
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE TESTING TOOLKIT FOR DISTRIBUTED
SIMULATIONS

by

Thesis Advisor:
Co-Advisor:

Mitchell K R Turner

September 1994

Gary Porter
Michael Macedonia

Approved for public release; distribution is unlimited.

19950308 160

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
PÜbTere[»Sngtxjroento7th^oölieä»rujiHE
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington,

pVAJ>22Ö2;«02i(and-tojheO^

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE
September 1994

a REPORT TYPE AND DATES COVERED
Master's Thesis

4 TITLE AND SUBTITLE

SOFTWARE TESTING TOOLKIT FOR DISTRIBUTED SIMULATIONS (U)

AUTHOR(S)
Turner, Mitchell KR

5, FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING ORGANIZATION
REPORT NUMBER

a SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

12a DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

1a ABSTRACT (Maximum 200 words)

This thesis discusses the need for and design of a software toolkit to monitor Distributed Interactive
Simulation (DIS) network performance. Plans to merge virtual environment and wargaming simulations into
combined exercises will have significant performance effects on existing networks, but the tools to quantify the
impact are lacking.

Given the need for performance measurement tools, the network environment is described and two software
development methods, Motif and Tcl/Tk, are considered. The merits of Tcl/Tk, including extensibility to access
DIS networks and ease of application development, resulted in a programming environment well-suited for this
requirement

The network toolkit design is presented, including the required modifications to Tcl/Tk. Areas for future
research include using the PDU Monitor and the Tcl/Tk application, and expanding their capabilities.

14 SUBJECT TERMS
Virtual reality, networked virtual worlds, distributed interactive simulation, DIS, Tel, Tk,
network performance, stripchart

15. NUMBER OF PAGES
80

1& PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
296-102

Approved for public release; distribution is unlimited.

Software Testing Toolkit for Distributed Simulations

by

Mitchell K R Turner
Lieutenant, United States Navy

B.S., United States Naval Academy, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Space Systems Operations)

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Author:

Approved by:

<yitä&jJlK/2i

ä^l Macedonia, Tiif sis Co-Adviser

'OAKJ (y

K an, Roger, Sei

MM'
Rudolf Panholzer, Charman

Space Systems Academic Group

ABSTRACT

This thesis discusses the need for and design of a software toolkit to monitor

Distributed Interactive Simulation (DIS) network performance. Plans to merge virtual

environment and wargaming simulations into combined exercises will have significant

performance effects on existing networks, but the tools to quantify the impact are lacking.

Given the need for performance measurement tools, the network environment is

described and two software development methods, Motif and Tcl/Tk, are considered. The

merits of Tcl/Tk, including extensibility to access DIS networks and ease of application

development, resulted in a programming environment well-suited for this requirement.

The network toolkit design is presented, including the required modifications to

Tcl/Tk. Areas for future research include using the PDU Monitor and the Tcl/Tk

application, and expanding their capabilities.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

D
D

Availability Codes

Dist

A-/

Avail and /or
Special

in

TABLE OF CONTENTS

I. INTRODUCTION 1

H. BACKGROUND.... 3

A. DISTRIBUTED SIMULATIONS 3

B. NATIONAL SYSTEMS AND WARGAME SIMULATIONS 4

1. National Systems 4

2. Wargame Simulations 5

3. Janus Wargame Example 5

C. NEED FOR NETWORK MONITORING TOOLS 6

m. DIS PROTOCOL AND NETWORK ENVIRONMENT 8

A DIS PROTOCOL 8

B. NETWORK LIBRARY 9

C. SIMULATION NETWORK ARCHITECTURE 10

IV. SOFTWARE DEVELOPMENT ENVIRONMENT OPTIONS 11

A MOTIF AND C 11

B. TCL/TK 13

C. BEST ALTERNATIVE 13

V. IMPLEMENTATION AND EVALUATION 15

A TOOLKITDESIGN 15

1. Tk Extensions 15

a. netAppInitx 16

b. disneüib.c 16

2. PDU Monitor Design 16

3. PDU Monitor Features 18

VI. TEST AND EVALUATION 21

A. INPUT ERROR DETECTION 21

B. EXCEPTION HANDLING 23

IV

C. PDU MONITOR PERFORMANCE 23

VH. FUTURE RESEARCH 27

A. NETWISH 27

1. Using netwish 27

2. Extending netwish 27

B. USING THE PDU MONITOR 28

C. MODIFYING THE PDU MONITOR 28

vm. CONCLUSIONS 30

APPENDDC A. C CODE TO ADD DIS NETWORK FUNCTIONS TO TK 31

APPENDIX B. C FUNCTIONS TO IMPLEMENT DIS NETWORK ACCESS 34

APPENDIX C. TCL SCRIPTS IMPLEMENTING THE DIS PDU MONITOR 41

APPENDK D. INSTALLATION INSTRUCTIONS 70

LIST OF REFERENCES 73

INITIAL DISTRIBUTION LIST 74

I. INTRODUCTION

Various warfare and support communities in all of the military services are building

and using computer simulations to test equipment designs and tactical scenarios. While

many of these efforts have been undertaken without consideration of other ongoing

efforts, there are projects sponsored by several agencies, most notably the Advanced

Research Projects Agency (ARPA), to conduct simulations on a computer network and

allow the various wargames and simulators to interact with each other in a "virtual

world." Concurrently, managers of U. S. national systems are developing simulators to

function in a training and exercise role. Incorporation of national systems' data would

enhance the realism of the virtual world and model the interaction between users and the

national systems. (Reddy, 1992, pp. 10-14)

The background for this research centers on the joining of two distinct types of

simulations in distributed networks exercises. The first is a system simulation, or entity

simulator, which refers to computer systems which model operator control with graphical

displays on a monitor or cockpit simulators which are full-scale models of the system of

concern. A single vehicle entity is modeled, and its actions are directly controlled by an

operator in real time, often by input devices such as joysticks. The second simulation type

is the exercise simulation or war game simulator, referring to computer programs which

model the interaction between forces such as army divisions or naval battle groups. The

forces modeled by these wargames are controlled by operators representing force

command staffs. Control instructions, which may or may not be in real time, are input by

keyboard commands, and results of interaction between entities are determined by

programmed probabilistic relationships. Both types of simulations model a virtual world

in which the forces or entities operate. Distributed simulations use a network to bring

entities represented by different computers into the same virtual world. Initial distributed

simulation efforts focused on entity simulators, but further efforts such as the ARPA

project mentioned above attempt to merge the entity and wargame simulators in the same

virtual space.

As the scope of such virtual environment exercises has been broadened, the

increased numbers of players has begun to result in significant effects on network

performance. Knowledge of the impact of larger numbers of participants is limited since

overall control of joint efforts is dispersed among several agencies and network

managers.

All players in network simulations must use the same simulation protocol, and the

Distributed Interactive Simulation (DIS) protocol has become the standard. The DIS

protocol defines standards for application level communication among independently

developed simulators. Entities in the virtual world communicate their status and activities

to other entities via protocol data units (PDU) structured according to the DIS protocol.

(Macedonia, 1994, p. 3)

Network monitoring tools are often available for the operating systems used with the

various computers used to run simulations, but these tools deal only with bulk network

traffic, which may or may not be related to the ongoing simulations. Since the different

types of DIS traffic are not monitored, the impact of simulation participants and their

different activities remains unknown.

The main thrust of this research has been to develop an extensible tool kit that can be

used while distributed simulations are being run and will provide real-time indications of

the network load resulting from increased numbers of players and their specific activities

in the virtual world. This thesis will also present background on the simulation efforts

currently underway, background for the need for a network testing tool kit, and an

investigation of a new software development environment.

H. BACKGROUND

The military services are relying on simulations to a greater extent than ever before,

as resources to provide live training and exercises have become severely limited.

Computer technology has provided the means to represent realistic operational conditions

without the cost or risk to personnel and equipment of live operations in the field.

Computer-based exercises provide the advantages of precise real-time and post-exercise

analysis and the ability to create or re-create very specific scenarios, including those

simulating lethal environments. (Reddy, 1992, pp. 2-5)

Military computer simulations can be divided into two broad categories - those used

for training and exercise support (wargames) and those used for weapons system

development and testing (entity simulations). The scale of simulators can range from

representing one person or vehicle (an entity), such as in a cockpit simulator, to a theater-

level wargame involving Joint Task Force staffs (Reddy, 1992, p. 10). The integration of

multiple entities and simulation types is the underlying idea for distributed simulations.

A. DISTRIBUTED SIMULATIONS

Though the technological advances in simulation implementations have provided

increased realism, the benefits have typically been limited to the specific individual, unit,

or staff using a particular system. The advent of world-wide, high-speed data networks

and distributed software has allowed the possibility of those entities interacting with each

other as if they were in the same operational area, while using simulators in multiple

locations scattered across several time zones. The Naval Postgraduate School (NPS) has

implemented a three-dimensional virtual environment called NPSNET-IV, which allows

users on a network to sense and interact with each other on common, realistic, and

dynamic terrain. To the users it appears as if they are operating in the same space, time,

and terrain. Dynamic changes to the distributed simulation such as explosion craters and

structural modifications appear the same to each player. This is the basis for the concept

of a "virtual world." (Macedonia, 1994, p. 5ff)

The sharing of the space within a virtual world allows the addition of different types

of simulators as well as systems in different physical locations. As long as a system has a

means of sensing the characteristics of the virtual world and can input changes to it (the

protocol for which is addressed in the next chapter), the types of entities that can be

represented are unlimited. A thrust of current ARPA activity is to allow graphic

workstations, advanced entity simulators (e.g., aircraft cockpit simulators), and even

actual operational equipment to participate in the representation of a computer-generated

virtual world (Reddy, 1992, p. 14).

A significant aspect of this type of simulation is that it affords players the realism of

dynamic and unpredictable interaction with each other, as opposed to constructive

simulations where the results of encounters are determined by pre-programmed

probabilities of detection, impact, or kill. As in the real world, outcomes can be

determined by user skill, reaction time, and decision-making ability.

B. NATIONAL SYSTEMS AND WARGAME SIMULATIONS

As NPSNET has been developed to implement a virtual world which is based on

actual terrain characteristics and in which simulated entities can freely move and interact

with other entities, wargame simulations are being developed to use DIS and will

increase the use of the same network resources.

1. National Systems

For example, national systems managers have been building computer systems,

for the purpose of user training and wargaming, to model the use of the national systems.

Some examples follow: (OSO, 1993, pp. 19-50)
• Synthetic Imagery Generation System (SIGS) is designed to provide simulated

national level imagery for military exercises by modeling a visible wavelength
sensor and providing gray-scale photo simulations. Scenes can be built which
reflect atmospheric or daylight conditions.

• Stand-Alone TENCAP Simulator (SATS) is a PC-based system which can generate
and display user-produced platform tracks and ELINT contacts. SATS can generate

messages readable by TRAP (TRE (Tactical Receive Equipment) And Related
Applications) broadcast processors.

• Exercise Capability (EXCAP) is an intelligence data simulator that can provide
information in a variety of message formats to support tactical exercises,
operational tests, and training events. EXCAP models national and theater
collection systems, and provides tools to build exercise scenarios and perform
collection planning and tasking.

• National Wargaming System (NWARS) is an intelligence asset simulator which
supports training and exercises. It models tasking, collection, and reporting of
national systems while interfacing with various scenario generators and other
simulators. NWARS reports can be distributed by operational command, control,
and communications systems.

2. Wargame Simulations

The purpose of intelligence-based wargame simulations is to model the

performance of various intelligence collection and reporting systems. The characteristics

and many of the actions of the entities which are being monitored by the simulated

national systems are planned in advance and incorporated into programmed scenarios.

The possibility of real-time modification of the terrain and reaction to other players'

actions is very limited.

If simulators of both types - individual entity and wargame - could operate in

the same distributed architecture, their strengths could be combined to enhance the

realism of both. The virtual world would provide a realistic and dynamic scenario for the

national systems models to monitor, while the intelligence picture generated could be

used by the entities in the virtual world to operate as they would in a live tactical

environment.

3. Janus Wargame Example

The Janus wargame simulator is an example of current efforts to merge DIS and

constructive simulations. Janus is a two-sided ground combat simulation of engagements

up to the brigade versus division level. It runs on one machine and displays opposing

forces on several. Controllers at each workstation interactively direct actions of their

units. Engagements between individual land-based fighting systems are stochastic, i.e.,

the results of the engagements depend on probability. (Johnson, M., 1994, p. 4)

Work at the Naval Postgraduate School has resulted in the development of the

World Modeler, which translates the DIS protocol so Janus can send and receive PDUs

on a DIS network (Johnson, M., 1994, p. 9). Since Janus models the actions of forces, the

number of entities in a distributed simulation is significantly increased when Janus is

merged with individual entity simulators. The specific impact that Janus would have on

the network was unknown as the World Modeler was built, demonstrating the need for

tools to obtain a clearer picture of network activity.

C. NEED FOR NETWORK MONITORING TOOLS

Current distributed simulations are capable of generating significant network traffic.

