRPLQ: = 0.0; BRQ: = 0.0; B014A: = 0.0; B019: = 0.0; B019B: = 0.0; B021: = 0.0;
B021A: = 0.0; ERR: = 0.0; MONDO: = 0.0; OQCI: = 0.0; POC: = 0.0; PPVBNDO: = 0.0;
PZO: = 0.0; RCI: = 0.0; RLCI: = 0.0; RPLCI: = 0.0; RQCI: = 0.0; VPSR: = 0.0;

prbBrkPt: = 0;
PLTSigMuRatio: = (sqrt(1.57*B011A))/B011A;
obsol: = B057;
timePref: = V101A;
storage: = SCR;
shortCost: = V1034;
adminCost: = V015R;

pd82str1:= AAC+ AL+ B067A+ B067G+ C028+ DRLI+ D031C+ D120+ D125N +
ERRI+ F024 +

HQDI+ MARLI+ PVPI+ RII+ RO+ YR7POC+ Y006A+ Y006B+ E0QIND +
PVUI +

FILLER;

PD82str2:= NumToString(A023B) + NumToString(BRLDC) + NumToString(B010) +
NumToString(B011A)+ NumToString(B012F) + NumToString(B019A) +
NumToString{B020) + NumToString(B023C) + NumToString(B023D) +
NumToString(B023F) + NumToString(B023H) + NumToString(BG) +
NumToString(B055) + NumToString(B055A) + NumToString(B057) +
NumToString(B058) + NumToString(B058A);

PD82str3:= NumToString(B061) + NumToString(B070)+ NumToString(B073) +
NumToString(B093) + NumToString(B280) + NumToString(C008C) +
NumToString(DOPTC)+ NumToString(DTC) + NumToString(D025E) +
NumToString(F009) + NumToString(HQD) + NumToString(H0141) +
NumToString(H0142)+ NumToString(H0143)+ NumToString(H0144) +
NumToString(H0145) + NumToString(H0146);

PD82str4:= NumToString(H0147)+ NumToString(H0148)+ NumToString(H0149) +
NumToString(H01410)+ NumToString(H01411)+ NumToString(H01412) +
NumToString(H01413)+ NumToString(H01414)+ NumToString(H01415) +
NumToString(H01416)+ NumToString(H01417)+ NumToString(H01418) +
NumToString(H01419)+ NumToString(H01420)+ NumToString(ILR) +
NumToString(IMECY) + NumToString(M);

PD82str5:= NumToString(MOQQAD) + NumToString(MSLQAD) + NumToString(MSLQD) +

202

NumToString(NRFIDRT)+ NumToString(OSQ)+ NumToString(PDQ)+
NumToString(PPV) + NumToString(QDH) + NumToString(RFIDRT) +
NumToString(RIYAYABY) + NumToString(RSV) + NumToString(RT) +
NumToString(SCR) + NumToString(SSOH) + NumToString(TD) +
NumToString(TSDRS) + NumToString(V015R);

PD82str6: = NumToString(V016) + NumToString(V022) + NumToString(V039) +
NumToString(V041R)+ NumToString(V042R)+ NumToString(V043R) +
NumToString(V044) + NumToString(V101A)+ NumToString(V102) +
NumToString(V1034) + NumToString(V108)+ NumToString(V295) +
NumToString(LILT)+ NumToString(LILY)+ NumToString(PCR3} +
NumToString(Q1 B) + NumToString(Q2B);

PD82str7:= NumToString(RMNAST) + NumToString(SER) + NumToString(YDR) +
NumToString(MNQQAD) + NumToString(APSR) + NumToString(ARCI) +
NumToString(BOQ) + NumToString(BRLCI) + NumToString(BRLDCU) +
NumToString(BRLQ)+ NumToString(BRPLQ) + NumToString(BRQ)+
NumToString{B014A)+ NumToString(B019)+ NumToString(B019B) +
NumToString(B021)+ NumToString(B021A);

PD82str8: = NumToString(ERR) + NumToString(MONDO) + NumToString(OQCI) +
NumToString(POC)+ NumToString(PPVBNDO) + NumToString(PZO) +
NumToString(RCI) + NumToString(RLCI) + NumToString(RPLCI) +
NumToString(RQCI) + NumToString(VPSR);

assign (outfile,'c:\tp\pd82in.fil');
rewrite (outfile);
writeln(outfile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (outfile);

end;

procedure PD82Edit(var prbBrkPt:integer; var unitPrice,PLT,PLTSigMuRatio,
obsol,timePref,storage,shortCost,adminCost:real);

var C028 : string[1];

A023B,B010,B011A,B020,B023C,B023D,B055,B057,B058,B061,B073,C008C,D025E,
MSLQD,SCR,TD,TSDRS,V015R,V022,V101 A,V102,V1034,V295: real;

PD82str1: string[24];
PD82str2, PD82str3, PD82str4, PD82str5, PD82str6, PD82str7,
PD82str8: string[255];
editChoice:char;
done:boolean;
infile,outfile:text;

begin

{retrieve selected default variables from file to edit}
assign (infile,'c:\tp\pd82in.fir);
reset (infile);

203

read(infile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,
PD82str7, PD82str8);

close (infile);
C028: = copy(PD82str1,5,1);

strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
strTemp
unitPrice

= copy(PD82str2,31,15); B010: = StringToReal(StrTemp);
= copy(PD82str2,46,15); B011A: = StringToReal(StrTemp);
= copy(PD82str2,91,15); B020: = StringToReal(StrTemp);
= copy(PD82str2,121,15); B023D: = StringToReal(StrTemp);

= StringToReal(StrTemp);
= StringToReal(StrTemp);
= StringToReal(StrTemp);

= copy(PD82str2,181,15); B055:
= copy(PD82str2,211,15); B057:
= copy(PD82str2,226,15); B058:
= copy(PD82str3,1,15); B061: = StringToReal(StrTemp);
= copy(PD82str3,31,15); B073: = StringToReal(StrTemp);
= copy(PD82str3,76,15); C008C: = StringToReal(StrTemp);
= copy(PD82str3,121,15); D025E: = StringToReal(StrTemp);
= copy(PD82str5,31,15); MSLQD: = StringToReal(StrTemp);
= copy(PD82str5,181,15); SCR: = StringToReal(StrTemp);
= copy(PD82str5,211,15); TD: = StringToReal(StrTemp);
= copy(PD82str5,226,15); TSDRS: = StringToReal(StrTemp);
= copy(PD82str5,241,15); V015R: = StringToReal(StrTemp);
= copy(PD82str6,16,15); V022: = StringToReal(StrTemp);
= copy(PD82str6,106,15); V101 A: = StringToReal(StrTemp);
= copy(PD82str6,121,15); V102: = StringToReal(StrTemp);
= copy(PD82str6,136,15); V1034: = StringToReal(StrTemp);
= copy(PD82str6,166,15); V295: = StringToReal(StrTemp);
= B055;

PLT:= B011 A;
done: = FALSE;
repeat
clrscr;
writelnC *4

writeln;
writeln;
writeln (' A.
writeln (' B.
writeln {' C.
writeln (' D.
writeln (' E.
writeln {' F.
writeln (' G.
writeln (' H.
writeln (' I.
writeln (' J.
writeln (' K.

THIS SCREEN ALLOWS EDITING OF DEFAULT NUN INPUT PARAMETERS

Prob Break: ',PrbBrkPt:8,
Shelf Life: *,C028,'
Reqn Size : \B073:8:0, '
Unit Price: ',B055:8:2, '
ProcurLT: \B011A:8:2,

L. Min Risk
M. Max Risk

N. Ord Cost
O. MSLQD

: ',V022:8:2);
•,V102:8:2);
: ',V015R:8:2);

: ',MSLQD:8:2);
P. Proc Meth : \D025E:8:0);

PLT Sig/Mu:',PLTSigMuRatio:8:2, ' Q. Shortage :',V1034:8:2);
Essential : ',C008C:8:2, '
Mfg Set-Up: *,B058:8:2, '

Obsol Rate: ',B057:8:2, '
Disc Rate : ',B061:8:2, '
Time SDRS : ',TSDRS:8:2,

R. R/O Low : \B020:8:2);
S. R/0 Constr: ',V295:8:2);

T. Stor Rate : *,SCR:8:2);
U. TimePref : \V101A:8:2);

• V. Today DT : ',TD:8:0);

writeln;
writeln ('
write ('

Hit ENTER to accept current values ');
or letter of field to change: ');

204

editChoice: = upcase(readkey);
writeln(editChoice);
case editChoice of

'A' : begin
writeln;
write ('Enter new Probability Break Point: ');
PrbBrkPt: = Get_lnteger(0,20);

end;
'B' : begin

writeln;
write ('Enter new Shelf Life code: ');
readln (C028);
delete (PD82str1,5,1);
insert (C028,PD82str1,5);

end;
'C : begin

writeln;
writeln ('** Information Only - Model assumes requisition size of one.
HitToCont;

end;
'D' : begin

writeln;
write ('Enter new Unit Price: ');
B055: = Get_Real(0.0,999999.0);
delete (PD82str2,181,15);
insert (NumToString(B055),PD82str2,181);
unitPrice: = B055;

end;
'E' : begin

writeln;
write ('Enter new Procurement Leadtime Forecast: ');
B011A: = Get_Real(0.1,16.0);
B023C: = B0nA*B023D;
delete (PD82str2,46,15);
insert (NumToString(B011 A),PD82str2,46);
delete (PD82str2,106,15);
insert (NumToString(B023C),PD82str2,106);
PLT: = B011A;
PLTSigMuRatio: = (sqrtd .57# B011 A))/B011 A;

end;
'F' : begin

writeln;
write ('Enter new PLT Std Deviation to Mean Ratio: ');
PLTSigMuRatio: = Get_Real(0.0,3.0);

end;
'G' : begin

writeln;
write ('Enter new Average Item Essentiality: ');
C008C: = Get_Real(0.0,999999.0);
delete (PD82str3,76,15);

205

insert (NumToString(C008C),PD82str3,76);
end;

'H' : begin
writeln;
write ('Enter new Manufacturer Set-up Cost: ');
B058: = Get_Real(0.0,999999.0);
delete (PD82str2,226,15);
insert (NumToString(B058),PD82str2,226);

end;
T : begin

writeln;
write ('Enter new Obsolescence Rate: ');
B057: = Get_Real(0.0,999999.0);
delete (PD82str2,211,15);
insert (NumToString(B057),PD82str2,211);
obsol: = B057;

end;
'J' : begin

writeln;
write ('Enter new Discount Rate: '};
B061: = Get_Real(0.0,999999.0);
delete (PD82str3,1,15);
insert (NumToString(B061),PD82str3,1);

end;
'K' : begin

writeln;
writeln (' ***** Information Only *****•);
delaydOOO);

{ write ('Enter new Time Between SDRs: ');
TSDRS: = Get_Real(0.0,999999.0);
delete (PD82str5,226,15);
insert (NumToString(TSDRS),PD82str5,226);}

end;
'L' : begin

writeln;
write {'Enter new Minimum Risk: ');
V022: = Get_Real(0.0,1.0);
delete (PD82str6,16,15);
insert (NumToString(V022),PD82str6,16);

end;
'M' : begin

writeln;
write ('Enter new Maximum Risk: ');
V102: = Get_Real(0.0,1.0);
delete (PD82str6,121,15);
insert (NumToString(V102),PD82str6,121);

end;
'N' : begin

writeln;
write {'Enter new Mark l/ll Order Cost: ');

206

V015R: = Get_Real(0.0,999999.0);
delete (PD82str5,241,15);
insert (NumToString(V015R),PD82str5,241);
adminCost: = V015R;

end;
0' : begin

writeln;
write ('Enter new Max Number of Quarters Safety Level Demand: ');
MSLQD: = Get_Real(0.0,999999.0);
delete (PD82str5,31,15);
insert (NumToString(MSLQD),PD82str5,31);

end;
P' : begin

writeln;
write ('Enter new Procurement Method: ');
D025E: = Get_Real(0.0,999999.0);
delete (PD82str3,121,15);
insert (NumToString(D025E),PD82str3,121);

end;
Q' : begin

writeln;
write ('Enter new Procurement Shortage Cost: ');
V1034: = Get_Real(0.0,999999.0);;
delete (PD82str6,136,15);
insert (NumToString(V1034),PD82str6,136);
shortCost: = V1034;

end;
R' : begin

writeln;
write ('Enter new System Reorder Level Low Limit Qty: ');
B020: = Get_Real(0.0,999999.0);
delete (PD82str2,91,15);
insert (NumToString(B020),PD82str2,91 };

end;
'S' : begin

writeln;
write ('Enter new Reorder Level Constraint Rate: ');
V295: = Get_Real(0.0,999999.0);
delete (PD82str6,166,15);
insert (NumToString(V295),PD82str6,166);

end;
T : begin

writeln;
write ('Enter new Storage Cost Rate: ');
SCR: = Get_Real(0.0,99999.0);
delete (PD82str5,181,15);
insert (NumToString(SCR),PD82str5,181);
storage: = SCR;

end;
U' : begin

207

■-!-•

writeln;
write ('Enter new Time Preference Rate: ');
V101 A: = Get_Real(0.0,99999.0);
delete (PD82str6,106,15);
insert (NumToString(V101 A),PD82str6,106);
timePref: = V101A;

end;
•V : begin

writeln;
write ('Enter Today"s Date (YYJJJ): ');
TD: = Get_Real(0.0,99999.0);
delete (PD82str5,211,15);
insert (NumToString(TD),PD82str5,211);

end;
chr(13): done: = TRUE

end;
until done = TRUE;
assign (outfile,'c:\tp\pd82in.fil');
rewrite (outfile);
writeln(outfile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (outfile);
clrscr;

end;

procedure lnitPD86File;

var infile, outfile:text;

