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1. STATEMENT OF PROBLEMS STUDIED 

Army Research Office Grant # DAAHO4-93-G-0453 has supported the purchase of 24 

additional compute nodes that were installed in the Intel iPSC/860 hypercube at the University of 

Kentucky (UK). This has resulted in a 32-node iPSC/860, providing nearly a GFLOPS of 
computing power, 512 MB of core memory and 6 GB of concurrent I/O. This facility has allowed 

Ibe investigators to explore and extend the boundaries of electromagnetic simulation for important 
areas of Defense concerns including microwave monolithic integrated circuit (MMIC) 
design/analysis and electromagnetic materials research and development. 

The 32-node iPSC/860 hypercube has provided an ideal platform for MMIC circuit simulations. 

A number of parallel methods based on direct time-domain solutions of Maxwell's equations have 

been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) 

algorithm, and a parallel planar generalized Yee-algorithm (PGY). With the development of these 

techniques, this powerful platform has enabled the full-wave analysis of complex multicomponent 
MMIC devices for a number of applications. 

The iPSC/860 has also provided an ideal platform on which to develop a "virtual laboratory" to 
numerically analyze, scientifically study and develop new types of materials with beneficial 

electromagnetic properties. These materials simulations are capable of assembling hundreds of 

microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. 
For sparse distributions of inclusions, this numerical laboratory is able to accommodate literally 
thousands of inclusions. This powerful simulation tool has enabled research into the 
electromagnetic properties of many types of materials to be performed numerically rather than 
strictly in the laboratory. 

. .^cession Tor 

HJIS    6RAÄI 
rnric TAB 
Unannounced 
JustiXioatiosL. 

By- 

— 

D 
D 

_&vsile.bni%| Jtjp 



2. SUMMARY OF RESULTS 
2.1    INTRODUCTION 

The 32-node iPSC/860 hypercube has provides a high performance simulation platform that has 

significantly benefited two distinct research projects currently ongoing at the University of 

Kentucky: 1) The full-wave analysis of microwave monolithic integrated circuits (MMICs), and 
T& electromagnetic materials research and development 

In the last decade, MMICs have played a leading role in the design of microwave 
communications systems. As the fabrication technologies of these devices have matured, both 

military and commercial applications have demanded smaller and denser MMICs operating over 

larger bandwidths and at higher operating frequencies (into the Ka and U bands). This has lead to 

an increased need for more rigorous analyses that explicitly model the electromagnetic interactions 

within these devices. Although, it is instructive to isolate each element of the MMIC and analyze 

them independently, proper characterization of densely packaged circuits require the rigorous 
analysis of entire circuits simultaneously, or large blocks of circuits. To this end, coupling 
between devices that can significantly perturb the circuit operation can be accounted for. 

The objective of this research has been to complete the development of a MMIC circuit simulator 
based on a direct time-domain solution of Maxwell's equations and parallel algorithms. The 

simulator is capable of analyzing MMICs using either the traditional finite-difference time-domain 
(FDTD) method or the robust planar generalized Yee-algorithm (PGY). The simulator is capable 
of analyzing passive devices with lumped loads, as well as active (nonlinear) devices. To model 
highly complex circuits using the generalized Yee-algorithm, the simulator has been interfaced with 
the computer aided design (CAD) system SDRC IDEAS for modeling the circuits and performing 
the mesh generation for its discrete representation and a graphics package for visualization and 
analysis of results. With this potential, models consisting of upwards to 80 X 106 degrees of 

freedom have been analyzed using the FDTD algorithm (on a regular grid), and upwards to 60 x 

106 degrees of freedom have been analyzed using the PGY algorithm on the 32-node iPSC/860. 

This has provided a powerful computational laboratory and has facilitated ongoing research of the 
design and development of MMIC circuits for microwave communications in the upper GHz 
frequency bands. 

The second area of focus for this high performance simulation platform is one of today's most 
dynamic areas of physical science — materials research. Using sophisticated manufacturing 
techniques and the availability of new types of molecules, it is possible to build new exotic 

materials having unusual properties. The additional compute nodes which have expanded the 
University of Kentucky Intel iPSC/860 have been used for numerically constructing a "virtual 

laboratory" in which the electromagnetic properties of new types of materials have been 



investigated Currently, an ongoing research program is focusing on the determination of the 
macroscopic constitutive parameters for an interesting class of substance called chiral materials. 

The modifier "chiral," from the Greek word meaning handed, refers to the nature of the inclusions 

which constitute the material at the microscopic level. The impetus for this research is that on the 

macroscopic level, these materials have been shown to provide unusual and sometimes very 

.iKneficial behavior in such applications as radar absorbent materials and guided-wave applications. 

Vor wave absorption, understanding and modeling the interactions of the inclusions, the host 

material and the incident wave at the microscopic level is necessary to both develop a macroscopic 
model as well as to design and optimize this behavior. 

In macroscopic chiral studies which have appeared in the literature, the constitutive parameters 
describing the macroscopic behavior of the chiral substance are assumed known from which 

parametric studies are performed. In reality these parameters are not known and to the author's 
knowledge no other comprehensive treatment has been given to their determination. Using 
numerical simulations, a technique to compute these constitutive parameters for effectively chiral 

materials has been developed and results indicate that such a procedure is attainable. As would be 
expected such a numerical simulation is very costly in terms of computational resources. 
Additionally, this research program seeks to analyze other types of materials, not only chiral. With 
this in mind, the algorithms and procedures which have been developed were designed with this 
generality in focus. 