Network traffic volume is directly related to the number of entities in a simulation and

how often changes in their states must be broadcast to other participants. Knowledge

about the impact of increasing numbers of entities operating in the virtual world has been

limited to real-time indications of bulk network traffic or post-exercise analysis of more

specific data. These two observation methods have significant drawbacks. Measuring the

total network load gives little or no indication of the traffic volume related only to the

simulation. After-the-fact analysis provides a picture of the load as a function of time, but

this picture is isolated from the many other variables present when the measurements

were taken.

With the exception of post-exercise analysis of PDU rates (Macedonia, 1994, p. 12),

statistics concerning the traffic loads from current DIS simulation efforts are not

available. Visits to the National Test Facility (Colorado Springs) and the Naval Research

Laboratory (Washington) revealed that data collection has been limited to bandwidth

utilization statistics for all network activity. Even less understood is the future network

load resulting from the participation of emerging wargame systems such as the national

systems simulators described earlier. The traffic resulting from modeling the observation

and reporting of actions of all the entities (in addition to the reporting of actions, status,

and location by the entities themselves) has not been quantified, leaving as an uncertainty

the impact on the current network architecture and limiting the ability to define future

requirements.

The integration of the Janus system with DIS described earlier is an excellent

example of the current lack of understanding of the network traffic loads caused by

merging new wargame and entity simulations in a single DIS network. Observation of the

World Modeler development revealed that the integration of Janus into DIS resulted in

unexpected network impacts. The World Modeler programmer used a prototype version

of the PDU monitor developed in this research to ascertain and mitigate the impact of the

Janus system on the DIS network.

Merging the activity of disparate systems into a single distributed simulation has

necessitated the development of a common means of sharing data between participants

and representing the characteristics of the virtual world. The DIS protocol provides this

common link, as well as the basis for tools to monitor the impact of the simulations on

the data network.

A network monitoring toolkit must be designed with the DIS protocol as its

foundation, to separate the traffic generated by the various uses of the computer network,

such as file transfers and text, voice, and video messaging, and the traffic generated by

distributed simulations. This will allow the effects of the DIS-related activities to be

isolated from other network activities. A limited tool has been built at NPS to count DIS

data packets and collect the volume counts in text files (Macedonia, 1994, pp. 12-13), but

use of the data is delayed hours or days until the exercise is completed or at least frozen.

Then the data must be transformed into a format, preferably graphical, which can be used

by analysts. When the results are available, they are divorced from the events occurring

when the data was collected.

A monitoring tool built on DIS protocols should present its results using a real-time

graphical display of the DIS network environment, which will aid in traffic analysis and

troubleshooting as the simulation runs. Development and use of such a tool is the topic of

this thesis and will be described in greater depth in the chapters that follow.

III. DIS PROTOCOL AND NETWORK ENVIRONMENT

To observe the effects of DIS-related activities which occur during distributed

simulations, a network performance measurement toolkit must interface with the specific

protocol used for communication between hosts. The following paragraphs discuss the

relationship between the network toolkit developed for this research and the DIS network

environment.

A. DIS PROTOCOL

Version 2.03 of the Distributed Interactive Simulation (DIS 2.03) protocol defines

standards for application level communication among independently developed

simulators (e.g., full-scale cockpit simulators, computer models, and instrumented live

vehicles operating in the field) (Macedonia, 1994, p. 3). NPSNET-IV uses DIS 2.03

protocol data units (PDU) to communicate information between entities. The PDUs are

sent on the network using Internet Protocol (IP) Multicast, which allows the IP packets to

be sent to defined groups of hosts instead of being broadcast to all hosts.

The DIS PDUs convey information about individual entities, events, and the state of

the simulation exercise. There are 27 types of PDUs which are used to carry information

about entity states (location and movement), activities (e.g., weapons firing or munitions

detonation), supporting actions (re-supply and repair), and simulation control (Institute,

1993). The details of the structure of each PDU type are fully explained in the Institute

for Simulation and Training (1993) document; some representative examples of the

various PDU types are presented below:

• Entity State (type 1) - contains type of entity, location, course, speed, altitude, flag,
markings, and capabilities.

• Fire (type 2) - information about source, type, and movement of fired munitions.

• Repair Complete (type 9) - report from damaged entity after repair operations.

• Stop Freeze (type 14) - signal to freeze the distributed simulation exercise.

B. NETWORK LIBRARY

The network toolkit must read PDUs as they arrive on the network and obtain

relevant information from the IP packet header or the PDU structure; for the purpose of

this research, the PDU type and sending host are required. NPSNET-IV includes a library

of C language functions to directly access the DIS network. The same library functions

are used by all applications developed for use on NPSNET. These functions were

incorporated into the network toolkit, which means that changes in the network code will

not require major software modifications of the toolkit. The application can simply be

recompiled with the new library functions.

The monitoring process begins with a call to the library function net_open. This

function establishes a connection with a DIS network using a specified network port,

multicast group address, and exercise identification. Net_open spawns a process (called

receiveprocess) which continually monitors the network for incoming PDUs and copies

them to a queue (called the arena). Application software, such as the PDU Monitor

developed in this research, uses the netjead function to read PDUs from the queue.

Figure 1 shows the interaction of receiveprocess and netjead. The netjead function

Simulation Thread

net_write() on
each frame

I net_read() on
each frame

Arena

I receiveprocessQ

Network Thread

I sendtoQ I recvfromQ

UDP/IP/Operating System

I Local Area Network

Figure 1. NPSNET-IV Network Library Functions (Macedonia, 1994, p. 20)

returns the number of pending PDUs in the queue, the data in the structure of the next

PDU, the PDU type (as an integer value), and address information from the IP packet

header. The advantage of having separate receiveprocess and net_read functions is that

receiveprocess runs constantly with the sole purpose of ensuring no arriving data is lost,

while net_read runs at either user-specified intervals or in between the application's other

activities (such as screen updates or calculations). However, net_read must still be called

often enough to prevent the queue from filling up, or PDUs will be lost. (Macedonia,

1994, p. 20)

C. SIMULATION NETWORK ARCHITECTURE

DIS 2.03 simulations can be run in a broadcast or multicast mode. In a broadcast

mode, all hosts on the network receive all PDUs. This mode can be used in a Local Area

Network (LAN) or private network environment, since broadcasting all exercise data to

every host would impact almost every system. The multicast mode allows hosts not

subscribing to a defined group to automatically reject packets not destined to that

computer.

The multicast mode allows existing internetworks and commercial services to be

used for distributed simulations, rather than relying on private networks. Since the IP

Multicast protocol handles the delivery of packets, the DIS protocol is independent of the

topologies and technologies of the local and long-haul services. (Macedonia, 1994, p. 15)

10

IV. SOFTWARE DEVELOPMENT ENVIRONMENT OPTIONS

Several considerations were examined in choosing a software development

environment to develop a PDU monitoring tool. The program must be able to access the

DIS network library functions, which are written in C. The resulting application must be

able to display information in a windows environment, read the network queues, perform

simple calculations, and update displayed graphs quickly enough that the network queue

does not fill up and overflow. The programming language should be conducive to future

modifications of the monitoring tool as well as provide the flexibility for other uses in the

network environment. Two options were considered, the first being the standard method

for programming in the graphical Xwindows system, the second a new toolkit developed

for rapid development and uncomplicated testing and modification. Included in the

description of each method is a small program which creates a button, assigns to it the

text "Hello world from UNIX REVIEW," and gives the button the functionality to quit

the program (Johnson, E., 1994, pp. 87-90). These short programs are included as

examples of the difference in programming complexity between languages being

considered.

A. MOTIF AND C

The standard for the graphical window interface commonly used on computer

workstations is X, a protocol designed for networks and usually implemented in C. Motif

is a window manager which controls the display of widgets (the components of

windows), which include buttons, menu bars, and text entry boxes, in accordance with the

X protocol standard. Like X, Motif is a library of C programs that can be used in

applications, resulting in pre-programmed widgets that are consistent with X. (Ferguson,

1994, pp. 6-10)

Programs written in Motif/C are complex, take a considerable time to compile or

recompile after a change, and require a solid understanding of both C and Motif to

li

develop or modify. However, since the resulting application is compiled and ran as a

binary program, the speed of a program developed in Motif/C is well-suited for real-time

processing. The "Hello World" program in Motif follows (Johnson, E., 1994, p. 90):

/* Short Motif hello world program. */

#include <Xm/Xm.h>
#include <Xm/PushB.h> /* XmPushButton */

void exitCB(Widget widget, XtPointer client_data, XtPointer call_data)

{ /* exitCB */

exit(0);

} /* exitCB */

int main(int arge, char** argv)

{ /* main */
Widget parent;
XtAppContext app_context;
Widget hello;

parent = XtVaAppInitialize(
&app_context, "UNIXReview", (XrmOptionDescList) NULL,0,&argc,&argv

(String *) NULL, NULL);

hello = XtVaCreateManagedWidget(
"hello", xmPushButtonWidgetClass, parent, NULL);

XtAddCallback(hello, XmNactivateCallback, (XtCallbackProc) exitCB,
(XtPointer) NULL);

XtRealizeWidget(parent);
XtAppMainLoop(app_context);

} /* main */

The following resource file works with the hello.c program:

! X resource file for UNIXReview apps
i

*hello.labelstring: Hello world from UNIX REVIEW
*hello foreground: black
*hello background: orange
♦title: UNIX REVIEW Tk Test

12

B. TCL/TK

Tel is a shell interpreter which implements frequently used functions written in C.

The interpreter can process the commands individually or as a script from a text file. The

commands include the ability to access the standard types of simple and complex

variables as well as control structures such as while and for loops and if and case

statements. A unique aspect of Tel is that the user can implement a frequently used

function in C and build it into the Tel interpreter. The new command can then be used in

programming Tel scripts or from the Tel command line. (Ousterhout, 1994, pp. 7-23)

Tk, like Motif, is a library of C programs which implement widgets consistent with

the Xwindows environment The library is compiled with the Tel interpreter, which adds

a graphical programming capability to the interpreter. The user can easily build windows

interfaces in scripts with very few lines of easily understood code, a significant advantage

over Motif. (Ousterhout, 1994, pp. 145-155)

Because Tcl/Tk is both a high-level and interpreted language, resulting applications

do not run as fast as compiled C programs. However, this is offset by rapid development

time, ease of learning to program, and the ability to enter commands interactively. Since

the language is not compiled, testing, debugging, and modification can be completed with

immediate feedback, as opposed to significant delays while recompiling an application

after each minor change. The "Hello World" program in Tcl/Tk follows (Johnson, E.,

1994, p. 89), implementing the functionality of 20 lines of Motif code in six lines:

#!/local/bin/wish -f
Tcl/Tk hello world script.

button .button -text "Hello world from UNIX REVIEW"
.button configure -command "destroy ."
.button configure -foreground black -background orange
•button configure -activebackground orange2
wm title . "UNIX REVIEW Tk Test"
pack .button

C. BEST ALTERNATIVE

The most striking aspect of the comparison between Motif/C and Tcl/Tk is the

reduction in code complexity when using the latter. The details of X are hidden from the

13

programmer by Tel, but this could also limit flexibility in rare cases (the Tk library of

widgets is very robust, so most requirements will be met without having to resort to

creating new widgets or widget options). Since Tcl/Tk is a library of C programs, it can

be extended to access the DIS network library functions in a similar fashion to a program

developed with Motif. The ease of programming and modification, combined with access

to a standard Xwindows interface, and the ability to use high-level commands

interactively, favor the Tcl/Tk programming environment. However, the speed of the

resulting application must be considered since the desired toolkit must process network

traffic in real-time. Because of the processing power inherent in currently available Unix

workstations, it was hypothesized that the speed issue was not significant when compared

to the advantages of Tcl/Tk. Therefore Tcl/Tk was chosen as the software development

environment for this project. Tcl/Tk has the added advantage of no monetary cost, since it

is available at no charge from the University of California at Berkeley and several other

Internet software archive sites. Tcl/Tk is distributed as source code which can be

compiled on many types of Unix workstations. (Ousterhout, 1994, pp. 1-2)

14

V. IMPLEMENTATION AND EVALUATION

The DIS PDU Monitor was designed to provide a real-time graphical display of PDU

traffic volumes according to PDU type. Taking advantage of the flexibility inherent in the

Tel programming environment, an extended Tk shell was built which can interact with a

DIS network and a workstation's system clock. A Tk script was written to display

graphical traffic volume charts based on data collected using the extended functions.

The resulting Xwindows-based tool was used to measure actual and simulated

network loads to determine the performance of the PDU Monitor. The tests also served to

measure the viability of the Tcl/Tk programming environment for real-time applications.

The following sections described the design of the toolkit and the results of its testing.

A. TOOLKIT DESIGN

This section discusses the extension of Tk to include functions to access DIS

networks and the use of the extended Tk shell to build a graphical application.

1. Tk Extensions

Tcl/Tk is a graphical shell built by linking together C functions and programs

which provide commonly used capabilities into an interpreter which uses these routines

as individual high-level commands. The commands can be used interactively on a

command line or batch processed as a program script from a text file.

A C extension to Tk, written by AT&T Bell Labs, was available to draw various

types of graph widgets. Functions to interact with the system clock were obtained from

the TclX package written by Karl Lehenbauer and Mark Diekhans (available via

anonymous ftp from harbor.ecn.purdue.edu:/pub/tcl). To interact with the network, C

functions were written to access the DIS network code used by all NPSNET-IV

applications. Tk was then modified to include the graph, clock, and network capabilities.

