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WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM 
AND THE ORDINAL T0? 

A SURVEY OF SOME RESULTS IN PROOF THEORY 

Jean H. Gallier 

Abstract: This paper consists primarily of a survey of results of Harvey Fried- 

man about some proof theoretic aspects of various forms of Kruskal's tree the- 

orem, and in particular the connection with the ordinal T0. We also include a 

fairly extensive treatment of normal functions on the countable ordinals, and 

we give a glimpse of Veblen hierarchies, some subsystems of second-order logic, 

slow-growing and fast-growing hierarchies including Girard's result, and Good- 

stein sequences. The central theme of this paper is a powerful theorem due to 

Kruskal, the "tree theorem", as well as a "finite miniaturization" of Kruskal's 

theorem due to Harvey Friedman. These versions of Kruskal's theorem are re- 

markable from a proof-theoretic point of view because they are not provable in 

relatively strong logical systems. They are examples of so-called "natural inde- 

pendence phenomena", which are considered by most logicians as more natural 

than the metamathematical incompleteness results first discovered by Gödel. 

Kruskal's tree theorem also plays a fundamental role in computer science, be- 

cause it is one of the main tools for showing that certain orderings on trees are 

well founded. These orderings play a crucial role in proving the termination of 

systems of rewrite rules and the correctness of Knuth-Bendix completion pro- 

cedures. There is also a close connection between a certain infinite countable 

ordinal called T0 and Kruskal's theorem. Previous definitions of the function in- 

volved in this connection are known to be incorrect, in that, the function is not 

monotonic. We offer a repaired definition of this function, and explore briefly 

the consequences of its existence. 

a For 

v&I 

ation. 

ST 
D 
D 

By ; at_ 

Availability Codes 



1  Introduction 1 

1  Introduction 

This paper consists primarily of a survey of results of Harvey Friedman [47] about some 

proof theoretic aspects of various forms of Kruskal's tree theorem [28], and in particular the 

connection with the ordinal To- Initially, our intention was to restrict ourselves to Kruskal's 

tree theorem and To. However, as we were trying to make this paper as self contained as 

possible, we found that it was necessary to include a fairly extensive treatment of normal 

functions on the countable ordinals. Thus, we also give a glimpse of Veblen hierarchies, 

some subsystems of second-order logic, slow-growing and fast-growing hierarchies including 

Girard's result, and Goodstein sequences. 

The central theme of this paper is a powerful theorem due to Kruskal, the "tree 

theorem", as well as a "finite miniaturization" of Kruskal's theorem due to Harvey Friedman. 

These versions of Kruskal's theorem are remarkable from a proof-theoretic point of view 

because they are not provable in relatively strong logical systems. They are examples of 

so-called "natural independence phenomena", which are considered by most logicians as 

more natural than the metamathematical incompleteness results first discovered by Gödel. 

Kruskal's tree theorem also plays a fundamental role in computer science, because it 

is one of the main tools for showing that certain orderings on trees are well founded. These 

orderings play a crucial role in proving the termination of systems of rewrite rules and the 

correctness of Knuth-Bendix completion procedures [27]. 

There is also a close connection between a certain infinite countable ordinal called To 

(Feferman [13], Schütte [46]) and Kruskal's theorem. This connection lies in the fact that 

there is a close relationship between the embedding relation ■< on the set T of finite trees 

(see definition 4.11) and the well-ordering < on the set O(T0) of all ordinals < r0. Indeed, 

it is possible to define a function h : T —► O(T0) such that h is (1). surjective, and (2). 

preserves order, that is, if s ■< t, then h(s) < h(t). Previous definitions of this function are 

known to be incorrect, in that, the function is not monotonic. We offer a repaired definition 

of this function, and explore briefly the consequences of its existence. 

We believe that there is a definite value in bringing together a variety of topics revolv- 

ing around a common theme, in this case, ordinal notations and their use in mathematical 

logic. We are hoping that our survey will help in making some beautiful but seemingly rather 

arcane tools and techniques known to more researchers in logic and theoretical computer 

science. 

