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Mathematical Modeling and Numerical Simulation 
of the Dynamics of Flexible Structures 

Undergoing Large Overall Motions 

J. C. SIMO*, P.I. 

Division of Applied Mechanics, 

Department of Mechanical Engineering, 

Stanford University, Stanford, CA 94305 

Final report* of the research supported by the AFOSR 

under contract No. F49620-91-C-0048-P00002 with Stanford University 

Abstract 
This document is the final report of the research sponsored by AFOSR under contract No. 
F49620-91-C-0048-P00002 with Stanford University. This research effort focused on the math- 
ematical modeling and numerical simulation of the dynamics of flexible structures undergoing 
large overall motions. The results reported below fall within the following areas: (i) Enhanced 
numerical models for shell intersections, (ii) Asymptotic methods for nonlinear shells, and (iii) 
Conserving time-stepping algorithms for nonlinear dynamics. 

1. Introduction 

Realistic models of spacecrafts, space platforms and related devices invariably involve 

large and very flexible structures undergoing large overall motions, thus rendering inappro- 
priate analyses based on a linearized approach. The ultimate goal of this investigation is 

the development of analytical and computational techniques for the mathematical model- 

ing and numerical simulation of the nonlinear response of this type of structure undergoing 

such large overall motions. Central to the proposed approach is the use of nonlinear me- 

chanical models which place no restriction on the allowable flexibility of the structure, 

and capture dynamic coupling effects induced by the deformation of the structure without 

resorting to ad-hoc simplifications. In this way, a crucial feature of the mathematical 

models under consideration is the rich geometric structure associated to them. The results 
obtained in this research project show that the exploitation of this geometric structure 
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leads to very efficient numerical techniques which exhibit an excellent computational per- 
formance. 

The research developed under this project has been the continuation of the research 
sponsored by AFOSR under grants No. DJA/AFOSR 86-0292 and No. 2DJA/AFOSR 89- 
0294 with Stanford University during the period 1986-1990. Accomplished results of these 
previous projects were: (i) The formulation and analysis of geometrically exact models, 
(ii) The numerical analysis of the dynamics of shell models, and (iii) The formulation 
of the Energy-Momentum method for the stability analysis of Hamiltonian systems. As 
indicated in the original proposal, the main goals of the present project are the extension 
and generalization of these results according to the following lines of research: 

i.  Formulation and numerical analysis of enhanced models for junctions and shell in- 
tersections in the framework of the previously developed geometrically exact models. 

ii.  Asymptotic methods for nonlinear shells. 

iii.   Formulation of conserving time-stepping algorithms for nonlinear dynamics in the 
context of nonlinear finite element methods. 

The results obtained along these three lines of research are summarized in the following 
section. See SlMO [1992], Fox, RAOULT & SlMO [1993], and SlMO, RlFAl & Fox [1992] 
for a complete description of these results in the above three respective areas. 

2. Summary of the Main Accomplishments 

This section presents the main results obtained in this research project. These ac- 
complishments are grouped in the three main lines of research indicated above. 

2.1. Enhanced models for junction and shell intersections 

As noted in the introduction, previous research efforts under the support of the 
AFOSR concentrated in the formulation and numerical analysis of geometrically nonlinear 
shell models. See SlMO & Fox [1989], SlMO, Fox & RlFAl [1989,1990] and SlMO, Fox 
& RlFAl [1990] for a complete description. One of the original goals accomplished in 
the present research effort has been the extension and generalization of these models to 
accommodate situations arising in the actual design of space structures. In particular, 
non-smooth intersections of shells appear almost invariably in such designs. The complete 
mathematical characterization and numerical simulation of their mechanical response is 
then of major practical interest. 