To extend the capabilities of Tk, functions to implement new commands must

be written in C. The new functions must be declared in the TkAppInit.c program, which is

15

part of the Tk distribution, or in a separate Applnitx program. The latter approach allows

the distribution of the extension as a package which can be applied to different versions

or extensions of Tk (Ousterhout, 1994, pp. 305-310). To implement this approach, the

following two files were used:

a. netAppInitc

This file is a modified version of TkAppInit.c, a generic C program to

incorporate new commands into the Tk shell. Each command type is declared in the

program's declarations. In the main program body each command is named and defined.

This file is compiled and linked with disnetlib.c, the graph and clock functions, and the

rest of the Tk functions to build a new interpreter called netwish. Source code for

netAppInit.c is in Appendix A.

b. disnetlib.c

This file contains C functions to implement the DIS network access

commands. Each function returns its result to the Tk interpreter. Source code for

disnetlib.c is in Appendix B. The following functions are defined:

• netopen - initializes the program to access a DIS multicast network with optionally
specified port, network group, time-to-live (TTL), and exercise identification
parameters.

• netopenbcast - initializes the program to access a DIS broadcast network with an
optionally specified exercise identification parameter.

• pduread - reads the network PDU queue to obtain the next PDU, and returns the
PDU type and an unsigned integer representing the 32-bit network address of the
host which sent the PDU.

• pduwrite - writes a PDU of the type specified to the network queue; not all of the
27 DIS PDU types are implemented since this command was added for
demonstration and test purposes, but can be extended.

• gethostid - queries the network name server with a host name and obtains the 32-
bit IP address for that host. (Stevens, 1990, pp. 264-265,393-395)

• netclose - terminates network access.

2. PDU Monitor Design

The monitoring tool was built using the Tel Stripchart function library written

by BBN Systems and Technologies. These functions use the graph and clock functions to

demonstrate an x-y graph which scrolls along the x-axis as time passes. It was necessary

16

to modify these routines to incorporate the DIS network commands to collect data to

display on the graph, as well as to allow implementation of the features listed below.

The program provides the user with a button-controlled dialog box to choose the

type of DIS network and to enter the desired network parameters, and then opens the

network with those parameters (Figure 2 shows the parameter input window for multicast

networks).

Figure 2. Multicast Network Parameter Input Window

The program then enters a "do forever" loop to collect PDUs from the network

queue for a user-specified time interval, average the counts of each PDU type over that

interval, update all visible graphs with the new averages, and check for user initiated

menu selections. When the user selects the "Exit Program" menu option, the program

performs a network close and exits. While it is running, the user may select any of the

menu options to access the features described below or modify the display parameters for

17

the stripcharts. Appendix C contains the Tel code to implement the PDU Monitor, and

Appendix D contains instructions to obtain and install the program.

3. PDU Monitor Features

The PDU monitor is designed to be flexible enough to meet varied display

requirements for the network traffic volumes. This flexibility is especially useful in

localizing problems caused by specific hosts or traffic types when troubleshooting

network irregularities, and is achieved through the following features:
• Chart Prints: The user can save any chart to a PostScript file at any time. The file

is saved with a time stamp in its name and can be printed on the network printer.

• Sampling Interval: The user can vary the interval over which the network is
sampled. Short sampling times provide feedback on every change in traffic volume,
while longer intervals smooth the volume curve by showing an average rate.

• Time Scaling: Charts can be instantly modified to show the data over various
lengths of time. Short time windows allow the user to see a detailed picture of the
graph movements, or the charts may be configured to show longer periods of data
collection with less detail.

• Multiple Charts: The user can display separate charts for different PDU types at
the same time. This allows observation of data rates that are usually orders of
magnitude apart, depending on the PDU type.

• Host Selection: The monitor can observe traffic from all hosts sending PDUs on
the network, or the user can select an individual host to monitor.

• Online Help: A complete help system is available from the menu. Instructions are
available for every menu option available, as well as general information about the
program. A representative help window is shown in Figure 3.

Figure 3. Help Window for "Print Chart" Menu Option

18

• Xwindows Consistency: The monitor's windows operate in the same manner as
other window-oriented programs in the X environment. This allows the user to use
all the window configuration options normally available, including stretching and
shrinking of chart windows.

Figure 4 shows a PDU monitor chart - for the Entity State PDUs (one of the 27

DIS PDU types) - and several of the features listed above. The chart's x-axis label

includes the size of the displayed window, in this case indicating that the last two minutes

of data are visible. The y-axis shows the PDU rate after each sampling interval. For

example, the peak load for Entity State PDUs (about 33 PDU/second) occurred at time

14:17:25. The graph title shows the last data rate value. Above the chart is the PDU

Monitor Control Panel, which includes a menubar to access the various program features,

as well as a status message section to report program activities. The status message in

Figure 4 shows the hosts currently being monitored (all hosts) and the sampling interval

chosen by the user (1 second). The standard X window control icons are visible across the

top of each window, allowing stretching, moving, and changing the window to and from

an icon.

19

File Options ChartSelect Host Help
Host: all
Network sampling interval: 1 sec

Aug.29.1994 14:17:40 PDU Rate = 5.0/sec
40-1

Time (2 minute window)
MirifcBtt^iM.^aMftlwiw..»,

Figure 4. PDU Monitor Control Panel and PDU Chart

20

VI. TEST AND EVALUATION

Three areas were addressed during testing of the PDU Monitor. Where the user has

opportunity to modify the operating configuration of the program, checks were

implemented to ensure the modifications did not cause program errors. The program was

observed to determine its response to unexpected situations, whether caused by user,

computer, or the network. Finally, performance of the monitor was measured to

determine its data handling capacity.

A. INPUT ERROR DETECTION

The PDU monitor was designed to take advantage of buttons and menu choices

wherever possible to limit the possibility of incorrectly typed information. For text

information that must be entered by the user, error detection and/or correction was built

into the program. Input values are checked before the input window (Figure 5) is closed

and the input accepted.

Figure 5. Text Input Window

Numbers such as the sampling interval, chart time window, TTL, and exercise

identification are checked to preclude any extraneous non-numeric characters and to

ensure the numbers are within a valid range. A popup error window notifies the user of

the specific error and an opportunity for re-entry is provided. Non-integer values are

simply rounded.

21

When a host name is entered to select a specific host to monitor, the name is passed

to the network domain name server. If the server cannot locate that host on the network, it

notifies the monitor program. However, it cannot be determined from the error whether

the host does not exist (i.e., the name was spelled incorrectly), or if there is a problem

with network connectivity from the computer the PDU monitor is running on. The user is

advised to check the host name spelling, and if necessary, use a different computer with

connectivity known to be good. This can be verified by using a Unix telnet, ftp, or ping

command to the desired host.

There are some parameters, such as port number, multicast group, or exercise

number, which may be valid in terms of entry requirements but not for the situation the

user desires to monitor. For example, the user may enter exercise number 23 in the

opening parameter selection window. A proper net open will be effected, but if the

exercise is actually running with an identification of 25, the monitor will not see any

traffic from that simulation. To correct such situations, the monitor includes a menu

option to display all configurable parameters that are currently active. This window,

shown in Figure 6, can be used to aid in troubleshooting unexpected monitor

performance, such as when an exercise is underway but no traffic is reflected on the

charts.

SWX5SWWTO?:)J£>?K««««««!2?#^ S^KCSSS^ySFK^

Figure 6. Configuration Parameter Display Window

22

B. EXCEPTION HANDLING

Most errors will occur from invalid user input As noted above, the user will be

notified of the error, shown the proper format for the input, and given the opportunity to

correct the entry. Should he abort the entry process by pressing the cancel button, the

program will proceed with the previous value for that parameter.

If the user attempts to print a chart that does not exist, or initiate a chart that already

exists, the operation is not executed and he is notified of the error. Other existing charts

will be unaffected.

Failure to open the network with the parameters entered by the user will cause the

network code to return a failure message to the shell from which the monitor was started

and will terminate the monitor program. In some cases, particularly when attempting to

use a network port already being used by another program, the network code will not

return control to the monitor program. In this case, the user must terminate the monitor

with a break (control-c) and verify that all netwish processes in the originating shell are

terminated (using the Unix "ps" command and killing any remaining netwish processes).

C. PDU MONITOR PERFORMANCE

The monitor has been tested using both live network exercises and simulated traffic

loads. The use of actual exercises has demonstrated the validity of the data collection

interface and its ability to monitor network traffic. However, since traffic loads in a real

simulation are the result of a non-controlled environment, they could not be used to verify

the correctness of the charts plotted by the PDU monitor. Additionally, the traffic loads

generated during actual exercises were not large enough to approach the maximum

capacity of the PDU monitor.

To obtain more concrete verification of the monitor charts' validity, a small Tel script

using the "pduwrite" command was written to generate specific traffic volumes, which

were correctly reflected on the monitor charts. This script was also used to generate very

large traffic volumes to attempt to determine the capacity of the monitor. Proper

performance was verified at over 500 PDUs per second, but specific numbers were

23

impossible to obtain since the sending hosts overloaded their network queues when

sending at rates between 200 and 300 per second. This points to a conclusion that the

PDU monitor is more than capable of keeping up with any conceivable traffic load that

can be generated by the current network configuration.

Figure 7 shows the results of test traffic loads applied to the PDU Monitor. The PDU

rate was incrementally increased from 100 PDUs/second to 200, then 300, and finally

ffiyZyXivi'frKCSX' ^^',>y'^^^yfmTr^mnmnf^'^^^' gg3jj^gggggQg22^2&ttS&aa»Hf

$8*581 BrePDUs hlQ
Sep.12.1994 10:41:10 PDU Rate = 0.0/sec

6OO-1

500-

300-

4>

U- 200-

M

100-'*»"v\d w

T—i—r T—i—i—r
=3Sz2

i

T—i—r-n
:4o':Oo' •36:40 :36:20

Time (6 minute window)

T—r~n
i

Figure 7. PDU Chart with Test Traffic Loads

24

400 per second. At the 400 rate, some aberrations can be seen as the sending hosts had

difficulty sending PDUs at constant, high rates, as discussed above. A very high traffic

volume was obtained, but could only be maintained for a short time, as shown in Figure

8. However, the Monitor did demonstrate its ability to process well over 600 PDUs per

second, and the sharp drop reflected on both charts after traffic flow was terrninated

shows that no processing backlog was built up.

£Q£0£^^£tBwÖfttitiätfttaM*aM
fi^KS£äo*S9S5^j&-M^<^^^

«a! Fk&PDUs Wä

Sep.12.1994 10:50:09 PDU Rate = 0.0/sec
900-1

Figure 8. PDU Chart with Maximum Traffic Load

25

Performance of the monitor can be affected by several factors, though almost all

performance loss will only be of concern when traffic volumes are abnormally high. Most

degradation that can occur results from the computer performing other activities in

addition to the PDU monitor. To obtain the best performance, the monitor should not be

run on a computer that functions as a server for many user accounts or system activities.

During a major exercise, routine use of the monitor's computer should be limited (as

would the use of the machines actually ninning the simulation).

Keeping more than four or five charts open simultaneously will slow the monitor

down at very high data rates (more than 200-300 per second); this will not usually be a

problem since even large computer displays cannot adequately show large numbers of

charts. Opening and closing charts will slightly affect the PDU counts as the opening or

closing process is occurring (usually about a second), so the rate value will be lower than

actual while the process occurred and slightly higher immediately after; this will only be

noticeable if the network sampling rate is very small (1-3 seconds).

26

VII. FUTURE RESEARCH

Research for this thesis highlighted several areas for follow-on work related to

developments in the use of virtual reality and networking. In addition to providing the

netwish toolkit to access DIS networks, the efforts to build the toolkit demonstrated the

utility of Tcl/Tk for expanding the capabilities of the toolkit. The PDU Monitor

application that was developed also lends itself to continued use and expansion.

A. NETWISH

The fact that Tcl/Tk is an interpreted language allows the commands implemented

for use in the PDU Monitor to be used interactively in the netwish shell or in applications

built with scripts. The inherent flexibility of Tcl/Tk will allow the commands in netwish

to be modified or new commands to be added.

1. Using netwish

The advantages of the Tcl/Tk shell have already been seen in this network

application. To test the PDU Monitor, a simple script was written to generate false PDUs

on a network. The pduwrite and pduread commands were also used interactively for

testing purposes. Users desiring to interact with a DIS network, but not needing or

wanting to run an entity simulator, can use netwish commands interactively or in a script

to obtain precise results. This method provides complete control of the use of the

network, whereas a simulator's sending and processing of traffic is variable and usually

unknown.

2. Extending netwish

For this thesis, Tk was initially extended only to add the functionality necessary

to monitor the network, since the PDU Monitor is a read-only application. When the

limitations of existing methods of generating network traffic became obvious while

testing the Monitor, the pduwrite function was easily added to Tk as well. This new

function does not include all PDU types, but they can be added. The function puts

27

dummy data in the PDUs, but it could be modified to generate traffic that will actually

affect a live simulation.