The paper is organized as follows. Section 2 contains all the definitions about pre- 

orders, well-founded orderings, and well-quasi orders (WQO's), needed in the rest of the 

paper. Higman's theorem for WQO's on strings is presented in section 3. Several versions 
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2 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

of Kruskal's tree theorem are presented in section 4. Section 5 is devoted to several versions 

of the finite miniaturization of Kruskal's theorem due to Harvey Friedman. Section 6 is a 

fairly lengthy presentation of basic facts about the countable ordinals, normal functions, 

and IV Most of this material is taken from Schütte [46], and we can only claim to have 

presented it our own way, and hopefully made it more accessible. Section 7 gives a glimpse 

at Veblen hierarchies. A constructive system of notations for T0 is presented in section 8. 

The connection between Kruskal's tree theorem and To due to Friedman is presented in 

section 9. A brief discussion of some relevant subsystems of second-order arithmetic occurs 

in section 10. An introduction to the theory of term orderings is presented in section 11, 

including the recursive path ordering and the lexicographic path ordering. A glimpse at 

slow-growing and fast-growing hierarchies is given in section 12. Finally, constructive proofs 

of Higman's lemma are briefly discussed in section 13. 

2 Well Quasi-Orders (WQO's) 

We let N denote the set {0,1,2,...} of natural numbers, and N+ denote the set {1,2,...} of 

positive natural numbers. Given any n € N+, we let [n] denote the finite set {1,2,..., n}, 

and we let [0] = 0. Given a set 5, a finite sequence u over S, or string over 5, is a 

function u : [n] —> S, for some n G N. The integer n is called the length of u and is 

denoted by |u|. The special sequence with domain 0 is called the empty sequence, or empty 

string, and will be denoted by e. Strings can be concatenated in the usual way: Given 

two strings u : [m] —+ S and v : [n] —> 5, their concatenation denoted by u.v or uv, is 

the string uv : [m + n] —> S such that, uv(i) = u(i) if 1 < i < m, and uv(i) = v(i - m) 

ifm + l<t<m + n. Clearly, concatenation is associative and e is an identity element. 

Occasionally, a finite sequence u of length n will be denoted as (u\,... , un) (denoting u(i) 

as «,-), or as uj ... un. Strings of length 1 are identified with elements of S. The set of all 

strings over S is denoted as S*. 

An infinite sequence is a function s : N+ —> S. An infinite sequence s is also denoted 

by (sj)i>i, or by (si,s2,.. . ,s,,. ..). Given an infinite sequence 5 = (^,),>i, an infinite 

subsequence of s is any infinite sequence s' — (S'J)J>I such that there is a strictly monotonic 

function1 / : N+ —> N+, and s( = Sf^ for all i > 0. An infinite subsequence s' of s 

associated with the function / is also denoted as 5' = (-S/(i) )t>i • 

We now review preorders and well-foundedness. 

Definition  2.1    Given a set A, a binary relation ■< C A x A on the set A is a preorder 

A function / : N+ —► N+ is strictly monotonic (or increasing) iff for all i,j > 0, 1 < j implies that 
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2  Well Quasi-Orders (WQO's) 3 

(or quasi-order) iff it is reflexive and transitive. A preorder that is also antisymmetric is 

called a partial order. A preorder is total iff for every x, y E A, either x ■< y or y ■< x. The 

relation >; is defined such that x y y iff y ■< x, the relation -< such that 

x -< y    iff    x ■< y    and    y ^ i, 

the relation >- such that x y y iff y -< x, and the equivalence relation « such that 

x & y    iff   x ^ y    and    y ^ x. 

We say that a; and y are incomparable iff x ^ y and y ^ x, and this is also denoted by x | y. 

Given two preorders ^i and -<2 on a set A, <2 is an extension of Xj iff ^ C <2- In 

this case, we also say that -<\ is a restriction of ^2- 

Definition 2.2 Given a preorder ■< over a set .A, an infinite sequence (xi);>i is an infinite 

decreasing chain iff x, >- x,+i for all i > 1. An infinite sequence (xi),>i is an infinite 

antichain iff x,- | Xj for all i,j, 1 < i < j. We say that ^ is well-founded and that X is 

Noetherian iff there are no infinite decreasing chains w.r.t. >-. 