PD82str1: string[24];
PD82str2, PD82str3, PD82str4, PD82str5, PD82str6, PD82str7,
PD82str8: string[255];

PD86str1: string[24];
PD86str2, PD86str3, PD86str4, PD86str5, PD86str6, PD86str7,
PD86str8: string[255];
PD86str9: string[60];

C003,C001W:string[2];
C001B, LASTIN, CO01T1 ,C001 T2,RPRIN,ONEWAY:char;
FILLER:string[5J;
D046D:string[9]; {NUN}

B011A,B073,FMLTCNT,FMLYEXP,FMLYGRS,FMLYMNM,FMLYSYSORD,FMLYSYSRO,
FMLYOPAST,FMLYPLT,FMLYRPRSRV,FMLYRTAT,FMLYRQSIZ,FSQPPR1,FSQPPR2,FSQPPR
3,FSQPPR4,FSQPPR5,FSQPPR6,FSQPPR7,FSQPPR8,FSQPPR9,FSQPPR10,FSQPPR11,FSQP
PR12,FSQPPR13,FSQPPR14,FSQPPR15,FSQPPR16,FSQPPR17,FSQPPR18,FSQPPR19,FSQP
PR20,FSQPPR21,FSQPPR22,FSQPPR23,FSQPPR24,FSQPPR25,FSQPPR26,FSQPPR27,FSQP
PR28,FSQPPR29,FSQPPR30,FSQPPR31,FSQPPR32,FWO,B023D,HRZNLNGTH,

208

MEANNONZR,B061 B,B019A,B019B,B019C,B021,B019.B021 A,OPAST,PLTPPR,B012F.PPV,
PPVO,BRLDCU,F009,B012E,RSV,SQPPR1,SQPPR2,SQPPR3,SQPPR4,SQPPR5,SQPPR6,
SQPPR7,SQPPR8,SQPPR9,SQPPR10,SQPPR11,SQPPR12,SQPPR13,SQPPR14,SQPPR15,

SQPPR16,SQPPR17,SQPPR18,SQPPR19,SQPPR20,SQPPR21 ,SQPPR22,SQPPR23,SQPPR24

SQPPR25, SQPPR26,SQPPR27,SQPPR28,SQPPR29,SQPPR30,SQPPR31 ,SQPPR32,
SYSBO,SYSRCR,A023B,TRPR,TSDRS,B055,F007,ZOBS,EXPDEFRS,EXPDEFRSR,
EXPDEFSDR,FEXPDEFRS,FEXPDEFSDR,PROJADDBO,PROJADDVRBL,PROJSMAVRBL,

PROJSSADDBO,PROJSSADD,PROJSSSMA,RQSHRTRND,RQSHRTYR,VLBUYS,VRBLHRSR,
VRBLHRSQ,UNITSHRTP,UNITSSHRTR:real;

begin
assign (infile,'c:\tp\pd82out.fil');
reset (infile);
read(infile,PD82str1, PD82str2, PD82str3, PD82str4, PD82str5, PD82str6,

PD82str7, PD82str8);
close (infile);
C003: = '1H';
C001B: = ' ';
LASTIN: = 'Y';
D046D: = 'OOOOOOOOO'; {NUN}
C001T1: = ' *;
C001T2: = ' ';
C001W: = ' ';
RPRIN: = 'N';
ONEWAY: = 'N';
FILLER: = ' ';
strTemp: = copy(PD82str2,46,15); B011 A: = StringToReal(StrTemp);
strTemp: = copy(PD82str3,31,15); B073: = StringToReaUStrTemp);
FMLTCNT: = 0.0;FMLYEXP: = 0.0;FMLYGRS: = 0.0;FMLYMNM: = 0.0;FMLYSYSORD: = 0.0;

FMLYSYSRO: = 0.0;FMLYOPAST: = 0.0;FMLYPLT: = 0.0;FMLYRPRSRV: = 0.0;FMLYRTAT: =
0.0;

FMLYRQSIZ: = 0.0;FSQPPR1: = 0.0;FSQPPR2: = 0.0;FSQPPR3: = 0.0;FSQPPR4: = 0.0;
FSQPPR5: = 0.0;FSQPPR6: = 0.0;FSQPPR7: = 0.0;FSQPPR8: = 0.0;FSQPPR9: = 0.0;
FSQPPR10
FSQPPR15
FSQPPR20
FSQPPR25
FSQPPR30

= 0.0;FSQPPR11
= 0.0;FSQPPR16
= 0.0;FSQPPR21
= 0.0;FSQPPR26
= 0.0;FSQPPR31

= 0.0;FSQPPR13
= 0.0;FSQPPR18
= 0.0;FSQPPR23
= 0.0;FSQPPR28
= 0.0;FWO: = 0.0;

= 0.0;FSQPPR12
= 0.0;FSQPPR17
= 0.0;FSQPPR22
= 0.0;FSQPPR27

 = 0.0;FSQPPR32
strTemp: = copy(PD82str2,121,15); B023D: = StringToReal(StrTemp);
HRZNLNGTH: = 0.0;MEANNONZR: = 0.0;B061 B: = 0.0;
strTemp: = copy(PD82str2,76,15); B019A: = StringToReal(StrTemp);
B019B: = 0.0;B019C: = 0.0;
strTemp: = copy(PD82str7,226,15); B021: = StringToReal(StrTemp);

= 0.0;FSQPPR14
= 0.0;FSQPPR19
= 0.0;FSQPPR24
= 0.0;FSQPPR29

= 0.0
= 0.0
= 0.0
= 0.0

209

strTemp: = copy(PD82str7,196,15); B019: = StringToReal(StrTemp);
B021 A: = 0.0;OPAST: = 0.0;PLTPPR: = 0.0;B012F: = 0.0;
strTemp: = copy(PD82str5,91,15); PPV: = StringToReal(StrTemp);
PPVO: = 0.0;
strTemp: = copy(PD82str7,121,15); BRLDCU: = StringToReal(StrTemp);
F009: = 0.0;B012E: = 0.0;
RSV: = 0.0;
SQPPR1: = 0.0;SQPPR2: = 0.0;

SQPPR3: = 0.0;SQPPR4: = 0.0;SQPPR5: = 0.0;SQPPR6: = 0.0;SQPPR7: = 0.0;SQPPR8: = 0.0;
SQPPR9: = 0.0;SQPPR10: = 0.0;SQPPR11: = 0.0;SQPPR12: = 0.0;SQPPR13: = 0.0;
SQPPR14: = 0.0;SQPPR15: = 0.0;SQPPR16: = 0.0;SQPPR17: = 0.0;SQPPR18: = 0.0;
SQPPR19: = 0.0;SQPPR20: = 0.0;SQPPR21: = 0.0;SQPPR22: = 0.0;SQPPR23: = 0.0;
SQPPR24: = 0.0;SQPPR25: = 0.0; SQPPR26: = 0.0;SQPPR27: = 0.0;SQPPR28: = 0.0;
SQPPR29: = 0.0;SQPPR30: = 0.0;SQPPR31: = 0.0;SQPPR32: = 0.0;
SYSBO: = 0.0;SYSRCR: = 0.0;
strTemp: = copy{PD82str2,1,15); A023B: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,226,15); TRPR: = StringToReal(StrTemp);
strTemp: = copy(PD82str5,226,15); TSDRS: = StringToReal(StrTemp);
strTemp: = copy(PD82str2,181,15); B055: = StringToReal(StrTemp);
F007: = 0.0;ZOBS: = 0.0;

EXPDEFRS: = 0.0;EXPDEFRSR: = 0.0;EXPDEFSDR: = 0.0;FEXPDEFRS: = 0.0;FEXPDEFSDR: = 0
.0;

PROJADDBO: = 0.0;PROJADDVRBL: = 0.0;PROJSMAVRBL: = 0.0;PROJSSADDBO: = 0.0;

PROJSSADD: = 0.0;PROJSSSMA: = 0.0;RQSHRTRND: = 0.0;RQSHRTYR: = 0.0;VLBUYS: = 0.
0;

VRBLHRSR: = 0.0; VRBLHRSQ: = 0.0;UNITSHRTP: = 0.0;UNITSSHRTR: = 0.0;

{create PD86 input file}

PD86str1: = C003+ C001B+ LASTIN + D046D+ C001T1 + C001T2+ C001W +
RPRIN+ ONEWAY+

FILLER;
PD86str2: = NumToString(B011 A) + NumToString(B073) + NumToString(FMLTCNT) +

NumToString(FMLYEXP) + NumToString(FMLYGRS) + NumToString(FMLYMNM) +
NumToString(FMLYSYSORD) + NumToString(FMLYSYSRO) +
NumToString(FMLYOPAST) + NumToString(FMLYPLT) +
NumToString(FMLYRPRSRV) + NumToString(FMLYRTAT) +
NumToString(FMLYRQSIZ) + NumToString(FSQPPR1) +
NumToString(FSQPPR2) + NumToString{FSQPPR3) + NumToString(FSQPPR4);

PD86str3: = NumToString(FSQPPR5) + NumToString(FSQPPR6) + NumToString(FSQPPR7) +
NumToString(FSQPPR8) + NumToString(FSQPPR9) + NumToString(FSQPPR10) +
NumToString{FSQPPR11) + NumToString(FSQPPR12) +
NumToString(FSQPPR13) + NumToString(FSQPPR14) +
NumToString(FSQPPR15) + NumToString(FSQPPR16) +
NumToString(FSQPPR17) + NumToString(FSQPPR18) +
NumToString{FSQPPR19) + NumToString(FSQPPR20) +

210

NumToString(FSQPPR21);
PD86str4: = NumToString(FSQPPR22) + NumToString(FSQPPR23) +

NumToString(FSQPPR24) + NumToString(FSQPPR25) +
NumToString(FSQPPR26) + NumToString(FSQPPR27) +
NumToString(FSQPPR28) + NumToString(FSQPPR29) +
NumToString(FSQPPR30) + NumToString(FSQPPR31 > +
NumToString(FSQPPR32) + NumToString(FWO) +
NumToString(B023D) + NumToString(HRZNLNGTH) +
NumToString(MEANNONZR) + NumToString(B061 B) + NumToString(B019A);

PD86str5: = NumToString(B019B) + NumToString(B019C) + NumToString(B021) +
NumToString(B019) + NumToString(B021 A) + NumToString(OPAST) +
NumToString(PLTPPR) + NumToString(B012F) + NumToString(PPV) +
NumToString(PPVO) + NumToString(BRLDCU) + NumToString(F009) +
NumToString(B012E) + NumToString(RSV) + NumToString(SQPPR1) +
NumToString(SQPPR2) + NumToString(SQPPR3);

PD86str6: = NumToString(SQPPR4) + NumToString(SQPPR5) + NumToString(SQPPR6) +
NumToString(SQPPR7) + NumToString(SQPPR8) + NumToString(SQPPR9) +
NumToString(SQPPR10) + NumToString(SQPPR11) + NumToString(SQPPR12) +
NumToStringfSQPPRI 3) + NumToString(SQPPR14) + NumToStringfSQPPRI5) +
NumToString(SQPPR16) + NumToString(SQPPR17) + NumToString(SQPPR18) +
NumToString(SQPPR19) + NumToString(SQPPR20);

PD86str7: = NumToString(SQPPR21) + NumToString(SQPPR22) +
NumToString«SQPPR23) + NumToString(SQPPR24) + NumToString(SQPPR25) +
NumToString(SQPPR26) + NumToString(SQPPR27) + NumToString(SQPPR28) +
NumToString(SQPPR29) + NumToString(SQPPR30) + NumToString(SQPPR31) +
NumToString(SQPPR32) + NumToString(SYSBO) + NumToString(SYSRCR) +
NumToString(A023B) + NumToString(TRPR) + NumToString(TSDRS);

PD86str8: = NumToString(B055) + NumToString(F007) +
NumToString(ZOBS) + NumToString(EXPDEFRS) + NumToString(EXPDEFRSR) +
NumToString(EXPDEFSDR) + NumToString(FEXPDEFRS) +
NumToString(FEXPDEFSDR) + NumToString(PROJADDBO) +
NumToString(PROJADDVRBL) + NumToString(PROJSMAVRBL) +
NumToString(PROJSSADDBO) + NumToString(PROJSSADD) +
NumToString(PROJSSSMA) + NumToString(RQSHRTRND) +
NumToString(RQSHRTYR) + NumToString(VLBUYS);

PD86str9: = NumToString(VRBLHRSR) + NumToString{VRBLHRSQ) +
NumToString(UNITSHRTP) + NumToString(UNITSSHRTR);

assign (outfile,'c:\tp\pd86in.fit'};
rewrite (outfile);
writeln(outfile,PD86str1, PD86str2, PD86str3, PD86str4, PD86str5, PD86str6,