2.2.  FULL WAVE ANALYSIS OF MICROWAVE MONOLITHIC INTEGRATED 
CIRCUITS - S. GEDNEY 

22.1  Parallel FDTD Algorithm 

The FDTD method is based on the discretization of Maxwell's curl equations 

dH 
-^y = Vx£ (2.1a) 

dE 
e—-+ff£ = Vx// (2.1b) 

at 

using central difference approximations of time and spatial derivatives. To this end, the vector 

fields are projected onto the edges of a regular orthogonal dual, staggered grid. Based on this 
discretization, the curl equations can be expressed in a discrete form as [ 1] 

H*+m =HH~m + AJE" (2.2) 

£"+1 = DtE
n + AtH

n+m (2.3) 

where H and E are vectors of coefficients representing the vector field intensities on the grid 
edges, the superscript n represents the time increment, De is a diagonal matrix, and Ae and Ah are 

sparse matrices. The entries of these matrices are found in [1]. Equations (2.2) and (2.3) provide 
an explicit time-marching solution for the electric and magnetic field intensities within the discrete 
volume. By staggering the electric and magnetic fields in both space and time, the solution is 

second-order accurate in both space and time (assuming uniform grids) providing the time step 
satisfies the stability criterion 

M<  h_ 'j_ j_ 
SA^W (2.4) 

The FDTD algorithm has the principle advantage that since the grid is regular and orthogonal, De, 
Ae and Ah are regular and never need be stored explicitly, but are easily computed each iteration. 
This results in an extremely memory efficient algorithm. 

The parallel FDTD algorithm is based on a spatial decomposition of the regular grid structure. 

To this end, the original domain is spatially decomposed into contiguous sub-domains which are 
rectangular in shape, non-overlapping, sharing common surfaces only, and are of equal size (see 

Fig. 2.1). The boundaries, or mrfaces, shared by sub-domains are chosen by taking slices along 
«dges of the primary grid. Each nibdomain is then mapped onto independent processors. Due to 
die regularity of the grid, die work load is easily balanced between processors. 

Figure 2.1 illustrates the shared surface between two contiguous sub-domains with a shared 
surface in an x = constant plane. The arrows represent the tangential electric fields on the shared 

surface, and the dots represent the normal magnetic field vectors. The tangential electric fields 



■\A 
Fig. 2.1. Shared interface between two sub-domains along the y-z plane. The arrows 

represent the shared electric field vectors tangential to the shared boundary 
and the dots represent the normal magnetic field vectors normal to the shared 
boundary. 

e£lw ^ e^Zt "^ "P^ted usmS (2.3)and is dependent on the magnetic field vectors normal to 

the four faces sharing these edges. However, each processor has at most three of the four faces 

needed to update the electric field in local memory, and it becomes necessary to retrieve the needed 

data from adjacent processors. 

The magnetic field vectors normal to the shared interface are updated using (2.2). The update of 

the magnetic field passing through a face is proportional to the curl of the electric field about the 

edges bounding the face. Since each processor has the updated value of the tangential electric 

fields on the shared interface, the normal magnetic field can be updated independently on each 

processor. Therefore, interprocessor communication is not needed when updating the magnetic 

fields within each sub-domain. Rather, it is much more expedient to simply update the normal 

magnetic fields in the shared boundary redundantly on each processor sharing the face. 

2.2.1   Parallel PGYAlgorithm 

The PGY algorithm is based on the discretization of Ampere's and Faraday's laws in their 

integral form [2,3] by projecting the vector fields onto the edges of a dual, staggered grid. Unlike 

die FDTD algorithm, the grid is assumed to be unstructured and irregular. The PGY algorithm is 

specifically applied to structures which have planar symmetry, namely three-dimensional 

geometries that can be uniquely described by a projection onto a two-dimensional plane. For 



example a inicrostrip circuit printed on a planar dielectric substrate backed by a ground plane (not 
necessarily infinite) can be said to have planar symmetry. By exploiting this symmetry, the three- 

dimensional grid can then be described by a two-dimensional grid which is extruded into the third- 

dimension in a regular sense [2]. The principal advantage of this assumption is mat only the two- 

dimensional grid need be stored, and the update matrices, similar to (2.2) and (2.3), need only be 

stored for one layer of cells. This leads to a tremendous savings in memory overhead. Finally, the 
method is fully explicit and has been shown to be a highly scalable algorithm [2,3]. 

The planar generalized Yee-algorithm is based on a direct solution of the time-dependent 
Maxwell's equations in their integral form. The electric and magnetic field intensities are initially 
normalized as 

e = ElJn0 
-    - r- (2-5) 

where r/0 is the characteristic wave impedance in free space. Faraday's law and Ampere's law are 

then expressed in their integral form as 

d jedl = -~§firhdS (2.6) 
C Co *"   s 

jhdi = —£-$eredS + ti0$<TedS (2.7) 

where c0 is the free space velocity of light, fr and er are the relative permeability and permittivity, 

respectively, and a is the absolute conductivity. The principle advantage of this normalization is 
mat the magnitudes of e and h will be of the same order, reducing rounding error. Furthermore, 
it is much more convenient to work with the relative permittivity and permeabilities rather than their 
absolute values. 

Faraday's and Ampere's laws are expressed in a discrete form by mapping e and h into a 

discrete three-dimensional space. The mapping consists of projecting the vector fields onto the 
edges of a dual grid, composed of two staggered grids, referred to as the primary and secondary 
grids. Each grid is a three-dimensional grid that is described as being regular along the vertical 

direction (assumed to be the z-direction), and is unstructured in the horizontal direction. 
Conceptually, this grid can be generated by extruding a two-dimensional unstructured grid in the 
vertical direction, and segmenting it at discrete heights, as illustrated in Fig. 2.2. The secondary 
grid is staggered within the primary grid such that its vertices lie at die centroids of the primary grid 

cells, and the edges of the secondary grid connect the centroids by passing through the faces of the 
primary grid. 