We now turn to the fundamental concept of a well quasi-order. This concept goes 

back at least to Janet [23], whose paper appeared in 1920, as recently noted by Pierre 

Lescanne [31]. Irving Kaplanski also told me that this concept is defined and used in his 

Ph.D thesis [25] (1941). The concept was further investigated by Higman [22], Kruskal [28], 

and Nash-Williams [36], among the forerunners. 

Definition 2.3 Given a preorder ■< over a set A, an infinite sequence (ai),>i of elements 

in A is termed good iff there exist positive integers i, j such that i < j and ai < a,j, and 

otherwise, it is termed a bad sequence. A preorder ^ is a well quasi-order, abbreviated as 

wqo, iff every infinite sequence of elements of A is good. 

Among the various characterizations of wqo's, the following ones are particularly use- 

ful. 

Lemma 2.4    Given a preorder Xona set A, the following conditions are equivalent: 

1. Every infinite sequence is good (w.r.t. ■<). 

2. There are no infinite decreasing chains and no infinite antichains (w.r.t. ■<). 

3. Every preorder extending X (including ■< itself) is well-founded. 
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4 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

Proof. (1) =>• (2). Suppose that (x,),>i is an infinite sequence over A such that x, >- x,+i 

for all i > 1. Hence, for every t > 1, 

^t'+i ^ ^ii     and    x, -£ x,+i. (*) 

Since X satisfies (1), there exist some integers i,j > 0 such that i < j and x, X Xj. If 

j = i + 1, this contradicts (*). If j > (z' + l), by transitivity of X, since XJ_J X . . . X x; X x;, 

we have Xj_i X x;-, contradicting (*). Hence there are no infinite decreasing sequences, 

that is, X is well-founded. Also, it is clear that the existence of an infinite antichain would 

contradict (1). 

(2) => (3). This proof is identical to the first part of the proof of (1) => (2). 

(3) =£■ (1). If (1) fails, then there is some infinite sequence s = (x,),>i such that 

Xi ■£ Xj for all i, j, 1 < i < j. But then, we can extend X to a preorder X' such that s 

becomes an infinite decreasing chain in ■<', contradicting (3). □ 

It is interesting to observe that the property of being a wqo is substantially stronger 

that being well-founded. Indeed, it is not true in general that any preorder extending a 

given well-founded preorder is well-founded. However, by (3) of lemma 2.4, this property 

characterizes a wqo. Every preorder on a finite set (including the equality relation) is a 

wqo, and by (3) of lemma 2.4, every partial ordering that is total and well-founded is a wqo 

(such orderings are called well-orderings). 

The following lemma turns out to be the key to the proof of Kruskal's theorem. It is 

implicit in Nash-Williams [36], lemma 1, page 833. 

Lemma 2.5    Given a preorder ■< on a set A, the following are equivalent: 

(1) X is a wqo on A. 

(2) Every infinite sequence s — (si),>i over A contains some infinite subsequence s' — 

(sf(i))i>i such that sy(,-) X Sf^+i) for all i > 0. 

Proof. It is clear that (2) implies (1). Next, assume that X is a wqo. We say that a member 

5, of a sequence s is terminal iff there is no j > i such that s, ■< Sj. We claim that the 

number of terminal elements in the sequence 5 is finite. Otherwise, the infinite sequence t of 

terminal elements in s is a bad sequence (because if the sequence t was good, then we would 

have Sh ^ s* for two terminal elements in s, contradicting the fact that Sh is terminal), 

and this contradicts the fact that X is a wqo. Hence, there is some Ar > 0 such that s, is 

not terminal for every i > N. We can define a strictly monotonic function / inductively 

as follows.   Let /(l) = N, and for any i > 1, let f(i + 1) be the least integer such that 
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3 WQO's On Strings, Higman's Theorem 5 

5/(i) di sf(i+i) an(i /(*' + 1) > /(O (since every element sy(,) is not terminal by the choice of 

N and the definition of /, such an element exists). The infinite subsequence s' = (s/(i))i>i 

has the property stated in (2). D 

As a corollary of lemma 2.5, we obtain another result of Nash-Williams [36]. Given 

two preorders (di,Ai) and (:^2>-<4-2), the cartesian product A\ x A2 is equipped with the 

preorder X defined such that (01,02) ^ (a^,^) iff a\ -<\ a\ and 02 ^2 o!2. 

