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MONDAY, JUNE 6, 1994—Continued TUESDAY, JUNE 7, 1994 

ROOM B 

4:00 pm-5:30 pm 
DMD, OPTICAL INTERCONNECTS 
Jürgen Jahns, AT&T Bell Laboratories, Presider 

4:00 pm   (Invited) 
DMD1 Diffractive optic design for board-level free-space op- 
tical interconnects, Raymond K. Kostuk, Univ. Arizona. The three- 
dimensional nature of board-level interconnects suggests the use 
of free-space optics for the connection medium. Several diffrac- 
tive optic designs for this application are presented, (p. 64) 

4:30 pm 
DMD2 Design of achromatic holographic grating couplers 
for backplane optical interconnects, Michael R. Wang, Fred- 
die Lin, Physical Optics Corp. Laser wavelength shifts cause 
undesirable coupling alignment problems in multiboard systems 
using optical backplane interconnections. An achromatization tech- 
nique based on a three-grating structure is introduced, (p. 68) 

4:45 pm 
DMD3 Design and fabrication error analysis of input couplers 
for integrated planar micro-optic systems by rigorous diffrac- 
tion theory, Seung Gol Lee, Tae Wan Kim, Inha Univ., South 
Korea; Seok Ho Song, Electronics and Telecommunications Res. 
Inst, South Korea. Based on the rigorous diffraction theory, input 
couplers for integrated planar micro-optic systems are designed 
and their fabrication errors are analyzed numerically, (p. 72) 

5:00 pm 
DMD4 Selective cell-based algorithm for designing high- 
efficiency beam array generators, Rick L. Morrison, Mike J. Wo- 
jcik, AT&T Bell Laboratories. An iterative algorithm that investigates 
only cells along phase transition boundaries and is able to increase 
its spatial resolution as necessary is used to design large two dimen- 
sional Fourier-plane holograms generating arbitrary intensity spot 
arrays, (p. 76) 

5:15 pm 
DMD5 Coupled kinoforms for space variant optical intercon- 
nect systems, David Zaleta, Michael Larsson, Walter Daschner, 
Sing H. Lee, UC-San Diego. We present three design methods 
to maximize the propagation distance for space variant optical in- 
terconnect systems and compare it to a standard DOE design. 
(p. 80) 

ROOM B 

8:30 am-10:00 am 
DTuA, FABRICATION METHODS 
M. C. Hutley, National Physical Laboratory, Presider 

8:30 am   (Invited) 
DTuA1 X-ray lithography: applications to fabrication of dif- 
fractive optics, F. Cerrina, Univ. Wisconsin-Madison. The high 
resolution, depth of focus, and process latitude make x-ray optics 
an ideal technique for the production of large-area and high-volume 
diffractive optics. We will review XRL and its status today, and pre- 
sent some demonstration of high-resolution and high-aspect ratio 
optics, (p. 86) 

9:00 am 
DTuA2 Fabrication of ultrahigh-resolution gratings for x-ray 
spectroscopy, Max Wei, Erik H. Anderson, David T. Attwood, 
Lawrence Berkeley Laboratory. Large area (20 um x 90 ^im) grat- 
ings of 50 nm period have been recorded in PMMA using soft x- 
ray archromatic holographic lithography, (p. 91) 

9:15 am 
DTuA3 Interferometric and TIR holographic fabrication of 
high carrier-frequency surface-relief elements, P. Ehbets, H. 
P. Herzig, P. Blattner, P. Nussbaum, Univ. Neuchätel, Switzerland; 
F. S. M. Clube, S. Gray, J. C. Tisserand, Holtronic Technologies 
SA, Switzerland. High carrier-frequency surface-relief elements for 
spot array generation have been fabricated by interferometric re- 
cording and by a holographic mask aligner, (p. 95) 

9:30 am 
DTuA4 Investigation of the defects introduced when 
diamond-tuning hybrid components for use in infrared optical 
systems, Andrew J. McDowell, Patrick B. Conway, Chris W. 
Slinger, Defence Research Agency, England, U.K.; Andrew C. Cox, 
Richard A. Parker, Andrew P. Wood, Precision-Optical Engineer- 
ing, England, U.K. A practical and theoretical investigation of the 
effects of periodic and random defects introduced when diamond 
turning hybrid components for use in infrared optical systems. 
(p. 99) 

9:45 am 
DTuA5   Effects of fabrication errors on the performance of 
binary gratings, Drew A. Pommet, M.G. Moharam, EricB. Grann, 
Univ. Central Florida. The effects of the errors in the depth, grating 
period, linewidth, and 'squareness' of the profile due to the fabri- 
cation process on the desired diffraction characteristics are in- 
vestigated, (p. 103) 

ROOM B 

10:30 am-12:30 pm 
DTuB, POSTER PREVIEW AND POSTER SESSION 
G. Michael Morris, University of Rochester, Presider 

10:30 am 
DTuB1 New developments in the diffraction behavior of 
Echelle gratings, Erwin G. Loewen, Milton Roy Co.; Daniel 
Maystre, Univ. d'Aix Marseille III, France; Evgeny K. Popov, Lyn- 
bomirTsonev, Institute of Solid-State Physics, Bulgaria. Diffraction 
efficiency of Echelle gratings has been carefully examined and 
found more complex than predicted by scalar theory. New rigorous 
theoretical calculations have confirmed the observations, (p. 108) 



MONDAY, JUNE 6, 1994 

ROOM B 

8:30 am-10:00 am 
DMA, ELECTROMAGNETIC THEORY OF GRATINGS 
J. R. Leger, University of Minnesota, Presider 

8:30 am   (Invited) 
DMA1 Fundamentals of grating diffraction, Thomas K. 
Gaylord, Elias N. Glytsis, David L. Brundrett, Georgia Institute of 
Technology. (Abstract not available.) (p. 2) 

9:00 am 
DMA2 Implementation of the rigorous coupled-wave techni- 
que: stability, efficiency, and convergence, M. G. Moharam, 
Drew A. Pommet, EricB. Grann, Univ. Central Florida. Efficient and 
absolutely stable implementation of the rigorous coupled-wave 
technique is presented for the analysis of one-dimensional surface- 
relief gratings, (p. 4) 

9:15 am 
DMA3 Mathematic-issues in the electromagnetic theory of 
gratings, Gang Bao, Univ. Minnesota; David C. Dobson, Texas 
A&M Univ.; J. Allen Cox, Honeywell Technology Center. A varia- 
tional approach is presented. Existence and uniqueness of solu- 
tions, convergence of the variational method, and sensitivity to TM 
polarization are discussed, (p. 8) 

9:30 am 
OMA4 Optimization techniques for the design of resonance 
domain diffractive optical elements, J. T. Sheridan, R. Ehrhardt, 
T. O. Körner, Univ. Erlangen-Nurnberg, Germany. Nonlinear op- 
timization techniques, in particular genetic algorithms and simulated 
evolution, are applied in conjunction with the Legendre exact eigen- 
function method to design surface relief gratings, (p. 12) 

9:45 am 
DMA5 Observation and numerical analysis of finite-beam 
Bragg diffraction by a phase grating, Michael R. Wang, Physical 
Optics Corp. A numerical impulse response technique and 
waveguide experiments are introduced to study the propagation 
and Bragg diffraction of a finite-width beam in a phase grating. 
(p. 16) 

ROOM B 

10:30 am-12:00m 
DMB, NOVEL APPLICATIONS 
Joseph N. Mait, U.S. Army, Presider 

10:30 am   (Invited) 
DMB1 Diffractive micro-optics in Switzerland, H. P. Herzig, 
Univ. Neuchätel, Switzerland. A review of the current activities in 
diffractive microoptics in Switzerland is presented. Of interest are 
phase elements with multilevel and continuous microreliefs. (p. 22) 

11:00 am 
DMB2 Single-element achromatic diffractive lens, Donald W. 
Sweeney, Gary Sommargren, Lawrence Livermore National Lab- 
oratories. A diffractive harmonic lens allows a continuous trade-off 
between lens thickness and archromatic performance. These single- 
element lenses are shown to produce excellent white-light images. 
(p. 26) 

11:15 am 
DMB3   Wavefront sensing applications of binary optics, D. 
R. Neal, M. E. Warren, J. K. Gruetzner, Sand/a National Labora- 
tories. Binary optics technology was used to build wavefront sen- 
sors for directly measuring Zernike modes. These sensors are useful 
for metrology, adaptive optics, and fluiddynamics measurements. 
(p. 30) 

11:30 am 
DMB4 New uses of computer-generated holograms for 
measuring astronomical optics, James H. Bürge, Univ. Arizona. 
Two new applications of circular computer-generated holograms 
for certifying null correctors for primary mirrors and for measuring 
large convex secondary mirrors are described, (p. 34) 

11:45 am 
DMB5 Patterned Schottky barrier solar cells, H. Grebel, K. 
J. Fang, New Jersey Institute of Technology. In order to increase 
light collection efficiency in solar cells, patterned, Schottky barriers 
were investigated. In particular, the shapes, the patterning tech- 
nique, and the electrical barrier height were studied, (p. 38) 

DIFFRACTIVE OPTICS/ 
INTERNATIONAL OPTICAL DESIGN 

CONFERENCE 

ROOM A 

1:30 pm-3:30 pm 
JMC, JOINT SESSION ON DIFFRACTIVE OPTICS DESIGN 
William C. Sweatt, Sandia National Laboratories, Presider 

1:30 pm   (Invited) 
JMC1 Using diffractive lenses in optical design, Dale A. 
Buralli, Sinclair Optics, Inc. The properties of diffractive optics are 
reviewed, with emphasis on those features most relevant to op- 
tical design.Examples and applications are given, (p. 44) 

2:00 pm   (Invited) 
JMC2 Modeling of diffractive optics, Michael W. Farn, MIT Lin- 
coln Laboratory. Methods used in analyzing surface-relief diffrac- 
tive optics are described, both theoretically and by design exam- 
ple. Special emphasis is given to the issue of diffraction efficiency. 
(p. 48) 

2:30 pm 
JMC3 Optical systems employing refractive and diffractive 
optical elements to correct for chromatic aberration, C. William 
Chen, Hughes Aircraft Co. Diffractive optical elements can simplify 
the optical design form and improve the image quality of many 
refractive optical systems. The design principles are discussed and 
several examples are illustrated, (p. 52) 

2:45 pm 
JMC4   Achromatic and apochromatic diffractive singlets, G. 
Michael Morris, Dean Faklis, Rochester Photonics Corp. A multi- 
order diffractive (MOD) lens is used in conjunction with broadband 
illumination to bring two or more spectral components to a com- 
mon focus in space with high efficiency, (p. 53) 

3:00 pm 
JMC5 Diffractive optics applied to eyepiece design, Michael 
D. Missig, G. Michael Morris, Univ. Rochester. Several features of 
diffractive optics are utilized in the eyepiece design problem to im- 
prove upon performance levels of all-refractive, conventional de- 
signs. Wide-field design examples and experimental results are 
presented, (p. 57) 

3:15 pm 
JMC6   Iterative methods for the kinoforms synthesis, S. N. 
Khonina, V. V. Kotlyar, I. V. Nikolsky, S. V. Philippov, V. A. Soifer, 
Image Processing Institute, Russia. (Abstract not available.) (p. 61) 

IX 



TUESDAY, JUNE 7, 1994—Continued 

11:06 am 
DTuB19 High-efficiency, metallic diffraction gratings for 
laser applications, B. Boyd, J. Britten, D. Decker, B. W. Shore, 
B. Stuart, M. D. Perry, Lawrence Livermore National Laboratory; 
Lifeng Li, Univ. Arizona. We describe theory and experiment 
developing large-area gratings having high diffraction efficiency 
(>95% in order -1) and high threshold for laser damage, (p. 175) 

11:08 am 
DTuB20 Holographic couplers for optical fibers in on-axis 
off-Bragg and off-axis configurations, Pavel Cheben, Maria L. 
Calvo, Complutense Univ., Spain. Some fundamental aspects aris- 
ing in the theoretical analysis of wavefront conversion process in 
holographic couplers is treated. The analytical integral solutions 
of wave equation for volume holographic diffraction grating is 
presented. The coupled-wave analysis approach is used. (p. 179) 

3:00 pm 
DTuC6 Diffractive coupling lenses: design, calculation, and 
CAD-data generation, Helmut Zarschizky, Albert Stemmer, 
Siemens, Germany; Alfons Daiderich, Siemens-Nixdorf, Germany. 
On-axis and off-axis diffractive lenses for laser-diode to fiber coupling 
are calculated with the extended CAD-program SIGRAPH® -Optik. 
The construction of 2-D arrays consisting of individual single lenses 
is possible, (p. 205) 

3:15 pm 
DTuC7 Diffractive optical elements for laser and fiber mode 
selection, Victor A. Soifer, Mikhail A. Golub, Vladimirs. Pavelyev, 
Image Processing Systems Institute, Russia. New application of 
diffractive optics to the transverse mode selection is presented. 
Complex-to-phase coding methods based on special diffraction 
gratings are suggested, (p. 209) 

11:10 am 
DTuB21 Hybrid optics for deep UV, Hans-Jörg Heimbeck, 
FISBA OPTIK AG, Switzerland. UV-Optics for use below 200 nm 
should be color-corrected, but the only convenient material is fus- 
ed silica. Hybrid solutions containing diffractive elements are dis- 
cussed, (p. 183) 

ROOM B 

4:00 pm-5:30 pm 
DTuD, LIGHT PROPAGATION AND DIFFRACTION 
Adolf W. Lohmann, University Erlangen-Nürnberg, Germany, 
Presider 

ROOM B 

1:30 pm-3:30 pm 
DTuC, DESIGN I 
Dale A. Buralli, Sinclair Optics, Presider 

1:30 pm   (Invited) 
DTuC1 Diffractive optics beyond the paraxial domain, Jari 
Turunen, Eero Noponen, Helsinki Univ. Technology, Finland; Frank 
Wyrowski, Berlin Institute of Optics, Germany. We consider, by elec- 
tromagnetic theory, the efficiency of diffractive elements with 
wavelength-scale transverse features for different values of the width 
of the signal window, (p. 186) 

2:00 pm 
DTuC2 Optical waveguide gratings having double-surface 
corrugation for highly efficient input coupling, John C. Brazas, 
Stephen Barry, Jeffrey Hirsh, Eastman Kodak Cor.; Lifeng Li, Univ. 
Arizona; Amanda L. McKeon, Univ. Rochester. Input-coupling ef- 
ficiencies and branching ratios near the theoretical limit were ob- 
tained with a grating coupler having nearly identical gratings on 
the upper and lower surfaces of the waveguide, (p. 190) 

2:15 pm 
DTuC3 Design of nonperiodic diffractive elements with re- 
spect to illumination wave, Harald Aagedal, Thomas Beth, 
Stephan Teiwes, Univ. Karlsruhe, Germany; Frank Wyrowski, 
Berliner Institut für Optik, Germany. The influence of illumination 
waves on the diffraction pattern of non-periodic diffractive elements 
is analyzed for the coherent and incoherent case. (p. 194) 

2:30 pm 
DTuC4 Aperiodic gratings in waveguides, Tanveer Ul Haq, 
Kevin J. Webb, Neal C. Gallagher, Purdue Univ. A scattering op- 
timization method is presented for designing highly efficient and 
compact aperiodic gratings for mode conversion applications in 
over-moded waveguides, (p. 198) 

2:45 pm 
DTuC5 Holographic optical interconnects, H. Grebel, Su 
Chiou Tsay, New Jersey Institute of Technology. We designed a 
new type of planar optical interconnects: the transverse holograms. 
The fanning in these holographic patterns is made along the direc- 
tion of the optical wave propagation, (p. 202) 

4:00 pm   (Invited) 
DTuD1 Space-time duality: diffraction, dispersion, and tem- 
poral imaging, Brian H. Kölner, UC-Los Angeles. The 
mathematical duality between diffraction and dispersion suggests 
broader applicability in a system capable of imaging time 
waveforms. We analyze the dualities and discuss applications from 
communications to fundamental science, (p. 214) 

4:30 pm 
DTuD2 Effects of diffractive optical elements on ultrashort 
pulses analyzed using the finite-difference time-domain 
method, Diane H. Hochmuth, Alan D. Kathman, Teledyne Brown 
Engineering; Eric G. Johnson, SY Technology, Inc. In this paper, 
finite-difference time-domain techniques are used to analyze the 
behavior of ultrashort pulses in systems employing diffractive optics. 
(p. 218) 

4:45 am 
DTuD3 White-light optical information processing with 
achromatic processors, P. Andres, G. Saavedra, Univ. Valen- 
cia, Spain; J. Lancis, E. Tajahuerce, V. Climent, Univ. Jaume I, 
Spain. We present different white-light optical information processing 
techniques using achromatic Fourier, or Fresnel, transform systems 
constituted by diffractive optical elements, (p. 220) 

5:00 pm 
DTuD4 Partially coherently illuminated uniform-intensity 
holographic axicons, Ari T. Friberg, Sergei Yu. Popov, Helsinki 
Univ. Technology, Finland. Performance of apodized annular- 
aperture logarithmic axicons illuminated with spatially partially 
coherent light is assessed and interpreted by exact numerical cal- 
culations and asymptotic stationary-phase techniques, (p. 224) 

5:15 pm 
DTuD5 Polychromatic illumination of logarithmic annular- 
aperture diffractive axicon, Z. Jaroszewicz, Juan F. Roman 
Dopazo, Univ. Santiago Compostela, Spain. The uniformity of the 
on-axis intensity distribution of the diffractive annular-aperture 
logarithmic axicon is significantly improved when the illumination 
beam is polychromatic, (p. 228) 

XII 
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10:32 am 
DTuB2 Edge diffraction theory for phase apertures, William 
H. Southwell, Rockwell International Science Center. Fields are pro- 
pagated by summing simple diffraction functions from only the 
edges in the aperture. Edges are lines where any change occurs 
in transmittance or phase, (p. 112) 

10:34 am 
DTuB3 Fresnel interference observed by means of zone 
plates, Voldemar Petrovich Koronkevitch, Irina Georgievna 
Pal'chikova, Institute of Automation & Electrometry, Russia. Inter- 
ference fields produced by the amplitude or phase zone plates il- 
luminated by white or monochromatic light was studied. Multibeam 
interference pattern is interpreted as a set of two-beam patterns. 
(p. 116) 

10:36 am 
DTuB4 Gray-scale masks for diffractive optics: I. Spatially 
filtered halftone screens, Donald C. O'Shea, Patrick L. Thomp- 
son, Willie S. Rockward, Georgia Institute of Technology. Gray-scale 
masks for diffractive optical elements have been generated using 
standard halftone screens, desktop publishing techniques, and a 
simple spatial filtering geometry, (p. 119) 

10:38 am 
DTuB5 Gray-scale masks for diffractive optics: II. Commer- 
cial slide imagers, Donald C. O'Shea, Thomas J. Suleski, Georgia 
Institute of Technology. Gray-scale masks for fabrication of diffrac- 
tive optical elements have been generated using standard desktop 
publishing programs and commercial slide imagers. (p. 123) 

10:40 am 
DTuB6 ln-situ measurement of resist development process 
in electron beam lithography, E.-B. Kley, B. Schnabel, Friedrich- 
Schiller-Univ. Jena, Germany. An interferometric measuring pro- 
cedure is applied to measure in-situ the resist development pro- 
cess in electron beam lithography. Results and applications are 
given, (p. 125) 

10:42 am 
DTuB7 Micromachining of diffractive optics with excimer 
lasers, Michael T. Duignan, Potomac Photonics, Inc. Using a table- 
top ultraviolet waveguide excimer laser-based micromachining 
workstation, we etch diffractive structures directly into the substrate 
without masks or intermediate processing steps, (p. 129) 

10:44 am 
DTuB8 Rapid prototyping of multilevel diffractive optical 
elements, Peter Kung, Li Song, QP Semiconductor Technology 
Inc., Canada. A manufacturing procedure using HOLOCAD™ to 
generate GDSII data and focused ion beam (FIB) direct writing 
method to create multilevel DOE will be presented, (p. 133) 

10:46 am 
DTuB9 New techniques for genetic algorithm optimization 
of diffractive optical elements, Alan D. Kathman, David R. 
Brown, Teledyne Brown Engineering; Eric G. Johnson, SY Tech- 
nology, Inc. This paper demonstrates new techniques for the use 
of genetic algorithms in the design of diffractive optical elements. 
These techniques are ideal for systems that require general, non- 
intuitive solutions, (p. 137) 

10:48 am 
DTuB10 Optimum quantization rules for computer generated 
holograms, U. Krackhardt, Univ. Erlangen-N'urnberg, Germany. 
From the requirement of optimum light efficiency analytic expres- 
sions for quantization rules of computer generated phase-only 
holograms are derived. Numerical and experimental results are 
shown, (p. 139) 

10:50 am 
DTuB11 Transition between diffractive and refractive micro- 
optical components, S. Sinzinger, M. Testorf, W. Singer, 
Physikalisches Institut der Univ., Germany Most micro-optical com- 
ponents combine diffractive and refractive effects. We investigate 
how the properties of both effects work together in hybrid elements 
to achieve superior performance, (p. 143) 

10:52 am 
DTuB12 Exact surface relief profile of kinoform lenses from 
a given phase function, Y. Han, C. A. Delisle, Univ. Laval, Canada; 
L. N. Hazra, Calcutta Univ., India. A method for determining the 
exact surface relief profile of kinoform lenses from a given phase 
function is described, (p. 147) 

10:54 am 
DTuB13 Application of the Yang-Gu algorithm to the design 
of diffractive phase elements for achieving multiple optical 
functions, Benyuan Gu, Guozhen Yang, Bizhen Dong, Institute 
of Physics, China; Ming-Pin Chang, Okan K. Ersoy, Purdue Univ. 
We extend the original Yang-Gu algorithm to treat the optical system 
with the illumination of light beam consisting of several wavelength 
components. N umerical simulations are carried out for the design 
of diffractive phase element achieving both demultiplexing and 
focusing functions, (p. 151) 

10:56 am 
DTuB14 Interpolation approaches to computer-generated 
holograms, Nobukazu Yoshikawa, Toyohiko Yatagai, Univ. 
Tsukuba, Japan. An interpolation method of image points 
reconstructed by Fourier transform CGH is described, so that a 
sufficient large size hologram can be synthesized by a small size 
hologram, (p. 155) 

10:58 am 
DTuB15 Direct search method for the computer design of 
holograms for the production of arbitrary intensity distribu- 
tions, Matthew S. Clark, Imperial College, U.K. A direct search 
algorithm for designing computer generated holograms and its con- 
trolling cost function structure are discussed. Optical and digital 
reconstructions are presented, (p. 159) 

11:00 am 
DTuB16   Diffractive zoom lens based on rotational moire, U. 
Krackhardt, A. W. Lohmann, Univ. Erlangen-N'urnberg, Germany. 
Varifocal Fresnel zone patterns result from the superposition of 
twisted patterns. New methods are proposed to increase transmit- 
tivity and usable area portion of the pattern, (p. 163) 

11:02 am 
DTuB17 Superimposed grating for use with magneto-optical 
disk heads, Shigeru Aoyama, Tsukasa Yamashita, Omron Corp., 
Japan. A superimposed grating, which acts as a polarizing beam 
splitter and a cylindrical lens, has been developed for use with 
magneto-optical disk heads, (p. 167) 

11:04 am 
DTuB18 Application of diffractive optics to photonic in- 
tegrated circuit packaging, M. E. Warren, S. H. Kravitz, G. R. 
Hadley, J. R. Wendt, G. A. Vawter, M. G. Armendariz, J. C. Word, 
R. F. Corless, R. F. Carson, B. E. Hammons, Sandia National Lab- 
oratories; R. E. Leibenguth, AT&T Bell Laboratories. Photonic 
packaging concepts using anamorphic microlenses and second- 
order grating couplers were demonstrated by coupling a ridge 
waveguide to an out-of-plane single-mode fiber, (p. 171) 

XI 
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3:00 pm 
DWC6 Diffractive optics for C02 industrial lasers: reducing 
lens damage, Russell W. Gruhlke, Auburn, California. Conven- 
tional, refractive focusing lenses in CO2 industrial lasers can be 
replaced with longer focal length diffractive focusing elements to 
reduce lens damage, (p. 291) 

3:15 pm 
DWC7 Serrated aperture and its applications in high-power 
lasers, Ximing Deng, Dianyuan Fan, Liejia Qian, National Labora- 
tory on High Power Laser and Physics, China. The design pro- 
cedure for serrated apertures has been presented. We have studied 
its applications in high-power lasers to provide uniform illumina- 
tion of target, (p. 295) 

ROOM B 

4:00 pm-5:30 pm 
DWD, FABRICATION BY DIRECT-WRITE TECHNIQUES 
Jürgen Jahns, AT&T Bell Laboratories, Presider 

4:00 pm   (Invited) 
DWD1 Fast and high quality surface profiling for microop- 
tical applications, E. Bernhard Kley, Friedrich-Schiller Univ., Ger- 
many. Adaptations of lithographic technologies (variable shaped 
e-beam, variable dose and energy writing) for microoptical applica- 
tions and new profitable lens profiles (> 10 lenses/s) were described. 
(p. 300) 

4:30 pm 
DWD2 Focusing DOE fabrication using variable shaped elec- 
tron beam lithography, Sergey Babin, Victor Danilov, ;Physics 
and Technology Institute, Russia. (Abstract not available.) (p. 301) 

4:45 pm 
DWD3 Fabrication of multi-level phase gratings using focus- 
ed ion beam milling and electron beam lithography, S. M. 
Shank, M. Skvarla, F. T. Chen, H. G. Craighead, Cornell Univ.; P. 
Cook, R. Bussjager, F. Haas, D. A. Honey, USAF Rome Labora- 
tory. The fabrication and optical performances of continuously grad- 
ed gratings using focused ion beam milling and 8-level gratings 
using electron beam lithography and reactive ion etching, are 
evaluated, (p. 302) 

5:00 pm 
DWD4 Laser writing and replication of continuous-relief 
Fresnel microlenses, M. T. Gale, M. Rossi, R. E. Kunz, PaulScher- 
rer Institute, Switzerland; G. L. Bona, IBM Research Center, Switzer- 
land. Planar, continuous-relief Fresnel microlenses with high 
numerical apertures (>0.5) are fabricated by direct laser writing 
in photoresist and replicated by hot embossing and casting tech- 
niques, (p. 306) 

5:15 pm 
DWD5 Fabrication of diffractive optical elements by laser 
writing with circular scanning, V. P. Koronkevich, V. P. Kiryanov, 
V. P. Korol'kov, A. G. Poleshchuk, V. A. Cherkashin, A. A. 
Kharissov, Institute of Automation and Electrometry, Russia. New 
circular laser writing system for fabrication of diffractive optics is 
described. The results of synthesis of diffractive element masks 
without photoresists usage are presented, (p. 310) 

ROOM B 

8:30 am-10:00 am 
DThA, MICROLENS FABRICATION AND APPLICATIONS 
Margaret B. Stern, MIT Lincoln Laboratory, Presider 

8:30 am   (Invited) 
DThA1 Manufacture of microlenses, Michael C. Hutley, Na- 
tional Physical Laboratory, U.K. The paper reviews a variety of 
techniques for the manufacture of microlenses and their diffrac- 
ting equivalents (micro zone plates). The relative merits of refrac- 
ting and diffracting components are considered from a practical 
point of view. (p. 316) 

9:00 am 
DThA2 Diffractive coupling lenses: fabrication and measure- 
ment of silicon elements, Albert Stemmer, Helmut Zarschizky, 
Franz Mayerhofer, Guy Lefranc, Wolfgang Gramann, Siemens, Ger- 
many. Binary and multilevel diffractive lenses for laser-diode to 
single-mode fiber coupling are fabricated in silicon. The produc- 
tion is based on E-beam lithography and ion etching, (p. 317) 

9:15 am 
DThA3 Phase-matched Fresnel elements for optical inter- 
connects, M. Rossi, R. E. Kunz, PaulScherrerInstitute, Switzerland; 
G. L Bona, IBM Research Center, Switzerland. Experimental and 
theoretical results are presented for novel, single planar element 
optical interconnects, namely focusing Nx1 fan-out elements and 
fast laser-diode/fiber-connecting lens arrays, (p. 321) 

9:30 am 
DThA4 Diffractive interconnecting device for fiber-to-chip 
coupling, Ph. Regnault, G. Voirin, CSEM Centre Suisse d'Elec- 
tronique et de Microtechnique SA, Switzerland; H. Buczek, Opti- 
que Consulting H. Buczek, Switzerland; O. Anthamatten, Ascom 
Tech., Switzerland; Ch. Zimmer, H. Gilgen, Swiss PTT Research 
and Development, Switzerland. A pair of fibers is coupled to a 
double-channel GaAs modulator with a double-side diffractive op- 
tical device fabricated using a binary optics process, (p. 325) 

9:45 am 
DThA5 Diffractive optical elements with high efficiency 
fabricated by thin film deposition, E. Pawlowski, D. Berger, T. 
Hies, B. Kuhlow, Heinrich-Hertz-lnstitut fur Nachrichtentechnik Berlin 
GmbH, Germany. We fabricated AR-coated multilevel diffractive 
optical elements with small f/numbers and high efficiency and in- 
vestigated the effects of fabrication errors on the diffraction ef- 
ficiency, (p. 329) 

ROOM B 

10:30 am-12:00 m 
DThB, FABRICATION AND CHARACTERIZATION 
Hans Peter Herzig, Univ. Neuchatel, Switzerland, Presider 

10:30 am   (Invited) 
DThB1   Overview of binary optics fabrication technology, 
Margaret B. Stern, MIT Lincoln Laboratory. A review of binary op- 
tics processing technology is presented. Pattern replication techni- 
ques that have been optimized to generate high-quality efficient 
diffractive and refractive microoptics in visible and IR materials are 
described, (p. 334) 

XIV 
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ROOM B 

8:30 am-10:00 am 
DWA, DESIGN II 
J. R. Leger, University of Minnesota, Presider 

8:30 am   (Invited) 
OWA1 Opportunities for diff ractive optical systems, Adolf W. 
Lohmann, Univ. Erlangen-Nurnberg, Germany; Jorge Ojeoa- 
Castaneda, Inade, Mexico. Our aim is to propose the simplest 
system for a given job. For example, simple binary masks can per- 
form complex operations if one dimension suffices, (p. 234) 

9:00 am 
DWA2 Fresnel lens array for optical fiber semiconductor 
laser coupling, P. Mckee, J. Towers, A. Thurlow, D. Wood, B. 
T. Laboratories, U.K. The design and fabrication of a low F number 
lens in quartz is described. The device is characterized for semi- 
conductor laser/optical fiber coupling, (p. 235) 

9:15 am 
DWA3 Design and fabrication of multilevel phase holograms 
for on-axis optical interconnects, Arthur F. Gmitro, Christopher 
Coleman, Univ. Arizona; Paul E. Keller, Pacific Northwest 
Laboratory; Paul D. Maker, Jet Propulsion Laboratory. An improv- 
ed method for the design of multilevel phase holograms and a 
technique for direct fabrication by e-beam are presented, (p. 239) 

9:30 am 
DWA4 An algorithm for the generation of reduced e-beam 
fabrication data for general aspheric diffractive optical ele- 
ments, Jiao Fan, David Zaleta, Sing H. Lee, UC-San Diego. A 
new CAD algorithm for e-beam fabrication of aspheric DOEs is 
presented. This algorithm is general, stable, and relatively efficient 
in terms of data size. (p. 243) 

9:45 am 
DWA5 Generation of binary, phase-only, holograms by on- 
line feedback of output plane intensity, E. G. S. Paige, R. H. 
Scarbrough, Univ. Oxford, U.K. Near-diffraction-limited performance 
is demonstrated for an optical system, including aberrator, using 
iterative optimization in feedback between a detector and SLM. 
(p. 247) 

ROOM B 

10:30 am-12:00 m 
DWB, SUBWAVELENGTH AND COATED STRUCTURES 
Thomas Keith Gaylord, Georgia Institute of Technology, 
Presider 

10:30 am   (Invited) 
DWB1 Subwavelength structured surfaces: design and ap- 
plications, Daniel H. Raguin, Rochester Photonics Corp.; G. 
Michael Morris, Univ. Rochester. Subwavelength structured sur- 
faces can be used as antireflection coatings, polarization com- 
ponents, narrowband filters, and phase plates. These applications, 
as well as their design principles, are reviewed, (p. 252) 

11:00 am 
DWB2 Design of ideal reflection filters using resonant wave- 
guide gratings, R. Magnusson, S. S. Wang, Univ. Texas at Arl- 
ington. It is shown that ideal reflection filter characteristics can be 
obtained by integrating planar waveguide gratings with half-wave 
and quarter-wave thin-film layers, (p. 256) 

11:15 am 
DWB3 2-D subwavelength gratings as artificial anisotropic 
media, Eric B. Grann, M. G. Moharam, Drew A. Pommet, Univ. 
Central Florida. 2-D symmetric and asymmetric subwavelength 
binary gratings are investigated. A method for determining the three 
effective indices of the equivalent anisotropic medium is presented. 
(p. 260) 

11:30 am 
DWB4   Numerical modeling of multilayer-coated gratings, 
Lifeng Li, Univ. Arizona. Significant improvements to the differen- 
tial method of Chandezon et al. for multilayer-coated surface relief 
gratings in conical diffraction mountings are presented, (p. 264) 

11:45 am 
DWB5 Polarizing properties of dielectric layer with subwave- 
length structured surfaces, V. N. Bel'tyugov, S. G. Protsenko, 
A. V. Leis, The Institute of Automation and Electrometry, Russia. 
The polarizing properties of dielectric layer with structured surfaces 
are considered both theoretically and experimentally. The available 
applications of such elements are discussed, (p. 268) 

ROOM B 

1:30 pm-3:30 pm 
DWC, APPLICATIONS FOR LASER SYSTEMS 
J. Allen Cox, Honeywell Inc., Presider 

1:30 pm   (Invited) 
DWC1 Applications of diffractive optic design to acousto- 
optic signal processing, Joseph N. Mait, U.S. Army Research 
Laboratory; Ravindra A. Athale, George Mason Univ. To the se- 
quence algorithms, architectures, hardware that is necessary for 
the proper development of an optical processor, we add compo- 
nent design and show how techniques for the design of diffractive 
optical elements have been applied to the design of an acousto- 
optic-based incoherent image correlator, (p. 274) 

2:00 pm 
DWC2 Use of diffractive phase plates for high modal dis- 
crimination in short laser resonators, D. Chen, J. R. Leger, Univ. 
Minnesota. A diffractive phase plate is used in conjunction with a 
diffractive mode-selecting mirror to make a short laser resonator 
with high modal discrimination, (p. 278) 

2:15 pm 
DWC3 Apodized diffraction grating as outcoupling element 
for a 1.06 um Nd-YAG laser, A. Mitreiter, J. Guhr, H.-J. Rostalski, 
Berliner Institut für Optik GmbH, Germany; G. Bostanjoglo, 
Festkörper-Laser-Institut GmbH, Germany. A new technique of 
fabrication and application for apodized diffraction grating as out- 
coupling element for a 1.06 j^m Nd-YAG laser is presented. 
(p. 282) 

2:30 pm 
DWC4 Large aperture kinoform phase plates for beam 
smoothing, S. N. Dixit, M. Rushford, I. Thomas, R. Merrill, M. Perry, 
H. T. Powell, Lawrence Livermore National Laboratory; K. A. 
Nugent, Univ. Melbourne, Australia. We have designed and fab- 
ricated large aperture kinoform phase plates (KPPs) for tailoring 
the focal plane intensity distribution. Results of optical performance 
are presented, (p. 286) 

2:45 pm 
DWC5 Excimer laser machining with kinoforms, Anna-Karin 
Holmer, Fredrik Nikolajeff, Jörgen Bengtsson, Björn Löfving, 
Sverker Hard, Chalmers Univ. Technology, Sweden. A kinoform 
distributed the excimer laser power to a mask pattern in a laser 
machining study. A diffractive beam homogenizer of novel design 
was manufactured, (p. 289) 

XIII 
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11:00 am 
DThB2 Metrology of diffractive optics, Paul Caber, Don 
Cohen, John Podlesny, James C. Wyant, WYKO Corp. This paper 
describes the use of both optical profilers and scanning probe 
microscopes for measuring the micro-structure of diffractive op- 
tical elements, (p. 338) 

11:15 am 
DThB3   Phase shift mask metrology using scatterometry, 
Susan M. G. Wilson, S. Sohail H. Naqvi, B. K. Minhas, John R. 
McNeil, Univ. New Mexico; Herschel M. Marchman, AT&T Bell 
Laboratories. We present preliminary results on the use of scat- 
terometry for the determination of critical parameters of a phase 
etched diffraction grating test structure, (p. 342) 

11:30 am 
DThB4 Image quality assessment of diffractive elements 
replicated in SURPHEX™, J. Allen Cox, Honeywell Technology 
Center; Felix P. Shvartsman, Datacard Corp. We show that diffrac- 
tive elements can be replicated in DuPont's SURPHEX™ photo- 
polymer with very high fidelity and with image quality limited only 
by the substrate planarity. (p. 346) 

11:45 am 
DThB5 CIM for fabricating HOE by embossing and injection 
method, Rong-Seng Chang, Chern Sheng Lin, Yun Long Lay, Na- 
tional Central Univ., China. We provide a computer integrated 
manufacturing (CIM) technique to obtain the large or small quan- 
tities and variable types of holographic optical element (HOE). 
(p. 350) 

XV 
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FUNDAMENTALS OF GRATING DIFFRACTION 

Thomas K. Gaylord, Elias N. Glytsis, and David L. Brundrett 
School of Electrical and Computer Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332-0250 

Diffractive optics is of increasing importance in a wide variety of application areas. 

Example present-day uses include diffractive optical elements, head-up displays, laser scan- 

ners, wavelength multiplexers/demultiplexers, optical interconnects, laser feedback devices, 

optical memories, spectrometers, and many more. Due to its significance, it is important 

to be able to introduce students and new workers in this field to the fundamentals of 

grating diffraction in an intuitive and visual manner and in a fashion that allows them to 

analyze basic grating structures without specialized mathematical tools and further gives 

them the directions to follow if they wish to pursue the analysis of more complex grating 

structures. 

For overview purposes, the classification of gratings according to spatial frequency, 

modulation type, surface-relief types, orientation of plane of incidence, material, transmis- 

sion/reflection, and diffraction regime are given. Plane wave interference is reviewed and 

used to motivate the Floquet condition and Floquet waves. Each ith Floquet wave is phase 

matched to a propagating or evanescent wave in the forward and backward directions at 

the grating surfaces as indicated by the grating equation. The directions of all forward- 

diffracted and backward-diffracted propagating waves are determined in this manner. The 

mth Bragg condition is satisfied when the wavelength of the (t = m)th Floquet wave inside 

the grating is equal to the wavelength that would exist in the bulk material with no grating 

modulation. 

To determine the amplitudes of all of the diffracted waves, Maxwell's equations 

must be solved for this problem. This may be done in numerous ways. For instructional 

purposes, the case of a EJ_K (TE) polarized wave incident on a planar dielectric grating 

with slanted fringes is treated. The Floquet fields are substituted into the wave equation 

formed from Maxwell's equations. From this the infinite set of second-order coupled dif- 

ferential equations are developed. These are the rigorous coupled-wave equations for this 

grating problem [1-2].  From linear systems theory a state variables solution is available 
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Implementation of the Rigorous Coupled-Wave Technique: 

Stability, Efficiency, and Convergence 

M. G. Moharam, Drew A. Pommet, and Eric B. Grann 

Center for Research and Education in Optics and Lasers, University of Central Florida 

12424 Research Parkway, Suite #400 , Orlando, Florida 32826 

Tel: (407) 658-6833, Fax: (407) 658-6880, e-mail: moharam@faculty.creol.ucf.edu 

Introduction 

Over the last ten years, the Rigorous Coupled-Wave Technique1 (RCWT) has been the most 
widely used method for the accurate analysis of the diffraction of electromagnetic waves by 

periodic structures. It has been used successfully and accurately to analyze both holographic and 

surface-relief grating structures. It has been formulated to analyze transmission and reflection 
planar dielectric/absorption holographic gratings, arbitrary profiled dielectric/metallic surface- 
relief gratings, multiplexed holographic gratings, two-dimensional surface-relief gratings, and 

anisotropic gratings for both planar and conical diffraction1"8. 

The rigorous coupled-wave technique is a relatively simple method for the exact solution of the 
vector Maxwell's equations for the electromagnetic diffraction by grating structures. It is a non- 
iterative, deterministic technique utilizing a state variable method which will always converge to 
the exact solution without any inherent numerical instabilities. The accuracy of the obtained 
solution depends solely on the number of terms in the field space harmonic expansions and 
conservation of energy is always observed. However, recently numerical instabilities have been 
discussed 9~n. These numerical difficulties are not inherent in the technique, but are the result of 
the lack of incorporating the nature of the diffraction process in the implementation. 

Specifically, the implications of the non-propagating evanescent fields and the space harmonics 
in the grating region on the numerical implementation must be clearly understood. 

In this work, an efficient and absolutely stable implementation for the coupled-wave technique 

are presented for arbitrary profile one-dimensional surface-relief gratings. An investigation of the 

dependence of the convergence rate on the number of terms in the field space harmonic 

expansion is presented for both TE and TM polarization. 

Rigorous Coupled-Wave Technique 

In the formulation of the rigorous coupled-wave technique, the arbitrary surface-relief periodic 

grating is viewed as stack of binary (lamellar) gratings. In each layer of the stack, the binary 

permittivity is decomposed into its Fourier harmonic components. The electromagnetic fields in 
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for the space harmonic (Floquet) fields inside the grating in terms of the eigenvalues and 

eigenvectors of the coefficient matrix of the coupled-wave equations. Using the boundary 

conditions that the tangential electric field and tangential magnetic field must be contin- 

uous across the front and back surfaces of the grating, allows the diffracted fields to be 

determined. Plotting the fields inside the grating is useful for visualizing the diffraction 

process. 

In the important limiting cases of Raman-Nath regime diffraction [3] and Bragg 

regime diffraction (Kogelnik analysis [4]), the rigorous coupled- wave equations have ana- 

lytic solutions. For the Raman-Nath case the diffracted amplitudes are given in terms of 

Bessel functions and for the Bragg regime case the amplitudes are given in terms of sines 

and cosines. Criteria for the use of these limiting cases are reviewed. 

Extensions of the rigorous coupled-wave analysis beyond the TE polarization, pla- 

nar dielectric grating to other cases such as arbitrary polarization and conical incidence 

and to gratings such as surface-relief gratings, metallic gratings, subwavelength gratings, 

anisotropic gratings, multiplexed gratings, and two-dimensional gratings are indicated. 

This work was supported in part by grant no. DAAH-04-93-G-0027 from the Joint 

Services Electronics Program. 
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factor of four reduction in the memory requirement. In this work, we will present the formulation 
for the reduction of the coupled-wave equation for TE, TM, and conical diffraction for one- 

dimensional gratings. 

Convergence 

A stable, efficient implementation of the rigorous coupled-wave technique, as described above, 

will always converge to yield the exact diffracted field amplitude. The accuracy of the solution 

depends solely on the number of the terms of the space harmonic expansion of the field in the 

grating regions. A study of the dependence of the number of space harmonics required for 
convergence on the grating index, angle of incidence, and grating period/ wavelength ratio, and 
duty cycle for TE, and TM polarization is presented. 
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the layer are decomposed into space harmonics having the periodicity of the grating. These space 
harmonics are determined by solving a set of coupled-wave equations constructed for each layer. 
The electromagnetic fields within each layer, represented by the space harmonics, are matched to 

the electromagnetic fields in the two adjacent layers. The electromagnetic fields in the two end 

layers are also matched to the fields associated with the backward and forward propagating or an 

evanescent wave in the two exterior regions. Solving this very large system of equations yields 
the amplitudes of the diffracted fields. As described above, the brute force approach for coupled- 

wave technique is inherently stable with no numerically difficulties, but it is very inefficient. 
Typically, field matching between the layers is carried out using piece-wise approach. This is 
done using some form of matrix propagation or other algorithm. Poor implementation of such a 

technique is the cause of the reported numerical instabilities. 

Stability 

The main cause of reported numerical instabilities is the improper handling of the evanescent 
field components of the field space harmonics in the grating regions. The eigenvalues 

(propagation constants) associated with non-propagating fields have large positive and negative 

exponents resulting in numerical overflow and underflow. Numerical overflow can be handled 
by proper normalization of the eigenvector associated with the problem eigenvalue. However, 
this leaves a virtual zero column in the electromagnetic field matching matrix at any one 
interface (i.e. singular or ill-behaved matrix). Thus, matrix inversion, which is required in matrix 

propagation methods, results in numerical difficulties and instabilities. A stable matrix 
propagation method that utilizes the two matrices resulting from field matching at the two 
boundaries of the layer is presented and is shown to be inherently stable. Calculations are 
presented for any gratings groove depth for TE, TM, and conical diffraction. This technique has 

been found to be absolutely stable with no numerical difficulties whatsoever for all grating 

depths, and profiles. Figure 1. shows stable calculation of the diffraction efficiency for extremely 
deep (up to 100 wavelengths!) 8-level binary grating for both TE and TM polarizations. The 
diffraction efficiencies are calculated for several grating period to wavelength ratios, as 
suggested by Neviere and Popov10 to be one of the criteria for evaluating the stability of the 

differential type diffraction analysis techniques. 

Efficient Implementation 

Efficient implementation of the RCWT is obtained through two distinct processes. First, the 

symmetry in binary lamellar grating is utilized to reduce the matrix constructed for the coupled- 

wave equation from 2Nx2N to NxN for TE and TM polarization and from 4Nx4N to 2Nx2N for 
conical diffraction. The reduction in the matrix size will result in almost a factor of eight 

reduction in the time required to determine the field space harmonics in each layer which is 

estimated to be 80% of the total execution time. In addition, this matrix size reduction results in a 
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1. Introduction. The electromagnetic theory of gratings has been studied extensively since Rayleigh's time. 

The advent of computers thirty years ago greatly accelerated activity in the area and has given rise to several 

approaches and numerical methods to yield rigorous solutions to the problem, including differential methods (French, 

Gaylord,...), integral methods (French,...), analytical continuation (Bruno and Reitich), variational method (Dobson, 

Abboud) and others. In light of the essential mathematical nature of the problem, it is noteworthy that by far 

the largest number of papers in the literature have come from the engineering community and proportionately few 

from applied mathematicians. Evidence of this is found in Petit's and Cadilhac's remarks on the lack of existence 

and uniqueness theorems for the problem. Even more glaringly absent has been convergence analysis of the various 

numerical methods, although the more recent work by applied mathematicians in the analytic continuation method 

and the variational method have begun to rectify this. 

Here we draw on work done in this area at the Institute for Mathematics and Its Applications since 1990 ([l]-[7]) 

and address specifically the issues of existence and uniqueness of solutions and convergence of the variational method 

implemented by us. In particular, optimal rates of convergence can be obtained for TE polarization. In the TM 

polarization case, however, the convergence analysis is much more difficult. In fact, everyone active in the field is well 

acquainted with the situations (usually involving a complex index of refraction) where solutions for TM polarization 

converge much more slowly than TE polarization. We provide some insight into the nature of this phenomenon. 

2. The scattering problem. Figure 1 summarizes the geometry, equations, and assumptions for the grating 

problem. Notice that the geometry and material properties can be extremely general. 

For simplicity, we restrict ourselves to the two dimensional setting, i.e., we assume that the medium and grating 

surface are constant in the x2 direction. The variational approach presented here can be generalized to study bi- 

periodic diffraction problems, see e.g. [6]. 
Suppose that the whole space is filled with material with index of refraction k = u^/l that satisfies 

k = 

where fc0(x) is a bounded measurable function, fci and k2 are constants, fa is real and positive, and Re k2 > 0, 

Im k2>0. 
We want to demonstrate our variational approach by solving the diffraction problem with TE polarization. The 

Maxwell equation then becomes an Helmholtz equation. Therefore, we wish to solve the Helmholtz equation 

(1) (A + k2)u = 0,    in IR2. 

We assume an incoming plane wave MJ = e
iaXl~,ßlX2 is incident on S from fii, where a = fa sin 9, ßi = fa cos9, and 

- f < 9 < j is the angle of incidence. 
We are interested in "quasiperiodic" solutions u, that is, solutions u such that ue~'aXl are 27r-periodic. 

fa , in Q+ U Hi , 

k0{x) , in Qo , 

k2  , in fi+ U Ö2 , 
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8-Level Binary Grating 
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Fig 1. Stable diffraction efficiencies calculated for extremely deep 8-level binary gratings 
for both TE and TM polarizations. 
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The operator T, is defined by 

(5) {Tjf)(x1) = J2iß?(a)f(n)ein*1> 

where /<») = i/0
2,r/(xi)e-™'. 

The scattering problem can be formulated as follows: find ua £ Jff
1(0) that satisfies 

(6) (Aa + k2)ua = 0 ,   in U, 

and (3-4). The function space #'(0) is a standard Sobolev space. It contains complex valued functions g that satisfy 

g € Z2(fi) and dXlg, dX3g € L2(fl) in the distribution sense. The space L (fi) contains all the functions that are 

square integrable in Q. Similarly, H2(Cl) contains square integrable functions, whose first order and second order 

derivatives are also square integrable in fl. It is obvious to see that B2(£l) C -ff1(f2) C £2(0). 

THEOREM 2.1. (Existence and uniqueness) Suppose that k is bounded measurable. Then for all but a discrete 

set of frequencies u, there exists a unique solution ua € ifJ(Q) to the variational problem (6), (3), and (4). 

The proof of Theorem 2.1 may be found in [5] or [2]. 

3. Variational approach. The scattering problem has an equivalent variational form: find ua € H1^) such 

that 

(7) <•(«„,*) = (/,*),  v^efr^n), 

here the sesquilinear form is defined by 

a(wi,w2)    =      / Vw)i-VtÜ2—  / (k2 — a2)wiW2 — 2ia I (dXlwi)w2 
Jn Jo. Jn 

- /   (Tiw^m- /   (T2wi)m , 

and 

(/,*) = - /   2iß1e~^b~4 

Let us now briefly describe the basic idea employed in the variational (or finite element) approach. Let {Sh : h € (0,1]} 

denote a family of finite dimensional subspaces of H1, usually a space of piecewise polynomials, where h stands for 

the maximum mesh size after partitioning Q into simple subdomains. Assume also that S satisfies some standard 

approximation assumptions. We define the finite element approximation uh of the solution ua of (7) by the following 

equation, for each vh 6 S , 

(8) a(uh,vh) = (f,vh). 

In fact, this provides the basic idea for solving our model equation, i.e. one first chooses a basis of 5 , {<^i, <j>2, ■■■,<j>k), 

which is a finite set according to the definition of Sh. Substituting the expression of 

u    = a<f>i + C2<f>2 H \-Ck(f>k 

into the equation (8), by choosing vh = <f>i, i = 1, • • •, k, one gets a system of linear equations. Solving this system 

for {CJ} then leads to an approximation of na in S . 

Next, we want to address the convergence properties of our method. 
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Wave Vector k\ V T      jj 
Polarization a    \ ^W I    ^r 

A ► 

• •• 
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Grating 

Xi 
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VxE-lca^H = 0 
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Ei In Qi 
• e =    & In QJ 

bounded measurable In Qo 
• e(x+A,*>) = E(X,X>) 

Incident Monochromatic Plane Wave 
Em(x,X3) = expP(kx + ksXs)] 

Seek Solutions 
E = E. + E~      H = H* + H« 

Satisfying: 
• Quasiperlodic 

-* E(x+A,x>) = E(x,X3)exp(IkA) 
• EM, H« are bounded at infinity 

(outgoing radiation condition) 
(• Usual Jump conditions) 

FlG. 1. Problem geometry. 

Define ua = ue  ,aXl. Then ua satisfies 

(2) (AQ + k2)ua = 0 ,    in IR2 

where the operator Aa is defined by Aa = A + 2iadXl — \a\2. 

We next reduce the problem to the bounded domain Q = {(xi,i3) € IR2 : —b<x3< b}. This may be done 

by introducing a pair of "transparent" boundary conditions on Ti and T2. Let us first impose a radiation condition 

for the scattering problem. We insist that ua is composed of bounded outgoing plane waves in üi and Ü2, plus the 

incident wave «/ in fii. Since ua is periodic in the i\ direction, it has a Fourier series expansion. Moreover, in the 

regions Ui and O2, the media are homogeneous. It follows that another expression of ua based on the fundamental 

solutions, or Green's functions, are available. Thus by matching these two expansions on Ti and T2 and using the 

radiation condition, one can derive the following boundary conditions: 

(3) 

(4) 

dUg 

dUg 

=     J2 ißx{<x)ngn\b)ein*i - 2ißie-ißlb = Ti(ua\Tl) - 2iß1e~ißib , 
nez 

=    Yl iß?(<*)^n)(-l>VnXl = 2i(«-|ra) , 
nez 

where for j' — 1,2, the coefficients 

ß?(«) 
y/tß-jn + a)*, 
iy/(n+ <*)*-%, 

k2>(n + c*f 

k2 <(n + a)2 

We assume that ij/(n + a)2 for all n £ Z, j' = 1, 2. This condition excludes "resonance" and ensures the existence 

of the fundamental solution for (2) inside fii and f22- 
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1. Introduction 

In this paper the implementation of a very stable rigorous electromagnetic numerical 

algorithm is discussed. Such an algorithm can be combined with an iterative non-linear 

optimization procedure to design surface relief gratings whose period are of the order of 

magnitude as the incident wavelength. Several types of optimization algorithm are 

presented and their general characteristics discussed. 

2. The Legendre Exact Eigenfunction Method 

Exact eigenfunction methods 12 have been successfully applied to examine 

diffraction by surface relief gratings. Such methods offer some numerical advantages over 

methods which require the use of the Fourier expansion of cross-section permittivity profile 

3>4, since the Gibbs phenomena and related numerical problems can be avoided -\ Careful 

rewriting of the boundary conditions has allowed numerical difficulties, arising due to the 

exponentially increasing and decreasing evanescence at the boundaries and within the 

grating, to be eliminated in the case of dielectric gratings 6. The rewritten boundary 

conditions also allow the use of non-implicit power conservation to test the convergence of 

the results. Recently it has been suggested 7 to use a piecewise description of the field 

inside a lamellar grating in terms of Legendre polynomials. Within each region of constant 

refractive index along a period the eigenfunctions are expressed as sums of continuous 

Legendre polynomials. In this way the eigenvalues and eigenfunctions of the structure can 

be found using simple matrix operations, avoiding the use of root finding algorithms °,". In 

this Legendre Exact Eigenfunction Method, LM, there is little difference in complexity 

between the calculations for the TE and TM polarisation cases. Using the LM in 

conjunction with rewritten boundary conditions, numerically stable calculations for lossless 

and metallic lamellar gratings have been carried out 10. In all cases non-implicit power 

conservation, reciprocity and examinations of the convergence of the individual diffraction 
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THEOREM 3.1. The variational approach converges to the solution of the model problem. Moreover, the following 

estimates hold 

||»a - Mfc||L2(n)     <    Ch2 , 

\\ua - uh\\Hi(n)    <    Ch1 , 

where the constant C is independent of h. 

Further, the error estimates are optimal. Next, since the boundary operators are nonlocal, it is essential to 

obtain error estimates when truncations of these operators take place. We showed that the estimates in Theorem 3.1 

still hold, provided that sufficiently many (but finite) terms are taken in the expressions of Ty. The proofs may be 

found in [1]. 

4.  The TM case.  In the TM case, Maxwell's equations can be reduced to 

(9) V-(-Vu) + u2u = Q,    in IR2, 

where e may vary in different parts of the medium. The variational approach can be carried out similarly in the TM 

case. Although the finite element method does converge in the TM case, the algorithm converges more slowly then 

TE case. However, in general it is very difficult to obtain any explicit convergence rate without making use of the 

special grating structures. The difficulties are largely due to the discontinuous coefficient presented in the second 

order operator of the model equation. This presents a clear contrast to the TE case, where discontinuous coefficients 

only occur in the lower order terms. Thus in the TM case, the singularities caused by the discontinuous coefficients 

can spread more destructively. As the result, the solution in general is only in Hl, and can not be any more regular, 

while the solution in the TE case is in H2 in general. 

Finally, because of the mathematical nature of the model equations, for general structures the convergence 

difficulties will appear, perhaps in a different manner, in all other known methods for solving the grating problem. 
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Both the SA and GM can converge to a solution rapidly given a good set of starting 

parameters, i.e. a good initial guess or approximate model ^. However, although SA may 

avoid local minima successfully, neither method is absolutely local minima proof. Two 

NLOTs which, although more numerically intensive than either the GM or SA, offer more 

protection against such problems are the Genetic Algorithm, GA, and Simulated Evolution, 

SE. The GA operates by starting with a large initial set of parameter values. Those with the 

highest fitness, i.e. the best CFs, are selected and used as the progenitors for the next 

generation. The next generation (which has fewer members) is chosen by combining the 

parameter characteristics of the previous with some crossover probability. Mutation or 

variations in parameter values, with some predined probability, ensures that a too early 

specialisation is avoided. GAs are in fact a type of search procedure used up to now mainly 

in the area of Artificial Intelligence ^. SE also starts from many initial sets and tries to find 

better solutions by random deviation from these. Each generation of parameter sets is 

produced by introducing Gaussian noise into the previous and selectively retaining a 

reduced number 19. A further advantage of both these techniques is that using the GA and 

SE manufacturing tolerances can be directly included in the design. 

The choice of CF is an issue of great importance in the design of DOEs using. In 

most cases examined in the literature the CF is defined in a single objective sense, i.e. 

although many physical parameters may be varied during a search, only one DOE function, 

for example the efficiency of a single diffraction order is maximized ™. Using Multiple 

Objective Decision Making 21 the CF allows several functions with different importance 

weightings to be optimised simultaneously to produce optimised multifunctional DOEs. 

The advantages of such software techniques include time saving and flexibility 

during design, optimum DOE performance, low running and capital costs compared to 

techniques based on trial and error, and provide the possiblility for quality control and 

process calibration. The potential financial and practical advantages of the various NLOTs 

applied to the manufacture of DOEs can be shown to be quite considerable 22. 

4. Conclusions 

The Legendre Exact Eigenfuntion Method has been discussed. The ability to carry 

out calculations for a large range of lamellar grating parameters using this method in 

combination with rewriten boundary conditions has been indicated. Numerical results for a 

particularly extreme set of grating parameters have been presented. Various types of non- 

linear optimization techniques have been discussed and their general characteristics 

compared. In particular Genetic Algorithms and Simulated Evolutionary techniques have 
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orders have been used to test convergence. Calculations for a large range of grating 

parameters have been carried out using the LM and comparisons with numbers available 

from the literature show excellent agreement H,12. In order to further test the method 

several numerically difficult grating cases have been examined. Examples are presented in 

the following table. In this case the results for a lamellar metallic grating illuminated by a 

plane wave are examined. The grating has the following parameters. The period A/A, = 4/3, 

and height h/X = 5.0. The refractive index of the step and substrate material is ns = 8.2 + 

j81, (Au at X = 10.6|im). there is air above and in the grooves of the grating, na = 1.0. 

Filling factor t = (width of the step/A) = 0.9. In all the calculations presented the number of 

Legendre orders in the step was mo = 30, and the number in the groove was mi = 20. 

Diffraction 

Order 

Efficiency, TE 

-l3t R 

0t/lR 

+l3t R 

Ar 

Hrj 

0 = 0.1 rad     0 = 0.2 rad 

0.0661 

0.8726 

0.0503 

0.3034 

0.5460 

0.1353 

21 19 

0.99991 1.00072 

Efficiency, TM 

6 = 0.1 rad    9 = 0.2 rad 

0.0161 

0.9522 

0.0072 

19 

0.99999 

0.0626 

0.8971 

0.0133 

13 

0.99978 

Table 1: Angle of incidence 0, number of eigenfunctions included N in the calculation. 

3. Non-linear Optimization Techniques 

The use of Non-Linear Optimisation Techniques, NLOTs, to design Diffractive 

Optical Elements, DOEs, has received ever increasing attention in the last 10-20 years. This 

has occurred because of their proven record of success in producing high performance 

manufacturable DOE designs, and the availability of inexpensive high power computers. In 

the last 5-10 years NLOTs have also been applied to the generation of resonance domain 

surface relief structures 13,14, jn these cases it is necessary to calculate the scatter function 

of the grating using Rigorous Electromagnetic Theory, REMT, in order to formulate the 

design Cost Function, CF. Although a considerable number of different NLOTs exist, only 

two methods, the Gradient Method, GM 15, and Simulated Annealing, SA 16, have been 

widely applied to such problems. In both cases the numerically calculated derivative of the 

CF is used to iterate towards a minimum, thus locating the optimum set of DOE parameters. 
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Bragg diffraction by a phase grating is recognized as an important scheme in the 
implementation of a variety of devices including filters, wavelength division (de)multiplexers, 
couplers, optical memories, and optical interconnects. Important considerations in the design of 
these devices are not only wavelength dispersion, efficiency, crosstalk, and fanout issues but also 
the effects of finite beam diffraction when the laser beam sizes are comparable to, or smaller 
than, the grating interaction length. Finite beam Bragg diffraction effects have been considered 
for thick planar gratings and for symmetrical diffraction geometries t1"4!. Solutions to 
asymmetry diffraction (ocd * -a) is, however, required in order to account for various device 
geometries and application requirements. 

Here, we report on the results of a numerical study and experimental observation of the 
asymmetric finite Gaussian beam diffraction by a holographic phase grating. An impulse 
response technique is used, in conjunction with coupled wave theory, to study the dependence of 
diffraction efficiency and wavelength and angular selectivities on the incident beam and grating 
parameters. The grating length-to-beam width ratio (q = d/co0) is found to be an important 
parameter in determining diffraction performance. In the regime 1 < q < 5, with d = 300 \xm, 
and a center wavelength l,0 = 632.8 nm, several basic results are predicted. These include a 
departure from the plane wave behavior of (sine)2 dependence for diffraction efficiency r|, with 
a corresponding modification in the side lobe features; beam profile distortion for given d/co0 

ratios and diffraction angle ad; a decrease in r\ with increasing q and diffraction angle ad; and 
lastly, an increase in selectivity bandwidth at longer center wavelengths. The analysis presented 
here can also be used to predict finite beam contributions for other center wavelengths and 
grating interaction lengths. 

The approach to analyzing the finite beam, Bragg diffraction problem, for a given d/co0 

ratio, is a two fold process. First, the planar phase grating is partitioned into grating subsections, 
with each subsection length being much smaller than the incident beam size, the incident 
Gaussian beam is likewise partitioned into a series of delta function inputs, each having different 
amplitudes and spatial locations. Second, the results of plane wave theory are applied to each 
subsection by calculating a weighted diffraction efficiency, based upon the spatial location of the 
propagating diffracted and undiffracted beams, for each impulse optical input. Finally, all 
impulse responses are summed to yield the resulting output beam profiles as a function of 
grating length, incident beam size, incidence and diffracted angle orientation, and grating 
modulation index. 
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been presented.   Diffractive optical elements designed using these techniques will be 

presented, and their characteristics discussed. 
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Fig. 2 shows diffraction efficiency r\ as a function of both q and diffraction angle ad, for 
q = 1,3, and 5, respectively. Note that q = 0 corresponds to the plane wave diffraction case. An 
increase in q is seen to result in a significant decrease in overall diffraction efficiency and a shift 
in the maximum possible diffraction angle to smaller ocd. At the same time, each of the curves 
for q shows a turning point in the ad dependence, a region which defines the transition from 
single to multiple diffraction peaks and, therefore, distortion of the original Gaussian beam 
profile. Single peak behavior is maintained for values of r\ > 60% in all cases. Augular 
selectivity behavior is shown in Fig. 3 for the same values of q under normal incidence 
conditions. For the case when the beam size is comparable to the grating interaction length (q = 
1), the efficiency response is similar to that of the plane wave case, with nearly identical (sine)2 

dependence and peak efficiency which approaches 100%. As q increases, the peak efficiency 
decreases, while the sidelobe features decrease and eventually disappear, signifying a greater 
finite beam contribution to the diffraction process. This behavior is accompanied by a slight 
broadening of the curves, as measured from the full-width half-maxima. Wavelength selectivity 
is similar to angular selectivity. 

The effect of finite beam Bragg diffraction, including the transition of diffracted beam 
profiles from a single peak to multiple peaks, departure from the (sine)2 dependence for 
selectivity curves, and lowing of diffraction efficiency should be considered in optimizing 
device designs. Center wavelength and interaction length d dependent angular and wavelength 
selectivity bandwidths can be used to transfer the results and curves to other d and center 
wavelength conditions. These theoretical results have been verified by experimental observation 
in a planar waveguide geometry of diffracted beams that change from a single peak to multiple 
peaks as d increases. 
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Fig. 1 shows schematically the process of Bragg diffraction for each grating subsection 
with a single incident ray. After successive diffractions by multiple grating subsections, a set of 
diffracted rays in the kd propagation direction and a set of undiffracted rays in the k propagation 
direction are obtained. The change in propagation direction and beam amplitude are considered 
at each interval in the diffraction process. At any diffraction point, P, the incident rays can be 
characterized by field amplitudes E^x.z) propagating in the k direction and E2(x,z) propagating 
in the kd direction. Originating from a single incident beam, Ej and E2 are coherently coupled 
inside the grating and, therefore, can make use of coupled wave theory t5>6]. It is assumed that 
s- and p-polarized waves do not couple in the grating region and can be treated separately. After 
diffraction at point P, the new Ej beam can be represented by the summation of beams generated 
by the undiffracted portion of Ej(x,z) and the diffracted portion of E2(x,z) which are 
propagating in phase due to coherent Bragg coupling. Similarly, the new E2 can be obtained by 
the summation of beams generated by the diffracted portion of Ej(x,z) and the undiffracted 
portion of E2(x,z). After diffraction, the new Ej will propagate from position (x,z) to (x+Ax1; 

z+Az) while the new E2 will propagate from position (x,z) to (x+Ax2, z+Az) for the next 
subsequent subsection grating diffraction. Each beam diffraction is then weighted by the 
amplitude coefficients (including complex phase factors) derived from the coupled wave 
theory t5»6]. 

A set of spatially resolved diffracted and undiffracted beams from all grating subsections, 
as shown in Fig. 1, results when an impulse response transfer function of the grating is applied to 
an incident ray of unit amplitude. Here, we let G(x') represent the spatially digitized impulse 
response function for beams with wave vector k, where x' is the axis along which the incident 
beam profile f(x') is defined. H(x") represents a similar response function for a beam with wave 
vector kd, where x" is the corresponding axis perpendicular to kd. Lastly, h(x") and g(x') are the 
digitized representations for diffracted and undiffracted beam profiles, respectively, which are 
obtained by convolving the impulse response functions H(x") and G(x') with the corresponding 
spatially digitized representation F(x') for the incident beam profile f(x'). With these axis 
orientations and digitized spacings, shown in Fig. 1, the digitized amplitude profile for h(x") and 
g(x') can be expressed using the convolution notation h[nAx"] and g[nAx'], respectively, and be 
calculated by the expression: 

00 

h[nAx"] = £  F[mAx']H[(n-m)Ax"] (1) 

g[nAx']= £  F[mAx']G[(n-m)Ax'] (2) 
m=-co 

where m and n are integer values for each digitized input, and F[mAx'] is the digitized profile for 
the incident Gaussian laser beam, f(x') = exp(-x'2/co0

2), given by 

F[mAx']=f(x')|x. = mAx. (3) 

where co0 is the spot size of the incident laser beam. The corresponding intensity distribution is 
proportional to the square of these amplitudes. The diffraction efficiency is obtained by dividing 
the diffracted beam energy by the incident beam energy, expressed in convolution notation as 
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Fig. 1 Model of impulse response technique for finite beam Bragg grating diffraction. The 
impulse response amplitude functions are obtained by successively weighting diffracted 
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Introduction 

Planar diffractive microoptical elements are becoming increasingly important for realizing compact 
and low cost optical systems. Typical elements have multilevel microreliefs ('binary optics') or 
continuous microreliefs, with features ranging from submicron to millimeter dimensions and relief 
amplitudes of a few microns. Novel structures can be realized complementing and exceeding the 
possibilities of traditional lenses, prisms and mirrors. The growing interest of industries in 
diffractive elements is based on the progress of modern microfabrication technologies. Computer- 
generated data for arbitrary phase profiles can be transformed into optical elements, which 
provides optimum design freedom. In contrary to earlier holographic elements, recorded in 
materials like silver halide or dichromated gelatin, these elements can now be made of rigid 
materials, such as glass or fused silica, or they can be replicated at low cost into plastic and epoxy 
materials. The paper presents a review of current activities in diffractive microoptics in 
Switzerland. Not mentioned are activities in waveguide grating couplers, display holograms and 
security applications. 

An important role in the actual research in diffractive microoptics plays the Swiss Priority Program 
"OPTIQUE" which supports a project in "binary and continuous-relief microoptics" and a project 
on "e-beam lithography development". The aim of these projects is to establish a microoptics 
design and fabrication capability in Switzerland, as well as the fabrication and characterization of 
selected prototype elements of interest to industry and university groups. It includes the theoretical 
background and the design modules, as well as the fabrication and replication studies necessary to 
specify the achievable fabrication tolerances (for design) and identify a route to commercial 
fabrication. Several interested industries are participating. 

We will start with a summary of the fabrication methods and then give some highlights of current 
activities. 

Fabrication of diffractive optical elements 

Fabrication techniques for realizing the microstructures resulting from the design of DOEs are 
based on a variety of high resolution lithographic and optical processes [1,2]. The typical 
procedure is to generate a mask by e-beam or by laser beam lithography, as shown in the central 
row of Fig. 1. Then, to get high efficiency, the mask is transformed into surface-relief structures 
by dry or wet etching. Using several masks, multiple profiles can be generated to improve the 
efficiency. Another technique is the direct writing of the DOE phase relief in photoresist by e-beam 
or laser beam. The developed photoresist relief can be converted into a metalized master relief by 
electroplating to emboss or cast low-cost replica. Of less interest as microoptical elements are 
actually interferometrically recorded volume holograms (HOEs) in materials like silver halide, 
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gray levels are created by a varying number of transparent holes in a chromium masks. The holes 
are small enough so that they are not resolved during the photolithographic step. The CSEM has 
reported a diffraction efficiency of 75 % for an 8-level microlens manufactured in fused silica 
(diameter 0.5 mm, focal length 1.5 mm). The lens was designed for a wavelength of 633 nm. 

Continuous-relief elements: Continuous-relief elements can be fabricated by direct laser 
writing in photoresist using a system which has been developed over a number of years at the Paul 
Scherrer Institute in Zürich (PSIZ). Different types of elements have been produced, such as fan- 
out elements [4] and diffractive microlenses (Fig. 5). A diffraction efficiency of about 60% has 
been measured for a high aperture lens with NA = 0.5. 

Beam shaping: A very interesting application for diffractive optics is the collimation of high- 
power laser diode arrays (LDAs). A compact demonstrator for coherent beam shaping has been 
built, which converts efficiently the double lobed far-field of a linear LDA, consisting of ten 
coupled emitters, into a single-lobed Gaussian mode of collimated light [5]. Two DOEs, a 
multilevel phase plate in the near-field of the array and a continuous surface relief-grating in the 
far-field, are needed for the conversion. The theoretical efficiency of the set-up is determined to be 
96.7%. On the realized breadboard, one third of the total emitted power was converted into a 
single Gaussian mode. The critical point in coherent beam shaping is the stability of the transversal 
mode emitted by the LDA. Using a common external cavity, the stability and the modal separation 
of the LDA can be increased. This basic principle has been demonstrated for the coherent addition 
of three fiber lasers [6]. In this case, more than 77% of the output power have been coupled into a 
single collimated beam. 

Hybrid achromat: A hybrid (refractive/diffractive) lens combines two optical elements with 
opposite dispersion. This enables the realization of an achromat which is about two times thinner 
than a conventional refractive achromat. IMT Uni-Ne has designed a hybrid achromat for a focal 
length f = 8 mm, a diameter D = 5.2 mm and a wavelength range X = 650 ±20 nm (semiconductor 
laser). The numerical optimization has shown a wavefront error of 0.39A, for the whole spectrum 
in the center of the image plane. Additionally, the system (including lens, laser and housing) is 
insensitive to temperature variations in the range of -20° to +40°C. The diffractive element will be 
fabricated in optical glass by ion beam milling at EMT-Uni Ne. 
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dichromated gelatin and photopolymer. In photoresist, the interference pattern is converted into a 
relief structure, which is more attractive because it can be transferred into glass or quartz. 
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Fig. 1. Fabrication 
of diffractive optical 
elements. 

The main activities in diffractive microoptics fabrication are at the Institute of Microtechnology 
Neuchätel (IMT-Uni Ne), at the Paul Scherrer Institute Zürich (PSIZ) and at the Centre Suisse 
d'Electronique et de Microtechnique SA, Neuchätel (CSEM). IMT-Uni Ne is experienced in the 
design of DOEs, interferometrically recorded holograms and investigates now the fabrication of 
multilevel phase elements by photolithography and subsequent etching. PSIZ has concentrated its 
effort on continuous-relief elements fabricated by laser-beam writing, replication of small series, 
and the interface to large volume industrial replication. CSEM has in its technological workshop a 
complete line of photolithographic and plasma etching equipment for microelectronics. These 
installations are also employed for micro- and planar optics. Besides CSEM, also IBM in 
Riischlikon is equipped with an e-beam which is used for the development of DOE fabrication. 

Current highlights 

Modulated submicron structures: High resolution gratings can be written by e-beam into 
photoresist (Fig. 2). However, for submicron structures it is difficult to realize deep profiles in the 
order of a micron, as required for transmission elements. An alternative technique is the 
holographic lithography developed by Holtronic Technologies in Marin [3], enabling deep 
structures with feature sizes down to 0.3 |im (Fig. 3). In holographic lithography a mask pattern is 
recorded as a hologram and then reconstructed for copying into photoresist. In collaboration with 
Holtronic, IMT-Uni Ne has realized an off-axis 9x9 fan-out element with a feature size of 0.5 |im 
(carrier frequency v = 1000 lines/mm). The diffraction efficiency of the transmission element was 
measured to be 85% at the wavelength A, = 840 nm. Promising results have also been obtained by 
interferometric recording of fan-out elements into photoresist (v = 1774 lines/mm). 

Gray-tone masks: Multilevel phase profiles, as shown in Fig. 4(a), can be produced by a 
multiple mask process. The critical point is the alignment between the different steps. Similar 
elements can be realized with a single gray-tone mask [Fig. 4(b)]. This technology uses one mask, 
a photolithographic exposure and an etching step to transfer the photoresist relief into quartz. The 
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Introduction 

A single element achromatic diffractive lens would have many unique applications. We are specifically 
interested in applications that require both the micro-thin character of diffractive optics and broadband 
imaging. Unfortunately, a diffractive lens tends to exhibit large chromatic aberrations and frequently low 
diffraction efficiency. For example, across the visible spectrum a zone plate Fresnel lens introduces about 
one diopter of axial chromatic aberration for every three diopters of power. Fortunately, as discussed in 
this paper, there are methods for overcoming this problem while retaining the micro-thin character of 
diffractive optics. The methods and results presented are generally applicable to many applications. 

In general, diffractive lenses must be corrected for both field and chromatic aberrations. Single and 
multiple element diffractive elements are discussed extensively in the literature; see the reviews in Fam 
and Goodman [1] or Swanson [2]. Buralli and Morris [3] show a good example of the performance 
degradation of a purely diffractive landscape lens as a function of source bandwidth. It has been shown 
that single, achromatic planar diffractive elements are limited to those of negative power [4-5]. 