PD86str7, PD86str8, PD86str9);
close (outfile);
end;

end. {unit pdunrt}

211

APPENDIXE. WELCH GRAPHS

WELCH (W=20)
! UICP Model: Investment

35

: 1= 30

25 V^~ "
1 11 21 31 41 51

Qtr
Poisson mean=11

WELCH (W=20)
UICP Model: Investment

1 11 21 31 41 51
 Qtr

| Normal mean-4 var-2.61

WELCH (W=20)
UICP Model: Investment

100

90

c 80

60
\l

1 11 21 31 41 51
Qtr

' Normal mean=4, var=31.41

WELCH (W=20)
UICP Model: Investment

220
co
1 200

180
r
1 11 21 31 41 51

Qtr
j Normal mean-12 var-231

WELCH (W=20)
UICP Model: Investment

. u> 220 h /^~~~~~
■ c 210 r /

=> 200 'r
190 y\

1 11 21 31 41 51
Qtr

■ [Normal mean«12, var=2821

WELCH (W=20)
UICP Model: Investment

460

440

420 r

400

380
11 21 31 41 51

Qtr

j Normal mean=25,var=1001

WELCH (W=20)
UICP Model: Investment

500 : co
-

c 450

400 :r~^~
1 11 21 31 41 51

Qtr
■ ; Normal mean=25, var=12251

WELCH (W=20)
MOD Silver Model: Investment

40
35

■2 30 h
5 25

20
15

11 21 31 41 51
Qtr

|Poisson, mean=11

212

1 11 21 31 41 51
Qtr

100

WELCH (W=20)
MOD Silver Model: Investment

• 90

c 80
3 70

60

.\
-

1 11 21 31 41 51
Qtr

| Normal mean=4,var=2.6|

260 r

WELCH (W=20)
MOD Silver: Investment

240 y
Ä 220 I \
5 200 I-

180 j-
160 '-

1 11 21 31 41 51
Qtr

[Normal mean»12 var-23|

460

WELCH (W=20)
MOD Silver Model: Investment

440
m
c 420

400

380 '

\
uiiiuiumjm.ujmiiiiuj.mmmmii, mi

[Normal mean 25, var 1001

WELCH (W=20)
MOD Silver Model: Investment

U
ni

ts

3

 o

o

e

.v——"

1 11 21 31 41 51
Qtr

[Normal mean-4, var»31.4|

WELCH (W=20)
MOD Silver Model: Investment

m 240
c
3 220 .v/- -

1 11 21 31 41 51
Qtr

|Normal meen-12, var-282|

WELCH (W=20)
MOD Silver Model: Investment

510

c 460

410

■

^^ ^

1 11 21 31 41 51
Qtr

iNormal mean-25, var-1225|

213

APPENDIX C. SCENARIO LISTING

This appendix contains a listing of the scenarios (experiments) used in the ^rformance
testing of the modified Silver model. Each simulation experiment consisted ol 5UU
replications. A description of the list headings follows:

Exp # Experiment number
Qtrs Total number of quarters
Strt Starting quarter for collecting steady state statistics
End Ending quarter for collecting steady state statistics
Dist Distribution used to generate demand observations
Mean Mean used to generate demand observation (initial mean)
Var Variance used to generate demand observations (initial variance)
T/S Qtr Trend Starting quarter
T/E Qtr Trend Ending quarter
Coeff Trend coefficient value
Pwr Trend power value
PLT Mean procurement lead time (F suffix implies fixed lead time)
U/P Item unit price or cost
Risk Risk value used in the modified Silver model
Profile Demand profile (see Appendix D)

214

Exp# Qtrs Strt End Dist Mean Var T/SQtrT/EQtr Coeff Pwr PLT U/P Risk Profile

1 115 26 105 P 0.25 8 5000 0.3 1

2 115 26 105 P 1 8 1000 0.21 1

3 115 26 105 N 4 2.6 8 250 0.12 1

4 115 26 105 N 4 10.2 8 250 0.11 1

5 115 26 105 N 4 31.4 8 250 0.11 1

6 115 26 105 N 12 23 8 100 0.12 1

7 115 26 105 N 12 92 8 100 0.1 1

8 115 26 105 N 12 282 8 100 0.1 1

9 115 26 105 N 25 100 8 50 0.1 1

10 115 26 105 N 25 400 8 50 0.1 1

11 115 26 105 N 25 1225 8 50 0.1 1

12 115 26 105 P 0.25 8 20000 0.31 1

13 115 26 105 P 1 8 5000 0.31 1

14 115 26 105 N 4 2.6 8 1250 0.32 1

15 115 26 105 N 4 10.2 8 1250 0.34 1

16 115 26 105 N 4 31.4 8 1250 0.34 1

17 115 26 105 N 12 23 8 450 0.17 1

18 115 26 105 N 12 92 8 450 0.16 1

19 115 26 105 N 12 282 8 450 0.15 1

20 115 26 105 N 25 100 8 200 0.1 1

21 115 26 105 N 25 400 8 200 0.1 1

22 115 26 105 N 25 1225 8 200 0.11 1

23 115 26 105 P 1 4 1000 0.29 1

24 115 26 105 N 4 2.6 4 250 0.15 1

25 115 26 105 N ' 4 31.4 4 250 0.13 1

26 115 26 105 N 12 23 4 100 0.14 1

27 115 26 105 N 12 282 4 100 0.11 1

28 115 26 105 P 1 8F 1000 0.16 1

29 115 26 105 N 4 2.6 8F 250 0.15 1

30 115 26 105 N 4 31.4 8F 250 0.13 1

31 115 26 105 N 12 23 8F 100 0.15 1

32 115 26 105 N 12 282 8F 100 0.1 1

33 120 26 110 P 0.25 40

85

59

104

0.0175

-0.195

2

0.5

8 1500 0.3 2

34 120 26 110 N 4 2.6 40

85

59

104

0.0175

-0.195

2

0.5

8 125 0.1 2

35 120 26 110 N 4 10.2 40

85

59

104

0.0175

-0.195

2

0.5

8 125 0.1 2

36 120 26 110 N 4 31.4 40

85

59

104

0.0175

-0.195

2

0.5

8 125 0.1 2

215

Exp # Qtrs Strt End Dist Mean Var T/SQtrT/EQtr Coeff Pwr PLT U/P Risk Profile

37 120 26 110 P 0.25 52

97

59

104

0.11

-0.31

2

0.5

8 1500 0.3 3

38 120 26 110 N 4 2.6 52
97

59
104

0.11
-0.31

2
0.5

8 125 0.1 3

39 120 26 110 N 4 10.2 52

97

59

104

0.11

-0.31

2

0.5

8 125 0.1 3

40 120 26 110 N 4 31.4 52

97

59

104

0.11

-0.31

2

0.5

8 125 0.1 3

41 75 26 65 P 1 40 59 -0.17 0.5 8 1000 0.21 4

42 75 26 65 N 25 100 40 59 -0.17 0.5 8 100 0.1 4

43 75 26 65 N 25 400 40 59 -0.17 0.5 8 100 0.1 4

44 75 26 65 N 25 1225 40 59 -0.17 0.5 8 100 0.1 4

45 75 26 65 P 1 52 59 -0.268 0.5 8 1000 0.21 5

46 75 26 65 N 25 100 52 59 -0.268 0.5 8 100 0.1 5

47 75 26 65 N 25 400 52 59 -0.268 0.5 8 100 0.1 5

48 75 26 65 N 25 1225 52 59 -0.268 0.5 8 100 0.1 5

49 75 26 65 P 1 40 59 -0.038 8 1000 0.21 6

50 75 26 65 N 25 100 40 59 -0.038 8 100 0.1 6

51 75 26 65 N 25 400 40 59 -0.038 8 100 0.1 6

52 75 26 65 N 25 1225 40 59 -0.038 8 100 0.1 6

53 75 26 65 P 1 52 59 -0.095 8 1000 0.21 7

54 75 26 65 N 25 100 52 59 -0.095 8 100 0.1 7

55 75 26 65 N 25 400 52 59 -0.095 8 100 0.1 7

56 75 26 65 N 25 1225 52 59 -0.095 8 100 0.1 7

57 75 26 65 P 1 40 59 -0.0085 1.5 8 1000 0.21 8

58 75 26 65 N 25 100 40 59 -0.0085 1.5 8 100 0.1 8

59 75 26 65 N 25 400 40 59 -0.0085 1.5 8 100 0.1 8

60 75 26 65 N 25 1225 40 59 -0.0085 1.5 8 100 0.1 8

61 75 26 65 P 1 52 59 -0.0335 1.5 8 1000 0.21 9

62 75 26 65 N 25 100 52 59 -0.0335 1.5 8 100 0.1 9

63 75 26 65 N 25 400 52 59 -0.0335 1.5 8 100 0.1 9

64 75 26 65 N 25 1225 52 59 -0.0335 1.5 8 100 0.1 9

65 75 26 65 P 1 40 59 -0.092 0.8 8 1000 0.21 10

66 75 26 65 N 25 100 40 59 -0.092 0.8 8 100 0.1 10

67 75 26 65 N 25 400 40 59 -0.092 0.8 8 100 0.1 10

68 75 26 65 N 25 1225 40 59 -0.092 0.8 8 100 0.1 10

69 75 26 65 P 1 52 59 -0.19 0.8 8 1000 0.21 11

70 75 26 65 N 25 100 52 59 -0.19 0.8 8 100 0.1 11

71 75 26 65 N 25 400 52 59 -0.19 0.8 8 100 0.1 11

72 75 26 65 N 25 1225 52 59 -0.19 0.8 8 100 0.1 11

216

Exp # Qtrs Strt End Dist Mean Var T/SQtrT/EQtr Coeff Pwr PLT U/P Risk Profile

73 75 26 65 P 1 40

44

48

52

56

0.75

0.75

0.75

0.75

0.75

8 1000 0.21 12

74 75 26 65 N 25 100 40

44

48

52

56

0.75

0.75

0.75

0.75

0.75

8 100 0.1 12

75 75 26 65 N 25 400 40

44

48

52

56

0.75

0.75

0.75

0.75

0.75

8 100 0.1 12

76 75 26 65 N 25 1225 40

44

48

52

56

0.75

0.75

0.75

0.75

0.75

8 100 0.1 12

77 100 26 90 P 0.25 40 59 0.0175 2 8 1000 0.25 13

78 100 26 90 N 4 2.6 40 59 0.0175 2 8 100 0.1 13

79 100 26 90 N 4 10.2 40 59 0.0175 2 8 100 0.1 13

80 100 26 90 N 4 31.4 40 59 0.0175 2 8 100 0.1 13

81 100 26 90 P 0.25 52 59 0.11 2 8 1000 0.25 14

82 100 26 90 N 4 2.6 52 59 0.11 2 8 100 0.1 14

83 100 26 90 N 4 10.2 52 59 0.11 2 8 100 0.1 14

84 100 26 90 N 4 31.4 52 59 0.11 2 8 100 0.1 14

85 100 26 90 P 0.25 40 59 1.565 0.5 8 1000 0.25 15

86 100 26 90 N 4 2.6 40 59 1.565 0.5 8 100 0.1 15

87 100 26 90 N 4 10.2 40 59 1.565 0.5 8 100 0.1 15

88 100 26 90 N 4 31.4 40 59 1.565 0.5 8 100 0.1 15

89 100 26 90 P 0.25 52 59 2.48 0.5 8 1000 0.25 16

90 100 26 90 N 4 2.6 52 59 2.48 0.5 8 100 0.1 16

91 100 26 90 N 4 10.2 52 59 2.48 0.5 8 100 0.1 16

92 100 26 90 N 4 31.4 52 59 2.48 0.5 8 100 0.1 16

217

APPENDIX D. DEMAND PROFILE GRAPHS

Demand Profile 1
Steady State

Mean=12
Var=92

30 ■

20

21 41 61 81 101
Qlr

Demand Profile 2 :£;"»£-?!.
1 Decl Qtrs 85- 104

Cyclic - Slow Trends L-

40

r v\

1 21 41 61 81 101
Qtr

Demand Profile 3
Cyclic - Steep Trends

Ina Qtrs 52 - 59
Decl are 97-104

40 -

20 <

1 21 41 61' 81 101
Qtr

Demand Profile 4 D«!-*»«-»
Concave Up

Decline - Slow Trend *

30 \-

1 20
3

1 11 21 31 41 51 61 71
Qtr

Demand Profile 5
Decline - Steep Trend

I Decl Qtrs 52 - 59
| Concave Up

30 "
c 20 - V
3 \

10 -
|
i 1 11 21 31 41 51 61 71

Qtr

Demand Profile 6 ^10^40-59
_ , i Linear

Decline - Stow Trend _____

30 -

c 20
3

1 11 21 31 41 51 61 71
Qtr

218

Demand Profile 7
Decline - Sleep Trends

Ded Qtrs 52 - 59
Linear

Demand Profile 8
Decline - Stow Trend

40

Decl Qtrs 40 - 59
Concave Down

Demand Profile 9
Decline - Steep Decline

Ded Qtrs 52-59
Concave Down

Demand Profile 10
Decline to 0 - Stow Trend

Decl Qtrs 40 - 59
Concave Up

Demand Profile 11
Decline to 0 - Steep Trend

11 21

Ded Qtre 52-59
Concave Up

31 41 51 61 71
atr

Demand Profile 12
Decline - Step Trend

Ded Qtrs 40 - 56
4 Qtr Plateaus

219

Demand Profile 13
Increase - Slow Trend

50

40

» 30

3 20

10

0

. Incr Qtfs 40 - 59
j Concave Up

11 21 31 41 51 61 71 81 91
Qtr

Demand Profile 14 i^v
s

e
2
Up

5S

Increase - Steep Trend

Demand Profile 15
Increase - Slow Trend

I Ircr Qtre 40 - 59
Concave Down

50

40 -

« 30

3 20

10

0
1 11 21 31 41 51 61 71 81 91

Qtr

Demand Profile 16
Increase - Steep Trend

Inc Qtrs 52 - 59
Concave Down

40

3 20 /

10 I
1 11 21 31 41 51 61 71 81 91

Qtr

220

APPENDIX E. EXPERIMENTAL RESULTS

This appendix contains a summary of the data obtained during the simulations
conducted during this thesis. All statistics are collected over the specified steady state
collection period (see Appendix C). Also included is the analysis data used in
comparing the modified Silver and UICP models. A description of the table entries
follows:

Exp# Experiment number. This number corresponds to the experiment number
listed in Appendix C. When suffixed with an F it indicates that "fixed"
forecasting was used for the modified Silver model.