The electric and magnetic fields are then decomposed into orthogonal components 



Fig. 2.2     An example of the primary grid described by similar two-dimensional 
unstructured grids cascated in the vertical z-direction in a regular sense. 

e=e,+zez, 

h^+zh;. (2.8) 

Subsequently, die transverse electric and magnetic fields are mapped onto the horizontal edges of 
the primary and secondary grids, respectively. Likewise, the vertical electric and magnetic fields 
are mapped onto the vertical edges of the primary and secondary grids, respectively. The vector 
fields are assumed to be constant along their respective edge lengths, as well as over the dual face 
through which they pass. 

Based on the above discretization, Faraday's and Ampere's laws are then mapped into the 
discrete space. The time derivative is then approximated using a central difference expression, 
which is second-order accurate if the fields are staggered in time. This leads to [2] 

1 
ä;+I(*) = /I;(*)-^ 

N. 

(2.9) 

dz\£t\LK 

'«4       1 .4        1 \      ( „A „A     \ 
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(2.10) 
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[Kw-^W^^^-^-COk+^i]] 
where cff and fy are the flux densities in the transverse plane, Ar is the time increment, n is the time 
index, k is the index along z, Ap and As are the areas of the primary and secondary grid faces, 
respectively, Np( and Nsj are the number of edges bounding the i-th primary and they-th secondary 
grid faces, respectively, and the i{ are the length vectors of the primary or secondary grid edges. 

The material parameters er, ßr and a are assumed to be piecewise homogeneous in both the z- 

direction as well as in the transverse direction. At the interface of two unlike medium, the 
parameters are assigned an average value, as described in Appendix A of [4]. 

Based on (2.6) and (2.7), it is recognized that the flux densities updated in (2.10) and (2.11) are 
normal to the faces. However, the corresponding field intensities on the dual edges passing 
through these faces are not necessarily normal to the faces. As a result, the flux densities must be 
projected onto the edges before the dual fields can be updated. Since only one component of the 
field is locally known, an auxiliary operator must be introduced to perform the projection. To this 

end, the projection operators implemented in [4] are used to project the fields onto the dual edge 
passing through the face. 

Let Np be the normal area vector to a primary grid transverse face, and s be the unit vector 

along the dual grid edge passing through the face (Fig. 2.3). Using (2.10) the magnetic flux 
densities projected onto the normals of all the primary grid transverse faces are updated. 
Subsequently, for each face, a general flux density vector b is introduced. From (2.10), b ■ NP is 

known at each edge. In Fig. 2.3, the edge identified is bound by vertices 1 and 2, which is 
identified by the index i = 12. Each vertex is also shared by two additional edges which share a 

common cell. Let./ represent one of these edges, where./= 7,2. The normal area vector to the;'-th 
edge associated with the i-th vertex is ND . Subsequently, we define a general flux density vector 

biS to be the local estimate of the magnetic flux vector associated with the i-th vertex and the ;'-th 

edge, where bi} is computed by solving the two-dimensional system of equations 

8 



Fig. 2.3     Normal to a transverse primary race, and a dual edge passing through the face. 

bi>rND=b-ND 

birND=b-NDu 

(2.13) 

where the right-hand-side is known from (2.10).   Subsequently, introducing the weighting 

coefficient w:j = \z ■ (ND x NDj^ ), the flux density projected onto the dual edge is expressed as 

bs=i±q-2 . (2.14) 
SI-,- 

The field updates are then computed using (2.10)-(2.14). However, it is realized that 
computing the parameters for these equations requires a significant number of floating point 
operations, leading to a highly inefficient algorithm. However, by employing standard finite- 
element type techniques, the computational efficiency can be greatly enhanced by treating these 
linear operators as sparse matrices. To this end, (2.10)-(2.14) can be expressed in reduced form 
as 

[Hrll=[n;l+\[Erm]t ais) 

[B"+1L/2-[5"L/2+ 
r£;+„2-i 

t+l/2 

t+l/2 

[LK^i^iDr2]^ 
H;+1 

H. ii+i 

(2.16) 

(2.17) 

(2.18) 

(2.19) 



[Er3f2l = \[Dr3,2]k (2.20) 

wlme the subscript k refers to the discrete height along the z-direction, Dt and Bt are the flux 

densities, the D *s are diagonal matrices, and the A 's are sparse matrices. Note mat these matrices 

are only associated with the two-dimensional grid since they are the same for all values of it 

(mhomogeneities in material parameters are easily built into these expressions). As a result, the 

additional memory required to store these matrices is nominal. 

Finally, the field updates are performed using (2.15M2.20), providing an extremely efficient 

computational technique that is second-order accurate for the simulation of the time-varying fields. 

Furthermore, the solution is stable, providing [4] 

A/ <—_-!-. _ (2.21) 

where inäa is the minimum edge length in the model. 

Once the matrices are computed, the field updates reduce to a series of sparse-matrix - vector 

multiplications, which is readily parallelizable. The parallel PGY algorithm is based on a spatial 

decomposition of the three-dimensional grid into contiguous, non-overlapping subdomains. This 

spatial decomposition, or partitioning, of the three-dimensional unstructured mesh is being 

performed by first partitioning the two-dimensional unstructured mesh using the Recursive Inertia 

Partitioning (RIP) algorithm [5] and a Greedy algorithm [6], and then using a trivial partitioning 

scheme along the regular dimension of the grid which is similar to the FDTD partition. 