In this paper, we describe and demonstrate a method for generating an efficient, single element, 
diffractive lens that forms excellent white-light images. The following section describes the nature of the 
problem and summarizes the design strategies, the final section reviews the fabrication techniques and 
presents white-light imaging results. 

Basic design strategies 
The basic problem with using diffractive optics for broadband imaging is the optical power (P = 1/f) 
depends linearly on wavelength. For example, the power of a Fresnel lens is, 

1        U AP     AA 
— =    so that,   — = — 
/      ri'r* P       X 

p-~ = _^T   so that,   — = —, (l) 

where f in the focal length in meters, n" in the ambient refractive index, k is the diffracted order, and rj is 
the radius of the first Fresnel zone. A diffractive lens of 20 diopters power at 550 nm shifts to 14.5 
diopters at a wavelength of 400 nm and 25.5 diopters at 700 nm. 

As we will now show the dispersive spread can be reduced to any level desired by trading the lens 
thickness for achromatic performance. For simplicity, the paraxial phase distribution created by an 
imaging lens is 

^r,K) = — —- , (2) 

where r is radius and XQ is the design wavelength. The thickness (t) and the optical pathlength (OPL) of 
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Fig. 2. SEM cross-section showing the 
profile of a 800 nm period blazed grating 
(CSEM, Neuchätel). 

Fig. 3. Holographically printed 0.3 [im 
lines and spaces (Holtronic Technologies SA, 
Marin). 

Fig. 4. Micrographs of a quartz microlens (a) manufactured by multiple etching steps using two 
conventional masks and (b) by a single etching step using a gray tone mask (CSEM, Centre Suisse 
dElectronique et de Microtechnique SA, Neuchätel). 

Fig. 5. AFM image of a Fresnel microlens 
(PSIZ, Paul Scherrer Institute, Zürich). 
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Figure 1. The radial lines from the origin represent the location of diffracted orders given by Eq. (1). 
Their location is independent of the refractive index of the lens material. The shaded 
region represents the power distribution determined by the blazing of the grooves. Energy 
is diffracted into the intersection of these two regions as shown in the insert. In (a) 
material dispersion is neglected, in (b) material dispersion is included; dispersion causes 
the shaded region to slope downward. The material dispersion can be corrected by 
superimposing an m=l Fresnel lens onto the higher-order, harmonic Fresnel lens. 

Fabrication and Imaging Results 

Any method for generating diffractive optics can be used to generate harmonic Fresnel lenses. We have 
used both lithographic (i.e., binary diffractive optics) and diamond turning of a master followed by 
injection molding. The latter method offers the advantage that the groove profile is easily generated. 
Although diamond turning has difficulty with narrow grooves (standard tool-tips are 40 to 80 microns in 
diameter), as m increases the narrowest groove width increases proportionally. If the profile is 
represented by discrete binary levels, there must be at least two phase levels for each 2n phase variation at 
the shortest wavelength which illuminates the optic. 

In the example presented here we have generated an acrylic lens (n"=1.49) with a power of 25 diopters in 
air at the design wavelength of 550 nm. Using m=20 leads to a discrete step size of 23 microns. Figure 2 
shows the aluminum, diamond-turned master and Figure 3 an image of the injection molded acrylic lens. 
In Figure 3, the lens is held over a US one-dollar note to qualitatively show the image detail. 

Fabrication limitations and/or errors affect the final image quality. If the lenses are not manufactured to 
sufficient accuracy the wavefront segments coming from each region of the lens will not be properly 
phased. In this case, performance will degrade by an order-of-magnitude to that of a traditional Fresnel 
lens (e.g.,, lighthouse-type lens). To determine the required tolerances we use numerical simulation. The 
lenses have been evaluated using surface scanning profilometry, atomic force microscopy, and phase shift 
interferometry. Images have been formed in monochromatic and polychromatic white light. 
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the diffractive lens that creates this wavefront is, 

t{r^°)={ii)0PL(r'^)=i't)M0D ri'r2 

2/ 
, m=l, 2, 3,  (3) 

Although this expression is usually written with m = 1, the generalization to arbitrary (m A0) makes the 
lens an harmonic Fresnel lens. Increasing values of m represent the progression from the blazed Fresnel 
zone plate (m=l) with thickness steps of X0 I An to an harmonic Fresnel lens with thickness variations 
of mXQ I An, through to a purely refractive lens with the final thickness reached as m becomes large (the 
thickness now also depends on the diameter of the lens). 

To understand the effect of m in Eq. (3), think of the lens as a simple blazed Fresnel zone plate made for 
an effective wavelength Xeff = mX0. The OPL step (m X0) created by the modulus operation in Eq. (3) 

has resonant (or harmonic) wavelengths at (mA0)/k where k = 1, 2, 3, ... (i.e., at each of these 
wavelengths the phase steps of the lens are multiples of 2n). For example, if X0 = 550 nm and m = 10, 
then the resonances in the visible are at 423,458 ,500 ,550 , 611, and 687 nm. 

If this lens is illuminated by Xeff it is well-known that the lens will diffract 100% of the energy into the 
first diffracted order with a focal position given by Eq.(l). Fourier analysis of Eq.(3) also shows that if 
the lens is illuminated by X = Xtff Ik, the lens will again diffract 100% of its energy into the k-th 
diffracted order. Using Eq.(l), the k's in the numerator cancel leaving the focal length unchanged, 

p=k(X4f/k)= Xeff 

ri'rf ri'r*' 

This is depicted graphically in Figure 1. If the lens is illuminated with any of the resonant wavelengths 
each will form a diffraction-limited focus in the same axial plane. The relevant diffracted orders in the 
example above are 8 through 13. At wavelengths away from the resonant wavelengths, the focal 
positions for each order follow the grating equation but the diffracted intensity falls quickly. To a good 
approximation (m>5), the dispersive spread and thickness variations for the harmonic Fresnel lens is, 

AP     1 ,    . mX0 ,c,. 
— = —   and   At=—2-. (5) 

m An 

Physically, we are trading between the thickness of the diffractive lens and achromatic performance. The 
presentation of the nature of the focus has been necessarily brief. The important point is that at any 
resonant wavelength the focus is diffraction limited. At intermediate wavelengths, the focus has an axial 
spread which is symmetric with the nominal focal plane. 

It is interesting to consider the manner that material dispersion effects the harmonic Fresnel lens; this is 
depicted schematically in Figure 1(b). The diffracted orders are not a function of the lens material's 
dispersion, so for example an m=l lens is not affected by this dispersion. Lenses with m > 1 are affected 
by material dispersion as shown in the figure. 

The contribution of material dispersion can be corrected by superimposing a second, positive-power 
grating with m=l onto the thicker grating. The m=l grating has the full dispersion normally associated 
with diffractive optics and opposed to the material dispersion. Sufficient power is added to cancel the 
material dispersion. 
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1. Introduction 

The advent of micro- or binary optics technology has made possible the fabrication of a 
variety of new optical devices. Optical fabrication is no longer limited by surfaces that 
can be made by grinding and polishing, or even diamond turning. In fact, optics with no 
symmetry, no smooth surfaces, and that perform multiple functions can be readily fabricated. 
While these optics have a large number of applications, they are extremely useful for systems 
that require arrays of small optics or aperture multiplexing, since these are fabricated using 
computer controlled photo-lithography and etching processes. 

We have applied binary optics technology to construct various wavefront sensing using 
four mask processes to create 16 level optics. They are binary in the sense that they use 
discrete phase levels, not in the sense of using only two levels (they might more properly 
be called digital optics). We have found that 16 levels is adequate for most systems, giving 
greater than 99% efficiency. 

2. Shack-Hartmann Wavefront Sensors 

One common application of binary optics is the fabrication of lenslet arrays for Shack- 
Hartmann wavefront sensors These usually consist of a lenslet array focussed onto a detec- 
tor array (usually a CCD). While other researchers have used various methods for making 
the lenslet arrays, binary optics is the most controllable and straightforward approach [2]. 
Lenslet arrays for Hartmann sensors do not stress the technology since they use a fairly large 
f# (>100). This leads to simple analysis, and to relatively large finest feature size. We have 
fabricated a number of these arrays, tailored to match the size of various CCD cameras for 
both visible and IR wavefront sensing. A number of lenslet array patterns will fit onto a 
single 2 inch substrate, and thus we were able to fabricate lenslet arrays with different spatial 
resolutions and focal lengths. We have built several linear wavefront sensors that allow much 
higher speed data acquisition (because of the reduced pixel count) [1]. 

Figure 1 depicts a profile of a typical lenslet array used for a linear Shack-Hartmann 
wavefront Sensor. This array consists of 40 0.635 mm diameter cylindrical lenslets across a 
one inch aperture. The individual levels of the lenslet array can be seen in this figure. Even 
so, the residual RMS wavefront error is less than 1/20 wave, and the lenslet elements are 
>99% efficient. 
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Figure 2. The diamond turned, aluminum Fresnel- 
lens master. The lens is 6 mm in diameter, 
has 14 zones, and has a total depth 
modulation of 23 microns. 

Figure 3. The injection molded acrylic lens held 
over a U.S. one-dollar note. 
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Figure 3: Mask layout for a two-tier wave- 
front sensor 

Figure 4:   Intensity pattern produced by 
two tier wavefront sensor 

expansion of the wavefront error about the center of the aperture. The terms of the series 
expansion can be derived by measuring derivatives of the wavefront. This can be accom- 
plished using the multi-tiered wavefront sensor depicted in Fig. 2. The multiplexed binary 
optic is used to bring light from different parts of the aperture to a focus in different regions 
on a detector array. The first tier focuses light that is sampled from the entire aperture onto 
the center of the detector. This provides a measure of overall tip and tilt. It is used to give 
the second two terms of a Taylor series expansion for the wavefront phase: 
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since the spot centroid position provide a measure of the average wavefront slope over the 
aperture. The next set of terms in equation (2) are determined from the centroid positions 
of the next higher tier. This tier brings light from each of the four quadrants to a focus in 
that quadrant. The second order terms can be derived from the focal spot positions in each 
quadrant, for example: 
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Figure 4 presents the intensity distribution produced by this system. While the dis- 
tribution of the lenslets throughout the aperture causes there to be some additional light 
diffracted into higher orders, the overall Strehl ratio is still quite good since a reasonably 
large sampling over the aperture was obtained. 
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Quadrant 1 Lens 

Overall lens 

Quadrant 4 Lens 

Figure 1: Surface profile of cylindrical 
lenslet array used to make one-dimensional 
wavefront sensor 

Figure 2:  Multi-tiered wavefront sensor 

two tier 

3. Aperture Multiplexing 

Using binary optics technology, we are not limited to producing a simple array of lenslets. 
It is possible to multiplex the aperture so that one optic can serve the purpose of several 
different elements. This can be done two ways. The first is diffractive, where gratings or 
other phase perturbations are written across the aperture to diffract the required amount of 
light into different orders, and each order performs a specific function. The other method 
is simply to break the aperture up into a series of smaller sub-apertures, with every other 
sub-aperture performing a different function. Both of these approaches are feasible using 
binary optics technology, however, the diffractive approach requires a sophisticated physical 
optics model (especially for fast optics), whereas ray-tracing is sufficient for the segmented 

aperture approach. 
Aperture multiplexing is useful for a number of reasons. It can be used to reduce the 

number of optics in a complicated optical system. Beam splitters, gratings, lenses, apertures 
and other elements are easily multiplexed onto the same optic. For systems where weight 
or complexity is important, this provides significant advantages. Multiplexing can also be 
used to build optics that are otherwise inconceivable. Some examples of the applications of 
aperture multiplexing are presented in the remainder of this section. 

3.1 Multi-tiered wavefront sensing 

A Shack-Hartmann sensor provides a measurement of the wavefront slope over discrete sub- 
apertures across the field. In order to determine the wavefront, an integration or recon- 
struction step must be performed[3]. Often, this reconstruction step introduces a significant 
amount of noise into the process, or causes is computationally intensive. This can be a 
significant factor for closed loop control of deformable mirrors in adaptive optics systems or 

real time wavefront sensing 
A more direct interpretation of the wavefront error can be obtained by using a series 
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Computer-generated holograms (CGH's) have been used for interferometric optical testing of aspheric 
surfaces for over twenty years, and are now quite common. This paper presents two new applications of circular 
CGH's that were developed and implemented at the Steward Observatory Mirror Laboratory to support the produc- 
tion of large, highly aspheric telescope mirrors. Null correctors that are used to test large (up to 8.4 m diameter) 
primary mirrors are tested directly using small CGH's. Large, convex secondary mirrors are tested using full-aper- 
ture spherical test plates that have zone patterns written onto the curved reference surfaces. 

These two tests use circular 
CGH's or zone plates that are de- 
signed and fabricated to diffract 
highly accurate wavefronts. Rather 
than using tilt in the CGH to separate 
the different orders of diffraction, 
both tests use power to separate the 
orders, causing them to come to focus 
at different axial positions (See Fig. 
1). A small aperture is placed at the 
position where the desired order 
comes to a sharp focus, allowing only 
that order to pass. The size of the 
aperture is chosen to be small enough 
to reject the unwanted orders, but 
large enough to pass the high fre- 
quency figure information.l 

image of mirror 
from only the 
selected order 

Figure 1. Rejection of stray diffraction orders. The order rejection re- 
lies on two principles. (1) The desired order comes to a sharp focus 
where all other orders are out of focus, and (2) An annular pupil is used. 

Verification of null correctors 
A new CGH test of null correctors has been designed and implemented for several telescope primary mir- 

rors.2 Large primary mirrors for optical telescopes are interferometrically tested using null correctors. In fabricat- 
ing a primary mirror, the optical surface is polished to match the wavefront generated by the null corrector. In the 
unlikely event of a flawed null corrector, the final shape of the primary mirror will be incorrect. Two recent tele- 
scopes had their primary mirrors made to the wrong shape because of errors in the null correctors ~ the Hubble 
Space Telescope and the European New Technology Telescope. If accurate testing of the null correctors had been 
performed, the errors would have been discovered and corrected in the shop. Instead, the errors were not discov- 
ered until the finished mirrors were operational in their telescopes. 

In the CGH null lens test, a computer-generated hologram of the mirror is tested by the null lens. The 
hologram, which is only 40 mm in diameter for a 3.5-m //1.75 primary mirror, is made so it will appear to the null 
lens as a perfect primary mirror to the null corrector. The test is easy to perform to high accuracy for several rea- 
sons: it is a null test, it is insensitive to alignment errors, and no optics other than the hologram are required. The 
hologram is designed and fabricated independently from the null corrector, so agreement between the two indicates 
a high probability that both are correct. 

The hologram is simply a circular grating or reflective zone plate on a flat substrate. The holograms used 
at Steward Observatory were made by etching concentric grooves into fused silica substrates and coating with re- 
flective aluminum. The CGH patterns were fabricated by replicating masks written using electron beam lithogra- 
phy.   The ring positions are determined analytically to synthesize the shape of the wavefront that would be 
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3.2 Specialized Adaptive Optics Sensors 

This sensor is also useful for adaptive optics systems. For segmented adaptive optics ap- 
plications, a portion of the light from each quadrant is focused to a point directly between 
the quadrants. This produces a distinct interference pattern that can be used to determine 
the relative phase of the two regions. This is useful for adaptive optics systems where the 
different regions represent wavefront measurements of a segmented deformable mirror. The 
center spots in each quadrant are used to provide tip/tilt information to the deformable 
mirror. The segments are compared two by two to determine the phase around the entire 

quadrant. 

5. Conclusions 

We have developed a number of different wavefront sensors for measuring turbulence, fluid 
flow and for feedback sensors in adaptive optics. We have found that binary optics technol- 
ogy can be used effectively to reduce the number of optics and detectors required for many of 
these systems. We have developed hierarchical wavefront sensing and control schemes using 
aperture multiplexing to reduce the computational load required for wavefront reconstruc- 
tion. Other novel concepts including curvature sensing and phase diversity sensors are also 

under development. 
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Unfortunately, several holograms were fabricated with gross errors due to an unsolved problem with the 
replication by contact printing. Discrete phase steps of up to half a fringe, corresponding to a radial shift of the 
ring pattern of about 1 urn were seen. This is a factor of 5 larger than what was expected from the printing proc- 
ess. The errors can be avoided by eliminating the replication step from the fabrication process by writing the holo- 
gram onto its final substrate with the e-beam writer. 

This new test of null correctors will be performed for the 6.5-m //1.25 and 8.4-m //1.14 primary mirrors 
at the Steward Observatory Mirror Lab.3 

Measurement of secondary mirrors 
A technique for testing large, highly aspheric convex secondary mirrors is being pursued at the Steward 

Observatory Mirror Lab. This new test uses a full aperture test plate with a computer-generated hologram (CGH) 
fabricated onto a concave spherical reference surface.4 Fringes of interference are viewed through the test plate, 
which is supported several millimeters from the secondary (See Fig. 5). The hologram consists of annular rings of 
metal spaced at intervals as small as 80 urn and as large as 500 um. 

In this interferometric test, the diffraction from the zone plate forms the reference wavefront and the re- 
flection from the secondary forms the test wavefront (See Fig. 6). The test plate is illuminated with light that re- 
fracts from the reference sphere to strike the secondary mirror at normal incidence. This light reflects back onto 
itself to form the test beam. Any figure errors in the secondary mirror will be imparted to this test wavefront. The 
reference wavefront is formed by diffraction from the ring pattern on the reference sphere. The CGH is designed to 
make this reference beam match the test wavefront so it also retraces the incident path. 

SECONDARY MIRROR 

■■c   -^ c 

LASER ILLUMINATION 

AND VIEWING 

HOLOGRAM 

TEST PLATE 

SECONDARY MIRROR 

hologram ring 
pattern 

incident 

1 order 

0 order (specular reflection) 

Figure 5. Layout of holographic test of a secondary mir- 
ror. The test plate has a reference spherical surface with 
a ring pattern drawn onto it. 

Figure 6.   Reference and test beams for a holographic 
test plate measurement. 

There are several feasible methods cur- 
rently being studied to fabricate a rotational CGH 
onto a curved surface. These methods generally use 
a precise rotary stage to spin the test plate under a 
focused optical beam (See Fig. 7). Linear stages 
control the radial and axial position of the writing 
head. The stages need only several-micron accu- 
racy, which is readily available in coordinate meas- 
uring machines. The pattern may be drawn by ex- 
posing photoresist, ablating a metallic coating, or 
by creating a thin oxidation layer by heating with a 
focused laser.5 

test plate 
focused laser 

Figure 7. General geometry for optically writing ring pat- 
terns onto curved test plates. A focused laser beam is 
moved radially to expose rings onto the rotating optic. 
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SHACK CUBE 
INTERFEROMETER 

reflected by a perfect primary mirror. The depth and width of the grooves are optimized to minimize fabrication 
costs while giving the correct 4% diffraction efficiency to yield high contrast fringes. 

A layout of the CGH null test, shown in 
Fig. 2, depicts an Offner null lens and CGH. No 
modifications are made to the null lens for per- 
forming this test; the null corrector tests the 
hologram in exactly the same manner used to test 
a primary mirror. The alignment of the test is 
surprisingly simple. The CGH is positioned at 
paraxial focus of the light from the null corrector. 
Once the CGH is near the correct position, the 
shape of the fringe pattern viewed in the inter- 
ferometer is used to align the hologram. Since 
the CGH appears to the null corrector as a com- 
plete primary mirror with the correct shape, the 
alignment of the hologram is exactly like that of 
the actual primary. The lateral translation, axial 
translation, and tilt of the null lens are adjusted to 
eliminate tilt, focus, and coma from the inter- 
ferogram. 

The holograms are designed to give 
about 4% diffraction efficiency into the desired 
order. This matches the intensity from the refer- 
ence surface to give a high-contrast interference 
pattern. A pinhole positioned near the Shack 
cube rejects the stray orders of diffraction and lets 
only the desired order through. 

NULL CORRECTOR 

HOLOGRAM 

Figure 2. Layout of CGH test of null lens. The use of the 
CGH involves simply positioning the hologram at the correct 
location and making the measurement as if testing the mirror 
itself. 

The null correctors for two 3.5-m //1.75 primary mirrors (for the ARC and WTYN telescopes) were suc- 
cessfully tested using computer-generated holograms. Both of these tests confirmed the null corrector conic con- 
stants within the test uncertainty of ±0.000078. The wavefront errors for the two null lenses were measured to be 
0.022X rms and 0.016A. rms at 632.8 nm. An interferogram and reduced phase data are shown in Figs. 3 and 4. 

HIVN 3.5» prinary 

i  i  r i  r 
RMS: 5.13nn    P-U: 27.8nn 

i I I i i i i I 

Figure 3. Interferogram of computer-generated hologram 
through null lens. This single interferogram shows 
speckle, non-uniform illumination, air motion, and tilt and 
coma from alignment. 

Figure 4.   Contour map showing measured null lens 
error of 5.1 nm rms with contours at 3 nm intervals. 
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Additional optics are required to illuminate the test plate such that the rays will be normally incident to 
the mirror being tested. Low quality illumination optics can be used without degrading the test accuracy because 
the reference and test beams are coincident and equally affected by the illumination system. Only the difference 
between the two wavefronts is measured. This fact allows the test to be economical, because the requirements on 
the large optics are quite loose. It also makes the test insensitive to vibration and air currents. Only the reference 
spherical surface of the test plate must be figured and measured accurately. That surface is a concave sphere, 
which is relatively easy to fabricate and measure. The illumination and viewing optics must be of sufficient quality 
to allow the rejection of stray diffractive orders. This condition allows ray aberrations of about 0.1°. 

A 10.25-inch secondary mirror was measured using this method to have a shape error of 44 run rms, 
shown below in the contour map and interferogram (Figs. 8 and 9). The hologram, which is made up of a pattern 
of chrome rings, was written at the Optical Sciences Center by Cindi Vernold. The interference pattern had nearly 
perfect contrast allowing low-noise measurements. The secondary was pushed using piezo-electric transducers to 
allow high resolution phase shifting interferometry. 

Figure 8. Phase map showing figure of a secondary mirror 
as measured by a holographic test plate. The surface has 44 
nm rms variations, shown as gray scale. 

Figure 9. Interferogram corresponding to Fig. 8. 

This new test will be implemented at the Steward Observatory Mirror Lab for testing secondary mirrors 
up to 1.65-m in diameter with over 300 um departure from the closest fitting sphere. The hologram writer for 
these tests and the illumination system are currently under construction. 
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In   Figure   1   we   show   a  pictorial  description  of  ray   tracing   in   a   groove. 

The groove is assumed to be much larger than the light wavelength.  In Figure 2 

we  show  the  average  reflectivity  for  a  V-groove  structure on   silicon.   It  is  an 

average   because   each   portion   of  the   surface   possesses   a   different   reflectivity 

value.   The   zero  reflection  point   for   a   randomly  polarized   light   impinging   on 

the   grooved   surfaces   is   seen   to   lie   in   the   sharp,   needle-like   regime   (small 

inclination   angles).   The   surface   area   of   the   cell,   and   consequently   the   dark 

current,   is   large   at  these   angles.   The   relationship  between   the   cell   size,   A , 

and   the   total   surface   area,   A,   is,   A=AQ/sin(0/2),   where   0   is   the   inclination 

angle.   Large   dark  current   may   decrease   the   cell's   performances7   owing   to   a 

reduction   in   the  open  circuit  voltage.   Another  aspect   to  be  considered   is   the 

apparent   change   in   the   effective   barrier   height   between   the   metal   and   the 

semiconductor   material.   This   is   owing   to   a   non-uniform   current   distribution 

between    the    electrodes    and    the    introduction    of    surface    states    by    the 

photo-ablation   process.   In   this   paper,    we   examine   these   aspects   and   their 

effects on Schottky barrier solar cells. 

In the experiment we used a 200mJ/pulse KrF Excimer laser at A=248nm in 

the presence of various solutions and a simple cylindrical lens to ablate 

V-grooves and M-shape structures. Asymmetric shapes have been fabricated by 

tilting the laser beam in an angle with respect to the sample. 

In the following we compare flat Schottky barrier solar cells with 

patterned solar cells. We used 15 pulses to engrave large grooves and 5 pulses 

to engrave small grooves. The dimensions of the large grooves were: depth 

H.5/«n and width ßO^m so that the opening angle of a deep V-groove is about 

75 . The smaller grooves were about 4/um deep. Grooves ablated in air were 20% 

deeper and wider than grooves ablated in solutions. In Figure 3 we show a 

relative   measurement  of  short   circuit   current   vs   incident   light   angle.   We  use 
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Patterning is known to increase the light collection efficiency of solar 

cells1"2. The reason is that a surface relief increases the number of 

reflections either at the surface or within the cell, thereby, increases the 

probability of a light beam to be absorbed and be turned into useful current3. 

Traditional patterning was either relying on naturally occurring pyramids in 

Si during etching with KOH4, or involved complicated patterning techniques! 

The naturally etched planes in Si, do not possess the required slopes 

necessary to optimize the light collection process. Other possibilities lie in 

the area of binary optics where VLSI methods were used to pattern structures 

finer than the optical wavelength6. Light-assisted patterning, such as, laser 

ablation, may be more efficient than these methods since the laser beam 

intensity may be tailored by means of holographic masks to achieve a desired 

three dimensional relieves. 
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To summarize, we have used a UV Excimer laser to ablate patterns on Si 

surfaces in order to increase the light collection efficiency of solar cells. 

We have noticed that ablation of grooves in various etchants led to improved 

solar cell performances compared to those of their flat cell counterparts. The 

photo-ablation patterning technique did not result in a degraded electrical 

cell's properties. Rather, we were able to enhance the light collection 

efficiency by 23%. 

TABLE 1 

<100> n-Si V-groove vs flat cells for normal incidence, 

5mW HeNe laser light source 

Upper electrode - Cu; Bottom electrode - Al 

Sample 
Short-cir c uit 
Current (uA) 

Open-ci reu i t 
Voltage(mV) 

V 
o c 

Saturation 
Current (nA) 

I 
S 

Barri er 
Height (eV) 

*B 

V- g roove 

flat 

297 

259 

115 

106 

40 

8 

0.73 

0.77 
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a 5mW HeNe laser as a photo-current source. Flat cells are almost insensitive 

to the launching angle. A patterned solar cell has a maximum of 23% higher 

efficiency over its flat counterpart. The etchant was 2:3:100 of HF:HN03:H20 

solution. Asymmetric shapes showed similar performances to symmetric shapes 

with the exception that the peak performance of asymmetric shapes was near 

normal light incidence while the peak performance of symmetric shapes was at 

an oblique incident angle. 

In another set of measurements, we have measured the electrical Schottky 

barrier using I-V curves for flat and patterned surfaces. In general, the 

barrier height has reduced in patterned cells by 0.04±0.004eV. This was true 

for < 100 > n-Si and p-Si samples alike provided that the depths of the grooves 

were above 2fxm and the periodicity of the grooves more than three times the 

groove's width (more than 60//m in our case). Otherwise, the barrier heights 

were equal or even larger than the barrier heights for flat cells. Some of the 

cells parameters are summarized in Table 1. The open circuit voltage values 

for the patterned Schottky barrier solar cells were equal or slightly larger 

than for their flat cell counterparts. This may be attributed to the effect of 

surface states introduced by the etching process. We may conclude that the 

etching process was not affecting the electrical barrier properties 

significantly. 
1.25 

10 20 

INCIDENT   RNGLE 

30 



44 / JMCl-1 
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1. Introduction 

Diffractive optical elements, which have a history dating back to the work of Lord 

Rayleigh and R. W. Wood, have been a subject of renewed interest over the past several years, 

primarily due to advances in manufacturing technology. The purpose of this paper is to provide a 

basic introduction to some of the features of diffractive optics that are most applicable to optical 

system design. 

In general, the term diffractive optics (or diffractive optical elements) refers to those 

optical elements that base their operation on the utilization of the wave nature of light. This 

broad categorization can be divided into several subsections. Diffractive lenses are elements that 

perform functions similar to conventional refractive lenses, e.g., they form an image. Kinoforms 

are diffractive elements whose phase modulation is introduced by a surface relief pattern. Binary 

optics2 are kinoforms produced by photolithographic techniques, resulting in a "stair-step" 

approximation to the desired surface profile. Each photolithography step increases the number of 

levels in the surface profile by a factor of two - hence binary optics. Holographic optical 

elements3 (HOEs) are devices formed by recording the interference pattern of two or more 

waves. 

Regardless of the name used or method of fabrication, the operation of diffractive optics 

can be understood with just a few basic tools. The properties of diffractive optics that are shared 

with conventional elements, e.g., focal length, chromatic dispersion, aberration contributions, 

etc., do not depend on the specific type of diffractive element. Given a phase function or 

equivalently, a grating spatial frequency distribution, the influence of the diffractive element on 

an incident ray for a specified diffraction order is found via the grating equation. The specific 

element type involved (kinoform, binary lens, HOE, etc.) only influences the diffraction 

efficiency - how much light is going into each diffracted order. 

One factor that has stimulated much of the recent interest in diffractive optics has been 

the development of manufacturing techniques (e.g., binary optics, diamond machining,   laser 
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3. Aberrations 

One extremely distinctive feature of diffractive lenses is their chromatic dispersion. The 

paraxial power of a diffractive lens is a linear function of wavelength. Explicitly, if at the design 

wavelength X0 the lens has a power <j)0, at another wavelength X, the power of the lens is <j)(X,) = 

(X/X0)§0. This relationship allows us to find an Abbe value vdiff, defined over the wavelength 

range from Xshott to Xlong: 

___A__ 
vdiff - *   _y   • 

short       ^ong 

Note that the value of vdiff depends only on the wavelengths and is independent of any material- 

type parameters. Hence there are no "crown" or "flint" diffractive lenses. Also, since A,long is 

greater than Xsh0It, vdiff is always negative. Thirdly, the absolute value of vdiff is much smaller 

than the Abbe value for conventional refractive materials. For example, for the visible spectrum 

defined by the d, F, and C lines, the value of vdiff is -3.45. 

Since rotationally symmetric diffractive elements behave as lenses, it is clear that 

aberration coefficients can be derived. Perhaps the easiest way to do this is to use the Sweatt 

model. The aberration coefficients for a diffractive lens are found as just the limiting forms of the 

familiar thin lens aberrations. Thinking of the diffractive lens as just a thin lens with an 

extremely high refractive index allows for a simple qualitative description of the third-order 

aberrations. Just as a refractive lens, spherical aberration is a quadratic function of both 

conjugates and bending, while coma is a linear function of both of these parameters (assuming 

stop-in-contact). Also, astigmatism depends only on the power of the lens and distortion is zero. 

The major difference for diffractive lenses is in the Petzval term, which is zero. Diffractive lenses 

have no contribution to the Peizval sum. Simple design examples will illustrate these points. 

4. Diffraction efficiency 

The designer must be aware of the effects of "undiffracted" light (actually, light that is 

diffracted into orders other than the desired order). This is an almost unavoidable situation, 

particularly for systems that must operate over a finite spectral region. The effect on the image of 

the undiffracted light is similar to the effects of glare, i.e., an overall lowering of contrast, 

especially at lower spatial frequencies.8 The designer may need to pay close attention to the 
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writing systems5) that give the designer control over the phase function of the lens, and result in 

an element with a reasonably high diffraction efficiency. In fact, a scalar diffraction theory 

analysis reveals that a properly designed surface relief profile can have a first-order diffraction 

efficiency of 100% for the design wavelength. Of course, a scalar treatment is inadequate for 

gratings with a high wavelength-to-grating-period ratio. 

2. Elements of diffractive lens design 

The design of the phase function for a diffractive element can be separated from the 

specific choice of which type of element is used. The implementation of the desired phase 

function as a particular diffractive element (kinoform, HOE, binary optic, etc.) does not influence 

the design considerations to be discussed in this paper. Also, the discussion will be restricted to 

rotationally symmetric lenses, to draw comparisons and contrasts to familiar refractive lenses. 

The fundamental description of a diffractive lens is the phase function that defines the 

OPD introduced by the lens. For a rotationally symmetric lens the phase function O(r) is 

generally given by a power series expansion: 

<tfr) = -£- (y,r2 + s2r
A + s3r

6+- ■ ) 
A) 

In the above equation, r is the polar radial coordinate. For a lens described by the above equation, 

the paraxial properties are completely determined by the sl coefficient. For example, the focal 

length for the design wavelength is given by -l/^). The fourth-order coefficient s2 affects third 

and higher order (ray) aberrations; the sixth-order coefficient s3 affects fifth and higher order 

aberrations, etc., in a manner akin to aspheric surfaces on a refractive lens. 

For optical design purposes, an alternative to the use of phase functions such as the 

equation given above is the use of the Sweatt model.6 Sweatt showed that a diffractive lens is 

mathematically equivalent to a thin refractive lens, in the limit as the refractive index goes to 

infinity and the lens curvatures converge to the substrate curvature of the diffractive lens. Thus, 

the designer can treat a diffractive lens as just a thin lens with a very high refractive index, e.g., 

10,001. 
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propagation of unwanted diffraction orders through the system and allow for vignetting or 

baffling of the "stray light". 
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1.   INTRODUCTION 

With constant advances in both fabrication technology and design innovation, diffractive optics continues 
to be an area of great interest. However, since diffractive optics is still a relatively new technology, the 
methods used to model diffractive optics may also be relatively new to many potential users. In this paper, 
we describe some of the more common methods which are used to analyze surface-relief diffractive optics. 

We begin by considering the theoretical tools which are available. Then we focus on the particular issue 
of diffraction efficiency. In the last section, we mention several design examples which illustrate potential 

pitfalls one may encounter in modeling diffractive optics. 

2.    MODELING THEORIES 

The optical theories used to model diffractive optics can be roughly divided into three regimes: geomet- 
rical optics, scalar diffraction and vector diffraction (i.e., Maxwell's equations). In this section, we describe 
each of these regimes, including the distinguishing characteristics of each theory, the applications which 
are commonly modeled by each method, and the numerical approach which is used in each regime. 

In the geometrical optics regime, rays are used to describe the phase of a propagating wavefront while 
variations in the amplitude of the wavefront, diffraction due to these variations and the varying efficiencies 
of different diffraction orders are all neglected. That is, geometrical optics predicts the directions of different 
diffraction orders but not their relative intensities. Despite these limitations, if a diffractive optic is used in 
an application which is normally designed by ray tracing, then ray tracing coupled with simple efficiency 
estimates will usually be sufficient. The majority of these applications are conventional systems (e.g., 
imaging systems, collimating or focusing optics, laser relay systems, etc.) in which the diffractive optic 
either provides residual aberration correction (e.g., chromatic, monochromatic or thermal) or replaces a 
conventional optic (e.g., a Fresnel lens replacing a refractive lens). In most of these cases, the diffractive 
optic is blazed for a single order and can be thought of as a generalized grating - one in which the period 

varies across the element. 

Regarding the actual ray tracing of the element, there are two common methods which are used: the 
grating equation and the Sweatt model. In the grating equation, a local grating period is defined for 
each point on the element. When a ray intercepts the element, it is then diffracted by the local grating 
according to the grating equation1, which is the diffractive counterpart to the refractive Snell's law or 
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the reflective reflection law. In the Sweatt model2, the diffractive optic is replaced by a thin refractive 
equivalent constructed with a material of high refractive index which varies proportional to the wavelength. 
Snell's law is then used to trace rays through this refractive equivalent of the diffractive element. As the 
index approaches infinity, the Sweatt model approaches the grating equation. Almost all commercial ray 

tracing software can handle either of these models. 

If amplitude variations are not negligible, if efficiency estimates cannot be separated from the rest of 
the design, or if the element cannot be considered to be a generalized grating, then the scalar diffraction 
theory may be appropriate. In the scalar theory, the diffractive optic is normally modeled as an infinitely 
thin phase plate and the light field is propagated via the appropriate scalar diffraction theory (i.e., Fresnel, 
angular spectrum, Rayleigh-Sommerfeld, etc.)3. Typical applications include beamsplitter gratings (i.e., 
gratings in which the diffraction efficiency of each order is tailored to follow a given distribution), laser 
cavity optics, diffusers, laser beam shapers, lenses with multiple focal lengths and computer generated 
holograms. Since few, if any, commercial codes are available to simulate the general scalar diffraction 

case, most designers use their own numerical implementations of the appropriate scalar diffraction integral 
and their own optimization methods for designing the elements. Common optimization techniques include 
phase retrieval methods4, non-linear optimization and search methods5 or linear systems analysis (e.g. 
eigenmode analysis for the design of laser cavities). 

The scalar theory cannot handle all cases. Most notable among its shortcomings is the lack of polar- 
ization effects and back-reflected diffraction orders and its inability to handle structures which are on the 
order of a wavelength or smaller in size. In this regime, the numerical solution of Maxwell's equations is 
required for a more accurate picture. It is possible to numerically solve Maxwell's equations for arbitrary 
geometries6. However, this is limited in usefulness by computer speed and memory requirements. For ex- 
ample, a cube 10 wavelengths on a side is only a 5 /xm cube in the visible but would require a million nodes 
if sampled at an ordinary rate of 10 samples per wavelength. More common is the solution of Maxwell's 
equations for periodic structures (i.e., diffraction from a grating). Applications which are commonly ana- 
lyzed using this method are anti-reflection structures, elements which utilize form birefringence and some 
optical data storage components. In this case, the field outside the grating is decomposed into plane waves 
while the field inside the grating is decomposed into either plane waves (the space harmonic approach) or 
eigenmodes of the grating (the modal approach)7. The space harmonic approach is applicable to gratings 
of any shape. However, it is numerically less stable than and does not converge as quickly as the modal 
approach, especially if metals are used (e.g., in reflective gratings). The modal approach is numerically 
better behaved, but it is used only in special cases (e.g., square wave gratings) since the eigenmodes of 
the grating must be known. If the grating structure is much less than a wavelength, then we may use 
the Rytov approximations (effective medium theory)8. In this approach, the grating structure is so fine 
that the light only responds to the "average" properties of the structure. Therefore, we can consider the 
structure to be equivalent to a stack of differing materials (i.e., a stratified medium) with the "average" 
properties of each material given by the Rytov expressions. 
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3.   EFFICIENCY MODELS 

In a large class of problems, the diffractive optic is intended to be used in first order only, with the 
goal being to maximize the efficiency of this order. As mentioned previously, almost all geometrical optics 

designs fall in this class. In this section, we discuss several efficiency estimates of gratings, beginning 

with the scalar model. We discuss only linear gratings because in most cases the diffractive optic can be 

modelled locally as a linear grating. Therefore, we can use the linear grating model to estimate the local 
efficiency of the diffractive optic which can then be used to estimate the overall efficiency of the element. 

We begin with the scalar theory prediction since these results are easily summarized and are applicable 
to a large number of applications. In the scalar theory, the grating is modeled as a thin phase plate and 
a Fourier series analysis of this periodic phase structure gives the efficiency of each diffraction order3. In 
the simplest scalar approach, a grating of thickness profile t(x, y) is assumed to introduce a phase delay of 

27rf(An)/A, where An is the difference in refractive index between the grating and surrounding materials 
and A is the wavelength of light. Under this approach, a sawtooth grating of maximum height to = Ao/(An) 
will be 100% efficient into the first order at the design wavelength A0 and an N step staircase approximation 
to this ideal sawtooth (as is commonly the result if binary optics fabrication is used) will have an efficiency 
of sinc2(l/iV), where sinc(s) = sin(7rx)/(7ra;). This approach yields the often quoted efficiency estimates 
of 99% for 16 phase levels, 95% for 8 phase levels and 80% for 4 phase levels. Note that this efficiency 
prediction only accounts for wavelength variations and does not account for effects due to variations in 
the grating period, index of refraction (the prediction is actually a function of the optical path difference 
t(An) rather than of n or An), angle of incidence and polarization of the light. The approach becomes 
more accurate for larger grating periods (typ. periods greater than ten wavelengths), for shallower angles 
of incidence (typ. less than 30 degrees in air) and, if the Fresnel reflection is accounted for separately, for 

higher refractive index differences (typ. greater than 0.5). 

More accurate predictions are possible either by extending the basic scalar theory prediction9 or by 

using the vector theory7. However, these results are more complex and not easily summarized. 

Light which does not appear in the first diffraction order must go elsewhere. The majority of this stray 
light ends up in higher diffraction orders (some consider this to be deterministic scatter) while some of it 

.is scattered in the usual sense of the word. In both cases, the designer must determine the impact of this 

stray light. 

4.   DESIGN EXAMPLES 

In this section, we mention design examples which illustrate some peculiarities of diffractive optics. In 

particular, we consider the following: 
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• Microlens arrays for beam homogenization. In this example, a microlens array is used to homogenize 
an incoming laser beam, providing a uniform flux at a work piece surface. However, a cursory analysis 
of this system yields two different predictions, depending on whether a geometrical or scalar analysis 

is used. 

• Beam steering. In this example, we begin with a conventional two-lens telescope. This device can be 
used to steer a beam by translating one of the lenses with respect to the other. We then construct a 
device based on shrinking the lenses to microlenses and arraying them. We will examine where the 
analogies between the two systems are valid and where they are not. 

• Beam shaping. In this example, a phase plate is introduced in order to transform the focus of a 
Gaussian beam into a flat top. Again, geometrical optics and scalar theory predict different outcomes. 
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A diffractive optical element (DOE) has many unique properties such as high dispersion 
with an equivalent negative Abbe number and a zero petzval curvature. 
Consequently, a DOE can simplify the optical design form and improve the image quality 
of many refractive optical systems. 

This paper formulates and discusses the basic theory of chromatic aberration correction of 
an optical system consisting of conventional optical elements (COE) and a DOE. Several 
design examples with spectral bands ranging from the visible, mid-wave infrared to long- 
wave infrared are given to illustrate the advantages of optical systems using a DOE. These 
examples show that a DOE is very effective in primary chromatic aberration correction for 
infrared optical systems, and in primary and secondary chromatic aberrations correction 
for visible optical systems. Generally, a DOE can improve optical system performance 
while lowering the cost and weight by reducing the number of lens elements by 
approximately one-third. Additional benefits often include desensitizing the design to rigid 
body misalignments. 
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Achromatic and Apochromatic Diffractive Singlets 
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Diffractive optics offers optical system designers new degrees of freedom that can be used 

to optimize the performance of optical systems. The zone spacing of a diffractive lens can be 

chosen to impart focusing power as well as aspheric correction terms to the emerging wavefront. 

The surface (or blaze) profile within a given zone determines how the incident energy is distributed 

among the various diffraction orders. In a conventional diffractive lens the phase jumps at each 

zone boundary is taken to be 2%, and the zone radii, rj, are obtained by solving the following 

equation: <>(rj) = 2TC j = sirj2 + S2rj4 + S3rj6 + ..., where <|)(r) represents the desired phase of the 

wavefront emerging from the element at radius r from the optical axis. The phase coefficient s\ 

determines the optical (or focusing) power of the element. The phase coefficients S2, S3, etc. 

determine the aspheric contributions to the wavefront. In a given application, the phase 

coefficients can be optimized using commercial lens-design software. 

While it is often useful to think of a diffractive lens as a "modulo 27t" lens at the design 

wavelength, the spectral properties (or wavelength dependence) of a diffractive lens are drastically 

different from that of a refractive lens. For a thin refractive lens, the lens power is given by <f>(?i) 

= [n(k) -1] c, where n(k) denotes the index of refraction of the lens material at wavelength X, and c 

represents the surface curvature of the lens. Whereas for a diffractive lens, the optical power 
(associated with the r2 phase term) is highly wavelength dependent. In fact, the optical power, O, 

varies linearly with the wavelength of light, i.e., 0>(k) = (k,fk0)O(k0). Because of their high 

dispersion and the fact that a diffractive lens has a negative Abbe v-number, they can be combined 

with refractive (crown) elements to produce achromatic diffractive/refractive hybrid lenses for use 

in broadband optical systems.. The use of a diffractive/refractive hybrid eliminates the need to use 

exotic flint glasses and provides a significant reduction in the weight and number of optical 

elements required to achieve a specified level of performance1. 

hi this paper we investigate the imaging properties of multi-order diffractive (MOD) lenses 

that are used in conjunction with light that has either a broad spectral range or a spectrum 

consisting of multiple spectral bands. A MOD lens differs from the standard diffractive lenses 

described above in that the phase jump at the zone boundaries is taken to be a multiple of 271, i.e., 
<J)(rj) = 27up, where p is an integer > 2, and the location of the zone radii are obtained by solving the 

equation <j)(rj) = 27tpj, where again <(>(r) represents the phase function for the emerging wavefront. 

The number of 2rc phase jumps, p, represents a degree of freedom for the designer. However, to 

date most of the reported investigations with diffractive lenses have set p = 1, by default. 

In the literature one finds only a few articles that consider multi-order (or higher-order) 

diffractive lenses. In a footnote, Miyamoto2 states that one can reduce the problems associated 
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with small zone spacings by using multiple 2K phase jumps at the zone boundaries. Dammann3'4 

considered the spectral characteristics of stepped-phase gratings that have arbitrary phase jump at 

the edge of each grating facet, and the application of these gratings for color separation. Futhey5-6 

and co-workers have described what they call a "super-zone" diffractive lens. The structure of a 

super-zone lens is motivated by the desire to keep the zone spacing of the various facets above the 

resolution limit imposed by the particular fabrication method (diamond-turning, laser pattern 

generation, or photolithography). Marron7 et al. have also reported on "higher-order kinoform" 

structures. The motivation for their work was, again, to keep surface features large compared to 

the wavelength of light, even when the f-number of the lens is very low. 

While it is important to note that the larger zone structure of a MOD lens is easier to 

fabricate than a standard "modulo 2K" diffractive lens, to our knowledge we are the first to 

consider the use of such lenses with light having a broad spectrum or having multiple spectral 

bands, and we have found the imaging properties of MOD lenses with such illumination to possess 

a number of interesting and useful properties. For example, as we show in the next section, one 

can use a MOD lens with light having broad spectral band or multi-spectral bands to form either an 

achromatic or an apochromatic diffractive singlet by choosing the appropriate value for p. Such 

elements may be particularly useful for applications such as color image displays8, alignment of 

optical systems whose wavelength of operation lies outside the visible spectrum, and medical 

instrumentation, particularly medical laser scalpels. 

In the next section, we consider the first-order properties of MOD lenses, namely, the 

optical power, diffraction efficiency, and the structure of achromatic and apochromatic diffractive 

singlets. We conclude that a MOD lens is capable of bringing wide-field, multi-color images into 

focus at the same image plane. 

Imaging properties of paraxial multi-order diffractive lenses 

We begin by describing the amplitude transmission function of a diffractive singlet. The 

zone radii, rj, are defined such that the optical path difference at the jth zone is equal to (Fo + jp?io), 

where XQ is the design wavelength, Fo is the focal length when the illumination wavelength X = XQ, 

and p is an integer that represents the maximum phase modulation as a multiple of 2K. In the 

paraxial region, the locations of the zones in the plane of the lens are given by 
r] = 2jp?i0F0  . (1) 

The optical phase introduced by the diffractive element is given by9 

<!>(/•) = 2rcap J - 
r2 

riZr< rj+1  , (2) 
2pW 

where a is defined as the fraction of 2K phase delay that is introduced for illumination wavelengths 

other than the design wavelength and is given by 

' n(X) - 1" 
a = -r- (3) 
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where n is the index of refraction of the material in the grating region. The maximum height of the 

surface relief is given by 

hm„(r) = -j^-  . (4) 
n(A0) - 1 

In a manner similar to that used in Ref. 12, the amplitude transmission function of the 

diffractive lens can be expanded as a Fourier series to give 

t(r) =   le^-^sincCap - m) e pX°F°   , (5) 
IX) ES-DO 

where sinc(x) = sin(7cx)/(7cx) and m denotes the m-th diffraction order. It is important to note that 

the transmission function in Eq. (5) represents a diffractive lens within the paraxial approximation 

and that transmission functions that describe other diffractive lenses are possible. It is interesting 

to compare Eq. (5) with the transmission function of a conventional refractive lens13 given by 

t(r) = e~*F   , (6) 

where F is the focal length, which depends on the material properties of the lens. Comparison of 

Eqs. (5) and (6) suggests that there are an infinite number of focal lengths given by 

F(A) = &&.  . (7) 
mA 

Notice that the focal length in Eq. (7) is proportional to p and inversely proportional to the 

illumination wavelength and the diffraction order, m. It is interesting to note that when the quantity 

in Eq. (7), pAo/m^> is set equal to unity, several wavelengths can come to a common focus. 

Clearly, p is a construction parameter and is usually constant across the lens radius and the 

wavelengths that are focused to a common point are chosen from a set of diffraction orders. While 

a diffractive lens with a maximum phase modulation of 2K can allow a mutual focus for simple 

harmonics of the design wavelength, the parameter p now offers a mechanism to control specific 

wavelengths in a given band or bands that will come to a fixed focus. This property allows the 

design ofachromats and apochromats using a single diffractive surface. 

The scalar diffraction efficiency, Tim, of the m-th diffracted order is given by the squared modulus 

of its Fourier coefficient in Eq. (5), i.e. 
T]m = sinc2(ap-m) . (8) 

The diffraction efficiency given by Eq. (8) is unity when the argument of the sine function is equal 

to zero. Notice that this condition can allow for high diffraction efficiency for several 

wavelengths. For example, consider the case of a multi-order diffractive lens operating in the 

visible region with p = 10. Figure 1 illustrates the wavelength dependence of the diffraction 

efficiency for a range of diffracted orders neglecting material dispersion. The peaks in diffraction 

efficiency occur at precisely those wavelengths that come to a common focus [see Eq. (7)], i.e., 

A^ = &*■ . (9) 
m 
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Using Eq. (9), it is possible to choose the parameters p and m that can allow high 

diffraction efficiency for certain bands in a given spectrum. The center wavelength of each of these 

bands comes to a focus a distance FQ behind the lens. 
A MOD lens operating with 

multiple spectral bands may be 

particularly useful for color display 
applications8.   Another important 
application of MOD lenses with 
illumination  containing  multiple 

spectral bands is as an alignment 
system for optical  systems  that 

operate using wavelengths outside of 

the  visible  spectral  band.     For 
example, by choosing p = 5, sodium 
D light (589 nm) in the m = 9 
diffraction   order   will   focus   at 
precisely the same focal position as a 
ND:YAG laser operating at X = 1,060 

Fig. 1   Diffraction efficiency of the m-th nm  preliminary experimental results 
diffracted order versus wavelength for a 
MOD lens with p = 10. will also reported. 
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refractive elements4. For this reason, hybrid eyepieces comprised of all positive elements may be 

designed. Eyepieces are a close grouping of mostly positive-powered elements with a combined 

short focal length. As previously mentioned, this case leads to a strong, inward curving image 

plane. A desirable attribute of diffractive lenses is that they contribute no Petzval field curvature5. 

Fabricated as surface-relief structures, diffractive lenses can offer considerable size and weight 

reductions. Along with these features, diffractive optics can be used to shape the emerging 

wavefront to help correct the monochromatic aberrations4. 

Earlier work in the field of visual instruments incorporating diffractive elements include a 

hybrid, diffractive-refractive telescope in which a diffractive eyepiece compensates for the color in 

the refractive objective6. Similar designs were also proposed by Wood7» who constructed a zone- 

plate telescope, and by Bennett8. These were all first-order proposals in which monochromatic 

aberrations were left uncorrected. Recently, a biocular magnifier, which is to be viewed with both 

eyes, employing one diffractive surface was patented9. A diffractive-refractive doublet was 

designed for use as an eyepiece-magnifier10. In that design one refractive surface was aspheric, 

and the diffractive element was to be placed on a curved substrate. 

3. Hybrid diffractive-refractive wide-field eyepieces 

As the field-of-view increases, eyepiece design issues become more significant. 

Maintaining a sufficient eye relief while increasing the principal ray angle increases the outside 

diameters and thicknesses of the individual elements. The well-defined exit pupil location and the 

wide field-of-view require that the system be well-corrected for spherical aberration of the pupil 

and off-axis aberrations11- At increasing field angles, the intersection of the principal ray with the 

optical axis becomes nearer to the last lens. This has the unfortunate characteristic that some zones 

of the field become vignetted by the final pupil of the overall visual system, the eye's pupil. For 

this reason, spherical aberration of the exit pupil must be kept under control, especially in wide- 

field eyepieces. Other field aberrations are likewise difficult to correct, and some aberrations are 

tolerated, ignored, or are corrected by another part of the entire visual instrument. For example, a 

certain amount of distortion at the edge of the field is considered acceptable due to the fact that the 

user does not use this area other than to orient himself/herself12, and often the lateral color is 

corrected with a dispersive prism. 

Two examples of hybrid diffractive-refractive, wide-field eyepieces are presented to 

demonstrate the effectiveness of diffractive optics in providing eyepieces with fewer elements. 

These eyepiece designs offer performance equivalent to or better than existing, conventional 

eyepiece designs. Comparisons with a common wide field-of-view eyepiece design are presented. 

The well-known Erfle eyepiece is considered to be a very good compromise of optical 

performance with size and weight for wide-field use and is probably the most commonly used 

wide-field eyepiece.12 An Erfle eyepiece13 consists of a five-element design, with strong positive 
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1. Introduction 

Eyepieces play an important role in many types of optical systems, such as telescopes and 

medical instruments. The eyepiece is often the limiting factor in the overall optical performance of 

the instrument and, due to the requirements for sufficient eye relief and high performance, it 

presents a difficult design problem. Improvement of existing eyepiece designs is limited using 

conventional design variables. By introducing a new technology - diffractive optics - to eyepiece 

design, the performance of today's eyepieces can be enhanced. Advantages of a diffractive optics 

solution to eyepiece design include smaller lens curvatures, higher numerical aperture achromats, 

and reductions in the number of elements, overall weight, and system cost, as well as an increase 

in optical performance compared to an all-refractive eyepiece design. 

2. Eyepiece design 

Eyepieces are significantly different from photographic objectives. Typical features that are 

necessary in this type of system include a sufficient eye relief (10 to 20 mm), a wide field-of-view 

such that the user does not experience tunnel vision, and a well defined exit-pupil location to avoid 

vignetting. One essential difference is the external aperture stop of the eyepiece. This feature, 

combined with the large field of view, results in large aperture elements - in comparison to the 

eyepiece aperture. Dealing with these and other design issues makes eyepiece design quite 

difficult1. In particular, the external aperture stop and pupils eliminate the symmetry of the 

principal ray, which would help to reduce distortion, coma, and lateral color. For example, in 

some conventional eyepiece designs, each convergent element is coupled with a negative element to 

provide achromatization2. Also, due to the relatively short focal length of the eyepiece, field 

curvature is inherently strong. Strong meniscus elements placed near the focal plane are often used 

to combat this problem3. As can be seen, the goals of designing an eyepiece well-corrected for 

aberrations such as lateral color and Petzval field curvature along with maintaining necessary first 

order features can be difficult. Solutions for these eyepieces often result in multi-element or exotic 

configurations, which are extremely heavy and bulky; this significantly reduces their desirability in 

a number of situations. In such cases, optical performance is often sacrificed to satisfy weight or 

cost requirements. 

As a new, effective design variable diffractive optics offers features which are beneficial to 

eyepiece design.   The effective dispersion of diffractive lenses is opposite in sign to that of 

t This research was supported in part by the U.S. Army Research Office 
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;ig. 2. Transverse ray plots for (a) Erfle eyepiece and (b) for diffractive-refractive eyepiece in Fig. 1(c).'1' 
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t It is standard in evaluating eyepieces that rays are traced from infinity, from the side of the pupil, through the 
eyepiece to the focal plane, except in the case of pupil spherical aberration1'*. 
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and negative elements, covering up to a sixty degree apparent field-of-view (i.e. the field-of-view 

in eyespace.) The two-hybrid eyepiece designs are compared to the Erfle eyepiece; all three 

designs have equivalent focal lengths, f-numbers, and fields-of-view. 

The first design consists of three refractive lenses and two diffractive surfaces. Two of the 

refractive elements have a planar side to which the diffractive elements are directly mounted. 

Planar substrates were chosen for the diffractive optical elements of both hybrid eyepiece 

configurations to simplify fabrication. The second design consists of three refractive elements 

also, but only one diffractive element. In Fig. 1 the eye is positioned at the exit pupil location, and 

X marks the image plane. As can be seen in Fig. 1, the curvatures of the refractive elements of the 

hybrid designs, Fig.l(b)and(c), are significantly less than those of the Erfle eyepiece, Fig. 1(a). 

In   Fig.   2,   the   transverse   ray 

^ .—.       aberration plots are presented for the Erfle 

Exit pupil ( f     \\    \ /      \   f eyepiece and for the hybrid eyepiece in Fig. 

1(c), which has aberration correction slightly 

better than the first hybrid, Fig. 1(b). Both 

hybrid eyepiece designs exhibit better 

performance than the Erfle design at the three 

field positions (0,0.7,1.0.) Furthermore the 

eye relief of the Erfle design is 15 mm, 

compared to the eye relief of the two 

diffractive-refractive eyepiece designs 16 mm 

and 20 mm, respectively. Also, the pupil 

spherical aberration is significantly reduced 

by optimizing the higher order aspheric terms 

in the phase function of the diffractive 

elements, which increases the effective eye 

relief even further. Along with the improved 

optical performance, the hybrids also have a 

significant decrease in size and weight 

compared to the Erfle design. The weight of 

each of the hybrid designs is approximately 

44% less and 72% less than the weight of the 

Erfle design, respectively. 

As an application of the hybrid 

design, we have fabricated hybrid diffractive- 

refractive eyepieces for a set of binoculars. 

Experimental results will be presented. 

(b) 

n 

u 

Fig. 1. Eyepiece designs,  (a) Erfle eyepiece, (b) 
hybrid diffractive-refractive eyepiece, 
(c) hybrid diffractive-refractive eyepiece.  All 
three eyepiece designs have a 25-mm focal length, 
a 10-mm exit pupil, and a 60° FOV. 
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Computing results: 

Fig.l 

Fig. 2 

Fig.l illustrates the results for a lens without DOE: constant phase (a), its radial 
cross—section (b), the Airy disk (c) and its radial cross—section (d). Fig.2 shows the 
three—level DOE capable of increasing the Airy disk diameter twofold: the DOE phase 
(a), its radial cross—section (b), the pattern of diffraction in the focus (c), and its 
radial normalized intensity distribution (d). 

Fig.3 

c d 
Fig.3 contains: the phase of an optical element (a), the phase cross—section along 

the x—axis (b), a phase generated at the distance z0 (c), and the phase cross—section 
along the £; — axis: solid line in Fig.3.d; dashed line is the pregiven phase 

\|/0(i;,T|) = -a(£,4 + r|4). The difference between the calculated phase (Fig.3.c) and the 

desired phase amounts to 6%. 

Fig.4 Fig.5 

Fig.4 presents the gray—level phase calculated within 10 iterations (module 2n) of 
an optical element that forms (in the lens' s focal plane) four GH' s modes of equal 
energy with the numbers (0,1); (1,1); (2,0) and (1,2) (see Fig.5). The diffractive 
efficiency is more than 90%. 
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New iterative methods for computing phase diffractive optical elements 
have been considered. 

The problem of widening a minimum diffraction spot can have a 
practical implementation in laser printers. We propose that the problem 
should be solved using an additional phase optical element, which, when 
introduced in an optical setup, increases the diameter of the Airy disk. In 
order to calculate such a diffraction optical element (DOE), a novel 
iterative method has been developed. The method is a modernization of the 
known iterative Gerchberg—Saxton algorithm and differs from the above in 
that the sought function is represented as a series sum taken over the 
Bessel function of first order instead of the plane waves (Fourier's series). 

The task of calculating the phase optical elements forming reference 
wavefronts is considered. This task appears, for example, with reference to 
a noncontact inspection of the form of aspheric mirrors. In the present 
work we discuss an iterative algorithm for computing phase optical 
elements — wavefront formators (WF) that are capable of forming a desired 
phase distribution at a pregiven distance. The algorithm is a modernization 
of the well—known Gerchberg—Saxton's algorithm. The problem of the 
proposed algorithm convergence is discussed. The results of the WF 
calculation are reported. 

The developed iterative metod is intended to calculate the phase 
function of the phase optical element forming several diffraction orders, 
with the complex amplitude of each of them to be proportional to Gauss - 
Hermit's (GH) mode with a preset number. The method uses expansion of 
the sought function into a series with respect to the GH orthogonal 
functions. Such optical elements can be successfully used to perform the 
parallel input of laser light into several square fibers, with the desired 
mode (or a set of modes) characterized by a pregiven intensity to be 
excited in each fiber. 
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Introduction 

The use of diffractive optics in interconnect design is of considerable interest 
for several resons. First, micro diffractive optic fabrication processes using 
microlithography and holographic methods can provide a large variety of optical 
functions which can be used in both space variant and invariant systems. These 
fabrication methods can be mass produced which lowers overall system cost. In 
addition, multiple diffractive optic elements can be cascaded on planar substrates 
and more readily packaged with planar electronic substrates. 

In order to be effective however, the diffractive optical system design must 
divide and distribute optical signals in three dimensions. The optics must also be 
readily packaged with standard board substrates, and have sufficient alignment 
tolerances to allow for board insertion, replacement, and length changes due to 
temperature variations. 

In this presentation we will discuss a distributed free-space optical 
interconnect system that provides both lateral distribution within a plane, and 
longitudinal signal transmission between planes or boards1. The system uses 
binary optics to collimate and relay signals between planes, and high spatial 
frequency volume holograms to distribute signals through a small form factor 
substrate within a plane. The design and performance of several components used 
in this system are also presented. 

SYSTEM DESIGN CONSIDERATIONS 
A board level interconnect system must perform several functions. First, a 

method for bidirectional information transfer is required at each information port. 
Parallel data transfer is also important to increase information transfer rates. It 
must be possible to broadcast signals to multiple lateral and longitudinal locations 
in the processing system, and the system must be expandable to accomodate 
greater data processing loads. Finally, the optical interconnect system must be 
competitive in performance and cost with competing electrical interconnect 
methods. 

In order to assess the use of optics for these tasks we are implementing the 
board level interconnect system shown in Fig.l. In this system data is exchanged 
between boards in four communication ports. The number of processing elements 
associated with each port is optimized to minimize timing delays. 
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Fig. 1. Distributed optical multi-bus system for evaluating diffractive 
optic interconnects. 

Binary Lens Array   Laser Array 

SMH Input 
Coupler 

BiDirectional 
SMH Element 

Transmission 
Window 

SMH Substrate 

Fig. 2. Bidirectional beamsplitter for sending optical signals to adjacent 
boards. 
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DIFFRACTIVE OPTICAL ELEMENTS 
Four different types of diffractive optical elements have been designed and 

fabricated to realize the optical interconnect system required for the configuration 
of Fig. 1. These include binary optic micro lens arrays to collimate light from 
surface emitting laser diode arrays and collect and focus light onto detectors; 
volume type input/output coupler gratings to direct light into and out of guiding 
substrates; lateral beam splitters for dividing optical signals on a plane; and bi- 
directional beamsplitters for broadcasting signals to adjacent board planes. In 
addition, we have also formed a fiber optic tap which diffracts a portion of a 
signal transferred through a fiber and laterally distributes the tapped signal on a 
plane. This component is used to connect processing elements which exceed the 
alignment tolerance for free-space optical interconnects. 

The diffractive optical elements are formed with hybrid combinations of 
lithographically formed binary optics and holographically generated volume 
gratings. These two forms of diffractive optics complement each other. 
Lithographic techniques are useful when arrays of accuratelly aligned components 
are required, and holographic methods are useful for forming high spatial 
frequency input/output couplers and beamsplitters. 

The bidirectional interface illustrated in Figure 2 is an example of the 
hybrid diffractive element design. Light from a surface emitting laser array is 
collimated with an on-axis binary lenslet array which matches the emission 
properties and spacing of the laser elements. The array of collimated beams are 
then coupled into an optical substrate using a volume grating and are guided to 
one of the communication ports. A bidirectional beamsplitter formed with volume 
gratings diffracts the beam array in two counter propagating directions for data 
transfer to adjacent boards. 

The binary lenses provide high efficiency on-axis beam collimation and 
focusing. This is not readily achieved with single volume type lenslets because the 
volume grating condition is not satisfied for on-axis sections of the beam. The 
input coupler is realized with a slanted volume grating formed in dichromated 
gelatin. The diffracted beam exceeds the critical angle of the glass substrate, 
therefore the addition of a reflective surface is not required. The bi-direcetional 
beamsplitter consists of two multiplexed transmission gratings which diffract the 
incident and the total internal reflected beams. Since two transmission gratings 
are used, the processing is much easier than that required for a 
transmission/reflection grating pair and results in higher yields. This component 
was also realized in dichromated gelatin. 

The diffractive elements must provide a suitable alignment tolerance for 
acceptable performance of the processing system. The different types of errors 
causing beam displacement for diffractive elements are illustrated in Fig.3. These 
include lateral displacement, longitudinal displacement, angular misalignment, 
and chromatic dispersion. The affect of these factors on system geometry and 
operating characteristics will be discussed in the remainder of the presentation. 

1. R. K. Kostuk, J-H. Yeh, and M. Fink, ^Distributed optical data bus for board- 
level interconnects," Appl. Opt., 32, 5010-5021 (1993). 
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Future computers and signal processors will require high-speed interconnection networks 
for efficient data transfer among electronic modules. Holographic backplane optical 
interconnects for multi-board three-dimensional packaging have been the subject of recent 
investigation. The use of transparent backplane substrates as beam propagation media can take 
advantage of the dimensional freedom, compact device packaging, and planar fabrication 
economy the backplanes offer. An optical backplane packaging architecture with couplings 
from and to board-level waveguide interconnect networks has recently been proposed W. 
However, laser diode sources for the backplane interconnects change their wavelengths by 
several nm because of variations in environmental temperature and bias fluctuations. As a 
result, in a conventional grating pair design, as shown in Fig. 1, the diffraction angles and beam 
positions in the substrate vary with the laser wavelengths. This will affect the performance of 
the backplane interconnects since waveguide end-fire coupling has stringent requirements for the 
direction of the focused incident beam. 

A grating-pair structure is sensitive to laser wavelength fluctuation which causes a shift 
in substrate beam spot position. To describe the effect, the well known Bragg grating dispersion 
equation is written in general form as 

A 
sina=sin0±-—sin</> (1) 

«A 

where ± is used when § - 8 > 90° (< 90°), respectively. A, is the free-space laser wavelength, n 
is the refractive index of the bulk holographic material, A is the grating fringe spacing, and 9, a, 
and <)) are incidence, diffracted, and grating slant angles, respectively, as shown in Fig.l. All of 
these angles are in the medium of the diffraction grating, and Fresnel equations can be used to 
translate these angles to those outside the emulsion area. The translation in angle from a 
dichromated gelatin hologram to a soda-lime glass substrate, for example, in the following 
discussion, can be ignored since the two media have similar refractive indices. 

Taking the derivative of Eq.(l) with respect to wavelength X and ignoring the material 
dispersion within the laser wavelength fluctuation range (typically less than 7 nm), the chromatic 
sensitivity of a single grating diffraction is given by 

AA 
Aa = — tana . (2) 

A 
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Fig. 3. a) Lateral misalignment; b) Longitudinal misalignment; c) Angular 
misalignment; d) chromatic dispersion factors which affect optical system 
performance. 
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Neglecting angular misalignment (A0« 0°), the spatial spot shift can be compensated by finding 
ß and ß" that satisfy 

sin a- sin 6        sinß-sin 0        sinö+sinO 
 i = nh rz— = m2 T7T cos a cos p cos p 

am u, — am 1/ am JJ — am i/ amp -raini/ _ 
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and make Eq.(7) equal to zero. For normal incidence (9 = 0°), Eq.(8) simplifies to 

am lA am u am L; _. 
mi   _.   3        = "h 3^ = m2   „jfl, • (9) 

sin a sinß sinß 
 3— = "h T7> = m2 T7T cos a        cos ß        cos p 

Since both sides of Eqs.(8) and (9) are monotonic increasing functions with respect to angles 
within the angular range of interest, single value solutions for ß and ß' can always be found for 
m1 * m2 to provide a stable beam spot location at the output holographic grating. 

Further design issues are focused on reducing the ratio f = £2/£ that can minimize the 

total propagation distance in the substrate for low propagation loss. Calculations show that / 
decreases with decreasing g (= mj/n^) and decreases with increasing a, for small a. For a large 
a angle, the a dependence is weak, especially for a > 70°. 

The achromatic coupling range is determined by comparing three factors: the wavelength 
selectivity of grating diffraction PI, the achromatic wavelength range for angle y, and the 
achromatic wavelength range for the substrate spot shift. Results indicate that the achromatic 
wavelength range for substrate spot shift is the dominant factor and is expressed as 

R,, — 2 
2A£to/A

2cos2j3 
U/ 

3ft tan2 a- tan2 ß 
(10) 

Minimizing /, and using a short distance I, can reduce total propagation distance in the 
substrate and, therefore, widen the achromatic wavelength range. 

The achromatic coupling technique is particularly useful for optical coupling between 
free-space beams and guided waves. It can also be extended to other visible and infrared diode 
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For a given laser wavelength shift, a small Aa can cause diffracted beam position shift 
A£ in the substrate by 

A£: 
tan(a+Aa) 

tana 
(3) 

where £ is the substrate beam planar propagation distance. Small laser wavelength shifts can 
produce significant optical spot shifts at the output coupling hologram. For example, under 
normal and collimated incidence on an optical backplane, a 1 nm laser wavelength shift at a 
center wavelength of 780 nm can change the diffracted beam angle in the backplane substrate by 
as much as 0.127° for a near 60°. This translates to a spatial beam spot shift of about 257 (im at 
the output coupling hologram, after a 50 mm planar propagation in the backplane substrate. 
Increasing AA,, £, and angle a will further increase the spot shift values, possibly to several mm, 
which could cause the substrate beam to miss the output holographic grating or to produce a 
large focusing angle error unacceptable to the waveguide end-fire coupling. 

Obviously, a two-grating system is not suitable for spatial shift compensation because the 
second grating has no effect at all on the shift. A three-grating structure, as shown in Fig. 2, can, 
however, provide a stable output diffraction angle y and a stable output beam position. Three 
local coordinate systems, at corresponding gratings, are used to define the beam incidence and 
diffraction angles. 

A simple derivation for the shift compensation grating and the output grating results in 

the following dispersion relationships: 

. „   cosöirt   AAsinß-sinö ... 
Aß = xA0+- ^—— (4) 

cosp A      cosp 

cos0.„   AA sin y+sin 0 ._. 
Ay= A0+  (5) 

cos y        A      cos y 

When the output coupling angle is designed at y = -9, the angle y will be insensitive to laser 
wavelength variations. Under normal incidence, with A0 = 0°, the achromatic output coupling 
requires y = 0°, i.e., normal output coupling, which is desirable for board-to-board interconnect 
applications. 

The spatial location of the beam spot at the output coupling hologram is calculated by the 
expression 

£ = £l-£2=2m1ttana-2m2ttanß (6) 

where t is the backplane substrate thickness and m: and m2 are the numbers of propagation 
bounces from the  input grating  to the  shift compensation grating,  and from  the shift 
compensation grating to the output grating, respectively. Both £l and £2 are positive in value 
for the designated angles. The physical spot shift in this case can be written as 
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I. Introduction 
Since the new concept of planar integration was introduced by J. Jahns et al[1], individual 

components such as input/output couplers, beam splitters, and beam deflectors have been 

studied extensively121 in order to construct micro-optic systems. Most of individual 

components have been based upon kinoform, Fresnel lens, and surface relief gratings with 

continuous profiles or multiphase levels ' . 

Recently, the use of high spatial frequency grating becomes attractive since high 

diffraction efficiency can be easily obtained with relatively simple shape. The rigorous 

diffraction theory1"5'61 has been applied for the analysis of components in this area instead of 

conventional diffraction theory. 

In this paper, two-way input couplers with high spatial frequency are designed by 

applying the rigorous diffraction theory based on the coupled wave approach5 and their 

fabrication errors are analyzed numerically also. Though the similar work was performed 

in order to design high spatial frequency gratings for beam splitters and beam deflectors, 

the rigorous diffraction theory based on the modal theory    was applied. 

II. Two-way input coupler 
Two-way input coupler is defined as an input coupler which couples a signal beam into 

two integrated planar micro-optic systems simultaneously in the case that two micro-optic 

systems may be placed on the same substate. The function and the structure of two-way 

input couplers are shown in Fig. 1, schematically. 

When a signal beam is normally incident on the two-way input coupler in Fig.l, only 

two of symmetrically diffracted beams should be generated. It is convenient to define the 

sum of two diffracted beam as the diffraction efficiency of two-way input coupler. For 

optimal design, ± lst-order diffracted beams are chosen to have the maximum diffraction 

efficiency.  And  the high  spatial frequency grating  with retangular grooves is  adapted in 
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laser wavelengths, including 0.6 \xm, 0.8 \xm, 1.3 pun, and 1.55 |xm center wavelengths, for use 
in wafer scale interconnects, backplane interconnects, integrated disk pickup devices, and optical 
computing and fiber communication systems that require optical coupling with minimal 
chromatic sensitivity. 

References: 

1. 

2. 

Michael R. Wang, "Optically Assisted Three-Dimensional Packaging for Multichip 
Module Applications," Army SBIR contract No. DAAL01-93-C-3318 (1993) 
M. R. Wang, G. J. Sonek, R. T. Chen, and T. Jannson, "Large Fanout Optical 
Interconnects Using Thick Holographic Gratings and Substrate Wavev Propagation," 
Applied Optics, 31, 236-249 (1992) 
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Fig. 1 Wavelength variation causes a substrate beam spot shift at the output coupling hologram 
in a two-grating structure. The spot position shift will affect the efficiency of coupling to 
a waveguide. 
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A three-grating structure for backplane substrate interconnects, providing a stable output 
diffraction angle y and a stable output beam position over the entire laser diode 
wavelength shift range. 
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is   limited   to   1   %.   Therefore   the   undercut   effect   will   not   degrade   the   efficiency   of 
micro-optic components, if the wet etching process is not utilized in the fabrication process. 

IV.   Conclusions 
The optimal design of two-way input coupler with rectangular grooves is accomplished 

by using the rigorous diffraction theory. The diffraction efficiency of 93.2 % can be obtained 

with the binary structure. And fabrication errors such as etch depth error and the undercut 

effect is evaluated numerically. 
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grooves. 
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order that single mask technology may be utilized. 

Three design parameters of two-way input couplers are period, thickness and duty cycle 

and they are denoted as A, d, and a in Fig. 1, respectively. In order to obtain the efficient 

input coupler, undiffracted beam may be reduced by destructive interference. From the rule 

of thumb, the thickness of input coupler can be estimated to be the same value as incident 

wavelength. 

III. Design and Results 
The design procedures are as follows: At first, the period is iterated for initial values of 

the thickness and the duty cycle, and then its optimal value is found. Secondly, the next 

parameter is optimized by the similar method and third parameter is done also. The above 

procedures are repeated to optimize three design parameters until the maximum diffraction 

efficiency is saturated. During design procedure, the diffraction efficiencies of diffracted beam 

are calculated by using the rigorous diffraction theory, where only TE mode is considered 
T7l 

for convenience. The convergence of the rigorous diffraction theory is confirmed for the 

number of eignevalues of more than 20. 
The wavelength and the angle of incident beam are assumed to be 0.85 um and 0°, 

respectively. Since the incident beam travels from air into glass plate, refractive indices of 

two regions are assumed to be 1.0 and 1.46, respectively. 