Model SILVER - mean measure for modified Silver model
UICP - mean measure for UICP model
Mean Diff - difference in mean values (SILVER-UICP)
p-value - based on paired t-test on difference of the means

(sample size=500)

ACWTBO Average customer wait time for backordered requisitions in days
(cumulative measure)

ACWT Average customer wait time in days (cumulative measure)

SMA Supply material availability (cumulative measure)

Invest Average quarterly investment level in units

Total Cost Total cost in dollars (over the experimental time interval)

Excess Ending amount of excess inventory in units

Orders Total number of orders

221

The following is a list of tables found in this appendix:

Table E-l: Contains results for the stationary mean demand scenarios.

Table E-2: Contains results for the cyclic mean demand scenarios.

Table E-3: Contains results for the declining mean demand scenarios.

Table E-4: Contains results for the increasing mean demand scenarios.

Table E-5: Contains results for the cyclic mean demand scenarios using a
"fixed" or stationary forecast assumption with the modified Silver
model.

Table E-6: Contains results for the declining mean demand scenarios using a
"fixed" or stationary forecast assumption with the modified Silver
model.

Table E-7: Contains results for the increasing mean demand scenarios using a
"fixed" or stationary forecast assumption with the modified Silver
model.

222

TABLE E-l.

STATIONARY MEAN DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

1 SILVER 118.03 13.66 0.935 6.54 243,819.51 3.19 7.83

UICP 121.48 16.03 0.921 6.64 246,711.33 3.36 8.51

Mean Diff -3.45 -2.37 0.014 -0.10 -2,891.83 -0.17

p-value 0.57 0.00 0.00 0.00 0.00 0.02

2 SILVER 84.50 6.53 0.963 19.96 164,251.35 5.68 10.19

UICP 67.46 4.39 0.971 19.77 162,800.71 5.68 10.07

Mean Diff 17.04 2.15 -0.008 0.19 1,450.64 0.01

p-value 0.00 0.00 0.00 0.00 0.00 0.96

3 SILVER 29.06 1.00 0.990 68.55 150,651.52 9.26 13.60

UICP 33.72 1.08 0.989 69.80 151,631.12 10.04 11.89

Mean Diff -4.66 -0.08 0.001 -1.25 -979.60 -0.78

p-value 0.02 0.44 0.34 0.00 0.00 0.22

4 SILVER 54.33 3.65 0.977 81.14 170,971.83 20.40 11.67

UICP 65.33 4.41 0.971 80.96 170,267.39 19.67 10.22

Mean Diff -11.00 -0.75 0.006 0.18 704.44 0.73

p-value 0.00 0.00 0.00 0.23 0.04 0.32

5 SILVER 88.77 7.25 0.962 100.43 208,004.93 31.13 11.04

UICP 96.83 8.60 0.955 102.43 210,999.50 34.78 9.36

Mean Diff -8.06 -1.36 0.007 -1.99 -2,994.57 -3.65

p-value 0.06 0.00 0.00 0.00 0.00 0.00

6 SILVER 21.53 0.72 0.993 203.56 180,178.57 24.03 15.42

UICP 33.04 1.14 0.989 206.30 180,548.91 28.94 12.07

Mean Diff -11.50 -0.42 0.004 -2.74 -370.33 -4.91

p-value 0.00 0.00 0.00 0.00 0.31 0.01

7 SILVER 48.68 2.58 0.981 233.72 202,052.43 48.85 13.47

UICP 67.72 4.62 0.970 234.35 205,784.45 47.29 10.62

Mean Diff -19.04 -2.04 0.011 -0.63 -3,732.03 1.15

p-value 0.00 0.00 0.00 0.14 0.00 0.63

223

TABLE E-l. (CONTINUED)

STATIONARY MEAN DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

8 SILVER 78.87 6.04 0.965 288.32 251,289.97 87.28 12.38
UICP 101.06 8.42 0.954 294.18 259,396.05 93.49 9.48

Mean Diff -22.19 -2.37 0.011 -5.86 -8,106.07 -6.21

p-value 0.00 0.00 0.00 0.00 0.00 0.04

9 SILVER 24.68 0.67 0.993 416.48 186,182.59 52.11 15.94

UICP 37.30 1.33 0.987 426.21 189,617.22 60.31 11.95

Mean Diff -12.62 -0.66 0.006 -9.73 -3,434.63 -8.20

p-value 0.00 0.00 0.00 0.00 0.00 0.01

10 SILVER 52.21 3.25 0.977 486.56 221,305.92 106.35 13.54

UICP 82.03 5.51 0.964 493.97 233,251.97 120.03 10.21

Mean Diff -29.82 -2.27 0.013 -7.41 -11,946.05 -13.68

p-value 0.00 0.00 0.00 0.00 0.00 0.01

11 SILVER 84.28 7.00 0.960 595.19 285,641.02 159.51 12.60

UICP 104.60 9.89 0.950 610.22 305,649.74 172.04 9.33

Mean Diff -20.32 -2.89 0.010 -15.03 -20,008.71 -12.53

p-value 0.00 0.00 0.00 0.00 0.00 0.05

12 SILVER 121.26 15.70 0.917 5.61 856,925.35 2.27 13.85

UICP 128.83 18.94 0.897 5.74 867,918.12 2.52 13.91

Mean Diff -7.57 -3.24 0.021 -0.13 -10,992.76 -0.25

p-value 0.09 0.00 0.00 0.00 0.00 0.00

13 SILVER 111.18 11.93 0.922 15.75 679,467.98 2.58 22.99

UICP 110.65 11.00 0.929 15.96 676,481.49 2.77 15.79

Mean Diff 0.54 0.93 -0.007 -0.21 2,986.50 -0.19

p-value 0.90 0.11 0.01 0.00 0.01 0.10

14 SILVER 80.73 7.36 0.930 48.30 591,463.60 0.55 37.76

UICP 117.53 13.67 0.896 49.64 591,463.60 0.55 18.50

Mean Diff -36.80 -6.31 0.034 -1.34 1,278.53 -0.71

p-value 0.00 0.00 0.00 0.00 0.09 0.00

224

TABLE E-l. (CONTINUED)

STATIONARY MEAN DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

15 SILVER 132.65 20.29 0.873 54.05 647,714.09 3.37 31.25

UICP 142.44 22.05 0.867 55.33 644,085.16 4.14 17.22

Mean Diff -9.79 -1.76 0.006 -1.28 3,628.93 -0.77

p-value 0.01 0.04 0.07 0.00 0.00 0.02

16 SILVER 168.06 32.97 0.829 65.60 775,840.79 7.82 29.07

UICP 162.97 28.39 0.849 68.10 775,960.49 9.71 16.91

Mean Diff 5.09 4.58 -0.019 -2.49 -119.71 -1.89

p-value 0.24 0.00 0.00 0.00 0.94 0.00

17 SILVER 34.14 1.41 0.984 165.25 689,439.35 5.76 42.44

UICP 57.77 2.93 0.972 173.78 694,617.56 9.07 18.65

Mean Diff -23.63 -1.52 0.011 -8.53 -5,178.21 -3.31

p-value 0.00 0.00 0.00 0.00 0.00 0.00

18 SILVER 68.03 5.37 0.957 188.40 757,643.65 18.10 33.57

UICP 91.92 7.50 0.948 193.57 761,568.88 21.30 16.73

Mean Diff -23.89 -2.13 0.009 -5.17 -3,925.24 -3.20

p-value 0.00 0.00 0.00 0.00 0.01 0.02

19 SILVER 110.28 12.62 0.923 237.38 936,052.79 45.62 28.71

UICP 121.23 13.25 0.924 240.29 932,062.39 48.60 15.80

Mean Diff -10.95 -0.63 -0.001 -2.91 3,990.41 -2.98

p-value 0.01 0.41 0.76 0.00 0.13 0.06

20 SILVER 11.83 0.39 0.995 377.33 671,529.57 21.37 38.46

UICP 36.27 1.19 0.987 393.67 675,002.46 34.07 17.58

Mean Diff -24.44 -0.79 0.008 -16.34 -3,472.89 -12.70

p-value 0.00 0.00 0.00 0.00 0.00 0.00

21 SILVER 51.50 3.25 0.975 442.03 762,426.80 72.54 30.13

UICP 78.97 5.72 0.962 445.61 765,254.51 76.46 15.19

Mean Diff -27.47 -2.47 0.013 -3.58 -2,827.71 -3.92

p-value 0.00 0.00 0.00 0.00 0.25 0.25

225

TABLE E-l. (CONTINUED)

STATIONARY MEAN DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

22 SILVER 87.83 8.55 0.947 537.67 933,637.94 118.90 26.13

UICP 104.95 10.34 0.941 546.04 940,914.74 123.74 14.29

Mean Diff -17.12 -1.79 0.006 -8.38 -7,276.80 -4.84

p-value 0.00 0.00 0.01 0.00 0.06 0.26

23 SILVER 93.44 6.99 0.943 11.90 138,388.02 2.13 11.87

UICP 84.52 5.45 0.953 12.08 138,592.40 2.14 12.03

Mean Diff 8.92 1.54 -0.010 -0.18 -204.38 -0.01

p-value 0.01 0.00 0.00 0.00 0.42 0.91

24 SILVER 37.36 1.10 0.987 44.64 135,753.90 2.91 24.23

UICP 42.57 1.33 0.985 45.58 135,534.91 4.06 12.60

Mean Diff -5.21 -0.23 0.002 -0.94 218.98 -1.15

p-value 0.01 0.02 0.01 0.00 0.20 0.00

25 SILVER 77.08 5.20 0.958 62.73 176,492.70 14.10 13.14

UICP 83.07 6.39 0.950 64.82 178,627.70 15.87 11.26

Mean Diff -6.00 -1.19 0.008 -2.09 -2,135.00 -1.77

p-value 0.05 0.00 0.00 0.00 0.00 0.00

26 SILVER 30.10 0.87 0.989 131.34 162,101.05 6.64 16.11

UICP 40.59 1.33 0.984 134.74 161,885.00 10.30 12.71

Mean Diff -10.49 -0.46 0.005 -3.40 216.04 -3.66

p-value 0.00 0.00 0.00 0.00 0.50 0.00

27 SILVER 71.60 4.36 0.963 181.18 213,038.80 36.33 14.76

UICP 86.07 6.43 0.947 185.72 218,957.21 41.26 11.47

Mean Diff -14.48 -2.07 0.016 -4.54 -5,918.41 -4.92

p-value 0.00 0.00 0.00 0.00 0.00 0.00

28 SILVER 70.15 4.72 0.966 19.53 161,368.05 5.29 10.08

UICP 51.44 2.60 0.978 19.70 161,997.69 5.25 10.07

Mean Diff 18.71 2.12 -0.012 -0.17 -629.63 0.04

p-value 0.00 0.00 0.00 0.01 0.05 0.75

226

TABLE E-l. (CONTINUED)

STATIONARY MEAN DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

29 SILVER 21.63 0.48 0.992 58.66 136,201.98 3.44 13.63

UICP 30.86 0.78 0.988 58.95 136,335.19 3.69 12.03

Mean Diff -9.23 -0.30 0.005 -0.29 -133.21 -0.25

p-value 0.00 0.00 0.00 0.00 0.35 0.29

30 SILVER 108.06 10.43 0.938 85.38 191,125.05 18.94 11.86

UICP 114.61 11.91 0.930 87.97 194,717.06 21.92 10.03

Mean Diff -6.55 -1.48 0.008 -2.59 -3,592.00 -2.98

p-value 0.01 0.00 0.00 0.00 0.00 0.00

31 SILVER 21.27 0.48 0.992 169.21 160,192.39 7.38 15.61

UICP 33.05 0.83 0.987 171.80 160,432.85 8.00 12.28

Mean Diff -11.78 -0.35 0.005 -2.59 -240.47 -0.62

p-value 0.00 0.00 0.00 0.00 0.22 0.36

32 SILVER 112.36 10.13 0.935 243.38 240,106.62 51.85 13.60

UICP 130.92 13.94 0.917 245.98 250,594.64 58.15 10.41

Mean Diff -18.56 -3.81 0.018 -2.61 -10,488.02 -6.30

p-value 0.00 0.00 0.00 0.00 0.00 0.00

227

TABLE E-2.