Implementation of new commands is only limited by the imagination. For

example, the gethostid command was written in response to a desire to be able to

selectively monitor hosts sending PDU traffic. As user requirements for the DIS toolkit

change, it is easily adapted.

B. USING THE PDU MONITOR

The PDU Monitor provides the ability to determine the impact of various activities

as they occur in the network environment. This will not only enable determination of

current network capabilities, but will allow better preparation for future growth and

development of software that makes better use of scarce assets.

The PDU Monitor has already been used by one developer to test, troubleshoot, and

optimize the network access of his application. Developers should begin using this tool as

soon as their program can send traffic on the network, so the resulting software will not

unleash an unknown, and possibly unnecessary, traffic load.

The development of the PDU Monitor provides the tools for another researcher to

make an exhaustive study of network activities, during both live and scripted simulation

exercises. Particular attention should be paid to generating unusual traffic types or loads

and monitoring the impact on the network.

C. MODIFYING THE PDU MONITOR

Since the PDU Monitor is implemented by a script contained in a simple text file, it

can be easily modified to adapt to different display or configuration requirements. If new

netwish commands are added, they can be quickly integrated into the Monitor.

The PDU Monitor can segregate traffic by PDU type or sending host. There are

several interesting options for growth in this area. The pduread command returns the

PDU type and sending host of each PDU. It does not read the bulk of the PDU structure,

where information about the entity or message is stored. If the command were modified

28

to read other PDU fields, the Monitor could be made to segregate traffic based on such

things as entity type, national flag, or location or movement in the virtual world.

Only one sending host can be monitored at a time, or the aggregate of all hosts. The

checks for the hostname could be modified to check only as far as the domain name, so

localized groups of hosts could be monitored. This might require some modification of

the gethostid function.

As with the netwish shell itself, there is no limit to the number of ways this

application can be changed. What is unique is that this application is built with an

extensible toolkit and can be rapidly modified by users unfamüiar with the Xwindows

implementation and programming details of their system.

29

VIII. CONCLUSIONS

The merging of virtual world and wargaming simulations into a coherent, distributed

network environment allows the potential to drastically alter current paradigms in

military training and weapons development. The effects will be most significant in areas

that previously have involved potentially lethal environments, especially as the realism of

simulations increases.

The joint operation of many entity and wargame simulations, linked in a single

exercise via computer networks, can provide the necessary realism to achieve significant

improvements in training and testing procedures. However, the resulting changes in the

network activity which will accompany the advancements in these simulations will also

be drastic and to date unknown, at least on a real-time basis. The development of the

PDU Monitor and tools for other DIS network applications will allow measurement of the

current network environment. The tools are also now available for software developers to

evaluate the impact that their programs will have on the network as they build

applications to meet current and future requirements.

The goal of this thesis has been to develop tools which provide detailed real-time

knowledge of the impact of distributed simulations on networks. Such knowledge is

critical as a basis for intelligent decision making regarding development of the DIS

network architecture.

30

APPENDIX A. C CODE TO ADD DIS NETWORK FUNCTIONS TO
TK

/* File: netAppInit.c
* Description: Provides a version of the Tcl_AppInit procedure to
* extend Tk to include DIS network functions
* Revision: 1.0 - 12Aug94
*
* Author: Mitch Turner
* Code 3A, Naval Postgraduate School
*
* Internet: mkturner@nps.navy.mil
*
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
* FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
* PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
* CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
* UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/

#ifndef lint
static char rcsid[] = "$Header: /user6/ouster/wish/RCS/tkAppInit.c,v 1.8
93/08/26 14:38:24 ouster Exp $ SPRITE (Berkeley)";
#endif /* not lint */

#include "tk.h"

/*
* The following variable is a special hack that allows applications
to be linked using the procedure "main" from the Tk library. The
variable generates a reference to "main", which causes main to
be brought in from the library (and all of Tk and Tel with it).

/

31

extern int main();
int *tclDummyMainPtr = (int *) main;

/* Declarations for xygraph widget. Requires file graph.c implementing
* Bell Labs graph widget.
*/

extern Tcl_CmdProc GraphCmd;

/* Declarations for clock functions. Requires following files from tclX
7.3:
* tclExtdlnt.h tclExtend.h tclXconfig.h tclXclock.c
* tclXcnvclock.c tclXgetdate.c tclXutil.c
*/

extern Tcl_CmdProc Tcl_GetclockCmd;
extern Tcl_CmdProc Tcl_FmtclockCmd;
extern Tcl_CmdProc Tcl_ConvertclockCmd;

/* Declarations for DIS net functions. Requires disnetlib.c
*/

extern Tcl_CmdProc dis_NetOpenCmd;
extern Tcl_CmdProc dis_NetOpenBcastCmd;
extern Tcl_CmdProc dis_PduReadCmd;
extern Tcl_CmdProc dis_NetCloseCmd;
extern Tcl_CmdProc dis_PduWriteCmd;
extern Tcl_CmdProc dis_GetHostCmd;

/*

* Tcl_AppInit
*
* This procedure performs application-specific initialization.
* Most applications, especially those that incorporate additional
* packages, will have their own version of this procedure.
*
* Results:
* Returns a standard Tel completion code, and leaves an error
* message in interp->result if an error occurs.
*
* Side effects:
* Depends on the startup script.
*
* :
*/

int
Tcl_AppInit(interp)

Tcl_Interp *interp; /* Interpreter for application. */
{

Tk_Window main;
main = Tk_MainWindow(interp);

32

/*
* Call the init procedures for included packages. Each call should
* look like this:
*
* if (Mod_Init(interp) == TCL_ERROR) {
* return TCL_ERROR;
* } where "Mod" is the name of the module.
*/

if (Tcl_lnit(interp) == TCL_ERROR) {return TCL_ERROR;}
if (Tk_Init(interp) == TCL_ERROR) {return TCL_ERROR;}
/*
* Call Tcl_CreateCommand for application-specific commands, if
* they weren't already created by the init procedures called above.
*/

/* Add xygraph command. Note ClientData argument of "main" vice NULL. */
Tcl_CreateCommand(interp, "xygraph", GraphCmd, (ClientData) main,

(Tcl_CmdDeleteProc *) NULL);

/* Add clock commands */
Tcl_CreateCommand(interp, "getclock", Tcl_GetclockCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "fmtclock", Tcl_FmtclockCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand<interp, "convertclock", Tcl_ConvertclockCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);

/* Add DIS network commands */
Tcl_CreateCommand(interp, "netopen", dis_NetOpenCmd, (ClientData) NULL,

(Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "netopenbcast", dis_NetOpenBcastCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "pduread", dis_PduReadCmd, (ClientData) NULL,

(Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "netclose", dis_NetCloseCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "pduwrite", dis_PduWriteCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "gethostid", dis_GetHostCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);

/*
* Specify a user-specific startup file to invoke if the application
* is run interactively. Typically the startup file is "-/.apprc"
* where "app" is the name of the application. If this line is
* deleted then no user-specific startup file will be run under any
* conditions.
*/

tcl_RcFileName = "-/.netwishrc";
return TCL_OK;

}
/* End netAppInit.c */

33

APPENDIX B. C FUNCTIONS TO IMPLEMENT DIS NETWORK
ACCESS

/* File:
* Description:
* Revision:
*
* Reference:
*
*
*
*
*
*
*
* Author:
*
*
* Internet:
*
*/

disnetlib.c
Functions to give Tk DIS access capabilities.
1.0 - 12Aug94

Military Standard—Protocol Data Units for Entity
Information and Entity Interaction in a Distributed
Interactive Simulation (DIS) (30Oct91)

IEEE P1278 (DIS 2.0)

Tel and the Tk Toolkit - Ousterhout

Mitch Turner
Code 3A, Naval Postgraduate School

mkturner@nps.navy.mil

#include "tcl.h"
iinclude "disdefs.h"
#include <netdb.h>

/* NetOpenCmd - netopen() */

/* Arguments : multicast addressing info
*
* Description : This function opens a DIS multicast network,
* establishing the connection for sending and receiving.
*/

int
dis_NetOpenCmd (clientData, interp, arge, argv)

ClientData clientData;
Tcl_Interp *interp;
int arge ;
char 'argv;

{
/* Command line option */

int op = 0;
extern char *optarg;

/* Multicast defaults */

char * port;

34

APPENDIX B. C FUNCTIONS TO IMPLEMENT DIS NETWORK
ACCESS

/* File:
* Description:
* Revision:
*
* Reference:

*
*
*
*
*
*
* Author:
*
*
* Internet:
*
*/

disnetlib.c
Functions to give Tk DIS access capabilities.
1.0 - 12Aug94

Military Standard—Protocol Data Units for Entity
Information and Entity Interaction in a Distributed
Interactive Simulation (DIS) (30Oct91)

IEEE P1278 (DIS 2.0)

Tel and the Tk Toolkit - Ousterhout

Mitch Turner
Code 3A, Naval Postgraduate School

mkturner@nps.navy.mil

#include "tcl.h"
#include "disdefs.h"
#include <netdb.h>

/ **/
/* NetOpenCmd - netopen() 7
/ **/

/* Arguments : multicast addressing info
*
* Description : This function opens a DIS multicast network,
* establishing the connection for sending and receiving.
*/

int
dis_NetOpenCmd (clientData, interp, arge, argv)

ClientData clientData;
Tcl_Interp *interp;
int arge ;
char "argv;

{
/* Command line option */

int op = 0;
extern char *optarg;

/* Multicast defaults */

char * port;

34

/*
* Call the init procedures for included packages. Each call should
* look like this:
*
* if (Mod_Init(interp) == TCL_ERROR) {
* return TCL_ERROR;
* } where "Mod" is the name of the module.
* /

if (Tcl_Init(interp) == TCL_ERROR) {return TCL_ERROR;}
if (Tk_Init(interp) == TCL_ERROR) {return TCL_ERROR;}

/*
* Call Tcl_CreateCommand for application-specific commands, if
* they weren't already created by the init procedures called above.
*/

/* Add xygraph command. Note ClientData argument of "main" vice NULL. */
Tcl_CreateCommand(interp, "xygraph", GraphCmd, (ClientData) main,

(Tcl_CmdDeleteProc *) NULL);

/* Add clock commands */
Tcl_CreateCommand(interp, "getclock", Tcl_GetclockCmd, (ClientData)

NULL, <Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "fmtclock", Tcl_FmtclockCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "convertclock", Tcl_ConvertclockCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);

/* Add DIS network commands */
Tcl_CreateCommand(interp, "netopen", dis_NetOpenCmd, (ClientData) NULL,

(Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "netopenbcast", dis_NetOpenBcastCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "pduread", dis_PduReadCmd, (ClientData) NULL,

(Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "netclose", dis_NetCloseCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "pduwrite", dis_PduWriteCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);
Tcl_CreateCommand(interp, "gethostid", dis_GetHostCmd, (ClientData)

NULL, (Tcl_CmdDeleteProc *) NULL);

/*
* Specify a user-specific startup file to invoke if the application
* is run interactively. Typically the startup file is "-/.apprc"
* where "app" is the name of the application. If this line is
* deleted then no user-specific startup file will be run under any
* conditions.
*/

tcl_RcFileName = "-/.netwishrc";
return TCL_OK;

}
/* End netAppInit.c */

33

/* including the one returned to */
/* pdu, if any; 0 if no pdu's */

if (nodes == -1) { /* Error */
printf("pduread(): Error on net_read()\n");

} else if (nodes != 0) {
sprintf(interp->result,"%d %u",type,addr.s_addr);
freePDU(pdu);

} else {
sprintf(interp->result,"x");

}

return TCL_OK;

/* GetHostCmd - gethostidO '

/* Arguments : hostname
*
* Description : This function queries the network name server for the
* integer IP address of "hostname"

/I***/
int
dis_GetHostCmd (clientData, interp, arge, argv)

ClientData clientData;
Tcl_Interp *interp;
int arge ;
char **argv;

{
register char *ptr;
register struct hostent *hostptr;
char **listptr;
struct in_addr *addr_ptr;

if (arge ==2) {
ptr = argv[l];
if ((hostptr = gethostbyname(ptr)) == NULL) {

printf("gethostidO: Error on gethostbyname()\n");
sprintf(interp->result,"error");

} else {
listptr = hostptr->h_addr_list;
addr_ptr = (struct in_addr *) *listptr;
sprintf(interp->result,"%u",*addr_ptr);

}
} else {

printf("gethostidO: Wrong number of arguments\n");

}
return TCL_OK;

/* NetCloseCmd - netclose() ^.^^^J'J,

/* Arguments : none
*

37

* Description : This function closes the active DIS network.
*/

int
dis_NetCloseCmd (clientData, interp, arge, argv)

ClientData clientData;
Tcl_Interp *interp;
int arge ;
char **argv;

{
net_close();
return TCL_OK;

}

/* PduWriteCmd - pduwrite() */

/* Arguments : pdu type to send
*

* Description : This function sends a PDU on the active DIS network.
* Not all DIS PDU types are included, since this was
* created for test and demonstration (but more can be
* added).
*/

Z**^
int
dis_PduWriteCmd (clientData, interp, arge, argv)

ClientData clientData;
Tcl_Interp *interp;
int arge ;
char **argv;