The optimized values of two-way input coupler are A = 1.90 A, a = 0.325/1, and d = 

1.10 A and then the diffraction efficiency of two-way input coupler has the maximum value 

of 93.2 % for TE mode. Fig. 2(a) and 2(b) represent the variation of the diffraction 

efficiency according to the period and the duty cycle, when the thickness of the input 

coupler is 1.10 A. The central small region in Fig. 2(a) shows the parameter condition 

having the diffraction efficiency of more than 90 %. The similar region is shown in detail 

from Fig. 2(b). 
In the fabrication process using VLSI technology, much undesirable errors may happen 

and degrade the characteristics of micro-optic components strongly. Therefore the influence 

of the fabrication errors on the diffraction efficiency must be evaluated in design process. 

Etch depth error and undercut effect can be considered as key factors in the fabrication 

error analysis, since single mask technology is enough for the fabrication of two-way input 

couplers. 

Fig. 3 shows the variation of diffraction efficiency with the etch depth error of maximum 

10 %. It can be known from Fig. 3 that the etch depth allows ±10 % error at the cost of 2 

% diffraction efficiency reduction. 
The undercut effect in the etching process is represented in Fig. 4(a) and the structure 

change due to that effect can be simply modeled by the trapezoidal shape as shown in Fig. 

4(b). The slope error s is defined as the ratio of A to the thickness d in order to describe 

the structure change quantitatively. The variation of the diffraction efficiency to the slope 

error s is shown in Fig. 5. Within the 10% slope error, the deviation of diffration efficiency 
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A selective cell-based algorithm for designing high efficiency 

beam array generators 

Rick L. Morrison and Mike J. Wojcik 
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Introduction 
Current free-space digital optical systems require optical power supplies that generate two dimensional arrays of 
uniform intensity light beams1. The resultant spot arrays are used to illuminate opto-electronic logic device arrays to 
optically encode and transfer information. The favored method for creating these regularly spaced beam arrays is to 
illuminate a computer designed Fourier-plane hologram using a collimated laser source. 

Phase holograms are desired in optical systems due to their higher diffraction efficiency. These surface relief gratings, 
also referred to as multiple beamsplitters, are designed using sealer diffraction theory via a computer optimization 
process to create a uniform intensity array of beams. The quality of the hologram is quantified by its diffraction 
efficiency for coupling light into a set of designated orders and the relative deviation of the beam intensities from 
their targeted values. The quality is expressed via a merit function calculated during the optimization process. The 
inclusion of arbitrary intensity orders can also be incorporated in the process through the merit function. 

In this paper, we describe an algorithm that uses a pixelated, discrete phase level representation of the hologram to 
examine and modify only those cells that form the boundary between phase transitions, thereby substantially 
reducing processing requirements. An additional feature of the algorithm is the capability to increase the spatial 
bandwidth of the hologram during the design process. Using this algorithm, we have designed holograms with up to 
4096x4096 cells per period that couple light into arrays containing up to 16,000 spots. We have fabricated a number 
of smaller designs for use in our free-space photonic switching program. 

Although rectangular, uniform intensity arrays can be designed by partitioning the problem along the two dimensions 
and solving each dimension separately, higher efficiencies are obtained when a nonseparable, two dimensional 
approach is used. Unfortunately, the computational complexity grows exponentially, making it difficult to design 
larger arrays. 

The algorithm presented here is similar in nature to the IDO (iterative discrete on-axis) encoding algorithm2. In the 
basic IDO algorithm, one period of the Fourier-plane hologram is divided into an array of rectangular cells where 
each cell imparts one of two fixed phase delays to the incident wavefront. The contribution of each cell to an order 
intensity is independent of the other cells, thus, each test requires calculation of only a small fraction of the full set of 
diffraction equations. During a series of iterations, each cell phase is reversed and this new value is retained based on 
its contribution to the merit function and a probabilistic simulated annealing process. 

By examining the mathematical framework of this problem, it can be seen that (once the phase levels are fixed) it is 
the locations of the level transitions that determine the order intensities. Therefore, in the this new algorithm, it is 
necessary to examine and modify only cells along phase transition boundaries. This results in a significant reduction 
in processing since only a fraction of the cells are tested during each iteration. In addition, by calculating and storing 
the trigonometric and complex exponential values before the iterative process, the number of arithmetic operations is 
drastically reduced. 

An additional strength of this algorithm is the ability to increase the spatial resolution of the phase array during the 
optimization process. When the merit function value stagnates at an unacceptable value, each phase cell is subdivided 
into 4 parts with each new cell given the original cell's phase value. The additional cells provide higher frequency 
components that aid, primarily, in improving the intensity uniformity. 
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levels in the design. We have also included the ability to load the phase array with values generated by a separate 
application based on the Gerchberg-Saxton algorithm3. In this case, the Gerchberg-Saxton program rapidly generates 
a rudimentary solution whose intensity deviations are then reduced by the new algorithm. We have observed that this 
dramatically reduces the design time and avoids the stagnation problems associated with the Gerchberg-Saxton 
algorithm, especially with binary level designs. 

Next, the amplitude of each designated order is calculated using values from the phase array. After the amplitude 
arrays have been initialized, the algorithm examines cells with the objective of improving the merit function value. A 
series of four comparisons are performed where all phase values, 6 r are compared against 8.+1 k, 9-i+I, 

e,_1;fe> 
and then 9. k_{ respectively. Cells along the array boundaries whose neighbors lie outside the standard array are 
exempt from this process. If the two phase values are equal, no action is taken. If, however, the phase values differ, 
the neighbor's value is inserted and its contribution to the order amplitudes and, consequently, the merit function are 
calculated. If the merit value is improved, the new phase value is inserted into 6. k. If not, the original value is 
retained. The IDO method used a probabilistic scheme to occasionally choose a phase value that produces a higher 
value merit value in order to avoid local minima during the optimization process. We have found this to be 
unnecessary here. 

The algorithm repeats the cell examination and update sequence until one of the following conditions are achieved. 
When the merit value or order intensity deviation reaches its target value, the solution is stored and the process is 
terminated. If no quality objectives are met within the number of specified iterations or if the improvement of the 
merit function stagnates, the algorithm may either terminate, or, subdivide the phase array to attain higher resolution. 
During subdivision, each cell is replicated along both dimension to form an array that is four times larger. All stored 
values are recalculated according to the new array format and the search process is revisited. The number of allowed 
subdivisions is a parameter that is specified in the application. When the program terminates the phase array is stored 
in a data file and is later used to create the lithographic mask(s) that will transfer the pattern into an optical surface. 

A further reduction in processing effort is achieved by integrating symmetries into the algorithm4. For example, when 
an even numbered array design is required it is necessary to calculate only one quadrant of the array. This quadrant, 
when replicated by shifting and adding an additional n phase shift to two diagonal quadrants, automatically generates 
suppressed even numbered orders. Also, for binary phase gratings, it is unnecessary to calculate A_m _n since it is 
equal in value to A,n n. 

Results 

Uniform intensity, binary phase array generators producing an 8x8 spot array were designed in about 12 seconds on a 
SUN Sparestation 10. An equivalent 16 phase level 8x8 generator required about 18 seconds. Both tests began with 
an initial randomly generated phase array with a quadrant size of 32x32 cells eventually dividing into 128x128 cells. 

A 32x32 spot array binary phase design with a final size of 512x512 cells per quadrant took 42 minutes to generate. 
When the Gerchberg-Saxton application was used to create an initial phase distribution, the design time for the total 
optimization was reduced to 16 minutes. A 128x128 binary phase array generator using an initial Gerchberg-Saxton 
starting array with a final 2048x2048 cell quadrant required 71 hours to complete. Typically, the binary phase 
solutions had a diffraction efficiency of about 75%. In each of the above cases, the standard deviation of the spot 
intensities was reduced to under 2% of the average spot intensity. If this condition is relaxed, for example in designs 
that generate pictures using arbitrary intensity spots, the optimization time can be substantially reduced. 

Figure 1 shows the hologram designed used to generate an irregularly spaced spot array used in a free-space photonic 
switching system. A picture of the resulting spot array from a fabricated grating is shown in figure 2. 

In summary, this new algorithm in conjunction with the application of design symmetries, substantially reduces 
processing time and makes the design of moderate size array generators feasible. The algorithm accomplishes this 
goal by selectively examining only cells located adjacent to a phase transition. In addition, the spatial resolution is 
increased as needed allowing the design to begin from a much simpler initial distribution. 
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The designs described in this paper have been used to create periodic binary level and multiple discrete level phase 
gratings that can be fabricated using contact microlithography and reactive ion etch techniques. Although the 
multilevel designs have higher diffraction efficiencies than the binary phase counterparts, rigid submicron alignment 
tolerances must be maintained during the multistep fabrication process to avoid potentially large fluctuations in beam 
intensities. Therefore, binary phase designs are still highly regarded. 

Algorithm 
Sealer diffraction theory is used to calculate the complex amplitude of the nth order in the mth row as given by the 
sum of the contributions from each of the JxK phase cells, 

7-1     K-l 

where, 6.. is the phase delay associated with cell (j,k), and 

1 Ytl Yfi. 
*«.' = 2^n' sin(27C7} ■ exp H^j),"" and 

mi 

The intensity of the order is given by the complex square of A^. The designated orders are also described by other 
sets of parameters. One array holds the target value for the relative intensity. All orders in uniform intensity arrays 
have value one. Suppressed intensity orders are given values of zero. Other integer values may also be provided 
within the range [0...R], where for this demonstration we limit R to 15. Another array contains the weights describing 
the relative importance of each order in reaching its targeted intensity. 

The quality of this solution is measured using a merit function given by, 

C = r\-a(s) • o, 

where T|, the diffraction efficiency for the T orders, is given by, 

T 
2 

and the intensity deviation is given by, 
T 

/ = i 

It is the calculated intensity, It0 is the desired intensity, and wt is the weighting factor of each order. The merit function 
includes a variable, oc(s), that is a function of the iteration number, s. It is a linearly increasing function starting at an 
initial value of about 0.1, rising to about 0.2 after about 20 iterations and then retaining this value. This form of the 
merit function initially emphasizes the diffraction efficiency, while eventually increasing the importance of reducing 
the deviation of the order intensity from its target value. Other merit functions could also be considered. The 
parametrization of this function has been seen by us to significantly influence the completion time of a design. 

First, a two dimensional data array is defined that contains the JxK pixel phase values of one period of the hologram. 
This array is filled with a random distribution of values within the set [0, 1,..., L-l] where L is the number of phase 
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1.0     Introduction 
Space variant optical interconnect systems have the benefit of permitting fully random 
interconnections between input and output optoelectronic devices in two arbitrary located 
processing elements (PEs) as shown in Figure 1. Due to the fact that diffractive optical elements 
(DOEs) can support random interconnect 
patterns, they are attractive to implement 
space   variant   types   of   systems. 
However, the small apertures (<1 mm), 
the limited space bandwidth product, and 
the   high   efficiency   specifications 
required of these systems conflict with 
the desire to maintain large distances (>1 
cm)  between  the  input  and  output 
optoelectronic devices.  The small DOE 
apertures found in these types of systems 
make     diffraction     a     dominant 
consideration.    Likewise, the limited 
space   bandwidth  product  makes  it 
difficult to achieve large angles in folded 
planar systems.    Several papers have 
addressed techniques to increase the 
angle by multiple DOEs [1] or by special 
encoding techniques [2]. However, these 
angles are still relatively small (<25°) 
resulting   in   the   need   to   increase 
longitudinal distances in order to realize 
the desired lateral interconnect distance. Thus, there is a need to develop design methods that 
permit one to maximize the distance traversed by the interconnect while maintaining as high 
efficiency as possible. In this paper, the authors present three methods utilizing the Gerchberg- 
Saxton (GS) [3] algorithm to design coupled kinoforms that are capable of maximizing the 
optical power on the detector while maintaining diffraction-limited distances for many types of 
space variant systems. These designs are compared to a "standard" space variant design. 

Detector 

Source 

Figure 1. Schematic diagram of space variant optical 
interconnect system. 

2.0     Standard Space Variant Optical Design 
Our goal in this paper is to increase the lateral interconnect distance in a planar space variant 
optical system by increasing the propagating distance between the two elements to some 
diffraction limited level that permits the maximum optical throughput. Figure 2 shows a 
modified optical interconnect that was recently proposed for achieving diffraction limited 
performance in space variant optical systems[4]. In this system, we wish to transfer as much 
light as possible to the opposite side by forcing the focal length of DOE #1 (Fresnel lens) to be 
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Figure 1. Nonseparable design used to generate irregularly spaced spot array 
of 32 spots. 

Figure 2. Picture of spot array generated by grating fabricated with design 
shown in figure 1. 
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rather than fully optimize the 2nd half of the optical relay, we only partially optimize it by 
reducing the number of iterations of the GS algorithm. The result yields an amplitude and phase 
pattern at the kinoform #2. The phase is used to determine kinoform #2's phase distribution 
while the amplitude pattern is imposed upon the illumination in order to adjust the phases of 
kinoform #1. This process continues until a maximum number of iterations is reached or until 
little improvement is realized during an iteration. 

Apply Input 
Illumination 
Constraint 

Apply 
Detector 

Constraint 

Update Kinoform #2 Phase 
and Update Illumination 

Figure 3. Flow chart for coupled Gerchberg-Saxton algorithm. 

4.0 Comparison between the Standard Design and Three Gerchberg-Saxton 
Designs 
In order to compare the four designs discussed in this paper, we ran numerical simulations on the 
different design methods for parameters. The physical parameters used for comparison are set by 
the standard design and are shown along with the optical throughput (expressed as a percentage 
of the input intensity) in Table 1. Of primary interest is to determine the tradeoff between the 
lateral distance separating the elements and the optical throughput. One would expect that this 
distance is inversely related to the optical throughput. However, as Table I shows that for the 
standard optical design this intuition fails. This is due to the fact that although by including more 
side lobes of the sine diffraction pattern inside the aperture of kinoform #2 (increasing n) more 
light is captured, the resultant phase distribution on the kinoform #2 is inappropriate to 
effectively focus the light onto the detector. In all the systems studied, we increase the aperture 
size of the DOEs (with the assumption that the kinoform #1 and #2 are of the same size) while 
increasing the distance according to Eqn 1 and maintaining a fixed f-number (ratio of kinoform 
aperture to distance between kinoform #2 and the detector) for kinoform #2 (in our case f/10). 

The results for the optical throughput for all 12 cases (4 designs methods for n=l,3,and 5) as a 
function of the distance is shown in Table 1. The results show that the coupled GS provides the 
most favorable designs in almost all cases with the largest increase (a factor of 16) over the 
standard design occurring when n=5 and D=1.0 mm. What is disappointing is that while the 
coupled GS design method is better than the n=l standard design case, it is only marginally 
improved. Unfortunately, it is this very case that is actually the most attractive for optical 
interconnect applications since the propagation distances are the greatest allowing the largest 
lateral interconnection distances. However, this situation is only important in the one to one 
interconnection case. For general fanout elements, the coupled GS algorithm permits one to 
design fanout elements that maximize the optical throughput to the detector for diffraction 
limited cases found in space variant optical interconnect systems. 
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equal to the distance between the two DOEs. Note that the amount of power captured by DOE 
#2 is limited by diffraction by the aperture size and the distance between the elements. 
Typically, if we desire to capture -90% of the input intensity, we need to adjust the distance so 
that the main lobe of the resultant sine is captured by DOE #2. The relationship between the 
distance (z), the aperture size (D), and the number of sine side lobes captured (n) is given by: 

(1) 
D1 

z = 
2nX 

where A is the wavelength of light. Note that in Figure 2 the system is arranged in a linear 
fashion for simplicity of discussion. Although, in general, we need to achieve an off-axis 
transfer of energy which can be accomplished by using either an extra linear grating next to each 
element or equivalently an off-axis DOE. 

DOE -\        DOE Detector 
#1 1        #2 Plane 

Figure 2. Modified optical design presented in Ref. 4 for achieving diffraction limited interconnect 
distances. 

3.0 Kinoform Designs based on Gerchberg-Saxton Algorithm 
In order to increase the throughput, it is necessary to design both input and output kinoforms so 
that maximum throughput is achieved. To accomplish this three different design algorithms have 
been employed and compared to the above standard design. All three designs require the use of 
the GS algorithm modified for application in the near field (replacement of the Fourier transform 
with a Fresnel transform)[5,6]. Briefly, the GS algorithm is an iterative technique used to match 
the intensity constraints at two planes separated by some distance by adjusting the phase at each 
plane. This section will summarize the three kinoform design methods discussed in this paper. 

3.1 Single Kinoform designed by Gerchberg-Saxton Algorithm 
The first method, referred to as the single GS design, retains DOE #1 described above in the 
standard design. However, kinoform #2 is designed by a single application of the GS algorithm. 
In other words, by letting the illumination from DOE #1 be the input constraint and the detector 
area be the output constraint, one can utilize the GS algorithm to specify the phase necessary for 
kinoform #2 in order to achieve maximum intensity at the detector. 

3.2 Two Kinoforms designed by repetitive Gerchberg-Saxton Algorithm 
The second design method applies the GS algorithm in a repetitive fashion (which we refer to as 
the repetitive GS design). In this design the GS algorithm is first used to determine the phase of 
the kinoform #1 by using the input illumination and the aperture of the kinoform #2 as the input 
and output constraints, respectively. After completing this phase of the design, the resultant 
illumination from kinoform #1 and the detector area are used by a second application of the GS 
algorithm as the constraints to maximize the power falling on the detector. 

3.3 Two Kinoforms designed by coupled Gerchberg-Saxton Algorithm 
The third design method attempts to couple the design of the two elements to achieve a higher 
optical throughput. A flow chart is shown for this method in Figure 3. A single iteration 
consists of Fresnel propagating the illuminated kinoform #l's output to the input of kinoform #2. 
This then becomes the illumination constraint for a short GS algorithm. By short, we imply that 
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Table 1. Physical parameters set by the standard design method and optical throughput for the 12 cases 

Aperture 
Size (mm) 

n=1 (standard design) 

Distance (mm) Standard Single GS Repetitive GS Coupled GS 

0.125 9.765 81.1% 83.5% 80.0% 84.2% 

0.25 39.06 78.2% 83.7% 77.6% 81.1% 

0.5 156.25 81.0% 80.5% 78.7% 83.1% 

1.0 625 78.5% 81.3% 77.8% 81.7% 

Aperture 
Size (mm) 

n=3 (standard des gn) 

Distance (mm) Standard Single GS Repetitive GS Coupled GS 

0.125 3.255 35.1% 53.8% 80.0% 84.2% 

0.25 13.02 26.3% 49.6% 81.3% 82.3% 

0.5 52.08 34.3% 56.4% 76.7% 87.3% 

1.0 208.33 34.3% 56.4% 76.7% 82.9% 

Aperture 
Size (mm) 

n=5 (standard des gn) 

Distance (mm) Standard Single GS Repetitive GS Coupled GS 

0.125 1.953 10.0% 31.2% 78.3% 86.3% 

0.25 7.812 6.5% 28.9% 78.5% 83.0% 

0.5 31.25 7.9% 36.3% 76.3% 85.0% 

1.0 125 5.7% 33.9% 74.1% 86.4% 

5.0     Summary and Conclusions 
This paper has attempted to summarize the authors' research into the design of DOEs for space 
variant optical interconnect systems. Three design methods based on the GS algorithm were 
proposed and compared with a standard design for systems with many different parameters. It 
was shown that the coupled GS algorithm generally outperformed all other design methods, 
however only marginally when compared to standard designs for the n=l case. However, the 
coupled GS approach is flexible enough to design general fanout systems that are typically 
required. Currently, we are fabricating the kinoforms designed and experimental verification of 
the numerical results will be presented at the meeting. Future work will concentrate on 
application of the coupled GS algorithm to fanout situations where the standard design is no 
longer applicable. 
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Planar optical elements fabricated using lithographic techniques have recently received wide in- 
terest x. We can distinguish between two types of binary optics: those approximating a lenslet 
by a staircase (Fresnel lens), and those based on diffractive optical elements (Fresnel Zone Plates 
(FZP), gratings and so on). Lenslets are often formed in polymers, silicon and AIII-B V materials 
(where reflow is also used to "smooth" the lens surface. The use of lithographic techniques opens 
the way to the development of optical elements which are economical, high-resolution and of flexible 
design. These ideas are utilized in many systems (laser beam extraction from solid state lasers and 
multiplexers are two examples 2) at optical or near-infrared wavelengths. Because of our interest in 
hard X-ray microscopy, we have developed FZP lenses for the region from 8 keV to 20 keV 3. In a 
FZP, the lateral resolution is determined by the width of the highest number zone . To achieve high 
focusing efficiency, it is necessary to maintain an optical thickness of the absorber equivalent to a 
■K phase shift. This represents a very challenging manufacturing process, since the small linewidth 
(0.2 /mi) coupled with high thickness of the absorber (3-4 /im) yields aspect ratios up to 20. We 
have developed an efficient fabrication process based on the replication by X-ray lithography of a 
master mask patterned by e-beam lithography. The high resolution, penetration power and large 
depth of focus of X-rays allows us to pattern a thick layer of polymethylmetacrylate (PMMA) which 
is then used as a mold for electroplating of gold or nickel. Figure 1 shows the smallest lines (0.25 
/mi) of the FZP designed for the photon energy of 20 keV and the focal length of 10 cm. To ob- 
tain the electroplated gold thickness of 3.5 /mi, it was necessary to pattern PMMA with the aspect 
ratio of about 20. Those, one-level, FZPs have the theoretical limit of focusing efficiency about 40%. 

The very nature of diffractive optics leads to the formation of orders, which lower the contrast 
and reduce the usable flux. The intensity in the various orders is proportional to the Fourier 
transform of each "groove" or "facet" profile at the corresponding spatial frequency 4; hence, by 
deliberatedly introducing assymetries in the "groove" we can control the position of the maximum 
intensity in the orders sequence, i.e., we can blaze the optical element. While more complex profiles 
are possible, a simple triangular lineshape produce a good blaze. Clearly, it is very difficult if 
not impossible to produce a variable linear profile by planar microfabrication techniques; however, 
it is possible to approximate the linear slope with a binary staircase. For additive (i.e., plating) 
lithographic processes, this has the additional advantage that each layer is thinner than the final 
structure, and hence the aspect ratio at each exposure level is reduced. The structures must be 
maintained with a resolution equal to d/2n, where d is the smallest linewidth, and n is the number 
of quantization levels. The structures must also be placed in registry to the previous ones by a 
fraction of d/2n (we notice that placement errors will affect the efficiency but not the resolution 
of blazed FZP). Hence, an exposure system with adequate resolution and alignment capabilities is 
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necessary. At resolution of 0.2 (j,m and below, the requirements are comparable to those of ULSI 
and indeed the experiments can be performed using exposure tools developed for quarter micron 
lithography, i.e., X-ray steppers. 

Using proximity X-ray lithography, we have developed the technology for fabrication of multilevel 
zone plates 5. We have fabricated circular and linear bi- and tri-level zone plates, with gold structures 
as thick as 0.75 //m per level. The structures were formed on silicon nitride membranes since those 
FZPs will be used for transmission X-ray microscopy. All levels of the blazed FZP were located on 
one master X-ray mask, so the inter-mask errors were minimized. We designed the zone plates for 
use at the wavelength of 1.54 Ä. The theoretical efficiency of the tri-level blazed FZPs is 82%. Some 
examples of the multilevel FZP are shown in Figure 2 (circular tri-level FZP), Figure 3 (linear FZP) 
and Figure 4 (side view on the linear FZP). The finished zone plates exhibit very steep sidewall 
profiles, with resolution down to 0.25 fxm. With all levels aligned to one side, the staircase structure 
of each zone provides the blazing effect. 

In fabricating the blazed FZP's, we employed standard tools, such as the IESS Leica Cambridge 
EBMF 10/cs 120 e-beam writer for the master X-ray mask fabrication, and a SUSS X-ray stepper 
XRS-200/1 installed on the synchrotron radiation beamline of the storage ring Aladdin at the UW- 
Madison. The processing was carried out at the Center for X-ray Lithography's microelectronics 
facility. Once the infrastructure is in place, X-ray lithography technology is an economical and 
efficient process. The fabrication of the blazed FZPs represents a challenging task and provides an 
excellent test vehicle for the X-ray stepper. 

We will present a review of the status of X-ray Lithography, and its applicability to diffractive 
optics manufacturing. In particular, we will stress the characteristics of resolution, depth of focus 
and process latitude that can provide unique solutions to fabrication problems. We will discuss in 
details the fabrication process and the results of the characterization experiments at Brookhaven 
National Laboratory. We will discuss the limitations of the methods, and the feasibility of extention 
the technology to the sub 100 nm domain. We expect that these FZP will provide new applications 
in X-ray microscopy and microprobing. We notice that while the process developed to date is an 
additive one (based on the metal plating), there is no reason for which we could not transfer the 
patterns in a substrate by a subtractive process (i.e., etching the material). In this case, X-ray 
lithography will help considerably in the imaging of the finest and deepest zones. The combination 
of e-beam and X-ray lithography will allow the design and manufacture of arbitrary multi-level, 
blazed diffractive optics for a range of wavelength from the infrared and visible up to hard X-rays. 

This work is supported by the Department of Energy (Argonne National Laboratory, 60988), 
while the Center for X-ray Lithography is supported by ARPA/ONR. 
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Figure 3: Tri-level linear FZP 
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Figure 4: Tri-level linear FZP, side view 
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Figure 1: High aspect ratio FZP with the smallest linewidth of 0.25 (im and feature thickness of 3.5 fim 
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Figure 2: Tri-level circular blazed FZP 
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In our experiment, we start with a single 100 nm period parent grating and expose 50 nm 

period gratings in photoresist. The soft x-ray source is the XIA undulator [4] at the National 
Synchrotron Light Source, X=20Ä. Undulators are the brightest source of soft x-rays available 

[5]. The XIA undulator has a coherently illuminated area of about 5000 ^tm2. Total coherent 

power is ~1 nW. The exposure time for the single grating using PMMA is 10-20 minutes. An 

atomic force microscope filtered image of a 50 nm period grating recorded in PMMA is shown in 

Fig. 2. The total area of the grating is 1800 [im2. 

The 100 nm period parent gratings have been written with e-beam lithography and consist of 

1000-1500Ä of Ni electroplated on a silicon nitride membrane. A maximum first order 

diffraction efficiency of 13% at X,=20Ä is shown in Fig. 3, using rigorous electromagnetic 

calculations [6]. Greater nickel thickness would yield higher diffraction efficiency, but the 

achievable aspect ratio of individual grating bars is less than 4:1. Nickel has a refractive index 

very close to unity at these wavelengths, and the diffraction efficiency can be modeled using 

Fraunhofer diffraction theory taking into account transmission through the grating bars. Good 

agreement with full EM calculated results is seen for Ni grating thicknesses below about 1800Ä. 

This work was supported in part by the Department of Energy. 
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High resolution gratings are an important component in x-ray optics and spectroscopy and are 

used in x-ray spectrum analyzers [1], x-ray interferometers, and as dispersive elements in x-ray 

astronomy satellites [2]. In many applications, the smaller the grating period the better the 

performance. For example, the dispersion of an x-ray diffraction grating is proportional to the 

line density (spatial frequency), and in most x-ray spectrometer configurations the energy 

resolution is proportional to the dispersion. 

Typically holographic lithography or electron beam lithography is used to fabricate fine-period 

gratings. Conventional holographic lithography requires a coherent source but can pattern large 

area gratings with periods down to 200 nm. E-beam lithography can write 100 nm period 

gratings but is limited by the proximity effect for more finely spaced features. 

In this paper, we report the patterning of large area (90 (0.m x 20 (im) gratings of 50 nm period 

in PMMA by soft x-ray achromatic holographic lithography using a synchrotron undulator 

source. This technique has the ability to write large area gratings with twice the spatial 

frequency of the finest-period gratings that can be written by electron beam lithography. 

The geometry for soft x-ray achromatic holographic lithography is shown in Fig. 1. In both the 

single and two grating case, a periodic intensity pattern is set up at the recording plane by the 

interference of two beams. For a parent grating of period d, the overlap of the +n and -n 

diffracted orders will produce an intensity pattern whose period is d/2n (Fig. la). The two 

grating configuration (Fig. lb) has the advantage of being insensitive to the source spatial 

coherence and has been employed previously using deep UV illumination [3]. However the 

required exposure time can be two orders of magnitude larger than the single grating case since 

second order diffraction is required. Existing soft x-ray sources lack sufficient brightness to 

expose the two grating geometry, but reasonable exposure times will be available using 

undulators at the new Advanced Light Source in Berkeley. 
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Figure 3. First order diffraction efficiency of soft x-ray phase 
gratings as a function of linewidth to period fraction, for two 
different nickel absorber thicknesses, (a) Ni thickness = 1500A; 
(b) Ni thickness = 1000Ä. 
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X-RAY PHASE GRATING 

(a) (b) 

Figure 1. Soft x-ray achromatic holographic lithography 
using (a) single grating; (b) two grating geometry. 

Figure 2. AFM filtered image of 50 nm period grating 
recorded in PMMA. Total area of grating is 20 (im x 90 |im. 
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where each wave is characterized by its amplitude An, its wavevector kn and its relative phase <|)n. 
x 

(a) xi 

Resist coated 
substrate 

Farfield- 
pattern 

Fig. 1. Recording (a) and read-out (b) of high carrier-frequency DOEs. 

For our application, the object wavevectors kn must have equally spaced components in the x- 
direction. By introducing a grating vector K along the x-axis, this condition can be written as 

kn
x = k0

x + nK ;     n = -M...N, (2) 

where kox is the x-component of the central object wave. Using Eq. (2), the object wave spectrum 
(1) can be rewritten as 

O(x) = exp(-ikox) A0(x) exp(iO(x)), (3) 

and the interference pattern of the reference wave and the modulated object beam takes now a form 
similar to the two-wave case 

I(x) = I R(x) + O(x) I 2 = AR
2 + A0

2(x) + 2AR A0(x)cos(Qx + O(x)), (4) 

where Q = 2ßsin0 is the carrier frequency with ß = 2nn/X. The object phase <E>(x) modulates the 
carrier frequency Q. Therefore, the period in the hologram plane is defined by the grating vector K 
and is equal to A = 2n/K. Optimized recording conditions are obtained if the intensity fluctuations 
of the object amplitude Ao(x) are minimized in the hologram plane z = 0. The optimization criterion 
can be formulated as 

j dx (Ao
2(x,z=0) - <A0

2>) 2 -» min. (5) 

where <Ao2> is the mean object intensity. The optimization parameters are the relative phases <j)n 

of the object beam, defined in Eq. (1). The calculation of the optimum phases for a given object 
far-field intensity distribution is identical to the design of a phase only on-axis DOE [4]. Figure 2 
shows one period of the optimized interference pattern (Eq. (4)) for the case of a 9-beam array 
generator. The remaining intermodulations can be eliminated afterwards by using a strongly 
nonlinear development. As a result, the sinusoidal interference pattern is then transformed into a 
rectangular shaped surface-relief grating. The whole object information is now encoded by the 
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1. Introduction 

Off-axis diffractive optical elements (DOEs) have grating-like structures with submicron carrier 
frequency. Since at read-out only the zero and the minus first diffraction orders are generated, 
diffraction efficiencies over 90% can be reached with a binary relief [1]. These grating structures 
clearly show Bragg diffraction behavior, but are not very selective because of their small thickness. 
The submicron features require electron beam lithography or interferometric recording methods for 
their fabrication. Electron beam lithography offers high flexibility for generating arbitrary 
structures. However, for submicron features this approach is limited by the positioning accuracy 
during the writing process (typically 50 - 100 nm). Interferometric recording allows a better 
positioning accuracy. Using an active fringe stabilization system, positioning errors in the order of 
?i/40 are possible. Unfortunately, this technology has up to now been limited to simple surface- 
relief gratings [2]. We show in this paper that almost any object intensity distribution can be 
interferometrically recorded and transferred to a binary surface relief. In the following sections, we 
first explain the design of high carrier-frequency surface-relief elements and introduce the 
principles of interferometric recording. Experimental results have been obtained for a two- 
dimensional (2-D) off-axis array generator. In a second experiment, we have first fabricated an e- 
beam mask of a similar element and copied the high-resolution structure very accurately into 
photoresist using a holographic mask aligner [3]. 

2. Optimum interferometric recording 

The basic configuration for the interferometric recording is shown in Fig. 1 (a). The interference 
pattern of a plane reference wave and a modulated object beam is recorded. Symmetric incidence of 
the two beams is necessary, in order to produce fringes perpendicular to the substrate surface. The 
read-out is shown in Fig. 1 (b). The modulated object beam is generated around the minus first 
diffraction order of the carrier frequency and produces the desired intensity pattern in the far-field. 
The reference beam is a plane wave R(x) = ARexp(-ikRx) and the modulated object beam can be 
described by a superposition of plane waves 

N 

I 
n=-M 

IN 

0(x)= ^Anexp(-i[knx + ((>„]), (!) 
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amplitude function of the mask is obtained from the interference pattern of Eq. (4) by neglecting 
the amplitude variations of Ao(x) and hard clipping the cosine-function to 0 and 1. Using the 
method of total-internal reflection (TIR) holography, high resolution structures can be photo- 
lithographically reproduced by proximity printing. We have used a commercially available 
holographic mask aligner from Holtronic Technologies SA [3], to copy a grating with a carrier- 
frequency of 1000 lines/mm into a 1.3 |im layer of photoresist. This holographic mask aligner 
offers 0.25 (im feature size over an area of 150 mm in diameter from a single printing exposure. 
Due to the holographic imaging of the structures directly into the resist layer, much sharper 
transitions of the relief function can be achieved than by direct write methods. Using this 
technology, we have been able to fabricate high quality off-axis fan-out elements. The measured 
diffraction efficiency of the elements at a wavelength of X = 840 nm was 85%, which is close to 
the optimized value of 89%. The loss of 4% can be explained by the fact that the resist layer was 
about 5% too thick. An intensity profile through the generated spot array is shown in Fig. 5. A 
uniformity error of about ±8% has been measured. We have verified that the uniformity error of 
the array has not been introduced during the copying process. The original e-beam written mask 
produces the same errors, which are due to the finite positioning accuracy of the e-beam. 

In conclusion, we have shown that interferometric recording offers the resolution and the flexibility 
for the fabrication of high carrier-frequency surface-relief elements. Holographic lithography has 
clearly demonstrated its viability for the industrial fabrication of high quality submicron binary 
gratings. 

M      * 
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Fig. 4. Generated 9x9 off-axis spot array. 

Fig. 5. Intensity profile of the off-axis 9x1 spot 
array generated by a photolithographic copy in 
photoresist. 
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continuous phase function <£(x,z=0), which locally shifts the carrier frequency. 
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Fig. 2. Optimized interference pattern for a 
9-beam off-axis array generator. 
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Fig. 3. Overall diffraction efficiencies of the 0 
and -1 transmitted orders for a rectangular 
grating vs. relief depth. 

In order to introduce only weak perturbations of the carrier frequency, the period A and the total 
number of object orders (M+N) have to satisfy the following relation 

A » 
a,(M+N) 

2nsin(6) 
(6) 

Turunen et al. [1] have shown that if Eq. (6) is satisfied, high diffraction efficiencies can be 
obtained by optimizing the relief depth of the unperturbed carrier grating. Since the carrier grating 
has submicron period, rigorous diffraction theory has to be applied. We have used a model based 
on rigorous coupled wave theory [2] and calculated the optimum thickness of the grating in 
photoresist for TE polarization. A typical efficiency curve for the minus first diffraction order is 
shown in Fig. 3 for a transmission grating with a frequency of 1317 lines/mm, calculated for a 
wavelength of A, = 840 nm and for a refractive index of n = 1.63. The maximum efficiency of 
94.8 % is reached for a relief depth d = 1.02 |xm. 

3. Experimental results for interferometric recording 

Experimental results have been obtained for 2-D array generators. Different possibilities exist in 
order to generate the optimized object beam O(x) in the substrate plane. We have used our previous 
published continuous surface-relief elements for this operation [4]. The phase function of the 
continuous surface-relief grating is imaged onto the substrate plane using a 4-f lens system. The 
high carrier-frequency gratings are recorded with an Ar-laser at X = 488nm and then measured at 
a longer wavelength X = 840 nm, which shifts the Bragg angle from 18.7° to 33.6°. Figure 4 
shows a CCD picture of the 9x9 off-axis spot array generated by a first grating recorded without 
any fringe stabilization. Efficiency and uniformity of the array are not yet satisfactory, but with our 
new fringe stabilization system and improved photoresist processing much better results are 
expected soon. 

4. Copying of submicron gratings using holographic lithography 

An alternative fabrication method for high carrier-frequency gratings is first to write an e-beam 
mask of the desired structure and then transfer the structure using an optical mask aligner. The 
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it was felt would be the greatest sources of defects in the production of diffractive lenses including the power of the 
diffractive lenses and hence the number of zones created. One group were designed to simulate the diffractive 
surfaces on typical hybrid elements, with between 10 and 30 zones, to study the defects introduced when 
considering the optimisation of elements for broadband applications. A second group were purely diffractive lenses 
in the range F/l to F/2, with hundreds of zones. Due to the high levels of chromatic aberrations and poor off axis 
performance, the use of fast, purely diffractive lenses is limited to a small number of applications. However, fast, 
blazed zone plates were chosen as they were considered to be the most demanding lenses to manufacture accurately. 

For the two groups of devices it was found that the optimum manufacturing conditions were very different. As the 
number of materials which are suitable for use in the mid to far infrared is limited, this was also chosen as a 
variable. Devices were produced using germanium, zinc selenide and zinc sulphide. The tool feedrate was also 
chosen as a variable. A small number of hybrid achromatic singlets were also produced incorporating the lessons 
learnt during the production of the slow, planar devices. 

To assess the quality of all the devices it was decided to investigate both the macroscopic and microscopic defects. 
An important periodic, microscopic defect which was investigated was the effect of the tool geometry upon the 
surface finish, which would force the trade-off with shadowing. In addition to tool geometry another very important 
source of microscopic, random defects was due to the vibrations of the tool due to the finite stiffness of the 
machine. To investigate both of these aspects it was decided to machine a number of flat samples and then complete 
both contact and optical non-contact surface profilometry measurements of the surface roughness. Comparative 
scatter measurements were also completed, to study the radiation lost due to scatter from random, aperiodic 
structures and to investigate whether it was possible to observe energy being lost to spurious diffracted orders due to 
a periodic surface structure. The flat samples were also compared with a standard high quality polished mirror. 

Having studied the microscopic defects, the planar, diffractive lenses were diamond turned. For the blazed zone 
plates a number of qualitative and quantitative measurements were completed to study the accuracy of the surface 
structure. To do this both contact and non-contact profilometry measurements were completed. Studies were made 
to investigate any limitations which existed because of the surface gradient at the facet edges, dependent upon the 
form of the of the shadowing region. The surface quality was assessed using high power optical microscopy and 
scanning electron microscopy. 

The theoretical investigation of the diffractive effects of diamond turned blazed structures. 

For a diffractive optical element it is often the aim to design the diffractive surface to direct as much of the incident 
radiation as possible into the first diffracted order. If the fabrication of the device is not perfect, radiation will be 
diffracted into other orders, which will not only cause image degradation but also lower the system signal to noise 
ratio. Having completed the investigation into the defects introduced when diamond turning diffractive surfaces, 
this information was then incorporated into a theoretical study of optical performance and tolerancing of these 
elements. To do this it was necessary to calculate the diffraction efficiency of real blazed profile structures. A 
variety of methods are available for calculating the diffraction efficiency of grating structures, the accuracy is 
dependent upon any approximations which are made in their formulation [6,7]. Thin regime grating theories can be 
used to predict the behaviour of grating structures, the amplitude transmittance theory is a good example [8]. This 
method is accurate for thin gratings, i.e. those with Q values which are very much less than one, where Q is a 
measure of the optical thickness of the grating, 

Q = -2&L 
nj, cosQ 

where X is the free space wavelength, r^ is the average refractive index, L is the grating period and 8 is the angle of 
incidence inside the medium. However, if the ratio of the free space wavelength to the grating period tends to one, 
this approximation becomes invalid and the accuracy of the predicted diffraction efficiency decreases. In the work 
described here, the approximations required for the thin regime expressions had been called into question, 

There also exist rigorous methods of calculating the diffraction efficiency of gratings which contain no 
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Introduction. 

The advantages offered by hybrid refractive-diffractive elements are particularly attractive in infrared systems 
where the material forms a significant proportion of the overall cost and mass and space are often at a premium. 

Development of uncooled hand held thermal imagers operating over 8-14 micron waveband [1,2], require optics to 
be consistent with advantages offered by this camera technology. Hybrid elements allow, for example, passive 
athermalisation of a lens in a simple aluminium mount to be achieved with the minimum number of elements. For 
this system, two of the elements will perform the athermalisation and the dispersive properties of a diffractive 
surface are used effectively as a third material to achromatize the system 

In order to realise their full performance potential, hybrid elements must comprise a conventional aspheric lens with 
a surface relief diffractive structure on one surface [3,4]. Diamond turning permits the aspheric profile and 
diffractive features to be machined on the same surface in a single process. In principle, the process for the 
manufacture of hybrid elements is no more complex than that employed for aspheric lenses, which are produced 
reliably and routinely by diamond turning. 

A considerable number of publications over recent years have dealt with the design of hybrid refractive-diffractive 
optical systems operating in the infrared. By comparison, relatively little has been written about the practical 
realisation of these systems using, for example, single point diamond turning. This study examines the defects 
introduced by the diamond turning process and assesses their influence on the performance of surface relief 
diffractive elements. The results from rigorous coupled wave theory are compared with scalar models and with 
experimental measurements. 

The investigative study of diamond turned diffractive lenses. 

Using single point diamond turning it is now possible to produce blazed zone plate structures on aspherical 
components. However, studies have shown that this method of producing these structures results in the creation of 
additional unwanted defects [5]. For example, a fast, blazed zone plate with diffraction limited performance may 
require a large number of zones, typically hundreds. At the centre of such a device, a circular tool of relatively large 
radius can be used to accurately cut blazed profiles with good surface finish. However, the transitional steps at the 
boundary of one zone and the next can not be cut accurately due to the tool's finite size. It is not possible for a large 
radius tool to cut away all the material down to the substrate and retain both the blaze and the vertical step. This has 
been called the effect of "shadowing". Away from the centre of the zone plate, as the spatial frequency of the 
grating increases, the inability of the tool to accurately cut the steps grows in importance. This effect limits the size 
of the smallest facet which can be cut and hence limit the performance of the lens. Conversely, if a circular tool of 
smaller radius were used to complete the same task, smaller facets could be cut, the effect of shadowing is reduced, 
but, this leads to the creation of an additional unwanted periodic surface structure, most obvious in the centre. 

The aim of this study was to ascertain and quantify the greatest sources of periodic and random defects due to 
diamond turning diffractive surfaces. To investigate this thoroughly a number of planar, blazed zone plate lenses 
were produced using controlled manufacturing and design parameters. It was decided to vary those parameters that 
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Diffraction Efficiency 
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The profiles were calculated for a fast, blazed zone plate 
(focal length 50 mm). The shadow region was modelled as 
being due to the inability of a flat tool, of width 10.16 um, 
being unable to cut any lower, when it came up against the 
next transitional step. For each run, the profiles were split 
into 199 layers, and all the orders from -9 to +9 were 
considered. Figure (3) shows the amount of radiation 
being diffracted into each order as a function of the zone 
number. The shadowing defect added was the same for all 
of the zones, which was equivalent to a constant level of 
shadowing. As expected the effect of shadowing became 
more dominant with radial distance from the centre. It is 
also important to note that for a blazed zone plate, each 
zone has a constant area, and therefore an equivalent effect 
upon performance for uniform input intensity. Figure (4) 
shows the amount of radiation being diffracted into the 
dominant orders, as a function of wavelength over period, 

for the far infrared region (8 ^im to 14 um). The profile chosen was the 100th zone (see figure(2)) with and without 
the effects of shadowing. Figure (5) shows the sum of the energy being directed into all other orders except for the 
first, transmitted, diffracted order (m=-l). This is for the 100th zone (see figure (2)), with and without the effect of 
shadowing. A surprising observation is that the shadowing actually improves the elements performance over some 
of the waveband.  These results do not include the effects of anti-reflection coatings, which will enhance the 
performance accordingly. 
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Figure (5). 
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0.25 

Summary. 

The results show that the rigorous coupled wave theory can accurately predict the behaviour of diffractive 
elements, and it has been shown that these defects have a profound effect upon the optical performance of real 
diamond turned elements. The theoretical results show how the effect of shadowing becomes more important with 
radial distance from the centre of the lens, and that this defect will have a very serious effect upon lens performance. 
The results also show how this method of analysis can be used to accurately predict the performance of lenses for a 
given surface finish, over a given bandwidth. Even a small amount of shadowing has effects on the efficiency and 
spectral response of the elements. The cases we have highlighted in this summary were designed to show the 
limitations of diamond turned diffractive elements. Generally speaking, the diffractive surfaces on hybrid (as 
opposed to purely diffractive) elements have, of course, fewer zones and some of the detrimental effects due to 
machining will be smaller. However, it is clear that in calculating maufacturing tolerance budgets, these must 
include accurate diffraction analyses if they are to give realistic predictions of optical system performance. 
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approximations. One such method is the rigorous coupled wave theory which was formulated by Moharam and 
Gaylord [9]. In this method, a surface-relief grating of arbitrary profile is divided into a large number of thin layers 
parallel to the surface, within each layer the grating is described as a periodic distribution of two dielectrics, for 
example, air and germanium. Each thin grating is then analysed by using the state-variables method of solution of 
the rigorous coupled-wave equations. A computer program was developed to model the diffraction effects of real 
blazed zone plate facets, together with profiles which also contained the additional unwanted structures such as the 
periodic turning features and the shadowing at the zone boundaries. 

Having developed the code it was then possible to compare the diffraction efficiency of ideal blazed zone plate 
structures as predicted by the first-order theory, with the results obtained from the rigorous coupled wave analysis, 
and hence determine the point of breakdown of the scalar approximation. The quantitative data obtained from the 
diamond machining study were then used to define the profiles of the non-ideal blazed structures and the diffraction 
efficiencies were calculated using the rigorous coupled wave analysis. By assessing the effects upon the efficiencies 
of varying the size of the defects on the non-ideal structures, it was possible to ascertain which of the unwanted 
structures had the most detrimental effect upon the optical performance of the surface. It was then possible to 
predict for a given performance what would be a tolerable surface quality and hence the optimum machining 
parameters. 

The following graphs show the effect upon the diffraction efficiency of including only a small amount of shadowing 
at a zone boundary. Two blazed profiles typical of those modelled are shown in figures (1) and (2). The gratings 
were specified as having a refractive index of 4, a depth of 3.53 urn, which assumed a design wavelength of 10.6 
p.m. The rigorous coupled wave analysis included in this summary is for the H-mode polarisation only. 

3.53 micron 3.53micron 

1.03 mm 
Figure (1). Central zone, blazed profile structure. 
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are near a maxima. Near the maximum, variations in the profile depth would affect the 
predicted characteristics less than at other depths. Depth error is usually well-controlled 
and is often not significant. The effect of linewidth error was investigated by 
designing gratings with three duty cycles (f=.25,.5,.75). The depth was set to maximize 
the efficiency of the +1 order for the given fill factor; two grating periods were analyzed. 
Results show that the effects of linewidth errors on performance predictions is 
dependent on the normalized grating, Figure 4. Scalar diffraction efficiency predictions 
of the diffraction characteristics of binary gratings are independent of the grating period. 
Thus, it is expected that variations in the fabricated grating period would not 
significantly affect the predicted performance of binary grating when in the scalar 
regime. Results confirm this, Figure 5. Gratings were designed from the rigorous to the 
scalar regime (A/A, = 1-25) for maximum efficiency in the +1 order. It is clear from the 
results that variations in grating period could severely affect the predicted performance 
in the vector regime. Of course, variations in grating period will affect the angular 
distribution of the diffracted orders, regardless of the regime. The most detrimental effect 
of grating period error results from inconsistent grating periods across the element. 
These inconsistencies cannot be currently modelled accurately at small periods. 

NON-SQUARE PROFILES 
No fabrication technique is capable of producing crisp, square profiles. Though 

using a trapezoid to model this error, Figure 6, is only a first-order approximation, it is 
often in good agreement with actual fabricated profiles6. Preliminary, first-order results 
show that the diffraction characteristics are least affected when the duty cycle of the 
grating is 50%, Figure 7 ('Trapezoidalness' is defined as half the ratio of the total width 
of the slanted portion of the profile to the width of the ridge). Another common form of 
fabrication error is the 'scalloped' profile, Figure 8. Current work is being done with 
these profiles. For higher-order accuracy, models could be enhanced by forming a 
piece-wise linear approximation of the error created by the process. 

SUMMARY 
Recent advances in fabrication technology have yielded an improvement in the 

quality of binary gratings. Subsequently, binary gratings with feature sizes that are large 
enough to be analyzed with scalar diffraction theory can also be fabricated without 
significant error. By investigating the process errors associated with small featured 
gratings, it is anticipated that a priori information may be used in the design stage to 
compensate for specific fabrication process errors. 
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INTRODUCTION 
A myriad of tools exist, ranging from scalar/Fourier theories to rigorous 

electromagnetic techniques, to design and analyze binary gratings. Regardless of the 
accuracy of the tool, the diffraction characteristics predicted are dependent on the exact 
dimensions of the profile analyzed, i.e., deviations from these dimensions will yield 
different diffraction characteristics. Thus, when a grating is fabricated, the diffraction 
characteristics must change from those desired, since all fabrication processes produce 
some error in the dimensions of the grating profile. Previous work exists1"3 detailing the 
effects of processing errors. However, due to recent advances in fabrication technology, 
gratings that can be analyzed in the scalar regime4 are minimally affected by fabrication 
errors. Therefore, it is important to investigate fabrication errors for gratings with small 
features, since it is these gratings that are the most difficult to fabricate. In this paper, 
effects of fabrication errors will be rigorously analyzed for small grating features. In 
addition, the effects of the inability to etch or mill a crisp, square edge on the predicted 
performance will be investigated. Finally, we look to see if a priori information about 
the fabrication process may be used in the design stage for error compensation. 

EFFECTS OF FABRICATION ERRORS 
Errors involved in the fabrication of surface-relief gratings, Figure 1, include depth, d, 

duty cycle (linewidth), f, and grating period, A. To analyze the effect of depth error on 
the predicted performance, single-level binary gratings were designed to yield maximum 
scalar diffraction efficiencies in the +1 order, (f = .5, d/X = .5/(n-l)) for various 
normalized grating periods (AA, = 2,5,10), where X is the wavelength of light. The 
profiles were then analyzed with depths that strayed from optimal depth by ±5%. The 
analysis technique used was the well-established Rigorous Coupled Wave Technique 
(RCWT)5. Results show that variations in grating depths significantly affect the 
predicted performance when the normalized grating period is small, Figure 2. In 
addition, gratings were designed and analyzed at depths that did not maximize the 
diffraction efficiency. The purpose of this was to show that fabrication errors at these 
depths would affect the diffraction predictions more than at the optimal depth, Figure 3. 
This is because the slope of the diffraction efficiency curves are close to zero since they 
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Introduction 

Echelle Gratings find increasing use in modern spectrographs, especially in astronomy, because of 
their unique ability to provide high dispersion combined with high efficiency over a large spectral 
range. Available in ruled widths upto 408 mm, with blaze angles upto 76°, sometimes even 
greater, they provide near perfect wavefronts. This means high resolution, and minimal ghost 
intensities and stray light. Typically used in orders 10 to 150 it is a long held tradition that their 
diffraction behavior can safely be considered to lie in the scalar domain. 
Recent work, both experimental and theoretical, has shown that this is not always true. Especially 
when diffraction angles are at the high end, and when orders are at the low end, some peculiar 
effects can be seen. Whether these are harmful or not depends on the application. Particularly 
gratifying was to find that rigorous electromagnetic theory could, for the first time, be extended to 
accurately represent these gratings, for which computational barriers had seemed insurmountable. 
Correspondence between theory and experiment was good enough so that discrepancies could be 
largely blamed either on insufficient knowledge of the exact groove geometry or of the the complex 
refractive index of the thin metallic film that makes up the surface of a replica grating. 

Experimental Work 

Since spectrographs typically operate at constant angles of incidence it would have been ideal to 
test echelle behavior similarly and vary the input wavelength. To do this properly requires a source 
whose monochromaticity matches the high dispersion, and has the ability to determine wavelength 
to the nearest 0.1 Ä. In other words a super dye laser. Since none was available to us we used 
instead a collection of gas and ion lasers covering a wavelength span of 441 to 676 nm, and at each 
wavelength observed the diffracted output as the angle of incidence was varied in small increments 
over a span of about 16°. Groove frequency varied from 31.6 to 316 per mm. A solid state detector 
picked up all the orders within the 16° range. Groove angles were either 63.5 and 76° nominal. A 
series of experimental examples are shown below, some compared with theoretical calculations for 
which perfect right angle triangular groove profiles were assumed. It seems too difficult to 
measure groove geometry to the accuracy required to really make a difference. 

Theoretical Work 

The problem with applying Maystre's integral formalism for efficiency calculations of echelles has 
been the need to invert much larger matrices that correspond to the unusually large number, of 
diffracted orders, all of which receive at least some energy. A new approach has circumvented this 
difficulty, at least as far as grooves 31.6 Jim wide. The surprising evidence of Woods anomalies 
with echelles was discovered first on the computer and then verified by experiment 
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Absolute efficiency of 79 g/mm Echelle, 63.0° Blaze angle,as a function of a. TEand 
 TM designate planes of Polarization. Orders are labeled, as are pass off limits. 

EXPERIMENTAL   at  476.5 nm EXPERIMENTAL at   501.7 nm 

At 476.5 nm we are in the half-order position, which explains the drop in efficiency at the 
nominal blaze angle.Latter can be accurately determined from the approximate locations of the two 
peaks of the main diffracted order (56° and 71°). The 501.7 nm wavelength happens to fall within 
0.1 ° of the blaze angle. Passing off order effect is barely detectable. 
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Absolute efficiency of 79 g/mm Echelle, 73° blaze angle, measured as function of a. TE, 
and  TM designate planes of polarization. Diffraction and pass off orders are labeled. 

EXPERIMENTAL     at  441.6 nm EXPERIMENTAL    at   676.4 nm 

Unusual is the pronounced trough in efficiency near the blaze peak at 441.6 nm, which is caused 
by a central 2° wide band where both the -1 and +56th order can diffract. The opposite holds at 
676.4 nm, where between 71° and 77° incidence neither the adjacent -1 nor the +37th orders can 
diffract, thus making extra energy available. However, it shows up strongly only in the TE plane, 
leading to high polarization that was not confirmed by theoretical calculations. 
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Note the low level of polarization and close match between experiment and theory. The saddle 
shape indicates that the Littrow condition is not near the center of the (84th)order (1/3 order 
position). 

0.8 

I  0.6 

=   0.4 - 

68 

139 HO 
n 1— 

-3 

142 
—I 1- 

angle of incidence [deg] 

0.8- 

■S  0.6 - 

0.2 

68 70 72 74 76 78 

angle of incidence [deg] 

80 

Absolute efficiency of 31.6 g/mm Echelle, 75.6° Blaze angle, as function of a .Boundaries of 
passing-off orders is indicated at top. TE and TM designate Planes of Polarization 

EXPERIMENTAL   X = 441.6 nm EXPERIMENTAL X = 632.8 nm 

Note fairly strong polarization at this high order and blaze angle. The - order pass off shows angle 
to the right of which the order cannot diffract and + orders show limits to the left of which that 
order cannot diffract. The effect of passing off orders is small but detectable, a manifestation of 
Woods anomalies where they were not expected. 
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It is a correct model to consider light propagating around an abrupt edge as 
consisting of the original beam in the exposed region (this component is zero in the 
shadow region) plus a diffraction term that makes the edge appear as a radiating 
source.  In the past several years this edge diffraction function has been refined 
using contour integration in the complex plane and asymptotic methods.  For 
rectangular aperture geometries the amplitude of the diffracted wave from an 
illuminated edge is given by1 

where 

D(x',z,x) = i(i/2)1/z <D(h) exp(-toh72), 

h = [2/QJz)]"2 |x' - x|, 

<D(h) = f(h) + ig(h), 

f(h) = (1 + 0.926h)/(2 + 1.792h + 3.104h2) 

g(h) = 1/(2 + 4.14h + 3.492h2 + 6.67h3). 

(1) 

(2) 

(3) 

(4) 

(5) 

As shown in Fig. 1, x' is the position of the diffraction edge, z is the distance to the 
field point or observation plane along the direction of the incident wavefront, and x 
is the position in the field plane. 

Aperture 
Plane 

Field 
Plane 

Fig. 1. Sketch showing the summation of edge diffraction terms from 
boundaries between each zone having a different aperture field Uj. 
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Absolute efficiency of 316 g/mm Echelle, 63.4° Blaze angle, as a function of a, at 496.5 nm 
 TE and TM designate planes of Polarization. Orders are labeled, as are pass off limits. 

EXPERIMENTAL THEORETICAL 

Clearly evident is the close match in the TE plane (electric vector parallel to the grooves)between 
experiment and theory, which is typical. In the TM plane the behavior is quite different, and not yet 
explained. At this wavelength we are near the half order position (0.4). 
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Absolute efficiency of 316 g/mm Echelle, 63.4° blaze angle, measured as function of a, at a 
wavelength of 514.5 nm TE, and 
pass off orders are labeled. 

EXPERIMENTAL 

TM designate planes of polarization. Diffraction and 

THEORETICAL 

At this wavelength we are right in the center of order 11, which leads to quite different behavior. 
Polarization is seen to be reduced compared to the previous data, and the efficiency match between 
theory and experiment, even in the TM plane, is good. The influence of the -1 order passing off is 
clearly expressed in both the 10th and 11th orders. 
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and to demonstrate its accuracy.  For convenience we define the fields in the 
aperture zones as 

u, = [Tj]1/2 exp^j), 

since T, and <j>, are often unity. 

(10) 

As a first example we propagate a uniform field from a single aperture in the 
near field using the Fresnel-Kirchhoff integral. The result is shown on the left of 
Fig. 2. On the right side in Fig. 2 is the result using the diffraction from the two 
edges. 
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Fig. 2. Comparison of edge diffraction with Fresnel integral calculation. 

The Fresnel integral requires the evaluation of the field throughout the aperture, 
whereas the diffraction approach consists of a constant plus two diffraction function 
evaluations, no matter how large the aperture is. An internal edge is shown next. 
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Fig. 3. An example to verify the diffraction approach for an internal edge. 
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This D function has the property that when it is combined with the incident 
field in the exposed region and in the shadow region the incident field is zero and 
D changes sign, that the total field is continuous across the shadow. 

In this paper we extend this concept of edge diffraction to include other 
regions of an aperture (besides the limiting stop edges) that consist of lines across 
which the transmissivity changes either a little or a lot or the phase changes either 
a little or a lot. This includes phase gratings, binary optics surfaces, and apertures 
that have apodized transmission. 

The general case under consideration is the line separating two zones in an 
aperture wherein each zone has a different complex electric fields ua and ub. We 
assume an incident uniform wavefront is propagated through this aperture and the 
shadow position in the field plane is identified. The approach is to consider the 
wavefront from the aperture as consisting of a superposition of two apertures, one 
for each zone. That is, each zone transmits inside itself and zero elsewhere. 
Thus in the field plane to the left of the shadow line, the propagated electric field ea 
consists of its incident field ua plus the diffracted field from its edge uaD (the 
strength of the diffracted field is proportional to the strength of the incident field), 
plus the shadow diffraction of the other zone, -ubD. We can therefore write the 
fields in each region in the field plane, 

ea = ua(1 + D) - ubD = ua + (ua - ub)D, (6) 

eb = ub(1 + D) - uaD = ub + (ub - ua)D. (7) 

The right hand sides of these equations may be interpreted as saying that the 
propagated field from an aperture containing a zone boundary is equal to the 
incident field plus a diffraction term that is proportional to the difference of the field 
amplitudes across the zone. This difference is computed as the field in the zone 
you are in minus that of the zone across the boundary. 

For an aperture of N zones as shown in Fig. 1, there are N + 1 edges. The 
first step is to determine which zone J exposes the current field point x. That is, 
find J such that 

Xj./ < x <= Xj', (8) 

where the x-primes are the zone boundaries in the aperture. The total field in the 
field plane is given by 

J 

e(x) = Uj +     £(uk - uM)D(xky,z,x) + 

E(uk - uk+1)D(xk',z,x). (9) 

Equation (9) is our final result. We show some examples to illustrate its usefulness 
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When a zone plate (ZP) [1] is illuminated by a point light source, non-localized Fresnel fringes [2] are formed 
in the image space behind the plate. The zone plate acts as a interferometer forming the interference field in some 
respects much as Fresnel's or Lloyd's mirrors. In ZP-interferometer a recombination of interfering beams is 
realized without any additional optical components. 

The present communication concerns the properties of interference fringes observed by means of Fresnel, 
Soret and Rayleigh—Wood zone plates. 

A basic optical scheme for the observation of interference fringe pattern, and the path of rays of + 1st, -1st 
and 0 diffractive orders through a ZP are shown at Fig. 1. Special properties of the wave front division by ZP [1], 
and sharp differences in the magnitudes of order intensities [1] result in formation of the peculiar interference 
pattern. Thus, for Fresnel ZP, if the distance L from ZP to the observation plane ten times as much as the focal 
lenght f, L > lOf, then two-beams [ + 1st, -1st] order interference prevails. As the screen gets closer to the ZP, the 
number N of interfering beams increases, and at L<2.5f, multibeams fringes are always observed. The peaks 
existing in the two-beams pattern are preserved, although each of them shrinks into more narrow angular region. 
Between two-beam peaks, N-2 additional peaks corresponding to new supplementary two-beams patterns appear. 

The calculation of beam travel differences and estimation of radial coordinates of two-beams interference 
peaks is considerably simplified if the path from S to source images S' and S" is not taken in to account because it 
is constant. Then spherical waves from S,S' and S" interfere in P. When L > f, the calculation of path differences is 
reduced to estimation of differences between sags of wave fronts from S, S' and S". In Fig. 1, S and S' are sourse 
images in the + 1st and -1st diffraction orders. 

For arbitrary distances 1 and L, and arbitrary pairs (n, i) of interfering beams, the following relation for radii 
of maximum intensity rings is valid: 

*-V TkXf k= 1,2, 3 . 
(1) 

where A is the wavelength, d(n, i) is a constant depending on the numbers n and i of diffraction orders and on 

1234 

Fig. 1. 
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A Fresnel zone plate is shown in Fig. 4.  It is evaluated in one case with 
alternate zones zero transmission and with alternate zones having a pi phase shift. 

Fresnel Zone Plate 
15 

12 

Diffraction     9 
Intensity . 

o 

3 A 
Field Plane 

Phase Fresnel Zone Plate 

Held Plane 

Fig. 4. Fresnel and a phase Fresnel plate evaluated using edge diffraction. 

The last example is    six slit diffraction to compare with a common result. 

Grating   N=6   d=3b 
0.06 T 

0.05 

Diffraction 0.04 
Intensity 

0.02 

0.01 

0.00 

Field Plane 

Fig. 5. Six slit diffraction grating evaluated using edge diffraction theory. 

1. W.H. Southwell, "Unstable-resonator-mode derivation using virtual-source 
theory," J. Opt. Soc. Am. 3, 1885-1891 (1986). 
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Fig. 4. 

the wave length A and the angular size ß of the source must be associated by the relation 

b < A/sin/3. 

This is a usual condition for observing the Fresnel interference which is not strict for laser sources or 
illumination by means of optical fibers. 

The distinction of the pattern is determined by the enormous ZP chromatism (A/// = AA/A). The focal point 
for the red region of the spectrum is formed on blue-green background, and for the violet one - on red background. 
Respectively, interference fringes are observed on a colored background. An interesting distinction is also color 
inversion in the fringe coloring when it passes through the focus. 

The interference field under consideration carries a complete information about parameters and quality of 
the ZP and about the spectral and modal structure of the light. By the coordinates, contrast and brightness of 
fringes one can determine he focal length and ZP's aberrations, the correctness of fabrication of the diffraction 
structure and of it's phase depth. A characteristic example is shown in Fig. 4, where interference field was obtain 
with a help of elliptic ZP. Astigmatic beam structure can be easily identified. The use of ZP-interferometer for the 
synthesis of diffraction elements with a high spatial frequency for operation in the X-ray region of the spectrum is 
well known [3]. From our studies it follows that ZP-interferometer is a good tool for the estimation of a quality of 
zone plates, for the investigation of a modal structure of radiation sources, and for the demonstration of the light 
interference phenomena in large auditoria during lectures. 

REFERENCES 

1. Koronkevich V.P., Pal'chikova I.G., Modern zone plates, Optoelectronics, Instrumentation & Data Processing, 
1992, no. 1, p. 86-101. 

2. Shmahl G., Rudolph D., Guttmann P., Christ O., Zone plates for X-ray microscopy, in: X-ray Microscopy, 
Springer Series in Optical Sciences, vol .43, p. 87-101, Springer-Verlag, 1984. 

3. Vavilov S.I., Complete Works, vol. II, Academy of Sciences of USSR, Moscow, 1952, p. 466-477. 
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positions of the screen and of the source. The 
relation (1) corresponds to the Newton's rule: 
"...the radii of the rings are related to each other as 
square roots of integers." 

The contrast of two-beams interference pat- 
terns K is 

K=2Vm/(m + l) (2) 

where m is the ratio of intensities of interfering 
beams which depends on the ZP type, the screen 
and source position, and the distance of the obser- 
vation point from the optical axis. 

In Fig. 2, calculated curves of contrast chan- 
ges depending on the position of the screen L/f for 
zero and ±lst order interfering beams are shown. 
From the graphs it follows that at the distances 
L>f, the main contribution to the interference 
pattern is made by two-beams fringes of [ + 1st, 
-1st] orders. The change of the contrast sign indi- 
cated the inversion of light and dark fringes after 
the light wave has passed through the focus. The 
calculation results are well corroborated by ex- 
perimental data. 

- In Fig. 3, photographs of interference field 
in sections marked in Fig. 1 by numbers from 1 to 
5 are presented. In the plane 4, a beam of the + 1st 
order is focussed into a bright central spot S\ In 
this way, + 1st order beam is filtered out of the 
interference pattern. The field is filled by two- 
beams fringes of zero and -1st orders. They are 
well observed also in other planes. 

In sections 1,2 and 3 in the field center, [ +1, -1] type two-beams fringes are visible. The position of planes 
is chosen so as to demonstrate the formation of a dark central fringe (contrast inversion) due to Gui effect. In 
section 5, the field center corresponds to two-beam fringes of [ +1, -1] type which dominate in the interference 
field during the screen gets further from the ZP. An important peculiarity of the interference pattern is the fact 
that central fringes are formed at path differences close to zero (see Fig. 1). They are achromatic and can be 
observed in white light. 

The brightness and the contrast of interference fringes depend on the light source size, i.e., the slit width b, 

coordinate, L/f 

Fig. 2. 

Fig. 3. 
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Fig. 1. PostScript output of a 32 gray level lens generated in Mathematica. 

This halftone screen can be converted to a smooth gray scale by recording a spatially 

filtered image of the halftone. This was done using the set up in Fig. 2. A reticle, which is a 10X 
reduction of the original transparency, is located at the center of radius of curvature of a spherical 
mirror. A beamsplitter is inserted in the light path between the mirror and the focal length. The 

image in this unity magnification system is reflected off-axis by the beamsplitter to a high 
resolution holographic plate (8E75). An aperture at the image of the pinhole source in the image 
arm blocks the spatial frequencies responsible for the grating image and passes the low frequency 
components which represent the smoothly varying gray pattern we wish to capture. To reduce 
coherent ringing that occurs with a low power laser, we use a tungsten-halogen lamp surrounded 
by aluminum foil with a pinhole in it to limit the extent of the source. In Fig. 3 is shown two 

images of section of a reticle of a 10X reduction of an transparency 

L   F 

@|- 

PH 

/Beamsplitter 

I 
A 

Reticle ^^kT ^^^~     . ■ 
yT \ Spatial 

Image of Filtering 
Source ' Aperture 

Image of Reticle/Film 

Fig. 2. Optical schematic of halftone filtering geometry. L: Lamp; PH: 

pinhole; F: Filter 
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Grayscale masks for diffractive optics: 
I. Spatially filtered halftone screens 

Donald C. O'Shea, Patrick L. Thompson, and Willie S. Rockward 
School of Physics and 

Center for Optical Science and Engineering 
Georgia Institute of Technology 

Atlanta, GA 30332-0430 

Binary masks for diffractive optics can be generated using commercial imagesetters, 

printers that generate high resolution images on paper of film. They are usually controlled by 

PostScript™, a standard page composition language from Adobe Systems. Output directed to a 

laser imagesetter can produce high resolution (3600 dpi) graphics, which yields patterns with 30 

micron features1. The image on this film is then reduced by a factor of 10 with a Rodenstock 

Rodagon projection lens. Because of lens aberrations the smallest feature that can be reliably 

recorded upon reduction is about 8 microns. 

In conjunction with this mask generation effort, we use Mathematica, a standard 

computational mathematics package to plot the binary masks needed to generate the diffractive 

optical element. Since the graphics output of Mathematica is expressed in PostScript, the graphic 

can be copied as an Encapsulated PostScript File and placed in a commercial illustration program 

for desktop publishing (Aldus Freehand) for imagesetter output. 

The difficulty in fabricating a diffractive optical element from a set of binary masks is that 

the alignment, photoresist exposure and development, and reactive ion etching steps must be 

repeated for each mask. Each step puts all previous work in jeopardy. If a profile can be rendered 

into photoresist so that a series of gray levels correspond to depths in phase surface, then there is 

no need for multiple masks. This eliminates mask alignment fiducials and alignment procedures2. 

The time and cost of fabricating diffractive optics will be reduced substantially. 

The standard technique to render gray scale in publishing is with halftone screens. These 

are variable dot patterns of a specific spatial frequency. The light grays are rendered as a 

rectangular array of black dots on a white background; dark grays are the same with the colors 

reversed. For example, a diffractive lens was generated from a spherical phase profile and 

represented as gray levels in Mathematica (Fig. 1). This is the PostScript output of a 32 gray level 
lens. 
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(b) 
Fig. 3. Micrograph of sections of the diffractive lens, (a) Image of the 

lens with filtering aperture open. The halftone screen is 3000 lpi. (b) 

Image of the lens with filtering aperture closed to eliminate the 

halftone screen. 
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This technique is valuable because it uses widely available desktop publishing equipment 

and simple optical components. A gray scale pattern can be generated without resorting to 

modulatable lasers writing to a plate on a precision transport. Preliminary results appear 

promising, but additional work is needed to determine the limits posed by the reduction lens 

resolution, the contrasts of the reticle containing the halftone screen and the gray-image plate, and 

the choice of halftone screen frequency. The paper will discuss details of the technology, 

tradeoffs in the choice of line screen, and achievable resolution. 

REFERENCES 
1. D. C. O'Shea, J. Beletic, and M. Poutous, "Binary-mask generation for diffractive optical 

elements using microcomputers," Appl. Opt 32,2566 (1993). 

2. H. Andersson, et. al., "Single photomask, multilevel kinoforms in quartz and photoresist: 

manufacture and evaluation," Appl. Opt. 29,4259 (1990). 
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Somewhat better results have been obtained by reducing the 4"x5" format. In all cases, there 
are a set of incoherent transfer processes that must be modeled. Starting backward with the 
photoresist that requires a preexposure to move the exposure curve into the linear region, one 

must then model the contrast of the film for the reticle and the range of optical densities possible 

with the color film. Through contrast stretching and an appropriate lookup table to generate the 

correct grays in the original computer image, it should be possible to generate a relief in 

photoresist that faithfully reflects the original computation. A profile of several transitions of the 

reduced gray scale image of a diffractive lens rendered in photoresist is shown in Fig. 1. The 
non-linearity of the photoresist was not compensated properly with the necessary preexposure. 
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Fig. 1. Profile of a segment of a diffractive lens made by exposure to 
photoresist of a photoreduced gray scale image generated from a commercial 

slideimager. 

The limits of resolution are not known since neither the device nor the film has been 

optimized. A high resolution black and white film is needed. Currently, to write a black line on a 
white background, the film must be exposed to a CRT image three times through different color 

filters. Since the slides are generated at a commercial slide processing house, it is not possible to 

optimize the system yet. A range of high resolution, low contrast films must be assessed to 
determine the ultimate resolution of these devices. We believe research into diffractive optics 
mask generation through these low cost slide generation devices could have significant impact in 

fabricating cheap diffractive optics. 
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Gray scale masks for diffractive optics: 
II. Commercial slide imagers 

Donald C. O'Shea and Thomas J. Suleski 
School of Physics and 

Center for Optical Science and Engineering 
Georgia Institute of Technology 

Atlanta, GA 30332-0430 

Our laboratory has exploited pattern generation technology based on the PostScript page 
generation language and raster image processors used in desktop publishing. Until recently we 

have generated sets of binary masks to produce an efficient diffractive optical element that 

approximates the smoothly varying fractured phase surface, called a kinoform. Since the masks 

must each be correctly aligned and etched to achieve this approximation, any technology that can 

capture and record a gray scale should be considered as a possible alternative to multiple mask 

technology. 
Another type of pattern generation technology that is available to the users of desktop 

publishing programs is that of slide imagers. Using the same software for presenting patterns 
generated by computational programs, such as Mathematica, to a commercial imaging 

companies, we have been able to generate gray scale patterns that can be used in making one step 

gray level masks. The grays generated in these devices are true gray scale created by variable 

illumination of a relatively high resolution color positive film (Ektachrome 100 Plus 

Professional), rather than simulated grays using a halftone technique. 

All images were prepared in both native file formats (usually Aldus Freehand) and as 

encapsulated PostScript files by "printing" to file. The PostScript printer device (PPD) file that 
we used varied between commercial houses. Most images were rendered, but not all. However, 

images that refused to print at one place would print at another. There are two formats available. 

(1) A standard 35 mm slide image (36 x 24 mm) and (2) a 4" x 5" transparency. The first of these 

is produced on Solitaire 4 or 8 slide imagers. The model number indicates the thousands of lines 
in the long (36 mm) direction. Thus a Solitaire 4 has a 9 micron spacing and the Solitaire 8, half 

that. The 4"x5" format is generated by a Solitaire 16, which, using the same relation, yields an 8 

micron line spacing. The 35 mm slides cost $5 each and the 4"x5" transparencies, about $100. 
We have examined a number of techniques that use these gray scale transparencies to 

produce diffractive optical elements. A simple contact print of the 35 mm slides yields a very 
poor image in photoresist with a great deal of scatter. This we attribute to small grains in 

transparent areas. Rephotographing these patterns removes this scatter, but it introduces another 

transfer mechanism to be determined. 
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developer reflection takes place of beams the phase difference of which depends on the resist thick- 

ness. All other reflected beams are excluded according to fig. 2. The ray trajectory was chosen in 

that way, as the light has to pass by no means the developer but runs through the glass substrate 

exclusively. Therefore, the influence of fluctuations of the refractive index generated during the de- 

velopment process in the developer is avoided. As a resist PMMA was used, the developer consisted 

of MIBK and IPA 1:1. The resist thickness decreasing during the development process causes in 

turn a constructive and destructive interference of both reflected beams. The resulting interference 

signal is detected by a photodiode, the photo current varying in time is recorded by a plotter. 

As an example, fig. 3 shows an interference signal measured. The development process starts at 

t = 30s, at t = 220s the resist film is dissolved completely. In the experimental arrangement used 

the distance between two neighbouring interference maxima is according to a decrease of the resist 

film thickness of 240nm. 