CYCLIC DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

33 SILVER 157.43 32.35 0.829 17.86 236,569.44 8.80 13.95

UICP 201.48 51.26 0.768 19.43 256,781.98 15.51 13.43

Mean Diff -44.05 -18.91 0.061 -1.57 -20,212.54 -6.70

p-value 0.00 0.00 0.00 0.00 0.00 0.00

34 SILVER 67.78 6.90 0.946 284.94 325,985.05 120.00 19.33

UICP 155.21 31.06 0.825 319.63 447,160.77 262.24 15.56

Mean Diff -87.43 -24.16 0.121 -34.69 -121,175.71 -142.24

p-value 0.00 0.00 0.00 0.00 0.00 0.00

35 SILVER 111.07 15.87 0.909 333.02 400,404.60 185.16 16.62

UICP 189.45 43.75 0.797 368.38 542,385.74 335.92 14.07

Mean Diff -78.39 -27.88 0.111 -35.36 -141,981.14 -150.76

p-value 0.00 0.00 0.00 0.00 0.00 0.00

36 SILVER 158.73 29.39 0.858 404.35 539,966.11 265.99 16.04

UICP 228.14 60.19 0.762 453.02 720,449.36 441.91 13.78

Mean Diff -69.42 -30.80 0.096 -48.67 -180,483.26 -175.92

p-value 0.00 0.00 0.00 0.00 0.00 0.00

37 SILVER 144.85 25.64 0.860 19.12 254,848.28 10.73 15.33

UICP 212.97 54.83 0.760 20.01 273,429.28 20.63 14.39

Mean Diff -68.12 -29.20 0.100 -0.88 -18,581.00 -9.90

p-value 0.00 0.00 0.00 0.00 0.00 0.00

38 SILVER 49.88 3.53 0.967 305.52 342,873.90 161.19 25.43

UICP 192.89 37.68 0.821 338.19 514,703.40 392.86 17.13

Mean Diff -143.01 -34.15 0.146 -32.67 -171,829.50 -231.67

p-value 0.00 0.00 0.00 0.00 0.00 0.00

39 SILVER 89.77 10.44 0.932 355.29 415,727.91 243.82 23.38

UICP 228.00 51.33 0.795 381.77 616,543.39 453.48 15.33

Mean Diff -138.23 -40.89 0.137 -26.48 -200,815.48 -209.66

p-value 0.00 0.00 0.00 0.00 0.00 0.00

228

TABLE E-2. (CONTINUED)

CYCLIC DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

40 SILVER 126.13 18.91 0.902 444.41 543,532.02 340.41 21.80

UICP 265.37 67.00 0.763 463.74 800,470.45 544.35 15.00

Mean Diff -139.24 -48.09 0.138 -19.32 -256,938.42 -203.94

p-value 0.00 0.00 0.00 0.00 0.00 0.00

229

TABLE E-3.

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

41 SILVER 30.69 4.43 0.970 15.13 64,998.35 7.80 3.73

UICP 20.66 2.82 0.979 18.13 72,268.17 11.52 2.67

Mean Diff 10.03 1.61 -0.009 -3.00 -7,269.81 -3.72

p-value 0.00 0.00 0.00 0.00 0.00 0.00

42 SILVER 3.90 0.32 0.997 266.88 121,386.40 71.94 5.93

UICP 8.73 0.66 0.993 344.40 141,286.77 160.87 2.75

Mean Diff -4.84 -0.34 0.004 -77.52 -19,900.36 -88.93

p-value 0.00 0.04 0.00 0.00 0.00 0.00

43 SILVER 18.16 2.52 0.981 325.22 144,195.39 124.14 4.89

UICP 23.58 3.36 0.978 401.73 166,109.74 216.38 2.70

Mean Diff -5.42 -0.83 0.003 -76.52 -21,914.35 -92.23

p-value 0.03 0.12 0.22 0.00 0.00 0.00

44 SILVER 34.64 7.29 0.958 430.25 193,247.43 197.15 4.57

UICP 38.40 7.41 0.958 513.17 216,430.21 300.71 2.62

Mean Diff -3.75 -0.12 0.000 -82.92 -23,182.78 -103.57

p-value 0.22 0.89 0.89 0.00 0.00 0.00

45 SILVER 35.95 4.77 0.967 17.17 74,915.90 9.06 4.34

UICP 27.11 3.17 0.976 19.46 81,361.60 14.18 3.66

Mean Diff 8.84 1.60 -0.009 -2.29 -6,445.70 -5.12

p-value 0.00 0.00 0.00 0.00 0.00 0.00

46 SILVER 5.57 0.38 0.995 323.75 148,384.31 119.53 8.64

UICP 13.69 0.96 0.989 400.36 170,606.27 269.31 4.41

Mean Diff -8.12 -0.58 0.006 -76.61 -22,221.95 -149.78

p-value 0.00 0.00 0.00 0.00 0.00 0.00

47 SILVER 29.03 3.78 0.975 388.37 177,435.53 176.67 7.36

UICP 32.65 4.09 0.973 455.37 197,663.46 312.46 4.06

Mean Diff -3.62 -0.31 0.002 -67.00 -20,227.93 -135.79

p-value 0.22 0.57 0.50 0.00 0.00 0.00

230

TABLE E-3. (CONTINUED)

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

48 SILVER 44.15 6.91 0.956 488.82 224,530.43 240.94 6.79

UICP 54.27 8.79 0.950 561.40 251,018.99 385.89 3.83

Mean Diff -10.12 -1.87 0.006 -72.58 -26,488.56 -144.95

p-value 0.00 0.01 0.03 0.00 0.00 0.00

49 SILVER 30.43 4.37 0.969 15.83 68,826.68 7.97 4.19

UICP 21.45 2.66 0.979 18.57 75,696.67 12.12 3.05

Mean Diff 8.98 1.71 -0.010 -2.74 -6,870.00 -4.16

p-value 0.00 0.00 0.00 0.00 0.00 0.00

50 SILVER 4.61 0.34 0.996 288.14 132,156.26 85.38 7.11

UICP 12.78 1.02 0.990 359.90 151,128.44 182.93 3.37

Mean Diff -8.18 -0.68 0.006 -71.76 -18,972.19 -97.55

p-value 0.00 0.00 0.00 0.00 0.00 0.00

51 SILVER 19.69 2.38 0.981 345.51 154,287.56 133.76 5.74

UICP 28.58 4.00 0.974 414.78 175,930.68 231.85 3.20

Mean Diff -8.89 -1.62 0.007 -69.27 -21,643.11 -98.09

p-value 0.00 0.01 0.01 0.00 0.00 0.00

52 SILVER 42.23 8.10 0.952 450.48 206,360.51 202.72 5.32

UICP 41.34 8.04 0.956 529.65 229,101.98 320.76 3.10

Mean Diff 0.89 0.06 -0.003 -79.18 -22,741.47 -118.04

p-value 0.78 0.94 0.34 0.00 0.00 0.00

53 SILVER 38.79 5.14 0.968 17.49 76,847.62 9.20 4.54

UICP 27.37 3.17 0.975 19.48 82,230.65 13.87 3.81

Mean Diff 11.43 1.97 -0.007 -2.00 -5,383.03 -4.67

p-value 0.00 0.00 0.00 0.00 0.00 0.00

54 SILVER 6.51 0.43 0.995 333.17 154,374.86 124.29 9.42

UICP 14.81 1.05 0.989 401.45 172,810.70 270.38 4.59

Mean Diff -8.30 -0.63 0.006 -68.28 -18,435.84 -146.08

p-value 0.00 0.00 0.00 0.00 0.00 0.00

231

TABLE E-3. (CONTINUED)

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

55 SILVER 25.86 3.75 0.977 397.58 182,631.00 179.41 7.74
UICP 32.66 3.86 0.973 457.44 198,865.12 308.88 4.23

Mean Diff -6.80 -0.11 0.004 -59.86 -16,234.12 -129.47

p-value 0.02 0.87 0.07 0.00 0.00 0.00
56 SILVER 48.65 7.72 0.951 498.29 232,432.58 241.98 7.19

UICP 54.52 8.85 0.950 562.66 252,866.83 385.09 4.00

Mean Diff -5.97 -1.13 0.001 -64.36 -20,434.24 -143.11

p-value 0.11 0.17 0.76 0.00 0.00 0.00
57 SILVER 34.36 4.52 0.969 16.26 71,307.92 8.16 4.38

UICP 22.56 2.53 0.981 18.76 77,517.60 12.27 3.29

Mean Diff 11.80 1.99 -0.012 -2.50 -6,209.68 -4.11

p-value 0.00 0.00 0.00 0.00 0.00 0.00
58 SILVER 5.66 0.43 0.995 302.14 139,124.33 98.06 7.71

UICP 13.86 1.24 0.988 369.65 157,205.19 201.40 3.71

Mean Diff -8.21 -0.82 0.007 -67.51 -18,080.86 -103.34

p-value 0.00 0.00 0.00 0.00 0.00 0.00

59 SILVER 22.87 2.88 0.979 361.23 162,142.88 146.52 6.12

UICP 29.70 3.92 0.972 428.68 183,184.14 252.98 3.50

Mean Diff -6.83 -1.05 0.006 -67.45 -21,041.26 -106.46

p-value 0.01 0.02 0.01 0.00 0.00 0.00
60 SILVER 40.49 6.55 0.958 464.34 210,829.51 212.65 5.67

UICP 40.07 7.42 0.958 535.47 232,694.36 330.43 3.30
Mean Diff 0.43 -0.87 -0.000 -71.13 -21,864.85 -117.78

p-value 0.90 0.28 0.91 0.00 0.00 0.00
61 SILVER 39.55 5.02 0.969 17.81 78,773.64 9.28 4.72

UICP 28.36 3.11 0.976 19.55 83,039.20 13.66 3.90

Mean Diff 11.19 1.92 -0.007 -1.74 -4,265.55 -4.39

p-value 0.00 0.00 0.00 0.00 0.00
 0.00

232

TABLE E-3. (CONTINUED)

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

62 SILVER 3.76 0.17 0.997 341.58 158,844.11 131.81 9.84

UICP 16.90 1.24 0.988 403.99 175,249.35 271.34 4.76

Mean Diff -13.15 -1.08 0.010 -62.40 -16,405.24 -139.53

p-value 0.00 0.00 0.00 0.00 0.00 0.00

63 SILVER 25.50 3.38 0.977 406.21 186,671.11 187.18 8.05

UICP 37.35 5.10 0.968 460.49 204,774.76 313.81 4.37

Mean Diff -11.85 -1.72 0.009 -54.28 -18,103.65 -126.63

p-value 0.00 0.01 0.00 0.00 0.00 0.00

64 SILVER 47.50 7.97 0.952 505.52 238,575.80 242.72 7.58

UICP 55.09 9.65 0.948 567.07 259,222.98 384.43 4.12

Mean Diff -7.59 -1.68 0.004 -61.55 -20,647.18 -141.71

p-value 0.04 0.07 0.26 0.00 0.00 0.00

65 SILVER 28.79 4.90 0.967 14.42 60,850.50 10.41 3.23

UICP 21.59 3.27 0.977 18.47 72,835.42 15.56 2.55

Mean Diff 7.20 1.63 -0.010 -4.06 -11,984.92 -5.15

p-value 0.00 0.00 0.00 0.00 0.00 0.00

66 SILVER 3.35 0.19 0.997 251.17 114,246.57 137.14 7.08

UICP 10.11 0.95 0.990 362.27 146,638.34 294.61 2.85

Mean Diff -6.76 -0.75 0.007 -111.10 -32,391.78 -157.44

p-value 0.00 0.00 0.00 0.00 0.00 0.00

67 SILVER 21.70 3.37 0.976 316.10 140,592.78 204.26 5.76

UICP 25.08 3.85 0.976 421.75 171,973.70 355.29 2.74

Mean Diff -3.38 -0.47 0.001 -105.64 -31,380.92 -151.04

p-value 0.21 0.48 0.77 0.00 0.00 0.00

68 SILVER 36.07 7.59 0.952 420.45 187,534.24 298.10 6.43

UICP 37.24 7.98 0.957 531.67 220,175.14 453.74 2.62

Mean Diff -1.17 -0.38 -0.006 -111.22 -32,640.90 -155.64

p-value 0.73 0.68 0.11 0.00 0.00 0.00

233

TABLE E-3. (CONTINUED)

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

69 SILVER 35.57 4.23 0.969 16.40 69,742.07 11.01 3.69

UICP 29.91 3.56 0.975 19.66 81,398.19 17.55 3.52

Mean Diff 5.66 0.67 -0.006 -3.26 -11,656.12 -6.54

p-value 0.06 0.15 0.01 0.00 0.00 0.00

70 SILVER 5.17 0.47 0.995 300.96 140,351.30 147.22 11.58

UICP 15.74 1.26 0.987 406.81 173,176.59 376.65 4.44

Mean Diff -10.57 -0.79 0.008 -105.85 -32,825.29 -229.42

p-value 0.00 0.00 0.00 0.00 0.00 0.00

71 SILVER 27.93 3.96 0.974 370.34 170,989.74 227.69 10.92

UICP 39.35 6.33 0.963 461.76 202,788.81 424.49 4.04

Mean Diff -11.43 -2.38 0.011 -91.42 -31,799.07 -196.80

p-value 0.00 0.00 0.00 0.00 0.00 0.00

72 SILVER 44.11 7.46 0.955 466.90 217,640.86 305.45 11.19

UICP 49.40 9.34 0.949 569.10 252,276.62 510.21 3.82

Mean Diff -5.29 -1.88 0.006 -102.20 -34,635.76 -204.76

p-value 0.15 0.03 0.07 0.00 0.00 0.00

73 SILVER 27.58 4.41 0.970 15.31 65,293.84 8.32 3.58

UICP 19.73 2.50 0.982 18.09 71,901.36 11.63 2.61

Mean Diff 7.85 1.90 -0.011 -2.78 -6,607.52 -3.31

p-value 0.00 0.00 0.00 0.00 0.00 0.00

74 SILVER 3.52 0.32 0.997 275.93 123,063.99 92.87 5.27

UICP 11.36 1.04 0.990 346.44 142,511.75 168.89 2.74

Mean Diff -7.84 -0.72 0.006 -70.51 -19,447.76 -76.02

p-value 0.00 0.00 0.00 0.00 0.00 0.00

75 SILVER 19.69 2.79 0.980 332.45 146,260.47 141.41 4.58

UICP 26.47 3.51 0.976 404.84 167,303.13 226.11 2.70

Mean Diff -6.78 -0.72 0.004 -72.39 -21,042.66 -84.70

p-value 0.02 0.22 0.14 0.00 0.00 0.00

234

TABLE E-3. (CONTINUED)

DECLINING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

76 SILVER 35.12 6.95 0.962 437.45 193,679.41 220.61 4.37

UICP 37.58 6.98 0.958 515.62 215,666.03 313.65 2.58

Mean Diff -2.46 -0.03 0.003 -78.17 -21,968.62 -93.04

p-value 0.45 0.97 0.31 0.00 0.00 0.00

235

TABLE E-4.