Once the mesh is decomposed into subdomains, a single subdomain is assigned to each 

processor. The matrices in (4) are then expressed as a subassembly of matrices, where each sub 

matrix represents the updates of the fields within each subdomain. Subsequently, the matrix- 

vector products on each processor are computed as 

- -b,        N^ (-shared    \    AWrf „ (-shared    \ 
AiXi=Ai Xi+  £ [Aij    JC,J+  £ Rx[Aj,i    Xj) (2.22) 

;=i v J     j=\      v J 

where At   are the entries of A, associated with all field vectors internal to the i-th processor's 
shared me 

subdomain, Aij are the entries of A associated with all field vectors in the /-th processor's 

subdomain that lie on the boundary shared with the y-th domain, A/shared is the number of 

processors that share boundaries with the /-th processor, and Rx is the receive operator, receiving 

die vector of data from the y-th processor. The first two expressions on the right-hand-side of 

(2.22) are done completely in parallel on each processor, and the final term requires interprocessor 

communication. If the subdomains are equal in size, then the work load required to perform the 

matrix-vector products will be well balanced. If the number of edges shared by sub domains are 

10 



minimized, the lengths of die interprocessor communications will be minimal (note mat the number 
of sub domains that each sub domain has interfaces with should be minimized as well). 

Furthermore, due to the regularity of the grid, the matrix vector multiplications It was shown in 

[3] mat this leads to a highly efficient parallel algorithm. 

22 3 Results 

The parallel algorithms have been implemented in FORTRAN on the 32-node iPSC/860 
hypercube. Care has been taken to optimize the codes for floating point and memory efficiency. 

For example vectorization is exploited in the inner loops of the computationally intensive tasks for 
each algorithm. Furthermore, full optimization was utilized when compiling the programs. 

In each of the algorithms, unbounded media are modeled through the use of an absorbing 

boundary condition. The second-order dispersive boundary condition [7] was implemented to 
update the tangential fields on the exterior truncation boundary. 

The expected storage requirements and the number of floating point operations required for each 
algorithm is presented in Table 2.1. In this table, Nx, Ny, and Nz, represent the number of lattice 

cells along the x, y, and z-directions for the FDTD algorithm. Ne, Nc, and N„ represent the 

number of edges, cells, and nodes in the two-dimensional unstructured meshes used by the PG Y 
algorithm, and Nx represents the number of cells along the vertical z-direction. N€0 is the number 
of edges in the mesh which will require a projection operation for the PGY-algorithm (in regions 

where the mesh is orthogonal, the projection is not needed). Typically, for quadrilateral meshes, 
Ne « 2NC « 2Nn. For a uniform mesh, it can be assumed that Nc = NxNy. By exploiting planar 

symmetry, the memory needed to store the PGY matrices is quite negligible compared to the 
memory required to store the three-dimensional fields. As a result, the PGY-algorithm requires 
only - 25 % more storage than the FDTD algorithm. However, for problems with complex 
geometries, the number of quadrilateral cells needed to accurately model the geometry is expected 
to be much smaller than that required by the FDTD method, and this deficiency can be easily 
accounted for. The floating point operations required by the PGY algorithm and the FDTD 
algorithm for an orthogonal mesh of equivalent size are exactly the same. Nonorthogonal meshes 

introduce additional computations for the PGY-algorithm due to the projection operators. 

Table 2.1 
Storage and Floating Point Requirements of Each Algorithm 

TDTD- 
Storage Floating Point Operations/ Time Iteration 

PGY" 
6NxNyNt 36NxNyNz 

[3Ne+Nc + Nn]Nz + 
9Ne + 4N„ + 10Ne 

UlNM+NM + NcNj + lW.N, 

11 



1413 mm 

0.794 mm 

Fig. 2.4     Low pass microstrip filter printed on a dielectric substrate. 

Furthermore, the vector lengths of the FDTD algorithm will typically be longer, leading to 

improved floating point speeds. Thus it is expected that the FDTD algorithm will be faster 
computationally. 

Benchmark comparisons of the two codes are provided here through a simple test case, which is 
the microstrip low-pass filter illustrated in Fig. 2.4. This problem has been previously modeled 
using the FDTD algorithm [8], and conforms to a regular grid. To this end, the FDTD grid is 
defined by an 80 X 110 X 16 lattice. Unstructured grids were also generated to model this problem 

for the PGY algorithm. The grids were created to achieve roughly the same level of accuracy as 
the FDTD algorithm To this end, the PGY mesh consisted of 8006 quadrilateral cells, and 8160 
nodes by 16 cells in the z-direction. The mesh was generated using SDRC IDEAS, and was 

partitioned using the RIP partitioning scheme. This task was performed on an HP-workstation. 
The microstrip line was excited by a voltage source with a Gaussian pulse wave form, which 

had a 30 GHz bandwidth. In each case 4000 time iterations were used to reach a converged 
solution. Initially, keeping the problem size fixed, the problem was executed on a number of 
processors varying from 1 to 32. The CPU times required to perform the 4000 time iterations are 
recorded in Table 2.2. Clearly, the FDTD algorithm is the most computationally efficient - 
especially on the uniprocessor system where it ran in roughly 1/3 of the time required by the PGY 
algorithm. This is due to the reduction in floating point operations and the fact that higher floating 
point speeds are realized by the FDTD algorithm since the vector lengths are much longer. 

12 



Table 2.2 
CPU Times Recorded .vs. # of Processors (P) 

(Wall Clock Time (seconds) - iPSC/860) 

p FDTD PGY 
1 2136 6,152 
2 1096 3,i76 
4 588 1,675 
8 363 %4 
16 227 528 
32 126 3Ö2 

Table 2.3. 
Parallel Efficiency .vs. # of Processors (P) 

Based on a Fixed Speedup Study 

p FDTD PÖY 
1 100% 100% 
2 97% 97% 
4 91% 92% 
8 74% 85% 
16 59% 73% 
32 53% 64% 

Table 2.3 presents the parallel efficiency of the algorithms based on the fixed speedup study 
presented in Table 2.2. Interestingly, the FDTD algorithm only records a speedup of 53 % over 32 
processors. This is somewhat deceiving, however, since the MFLOPS rate of each processor has 

been reduced by 64 % due to the shorter vector lengths! If we scale the computational time by this 

amount, the efficiency would be 83 % (i.e., a speedup of 26.5 over 32 processors). This is quite 
good, as expected for this algorithm Nevertheless, there is degradation in the efficiency due to the 
required interprocessor communication, as well as slight load imbalances and redundant 
computation. The PGY-algorithm realizes a 64 % parallel efficiency (i.e., a speedup of 20.5 over 

32 processors). Here, additional efficiency is principally lost due to load imbalances and 
interprocessor communication. 