In recent years, there has been a significant activity in computational treatments of 
nonlinear shell theory. Representative examples are the recent works of PARISH [1991], 
where the classical degenerated solid concept is revisited in a nonlinear setting that in- 
corporates geometrically exact rotational updates, BUCHTER & RAMM [1992] where the 
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FIGURE 2.1.1 Cylindrical bending of a right angle shell, with thickness 0.02 units. 
Shown in the figure are different deformed shapes. Perfect agreement is found with 
the elementary beam solution. 

relations between classical shell theories (of the type considered in this work) and the de- 

generated solid approach are re-examined and further explored, and SANSOUR & BUFLER 

[1992] where nonlinear shell theories based on the Biot formulation introduced in ATLURI 

[1984] are explored in a computational context. An overview of representative approaches 

in computational shell theory up to the end of the 80's, is contained in NOOR, BELYTSCHKO 

& SlMO [1990]. Inspection of the large body of literature concerned with computational 

shell analysis reveals that most of the approaches are restricted by the implicit assumption 

that the shell mid-surface is to remain smooth. The same limitation typically applies to 
standard expositions of nonlinear shell theory; see e.g., NAGHDI [1972]. As a result of this 

restriction, a unique director field is attached to each point of the mid-surface, which is 

parametrized by two independent (rotational) coordinates. 

It has been widely accepted for a number of years now that the treatment of shell 

intersections using finite elements requires formulations possessing 6 DOF/Node. Current 

finite element methods of this type incorporate the so-called drill-rotation about the direc- 

tor field and often require stabilization via the addition of an artificial drill-stiffness. The 

recent work of PARISH [1991] is representative of this approach. Finite element methods 

designed to incorporate this additional rotation in the membrane field have been discussed 

in ALLMAN [1984], TAYLOR & SIMO [1985], HUGHES & BREZZI [1989], IBRAHIMBEGOVIC, 
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TAYLOR & WILSON [1990] and SIMO, FOX & HUGHES [1992] among others. It appears 

that non-classical theories which incorporate an independent rotation field, of the type 

considered by TOUPIN [1964], REISSNER [1965] and others, provide the proper continuum 

setting for the incorporation of drill-rotations; see e.g., Fox & SlMO [1992]. 

In contrast with the aforementioned works, a direct approach based on classical shell 

theory has been proposed in this work that circumvents the need for drill rotations. The 

key observation exploited in the continuum formulation of the shell intersection problem 

is the view of a shell intersection as a smooth curve in the reference shell mid-surface 

across which the director field experiences a jump discontinuity. Accordingly, two (or 

more) directors are assigned to each point of an intersection in the reference configuration. 

The additional assumption of a rigid shell intersection translates into the constraint which 

requires that the angle between the directors at each point of the intersection remain 

constant. Satisfaction of this constraint can be achieved only by demanding continuity of 

the angular velocity of the director field across the shell intersection (but not continuity 

of the director velocity itself). Since the director angular velocity at a point in a shell 
intersection generally possesses three independent components, as opposed to only two 

independent components in the case of a smooth shell mid-surface, one necessarily obtains 

finite element discretizations possessing 6 global DOF at points in a shell interaction. This 

added degree of freedom, however, is totally unrelated to the drill-rotation widely used to 
tackle the problem, as indicated above. 

In this context, a convenient parametrization is defined in terms of a rotation matrix 

assigned to each node and updated iteratively. Exact nonlinear geometric updates are 
employed for the rotational degrees of freedom. This procedure leads to a simple modifi- 
cation of previously developed finite element methods. In particular, at the element level 

the finite element method remains unchanged from the standard formulations employing 

5 DOF/Node. The element contributions for the residual vector and tangent matrix are 

then assembled in the corresponding global arrays, where the different number of degrees 

of freedom for the shell intersections are taken in account by the rotation matrix indicated 

above. This leads to a simple and effective computational procedure that has exhibited an 

excellent performance in a number of numerical simulations. Figure 2.2.1 depicts a rep- 

resentative numerical simulation obtained with the proposed approach consisting of the 
(nonlinear) rolling of a L-shape shell; see SlMO [1992] for further details. 