3    Applications 

The energy given from the electrons to a volume element of the resist (deposited energy density) is 

highly depending on the depth. It causes there a change in solubility with respect to the developer. 

In this way during the development process a certain dependence of the dissolution rate on the depth 

is produced, which may be detected by means of the measuring procedure given above. Therefore, 

from the detected interference signal a conclusion may be drawn about the depth efficiency of the 

exposure. 

Fig. 4 shows the distribution of the dissolution rate as a function of depth for various energies 

of the primary electrons. The shape fits well with the results of model calculations [1]. However, 

the position of the maximum of the dissolution rate (as a characteristic point of the distribution) 

is different from the theoretically expected one. As the main reason for this the influence of a 

copper film deposited on the resist on the electron motion was found.  In principle, such kind of 
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In-situ Measurement of Resist Development Process 

in Electron Beam Lithography 

E.-B. Kley, B. Schnabel 

Friedrich-Schiller-Universität Jena, Institut für Angewandte Physik 

Max-Wien-Platz 1, 07743 Jena, Germany, Tel.: ++49 3641 657648 

1 Introduction 

Recently, the realization of resist profiles in order to produce microoptical elements (Fresnel lenses, 

gratings, kinoforms for example) has developed as an interesting field of lithography. The thickness 

of the resist film the structure of which has to be changed may be some /an according to the profile 

depth of the optical elements. Crucially, the efficiency of those elements depends on the shape and 

quality of the resist profiles. Blazed and multilevel diffractive optical elements can realize seriously 

higher efficiency than binary optical elements. A preliminary condition for the possible precision 

of the resist profile required is to know the depth efficiency of the exposition. We have applied an 

interferometric measuring procedure to characterise the resist development process in situ. By this 

procedure we have measured the depth efficiency of the exposition in e-beam lithography and we 

have investigated chances to influence its dependence. Furthermore, the development process can 

be stopped definitely at a certain depth. 

2 Measuring Procedure 

A laser beam (A = 633nm) is collimated and comes to a cuvette containing the glass substrate 

covered with the resist and the developer (fig. 1).  At the interfaces substrate-resist and resist- 

fig-i 
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depth (fig. 4) is the use of a film system consisting of several resists with different sensitivity to 

exposition by electrons. As an example, fig. 6 shows the detected interference signal for a resist 

film system of SK 6000 (above) and PMMA (below). At equal values of the exposition dose the 

resulting dissolution rate is higher in SK 6000 than in PMMA. Thus, at the interface between the 

resists a stepwise behaviour of the dissolution rate occurs. By a proper choice of the parameters of 

the resist films very different shapes of the dissolution rate as a function of depth may be realized. 

The realisation of a well-defined resist profile requires precisely to know the relation between 

exposure dose D, development time tE and resist thickness z. This relation can be determined by 

the measuring procedure given above very efficiently. As an example, fig. 7 shows this relation 

for the resist PMMA covered with a thin copper film. By means of this characteristics a working 

point may be fixed, that means to select a proper development time and hence a dependence of 

the resist thickness (or the loss in thickness) on the exposition dose for the selected development 

time. Furthermore, the working point may be controlled during the development process by means 

of the measuring procedure given. The development procedure can be stopped at a certain depth 

within ±30nm error. 

We have used the results given above in order to realize optical elements with well-defined 

surface profiles. As an example, fig. 8 shows the surface profile of a lens array produced with 

electron beam lithography. The profile depth is 1.3/jm, 72 dose steps were used. 

References 
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electrically conductive film is required in order to prevent electrical charging of the sample during 

the exposition. However, the thickness of this film may be chosen within a wide range. 

Therefore, in the following the influence of the different thickness of copper films on the distri- 

bution of dissolution rates was measured (fig. 5). As to be seen, the position of the maximum of 

the dissolution rate distribution is at lower depth with increasing thickness of the copper film. At 

a certain thickness of the copper film (about 120nm) the dissolution rate is constant within ±5% 

in a range of about 2fim thickness beginning with the resist surface. Therefore, within this range 

there is a rather linear relation between development time and thickness loss of the resist. 

Another opportunity to modify the initial distribution of the dissolution rate as a function of 

photo current 

-¥- 
15 

fig. 6 

30 45 
time [s] 

60 

fig. 7 

0    '^^^ 
t£ in s 

30 
40 

50 
60 

70      D in ixC/c 



130 / DTuB7-2 

It is well known that high-intensity pulsed lasers can uniformly ablate 
material from the surface of a wide range of substrates.1' 2 Proper choice of 
laser wavelength and careful control of fluence permit precise control of depth. 
Ultraviolet (uv) wavelengths are particularly attractive because many materials 
absorb strongly in this region of the spectrum. By using a high-power excimer 
laser as the light source, "dry" lithographic etching techniques have been 
developed and applied to both semiconductor processing and phase grating 
fabrication. However, lithographic techniques still require generation, 
positioning, and maintenance of a set of masks. 

focusing 
objective 

Figure 1. Direct- 
write photoablation of 
the substrate allows a 
computer-generated 
relief pattern to be 
directly etched onto 
the surface. 

Computer-controlled 
Precision X-Y stage 

Our approach is to use a small, high repetition-rate pulsed excimer laser, 
focusable to micron-diameter spot sizes to directly ablate and etch the grating 
into the substrate material. Figure 1 is a schematic of the process. We note 
that this process is significantly different from other "direct-write" schemes for 
production of phase gratings that have been described in the literature.3' 4 

These reports involve direct-writing of a resist which eliminates the mask, but 
still requires many additional steps to arrive at a finished piece. 

We use our own commercial microfabrication workstation, diagrammed in 
Fig. 2, to ablate structures into the substrate. Excimer wavelengths of 248 nm 
or 193 nm with pulse energies generally ^20 uJ are used for these studies. 
The laser radiation is directed through a microscope-like optical train that 
allows illumination of a worksurface, viewing with a video camera, and laser 
exposure of selected area in the view field. The laser is focused onto the work 
surface with uv-transmitting microscope objectives and a uv optical system 
capable of producing focal spot diameters that are adjustable between 1 and 
100 microns. Laser fluence levels at the worksurface can be adjusted from 0 to 
>10 J/cm2 to accommodate controlled ablation of a wide range of materials. 
The workpiece is mounted on motorized X-Y stages that are interfaced to a 
personal computer and driven by a CAD /CAM program. Laser pulsing is 
synchronized to motion of the X-Y stages to assure that sample exposure is 
independent of stage velocity. The X-Y stages themselves are specified for 
0.25-|im addressability and 0.5-|im reproducibility. 
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Widespread applications for diffractive optical devices include sensors, 
analytical instruments, fiberoptic distribution and communication, neural 
networks and optical computing, lasers and laser instrumentation, pattern 
recognition, displays, and information storage. Incorporation of diffractive 
optical elements (DOEs) into the design of optical instruments offers the 
modern optical engineer an abundant array of potential solutions to long- 
standing problems. With the cost of high-power personal computers and 
engineering workstations continuing to plummet, manufacturers of optical 
design software are providing sophisticated optical-design programs that now 
incorporate tools for generating and analyzing diffractive or holographic 
elements. This has opened the field to optical engineers at every level. Well- 
developed lithographic methods from the semiconductor industry and stamping 
techniques similar to those used in the production of compact disks have 
generated excitement about cost reduction and expansion of future markets for 
diffractive optic technology. However, these manufacturing techniques are 
complex, time-consuming, capital-intensive and often unsuitable for generation 
of test-pieces, prototypes and one- or few-of-a-kind diffractive structures. 
Many optical devices that might benefit by incorporation of phase-correcting 
structures are, by their nature, individual and highly specialized. 

We will report preliminary results from a new approach, using a table-top 
ultraviolet waveguide excimer laser-based micromachining workstation to etch 
diffractive structures directly into the substrate without masks or intermediate 
processing steps. The proposed technique will be applicable to a wide 
spectrum of substrate materials, including glass, diamond, semiconductors, 
and polymers. Such a system should allow an optical designer to generate 
diffractive elements in hours compared to weeks or months with current 
methods. At the same time total system cost is expected to be an order of 
magnitude lower than the conventional equivalent and therefore within the 
reach of a far greater number of designers, engineers, manufacturers, and 
optical job shops. 
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Figure 3. Etching a binary grating 
into a -0.5 um thick coating of a 
spin-coated polymer such as 
polyimide. If the substrate material 
is non-absorbing at the laser 
wavelength (e.g., fused silica), depth 
accuracy depends only on the 
thickness of the original polymer 
layer. 

twice that calculated by equation [1], precise depth control must be achieved. 
Our goal is to identify conditions that will allow reproducible ablation rates of 
<100 nm/shot. 

To show the direct-write micromachining technique to be useful, we must 
demonstrate that the system is capable of achieving the following: 

(1) required accuracy and precision of grating spacing 
(2) required accuracy and precision of grating depth and smoothness 
(3) application to optical materials of general interest 

Our experiments are designed to evaluate each of these criteria. We will report 
the results of these ongoing studies. 

This work is supported, in part, by Small Business Innovative Research 
contract NAS8-40131 with the National Aeronautics and Space Administration. 

1. Laser Ablation in Materials Processing: Fundamentals and Applications, B. Braren, 
J.J. Dubowski, and D.P. Norton, eds., Materials Research Society Proceedings, Vol. 285 
(1993) 

2. R. Srinivasan and B. Braren, "Ablative Photodecomposition of Polymers by UV Laser 
Radiation," in Lasers in Polymer Science and Technology: Applications, Vol. Ill, J-P. 
Fouassier and J.F. Rabek, eds., CRC Press, Boca Raton, FL, 133-179 (1990) 

3. K.S. Urquhart, R. Stein, and S.H. Lee, "Computer-generated holograms fabricated by 
direct write of positive electron-beam resist," Opt. Lett. 18, 308-310 (1993) 

4. T. Yatagai, M.H. Geiser, R. Tian, X. Tian, and H. Onda, "CAD systems for CGHs and laser 
beam lithography," Computer and Optically Generated Holographic Optics, I. Cindrich, 
S.H. Lee, Editors, Proc. SPIE 1555, 8-12 (1991) 

5. G.J. Swanson, "Binary optics technology,: The theory and design of multi-level diffractive 
optical elements," MIT/Lincoln Lab Technical Report 854, 14 Aug 89 

6. D.W. Ricksand R. Ajmera, "Light scattering from binary optics," Computer and Optically 
Generated Holographic Optics, I. Cindrich, S.H.Lee, Editors, Proc. SPIE 1555, 89-100 
(1991) 



DTuB7-3 / 131 

DETECTOR 

o—if- UV WAVEGUIDE LASER 

VIDEO CAMERA 
AND VIEWING 
OPTICS 

BEAM SHAPING OPTICS 

COMPUTER 
AND STAGE 
CONTROLLER 

UV 
MICROSCOPE 
OBJECTIVE 

rf 
X-Y STAGES 

Figure 2. Block diagram of the Potomac laser microfabrication system. 

The CAD program accepts standard DXF and G-Code file formats, or 
structures can be entered directly via a mouse and keyboard. Simple 
diffractive structures, such as line gratings and Fresnel lenses, are quite easy 
to describe mathematically.5'6 We have chosen these types of DOEs to be our 
test structures. An array of line segments or circle radii corresponding to the 
area to be milled for the required diffractive component is first generated in 
Mathcad™ or Microsoft Excel™. The output from this initial step is then 
translated to DXF format and imported by the CAD program. The CAD 
program, interfaced to both the laser and motion control system, executes the 
required motion and the structure is written to the substrate much like a pen 
plotter. 

A true binary (2-level) DOE can be achieved in a straightforward manner. A 
polymer is spin-coated onto a fused silica substrate to a precise depth, d, 

[1] 
2(n-l) 

where \ is the design wavelength, and n is the index of refraction of the 
polymer. For visible wavelengths d is typically of the order of 0.5 |im. Many 
polymers are known to ablate cleanly with far-uv sources at fluences of a few 
hundred millijoules per square centimeter. Fused silica, on the other hand, 
has a damage threshold more than an order of magnitude higher, and will be 
unaffected by the laser. Therefore, 2-level diffractive systems with accurate 
depth can be etched by drilling completely through the polymer layer (Fig. 3). 
Critical control of fluence and total dose is unnecessary. However, the 
maximum theoretical efficiency of a 2-level DOE is only -40%. 

To improve diffraction efficiency, smooth ramped or contoured structures 
must be fashioned. Since peak-to valley height for such a structure is only 
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features required by the specification of multi-level diffractive 

optical element, such as critical dimension, layer to layer 

registration, etch depth and so on. The GDSII data created use 

the data type feature to rank data from the multi-level 

structures and assign each rank with different doses (dwell time) 

on a Focused Ion Beam machine. The multi-level zone patterns are 

created in high molecular weight PMMA by 200 Kev Beryllium whose 

dose (dwell time) was controlled to achieve the multi-level 

exposure. The exposed resist was then developed to form a multi- 

level profile and transferred into fused silica by means of 

reactive ion etching. 

Considerable preliminary experiments were conducted to 

calibrate and decide the optimal conditions to producing uniform 

and smooth steps. Initial measurement using Dektak showed a 

linear response can be achieved with a 0.1 microns to 1 micron 

thick layer of PMMA. From repeated experiments, we have generated 

calibration curves which would allow us to fabricate multi-level 

structures with predictable step size (see fig. 1). Additional. 

Studies involve FIB aperture size from 25nM to 200nM; since 

larger aperture gives higher current density and therefore 

shorter write time per pixel. Higher throughput, however, might 

be achieved at the expense of resolution and quality of the step. 
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The fast growing demands for multi-level diffractive optical 

elements in the recent years are the results of their important 

and unique features. Needless to say, the characteristics, such 

as, light weight, low cost, high diffraction efficiency (close to 

100%), ability to provide any wave front, high optical 

performance and possibility for chromatic correction make the 

multi-level diffractive optical elements, the attractive 

component for many optical and photonic applications. 

To fulfil the special needs required by DOE user, we have 

developed a cost-effective procedure to realize the rapid 

prototyping of the multi-level diffractive optical elements. One 

software HOLOCAD™, an internally developed physical layout tool, 

is used to generate GDS data from user defined component phase 

function. This tool has greatly reduced data generation time. In 

fact, this software automatically inserts process control 
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multi-level resists profile can be transferred with a scaling 

factor. A factor up to 2.5 has been achieved to scale PMMA step 

into fused silica. 

Using the above procedure; a variety of DOE were fabricated; 

phase mask, on axis lenses, doublets, off axis output and off 

axis input. 

These DOE were characterized on the optical bench; their 

performance are correlated with measured process data such as 

alignment, line width and actual etch depth. The encouraging 

results obtained thus far showing using Focused Ion Beam can 

become a reliable technique that provides performance much 

superior those obtained by lithography-etch methods. 
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Fig.   1 

The data structure used by the FIB machine is available to 

support a maximum of 64 levels; The size of such data set could 

reach many megabytes, we expect the added load time to 

significantly increase general write time. Future experiment will 

be conducted involving the fabrication of 32 steps and 64 steps 

versions of the test vehicles; characterizing the data size and 

write time differences. 

Other experiments involving the transfer of multi-level 

resist profile into fused silica are also conducted. By varying 

the mixture of Freon and Oxygen in the Ion milling chamber, the 
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For diffractive optical elements with high spatial frequencies or polarization sensitivity, 
scalar simulation are inaccurate. Therefore, Maxwell's equations must be implemented to model 
the resonances present in small structures. The most common technique for this class of 
simulations is the coupled-mode approach.10 For 2-dimensional coupled-mode analysis, the unit 
cell is described as a series of sublayers. Each sublayer is defined by some simple pattern in the 
dielectrics of that region. The variables which define the pattern in each sublayer are encoded as 
genes, and the set of genes defining the set of sublayers describe a chromosome. A GA can thus 
be implemented to optimize the grating for a give field value and diffraction efficiency. 

Genetic algorithms are a useful and interesting approach for optimizing diffractive optical 
elements. Past work has demonstrated their applicability to fanout grating optimization, and new 
results indicate that the same techniques can be applied to many other types of diffractive elements. 
Critical to any optimization algorithm is proper operating parameters and weighting to avoid an 
over-constrained solution space and a non-physical solution. As knowledge of diffractive optics 
increases, new methods for design optimization will be required to address the problem 
complexities and more fully utilize the full SBWP of diffractive optical elements. 
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Diffractive optical elements are finding new and varied applications.* The large space- 
bandwidth product (SBWP) of binary optics provide a tremendous number of degrees of freedom 
for wavefront manipulations.2,3 Optical designers are sometimes finding this freedom unwieldy 
due to the inherent complexity and non-linearities that exist in advanced hybrid and diffractive 
designs. Conventional design techniques are not capable of fully exploiting the SBWP of binary 
optics; more advanced algorithms are required to achieve global solution strategies. Substantial 
work has been done to demonstrate the advantages of genetic algorithm optimization methods in 
diffractive optic design.4>5-6 Genetic algorithms (GAs) are non-deterministic optimization 
algorithms for problems with high dimensionality. This paper documents new techniques for 
applying GAs to diffractive optics design. 

Genetic algorithms are patterned after the natural selection process.7 The process 
manipulates a coding of the independent variables in a population of candidate solutions. These 
candidates are composed of a set of coded variables which are treated as genes. Therefore, a 
possible solution can be described as a chromosome. A typical GA utilizes three operators in the 
optimization of these candidate solutions: parent selection, crossover, and mutation. All three 
operators are implemented in each iteration to produce a new generation of solutions. As 
successive generations are formed, this algorithm samples multiple optima in the solution space 
and, with proper operating parameters, converges to an ideal optimum. The concept of "survival- 
of-the-fittest" as a species optimization algorithm is not new, nor is it's application in the 
microcosm of computer simulation.8-9 Successful design efforts demonstrated to date suggests 
that this approach is well suited to the highly dimensional solution space of diffractive optical 
elements. 

Work to date has centered around the design of two- and three-dimensional fanout grating. 
The applicability of genetic algorithms, however, extend far beyond grating design. A grating is 
routinely described by a discretely sampled phase function within its unit cell. This encoding 
inserts well into the genetic algorithm. Other diffractive elements are described by discrete phase 
and amplitude functions, by continuous phase polynomials, or even by a multiple layers of 
patterned in dielectrics. The optimization of any one of these concepts is complex and highly 
challenging even utilizing a GA. 

In cases where the diffractive optical element is described by a set of phase polynomials, 
efficiently encoding the element as a set of genes becomes more complex. The polynomial set 
should not over-constrain the SBWP of the diffractive optic, or the optimum solution may lie 
outside the limited solution space. To use the polynomial coefficients as genes it is preferable that 
they be independent variables, so the polynomial set should be orthogonal. This is not a firm 
requirement. One strength of GA optimization is that the individual genes need not be completely 
independent. It is also important that proper weighting be applied to the genes to prevent high 
frequency terms from causing instabilities. 



140 / DTuBlO-2 

Figure 1: Decomposition of a continuous phase profile into an approximated profile and the associated "error 
profile". 

By 
tq(x, a) = exp(ipt(x, a)) = exip(ip(x)) exp(-j>e(a:, a)) = tc(x)t*e(x, a) 

and the convolution theorem the diffraction amplitudes of the phase-quantized hologram can be expressed 
by the amplitudes am of continuous phase hologram and the amplitudes of the "error profile" hologram: 
a£j = Y^k=-<x> am-ialV The asterisk denotes complex conjugation. The am are the diffraction orders 
defined by am = f tc(x)exp[— 27rzm:r] dx and so forth. 

2.2    Figure of Merit for signal distortion 

The quantization of continuous phase holograms has to be performed such that the energy loss and the signal 
distortion is minimized. Thus a figure of merit has to be introduced that judges the change of signal due to 
quantization. Since the phases of the output signal are supposed to be of no concern, the following condition 
has to be fulfilled for an optimum quantization: 5Zmeß(c2lam|2 — laml2)2 ~* min, where D denotes the index 
set of diffraction orders of interest (in the signal window [Wyrowski89]). Applying the convolution theorem 
the intensities of the quantized phase hologram can be expressed as 

/ 

\al\2 = \a„ 
' k*0 

\ 

|2|„e 
-k\   \a- '+E«- -kO. m-k-r -k-l 

\ 
B 

1*0 

(1) 

I 
Obviously an optimum quantization has to maximize term A, since signal distortion and energy loss are 
then minimized due to energy conservation QHk la*|2 = *)• The mutual ratios of the diffraction intensities 
are not affected by this term. However, term B changes the ratio since the diffraction intensities are non- 
uniformly increased. Term C finally also alters the ratios of intensities since it lowers or increases intensities 
non-uniformly. 

2.3    Optimum quantization rule 

Assuming that the "error profile" is bound from above (|pe, a| < e) the transmission function can be expanded 
in a Taylor series: tl(x) — exp(—ipe(x, a)) w 1 — ipe(x, a) — \p2

e{x, a). As a result, the zero diffraction order 
of the "error profile" hologram scales with the variance of the "error profile" according to: 

,e*|2 /   P2
e(x,a)dx+ I       pe(x,a)dx\   = 1 - (Ape(x,a))2 
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1 Introduction 

In optical information processing computer generated holograms (CGH) have served as a powerful and versa- 
tile tool [Streibl89]. Usually phase-only holograms are required to minimize energy dissipation. The follow- 
ing considerations are restricted to periodic Fraunhofer-holograms for which the Kirchhoff-approximation 
is supposed to be valid. 

A common design procedure starts from a given intensity distribution in the image plane. Suitable algorithms 
like [Daendliker90] use the phase freedom in the image plane to obtain a phase-only structure. Usually 
continuous profiles are approximated by multi-level staircase profiles to facilitate fabrication. This influences 
the reconstruction quality as outlined in [Goodman70, Dallas70]. However, there are more degrees of freedom 
than the number of phase steps: The positions of the stair steps (transition points) and their heights. Usually 
the heights are preset by the fabrication process [Jahns89]. In the following analytic expressions are derived 
that serve to determine the optimum positions of transition points in the sense that the energy loss is 
minimized. The theory is not restricted to a special profile. The results are illustrated with the help of 
computer simulations. The accordance of the results presented here with those in literature is shown. 

2 Theory 

A phase-only hologram of continuous phase is described by its transmission function according to tc(x) = 
exp[ip(x)], where p(x) denotes the phase profile. The aim is to find a quantized profile with a transmission 
function tg(x,a) = exp[ipq(x, a)], where pq(x) denotes the phase profile of the quantized structure. The 
vector a describes all degrees of freedom of the quantized structure, e.g., the transition points and the height 
of the stair steps in case of a staircase profile. 

2.1    Decomposition of the phase information 

By virtue of the quantization operation an "error profile" is introduced defined by pe(x, a) = p(x)—(pg(x, a)+ 
pc). For further considerations it is convenient to choose the constant pc such that the DC-term of the error 
profile vanishes, i.e. fpe(x)dx — 0. 

Consequently the transmission function of the continuous phase hologram can be decomposed like tc(x) = 
tq(x,a)te(x,a), where te(x,a) = exp[ipe(x,a)] describes the transmission function of the "error profile" 
hologram. 

Since the Kirchhoff-approximation is supposed to be valid this factorization can be thought of as follows: 
A continuous phase hologram placed in a collimated beam of light can be replaced by the phase-quantized 
hologram together with the associated "error profile" hologram (see fig. 1). 
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2.5     Consistency with other theories 

In [Goodman70, Dallas70] the diffraction efficiency scales like fjq — (sinc(l/Z))2 (with sinc(x) := amf£.s') 
due to phase quantization by Z equally spaced (in space and phase) phase steps. It can be shown that 
the lower bound for this scaling parameter obtained by the present model differs by -^ from the value in 
literature. That is both values agree the better the more phase steps are used for quantization. 

3    Numerical and experimental results 

By the algorithm given in [Daendliker90] continuous phase profiles for multiple beam splitters with efficiencies 
close to the theoretical limit [Mait92] were calculated. Expression (1) is evaluated to obtain values for 
performance parameters (see section 2.4). Furthermore, expression (1) serves for estimations of the lower 
(upper) bound of signal-to-noise-ratio (variance). Fig. 4 shows these parameters as a function of equally 
spaced phase steps Z. 

SNR 

64 

VAR 

16    32    64    128 256 
number of phase levels 

16    32    64    128 256 
number of phase levels 

Figure 4: SNR an VAR of a quantized 9-fold beamsplitter as a function of the number of quantization levels. 
The filled dots represent values of computer simulations, the light dots designate the predicted values. 
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Thus an optimum parameter set a0 for the quantized profile is found if the condition 

Vä(Ape(x,5)f\a-B = 0 

is fulfilled. 

(2) 

2.4    Measure of performance 

In order to judge the optical performance of an information processing system application dependend pa- 
rameters are introduced. A basic parameter is the energy loss or the diffraction efficiency, respectively. The 
quantization caused energy loss rjq scales like fjq = \üQ\

2
 according to eqn. 1. Since all the remaining intensity 

not gathered within |ag|2 contributes to signal distortion (see comments to eqn. 1), the quantization caused 

signal-to-noise-ratio SNR4 can be defined as SNR? = 10log f 1_|°«|äJ • 

In the special case of multiple beam splitters (N diffraction orders of the same intensity) a similar measure of 
uniformity is the variance of the intensities within the signal window: VAR? = jf 5Zm(laml2 ~ ]\f Sjb laf P)2- 

2.4.1    A particular profile 

For a special quantization profile, the staircase 
profile, the quantization rule can be elaborated 
in more detail. A staircase profile is deter- 
mined by its transition points xk and the step 
heights hk (see fig. 2). The degrees of free- 
dom a thus defined by a = (xi, ...,XQ,hi,..., AQ). 

The phase profile pq(x,a) can be described by 

Pq(x,a)    =    ELo/l*rect 

x0 = 0, XQ+I = 1 and 

*-(*,,+rM.1)/2> 
Sfc + l— *k 

rect(x) -{ 
|x|<0.5 
sonst 

with 

(3) 
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Figure 2: Schematic picture of a multi-level stair- 
case phase profile. 

Application of the optimum quantization rule 
given by eqn. 2 yields the simple condition: 

p(xk) = hk. 

That is the transition points have to be placed at 
those positions where the (given) step heights of 
the quantization profil coincide with the hight of 
the continuous profile. Figure 3 shows the profile 
of a 9-fold beam splitter together with a quantized 
profile using the optimum quantization rule. 

Figure 3: Continuous and quantized phase profiles 
of a 9-fold beam splitter. The dots indicate the 
locations where step heights and heights of the 
continuous profile conincide. 
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For the two level phase grating the deflection angle varies according to a variation of the relative 
grating period. Additionally, due to the dispersion of the dielectric material used for the fabrication 
of the phase grating, the efficiency of the grating is reduced. For wavelengths other than the design 
wavelength the phase shift caused by the dielectric islands of the grating changes to values other 
than 7T, which reduces the efficiency. 

Angular Dependences 

In the approximation of small prism angles and consequently small deflection angles the deflection 
by a macroscopic prism is independent of the angle of incidence of the incoming light beam. This 
is in contrast to a diffractive deflection grating. There the deflection angle as well as the thickness 
of the phase shift (determining the diffraction efficiency) scales with the cosine of the angle of 
incidence [2]. 

Temperature Dependences 

The temperature dependence of a refractive prism is described by three main material constants; 
the thermal expansion coefficient of the prism, and the thermal variation of the refractive indices of 
the prism material, as well as the surrounding medium. These parameters have immediate effect on 
the prism angle. For bulk elements like macroscopic prisms also the temperature gradient within 
the material has to be considered. 
Diffractive phase gratings are influenced by the same parameters as refractive elements. The ef- 
fects, however, are quite different [3] [4]. The thermal expansion coefficient of the dielectric medium 
causes a change in the grating period and thus the diffraction angle. The variation of the refractive 
index of the medium, however only has an impact on the zeroth diffraction order i.e. lowers the 
energy in the diffracted light. 

Light deflection by a blazed grating 

_    £ 

In the previous section we showed a brief comparison of the behaviour of light deflecting components 
based on the pure effects of refraction or diffraction respectively. Now we want to develop a picture 
which allows to investigate blazed components which combine refractive and diffractive effects. 
Fig.     2 shows how a blazed grat- 
ing  can  be  subdivided  into  a pe- 
riodic sequence of refractive micro- 
prisms.    The periodic  arrangement 
of these microprisms is the origin of 
the diffractive power of the blazed 
structure.   Thus to investigate how 
diffractive and refractive effects are 
combined in such a component we 
look at this prism grating as a convo- 
lution of a microprism with a diffrac- 
tive grating structure: 

Fig.2: Blazed grating expressed as convolution 

H y- 
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The Transition between Diffractive and Refractive 
Micro optical Components 
S. Sinzinger, M. Testorf, W. Singer 

Motivation and Plan 

For the packaging of optical systems generally two main approaches are discussed. People believing 
in the advantages of refractive optics try to miniaturise classical refractive optical components. 
These components are then used to build compact optical systems. The other approach makes 
use of diffraction, an effect which becomes more and more important as the structures get smaller. 
Diffractive optical elements (DOEs) offer a unique variety of functionality which allows to build 
systems with maximum compactness. 
There are, however, some problems with the use of DOEs, e.g. the wavelength sensitivity of its 
properties or the low efficiencies. To achieve higher diffraction efficiencies the designs move away 
from two level diffraction gratings towards highly efficient multilevel phase elements [1]. This, 
however, can also be looked upon as adding a certain amount of refractive power to these DOEs. 
On the other hand, as refractive elements become smaller diffraction plays an ever more important 
role for their properties. Especially arrays of miniaturised refractive microcomponents show effects 
typical for diffractive elements. One example is the Talbot imaging of refractive lenslet arrays. 
Therefore it is necessary to look at these microoptical components as elements containing both an 
amount of diffractive power as well as a certain refractive contribution. In this paper we investigate 
how diffraction and refraction work together resulting in the effect of such hybrid components. On 
the example of a simple light deflecting component (e.g. refractive prism, diffractive grating or hy- 
bride blazed grating) we illustrate effects of varying degrees of diffraction on efficiency, wavelength-, 
and angular dependence, as well as temperature dependence. Even for the blazed grating the shares 
of diffraction and refraction on the total functionality of the component can be varied by different 
blaze depths. 

The pure effects - light deflection by prism or two level diffraction grating 

The job of light deflection can be performed by various different components. Examples for the two 
extreme cases are a purely refractive prism and for the diffractive case a two level phase grating 
(Fig.l). For these cases the calculation and illustration of the dependences is straightforward: 

Wavelength Dependences 

The effect of the refractive prism 
changes under variation of the wave- 
length is due to the dispersion of the 
prism material. The diffractive effect 
at the edges of the prism as well as its 
variation with the wavelength causes 
a finite and A-dependent width of the 
Fourier transform of the deflected 
beam. For a macroscopic prisms this 
effect can be neglected. 

Fig.l: Refraction and diffraction for light deflection 
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(1) 

The Fourier transform of such an element shows the resulting complex amplitudes: 

rn       1   irrt 

smc[(i/x + tan(e)——) • d] • [^ S(vx — ) * smc(uxB)] (2) 

where: vx = f^ and sinc(x) = sm^.x' 

Eq. (2) shows that the total complex amplitude in the Fourier plane of such a blazed grating con- 
sists of the product of a shifted sine-function and a sine-comb. The generally fairly broad, shifted 
sine function results from the light deflection on the single microprisms. It therefore represents 
the refractive part of the element. The width is determined by the lateral extension of a single 
microprism. The sine-comb on the other hand is the diffraction pattern of the grating which is due 
to the periodic alignment of the microprisms. In fig.3 these two parts are plotted independently. 
Thus it is possible and illustrative to investigate the influence of the various parameters, mentioned 
in the previous section, on the different parts of the complex amplitude. This gives good insight 
into the effects on the complete complex amplitude resulting in the Fourier plane behind such a 
blazed grating. Furthermore our approach allows to investigate the influence of different degrees of 
refractivity which can be varied e.g. by different blaze depths. 

Wavelength dependence 

As an example we discuss here the 
wavelength dependence of a grating 
which is blazed into the -1st order 
for a design wavelength Ao = 480nm.        _ 
Fig.    3 shows the refactive (broad        1 
sine function) and diffractive (nar-        a 
row sine peaks) parts of the light dis-        I 
tribution in the Fourier plane.   Due       1 
to the dispersion of the prism ma-        §■ 
terial the refractive peak is slightly        § 
inclined to smaller deflection angles       J 
for  increasing   wavelength.      Much       "° 
stronger, however, is the inclination 
of the sharp diffractive peaks. In fig. 
3 only the blaze order and the two 
neighbour orders are shown (in the 
case of the -1st order being the blaze 
order these are the Oth, -1st and -2nd    Fig.3: Amplitudes of the refractive and diffractive contribu- 
orders). tions of a blazed grating 
In the example of fig.3 the blazed grating consists of 100 periods. Thus the refractive peak is 100 
times wider than the diffractive peaks.  Consequently the change in the position of the refractive 
sine function has very little consequence on the overall complex amplitude. The blazed grating is 
in its behaviour with respect to the wavelength dependence very similar to the purely diffractive 
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grating. This is also illustrated in fig. 4 which shows the product of the refracive and the diffractive 
parts of the complex amplitudes. 
For deeper blaze structures, however, 
the contribution of refraction to the 
effect of the blazed structure is in- 
creased. Then the individual mi- 
croprisms become bigger in size and 
thus the refractive peak gets nar- 
rower. As the extension of the grat- 
ing itself remains the same the rela- 
tive influence of refraction increases. 
This is illustrated in fig. 5 where 
the resulting total complex ampli- 
tude of a grating with blaze depth 
4Ao is plotted. Comparing figs.4 and 
5 it is obvious that the shift in the 
position of the diffraction amplitude 
is less with variation over the same 
wavelength inter vail. 

There is, however, a bigger varia- 
tion on the amplitudes. The reason 
for this is a change from one diffrac- 
tive order to another which falls un- 
der the refractive envelope. This 
causes a transition through a min- 
imum value at the position of the 
diffraction order. 

Fig.4: Total diffraction amplitude of a grating (blaze order 
-1st order) 

Fig.5: Total diffraction amplitude of a grating (blaze order = 
-4 th order) 

Conclusions 

This rather simple illustration of the wavelength dependence of blazed structures will be extended 
to other parameters like angular and temperature dependence. It gives a better understanding 
of the transition between diffraction and refractive optical elements. We especially focus on the 
question how the specific dependences develop during this transition. This will eventually lead to 
the definition of a "degree of refraction" of such hybride elements. 
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1. Introduction 
Recently, tl]"[2] we described a geometric method for designing kinoform lenses for 

stigmatic imaging of an axial object point at finite conjugates. In practice, a diffractive optical 
element is often represented as a phase function. This is quite appropriate in general when the 
diffractive element is part, with conventional refractive and/or reflective elements of a 
multicomponent optical system. Some commercial lens design programs, such as CODE V, have 
the capability to insert diffractive phase profiles into a lens system. The optimum diffractive 
phase profile is attained by using the CODE V automatic design feature. A radially symmetric 
diffractive phase profile  is given by the following power series 

Q(r) = — (Alr
2+A2r*+A3r

6+~) U) 
A 

Once the coefficients of the phase function have been optimised for best performance of the 
optical system, one is left with the determination of the surface relief profile. This can be done 
easily by approximating the thickness of the profile as Z(r)= 0(r)27C A/[2rc(u-l)], where <E>(r)2„ is 
the phase function modulo 2n, X is the design wavelength, and p the index of refraction of the 
material used for the kinoform lens. For a plane kinoform lens, Z(r) is measured along the 
direction of the optical axis, while for a spherical kinoform, Z(r) is measured radially from the 
centre of curvature of the surface. The diffractive element being considered as being infinitely 
thin, the method just described gives approximate results, since thickness and refraction are not 
taken account of. The thickness of the relief being of the order of the wavelength, the relief 
obtained with that method should not differ greatly from the exact shape. However, determining 
the exact relief profile is worth considering and is precisely the goal of this paper. 

2. Determination of the exact blaze profile from the phase function 
Let 0(r) be a known phase function obtained, for example, from a lens design program. 

It can be the phase function needed to make a single diverging or converging diffractive element 
or the phase function generated through an optimization routine for the purpose of reducing 
aberrations in a multi element optical system. With reference to fig. 1, let AP be the surface on 
which a diffractive relief profile is to be added. O is the object point and O' the image point, 
while PmR,,, is the mth zone of the blaze profile to be found from the phase function. The zone 
radii of this kinoform lens are determined by solving the following equation 

Q>(rm)=-sm(2%) (2) 

where s = +1 for positive focal length, s = -1 for negative focal length and m is the zone number. 
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Fig. 1    Geometry and notation for the 
design of blaze profile of a 
kinoform lens on spherical 

substrate from the phase function 

R'(Z,Y) 

The optical path length A(r) within the blaze profile is defined as 

A(r)=»(r) 2n 
A 
271 

(3) 

The surface relief profile is obtained from the phase function O(r), or equivalently from 
the optical path length A(r). Let Xj be the wave front incident on the diffractive element, and J^ 
the exit wave front. The wavefront 2^ will be transformed into the wavefront £2 through a 
physical means giving a phase change of <E>(r). Four different situations are possible: Case I: both 
object and image are stigmatic and the phase function given as <J>i(r); Case II: the object is 
stigmatic , the image non-stigmatic and the phase function given as 02(r); Case HI: the object 
is non-stigmatic, the image stigmatic and the phase function given as 3>3(r); Case IV: both object 
and image are non-stigmatic and the phase function given as 4>4(r). Let the object-image 
configuration be the same for all four cases. If one defines dj3> as the image wave aberration for 
the non-stigmatic image and (LO as negative of the object wave aberration for the non-stigmatic 
object, then one finds that: 

<D2(r) = Oj(r) + rf.O (4) 

*3(r) = ^(r) + d0* (5) 

QA(r) = *!(»") + dp + djt> (6) 

Both the zone radii and the blaze profile will be different in the four cases even if the object- 
image configuration is the same. 

The exact blaze profile will now be derived for the most general case: a kinoform lens 
on a spherical substrate with both object and image being non-stigmatic. With reference to fig.l, 
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the total optical path length, (OPL), , from O to O' through point P' is 

r 
smU 

(OPL), = —L- + &(j)+-I— 
01« IT sinU" 

(7) 

On the other hand, the total optical path length, (OPL)2, from O to O' through points P' and R' 
on the exact blaze relief profile P^ is 

(OPL) 
r r-tm.0 

+ M„ +—^—r- m      smU' smU 
(8) 

The optical path lengths (OPLj) and (OPLz) have the same value. Combining (7) and (8), we 
obtain 

,                  r-t„ sinC/ 
A(r) + —-— = lit +  

V   ' •     rr// ^   m '     111 

(9) 

A quadratic relation defining t,,, is then obtained from (9) as 

where 

AC + Bt+C = Q 
fn ttt 

A = l-\i2 

(10) 

(ID 

B=2 A(r)+L; 

N 

/     \2 

W) 
\2 

-{rsmÜ+(L'-z)casÜJ\ 
(12) 

C = -A2(r)-2A(r)L; 

N 

/   \2 

W) 
k!l3 

\2 

(13) 

In the above, L is the object distance in the case of a stigmatic object, or the distance 
(see fig.l) from A to the intersecting point of the ray incident at P' with the optical axis in the 
case of a non-stigmatic object. Similarly L' is the image distance in the case of a stigmatic 
image or the distance from A to the intersecting point of the exit ray from P' with the optical 
axis in the case of a non-stigmatic image. 
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When one knows the phase function O(r), for example by using the optimisation routine 
of an optical design software, the shape of the blaze profile, coordinates Z and Y (see fig. 1) can 
be calculated. Indeed, as Z = ^cosÜ and Y = r + ^sinÜ (see fig.l), the exact blaze profile is 
easily calculated when ^and Ü are known. The thickness L^is obtained from equations (10) to 
(13), and Ü from Ü = U +1 -1'. The angle U between the incident ray on the diffractive surface 
and the optical axis is equal to the angle between the exit ray of the preceding element and the 
optical axis. The angle of incidence I is equal to the negative of angle U in the case of a plane 
kinoform lens and equal to 8 - U for a spherical kinoform lens, where 6 is the angle between 
the normal at the point of incidence and the optical axis. The angle of refraction I' is calculated 
using the Snell's law at the point of incidence. The value of L' in equations (10) and (11) is 
determined from the ray trace of the ray going through P' at height r. This value can normally 
be obtained as an output when tracing a singular ray with an optical design software. Finally, the 
value for z in equations (10) and (11) is obtained from r the height of the incident ray and R the 
radius of the kinoform surface. 

It is seen that there is no analytical solution for the exact blaze profile in the case of 
finite conjugate imaging. The coordinates Z and Y have to be calculated point by point from the 
values of t,,, and Ü. 

We have considered the case when both the object and the image are non-stigmatic. Of 
course, the calculation are much simpler when the object or the image or both of them are 
stigmatic. The problem of determining the exact blaze profile from the phase function is also 
much simpler when one considers a configuration with an infinite conjugate. 

Fig. 2 Example of exact and approximate 
surface relief profile 

The approximate method for calculating the blaze profile, which has been 
mentioned earlier, should bring two differences if one compares with the blaze profile obtained 
with the exact method. Fig. 2 shows both profiles, the approximate, dashed lines, and the exact, 
solid lines. The first difference concerns the thickness of the blaze and the second difference the 
shape of the thick part of the blaze. In the approximate method, the bottom part is perpendicular 
to the plane face of the kinoform lens, while in the exact method, the higher the order of the 
zone more inclined is the bottom part. 
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As the development of computer-generated holograms and kinoforms, and 
advances in the techniques of optical and electron lithography, it makes possible 
to fabricate various high quality diffractive optical elements ( DOE's). The studies 
on the design and fabrication of the DOE's have become active subject in recent 
years.1-5 The goal of this presentation is to propose a new design approach for the 
diffractive phase elements ( DPE's ) achieving multiple optical functions in a general 
linear optical systems. We generalized the previous theory6-8 to the imaging system 
illuminated by a light beam with multiple wavelength components. We derive a set of 
equations for determining the profile of the surface-relief DPE. By using the derived 
equations and an iterative algorithm, the profile of the surface-relief DPE achieving 
multiple optical functions can be determined. 

An optical system considered here is illuminated by a beam of incident light 
with multiple wavelength components incoherently. Pi and P2 are the input and 
output planes, respectively. The output wave function is linked to the input one at 
wavelength \a by a linear transform function (r(X2,Xi, \a) 6-8 in the form 

U2(X2,\a)=  f G(X2,X1,\a)U1(X1,Xa)dX1. (1) 
/ 

In the general case G may be nonunitary transform. 
In the simulations, the every continuous function is approximately assumed to 

be represented by its values at a set of sampling points ( or pixels ). Assume the 
total numbers of the sampling points are Ni and JV2 = N2a x N\ for the input and 
output wave functions, respectively, where N2s is the number of the spatial sampling 
points on the output plane, and N\ is the number of different wavelengths. Thus, 
we have 

Uin(\a) = />i„aexp(i27r/zln/Aa),     n = 1,2,3...., Nlt (2a) 

U2ma  = P2ma exp(z'</>2ma), (26) 

and 
iVi 

U2ma = ^2Gmn(\a)Ulna,  
m= i»2»3-»^» a = 1,2,3...,Nx. (3) 

n=l 

It is worth emphasizing that in our calculations we will assume that the DPE is 
fabricated by surface-relief kinoform. Here, h\n represents the surface-relief local 
depth in the kinoform at the nth sampling point, independent of the wavelength. 
Thus, the phase distribution in the DPE is given by <f>\na — 27r/ii„/Aa. 

The design problem of the DPE can be generally addressed as follows :  If the 

leaner transform G and amplitude information on U\Q{x\) and U2a{x2) are known, 
how can we determine the profile of the surface-relief kinoform so that Eq. (3) can 
be satisfied to a high accuracy ? 
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To describe the closeness of GV\ to t/2, we introduce a distance measure D2 in 
an L2 norm6-8 as 

£2 =£11^-6^)1^] ||2. (4) 
a 

Therefore, the design problem of the diffractive phase element may thus be 
formulated as the search for the minimum of D2 with respect to function arguments 
h\ and <^>27. 

Through  evaluating the functional variations in  detail,   we  can  derive the 
following equations for determining the pattern of the DPE : 

exp(i27i7iijb/Ao) = ~2*->   k = 1,2,3..., Nx    Ni = N2 = N, (5) 
I Qk I 

where 

Qk = ^{^ Pija exp(-i2irhlj/Xa)Ajk(\a) 
a      j^ik 

-2_^P2jaexp(-ifaja)Gjk(>>a)}(2n/\0!)plkaexp[i(2irhlk/\o)(\o/Xa ~ 1)], 
i 

and 

exp(i(p2ky) = 
Ej Gffcj(A7)pij-7exp(i27r/iij/A7) | 

fc = l,2,3...,iV2s, 7=l,2,3...,iVA. (6) 

Here A0 is the mean wavelength and A(\Q) = G+(Xa)G(Xa). No analytical solution 
to Eqs. (5) and (6) is expected to be available. They can be numerically solved by 
using the iterative algorithm described in Refs. [6-8]. 

To verify the effectiveness of the new design approach, we carry out a simulation 
design for the DPE's capable of both functions of demultiplexing and focusing each 
partial wave in space. The DPE is placed on the input plane. Optical system 
performs a linear transform with a transformation kernel as G(x2,xi; I, Xa) at 
wavelength Xa. In the paraxial approximation and measuring x\ and x2 in units 
of \/Ä~ö7, G(x2,xi;l,Xa) can then be expressed as 

Ao „._/■„_,,»   x_._r-   \   /=       = ^2 G(x2,xi;l,Xa) = \   — exp(i2Trl/Xa)exp[iTrX0(x2 - xi) /Aa], (7) 

x\ = X\l yJXal,   «2 = s2/vAo/. 

The following relevant physical and structural parameters values were chosen 
: The wavelengths of the illumination light waves are ranged over an interval of 
[Xmin — 4000A, Xmax = 7000A]. The spacing between two planes is / = 20mm. We 
assumed a uniform intensity distribution for all wavelength components, i.e., plol is 

constant. We chose the following initial phase for (j>\    — 2-KII\   /A0 in the iterations: 

^0) = 2ö(7V)a;i/Ao - x2,   9 = a;2maxA0iVA7V/(iV2AAZ), (8) 
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where x-imax is the size of the aperture on the output plane. We set the sizes of the 
aperture on the input and output planes to be the same as x\max — X2max — y/Ni 
in units of ^/XQI.    The amplitudes on the output plane are assigned as follows : 
P2a(x2m) = (l/\/N\)6a,m, (« = _ 1, 2, 3..., iVA, m = 1,2,3..., N2s)- Nx equals 8, 
N\ — 64 and N23 = 8. The diffraction pattern on the output plane generated by the 
DPE with the calculated surface-relief profile and the desired pattern are shown in 
Table 1, where the sequence / represents different positions in space, and 7 indexes 
different wavelength components. As shown in Table. 1, the diffraction pattern 
obtained with the designed elements is very close to the desired pattern. It indicates 
that satisfactory design of such multifunction diffractive phase element is indeed 
possible with the new iterative algorithm. 

Table 1. Profile of Relief-Surface of Kinoform and Output Demultiplexed 
Amplitudes at Eight Different Wavelengths 

Position Sequence Calculated Desired Calculated 
Sequence I wavelength 7 Thickness (jum) 92 Pi 

1 1 0.6114 0.3536 0.3613 
2 0.7928 0.0 0.0118 
3 0.0992 0.0 0.0362 
4 0.1317 0.0 0.0209 
5 0.9974 0.0 0.0191 
6 0.1493 0.0 0.0174 
7 0.2475 0.0 0.0425 
8 0.3188 0.0 0.0403 

2 1 0.9367 0.0 0.0225 
2 0.9079 0.3536 0.3469 
3 0.1713 0.0 0.0131 
4 0.3170 0.0 0.0121 
5 0.1986 0.0 0.0174 
6 0.8939 0.0 0.0127 
7 0.8097 0.0 0.0351 
8 0.8669 0.0 0.0627 

3 1 0.9858 0.0 0.0153 
2 1.0859 0.0 0.0184 
3 0.0368 0.3536 0.3363 
4 1.0103 0.0 0.0130 
5 1.0309 0.0 0.0162 
6 1.0454 0.0 0.0395 
7 0.9309 0.0 0.0385 
8 0.0126 0.0 0.0400 

4 1 0.8879 0.0 0.0105 
2 0.8184 0.0 0.0154 
3 0.7504 0.0 0.0240 
4 0.6831 0.3536 0.3631 
5 0.4558 0.0 0.0363 
6 0.3631 0.0 0.0198 
7 0.1760 0.0 0.0348 
8 0.0839 0.0 0.0312 
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Table 1.  ( continue) 

Position Sequence Calculated Desired Calculated 
Sequence I wavelength 7 Thickness {jurn) Pi P2 

5 1 1.0153 0.0 0.0101 
2 0.4997 0.0 0.0138 
3 0.3009 0.0 0.0162 
4 0.2336 0.0 0.0340 
5 0.1663 0.3536 0.3827 
6 0.9673 0.0 0.0541 
7 0.5868 0.0 0.0249 
8 0.3513 0.0 0.0387 

6 1 0.0660 0.0 0.0158 
2 0.8249 0.0 0.0188 
3 0.4764 0.0 0.0111 
4 0.0845 0.0 0.0327 
5 0.6597 0.0 0.0259 
6 0.2118 0.3536 0.3049 
7 0.8512 0.0 0.0217 
8 0.1807 0.0 0.0609 

7 1 0.8084 0.0 0.0245 
2 0.2969 0.0 0.0214 
3 0.9207 0.0 0.0174 
4 0.9510 0.0 0.0252 
5 0.9149 0.0 0.0248 
6 0.3131 0.0 0.0407 
7 0.0453 0.3536 0.3462 
8 0.4814 0.0 0.0288 

8 1 1.0125 0.0 0.0217 
2 0.6230 0.0 0.0170 
3 0.4491 0.0 0.0081 
4 0.0419 0.0 0.0205 
5 0.6363 0.0 0.0216 
6 0.5163 0.0 0.0106 
7 0.2419 0.0 0.0296 
8 0.3368 0.3536 0.3174 

REFERENCES 

1. M. Bernhardt, F. Wyrowski, and O Bryngdahl, Appl. Opt.   30, 4629-4635 (1991). 
2. P. Ehbets, H. P. Herzig, R. Dandliker, P. Regnaul, and I. Kjelberg, /. Modern Opt. 40, 737-645 

(1993). 
3. F. Wyrowski and O. Bryngdahl, /. Opt. Soc. Am. A 5, 1058-1065 (1988). 
4. M. Kato and K. Sakuda, Appl. Opt. 30, 630-635 (1992). 
5. Y. Amitai, Opt. Commun.   98, 24-28 (1993). 
6. G. Yang, L. Wang, B. Dong and B. Gu, Optik 75, 68-74 (1987). 
7. G. Yang , B. Gu, and B. Dong, J. Modern Phys. B  7, 3153-3224 (1993). 
8. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang and O. K. Ersoy, to be published in Appl. Opt. 

(1994). 



DTuB14-l / 155 

Interpolation Approaches to Computer-Generated Holograms 

Nobukazu Yoshikawa and Toyohiko Yatagai 
Institute of Applied Physics 

University of Tsukuba 
1-1-1, Tennoudai, Tsukuba, Ibaraki, 305, Japan 

Tel: +81-298-53-5334 
Fax: +81-298-53-5205 

Introduction 

l 3 Computer-generated holograms      ( CGHs ) have improved significantly the possibilities of 

optical data processing and display. Functional flexibility is the main advantage of CGHs. Its 
extensive use, however, is limited because of a large amount of computation and plotting time. For 
reconstructing N x N resolution points, CGH requires N x N sampling cells. When an object to be 
reconstructed contains a large number of degrees of freedom, the hologram must contains this 
number of sampling cells and needs a large amount of computing time and also a large size of the 
computer memory. If the amplitude transmittance of each object point is not independent, we can 
reduce the required memory size with an interpolation technique of reconstructed image points. 

In this paper we present an interpolation method of image points reconstructed by Fourier 
transform CGH, and its computer simulation.We evaluate reconstructed images generated with 
several interpolation algorithm. 

Description of the method 

Before describing the method, we consider a property of the discrete Fourier transform 
(DFT). For simplicity, calculations in this paper are carried out in one dimension. The extension to 
the two-dimensional situation is trivial because of the linearity of the DFT. We define here the DFT 

series of a sequence of N sample points in the image domain,/(pA)^=0,l,...//-l, as follows, 

f(PA) = ^nnn)exp{inpQA} (1) 
"  n=0 

where A denotes the sampling interval, and Q=2n/(NA). In the case of Fourier transform CGHs, 

F(nQ) is interpreted as the hologram reconstructing the image fipA). Its inverse transform is given by 

F(«Q) = -i X/(/>A)exp{-m/?QA} (2) 
N «=0 

With this specification of Q, there are only N distinct and independent values computable by Eq. (1), 
namely, «=0,1,...,N-1. 

If the sampling period A in the object domain is divided into AT-subperiods, then the new 

period is given by ö=A/K. Since the sequence fipA) provides samples of the desired remaining 

samples by making (M)-time interlace of N sample sequence fipA) with the weight factor p=kö foi 
interpolation. We have from Eq.(2) 
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F'(rn) = -±-^f(pA)p(kS)cxp{i{pA + k8)rQ\ 
A7C p=0k=o 

= F([r]Na)w(r) (3) 

where [r]N = r modulo N, and w(r) is the weight factor in the Fourier domain. The weight factor in 
the Fourier domain is written by 

w(r) = -^Zp(*5)exp(-i*rÄ2) (4) 

The DFT of the sequence given by iST-time interpolation of the original sequence fipA) is the product 

of the sequence F([r]N£2) which is the periodic extension of F(nß) and the weight factor w(r). 

In the previous study, the constant interpolation is implemented. Its weight factor in Fourier 
domain is given by 

± l-exp(2«>/AQ 
Kl-cxp(2mr/NK) 

In this case, the resolution of the image increases because one point sequence of the interpolated 
image is made by AT-time interace. 

We consider here the following four types of interpolation weights p(kS); 

Type A: Separable square interpolation, 

Type B: Separable triangle interpolation (two square convolved), 

Type C: Separable bell interpolation (three square convolved), 

Type D: Separable cubic B-spline interpolation (four square convolved). 

In these cases, the weight factors in the Fourier domain are 

TypeA: oV '        nr/N V ' 

TypeB: (ox{r) = co\{r), (9) 

Type C: co2(r) = (o\{r), (10) 

TypeD: ©,(r) = (o\{r), (11) 

The interpolation types and their weight factor are shown in Figure 1. These interpolation can 
interpolate smoothly between the discrete values. The simplest interpolation weight is the rectangle 
function that results in a zero-order interpolation of samples (Figure 1(a)). A triangle function 
provides the first-order interpolation with triangular-shaped interpolation patterns (Figure 1(b)). The 
triangle function may be considered to be the result of convolving a rectangle function with itself. 
Convolution of the triangle function with the rectangle function yields a bell-shaped interpolation 
weight (Figure 1(c)). Polynomials of order two or greater can be employed as interpolation weights. 
The cubic B-spline is a particularly attractive candidate for image interpolation because of its 
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properties of continuity and smoothness at its extremities (Figure 1(d)). The orthogonally separable 

two-dimensional interpolation function can be defined as oo(x,y)=OJ(x)co(y). 

(a) square (b) triangle (c)bell (d)cubic B-spline 

Figure 1. One-dimensional interpolation waveforms. 

Synthesis procedure and computational verification 

Let us consider a hologram ofNxN sample points. At the first step, its Fourier transformed 
hologram is plotted. By using a step-and-repeat camera, two dimensional multiplication of the Fourier 
transform hologram of N x N sample points provides a mosaic hologram of K x K subholograms, so 
that a mosaic hologram of NK x NK sample points is obtained. On the other hand, a complex filter 
whose transmittance is w(r) is produced, for example, by using the CGH technique. Superposition of 
the weight complex filter on the mosaic hologram reconstructs an interpolated image. 

Alternative is to make a mosaic hologram which consists of K x K subholograms with N xN 
sampling points multiplied by an appropriate weight factor w(r). 

In computer simulation, a normal CGH of 16 x 16 sample points and its mosaic hologram 
given by arranging 4x4 subholograms are synthesized to verify the method. Figures 2 and 3 show 
experimental results. Figure 2 shows the reconstructed image of the CGH of Type A. Same 
subholograms of 16 x 16 sample points are arranged. The weight factor for interpolation is 
rectangular. Each reconstructed point is interpolated as shown in Fig.2. The reconstructed image of 
the hologram with the weight factor given by Eq.(lO) is shown in Fig.3, which is the same as that of 
a single subhologram. Thus each reconstructed point is interpolated as shown in Fig.3. Image 
sharpness of Fig.3 is decreased with the interpolation order, but the image is smoothly interpolated. 

Concluding remarks 

This paper has described that we can reduce the required memory size for computing Fourier 
transform CGHs whose sampling points are not independent. Four types of the interpolation 
techniques are employed. The main advantages of the present algorithm is that a sufficiently large size 
hologram of NK x NK sample points is synthesized by K x K subholograms which are successively 
calculated from the data ofNxN sample points and also successively plotted. This means that the 
required data size in a computer memory is only N x N to make a CGH that reconstructs NK x NK 
image points. 
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Figure 2. Image interpolation of Type A, 
Separable square interpolation. 

Figure 3. Image interpolation of Type C, 
Separable bell interpolation. 
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1.        INTRODUCTION TO DESIGN 
PROBLEM. 

A direct search method has been developed to 
produce high diffraction efficiency single element 
holograms that when appropriately illuminated 
produce a close approximation to a specified 
intensity distribution. Applications include laser 
machining, optical interconnects and matching 
sources to detectors. 
The design of a hologram must be for a physically 
realisable device with a quantized phase and limited 
space bandwidth product. Quantized phase can 
prove problematic for some design methods such as 
"Projection on Constraints"1 2 3, as the restraint of 
quantizing the phase can lock so much phase noise 
into the hologram phase distribution that the 
algorithm does not converge efficiently and the 
reconstructed image is noisy. Attempting to 
represent a continuous phase with a quantized phase 
can be problematic even when error diffusing 
methods4 are used. 
Direct complex amplitude calculation, such as 
carried out by Riley and Birkett5, produces poor 
results because the computed complex amplitude 
distribution contains amplitude variations that are 
not encoded into the hologram and the subsequent 
quantization process does not preserve the phase 
information accurately. This method also fails to 
exploit the image phase as a partial degree of 
freedom. 
It is desirable that the design method incorporates 
quantized phase during optimisation so that the 
design is not disrupted by subsequent quantization. 

Space bandwidth Product, Numerical Aperture 
and Sampling. 
It is fairly simple to demonstrate that the hologram 
must have at least the same space bandwidth product 
as the required intensity distribution. It is also 
important that a continuous image intensity 
distribution is sampled or digitised with the same or 
higher bandwidth. In some circumstances it may be 
desirable to sample at a higher rate than given by this 
bandwidth. 
Usually the desired image contains regions of 
uniform intensity such as lines or patches. For the 
purpose of computation it is necessary to represent 
the required intensity distribution as a set of sample 
points. In order for these uniform intensity regions 
to appear uniform when reconstructed it is necessary 

that sample spacing should be smaller than the 
minimum feature size. The light at adjacent samples 
must be "in phase"6, to avoid destructive interference 
leading to low intensity between samples. This 
destructive interference is seen in some optical 
reconstructions of Fourier transform holograms 
designed using the "Projection on Constraints" 
method, in which the phase in the image is allowed 
to vary in an unconstrained manner. This is not 
important for images of well-separated points as 
used in interconnects, but for uniform areas results in 
optical reconstructions that are far noisier than the 
digital reconstructions. It is therefore desirable to 
restrain the phase variation in the image to some 
extent. Higher sampling rates could be used to 
ensure more uniform intensity distributions but 
would increase the computational effort by a large 
factor. It is better to control the image phase 
distribution during the design process. It is not 
necessary to specify the phase at each point as long 
as it does not vary too quickly across the image. 
This flexibility is a useful degree of freedom during 
the optimisation of the hologram. 

3.        THE DmECT SEARCH ALGORITHM. 

The hologram can be considered to be made of 
pixels each of which adds phase to the incident 
wavefront. The number and sizes of the pixels are 
determined by considering the resolution and space 
bandwidth product of the image. The phase at each 
pixel can take values corresponding to the number of 
phase levels available (e.g. in binary hologram the 
phase can have values 0 and K). In the direct search 
algorithm an initial solution to the phase distribution 
<jid is chosen: for example this could be random or 
uniform. The complex amplitude of the image is 
computed at a set of sample points in the image and 
an initial "cost" (defined below) is then computed. A 
change is then made to the phase of a single 
hologram pixel and the resulting change in the 
complex amplitude at all the selected image sample 
points is calculated. The new cost (or the change in 
the cost) is also calculated. If the new cost is lower 
than the old cost (or the change in the cost is 
negative) the new solution is retained, otherwise it is 
rejected and the previous solution retained. The 
process is repeated until some stopping criterion is 
fulfilled. 
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This process is equivalent to the simulated annealing 
method7 8 with the notional temperature9 set to 
zero. 
The contribution to the image complex amplitude 
from   one   hologram   pixel   is   given,   using   the 
Kirchhoff approximation, by 

exp{-/(*-Ä+#, + £)} 
OAS AU.     =—\U,\ 

(1) 
where AUimage is the complex amplitude contribution 
at the image, Ut is the amplitude at the hologram 
pixel, R is the distance between the image sample 
point and hologram pixel, k is the wave number, <j>d is 
the design phase, </>s is the phase of the incident 
illumination, AS' is the area of the pixel and O is an 
obliquity factor determined by the particular 
configuration. The obliquity factor is usually 
considered to be constant over the range of angles 
subtended by the hologram at the image points. 

Design of Cost Functions. 
The cost function is made up of a set of 
contributions which can be given variable weights. 
For example, the total cost function, C, might be 
constructed as 

C, =aC,+bC\+cCu+dCcu+eC (2) 

where Cr is a cost associated with the required 
intensity distribution at the image, C^ is a cost 
associated with the phase distribution in the image, 
Cu is an amplitude uniformity cost, Cra is a complex 
uniformity cost, C,ah is a cost introduced to help with 
the fabrication of the hologram and factors a-e are 
cost balancing weights. 
The cost, Cj, associated with the required intensity 
distribution in the image is a measure of the error 
between the required intensity distribution and the 
computed intensity distribution, a convenient form is 

r, = £<*;-', r (3) 

where Ij is the intensity and 7} is the target intensity. 
A suitable cost associated with the phase distribution 
can be defined by 

c,= JJ|Y*7-i,fds (4) 

where ^ is the phase and 7^ is the target phase 

gradient given by 

An 
(5) 

where r is a vector normal to the axis of the 
hologram,   from the axis to the image sample point 
and F is the distance from the hologram to the image 
plane. 
The range of phase gradients, <57^ , which allows an 

acceptable   representation   of   continuous   image 
intensity distribution is given approximately by 

sr^J£iL 
FA 

(6) 

where DH is the size of the hologram. If the 
magnitude of the greatest phase gradient is less than 
the range of phase gradients a target gradient is not 

needed, i.e., T < ST^.  This occurs when the size of 

the image is smaller than the size of the hologram. 
The uniformity cost may be defined as 

c = S(M-l« 
image 

(7) 

where ;/   is the complex amplitude at the image 

sample point and \u\ is the average magnitude of this 

over the image. 
A complex uniformity for the set of image sample 
points at which the complex amplitude is u, can be 
defined as 

/. image I k, neighbours 

(8) 

This is useful and easy to calculate. If the image is 
fairly uniform it can be shown that the complex 
uniformity, C , can be roughly written as 

C   *aCt+bCu cu <p u (9) 

The cost Cfab associated with fabrication might be 
used to discourage solutions that are particularly 
difficult to fabricate, for example assigning a large 
cost penalty to isolated pixels with a phase level 
different from all its nearest neighbours. 
It is important to note that the cost function can take 
many other factors into account. 

Stopping Functions and Strategies. 
The direct search algorithm stopping criteria can be 
based on factors such as the amount of elapsed 
computational time, the quality of the solution and 
the estimated probability of a pixel phase change 
being accepted. The latter has produced the most 
satisfactory results. The algorithm is usually stopped 
when the estimated probability of accepting a change 
is low, for instance less than one percent. This tends 
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to ensure that the majority of the pixels in the 
hologram are set optimally and that time is not 
wasted pursuing small improvements. It is important 
not to try to get an absolutely stable solution as there 
is a chance that the algorithm might drift slowly 
through a range of very similar solutions. 

Computational approach 
The direct search method is computationally 
intensive. If the hologram has N2 pixels and 
sampling the whole image plane requires N2 

samples, the procedure becomes an 1ST process. 
However, it is only necessary to sample the bright 
regions of the image as dark regions become darker 
as light is drawn into the brighter regions. Line and 
point images require typically N image samples 
making an N3 process. This significantly reduces the 
computational time required. 
The initial image phase may contain a lot of phase 
noise which can remain "locked in" to the image 
during the optimization. This can result in lengthy 
optimization in an attempt to remove this noise and 
escape this poor local solution. By including phase 
in the cost function, especially at early stages of 
optimization, it is possible to speed up the 
convergence of the algorithm. 
It is advantageous to identify at each stage of the 
optimisation those pixels which are subsequently 
unlikely to change and to concentrate on those pixels 
that are likely to do so. As the solution develops 
fringe structures appear, pixels that are embedded in 
the centre of these fringes are unlikely to change. 
Considering only those pixels that are at the edge of 
fringes, once an initial solution has developed, can 
speed the algorithm considerably. 
If the wavefront incident on the hologram has a 
significantly non-uniform intensity distribution, 
choosing pixels initially in order of decreasing 
intensity also speeds the convergence of the 
algorithm. 
The direct search method is particularly suited for 
use with parallel and vector processing computers 
and the algorithm has been developed to exploit this. 

4. RESULTS 

The method has been used to design a number of 
holograms for laser machining with C02 (10.6um) 
lasers. The image is typically made up of narrow 
lines for laser cutting designs, or rectangular patches 
with a "top hat" intensity profile for laser heat 
treatment designs. These holograms are single 
reflective elements mounted at 45° to the laser beam 
with the horizontal image plane typically 0.5m below 
the hologram. Digital reconstructions of the 
holograms have been made to predict the 
performance of these elements. A figure of merit for 
the efficiency of these elements based upon the 
amount of light in the bright design areas of the 

image compared with the amount of light in these 
areas in an idealised image with sine2 line profiles is 
approximately 92%. The rest of the light is spread 
as a diffuse background or escapes the target area. 
Some of these designs have been re-scaled for 
reconstruction at HeNe wavelength and elements 
fabricated using electron beam lithography. These 
chrome on glass masters have been subsequently 
copied into photoresist to produce phase holograms. 

Fig. 1. A hologram design to produce a rectangular line 

focus from a uniform intensity source and its digital 

reconstruction. 

Figure 1 shows a hologram which has been designed 
using the direct search method to produce a 
rectangular line and the digitally reconstructed 
intensity distribution produced by this hologram. 
The estimated efficiency of this hologram is -90%. 

Fig. 2. A hologram designed to produce a rectangular 

patch of light with uniform intensity from a Gaussian 

laser beam source and its digital reconstruction. 

Figure 2 shows a hologram designed to produce a 
rectangular patch of light 8 mm by 4.5 mm from a 
Gaussian laser beam and the digital reconstruction of 
the image. The hologram contains 350 by 350 
pixels and has binary phase. The estimated efficiency 
of this hologram is ~90%. 

Fig. 3. The optical reconstruction, at 633nm, of the 

design shown in figure 2. 
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Figure 3  shows an optical reconstruction of the 
hologram shown in figure 2 at HeNe wavelength, the 
focal length or working distance of the element was 
~30mm and the size of the patch was ~.5mm by 
25mm. 

5. DISCUSSION. 

JL^.LJv, 
Fig 4. A hologram designed to produce three dots, note 

the fringes are continuous resulting in little high 

frequency noise. The graph shows the intensity profile 

through the three foci. 

Figure 4 shows a simple interconnect hologram. 
Examination of reconstructions of this and similar 
holograms confirms that the spot size is determined 
by the numerical aperture of the hologram. This can 
produce smaller spots than arrays of separate lenses. 

Fig. 5. Shows a hologram design to produce a ring focus 

at F=. lm and a cross focus at F=. 14m figure 6 shows the 

digital reconstructions at these planes 

Figure 5 shows the hologram designed, for 633nm, 
to produce two different images at two different 
focal lengths. The digital reconstructions of the 
hologram at these focal lengths are shown in 
figure 6. This demonstrates the flexibility of the 
direct search method and the very important feature 
that the method is not restricted to two dimensional 
images. 

Fig. 6. Digital reconstructions of the hologram shown in 

figure 5 at F=. lm and F=. 14m 

The direct search method has been used to design 
holograms for which traditional methods such as 
"projection on constraints" are unsuccessful. The 
method produces high efficiency designs, provided 
conditions such as the space bandwidth product and 
the minimum hologram pixel size are correctly set. 
The method does not use FFT routines and 
consequently the "stand alone" holograms require no 
additional optics. The method is not restricted to 
planar images. The image intensity can be specified 
over a shaped surface, for example the surface of a 
cylinder such as an optical fibre. 
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1     Introduction 

A Fresnel zone pattern of variable local power, i.e. the period size, can be formed as a moire pattern between 
a pair of suitable grids. The focal power can be controlled by either shifting, rotating or scaling the grids 
with respect to each other [Lohmann(57. BurchTT. Kolod93], This contribution focusses on the variation of 

focal power by rotation. 

A grid M[x.t/) with curved lines can be described by means of pseudo-periodic functions 4>(.r..ty). Since 
the desired pattern has axial symmetry, polar coordinates are useful: M(r, -p) = ]TA„ exp[2;n<f>(r. ^)]. the 
Fourier coefficients A„ are determined by the groove shape, e.g. amplitude, phase or saw-tooth profiles. 

Thus we disregard problems of light efficiency and false diffraction orders. In [LohmannßT] $(;•. p) — T—p 
is proposed with a scaling paramter a. Similar to shearing interferometry superpostition of two patterns 
rotated by the angle A^ reduces the power in p. The superimposed moire pattern thus is independent of 

the angle p. 

One drawback of such rotation induced moire patterns is the side condition of periodicity in angle. That 
is the function 4>(r. 9) shows a discontinuity at ^ = 2T (see fig. f). One effect is that the transmittivity 
t(r,<p) = M(r,<p — Ar/2)M(r,^+ Ap/2) of an amplitude mask is low in the vicinity ofthat discontinuity. 
An other effect is a sparse sector where no fresnel pattern can be found (see fig. 2). 

Fig.l: Single mask with the phase <t>(r, v~) I . Fig.2: Moire between two patterns of fig.  1 with 
a twist angle Ap> = 0.25TT. 

Modifications of the individual grids are proposed that increase both transmittivity and the useable area of 

the« desired moire structure. 
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2    Theory 

The superpopsition of two masks twisted by the angle Ap with respect to each other can be desribed by its 
fourier representation: 

t{r,p,Ap)    :=    M(r,p + Ap/2)M{r,p-Ap/2) (1) 

=     J2 zL An Bm- exp{2xz[^-i^(<I>(r, p + Ap) + *(r, p - Ap)) + 
m      n 

—f— ($(r, p + Ap) - $(r, v? - Ay))]} 

By proper choice of the groove shape or angular avaraging [Lohmann(5T] the double sum can be reduced to a 
more handy expression. A ronchi ruled /r-phase grid, for example, emphasizes the coefficients A~i,Ai,B-i,Bi. 
Whereas — in case of linear angular dependence — by angular averaging only terms with m = n contribute. 
Consequently terms like <J>(r, p + Ap) ± $(r, ip - Aip) are of major interest. Obviously the difference terms 
serve for the elevation of the angular dependence. 

The aim of the present work is to reduce the impact of the angular discontinuity of <3>(r, ip) at ip = 2x. This 
means that the transmittivity close to the discontinuity has to be enhanced. Furthermore a reduction of the 
sparse area is desireable. 
A particular design of $(r, ip) is the better the more transmittivity T(r) of the resulting moire pattern 
through a disk of radius r can be obtained. Where T(r, Aip) = -p^r JQ

r r'dr' JQ * dipt(r', ip, Ap). Thus as a 
figure of merit we use contour plots of isotransmittivity curves (T{r) = const) as a function of twist angle 
Ap and the radius of the illuminated disk r (see figs. 5,6,9). The lower the isotransmittivity curve the higher 
the transmittivity of the total pattern. 

To enhance both transmittivity and the portion of usable area we propose three different concepts: 

2.1    Angular offset 

The concept of angular offset is based on a function $0(r, tp) = ^(p+Po) which is equivalent to introducing a 
carrier frequency. The resulting moire pattern, however, is not affected by po. Fig. 3 shows the corresponding 
mask with ipa = 0.257T 

Fig.3:   Single mask with the phase $o(r,p,p0), Fig.4: Moire between two patterns of fig. 3 with 
pa — 0.25x. a twist angle A<^ = 0.25x. 

As can be seen from fig. 4 the sparse area is not reduced by the concept of angular offset.  Comparing the 
isotransmittivity curves (figs. 5,6) the transmittivity is substantially increased, however. 
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Fig.(5: lsotransmittivity curve for the moire be- 
tween 4>0(r. 9, y?o) with angular offset ^0 = 0.257T. 
The sparse sector is omitted. 

2.2    Angular symmetry 

The concept of angular symmetry is based on a function $s(r.p) = p-(|y> — TT| + 90). This pattern is 
symmetric with respect to the ■? — 0 axis. Like in the concept of angular offset v?o serves to enhance 
transmittivity close to y> = 0 and -p — ir. Fig. 7 shows the corresponding maskwith^o = 0.25/r 

Fig.8: Moire between two patterns of fig. 7 with 
a twist angle Ay? = 0.25T. 

7:   Single mask with the phase 4>.,(r. ^)  = 

£r(b- 7r| + ro)- yd = 0.5TT. 

As can be seen from fig. 8 the sparse area is doubled compared to the concept of angular offset. Comparing 
the isotraiismittivity curve (figs. 5.(5.9) the transmittivity is even lowered. 

0,0     0,2     0,4     0,6     0,8     1,0 
rotation angle [pi] 

fig.9: Isotransmift ivity curve tor 1 he moire between <1>,,(»-, <p) wit h angular otlset <po = 0.Ö7r.The sparse sector 
is omitted. 
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2.3    Separated centres 

The concept of separated centres of rotation is based on the moire of two patterns from the concept of angular 
offset, whereby the centres of both patterns do not coincide. The centres are rather shifted, say, along the 
x-axis. Then the single patterns are rotated around their fixed centres. This concept is found heuristically. 
The incentive was to get the two centres out of the region where the variable Fresnel pattern occurs. A 
theoretical description is still under research. On the one hand this concept enhances transinittivity by- 
angular offset. On the other hand no sparse area occures within the resulting desired moire pattern (see fig. 
10). 

Fig. 10: Moire of two patterns with angular offset and separated centres with a twist angle of A^ = T. 

3     Conclusion 

Three different concepts for the generation of varifocal lenses by rotational moire are proposed. With 
identical centres of rotation the concept of angular offset increases transmittivity. If additionally the centres 
are separated the desired moire pattern can be kept free of sparse area portions. 