It is also instructive to measure the scaled speedup of the algorithms. Specifically, rather than 

keeping the problem size constant and increasing the number of processors, a scaled speedup study 

increases the problem size witn the number of processors. This study was done on the 512-node 
Intel Delta. Each node of the Intel Delta also hosts a 40 MHz i860 RISC processor, with only 12 
Mb or RAM. Thus the same floating point speeds as the iPSC/860 are realized Furthermore, the 

same code developed on the iPSC/860 was direcdy ported to the Delta. Table 2.4 illustrates the 
CPU time per time iteration required by each of the algorithms as the problem size is scaled with 
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Table 2.4. 
Scaled Speedup 

CPU seconds / Time Iteration .vs. # of Processors (P) 
(Wall Clock Time (seconds) - Intel Delta) 

p FDTD PGY 
1 .532 s l.53s 
8 .565 s 1.57 s 
16 .573 s 1.64 s 
32 .574 s 1.65 s 
64 .574 s 1.66 s 
128 .574 s 1.66 s 
256 .575 s - 

the number of processors. Here the problem size is scaled by increasing the mesh size in the 

transverse directions. It is noticed that the algorithms scale extremely well, and excellent parallel 

efficiencies are observed. Slight jumps are realized as the problem is scaled beyond the 
uniprocessor system due to the introduction of interprocessor communication and serial 
computation. Nevertheless, it can be concluded that the CPU time require for a problem of size N 
on 1 processor will execute in roughly the same amount of time as a problem of size N*P on P 

processors. The caveat is that as N is increased, the total number of time iterations needed to reach 
a steady state will grow roughly as O(JR). 

A second problem is presented to illustrate the effects of load balancing on the PGY algorithm. 
To this end, a cylindrical via through a ground plane coupling two 50 Q microstrip lines is 

presented. This is illustrated in Fig. 2.5. The via was analyzed on a 32-node iPSC/860. The two- 
dimensional mesh modeling the via consisted of 4867 quadrilateral cells. The three-dimensional 
mesh was 40 cells high along the vertical direction. The mesh was spatially decomposed using 
bom the RIP and the Greedy algorithms. The results of the decompositions are illustrated in Table 
2.5 The full simulation required 4000 time iterations. The CPU times required to perform the 
simulation versus the number of processors are illustrated in Table 2.6, comparing the times that 
resulted from using the RIP and the Greedy algorithms. Clearly, the Greedy algorithm results in 

improved CPU times. Figure 2.6 illustrates the speedups of the parallel algorithm, again based on 

the RIP and Greedy decompositions. The speedup here is defined as being the ratio of the CPU 

time required to execute the problem on P processors to that required by a single processor. This 
is also compared to the ideal case of a linear speedup. Excellent speedups are observed over the 32 
processors. Finally, the magnitude of the S-parameters are illustrated in Fig. 2.7. These results 
compare very well with the measured results presented in [9]. 
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Top View 

3.9 mm 

Side View 

I 1.6 mm 

1.6 mm 

0.7 mm 
Fig. 2.5     Geometry of a cylindrical via through a PEC ground plane. 

Table 2.5. 
Load Balance of the RIP and Greedy Algorithms 

RIP Greedy 
p Nc    :NC . 

'•max       '•min "max       "mux 
Nc   :NC . 

'•max       '•mui 
Nn    :Nn . 

"max       "nun 

1 4867:4867 4988:4988 4867:4867 4988:4988 
2 2542:2325 2629:2414 2434:2433 2541:2541 
4 1353:1142 1421:l2lÖ 1217:1216 1313:1289 
8 661 :571 743:621 609:608 6%: 662 
16 374:284 421:322 319:289 384:341 
32 203:131 236:151 153:151 190:177 

Table 2.6 
CPU Times Recorded .vs. # of Processors (P) on iPSC/860 

for the Microstrip Via (4000 time iterations) 

RTF Greedy 
7936.0 
4224.0 

7936.0 

2406.0 
T3ünr 

I2T91T 
T2T61T mm mm 

32TOT 
16 
32 384.00 
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Fig. 2.6    Magnitude of the S-parameters for the cylindrical via through a ground plane computed 
■sing the planar generalized Yee-algorithm. 
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2.3.  ELECTROMAGNETIC PROPERTIES OF MATERIALS - K. W. WHITES 

The emphasis of this research is on the computation of the effective constitutive parameters for 

synthetic chiral materials composed of (lossy) inclusions distributed in a (lossy) host, i.e. 

suspension, material. The "synthetic" attribute arises since the frequency spectrum under 

consideration is the microwave region where only man-made chiral materials are known to exist. 

M The basis for computation of these material parameters is a new methodology developed by the 

author and involves two basic components. The first is purely numerical and involves a Monte- 

Carlo method to compute the averaged scattering by a randomly distributed ensemble of inclusions 

which are constrained to always lie within a free-space volume of canonical shape. In this work, a 

spherical region is used. This averaging process is continued until convergence is obtained in the 

far-scattered fields. The second component is a mixture of analytical and numerical methods. The 

analytical part is to obtain a solution for the far-scattered fields of the canonically-shaped volume 

with constitutive equations of a presumed form. That is, a continuum model is applied. The 

numerical part is to match the scattered fields computed from the Monte-Carlo technique with those 

from the continuum model by varying the constitutive parameters. This is a difficult task due to the 

nonlinear behavior of the fields as a function of the constitutive parameters. This technique fully 

accounts for all mutual interactions between inclusions as well as self-interactions - no analytical 
simplifying models are used. 

