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Introduction
There is currently considerable interest in high-nitrogen-content molecules as energetic

materials.!'17 A matter for potential concern, however, is the instability or sensitivity toward
shock and/or impact that is frequently associated with the presence of several linked nitrogens. !
In some instances, for example certain picryl triazoles, it has been suggested that this instability is
due to the availability of a relatively facile decomposition pathway involving the loss of Np.1?
We have accordingly investigated computationally the energetics of an N2 evolution
process in the case of the nitrotriazole 1, which is known experimentally to be highly sensitive

8

toward impact.20 It has several tautomeric forms, as shown.

NO, NO, NO,
Yy = N\)V = M
N= N—N N—N_
H H

1A 1B 1C

For 1A and 1C, one can envision decomposition routes through ring opening to give the
intermediates 1A* and 1C* 2! followed by the loss of N2. This could leave either a singlet or a
triplet product, and we have examined both possibilities in each case. The formation of the singlet

products was found to involve transition states TS1 and TS2.
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Method

We have computed optimized geometries and energies for 1A,1B,1C, 1A*, 1C*, 2, 3,
4,5, TS1 and TS2 with the density functional option of the code Gaussian 92/DFT, revision
G.2,%% using the Becke exchange? and the Perdew correlation?* functionals and a 6-31G (d,p)
basis set. The effectiveness of these functionals has been established through extensive
comparisons with experimental and ab initio correlated studies.?33* Zero-point energies were
also determined. It was verified, by the absence of imaginary vibrational frequencies, that 1A,
1B, 1C, 1A*, 1C* and 2 - § all correspond to energy minima. TS1 and TS2 each have one

imaginary frequency, confirming that they are transition states.

Results and Discussion

The resulting total and zero-point energies are given in Table 1, and the AE values for the
individual steps in eqgs. (1) and (2) are in Table 2. The energies of the tautomeric pair 1A and 1C
are virtually equal (differing by only 0.6 kcal/mole) as are those of 1A* and 1C* (difference =
0.006 kcal/mole). Accordingly the energetics of the initial steps in egs. (1) and (2), opening the
triazole ring, are essentially identical, requiring an energy input of approximately 16 kcal/mole
(Table 2).

The loss of Ny from either 1A* or 1C* to form the triplet product 2 or 4 is simply a bond-
breaking process; AE = +32.4 and +39.5 kcal/mole, respectively (Table 2).

NO, NO;  N—nH
Vi
H C H -C—C
N 7 \ _/ \H
N~ .C.
2 4

The formation of the singlet products 3 and 5, on the other hand, involves structural
rearrangements in which one of the oxygens of the nitro group migrates to the carbon from which
the N is leaving. This was found to proceed through the transition states TS1 and TS2, as
shown in egs. (3) and (4). Table 2 shows that the energy barriers to these transition states,
1A* — TS1 and 1C* — TS2, are +38.0 and +32.4 kcal/mole, respectively. Overall, however,
the reactions represented by egs. (3) and (4) release energy; for 1A*— 3 + Np, AE =-31.6
kcal/mole, and for 1C* — 5 + Np, AE = -31.3 kcal/mole.
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An additional factor to be considered is the third tautomer, 1B. It is prevented, for
structural reasons, from forming an analog of 1A* (and 1C*). However Table 2 shows that 1B
is about 3 kcal/mole more stable than 1A and 1C. We must therefore assume that there is a

preference for the nitrotriazole 1 to exist as the tautomer 1B.

Conclusion
On the basis of this study, we suggest that one plausible decomposition route for 1, which
could for example follow shock or impact, is that represented by eq. (5):

| N
1B —» 1C —>» 1C* —» TS2 ——>» 5 )

The first three steps in eq. (5) require 2.8 + 16.4 + 32.4 = 51.6 kcal/mole of energy; however the
overall AE is -12.1 kcal per mole of 1B. The energy that must be provided to initiate this process
is less than that typically needed to rupture a C-NO; linkage,33-3® which is believed to be the first
step in the decomposition of many energetic materials.3>3%43 Furthermore, the reaction in eq. (5)

results in the release of a significant amount of energy which can be used to promote further




decomposition. This appears, therefore, to be a reasonable interpretation of the high sensitivity

that has been observed for the nitrotriazole 1.20
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Table 1. Calculated DFT energies, in hartrees.

System Total %nergy, Zero-point energy, E +ZPE
1A —446.75903 +0.05933 —446.69970
1B -446.76541 +0.06019 —446.70522
1C —446.76004 +0.05933 —446.70071

1A* ~-446.73015 +0.05563 —-446.67452
1C* -446.73074 +0.05623 —446.67451
2 —-337.14470 +0.04314 -337.10156
3 -337.24779 +0.04418 -337.20361
4 ~337.13425 +0.04405 ~-337.09020
5 ~337.24743 +0.04433 -337.20310
N2 -109.52670 +0.00536 ~109.52134
TS1 —446.66559 +0.05158 —446.61401
TS2 —446.67360 +0.05078 —446.62282




Table 2. Energy changes corresponding to individual steps in reactions.
Differences in zero-point energies are taken into account.

Process AE, kcal/mole
1B —» 1A +3.5
1A - 1A* +15.8
1A* = 2 +Np +32.4
1A* —» TS1 +38.0
1A* 53 + Ny -31.6
1A - 3 + N -15.8
1B —» 1C +2.8
1C —» 1C* +16.4
1IC* > 4 + Ny +39.5
1C* —» TS2 +32.4
1C* - 5 + Ny -31.3
1C > 5 + Ny ~14.9