References 

[Lohmann67]    A.W. Lohmann, D.P. Paris: "Variable Fresnel Zone Pattern", Appl.Opt. 6 1567 (1967) 

[Burch77] J.M. Burch, D.C Williams:  "Varifocal moire zone plates for straightness measurements", 
Appl.Opt. 16 2445-2450 (1977) 

[Kolod93] A. Kolodziejczyk, Z. Jaroszewicz:  "Diffractive elements of variable optical power and high 
diffraction efficiency", Appl. Opt. 23 4317-4322 (1993) 



DTuB17-l / 167 

Superimposed grating for use with magneto-optical disk heads 

Shigeru AOYAMA and Tsukasa YAMASHITA 

Omron Corporation, Central R&D Laboratory 

20 Igadera, Shimokaiinji, Nagaokakyou-city, Kyoto 617, JAP AN 

Phone:075-951-5111 Fax:075-951-5124 

In a magneto-optical (MO) disk system, there is a strong need for small- 

size and light-weight optical disk heads to allow for high speed track 

access1. A superimposed grating fabricated by electron-beam lithography 2, 

which simultaneously acts as polarizing beam splitter and cylindrical lens, 

has been developed for use with MO disk heads. This device includes signal 

detection functions such as focusing and tracking error and magneto-optical 

signal detection . 

The purpose of the present paper is to propose a superimposed grating, 

which makes it possible not only to achieve small-size MO disk heads, but 

also to facilitate axial alignment because of the ease of combining different 

optical elements. This paper describes the investigation of the superimposed 

grating with emphasis on clarifying both its fundamental optical 

characteristics and its use in MO disk heads. 

A schematic view of the proposed superimposed grating is shown in Fig. 1. 

The superimposed grating basically consists of two types of an ultra high 

spatial frequency grating (UHSFG)3with mutually different duty ratios . The 

two types of the UHSFG are periodically formed corresponding to the function of 

the off-axis cylindrical lens based on binary diffraction grating. The groove 

direction of the UHSFG is perpendicular to the other. The period is smaller 

than one-half the wavelength of incident light. 
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Figure 2 shows the calculated plots of effective refractive indices vs duty 

ratios4. The UHSFG, illuminated by a plane monochromatic light at normal 

incidence, is described by the refractive indices nj_ and n// for light 

polarized perpendicular to the groove direction and parallel to that, 

respectively. The duty ratios ta and tb of the superimposed grating can be chosen 

for the two types of the UHSFG such that the effective index has the same value 

of no for one polarization. Then, the difference of the effective indices becomes 

na-nb for the other. Hence, by introducing an appropriate depth of groove , one 

can recognize that the phase shift difference becomes for 0 one polarizarion 

and n for the other. The theoretical efficiency of the diffraction grating, which 

consists of the periodical series of the two types of the UHSFG, is approximately 

40 % at the phase shift of n. 

The optical configuration of the MO disk head, using the superimposed 

grating, is illustrated in fig. 3. The light reflected back from the MO disk is 

reflected by the polarizing beam splitter and strikes on the superimposed 

grating after passing through the lens. There, the groove direction of the 

UHSFG 's is set in an about 45 degrees direction with respect to polarization 

of the light reflected back from the disk. It simultaneously acts as a 

polarizing beam splitter and cylindrical lens,as required for signal 

detection. The light polarized parallel to the diffraction grating is 

transmitted and converged while the perpendicularly polarized light is 

diffracted and transferred to the converged light with astigmatic 

characteristics. Focusing error signal and tracking error signals are 

detected from the quadrant photo detector, using the astigmatism principle 

and push-pull principle, respectively. A readout signal is detected using the 

differential detection method. 

Figure  4  shows    cross sectional SEM  photographs  of the   superimposed 

grating   fabricated by   electron   beam   lithography.   The   groove   depth   and 
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period are 1.5pm and 0.3pm respectively for a design wavelength of 0.78pm. 

The   duty ratios are 0.33 and 0.58,respectively. 

Figure 5 shows the experimental results of the diffracted beam spot 

pattern. From these results, one can recognize that excellent astigmatic 

characteristics were obtained. The diffraction efficiency and transmission 

efficiency were 4% and 88% respectively for the perpendicularlly polarized 

light , while efficiency was 36% and 3% respectively for the parallel 

polarized light. The resultant extinction ratios were calculated as — 13dB for 

the diffracted light and — lldB for the transmittted light. 

A superimposed grating, which includes the analyzer functions of signal 

detection and simultaneously acts as a polarizing beam splitter and 

cylindrical lens, has been developed for use with MO disk heads. The 

operating principles of the polarizing beam splitter and the cylindrical lens 

were experimentally confirmed. The superimposed grating promises not only 

to achieve small-size, light-weight MO disk heads but also eliminate the 

complex axial alignment procedure. 
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One of the primary challenges in the development and application of complex photonic 
integrated circuits (PICs) is the packaging of the devices. The coupling of single mode fibers to 
a semiconductor guided-wave device is an expensive manufacturing step and a major part of the 
system losses. For complex circuits in which many channels need to be coupled off of the chip, 
the difficulties are enormous and far from solved. The requirements for a successful packaging 
technology for multiple channel PICs include low loss coupling from single-mode, rectangular, 
semiconductor waveguides to single-mode fibers, hermetic sealing of the package against 
environmental conditions, a means of bringing a large number of optical signal channels out of 
the chip without greatly increasing its size and an efficient means of aligning each of a large 
number of single-mode fibers with minimum losses. The losses of coupling semiconductor 
waveguides to single-mode optical fibers can be large because of the large mode mismatch 
between the elliptical mode from the rectangular cross section waveguide and the circular mode 
of the fiber. The elliptical waveguide mode has a very large numerical aperture (0.9 NA for our 
tightly confined guides) in one axis which is difficult to match to the symmetric mode of the 
fiber (0.16 NA in our case). Hermetic sealing is important for the utilization of PICs in stressful 
environments such as military, aerospace and automotive applications. Photonic circuits today 
are usually coupled to fibers by bringing the output waveguides to the chip edge and butt- 
coupling. As the number of channels is increased, more and more of the chip real estate is use 
for routing of the waveguides and to allow sufficient space along the chip edge for coupling. 
Guided-wave devices with one or two fiber connections are often manually aligned to single- 
mode fibers. This would be a prohibitively expensive process with a large number of fibers. 
Consequently, much effort has gone into methods of monolithically aligning a number of fibers 
at once with techniques like silicon v-groove and solder-bump bonding technology l. 

The approach being investigated at Sandia is based on bringing the optical signals of a 
complex PIC off the chip nearly perpendicular to the chip surface. This allows more efficient 
use of the wafer by not having to route the signals via waveguides to the chip edge. It also 
eliminates the need for a carefully cleaved chip edge for butt-coupling. The surface-emission out 
of the waveguides can be accomplished by second-order grating couplers. The vertical coupling 
of the signals then allows the use of auxiliary optical elements to provide mode matching to the 
fiber. These optical elements are currently diffractive microlenses and allow the fiber to be 
placed further from the chip surface. This enables the placement of the optical fibers in a 
monolithic carrier outside of the transparent package wall with the binary optical elements 
fabricated in the wall material. The proper center-to-center spacing of all the component groups 
(waveguide couplers, auxiliary lenses and fiber array holder) is assured by use of 
photolithography to fabricate each part. The alignment steps are then simplified to the alignment 
of the two monolithic components (PIC chip and package lid/fiber array holder). A depiction of 
the entire scheme is shown in Fig. 1. 
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Figure 1. Advanced packaging concept for complex PICs. 

The semiconductor waveguide technology in development at Sandia is based on 
GaAs/AlGaAs etched-rib waveguides for 1.3 microns in which components such as phase- 
modulators 2 and directional couplers 3 can be fabricated. Typical losses for these waveguides 
are 1.2 dB/mm. This technology is being developed for complex PICs for applications such as 
phased-array radar steering.4 A basic test structure has been designed for prototype testing of 
photonic packaging technology that incorporates waveguide segments with phase modulators 
and second-order grating couplers as shown in Fig. 2. 

STRAIGHT WAVEGUIDE 

ÜTTESTER 

TLM TESTER ADIABATICALLY EXPANDED WAVEGUIDE 

II   — 

Figure 2. Test structure for development of advanced packaging technology. 

A unique combination of second-order grating coupler and adiabatically tapered 
waveguide segment has been developed for coupling the optical signals out of the waveguides. 
The waveguide taper goes linearly from 2 to 50 microns in width in 1 mm. This expansion was 
designed using beam propagation methods to maintain a single-mode output with a reduced 
lateral divergence. A 200-micron-long grating is etched into the waveguide after the complete 
expansion. A 2D Helmholtz equation solver was used to model the fields in deeply etched 
waveguide grating segments to design a short grating with high coupling efficiency.5 The short 
grating length and increased waveguide width improve the beam's aspect ratio. The grating is 
slightly detuned to minimize back reflections in the waveguide and emits approximately 10 
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degrees off normal. A distributed Bragg reflector stack is grown below the waveguide cladding 
to enhance the efficiency of the top-emitted beam from the grating. 

The grating coupler was fabricated by e-beam lithography for both the grating and the 
tapered segment. Special care was taken to ensure a smooth transition between the taper and 
grating region, smooth sidewalls along the taper, and uniform grating lines. The grating pitch is 
0.3825 micron with a 50% duty cycle. The grating is etched to a critical depth using an 
interferometrically monitored etch process. The grating has a 59% out-coupling efficiency with 
a beam divergence of 1 degree along the waveguide length and 2 degrees transverse to the 
waveguide. This reduced divergence decreases the NA requirements for the coupling lenses. 

The diffractive lenses were fabricated in silicon. The lenses were 4 and 8 phase-level 
binary optic designs fabricated by conventional photolithography and dry etching of silicon. 
The designs included both symmetric Fresnel zone designs and anamorphic designs 6 to 
compensate for the remaining astigmatism of the grating output. The surface of a 4-phase-level 
lens is shown in Fig. 3. A variety of 500-micron-diameter lenses with NAs ranging from 0.10 to 
0.32 were fabricated. The 8-phase-level designs were not significantly better in diffraction 
efficiency (76%) than the 4 level designs, indicating that alignment errors were reducing the 
diffraction efficiency. Widths of the phase-zones on the photomasks were held to 1 micron or 
larger, so the third level of the larger numerical aperture patterns were truncated, further limiting 
the utility of additional phase-levels in the designs. E-beam lithography is being used for a 
second generation of microlenses to improve the alignment and allow complete fabrication of 
high NA designs. 

Figure 3. A scanning electron micrograph of a silicon 4 phase-level binary optic. 

The package concept was demonstrated as illustrated in Fig. 4. A 1.3 micron diode- 
pumped YAG laser was coupled via a polarization-preserving single-mode fiber into a 
GaAs/AlGaAs waveguide on a fabricated test chip. The light was then coupled out of the chip 
surface by the adiabatic taper and grating and collected by a silicon microlens 2 mm away. The 
silicon microlens focused the light into the same type of single-mode fiber. The waveguide 
losses, grating output efficiency, and microlens diffraction efficiency were all measured 
independently. The total loss through the system was -18.5 dB. Neglecting the -8.8 dB loss for 
butt-coupling into the waveguide, as measured by OTDR, the coupling loss through the 
waveguide-grating-lens-fiber route was -9.7 dB, including a guiding loss of -2.3 dB in the 
semiconductor waveguide. The efficiency of coupling through the silicon lens into the fiber was 
30% (-5.2 dB) after emission from the grating. We believe this is a promising indication of the 
potential for this application of diffractive optics to packaging of complex PICs. Some obvious 
areas of improvement are improving the diffraction efficiency of the silicon microlenses and 
optimizing the lens design for coupling of the grating output into the fiber mode. The coupling 
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data indicates the anamorphic lenses bracketed the optimum configuration for this application 
and improvement is expected for the next generation. The off-axis emission of the grating is 
necessary because of the need to detune the grating to eliminate feedback problems for the PICs. 
Consequently, the next lens designs will include optimization for off-axis performance so they 
can be positioned with their surface parallel to the chip surface as required for the packaging 
concept. 

This work was sponsored by the United States Department of Energy under Contract DE- 
AC04-94AL85000. 
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Figure 4. Configuration for coupling from ridge waveguide to single-mode fiber via 
waveguide grating-coupler and silicon microlens. 
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New developments in laser technology have resulted in demand for high efficiency 

diffraction gratings, used in reflection, which produce a high quality wavefront while 

exhibiting a high threshold for laser damage. Advances in holographic techniques now 

make possible the manufacture of inexpensive yet high quality gratings, while concurrent 

theoretical developments provide computational procedures that can reliably predict the 

behavior of gratings having quite general groove profiles and coatings. We will display 

examples of predicted diffraction efficiencies for various gratings, describe the techniques 

we use to construct efficient metallic-coated holographic gratings, and discuss the measured 

efficiencies and mechanism of laser damage in metallic gratings. 

Although the presence and direction of orders diffracted from a planar grating follow 

from the grating equation, sin-fr^, - sind,- = mX/d, relating the incident angle #/, the 

diffracted angle ftm for order m, and the ratio of wavelength X to groove spacing d, the 

distribution of energy amongst the orders is determined by the wavelength and polarization 

of the light, the shape of the grooves, and the optical properties of the surface. We have 

examined reflection gratings used in first-order Littrow mount (#_i = - fy) and constrained 

by the inequality 2>X/d> (2/3) to allow only two propagating orders (0 and -1). It has 
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been established [1] that under these conditions the diffraction efficiency of a perfectly 

conducting grating is an oscillatory function of depth, for both TE and TM polarization. 

More realistic models of metal surfaces are known to exhibit oscillatory depth dependence. 

Theory 

Our computations used the multilayer modal method [2]. This method replaces the 

corrugated grating surface by a succession of slices, in each of which the complex-valued 

dielectric constant alternates periodically between two values, corresponding to the 

materials above and below the grating surface. Exact normal mode solutions to the vector 

Helmholtz equation are found within the slices and boundary conditions are matched in 

moment form, to produce a complete solution. For the present study we approximated the 

grating profile by a modified sinusoid, in which the height of the air-metal interface at 

position x is given by the three-parameter function/(x) = h [sin(ivc/d)]2P specifiable by 

depth of modulation h and by exponent p for fixed groove spacing d. A convenient 

alternative to the parameter p is the duty cycle, which we take to be the fraction of the 

grating period in which the profile exceeds hfl. 

We will show computations that predict families of grating profiles having diffraction 

efficiency (in order -1) of 95% or better. We will show examples in which the shape of the 

grating profile (i.e. the duty cycle) has a minor effect upon the efficiency of TM polarized 

light. In other cases efficiencies are strongly affected by duty cycle, for given depth. Our 

results exhibit a succession of maxima and minima as the groove depth increases, thereby 

allowing selection of efficiency by suitably choosing the groove depth and shape. 

Grating Fabrication 

Our gratings are fabricated using a multistep holographic/lithograohic process. In 

brief, we coat a thin layer of photoresist upon an optically flat glass substrate (spin coating 
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for gratings<15 cm and meniscus coating for grating substrates > 15 cm) which we then 

expose to a stabilized interference pattern of laser light at the intersection of two arms of an 

equal path interferometer. The exposed photoresist is developed and then coated with a thin 

metal film (Au, Al or Ag). 

We examined the profiles of the developed photoresist, and the gold-coated photoresist, 

with a scanning electron microscope (SEM). When the photoresist is sufficiently deep, the 

grating profile is sinusoidal and the depth of the grooves is established by the exposure 

time. As these exposure times become longer, the exposed region reaches the lower 

boundary of the photoresist and the groove depth becomes bounded by the thickness of the 

photoresist. Increased exposure then makes the grating ridges narrower. The gold coating 

may distort the surface by filling in the grooves. 

Grating Efficiency and Damage Threshold 

We have obtained excellent agreement between our theoretical predictions and 

experimental measurements of grating efficiency, for a range of groove depths and shape. 

In particular, we have constructed gratings with a diffraction efficiency greater than 95% 

(figure 1). Our results demosntrate that it is essential to model deviations from purely 

sinusoidal profiles and from perfectly conducting surfaces. 

We will also describe a systematic study of the relationship between damage threshold 

and coating thickness, which we believe to be the dominant factor in determining the 

damage threshold of metallic gratings. We will present a simple model for damage, based 

on heat flow considerations, that we have found to account for both long-pulse and short- 

pulse damge to gold films. Specifically, the damage threshold varies strongly with laser 

pulsewidth over the range from picoseconds to nanoseconds. Although the damage 

threshold of the gratings is always slightly lower than observed for uniform metal films, 

we observe the same general dependence on coating thickness. 
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Figure 1. Diffraction efficiency (order -1) versus groove depth (in p.m) for 

sinusoidal gold grating, period 640 nm, wavelength 1064 nm, for TM 

polarization (solid line = theory, solid circles = experiment) and TE polarization 

(dotted line = theory, triangles = experiment). 



DTuB20-l / 179 

Holographic Couplers for Optical Fibers in On-Axis Off-Bragg and Off-Axis Configurations 

Pavel Cheben* and Maria L. Calvo 
Optics Dept., Faculty of Physics, Complutense University, Ciudad Universitaria, Madrid 28040, Spain 

'Present Address:  Nat'l Aerospace Institute (INTA), Space Instrumentation Lab., Torrejön de Ardoz, 
Madrid 28050, Spain. 

Since a coupled-wave theory for volume holograms have appeared in 1969 , 

many    extensions,    modifications    or    particularizations    of    Kogelnik's    approach 
2 

were  done  within  the  coupled-wave framework .   The  alternative  approaches  like 
3 4 

a dispersion equation theory , an integral equation solution or a Feynman 

diagram representation were used less extensively mainly due to its 

mathematical complexity in the case of nonuniform gratings. The fact that 

some optical CAD programs (see e.g. CODE V) still use quasi-one-dimensional 

theories   with   locally   plane   phase   grating   approximation   for   HOEs   design , 

shows large applicability and flexibility of coupled-wave approach. 
7 

In   ref.     it   was   shown  that   the   low  numerical   aperture   of   the   monomode 

fibers    causes    that    it    is    necessary    to    approximate    the    wavefront    of    the 

Gaussian  beam  emerging  from  the  monomode  fiber  by  the  spherical   (cylindrical 

in   2D-geometry)   function   at   the   place   of   the   holographic   emulsion.   Rigorous 

theoretical    description    of    the    diffraction   process    is    needed    in    this    case, 

since not such a treatment was done before. 

The    solution    of    the    problem    was    recently    published    for    the    on-axis 
g 

geometry and off-Bragg parameter B=0 . 

However, in majority of applications when high diffraction efficiencies 

is required, it is fundamental to employ off-axis geometries. Hence, the 

solution for diffraction of off-axis cylindrical wave is required to describe 

precisely the wavefront conversion process. Moreover, due to the shrinkage of 

the    holographic    emulsion   for    a   great   number    of    materials    and    associated 
9 

development processes and due to misalignment errors, it was necessary to 

create a theoretical model for not strictly on-Bragg reconstruction process 

(i.e.  for B*0). 

To solve the second order partial differential equation which results 

from two coupled-wave equations was used the Riemann's method . Two-mode 

approximation was applied in the analysis. To avoid tedious mathematics we 

present only resulting integral solutions: 

a; The case of the conversion between Gaussian beam with cylindrical 

phase and the plane wave for on-axis geometry and for nonzero value of the 

off-Bragg parameter B.   It can    be    shown    that    the    solution    for    the    1-st 
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diffraction order amplitude *   could be expressed in the form: 

f(u) 

xJ <2[(v-v')(u-f(v'))]1/2>dv', (1) 
0 

where: u,v    are generalized coordinates, 

£ is  a transformed u coordinate, 

v'       is a dummy variable, 

v        is a function of u coordinate, 

ß        is a free-space propagation constant, 

T        is a parameter of Gaussian beam, 

k        is a coupling parameter, 

5(B)   is   a   virtual   transversal   shift   of   the   fiber's   rear   face   as   a 

function of the off-Bragg parameter B, 

f(v)   is   a  function   defining  the   curve  where   the   boundary   conditions 

are given for the mode * , 

g(v)  is a value of £ coordinate at u=f(v), 

J        is a zero-order Bessel function of the first kind, 
o 

It can be seen that for the case when the off-Bragg parameter B=0 (i.e. 

5=0)   the   formula   (1)   reduces   to   the   solution   of   the  on-axis   on-Bragg  problem 
o 

published in ref.. 

b; In the case of the conversion between cylindrical and plane waves for 

off-axis geometry and for B=0 it follows for the amplitude tf^ (1-st 

diffraction order): 

V 

V(u'v)=TTE-exp(-J,^d?) HiT&— + J^'d4 
f(-ui     ^ 1 10 

x(sin<?!.cosg(v')-cos^sing(v,))"1J <2[(v-v')(u-f(v'))]1    }dv', (2) 
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where: c is    an    amplitude        of    a    recording    cylindrical    wave    at    unit 

distance from the end of the fiber, 

c is    an    amplitude        of    a    cylindrical    wave    used    during    the 

reconstruction process at unit distance from the end of the fiber, 

a,    a'    are    specific    functions    of    an    off-axis    angle    </>    and    of 

the coordinates u,v. 

The   numerical   results   shown   considerable   difference   in   the   behavior   of 
o 

the coupling process for the on-axis , on-axis off-Bragg (1) and off-axis (2) 

geometries. However, it may be stated, that in all cases both the high 

diffraction efficiencies and high reconstruction fidelities cannot be 

accomplished simultaneously. With an increasing amplitude of a refractive 

index modulation An (hence with increasing value of the coupling parameter k) 

a splitting effect and Bormann-like effects are more pronounced. The effects 

should be analyzed carefully in design of HOEs based on the materials with 

large An capabilities (e.g.  photopolymers). 
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Currently designing and manufacturing optical systems for the UV is mainly a material 

problem. At 300 nm only 5 glasses transmit light and only one has an absorption less than 

10% at 25 mm thickness. At 250 nm the 2 remaining glasses have about 60% absorption. So 

the main material for UV is fused silica, that is highly transmissive down to about 180 nm. 

The only additional materials available are several fluorides. The most commonly used of 

them is calcium fluoride in spite of its brittleness and considerable absorption below 250 nm. 

Optical systems of pure fused silica would be highly appreciated, but the high dispersion in 

the UV make a colour correction even for small laser bandwidths necessary. The diffractive 

colour correction is the only possibility to design hybrid lens systems that can replace the 

limited mirror systems at 250 nm and below. 

Hybrid components have been designed, fabricated and evaluated for use below 200 nm. 

Results are presented and advantages and problems will be discussed. 
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1. Introduction 

From being regarded as a limitation to the perfor- 
mance of optical instruments, diffraction has rapidly 
gained ground as a powerful tool for the synthesis 
of optical elements in such instruments. DifFractive 
optics, which has its roots in old concepts such as 
diffraction grating and Fresnel zone plate, is now one 
of the most dynamic fields of modern optics. Inciden- 
tally, diffractive elements were specifically excluded 
from the IODC '94 optical design problem.1 This 
may be interpreted as an example of the newly-found 
wide recognition of the power of diffractive optics. 

Fabrication of diffractive elements by optical in- 
terferometry (holography) is a well-established tech- 
nique with a wide range of applications. The alter- 
native method based on mathematical synthesis of 
the diffractive structure and its computer-controlled 
fabrication has suffered from a 'noisy' public image, 
but this adverse perception is rapidly being erased by 
advances in numerical synthesis methods and litho- 
graphic microfabrication of surface-relief profiles. 

The basic synthesis problem in diffractive optics 
is illustrated in Fig. 1. The modulated region 0 < 
z < h is illuminated by a plane wave incident at 
an angle 6, and we specify some properties of the 
diffracted field in the signal window W. The speci- 
fied properties define the optical function of the ele- 
ment, i.e., the desired signal. More general synthesis 
problems are encountered in diffractive optics: the 
optical function may depend on the wavelength, the 
angle of incidence, or the state of polarization of the 
incident wave, which is not necessarily a plane wave, 
nor is it always fully coherent. Nevertheless, the sit- 
uation illustrated in Fig. 1 is central in diffractive 
optics and sufficiently general for our purposes. 

Most of the research on the mathematical syn- 
thesis approach has concentrated on the paraxial do- 
main, where the angular extent fiyv of the signal 
window, the central diffraction angle flc, and the 
incident angle 0 are all paraxial, i.e., sinfiyv * ^w> 
sin Qc « fie and sin 6 ta 9 (a notable exception is the 
work on diffractive lenses, where the paraxial approx- 

Figure 1: Illustration of the basic synthesis problem 
in diffractive optics. 

imation is of limited use). However, because of the 
ever more demanding applications and the advances 
in microfabrication of surface-relief structures, which 
make these applications feasible, diffractive optics 
beyond the paraxial domain is gaining significance. 

In this paper, we present a review of some re- 
cent results of diffractive-optics research in the non- 
paraxial domain. A number of new synthesis results 
are given in the resonance domain (fi < ir), and in 
the region between it and the paraxial domain. We 
consider in particular the possibility of exceeding the 
upper bounds of diffraction efficiency2 by the use of 
resonance-domain diffractive structures. Somewhat 
speculative arguments will be presented to trigger 
further research on theoretical topics that we con- 
sider important. 

2. Paraxial-domain diffractive optics 

A respectable range of synthesis methods are avail- 
able in the paraxial domain, whether the signal win- 
dow W resides in the Fresnel or Fourier region of the 
aperture, and whether the signal is two- or three- 
dimensional, continuous, or discrete.3'4 

Paraxial signals can be generated by weakly scat- 
tering diffractive elements. This means that either 
the surface-relief profile (if it is at least nearly con- 
tinuous) or the index-modulation profile varies slowly 
compared to A or, if the profile is severely quantized, 
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the transverse features are considerably larger than 
A. Thus polarization and multiple-scattering effects 
are not significant and we may use geometrical optics 
to predict the response of the element (the field at 
z — h if the field at z = 0 is known). Quite generally, 
the well-known Fresnel and Fraunhofer diffraction in- 
tegrals can be used to propagate the field from z = h 
into W, and also to solve the inverse propagation 
problem from W to z = h. 

Modern synthesis algorithms make full use of the 
degrees of freedom provided by the optical func- 
tion of the diffractive element: we have the free- 
dom to choose the complex amplitude outside W, 
the freedom to choose the scale factor (diffraction ef- 
ficiency), and often also the freedom of phase inside 
W. These algorithms also accommodate constraints 
such as fabrication-related requirements to restrict 
the profile into a phase-only form, or to a quantized 
structure with Z permitted phase-delay levels. 

The design of diffractive elements in the paraxial 
domain stands on firm foundations, provided that 
the thin-element approximation also holds.5 It is, 
e.g., possible to give an upper bound TJI for the 
diffraction efficiency r] of any diffractive element that 
generates the specified signal within W, with the dis- 
tinction that r)i does not depend on the actual form of 
the diffractive structure. If there are no constraints 
on the profile and the signal is discrete, we typi- 
cally have TJI > 90°. If the signal is specified off-axis 
and the element is permitted to have only Z discrete 
phase levels,6 the upper bound is reduced by a factor 
sine2 (1/Z). For inversion-symmetric on-axis signals, 
high upper bounds (771 > 80%) can be achieved for 
hermitian signals (which can be produced by binary 
elements). 

3. Resonance-domain diffractive optics 

Relatively little is known about diffractive optics be- 
yond the paraxial domain. In this non-paraxial do- 
main it is typically advisable to apply rigorous elec- 
tromagnetic diffraction theory to the analysis and 
synthesis of diffractive elements, although in certain 
circumstances (e.g., in diffractive-lens design) sim- 
pler theories such as geometrical optics are valuable. 

The electromagnetic theory of diffraction grat- 
ings is well established.7,8 A wide range of numerical 
methods exist, most of which can be extended to 
more general diffractive elements. The choice of the 
method depends on the type of profile. For Z-level 
quantized profiles with a low value of Z, rigorous 
coupled-wave methods8 and eigenmode methods9 are 
recommended, except for the case of highly conduct- 
ing gratings in TM polarization, where the conver- 
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Figure 2: Example of a resonance-domain beam- 
splitter element with a three-dimensional modulation 
profile: (a) Far-field signal, (b) Grating structure. 

gence is not satisfactory. A Legendre function for- 
malism of Morf seems to overcome the difficulty,10 

as does a rigorous modal formulation.11 For contin- 
uous surface-relief profiles, differential and integral 
methods are available, of which the latter perform 
better for highly conducting gratings.7 

It is worth noting that many of the symmetries 
that apply in the paraxial domain no longer hold 
beyond it. For example, the signal generated by a 
binary surface-relief grating is hermitian only if the 
grating profile itself is symmetric and the incidence 
is axial. The potential that the breaking of such 
symmetries may provide in the synthesis problem are 
not yet fully understood. 

In grating theory, there has been considerable 
interest in the optimization of the profile to ob- 
tain a high first-order efficiency (to 'blaze' the grat- 
ing). Significant results have been obtained by 
parametric optimization with gradient algorithms.12 

These methods have recently been extended to more 
general synthesis problems in resonance-domain 
diffractive optics,13 where we have attempted to 
control the efficiencies of all transmitted or re- 
flected orders. Such multiple-beamsplitter gratings 
have applications in, e.g., substrate-mode optical 
interconnection.14 

In Fig. 2 we present a new result, in which the sig- 
nal is two-dimensional and therefore requires a three- 
dimensional grating-modulation profile. The signal 
is a closest-packed array or seven beams, and the 
grating structure is a hexagonal arrangement of di- 
electric pillars (refractive index n = 1.5, depth h = 
1.181A, diameter D = 1.176A). The grating is syn- 
thesized by considering a cartesian period d x y/3d, 
where d = 1.643A, using an three-dimensional exten- 
sion of the eigenmode formulation9 and a gradient 
algorithm. The transmission-mode diffraction effi- 
ciency into the seven signal orders is r\ = 92%, and 
the efficiency variations among the orders are ±11% 
(with axial polarization). 
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Figure 3: Optimized four-level grating profiles: 
(a) d = 2A. (b) d - 4A. The first-order efficiencies 
rjopt of the optimized solutions and the efficiencies 
Vstair of the staircase solutions are: (a) 7?opt = 70.1%, 
rjstair = 26.0%. (b) Tjopt = 75.5%, 77Btair = 63.5% 

Other important solutions of the synthesis prob- 
lem in the resonance domain have been published re- 
cently: we wish to draw particular attention to grat- 
ing antireflection layers, wave plates, and narrow- 
band filters.15"18 

4. Local synthesis by rigorous theory 

The use of rigorous electromagnetic approach to syn- 
thesize a diffractive element is a heavy computational 
task if the grating period is an order of magnitude 
greater than A in the case of two-dimensional mod- 
ulation, and even more so if the profile is three- 
dimensional. Thus exact synthesis appears feasible 
only in the resonance domain. However, it is often 
possible to employ 'hybrid' design concepts, where 
we combine an approximate method of determining 
the optical function with a locally rigorous electro- 
magnetic design of the profile. 

Local synthesis results are applicable, e.g., in the 
design of diffractive lenses. Here the optical func- 
tion can be determined by geometrical optics, but 
the thin-element approximation is not valid for high- 
numerical-aperture lenses.19 By local optimization 
of the multilevel grating structure,20 and using the 
detour-phase principle21 to correct the local phase er- 
rors, one can synthesize diffractive lenses with a sig- 
nificantly enhanced efficiency.22 Figure 3 illustrates 
some four-level structures obtained by parametric 
optimization. They depart quite significantly from 
the paraxial staircase profile, and the improvement 
of efficiency is appreciable. 

A local use of rigorous theory is valuable also is 
the parabasal region, where ßyv < Ti but 0 and/or 
Clc are non-paraxial.  In this region, binary pulse- 
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Figure 4: Efficiency of a two-beam fan-out element 
in the transition domain, compared to r)\. 

frequency-modulated surface-relief profiles can be de- 
signed with an efficiency comparable to that of un- 
constrained phase elements in the paraxial domain.23 

Similar efficiencies can be achieved by pulse-width- 
modulated paraxial-domain elements with a sub- 
wavelength-period carrier grating.24,25 

5. Transition region 

Although the above-reviewed investigations reveal a 
great deal of valuable information on diffractive op- 
tics beyond the paraxial domain, they shed little light 
on the behavior of diffractive elements in the transi- 
tion region, where 0 < ßyy < "K- 

Resonance-domain synthesis yields efficiencies 
significantly in excess of the paraxial upper bounds 
T]i, because we specify the undesired orders as evanes- 
cent. It is of considerable theoretical interest to de- 
termine whether rjj can be exceeded also in the tran- 
sitional domain, or perhaps even in the paraxial do- 
main, by the use of small-scale diffractive structures. 
We emphasize that such structures are not neces- 
sary for the realization of a paraxial optical func- 
tion, and note that neither the synthesis techniques 
of Refs. [23-25] nor the analysis of optically recorded 
elements26 suggests such a possibility. 

We consider a simple optical function of split- 
ting a normally incident plane wave into two equal- 
efficiency orders ±1, with the zeroth order sup- 
pressed. In this case 77; = 8/TT

2
 « 81%, and it can 

be achieved by a single-groove binary surface-relief 
grating with a 1:1 aspect ratio and a phase delay of 
IT. In Fig. 4 we consider a perfectly conducting sub- 
strate and find the first maximum of 77 as the groove 
depth h is increased, for a range of periods d. The 
efficiency increases significantly above 77j only as the 
element enters the resonance domain. 
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Figure 5: (a) Amplitude and (b) phase of the electric 
field diffracted by the profile (c). 

To evaluate the possible efficiency improvement 
by the use of smaller transverse features, we con- 
sider the two-beam element with d/X = 3.9, 4.9, 5.9, 
and 6.9. By adding a number of extra grooves, we 
obtained T) = 91.8%, 89.5%, 90.0%, and 89.6%, re- 
spectively. Thus the efficiencies are some 8.5 - 11% 
above r/t, and there seems to be no definite decrease 
of Tj when fiyv approaches the paraxial domain. 

The phase and amplitude of the propagating part 
of the electric field at the exit plane of the grating 
with d/X = 6.9 are plotted in Fig. 5(a) and 5(b), and 
the optimized profile is illustrated in Fig. 5(c). Nei- 
ther the amplitude (which has values > 1) nor the 
phase follows the grating profile, as is the case when 
paraxial-domain diffractive elements are treated us- 
ing the thin-element approximation. 

The case considered above is rather special, and 
further research is required to determine whether, 
in general, resonance-domain structures can be used 
to enhance the efficiency of diffractive elements for 
paraxial signals. 

6. Conclusions 

We have demonstrated that parametric optimization 
of the diffractive structure by exact electromagnetic 
diffraction theory can significantly enhance the ef- 
ficiency of diffractive elements in the resonance do- 
main, and provided evidence that small-scale struc- 
tures may improve the efficiency also in the transition 
region quite close to the paraxial domain. 
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Planar optical systems are attractive because they perform unique operations on confined 
optical beams, reduce the size and weight of an optical system, allow for manufacturing methods 
similar to those in the micro-electronics industry and potentially reduce the cost of an optical 
system by minimizing the quantity of specialty materials. Despite the increase in available power 
from diode lasers, two applications requiring high efficiency of input coupling are optical 
recording heads and second-harmonic blue light generation. 

To obtain high input-coupling efficiency T| using waveguide gratings, the percentage of 
total guided-wave power exiting the waveguide in the direction of the cladding or substrate, 
branching ratio BR, should be maximized.  Methods of increasing the BR include: (1) shaping the 
grating-groove profile,1 (2) incorporating a highly reflecting substrate,2 and (3) fabricating 
gratings on both the upper and lower surfaces of the waveguide,3 referred to as double-surface 
corrugation. 

Here we present a method similar to that of Ref. 3, but rather than forming the waveguide 
by sputtering, the film was formed by evaporation. As with sputtering, the deposited layer 
conformed to the corrugation of the grating at the substrate-waveguide boundary to produce a 
second grating of the same period at the cladding-waveguide surface . However, by using the 
evaporation technique, a preferential angle-of-deposition <pd can be selected allowing a shift of the 
upper-grating pattern relative to that of the lower grating;  the final deposited thickness will 
determine the upper grating lateral shift.  A grating coupler having double-surface corrugation is 
schematically shown in Fig. 1. The gratings have identical periods A, but distinct groove depths 
hx and h2 and duty cycles (L/A) dci and dc2- The lateral shift Az between the gratings is also 
illustrated. 

Figure 1.  Geometry and coordinate system of a 
grating coupler having double-surface 
corrugation. 

Figure 2.  SEM of the double-surface 
corrugation for a waveguide of thickness 0.42 
l^m showing the angle-of-deposition <pd and the 
lateral shift Az. 
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When a guided wave enters the grating region, both gratings will diffract light into the 
cladding or substrate.  The light that is coupled out of the waveguide into the cladding or substrate 
is the result of optical interference between the two first orders diffracted by the two gratings.  The 
relative strength of the two interfering waves depends primarily on the ratio of the two grating 
groove depths, hi and h2, and the index difference at the boundaries.  The phase difference 
between these two waves can be changed by a lateral shift Az of the upper grating. A key to 
understanding this interference phenomenon is to realize that a first-order diffracted plane wave 
undergoes a phase change of -KAz, where K = 2n/A, while the zero order suffers no phase change 
with the lateral shift. In comparison to all other dimensions of the grating system, the adjustment 
of Az has the most significant effect on the phase difference of the interfering diffracted waves 
and the resulting BR. 

Our approximate model, to be presented elsewhere, produces a simple analytical formula 
for the dependence of the BR on the waveguide-grating assembly. The model assumes that both 
grating groove depths are shallow and the profiles are sinusoidal. For the following equations, c, f, 
and s denote the quantities associated with the cladding, waveguide film, and substrate, 
respectively.  The expression for BR (TE polarization) into the cladding is 

R(c) |f 12 
BR ß-1 |fJ 

tf?| I2 + R(s) 
{   + P-l f r 

where 

fc = 
(ß?+ß(-T 

W (f) R(S) 
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2ß'.? 

ß'i'+ß? 
W-ns h2e

lM 

(1) 

(2) 
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(ßS+ßS) 
MJJO!   

2ß-?    (n^    2) h eWlMt). (nf2.ns2) h2 

IßP+ßiTlßS+ßS (3) 

ßm   = k(y 4 N + m^ 
A' 

k = c, f, s   and m = 0, -1 
(4) 

and N is the effective refractive index of the waveguide. In the case where m = 0, and k =c or s, 
(k) (k) (k) 

the sign of ßm   should be chosen so that ßm = l ßm    (we assume nk, k = c, f, s, are lossless). 
Similar to the case of blazed gratings, the behavior of waveguide grating couplers with double- 
surface corrugation are sensitive to guided-wave propagation directions.  In Eqs. (l)-(4), we have 
assumed that the guided wave propagates in the +z direction. 

The relief grating at the substrate surface was fabricated by forming a photoresist mask 
and then ion milling the grating grooves into the substrate in combination with positive photoresist 
image-reversal techniques.4 Three adjacent grating areas were formed to allow BR and r\ 
measurements in either direction of propagation.  The waveguide was formed by thermal 
evaporation of an organic glass.5  Using high-vacuum coating conditions, a specific angle of 
deposition can be selected by tilting the substrate normal relative to the direction of material 
deposition and the corrugation on the substrate was transferred to the surface of the waveguide. A 
consecutive series of waveguide thicknesses were deposited at a constant angle <pd onto a substrate 
during a single coating cycle by moving a deposition mask.  This fabrication procedure ensured 
identical deposition parameters and substrate conditions for each region of different thickness. 
Figure 2 shows a cross-sectional view of the waveguide grating for (pd = 13.5°. The growth of the 
film distorts the duty cycle dci and groove depth hi, and causes a lateral shift Az.  Approximate 
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Figure 3. Optical system for measuring the BR and T|. 

relations between these grating parameters and the waveguide thickness were determined and used 
in the model to best describe the upper grating characteristic. 
Experimental BR and TJ were obtained using the optical system of Fig. 3. The sample was 
mounted on computer-controlled stages that provided sample rotation and translation while 
monitoring the beam intensities to optimize the sample position. The selection of the lens to focus 
the Gaussian beam onto the sample was critical to maximize the T| value. The regions of the 
grating chosen for optimization were those that exhibited the highest T) values.   Background 
intensities Ii' and 12' were collected by displacing the sample along the direction of the x-trans 
stage enough to move the incident beam off the grating area. The BR is then obtained from the 
expression 

BR=       ft"1'") 
(I, + I2)-(Ii'+l2)   . (5) 

The input coupling efficiency T) is the ratio of the power coupled into the guided mode to the 
power of the incident beam.  The input coupling efficiency was determined indirectly by 
measurement of the non-guided beams originating from the input-coupling grating surface and 
subtracting them from the incident beam intensity.  A fraction of the incident intensity was 
scattered from the grating surface and unavailable for input coupling.  The intensity of scattered 
light Is was determined by rotating the grating until light was no longer input coupled, then 
reading intensities Ii, Ir, and It for the incident, reflected, and transmitted beams, respectively. The 
scattered intensity is then expressed 

Is = [li-dr + It)]. 
no coupling, 

and the  expression for input coupling efficiency becomes 

il = 
(lj-I,)-(lr + It) 

(Ii " Is) 

(6) 

(7) 

The scatter term was included to account for non-uniformities in the grating and waveguide, and 
removes the effect of scattered intensity from this data for comparison to model values. Also, the 
thicker waveguide regions supported two modes (TEo and TEi), however, only the TEo mode was 
observed to be excited and no substrate modes existed for this waveguide-grating design. 

For +z and -z propagation, the experimental BR values into air (see Fig. 4) ranged between 
4% and 98%. These data points illustrate the dramatic effect of Az on the BR and that a high BR 
could be selected by a specific waveguide-grating design. There was good agreement between 
these experimental and model results (see Fig. 4) and the thickness for the intersection for the +Az 
and -Az cases. Despite the lower amplitudes, the approximate model provides a means of selecting 
a high BR for a specific material system using the angle-of-depositon. 
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By virtue of reciprocity,  an efficient output grating coupler is also an efficient input 
coupler.   The output coupling efficiency (into cladding or substrate) of a grating coupler is 
essentially given by the branching ratio,  provided the grating is sufficiently long.  The input 
coupling efficiency is directly proportional to BR, so an increase of BR directly improves input 
coupling efficiency.   This is demonstrated in Fig. 5 where experimental efficiency curves are 
overlayed with the corresponding experimental BR curves.  The theoretical limit of input coupling 
efficiency into a single leakage channel grating coupler (100% BR) using a Gaussian incident 
beam is about 80%. Input coupling efficiencies near the theoretical limit were obtained for 
thicknesses where the BR was near 100%. The maximum input coupling efficiency observed in 
this work was 78%, the highest value reported to date for optical wavelengths. 

In this work we have demonstrated a new method of fabricating a double-surface 
corrugation advantageous for input coupling when the over-all efficiency of a device must be 
considered.  In a simple way, a thermally deposited waveguide layer on a surface relief grating can 
be used to significantly enhance the BR and corresponding T| of the grating coupling process. 
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Figure 4.  Experimental (plotted points) and 
theoretical (lines) BR results into air for 
propagation in the +z (• and ) and -z (♦ 
and ~ •- •) directions where the model results 
are from Eq. 1 using measured waveguide- 
grating parameters. 

Figure 5.  Experimental TJ for air-incidence 
using a 300 mm focal length lens (•) for the 
sign of the deposition angle as depicted with the 
experimental BR from Fig. 4 ( ). 
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1    Introduction 
The optical function of a diffractive element (DE) is to transform an impinging wavefront into a diffracted 
wavefront being defined in a signal window. A fundamental objective in diffractive optics is to design DEs 
capable of performing such a transformation according to some specification. In the paraxial domain of 
diffractive optics, optical systems can be described by Fourier optics [1, 2, 3]. 

The published literature normally considers plane illumination waves. This simplification is usually 
sufficient for periodic DEs, e.g. gratings, leading to discrete diffraction patterns. If the modulation scale 
of an illumination wave is large compared to the grating period, "only" the shape of the diffraction orders 
is influenced. However, the situation changes drastically if non-periodic DEs are used. An illumination 
wave deviating from a plane wave influences the diffraction pattern and thus the optical function of the DE. 
Applications can be found for instance in beam shaping, optical pattern recognition, pattern projection in 
material processing, and display. 

The effect of the illumination wave on the optical function of non-periodic DEs should be analysed without 
restriction to a special application. Examinations in this paper are based on the standard 4/-configuration. 
The system input is an optical field denoted by a/(x), x € B?. Its Fourier-transform Ai{u) = (Jra/)(u) is 
modulated by the transmittance function F(u), u G R2, of the DE. A second Fourier-transform yields the 
system output 

ao(x) = ai{x) * f(x) , (1) 

disregarding a coordinate inversion; * denotes a convolution. In this case, the function of a DE can be 
interpreted as a convolution with its impulse response f(x) = (TF)(x). 

For many applications the system input ai{x) is completely specified by the illumination wave, whereas 
only the intensity of the system output L0{X) is defined in a signal window W. The problem of designing a 
DE capable of performing a specified function on an incoming wavefront can be solved for the coherent and 
incoherent case. For these two cases the system outputs are, respectively, 

coherent illumination    :    to(x) — \aj(x) * f(x)\~ 

incoherent illumination    :    io(x) = ti(x) * \f(x)\2 , (2) 

with t/(z) = |a/(z)|2 [4]. 
In section 2, the impulse response f(x) for non-periodic DEs is defined in terms of a/(x) and a0(x) for 

the coherent and the incoherent case. It will be shown that this definition is not unique and thus, there 
are several degrees of freedom which may be used to satisfy constraints on F(u). Section 3 deals with the 
synthesis of f(x) and finally in section 4 examples are given to demonstrate the applicability of the proposed 
methods. 
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2     Description of impulse response 
Assuming that the system input and output are given, an expression for the impulse response f(x) of the 
DE can be derived directly. In the case of coherent illumination, we get 

f(x) = r(Ao(u)/Ai(u)), (3) 

with Ao(u) = (J7_1ao)(u) and Ai(u) = (.Fa/)(u). The deconvolution of two positive real-valued functions 
does not necessarily lead to a positive real-valued function. Thus in the case of incoherent illumination, the 
impulse response function may be defined by 

where ip(x) is a free parameter and the bias term b is given by 

/? = max(o,-min^_1
to(a!H (5) 

L i       T  lii(x) ) 

The value of the bias term strongly depends on the application. 
Since a DE does not amplify an incoming wavefront, its function is restricted by the relation |F(u)| < 1. 

However, division by Aj{u) in (3) or by {F~li[)(u) in (4), respectively, will introduce large values if the deno- 
minator is close to zero. Additionally, singularities appear at the zero crossings of the denominator. In order 
still to obtain a good approximation for f(x), the distributions Ao(u)/Aj(u) and {T~l io){u) / {F~l LI)(U) , 
respectively, can be clipped to a suitable maximum value followed by a normalization operation [5, 6]. One 
further practical restriction is the finite size of the DE being equivalent to the desire for a band-limited f(x). 

Equations (3) and (4) do not specify f(x) completely. Considering coherent illumination in (3), the phase 
arg(ao(a:)) is a free parameter influencing f(x) indirectly via Ao{u). In the incoherent case represented by 
(4), the phase arg(/(x)) is a free parameter which is only restricted to bandlimitation. 

3     Design of diffractive element 

In principle, degrees of freedom can be used to fulfil constraints on the distribution F(u) of the DE. This 
idea was first proposed by Liu and Gallagher [6] for the case that only the intensities of the coherent system 
input and output are specified. In this paper, the effect of a modulated illumination wave on the optical 
function of a DE is examined. Therefore, the phase of a coherent system input aj{x) is not free. 

Since a DE is finite in size, a band-limit constraint is fundamental for its design. Depending on the element 
type, e.g. amplitude- or phase-only element, further design constraints have to be taken into account. As an 
example we discuss the design of a diffractive phase element (DPE), starting from a band-limited distribution 

Equation (4) is a basis for synthesizing the impulse response f(x) of the DE in the incoherent case. The 
phase arg(/(a;)) can be chosen in such a way that f(x) fulfils the band-limit constraint [8]. The problem of 
generating DEs realizing other constraints can be solved by iterative methods [7, 2]. 

The coherent case is more complicated, since the free phase parameter arg(ao(s)) influences f(x) indi- 
rectly. In principle, equation (3) offers a solution for f(x) that can be modified by iteration techniques in 
order to fulfil additional constraints. But this approach does not allow to make use of the indirect phase 
freedom which is a significant disadvantage. 

We present a version of the iterative Fourier-transform algorithm [7] which gives us the possibility to 
influence constraints on the DE function F(u) directly via arg(ao(x)). An implementation for generating 
band-limited DPEs is given by the following steps: 

• Let (Ao)j(u) = (J7~1(ao)j)(u) after j iteration steps. We define the function of the DE by 

F(u)=( (Ao)j(u)/Mu)    :    \Aj(u)\^0 
\ 0    :    otherwise        ' *■ ' 
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• Fj(u) has to fulfil a band-limit and a phase-only constraint. Both constraints can be introduced by an 
operator U which is defined as follows: 

(u*j)(u)- | 0   .   otherwise   . v ; 

where D is a window which size is half of the size of the spectral bandwidth &(A0)j(u) of (a0)j(x). 
Other constraints, e.g. a quantization, may also be introduced. 

• The coded DE distribution Fj(u) = (UFj)(u) multiplied with ^/(u) is required to reconstruct a0(x) 
in the output plane. Thus, the iteration moves back to the output domain by a Fourier-transform of 
Äo{u) = Fj{u)AI{u). 

• A correction of the resulting distribution {ä0)j(x) in a signal window W is performed by an operator 
X defined by 

{X{a0)j){x) - | (äo)j(x)    :    otherwise    ' {> 

The scaling factor a can be used to optimize the diffraction efficiency of the DE [2]. 

• The distribution {a0)j+x{x) = (X(ä0)j)(x) represents the system output for the next iteration cycle. 

The iteration starts in the output domain with a band-limited complex distribution (ao)o(x) being defined 
in a signal window W and fulfilling (ao)l(x) - io{x). In order to interrupt the procedure, an error criterion 
or the number of iterations may be used. The result after n iterations is a coded DE distribution Fn(u). 

An error criterion may be defined by 

<r2 =  / H/(x)| - \a0{x)\fdx (9) 
Jw 

with the scaling factor 

a= ^Jw\f(x)\\äo(x)\dx^ / Qw\f(x)\2dx^j (10) 

This scaling factor is introduced in equation (8) of the iterative Fourier-transform algorithm. It is chosen in 
such a way that in each iteration step the error criterion is minimized. 

4 Examples 
The proposed version of the iterative Fourier-transform algorithm can be applied for almost arbitrary situati- 
ons, where practical system inputs and outputs are specified. To show the flexibility and practical usefulness 
of the algorithm, we give two examples depicted in figure 1. 

The upper row in figure 1 illustrates a beam shaping application, where the DPE in a) is generated 
to transform a broad super-gaussian into a narrow one. The intensity profiles of the impulse response of 
the DPE, the illumiation wave which is a broad super-gaussian, and the system output are shown in 6), c), 
and d), respectively. Sometimes a DPE is required focussing as much energy as possible into a smoothed 
distribution approximating a narrow super-gaussian. The DPE in a) is optimized to fulfil this desire. 

In the lower row of figure 1 a display application is presented. The DPE in a) is designed to reconstruct 
a speckle-free intensity signal d), considering the illumination wave c). The impulse responses of the DPE is 
shown in b). 

5 Conclusion 
The incorporation of the illumination wave turns out to be important for non-periodic DEs in various 
applications. The cases of coherent and incoherent illumination are examined separately. A version of the 
iterative Fourier-transform algorithm is presented, allowing direct control of constraints on the function of 
the DE in the coherent case. The algorithm may serve as a general concept for the design of non-periodic 
DEs with the modulation of practical illumination waves taken into consideration. 
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Figure 1: The upper row shows a beam shaping example and the lower row a display example, a) depicts 
the phase distribution of the DE, 6) the impulse response of the DE, c) the illumination wave and d) the 
system response, respectively. 
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I. INTRODUCTION 

Free space gratings are typically periodic structures that convert a free space incident 
mode into a particular set of exit modes. The free space propagating modes in this case are 
identified as plane waves incident at various angles on the grating. Apart from free space 
applications, the mode transducing properties of gratings have also been utilized in guided 
wave devices. One such device is a .periodic grating structure used in metallic waveguides 
to transform one waveguide mode into another [1, 2, 3]. In this application the grating is 
known as a mode converter. The grating in this case is formed by periodically varying the 
transverse dimension of the waveguide. When a waveguide mode is incident from any side 
on the grating, it is converted to another mode. The period of the grating is related to 
the propagation constants of the input and the exit modes. In this paper we report that 
in waveguides, there exist gratings that are not periodic but have the same effect as that 
of the periodic gratings. These aperiodic structures are shorter in length than the periodic 
gratings, yet they acheive comparable conversion efficiencies. To find the shape of these non- 
periodic gratings a scattering optimization scheme is developed in which the surface profile 
of an arbitrary scatterer is optimized for maximum conversion of power from one mode to 
another. 

II. SCATTERING OPTIMIZATION METHOD 

To demonstrate the method of designing a non-periodic grating in a waveguide, lets 
consider a simple parallel plate waveguide. A scatterer is formed within this waveguide 
through z-dependent variations in one of its walls and is modelled as a staircase in terms 
of a finite number of step discontinuities (Fig. 1). Mode matching is a well documented 
technique for analyzing waveguide step discontinuities [4, 5, 6]. Using the mode matching 
method, a scattering matrix is formed for each of the steps in the staircase model. These 
scattering matrices are later combined to form a composite scattering matrix, S, representing 
the effect of the whole length of the scatterer. Considering a field incident on the scatterer, 
the output mode coefficients (vector B) are related to the input mode coefficients (vector A) 
by the matrix S [B = SA). Using B, the power in each mode at the exit plane of the mode 
converter can be calculated. To lose the least information while keeping the calculations 
manageable, the step width (AL) is restricted to be greater than or equal to 0.1A for each 
step. The total length of the scatterer then is L=Ä;AL, for k steps. For the purpose of 
designing an aperiodic grating, we identify a general scatterer by a set of variables which are 
the heights of steps in the scatterer. The power excited by this scatterer in a particular mode 
at the exit plane is a function of the surface profile of the scatterer and can be written as 
Power in mode n = Pn(hi,h2, ■ ■ ■, hk), where hi is the height of the ith step. The required 
grating surface can now be found by optimizing the power Pn in the output mode n as 
a function of k step heights. This optimization is carried out by implementing a 'global' 
optimization strategy. 
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z=L 

Figure 1: Staircase model for an arbitrary scatterer. 

III.  RESULTS 

Various gratings have been designed using the above method. A summary of four of 
them is given in Table 1. In each of these designs the IMSL routine BCPOL is utilized for 
global optimization and a total of twenty evanescent modes are used in the mode matching 
calculations. The structure obtained for the TE\ to TE2 mode converter at 3.5Ghz is shown 
in Fig. 2. Two more designs for the same converter are shown in Fig. 3 and are drawn on 
the same axis for comparison. 

Converter Frequency 'a' Efficiency Aperiodic Periodic 
Type (GHz) (cm) ( % ) Grating Length Grating Period 

TEi-TE2 3.5 15 99.78 59.40 cm 62.6 cm 
TEX-TEA 4,5 15 98.62 58.96 cm 12.9 cm 
TE1-TE2 10.0 15 98.56 111.9 cm 197.4 cm 
TE3-TEr 10.0 15 98.31 151.5 cm 73.08 cm 

Table 1: Summary of grating designs 

The salient features of aperiodic gratings designed by scattering optimization are sum- 
marized below :- 

1. The general shape of these gratings comprises a primary scatterer in the center, 
flanked on both sides by smaller scatterers that act as tuning elements. The heights 
of the tuning elements and their locations are critical; a change in them can greatly 
affect the mode pattern at the output of the grating. 

2. The mode conversion efficiency achieved in each of the designs in Table 1 is 
> 98%, which is comparable to that acheived by periodic gratings in waveguides 
[1, 2, 3, 7, 8]. 

3. The length of the grating in each case is not very large in comparison to 
the waveguide height. These lengths are much smaller than those obtained for 
"periodic" gratings. In Table 1, the grating period for comparable periodic gratings 
is also shown for comparison. A periodic grating generally consists of two or more 
such periods [1, 2]. 

4. It can be seen from Figs. 2 and 3 that the grating structures obtained through 
this method are not unique, i.e., more than one solution can be found having an 
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acceptable conversion efficiency. The three structures in these figures for TE\ to 
TE2 mode conversion have comparable efficiencies of 99.78%, 99.77% and 99.47% 
respectively, yet their shapes are entirely different. An important parameter in our 
design procedure is the height increment used while carrying out the optimization 
sequence. This determines the coarseness of the grid used for optimization. A 
coarser grid implies that most likely the solution is in a larger valley and therefore 
is not very sensitive to small changes in heights of elements. The Designs 1, 2 
and 3 in Figs. 2 and 3 are obtained by using height increments of 3mm, 2mm 
and 0.1mm, respectively. It is found that the first of these designs is the least 
sensitive to variation in height elements while the last one is the most sensitive. 
The sensitivity to operating frequency variations also increases from Design 1 to 
Design 3. 

10 20 30 40 
Grating length in cm. 

50 60 

Figure 2:  Grating design for TEX to TE2 mode conversion at 3.5 GHz in a waveguide with a=15 cm. 
Wavelength A is 8.6cm., stepwidth (AL) is 9mm and step height increment is 3mm. 

IV. CONCLUSION 

We have developed a technique for the design of aperiodic gratings used for mode con- 
version in over-moded waveguides, wherein the profile of a scattering surface is optimized 
for maximum conversion of power into the required mode. Gratings designed using this ap- 
proach are highly efficient and their overall length is smaller than the usual periodic gratings 
in waveguides. The structures obtained from this technique are not unique and their sen- 
sitivity to fabrication and frequency errors depends upon the size of step width and height 
increments used in the staircase model. The scattering optimization method not only gen- 
erates shorter gratings, but it also provides the advantage of designing structures in which 
more than one mode at the input can be converted into a single mode at the output. 
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Figure 3: Two more designs for TE\ to TE2 mode converter of Fig. 2. For Design 2, AL is 9mm and Ht. 
increment is 2mm. For Design 3, these are 8.6mm and 0.1mm respectively 
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Novel holographic planar structures for optical interconnects employing 

transverse Bragg waveguides[1] were proposed recently. The gratings, which laterally 

confine the optical wave, are patterned transversely, as shown in Figure 1. The 

advantages of these planar structures are: 1. Spectral selectivity allows us to combine 

many grating patterns (holograms) on top of each other. 2. By use of higher orders of 

the Bragg condition, mode shaping of the propagating beam may be achieved. 3. 

These holograms are easily molded in plastics. 

CLADDING 

Figure 1. Transverse Bragg Waveguide 

In this paper we employ the concept of transverse Bragg reflectors in order to 

design Nx1 and 1xN interconnections. We use a ray tracing technique in two design 

procedures: 1. The Shortest Path (SP) and, 2. The Single Input Maximum Output 

(SIMO) procedure. It should be noted that since there are virtually infinite number of 

ways to design a specific connection, simplicity and efficiency of the computation 

method is of great importance. 
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We have used ray tracing method to design Nx1 and 1xN optical interconnects. 

The optical beam was diffracted by grating in each pixel according to the Bragg 

reflection rule. The grating of the pixel would be engraved along the beam propagation 

if the beam is to propagate in a straight line. This engraving will confine the beam in its 

transverse dimension. On the other hand if the beam is to be blocked then the grating 

will be engraved perpendicularly to the beam direction. The Shortest Path approach 

maximizes the power at the targeted pixels by minimizing the number of turns in the 

optical path between an input pixel and an output pixel. It is superior to the other design 

scheme whenever maximum intensity at the target pixel is needed. The phase though, 

was found to be distributed non-uniformly amongst the non-targeted pixels compared to 

the Single Input Maximum Output approach. The latter approach maximizes the power 

flow into the nearest neighboring pixel by an appropriate choice of a bragg reflector. 

Considering Nx1 optical interconnect, the cross talk was -24dB for the SP design 

approach compared to -44dB for SIMO. The loss for the SP approach was 9.8dB 

compared to 17.8 dB for SIMO. A sample design of 20x1 interconnection using SP 

approach is shown in Figure 2. A similar design may be used to fabricate 1x20 

interconnection. 

The design of an Nx1 interconnection was successful when using the Shortest 

Path design approach. The light intensity was distributed quite uniformly among the 10 

target pixels. The power variation between the target pixels was about 2dB compared 

to 3.5 for SIMO. The average loss per pixel was about 2dB for SP and 24dB for SIMO. 

The difference between the present design approach and past designs is in the 

usage of the Bragg reflectors. Past designs used the patterns simply to fabricate 

mirrors by which the optical beams are reflected according to Snell's law. Here we use 

the engravings to confine and direct the optical beam in the a two dimensional planar 

structure using Bragg waveguide concepts. 
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Figure 2. 20x1 interconnection 

1.       H. Grebel and W. Zhong, Optics Letters, 18, 1123 (1993). 
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The use of diffractive lenses for laser diode to single mode fibre coupling is attractive even for binary on-axis 
elements. This is due to the excellent imaging properties, the possible mass production using advanced 
semiconductor technologies and easy handling of the final elements. The possibility to fabricate arrays of 
lenses with appropriate sizes, shapes and any desired pitch makes diffractive optical solutions superior to bulk 
miniature optics. The lens patterns may exhibit simple circular fringes but, nevertheless, the feature sizes for 
practical elements are readily in the submicron range. This is especially true for e.g. off-axis elements which 
combine functions like deflection and focussing. The first step of the procedure to realise a specific diffractive 
lens is the design and calculation phase which should be done by a (CAD-) software tool which enables the 
user to construct the lens under feedback information about the required minimum feature size as well as shape 
and position of the effective aperture, both facts strongly dependent on the lens substrate. 

2. Design 

Requirements for coupling set-ups may include mounting tolerances, minimum reflection towards the laser 
diode, beam shaping and a minimum number of components. Figure 1 gives three examples of possible 
geometries. Fig. la is the conventional on-axis geometry, Fig. lb shows a tilted lens for minimum reflection 
and Fig.lc is an off-axis arrangement which enables an additional shaping of the laser diode beam. The shape 
of the laser diode beam cross section "X" is assumed to be elliptical, its projection to the surface of the lens 
substrate "P" may be circular, as illustrated in Figures lb and lc. 

Fig.l:   Different Coupling geometries for laser diode-fibre coupling. Laser diode with elliptical 
beam cross section. 
X=perpendicular beam cross section of laser diode, P=projection at substrate surface, 

a: On-axis-geometry, elliptical beam cross section at substrate surface, 
b: On-axis geometry with tilted lens, circular beam cross section at substrate surface, 
c: Off-axis-geometry, circular beam cross section at substrate surface. 
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3. Design and basic data calculation 

Basic calculations of the diffraction patterns of the specific lenses are carried out with a development 
enviroment, which allows for the investigation of various imaging situations. The principles have already been 
discussed in [1, 2]. The program is based on a method which gives a sampled intensity pattern of the 
interference field at the lens plane. The binarisation is done with the help of an intensity histogram, a tracking 
algorithm produces closed fringes and a final tool gives the desired data output in GDSII-format. The 
calculations could be time consuming, for example to find the lens pattern for a tilted lens to be realised on a 
substrate of thickness "d" and refractive index "n", but important results can be derived. Current investigations 
indicate for example that the fringe patterns of tilted and off-axis lenses with thick substrates are no longer 
composed of elliptical fringes as is the case for thin lenses. Especially the fringes of the off-center lens region 
tend to be destorted to egg-shaped patterns. 
The knowledge of the fringe shapes belonging to elements of certain geometries finally allows for a much 
faster pattern calculation as it can be done by the development program. This is due to the fact that one only 
has to calculate two perpendicular intersections of the basic interference pattern instead of carrying out a 
complete two-dimensional calculation. The output of such an advanced program is for example a number of 
data sets (x, y, a, b) describing ellipses of semi-axis a and b, centered around the point (x,y). 

4. CAD Data Generation 

Programs derived from basic results obtained from the development enviroment are included in the CAD- 
program SIGRAPH®-Optik [3] in order to establish a professional fast and comfortable tool for the calculation 
of diffractive lenses. An important feature is the suitable data output, especially the GDSII-Files which can be 
postprocessed from common lithographic systems. SIGRAPH -Optik was originally a layout editor for 
integrated optics. It has been extended to calculate diffractive "thin" on-axis- lenses, tilted on-axis-lenses and 
off-axis-lenses. The consideration of the lens substrate is currently possible for the on-axis case and non-tilted 
elements, solutions for "thick" tilted and "thick" off-axis lenses are under development. 
The calculation of the fringes is rapidly carried out by the calculation of data sets (x, y, a, b) which call the 
CAD-primitive "ellipse". The elliptical fringes are then generated with a predefined angular accuracy, for 
example 0.1 degree. The calculation times for thin lenses last about a few seconds, the GDSII-data conversion 
may last some minutes. 
Figures 2a, 2b and 2c give examples for lens patterns calculated with SIGRAPH -Optik. The patterns 
correspond to the respective situations depicted in Figure 1. Fig.2a shows the pattern of an on-axis lens, which 
images a light source of 1.3 /mi wavelength located in a distance of 300 /mi from the lens to an on-axis image 
point of 3 mm distance. The lens aperture is matched to an elliptical beam cross section. Fig.2b shows the 
pattern for the same point distances but the lens tilted by an angle of 45 degree. The fringes are now elliptical 
and the fringe system is decentered. Due to the oblique beam incidence the elliptical beam cross section may 
be projected to a circular shape as demonstrated. Fig.2c is an example for the off-axis situation of Fig. lc. 
Depending on the degree of the off-axis geometry the lens center will be shifted outside of the aperture and the 
fringes may turn from circular to elliptical shape. 

During lens parameter calculation and pattern construction SIGRAPH -Optik first generates closed fringes and 
in a second step makes use of a clipping routine to achieve the desired lens aperture. This clipping routine is 
important if arrays with very densely packed lenses are of interest. Figure 3 shows two examples of such 
arrays. The one-dimensional array in the upper row might serve for laser diode array to fibre array coupling. 
The apertures fit to the laser beam cross section of the single laser diodes of the array allowing maximum 
capture of the light but minimum cross talk between the neighbouring channels. The square elements of the 
bottom row might serve for applications where also maximum light capture is required but cross talk is of little 
interest. 
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Fig. 2:   Examples of diffraction patterns and aperture shapes according to the geometries of figures 
la, lb and lc, respectively. Calculation are carried out with the CAD-program. 
a) Thin binary on-axis lens with elliptical aperture. 
b) Thin tilted binary on-axis lens with circular aperture. 
c) Thin binary off-axis lens with circular aperture. 

#      #     '#      # 

Fig.3:   Binary 1-D-lens arrays with different apertures. 
Pitch is 200 fim, focal lengths are 270 \im. 
Ellipses have semi-axes of 200 urn and 300 urn, 
respectively. 
Size of apertures is 200 urn square 

Fig.4:    Binary 2-D-lens array 
composed of hexagonal 
facets of 100 \im side length. 
Each facet contains a distinct 
diffractive lens with a certain 
focal length 

SIGRAPH®-Optik offers another interesting tool for the generation of two-dimensional lens arrays. Up to 63 
different lenses can be generated and stored in different layers of the CAD-system. Then a rectangular or 
hexagonal mesh can be superposed onto the used layers and the mesh facets may be filled with parts of the 
different single lenses. Fig.4 gives an example of a hexagonal two-dimensional lens array with 7 lenses 
combined to build a multifocal element. 
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The lenses discussed so far are of binary type, requirring only one mask for the lithography step resulting in 
and a binary surface profile after fabrication. Binary optical elements, however, suffer from a low diffraction 
efficiency of 40% at maximum. Higher efficiencies require more sophisticated profiles of the diffration 
pattern. Figure 5 gives a schematic of typical profiles. The bottom figure corresponds to a interferometrically 
recorded element (bleached hologram), then the binary (2-level), the quaternary (4-level), the octernary (8- 
level) as well as the micro-FRESNEL-lens and the miniature bulk lens are depicted together with their 
maximum theoretical diffraction efficiencies. 

o        L»n* Rttdlui 

Lens typ 
bulk lens 

Fresnel lens 

Octernary lens 

Quaternary lens 

Binary lens 

Holographic lens 

Efficiency 
100 % 

100 % 

95% 

82% 

40% 

33% 

Fig. 5:   Cross sections of possible phase profiles of synthetic lenses. The continuous profile at the 
bottom corresponds to a holographically recorded lens of 30 urn diameter. The binary and 
multilevel profiles correspond to synthetic elements which require one, two or three masks. 
The maximum theoretical diffraction efficiencies are listed next to the respective profile. 

The realisation of the quaternary or the octernary lens requires a two-layer or a 3-layer lens pattern data file, 
respectively. In case of direct E-beam lithography the layer data can be converted for direct write data for 
resist profiling [4], in case of photolithography a set of two or three masks has to be produced from the 
respective GDSII-files. SIGRAPH -Optik allows the generation of multilevel elements from the data originally 
generated for the basic binary fringes. The higher lens levels may be generated optionally by linear ramp 
approximation, as is indicated in Fig.5 or by an approximation of spherical curvatures. 
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Diffractive optics and the digital holography give the opportunity to generate rather complicated optical 
elements that are not simple substitutes for conventional refractive lenses. This paper is dedicated to 
modems- novel diffractive optical elements for laser and fiber optics, that are matched to coherent modes. 
Special attention is paid to the generalized methods for diffractive coding of complex transfer function to 
the phase-only one. 

Each wave-field in fiberoptic waveguide can be treated as containing the composition of orthogonal 
base-functions called modes. Representation of wave-fields by modes is adequate to physical nature of 
fibers and laser cavities but the practical problem of selective mode excitation seems to be very severe. It is 
suggested here to reconstruct modes from special holograms. The problem arises of where to find the mode- 
type object for hologram recording. The solution presented uses mathematical formulae of modes instead of 
real objects in computer generation of holograms. 

The task is the development of "multibeam" optical element, which splits illuminating light beam into L 
branches and allows parallel and selective excitation of required modes in each branch. We choose angular 
separation of the branches. Thus the beam t(x) reconstructed by modan must contain partial beams 
superimposed with proper tilts. The function t(x) appears to be complex-valued. Modan's transfer function 
^(x) is also complex-valued and must be coded into phase-only form. 

A. Coding-method problem in digital holography 

The appropriately synthesized thin holograms have a phase microrelief on the plane substrate. Thus, in 
terms of digital holography, development of the modan is the development of the phase synthesized 
hologram. 

The problem of recording the complex light field on the phase-only medium is well known in digital 
holography and reviewed in [1,2,3,4]. "Tandem" optical components [5] as well as "dual-phase" optical 
components have high energy efficiency, but they imply the use of the complicated two-stage optical 
systems. 

Special coding methods are available in digital holography. The methods are aimed at creating the 
phase-only holograms providing the required amplitude-and-phase transfer function. A method of kinoform 
complemented by the special methods for making the amplitude more uniform [3 ] are powerful tools in 
phase-only holography. The digital holography methods for introducing a random or deterministic 
additional phase into the reconstructed image [3] are interesting for intensity-type images but are of no use 
upon forming the complex(amplitude-phase) object. The most appropriate approach for coding the modans 
is the diffraction redistribution of a beam energy. Such an approach has found use in the method of detour 
phase with the binary-phase cells [6], in the method of parity elements [7] and in the Kirk-Jones method as 
well as in the theory of the phased antenna arrays. We introduce and also substantiate a general method to 
perform diffractive coding of the complex transfer function into the form of the phase-only function. The 
foregoing methods of digital holography are shown to be specific cases. 

Let us consider a modan as a thin digital hologram on the plane substrate. The orthogonal Cartesian 
coordinates x=(x,y), with z-axis perpendicular to x and with the light aperture defined in the domain G of 
the x-variables are introduced. 

Let us request the beam t(x) to be reconstructed directly behind the holograms plane upon the 
illuminating beam w0(x). Thus, a "mathematical" hologram should perform point-by-point transform of 
light field with the complex (amplitude-phase) transfer function T(x) proportional to /(x)/w0(x). Let us 

denote a coefficient of proportionality as cjE0/E, where 
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E0 = j\w0(x)fd\    E = j\t(nfdh 
G G 

are the total powers of the w-and ^-fields, respectively. Thus, required complex transfer is given be the 

formula 

r(x) 
r(x) = C^-^'C~1 = ^ 

t(x)/y[I 
W0(X) / yjE0 

(1) 

In terms of mathematics, the coding represents the change over from the calculated function of the 
complex transfer 

r(x) = |r(x)|exp(/^r(x)),   |f(x)|< 

to the "coded" phase-only transfer function 

T = exp(/V) (2) 

where <p = <p(x) is the coded phase. 

B. Encoding procedures based on modulation theory 
The idea of coding from complex to phase-only transfer is allowing some "parity" or auxiliary elements 

in the reconstructed image. These parity elements correspond to parasite diffraction orders and are indeed 
separated from the main operating order. They are only redistributing the input beam power and reduce 
respectively the power of main image. 

A formal description of "coded" phase holograms is based on the phase-modulation theory, well known 
in radio-engineering. Of course, an optical application has peculiarities related with 2-D spatial coordinates 
present instead of the temporal 1-D variable. For this purpose we choose a spatial carrier function that is 
some basic phase diffraction grating, or another periodic structure. 

One of the cases for spatial carrier structures is a 1-D phase diffraction grating with a period of d0 and 
a spatial frequency of v, = 1/d0. Such a 1-D grating can be sinusoidal, binary-stepped, sawtooth-type or the 
other type described by a dimensionless function q0(t) taking values on the [-0.5, 0.5] interval and periodic 
with the period 1 with respect to the dimensionless variable t. We can call q0(t) function as groove- shape 
function. One can simply superimpose two crossed 1-D gratings and obtain 2-D gratings as spatial carriers 
for coding. 

Other special types of 2-D periodic structures are really wide spread in digital holography [1]. They are 
called "coding cells" and include Lohmann's cells and Ichioka's cells [1] . The cell with the size dx,dy will 

be characterized by the 2-D groove-shape function q(t) = q(tut2), t = (tl,t2) with values on the [-0.5, 0.5] 
interval. The function q is assumed to be periodic with the periods 1 with respect to each of tx,t2 variables. 
One period of the q{txJ2) function on the tx,t2 plane occupies the unit square 0</, <l,0<f2 <1 and 

describes single coding cell. 
Maximum height of microrelief in the coding cell also can be modulated by multiplying q by factor a 

that is slowly varying from cell to cell. Thus aq(tx,t2) term will be present in "coded" phase(See Fig.l). 
Furthermore, the cell can be shifted from the regular position by using the function q(tx -axJ2-a2) 

where detour parameters a = {ax,a2) are modulated and thus slowly varying from cell to cell. The function 
q(t) and the structure of the cell may depend on some additional parameters designated as r vector. 
Window size r could be considered as an example of additional parameters. The parameters r can be 
slowly varying (modulated) within the plane of optical element. We are introducing X parameters into the 
function q as <7(t;T). 
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Figure 1 Diffractive coding 
with maximum-height 
modulation. a(x)- modulation 
amplitude, <pmax- maximum 
phase delay introduced by 
modulated phase grating 

It is clear that the slow variations of any of the parameters listed above change the diffraction conditions 
and thus result in a beam power redistribution between diffraction orders, that is equivalent to directing 
light into parity elements .Thus, the main operating diffraction order uses different parts of power from 
different coding cells. This effect is equivalent to introduction of implicit amplitude transfer by phase-only 
structure. Such an effect is the core of coding mechanism. 

It must be emphasized once more that all modulated parameters must vary slowly so that their spatial 
featuresize AxT, AyT is much more than the period d0 (or dx, dy) of spatial carrier grating . 