INCREASING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

77 SILVER 143.07 26.73 0.861 21.78 165,477.18 3.89 11.66

UICP 184.01 42.83 0.790 20.39 165,311-83 4.08 12.88

Mean Diff -40.94 -16.10 0.071 1.40 165.35 -0.19

p-value 0.00 0.00 0.00 0.00 0.74 0.44

78 SILVER 68.30 6.92 0.945 337.30 276,451.50 46.65 19.54

UICP 156.18 33.74 0.814 316.56 364,407.69 54.30 15.65

Mean Diff -87.88 -26.82 0.131 20.74 -87,956.20 -7.66

p-value 0.00 0.00 0.00 0.00 0.00 0.03

79 SILVER 110.49 15.85 0.908 376.97 329,851.16 107.54 15.99

UICP 186.64 44.23 0.788 354.98 427,423.80 116.00 13.98

Mean Diff -76.15 -28.38 0.120 22.00 -97,572.64 -8.46

p-value 0.00 0.00 0.00 0.00 0.00 0.06

80 SILVER 159.83 31.91 0.854 455.54 458,439.78 181.90 14.97

UICP 237.05 64.61 0.750 429.90 587,491.78 190.86 13.58

Mean Diff -77.22 -32.70 0.103 25.64 -129,052.00 -8.97

p-value 0.00 0.00 0.00 0.00 0.00 0.10

81 SILVER 122.25 21.89 0.882 21.27 158,186.27 4.27 11.05

UICP 212.26 57.33 0.758 19.38 159,642.09 4.06 12.19

Mean Diff -90.01 -35.43 0.124 1.88 -1,455.82 0.21

p-value 0.00 0.00 0.00 0.00 0.02 0.43

82 SILVER 49.59 4.66 0.959 320.02 254,033.34 39.84 19.18

UICP 197.77 49.01 0.778 299.11 391,571.54 54.76 15.11

Mean Diff -148.18 -44.35 0.182 20.92 -137,538.20 -14.92

p-value 0.00 0.00 0.00 0.00 0.00 0.00

83 SILVER 87.23 12.40 0.922 357.24 301,594.98 95.41 16.09

UICP 235.07 66.87 0.739 335.08 479,368.38 105.39 13.53

Mean Diff -147.83 -54.47 0.183 22.16 -177,773.40 -9.98

p-vahie 0.00 0.00 0.00 0.00 0.00 0.03

236

TABLE E-4. (CONTINUED)

INCREASING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

84 SILVER 124.27 21.85 0.890 434.72 395,656.47 163.67 15.42

UICP 268.17 83.44 0.709 406.00 627,491.94 176.57 13.31

Mean Diff -143.90 -61.59 0.181 28.72 -231,835.47 -12.91

p-value 0.00 0.00 0.00 0.00 0.00 0.03

85 SILVER 122.05 17.59 0.897 25.04 183,019.74 4.24 12.53

UICP 191.78 37.61 0.822 23.01 181,494.89 4.23 13.08

Mean Diff -69.74 -20.02 0.075 2.03 1,524.85 0.01

p-value 0.00 0.00 0.00 0.00 0.01 0.96

86 SILVER 40.41 2.50 0.974 388.54 291,971.67 44.68 21.46

UICP 167.59 28.59 0.846 362.62 386,220.83 53.61 15.50

Mean Diff -127.17 -26.09 0.128 25.92 -94,249.16 -8.93

p-value 0.00 0.00 0.00 0.00 0.00 0.01

87 SILVER 77.90 8.29 0.944 431.66 338,744.37 97.85 18.02

UICP 199.19 39.05 0.821 401.32 457,520.17 104.92 14.02

Mean Diff -121.29 -30.76 0.124 30.34 -118,775.81 -7.08

p-value 0.00 0.00 0.00 0.00 0.00 0.14

88 SILVER 125.04 18.39 0.904 522.99 443,260.67 165.96 16.66

UICP 232.23 54.56 0.785 488.50 603,029.44 172.19 13.55

Mean Diff -107.19 -36.17 0.119 34.49 -159,768.77 -6.23

p-value 0.00 0.00 0.00 0.00 0.00 0.33

89 SILVER 103.85 15.39 0.912 22.75 165,320.91 4.02 11.50

UICP 202.78 52.40 0.770 20.24 164,614.96 4.19 12.38

Mean Diff -98.93 -37.01 0.141 2.50 705.95 -0.17

p-value 0.00 0.00 0.00 0.00 0.31 0.49

90 SILVER 31.78 2.28 0.976 344.19 260,046.80 43.04 19.68

UICP 207.01 48.14 0.788 315.67 408,421.43 53.91 14.84

Mean Diff -175.23 -45.86 0.188 28.52 -148,374.63 -10.87

p-value 0.00 0.00 0.00 0.00 0.00 0.00

237

TABLE E-4. (CONTINUED)

INCREASING DEMAND

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

91 SILVER 67.28 7.60 0.947 383.09 300,489.38 101.21 16.85

UICP 236.37 60.66 0.766 349.83 479,226.44 109.33 13.62

Mean Diff -169.09 -52.76 0.180 33.25 -178,737.05 -8.12

p-value 0.00 0.00 0.00 0.00 0.00 0.08

92 SILVER 106.28 17.03 0.907 457.10 388,288.16 158.15 16.07

UICP 269.62 80.47 0.726 416.40 633,183.18 169.64 13.64

Mean Diff -163.34 -63.44 0.181 40.70 -244,895.02 -11.49

p-value 0.00 0.00 0.00 0.00 0.00 0.05

238

TABLE E-5.

CYCLIC DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

33F SILVER 194.96 52.02 0.757 19.27 256,742.51 15.37 19.27

UICP 201.48 51.26 0.768 19.43 256,781.98 15.51 13.43

MeanDiff -6.52 0.76 -0.011 -0.16 -39.47 -0.14

p-value 0.06 0.57 0.01 0.01 0.95 0.44

34F SILVER 137.03 24.98 0.842 316.61 426,611.15 254.81 21.81

UICP 155.21 31.06 0.825 319.63 447,160.77 262.24 15.56

MeanDiff -18.18 -6.07 0.017 -3.02 -20,549.61 -7.43

p-value 0.00 0.00 0.00 0.00 0.00 0.00

35F SILVER 168.58 38.06 0.808 362.06 518,729.15 320.44 19.31

UICP 189.45 43.75 0.797 368.38 542,385.74 335.92 14.07

Mean Diff -20.88 -5.68 0.010 -6.33 -23,656.58 -15.48

p-vahie 0.00 0.00 0.00 0.00 0.00 0.00

36F SILVER 218.81 59.65 0.764 434.78 696,485.63 411.86 18.76

UICP 228.14 60.19 0.762 453.02 720,449.36 441.91 13.78

Mean Diff -9.34 -3.24 0.002 -18.24 -23,963.74 -30.05

p-value 0.00 0.02 0.51 0.00 0.00 0.00

37F SILVER 211.45 55.59 0.760 20.02 275,452.97 20.46 16.06

UICP 212.97 54.83 0.760 20.01 273,429.28 20.63 14.39

Mean Diff -1.51 0.75 0.000 0.018 2,023.69 -0.17

p-vahie 0.72 0.63 0.97 0.76 0.00 0.39

38F SILVER 176.29 31.84 0.837 336.50 494,377.71 388.48 23.90

UICP 192.89 37.68 0.821 338.19 514,703.40 392.86 17.13

Mean Diff -16.60 -5.84 0.016 -1.69 -20,325.69 -4.38

p-value 0.00 0.00 0.00 0.00 0.00 0.06

39F SILVER 210.78 45.68 0.806 377.04 592,899.11 440.74 21.12

UICP 228.00 51.33 0.795 381.77 616,543.39 453.48 15.33

Mean Diff -17.22 -5.65 0.011 -4.73 -23,644.28 -12.73

p-value 0.00 0.00 0.00 0.00 0.00 0.00

239

TABLE E-5. (CONTINUED)

CYCLIC DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

40F SILVER 249.20 59.81 0.774 459.53 767,418.35 532.71 20.50
UICP 265.37 67.00 0.763 463.74 800,470.45 544.35 15.00

Mean Diff -16.17 -7.19 0.011 -4.20 -33,052.10 -11.64

p-vahie 0.00 0.00 0.00 0.00 0.00 0.00

240

TABLE E-6.

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

41F SILVER 28.74 4.20 0.972 18.33 73,010.58 11.78 2.60

UICP 20.66 2.82 0.979 18.13 72,268.17 11.52 2.67

Mean Diff 8.08 1.38 -0.007 0.20 742.42 0.27

p-value 0.00 0.00 0.00 0.07 0.04 0.09

42F SILVER 3.90 0.34 0.997 332.88 138,748.64 147.20 4.99

UICP 8.73 0.66 0.993 344.40 141,286.77 160.87 2.75

Mean Diff -4.84 -0.32 0.004 -11.53 -2,538.12 -13.66

p-value 0.00 0.06 0.00 0.00 0.00 0.00

43F SILVER 15.35 2.06 0.984 392.79 162,140.48 208.20 4.36

UICP 23.58 3.36 0.978 401.73 166,109.74 216.38 2.70

Mean Diff -8.24 -1.30 0.006 -8.94 -3,969.26 -8.18

p-value 0.00 0.01 0.01 0.00 0.00 0.00

44F SILVER 30.50 6.53 0.962 499.17 210,560.98 286.78 4.04

UICP 38.40 7.41 0.958 513.17 216,430.21 300.71 2.62

Mean Diff -7.90 -0.88 0.004 -14.00 -5,869.24 -13.93

p-value 0.01 0.27 0.26 0.00 0.00 0.00

45F SILVER 33.44 4.20 0.970 19.63 81,985.05 14.32 3.62

UICP 27.11 3.17 0.976 19.46 81,361.60 14.18 3.66

Mean Diff 6.34 1.03 -0.006 0.17 623.45 0.14

p-value 0.02 0.01 0.00 0.06 0.04 0.37

46F SILVER 5.23 0.36 0.995 388.47 168,618.61 256.26 8.10

UICP 13.69 0.96 0.989 400.36 170,606.27 269.31 4.41

Mean Diff -8.46 -0.60 0.006 -11.89 -1,987.66 -13.05

p-value 0.00 0.00 0.00 0.00 0.00 0.00

47F SILVER 26.29 3.39 0.976 445.69 194,445.58 302.38 6.59

UICP 32.65 4.09 0.973 455.37 197,663.46 312.46 4.06

Mean Diff -6.36 -0.70 0.003 -9.68 -3,217.89 -10.08

p-value 0.03 0.20 0.20 0.00 0.01 0.00

241

TABLE E-6. (CONTINUED)

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

48F SILVER 39.92 6.37 0.959 548.44 241,665.08 371.60 6.02

UICP 54.27 8.79 0.950 561.40 251,018.99 385.89 3.83

Mean Diff -14.35 -2.42 0.008 -12.96 -9,353.91 -14.30

p-vahie 0.00 0.00 0.00 0.00 0.00 0.00

49F SILVER 28.54 3.64 0.974 18.72 76,028.43 12.23 2.97

UICP 21.45 2.66 0.979 18.57 75,696.67 12.12 3.05

Mean Diff 7.08 0.98 -0.005 0.15 331.76 0.10

p-value 0.01 0.01 0.01 0.14 0.33 0.51

50F SILVER 3.48 0.25 0.997 348.19 148,052.60 171.21 6.11

UICP 12.78 1.02 0.990 359.90 151,128.44 182.93 3.37

Mean Diff -9.30 -0.77 0.007 -11.71 -3,075.84 -11.72

p-value 0.00 0.00 0.00 0.00 0.00 0.00

51F SILVER 16.75 1.98 0.983 406.45 170,695.64 224.47 5.20

UICP 28.58 4.00 0.974 414.78 175,930.68 231.85 3.20

Mean Diff -11.83 -2.01 0.009 -8.33 -5,235.03 -7.38

p-value 0.00 0.00 0.00 0.00 0.00 0.00

52F SILVER 33.81 6.19 0.961 514.65 220,562.20 305.46 4.8

UICP 41.34 8.04 0.956 529.65 229,101.98 320.76 3.10

Mean Diff -7.53 -1.85 0.005 -15.00 -8,539.78 -15.30

p-value 0.02 0.02 0.09 0.00 0.00 0.00

53F SILVER 35.41 4.67 0.970 19.66 82,808.43 14.14 3.78

UICP 27.37 3.17 0.975 19.48 82,230.65 13.87 3.81

Mean Diff 8.05 1.49 -0.005 0.18 577.79 0.28

p-value 0.01 0.00 0.01 0.05 0.05 0.10

54F SILVER 6.17 0.41 0.995 390.01 170,678.67 257.47 8.44

UICP 14.81 1.05 0.989 401.45 172,810.70 270.38 4.54

Mean Diff -8.63 -0.65 0.007 -11.44 -2,132.03 -12.90

p-value 0.00 0.00 0.00 0.00 0.00 0.00

242

TABLE E-6. (CONTINUED)