Lemma 2.6   If -<\ and <2 are wqo, then X is a wqo on ^4i x A2. 

Proof. Consider any infinite sequence s in A\ Y. A2. This sequence is formed of pairs 

(sj,s'/) G >li x ^42, and defines an infinite sequence s' = (s'l)l>i over At and an infinite 

sequence s" = (s"),->i over A2. By lemma 2.5, since Xx is a wgo, there is some infinite 

subsequence <' = (•s'y(a)i>i of s' such that s'f^ Xj s^(,-+1) for all i > 0. Since -<2 is also 

a wgo and t" = (s"f(i))i>i is an infinite sequence over A2, there exist some i, j such that 

/(*) < fU) and 5/(i) -2 s/(i)" Then' we have (s/(0'5/(o) - (5/(»'s/(i)^ which shows that 

the sequence s is good, and that ^ is a wqo. D 

In turn, lemma 2.6 yields an interesting result due to Dickson [12], published in 1913! 

Lemma 2.7 Let n be any integer such that n > 1. Given any infinite sequence (st)i>i of 

n-tuples of natural numbers, there exist positive integers i, j such that i < j and S{ ^„ Sj, 

where -<n is the partial order on n-tuples of natural numbers induced by the natural ordering 

< onN. 

Proof. The proof follows immediately by observing that < is a wqo on N and that lemma 

2.6 extends to any n > 1 by a trivial induction. □ 

Next, given a wqo ■< on a set A, we shall extend ^ to the set of strings A*, and prove 

what is known as Higman's theorem [22]. 

3 WQO's On Strings, Higman's Theorem 

Our presentation of Higman's theorem is inspired by Nash-Williams's proof of a similar 

theorem ([36], lemma 2, page 834), and is also very similar to the proof given by Steve 

Simpson ([47], lemma 1.6, page 92). Nash-Williams's proof is not entirely transparent, and 

Simpson's proof appeals to Ramsey's theorem. Using lemma 2.5, it is possible to simplify 

the proof. A proof along this line has also been given by Jean Jacques Levy in some 

unpublished notes [33] that came mysteriously in my possession. 
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6 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

Definition 3.1 Let C be a preorder on a set A. We define the preorder < (string em- 

bedding) on A* as follows: e C u for each u € A*, and, for any two strings u = u1u2...urn 

and v = v\U2 ... vn, 1 < m < n, 

u1u2...um < vxv2 .. .vn 

iff there exist integers ju... ,jm such that I < ji < j2 < ■ ■ ■ < jm-\ < jm <n and 

u\ Q Vjt,  ..., um C. vJni. 

It is easy to show that <C is a preorder, and we leave as an exercise to show that < is 

a partial order if C is a partial order. It is also easy to check that < is the least preorder 

on A* satisfying the following two properties: 

(1) (deletion property) uv < uav, for all u,v £ A* and a € .4; 

(2) (monotonicity) uav < ubv whenever a C. b, for all u,v 6 .4* and a, b G A. 

Theorem 3.2    (Higman) If C is a wqo on A, then < is a wqo on .4*. 

Proof. Assume that < is not a wqo on A*. Then, there is at least one bad sequence from 

A*. Following Nash-Williams, we define a minimal bad sequence t inductively as follows. 

Let ti be a string of minimal length starting a bad sequence. If tx,. .. , tn have been defined, 

let tn+} be a string of minimal length such that there is a bad sequence whose first n 

elements are tu . .. ,tn. Note that we must have |i,| > 1 for all i > 1, since otherwise the 

sequence t is not bad (since e < u for each u 6 A"). Since \t,\ > 1 for all i > 1, let 

where a, G A is the leftmost symbol in *,-. The elements a, define an infinite sequence 

a = (a,)i>i in ^4, and the s, define an infinite sequence s = (s,),^ in A*. Since C is a 

wgo on A, by lemma 2.5, there is an infinite subsequence a1 = (a/(l)),>i of a such that 
G/(i) E a/(i+i) f°r all i > 0. We claim that the infinite subsequence s' = (^/(i))i>i of s is 

good. Otherwise, if s' = (s/(i))i>i is Dad, there are two cases. 