{
int i = 0;
unsigned short host_id = 11;
char *pdu;
PDUType type;

/* example PDUs */
EntityStatePDU *ESpdu;
FirePDU *Fpdu;
DetonationPDU *Dpdu;
ServiceRequestPDU *SRpdu;
ResupplyPDU *Rpdu;
ResupplyCancelPDU *RCpdu;
RepairCompletePDU *RC_pdu;
RepairResponsePDU *RRpdu;
CollisionPDU *Cpdu;

ArticulatParamsNode *APNptr; /* list nodes */
SupplyQtyNode *SQNptr;

if (arge == 2) {
type = atoi(argv[l]);

} else {
type = 1;

)

38

switch (type) {

case (CollisionPDUJType):
Cpdu = (CollisionPDU *) mallocPDU(CollisionPDUJType);
pdu = (char *) Cpdu;
break;

case (RepairResponsePDU_Type):
RRpdu = (RepairResponsePDU *) mallocPDU(RepairResponsePDUJType);
pdu = (char *) RRpdu;
break;

case (RepairCompletePDU_Type):
RC_pdu = (RepairCompletePDU *) mallocPDU(RepairCompletePDUJType);
pdu = (char *) RC_pdu;
break;

case (ResupplyCancelPDUJType):
RCpdu = (ResupplyCancelPDU *) mallocPDU(ResupplyCancelPDUJType);
pdu = (char *) RCpdu;
break;

case (ResupplyOfferPDU_Type): /* same structure employed */
case (ResupplyReceivedPDUJType): /* by both */

Rpdu = (ResupplyPDU *) mallocPDU(ResupplyOfferPDUJType);
if (SQNptr = attachSupplyQtyNode((char *) Rpdu,

ResupplyOfferPDUJType)) {
SQNptr->supply_quantity.quantity = 4.8;

}
pdu = (char *) Rpdu;
break;

case (ServiceRequestPDU_Type):
SRpdu = (ServiceRequestPDU *) mallocPDU(ServiceRequestPDU_Type);
if (SQNptr = attachSupplyQtyNode((char *) SRpdu,

ServiceRequestPDUJType)) {
SQNptr->supply_quantity.quantity = 7.2;

}
pdu = (char *) SRpdu;
break;

case (DetonationPDU_Type):
Dpdu = (DetonationPDU *) mallocPDU(DetonationPDUJType);
if (APNptr = attachArticulatParamsNode((char *) Dpdu,

DetonationPDUJType)) {
/* Success, fill in some data */
APNptr->articulat_params.change = (unsigned short) 11;
APNptr->articulat_params.parameter_value[7] = OxEC;

}

pdu = (char *) Dpdu;
break;

case (FirePDUJType):
Fpdu = (FirePDU *) mallocPDU(FirePDUJType);

39

/* first field after header */
Fpdu->firing_entity_id.address.site = (unsigned short) 17;
/* last field */
Fpdu->range = 3.0;

pdu = (char *) Fpdu;
break;

case (EntityStatePDU_Type):
ESpdu = (EntityStatePDU *) mallocPDU(EntityStatePDU_Type);

/* first field after header */
ESpdu->entity_id.address.site = SITE_ID_NPS;
ESpdu->entity_id.address.host = host_id;

ESpdu->force_id = ForceID_White;
ESpdu->alt_entity_type.extra = (Extra) OxDD;
ESpdu->entity_orientation.psi = (float) OxAA;
ESpdu->entity_orientation.theta = (float) OxBB;
ESpdu->entity_orientation.phi = (float) OxCC;
ESpdu->dead_reckon_params.algorithm = DRAlgo_DRM_FVW;
ESpdu->dead_reckon_params.linear_accel[0] = 1.1;
ESpdu->dead_reckon_params.angular_velocity[0] = 2;

strcpy(ESpdu->entity_marking.markings, "GO DIS!");

/* Add some nodes */
for (i =0; i < 2; i++) {

if (APNptr = attachArticulatParamsNode((char *) ESpdu,
EntityStatePDUJType)) {

/* Success, fill in some data */
APNptr->articulat_params.change = (unsigned short) i+6;
APNptr->articulat_params.parameter_value[7] = OxEE;

}
}

pdu = (char *) ESpdu;
break;

default:
printf("default case reached!\n");

} /* end switch(type) */

if (net_write(pdu, type) == FALSE)
sprintf(stderr, "net_write() failed\n");

freePDU(pdu);

return TCL_OK;
}
/**** End disnetlib.c ******/

40

APPENDIX C. TCL SCRIPTS IMPLEMENTING THE DIS PDU
MONITOR

#File: dis.tcl
#Contents: Routines to run DIS PDU monitor Stripcharts
#System:
#Created: 10-Jul-1994
#Author: Mitchell Turner

#Remarks: Uses routines in BBN Systems and Technologies stripchart
library.
Requires tcl/tk, extended with tclX clock functions and DIS
interface functions.

##########
Procedure: popup_error
Description: Creates an error message in a popup window
Requires: nothing
Arguments: error text
Returns: nothing
Sideeffects: A popup window is created
Called by: printchart, net_options, new_chart, fixed_window_proc,
win_size_hook, get_interval
##########
proc popup_error { text } {

catch {destroy .errMsg}
toplevel .errMsg
wm title .errMsg "Error Message"
wm geometry .errMsg +500+500

frame .errMsg.top
frame .errMsg.bottom

label .errMsg.top.icon -bitmap error -background red

message .errMsg.top.txt -font -*-Times-*-r-*—*-180-* \
-justify center -text $text

button .errMsg.bottom.b -text "Acknowledged" \
-command {destroy .errMsg} -background gray90

pack .errMsg.top.icon -side left -padx 20
pack .errMsg.top.txt -side left

pack .errMsg.bottorn.b

41

pack append .errMsg .errMsg.top {top}
pack append .errMsg .errMsg.bottorn {top}

BEEP
}

proc BEEP { } {
puts stdout "\007" nonewline

}

##########
Procedure: printchart
Description: saves chart in postscript file in current directory
Requires: nothing
Arguments: type number of chart to print
Returns: nothing
Sideeffects: postscript file is created
Called by: make_top_menubar (on user choice)
##########
proc printchart { type } {

global type_names

if {[winfo exists .$type.graphWidgetFrame.graph]} {

.$type.graphWidgetFrame.graph postscript \
../charts/[fmtclock [getclock] "Chart.%b%d.%X"].ps

} else {

popup_error "[lindex $type_names [expr $type-l]] PDUs chart does
not exist"

}
}

##########
Procedure: exit_program
Description: destroys main windows, closes network, and exits netwish
Requires: nothing
Arguments: none
Returns: does not return
Sideeffects: program will exit
Called by: user menu choice
##########
proc exit_program {} {

global pdu_types

destroy .menub
destroy .statusMsg
foreach type $pdu_types {

destroy .$type
}

netclose
exit

42

}

##########
Procedure: build_info_hook
Description: procedure to create a new stripchart for a monitor window
Requires: nothing
Arguments: list of types of chart to start
Returns: nothing
Sideeffects: creates new stripchart widgets
Called by: StartupGGM
##########
proc build_info_hook {type_list} {

global now timeWindow type_names

set now [getclock]

set xMax [xMaxTick $now $timeWindow]
set xMin [expr $xMax - $timeWindow]

foreach type $type_list {

xygraph .$type.graphWidgetFrame.graph \
-title "[fmtclock [getclock] "%b %d %Y %H:%M:%S"]" \
-xlabel "Time" -xformatcommand timeformat \
-xmin $xMin -xmax $xMax \
-ylabel "[lindex $type_names [expr $type-l]] PDUs/sec" \
-ymin "" -ymax ""

pack append .$type.graphWidgetFrame \
.$type.graphWidgetFrame.graph {top fill expand}

}

update

}

##########
Procedure: show_params
Description: procedure to show network environment parameters
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: none
Called by: user menu choice
##########
proc show_params { } {

global net port group ttl ex_id host

switch $net {

1 {set nettype Broadcast
set params " Network type: $nettype\n Exercise ID: $ex_id\n\

43

Host: $host\n\n"
}

2 {set nettype Multicast
set params " Network type: $nettype\n Port: $port\n\
Group: $group\n TTL: $ttl\n\
Exercise ID: $ex_id\n Host: $host\n\n"

}
}

catch {destroy .showParams}
toplevel .showParams
wm title .showParams "PDU Monitor Parameters"
wm geometry .showParams +130+250

message .showParams.msg -font -*-Courier-*-r-*—*-120-* -width 40c \
-justify left -text $params

button .showParams.ok -text "OK" -command {destroy .showParams} \
-background blue

pack .showParams.msg .showParams.ok -side top

}

##########
Procedure: net_setup
Description: proc to set network environment parameters on startup
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: vars port, group, ttl, ex_id, interval are updated
Called by: main script
##########
proc net_setup { } {

global net

catch {destroy .netSetup}
toplevel .netSetup
wm geometry .netSetup +500+400
wm title .netSetup "Network Setup Options"

button .netSetup.beast -text "Broadcast Network" -width 32 \
-command { set net 1; net_options 1 }

button .netSetup.mcast -text "Multicast Network" -width 32 \
-command { set net 2; net_options 2 }

pack .netSetup.beast .netSetup.mcast -side top

tkwait window .netSetup

}

##########
Procedure: net_options

44

Description: proc to get network environment parameters on startup
Requires: nothing
Arguments: flag for broadcast (1) or multicast (2) network
Returns: nothing
Sideeffects: vars port, group, ttl, ex_id, interval are updated
Called by: net_setup
##########
proc net_options { netflag } {

global port group ttl ex_id interval el e2 e3 e4 e5

catch {destroy .netParams}
toplevel .netParams
if {$netflag == 1} {

wm title .netParams "Broadcast Parameter Options"
} else {

wm title .netParams "Multicast Parameter Options"
}
wm geometry .netParams +500+500

Setup frames, labels, and entries in vars for packing in window

set fl [frame .netParams.1]
set f2 [frame .netParams.2]
set f3 [frame .netParams.3]
set f4 [frame .netParams.4]
set f5 [frame .netParams.5]

set 11 [label .netParams.il -background grey90 -foreground red \
-text "Port: "

]
set 12 [label .netParams.12 -background grey90 -foreground red \

-text "Group: "
]

set 13 [label .netParams.13 -background grey90 -foreground red \
-text "TTL: "

]
set 14 [label .netParams.14 -background grey90 -foreground red \

-text "Exercise ID: "
]

set 15 [label .netParams.15 -background grey90 -foreground red \
-text "PDU sample interval (sec): "

]

set el [entry .netParams.el -background gray95 -relief sunken -width
10]

set e2 [entry .netParams.e2 -background gray95 -relief sunken -width
15]

set e3 [entry .netParams.e3 -background gray95 -relief sunken -width
5]

set e4 [entry .netParams.e4 -background gray95 -relief sunken -width
5]

45

set e5 [entry .netParams.e5
5]

$el insert 0 $port

-background gray95 -relief sunken -width

$e2 insert
$e3 insert
$e4 insert

$group
$ttl
$ex_id

$e5 insert 0 $interval

Build button row for window

set fb [frame .netParams.bottom]
set a [button $fb.apply -text "Apply" -width 10 \

-command {
global port group ttl ex_id interval el e2 e3 e4 e5
set port [$el get]
set group [$e2 get]
set ttl [$e3 get]
set ex_id [$e4 get]
set interval [$e5 get]

set errflag [catch {set interval [expr int($interval)]} }
if {($interval < 1) I I ($interval > 60) II ($errflag != 0)}

set interval 1
"Network sampling interval must be 1 - 60

seconds'
popup_error

} else {
destroy .netParams
destroy .netSetup

}
}]

■Default'
e3 e4 e5

-width 10 \ set d [button $fb.def -text
-command {global el e2

$el delete
$e2 delete
$e3 delete
$e4 delete
$e5 delete

}]
set c [button $fb.cancel -text "Cancel" -width 10 \

-command {destroy .netParams}]

end;$el insert
end;$e2 insert
end;$e3 insert
end;$e4 insert
end;$e5 insert

888888"
224.2.121.93"
1"
99"
1"

Put window pieces together

pack append $fb $a {left expand} $d {left expand} $c {right expand}

pack append $fl $11 {left}
pack append $f2 $12 {left}
pack append $f3 $13 {left} . _
pack append $f4 $14 {left} $e4 {right expand fill}
pack append $f5 $15 {left} $e5 {right expand fill}

$el {right expand fill}
$e2 {right expand fill}
$e3 {right expand fill}

pack append .netParams
if {$netflag == 2} {

$f5 {top fill}

46

pack append .netParams $fl {top fill} $f2 {top fill} $f3 {top
fill}

pack append .netParams $f4 {top fill} $fb {bottom expand fill}

tkwait window .netParams

}
End proc net_options

##########
Procedure: new_chart
Description: proc to build new stripchart widget for another PDU type
Requires: nothing
Arguments: PDU type to begin monitoring
Returns: nothing
Sideeffects: line "tagID" is updated
Called by: user menu choice
##########
proc new_chart {type} {

global pdu_types type_names host interval statusMsg

if {![winfo exists .$type]} {

ShowWindow $type

StartupGGM $type

assoc_up_hook $type

läppend pdu_types $type

set statusMsg "Host: $host\nNetwork sampling interval: $interval
sec"

} else {
popup_error "[lindex $type_names [expr $type-l]] PDUs chart already

exists"
}

}
End proc new_chart

Main tcl script

wm withdraw .
wm geometry . +130+150

load stripchart library and initialize variables

source "stripchart.tcl"

*** Note: to add/change PDU types, change rate vars here and
in getXYVal_proc. Change count vars here (set to zero).
Modify File and Charts buttons in proc make_top_menubar.