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

55F SILVER 22.74 3.28 0.979 447.24 196,116.06 298.67 6.88

UICP 32.66 3.86 0.973 457.44 198,865.12 308.88 4.23

MeanDiff -9.92 -0.58 0.006 -10.20 -2,749.06 -10.21

p-value 0.00 0.39 0.01 0.00 0.06 0.00

56F SILVER 43.59 6.96 0.953 549.86 245,542.79 376.02 6.28

UICP 54.62 8.85 0.950 562.66 252,866.83 385.09 4.00

MeanDiff -11.03 -1.89 0.004 -12.80 -7,324.04 -9.07

p-value 0.00 0.02 0.27 0.00 0.00 0.01

57F SILVER 29.54 3.52 0.975 18.94 78,083.31 12.52 3.21

UICP 22.56 2.53 0.981 18.76 77,517.60 12.27 3.29

Mean Diff 6.98 0.99 -0.006 0.18 565.71 0.25

p-value 0.01 0.01 0.00 0.06 0.07 0.16

58F SILVER 4.43 0.32 0.996 360.07 154,634.03 194.19 6.81

UICP 13.86 1.24 0.988 369.65 157,205.19 201.40 3.71

Mean Diff -9.43 -0.92 0.008 -9.58 -2,571.16 -7.21

p-value 0.00 0.00 0.00 0.00 0.00 0.00

59F SILVER 19.96 2.44 0.981 419.36 178,139.78 245.06 5.70

UICP 29.70 3.92 0.972 428.68 183,184.14 252.98 3.50

Mean Diff -9.74 -1.48 0.009 -9.32 -5,044.36 -7.92

p-value 0.00 0.00 0.00 0.00 0.00 0.00

60F SILVER 36.42 6.20 0.961 524.41 227,242.91 318.93 5.23

UICP 40.07 7.42 0.958 535.47 232,694.36 330.43 3.30

Mean Diff -3.65 -1.23 0.003 -11.05 -5,451.45 -11.50

p-value 0.27 0.16 0.40 0.00 0.01 0.00

61F SILVER 36.86 4.55 0.971 19.74 83,632.29 13.95 3.88

UICP 28.36 3.11 0.976 19.55 83,039.20 13.66 3.90

Mean Diff 8.50 1.44 -0.005 0.19 593.10 0.28

p-vahie 0.01 0.00 0.02 0.03 0.04 0.11

243

TABLE E-6. (CONTINUED)

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

62F SILVER 3.45 0.15 0.998 392.86 172,870.06 259.40 8.78

UICP 16.90 1.24 0.988 403.99 175,249.35 271.34 4.76

Mean Diff -13.45 -1.10 0.010 -11.13 -2,379.29 -11.93

p-value 0.00 0.00 0.00 0.00 0.00 0.00
63F SILVER 24.04 3.06 0.979 450.25 198,362.38 303.15 7.13

UICP 37.35 5.10 0.968 460.49 204,774.76 313.81 4.37

Mean Diff -13.30 -2.04 0.011 -10.24 -6,412.38 -10.66

p-value 0.00 0.00 0.00 0.00 0.00 0.00

64F SILVER 43.71 7.25 0.955 554.71 250,791.51 374.42 6.52
UICP 55.09 9.65 0.948 567.07 259,222.98 384.43 4.12

Mean Diff -11.38 -2.40 0.007 -12.35 -8,431.48 -10.01

p-value 0.00 0.01 0.04 0.00 0.00 0.01
65F SILVER 27.53 4.79 0.971 18.63 73,269.15 15.69 2.48

UICP 21.59 3.27 0.977 18.47 72,835.42 15.56 2.55
Mean Diff 5.94 1.52 -0.007 0.15 433.73 0.13

p-value 0.02 0.01 0.00 0.16 0.23 0.40
66F SILVER 3.05 0.16 0.997 349.99 142,963.17 279.85 5.18

UICP 10.11 0.95 0.990 362.27 146,638.34 294.61 2.85

Mean Diff -7.06 -0.78 0.007 -12.28 -3,675.17 -14.77

p-value 0.00 0.00 0.00 0.00 0.00 0.00
67F SILVER 20.36 3.16 0.979 412.33 169,045.16 345.46 4.44

UICP 25.08 3.85 0.976 421.75 171,973.70 355.29 2.74

Mean Diff -4.72 -0.68 0.004 -9.41 -2,928.54 -9.84

p-value 0.07 0.29 0.21 0.00 0.02 0.00
68F SILVER 31.99 6.80 0.956 517.12 214,026.58 438.60 4.05

UICP 37.24 7.98 0.957 531.67 220,175.14 453.74 2.62
Mean Diff -5.25 -1.18 -0.001 -14.55 -6,148.56 -15.14
p-value 0.10 0.16 0.78 0.00 0.00 0.00

244

TABLE E-6. (CONTINUED)

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

69F SILVER 35.36 4.05 0.970 19.82 81,946.76 17.65 3.58

UICP 29.91 3.56 0.975 19.66 81,398.19 17.55 3.52

Mean Diff 5.45 0.50 -0.005 0.17 548.57 0.10

p-value 0.05 0.25 0.02 0.07 0.08 0.55

70F SILVER 4.69 0.41 0.996 395.60 171,026.81 364.75 8.18

UICP 15.74 1.26 0.987 406.81 173,176.59 376.65 4.44

Mean Diff -11.05 -0.86 0.009 -11.20 -2,149.78 -11.90

p-value 0.00 0.00 0.00 0.00 0.00 0.00

71F SILVER 24.03 3.49 0.976 452.44 195,547.12 412.87 6.59

UICP 39.35 6.33 0.963 461.76 202,788.71 424.49 4.40

Mean Diff -15.33 -2.84 0.013 -9.32 -7,241.70 -11.62

p-value 0.00 0.00 0.00 0.00 0.00 0.00

72F SILVER 37.93 6.72 0.958 556.25 244,217.60 498.46 6.01

UICP 49.40 9.34 0.949 569.10 252,276.62 510.21 3.82

Mean Diff -11.48 -2.62 0.009 -12.85 -8,059.03 -11.75

p-value 0.00 0.00 0.01 0.00 0.00 0.00

73F SILVER 28.77 4.22 0.972 18.26 72,613.38 11.82 2.54

UICP 19.73 2.50 0.982 18.09 71,901.36 11.63 2.61

Mean Diff 9.04 1.72 -0.010 0.17 712.02 0.19

p-value 0.00 0.00 0.00 0.11 0.04 0.21

74F SILVER 3.62 0.36 0.997 335.22 139,509.43 157.38 5.00

UICP 11.36 1.04 0.990 346.44 142,511.75 168.89 2.74

Mean Diff -7.74 -0.68 0.006 -11.22 -3,002.32 -11.51

p-value 0.00 0.00 0.00 0.00 0.00 0.00

75F SILVER 17.31 2.42 0.983 394.28 163,143.10 214.33 4.33

UICP 26.47 3.51 0.976 404.84 167,303.13 226.11 2.70

Mean Diff -9.16 -1.08 0.007 -10.56 -4,160.03 -11.78

p-value 0.00 0.05 0.02 0.00 0.00 0.00

245

TABLE E-6. (CONTINUED)

DECLINING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

76F SILVER 32.63 6.05 0.965 501.08 209,732.14 297.24 3.99

UICP 37.58 6.98 0.958 515.62 215,666.03 313.65 2.58

Mean Diff -4.95 -0.93 0.007 -14.53 -5,933.89 -16.41

p-value 0.12 0.24 0.03 0.00 0.00 0.00

246

TABLE E-7.

INCREASING DEMAND - FTXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

77F SILVER 188.73 49.01 0.770 20.23 166,059.48 3.67 13.31

UICP 184.01 42.83 0.790 20.39 165,311.83 4.08 12.88

Mean Diff 4.72 6.18 -0.020 -0.15 747.64 -0.41

p-value 0.21 0.00 0.00 0.01 0.09 0.07

78F SILVER 136.14 25.25 0.843 313.25 337,086.99 48.09 21.93

UICP 156.18 33.74 0.814 316.56 364,407.69 54.30 15.65

Mean Diff -20.04 -8.49 0.029 -3.31 -27,320.71 -6.21

p-value 0.00 0.00 0.00 0.00 0.00 0.09

79F SILVER 168.56 36.63 0.809 350.85 400,769.19 101.16 18.43

UICP 186.64 44.23 0.788 354.98 427,423.80 116.00 13.98

Mean Diff -18.08 -7.60 0.021 -4.13 -26,654.61 -14.84

p-value 0.00 0.00 0.00 0.00 0.00 0.00

80F SILVER 222.10 57.62 0.763 425.42 561,624.64 183.58 17.54

UICP 237.05 64.61 0.750 429.90 587,491.78 190.86 13.58

Mean Diff -14.95 -6.99 0.013 -4.48 -25,867.13 -7.29

p-value 0.00 0.00 0.00 0.00 0.00 0.21

81F SILVER 210.91 58.58 0.752 19.34 159,909.78 4.04 12.42

UICP 212.26 57.33 0.758 19.38 159,642.09 4.06 12.19

Mean Diff -1.35 1.26 -0.006 -0.04 267.69 -0.02

p-value 0.75 0.46 0.17 0.51 0.58 0.93

82F SILVER 182.53 42.05 0.797 296.71 371,948.80 40.74 20.50

UICP 197.77 49.01 0.778 299.11 391,571.54 54.76 15.11

Mean Diff -15.25 -6.96 0.020 -2.40 -19,622.74 -14.02

p-value 0.00 0.00 0.00 0.00 0.00 0.00

83F SILVER 219.82 59.87 0.754 331.75 457,844.49 94.80 17.28

UICP 235.07 66.87 0.739 335.08 479,368.38 105.39 13.53

Mean Diff -15.25 -7.01 0.014 -3.33 -21,523.89 -10.59

p-value 0.00 0.00

0.00 0.00 0.00 0.03

247

TABLE E-7. (CONTINUED)

INCREASING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

84F SILVER 249.23 73.07 0.723 400.87 590,587.44 171.12 16.86

UICP 268.17 83.44 0.709 406.00 627,491.94 176.57 13.31

Mean Diff -18.94 -10.36 0.014 -5.13 -36,907.50 -5.46

p-value 0.00 0.00 0.00 0.00 0.00 0.39

85F SILVER 184.64 39.20 0.810 22.72 181,308.28 4.00 14.13

UICP 191.78 37.61 0.822 23.01 181,494.89 4.23 13.08

Mean Diff -7.14 1.60 -0.013 -0.28 -186.61 -0.22

p-value 0.07 0.14 0.00 0.00 0.67 0.37

86F SILVER 148.95 21.71 0.873 357.35 362,064.23 45.56 23.25

UICP 167.59 28.59 0.846 362.62 386,220.83 53.61 15.50

Mean Diff -18.64 -6.88 0.027 -5.27 -24,156.60 -8.05

p-value 0.00 0.00 0.00 0.00 0.00 0.02

87F SILVER 183.24 33.15 0.837 396.34 434,965.07 96.33 19.62

UICP 199.19 39.05 0.821 401.32 457,520.17 104.92 14.02

Mean Diff -15.95 -5.90 0.016 -4.97 -22,555.10 -8.60

p-value 0.00 0.00 0.00 0.00 0.00 0.08

88F SILVER 217.75 48.06 0.798 481.27 572,939.42 164.39 18.28

UICP 232.23 54.56 0.785 488.50 603,029.44 172.19 13.55

Mean Diff -14.49 -6.50 0.014 -7.22 -30,090.01 -7.80

p-value 0.00 0.00 0.00 0.00 0.00 0.22

89F SILVER 201.14 54.69 0.763 20.10 165,295.50 4.19 12.90

UICP 202.78 52.40 0.770 20.24 164,614.96 4.19 12.38

Mean Diff -1.64 2.29 -0.007 -0.15 680.54 0.00

p-value 0.71 0.16 0.10 0.01 0.15 0.99

90F SILVER 192.57 41.38 0.806 312.23 388,358.19 40.14 20.80

UICP 207.01 48.14 0.788 315.67 408,421.43 53.91 14.84

Mean Diff -14.43 -6.76 0.018 -3.44 -20,063.25 -13.77

p-value 0.00 0.00 0.00 0.00 0.00 0.00

248

TABLE E-7. (CO> rriNUED)

INCREASING DEMAND - FIXED FORECASTS

Exp# Model ACWTBO ACWT SMA Invest Total Cost Excess Orders

91F SILVER 222.86 53.48 0.786 346.53 456,851.18 102.02 17.87

UICP 236.37 60.66 0.766 349.83 479,226.44 109.33 13.62

Mean Diff -13.52 -7.18 0.019 -3.30 -22,375.26 -7.31

p-value 0.00 0.00 0.00 0.00 0.00 0.13

92F SILVER 253.77 74.98 0.732 411.77 614,744.98 150.83 17.41

UICP 269.62 80.47 0.726 416.40 633,183.18 169.64 13.64

Mean Diff -15.85 -5.49 0.006 -4.63 -18,438.20 -18.81

p-value 0.00 0.01 0.19 0.00 0.02 0.00

249

APPENDIX F. STATIONARY DEMAND GRAPHS

Description: Steady State Experiment # 10

-SILVER
— UICP

QUARTERLY ACWTBO

300

en
ro 200
a

100

26 36 46 56 66 76 86 96
Quarter

QUARTERLY ACWT -SILVER
■ UICP

if 4
O - \! ' »fu \/\: :'.,./:A'V-' V •' '

2636465866 76 8696
Quarter

— SILVER

— UICP JQUARTERLYSMA

0.99

^JLA JLJT g 098
ü

s ; [

■'■ \ /; '■ \ I ;V' '■ \ I • ■ ■
£ 0.97 --''—. r.T '■: ■: '"■' '""' .-—' ■-. -,,-"' -

0.96 ' J '(' '(' '(' ((

26 36 46 56 66 76 86 96
Quarters

QUARTERLY INVESTMENT -SILVER

UICP

CUMULATIVE ACWTBO — SILVER

— UICP

80

co 60
to
Q 40

--'—'"

20 - ,,..<3^~^~
.^-^^~^
2836465666 76 8696

Quarter

CUMULATIVE SMA — SILVER

— UICP

0.985 I—
I

0.98 t- ■

_ 0.975 -
a;
2 0.97 r ■
tu
°- 0965 I- ;

0.96 -

0.955 L^
26 36 46 56 66 76 86

Quarter

CUMULATIVE ACWT -SILVER
- UICP

6 ,--—--

C/>

ro 4
D

2

V~''

_^^~~^~-

26 36 46 56 66 76 86 96
Quarters

250

APPENDIX G. CYCLIC DEMAND GRAPHS

Description: Cyclic Experiment # 35

QUARTERLY SMA
— SILVER

.- UICP

1.2 ■

a 0.8 -
0)
0.