Case 1: /(l) = 1. Then, the infinite sequence s' = («/(,-)),■>! is a bad sequence with 

\si\ < \ti\, contradicting the minimality of t. 

Case 2: /(l) > 1. Then, the infinite sequence 

t' =  (<1,..., </(l)_i, S/(1),S/(2),...,S/(>),...) 

is also bad, because tk - aksk for all k > 1 and i, < Äy(j) implies that <,- < i/(j) by the 

definition of <C. But |^/(i)| < |</(i)|, and this contradicts the minimality of t. 
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4   WQO's On Trees, Kruskal's Tree Theorem 7 

Since the sequence s' = (sf(i))i>i 1S g°°d? there are some positive integers i,j such 

that f(i) < f(j) and s^,) <C sf^y Since the infinite sequence a' = (ay(,)),->i was chosen 

such that fl/(,-) C a/(*+i) for all i > 0, by the definition of <C, we have 

af(i)sf(i) <af(j)sf(j), 

that is, fy(i) <C i/(j) (since tk = akSk for all A; > 1). But this shows that the sequence t is 

good, contradicting the initial assumption that t is bad. □ 

A theorem similar to theorem 3.2 applying to finite subsets of A can be shown. Fol- 

lowing Nash-Williams [36], let !F(S) denote the set of all finite subsets of S. Given any 

two subsets A, B of S, a function / : A —> B is non-descending if a Q f(a) for every 

a € A. The set F(S) is equipped with the preorder < defined as follows: 0 < yl for every 

A G F(S), and for any two nonempty subsets A, B € ^"(5), .4 < ß iff there is an injective 

non-descending function / : A —> B. The proof of theorem 3.2 can be trivially modified to 

obtain the following. 

Theorem 3.3   (Nash-Williams) If C is a wqo on A, then <C is a wqo on T(A). 

We now turn to trees. 

4 WQO's On Trees, Kruskal's Tree Theorem 

First, we review the definition of trees in terms of tree domains. 

Definition 4.1    A tree domain D is a nonempty subset of strings in NÜJ. satisfying the 

conditions: 

(1) For all u,v € N^, if uv E D then u € D. 

(2) For all u € N+, for every i € N+, if m G £) then, for every j, 1 < j < i, uj € D. 

The elements of D are called tfree addresses or nodes. We now consider labeled trees. 

Definition 4.2    Given any set E of labels, a E-iree for term,) is any function <:£>—> E, 

where Z> is a tree domain denoted by dom{t). 

Hence, a labeled tree is defined by a tree domain D and a labeling function t with 

domain D and range E. The tree address e is called the root of t, and its label t(e) is 

denoted as root(t). A tree is finite iff its domain is finite. In the rest of this paper, only 

finite trees will be considered. The set of all finite E-trees is denoted as T^. 
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8 WH A T 'S SO SPECIA LABOUTKR USKA L 'S THEOREM? 

Definition 4.3 Given a (finite) tree t, the number of tree addresses in dom(t) is denoted 

by |/|. The depth of a tree t is defined as depth(t) = max({\u\ | u E dom(t)}). The number 

of immediate successors of the root of a tree is denoted by rank(t), and it is defined formally 

as the number of elements in the set {i \ i G N+ and i G dom(t)}. Given a tree t and some 

tree address u G dom(t), the subtree oft rooted at u is the tree tju whose domain is the set 

{v | uv G dom(t)} and such that t/u(v) — t(uv) for all v in dom{t/u). 