In the physical application of these artificial materials, the handed inclusions will likely be 

suspended in a host having dielectric and/or magnetic properties different than those of free space. 

Therefore, quantification of the interaction between the inclusions and their host as well as the 

effects on the macroscopic parameters are of utmost importance. In the following section, the 

numerical methodology for computing these effective constitutive parameters will be outlined with 

emphasis on the wire-class inclusion geometry. Using this technique, the host material effects on 

the macroscopic constitutive parameters will be shown for both lossless and lossy host materials. 

2.3.1   Solution Methodology 

The composite chiral materials under investigation in this research effort are composed of many 

thin-wire helices which are randomly oriented and distributed within a host which is assumed to be 
simple, homogeneous and, perhaps, lossy in the sense that both er and nr are imaginary. The 

constitutive model chosen to describe this "artificial" material is the Drude, Bom, Federov form 

D=eE + eßVxE 

1l=lJI+HßVxlI n.i) 

The computation of the effective constitutive parameters for a composite material is a non-trivial 

task due to the complex nature of this structure. As described in [1] for a free-space host and 
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lossless inclusions, this difficulty can be overcome by applying a Monte-Carlo numerical solution 

together with an analytical solution for the scattering by a cbiral material sphere. This technique is 

inherently numerical in nature and is computationally intensive. However, the effective 

constitutive parameters in (3.1) can be quantified for any thin-wire shaped inclusion. 

All of the inclusion shapes to be analyzed in this summary are composed thin wires, such as a 

helix. Using the Resistive Tube Boundary Condition (RTBC) [2], an accurate and numerically 

efficient simulation for material wires can be obtained using a modified electric field integral 

equation (EHE) for the vector current /. Assuming that the length of the wire inclusion is much 

greater man the diameter of the wire, the EFIE is 

2» (3.2) 

where t is a unit tangent vector at any point on all inclusions and the superscript i indicates the 

incident electric field assuming ane/<w time dependence. In (3.2), 

Ä(r) = I(r>)*G^(r\n  md   *.(F)«^Q.G&,(f|r) (3.3,3.4) 

where the current and line charge are convolved with the smooth, thin-wire kernel 

4äR
* (3.5) 

and /?/ is taken as the distance from a point on the axis of any wire (source point) to another point 

on the surface of any wire (observation point). The complex surface resistivity Rs in (3.2) is given 

as [2] 

*.s-fih 
Mkä°)    Ho^oM 

(3.6) 

A moment method (MM) solution is formulated following the work of Glisson and Wilton [3] 

where the current on the wires is expanded in a set of N piece- wise triangular basis functions with 
amplitudes an as 

<i>.[f--f 
»«=1    |_'«    '«. 

(3.7) 

with the definitions of the quantities in (3.7) shown in Figure 3.1. The resulting discretized 

mtegro-differential equation is tested with N piece-wise constant functions, each extending from 

die centroid of one segment to the centroid of an adjacent segment (contour Cm as shown in Figure 

3.1), to form the N-by-N constant coefficient matrix equation 

ftJ = [Z-I«J (3-8) 
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In 
basis function n associated 
with this node 

(3.10) 

C 

Fig. 3.1.     Geometry relevant to the numerical scattering solution for thin-wire structures. 

where    Vm = ji(r)-F(r)dl  and   ZL«^J?(r)-I(r)Ä + *.(C*)-*^ • (3.9) 
c. cm 

The second step in the application of this technique is to compute the Monte-Carlo averaged 
scattered fields for an ensemble of thin-wire inclusions. For a particular distribution of thin-wire 
objects, the far-scattered fields can be found from the Fourier transform of the vector induced 
current I, for i = 0,<f>, as 

${84) ~ -jkm(r) i ■ [7[I{r')]}     where k = «VJCSI, V = VE75 

= g(r)E°~{e,<l>)     with 

S(r) = ^r   and   J[7(f')]= \l{r')eßrdV . (3.11) 
wins 

In (3.10), it is presumed that the currents have been numerically computed using the formulation 
discussed above. Since a material necessarily implies a very large number of small inclusions, a 
"brute force" numerical solution would be cost prohibitive. 

To overcome this serious constraint, a Monte-Carlo method is applied where the averaged, far- 
scattered fields are computed for a relatively small number of inclusions using the "random 

redistribution algorithm" of [1]. With this method, a plane wave is assumed incident at some fixed 

angle and the far-scattered electric fields are repeatedly computed using (3.10) for many different 
randomly computed arrangements of the inclusions. During each iteration, the inclusions are 
constrained to always lie within an imaginary spherical region, for reasons to be discussed below. 
Using all of these far-scattered fields, an arithmetic mean is computed at each angle of observation. 
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The second, and final, step in computing the effective constitutive parameters for these 

composite chiral materials is to compare the Monte-Carlo averaged scattered fields with those 

computed analytically for a chiral material sphere. Such an analytical solution was obtained by 

Bohren [4], and the form of these far-scattered fields is 

*   «-1 "v" + v I sin a J 

= 8(r)Er(0,4>) ai2) 

^«-^)f|^h*^^«^+fe*^*««£} (3.13) 
■*W(*.#) 

where P^ = P*l)(cosO) is the associated Legendre polynomial of the first kind, and />„(1) = dP? 
de 

In (3.12) and (3.13) it is assumed that the plane wave is incident in the z-direction with the electric 

field polarized parallel to the x-axis. Therefore, the incident field in the numerical solution for 

(3.10) will also have this restriction. 

An analytical computation of the effective constitutive parameters obtained by equating the 

"measured" scattered fields of (3.10) to the "computed" fields of (3.12) and (3.13) is extremely 

complicated due to the nonlinear dependence. It has been found that the method of simulated 

annealing is a cost efficient and highly accurate method for finding these material constants [1]. 