2.2. Asymptotic methods for nonlinear shells 

Plates and shells are three-dimensional continuum bodies characterized by a reference 

placement possessing one dimension, the thickness, which is small in comparison with the 

other two dimensions. This distinctive feature suggests the use of an asymptotic analysis, 

with the thickness regarded as a small parameter, as a means of justifying two-dimensional 

mathematical models of plates and shells from the full three-dimensional theory. A large 
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body of literature concerned with the derivation of classical plate and shell equations does 

in fact adopt asymptotic expansions'as a central tool in the analysis. Most of the early 

derivations or justifications of plate and shell models via asymptotic analysis are typically 

restricted to the linear theory. 

A reformulation and precise formalization of the asymptotic approach within the 

general framework of three-dimensional nonlinear elasticity is described in ClARLET & 

DESTUYNDER [1979] and ClARLET [1980]. There, it is shown that the von Karrnan model 

of plates arises as the leading term in a formal asymptotic expansion of the nonlinear 

three-dimensional theory cast as a mixed variational problem in stresses and displace- 

ments. An alternative formulation of this approach, which uses a variational formulation 

solely in terms of displacements, was given by RAOULT [1988]. The asymptotic approach 

has been applied by these authors and their co-workers to a variety of models, including 

shallow shells and junctions. The lack of invariance under superposed rigid body motions 

(Euclidean isometries) exhibited by the (second order) models arising in this asymptotic 

approach, the von Karman model in particular, is a noteworthy feature also shared by the 
linear theory of elasticity. This striking feature is to be contrasted with the full invariance 
properties under Euclidean isometries of the nonlinear three-dimensional theory which is 
taken as the point of departure in these asymptotic analyses. 

An entirely different approach to the formulation of one and two-dimensional math- 

ematical models for rods, plates and shells employs directly the notion of directed media 

introduced in COSSERAT [1909]. This approach was revitalized in the pioneering paper 

of ERICKSEN & TRUESDELL [1958] and encompasses classical rod models going back to 

EULER, CLEBCH & KIRCHHOFF (see e.g., LOVE [1932]). Comprehensive reviews of this 

methodology, often referred to as the direct approach, can be found in ANTMAN [1972] 

and NAGHDI [1972].. Two representative examples are the constrained two-director rod 

model, which incorporates finite extension, shearing, bending and twist, and the inexten- 

sible one-director shell model, which incorporates finite membrane and bending as well 

as transverse shear deformation. As stressed in ANTMAN [1976], a significant and often 

overlooked property of models arising in projection-constraint methods (intimately related 

to the direct approach) is the exact character of the balance laws of momentum, which can 

be derived directly from the three-dimensional theory. Furthermore, these models enjoy 

the same invariance properties under superposed Euclidean isometries as the full nonlinear 
three-dimensional theory. 

From the above remarks, one would be tempted to conclude that the von Karrnan 

model of plates, and not any of the full nonlinear models obtained by a direct approach, is 

the canonical nonlinear model that arises as the leading term in an asymptotic expansion 

of the three-dimensional theory. It was shown in this work that full nonlinear and properly 

invariant models of plates, referred to as the membrane theory and the inextensional theory, 

do in fact arise as leading terms in an asymptotic expansion of the three-dimensional 

nonlinear theory.   Our approach relied on a reformulation of the asymptotic procedure 
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introduced in ClARLET [1980] and further developed in RAOULT [1988], cast in a form 

designed to preserve the full invariänce properties of the three-dimensional theory. Only 
two assumptions were made in our formal asymptotic analysis: 

i. The applied loads admit an expansion in power series of the thickness e, after a 

reparametrization to an ^independent domain is introduced. 

ii. The ansatz is made that the deformations of the plate, reparametrized to the 

e-independent domain, can be formally expanded in powers of e. 