A tree t such that ronk(t) = 0 is a one-node tree, and if root(t) = /, t will also 

be denoted by /. Given any k > 1 trees ti,...,tk and any element / E S, the tree 

t = /(fi,... ,/jt) is the tree whose domain is the set 

i=k 

{e} U \J{iv | u G dom(<,-)}, 

and whose labeling function is defined such that t(e) = f and /(?(/) = tt(u), for w G dom(ti), 

1 < i < k. It is well known that every finite tree t is either a one-node tree, or can be 

written uniquely as t = f(t/l,...,t/k), where / = root(e), and k — rank(t). It is also 

convenient to introduce the following abbreviations. Let C be a binary relation on trees. 

Then 

sQf(...,s,...) 

is an abbreviation for s C /(si,..., s,_i, 6,5I+],..., sn), 

/(•■•)£/(...,*,...) 

is an abbreviation for f(su ... ,st-Usl+u... ,sn) C. f(si,...,st-Us,s,+l,...,sn), 

/(...,s,...)C<7(...,*,...) 

is an abbreviation for f(si,...,sl-1,s,st+i,...,sn) C ^(.sj,..., 5,_i, Mi+i, • • • ,*n), for 

some trees 5,<, 5j,... ,-s,_] ,Si+i,..., 5„, 1 < i < n. When n — 1, these are understood as 

«E/W, /E/(5), and f(s) Q g(t). 

4.1  Kruskal's Theorem, Version 1 

Assuming that E is preordered by C, we define a preorder ^ on S-trees extending C in the 

following way. 

Definition 4.4 Assume that C is a preorder on S. The preorder X on Ts (homeomorphic 

embedding) is defined inductively as follows: Either 
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4   WQO's On Trees, Kruskal's Tree Theorem 9 

(1) /^<7(<i,...,*n)iff/E<7;or 

(2) s <g{..., *,...) iff s <t; or 

(3) /(si,...,sm) X g(*i,... ,tn) iff / C g, and there exist some integers j\,... ,jm such 

that 1 < ii < J2 < • • • < jm-i < jm < ", 1 < rn < n, and 

Note that (1) can be viewed as the special case of (3) for which m = 0, and n = 0 

is possible. It is easy to show that ^ is a preorder. One can also show that ■< is a 

partial order if C is a partial order. This can be shown by observing that s < t implies 

that depth(s) < depth(t). Hence, if s X t and t ■< s, we have depth(s) — depth(t) and 

rank(s) = rank(t) (since only case (1) or (3) can apply). Then, we can show that s = t by 

induction on the depth of trees. 

It is also easy to show that the preorder ^ can be defined as the least preorder 

satisfying the following properties: 

(1) s :</(...,*,...); 

(2) /(...) d/(...,*,...); 

(3) /(... ,s,...) ■< g(. ..,<,...) whenever f Q g and s ^ t. 

We now prove a version of Kruskal's theorem [28]. 

Theorem 4.5   (Kruskal's tree theorem) If C is a wqo on E, then ■< is a wgo on T%. 

Proof.   Assume that X is not a wgo on Tx;.   As in the proof of theorem 3.2, we define a 

minimal bad sequence t of elements of TE satisfying the following properties: 

(i) |*i | < |*i | f°r ah bad sequences t'; 

(ii) |*n+i| < |*'n+1| for all bad sequences *' such that t[ = t{, 1 < i < n. 

We claim that |£,| > 2 for all but finitely many i > 1. Otherwise, the sequence of 

one-node trees in t must be infinite, and since C is a 1050, by clause (1) of the definition of 

:<, there are i, j > 0 such that i < j and *,- ^ <j, contradicting the fact that t is bad. 

Let s = (si)i>\ be the infinite subsequence of t consisting of all trees having at least 

two nodes, and let / = (/,)j>i be the infinite sequence over S defined such that /,• = root(s{) 

for every i > 1. Since C is a wqo over S, by lemma 2.5, there is some infinite subsequence 