Using this approach a energy function, £, is defined as the difference between the measured and 
computed scattered fields at a discrete list of/ observation angles (0;,0,) 

,|2 E (^ Ws 1—ri—pvZfl£rpM) - ^MJf j(l£rT+l£r,l)^ (3.14) 

^M)-rMf} 
and subsequently minimized to yield the effective constitutive parameters. By the uniqueness 

theorem, this set of resulting values will be unique [1]. 

2.3.2  Results 

2.3 ? a    Panißl Verification of the Material Model Method 

As a partial verification of the accuracy of the numerical codes and the robustness of the 

algorithms used in the Monte-Carlo method for numerically modeling artificial materials, a test 

problem composed of a cloud of pec rods (shown in Figure 3.2) will be analyzed. Following the 

development in [5], an analytical approximation for the electric polarizability of a single pec rod, 
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Of", can be determined by approximating the rod as a truncated biconical structure with a radius 

which varies as a function of distance from the centroid of die bicone. For a rod of length 2L and 
radius b [5] 

1 o      4TCEL 
(3.15) 

The end effects have been ignored in (3.15) which, assuming thin rods, is a reasonable 
approximation. However, for increasingly large radii there is additional charge accumulation on 
die endcaps of die rod which would tend to increase a°. 

(a) pec rod (b) helix 

Fig. 3.2.    Geometry of the thin-wire inclusion shapes.  In the Monte-Carlo simulations, an 
imaginary exclusion sphere of radius r^ is assumed about each inclusion. 

With an incident electric field linearly polarized parallel to a small, isolated pec rod, the induced 
electric dipole moment p in terms of the electric field is given as 

p = a°(rd.E
iK)rd (3.16) 

for the rod axis pointing in die f4 direction. Using (3.15), an effective media characterization for a 
Cloud of randomly distributed, «on-interacting pec rods can easily be computed The traditional 
definition of the electric dipole moment density in terms of N (the number density), the spatial 
average of the induced electric dipole moment and the electric susceptibility is [6\ 

P=N{p) = eoXtE (3.17) 
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where p is given in (3.16). Since all mutual interaction of the rods is ignored, the spatial average 

in (3.17) can alternatively be computed by averaging (3.16) over all orientation angles of a single 

rod as 

Wi[/Msr (318) 

where /is some weighting function and 6 and <j> are local angle variables. Choosing /= 1 and 

noting that simply flipping the rod does not alter p, then 

G) = Z2!JPded<t> = %-E"K • (3.19) 
"    0 0 z 

From (3.15), (3.16) and (3.19), the average polarizability, at, and effective electric susceptibility, 

Xf, for a cloud of N non-interacting pec rods per unit volume are then 

ae=?*-  and   Xf =^   • (3.20) 

A comparison between the approximate analytical treatment of the Rayleigh scattering by a cloud 

of randomly distributed pec rods and the numerical solution method of this paper is given in Figure 

3.3. The rods all have dimensions 2L = 1.5 and b = 0.015 mm and are randomly oriented and 

distributed within a free-space spherical volume of radius 20 mm at a frequency of 1 GHz. The 

analytical results use (3.20) while the numerical solutions are computed using the random 

redistribution schedule of Section II. Also shown in Figure 3.3 is the numerical results when all 

mutual interactions between inclusions are ignored. In this case the separation between rods is no 
less than rexc = 4L, while for the full-wave solution r^ = 2L. The fact that the full-wave results 

lie between the other two is primarily due to a smaller basis function density in the full-wave 

results. 

2.3.2.b   Free space host, lossless inclusions results 

Using the methodology developed in the previous section, the effective chiral material 

parameters for a collection of pec helical inclusions were computed and are shown in Figure 3.4 

for the frequency range 1 to 13 GHz. The three-turn helices have dimensions a = P = 0.5 mm and 

b «= 0.05 mm while the computation of the effective constitutive parameters was done using the 

random redistribution Monte-Carlo algorithm for a collection of 40 helices in a free-space volume 
with TjpA = 4.9 mm. The number of Monte-Carlo iterations required for convergence varied from 

10-20 at low frequencies where the mutual coupling was small, to 40-60 at higher frequencies 

where the mutual coupling is increasing. 
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Fig. 3.3.    Effective media electric susceptibility comparison for a cloud of pec rods suspended in 
a free-space spherical volume of radius r—h - 20mm. 
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Fig. 3.4.    Effective chiral media parameters for a random distribution of three-turn pec helices 
having a-P = 0.5, b = 0.05 mm and A/ = 8.117 10 /m . Forty helices suspended in 
a free-space spherical region with r^f, ■ 4.9mm were used in the simulation. The 
symbols 'o' and 'x' designate right- and left-handed helices, respectively. 
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A 32-nodc Intel iPSC*/860 hypercube, together with the Intel ProSolver™-DES library, was used 

to generate most of the data in this report For each data point shown in Figure 3.4, approximately 

8 node-hours was required for each Monte-Carlo iteration (fill and solve for 40 helices and 60 

basis functions per helix) plus an additional 0.5 node-hours for the SA determination of the 

effective constitutive parameters. The integrals appearing in (3.9) were computed numerically 

«ting a Romberg integration technique which results in most of the 8 node-hours being spent 

filling the Z-matrix of (3.9). 

Returning to Figure 3.4, a number of important observations can be made which strengthen the 

argument for the accuracy of these effective material parameters. The first observation is that both 

e and /I are virtually identical, at the same frequency, for either the right- or left-handed inclusions 

while ß changes sign. These results are consistent with the invariant scalar nature of e and \i and 

the pseudoscalar nature of ß [7]. Upon a spatial inversion of the coordinate system, the field 

vectors E and D behave as true vectors while B and H transform as pseudovectors [8]. 