47

Modify type_names list creation below.

Following rate globals must be in getXYVal_proc also

global ratel rate2 rate3 rate4 rate5 rate6 rate7 rate8 rate9 ratelO
global ratell ratel2 ratel3 ratel4 ratel5 ratel6 ratel7 ratel8 ratel9
global rate20 rate21 rate22 rate23 rate24 rate25 rate26 rate27

global port group ttl ex_id interval host hostid type_names pdu_types
global net statusMsg

Type names must be in order of numerical precedence as in pdu.h

set type_names { "Entity State" "Fire" "Detonation" "Collision" }
läppend type_names "Service Request" "Resupply Offer" "Resupply
Received"
läppend type_names "Resupply Cancel" "Repair Complete" "Repair Response"
läppend type_names "Create Entity" "Remove Entity" "Start Resume"
läppend type_names "Stop Freeze" "Acknowledge" "Action Request"
läppend type_names "Action Response" "Data Query" "Set Data"
läppend type_names "Data" "Event Report" "Message"
läppend type_names "Emission" "Laser" "Transmitter" "Signal" "Receiver"

set pdu_types {1}
set interval 1

set port 888888
set group 224.2.121.93
set ttl 1
set ex_id 99
set host all
set hostid 0

set countl 0; set count2 0; set count3 0; set count4 0; set count5 0
set count6 0; set count7 0; set count8 0; set count9 0; set countlO 0

set countl2 0; set count11 0
count15 0
set countl6 0
count20 0
set count21 0
count25 0
set count26 0

set count17 0

set count22 0

set count27 0

Get network parameters

set net 1

net_setup

Startup graphic view manager

StartupGGM $pdu_types

first_time_assoc_up_hook

set count13 0

set countl8 0

set count23 0

set count14 0

set count19 0

set count24 0

set

set

set

48

Establish network connection

switch $net {

1 {netopenbcast -e $ex_id}
2 {netopen -p $port -I $group -t $ttl -e $ex_id}

}

set statusMsg "Host: $host\nNetwork sampling interval: $interval sec'

Do forever

while 1 {

set starttime [getclock]

foreach type $pdu_types {
set count$type 0

}

Loop for interval seconds

while { [expr [set now [getclock]] - $starttime] < $interval } {

set pdu [pduread]

filter out unwanted hosts and increment type counters

if { (($host == "all") && ([lindex $pdu 0] != "x")) II \
($hostid == [lindex $pdu 1]) } {

set typeval [lindex $pdu 0]
incr count$typeval

}
}

After interval seconds, calculate average rate over interval

foreach type $pdu_types {
set count count$type
set rate$type [expr [set $count] / double($interval)]

}

Update active charts

getXYVal_proc
}
End do forever

End main script dis.tcl

File: stripchart.tcl
Contents: xygraph stripchart library
System:
Created: 21-Jan-1994
Author: lbob

49

Modified: Aug-1994, LT Mitch Turner

COPYRIGHT 1994 BBN Systems and Technologies
10 Moulton Street Cambridge, Ma. 02138 617-873-3000

Load help system and files

source "stripchart_hlp.tcl"

global base_help_files
set base_help_files "stripchartl.hlp"

global more_help_file_names
set more_help_file_names "stripchart2.hlp"

##########
Procedure: assoc_up_hook
Description: procedure to initialize new x/y data value lists
Requires: nothing
Arguments: list of type numbers to create lists for
Returns: nothing
Sideeffects: global lists are created
Called by: first_time_assoc_up_hook, StartupGGM, new_chart
##########
proc assoc_up_hook {type_list} {

foreach type $type_list {
set Xset X_$type; global $Xset; set $Xset ■"
set Yset Y_$type; global $Yset; set $Yset ""

}

}

##########
Procedure: mark
Description: procedure to write next line segment or mark for display
Requires: xygraph window "w" setup; Note: for the DIS PDU Monitor,
this procedure was modified to remove the check to see if
window w exists, since this is checked in getXYVal_proc.
Arguments: window, tag string, set of X values, set of Y values
Returns: nothing
Sideeffects: line "tagID" is updated
Called by: getXYVal_proc
##########
proc mark {w tagld Xset Yset} {

$w insert $tagld -xdata $Xset -ydata $Yset -label "• -linewidth 2
-color red

}

##########
Procedure: StartupGGM
Description: proc to startup control panel and/or generic graph views

50

Requires: nothing
Arguments: list of graph types to start
Returns: nothing
Sideeffects: makes and maps control panel and/or stripchart windows
Called by: main script, new_chart
##########
proc StartupGGM {type_list} {

option add *background white

Do not use a strict Motif look and feel
global tk_strictMotf
set tk_strictMotif 0

Check for required procs
CheckProcedureExistence build_info_hook
CheckProcedureExistence assoc_up_hook
CheckProcedureExistence win_size_hook

global statusMsg
set statusMsg {Waiting for initialization}

#display toplevel windows

if {![winfo exists .menub]} {

global timeWindow fixed_window

#default to Fixed Window of 2 min
set fixed_window TRUE
set timeWindow 120

ShowWindow $type_list

make_top_menubar
}

Now build the initial chart windows

build_info_hook $type_list

}
End proc StartupGGM

##########
Procedure: ShowWindow
Description: proc to show control panel and/or build graph frames
Requires: nothing
Arguments: list of graph types to build frames for
Returns: nothing ,
Sideeffects: Window "." and/or graph frames are set up, with no
'section's yet
Called by: new_chart, StartupGGM
##########
proc ShowWindow {type_list} {

51

if {![winfo exists .menub]} {

Window manager configurations
wm deiconify .
wm title . "DIS PDU Monitor Control Panel"
wm sizefrom . ""
wm maxsize . 1152 900
wm minsize . 400 50

Build a frame for the top menu buttons
frame .menub -relief raised -borderwidth 1 -background gray90

message .statusMsg -background {gray90} -foreground {blue} \
-font {-*-*-*-!•-*--*-120-*} -aspect {1500} -justify {left} \
-padx {5} -pady {2} -relief {sunken} -text {} \
-textvariable {statusMsg}

pack widget .
pack append . \

.menub {top fillx} \

.statusMsg {top expand fill }

}

build graph widget frames — these will get filled from user code
global type_names

foreach type $type_list {
toplevel .$type
wm maxsize .$type 1152 900
wm title .$type "[lindex $type_names [expr $type-l]] PDUs"
frame .$type.graphWidgetFrame
pack append .$type .$type.graphWidgetFrame {top frame center expand

fill }
}

}
End proc ShowWindow

##########
Procedure: first_time_assoc_up_hook
Description: Called from main when the graph views come up
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: The user code assoc_up_hook is invoked
Called by: main script
##########
proc first_time_assoc_up_hook {} {

global assoc_is_up pdu_types
set assoc_is_up 1

global statusMsg

52

set statusMsg {Starting the initial value query}

prepare for data collection for initial chart types
assoc_up_hook $pdu_types

}

##########
Procedure: make_top_menubar
Description: Creates the control panel menubar
Requires: window . is set up
Arguments: none
Returns: nothing
Sideeffects: A menubar is created
Called by: StartupGGM
##########
proc make_top_menubar {} {

global pdu_types

Create the [Help] menu item. Use the hip system to fill it.
The global variable more_help_file_names contains the name of more
help files to load.

menubutton .menub.help -text "Help" \
-underline 0 -menu .menub.help.menu -background gray90

menu .menub.help.menu
pack append .menub .menub.help {right}
global base_help_files
global more_help_file_names
if {![info exists more_help_file_names]} { set more_help_file_names ""

}
eval HLP_load .menub.help.menu $more_help_file_names $base_help_files

Create the [File] menu

menubutton .menub.file -text "File " \
-underline 0 -menu .menub.file.menu -background gray90 -underline

0

pack append .menub .menub.file {left}
set m [menu .menub.file.menu]
set n [menu .menub.file.menu.charts]

$m add command -label "Display Network Parameters" \
-command {show_params}

$m add cascade -label "Print Chart" -menu .menub.file.menu.charts

$n add command -label "Entity State" -command {printchart 1}
$n add command -label "Fire" -command {printchart 2}
$n add command -label "Detonation" -command {printchart 3}
$n add command -label "Collision" -command {printchart 4}
$n add command -label "Service Request" -command {printchart 5}

53

$n add command -label "Resupply Offer" -command {printchart 6}
$n add command -label "Resupply Received" -command {printchart 7}
$n add command -label "Resupply Cancel" -command {printchart 8}
$n add command -label "Repair Complete" -command {printchart 9}
$n add command -label "Repair Response" -command {printchart 10}
$n add command -label "Create Entity" -command {printchart 11}
$n add command -label "Remove Entity" -command {printchart 12}
$n add command -label "Start Resume" -command {printchart 13}
$n add command -label "Stop Freeze" -command {printchart 14}
$n add command -label "Acknowledge" -command {printchart 15}
$n add command -label "Action Request" -command {printchart 16}
$n add command -label "Action Response" -command {printchart 17}
$n add command -label "Data Query" -command {printchart 18}
$n add command -label "Set Data" -command {printchart 19}
$n add command -label "Data" -command {printchart 20}
$n add command -label "Event Report" -command {printchart 21}
$n add command -label "Message" -command {printchart 22}
$n add command -label "Emission" -command {printchart 23}
$n add command -label "Laser" -command {printchart 24}
$n add command -label "Transmitter" -command {printchart 25}
$n add command -label "Signal" -command {printchart 26}
$n add command -label "Receiver" -command {printchart 27}

$m add command -label "Exit Program" \
-command {exit_program}

Create the [Timing] menu item

menubutton .menub.times -text "Timing " \
-underline 0 -menu .menub.times.menu -background gray90 -underline

0
pack append .menub .menub.times {left}

set m [menu .menub.times.menu]

$m add command -label "Change Sampling Interval" \
-command {get_interval}

$m add command -label "Automatic Chart Time-scaling" \
-command {
global fixed_window pdu_types
set fixed_window FALSE
foreach type $pdu_types {

if {i[winfo exists .$type.graphWidgetFrame.graph]} {
.$type.graphWidgetFrame.graph configure -xmin "" -xmax ""

-ymin "" -ymax ""
}

}
}

$m add command -label "Fixed Window Time-scaling" \
-command {set fixed_window TRUE}

$m add command -label "Fixed Window Size" \
-command {win_size_hook}

54

Create the [Charts] menu item

menubutton .menub.charts -text "ChartSelect " \
-underline 0 -menu .menub.charts.menu -background gray90

-underline 0

pack append .menub .menub.charts {left}
set m [menu .menub.charts.menu]

$m add
$m add
$m add
$m add
$m add
$m add
$m add
$m add
$m add
$m add
$m add

add
add

$m add
$m add
$m add
$m add

add
add

$m add
$m add
$m add
$m add
$m add
$m add
$m add
$m add

$m
$m

$m
$m

command -label "Entity State" -command {new_chart 1}
command -label "Fire" -command {new_chart 2}
command -label "Detonation" -command {new_chart 3}
command -label "Collision" -command {new_chart 4}
command -label "Service Request" -command {new_chart 5}
command -label "Resupply Offer" -command {new_chart 6}
command -label "Resupply Received" -command {new_chart 7}
command -label "Resupply Cancel" -command {new_chart 8}
command -label""Repair Complete" -command {new_chart 9}
command -label "Repair Response" -command {new_chart 10}
command -label "Create Entity" -command {new_chart 11}
command -label "Remove Entity" -command {new_chart 12}
command -label "Start Resume" -command {new_chart 13}
command -label "Stop Freeze" -command {new_chart 14}
command -label "Acknowledge" -command {new_chart 15}
command -label "Action Request" -command {new_chart 16}
command -label "Action Response" -command {new_chart 17}
command -label "Data Query" -command {new_chart 18}
command -label "Set Data" -command {new_chart 19}
command -label "Data" -command {new_chart 20}
command -label "Event Report" -command {new_chart 21}
command -label "Message" -command (new_chart 22}
command -label "Emission" -command {new_chart 23}
command -label "Laser" -command {new_chart 24}
command -label "Transmitter" -command {new_chart 25}
command -label "Signal" -command {new_chart 26}
command -label "Receiver" -command {new_chart 27}

Create the [Host] menu item

menubutton .menub.host -text "Host " \
-underline 0 -menu .menub.host.menu -background gray90 -underline 0

pack append .menub .menub.host {left}
set m [menu .menub.host.menu]

$m add command -label "All hosts" \
-command {global host statusMsg

set host "all"
set statusMsg "Host: $host\nNetwork sampling interval:

$interval sec"
}

$m add command -label "Select host" \
-command {get_host}

55

Put it all together

tk_menuBar .menub .menub.file .menub.times .menub.charts .menub.host
.menub.help
}
End proc make_top_menubar

##########
Procedure: xMaxTick
Description: determines the highest X-axis time tick value
Requires: nothing
Arguments: current time, window interval
Returns: max tick value in time_t format
Sideeffects: none
Called by: build_info_hook, getXYVal_proc
##########
proc xMaxTick { time window } {

set maxTick [expr $time+19]
return [expr $maxTick - int(fmod($maxTick,20))]

}

##########
Procedure: win_size_hook
Description: makes and maps a popup to allow user to set fixed window
time interval
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: sets the window interval global values
Called by: user menu choice
##########
proc win_size_hook { } {

global timeWindow e

catch {destroy .winSize}
toplevel .winSize -background grey90
wm title .winSize "Fixed Time Window Size"
wm geometry .winSize +130+250

set ft [frame .winSize.top]

set 1 [label .winSize.1 -background grey90 -foreground red \
-text "Size in minutes:"

]

set e [entry .winSize.e -background gray95 -relief sunken]

$e insert 0 [expr $timeWindow/60]

set fb [frame .winSize.bottom]
set a [button $fb.apply -text "Apply" \

-command {
global e timeWindow

56

set timeWindow [$e get]
set errflag [catch {set timeWindow [expr

int($timeWindow)*60]}]
if {($timeWindow < 60) II ($timeWindow > 599940) II ($errflag

!= 0)} {
set timeWindow 120
popup_error "Chart time window must be 1 - 9999 minutes"

} else {
set f ixed_window TRUE
destroy .winSize

}
}]

set d [button $fb.def -text "Default" \
-command {global e; $e delete 0 end;$e insert 0 "2"}]

set c [button $fb.cancel -text "Cancel" -command {destroy .winSize}]

pack append $fb $a {left fill) $d {left fill} $c {right fill}

pack append $ft $1 {left} $e {left expand fill}

pack append .winSize $ft {top fill} $fb {bottom expand}

tkwait window .winSize

}
End proc win_size_hook

##########
Procedure: get_host
Description: makes and maps a popup to set hostname to monitor
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: sets the host name
Called by: user menu choice
##########
proc get_host { } {

global host e

catch {destroy .hostName}
toplevel .hostName -background grey90
wm title .hostName "Sending Host to monitor"
wm geometry .hostName +130+250

set ft [frame .hostName.top]

set 1 [label .hostName.1 -background grey90 -foreground red \
-text "Host name:"

]

set e [entry .hostName.e -background gray95 -relief sunken]

$e insert 0 $host

57

set fb [frame .hostName.bottom]
set a [button $fb.apply -text "Apply" \

-command {
global e host hostid
set host [$e get]

if {$host != "all") {set hostid [gethostid $host]}
if {$hostid == "error") {

popup_error "Host not found. Spelling or network
connection \

may be faulty. If spelling correct, try
another \

computer."
set host all; set hostid 0

} else {
global statusMsg
set statusMsg "Host: $host\nNetwork sampling interval:

$interval sec"
destroy .hostName

}
}]

set d [button $fb.def -text "Default" \
-command {global e; $e delete 0 end;$e insert 0 "all"}]

set c [button $fb.cancel -text "Cancel" -command {destroy .hostName}]

pack append $fb $a {left fill} $d {left fill} $c {right fill}

pack append $ft $1 {left} $e {left expand fill}

pack append .hostName $ft {top fill} $fb {bottom}

tkwait window .hostName

}
End proc get_host

##########
Procedure: get_interval
Description: makes and maps a popup to set the network sampling
time interval
Requires: nothing
Arguments: none
Returns: nothing
Sideeffects: sets the network sampling global values
Called by: user menu choice
##########
proc get_interval { } {

global interval e

catch {destroy .intervalTime}
toplevel .intervalTime -background grey90
wm title .intervalTime "Network Sampling Interval"
wm geometry .intervalTime +130+250

set ft [frame .intervalTime.top]

58

set 1 [label .intervalTime.1 -background grey90 -foreground red \
-text "Sample time (sec):"

]

set e [entry .intervalTime.e -background gray95 -relief sunken]

$e insert 0 $interval

set fb [frame .intervalTime.bottorn]
set a [button $fb.apply -text "Apply" \

-command {
global e interval
set interval [$e get]

set errflag [catch {set interval [expr int($interval)]}]
if {($interval < 1) I I ($interval > 60) II ($errflag != 0)} {

set interval 1
popup_error "Network sampling interval must be 1 - 60

seconds"
) else {

global StatusMsg
set statusMsg "Host: $host\nNetwork sampling interval:

$interval sec"
destroy .intervalTime

}
}]

set d [button $fb.def -text "Default" \
-command {global e; $e delete 0 end;$e insert 0 "1"}]

set c [button $fb.cancel -text "Cancel" -command {destroy
.intervalTime}]

pack append $fb $a {left fill} $d {left fill} $c {right fill}

pack append $ft $1 {left} $e {left expand fill}

pack append .intervalTime $ft {top fill} $fb {bottom}

tkwait window .intervalTime

}
End proc get_interval

##########
Procedure: getXYVal_proc
Description: add X/Y pairs to data lists and plot on stripcharts
Requires: stripcharts must exist
Arguments: none
Returns: nothing
Sideeffects: updates the graphs with the new values
Called by: main script
##########

proc getXYVal_proc {} {

global statusMsg now pdu_types fixed_window timeWindow host interval

59

global ratel rate2 rate3 rate4 rate5 rate6 rate7 rate8 rate9 ratelO
global rateil ratel2 ratel3 ratel4 ratel5 ratel6 ratel7 ratel8 ratel9
global rate20 rate21 rate22 rate23 rate24 rate25 rate26 rate27

foreach type $pdu_types {

Add X/Y data pairs to list

set Xset X_$type; global $Xset
läppend $Xset $now

set Yset Y_$type; global $Yset
set rate rate$type
läppend $Yset [set $rate]

Trim data lists so graph will scale to recent Y values

set points [llength [set $Xset]]
if { ([expr $points - ($timeWindow/$interval)] > int (0)) \

&& ($fixed_window == "TRUE") } {
set start [expr $points - ($timeWindow/$interval) - 2]
set end [expr $points - 1]
set Xdata [lrange [set $Xset] $start $end]
set Ydata [lrange [set $Yset] $start $end]

} else {
set Xdata [set $Xset]
set Ydata [set $Yset]

}

Check if graph still exists; if not, remove from active types list

if {![winfo exists .$type.graphWidgetFrame.graph]} {
set index [lsearch -exact $pdu_types $type]
set pdu_types [lreplace $pdu_types $index $index]
puts stderr "Window $type invalid, probably destroyed"
continue

}

Configure each graph

if {$fixed_window == "TRUE"} {

set xMax [xMaxTick $now $timeWindow]
set xMin [expr $xMax - $timeWindow]

.$type.graphWidgetFrame.graph configure \
-xmin $xMin -xmax $xMax -ymin "" -ymax "" \
-title "[fmtclock [getclock] \

"%b.%d.%Y %H:%M:%S PDU Rate = [set $rate]/sec "]" \
-xlabel "Time ([expr $timeWindow/60] minute window)"

} else {
.$type.graphWidgetFrame.graph configure \

-ymax "" \

60

-title "[fmtclock [getclock] \
"%b.%d.%Y %H:%M:%S PDU Rate = [set $rate]/sec "]" \

-xlabel "Time (window from startup)"

}

Add the line to the graph

mark .$type.graphWidgetFrame.graph PDUs $Xdata $Ydata

}

update

}
End proc getXYVal_proc

##########
Procedure: timeformat
Description: custom user x axis formatting routine
Requires: TclX extensions
Arguments: window (not used) time value to format
Returns: nothing
Sideeffects: none
Called by: build_info_hook
##########
proc timeformat { w time } {

global timeWindow

if { $timeWindow > 1800 } {
set res [fmtclock $time • %H%M"]

} else {
set res [fmtclock $time ■ :%M:%S"]

}
}

##########
Procedure: CheckProcedureExistence
Description: Checks for a procedure that should have been provided in
User code.
Requires: Nothing
Arguments: procname - name of the procedure to check for
Returns: nothing
Sideeffects: none
##########
proc CheckProcedureExistence {procname} {

if {[info proc $procname] != $procname} {
puts stderr "Error: Procedure \"$procname\" must exist to run"

}
}

End script file stripchart.tcl

Help Functions for Auxiliary Views

61

See special copyrights

$Header: /nfs/medea/uO/rel5/rcs/AV/displayLibs/av_hlp.tcl,v 1.3
1993/11/17 18:59:07 djw Exp $

A general purpose hierarchical help system. The general idea
is to pass the name of a button in w and the names of help
files in args. These procedures look for the help files using
the directories listed in the user's ANMCONFDIR environment variable
and,
if found, proceed to build a heirarchical menu structure using
cascade menus as required. The help organization is thus
removed from the program and can be changed simply by editing the
text files.

Copyright 1993 Paul Amaranth
Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that this copyright
notice appears in all copies. There are no representations about
the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty.

Paul Amaranth 6/2/93 V 1.0
Modified by David Waitzman on the BBN ANM Project 7/29/93

To keep the name space pollution down, all private external
identifiers
are prefixed with _HLP, and the one public external identifier is
prefixed with HLP.

Global variables used:
_HLP_menus — a list of the menus to create
_HLP_text-nn — The text of the help item, nn is a number.
_HLP_last_entry - Used for building the menus

Procs:
HLP_load - Load in the help files. Called by application
This is the ONLY proc directly called by the app.
Returns 0 is successful, 1 if an error.
_HLP_add_menus - Add the menu info in the help file into the
internal format
_HLP_instantiate_menus - Realize the menu informat as cascade
menus and command buttons.
_HLP_rinstantiate_menu - Recursively called form of above.
_HLP_Command - Proc called to display info when a help button is
pushed.

The help file format looks like this:
MENU name
followed by text for the menu item. A heirarchical arrangement is

62

specified by using additional names, e.g. MENU Namel Name2 would have
name2 as a subitem on a cascade menu for Namel. If you want to
include spaces in the menu label, enclose the string in braces {}.
NOTE: This string is treated as a list by _HLP_add_menus; it should
be in list format.

The text is saved in global variables with the name _HLP_txt-n.
Single
menu items are bound to a command button, multiple are assigned a
cascade menu.

Text is displayed in a top level window called .hip

You do not have to define intermediate menus, they are automatically
created as cascade menus.

proc HLP_load {w args} {

Look through the ANMCONFDIR and ANMTCLDIR env variables and "." to

see
if we can find a help file with the name "filename'. If so, open it
and build the help menu with the text.

global env
global _HLP_menus

set _HLP_menus {)
set text_no 0

set path {}
If no ANMTCLDIR or ANMCONFDIR environment variables, just use .
if [info exists env(ANMCONFDIR)] { läppend path $env(ANMCONFDIR)}
if [info exists env(ANMTCLDIR)] { läppend path $env(ANMTCLDIR)}
läppend path .

foreach filename $args {
foreach p $path {

set t [catch {set fn [open $p/$filename r]}]
if {i$t} break

}

If unsuccessful, bail out
if ($t) {
puts stderr \
"Could not open help file $filename; it is not in the path: $path"
exit 1

}

while {[gets $fn line] != -1} {
if {[string range $line 0 3] == "MENU"} {
incr text_.no
global _HLP_text-$text_no
set _HLP_text-$text_no {}
_HLP_add_menus $text_no [lrange $line 1 end]

63

\ ©Xs© {
set _HLP_text-$text_no [läppend _HLP_text-$text_no $line]

}
}
close $fn

}

if {$text_no > 0} {_HLP_instantiate_menus $w}
return 0

> #
Add this, and all intervening names, into the menu list
The list data structure is
{ level <Button label> {Subitem list} <text no.> }
Level 0 items are direct descendants of the parent window.
Either subitem-list or text_no may be null, but not both at once.

proc _HLP_add_menus {item_no menu_list} {

global _HLP_menus _HLP_last_entry

set fixup_items {}

Start at the end of the list to allow for fixups
for {set mn [expr [llength $menu_list] -1]} {$mn > -1} {mcr mn -1} {

set m [1index $menu_list $mn]
set mnu_len [llength $_HLP_menus]
set found 0
for {set i 0} {$i< $mnu_len} {incr i} {

set m_item [1index $_HLP_menus $i]
if {[lindex $m_item 0] == $mn &£= [lindex $m_item 1] == $m} {
set found $i
break
}

}

if {!$found} {
Add item, only if at end of menu list
if {$mnu_len == 0 I I ($mn == ([llength $menu_list]-1))} {
set tnum $item_no
set submenu {}
} else {
set tnum {}
set submenu $_HLP_last_entry

läppend _HLP_menus [list $mn $m $submenu $tnum]
set _HLP_last_entry [expr [llength $_HLP_menus]-1]

Found it, if not at end, add in the submenu to the list
if {$i != ($mnu_len-l)} {
set mnu_item [lindex $_HLP_menus $i]
set submenu [lindex $mnu_item 2]
if {[lsearch $submenu $_HLP_last_entry] == -1} {