/' = (/p(t))i>i of / such that U(i) E U(i+i) for all i > 1. Let 

£> = {a„(j)/j I t > 1, 1 < j < ronfc(sv(0)}. 
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We claim that X is a wqo on T>. Otherwise, let r = (rj,r2,... ,rj,...) be a bad sequence 

in T>. Because r is bad, it contains a bad subsequence r' = {r\,r'2,... ,r';,...) with the 

following property: if i < j, then rj is a subtree of a tree tp and r' is a subtree of a tree 

tq such that p < q. Indeed, every t, only has finitely many subtrees, and r being bad must 

contain an infinite number of distinct trees. Thus, we consider a bad sequence r with the 

additional property that if i < j, then r, is a subtree of a tree tp and r, is a subtree of a 

tree tq such that p < q. Let n be the index of the first tree in the sequence t such that 

tn/j — r\ for some j. If n = 1, since |rj | < \t\\ and the sequence r is bad, this contradicts 

the fact that t is a minimal bad sequence. If n > 1, then the sequence 

(*i,<2,- • • ,*n-i,ri,r2,... ,rj,...} 

is bad, since by clause (ii) of the definition of ^, for any k s.t. 1 < k < n — 1, t^: ■< r; 

would imply that tk ■< th for some th and / such that r, = f/,// and A- < h, since each r, is a 

subtree of some tp such that n — 1 < p. But since |r21 < |tfn|, this contradicts the fact that 

t is a minimal bad sequence. Hence, T> is a lu^o. 

By Higman's theorem (theorem 3.2), the string embedding relation <C extending the 

preorder X on T> is a to^o on T>* . Hence, considering the infinite sequence over V* 

((«v»(i)/l, *v(D A ■■•■> sv(i)/rankiSv(i) )>, • • • , (Sv(j)/1, MJ)/
2
' • • • ' s>p(j)/rank{s<pij) ))>•••), 

there exist some z,j > 0 such that, letting m = ranfc(sv(,-)) and n = ro.nfc(sv,(j)), 

(MoA'MoA • •. ,s^(i)/m) <C (sv(»/l, s^{j)/2,..., s^^/n), 

that is, there are some positive integers jj < j2 < • • • < jm-i < jm < " such that 

Since we also have /^(i) E ff(j)i by clause (3) of the definition of ^, we have sv(i) d s<p(j)- 

But s is a subsequence of i, and this contradicts the fact that £ is bad. Hence, X is a w^o 

on Tg. D 

The above proof is basically due to Nash-Williams. 

4.2  Kruskal's Theorem, Version 2 

Another version of Kruskal's theorem that assumes a given preorder on 7V (and not just 

E) can also be proved. This version (found in J.J. Levy's unpublished notes [33]) can be 

used to show that certain orderings on trees are well-founded. 
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Definition 4.6    Assume that C is a preorder on Ts.   The preorder ■< on Ts is defined 

inductively as follows: Either 

(1) / * g(U,...,<„) iff / E g(tu- ■ ■, <«); or 

(2) a X $(...,<,...) iff* :«<; or 

(3) s = /(si,... ,sm) ■< g{t\,... ,tn) = t iff s Cl, and there exist some integers ji,... ,jm 

such that 1 < j\ < j2 < • ■ ■ < jm-i < jm < n, 1 < rn < n, and 

*1   !^ 'ji 5    • • • i   ^m   2 ' Jm' 

It is easy to show that ^ is a preorder. It can also be shown that X is a partial order 

if C is a partial order. Again, (1) can be viewed as the special case of (3) for which m = 0 

and, n = 0 is possible. It is also easy to see that ■< can be defined as the least preorder 

satisfying the following properties: 

(1) slf(...,*,...); 

(2) s = f(si,...,sm) X g(ti,... ,tn) — t whenever s C t and there exist some integers 

Ji, • • • Jm such that 1 < ji < >2 < • • • < im-i < jm <n, 1 <m <n, and 

51    Ij   *Jx 1    ■ • ■ 1    sm   l5  *jm • 

We can now prove another version of Kruskal's theorem. 

Theorem 4.7   (J.J. Levy) If C is a 1050 on Ts, then ^ is a 1090 on T-%. 

Proof. Assume that ■< is not a wqo on T%. As in the proof of theorem 4.5, we find a 

minimal bad sequence t of elements of TE . 