0 6 -

2636465666 76 8696 106

Quarters _^^_^^—

QUARTERLY ACWT|
— SILVER

[-- UICP

26 36 46 56 66 76 86 96 106
Quarter

QUARTERLY INVESTMENT ;-SILVER

-- UICP

600

VI

c 400
D

200

26 36 46 56 66 76 86 96 106

Quarters

CUMULATIVE ACWTBO - SILVER

■ UICP

250

200 -

150 -

100 -

50 -

2636465666 76 8696 106
Quarter

CUMULATIVE ACWT ■ _ SILVER

i -- UICP

! CUMULATIVE SMA _ SILVER

.. UICP

1 - .

„ 0.9 -
c
O
sot-
a07-

0.6 -

05 ■
2636465666 76 8696 106

Quarter __■

EXCESS — SILVER

-- UICP

400

300

251

APPENDIX H. DECLINING DEMAND (STEEP TREND) GRAPHS

Description: Declining Experiment # 71

QUARTERLY ACWTBO
— SILVER

--UICP

CUMULATIVE SMA — SILVER

--■UICP

0.985

0.98

_ 0.975
c
tu
o 0.97 i-
o>

11 0 965

0.96

0.955
26 31 36 41 46 51 56 61

Quarter

QUARTERLY ACWT -SILVER

■ UICP

QUARTERLY INVESTMENT — SILVER

-- UICP

500

200
26 31 36 41 46 51 56 61

Quarters

CUMULATIVE ACWT| — SILVER

-- UICP

n 0
Q

26 31 36 41 46 51 56 61
Quarters

EXCESS - SILVER

. UICP

400

^300
c
3 200

100

0
26 31 36 41 46 51 56 61

QtTS

252

APPENDIX I. DECLINING DEMAND (SLOW TREND) GRAPHS

Description: Declining Experiment # 59

QUARTERLY ACWTBO -SILVER

■ UICP

80

' 40

20

26 31 36 41 46 51 56 61
Quarter

QUARTERLY SMA
- SILVER

UICP

QUARTERLY ACWT -SILVER

- UICP

6

a 4
Q

2

I \

26 31 36 41 46 51 56 61
Quarter

QUARTERLY INVESTMENT -SILVER

-- UICP

SCUMULATIVE ACWTBO — SILVER

-UICP

' 20

26 31 36 41 46 51 56 61
Quarter

CUMULATIVE ACWT — SILVER

- UICP

5

4.5

£ 4 n 4
Q

3.5

3

2.5
26 31 36 41 46 51 56 61

Quarters

! CUMULATIVE SMA -SILVER

■ UICP

36 41 46 51 56 61
Quarter

EXCESS — SILVER

-. UICP

300

250

g200

D 150

100

50
26 31 36 41 46 51 56 61

Qtrs

253

APPENDIX J. INCREASING DEMAND (STEEP TREND) GRAPHS
Description: Increasing Experiment # 83

. .

QUARTERLY ACWTBO -SILVER
— UICP

300 \
re 200
Q

100
■f\ k ;'-'' r^ \

t^^^JJ V-^i^ ^*^-^/\-^'

26 36 46 56 66 76 86
Quarter

QUARTERLY ACWT -SILVER
- UICP

46 56 66
 Quarters

QUARTERLY INVESTMENT rSILVER
 I -UICP

800

600

200

0
26 36 46 56 66 76 86

Quarters

CUMULATIVE ACWTBO — SILVER

-UICP

m 200
Q

36 46 56 66 76 86
 Quarter

CUMULATIVE ACWT -SILVER

-UICP

8. re
Q

26 36 46 56 66 76 86
Quarters

CUMULATIVE SMA — SILVER

-UICP

0.6 -

26 36 46 56 66 76 86
Quarter

EXCESS -SILVER

-UICP

254

APPENDIX K. INCREASING DEMAND (SLOW TREND) GRAPHS

Description: Increasing Experiment # 79

QUARTERLY ACWT -SILVER

- UICP

140

120

100

s. 80

Q 60

40

20

0
26 36 46 56 66 76 86

Quarter

'QUARTERLY SMA
1.2 r

1 j- „*™™
c !
<D
Ü 0.8 -
0)
0.

0.6 -

i
0.4 —

26 36 46 56 66
Quarters

— SILVER

--■UICP

76 86

QUARTERLY INVESTMENT -SILVER

- UICP

CUMULATIVE ACWTBO - SILVER

UICP
CUMULATIVE ACWT — SILVER

- UICP

80 /

to
Q 40

1 *"*'*.^

20
■_ __ //■ ^~—-

26 36 46 56 66 76 86
Quarters

1

0.9

I 08

S. 07

0.6

0.5

CUMULATIVE SMA

36 46 56 66
Quarter

- SILVER

.-UICP

76 86

EXCESS — SILVER

- UICP

120 ,»'"*"**"*■ "\

100 r .v^-"
& 80 - ■/s

D 60 - p
40

20

0 i-^"-

26 36 46 56 66 76 86
QtTS

255

LIST OF REFERENCES

1. United States General Accounting Office/National Security and International
Affairs Division Report #92-112, "Cost Factors Used to Manage Secondary
Items," Washington, D.C., May 1992.

2. United States General Accounting Office/High Risk Report #93-12, "Defense
Inventory Management," Washington, D.C., December 1992.

3. United States General Accounting Office, Draft Report, "Applying Commercial
Purchasing Practices Should Help Reduce Supply Costs," Washington, D.C.,
Draft April 1993.

4. Lilli, CM., and Husson, C.R., "Wholesale Level Reorder Point and Reorder
Quantity Computation During Periods of Declining Demand," Master's Thesis,
Naval Postgraduate School, Monterey, California, December 1992.

5. Perry, J.H., "Growth in Unneeded Inventories: Contributing Factors," Logistics
Spectrum. Vol. 25, No. 2, p. 19-25, Summer 1991.

6. United States General Accounting Office, National Security and International
Affairs Division, Report # 91-176, "Shortcomings in Requirements
Determination Processes," Washington, D.C., May 1991.

7. Silver, E., "Replenishment Under a Probabilistic Time-Varying, Demand
Pattern," AIIE Transactions. Vol. 10, No. 4, p. 371-379, December 1978.

8. Wagner, H.M.,and Whitin,T.M. "Dynamic Version of the Economic Lot Size
Model," Management Science. Vol. 5, No. 1, October 1958.

9. Silver, E., and Peterson, R., Decision Systems for Inventory Management and
Production Planning. Second Edition, John Wiley and Sons, Inc., 1985.

10. Blackburn, J.D., and Millen, R.A., "Heuristic Lot-Sizing Performance in a
Rolling-Schedule Environment," Decision Sciences. Vol, 11, No. 4, p. 691-701,
October 1980.

256

11. Ritchie, E., and Tsado, A.K., "A Review of Lot-Sizing Techniques for
Deterministic Time-Varying Demand," Production and Inventory Management.
Third Quarter, p. 65-79, June 1986.

12. Cline, B.S., Foote, B.L., and Schlegel, R.E., "Multicriteria Evaluation of Lot
Sizing Techniques as a Function of Demand Pattern, Time Between Orders, and
Demand Variability," USAF Technical Report 91-5, April 1991.

13. Donaldson, W.A., "Inventory Replenishment Policy for a Linear Trend in
Demand - An Analytical Solution," Operational Research Quarterly. Vol. 28,
p. 663-670, July 1977.

14. Ritchie, E., and Tsado, A., "The Penalties of Using the EOQ: A Comparison
of Lot Sizing Rules for Linear Increasing Demand," Production and Inventory
Management. First Quarter, p. 12-17, January 1986.

15. Askin, R.G., "A Procedure for Production Lot Sizing with Probabilistic
Dynamic Demand," AIIE Transactions. Vol. 13, No. 2, p. 132-137, June 1981.

16. Bollapragada, S., and Morton, T.E., "The Non-Stationary (s, S) Inventory
Problem Near-Myopic Heuristics, Computational Testing," Working Paper #
1993-01, Graduate School of Industrial Administration, Carnegie Mellon
University, February 1993.

17. Nanda M. Balwally, Defence Electronics Supply Center to Dr. Thomas Moore,
Naval Postgraduate School, letter dated 14 January 1993.

18. Department of Defense Instruction 4140.39, "Procurement Cycles and Safety
Levels of Supply for Secondary Items," July 1970.

19. Hadley, G., and Whitin, T.M. Analysis of Inventory Systems. Prentice-Hall,
Inc., 1963.

20. OPNAV Instruction 4440.23, "Procurement Cycles and Safety Levels of Supply
for Secondary Items," February 1976.

21. U.S. Department of the Navy, Supply Systems Command, NAVSUP Publication
553, Inventory Management. January 1991.

22. Functional Description - PD82, "Uniform Inventory Control Program - Levels
Setting Model," FMSO Document Number FD-PD82, April 1993.

257

23. Interview between J. Boyarski, Navy Ship's Parts Control Center, Code 041,
Mechanicsburg, PA and the author, 26-29 May 1993.

24. Bissinger, B.H., and Boyarski, J.R., "A Rank Correlation Approach for Trend

Detection of Military Spare Parts Demand Data," Thirty-Sixth Conference on
Design Experiments. October 1990.

25. Brown, R.G., Smoothing. Forecasting and Prediction of Discrete Time Series.
Prentice-Hall, Inc., 1963.

26. Ross, S.M., Introduction to Probability Models. Fourth Edition, Academic
Press, Inc., 1989.

27. Bickel, P.J., and Doksum, K.A., Mathematical Statistics: Basic Ideas and
Selected Topics. Holden-Day, Inc., 1977.

28. Zehna, P.W., "Forecasting Errors Using MAD", Naval Postgraduate School,
Technical Report NPS55Ze9014A, April 1969.

29. Law, A.M., and Kelton, W.D., Simulation Modeling and Analysis. Second
Edition, McGraw-Hill, Inc., 1991.

30. Cormen, T.H., Leiserson, C.E. and Rivest, R.L., Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Co., 1991.

31. Bunker, T., "Demand Forecasting Simulation," Program Documentation, Navy
Ships Parts Control Center, 1987.

32. Mendenhall, W., Wackerly, D.D., and Scheaffer, R.L., Mathematical Statistics
with Applications. Fourth Edition, PWS-Kent Publishing Co., 1990.

33. Interview between K. Reynolds, Navy Ships Parts Control Center, Code 046,
Mechanicsburg, PA, and the author, 26-29 May 1993.

34. Hwang, C, and Yoon, K., Multiple Attributes Decision Making - Methods and
Applications. Lecture Notes in Economics and Mathematical Systems, Vol. 186,
Springer-Verlag, 1981.

35. Tersine, R.J., Principles of Inventory and Materials Management. Third Edition,
Elsevier Science Publishing Co., 1988.

258

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 052 2

Naval Postgraduate School
Monterey, California 93943-5002

3. Defense Logistics Studies Information Exchange 1
United States Army Logistics Management Center
Fort Lee, Virginia 23801-6043

4. Professor Thomas P. Moore, Code SM/Mr 1
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5103

5. Professor Alan W. McMasters, Code SM/Mg 1
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5103

6. Professor Gordon H. Bradley, Code OR/Bz 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5103

7. CDR Eduardo DeGuia, Code 4111 1
Naval Supply Systems Command
Washington, D.C. 20376-5000

8. Mr. Michael Pouy 1
HQ-Defense Logistics Agency [ATTN: MMSB]
Cameron Station
Alexandria, Virginia 22304-6100

259

9. Mr. Jere Engleman, Code 046
Navy Ships Parts Control Center
5450 Carlisle Pike
P.O. Box 2020

Mechanicsburg, Pennsylvania 17055-0788

9. Mr. John R. Boyarski, Code 0412
Navy Ships Parts Control Center
5450 Carlisle Pike
P.O. Box 2020
Mechanicsburg, Pennsylvania 17055-0788

10. Mr. Tom Lanagan
Headquarters, DLA
ATTN: DORO-Supply Analysis
c/o: Defense General Supply Center
Richmond, Virginia 23297-5082

11. Mr. Alan Kaplan
Army Material Systems Analysis Activity
800 Custom House
Second and Chestnut Street
Philadelphia, Pennsylvania 19106

12. LT Glenn C. Robillard
6 Foxmeadow Drive
Worcester, Massachusetts 01602

13. Mrs. Fran Gabriel
Aviation Supply Office
700 Robbins Avenue
Philadelphia, Pennsylvania 1911-5098

14. LCDR Kevin Maher, Code 041
Navy Ships Parts Control Center
5450 Carlisle Pike
P.O. Box 2020
Mechanicsburg, Pennsylvania 17055-0788

260