64

set submenu [läppend submenu $_HLP_last_entry]
}
set mnu_item [lreplace $mnu_item 2 2 $submenu]
set _HLP_menus [lreplace $_HLP_menus $i $i $mnu_item]
set _HLP_last_entry $i
}

Take the menu list structure and turn it into a bunch of
realizable menus. This is the startup proc for the recursive
process. Look for level 0 entries and fire them off.

proc _HLP_instantiate_menus {button} {

global _HLP_menus

set cntr 1

foreach mnu $_HLP_menus {
set mnu_level [lindex $mnu 0]
set mnu_label [lindex $mnu 1]
set mnu_submenu [lindex $mnu 2]
set mnu_textno [lindex $mnu 3]

if {$mnu_level == 0} {
if {[llength $mnu_submenu]==0} {
eval $button add command -label [list $mnu_label] \

-command \(_HLP_Command $mnu_textno\}
} else {
incr cntr
$button add cascade -label [list $mnu_label ->] -menu

$button.$cntr
menu $button.$cntr
foreach sm $mnu_submenu { _HLP_rinstantiate_menu $button.$cntr $sm

}
}

Recursive proc to follow the menu tree, instantiating as
we go

proc _HLP_rinstantiate_menu { button entry } {

global _HLP_menus

set mnu [lindex $_HLP_menus $entry]
set mnu_level [lindex $mnu 0]
set mnu_label [lindex $mnu 1]
set mnu_submenu [lindex $mnu 2]
set mnu_textno [lindex $mnu 3]

65

if {[llength $mnu_submenu]==0} {
eval $button add command -label [list $mnu_label] \

-command \{_HLP_Command $mnu_textno\}
} else {
$button add cascade -label [list $mnu_label ->] -menu $button.$entry
menu $button.$entry
foreach sm $mnu_submenu { _HLP_rinstantiate_menu $button.$entry $sm

}
}

We have been called with the number of a help text to display. Put
it up in a modal dialog and wait for the user to continue.
If the amount of text is large enough, use scrollbars.

proc _HLP_Command { help_no } {

catch {destroy .hip}
toplevel .hip
wm title .hip Help
wm iconname .hip Help

frame .hlp.f \
-relief raised -border 1

listbox .hlp.f.list \
-yscroll ".hlp.f.yscroll set" \
-xscroll ".hlp.f.xscroll set" -relief sunken -setgrid 1

scrollbar .hlp.f.yscroll \
-relief sunken -command ".hlp.f.list yview"

scrollbar .hlp.f.xscroll \
-relief sunken -command ".hlp.f.list xview" \
-orient horizontal

button .hip.but -text "Close" -command {destroy .hip} -background cyan

global _HLP_text-$help_no

set width 0
set line_count 0
set use_x 0
set use_y 0

set helptext [eval set _HLP_text-$help_no]
foreach str $helptext {

incr line_count
set si [string length $str]
if {$sl > $width} {set width $sl}
.hlp.f.list insert end $str

}

if {$width > 80} {set width 80; set use_x 1}
if {$line_count > 25} {set line_count 25; set use_y 1}
if {$width == 0} {

66

set width 30
.hip.f.list insert end "No help available"

}
if {$line_count == 0} {set line_count 1}
set geom [format "%dx%d" $width $line_count]

if {$use_y} {pack append .hlp.f .hlp.f.yscroll {right filly} }
if {$use_x} {pack append .hlp.f .hlp.f.xscroll {bottom fillx} }

pack append .hlp.f .hlp.f.list {expand fill}
pack append .hip \

•hlp.f {top expand fill} \
.hip.but {top}

.hlp.f.list configure -geometry $geom
tkwait visibility .hip
grab .hip

tkwait window .hip

}

File: stripchartl.hlp

MENU {About DIS PDU Monitor}

This program monitors Distributed Interactive Simulation networks and
displays the PDU traffic rates for each PDU type. The program is
written using Tel and the Tk toolkit (created by John K. Ousterhout),
and uses the BBN stripchart library and associated Bell Labs xygraph
widget.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS

252.227.7013.

Bolt, Beranek, and Newman Inc.
10 Moulton Street
Cambridge, MA 02138

This program is copyright 1994 by BBN Inc.

DIS PDU Monitor written by LT Mitchell K. R. Turner, U. S. Navy, July
1994.

MENU {How to use this}

This stripchart application graphs the input PDU count of a DIS network.
The initial view uses a fixed time window of 2 minutes and a network
sampling interval of 1 second (PDU rates are averaged over the sampling
rate). The user can:

Print a chart File > Print Chart

67

Change the sampling interval Timing > Change Sampling Int.
Change the chart time window Timing > Auto or Fixed
Select PDU types to display ChartSelect
Select a sending host to monitor Host

MENU File "Display Network Parameters"
Displays parameters in use by the program. Useful for troubleshooting.

MENU File "Print Chart"
Creates a snapshot postscript file of the current graph in the
-mkturner/charts directory called Chart<timestamp>.ps

MENU File "Exit Program"
Exits program. Chart information is lost.

MENU Timing "Change Sampling Interval"
Changes the interval over which PDU's are collected and their
rates calculated. Sampling interval must be from 1-60 seconds.
Note: Mouse-click response delay will increase with longer intervals.

MENU Timing "Automatic Chart Time-scaling"
Causes both the X and Y axes (Time and PDU Count) to automatically
scale to display all the collected data points.

MENU Timing "Fixed Window Time-scaling"
Causes the X-axis (Time) to become a fixed interval, so that only
the last interval's worth of data points are displayed. Default window
is 2 minutes.

MENU Timing "Fixed Window Size"
Sets the Fixed Window size in minutes and causes the x-axis scaling
to shift from automatic to fixed window if necessary. Window must
be 1 minute or greater.

MENU ChartSelect
Creates a new charts with the selected PDU type.

MENU Host "All hosts"
Causes program to monitor all hosts sending DIS PDU's with the correct
exercise id. If using a multicast network, the port and group must be
the same as that entered on PDU Monitor startup.

MENU Host "Select host"
Causes program to monitor one host sending DIS PDU's with the correct
exercise id. If using a multicast network, the port and group must be
the same as that entered on PDU Monitor startup. The complete IP
address must be entered if the host is not local. The message window
below the Control Panel menubar will reflect the host being monitored;
check your spelling!

MENU {Additional Information}
Additional information can be found in the man page stripchart (1).

File: strlpcliart2 .hip

68

MENU {What this means}

Each graph shows a strip chart of the PDU traffic for the selected
network parameters. It tracks the number of PDU's per second versus
the current time. If results are not what you expect, check the
network parameters to make sure you are monitoring the correct network
environment.

69

APPENDIX D. INSTALLATION INSTRUCTIONS

The PDU Monitor software is available through the World-Wide Web at the Naval

Postgraduate School Computer Science Department home page Uniform Resource

Locator (URL): "füey/taumsxs.nps.navy.mil/pub/mosaic/nps.mosaic.html.11 Pointers to

the installation instructions below and the software files are in the NPSNET section of the

URL page.

DIS PDU Monitor 1.0-1 Sep 94

by LT Mitchell Turner, USN
Naval Postgraduate School
Monterey, California

macedoni@cs.nps.navy.mil

1. Introduction

This program monitors Distributed Interactive Simulation networks and
displays the PDU traffic rates for each PDU type. The program is
written using Tel and the Tk toolkit (created by John K. Ousterhout),
and uses the BBN stripchart library and associated Bell Labs xygraph
widget.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS
252.227.7013.

Bolt, Beranek, and Newman Inc.
10 Moulton Street
Cambridge, MA 02138

This program is copyright 1994 by BBN Inc.

2. Files

bin.tar.Z - compressed archive of directory containing the binary Tk
shell application (netwish), the Tel script files to run the PDU Monitor
and its help system, the text files for the help system, and manual
pages for the stripchart library and the xygraph extension for Tk. The
netwish binary is compiled for the IRIX 5.2 operating system (see below
for instructions to run the monitor).

70

src.tar.Z - compressed archive of directory containing the files
necessary to extend Tel 7.3/Tk 3.6 to include the netwish capabilities.
Includes netwish extension code (netAppInit.c and disnetlib.c),
necessary *.h files, compiled DIS network library functions
(libdis_client.a), the xygraph extension (graph.c), and TclX extensions
needed by the monitor (TclX*.c). These files are useful to see how Tk
was extended to build netwish. However, since the network library was
compiled under IRIX 5.2, you will not be able to build netwish unless
you are running that OS (see below for instructions to build netwish).

thesis.txt.Z - the compressed text of the thesis that this program was
created for.

thesis.ps.Z - compressed PostScript file of complete thesis.

3. Running the PDU Monitor

a. Copy the bin.tar.Z file to a local machine. Run uncompress and tar
xvf on the file.

b. If you want users to have general access to the netwish shell, you
may move the netwish binary to a directory in generic paths.

c. The printchart function in dis.tcl expects a directory called
"charts" at the same level as the directory the program is started from.
This directory should have write privileges for everyone who may use
the PDU Monitor. If you wish to use another directory, you can modify
the printchart function in dis.tcl, replacing "../charts/" with any
valid path.

d. To run the generic netwish shell, type netwish. To run the PDU
Monitor, type "netwish -f dis.tcl". This must be done a host not
involved in the DIS simulation that is running.

e. Choose broadcast or multicast depending on the type of DIS
simulation you are running. Enter the network exercise ID, and if using
multicast, the network port and multicast group address you are using.

f. The Monitor starts with a chart of Entity State PDU rate. The Help
menu item on the right side of the control panel describes all the
options available.

4. Building netwish

To build netwish on a system other than IRIX 5.2, you must obtain the
source code for the DIS network functions. Contact MAJ Mike Macedonia,
USA, at macedoni@nps.navy.mil.

a. Obtain Tel 7.3/Tk 3.6 and install according to the accompanying
instructions (the netwish extensions have not been tested with earlier
versions of Tcl/Tk, though the graph.c program has). Tcl/Tk can be
obtained by anonymous ftp from ftp.cs.berkeley.edu:/ucb/tcl. The latest

71

version and various extension packages can also be obtained from
harbor.ecn.purdue.edu:/pub/tcl.

b. Copy the src.tar.Z file to a local machine. Run uncompress and tar
xvf on the file.

c. Move the *.h, *.a, and *.c files to the Tk3.6 directory.

d. Modify the Tk Makefile as follows:

- you may need to change the CFLAGS to "-02 -cckr" (we did for IRIX)
- add the following files to OBJS:

tclXgetdate.o tclXclock.o tclXcnvclock.o tclXutil.o
graph.o disnetlib.o

- modify "wish:" to the following:
wish: netAppInit.o libtk.a $(TCL_BIN_DIR)/libtcl.a libdis_client.a

$(CC) $(CC_SWITCHES) netAppInit.o $(LIBS) -o netwish

e. Run the Makefile.

f. Move the netwish binary to the desired directory (see para 3.b-3.f
above).

72

LIST OF REFERENCES

Ferguson, P. M., and Heller, D., Motif Programming Manual, O'Reilly and Associates,
Inc., 1994.

Institute for Simulation and Training, IST-TR-93-11, Distributed Interactive Simulation
Guidance Document [Draft 2.1], University of Central Florida, Orlando, Florida, March
1993.

Johnson, E. F., and Reichard, K., "Tickled Pink," UNIX Review, v. 12, March 1994.

Johnson, M. A., The World Modeler: The Nexus between Janus and Battlefield
Distributed Simulation - Developmental, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1994.

Macedonia, M. R., and others, NPSNET: A Network Software Architecture for Large
Scale Virtual Worlds, Naval Postgraduate School, Monterey, California, 1994.

Operational Support Office, OSO National Systems Modeling and Simulation for
Training and Exercise Support (briefing), Naval Research Lab, Washington, DC, August
1993.

Ousterhout, J. K„ Tel and the Tk Toolkit, Addison-Wesley Publishing Co., 1994.

Reddy, R., Advanced Distributed Simulation Concept Briefing, Advanced Research
Projects Agency, Arlington, Virginia, November 1992.

Stevens, W. R, UNIX Network Programming, PTR Prentice-Hall Inc., 1990.

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

3. Dr. Michael Zyda, Code CS/Zk
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor David Pratt, Code CS/Pr
Naval Postgraduate School
Monterey, California 93943-5000

5. LCDR Donald Brutzman, Code OR/Br
Naval Postgraduate School
Monterey, California 93943-5000

6. Dr. Dan Boger, Code SM/Bo
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Gary Porter, Code CC/Po
Naval Postgraduate School
Monterey, California 93943-5000

8. MAJ Michael Macedonia, Code CS/PHD
Naval Postgraduate School
Monterey, California 93943-5000

9. Space Systems Academic Group, Code SP
Naval Postgraduate School
Monterey, California 93943-5000

10. Commander, Naval Space Command
ATTN: N112
5280 4th Street
Dahlgren, Virginia 2248-5300

11. LT Mitchell Turner
P. O. Box 57
FortBelvoir, Virginia 22060-0057

74

12. Professor Michael Bailey, OR/Ba
Naval Postgraduate School
Monterey, California 93943-5000

13. Professor William Kemple, OR/Ke
Naval Postgraduate School
Monterey, California 93943-5000

75