We showed that, within the hierarchy of nonlinear plate models arising in the asymp- 

totic procedure, the appearance of a specific model as the leading term is dictated only 

by the order of the leading non-zero term in the expansion of the loads. In particular, 

we showed that the nonlinear membrane theory arises if the body forces and edge loading 

are order 1 and the surface loading is order e. In this classical model, the stored energy 

function depends only on the first fundamental form of the deformed plate mid-surface 

and the solutions are then characterized as minimizers of the total potential energy. No 
restrictions are placed by the model on the magnitude of the membrane strains. 

Further, we showed that the nonlinear inextensional theory arises as the leading term 

in the formal asymptotic expansion for body forces and edge loading of order e, surface 

loading of order e2 and vanishing transverse normal force (i.e., pure bending loads). In this 

model, the stored energy function depends only on the second fundamental form of the 

deformed plate mid-surface, which must be isometric to a plane since the first fundamental 

form is the identity. The solutions of the problem are characterized via the asymptotic 

procedure as minimizers of the total potential energy over the manifold of surfaces isometric 
to the plane. No restrictions are placed on the magnitude of the bending strains. Again 

it is shown that precise restrictions on the order of magnitude of the stress field are not 

postulated a priori (as in previous works) but are obtained as a result in the course of the 
asymptotic derivation. 

Finally, we showed that the von Kärman model of plates arises as the leading term 

in the asymptotic expansion for order e2 in-plane and e3 vertical body force and edge 

loading, along with order e3 in-plane and e4 vertical surface loading. The preceding results, 

summarized in the table, provide a precise description of the position of these theories 

relative to the magnitude of the applied loads. In the development of these results the 

simplifying constitutive assumption is made of a Saint Venant-Kirchhoff material. The 

limitations of this model are well-known. We investigated the extension of our results 
to general hyperelastic constitutive models and made a preliminary outline of the steps 
required to perform such an analysis. 

The models described above can be derived from the one-director shell model (related 

to the direct approach, see SlMO & Fox [1989]) by placing suitable restrictions on the 

director field and the shell mid-surface. In particular, the membrane theory is obtained 

in the absence of a director field, while the inextensional theory arises when the director 
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TABLE 2.2.1 Scaling of the external loading leading to different plate models. 

Body and Edge Load Surface Load 
Plate Model in-plane vertical in-plane vertical 

Membrane 1 1 £ e 
Inextensional* e e e2 e2 

von Karmän e2 
£a e* £4 

* For the inextensional theory, the further restriction must be made that no order e resultant force exists 

(only order e resultant moment loading). 

field is identified with the normal to the deformed mid-surface which is constrained to 

remain isometric to the reference mid-surface (here, a plane). These results, therefore, 

lend considerable support to the one-director shell model as a general theory applicable 

to nonlinear plates/shells. Moreover, they provide a justification for the success obtained 

with this model in direct, large scale, numerical simulations of complex problems subjected 

to general loading. For a comprehensive account of numerical analysis aspects related to 
the implementation of the one-director nonlinear shell model we refer to SlMO, RlFAI & 

Fox [1990] and references therein. 

2.3. Conserving time—stepping algorithms for nonlinear dynamics 

Of special interest is the dynamics of very flexible shell structures undergoing finite 

deformations and large overall motions. In this situation there are two fundamental con- 

stants of the motion, the total linear and angular momentum maps, which are conserved 

by the dynamics regardless of the specific functional form assumed for the constitutive 

response. If one further specializes the shell model by assuming hyperelastic response and 

conservative loading, the mechanical system becomes Hamiltonian (see SlMO, MARSDEN 

& KRISHNAPRASSAD [1988]), and the total energy (i.e., the Hamiltonian) is also conserved 

by the dynamics. A main goal of this project is the design of time-stepping algorithms 

which will automatically inherit these fundamental conservation properties present in the 

continuum model. We showed in this work that these conservation laws are preserved in 

the time discretization only by a very specific class of time-stepping algorithms. Even 
if this class of algorithms is adopted, the conservation properties will not, in general, be 

preserved by the subsequent spatial discretization. A further goal of this work is the for- 

mulation of finite element interpolations which preserve the conservation laws inherited by 

the time-stepping algorithm. Our main results can be summarized as follows. 