Assuming form invariance of (3.1), then e and \i must remain unchanged after a spatial reflection 

(and a random material), while ß must change sign. 

The second observation from the results in Figure 3.4 is that the magnitude of ß is of order 10"4 

m while the magnitude of // is approximately one over the entire frequency range shown. This 

same order of magnitude for ß was inferred from experimental data as communicated in [9], while 

in [10] ß and \i values were obtained, using a simplifying analytical model, near those reported in 
this work. It is noted from the data in Figure 3.4 that |#/J| < 1, where k s co-yfjie, as required for 

physically realizable chiral materials [9,11]. 

While the above two sets of observations lend credence to the reasonableness of the effective 

constitutive parameters for the artificial chiral material, it is also important to note their 

phenomenological behavior as a function of frequency. Below approximately 4 GHz, the 

parameters are relatively constant and ß remains nonzero. However, even with this sizable value 

of ß, the optical rotatory dispersion (ORD) for a path length d within the chiral material 

ORD4=-Iiw (0/cm) • (321) 

is vanishingly small as shown in Figure 3.5. This is consistent with the notion that the 

electromagnetic effects of chirality vanish at zero frequency [7,12]. In the DBF equations (3.1), 

mis can occur even for non-vanishing chirality factor ß. In fact, it can be shown using a Fourier 

transform approach as in [8, p. 306] that ß is an even function of frequency for lossless materials 

and hence may not vanish at dc. This is in contrast to other forms of the constitutive equations, 

such as the Lindell-Sihvola form [12, 13], which necessarily require the chirality parameter to 

vanish at zero frequency [12]. 
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Fig. 3.S.    Optical rotary dispersion (ORD) for the artificial chiral material described in Figure 
3.4. 

2.3.2.C   Lossless host and inclusions results 

Shown in Figure 3.6 are the effective material parameters when the host is a lossless dielectric 
having erhotl = 2 with inclusions of three-turn, right-handed helices having a = radius = 0.6mm, P 

= pitch = 0.3mm and b = wire radius = 0.05mm. For these results, 40 helices are suspended in a 
spherical volume of radius r^,h = 5mm yielding a number density N = 7.6394 107 m"3 and a metal 

volume concentration of 0.68073%. The general behavior of this material as a function of 
frequency is similar to that seen for the free-space host As expected, the resonant frequency of the 
inclusion is reduced by the factor ^jer ^.   For frequencies much lower than this resonant 

frequency, it is noted that a lossless dielectric host produces an increase in the effective relative 
permittivity proportional to the host permittivity while both ß and /^ increase only slightly. Hence, 

the increase in ORD, with respect to a free-space host, at low frequencies and small ß is 
proportional to £rbost. 

2.3.2.d   Lossy host lossless inclusions results 

Figure 3.7 shows these material parameters for the wire helices of the same dimensions and 
number density mentioned above, except with a host having erbMt =2-jl.   A notable, and 

expected, change in the response of this material, as compared to the lossless one, is the 
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Fig. 3.6.    Effective chiral media parameters for a random distribution of three-turn right-handed 
pec helices having a = 0.6, P = 0.3, b = 0.05 mm and N = 7.6394 107/m3. Forty 
helices suspended in a free-space spherical region with r_,A=4.9mm were used in the 
simulation. The host material has parameters ^ ^^ - 2, fi^ j,ost = 1. 
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Fig. 3.7.    Effective chiral media parameters for a random distribution of three-turn right-handed 
pec helices with dimension given in Fig. 3.6.  The host material has parameters 
^.host = 2-J1. /^.host = l- 
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appearance of die absorption band near die Afl resonance frequency of die helix (f« 8GHz). Such 
behavior has been noted before in connection with composite chiral materials [4]-[6]. Within the 
absorption band there occurs an "anomalous rotary dispersion" where the polarization tilt angle 

(not shown) of an emerging plane wave passing through a slab of this material changes sign as a 

function of frequency. Similar behavior has been measured for chiral composites in the microwave 

frequency bands [7]. 

2.3.2.e   Free-space host lossy inclusions results 

The final data to be presented in this section on materials modeling is for helical inclusions 

composed of lossy wires, i.e., wires that have finite conductivity. A model which is often used to 
describe the frequency dispersion in the material parameters is the single-resonance Condon model 
[13]. Since for the DBF equations (3.1), ß is an even function of frequency [1], the "Lorentz- 
type" frequency dependence can be written as 

1-x +jDx 

where A is the amplitude, D is a damping factor, x = ö)/ö)0 and w0 is the resonant radian 
frequency. By defining ß = ßf + jß" it can be shown that 

A{l-x2) ADx 
ß -l + (D'-2)*'+;t<   md  ß -! + (/)>-2)*>+*<    * (3'23) 

The three constants appearing in (3.23) are determined by fitting the curve to the numerically 
obtained "exact" values for the chirality parameter ß 

The effective chirality parameter for a three-turn right-handed helices composed of lossy wires 
are shown in Figures 3.8 and 3.9. In Figure 3.8, <x= Kr^S/m while in Figure 3.9, a = 105 S/m. 

The symbol-denoted data points were obtained using the numerical methodology outlined in this 
report together with the iPSC/860. The solid lines are the Lorentz-dispersion modeled results. It 

is seen that the agreement is quite good thus confirming the frequency dependence of this synthetic 
chiral materials in the anomalous dispersion bands. 
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Fig. 3.8. Effective chirality parameter ß for a random distribution of three-turn right-handed 
helices (wire conductivity = 10s S/m) with dimension given in Fig. 3.6. The host 
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Fig. 3.9. Effective chirality parameter ß for a random distribution of three-turn right-handed 
helices (wire conductivity = 103 S/m) with dimension given in Fig. 3.6. The host 
material has parameters ^fhost - 1, /i,^, = 1. 
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