Let the basic diffraction grating have the carrier spatial frequencies S = [Sy,i = 1,2;j = l,2j and the 

maximum height of the groove equal to ymax(in terms of the phase delay). The eigenvalues vlx,v]y of the S 

matrix correspond to spatial frequencies that we have with respect to x and y axis. Thus sizes of single 

coding cell will be dx = l/|vu|;    dy = \j 
'\y 

Now we are building some generalization of the Kirk-Jones method [8]. Diffractive optical element has 
a spatially modulated phase function [2,9] in the form 

<p(u) = b(x) + <pm;aßa(x)q{Sx + a(xy,T} (3) 

that corresponds both to the grooves' relative detour the a(x) and to the decrease in the grooves' maximum 
height by the factor ßa (x) £ [0,1] as compared with the basic grating, where ß is a coefficient of the depth 
of modulation, ße.[0,l], a1(x)£[0,l], a2(x)e[0,l], b(x) is a non-modulated component of the phase 

function that corrects the phase of reconstructed beam. Parameters T of the q function are also modulated, 
T = T(X), if present. Certainly, the functions b(x), a(\), a(x), r(x) must be slowly-varying as compared 
with the basic diffraction grating. 

The equation of coding (3) really describes a non-regular phase diffraction grating that becomes a 
regular one at the special case b = 0,   a = 0 and a=l. 

Such a cross-grating modan represents, in effect, a phase hologram of a modal beam that is described 
by the complex amplitude t(x) in the modal plane and reference beam w0(x). Note that the phase hologram 
can be realized in both transmission and reflection variants. It is shown that using suitable selection of the 
b{x), a(x) and o(x) functions, in Eq.(3), one can ensure the required amplitude-phase transfer T in the n-th 
diffraction order (n = (n,,n2) is a 2-D multiplex). 

If the following equations are satisfied 

\Bn[ßa,t]\ = gn\T\ , Ä(i)+2ffno(x)+argßn[^fl(x),T(x)] = ^7.(x), (4) 

where 
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0.5 0.5 

gn = max\Bn[ßa,t]\,        Bn(A,r)= j  J exp[i<pmaliAq(t;t)-i2nnt]d2t 
ae[0.1]' J    J 

(5) 
0.5 0.5 

then the required amplitude-phase transfer T is available the n-th operating diffraction order in the form 
including the constant factor gn and the carrier frequency vn: 

rD(x) = £nr(x)exp(/2;rvnx), v. = S'n (6) 

Various special coding methods are suggested. 

C. Computer generation of modans. 
Gauss-Laguerre modan matched to the mode (p,l) = (2,0) and 

having the carrier v of 10 lines/mm was generated. A photowriter 
with a resolution of 25 urn was used to generate a mask (see Fig. 2). 
Six-beam modan also have been generated with the aid of 
photolithographic technology and tested in experiment.Kirk-Jones- 
type method of coding was used in both cases. Experimental 
investigation with He-Ne laser beam have shown good reconstruction 
of modes from diffractive modan. 

Figure 2. Magnified mask for a singlemodal phase modans of 
Gauss-Laguerre (2.0) mode with the carrier of 10 lines/mm 
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The problem of the free-space diffraction or propagation of electromagnetic waves can be cast in a form 
that is remarkably similar to the problem of pulses propagating in a dielectric medium if certain simplifying 
assumptions are made. These simplifications are the usual paraxial approximation in the spatial case and 
the narrowband approximation in the temporal case. The resulting parabolic differential equations admit 
wave solutions for the envelope profiles and describe the well known phenomena of beams spreading out in 
space and pulses spreading out in time. 

The action of a thin lens can be described by a simple phase transformation where the phase is a 
quadratic function of the space variables transverse to the direction of propagation. In the time domain, a 
quadratic phase modulation applied to a pulse performs the same function as a space lens but across the 
temporal profile of the pulse. Thus, we can consider the quadratic phase modulator as a "time lens." With 
this in mind, we can imagine that by combining the elements of dispersion, time lens, and more dispersion, 
we have created the temporal analog of the conventional spatial imaging system composed of diffraction, 
space lens, and more diffraction. We call such an arrangement a "temporal imaging system."1 In this talk, I 
will discuss the theoretical basis for the system, the dualities between its charateristics and those of its spatial 
counterparts, and suggest some applications ranging from communications to fundamental measurements. 

The duality between the equations describing diffraction and dispersion has been known for some time, 
specifically in the context of nonlinear optics.2-4 In the linear case, it is most easily arrived at by making 
a pair of approximations that form a duality in their own right. In the spatial case, we use the paraxial 
approximation which says, physically, the we concentrate on waves with energy mostly confined adjacent to 
and in the direction of propagation. In the temporal case, we consider pulses propagating in a dielectric 
with bandwidth narrow enough so that the dispersion of the dielectric can be adequately accounted for by 
a Taylor series expansion to second order in the propagation constant ß. In the sense that the paraxial 
approximation deals with spatial Fourier spectra and the limitation thereof, these two simplifications are 
really the same. 

Both the diffraction and dispersion problems describe the evolution of envelope profiles. In the diffraction 
problem it is the transverse beam profile that we are describing and in the dispersion problem it is the pulse 
envelope that is of interest. For the diffraction problem, let the beam be described by the z-directed wave 

H(x,y,z,t)=E(x,y,z)ei^t-k^'\ (1) 

where E(x, y, z) is a slowly varying envelope function for the transverse beam profile. In the paraxial 
approximation, the envelope function satisfies the differential equation 

M = _L(*- + £-)E (2) 
dz 2k \dx*     dy1) 

For the dispersion problem, we begin with the same format; an envelope wave equation 

E(x,y, z, t) = A(z, t)e<(«.«-/'(<".)*), (3) 

where A(z, t) is a slowly varying envelope function that describes a wave-packet propagating in the the 
z-direction. However, in order to arrive at the desired differential equation, we must make a transformation 
to a traveling-wave coordinate system moving with the wave-packet. We introduce the following change of 
variables 

z- zn T=it-t0)-C—^) 
9 (4) 

f =z - z0, 
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where t0 and z0 are arbitrary reference points and vg = (du/dß) is the group velocity of the wave-packet. It 
can then be shown5 that the envelope function A(£, r) satisfies the differential equation 

dA(£,T) id2ßd2A(Z,T) 
d£ 2 du2     or2 W 

which is identical in form to the paraxial wave equation. The general solution to each of these initial value 
problems is most easily handled in the Fourier domain.6 The initial spectrum is multiplied by a phase term 
quadratic in the Fourier variable and linear in the propagation variable. For the diffraction problem, the 
solution is 

E(x, y, z) = —!-2 f f°° £(kx, ky, o)e«*2+*;W"e*(*.«+*,») dkx dky, (6) 
(27T)    J   J_OO 

where £(kx,ky,0) is the initial spatial Fourier spectrum. For the dispersion problem, the solution is 

1 f°° ~' 2U 

Mt,r) = ±        A(0,w)e   2du     e'-dw. (7) 

where .4(0, w) is the initial temporal Fourier spectrum. 

The other necessary element in a temporal imaging system is the time lens. We know that conven- 
tional space lenses produce a quadratic phase transformation across the plane transverse to the direction 
of propagation. In the time domain the phase modulation must be produced across the equivalent to the 
transverse coordinate which is the local time variable T. One way to achieve a quadratic phase modulation 
in the time domain is to use an electro-optic phase modulator driven with a pure sinusoid. If an optical pulse 
copropagates with any cusp of the sinusoid, it will obtain a quadratic phase modulation over the envelope of 
the pulse with modulation index proportional to the strength of the modulating field, the interaction length, 
and the magnitude of the electro-optic coefficient.7 Since any cusp of a sinusoid is locally quadratic, the net 
phase modulation can be described by 

HI(T) = exp [—«T0] exp 
. ro(wmr) 

(8) 

where T0 is the peak phase deviation and wm is the frequency at which the modulator is driven. In keeping 
with the spirit of the space-time duality, we can rewrite (8) grouping the scale factor on the quadratic phase; 

HI(T) = exp [—«T0] exp 
L 2/Tj'     ^      "    roW; fr = F75-. (9) 

where fT is the "focal time" of the time lens and serves the same function as that of the focal length of the 
space lens. We can even go further and define a temporal /-number. Since only a portion of the sinusoidal 
modulator drive is predominantly quadratic, we can consider the modulator to have a useful time aperture 
Ta Ä T/2n = l/wm. We can now define the /-number as the ratio 

We now have the two essential ingredients for an imaging system; dispersion and a time lens. These are 
fully equivalent to diffraction and a space lens. To combine these into a useful system we must analyze the 
combination of dispersion+lens+dispersion and apply a criterion from which we will obtain the specifications 
for the performance of the elements. Figures la and lb show the arrangements of the elements of both a 
spatial and a temporal imaging system, while Figure lc shows the analytical consequences of the system 
elements in the temporal case. By concatenating the effects in the three domains, we arrive at an integral 
equation for the output waveform that takes the form8 
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Figure 1. Temporal imaging system as the time domain analog of conventional spatial imaging, a) Tem- 
poral imaging system comprised of input dispersion, quadratic phase modulation, and output dispersion, 
b) Conventional spatial imaging system comprised of input diffraction, lens, and output diffraction, c) 
Mathematical effects on waveforms in temporal imaging. 

/oo 
.4(0,u,)e^V 

■OO 

'*rdu, (11) 

where .4(0, w) is the spectrum of our input waveform A(0, r) and <j> is a function of the input dispersion 
£id2/?i/u;\ output dispersion fycPfo/w2, and the phase modulation represented by the focal time fT. Equa- 
tion (11) is an inverse Fourier transform integral. The factor M appears as a scaling on the time variable T. 
In order for the output function to be a legitimate "image" of the input function, the quadratic phase term 
must be unity, or equivalently, 0 = 0. Using this as a criterion for imaging results in the expression relating 
the dispersions and the focal time, 

d% 
du' 

/ß2 

dur 

(12) 

which is our temporal imaging condition. It bears a remarkable resemblance to its spatial counterpart. The 
minus sign has its origin in the coefficient -i/2k in (2). When (12) is satisfied, the time scale factor M 
becomes 

M = 

d% 
' du 

~d% 
(13) 

which is the magnification of the system and also reminds us of the familiar expression M 
conventional optics. 

-dijd0 from 
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All of the expressions presented so far have strong ties with their spatial counterparts, as one would 
expect form the parallel development of the theory. An additional and very important relationship is that 
governing the resolution of a temporal imaging system. As one would imagine, the time window or temporal 
aperture of the time lens sets the resolution. Just as in spatial optics it is the Fourier transform of the 
aperture function, in suitable coordinates, that gives the impulse response of the system.8 

The potential applications of temporal imaging systems present some exciting possibilities and some have 
already been demonstrated. For example, in the ultrafast laser pulse community, we are forever trying to 
obtain shorter optical pulses. The long standing technique of fiber/grating pulse compression was originally 
conceived as being accomplished with an electro-optic phase modulator as the chirping source.9 The space- 
time duality suggests that this is equivalent to a lens focusing a beam in space10 and recently this view has 
led to active pulse compression with time lenses.7'11 

Another important application for temporal imaging will be in the preparation of optimum waveforms 
on long time scales for subsequent compression to shorter time scales. Since it is not yet feasible to directly 
modulate optical waveforms on a picosecond or femtosecond scale, these waveforms could be crafted on a 
long scale with conventional modulators and then demagnified in time to the desired scale for use in laser 
selective photochemistry, for example.12 

With optical fiber data links rapidly taking over the telecommunications industry, temporal imaging 
may prove to be useful as well. The enormous bandwidth of fibers is difficult to exploit by direct modulation 
with current technology. With a temporal imaging system, data encoded at nominal rates (1-20 GB/s) 
could be compressed to shorter time scales (20-200 GB/s) and multiplexed onto fibers. At the receiving 
end, the data could be demultiplexed and detected at the nominal rates. This approach would leverage 
current optoelectronic technology without requiring dramatic improvements in the performance of lasers, 
modulators, and detectors. 

Still another area where temporal imaging may become important is in high speed signal processing. 
There has been extensive work done for several decades on the problem of image processing using the Fourier 
transform properties of lenses. With the space-time duality, one can envisage systems where electromagnetic 
waveforms are processed using the Fourier transform properties of time lenses. This idea has been investigated 
theoretically by Lohmann and Mendlovic. 13 
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Ultrashort pulses are of interest in the area of high-density communications as well as 
in the study of short-lived electronic and molecular phenomena [1]. Now, as diffractive 
optics are being used in an ever-increasing number of optical applications, it is 
important to understand the behavior of ultrashort pulses in systems employing 
diffractive optics. 

As the name implies, the finite-difference time-domain (FDTD) method allows the 
detailed simulation of time-varying phenomena [2]. Thus, it is ideally suited to 
modeling ultrashort pulses and other transient effects. 

The FDTD method for solving Maxwell's time-dependent curl equations is accurate, 
computationally efficient, and simple to implement. Since both time and space 
derivatives are employed, the propagation of an electromagnetic wave can be treated 
as an initial-value problem. Second-order central-difference approximations are 
applied to the space and time derivatives of the electric and magnetic fields providing 
a discretization of the fields in a volume of space, for a period of time [3]. The solution 
to this system of equations is stepped through time thus simulating the propagation of 
the incident wave. 

In analyzing the dielectric gratings, a mesh is applied only to the area of interest. The 
size of the mesh is then proportional to the electric size of this region. Doing this, 
however, imposes an artificial boundary around the calculation area. An absorbing 
boundary condition must be applied along the artificial boundary so that the outgoing 
waves are absorbed as if the boundary were absent. Many such boundary conditions 
have been developed that give near-perfect absorption. In this analysis, the Mür 
absorbing boundary conditions are employed [4]. 

Several grating geometries representing various grating periods and depths were 
analyzed using the FDTD method. Both square and Gaussian pulses on the order of 
10'14 seconds were used and the results were compared to continuous-wave 
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scenarios. Figure 1 shows the electric field for a 50 femtosecond square pulse after 
passing through a dielectric grating with a period of two waves and a depth of one 
wave. Figure 2 shows the continuous electric field acting on the same grating. Also, 
in Figure 1 the pulse broadening that occurs can be seen. Asa further experiment, a 
far-field transformation can be applied in order to compare the far-field diffraction 
patterns. 

Fig. 1  Electric field of 50 fs pulse after passing through dielectric grating. 

Fig. 2 Electric field of continuous wave after passing through dielectric grating. 
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1. INTRODUCTION 

Optical information processing techniques de- 
veloped with incoherent illumination are becoming 
more and more common as they do not suffer 
from the annoying coherent artifact noise associ- 
ated with coherent processors. In particular, the 
use of spatially coherent but temporally incoher- 
ent illumination allows to employ broadband spec- 
trum sources, such as gas discharge lamps, light 
emitting diodes, ..., and to deal with color input 
signals. Nevertheless, the recording of a diffrac- 
tion pattern of an input object under white-light 
point-source illumination is chromatic blurred, due 
to the wavelength dependence of the diffraction 
phenomenon. Thus, coherent processing sys- 
tems are not suitable for white-light processing. 

One way to overcome this drawback is to 
develop achromatic processors, which are de- 
signed for compensating the chromatic dispersion 
introduced by the broadband illumination. In this 
way, a wavelength-independent diffraction pattern 
results from the incoherent superposition in a 
single plane, and with the same scale, of its mul- 
tiple monochromatic versions generated by the 
different spectral components of the incident light 
[1]. Some appropriate combinations of diffractive 
optical elements (DOEs) and refractive achro- 
matic lenses allow to obtain achromatic imaging 
setups [2], achromatic Fourier transformers [3-5], 
and achromatic Fresnel diffraction patterns [6,7]. 

In this contribution, we describe an achromatic 
Fourier transformer, constituted by two on-axis 
kinoform zone plates, working under white-light 
spherical wave illumination. The scale factor of 
the achromatic Fraunhofer pattern can be varied 
by moving the input along the optical axis of the 
system. The residual chromatic aberration is low, 
even for white-light illumination. 

We also discuss, with the same operation 
principles, an optical configuration for achromatiz- 
ing a selected Fresnel diffraction pattern of an in- 
put signal illuminated by a white-light converging 
spherical wavefront. The optical device simply 
consists of a single blazed zone plate, and the 
axial position of the input allows to select the 
Fresnel diffraction pattern to be achromatized. 

The above achromatic setups are solely con- 
stituted with DOEs, and thus they can be used in 
other ranges of the electromagnetic spectrum, 
say for instance soft X-rays. 

As an application of our achromatic Fourier 
transformer, we report an achromatic joint trans- 
form correlator for color pattern recognition. The 
use of white-light sources in joint transform corre- 
lator (JTC) experiments is sometimes limited due 
to the chromatic blurring in the recording of the 
joint Fourier spectrum. However, some white-light 
JTC have been suggested [8-9]. We claim that 
our two-zone-plate achromatic Fourier trans- 
former allows the register of the joint power spec- 
trum in an achromatic manner. In a second stage, 
the correlation signal is obtained by performing a 
conventional Fourier transformation of the above 
achromatic intensity pattern. A high-intensity cor- 
relation peak is obtained for signals with identical 
chromatic distribution and identical shape. 

As an example of a polychromatic optical in- 
formation processing operation working in the 
Fresnel region, we use our achromatic Fresnel 
transformer for implementing white-light array 
illuminators. Microlens arrays have been widely 
used to implement array illuminators, i.e., for 
implementing a device which transform a wave- 
front into a 2-D array of bright spots of uniform 
intensity. Optical array generators based on the 
Talbot effect have also been proposed [10-12]. 
The property of a glass lens array to generate a 
set of replicas of the focal intensity distribution 
along the optical axis of the system, with different 
multiplicity, has recently been used to design a 
versatile monochromatic array illuminator [13]. 

Here, the chromatic blurring of the above 
Fresnel diffraction patterns, under white-light il- 
lumination, is compensated by using our achro- 
matic Fresnel transformer. Thus, we obtain a 
flexible optical array illuminator with variable 
density of bright white-light spots at the output 
plane. Finally, we have recognized that these 
ideas can also be applied to design a white-light 
array illuminator based on a 2-D zone plate array. 

Experimental results for our different propos- 
als will be shown. 
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2. SCALE-TUNABLE ACHROMATIC FOURIER 
TRANSFORMER 

The achromatic Fourier transformer we pro- 
pose is depicted in Fig.1. The input transparency 
is illuminated by a broadband spherical wavefront 
beam converging towards the point source S 
placed at a normal distance z beyond the aper- 
ture. ZP.| and ZP2 are two zone plates, with im- 
age focal lengths Z0 and Z'0, for a reference wave 
number a0, respectively, and ZP2 is inserted at 
the virtual source plane. This optical system pro- 
vides, in a first-order approximation, the achro- 
matic Fraunhofer diffraction pattern of the input 
signal if the separation, d, between the zone 
plates is 

cf=VaZ0 (1) 

where a=|Z'0/Z0|. In this way, the first-order ach- 
romatic Fourier transform of the input is obtained 
at a distance D'0 such that 

D' 
a 

Va-2 
(2) 

To obtain a real achromatic Fourier transform, i.e. 
D'o>0, ZP1 and ZP2 should be a diverging and a 
converging zone plate, respectively, and a must 
satisfy the inequality 0<<x<4. 

Since we develop a first-order theory, the 
setup suffers from residual chromatic aberrations. 
In fact, for each a, the Fraunhofer pattern is 
achieved at a distance, D'(CT), from ZP2 such that 

D\a)= -^ ^   ■ (3) 
1+ 1     {a-a0r 

2-Va CTÜn 

and the scaling factor is given by 

y _zD-(a) 
V     a0aZ0 

(4) 

where x and y are Cartesian coordinates and u 
and v spatial frequencies. It is possible to show 
that both the axial and the lateral chromatic aber- 
rations, expressed as a percentage, and referred 
to the plane D'0, have an identical analytical ex- 
pression. For a0 = ^/aia2 , being a., and a2 the 
end wave numbers of the incoming radiation, the 
greatest value of the chromatic aberration CAM is 

CA   -       10° 
1+ß(2-Vä) 

where ß=A/a1a2/(A/^1"-A/^2 )2- 

(5) 

Transparency       First 
zone   plate   second 

/ zone   plate     Achromatic 

/        Fraunhofer  plane 

Figure 1. 

From Eqs.(4) and (5) we conclude that the 
scale factor is proportional to z, and therefore can 
be varied by simply changing the position of the 
input along the optical axis, but CAM only de- 
pends on the value of a. It appears that a less 
than 1 is enough to achieve a chromatic error less 
than 5% even with white light. 

3. VARIABLE ACHROMATIC FRESNEL 
DIFFRACTION PATTERN 

Let a black-and-white input transparency be 
illuminated by a polychromatic point source S, lo- 
cated at a normal distance z. It is straightforward 
to demonstrate that the different wavelengths 
produce diffraction patterns identical in form but 
different in location and size. Thus, the Fresnel 
diffraction pattern located, under monochromatic 
parallel illumination with wave number CT0, at a 
distance R0 from the diffracting aperture, now 
appears both axially and laterally chromatic dis- 
persed. It is possible to show that a blazed zone 
plate, ZP, inserted at the source plane (some- 
thing that implies converging spherical wave illu- 
mination; i.e. z<0), is able to recombine all of the 
monochromatic versions of the above diffraction 
pattern, in a first-order approximation, in a single 
picture, if the following constraint is fulfilled 

i— ^0      ' (6) 

where Z0 represents the focal distance, for the 
wave number a0, of ZP and now the dimension- 
less parameter a is defined as 

a=Z^R0\ . (7) 

The first-order achromatic diffraction pattern is 
obtained at a distance D'0 from ZP such that 

D' = °~2-vr° (8) 
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The outline of our suggested setup is shown in 
Fig.2. In order to obtain a real achromatic Fresnel 
diffraction pattern, from Eq.(8) we infer that we 
are only able to achromatize virtual Fresnel 
diffraction patterns such that R0<zl2 and, then, 
from Eq.(6), ZP must be converging (Zo>0). 

Since we develop a first-order theory, a 
partially achromatic version of the selected dif- 
fraction field is achieved. It is possible to show 
that, with the definition of a given by Eq.(7), 
Eq.(5) hold for the present case. 

Once a zone plate is chosen to build the trans- 
former, a change in the value of a is equivalent to 
select a different pattern R0 to be achromatized. 
Thus, Eq.(6) states that our optical setup achro- 
matizes a single, but different, diffraction pattern 
R0 by changing the position of the input along the 
optical axis. Eq.(8) and (5) provides the axial 
location of the achromatic pattern and the maxi- 
mum value of its chromatic error, respectively. 

4. ACHROMATIC JOINT-TRANSFORM 
CORRELATOR 

Consider the JTC shown in Fig.3, in which the 
upper part is the optical setup for recording the 
achromatic joint Fourier spectrum. Both the test 
scene and the reference pattern are colored sig- 
nals with amplitude transmittance, for the wave 
number a, f(x,y;a) and g(x,y,a), respectively. A 
polychromatic, converging spherical wavefront 
beam illuminates the input plane with amplitude 
transmittance t(x,y;cy)=f(x+x0,y;a)+g(x-x0,y;a), for 
the wave number a. 

The achromatic Fourier transformer depicted 
in the upper part of Fig.3 is constructed following 
the prescriptions in Section 2. In this way, we 
obtain a real representation of the Fraunhofer 
diffraction pattern of all f(x,y;a), in an achromatic 

manner. Thus, the irradiance distribution, l(x,y), at 
the achromatic Fraunhofer plane is 

l(x,y)=j\i(Ax,Ay;a)\   S(a)dG   , (9) 

where t denotes the Fourier transform of f, S(a) 
represents the source spectral distribution, and 
the scale factor A is such that A=-{2-4ö:)Q(/Z. 

In particular, if we deal with two objects with 
the same shape and chromatic distribution, i. e. 
f(x,y;a)=g(x,y;a) for all a, l(x,y), consists of a set 
of modulated interference fringes with approxi- 
mately the same spatial period for each a. 

In a second stage, the achromatic joint power 
spectrum recorded onto a black-and-white CCD 
camera is sent to a liquid crystal TV (LCTV).The 
LCTV is illuminated with a parallel monochromatic 
light beam, with wave number aR. A second 
Fourier transformation is achieved by using a 
conventional lens, of focal length f, for obtaining 
the correlation peak at the back focal plane, as is 
shown in the lower part of Fig.3. 

It is straightforward to show that for each a we 
obtain, at the output plane, the cross-correlation 
of f(xB,yB;a) with g(xB,yB;a) centered around the 
points (±2x(/B,0), where B=aR/Af. We recognize 
that both the position and the scale factor of the 
cross-correlation function are a-independent. 
Moreover, if we deal with a test scene and a ref- 

Input 
plane First 

zone   plate 
Second 

zone   plate Achromatic  joint 

Monochromatic 
illumination 

Figure 3. 
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erence object with the same shape and chromatic 
composition, then each monochrome cross-corre- 
lation becomes an autocorrelation. In this case an 
off-axis high correlation peak is achieved. 

5. ACHROMATIC WHITE-LIGHT TALBOT 
ARRAY ILLUMINATOR 

Let us consider an input object formed by a 
unit cell repeated periodically in two orthogonal 
directions illuminated by a parallel monochromatic 
beam. It is possible to show that a set of periodic 
patterns in which the unit cell remains undis- 
turbed, but the array function has a reduced pe- 
riod compared to the original, are obtained along 
the optical axis of the system. These Fresnel 
diffraction patterns are known as Fresnel images. 
The reduction factor of a Fresnel image is defined 
as the ratio of the period of the original periodic 
structure to that of the Fresnel image. 

Following Ref.[13], we recognize that the 
amplitude distribution at the back focal plane of a 
2-D square periodic lenslet array illuminated by a 
monochromatic plane wave of wave number a0 is 
also periodic and, thus, provides Fresnel images. 
It is apparent that the above Fresnel pattern and 
its Fresnel images are in turn pinhole arrays. 

The Fresnel images are obtained at distances 
R0 from the focal plane given by 

Square  2—D 
lenslet  array 

7" 

R0=2p2a0[Q + ^ (10) 

where p is the period of the lenslet array, Q is an 
integer, and M and N (N<M) are natural numbers 
with no common factor. The reduction factor r is 
equal to M when M is odd, or Mil when M is even. 

Under polychromatic illumination, it is clear 
that the above patterns appears chromatic dis- 
persed along the optical axis. Next, we claim that 
the achromatic Fresnel transformer depicted in 
Fig.2 can be used to achromatize a selected 
Fresnel image. The proposed optical architecture 
is shown in Fig.4. The system is built following the 
prescriptions of Eq.(6) and, thus, the lenslet array 
must be placed, approximately, at a distance /? 
from the zone plate given by 

h*-f--T=Z0    , (11) 

where f is the focal length of the individual 
microlenses of the array and Z0 is the focal length 
of the zone plate for the wave number a0. 

In this way we obtain at the output plane an 
array of bright white light spots. The period p'for 

Zone 
plate Achromatic 

Fresnel   pattern 

Figure 4 

the achromatic white-light array illuminator re- 
sults, in a first-order approximation 

H    h + f r (12) 

where D'0 is given by Eq.(8). Note that p' can be 
modified by selecting different Fresnel images. 

We want to point out that the achromatic Fres- 
nel transformer in Section 3 can also be applied 
to achromatize the amplitude distribution at the 
back focal plane of a diffractive 2-D zone plate 
array under white-light illumination. In this case, 
the value of a is given by Eq.(7), where R0 stands 
for the focal length for CT0 of an individual zone 
plate of the array. 
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1. INTRODUCTION 

Recently there has been considerable interest in holographic axicons that produce a focal line image 
of uniform axial intensity and of narrow transverse width over a given extended region [1-5]. The 
phase transmittance function of this generalized axicon or axilens, for fully coherent illumination of 
radially symmetric intensity, was derived on the basis of holographic ray tracing and the geometric 
law of energy conservation [4] (see also [2,3]). Within the paraxial approximation the result is a 
logarithmic function, in contrast to the linear phase function of an ordinary axicon leading to a linear 
growth of the on-axis intensity. The derivation ignores the effects of diffraction and interference 
on propagation. Numerical calculations indeed indicated large on-axis intensity oscillations and 
increased spot size near the paraxial focus [5a]. The latter problem could be remedied by suitable 
annular aperture [5b], whereas the axial oscillations were smoothed by apodization [5c] in analogy 
with the technique applied previously to non-diffracting beams [6,7]. 

The axial intensity oscillations arise from interference, and therefore it is natural to expect that 
the fluctuations could be substantially diminished if the incident radiation had a reduced degree 
of coherence. Such a situation raises, however, a new and fundamental question concerning the 
operation of holographic axicons, and of diffractive optical components in general, under partially 
coherent illumination. This problem is much akin to the focusing of partially coherent light which is 
known to differ from that of coherent or incoherent light [8]. The assessment of optimized diffractive 
elements in controlled-coherence radiation is becoming increasingly important since many practical 
sources, including diode and multimode solid-state lasers, emit well-characterized spatially partially 
coherent beams [9]. 

In this paper we analyze partially coherently illuminated uniform-intensity holographic axicons 
within the space-frequency representation of coherence theory. After a theoretical formulation of 
the problem, the on-axis intensity in varying states of spatial coherence is evaluated numerically 
for apodized annular logarithmic axicons (off-axis intensity requires e.g. spline techniques). Both 
the axial and transverse intensity distributions are further examined in the asymptotic sense as the 
wavelength becomes short. The analyses lead to several new results on the design and performance 
of partially coherent diffractive elements. 

2. THEORETICAL FORMULATION 

We consider a holographic axicon at z = 0 represented by a phase transmission function exp[ik(p(p)], 
where k is the wavenumber and p is a transverse variable. Optimally, the phase <p(p) is calculated 
so as to produce a uniform concentration of light between d\ and d<x on the z-axis (Fig. 1). Each 
realization of the ensemble characterizing the stationary incident wavefield is subjected to the axicon 
transmission function and so the combined effect, expressed by the cross-spectral density of the 
focused light, is obtained by statistical averaging [10]. If the dimensions of the effective coherence 
area exceed several wavelengths and if the phase of the cross-spectral density is sufficiently planar, 
the field can be expected to locally obey geometric optics (as evidenced e.g. by refraction of thermal 
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Figure 1: Line-focusing geometry and illustration of diffractive spreading. 

light). Hence in this work we use the phase functions calculated previously for uniform coherent 
waves [4,5]. We emphasize, though, that this is an approximation that demands further study. In 
particular, our analysis suggests that this approach fails to account for the partial interference and 
increased diffractive spreading caused by the reduced coherence (Figs. 1 and 2). 

Taking an incident cross-spectral density of the Schell-model form [11] with an exponential 
degree of coherence of rms width ag, and using the polar coordinates for integration, the optical 
intensity at point (p, z) behind the axicon in the paraxial approximation is expressible as 

I(p, z)   =   (k/2irz)2 JJ[Ia(pi)Ia(P2)]l/2C(Pl,p2; p, z; ag) exj>[-(p2 + p2)^) 

x   exp[-ik(pl - pl)/2z] exp{-ik[<p(p!) - <p(p2)]}p1p2dpidp2, (1) 

where 

C(pi,p2; p, z\ og) =  // exp[p!p2 cos(0x - 02)/a
2] exp[-ikp(pi cos 0X - p2 cos 02)/z]d0id02 (2) 

and Ia(p) is a radially symmetric input intensity. We note that the transverse variable p appears 
only in the factor C and that on-axis (p = 0) Eq. (2) readily yields 

C(pi,p2;0,z;<Tg) = (2TT)
2
I0(PIP2/<T*), (3) 

where Jo is the modified Bessel function. When ag = oo, Eqs. (1) and (2) are seen to factor and to 
reduce to the usual fully coherent result [5]. It is also obvious that any axicon apodization can be 
replaced by appropriate incident-intensity variation. 

3. NUMERICAL AND STATIONARY-PHASE RESULTS 

With a uniform illuminating wavefield, the transmission phase function of the so-called (forward) 
annular-aperture logarithmic axicon is (for r < p < R) [5] 

<p(p) = -(2a)-1\og[d1 + a(p2-r2)], (4) 

where a = (d2 — d\)l(R2 — r2) and R and r are the outer and inner aperture radii, respectively. 
Optimally the meridional rays from the aperture's two edges are parallel and so r = (di/d2)R. 
For ease of comparison, we consider first numerically a line focusing situation analogous to that 
presented in [5]. We take d\ = 100 mm, d2 — 200 mm, r = 2.5 mm, and R = 5.0 mm. Geometrically 
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Figure 2: Axial intensity curves produced by illuminations of different degrees of coherence. 

the phase (4) corresponds to an axial 'ray density' of z(p) = di + a{p2 — r2) and this must be taken 
into account in apodization, but for simplicity we employ here a weakly truncated (at 1.5 mm and 
6 mm) intensity of the form {0.5 + arctan[20(/> - r)]/7r}{0.5 + arctan[20(Ä - p)]/*}- Hence the fully 
coherent plot in Fig. 2a shows a slight asymmetry. The ripples (compare with Fig. 2 in [5c]) arise 
because of the steep apodization edges. 

The shapes of the partially coherent plots in Figs. 2b-d clearly indicate that the axicon functions 
in partially coherent light. The overall intensity level drops as the coherence length decreases since 
rays from the opposite sides of the aperture increasingly add incoherently. In Figs. 2b and 2c the 
field is still locally sufficiently coherent so as to produce oscillations near the edges. The intensity 
slope within the focal range is also partly attributed to the diffractive loss of 'ray strength', but yet 
other effects may contribute. A substantially incoherent (ID) Gaussian Schell-model beam of waist 
intensity and coherence widths ai and ag decays on far-field axis as ~ koiOgfz [11]. Applying the 
ray density, the superposition and propagation loss can be compensated by the incident intensity 
at the holographic axicon. A preliminary numerical result generated through such a radially linear 
compensation is shown by the dashed line in Fig. 2d. 

At optical wavelengths it is convenient to evaluate Eqs. (1) and (2) by the method of stationary 
phase [12]. Customarily it is taken for granted that the stationary-phase result corresponds to geo- 
metrical optics — and we show that to a degree it indeed does — but even the leading contribution 
carries information about diffraction and interference. 

Since (after integration) the factor C is expected not to contain exponential phases proportional 
to k, consecutive asymptotic evaluation in p\ and pi can be performed directly in Eq. (1). In both 
cases the critical points (of the first kind) are pc = [r2 + (z — d^/a]1/2, which corresponds to the 
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mapping mediated by geometrical rays. No stationary point exists inside the annular aperture if 
z < di of z > di. For points (p, z) located within this (geometrical-optics) focal range the leading 
asymptotic contribution is 

I(p, 2)sP ~ (k/4ira)Ia(pc)C(pc, pc; p, z; ag) exp(-p2
c/a2), (5) 

where C(pc,pc;p,z;ag) is obtained from Eq. (2). The axial variation of the intensity comes from 
the stationary point in Ia(pc)Io(pl/<rg) exp(-/>;?/a2), suggesting an exact (asymptotic) method 
for intensity compensation. The fully coherent limit corresponds evidently to the purely geometric 
axially constant result. For a unit-intensity He-Ne illumination Eqs. (3) and (5) lead to a numerical 
value of 1(0, z)sp « 5850, in excellent agreement with Fig. 2a. 

For arbitrary ag the transverse variation C(pc,pc;p,z;ag) of the above stationary-phase result 
is integrated from Eq. (2). When ag — oo we find that I(p, z)sp ~ Jo(kp[r2 + (z — d\)la^2/z), 
indicating a sharp and axially relatively uniform line image. This result also explains the increased 
spot-size near the paraxial focus of a circular axicon [5a]; when r = 0 and z —> d\, the Bessel 
function Jo —*■ 1 (Le. a constant). For comparison we recall that a coherent linear axicon of phase 
(p(p) = —p/f produces, asymptotically, an exact non-diffracting Bessel beam Jo(kp/f) but with 
linearly increasing axial intensity [13]. 

4. CONCLUSIONS 

In this paper we have set forth the important issue of designing difFractive elements to be used in 
partially coherent illumination. We have shown that the design criteria for coherent and incoherent 
components must be modified appropriately. In the context of variable-coherence difFractive optics, 
the validity of concepts such as phase and ray as design tools (cf. radiometric ray tracing [14]) are 
assessed by comparisons against exact numerical and leading asymptotic results. 
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According to the geometrical law of energy conservation axicons with 
logarithmic phase function should exhibit a constant level of the axial intensity along the 
focal segment [1], [2], Exact solutions obtained by numerical evaluations of the 
diffraction integral, however, show a presence of fluctuations; thereby the constant 
intensity level can be understood only as an average approximation. Even then, the 
averaged energy flows in direct neighborhood of the optical axis turn out to be 
nonconstant [3]. This inconvenience can be eliminated by an application of the annular 
aperture, but the oscillatory character of intensity distributions remains almost unchanged 
[4]. Obviously, oscillations appear due to the truncation of the illuminating beam on the 
sharp edges of the aperture and can be suppressed by an application of smooth 
apodization function [5]. Similar approach was proposed for the fluctuations damping of 
the so-called nondiffracting beams [6-9]. 

The apodization can be realized in two different ways: or by using an absorbing 
screen, which softens the aperture boundary [5], [8], [9], or by illumination the element 
with the Gaussian beam [6], [7]. The first way requires an elaboration of difficult to 
produce amplitude-only apodizing transmittance. In turn, the second one offers rather 
limited possibilities of the axial intensities (in particular there are not possible the 
constant ones), since they are directly related, via the phase function of the element, to 
the transversal intensity distribution of the Gaussian beam. 

Both solutions concern the case of monochromatic illumination. Similar result, 
however, can be obtained, if a logarithmic axicon with clear annular aperture is 
illuminated by a polychromatic source. A laborious preparation of apodizing 
transmittance as well as losses of energy due to its presence are avoided in this way. On 
the other hand the axial intensity can be almost constant. The uniformization is obtained 
thanks to a incoherent superposition of mutually displaced focal segments produced by 
particular wavelengths. In following only the easier to produce kinoform version of the 
annular-aperture logarithmic axicon will be considered. Since the dispersive power of 
diffractive elements is roughly one order of magnitude greater than that of the refractive 
ones, narrowband sources are sufficient for good uniformization of the focal segment. 

The axial intensity distribution of the logarithmic annular-aperture diffractive 
axicon illuminated by perpendicularly incident plane wave of wavelength A, within the 
scope of paraxial approximation is given by the following Fresnel diffraction integral 

I(X,Z) = SMTI(A.) Jexp — 
p       I 

r2      X    M 

ZZ      AQ 

►rdr (1) 
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where phase function <p(r) of the annular-aperture logarithmic axicon is equal to 

(p(r) = -fln(d1+a(r2-p2)),a = ^f, (2) 

S(X) is the normalized wavelengths distribution of the source, r\(X) is the diffraction 

efficiency of the kinoform in the first diffraction order, X0 is the central wavelength of 
the spectral band (and the wavelength for which the element is adjusted), R is the outer 

radius of the aperture and p = Rdi/d2 is the inner radius of the aperture. 
For the spectral characteristics of the source a gaussian function is taken, which 

in the case of narrowband sources assumed here can be represented as a gaussian 
distribution of the wavelengths as well 

(        l\ _i  ^ 
S(A,) = exp -ln2- 

a2 (3) 

where a is the wavelength separation between the central point and the point where 

S(X) is down to half its peak value. 

The diffraction efficiency r|(A,)of a kinoform axicon forming the focal segment in 
the first diffraction order is given by 

nW = sinc2(^4 (4) 

The final axial intensity distribution results from the incoherent superposition of 
focal segments produced by all wavelengths and is equal to 

l(z) = Jl(z,X)dX (5) 

where the integration is extended over the whole spectral region. 
In the numerical analysis we have assumed a monochromatic illumination with 

the wavelength X0 = 600 nm (Fig.l) and a polychromatic illumination with the X0 being 
the central wavelength and half-width value a equal to 5 nm (Fig.2), 10 nm (Fig.3) and 
20 nm (Figs.4 and 5) respectively. The integration given by Eq.(5) was executed over the 

region (%Q-3a,X0+3a). The value of the normalized distribution of the wavelengths 

S(%) falls at the border of this region to 0.002 of its peak value and more distant 
wavelengths do not give significant contribution into the focal segment. The diffraction 

efficiency r\(x) was approximated by 1 (over the whole spectral range its value does not 

fall below 98.3%). The parameters of the axicon were: R = 5 mm, p = 2.5 mm, dl = 100 

mm, and d2 = 200 mm. 
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Fig.l. On-axis intensity distribution for the 
diffractive annular-aperture axicon 

illuminated by a monochromatic source with 

X0 = 600 nm, calculated with the help of 
Eq.(l). 
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Fig. 3. On-axis intensity distribution for the 
diffractive annular-aperture axicon 

illuminated by a polychromatic source with 

X0 = 600 nm and cr = 10 nm, calculated 
with the help of Eq.(5).  
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Fig.2. On-axis intensity distribution for the 
diffractive annular-aperture axicon 

illuminated by a polychromatic source with 

X0 = 600 nm and a = 5 nm, calculated 
with the help of Eq.(5). 
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Fig.4. On-axis intensity distribution for the 
diffractive annular-aperture axicon 

illuminated by a polychromatic source with 
X0 = 600 nm and a = 20 nm, calculated 

with the help of Eq.(5).  
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Fig.5. On-axis intensity distribution for the 
refractive annular-aperture axicon 

illuminated by a polychromatic source 

with X0 = 600 nm and a = 20 nm, 
calculated with the help of Eq.(5). 

The dispersion of the axicon material over 
the spectral range is neglected. 
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The set of figures, from 1 to 4 illustrates the proceeding uniformization of the 
axial intensity distribution, starting from the monochromatic case (Fig.l), through the 
narrow bands of the wavelengths distribution (Fig.2, or = 5 nm, Fig.3, a = 10 nm), till 
the widest one (Fig.4, G = 20 nm). For the comparison, there is presented also the axial 
intensity of the focal segment produced by the refractive axicon, where the dispersion of 
the element's material was neglected (Fig. 5, a = 20 nm). This plot confirms that for the 
efficient cancellation of the oscillations the most important factor are mutual 
displacements of the focal segments; other factors, like different frequency of oscillations 
for different wavelengths are of minor importance. 

The first overshoot at the ends of the focal segment is maintained to some 
degree, even for the incident beam with widest spectral region, however, other 
oscillations are canceled with good accuracy, comparable to those obtained by the 
apodization techniques. The slopes at the ends of the uniformized axial intensity become 
less steep, but this phenomenon takes place in the case of the apodization as well and 
cannot be avoided. 

The application of an annular aperture does not mean that a part of the energy of 
the illuminating beam must be lost. Two element axicon systems can be applied in order 
to redistribute it properly. The first of them should be a refractive one (the linear cone at 
best) and would sent all wavelengths into the annular aperture of the second one. The 
second one should not only to have an logarithmic phase function, but also to 
compensate the linear phase of the incident beam. For this reason its dispersive power 
will be greater, and more narrow spectrum will be sufficient for the uniformization of the 
axial distribution. 

This work was supported by CICYT, Ministerio de Transporte y Turismo y 
Comunicaciones ( TIC 93/0606 ), Spain. 
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An ideal diffractive optical system, which may be a part of a hybrid 

information processing system, should have the followring properties: 

Fast, highly parallel, reliable, compact, IC compatible , cheap and easy to 

manufacture, to test and to assemble as part of the overall system. The relative 

significance of those properties will differ from case to case. Here we will 

emphasize SIMPLICITY as most desirable. 

We consider two jobs: illumination of a 2-D cartesian array of detectors or 

modulators ; and the generation and processing of complex 1-D signals. 

Specifically we will compare two classes of array illuminators, termed 

Dammann and Talbot. Furthermore, we will present several 1-D systems which 

use simple binary masks as crucial components. 

The two array illuminators are based on Fraunhofer diffraction and Fresnel 

diffraction, respectively . For Fraunhofer diffraction one needs a Fourier transform 

lens with demanding qualifications. Otherwise, the price / performance of the two 

approaches is comparable. 

The second set of projects to be described is based on the concept, that 

the sacrifice of one of the two lateral dimensions (x,y) leads to very simple 

systems, which can accomplish among others: a) parallel display and processing 

of Bessel functions, Laguerre polynomials and Airy functions; and b) novel family 

sets of apodizers. Our first experimental verifications are included. 
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The efficient coupling of light between the various components in optical communications 
systems will be an important factor in the widespread roll out of low cost optical 
telecommunications networks. Of particular interest is the efficient coupling of semiconductor 
lasers to optical fibres or waveguides. Because the output of a semiconductor laser is widely 
diverging compared to the acceptance angle of a single mode fibre, high coupling efficiency is 
difficult to achieve. 

At present lensed fibres are a popular method for fibre/laser coupling, with efficiencies as 
high as 60%. When extended to arrays of lasers the fabrication of a lensed fibre array becomes 
more of an issue, lenses are not always concentric to the fibre cores and so must be very carefully 
selected before alignment or must be individually aligned to each laser in the array. 

In this paper we describe the fabrication of computer optimised, low F/# Fresnel lens 
arrays to address the requirement for efficient and consistent coupling between arrays of 
semiconductor lasers and single mode optical fibres. The advantage of this approach is that each 
lens is positioned with a high degree of accuracy by the lithographic fabrication technique. 

Design 

semiconductor 

laser 

Fig 1 Optical configuration of system 

(angles for - int ensity beam radius) 
e2 

The optical layout of the system is as shown, Fig 1 .Each lens array comprises four lenses 
on a 250 micron pitch, matching the fibre spacing in the four fibre connector. The lenses were 
designed with the required magnification for transforming a diverging laser beam, NA 0.46, into a 
converging beam suitable for coupling into a cleaved fibre, NA 0.1. The focal length was 
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calculated to be 66 microns, resulting from a lens fibre separation equal to the thickness of the 
quartz substrate, and the laser lens distance was calculated to be 80 microns. These design 
parameters form the input to a computer program in which the lens surface is represented by a two 
dimensional array of pixels, each pixel being assigned one of four phase levels. An optimisation 
algorithm based on simulated annealing (1) is used to optimise the Fresnel-Kirchoff integral that 
transforms the pixel pattern to produce the desired output pattern. 
Fabrication 

The F/# of each lens in the array, defined here as the focal length divided by the effective 
beam diameter at the lens, is 0.5. Such a low F/#, due to the widely diverging laser beam and the 
magnification necessary for coupling into a fibre, results in a very small feature size, 0.2 microns, 
in the outer regions of the lens. A number of different exposure strategies were assessed in order 
to optimise the fabrication. The choice of quartz substrate also had a major impact on the 
fabrication process. After an adjustment for non-normal incidence of the light beam, a total etch 
depth of 2.1 microns was required for an operating wavelength of 1.5 microns, presenting a 
fabricational challenge. The total etch depth could have been reduced by using a higher refractive 
index material such as silicon, but the high reflection losses associated with such materials 
necessitate anti-reflection coating of both surfaces (2). 

The other advantage of a quartz substrate is its transparency allowing the positioning of 
fibre alignment structures on the rear face of the substrate by a straightforward projection method 

(3). 
The lenses were fabricated using direct write electron beam lithography and reactive ion 

etching as previously reported(4). The basic process is outlined in Fig 2.Two different resist 
strategies were used for the initial high resolution structure definition, a thick negative tone bi- 
level resist, and a thin positive tone process forming a metal etch mask by lift-off. After etching 
and planarisation of the first level topography, the second level was exposed, and a second etch 
step carried out resulting in the 2. l^i total etch depth. 

1« etch level 
features down to 0.25 microns 
etch depdi 0.7 microoi 

I 

2nd level resist image 
prior to etching 

After 2nd level 1.4 micron 
deep etch, total etch depth 2.1 microns 

Fig 2 Basic fabrication sequence 
Characterisation 
a) Structural 

One of the major problems encountered in the fabrication of high resolution diffractive 
optical elements is the assessment of etch depth and pattern fidelity in the deeply etched sub- 
micron regions since these cannot be measured using conventionally available non-destructive 
techniques. We have employed focused ion beam sectioning to study the profile and dimensions of 
the four phase levels. The ability of the focused ion beam to image and machine with the same 
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beam provides accuracy in the placement of cross-sections that approaches the resolution of the 
image, ca 30nm. 

The ion beam was used to deposit a platinum line over the topography of interest, to 
preserve edge detail and increase image contrast. A sloping profile etch pit was then prepared 
adjacent to the line see, Fig 3. Tilting the sample allowed examination of the cross-section and 
acted as an aid to process development. Although the technique is destructive, the section is small 
and localised, and the technique can therefore be performed on finished substrates with little 
impact on the device performance . 

FIB imaging 3pA FIB machining InA 

FIB deposited metal 

Fig 3 Schematic of ion beam sectioning process 

b)Optical 
Three sets of measurements were taken to assess the performance of the Fresnel lens array 

in its intended operating configuration. The first was coupling efficiency of a semiconductor laser 
to a cleaved fibre through the Fresnel lens array ,Table 1. 

Lens 1 Lens 2 Lens 3 Lens 4 Average 
efficiency 
% 33.8 34.0 34.9 34.2 34.23 

Table 1 Coupling of 1.55u laser, 30° FWHP to fibre 

The second set of measurements investigated the half power coupling efficiency tolerances 
between the optical fibre and the Fresnel lens array, index matching being used between the fibre 
and the array.Table 2. 

Lens 1 Lens 2 Lens 3 Lens 4 Average Tolerance 
(microns) 

Lateral +6.2 
-5.9 

+5.1 
-6.5 

+6.1 
-3.7 

+6.5 
-5.8 

+6.5 
-5.5 

±5.7 

Vertical +5.4 
-5.6 

+5.5 
-7.3 

+6.0 
-7.2 

+6.1 
-6.9 

+5.8 
-6.8 

±6.3 

Table 2 Half power point fibre to lens positioning tolerances in microns 



238 / DWA2-4 

The third set of measurements investigated the half power coupling efficiency tolerances of the 
semi conductor laser to the Fresnel lens array. Table 3. 

Lens 1 Lens 2 Lens 3 Lens 4 Average Tolerance 
Lateral +1.2 

-0.9 
+1.2 
-1.0 

+1.2 
-1.1 

+1.2 
-1.1 

+1.2 
-1.0 

+1.1 

Vertical +0.8 
-0.4 

+1.1 
-1.3 

+1.3 
-1.2 

+1.3 
-1.2 

+1.1 
-1.0 

±1.1 

In 
Gap 
Out 

4.7 

5.3 

6.1 

3.7 

5.5 

5.5 

5.3 

5.6 

5.4 

5.0 
±5.2 

Table 3 Half power point laser to lens positioning tolerances in microns 

Conclusions 
We have designed and fabricated sub micron feature sized Fresnel lenses in quartz. The use 

of focused ion beam sectioning as a fast and potentially an in process, diagnostic tool has been 
demonstrated. Using the fabricated arrays of Fresnel lenses coupling efficiencies of 34% have been 
achieved between a 30° FWHP laser and a cleaved standard system fibre. Although this is less 
than the 60% coupling achievable with a good lensed fibre the use of a lens array has significant 
advantages. Arrays of lensed fibres are difficult to fabricate due to the process of lens formation on 
the fibre. However extremely uniform arrays of Fresnel lenses have been produced that exhibit 
positional tolerances, when aligned to a semiconductor laser, similar to lensed fibres. A further 
advantage of the Fresnel lenses is the relatively lax positional accuracy required for the cleaved 
fibre, typically plus or minus 6 microns, making lens/fibre arrays readily achieved. 
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Introduction 
There are a number of important applications for holographic optical interconnects including their 

use in digital computers, optical neural networks, and optical preprocessing systems. In virtually all of 
these applications, the overall system architecture is greatly simplified if the interconnections can be 
made in an on-axis geometry. Additionally, the on-axis geometry provides the potential for higher 
diffraction efficiency and, in many cases, improved accuracy in the interconnects. In order to realize 
interconnections in this geometry, holograms are typically designed by computer and fabricated as multi- 
level phase masks. Many techniques exist for the design of off-axis binary-amplitude holograms. These 
include cell-based techniques like the Lee* and Lohmann^ methods, point-based techniques like the 
error-diffusion approach^>4; anc} iterative methods like the Gerchberg-Saxton algorithm^'" and simulated 
annealing^. Many of these methods, however, are not applicable to the design of multi-level phase 
structures - only the iterative techniques can be used to design phase-only holograms with adequate 
performance. The fabrication of multi-level phase holograms is by no means a trivial task. The standard 
approach, based on the e-beam fabrication of multiple binary transmission masks and multiple 
exposure/etch cycles of a glass substrate, is extremely tedious, expensive, and sensitive to fabrication 
error. In this work we describe an iterative design procedure, developed by our group, that yields 
holograms with improved performance relative to other design strategies, and a direct e-beam fabrication 
method that avoids many of the difficulties of the standard fabrication technique. 

The Design Algorithm 
The design algorithm we have developed is a two-step procedure consisting of a combination of 

the Gerchberg-Saxton technique followed a random search error-minimization step. The latter is 
equivalent to simulated annealing at zero temperature. This combination, which we term the Gerchberg- 
Saxton preconditioned random search (GSPRS) algorithm, yields holograms with high diffraction 
efficiency and low error in the interconnection intensities". 
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The Gerchberg-Saxton (GS) technique is an iterative technique, which attempts to find a solution 
that simultaneously satisfies constraints in both the hologram plane and the output plane. For many 
applications (all that we have considered), the hologram is designed as a Fourier transform hologram, and 
as such, the relationship between the hologram and the output plane is a particularly simple one (i.e. just a 
Fourier transform relationship). In this case the GS procedure consists of repeated application of the 
following loop: apply the output constraints, inverse Fourier transform to the hologram plane, apply the 
hologram constraints, Fourier transform back to the output plane. The output constraint is typically that 
there be a specified intensity pattern in some portion of the output plane. For example, in neural network 
applications one desires a particular pattern of weighted interconnects at a given set of detector locations. 
The hologram constraint is that the transmission function of the hologram be multi-level phase. In other 
words, the magnitude of the amplitude transmission is unity across the hologram and the phase at any 
pixel is quantized to be one of N levels. The start point of the algorithm entails specification of an output 
optical amplitude with a magnitude equal to the square root of the desired intensity pattern and a random 
phase distribution. Although there is no guarantee that a solution can be found because there is no 
guarantee that a solution even exists, the GS algorithm works reasonably well in practice if there are 
enough degrees of freedom (pixels) in the hologram. A characteristic of holograms designed by GS is that 
they have high diffraction efficiency because one starts the design procedure by placing all the energy in 
the desired interconnection pattern and zero energy outside the pattern. 

Although the GS algorithm works reasonably well in its own right, significant improvement in the 
accuracy of the interconnections can be achieved by incorporating a random search procedure into the 
design algorithm. In this case one starts with the hologram produced by the GS algorithm; then pixels in 
the hologram are chosen at random and their phases values randomly changed to one of the N quantized 
phase values. This change is evaluated and accepted only if it produces a better output. The evaluation of 
what constitutes a better result is done in terms of a merit function that measures the RMS error between 
the desired output and the actual output. This procedure is equivalent to simulated annealing at zero 
temperature (i.e. only changes that improve the accuracy of the interconnects are accepted). 

A comparison of the GSPRS algorithm to other holographic design methods was performed. The 
task for this comparison was the design of a Fourier transform hologram producing an 8 x 8 binary 
interconnect pattern centered in a larger array of 32 x 32 pixels. The fundamental space-bandwidth 
product (SBWP) of the hologram is, therefore, 1024. Figure 1 (reprinted from Fig. 3 of Ref. 9) shows a 
plot of the performance of the holograms in terms of the RMS error in the output versus the SBWP 
product in the hologram. Additional SBWP was incorporated by replicating the hologram. As expected, 
adding SBWP to the hologram increases the performance (decreases the error). Very similar results are 
obtained if zero padding is used rather than hologram replication. It is seen that the GSPRS algorithm 
clearly out performs the other algorithms tested. Results in Ref 9 also shows that the diffraction 
efficiencies for the GS and GSPRS holograms are approximately six times higher than those for 
holograms designed by the other methods. This particular analysis used a 4-level phase holograms, but 
the same general results are seen with binary amplitude holograms as well as phase holograms with 
different numbers of phase quantization levels. 

Hologram Fabrication 
The standard approach to fabricating an N-level phase holograms requires the e-beam fabrication 

of m binary transmission masks, where m=log2N, and m processing cycles. Each processing cycle 
consists of spin-coating resist, resist exposure, resist development, etching of the substrate to the 
appropriate depth for the given mask, and residual resist removal. Accurate spatial alignment of the m 
cycles as well as accurate control of the etch depth at each cycle is required to produce a satisfactory 
hologram. The performance of the holograms relative to errors in both alignment and etch depth has been 
analyzed by out group *". 
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A much more direct method of fabricating multi-level phase holograms is to employ variable e- 
beam exposure with accurately controlled development to produce a surface relief structure in a single 
layer of resist. Paul Maker at the Jet Propulsion Laboratory has recently developed and demonstrated a 
technique employing PMMA as the resist with acetone development* *• The e-beam exposure effectively 
breaks bonds in the highly cross-linked PMMA material altering its solubility in acetone. By controlling 
the e-beam exposure and development time, a specified surface relief structure (i.e. phase hologram) can 
be produced. Fresnel lenses with excellent performance have been produced by this technology by Maker 
and colleagues at JPL. As described in the next section, this technique was used to fabricate multi-level 
phase holograms designed via the GSPRS algorithm. 

Experimental Results 
A simple problem was chosen to demonstrate the ability to design and fabricate multi-level phase 

holograms for use in systems requiring on-axis optical interconnects. A set of nine holograms were 
designed to encode the numeral 1 thru 9. The numerals were represented as a binary pattern of on and off 
pixels on a 64 x 64 pixel grid, which was centered in a larger 128 x 128 pixel array. The holograms were 
designed using the GSPRS algorithm as Fourier transform holograms with a fundamental array size of 
128 x 128 pixels and 64 quantized phase levels. Each hologram was replicated 16 times (4x4 pattern of 
replication) to confine the energy in each interconnect to the center of the output cell (detector), which 
improves the accuracy of the interconnects by reducing cross talk of light from one interconnect to the 
next. Thus, each hologram consists of 512 x 512 pixels quantized to 64 phase levels. The pixel size was 
specified as l|lm, which yields a hologram of approximately 0.5 mm on a side. The number of phase 
levels was chosen to match the capability of the fabrication technology, although little improvement in 
performance is realized for quantization above 8 phase levels. The holograms were fabricated at the e- 
beam facility at JPL. 

Figure 2 shows an example of the output of one of the holograms. The pattern of on and off 
pixels is clearly seen. The square surrounding the numeral represents the outer border of the 64 x 64 pixel 
pattern. The fact that this is an on-axis interconnection pattern can be appreciated by the central bright 
pixel, which represents the zero order diffraction. This pixel should be of equal intensity with the other on 
pixels in the pattern, but is approximately seven times as bright because of slight errors in the fabrication 
process. Still, this is an impressive result considering that the on-axis light would be approximately a 
thousand times brighter with no hologram in the beam. 

The performance of this hologram is quite good. The overall diffraction efficiency is about 46%, 
which is about 10% less than predicted. If one normalizes the output to correspond to values of one 
(bright) and zero (dark), the bright pixels have an average value of 1.0 (by definition)and a standard 
deviation of 0.49. The dark pixels in this pattern have an average value 0.029 and a standard deviation of 
0.017. This yields an overall contrast ratio of approximately 34, which is within a factor of two of the 
predicted performance. The slightly reduced performance appears to arise from the an overly active 
etching process that cuts into the side walls of "tall" PMMA pixels. Future work will be directed to reduce 
this problem and that of the residual zero-order light signal. 

Conclusions 
The GSPRS design algorithm appears to be a very good method for the design of multi-level 

phase computer-generated holograms. Fabrication of multi-level phase structures by direct e-beam 
exposure and development of PMMA is possible and produces holograms with good performance. 
Combined, this design technique and fabrication method can be used to make holograms for a variety of 
on-axis optical interconnect applications. 
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I. Introduction 
Diffractive optical elements (DOEs) can be used in many industrial and military applications 

including optical interconnections for the next-generation highly parallel computing systems. 
One of the most general DOEs for such applications is the aspheric DOE. Typically an aspheric 
element is defined as an optical element whose phase function can be specified by a polynomial 
of some specified type. Thus aspheric elements can be designed in standard optical design 
programs such as CODEV that will optimize the coefficients of the polynomial to satisfy the 
designer's specifications. Once these coefficients are generated the problem is to generate the 
data necessary to fabricate the aspheric DOE. However, current ebeam pattern generators for 
vector based machines (such as Cambridge) place stringent limitations on the types of shapes that 
can be generated. For instance only trapezoids with horizontal tops and bottoms and with a fixed 
set of angles for the trapezoids sides are allowed. As the number of trapezoids grow, the ebeam 
data size grows proportionally. Thus, there is a tradeoff in data generation between pattern 
fidelity and data size or between optical noise and fabrication cost/time. Therefore, there is a 
need for general algorithms that generate reduced data size for general aspheric DOEs. 

Arnold[l] first proposed the use of the ebeam writer in generating DOEs, however only 
sketchy algorithms were given on how to take specification data such as the coefficients of an 
aspheric DOE and generate the ebeam data. Later, two general methods were proposed to 
generate aspheric DOEs: fringe tracing based algorithms that trace fringe boundaries [2], and 
pixel based algorithms that draw small areas (pixels) based on the average wavefront values[3]. 
Fringe tracing based algorithms are not stable nor general enough to ensure successful data 
generation but they produce far less data than pixel based approaches. In this paper, we present a 
new algorithm based on modified subdivision techniques[4] that possesses the stability of pixel- 
based approaches but at the same time significantly reduce the amount of data by using fringe 
tracing. 

II. Algorithm 
In this section we will formally describe the problem to be solved and present an algorithm 

capable of providing a general solution to the problem. 

A.   Problem formulation 
Let A be the aperture region of a DOE: x0<x<xj and v0<v<y/. 
Let S={E IE is an allowable ebeam shape] be the allowable ebeam shapes. 
Let P(x,y) be a polynomial phase function defined in region A, which represents the desired 

wavefront of interest. Given the fractional fringe phase value, 2%lm, where m is the number of 
phase levels, and a phase error bound e. Our problem is to partition A into a set of fringes Ab- 

stich that   Ai = {(x,y)\(i-l)x(2n lm)< P(x,y)<iX(2K Im)}       Vi. (1) 
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For each A/, a number fa is assigned to indicate the quantized phase of this area. For 
example, when DOEs are L phase level direct write, 0/ = 2nx(i mod L) for all i. The task of the 
algorithm is to approximate Aj efficiently with a subset 5',- of S, such that the phase errors 
caused by under-covered or over-covered areas are bounded by e. That is, for any i we want to 
find5'/, suchthat 

(i -l)x(2n/m)-e< P(xa,ya )<ix(2n/m) + e, for all points (xa,ya) in S',\ (2) 

B.   Algorithm Description 
To solve this general aspherical data generation problem, we developed the algorithm 

described below. This algorithm is based on modifications of subdivision methods found in 
computer science for surface-to-surface intersections [4]. These methods are known to be both 
reliable and accurate.   The algorithm can be divided into the following steps: 

step 1: "Divide, aspheric element A into^regions,Rj, R2, »., Rtf (Figure la). 
step 2:  lAuide each region Ri into G( grids (Figure lb), where G( is dependent on the minimum feature 

requirement in that region /?,-. To ensure the accuracy, there should not Be more than one fringe 
Boundary crossing a grid. 

step 3: Trace each fringe xrithin each grid ivith Cambridge eBeam angles (Figure lc). These angles should Be 
the closest one to the fringe section in the grid. The error of the trace is Bounded bye. 

step 4: form trapezoids shapes Based on these traced fringes inside a grid(Figure Id). 
step 5: "Within each region Ri, rve combine shapes so that the totalnumBer of shapes is reduced in that region 

(Figure le). 

Notice that two extreme cases of this algorithm will result in either pure fringe tracing or 
pixel based methods. When N is set to 1 and ignore step 5, we have the case of pixel-based 
methods. In this case, the data size will be quite large (see Section III). When region R( is set 
to Aj- (those regions covered by the fringes of interest) for all i, and we ignore Step2, we have 
fringe tracing methods. The problem in this case is that it is very difficult to divide the elements 
into these type of regions, except for a few special cases such as Fresnel zone plates. In this 
paper, we present results in which A is uniformly divided into equal rectangular regions (/fy's). 
Adaptively dividing A into regions of different sizes will be more effective in reducing the data 
size, but is a topic of future research. 

It is the combination between methods of fringe tracing and using grids that ensure stability, 
accuracy and smaller data size.  There are two aspects of optimization in this algorithm.   The 

first    aspect    is    the 
■ 1,1, 1   e    1 ^ * 

^     Rj(Gj =64) 

( N 

w— ^^ 
(   a   ) 

Figure 1. Algorithm for general aspheric element E-Beam fabrication. 

combination of the 
neighboring grids 
(Step 5) in a given 
region to form a larger 
ebeam shape (the 
identical size of the 
grid inside the region 
make this possible). 
Secondly, the use of 
regions allows the 
grids in each of these 
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regions to be of different sizes to accommodate the varying spatial frequencies in the DOE 
(small fringes require a small grid size whereas large fringes can accommodate larger grid sizes). 
Using this algorithm the data size can be controlled by adjusting two parameters: the number of 
regions and the phase error. Briefly the phase error is a number that is related to the fringe 
tracing accuracy. The next section will discuss the trends in data size as these two quantities 
vary. 

III.      Results 
We have applied this algorithm to different types of aspheric elements. Although the 

algorithm is capable of generating multilevel e-beam data for direct write, for simplicity in this 
paper we will only show the results for binary masks. Figure 2 shows a picture of the ebeam 
patterns generated for a 5th order aspheric DOE which corrects for off-axis aberrations for a bulk 
refractive lens. Its size is 0.6 x 0.6 mm. Figure 2a shows the result of N=l without Step 5, as a 
basis of comparison (pixel based approach). For this case, the ebeam data file has 129 kbytes. 
When Step 5 is performed (Figure 2b), the data size is reduced to 90 kbytes. When the number of 
the regions N increased, and the grid size in each of the region is adaptively set depending upon 
the error requirement in that region (Step 2), we can see the data size is reduced further. Figure 
2c shows the case where N=12. The data size in this case is 73 kbytes. It should be noted that this 
reduction in the ebeam data will also result in a reduction in ebeam fabrication time (which 
directly relates to the cost). However, our experiment shows that it is the DOE's area that 
dominates the ebeam exposure time. For our cases, we noticed only a modest reduction in the 
estimated exposure time since our elements all have the same area. It should be mentioned that 
one method of reducing the ebeam writing time is to use variable resolution techniques but is 
beyond the scope of this paper. 

To observe the trends as we vary the number of regions and the phase error, we generated five 
aspheric DOEs with f-numbers varying between 10 and 50. Figures 3 and 4 shows the 
relationship between the ebeam data size from the algorithm and different region sizes and phase 
error requirements. Notice that the results of the pixel based algorithm for the f/10 case are 

(a) (b) (c) 
Figure 2. Aspheric DOE ebeam data generated by (a) pixel based approach (b) with optimization (c) with more 
regions (N=12). 
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relationship between the number of regions and the 
different aspheric DOEs. 

indicated as "unoptimized". Figure 3 
shows the graph of the data size vs. 
the number of regions for a fixed 
phase error. It shows that by varying 
the region size at least 40% reduction 
in the data size can be realized. In 
general, as N increases, the data size 
begins to decrease until an optimal 
point is reached (in this case N=20), 
after this point the data size increases. 
Figure 4 shows the relationship 
between the phase error and the data 
size. It shows that if the design allows 
a larger phase error, the data size will 
become smaller. The optimum phase 
error is at the elbow of the curve 

(phase error -0.1-0.2, in 0.1 of the 
wavelength) where pattern fidelity is 
still very good and the data size is 
close to a minimum. 

IV.       Conclusion 
In this paper, we have described a 

stable algorithm for e-beam 
fabrication of general aspheric 
diffractive elements. More than 40% 
improvement in data size can be 
achieved over the past published 
algorithms. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Phase Error Requirement 

Figure 4. The relationship between the phase error and the 
data size for 5 different aspheric DOEs. 
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Introduction 
It is usual to design computer generated holograms (CGH), whether modulating amplitude or phase or to be 
implemented as fixed or programmable, using a computer alone. In this "off-line" approach, the hologram 
and the rest of the optical system is modelled and is incorporated in an iterative optimization algorithm for the 
design of the hologram. The resulting CGH is subsequently fabricated or displayed for assessment [1]. The 
optical components need to be of high quality because aberrations have not formed part of the modelling pro- 
cedure. 

It has been recognized that computer controlled spatial light modulators (SLM) provide a means whereby the 
optical system can be incorporated in the design process [2,3]. In this "on—line" approach, the measured inten- 
sity in the output plane is fed back to a computer which performs the iterative optimization and controls the 
SLM pixel pattern, so forming a feedback path from the output to the SLM. This has the virtue that system 
defects are included into the optimization process and has the possibility of giving faster optimization than the 
"off—line" approach when the number of SLM pixels is very large. 

In this paper results are presented for an on—line feedback system. The system differs from that used earlier 
[2,3] in that (i) the SLM performs as a binary, phase-only, modulator and (ii) the system operates with a single 
detector in the output plane. The results show optimal (correct to a single pixel) and near optimal design in 
Fourier and Fresnel transform optics and demonstrate correction for an aberration deliberately introduced into 
the system. 

Experimental System 
Fig. 1 shows the experimental set up used to implement on-line feedback in this work. At the heart of the sys- 
tem is a commercially available 128 x 128 pixel ferroelectric liquid crystal spatial light modulator (FLCSLM) 
[4], which, in combination with polarisers, achieves inherently binary, phase-only modulation. We refer to the 

PPT 

Vertical    FLC    Horizontal 
polariser    SLM    polariser    f = 260mm 

From 
Laser 
632nm 

Beam expander 

Intensity 
detector 

Fourier lens 

Computer 

Figure 1 Experimental set up for design of CGH using on-line feedback 
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SLM plus polarisers as a programmable phase transformer (PPT). Good performance with the system has previ- 
ously been reported [5,6]. The PPT is controlled via a computer, which also monitors the intensity in the output 
plane detected by a single photodiode via an analogue to digital converter (ADC) board and computer con- 
trolled preamplifier. The arrangement shown in Fig. 1 is for generation of a Fourier transform hologram. Fres- 
nel transform holograms are formed with the detector displaced out of the Fourier plane. 

The design procedure starts with a random arrangement of PPT pixels states. A single PPT pixel is then selected 
at random by the computer, and its phase state switched by x(-1). This is followed by measurement of the corre- 
sponding intensity change at the photodiode. The pixel change is retained if the detected intensity increases 
and rejected if it is reduced, according to the direct binary search (DBS) algorithm. The whole process is then 
repeated until all pixels have been tested twice. 

At present, the overall system performance is limited by ADC quantization noise. This is a problem because 
measurement of the effect of switching one pixel in up to 128 x 128 pixels is being attempted using 12 bit quantiz- 
ation. With the current system, the time to carry out a complete optimisation is about 2N seconds, where N is 
the total number of pixels. There is considerable scope for reducing this time. 

Performance 
Fourier plane, centre spot. The simplest situation to which on-line feedback can be applied is to optimise the 
PPT to produce a central spot in the Fourier plane of a lens. This means placing the detector at that position. 
It is then anticipated, for the better-than-X/2 phase flatness of the PPT, that the feedback will attempt to put 
all PPT pixels into the same phase state. Fig. 2 indicates how successful the feedback procedure is, with different 
numbers of active PPT pixels (the remaining pixels in each case being configured so their output does not con- 
tribute to the intensity at the detector). 

For up to about 1500 active PPT pixels, the feedback loop puts all pixels into the same state. However, as the 
number of pixels is increased further, a gradual degradation of performance can clearly be seen, so that around 
500 pixels are in the 'wrong' state when all 128 x 128 PPT pixels are used. This figure excludes the contribution 
made by a number of malfunctioning lines of pixels, arising from defective addressing electrodes on the SLM. 

Fig. 3 (a), shows the final phase pattern produced by on-line feedback for the detector located at the centre 
of the Fourier plane. The defective lines of pixels are clearly visible to the left of the pattern and to a lesser extent 
in the top right hand corner. Fig. 3 (b) shows an image of the output spot produced by the pattern in 3 (a). The 
clearly visible side-lobe structure supports the claim of near diffraction limited performance. 

Fourier plane, off-centre spot. In this assessment the detector is moved off-centre while still in the Fourier 
plane. As expected, this produces a grating as is show in Fig. 3 (c), with 3 (d) showing the corresponding output 

100 

21 

.£ re 

8000 12000 

number of active pixels 

16000 

Figure 2 Generation of a Fourier plane central spot: 
percentage of pixels in the same state as a function of active number of PPT pixels 
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(a) (c) (e) (9) 

zero 
order 

(b) (d) (f) (h) 

Figure 3 PPT and output plane patterns produced by 
on-line feedback for different optical configurations 

image. It can be seen that the phase boundaries in the PPT pattern are not straight. This is attributable to very 
minor phase aberration in the system. The output again shows near diffraction limited performance. 

Off Fourier plane, centre spot. Moving the detector along the optic axis a distance of 1.7mm from the Fourier 
plane resulted in the optimised pixel pattern in Fig. 3 (e). It closely approximates a pixelated Fresnel zone plate 
with first order focal length of 5.7m. The near diffraction limited performance is shown in Fig. 3 (f). 

Fourier plane, centre spot, aberration correction. With the detector placed at the centre of the Fourier plane, on- 
line optimization was performed with a strongly aberrating component introduced into the system. The aberra- 
tor was a glass microscope slide which showed a multi-wavelength phase retardation variation in one direction 
and a sharp step of about half a wavelength in the other (due to the edge of a photoresist layer on the slide). 
It was placed about 6cm in front of the PPT. Fig. 3 (g) shows the optimized PPT pixel pattern and Fig. 3 (h) the 
resulting output. The pixel pattern closely resembles the known phase variation introduced by the aberrator 
with the step in phase correctly positioned and shown with striking clarity. As shown in Fig. 3 (h), a focal spot 
is clearly seen whereas, in the absence of correction the output is spread over the output plane. 

Discussion and Conclusions 
The DBS algorithm performs adequately in the relatively simple optimization problem that the single target 
spot poses. Even in more complex problems of this type the more time consuming algorithms such as the simu- 
lated annealing algorithm shows little improvement over DBS. Our results demonstrate that the on-line design 
method can perform as well as off-line for small pixel numbers and show only small degradation compared with 
off-line for up to 128 x 128 pixels. This is mainly attributed to quantization noise though aberration in the sys- 
tem plays a minor role. The malfunctioning pixels are evident in all PPT patterns shown in Fig. 3. The correction 
of a deliberately aberrated system demonstrates that on—line optimization can compensate automatically for 
some degradation in the quality of optical components. Our results can be regarded as demonstrating the sys- 
tem "tracking" a target with a spot of light, in principle at least, showing the capability of adaptively compensat- 
ing for time dependant aberrations. Also, in performing a correction for a phase aberrator located near the PPT, 
the pixel pattern generated is a good approximation to the complex conjugate of the phase aberration within 
the limits of phase-quantization of the system. It therefore constitutes a new, direct means of determining 
phase aberration. 
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1. Introduction 

One promising new aspect of diffractive optics is subwavelength structured (SWS) technology. 
Applications for SWS surfaces are numerous and can be divided into four basic categories: antireflection (AR) 
coatings, manufacture of polarization components, fabrication of narrowband filters, and production of phase 
plates, see Fig. 1. 