i. Momentum conserving time-stepping algorithms. A crucial aspect in the numerical 

simulation of the dynamics of nonlinear structural models concerns the time-intergration 
of the rotational dynamics which evolves in the rotation group. The difficulty is asso- 

ciated with the geometry of the rotation group which is not a (flat) linear space but a 

differentiable manifold. Recently, SlMO & WONG [1990] showed that the extension of the 
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Newmark formulae to the rotation group written in body coordinates, in the form sug- 

gested in SlMO & Vu-Quoc [1988], along with a generalized mid-point rule approximation 

to Euler's angular momentum equation written in conservation form (or impulse form in 

the terminology of ZlENKIEWICZ, WOOD & TAYLOR [1980]), yields an algorithm which 

exactly preserves total angular momentum. In addition, the algorithm is frame invariant 

and conserves energy in the absence of external loading only for a choice of parameters 

leading to the mid-point rule. 

Two nontrivial difficulties arise in the extension of the preceding class of algorithms 

to the dynamics of nonlinear shells. First, the coupling between the rotational and trans- 

lational parts, which manifests itself in the expression for the total angular momentum 

map. Second, the additional S1 symmetry present in classical shell models, which is the 

result of the invariance of the shell equations with respect to a one-parameter group of 

(drill) rotations about the director field. As discussed in SlMO & Fox [1989] and SlMO, 

Fox & RlFAI [1990], the enforcement of this invariance condition leads to a replacement of 

the rotation group by the unit sphere, since only two independent parameters are required 

to describe the orientation of the director field. The class of algorithms proposed in this 
research is then constructed as follows: 

i.l. Both the strong and weak forms of the Euler laws of motion for nonlinear shells 

are written in conservation form and approximated via a generalized mid-point 
rule. 

i.2. The Newmark formulae are extended to the unit sphere leading to a time- 

stepping procedure which exactly preserves frame invariance and is consistent 

with the classical rule of composition of angular velocities. 

i.3. The configurations are updated using the exponential mapping in the unit 

sphere, thus ensuring exact satisfaction of the unit director constraint condi- 
tion. 

We showed that (for Neumann boundary conditions and equilibrated loading) total angular 

momentum is exactly conserved only for one member of the preceding family of algorithms: 

the conservation form of the mid-point rule. The proof shows that this conservation prop- 
erty depends critically on adopting the steps i.l through i.3 above. An identical result also 

holds for three-dimensional continuum mechanics. In fact, for Newmark-like algorithms, 

exact preservation of the conservation law of total angular momentum holds only for a 

mid-point rule approximation to the conservation form of the momentum equations. We 

remark that the accelerations play no role in such a formulation, and are obtained merely 
via postprocessing. 

ii. Energy conserving algorithms. Exact energy conserving algorithms for Hamilto- 

nian systems have received considerable attention in the literature; see e.g. GREENSPAN 

[1974], BAYLISS & ISAACSON [1975], LABUDDE & GREENSPAN [1976a,b] and HUGHES, 
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LlU & CAüGHY [1978] among others. For the linear problem, it is well-known that the 
mid-point rule is the only one-step" method possessing this property; see BELYTSCHKO 
& SCHOEBERLE [1975]. We have proved a somewhat surprising generalization of this re- 
sult: Given any stored-energy function and given an arbitrary potential for the external 
loading, there exists a generalized mid-point configuration, depending on the time interval 
[<„,<n+i], for which the total energy is exactly conserved. The implementation of this 
result involves the actual determination of the generalized mid-point configuration as part 
of the algorithm. We show that this can be easily accomplished by solving an additional 
single scalar equation. 