Solar cells 
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Optical signal 

control (stealth) 

Optical isolators 
Wire-grid 

polarizers 
Wave plates 
Lidar 
Beam splitters 
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Modulators 
Mode stabilization 
mirrors for lasers 

Mode tuning 
mirrors for lasers 

Aberration 
correctors 

Generalized beam 
shaping 

Optical 
interconnects 

Fig. 1. Diagram illustrating several applications of diffractive optics. SWS technology is 
an important and promising new component of the field of diffractive optics. 
Some potential applications for SWS technology are listed. 

SWS surfaces can take multiple forms. The grating can be of any type (e.g., surface-relief, phase or 
amplitude) provided the period is sufficiently fine so that no diffraction orders propagate other than the zeroth 
reflected and transmitted orders. Because of the fine periods involved, the fabrication of such surfaces for 
applications in the visible and infrared (IR) portions of the spectral regime has only recently been considered. 
With refinements in holographic procedures and the push of the semiconductor industry for submicron 
lithography (both through optical and electron beam techniques), production of SWS surfaces is increasingly 

This research has been sponsored in part by NASA, Jet Propulsion Laboratory, as well as by the Army 
Research Office. 
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viable. Replication procedures have also improved to the point whereby SWS surfaces can be mass-produced 
for specific applications. 

As antireflection components, SWS surfaces are called antireflection structured (ARS) surfaces and 
have been studied extensively both theoretically and experimentally (see for example, Refs. 1-5). By 
structuring a surface with a subwavelength-period pattern, one can synthesize an appropriate index of refraction 
distribution so that surface reflections (for polarized or unpolarized radiation) are minimized. When designed 
properly, these structures can operate over large spectral bandwidths and fields of view. Because foreign 
materials are not being added to the substrate surface, problems commonly encountered in thin-film technology, 
such as adhesion and thermal expansion mismatches, are non-existent in the design of these structured surfaces.. 

As polarization components, SWS operate on the fact that unlike in the scalar diffraction regime 
(where the surface period is large compared to the incident wavelength), when feature sizes are on the order of a 
wavelength, radiation will react to the surface differently depending on the electric field's polarization 
orientation. Consequently, through SWS technology, polarization components such as wave plates and 
polarizers can be fabricated using solely isotropic material. SWS surfaces can be used to fabricate wire-grid 
polarizers, beam splitters, wave plates and retarders, and polarizing mirrors (see, for example, Refs. 5,7-9). 
Since the magnitude of an SWS surface's effective birefringence An (equal to ne - n0, where ne and n0 are the 
structure's effective extraordinary and ordinary indices of refraction, respectively) can be quite large, see 
Fig. 2(a), the grating of the SWS surface need not be deeper than the wavelength of the incident radiation. 
Consequently, SWS surfaces are less bulky than conventional polarization devices and offer the possibility of 
replacing several conventional elements with a single structured one (e.g., beam splitter wave plates or mirror 
wave plates). 

8 

ä 
ii 
c 
< 

0.4       0.6 
Filling Factor, f 

(a) 

1.0 
1 T 

0.631      0.632      0.633      0.634 
Wavelength (pjn) 

(b) 

0.635 

Fig. 2. Examples of SWS surface performance. In (a) we diagram the effective 
birefringence of 1-D binary SWS surfaces. These birefringent SWS effects allow 
one to fabricate wave plates and retarders from isotropic materials. In (b) we 
diagram a 4-Ä bandwidth SWS optical filter designed to operate at the HeNe 
wavelength of XQ = 0.6328 pm. 

SWS surfaces can be used as narrowband filters (see, for example, Refs. 10,11). By fabricating the 
grating region so that its effective index of refraction is larger than that of the surrounding region, the structure 
has the potential to support the propagation of leaky (i.e., weakly-bound) waveguide modes. Coupling between 
the incident field and these leaky modes results in extremely sharp changes in the structure's spectral 
characteristics as a function of angle of incidence and wavelength, see Fig. 2(b). It is due to the highly-selective 



254 / DWB1-3 

coupling criterion of the waveguide mode that these structures can exhibit filter linewidths that are extremely 
narrow (AÄA = 10"7).      These filters do not require the use of multi-layer film stacks as conventional film 
filters do, and are less bulky then Lyot filters. 

12 13 
SWS surfaces can also be used as an alternative method of fabricating phase plates.    '     A specific 

form of phase plate, the zone plate, imparts a quadratic phase front on the incident radiation. This quadratic 
phase is achieved through an annular series of zones in which each zone contains a curved or multi-level profile 
designed through the use of scalar diffraction theory. With SWS surfaces, the zone plate can be replaced with a 
binary (two-level) structure.12 This subwavelength binary structure should not to be confused with the scalar 
binary approximation of a zone plate that achieves only 40.5% diffraction efficiency. By changing the duty 
cycle of the binary subwavelength structure as a function of the radius, the necessary phase delay to produce 
near 100% diffraction efficiency can be achieved. The advantage of using SWS surfaces is that a high- 
efficiency phase plate can be fabricated by using a single mask where otherwise multiple masks would be 
needed to achieve the same diffraction efficiency. The more masks used, the greater the risk of degrading the 
device's diffraction efficiency through errors in mask alignment 

SWS surfaces do not rely upon multi-layer thin-film coatings or birefringent materials in order to 
satisfy a specific system requirement (e.g., AR characteristics, polarization properties, beam splitting, or 
narrow-band filtering). Consequently, SWS surfaces give optical designers new degrees of freedom in the 
design of optical systems. 

2. Subwavelength structured surface design 

There are two basic methods of analyzing SWS surfaces: vector diffraction theory and effective 
medium theory (EMT). For accurate modeling of SWS surfaces, the use of vector diffraction theory is required 
since due to the feature sizes involved, scalar diffraction theories are completely invalid. The vector analysis 
we generally use is a rigorous coupled-wave analysis (RCWA) proposed by Gay lord and Moharam. Like 
most numerical techniques however, RCWA, due to its intensive computational requirements, offers little 
opportunity for intuitive insight into the diffraction mechanisms. An alternative method for analyzing SWS 
surfaces is through effective medium theory (EMT). By relying on the fact that the structures have feature sizes 
smaller than the incident wavelength, an approximate description of the interaction of radiation with such 
structures can be obtained. The results are analytic and offer a great deal of insight towards the radiation's 
behavior. The EMT we utilize is based upon worked performed by Rytov. 

Incident Wave       Jf R 

'-.Ji L,   - jni 
I—        '   "s —I    I ns 

111 

111 

!       in    ■>*.> ' 

Fig. 3. A multi-level SWS surface profile with its corresponding film stack. Each layer of 
the film stack corresponds to a distinct level of the profile. Note that the grating 
period A is fine enough that only the zeroth orders, RQ and T0, are propagating; 
higher diffraction orders are evanescent. 

Effective medium theories (EMTs) rely on the fact that when light interacts with periodic structures 
much finer than its wavelength, it does not diffract, but instead reflects and transmits as if it is encountering a 
non-structured medium.   EMTs describe the interaction of light with such subwavelength structures by 
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representing regions of subwavelength heterogeneity in terms of a homogeneous material possessing a single set 
of effective optical constants: permittivity e, permeability p., and conductivity a. This is sensible since no 
energy is lost to diffracted orders; all the energy is contained in the zeroth transmitted and zeroth reflected 
orders. The optical properties of the effective medium are governed by the specific structural intermixing 
between the incident and substrate material, but in general, the more substrate material present as compared to 
incident material in a given region, the closer that region's optical properties are to those of the substrate. In 
other words, when light interacts with subwavelength structures, it reacts to them as if it were encountering an 
effective medium whose optical properties are a weighted spatial average of the profile region's optical 
properties. 

For the specific case of a multi-level surface-relief profile, see Fig. 3, the effective medium will be a 
film stack where each layer of the film stack corresponds to a distinct level of the surface-relief profile. For a 
continuous profile, the effective medium will be a gradient film. Because the effective medium results from the 
weighted spatial averaging of the profile region's optical properties, the optical properties of the effective 
medium must be bound by the properties of the incident medium and those of the substrate medium. Therefore, 
assuming n; < ns in Fig. 3, n/ < nj < ti2 < /y < ns. 

By using EMT, one gains intuition regarding the interaction of radiation with SWS surfaces. Through 
the use of EMT, one can obtain preliminary designs with regard to SWS surfaces used as AR coatings, 
polarization components, narrowband filters, or as phase plates. These preliminary designs can be fine-tuned 
and analyzed using more rigorous vector diffraction theories. 
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The design of polarized reflective filters based on the guided-mode resonance properties 
of planar dielectric waveguide gratings is the topic of this paper. Theoretical analysis of these 
structures reveals sharp resonance phenomena where efficient transfer of light energy between 
forward and backward propagating waves occurs over small parameter ranges. This resonance 
effect is due to coupling of external diffracted fields with the modes of the waveguide. The 
theory and applications of planar waveguide-grating resonant devices have been presented in 
previous papers.1"4 The purpose of the present contribution is to show that resonant waveguide- 
grating filters with symmetrical line shapes and low sidebands over wide wavelength regions can 
be designed and to give examples. 

Experimental realization of planar dielectric waveguide grating filters has been reported 
by Gale et al.5 (embedded planar dielectric structure, optical region) and by Magnusson et alß 
(planar dielectric waveguide grating, microwave region). The characteristics measured have thus 
far exhibited non-ideal filter behavior, i.e. efficiencies that are too low for many applications, 
relatively high sidebands, and asymmetrical or split resonant lines. 

A general multilayer model including interspersed spatially modulated and unmodulated 
layers has been analyzed using rigorous coupled-wave theory.7 An example embedded 
waveguide grating with a rectangular profile in a three-layer dielectric structure is shown in 
Fig.l.  The modulated layer consists of alternating rectangular regions with relative dielectric 
permittivities eH and eL. It is required that the modulated layer be a waveguide grating and thus 

Eeff = (8H + £L)/2 > £i and e3. Calculated reflectivity results for the TE polarization case are 
given in this paper. 

In general, the spectral filter response has an asymmetrical line shape with respect to the 
central resonant wavelength for any waveguide-grating geometry. To produce a single-layer 
filter [as shown in Fig. 1(a)] with symmetrical spectral response, the thickness should be chosen 
as d = raXr&sl2iz^i where m = 1,2,3, ... and A,res is the free-space resonance wavelength. An 
example for an asymmetric (ea * es) waveguide grating is shown in Fig. 2 with the thickness 

equal to the wavelength (i. e., m = 2). If additionally £a = £s the sidebands are brought down 
according to the classical antireflection (AR) condition for a half-wave layer. Thus the net result 
is an efficient reflection filter at the resonant wavelength but with the reflected power outside of 
the resonance region suppressed by the AR design. The guided-mode resonance effect and the 
classical single- or multilayer antireflection effect are seen to operate independently even with 
respect to the same layer since, in this example, the same layer serves as the waveguide grating 
supporting the resonance and as the antireflection layer suppressing reflection around the 
resonance. 

A waveguide-grating filter in a double-layer design is given in Fig. 1(b). An AR design 

is obtained for di = A,res/4le7 and d2 = ?tres/4l£rff- Figure 3 demonstrates the symmetrical line 
shape of the filter when the resonance is within the near-zero reflection corridor. In contrast to 
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the single-layer filter, this shows that the grating thickness does not have to be a multiple of a 
half-wavelength to provide symmetrical lines. The reflectivity around the resonance peak is 
suppressed to remain less than 0.2% for 540 nm < X < 580 nm. 

To achieve broad-band reflectivity suppression, additional antireflection layers can be 
used as in Fig. 1(c). The spectral response of a three-layer design is illustrated in Fig. 4. In this 

case, di = V4Vei", d2 = hJAfz^, and d3 = V4V8i where XQ is chosen as 550 nm. A broad low- 
reflectance covering the entire visible region is shown [solid curve in Fig.4 (a)] except at the 
filter resonance wavelength A,res = 553.3 nm. This example shows that it is not necessary that the 
design wavelength XQ be identical to XTes. In fact, the filter resonance peak can be placed 
anywhere within the AR region by properly varying the grating period while still producing a 
symmetrical line shape and low sidebands. If region 1 is not a quarter-wave layer, this is no 
longer an antireflection design and the filter response has an asymmetrical line shape and high 
reflective sidebands [dashed curve in Fig. 4 (b)]. Again, the guided-mode resonance effect and 
the effect of the antireflection layer are independent with the resonance effect overriding the AR 
conditions at the resonance wavelength. Here, the waveguide-grating layer was selected to be a 
XIA layer to conform to the particular AR design illustrated. 

As long as the guided-mode resonance waveguide-grating layer is a part of a proper AR 
design, based on the effective thin-film character of the waveguide grating, symmetrical-line 
ideal reflection filters can be designed. The central (resonance) wavelength, the line width, the 
width of the AR region within which the resonance peak lies, the reflectivity values adjacent to 
the resonance, and the resonance line shape, are all under the control of the designer. The 
principles introduced in this paper are applicable in general to planar waveguide gratings with 
arbitrary grating profiles and arbitrary angles of incidence and to TM polarized incident waves. 
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Figure 1. The multi-layer, square-wave profile waveguide grating model used, (a) Single-layer 
waveguide grating geometry where dj = 0, d2 * 0, and d3 = 0. (b) Double-layer waveguide 
grating geometry where dj * 0, d2 * 0, and d3 = 0. (c) Triple-layer waveguide grating geometry 
where di * 0, d2 * 0, and d3 * 0. 

I—H 

> 
I—I 
E-i 
U 
w 
H-l 

§ 

B 
d 

l 

0.8 

0.6 

0.4 

0.2 H 

i    i    i    i        i    i    i    r 

R 

~~\    rr~i    i        i    i    r 

|l 

f 

J I I I L J I I I L J I I , I I I I L 0- 
532.6 532.9 533.2 533.5 533.8 534.1 

WAVELENGTH, X (nm) 

Figure 2.   The TE spectral response of a single-layer waveguide-grating filter where the 
thickness d2 = 355 nm (half-wavelength) is determined at the resonance wavelength XTes= 533.4 

nm. The other parameters are ea = 1.0, eH = 2.62, eL = 2.31,  es = 2.31, A = 350 nm, and 0' = 0°. 
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Figure 3. The TE spectral response of a double-layer waveguide-grating filter where the 
thicknesses &i = 88.4 nm (quarter-wavelength) and d2 = 71.7 nm (quarter-wavelength) are 
determined at the resonance wavelength Xres = 559.5 nm.    The other parameters are 
ea= 1.0, ei = 2.5, EH = 4.0, £L = 3.61, £s = 2.31, A = 350 nm, and 0' = 0° 
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Figure 4.    The TE spectral response of a triple-layer waveguide-grating filter. The parameters 
are £a = 1.0, Ei = 1.904, £H = 4.93, £L = 3.24, £3 = 3.24, £s = 2.31, A = 330 nm, 0' = 0°, d2 = 68 
nm (quarter-wavelength), and d3 = 76 nm (quarter-wavelength). The thicknesses are determined 
at the wavelength of 550 nm. (a) AR design; dj = 100 nm (quarter-wavelength), (b) non-AR 
design; dj = 200 nm (half-wavelength). 
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Introduction 
Light propagates through subwavelength gratings in approximately the same manner that 

light travels through homogeneous non-corrugated mediums. Effective Medium Theory (EMT) 
relates the parameters of a stratified layer to that of an effective homogeneous uniaxial or biaxial 
thin film, depending on the grating structure. 
A     symmetric     two     dimensional • 
subwavelength grating is analogous to a . * 
uniaxial thin film (Lx/Ax = Ly/Ay) while an 
asymmetric two dimensional subwavelength 
grating is analogous to a biaxial thin film 
(see Fig.l). 

While the properties of one 
dimensional subwavelength gratings have 
been analyzed in great detail1"9, there has 
been limited work done in the area of two 
dimensional gratings. An approximate 
closed form static EMT solution for a 
symmetric 2-D grating was proposed by 
Southwell10. This predicted solution 
significantly differs from exact effective 
index results obtained by the rigorous 
coupled wave technique (RCWA)2. Raguin 
et. al. 12, designed 2-D symmetric pyramidal 
structures for reducing reflections. There is 
still very little known about the behavior of 
2-D gratings and all the effective optical 
properties they posses. 

In this paper, we will be focusing on 2-D symmetric and asymmetric subwavelength 
structures. We will describe a method for determining the effective dielectric constants, using 
RCWA, as a function of the refractive indices of the substrate, and the duty cycle (fill factor) of 
the 2-D grating. A theoretical formalization for neff(z), effective index in the normal direction, 
is presented, as well as RCWA results to show the validity of this expression. Using these 2-D 
effective properties, we will synthesis a multi-level antireflection structure for unpolarized light 
over a broadband. 

Zeroth Diffracted Order Two Dimensional Gratings 
An electromagnetic wave that is incident upon a subwavelength grating, will behave as 

if it is incident on a uniform homogeneous medium, in that there will only be a reflected and 

Figure 1 2-D Subwavelength Grating. 
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transmitted wave. Such a grating is called a zeroth diffracted order grating. The creation of a 
zeroth order grating is dependent on forcing all of the higher order diffracted fields to be 
evanescent. In order for this condition to be satisfied, the normalized grating periods along each 
axis must be 

1 

max[ns,n(] fysinOfCoscj).! 
(1) 

^< I  
X       maxtrt^/tj] + IrtjSinöjSinfyl 

(2) 

where max refers to the maximum value of either ns , the refractive index of the substrate 
medium, or n{ , the refractive index of the incident medium. 

Effective Medium Theory for 2-D binary grating 
Attempts at deriving a closed form solution for the effective permittivities of a 2-D 

subwavelength grating have not been successful with even a zeroth or static case solution. Due 
to the rectangular nature of a 2-D grating, a useable characteristic dispersion equation is very 
difficult to derive. Therefore, the effective permittivities of the structure can not be expressed 
in a closed form. However, the relationship between the two fill factors and the resultant 
effective axial permittivities can be determined numerically using RCWA. 

The reflected or transmitted power for a given grating structure may be obtained using 
RCWA. The effective index at normal incidence can then be found by solving the transmission 
line equation. By scanning the fill factor from 0 —» 1, one may obtain a design curve for each 
particular substrate of interest. In order to 
obtain the two indices perpendicular to the 
normal, two separate cases must be 
examined. Propagating a wave along the z- 
axis, with the electric field polarized along 
the x-axis, will produce a reflection which 
corresponds to that produced by an effective 
index nx. Similarly, propagating a wave 
along the z-axis, with the electric field along 
the y-axis, will produce a reflection which 
corresponds to that produced by an effective 
index ny. Figure 2 shows the effective index 
, ny , for ns = 3.0 as a function of the 
asymmetrical fill factor with the following 
parameters: n{ = 1.0, ns = 3.0, A/A, = 0.001. 
In order to find the effective index, nx , one 
needs only to switch the axis labels (fx —> fy 

and/y -*/x). 
In order to completely define the 

effective homogeneous medium, the third 
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Figure 2 Effective Index n . 
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index nz , corresponding to the axis perpendicular to both the grating vectors, must be defined. 
This result can be derived using 1-D EMT. 

z*ff *sfxfy *|(1   -fXfy)=*: 
(0) (3) 

Figure 3 shows a comparison between an 
effective homogeneous biaxial thin film and 
RCWA at oblique incidence for <J> = 45°. The 
asymmetric 2-D grating is defined by the 
following parameters: nl = 1.0, ns = 3.0, fx = 
40%,/y = 80%, AA = 0.001, and d = 0.20X. 
The effective biaxial indices were found to be 
nx = 1.2464, ny = 1.5312 and nz = 1.8868. 
The results obtained from the figure, indicates 
that an asymmetric 2-D subwavelength 
grating is in fact analogous to a biaxial thin 
film. 

Design of Broadband Antireflection 
Surfaces 

Let us consider an air-substrate 
interface of nx = 1.0 and ns = 3.0. We are 
interested in designing an antireflection 
surface for operation from 8pm to 12pm, 
using two layers. From the Tschebyscheff 
synthesis technique12, we find that the first 
layer has nx = 2.247 and d[ = 1.068um and the 
second layer has n2 = 1.335 and d2 = 
1.797um. Let us compare this design for a 
thin film, a 1-D polarized subwavelength 
grating, a 1-D unpolarized grating, and a 2-D 
unpolarized grating. For a 1-D grating with 
ELK, the fill factors are/i = 50.20% and/2 = 
9.73%. For EIIK, the fill factors are /, = 
89.98% and f2 = 48.98%. For the 2-D, the 
symmetrical fill factors are/! = 89.03% and/2 

= 55.98%. All of the subwavelength grating 
designed had a grating period of A/X = 0.05. 
Figure 4 shows the thin film results versus the 
RCWA results for each two layer 
subwavelength grating designed. 
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Summary and Conclusions 
It has been demonstrated that the normal incident effective indices of a two dimensional 

subwavelength grating could be found through the use of Rigorous Coupled Wave Analysis. It 
was shown, that the effective index parallel to the normal could be derived. A symmetrical 2-D 
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grating has been shown to exhibit uniaxial properties, while an asymmetrical 2-D grating had 
been shown to exhibit biaxial properties. Using these results, it was possible to design a multi- 
level symmetric 2-D subwavelength grating to reduce reflections over a broadband. 
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I.        Introduction 
In many applications, surface relief gratings are coated with one or more dielectric layers to enhance 
diffraction efficiency and, in the case of metallic gratings, to prevent the metal surface from 
tarnishing. Coated gratings, as compared to bare gratings, present certain analytical difficulties that 
not every grating method is equipped to deal with. Only those methods, such as the integral method1 

and the extinction-theorem method2, that explicitly take the grating contour into account are 
naturally suited for coated gratings. In the early 1980s, Chandezon et al?A presented a new 
differential formalism for multi-coated gratings that was applicable in the entire optical region. 
Subsequently, the method was generalized to the conical mountings by Popov and Mashev5, and at 
a much later time by Eiston et al.6 In this paper, following Popov and Mashev7, the method of 
Chandezon et al. is referred to as the C method. 

Chandezon et al. acknowledged in their paper4 that numerical problems prevented them "from 
achieving the computations when the total thickness of dielectric exceeds one wavelength, or when 
the number of layers exceeds eight." The present work makes two major improvements to the 
existing C method. First, the limitations mentioned above are completely removed by the use of the 
R matrix propagation algorithm. Second, the computation time that is required for gratings in 
conical mountings is greatly reduced by a mathematical reformulation of the C method. 

n.       The Differential Method of Chandezon et al. 
1.        Review 
Figure 1 illustrate the grating diffraction configuration. A monochromatic plane wave is incident on 
a multilayer coated grating at polar angle 6 and azimuth angle §. The notation for the medium 
permittivities and interfaces are shown in Fig. 2 where Q ;> 0 is the total number of coatings. The 
grating profile function f(x) can be arbitrary, provided that it is a continuous and single-valued 
function of x. All corrugated surfaces are assumed to have the same functional form except for their 
vertical offsets. 

The ingenuity of the C method is to solve Maxwell's equations for the grating problems in 
a curvilinear coordinate system Ox^xfc that is defined by 

x.      x, x2 = y - f(x), (i) 

Figure 1. Conical Diffraction Geometry Figure 2. Notation 



DWB4-2 / 265 

where Oxyz is the Cartesian coordinate system in Fig. 1. By writing Maxwell's equations in this 
coordinate system and expanding the fields in Fourier series, the following equation can be derived 
for the vector components of the fields: 

1   d 

where 
i dx2 

F = M F, (2) 

F = (E*,H*,^H*,k$?, (3) 
i i 

with k0 being the length of the wavevector in vacuum, and M is an ^-independent square matrix 
whose expression can be found in Refs. 5, 6 and 8. In Eq. (3), each vector entry is also a vector 
whose elements are the Fourier expansion coefficients of the corresponding field. In a spatial region 
that is bound above and below by two curved surfaces,  the solution of Eq. (2) can be written as 

F(x>) = Wexp[i(x2 - x2)D] JT1 F(x2), (4> 

where W is the matrix formed by the eigenvectors of M, D is the diagonal matrix formed by the 
eigenvalues of M, and x2* is an arbitrary constant. According to Ghandezon et al.4 it is best to 
compose the field in the two semi-infinite regions by two distinctive parts. The first part consists of 
the incident and the propagating diffracted waves, both expressed as the usual Rayleigh expansions. 
The second part consists of those solutions of Eq. (2) that decay exponentially away from the grating. 
Upon decomposing the Rayleigh part of the field along directions of x, and x3, the fields on the top 
and bottom grating surfaces can be written as 

F(x2 = yQ) - Zf+1) (RT,ITf, F(x2 = y0) = ^ O*,fTY, <5) 
where R, I, T, and J are the diffracted and incident field amplitude vectors in the top and the 
bottom media, respectively, and Z^Q+l) and Zf are two matrices. The exact definitions of all these 
quantities are given in Ref. 8. 

Since the coordinate surface x, = constant is parallel to the grating surfaces, all vector 
components on the right hand side of Eq. (3) are continuous across the medium interfaces. It then 
follows that 

<? 
II WjCxpiiejD^W; 

where e- = y- - y-.,. In principle, the solution to the grating problem is completed at this point. 
Indeed, as has been done in Refs. 4-6, the matrix multiplications on the right hand side of Eq. (6) 
can be performed first, and then a system of linear equations having the complex diffraction 
amplitudes as unknowns can be derived and numerically solved with a standard technique. In reality, 
however, it turns out to be a non-trivial matter as to how the linear system is derived from Eq. (6), 
when a finite word-length computer is used.  This point shall be returned to in Subsection II.3. 

2. Reduction of Computational Time 
Suppose the truncation order, i.e., the number of spatial harmonics retained in the computation, 
is N. Then the dimension of matrix M in Eq. (2) is AN and 2N in conical and classical (assuming the 
incident light is purely TE or TM) mountings, respectively. Numerical testing shows that the bulk 
of the execution time of a computer program based on the C method is spent on the calculation of 
the eigenvalues and eigenvectors of matrix M and this amount of time is roughly proportional to the 
cube of the dimension of M. Therefore, the computation time for a grating in a conical mounting 
would be about eight times of that for the same grating in a classical mounting. 

Z}Q+1)(RT,IT)T zf\j\tT)T, (6) uf 
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However, a careful analysis of the eigenvalue problem associated with the C method uncovers 
the following important result: The eigenvalues of matrix M in Eq. (2) for a conical mounting can be 
deduced from the eigenvalues of matrix M'for a related classical mounting (in TE or TM polarization). 
Furthermore, the eigenvectors of M can be constructed from the eigenvectors of M' without further 
matrix computation. Therefore, the computation time for gratings in conical mountings can be 
greatly reduced. A mathematical proof of the statement above is given in Ref. 8. Here, only the 
procedure for constructing the eigensolutions is outlined. 

For a given grating, a conical mounting is uniquely defined by the wavevector of the incident 
plane wave, ^0 = a0 x - ß0 y + kz z, where kz * 0. For each conical mounting, an induced classical 
mounting can be defined by the incident wavevector Tc'0 = a0 x - ß0 y. Suppose the set of 
eigenvalues of matrix M' associated with J?'0 (for TE polarization) is {A.} and its eigenvectors are 
(px, qx)

J, where px and qx are N dimensional column vectors after truncation. Then each eigenvalue 
X of M' is also a doubly degenerate eigenvalue of matrix M associated with £*0 , and the two 
eigenvectors vlx and v2X of M corresponding to X are related to px and qx as follows, 

vix 

2... uu V ! Ulr t2..2 V 

PmX > U '       Z^~ Qm\ >     _2    amPmk 
k k 

V2X 

k0kz }% U. 
0 > PmX > — amPmX > ~ ~^~ ^ 

k k / 

(7) 
where am = a0 + 2nm/d, k2 = k0

2e\i - kz
2, and representative vector elements with subscript m have 

been used to denote the respective JV dimensional column vectors. 
The procedure described above reduces the computation time for computing the eigenvalues 

and eigenvectors of matrix M in conical mountings to little more than what is needed for a classical 
mounting in TE or TM polarization. 

3. Removal of Limitations on Layer Thicknesses and Number of Layers 
As hinted at the end of Subsection II. 1, convergence difficulties may arise if the linear system of 
equations for determining the unknown diffraction amplitudes is derived by first performing the 
matrix multiplication in Eq. (6). The cause of the difficulties is a combination of the presence of the 
very large imaginary part of the eigenvalues in the diagonal matrices Dj and the finite precision of 
the digital computer. The situation here is exactly the same as the situation where the classical modal 
method was used to treat arbitrary grating profiles by the use of the multilayer lamellar grating 
approximation9. There, the R matrix propagation algorithm was used with spectacular success to 
remove numerical instabilities that occurred for deep gratings. This algorithm can be used here 
without any change. For information about the R matrix propagation algorithm, the reader is 
referred to Ref. 9. 

However, there is a subtlety in applying the algorithm to the present situation that the reader 
should be made aware of. In order to apply the R matrix propagation algorithm, the matrix product 
in the square brackets in Eq. (6) has to be factored appropriately into products of what are called 
the sector t matrices. The factorization as it stands now in Eq. (6) has been numerically proven to 
yield inferior results8. It is absolutely essential that the exponential term, if it appears in a t matrix, 
be exposed on the left side of the t matrix. The following factorization seems to be a good choice: 

Q Q 

jQ WjexpiiejDjW:1 = WQ • fl [expC^flpJF/V^] • cxpiie.D^W; .        & 
j=i y'=2 

When the R matrix propagation algorithm is properly implemented, a computer program based on 
the improved C method should produce convergent results without any of the numerical difficulties 
that have been experienced by the previous authors regarding the total layer thickness and the total 
number of layers. 
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m.        Numerical Examples 
In this section, two examples are given to demonstrate the effectiveness of the improved C method 
in modeling gratings having a large number of coatings of varying thicknesses. In these examples, 
the (vertical) optical thicknesses of all layers are the same and they are measured in normalized 
thickness which is defined by r, = (e,Ve;)/X, where 1 <,j<,Q, and X is the vacuum wavelength. All 
gratings in the examples are used in first order Littrow mount in TM polarization. 

The first example, shown in Fig. 3, is for an eight-layer-coated sinusoidal aluminum grating. 
The parameters are: X = 0.59 urn,  d = 0.3333 um,  e0 = (1.15+/7.15)2, ev_x = 1.392, e2j = 2.612, 
j = 1, 2, 3, 4, Q = 8, and ec+1 = 1.0. The grating groove depth h is set to be 0.12 \im which gives 
a peak efficiency of 88.7% for the bare grating.  Note that the maximum efficiency reaches about 
99.8% at r = 0.305. This curve was calculated with truncation order N = 19. 

The second example, shown in Fig. 4, is for a 15-layer-coated sinusoidal grating in fused 
silica. The parameters are: e0 = 1.462, e2j_x = 2.612, 1 <,]'' <. 8, e2j = 1.392, 1 <.j <.!, and Q = 15. 
All the other parameters are the same as in the first example. Note that although the bare grating's 
efficiency for h =0.12 jim is only 3.3%, the maximum efficiency of the coated grating is more than 
99.9% at r = 0.305. This curve was calculated with truncation order N = 17 and the error in the sum 
of efficiencies was smaller than l.OxlO"10 for all points calculated. 

IV.       Conclusions 
The differential method of Chandezon et dl. for multilayer coated gratings has been improved so that 
the computation time for gratings in conical mountings is greatly reduced and the previously existed 
limitations on the total coating thickness and on the total number of coatings are removed. 
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Figure 3. Dielectric-coated  aluminum grating. 
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Figure 4. Dielectric-coated  fused silica grating. 
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In recent years, the dielectric thinfilms with surface- relief gratings 
have been the subject of a great deal of interest. It lias been found that 
such elements have an interesting optical properties: birefringence [1], 
antireflection [2,3], resonance anomaly effect [4]. All this properties 
have found application in different spectral devices as narrow- band 
spectral filters, spectral- selective laser mirrors and i.e.. The 
polarising properties of such elements practically was not investigated. 
Nevertheless, it have the great importance. In this paper the case of 
dielectric layer with structured surfaces (DLSS) is considered [53. 

The scheme of DLSS is shown in Pig.1. d is a period, h is a deep of the 
surface- relief grating. Similarly [43, d has to satisfy the condition: 

A/n < d < A/no, A/n^ (1) 

where A is wavelength of incident light. Physical sense (1) is following: 
at normal incidence in the regions Vo and V only the seroth reflected and 

transmitted orders are diffracted. In the dielectric layer, in addition, 
there are the first- orders of diffraction. The angles of first- orders 
reflection from dielectric interfaces is greater than the angle of total 
internal reflection. The first- order waves give rise to the waves in 
adjacent to layer media by second diffraction by grating. The propagating 

n 

Pig.1. The dielectric layer with structured surfaces. 



DWB5-2 / 269 

1.00 

0.00   f 11 111 11 111 11 11111 111 11 i 11 111 11 111 11 111 i 
0.000 0.200 0.400 0.600 0.800 

nt/A 

Pig.2. The transmission of DLSS. 
d=o.375 mkm, hi=o.o25mkm, 
h2=o.oo mkm, n=2.32, m=i.oo, 
no=i.46. 
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Pig.3- The transmission of DLSS. 
d=o.326 mkm, hi=0.025 mkm, 
h2=o.o25 mkm, n=2.32, ni=i.oo, 
no=t.d6. 

direction of this waves is normal. The interference- field energy in the 
regions Vo and V depends on the polarization of incident light. Hence, 

polarizing dependence of optical properties of DLSS have to be observed. 
Let us consider the resonance anomaly effect as example for the 

analysis of the polarizing effect (PE). It is common knowledge that the 
reflectivity in the resonance depend on symmetry of a surface relief, and 
it can archives 100% under lossless condition. The width of the resonance 
is determined by the diffractive efficiency of surface-relief grating. 
Here we examine the dependence of the resonance anomaly conditions from 
the polarization. 

To solve this problem, it was applied the numerical calculation method. 
The surface- relief grating was consider as set of rectangular dielectric 
strips with alternate refractive index n and n . The total electromagnetic 

field in the grating is represented as superposition of the modes of 
medium with the modulated refractive index [6]. In regions V and V the 

01 
scattered fields are expressed as series of outward- going plane waves. 
The necessary continuity conditions electric and magnetic fields on the 
interfaces lead us to the infinite system of the equations relative to the 
amplitudes of  internal   layer modes.   In the calculation,   the number of 
modes were selected by required accuracy to the conservation of energy 
law. The energetic coefficients of reflection, transmission and losses in 
dependence from wavelength, dielectric layer thickness and incident angle 
were calculated by this method. 

Por example, in Pig.2 received results for the transmission of DLSS in 
dependence from relative thickness of dielectric layer nt/A are shown. 
Here is normal   incidence.   Index "E"   correspond to the polarization of 
incident light, when the electrical vector is directed along the strips of 
grating.   Index "H"   correspond to the orthogonal   polarization.   In  this 
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Fig.4. The transmission of DLSS. 
d=o.330 mkm, hi=0.03 mkm, 
ha=o.o3 mkm, n=i.96, ni=i.oo, 
n2=3.84, no=i.46. 

Pig.5. The transmission of BLSS. 
&=o.330 mkm, hi= 0.025 mkm, 
h2=o.o25 mkm, n=i.98, ni=i.oo, 
no=i.46, 9=0.01 rad. 

case, only one interface of dielectric layer is corrugated. Onecan see, 
that the general view of dependence correspond to the transmission of 
dielectric layer with the plane interfaces except areas where resonances 
there are. The positions of "E" and "H" polarisation on nt/X axis are 
different. 

The method described above allows to calculate the more complex cases. 
Per example, in practice the creation of the surface- relief grating on 
optical substrate often is more convenient. After that the substrate is 
coated by the dielectric. If the thickness of dielectric layer is small 
enough, its top boundaries repeats the form of substrate surface. In this 
case, both of dielectric interfaces are corrugated. Since, the light 
diffracts by two gratings, the efficiency of the interaction of the 
incident radiation and the field in layer is grater relative one- grating 
case. Hence, the width of resonances have to be greater. In Pig.3 the 
dependence of transmission from nt/A is shown. 

In case near to normal incidence of light, the first- orders of 
diffraction propagate in layer at different angles. There are two 
different conditions for the resonance anomaly effect. Hence, the double- 
number of resonances should be observed. In Pig.5 this case is presented. 

Let us consider the situation, when in the surface-relief grating the 
dielectric with refractive index n£?* n, n , n{ is used. The diffractive 

efficiency of such grating have to be changed. Than the width of 
resonances must be changed. See Pig.H. 

To experimental investigate, the DLSS was made by method of laser 
lithography and plasma- ion etching. In the course of research of PE, the 
transmission and reflection in dependence from wavelength were detected. 
In Pig.6 the transmission at normal incidence is shown. 

In such a manner, there t$v polarizing anisotropy of optical properties 
of DLSS. Using the resonance anomaly effect as example, we'd like to 
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Pig.6. The transmission of DLSS. 
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underline the fundamental importance of polarizing effect. DLSS allows to 
create the polarizing devices, which can work at normal incidence of 
light: the narrow- band polarizing filter, polarizing- selectivity laser 
mirror and i.e.. Using of the multilayer dielectric systems allows to 
create polarizing optical elements with back- characteristic to Fabry- 
Perot interferometer. Besides, there are other interesting application of 
DLSS. 
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For applications in image processing, we have chosen to implement image correlation using the 
optical processor represented in Fig. 1. To update the reference image dynamically in real-time some form 
of spatial light modulator (SLM) is required in the pupil plane. Based primarily on technology maturity, 
space-bandwidth, and device dynamic range, we selected acousto-optic (AO) devices to perform this 
function as opposed to either magneto-optic or liquid crystal technology [1]. As a consequence, even when 
coherent illumination is used, system operation is incoherent. Nonetheless, we have also shown that the use 
of incoherent illumination offers a number of advantages over coherent, e.g., increased immunity to noise 
sources within the system and increased field of view [2]. We note that Ref. [3] is, to our knowledge, the 

first reported use of an AO cell to generate Fourier filter functions. 
To generate the reference image against which the input is correlated we have relied upon design 

techniques that are more commonly used for fixed, phase-only diffractive optical elements (DOEs). Before 
we discuss design, it is necessary for us to present first a one-dimensional system analysis. The unique 
properties of a two-dimensional system are considered thereafter. 

If the input object f(x) is illuminated by a quasi-monochromatic coherent source, the spatially scaled 
Fourier transform F(xf/Xf) is incident upon the AO cell. The AO cell is driven by the voltage signal v(t), 

v{t) = \H (t)\ cos[27ri/aot + arg{J5T(<)}], (1) 

which launches a moving, modulated phase grating onto the AO cell, where H(t), the complex driving 

signal, is 
H(t) = \H(t)\ exp[jarg{#(<)}]. 

The interaction in the Fourier plane between the AO cell and the object transform produces the Doppler 

shifted complex-wave correlation image c(x;t), 

c(x;t) = f{x)  * h ( ""*" )  exp jzivx 
' a 

where a = Xf/V. Time integration of c(x;t) yields the intensity image c(x), 

(2) 

(3) 

Note that, although a coherent Fourier plane architecture is employed, an intensity correlation between the 
input object and filter response results. In other words, the one-dimensional system is incoherent and the 

use of coherent illumination is unnecessary. 
In contrast to the one-dimensional system, the two-dimensional AO system exhibits unique 

coherence effects that are dependent upon the coherence that exists between the voltage signals vx(t) and 
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vy(i) that drive the cells. The time integrated character of the correlation is now dependent upon the 
phase coherence between the sources used to generate vx(t) and vy(t) [1]. To realize a fully incoherent 
superposition, the relative phase coherence between the Doppler shifts created by the drive signals Hx(i) 
and Hy(t) needs to be destroyed. 

If separate signal sources are used to drive the two AO cells we can represent the system output 

image as an intensity correlation 

c{x,y) = \f{x,y)\7 h-r 
x - ava 

A/ 

V - aVgoy 

A/ 
(4) 

The design problem to be solved is the determination of Hx(t) and Hy(t) such that they generate some 
desired response q(x,y), where, due to the incoherent nature of the system, q(x,y) is nonnegalive and real. 

We note that the crossed AO cell architecture, for any instant in time, allows only for the generation 
of separable point spread functions. An arbitrary point spread function can be synthesized as a 
superposition of several separable spread functions [4] that are generated time sequentially by the crossed 
AO cells and time integrated in the detector plane. 

We consider the specification of the AO drive signals under the assumptions that the input is 
presented to the system on an electronically addressed SLM, i.e., it is discrete, and that the AO cells are 
used to generate a discrete correlation. The desired response q(x, y) is separable and given by 

q{x,y) 

E E 
■n = N\   777. = M\ 

(5) 

Tl smsix -ndx,y-mdy), 

where r\ and s^ specify the intensity of the (n, m)th spot of the response and dx and dy are the spacings 
between spots in the image plane. If 

N, 

r(x) =   Yl   rn exp(j6n)6(x-ndx), (6) 
-N, 

where 6n is the phase of the nth spot, then 

H*(t)=   E   r" exP(J0>O ex-p(-j2irni/xt), 
n=JV, 

(7) 

where vx = Vdx/\f. A similar expression exists for Hy(t). 
Since the generation of each axial component is similar, we consider the generation of only the s-axis 

response r{x). Our desire is to generate r2(x) with a minimum amount of error, yet with high diffraction 
efficiency. To achieve high diffraction efficiency many designs assume use of a phase-only DOE. However, 
due to the nature of AO technology [see Eq. (1)], this restriction is not necessary. Nonetheless, high 
diffraction efficiency can be achieved if the desired filter function is approximately phase-only, ^„(t)! ss 1. 

We have used the freedom in the specification of the phases 9n, which influence the form of Hx(t), to 
reduce the dynamic range of |Äj,(<)|, yet still produce the desired response v2{x). We determined the 
phases by maximizing the average Fourier magnitude for a given set of rn [5], 

\HJ = /  E - eXTp(jOn)   eXTp(-j2KTll/xt) dt. (8) 

This expression is derived from the one for the upper bound on the diffraction efficiency with which a 
phase-only DOE can generate a specified complex response [6]. Other techniques for the determination of 
spot phases in array generators can also be used [7]. 
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Two drive signals ate represented in Fig. 2 for the generation of a nine-spot fan-out; Fig. 2(a) was 
generated using zero phase for each spot and Fig. 2(b), using the phases that result from maximization of 
Eq. (8). The magnitude of the fan-out generated by the drive signal of Fig. 2(b) is approximately 2.5 times 

that of Fig. 2(a). Figure 3 represents nonscparable responses generated by the system. 
We presented the design of drive signals for an AO system in the context of DOE design. The analog 

nature of the AO devices provides considerable degrees of both magnitude and phase design freedom such 

that uniform and efficient responses can be generated. 
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Figure 2.  AO drive signals for the generation of a nine-spot fan-out. 
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(a) Circle and (b) tank. 
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The vast majority of commercial lasers utilize a stable Fabry-Perot resonator to establish the 
laser mode. Although this resonator design produces a low-loss fundamental mode, it has several 
inherent disadvantages. First, the losses to the higher-order spatial modes are also fairly low, 
making it difficult to insure operation in a single spatial mode. In addition, the mode diameters 
are usually small, reducing the amount of power that can be extracted from the gain medium. 
Increasing the mode diameter reduces the separation in threshold between the higher-order modes 
to an unacceptable level. Finally, the Gaussian profile of the fundamental mode may not be ideal 
for applications that require uniform illumination. 

Unstable resonators can support a large diameter fundamental mode while simultaneously pre- 
serving adequate higher-order mode separation. However, these resonators have inherently lossy 
fundamental modes, and are not suitable for low-gain laser systems. In addition, they often have 
an obstructed output aperture that produces an undesirable near-field pattern. 

Recently, a variety of laser cavities have been demonstrated that use more sophisticated op- 
tics to tailor the fundamental mode shape and increase the separation between adjacent spatial 
modes. These include variable reflectivity mirrorsfl], graded phase mirrors [2], and diffractive 
mode-selecting mirrors[3, 4]. The last two methods allow the designer to tailor the mode profile 
to any desired shape, and have been used to generate super-Gaussian fundamental modes with 
exceedingly flat tops. However, large discrimination between spatial modes occurs when the cavity 
length is approximately one Rayleigh range of the super-Gaussian. Thus, for large beam diame- 
ters, these methods can result in very large cavity lengths, compromising mechanical stability and 
increasing the pulse length for Q-switched operation. 

In this paper, we propose a variation of the diffractive mode-selecting mirror cavity that signif- 
icantly increases the modal separation while reducing the required cavity length. The cavity to be 
studied, shown in fig. 1, contains a diffractive mode-selecting mirror on one end and a flat mirror 
on the other end. A transparent phase plate is placed between these two mirrors to increase the 
modal separation and decrease the cavity length. 

The design of the cavity proceeds in much the same way as the simple diffractive mode-selecting 
mirror[4]. The designer first chooses the desired amplitude profile of the fundamental mode at the 
flat output mirror. The resulting field at the phase plate is calculated by the Rayleigh-Sommerfeld 
diffraction formula, multiplied by the phase transmittance of the plate exp[j</>(x, y)], and prop- 
agated the remaining distance to the diffractive mode-selecting mirror. The reflectance of the 
mode-selecting mirror is then chosen to return the phase conjugate of this distribution. The phase 
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Figure 1:  Laser cavity consisting of a flat output mirror, diffractive phase plate, and diffractive 
mode-selecting mirror. 

conjugate wave will propagate back through the phase plate to the output mirror, regenerating the 
original distribution and establishing it as a mode of the cavity. If the size of the mode-selecting 
mirror is made sufficiently large and the two aperture sizes d\ and e^ are chosen properly, the loss to 
this mode can be made very small and it becomes the fundamental cavity mode. The higher-order 
cavity modes are then calculated by solving the integral equation 

/ 
K(x,x )Uv(x )d x = ~jvUu{x), 

where the integral kernal K(x,x') describes the round-trip propagation in the cavity, U„(x) are 
the eigenfunctions of the equation, and ~fv their corresponding eigenvalues. We seek to design a 
phase plate with a phase function exp\j<ß(x,y)] that provides the maximum amount of loss to the 
second-order mode for a given cavity length. 

The first modeling experiments were performed using a laser cavity with element spacing z\ = 
20 cm and z<i = 30 cm, resulting in a total cavity length zj = 50 cm. The fundamental mode 
was chosen to be a 20th-order super-Gaussian of square cross-section and beam size of 1.2 mm. 
The output aperture size d\ = 1.3 mm, resulting in negligible clipping of the super-Gaussian. The 
phase-plate aperture di was chosen to be 4 mm to pass the diffracted super-Gaussian beam with 
negligible clipping. The diffractive mode-selecting mirror was assumed to be arbitrarily large. 

The first phase plate studied was a simple phase grating with <j>(x,y) = msin(2'Kfgx), where m 
is the modulation index and fg is the phase grating frequency. The loss to the fundamental mode 
in this case was always less than 0.1 %. Fig. 2 shows the laser gain gth required for the second-order 
mode to overcome the cavity diffractive loss, g^ is related to the cavity loss £ by gth = 1/(1 - £), 
so that a threshold gain of unity corresponds to a lossless cavity. Threshold gains were calculated 
for a phase grating with m = 1 and a variety of frequency values fg. A grating frequency fg = 0 
corresponds to a simple diffractive mode-selecting mirror cavity, and has a threshold gain gth = 1.4 
(or a loss £ = 28 %). This value can be improved remarkably by increasing the grating frequency 
to approximately 4 cycles/mm, where gth = 3.7 (corresponding to a loss of 73 %). Increasing the 
frequency past this point decreases the modal separation. This is expected, since for a sufficiently 
high frequency the different orders of the grating do not overlap. The diffractive mode-selecting 
mirror then simply consists of copies of the simple mode-selecting mirror at each of the diffraction 
orders. The effect of grating translation and modulation depth were also studied. For m = 1, the 
optimal grating had odd symmetry with respect to the mode. Modal threshold gains as large as 
6.9 were observed for modulation depth   m = 11. 
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phase gratings of different frequencies. The loss to the fundamental mode is less than 0.1 %. 
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Figure 3: Results from using a phase plate with random phases, a) shows laser gain required to 
overcome diffractive losses to the second-order mode as a function of the spatial frequency band- 
width of the phase plate, b) shows the effect of finite diffractive mode-selecting mirror linewidth on 
the threshold gain of the fundamental and second-order modes for two different bandwidths A/. 

It was postulated that the degree of modal separation was related to the angular plane wave 
spectrum incident on the mode-selecting mirror. To test this, we performed a series of experiments 
using random phase plates with different angular plane wave spectra. Each phase plate was designed 
to have a Gaussian angular plane wave spectrum with the power spectral bandwidth defined as 
the 1/e2 point of the Gaussian. Fig. 3a shows the increase of threshold gain to the second-order 
mode with increasing phase plate bandwidth. The error bars show the statistical variation in 
the simulation. Very high modal separation can be obtained by presenting the diffractive mode- 
selecting mirror with a sufficiently complex light field. The price paid for this increased separation 
is an increase in complexity of the mode-selecting mirror. Fig. 3b shows the effect of mode-selecting 
mirror linewidth quantization on the modal gains of the fundamental and second-order mode. For 
fundamental mode losses of approximately 0.1 %, features as large as 5 /jm can be used for the 
low bandwidth phase mask (18 mm-1), whereas 1.7 ^m features are required for a high bandwidth 
phase mask (53 mm-1). 

Finally, we have considered a case study of a very short (zj - 10 cm) laser cavity containing a 
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Figure 4: Theoretical performance of a 10 cm laser cavity containing a random phase plate, a) 
shows the two-dimensional fundamental mode intensity profile, b) shows the laser gain required to 
overcome the diffractive losses to the second-order mode for various fundamental beam sizes. The 
result from a conventional Fabry-Perot cavity is shown for comparison. 

random phase plate with a bandwidth of 44 mm-1. The phase mask was placed in the center of the 
cavity (zi = 5 cm, z^ = 5 cm), and a 20th-order super-Gaussian chosen as the fundamental mode 
profile. A mode-selecting mirror was designed with a minimum feature size of 2 /xm and 16 phase 
quantization levels. The resulting fundamental cavity mode profile is shown in fig. 4a for a 1.2 mm 
beam size. The finite linewidth and phase quantization of the mode-selecting mirror produce small 
nonuniformities in the beam profile and result in a fundamental mode loss of approximately 1.3 %. 
The gain required to overcome the losses to the second-order mode was 5.1 (corresponding to a loss 
of greater than 80 %). For comparison, a stable Fabry-Perot cavity with the same cavity length, 
beam size, and fundamental mode loss has a second-order modal gain of only 1.08, corresponding 
to a loss of just 7.2 %. 

Fig. 4b shows the required second-order modal gain as a function of output beam spot size 
for this cavity. If a modal gain of 2.0 is sufficient to discriminate against the second-order mode 
(corresponding to a loss of 50 %), beam diameters of up to 4.5 mm can be used in this 10-cm-long 
cavity. It is therefore possible to extract a large amount of power from the gain medium, while 
still maintaining a very small cavity length. 

In conclusion, we have studied a new type of laser resonator that employs an intracavity phase 
plate and a diffractive mode-selecting mirror to produce large-diameter fundamental modes in a 
short cavity. The intensity profile of the fundamental mode can be chosen to suit the application, 
and the loss to higher-order modes designed to effectively insure single-spatial-mode operation. 
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1. Abstract 
The application of diffractive optical elements (DOE's) as outcoupling components for a 1.06 um Nd-YAG 
laser with an unstable resonator was investigated. The laser power should be about 20 W without damaging the 
DOE. Laser with an unstable resonator can simultanously provide almost diffraction limited beam quality and 
high extraction efficiency [ 1- 3 ]. Therefore an increasing interest in unstable resonator designs can be 
observerd. On applications of unstable resonators have been reported with regard to various active medias like 
CO2, eximer, and Nd-YAG. In most cases the resonator consists of an unconfined highly reflective ( HR ) 
mirror and a variable reflective (VR) mirror as outcoupling element. 
We will show that it is possible to replace a variable reflective mirror ( VRM) by a holographically produced 
DOE. The holographic method allows the implementation of the two basic optical functions of the DOE: 1. 
shaping of the intensity profile of the beam; 2. imaging of the profile. The intensity profile is shaped by a 
spatial variation of the local diffraction efficiency of the DOE and the imaging properties are realized by a 
spherical reference wave in the optical fabrication step. With the refining of a copper galvanic replication 
technique we can present a suitable method to produce radiation resistant DOE's. 

2. Introduction 
The growing interest in unstable resonators results from their capability to ensure diffraction limited beam 
quality and high extraction efficiency. A resonator is called unstable if its g- parameter g 1 2 statisfy 

g ! 2 < 0    or g 12 > 1 

with g 1 2 =1-L / r 1 2 , L- resonator length ,   r 1, r 2 radii of mirror curvature 
Different schemes of'unstable resonators are shown in fig. 1, all consisting of an unconfined highly reflective 
mirror and a variable reflectivity mirror as outcoupling element. It has been proven that mirrors which possess 
the maximum reflectivity in the centre and is smoothly decreasesing to zero within a certain radial distance are 
superior to mirrors with a sharp edge reflectivity profile regarding the beam quality [ 1,4 ]. It is therefore 
possible to use unstable resonators with low round trip magnification . A maximum reflectivity of less than 
80% are then sufficient to attain the optimum loss factor. The use of traditional HR outcoupling dot mirrors 
carrier the risk of accidental damage. 
Besides dielectric VRM, radially birefrigment elements [ 5 ] and varying interferometers [ 6 ] were used as 
apodizing outcoupling elements. However they did not become widely used. 
Another alternative method for radially dependent outcoupling was published in 1991 [ 7 ]. The method is 
based on the use of a diffractive optical element with a variable efficiency over a certain radial distance . In 
this work ths DOE is called apodized diffraction grating ( ADG ) and results for a C02- Laser at 10.6 urn 
wavelength were described. 
Our interest was to tackle the application of an apodized diffraction grating for a 1.06 um Nd-YAG Laser with 
unstable resonator. The goal was to realize a laser power of about 20 W without damaging the ADG. The 
experimental results allow a judgement of the use of an ADG in Nd:YAG-laser with unstable resonator. 

3. Requirements on the ADG and its fabrication 
An ADG has to realize two optical functions. 1. feeding back the beam into the resonator; 2. shaping the 
intensity profile of the beam. From the description of the beam parameters and the optical path through the 
system we obtained the requirements on the design of the ADG. The basic setup of the ADG as an outcoupling 
element in the resonator is shown in fig. 2. 
The grating period d was chosen in such a way that only two orders, i.e. the O^1 and 1st order, are propagating 
for the wavelength of 1.06 um. To use the grating as a resonator mirror it is necessary that the Is* order is in 
autocollimation, i.e. the light is diffracted in the opposite direction of the incident wave and is therefore fed 
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back into the resonator. That means that the angel a of incidence and the diffraction angel of the 1st order are 
identical. The angel of the 0th order, viz. the outcoupling beam, is ß = -a. In order to ensure the shaping of the 
intensity profile of the beam, the lateral variation of the local grating efficiency of the diffractive structure 
should be Gaussian. From modelling the properties of two types of unstable resonators we found necessary 
beam diameters and therefore ADG area diameters of 2 mm to 5 mm. In one case it should be an nonimaging 
ADG and in another case it should be an imaging with a working radius r of curvature of 0.3m. According to 
the grating equation [9] 

sin a + sin ß = k XI d 

and with  k = -1 and  X = 1.06 urn we found  a = - ß = 25 ° and    d = 1.25 um in order to satisfy the 
requirements. 
We produced this ADG interferometrically. Fig. 3 shows the scheme of a special interferometer for this 
application. As light source an Ar-ion laser with the 458 nm line was used. A glass substrat which had been 
coated with photoresist was used as recording material. The angel between the two laser beams determines the 
spacing betwen the interference fringes and thus the grating period d. The depth of the resulting profile in the 
resist is controlled by the dose of light. 
To realise the Gaussian variation of the local efficiency the relation between the ratio h/d of the grooves and the 
local diffraction efficiency T|,  i.e. y\ = f ( h / d ) , is of fundamental concern. By using rigorous diffraction 
theory we calculated this function to found suitable parameters. Fig. 4 illustrates the calculations. 
A symmetrical variation of h/d from 0.05 - 0.35 in the diffractive structure produces the required variation of 
the local grating efficiency. 
One method to realize the variation of the depth h in the structure practically is the exposure with a gradient of 
the illumination on the resist surface. But it has to be noticed that a good knowledge of the response of the 
photoresist on the illumination is necessary for this method. This behavior is described by the gradation 
function. 
For the alignments and measurements in the setup a CCD-camera was used in the exposure plane. 
With the interferometer configuartion a large number of various ADG's were produced. However these gratings 
were originals in photoresist. To get a higher resistance against high power beams and to increase the damage 
threshold we applied a replication method in copper. This replication technique is based on a copper galvanic. 
It is able to produce a copper replica layer with a thickness of nearly 400 urn. In order to get better mechanical 
stability this copper layer was glued with special epoxyd to a solid copper substrat. 

4. Testing 
Some of the properties of an ADG were tested first outside a laser resonator and then inside a pumping laser 
resonator. One of these tests was the measurement of the efficiency profile at 1.06 um wavelength. The results 
for s-polarisation is shown in fig. 5 for the 0th and 1st order. 
Measurements with a Michelson interferometer showed radial phase shifts of about 1 in the radiation field of 
the 1st diffraction order. 
The entire laser configuration was set up with the special ADG. The Nd- YAG rod was 160 mm long and had 
a diameter of 10 mm. The laser was run in pulsed operation ( pulse duration 2 ms, repetition rate 30 Hz) at a 
maximum input power of 6.5 KW. 
With a 0.8 m long flat - flat resonator 50 W of laser power was obtained at 6.5 KW input power. The beam 
parameter product was measured to be 10 - 30 mm mrad. 
A positive branch unstable resonator yielded 20 W at 4.1 KW input power. 

5. Outlook 
At this experimental stage of the project the results indicate that apodized diffractive gratings can be used 
instead of VRM in the medium power range. 
A drawback are still the losses due to absorption and scattering which are typical 5 -15 %. For laser power over 
80 W the temperature of the grating exceeds 100° C and causes destruction. 
Further developement of the manufacturing process could probably reduce the losses and increase the radiation 
resistance. 
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Spatial and temporal beam smoothing has now become an integral part 

of laser driven inertial confinement fusion (ICF) worldwide. Spatial 
smoothing is often achieved by using random phase plates (RPP) [1] or lenslet 
arrays [2]. Temporal smoothing is accomplished using smoothing by spectral 

dispersion (SSD) [3] or induced spatial incoherence (ISI) [4]. All the RPP's used 
so far have consisted of random layouts of square, rectangular or hexagonal 

phase plate elements that impose either 0 or K phase shift on the beam. The 

far-field intensity pattern of such RPP's consists of an envelope characteristic 
of the phase plate element and a superimposed speckle pattern resulting from 

the interference among the various phase plate element contributions. The 
far-field envelope for square and hexagonal shapes is qualitatively similar to 

an Airy pattern and it contains roughly 81 to 84% of the incident energy 
within the central maximum [5]. Even though such regular element, binary 
phase plates are easy to fabricate and are widely used, they offer little flexibility 

in our ability to tailor the far-field profile and to increase the energy content 
in the central maximum beyond the 84% predicted for a circular aperture. 

In order to overcome these limitations for the binary RPP's, we have 

designed and fabricated new phase screens for tailoring the far-field intensity 

distribution and increasing the energy content therein. These phase screens 
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consist of smooth, continuous variation of the phase across the aperture and, 
as such, relax the binary phase and the regular phase element assumptions. 
We call such continuous contour phase plates kinoform phase plates (KPPs). 

The design question for such KPPs can be posed as follows: is it possible 

to construct a phase screen in the input plane which, for a given input 

intensity distribution, produces a desired far-field intensity distribution? We 
have recently developed [6] an iterative algorithm for generating KPP phase 
screens which produce desired far-field intensity profiles. The algorithm 
begins by choosing a prescribed near-field amplitude and a random phase 
screen. Fourier transform of this complex amplitude leads to phase and 

amplitude modulations in the far-field. At this point, the far-field amplitude 

is replaced by the desired far-field amplitude leaving the phase unchanged. 
Inverse Fourier transforming this complex field gives the near-field 
distribution which has both amplitude and phase modulations. Now, the 

near-field constraint is applied by replacing the amplitude with the desired 
near-field amplitude but leaving the phase unchanged. The procedure is 
repeated again by Fourier transforming to the far-field ...etc. The iteration 

loop is exited after a satisfactory convergence is reached. 

Numerical simulations have been carried out for constructing phase 
screens that produce supergaussian far-field intensity profiles from 
supergaussian near-field profiles. We find that the algorithm is rapidly 
convergent and for the converged solution, greater than 95% of the incident 

energy is contained within the desired spot in the far-field. This is a 
significant improvement over the 84% energy content for regular element, 

binary random phase plates where the element size is chosen such that the 
size of the central maximum (to the first zero) is equal to the size of the 
supergaussian profile in the far-field. 

The near-field phase screen obtained after the iterative optimization 
shows a fairly smooth ripply structure resembling waves on a lake surface. 

Due to the range of the numerical arctangent function, the calculated phase is 

always in the range (-TC, n). This compression of the real phase by modulo 2TC 

introduces sharp jumps approximately 2n in size. Except for these jumps, the 

phase screen appears fairly smooth. 
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KPP fabrication is accomplished by transferring the calculated phase 
screen on to a substrate such as fused silica. We begin by first discretizing the 
phase screen to 2N levels. Calculations indicate that a minimum of 16 levels 

is necessary to maintain the energy concentration in the far-field. The 2N 

phase levels can then be fabricated using photolithographic techniques using 

N binary masks. We have produced 16 level KPP's on 15 cm diameter 

substrates in fused silica using acid etching by buffered hydrofluoric acid. 
Presently we are characterizing the optical performance of such KPPs and are 
extending the fabrication process to even larger size substrates and more 

levels. 

In this presentation we shall briefly describe the KPP design algorithm 

which will then be followed by a detailed discussion of the fabrication and 

characterizatin of the KPPs. 
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Today excimer lasers are finding more and more use in industry for 

machining polymers and ceramics by ablation (1). Usually the pattern to be 
machined is obtained by imaging a mask onto the work-piece, the mask being 

illuminated by a homogenized excimer laser beam. The homogenization is needed 
to reshape the emitted, roughly Gaussian beam into a uniform top-hat intensity 
profile. Since the pattern often occupies a minute fraction of the homogenized beam 
the laser power is inefficiently used with this scheme. By steering the power only to 

the pattern in the mask the efficiency can be dramatically increased, however. This 
can be achieved with a kinoform (2), which is furthermore a homogenizer by itself. 
To ensure sharp edges on the work-piece the kinoform diffracted pattern should 

overlap the mask pattern with some margin. 
In a preliminary experiment we investigated the kinoform/mask concept. 

The chosen pattern consisted of four circular spots positioned at the corners of a 
square, the spot diameter to square side being 1:4. This pattern can be realized with 
two crossed binary phase gratings with duty cycle 1/2, which would yield a 
diffraction efficiency of -66%. Better efficiency (-88%) can be obtained with a 
single, multilevel phase grating. Instead we used a kinoform carrying small, 
elementary binary gratings of two kinds, every second with horizontal, the other 
with vertical grooves, both with duty cycle 1/2. The expected efficiency is 81%. To 
produce the wanted diffraction pattern the coherence areas of the illuminating 
beam should be roughly square and smaller than an individual elementary grating, 

whose size was 2 mm x 2 mm. The coherence areas of the KrF beam (wavelength: 

248 nm) exiting the laser (Lambda Physik, LPX100) are vertically elongated, with 
dimensions -80 ^im x -240 urn. To tailor the coherence areas to the kinoform we 
compressed the beam in the vertical direction a factor of three with two cylindrical 
lenses, the resulting beam dimensions being -22 mm x -2.5 mm. The kinoform was 
positioned in the compressed beam after a lens, which focused the beam on the 



290 / DWC5-2 

mask plane, the diffraction limited four spots well matching the mask holes. The 

mask plane was imaged, demagnified five times, onto the work-piece with a field 

lens positioned immediately behind the mask. Good results of the machining were 

obtained, the sharp edged circular machined marks being 200 (im in diameter. We 

estimate the fraction of the laser power actually delivered to the work piece at 

-15% . The number includes reflection losses in twelve optical surfaces, the finite 

diffraction efficiency of the kinoform and mask losses (-70%). 
To withstand the excimer laser beam the kinoform had to be made in quartz. 

The electron-beam lithography manufactured kinoform was first generated as a 

binary surface relief in resist on a quartz substrate and then dry-etched into the 
substrate by Ar ion milling. The fact that the relief was binary helped us better 

control the etch process and thus to accurately reach the intended depth (244 nm). 

For manufacture of multi-level or continuous relief kinoforms, which are generally 

needed to produce more complicated patterns, a higher degree of control in the 
etch-step is required. This is a problem we are presently facing in our efforts to 
manufacture continuous relief excimer laser beam homogenizers. We manufacture 
these homogenizers as fly's eye arrays of square, off-axis micro Fresnel lenses. With 

this novel design a small unwanted relief depth error will only give rise to a 
diffraction limited spot located outside of the homogenized area. Measurements 
show that the quality of the homogenized areas, produced by our diffractive 
homogenizers, is as good as that obtained by refractive lens array homogenizers (3). 

An advantage with diffractive homogenizers is that, since they can be replicated, 

they should be less expensive than conventional homogenizers. Furthermore, they 

can be made only a few hundred microns thick, which should yield long life-times. 
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Diffractive elements are utilized in CO2 industrial lasers to focus 
laser light to a diffraction limited focal point. Such a focus is smaller in 
cross-sectional dimensions relative that produced by a conventional, 
refractive focusing lens. A smaller focus at the workpiece enables more 
precise laser cutting and allows for a greater energy density to be available 
for cutting1'2. These improvements are significant, but the key advantage 
achieved by using diffractive focusing elements is a reduction in the 
damage to the focusing element caused by "back splatter" and debris 
coming off the workpiece. 

To a good approximation, the focal spot size of a conventional, 
refractive focusing lens is predicted by3 

D = (4/jc) (AiM2/d) + Kd3/f2 (1) 

where D and d are the 1/e2 diameter of the focused and incident, 
respectively, laser beam (distance between the 1/e2 "falloff' points of the 
intensity distribution), f is the focal length, and A, is the wavelength equal to 
10.6 microns. K is a constant that, by industry standards4, is equal to 
.0187 for a ZnSe meniscus lens and equal to .0286 for a ZnSe plano-convex 
lens (both lenses transmitting light of wavelength equal to 10.6 microns). 
M2 is a measure of the divergence of the laser beam5 and is approximated 
by the value equal to 3.0 for high power (1000-3000 Watts) CO2 lasers and 
a value equal to 2.0 for low power CO2 lasers (<1000 Watts). The second 
term in Equation 1 is the contribution to the focused laser beam diameter 
by spherical aberration. Therefore, the focal spot size produced by 
diffraction limited performance is predicted solely by the first term in 
Equation 1. 

Using Equation 1, the predicted dependence of the focused 1/e2 laser 
beam diameter D (spot size) upon the 1/e2 diameter, d, of the collimated 
laser beam incident a variety of focusing elements is plotted (Figures 1 and 
2). In all cases an M2 value equal to 3.0 is assumed. In both figures, the 
dominance of spherical aberration is evident for refractive elements as the 
eventual increase in focal spot size with increasing incident laser beam 
diameter. In contrast, the absence of spherical aberration in diffractive 
elements is manifest by a monotonically decreasing focal spot size with 
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increasing incident laser beam diameter. As a result, for sufficiently large 
incident laser beam diameters, diffractive focal spot sizes are smaller than 
refractive spot sizes produced by refractive lenses with shorter focal 
length. For example, in Figure 1 a diffractive element having a focal 
length equal to 3.75 inches focuses incident laser beams with 1/e2 diameter 
greater than 23 mm to a smaller focus point than that of a meniscus lens 
with a 2.5 inch focal length. If the laser beam diameter is greater than 30 
mm, a 5.0 inch focal length diffractive element also produces a smaller 
focal spot than does the 2.5 inch focal length plano-convex lens (Figure 1). 
This is a key advantage for diffractive elements. By increasing the 
separation between the focusing lens and workpiece, the susceptibility of 
the lens to back splatter and debris coming off the workpiece can be greatly 
reduced. An example of this is the removal of a lens out of the debris 
"plume" extending above a ceramic workpiece by replacing a 2.5 inch focal 
length refractive lens with a 3.75 inch focal length diffractive element. 
For this case the implementation of this scheme yields a ten to one 
hundred-fold increase in the lifetime of the focusing element. 

In principle, the diffractive spot size can be reduced arbitrarily by 
increasing the diameter of the incident laser beam. To prevent the 
"overfilling" of a lens, 99% of the laser energy must pass through the lens 
aperture. This energy is contained in the beam width equal to 1.5 times the 
1/e2 diameter of a Gaussian laser beam6. Thus the size of a diffractive 
element limits the arbitrary increase in the laser beam diameter. 
Diffractive elements for CO2 lasers currently manufactured have diameters 
of 1.0 and 1.5 inches. The manufacture of diffractive elements with 
diameter equal to 2.0 and 2.5 inches is feasible. To exactly "fill" apertures 
with diameter equal to 1.0, 1.5, 2.0, or 2.5 inches requires Gaussian laser 
beams of 1/e2 diameter equal to 17, 26, 34, or 42 mm, respectively. These 
values are represented by the vertical dashed lines in Figures 1 and 2. 
Thus, the 2.5 inch focal length meniscus lens can equivalently be replaced 
with a 3.75 inch diffractive element with diameter equal to 1.5 inches (see 
Figure 1). This cross sectional area is large enough to intercept incident 
laser beams which are diffractively focused to an equal or smaller focal 
spot than the smallest focal spot possible using the meniscus lens. Even an 
5.0 inch focal length diffractive optic with diameter equal to 1.5 inches can 
be used to produce a smaller focal spot than the 2.5 inch focal length plano- 
convex lens. In Figure 2, a lens with a diameter of 2.0 inches will be 
"overfilled" with laser light having cross-sectional area large enough to 
enable the equivalent replacement of a 5.0 inch focal length meniscus lens 
with a 7.5 inch focal length diffractive element. In this case, a larger 
diffractive focusing element with a physical diameter of 2.5 inches is 
needed. 
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The use of diffractive elements to achieve superior cutting 
performance by virtue of diffraction limited focusing has made a 
considerable impact upon the CO2 industrial laser industry. A larger 
impact will be realized by the replacement of conventional, refractive 
focusing lenses by longer focal length diffractive elements to reduce lens 
damage and significantly lower operational costs. 
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In solid-state fusion lasers, spatially uniform laser beam is required in fol- 

lowing two senses, (i). uniform beam with low peak over average ration (less 

than 1.5 for intensity) can provide large beam filling factor in active media as 

well as suppressing small scale self-focusing effect, so that more energy can be 

obtained from amplifiers and laser system can work at a higher energy flux 

without damage of optical components, and (ii). for laser fusion, uniform 

illumination of fuel pellets is highly required at or near the focus in order to 

produce the highly symmetric ablation pressure necessary for high gain. For 

these purposes, various methods have been developed. Soft apertures with 

tapered transmission and more recently the serrated apertures have been ap- 

plied to high power lasers [l]. To achieve high illumination uniformity for 

target, schemes have been suggested which involve broad-bandwidth laser 

illumination with SSD [2] and ISI [3], radom phase plate (RPP) [4], and 

lens array [5]. In this paper we will give out our design procedure for ser- 

rated apertures, and discuss the lens array with a serrated edge for each lens 

element to improve the illumination uniformity further. 
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Serrated aperture seems quite ideal since it has high damage thershold 

and is easy to be used in practice, unfortunatelly, there is no detailed reports 

on it. Recently, we have designed serrated aperture based on Sommerfled 

edge wavelets interpretation of diffraction, it is easy to understand what 

tends to reduce the in-phase addition characteristic of the circular aperture 

will tend to damp out the peak amplitude of Fresnel ripples. We find that 

serrated aperture with a modulated sinusoidal edge can effectively elliminate 

the near-axis intensity ripples in a large scale of Fresnel numbers(F). The 

edge shape of serrated aperture is described as follows. 

r[6) = r0[l + asinmiOsinmO] (1) 

where mi « m, normally we can use mi = 5 and m = 50. Typical serrated 

aperture is given in Fig.l. To have a on-axis intensity variation less than 

10%, the Fresnel number F should satisfy the equation (2). 

ABS{irFa - 2.44) < 0.5 (2) 

Fig.l The serrated aperture. 

Equation(2) as well as Eq.(l) gives out the design procedure for this 

kind of serrated aperture. For instance, if we want to place optics (Nd:glass 

slab) at F=20, then a = 0.04 calculated from Eq.(2), the range of F is 15 to 



DWC7-3 / 297 

25 where the on-axis intensity variation less than 10%, which corresponding 

to a space range of 3m for a 20 mm diameter aperture. Typical calculated 

results are shown in Fig.2. One could find that the diffraction behaviors 

of serrated aperture is very similar to that of supergaussian soft aperture. 

Furthermore, we should point out that serrated aperture designed here is 

quite insensitive to the form of modulation (sinusoidal in Eq.(l)), which is 

important for its use in practice. 

/N^\/l 

10 20 30 40 50 

Fresnel number F 

(a) (b) 

Fig.2(a). The calculated on-axis amplitudes vs Fresnel numbers for 

a = 0.05, and (b). the calculated beam profile at F = 20. 

As a application of this design, we employ it to the lens array focusing 

system in order to improve uniformity. Normally, there is still a certain large- 

scale intensity variation (~ 10%) by using common lens array, although it can 

provide much higher uniformity than common focusing lens by reducing the 

in-phase addition among the beams of all lens elements in the quasi-near-field. 

This large-scale variation is mainly due to the diffraction ripples of single 

lens element, therefore it is necessary to eliminate this diffraction ripples. 

By employing lens array with serrated edge designed, higher illumination 

uniformity is expected. We are sure that uniformity in a level of 1% could be 

achived by using this novel design. Further developments along this direction 
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are undertook in our laboratory, which involve to use 3-D serrated lens array 

elements to improve the uniformity furthermore. 
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Adaptations of lithographic technologies (variable shaped e-beam, variable dose and energy 
writing) for microoptical applications and new profitable lens profiles (> 10 lenses/s) were 
described. 
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Diftractive optical elements (DOE) for laser beam forming 

have a spread range of applications. The results are presented 

on DOE| fabrication, which focusing the infrared irradiation into 

a coil; and Into two points with required parameters. 

The principles of artificial index gratings [1] were used 

for zilindrical zone plate topology generation. In this caBe 

the topology feature sisie is considerably 1»»» than the 

wavelehgth. 

The results on Fresnel zone plates creation for soft X-ray 

are also regarded. 

The most appropriate technique for diftractive optical 

elements as well as computer generated holograms fabrication is 

electron beam lithography (EBL). One of the main problem of EBL 

application to DOE fabrication is the necessity to treat a large 

amount Of data oüiiöibt ordinary from BUIUB tens of Megabytes» to 

Borne Gigabytes. The formula for estimation of data volume is 

presented for DOE exposure depending on DOE parameters, 

fabricjation precision and topology approximation techniques. 

A data preparing system was developed. The topology 

approximation is carried out by rectangular fragments according 

to available electron beam sizes regarding the dividing into 

fields and subfields, which are determined by EBL equipment 

peculiarities. 

The electron scattering processes in resist and substrate 

lead to fabricated topology distortions. On the base of 

experimental investigation of the effects the correction was 

provided and undistorted DOE'S were created, including DOE'S 

;with subhalfmicron feature sizes. 
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Diffractive optical elements designed for applications such as optical data storage 
and optical interconnects between VLSI chips in multi-chip modules require high 
diffraction efficiencies and large numerical apertures. Design specifications with sub- 
micron feature sizes present exacting requirements on the fabrication technology. In this 
work, two methods are compared and evaluated for fabricating high-performance 
diffractive optical elements and surface masters. Linearly blazed reflective gratings in 
silicon are fabricated with a focused ion beam (FIB) and with direct-write electron beam 
lithography and reactive ion etching (RIE). The relative simplicity of the fabrication 

process with a focused ion beam in one lithography step compared to the multiple 
lithographic exposures and etches used in the electron beam lithography process, is 

traded off against the relatively slow ion beam write times compared to the electron 
beam exposure speeds. 

Direct-write electron beam lithography and RIE are used to fabricate 8-level 

gratings. This fabrication process involves four lithography steps and three etches. 

Exposures are performed on a 90nm thick layer of PMMA. A thin 60nm film of SiOx 

between the Si substrate and the resist is used to enhance the RIE selectivity for the 

transfer of the exposed pattern into the substrate. The SiOx layer is deposited by thermal 
evaporation from a SiO source. A smallest feature size of 0.5um necessitates the 
correction of proximity effects due to scattered electrons in the resist. It is determined 
that an area dose of 60uC/cm2 at 2nA beam current and 20kV accelerating voltage is 
near optimal. A 25nm square exposure element size is used to write the desired pattern. 
For lmmxlmm gratings, electron beam write times per exposure are approximately 
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2.5min. A two-step RIE process is used to transfer the exposed pattern into the 
substrate. In the first step, a mixture of CHF3 and O2 is used to pattern the SiOx and 
remove the PMMA. In the second step, a mixture of BCI3 and CI2 is used to pattern the 
Si substrate. RIE parameters (chamber pressure, gas flow rates, and RF power) are 

adjusted to produce etch rates of approximately 24nm/min for the first step and 

40nm/min for the second step. The fabrication process for one exposure and etch is 

schematically displayed in Fig. la. With proper control of dose, etching, and alignment 
between successive exposures, feature errors less than 50nm wide are achieved. This is 
shown in Figs. 2a and 2b which display SEM micrographs of one period of the grating 
and multiple periods of the grating respectively. 

A 69Ga+ focused ion beam is used to sputter continuously graded gratings. The 
linearly blazed surface relief is milled in a single lithography step by linearly varying 

the sputter yield across a given period. The linear variation in sputter yield is produced 
by a linear variation in area dose of the ion beam. A schematic representation of the FIB 
fabrication process is displayed in Fig. lb. For a reflection grating designed to operate at 
A.=633nm with 4um wide periods, the area doses used to produce surface reliefs of X/2 
range from 4xl016 to 6xl017 ions/cm2. For a given area dose, the FIB is raster-scanned 
the length of the grating using a 22.5nm square pixel size. The beam diameter is sub- 
tenth micron and the beam energy is 60keV. To account for the effects of redeposition of 
material and beam profile, a pattern scheme of 8 overlapping area doses within a given 
period is used. Atomic force microscopy (AFM) is used to characterize the surface relief 
profile. An AFM cross-section is shown in Fig. 3a. An 8-level grating fabricated by 

electron beam lithography is shown in Fig. 3b for comparison. Since the 8-level profile is 

only an approximation to a linear blaze, FIB gratings can produce superior diffraction 

efficiencies. Preliminary measurements indicate that both fabrication methods produce 
gratings with first order diffraction efficiencies exceeding 90%. 

The fabrication of a continuously graded periodic surface relief by FIB milling, 
suggests that diffractive optical elements with binary surface profiles or surface profiles 
with inaccuracies due to fabrication errors, can be repaired and rendered continuous by 

FIB milling, thereby producing high-quality surface masters. The effects of surface 

profile, subwavelength features, and fabrication errors on diffraction efficiency, and the 
use of FIB for the repair of diffractive optical elements will be discussed. 
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Fig. 1. Schematic representation of grating fabrication processes using electron beam 
lithography and reactive ion etching (a) and focused ion beam milling (b). 
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Fig. 2. SEM micrographs of one period (a) and multiple periods (b) of an 8-level linear 
grating fabricated by electron beam lithography and reactive ion etching. 
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lo.o    m 

10.0 m 

Fig 3. AFM cross-sections of surface profiles for gratings fabricated by (a) FIB and 
(b) electron beam lithography. 
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1. INTRODUCTION 

Fresnel microlenses and microlens arrays are planar Diffractive Optical Elements (DOEs) which are 
playing an increasingly important role in modern optical systems. Typical microstructures have surface 
relief amplitudes of up to about 5 |im, continuous-relief feature sizes down to about 5 urn and apertures 
varying from about 10 |im up to many millimeters for individual lenslets. They offer significant 
advantages as compact, lightweight optical elements which can be fabricated in plastic by replication 
techniques and mass-produced at low cost for industrial applications. 

The complexity of Fresnel lenslet microstructures can vary from low aperture, relatively simple forms with 
only a small number of segments to complex, high aperture lenslets with a large number of Fresnel 
segments of varying phase numbers (see Figure 1). Modern design techniques enable Phase-Matched 
Fresnel Elements (PMFEs) to be computed with profiles and height steps optimised to maintain proper 
phase relationships at the design wavelength [1]. Such microoptical elements combine the advantages of 
geometrical and diffractive optical components and their optical characteristics can be considered as 
resulting from a combination of refractive and diffractive behaviour, depending upon the dimensions of the 
Fresnel segments. Fresnel lenses offer a considerable degree of functional flexibility, with typical 
applications in monochromatic (laser) or narrow band (LED) imaging and illumination systems. 

The fabrication of Fresnel lenslets with continuous-relief surface profiles represents a challenging area of 
modern optical fabrication technology, in particular for high aperture lenslets with segment sizes in the 
order of micrometers. In this paper, we describe progress in the fabrication by direct laser writing in 
photoresist using a system which has been developed over a number of years at the Paul Scherrer Institute 
in Zurich [2], and describe a number of application examples. Laser writing offers a highly flexible 
approach for the fabrication of such elements. The photoresist recordings are electroformed to Ni 
replication shims from which replicas can be produced by embossing or casting techniques. The limitations 
in microstructure resolution and lenslet numerical aperture as determined by current technology are 
discussed and the typical performance of Fresnel lenslets fabricated by this technology are presented. 

(a) (b) 

M^WV^WM 

Fig. 1      Examples of simple and complex Fresnel lenslet microstructures : 
(a) Basic, single phase number lenslet   (b) Multiple phase number lenslet for high apertures. 



DWD4-2 / 307 

2. FABRICATION TECHNOLOGY 

Continuous-relief Fresnel microlenses are fabricated by laser writing in photoresist. After development of 
the exposed resist microstructure, the lenslet relief is electroformed to a Ni shim for replication by 
embossing or moulding techniques. 

2.1. Basic Fresnel lenslet microstructure 

From the fabrication point of view, Fresnel 
lenslet microstructures can be characterised 
by the maximum relief depth and the 
minimum segment size. In laser writing 
technology, the maximum depth is given by 
the resist layer thickness, typically ~ 5 (im 
for high quality films of commercial, high 
resolution photoresists. The minimum 
segment size at the perimeter of the lenslet 
area is determined by the numerical aperture 
(NA) of the lenslet, together with the phase 
(height) step at the segment boundary. 
Figure 2 shows the relationship between the 
lenslet NA and the minimum segment size 
for various phase steps for a Fresnel lenslet 
designed to focus a parallel HeNe laser 
beam (k = 633 nm). 

■g 

c 
e 
CO 

E 
E 

Fig. 2. Dependence of minimum segment size upon 
Fresnel lenslet NA for various phase steps (data 
from PMFE design routines for X = 633 nm). 

Low NA lenslets with relatively large segment sizes (» X) have a dominantly refractive behaviour and can 
be used in wideband (white light) systems. High aperture Fresnel lenslets with NAs approaching 0.5 
require careful design and optimisation. The minimum segment size can be maximised by choosing the 
largest phase step possible within the limits of the resist thickness. Such lenslets have a dominantly 
diffractive behaviour and can generally only be used with monochromatic or narrow band (LED) 
illumination. 

2.2 Laser writing and technology limitations 

Figure 3 shows the basic laser writing system and the steps involved in fabricating continuous-relief 
Fresnel lenslets. The system, described in more detail elsewhere [2,3], uses a HeCd laser (A. = 442 nm) to 
expose a photoresist coated substrate which is raster scanned under the focused beam using a high 
precision xy-stage. The surface-relief data resulting from the lenslet design are converted to exposure data 
using a measured resist development characteristic (relief v. exposure). Typical writing parameters are an 
interline spacing of 1 Jim, a focused spot size of about 1.5 |om and a writing speed of 10 mm/sec. The 
writing of arrays of Fresnel lenslets with zero dead space between lenslets is handled by additional software 
routines and is straightforward. 

Reproducibility in the developed resist profile depth (using Shipley AZ 1400-37 resist and Microposit 
AZ 303 developer) is about ± 2%. The surface roughness of the developed resist surface is limited by the 
precision of the scan lines and is currently in the range 25.. 100 nm rms [3]. The maximum slope at the 
segment edges is determined by the spot size and is typically greater than 70°. Although the use of a 
smaller spot size results in higher lateral resolution, it also results in unacceptable surface roughness with 
the present xy-stage positioning accuracy (~ ±150 nm). The maximum aperture of Fresnel lenslets is 
determined by the size of a segment in which the continuous-relief profile can be reasonably attained using 
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Fig. 3.     Laser writing system and process steps for the fabrication of continuous-relief Fresnel lenslets. 

the writing spot size, currently about 5 |im. For a relief depth of 5 (xm, this corresponds to a maximum 
lenslet aperture of NA ~ 0.5 (for a phase step of 8rc). Work is in progress to improve the line positioning 
accuracy in a next generation laser writing system, which should result in reduced roughness in the surface 
profiles and enable higher NA lenslets to be fabricated. 

2.3 Replication 

Resist surface-relief microstructures are electroformed to a Ni shim and reproduced be replication in plastic 
or epoxy materials. Replication technologies which are commercially available include hot embossing 
(diffractive foil and holograms), injection moulding (plastic optics and Compact Disks) and uv-replication 
techniques (microstructured foil). Shim fabrication techniques have fidelity much better than 100 run and 
add minimal roughness (< 1 nm) to the lenslet surface-relief. The replication of microstructures with relief 
depth in excess of about 1 pm is generally not standard using the above technologies in an industrial 
environment and the replication fidelity is currently being evaluated using special test structures. 

3. APPLICATION EXAMPLES 

A variety of Fresnel lenslets and lenslet arrays have been fabricated over a number of years using the PSI 
laser writing system. They vary from arrays of more than 80x80 lenslets of low NA (< 0.01) for 
applications such as Shack-Hartmann wavefront sensors to small arrays of high NA (-0.5) for laser diode 
collimation and imaging. A number of selected examples will be described. 

Figure 4 shows an AFM image and measured cross-section of the surface relief of a Fresnel microlens with 
100 pm diameter and NA ~ 0.1. The lens has 4 Fresnel segments with a phase step of 2n (~ 1.1 pm at a 
wavelength of X = 633 nm for a lens replicated into polycarbonate foil). The fine structure on the surface 
results from line positioning errors in the laser writing process and results in straylight. Typical lenslets of 
this type have measured efficiencies (transmitted light focused into the central spot) of between 60% and 
90%, depending upon the lens design and fabricated microstructure. 
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Figure 5 shows a more complex Fresnel lens structure with segments of varying phase steps (see Fig. lb) 
of 2K up to 8rc. The lenslet has a size of 250 um x 300 u\m and NA ~ 0.5. The figure shows an AFM 
image of the fabricated microstructure and the design and fabricated profile of the central section. The 
measured efficiency of this lenslet was about 60%. 

4. CONCLUSIONS 

Continuous-relief Fresnel microlenses and lens 
arrays have been fabricated by laser writing in 
photoresist. For use in optical systems, the planar 
microoptical structures have been electroformed to 
Ni shims and replicated into various plastic and 
epoxy materials. The quality and performance of 
the Fresnel lenses is fully adequate for applications 
in optical illumination and imaging systems in 
which straylight is not of major significance. 
Design and fabrication techniques enable a wide 
range of lenslets and lenslet arrays to be produced, 
with typical applications in miniature, lightweight 
optical systems. The main current limitation in the 
fabrication technology is the limited scan accuracy 
leading to surface structure and roughness in the 
lenslet relief. This problem is being addressed in a 
next generation laser writing system - latest results 
will be presented at the conference. 

Fig. 4.    Fresnel microlens structure (AFM image) 
and measured profile. 
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1. INTRODUCTION 

One of the problems in the development of diffractive optics is that of reproducibly fabricating 
topological structures with an overall area up to (1-3) 104 mm2 with a minimum dimension of 
elements less than 1 urn and with a fabricating accuracy of 0.1-0.2 urn at the boundaries of elements. 

Two basic methods are known for forming microimages - phototype-setting and scanning 
method. Scanning is carried out in a Cartesian [1] or polar [2,3,4] coordinate system. In the last case, 
the microimage is formed through a continuous rotation of the substrate, while the focused light 
beam is simultaneously moved along the radius of the substrate. It is possible to produce a mask 
of specified configuration [with a amplitude computer-controlled modulation of the laser beam. 
Specific optical applications (wave front correction, astronomical mirror testing) require the 
fabrication of circular diffractive structures with size and quality which are difficult of access by x 
- y pattern generators. 

Work on the fabrication of diffractive optical elements by laser beam writing was carried out 
in early 1980s in The Laboratory of Laser Technology, Institute of Automation and Electrometiy 
of Russian Academy of Sciences. 

The circular laser writing system has been designed and thermochemical technology for 
manufacturing of chromium masks of diffractive elements has been developed [2,4,5]. Direct writing 
with the high resolution on amorphous silicon films has been investigated [6]. The unique diffractive 
elements have been fabricated [4,7]. 

The paper describes the recent results of investigation of new laser writing system, which has 
been built-up at the Institute of Automation and Electrometiy in Novosibirsk. The results of synthesis 
and test of 2-dimensional diffractive elements and arrays of micro-Fresnel lenslets are presented. 

2. LASER WRITING SYSTEM 

The circular laser writing system is shown schematically in Fig.l. The Substrate with thin 
Chromium film on it is fixed on the top of precision Air-bearing Spindle. The turning angle 
transducer is mounted on the spindle axis. The Angle-code Pick-up system forms the synchronizing 
pulses for stabilization of rotation speed and synchronizing of laser recording with turning angle of 
substrate. 

Argon laser (488 nm) is mounted on the Granite Base with vibration isolator supports. Laser 
radiation is modulated by acoustooptical Modulator. Radiation intensity control system ensures the 
pulse-amplitude type modulation of laser radiation and suppression of it's fluctuations according 
the signal from light Feedback Photoreceiver. Then the laser beam enters the focusing Objective 
through the optical system, mounted on the mobile precision Air-bearing Table. The Objective 
forms a spot on the Substrate surface. The spot diameter is about 0.8 urn (on the level 1/e). 

Autofocus system with electrodynamic actuator supports the focusing plane in the plane of 
Substrate during the write process. 

Air-bearing Table is moved by means of computer-controlled Linear Motor Drive. Displace- 
ment measurement is made by laser Interferometer. The range of Table displacement is equal to 
250 mm, positioning precision is near 100 nm rms (discreteness of Interferometer pulses is equal 
ty64=10 nm). 

During write process the intensity quantity (scale - 10 bits) of writing laser beam is adjusted 
by computer through universal interface. The forming of pulse modulation signal is made by special 
adaptor, installed in computer. Adaptor has two RAM buffers that allows to carry out the recording 
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in continuous mode, alternating the RAM buffers. 
Data output is stepped by pulses of Angle-code Pick-up system, that makes it possible to 

synchronize the laser writing with substrate angular rotation. 
Microstructures are written by two methods: continuous spiral scanning and angular raster 

scanning. In the first case by two motions - substrate rotation and radial displacement of recording 
beam - the scanning of material surface is fulfilled. For qualitative synthesis of topology elements 
the spiral step must be smaller then the width of the recorded line. This method gives the maximum 
speed of writing. In case of circular zone plates or complex structures (when calculations during 
writing are demanded) writing the second methods is used. 

The typical parameters of writing process are the following: substrate rotation speed -10 r.p.s., 
written line width: 0.6 -1 urn (which is given by the writing beam intensity), spiral step or angular 
raster pitch - 0.3-0.6 urn. The writing laser beam is positioned with precision of 0.1 urn for accurate 
circular structure's edges recording. 

3. WRITING METHODS 

The methods for recording of diffractive optical elements without photoresists usage have 
been developed. The first one [5], based on thermochemical action of laser radiation includes the 
exposure by laser beam of rotated substrate, covered by thin chromium film (the radiation power 
is less, than for film melting purposes) and chemical treatment of film in selective etching agent. The 
possibility of diffractive structures' recording with spatial resolution better, than 1200 mm1 was 
shown. 

Another method is based on amorphous silicon films crystallization and is accompanied by 
the increase of films transmission depending on exposure [6]. Thus, the continuous-tone recording 
with high spatial resolution is implemented. The necessary contrast is achieved by the choose of film 
thickness and exposure and can reach 10. During the writing process the resolution up to 
1600 mm"1 can be achieved. 

4. EXPERIMENTAL RESULTS 

Fig.2 shows fragments of chromium masks of lenslet array recorded with raster pitch 0.6 urn. 
The above described laser writing system was used for different purposes: the microlens array mask 
recording with the size of some lenses from 10 um up to several mm; the writing of rastered kinoform 
masks and synthesized holograms; precision angular scales (with the accuracy up to angular 
seconds); grids and so on. 
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(a) <b) (c) 

Fig.2- Chromium mask fragments of lens'let array fabricated by 
circular laser writing system: 

(a) circular and cylinder Fresnel lenses with N»A« = 0-15 and 0>:L 
for wavelength 0-6328 jum, size of lenses - 50 and 25 /im! 

(b) on-axis portion of lens'let array; 
<c) spatial quantisation error in the sone position of of-axis 

Fresnel lens caused by 0.6 pm  raster pitch. 
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The Manufacture of Microlenses 

Michael C Hutley 
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The paper will review a variety of techniques for the manufacture of microlenses 

and their diffracting equivalents ("micro zone plates"). The relative merits of 

refracting and diffracting components will be considered from a practical point 

of view. 
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1. Introduction 

The use of diffractive lenses for laser diode to single mode fibre coupling is attractive due to excellent imaging 
properties, possible mass production using advanced semiconductor technologies and easy handling of the final 
elements. High coupling efficiencies require firstly high diffraction efficiencies but also a very good match of 
image point characteristics to the fibre spot. High diffraction efficiencies should be possible by using multilevel 
elements to approximate a micro-FRESNEL lens. This leads to lens patterns with feature sizes in the range of 
well below one micrometer in lateral dimensions as well as in lens profil depth. The elements fabricated are 
realised in silicon and the techniques used range from CAD-data generation [1], E-beam lithography, reactive ion 
etching, anti-reflection coating, solder pad evaporation and wafer dicing. 

2. Fabrication 

The substrates on which the lenses are realised are 3" or 4" silicon wafers which have to be double side polished 
down to their final thickness. In dependence on the required size of the single lenses, about 1800 and 2500 lenses 
can be realised per wafer. 

2.1 E-Beam Lithography 

The patterning of the lenses is performed by direct write E-beam lithography with a Leica-Cambridge EBPG 4V- 
HR Beamwriter. The EPBG guartantees high performance in pattern transfer with a point to point resolution less 
than 10 nm. The Beamwriter is controlled by a software especially developed for the transfer of lens data. This 
software determines the control sequences for binary, quarteraary, octernary and blazed patterning based on the 
calculated basic lens design. This three dimensional profiling of the resist system results from variations of dose, 
i.e. variations of writing frequencies. The necessary specific dose values are automatically linked to the E-beam 
data format via a socalled profiling software, which calculates the dose from the experimentally measured 
gradation of the resist. Two coded frequency registers control the way of profiling with eight different 
frequencies. Blazed profiles can be generated with suitable accuracy by an intelligent combination of these 
available eight frequencies in each register. Beam diameter, beam current and beam step-size influence the 
surface-roughness of the resist caused by the development process. Furthermore, the Beamwriter, which works 
according to the vectorscan principle, cannot only realize rotation symmetry features, but also elliptic as well as 
arbitrary curved diffractive lenses, e.g. tilted and off-axis lenses. The high writing frequency, which is about 10 
MHz, allows sufficient throughput. The target of the mass production of DOEs, however, should be the use of 
photolithographic systems for the fabrication. That could be done by using a set of reticles or special single masks 
manufactured by means of E-beam lithography. 
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After electron exposure, the three dimensional lens profile is developed with a wetchemical process [2, 3]. The 
new profiling software developed guarantees a more efficient three dimensional pattern transfer. Positive as well 
as negative resists spinned on various substrates can be profiled. The positive tone resist PMMA is preferred due 
to its low sensitivity and linear gradation, which offers a wide process latitude. New results show that the 
negative tone resist SAL 601 (Shipley) can also be realiably profiled, though it is much more sensitive and shows 
a very steep gradation in comparison to PMMA. The high-resolution capacity of the Beamwriter enables the 
patterning of features of less than 200 nm in the above mentioned resist systems. 

2.2 Etching 

The developed three dimensional resist profile works as a mask for the dry etch process, which transfers the lens 
pattern into the substrate. In an MRC 50-RIE, structures of less than 300 nm can be transformed with an 
anisotropic etch process. An etchant of, SF6, H2 and Ar is used in order to etch the fine 3D-steps of the resist 
profile 1:1 into the subtrate. The selectivity of the used resist - and substrate- system guarantees an optimal etch 
ratio and sufficient process latitude. After wet chemical development, etch depth and etch ratio can be controlled 
by post exposure bake. 

2.3. Coating and Dicing 

Both sides of the wafers are coated with antireflective k/4-layers of 160 nm PECVD-Si3N4. On the backside of 
the wafers solder pads are constructed by the evaporation of Ti-Pt-layers for AuSn-soldering. The metallisation 
layer is patterned by photolithography and a subsequent combined wet- and dry chemical etch process. The final 
separation is performed by wafer dicing on an adhesive tape for easy pick up and assembly. 

Figures 1 show three SEM-micrographs of the centers of the binary (left picture), the quaternary (middle) and the 
octernary version (right picture) of a coupling lens. The lenses are fabricated for an operation wavelength of 1.3 
um have a numerical aperture of 0.5 and focal length of 270 urn. The smallest feature size of the binary lens is 1 
urn, the quaternary and the octernary lenses have considerably smaller features. Figure 2 demonstrates the lens 
profiles for different sections of the center corss-section of the octernary lens. The left picture is taken near the 
lens center, the middle shows the region of half the lens radius (about 150 urn from the lens center) and the right 
picture is taken at the edge of the lens. Obviously the 8-level staircase profile turns to the wanted smooth 
sawtooth-like profile. 

Fig. 1:    SEM-micrographs showing the centers of a binary lens (left), the quaternary version 
(middle) and the octernary version (right) of the silicon coupling lens. 

B1BI75    1 5 . 0 k V    xe.aek is.BkV XP0.0K  1.58* 010173  lS.BkV X28.BK  1. 

Fig. 2:    SEM-micrographs of the octernary lens. The side view of a cut through the lens center 
shows the etched profiles of the lens pattern 
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3. Measurements 

The characterisation of the diffractive optical elements is carried out with the set-up sketched in Fig. 3. The 
elements are tested in terms of imaging geometry, content of spherical aberration, spot size, coupling efficiency 
and diffraction effiency. The first step of the test is the precise axial alignment of the diffractive lens and the laser 
diode. This is carried out by collimating the laser diode beam with the diffractive lens and monitoring the beam 
with the infra-red (IR) camera. The beam directly illuminates the camera target. Besides the exact axial 
positioning of the lens (DOE) and the laser diode (LD), this provides the focal point and the focal length of the 
element. When the focus is known, the LD is positioned at the predefined distance from the lens substrate 
backside and the single-mode fibre (SMF) is positioned at the predefined distance from the lens pattern. The 
maximum light power coupled into the fibre is found by adjusting the fibre end precisely with a piezo driven 
translation stage in x- and y-direction and an additional adjustment of the z-direction of the laser diode. The light 
power coupled into the fibre is detected with a large Germanium-detector which is connected to a power- meter. 
The laser diode current iLaser is varied by a ramp generator and the laser power supply, while the fibre light 
power PSMF is measured. Both signals are fed to a x-y-plotter and the PsMF^Laser curve *s drawn. With 
comparison of the inclination angles of such measured curves with the previously measured laser power ratio 
^Laser^Laser curve me coupling efficiency r|c can be derived. 

"1 

Motor driven 
translation stages 

Z 

Laser 

Detector 
Piezo driven    i 

translation stage^ 

Optical power meter 

o o 
Laser Power 
supply 

Ramp generator 

Fig. 3:    Schematics of the measurement set-up for the characterisation of the lenses. The big curly 
bracket encloses all components which are adjusted to the optical axis. The IR-camera serves 

for exact alignment ofLD and DOE, with the SMF the coupling efficieny is measured, the 
InGaAs-detector is used for the measurement of the diffraction efficiency. 

The next measurement is the test of spherical aberration which is carried out by moving the laser diode from the 
focal point of the diffractive lens away from the lens and monitoring the fibre light power PsMFm dependence 
on the laser diode position z. Fig.4 gives a comparison of such measurements for different coupling lenses. The 
left curve (ball lens) and the middle curve (graded index lens) show considerable oscillations due to spherical 
aberration, while the diffractive lens (quaternary diffractive optical element (DOE)) shows a very smooth 
response. This indicates that the diffractive lens produces a phase-distortion-free image at the desired image 
point. 
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Coupl i   LD ng lens 

Fig. 4:    Comparison of different coupling optics with respect to spherical aberration. 
The measurements are carried out by moving the laser diode along the optical axis (Z) 
while the position of the single-mode-fibre and the lenses kept constant. 

For the measurement of the diffraction efficiency r^ the fibre table is replaced by a translation stage carrying a 
small aperture InGaAs-detector (75 urn sensitive area). After optimum adjustment of the detector, the 

Pöetector^Laser curve is measured and compared to the PLase/taser curve- A C0UPle of different binary, 
quaternary and octernary elements are measured. Basic data from such elements are listed in the table below. An 
important value is the maximum etch depth T. The table gives the measured etch depth Tm and the depth Tth 

which is assumed to be the optimum depth for maximum diffraction efficiency. 

Lens type Tth [«ml Tm [nm] lie I%] ■Hd [%] 
Binary 260 220 18 26 

Quarte rnary 390 400 38 64 

Octernary 455 480 42 72 

Table of measured results for different diffractive lenses fabricated for laser diode -fibre coupling 

6. Conclusion 

Silicon coupling lenses for laser diode - single mode fibre coupling have been realised using techniques and 
technologies of the semiconductor fabrication. The results of pattern fabrication show the possibility of achieving 
smooth and staircase patterns of submicron feature size. The measurements of element performance prove that 
high efficiencies can be reached. 
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1. INTRODUCTION 

Many applications in optics require efficient devices for interconnecting light emitters to different 
configurations of output ports. In recent years, parallel optical data links have attracted increasing 
interest in the field of data communications. Typical applications are parallel high-speed and high- 
capacity interconnects for optical switches, workstation clusters or even between processor chips. 
Realizing optical crossbar switches and optical clock distribution on a processor board are applications 
requiring a fan-out operation. In this paper, experimental and theoretical results are presented for novel, 
single element optical interconnects based on phase-matched Fresnel elements (PMFEs) [1]. These are 
planar surface microrelief structures which are well suited for low-cost mass replication. Laser diode to 
fiber connecting lens arrays with high numerical aperture as well as focusing Nxl fan-out elements have 
been designed and fabricated. 

2. PHASE-MATCHED FRESNEL ELEMENT ARRAYS FOR LASER TO FIBER COUPLING 

The design of PMFEs aims at structuring the surface of a thin layer in order to image an object point 
source O on an image point P through an arbitrary number of different media, including curved interface 
planes and reflective arrangements. For conciseness, we only deal with the specific example of laser to 
fiber array coupling (see Fig. 1) in this Section. The design procedure starts with a principle ray for 
which the optical phase <Dp in the image point is calculated as 

*f=S 2K- 
(1) 

where A is the optical wavelength in air, «^ is the index of refraction of the medium k and r^ is the 
geometrical path length of a ray traversing it. Next, a ray which is shifted by a small increment along a 

structured layer substrate 

250 (im 1150 um 250 um 

(a) 
incident 
beam 

Fig. 1. Optical arrangement for laser to fiber coupling: (a) vertical (y,z) plane cross-section, (b) illumi- 
nation of PMFE structured layer by the laser diode array 
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Fig. 2.  Position dependent trans- 
mittance of s- and p-polarized beams 
incident at the PMFE surface. 

radial line in the yz-plane is propagated from O to P.  At the 
actual ray position, a curved surface element is calculated such 
that the phase Op in the image point is kept constant up to an 
integer multiple of 2%.   This leads to a segmentation of the 
surface relief. For the resulting microoptical surface, the phase 
Op is (i) constant for any two rays which cross the same 
segment and (ii) differs by an integer multiple of 2TC for two rays 
crossing different segments.    The phase difference M-2JC 
between neighboring segments is given by the phase-matching 
number M which is a powerful design parameter for optimizing 
the optical performance within the constraints imposed by the 
fabrication process.   To fabricate the PMFEs, a direct laser 
writing process in photoresist [2] was used which required the 
size of any individual segment to be wi > w^ = 5 um. A higher value of M leads to wider and deeper 
segments. One design strategy was to locally vary the phase-matching number M in order to keep the 
surface relief depth hj below the photoresist thickness hmax and maintaining the condition w, > Wmin for 
segment i. The computer-generated PMFEs can be considered to represent a generalized type of Fresnel 
microlenses whose zones have a locally varying depth. 

A major advantage of the PMFE approach is that arrays of planar elements with very high numerical 
aperture and an arbitrary clear aperture shape can easily be generated and mass fabricated on a single 
substrate. Therefore, PMFEs were chosen for accomplishing the compact parallel optical interconnection 
of a laser diode array to a fiber ribbon cable. Only the most conspicuous facts are discussed here. 

The main requirements for this application were a high optical laser-to-fiber throughput Tn = PF,n/PL,n 
and a low crosstalk Tnm = PF,n/PL,m> where Pp.n is the power incident on fiber No. n in the (x',y') image 
plane, and PL,HI is the total power emitted by laser m. For the single lenslets, optimizing Tn calls for (1) 
a high numerical aperture NA, (2) adapting the clear aperture shape and size to the laser beam profile at 
the entrance pupil, and (3) achieving a high efficiency Tin = PF,n/PE,n where PE,n is the power incident 
on the clear aperture of lenslet n. Some important factors for crosstalk minimization in a practical device 
are (i) a good image quality, (ii) a large tolerance for fiber misalignment, and (iii) proper lenslet entrance 
pupil locations. For the present example, the most important design parameters and experimental results 
can be summarized as follows. 

Each laser emitted an astigmatic beam with divergence angles Q± = 8° and 8// = 28° (FWHM) in the 
horizontal (x,z) and vertical (y,z) planes, respectively, at a wavelength of 831 nm [3]. The MT-connector 
compatible ribbon cable consisted of 12 multimode fibers with numerical apertures NAp = 0.21 and 
diameters 0co = 50 urn of the core and 0C\ = 125 urn of the cladding. 

Optimization with respect to the above 
aspects (1-3) and (i-iii) resulted in the optical 
arrangement as shown in Fig. 1. A PMFE 
prototype consisted of a 6 um thick 
structured photoresist layer on a BK7 
substrate. In addition to the parameter values 
directly given in Fig. 1, widths Wx = 250 um 
and Wy = 300 um were chosen for the 
rectangularly shaped PMFE lenslets. Wx is 
equal to the inter-laser and inter-fiber spacing 
while Wy corresponds to an object side NA = 
sin a = 0.51 distinctly greater than the laser 
beam half-maximum NAL = 0.24. For the 
PMFE, Fresnel reflection losses can cause a 
decrease of transmittance especially for large 
angles of incidence. The polarization- 
dependent transmittance plotted in Fig. 2 

[|im] 

Fig. 3. Output spot irradiance distribution measured 
by a 2D CCD array. 
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shows that the NA = 0.51 (y = Wy/2 = 150 urn) can be achieved with a still high efficiency even for s- 
polarized lasers. It also shows the importance of taking into account the strongly inhomogeneous 
distributions of the irradiance and the polarization state in the entrance pupil. The relevance of these and 
other factors will be discussed at the conference. 

The fiber input coupling efficiency and adjustment tolerance were optimized by a low image side NA' = 
sin a' = 0.13 < NAp still yielding a small image spot size D'// =13 um and D'j^ = 5 urn (< 0CO). The 
image spot irradiance distribution is shown in Fig. 3. For a first prototype, an overall optical throughput 
of Tn = 60% was measured. 

subarray elements 
of type A     —" £ 

,D\ 
\C ' 

A\ 

3.    FOCUSING   FAN-OUT   ELEMENTS 
BASED ON INTERLACED PMFES 

Other important applications require a fan-out 
operation, i.e. the optical interconnection of a 
single light source to N output ports. For typical 
diffractive optical fan-out elements [4] realized as 
surface microrelief structures, the input and output 
beams are collimated. Additional optical elements, 
which have to be positioned accurately, are 
therefore required for point-to-point inter- 
connections. 

In this Section, results are reported for a novel kind 
of computer-generated   fan-out  component, 
combining the focusing and splitting operation in 
one single planar microoptical element.    The 
focusing function is implemented by means of 
PMFEs, whereas the desired fan-out effect is 
accomplished by combining different types of 
PMFEs (e.g. one for each interconnection channel) 
in a special area sharing arrangement. The basic 
principle of this approach has been proposed in [5]. 
The surface microrelief structure of a 5x1 fan-out 
PMFE fabricated by laser writing in photoresist is 
shown in Fig. 4. Each type of PMFE, denoted by the letters A..E, is divided into a subarray structure, 
leading to an array of focused diffraction orders centered around the focal point of the unsplitted PMFE. 
In order to obtain a linear array of image points, the period of the different subarray structures is chosen 
so that the diffraction orders coincide with the desired image point array. Therefore, in each image point 
the focused diffraction orders originating from the different types of PMFE subarrays are coherently 
superposed. This concept can easily be extended for realizing 2D fan-out elements. 

For optimizing such fan-out PMFEs, simple and fast procedures have been developed based on a low 
number of parameters having a well-defined physical optical meaning. Focusing fan-out elements with a 
theoretically vanishing uniformity error and an efficiency in the range between 85% and 95% have been 
calculated. Figure 5 shows theoretical and experimental results for a focusing fan-out element splitting a 
collimated HeNe laser beam (wavelength = 632.8 nm) into a linear 5x1 point array, equally spaced by a 
68 um, at a back focal length of 10 mm. The total microrelief area was 1.6 x 1.6 mm2. A uniformity 
error y = (Pmax - PminVOPmax + Pmin) < 0.1% was calculated. Here, Pm^ and Pmax denote the minimum 
and maximum powers delivered to the single spots, respectively. The measured uniformity error was 
< 1.4%, which compares favourably with other results published recently [6,7]. 

In order to assess the loss in efficiency due to the spatial multiplexing of the PMFEs, we define a relative 
efficiency rir as the ratio between the total power in the image spot array and the power in the spot of a 
contiguous single PMFE. The measured values of % > 77% are close to the theoretically predicted value 
r|r=86%. 

40 

x [urn] 

Fig. 4. Interlaced subarray structure of a fan-out 
PMFE measured by an atomic force microscope. 
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Table 1. Dependence of uniformity and 
efficiency on relief depth for a focusing 
5x1 fan-out PMFE. 

depth 
scaling 

uniformity 
error Y 

rel. efficiency 
Tlr 

1.2 4.79% 77.7% 
1.1 3.51% 77.3% 
1.0 1.37% 77.1% 
0.9 2.15% 78.6% 
0.8 3.06% 82.4% 

A major aspect of this approach is the high tolerance 
with respect to fabrication errors of the fan-out 
performance in terms of uniformity. Whereas 
conventional non-focusing surface relief fan-out 
elements show a uniformity reduction of up to 10% 
for a depth scaling error of a few percent [4], fan-out 
PMFEs showed a good uniformity over a range of 
±20% for the depth scaling error. The experimental 
results reported in Table 1 show that the uniformity 
error is < 5% and the relative efficiency is >77% for 
five different elements where the microrelief depth 
has been intentionally varied in steps of 10% around 
the design value. 

CONCLUSIONS 

.1.00- 
<D 

I0" CO 
E 
go. 

o u 

"8 o. CO 

8a 

60 

40 

20 

o.oal- 

H 1 1 1 1 1- 

0 
ft  ^l ft   i 

(a) 
100 200 300 400 5Ö0 600 700 

Image plane position [pixels] 

„1.00 
■o 
CD 

^0.80 
CO 
E 
0 0.60 

2 0.40 

«0.20 

0.00 .uJL* xJ u u V-J wwL-A. 
(b) 

100 200 300 400 500 600 700 

Image plane position [pixels] 

Fig. 5. Theoretical (a) and experimental (b) 
irradiance distribution in the image plane of a 
focusing 5x1 fan-out element. 

Experimental and theoretical results have been 
presented for novel, single planar element optical 
interconnects. It has been shown that phase-matched 
Fresnel elements are suitable for realizing parallel optical interconnections of a laser diode array to a fiber 
ribbon cable as well as focusing fan-out elements. By this approach, the optical performance of elements 
with a high numerical aperture can be optimized taking into account the constraints imposed by the 
fabrication process. The computer-generated surface microreliefs were fabricated by a direct laser 
writing process in photoresist. These planar optical elements lend themselves for low-cost mass 
production by replication in plastic materials. Focusing fan-out elements have been designed and 
fabricated based on a spatially interlaced arrangement of planar lenses. Excellent uniformity and a high 
tolerance with respect to fabrication errors have been demonstrated. 
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Introduction 

Next generation of optical fiber telecommunication systems will require advanced 
coupling systems for interconnecting multi-fiber arrays to optoelectronics devices 
with multiple optical ports. For instance, coupling a pair of optical fibers to a double- 
channel GaAs modulator is a challenging task. In this case, the spacing of 250 jum 
between adjacent fibers is ten times the waveguide spacing. Moreover, for optimum 
coupling, the spherical beams emerging from the fiber outputs must be converted 
into highly elliptical beams matched to the waveguide mode shape. The desired two- 
beam adaptation!"1) could be performed with an optical set-up composed of two pairs 
of cylindrical lenses and prisms (Figure 1). However, to miniaturize the coupling 
system on the appropriate scale, planar diffractive optical elements (DOE) are more 
suitable than bulk refractive optical elements. A compact coupling system was 
fabricated, based on the innovative design of a double-side diffractive optical device. 

Toric 
Lenses 

Single Mode 
Fibers Waveguides 

Figure 1 Bulk optics model of the coupling system 
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the multi-level approximation of the diffractive phase functions of DOE1 and DOE2 to 
four and two levels respectively with corresponding depths of 2.1 and 1.4 jim at the 
wavelength of 1.3 \im. Figure 3 shows a scanning electron micrograph (SEM) of 

DOE1 etched in fused silica using a RIE plasma etcher. DOE1 masks were aligned 

with a submicron overlay accuracy. DOE2 was aligned with respect to DOE1 on a 

double-side mask aligner. Side-to-side alignment accuracy was better than 2 jim. 

Figure 3 SEM micrograph showing DOE1 four-level structure 

Test Results 

The optical transmission of the interconnecting device was measured by imaging the 
optical outputs of the system on a photodetector. It was found to be 18 % including 
Fresnel reflection losses. This measurement fits the simulated value of the 
transmission, calculated by taking into account the effects of the DOE manufacturing 
errors as well as their misalignment. The fiber-to-chip coupling efficiency was 
experimentally measured on a dedicated test-bench and found to be 13 %. The 
difference between the transmission and the coupling efficiency indicates that a 
residual mode mismatch is still present. This leads to an effective loss of 30 %. The 
DOE alignment tolerance was measured to check for packaging feasibility. A 10% 
additional loss corresponds to a 2 (im tolerance (Figure 4) which can be achieved 

with the laser welding technique used for pigtailing optoelectronic devices. 
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1. INTRODUCTION 

Diffractive optics will play an important role in optical imaging, optical interconnects and optical 
interconnection networks1,2,3. The fabrication process of diffractive optics is based on computer-aided 
design (CAD) and microstructuring techniques. The diffractive optical elements can be fabricated with 
photolithographic processing techniques and by either etching or thin film deposition5,6,7. For this 
fabrication process it is necessary to control accuratly the level heights, the alignment of the masks and 
the linewidths of the structures. In order to obtain such control for the level heights, we fabricated 
the diffractive Fresnel zone lenses by Ion-Beam-Sputter deposition of silicon and controlled the optical 
thickness by a Reflection-Wideband-Monitoring-System with high accuracy8. In order to improve the 
efficiency of the elements and to reduce reflection losses, possible crosstalk and feedback effects for 
cascaded elements in an optical interconnection network, the optical elements were coated with a two 
layer anti-reflection coating of TiÜ2 and Si02- 

2. DESIGN AND FABRICATION OF FRESNEL ZONE LENSES 

High diffraction efficiencies can be achieved by approaching a kinoform or blazed profile with mul- 
tilevel steps9. The theory of diffraction by gratings is well known and treated in many papers 2°.21.22. 
Near the resonance region, where the grating period and the wavelength are of the same order of magni- 
tude the electromagnetic theory of gratings15,22,23 must be used to predict the diffraction efficiency. The 
calculations revealed that large refractive index differences between the lens material and the adjacent 
medium moves the resonance region to smaller grating periods. Therefore should be the efficiency for 
lenses with high refractive index higher than for lenses with small refractive index. We used silicon 
as high refractive index lens material. In order to reduce thermal effects, we used a substrate with a 
low thermal expansion coefficient (quartz-glass). For the calculations of the diffraction efficiency of the 
lenses, we assumed that the electromagnetic field incident to the lens can be approximated by a plane 
wave. We have fabricated eight level Fresnel zone lenses with focal lengths of 22.8, 5.7 and 2.9 mm for 
1.52 /zm wavelength. The Fresnel zone lenses have rotational symmetry with a diameter of 2 mm, where 
the zone radius rm is given by rm = (2mA/) 2, where m is the zone index number, A is the illumination 
wavelength and f is the focal length. The depth in each zone is T = A/An, where An is the difference of 
refractive index between the lens material and the adjacent medium. The phase profile in each zone was 
approximated by a discrete multilevel stepped profile, where at least M masks are required for L = 2M 

levels (e.g., 3 masks for 8 levels). The discrete levels were realized with the aid of computer generated 
masks, written by electron-beam and whose patterns were transmitted by means of photolithographic 
technology. The smallest width w of the annuli radii was w ~ (2 A f/d)/L (e.g., 1.1 fim for 8 levels, 
d = 2 mm and f = 5.7 mm), where d is the diameter of the lens. For test purposes additional Fresnel 
zone lenses with annuli radii widths down to 0.7 /im have been written on the masks. All features 
smaller than 2 pm were proximity corrected. 

The fabrication process of multilevel Fresnel zone lenses consists of different stages 7. A critical 
process is the pattern transfer from the mask into the resist, by optical contact lithography. This involves 
alignment, exposure, reversal baking, flood exposure and development of the photoresist. The alignment 
and exposure was carried out on a mask aligner (Süss MA 100M) at the wavelength of 310 nm. An 
overlay accuracy in the sub-/im range was achieved (0.46/^m). To get a microstructured element, a layer 
of silicon was sputtered onto the substrate by Ion-Beam-Sputter deposition (IBSD) technology. Layers 
produced by IBSD have a good adhesion, a high packing density and an amorphous structure. The 
photoresist was removed with acetone and stripper. For the 8 level Fresnel zone lenses, the lithography- 
and silicon-coating process was repeated two times with two additional masks. To ensure proper overlay 
between the various masks, we used diffractive alignment marks and conventionally alignment marks as 
common in microelectronic technology. The final stage involves IBSD for depositing a two layer AR- 
coating of Ti02 and Si02 layers at both surfaces. The optical thickness of the layers was monitored in situ 
by a computer controlled Reflection-Wideband-Monitoring-System (RWMS). The typical measurement 
accuracy of the optical thickness is better than 0.1%. 
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3. FABRICATION ERRORS 

For an ideal Fresnel zone lens with L levels, without reflection losses from the surfaces and with 
infinity f/number, the diffraction efficiency is8 T) = [sin(ir/L)/(-!r/L)]2. A perfect Fresnel zone lens of 8 
levels should have an efficiency of 95%, but several fabrication errors can degrade the optical performance 
of the lens4,15,16,17'18. The fabrication errors that could occur during the fabrication of binary Fresnel 
zone lenses can be classified as vertical and lateral errors . Level height errors can be classified as 
vertical errors and the alignment as well as the linewidth errors as lateral errors. We assume that the 
level heigth errors pm are systematic errors and constant over the whole lens. The total phase shift 
produced after deposition with the M-th mask is 2ir/2M (l+pm). The influence of level height errors on 
the diffraction efficiency can not be compensated in subsequent steps. Small errors in the desired phase 
shift, cause only a slight reduction in the efficiency, but the level hight errors can cause spurious spots to 
appear. The effects of lateral alignment errors on the diffraction efficiency of a multilevel Fresnel zone 
lens are more prominent. To calculate this influence, we resorted to a geometric consideration, where 
we used a calculation of phasors approach18. The effects of linewidth errors on the lens efficiency are 
calculated by the same method. The linewidth errors can occur during the transfer of the pattern from 
the original mask to the resist on the substrate. Specifically, not correct exposed or developed resist in 
the lithographic process can alter the linewidth of the structures. Such changes in the linewidth would 
lead to the appearance of additional focused spots at the higher even orders. The overall diffraction 
efficiency TJ0 of a L=2M levels Fresnel zone lens with level hight, alignment and linewidth errors is given 
by 

M 

r,0  =  [sin(ir/L)/(x/L)}2 ■ J]   cos\irpm/2m) -vo (1) 
m=l 

where M is the total number of masks, m is the number of the m-th deposition step starting with 
the coarse mask, v is the degrading factor for the overlay errors and a is the degrading factor for the 
linewidth errors. For example, a misalignment of 0.46 /mi and a linewidth error of 0.1 /im, for a f/2.9- 
eight-level lens, degrades the diffraction efficiency by a factor of 0.9. Finally, a deviation of the vertical 
sidewall at the zone borders reduces the diffraction efficiency. 

This presented error analysis is adapted for Fresnel zone lenses with relatively large f/number. The 
validity of this theory is problematic, because the introduced structures are smaller or in the same order 
of magnitude of the wavelength. However, our calculations are supported by experimental results, so 
that we believe that the error analysis is usefull to optimize the fabrication process. 

4. DESIGN AND FABRICATION OF ANTI-REFLECTION (AR) COATINGS 

In our calculations we used an angular spectrum approach10'11,12'24 and the method of characteristic 

matrices from Abeles13,14. To get an optimization 
of the AR-design, we used a numerical iteration pro- 
cess with the geometrical thickness of the layers as a 
parameter and considering both polarization states 
(TE and TM). The calculations revealed, that the 
quartz-glass substrates have to been first coated with 
a quarterwave index layer of T1O2, in order to match 
the refractive index of the substrate material to the 
lens material. The multilevel-silicon lens acts with- 
out this matching-layer as a mirror with a local re- 
flectivity between 6.5 and 56 %. Figure 1 shows the 
reduction in reflectivity by applying AR-coatings. 

c 
o 

OH 

Fig.l Theoretical reflection curves of silicon-coated 
quartz-glass substrates without (dash line) 
and with (solid line) AR-coatings. 
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After the lens fabrication process, the lenses were coated with a two layer coating of design 0.705H and 
0.771L for A0 = 1.52 /im, where L is a quarterwave index layer of SiÜ2 and H is a quarterwave index 
layer of Ti02. The substrate backside is coated with a two layer AR-coating of design 0.305H 1.33L. The 
measured minimum reflection for these silicon lenses for 1.52 /mi wavelength was 0.4%. These reflection 
values were measured with a Perkin-Elmer-Spectrometer (Lambda 19), that operates with an absolute 
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reflectance accessory, as well as with a laser reflectance measurement system at 1.52 pm wavelength. 
The improvement of the lens efficiency is given by the ratio of the diffracted power at the focus of an 
AR-coated lens over the diffracted power at the focus of an uncoated lens minus one. The measured 
improvement of the lens efficiency with the AR -coating of silicon coated quartz-glass substrate lenses 
is 31±1% (theor. 32.4%). 

5. EXPERIMENTAL RESULTS 

The lens structures were analyzed with a Scanning Electron Microscope (SEM) and their surface topog- 
raphy was measured with a mechanical surface profiler (Alpha-Step/ Tencor). Figure 2 shows a SEM 
of the side wall of the outer zone of an sixteen level second order Fresnel zone lens, designed for the 
wavelength of 1.52 pm and a focal length of 2.85 mm. The 
height of the side wall (dt/,. = 1.26 /mi, n^ = 3.1) was deter- 
mined with the Alpha-Step to be approximately 1.29 /mi. 
Indeed, the overall relief tructure has only small deviations 
from that of an ideal one. The refractive index of the sput- 
tered silicon was determined from reflection and transmis- 
sion measurements, which were performed with a Perkin- 
Elmer-Spectrometer (Lambda 19). To measure the focusing 
characteristics of Fresnel zone lenses, the lenses were illu- 
minated by an expanded laserbeam (Ao = 1.52 /im). 

Fig.2 A representative SEM-photograph of the side wall of 
the outer zone of an eight-level Fresnel zone lens. 

The focused spot was magnified with a microscope objective (50x magnification), detected with a vidicon 
camera (Hamamatsu C1000, Ao = 0.4 — 1.8 /im) and the data were stored in a micro-computer. The 
measured values of the full width at half maximum (FWHM) intensity for different AR-coated Fresnel 
zone lenses of different focal lengths are close to the diffraction limited values. Figure 3a shows a 
representative example of a measured and calculated intensity distribution of a focused spot for a 
lens with f/number 2.85 at 1.52 /im (aperture of 2 mm). The intensity distribution is near to the 
diffraction limited case and the first order diffraction efficiency is higher than 80 %. Figure 3b shows 
the corresponding modulation transfer function (MTF), indicating a good lens performance. 
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Fig.3 (a) Intensity distribution in the focal plane for a lens 
with f/number 2.85 
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Finally, the detailed results of the full width at half maximum (FWHM) of the intensity distribution 
at the focal planes for these lenses and operating wavelengths are listed in Table 1. As evident, the 
experimental and theoretical results are in good agreement. 

Lens for AQ = 1.52 /im 
f /number diam. FWHMeip. FWHMth. Efficiency rjexp. Efficiency rjth. 

11.40 2 mm 21.8 /im 21.2 /im 89% 92% 
2.85 2 mm 5.6 /im 5.3 /im 82% 87% 
1.43" 2 mm 2.9/im 2.7 /im 72% 77% 

Table 1. Values of measured and calculated FWHM and r/ of AR-coated 8-level Fresnel zone lenses. 
a second order lens. 

To obtain the diffraction efficiency 77 of the lenses, we measured the ratio of diffracted power at the 
focus If over the incident power Iair. To determine the intensity of the first order diffracted light, we 
introduced at the focalplane f, a pinhole with an aperture of 100 /im. The highest measured diffraction 
efficiencies were about 89 ± 1%. 

6. CONCLUDING REMARKS 

Blazed Fresnel zone lenses with high numerical aperture have been fabricated by thin film deposition 
of silicon on quartz-glass substrates. The effects of fabrication errors, such as level hights, alignment 
and linewidths errors, on the diffraction efficiency were discussed on the basis of a scalar diffraction 
theory. Due to the in situ control of the deposited layer thickness, the effect of level hight errors 
can be neglected. The line and alignment tolerances are very critical to achieve maximum diffraction 
efficiencies. The diffractive optical elements were coated with anti-reflection coatings. The reflection of 
these elements was optimized on the basis of an angular spectrum approach. As expected, the efficiency 
of the Fresnel zone lenses was improved by applying AR-coatings. The highest measured diffraction 
efficiencies for 8 level lenses are close to the expected theoretical values. 
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This paper examines the pivotal role of fabrication in translating diverse optical designs into 
high-quality optics in a variety of materials. In particular, we evaluate how the alignment precision 
achieved during photolithography impacts the subsequent optical efficiency of diffractive 
microlenses as a function of lens speed (F/2 to F/60) on 200-|im square fused silica microlenses at 
633 nm.1 Next, we describe the multilayer planarization/masking schemes and highly anisotropic 
Si reactive-ion etching (RIE) processes needed to manufacture high-bandwidth IR binary optics.2 

Finally, we present a nascent layered system - arrays of CdTe microlenses monolithically 
integrated with photodetectors on opposite sides of the same substrate.3 

1.   Fabrication and Optical Efficiency 

Binary optics technology conjoins computer-generated optical phase profiles with VLSI 
photomask and processing technology to form planar surface relief structures that manipulate 
optical wavefronts.3 Conventional binary optics processing, Figure 1, consists of several iterative 
steps of photolithographic patterning and phase-relief creation. The relief structures can be 
constructed by a variety of methods, including etching, deposition, and ion- or photon-induced 
structural changes in the refractive index or the volume. Dry etching techniques, in particular 
reactive ion etching (RIE), offer the greatest amount of flexibility and are used to manufacture the 
optics described below. Binary mask coding greatly reduces the number of process iterations 
required for highly efficient diffractive elements: only M process iterations result in an optic with 
2M phase steps. 

Standard VLSI techniques must be finessed to address the particular requirements of high- 
quality microoptics fabrication. The nested binary optics structures impose three critical restraints 
on the fabrication process: (1) to register the mask to the substrate pattern with 0% overlay 
tolerance; (2) to etch vertical sidewall profiles without lateral undercutting or erosion of the mask 
edge; and (3) to maintain precise control over the phase-step-heights and widths, often to better 
than 1%, for both shallow (= 10 nm) and deep (= 10 |im) structures. Phase-step-width and height 
errors can significantly reduce the optical efficiency. 
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Figure 1: Fabrication steps for an eight-phase-level binary optics microlens. To 
maximize linewidth control, the mask layer with the smallest features is replicated 
first. The substrate is coated with photoresist, patterned photolithographically 
using a contact mask aligner, and then etched in an RIE system. Subsequent mask 
layers are carefully aligned to the patterned surface. This sequence is iterated until 
the desired number of phase levels is achieved. The binary coding scheme doubles 
the number of phase levels after each etch. 

To determine where the incremental gain in optical performance justifies the required 
fabrication effort, we have undertaken a substantial effort to quantify the efficiency limits of 
diffractive binary-optic microlenses and to correlate losses in optical efficiency with specific 
fabrication errors. The vehicle for these studies is a fused silica microlens test set comprised of 10 
different lenslets having 200 |J.m x 200 \im square apertures and focal lengths between 0.17 and 
14 mm at X = 633 nm (Figure 2). Benchmark optical efficiency measurements have been made on 
diffractive quartz microlenses as a function of lens speed and then compared with predictions of 
direct electromagnetic calculations for 2-, 4- and 8- phase levels.1 For an eight-phase-level F/4.5 
microlens having less than 0.1 (im misalignment error, we have measured an absolute efficiency of 
0.85; this is, we believe, the highest efficiency reported to date for such a fast, binary optics lens in 
the visible. This result corresponds to 96% of the predicted value for this lens and implies that net 
fabrication errors contributed only a 4% efficiency loss. 

To quantify the impact of alignment errors on optical efficiency, we have intentionally 
introduced a 0.35-|im translational error between mask layers 1 and 2 in one set of four-phase level 
lenslets.4 Optical efficiency measured for this "misaligned" set of microlenses are compared with a 
nominally identical, four-phase level, "well-aligned" set of microlenses. A strong correlation 
exists between the sizable efficiency losses displayed by the fast lenslets and the fraction of the 
zonewidth intercepted by the intentional misregistration. 
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Figure 2: SEM of an eight- 
phase-level 200-(im square 
aperture F/6 fused silica 
microlens. The minimum 
zone width on level 3 is 
0.8^im. 

2.   Refractive and Integrated Microoptics 

The demand for both visible and IR broadband microoptics has driven our development of 
fabrication capabilities necessary to create deep, high-resolution, three-dimensional structures. 
The desired refractive surface contour of the broadband IR microlens is approximated in a stepwise 
manner To maintain the high fidelity pattern replication necessary for efficient binary optics 
structures, we must develop techniques to etch deep anisotropic profiles into the silicon substrate. 
By judicious choice of the plasma chemistry used in the RIE process, we can induce the in situ 
formation of a sidewall inhibition layer that prevents lateral undercut and enhances vertical profile 

Figure 3: A 16-phase level 
color dispersing microlens 
array etched 7.5 |im deep. 
Shown is one pixel element 
from a 64 x 64 array. 
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control. We have achieved vertical sidewalls without mask undercutting and with a 5:1 etch 
selectivity (ratio of Sirphotoresist etching rates) by using an SF6/O2 gas mixture in a commercial 
RIE system (Semigroup TP1000).2 The color dispersive microoptic, pictured in Figure 3, is a 
combination F/2 refractive microlens for focusing and 17 jxm period diffraction grating for color 
separation.5 The total depth of this optic, made with four mask levels, is 7.5 |im. There are 
64x64 identical pixel elements, each 100 |im x 100 ^m square, in this array. 

By exploiting the fill factor enhancement made possible by microlens arrays, photodetectors 
can be made smaller or spaced further apart; the newly available space can be filled with 
preprocessing circuitry. Monolithic integration of active and passive devices on the same substrate 
will eliminate difficult and time-consuming alignments between discrete planes of different devices. 
In a joint project with LORAL IRIS, we have monolithically integrated focal plane arrays of 
microlenses with epitaxially grown HgCdTe photodetectors on opposite sides of a single CdTe 
substrate.4 The microlens array pattern is registered to the HgCdTe photodetectors on the front 
side of the substrate to better than 2 ^m, using our Karl Suss infrared backside mask aligner, and 
then etched into the backside of the substrate. In addition, by reducing the needed active detection 
area, the microlenses result in increased gamma radiation hardening. 

3. Conclusion 

Fabrication is the cornerstone for the realization of high-quality microoptics. We have 
highlighted details of the Binary Optics effort at MIT Lincoln Laboratory that lead to significant 
improvement in optical performance and to new microoptics capabilities. 

This work was supported by the Advanced Research Projects Agency. 
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Introduction 

The ability to measure the micro-structure of diffractive optics is extremely important in 
order to optimize the fabrication process. Measuring the micro-structure is challenging 
because of the accuracy requirements on the height measurement, the high spatial 
frequencies required, and the steep slopes that must be measured. Both optical 
interferfence microscopes and scanning probe microscopes can be used for the 
measurements. Optical interference microscopes have the advantage that they are easy to 
use and provide rapid, accurate height measurements. However, as described below, for 
an optical interference microscope to measure the steep slopes present in diffractive 
optics special multiple wavelength or white light techniques must be used. Once the 
steep slope measurement problem is solved the largest limitation of optical interference 
microscopes is the spatial resolution limit imposed by diffraction. The advantage of the 
use of a scanning probe microscope for the measurement of diffractive optics is that very 
high spatial frequencies can be measured. The disadvantage is that the measurement is 
more difficult to perform and the measurement time is much longer than for optical 
microscope measurements. 

Optical Interference Microscopes 

In the measurement of diffractive optics it is possible to use visible light interferometry 
and computerized phase shifting!,2 techniques to measure Angstrom, or even sub- 
Angstrom, surface height variations. However, the use of a short wavelength creates a 
problem in the measurement of steep slopes. If a single wavelength is used to make a 
measurement and the surface height difference between adjacent measurement points is 
greater than a quarter wavelength, the measurement will have an ambiguity in the height 
measurement of a multiple of a half-wavelength.  One method of removing this height 
ambiguity is to perform the measurement at two wavelengths, X\ and A,2, and subtracting 
the two measurements, resulting in the limitation in the height difference between two 
adjacent detector points of one-quarter of X.eq, where 
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The measurement is essentially performed at a synthesized equivalent wavelength, ^eq. 
While this approach increases the dynamic range of the measurement, the precision is 
also degraded by the ratio of X^q/X . The precision can be regained by using the 
equivalent wavelength results to correct the integer half-wavelength height ambiguities in 
the single wavelength data. In this way, the dynamic range of the equivalent wavelength 
is obtained, but the precision of the single wavelength data is maintained.^ 

While the multiple-wavelength interferometry works well on many samples, in the 
measurement of diffractive optics where fine spatial features are being measured and both 
the magnification is large and the numerical aperture of the microscope objective is large, 
the high points and low points of a surface may not be in focus at the same time. In this 
situation, while multiple wavelength interferometry may give results that initially appear 
correct, the information about the high spatial frequency structure on the surface may be 
wrong because portions of the surface are out of focus. The white light scanning 
interferometry approach described below does not have this problem. 

If a white light source is used in an interferometer, the best contrast interference fringes 
are obtained only when the two paths in the interferometer are equal. Thus, if an 
interferometer is made such the path length of the sample arm of the interferometer is 
varied, the height variations across the sample can be determined by looking at the 
sample position for which the fringe contrast is a maximum. In this measurement there 
are no height ambiguities and since in a properly adjusted interferometer the sample is in 
focus when the maximum fringe contrast is obtained, there are no focus errors in the 
measurement of surface microstructure.4>5,6 

The major drawback of this type of scanning interferometer measurement is that only a 
single surface height is being measured at a time and a large number of measurements 
and calculations are required to determine a large range of surface height values. One 
method for processing the data that gives both fast and accurate measurement results is to 
use conventional communication theory and digital signal processing (DSP) hardware to 
demodulate the envelope of the fringe signal to determine the peak of the fringe 
contrast." 

The irradiance at a single sample point as the sample is translated through focus, which 
we can think of as the temporal coherence function, looks like an amplitude modulated 
(AM) communication signal. To obtain the location of the peak, and hence the surface 
height information, this irradiance signal is detected using a CCD array. The signal is 
sampled at fixed intervals, such as every 50 to 100 nm, as the sample path is varied. The 
motion can be accomplished using a piezoelectric transducer. Low frequency and DC 
signal components are removed from the signal by digital highpass filtering. The signal 
is next rectified by square-law detection and digitally lowpass filtered. The peak of the 
lowpass filter output is located and the vertical position corresponding to the peak is 
noted. Interpolation between sample points can be used to increase the resolution of the 
instrument beyond the sampling interval. This type of measurement system produces 
fast, non-contact, true three-dimensional area measurements for diffractive optics. If 
smooth surfaces are being measured normal phase shifting techniques can be used to 
obtain Angstrom, or sub-Angstrom height measurements.' 
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Scanning Probe Microscope 

Scanning probe microscopes are becoming popular for the measurement of the micro- 
structure of surfaces.8 In the measurement of diffractive optics the force microscope is 
of particular interest. The force microscope can measure nanometer, or even Angstrom 
sized structures on non-conducting surfaces. In the force microscope the sample is 
mounted on a piezoelectric ceramic that is capable of scanning in x, y, and z directions. 
A thin cantilever (manufactured from silicon nitride) with an integrated tip is brought 
near the surface of the sample. An optical deflection technique is used to measure the 
deflection of the cantilever during the scan. The deflection of the cantilever is kept 
constant by adjusting the z position of the sample using a feedback loop. The x and y 
coordinates are precisely measured using an optical encoder. The x, y, and z positions of 
the piezoelectric ceramic are recorded as the surface topography. 

Measurement Results 

Figure 1 shows typical results for the measurement of a diffractive element using the 
white light scanning interferometer approach. The ability to measure steep slopes is 
clearly shown. Figure 2 shows another diffractive optics element measured using a 
scanning probe microscope. For this element two grating spacings of 5 microns and 10 
microns were measured. The grating height range was approximately 1 micron. 

In conclusion, the ability to measure the microstructure of diffractive elements is very 
important. Both optical interference microscope techniques and scanning probe 
microscope techniques can be used to perform the measurements. For optical 
interference microscope techniques to be used for the measurement of steep slopes, 
multiple wavelength techniques, or white light scanning techniques can be used to 
eliminate half-wavelength height ambiguities that are present with single wavelength 
measurements. 

«,«e» 

0   tifMI «*.* 

Figure 1. Three-dimensional map of diffractive element obtained using white light 
scanning microscope, x and y dimensions given in microns. Peak-Valley height 1.3 
microns. 
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Figure 2. Three-dimensional map of diffractive element obtained using scanning probe 
microscope, x and y dimensions given in microns. Peak-Valley height is approximately 
1 micron. 
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BACKGROUND 

Lithography is a critical step in semiconductor manufacturing which involves the faithful 
transfer of a pattern on a photomask to the wafer. The continued shrinkage of minimum feature size 
on a wafer have placed unprecedented demands on lithography: demands that can no longer be met 
by a simple decrease of wavelength of incident illumination. A technique that is currently under 
investigation for the production of smaller feature sizes, without a decrease in wavelength, is the use 
of phase shift photomasks. These masks are created by etching the substrate of the chrome-on-glass 
photomask, thereby creating an amplitude as well as phase structure. Since the fidelity of pattern 
transfer is critically dependent on the characteristics of the phase etched structure, it is important to 
develop techniques for the metrology of these structures. 

SCATTEROMETRY 

Scatterometry is a non-contact, rapid and non-destructive diffraction based metrology 
technique that involves illuminating a test grating structure with a laser beam and measuring the 
intensities of the various reflected and transmitted diffraction orders. In a 20 scatterometer, 
illustrated in figure 1, the intensity in a particular diffraction order is continuously monitored as the 
angle of incidence of the laser beam is varied over a certain range. The shape of the diffraction curves 
obtained in this manner is shown to be sensitive to the defining parameters of the phase grating, (e.g. 
sidewall angle, etch depth, top linewidth). An explanation of these parameters is provided in 
figure 2. 

EXPERIMENT 

A phase shift mask having both chrome and chromeless phase etched structures was 
fabricated using e-beam techniques at AT&T. The mask shown in figure 3 had equal line and space 

* This work supported by SRC/SEMATECH 
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gratings with linewidths varying from 0.5 |im to 5 |im, and phase etch depth varying from 0.15 |im to 
0.4 [im. The 20 scatterometer was used to make measurements of the fraction of incident power 
diffracted into 0, +1, and -1 reflected and transmitted orders as the angle of incidence was varied 
from -60 to 60 degrees. Figure 4 illustrates the change in 0-order transmitted power as the etch 
depth of the 10.0 |im period grating is varied. It can be seen that for this large period grating the shape 
of the curve is only slightly influenced by the etch depth and for any angle of incidence there is a 
monotonic decrease in transmitted 0-order power for increasing etch depth. Figure 5 is a plot of the 
transmitted + 1-order plotted for various etch depths of a 1.0 (im period grating. In this case again the 
transmitted power at any angle decreases monotonically at any angle with increasing etch depth. In 
this case however, the curves go through multiple maxima and minima and it appears reasonable to 
assume that change in linewidth and/or sidewall angle of the structures will influence the shape of the 
diffraction curves. 

INVERSE DIFFRACTION ANALYSIS 

It can be seen from figures 3 and 4 that changes in etch depth of the phase grating structures 
influences the diffraction curves as measured by the 20 scatterometer. The measurement problem is 
now to predict the parameters of the phase grating, given the diffraction curves. To accomplish this 
we have utilized rigorous coupled wave theory to solve for the forward diffraction problem. A 
parameter space is defined for the various grating parameters of interest and the diffraction curves 
are generated for each parameter set in the parameter space. A partial least square (PLS) based 
training algorithms is then trained on the theoretical data. PLS techniques exploit correlation 
between the simulated diffraction curves and the critical parameter of the modeled structures. 

We present preliminary results on the use of these techniques for the solution of the inverse 
diffraction problem. For larger period gratings we obtained good results in the prediction of etch 
depths using the transmitted 0-order curves. We will discuss problems associated with multiple 
parameter estimation and also for the measurement of short period (i.e, small pitch to wavelength 
ratio) gratings. 

CONCLUSIONS 

We presented preliminary data on the use of scatterometry for the investigation of phase shift 
grating structures. The 20 scatterometer can measure the intensity in any diffraction order as the 
angle of incidence is varied over a particular range. The curve thus obtained is sensitive to the critical 
parameters of the diffraction grating and comparison with theoretically obtained curves can provide 
reasonable estimates of the various parameters of the phase grating. 
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1. Introduction. 
It is widely believed that the economic viability of diffractive optics will be realized for most 
practical applications only through a replication procedure capable of yielding both high fidelity 
and high image quality. Many techniques have been attempted in a variety of materials, and many 
have found that achieving both fidelity and image quality is quite difficult The nature of the 
problem for image quality is illustrated with the three photos in Figure 1 showing the blur spots 
formed by three f/10 Fresnel phase lenses. On the left is the diffraction-limited image formed by 
a master element having four phase levels and fabricated in fused quartz. The two remaining 
photos are the images formed by replicas of the master element, one in a dry photopolymer and one 
in a liquid photopolymer. 
One gradation on the scale in each photo equals 2.5 p.m. The image quality in both replicas is 
clearly unacceptable. Currently, we do not have conclusive proof for the cause of the image 
degradation in each type of replica, but we believe the most likely causes are nonuniformity in the 
refractive index in the dry material and shrinkage-induced stress (warpage) in the liquid material. 
Shrinkage in the dry material is quite small (~1 percent), and hence fidelity is quite good. Shrink- 
age in the liquid polymer is ~10 percent. 

Dry Photopolymer Liquid Photopolymer 
Master (Q5) Typical Replicas 

Figure 1. Point-source images formed by f/10 Fresnel phase lenses: master and two replicas. 
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One of the most promising candidates to satisfy the requirements for high fidelity and image qual- 
ity is DuPont's SURPHEX™ family of dry photopolymers. DuPont initiated development of 
embossing procedures and SURPHEX™ films specifically for replication of diffractive elements 
in 1987. DuPont and Honeywell have collaborated since 1990 to achieve this goal, and recently 
DuPont1 announced the replication of Honeywell's f/10 Fresnel phase lenses with 
diffraction-limited imagery in SURPHEX™ dry photopolymer film. The image quality 
assessment was performed by Honeywell, and our objective here is to summarize the results of the 
measurements. 

2. Description of elements and measurements 
The master elements in our experiments consisted of three prototype f/10 Fresnel phase elements 
of two, four, and eight phase levels fabricated using the standard "binary optics" procedure. 
Extensive characterization of processing errors, diffraction efficiency, and image quality of these 
elements has been reported previously3,4. Three replicas of each diffractive element were done in 
SURPHEX™ on PMMA substrates using DuPont's dry photopolymer embossing (DPE) process, 
which is described in references 1 and 2. The substrates had a thickness of 2.8 mm and a diameter 
of 35 mm. Blank substrates were included in order to isolate the image degradation caused by the 
substrate itself. Surface quality of all substrates was measured with a Fizeau interferometer. 

Image quality was characterized both qualitatively by photographs of the point-source image and 
quantitatively by measurements of the modulation transfer function (MTF). MTF was measured 
by means of a scanning knife-edge technique. Fidelity of the replicas was measured primarily by 
profilometry and SEM photos of the outermost Fresnel zones. Measurements of Fresnel zone 
widths and depths in the replicas equaled within 0.1 percent the values in the corresponding 
regions of the master elements. Thus, the fidelity of replication was extraordinarily good. The 
measured diffraction efficiency agreed with one percent, equal within the experimental error.. 

The photo of the point-source image formed by the four-level (Q5) master element is shown in 
Figure 1; it is representative of the photos for the two-level and eight-level elements. It illustrates 
the features of perfect, diffraction-limited imagery: a uniform, circular central disk surrounded by 
alternating dark and bright rings of uniform width. The modulation transfer functions (MTF) of 
the master elements are shown in Figure 2. The theoretically calculated MTF for a 
diffraction-limited element is displayed by the curve of unconnected small circles ("o"). The MTF 
curves for all elements are seen indeed to be diffraction-limited. 

The point-source image formed by a four-level replica (28a-Q5) is shown in Figure 3. The MTF 
curves measured for a two-level, a four-level, and an eight-level replica are plotted in Figure 4. 
The image quality in these three replicas is clearly superior to that of the replicas in Figure 1. 
However, it is evident from both the photo and the MTF curves that a small, residual aberration 
remains; the image quality is very good, but not quite diffraction-limited. This slight aberration 
can be attributed to the surface quality of the PMMA substrates. For example, to show the magni- 
tude of the aberration contributed solely by PMMA substrate, we inserted a blank substrate (35b) 
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Figure 2. Measured MTF curves for the f/10 master elements. 

in the beam incident on a fused quartz master and recorded the point-source image. The result is 
shown in Figure 5. The presence of the substrate clearly contributes astigmatism, and the 
magnitude is generally greater than observed in the replicas themselves. 

Figure 3. Point-source image of f/10 
replica in SURPHEX™. 

FigurelTAberration induced by 
PMMA substrate. 

A direct measure of surface quality was also obtained by use of a Fizeau interferometer. 
Photographs of the resulting interference patterns are shown in Figure 6 for a blank fused quartz 
substrate and in Figure 7 for a blank PMMA substrate (35b). This amount of surface nonuniformi- 
ty in the PMMA substrate is entirely consistent with the magnitude of aberrations observed in the 
replicated elements. 
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Figure 4. Measured MTF curves for the f/10 replicas. 
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Figure 5. Surface quality of a PMMA 
substrate.. 

Figure 5. Surface quality of a fused 
quartz substrate. 
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Injection and embossing is an economical method of producing HOE ( Holo- 

graphic Optical Element ) in large or small quantities and variable types. In this 

paper, we use CIM ( computer integrated manufacturing ) system to obtain the 

proper parameters of injection and embossing process. The automation measure- 

ment can assist in calculating the volume and shape of the metal model of the 

mold. 

Since a surface-relief type hologram is an appropriate type for a HOE of mass 

production,, we previously developed a new method of analyzing the performance 

of a surface-relief type hologram fabricating system1. A hologram embossing sys- 

tem can obtain a signing layer which is written upon to have the structure with 

an optical diffraction effect such as a hologram. The diffraction efficiency of the 

embossing master ( with holographic fringes in photo resist) can be analyzed by 
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defining our new concepts for the fabricating process and grating profile charac- 

teristics. In order to reasonably resolve the problems of the diffraction efficiency 

we combine the optical and AI ( artificial intelligence ) sciences to find the key of 

HOE's fabricating process. Many uncertainties are unavoidable because we judge 

the process parameters using our experience . In this way , the stream of infor- 

mation reaching the brain via the visual process, is eventually reduced to a trickle 

that is needed to perform a specified task with a minimal degree of precision. In an 

ordinary HOE fabrication process, decision-making is made by the human mind. 

Furthermore , the ability to manipulate fuzzy sets and the consequent summariz- 

ing capability constitutes one of the most important assets of the human mind. 

Thus the availability of multipurpose fabricating of a more complex HOE with 

very simple and economical equipment will be reconfirmed in further research. 

From the transfer function of embossing we correct the values of the embossing 

temperature and holding time. From our analysis, we improve the product qual- 

ity and reduce waste. Some problems such as wrinkling, curling, and breakage 

in the plastic plate or the short life in the embossing master can be eliminated 

under the proper operation parameters. We believe this system will be valid in 

manufacturing the prototype of the holographic products. 

From the experimental study of the HOE CIM system, the following conclusions 

are obtained. 

1. A high diffraction efficiency of about 20 % is obtained by a holographic lens 

for image processing. 

2. The system we adapt can provide the production of HOE more practically. 
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