iii. Algorithms incorporating numerical dissipation. For structural dynamics, high 
frequency algorithmic dissipation is often regarded as a desirable property of a time- 
stepping algorithm. A number of modifications of the classical Newmark family of al- 
gorithms have been proposed, typically in the form of linear multi-step methods, which 
introduce high order dissipation and preserve second order accuracy; see e.g., BATHE & 
WILSON [1973], PARK [1975], WOOD, BOSSAK & ZIENKIEWICZ [1981] and BAZZI & AN- 

DERHEGGEN [1982]. A recent review is contained in HOFF & PAHL [1988a,b]. We have 
presented a modification of the a-method of HlLBER, HUGHES & TAYLOR [1977] which 
involves only a trivial modification of the preceding Newmark-like algorithms for nonlin- 
ear shells. In fact, the proposed extension of the a-method modifies the conservation 
form of the momentum equations with initial conditions at the beginning of the time step 
which does not affect the linearization of the algorithm. We showed, however, that any 
departure from the mid-point rule designed to introduce numerical dissipation destroys 
the conservation properties of the algorithm. 

It is well-known (see e.g., GOUDREAU & TAYLOR [1973]), that the mid-point rule 
exhibits no numerical dissipation for any frequency range. In fact, for the linear prob- 
lem, the algorithm possess two complex conjugate roots with unit modulus (and a zero 
spurious root) which bifurcate into a double real root of unit modulus at infinite sam- 
pling frequencies. According to a standard result; see e.g., GEAR [1971], the presence of a 
double root with unit modulus leads to a weak instability which, for the mid-point rule, 
can occur only for infinite sampling frequencies. As noted by CARDONA & GERARDIN 
[1979], infinite frequencies can occur in nonlinear dynamics if kinematic constraints are 
enforced via Lagrange multipliers, since they have associated massless degrees of freedom. 
It appears, however, that this situation is not relevant to the problem at hand since the 
kinematic constraint which requires the director field to be unit is enforced exactly, leading 
to a finite element method with five degrees of freedom per node. A similar observation 
applies to the dynamics of nonlinear rods (see SlMO & DOBLARE [1990]). High-frequency 
numerical dissipation, however, does result in added stability, since the spectral radius of 
the algorithm becomes strictly less that one at infinite sampling frequencies, thus prevent- 
ing the appearance of weak instabilities associated with the mid-point rule. This feature 
is confirmed by our numerical simulations. 
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iv. Finite element spatial discretization. Arbitrary finite element interpolations of 

the semi-discrete shell equations do" not necessarily preserve the conservation properties 

of the time-stepping algorithm. We have proved that for nonlinear shells the conservation 

properties of the algorithm are preserved by the spatial discretization if the following 

interpolations are adopted: 

iv.l. Both the unit director constraint and the linearized director constraint condi- 

tions are enforced exactly at the nodal points of the finite element discretization. 

By design, these conditions are satisfied by the proposed class of time-stepping 

algorithms and the configuration update procedure which makes use of the 

exponential map. 

iv.2. The discrete configuration space and the finite dimensional subspace of admissi- 

ble variations are constructed using isoparametric finite element interpolations. 

iv.3. A row sum approximation is used only for the inertia terms associated with the 

angular velocity of the director field. 

Condition iv.3 ensures that the S1 invariance property of the shell equations with respect 

to drill rotations is also present in the discrete model and makes it possible to reduce to a 

five degree of freedom per node problem. 

3. Concluding Remarks 

We believe that this research project has led to important accomplishments in the 

mathematical modeling and numerical simulation of flexible structures. In particular, the 

aforementioned developments have led to very attractive computational methodologies 

for the large-scale and long-term simulation of such structures undergoing large overall 

motions. We would like to point out that important improvements of these results have 

been obtained in the development of conserving time-stepping algorithms in the subsequent 

research efforts under the continued support of the AFOSR. See SlMO & TARNOW [1992], 

SIMO & TARNOW [1994], SIMO, TARNOW & DOBLARE [1994], LEWIS & SIMO [1994] in 
this respect. 
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