Since C is a togo, there is some infinite subsequence t' — (^(,))i>i of t such that 

txp(i) — *V(«+i) ^or a^ * — •'•• ^e claim that 1*0(01 ^ 2 for all but finitely many i > 1. 
Otherwise, the sequence of one-node trees in t' must be infinite, and since C is a wqo, by 

clause (1) of the definition of X, there are i,j > 0 such that ip(i) < ip(j) and ^(,-) d *t/>(j)» 

contradicting the fact that t is bad. 

Let s = (i' (j))i>i be the infinite subsequence of t' consisting of all trees having at least 

two nodes. Since s is a subsequence of t' and t' is a subsequence of i, s is a subsequence of 

t of the form s — (^(t))«>i f°r some strictly monotonic function (p. Let 

T> = {t<p(i)/J I * > 1, 1 < i < ranfc^,-))}. 

As in the proof of theorem 4.5, we can show that ■< is a wqo on V. 
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By Higman's theorem (theorem 3.2), the string embedding relation -C extending the 

preorder X on D is a wqo on T>*. Hence, considering the infinite sequence over V* 

((*v>(i)/l,*v(i)/2, • • •,^(lj/ranfc^i))),... , (^(»/l, *v(j)/2,...,/„(,)/rank(t^U))),...), 

there exist some z,j > 0 such that, letting m = rank(t^i)) and n = rank(t^j)), 

(^(,)/l,^(i)/2, ...,^(l)/m) < (t^{j)/l,t(fiU)/2,... J^^/n), 

that is, there are some positive integers ji < j2 < • • • < jm-i < im < n such that 

'v»(i)/l ^ t^(j)/ju  • • ■ , tv(i)lrn ■< tv(j)/jn,. 

Since we also have ^(i) C tf^) (because s = (t<p(i))i>i is also a subsequence of t' = (*,/,(,•) )i>i 

and i^(,) C tf^(i+1) for all i > 1), by clause (3) of the definition of ■<, we have t^) di ^0)- 

But this contradicts the fact that t is bad. Hence, ■< is a wqo on 7V. D 

This second version of Kruskal's theorem (theorem 4.7) actually implies the first ver- 

sion (theorem 4.5). Indeed, if C. is a preorder on S, we can extend it to a preorder on 7V 

by requiring that s C. t iff root(s) C. root(t). It is easy to check that with this definition of 

C, definition 4.6 reduces to 4.4, and that theorem 4.7 is indeed theorem 4.5. 

Kruskal's theorem has been generalized in a number of ways. Among these general- 

izations, we mention some versions using unavoidable sets of trees due to Puel [43, 44], and 

a version using well rewrite orderings due to Lescanne [30]. 

4.3  WQO's and Weil-Founded Preorders 

This second version of Kruskal's theorem also has the following applications. Recall that 

from lemma 2.4 a wqo is well-founded. The following proposition is very useful to prove 

that orderings on trees are well-founded. 

Proposition 4.8 Let Cbea preorder on Ts and let < be another preorder on TE such 

that: 

(1) If / < g(U ,...,<„), then / < gfa ,...,<„); 

(2) ,</(...,,,...); 

(3) If /(si,... ,sm) < g(h,- • ■ ,<n), and sx < *_,,,.. .,sm < t]rn for some ju.. .,jm such 

that I <ji < ... < jm <n, then /($i,...,sm) < g(tu ... ,tn). 

If <C is a wqo, then < is a wqo. 
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Proof. Let ■< be the preorder associated with <C as in definition 4.6. Then, an easy induction 

shows that the conditions of the proposition imply that ■< C <. By theorem 4.7, since <C is 

a wqo, ■< is also a wqo, which implies that < is a wqo. By lemma 2.4, < is well-founded. □ 

The following proposition also gives a sufficient condition for a preorder on trees to 

be well-founded. 

Proposition 4.9 Assume S is finite, and let < be a preorder on TE satisfying the following 

conditions: 

(1) s</(...,*,...); 

(2) s < t implies that /(..., s, ...)</(...,£,...); 

(3) /(...)</(...,',•••)• 

Then, < is well-founded. 

Proof. Let <C be the preorder on TE defined such that s <C t iff root(s) = root(t). Since S 

is finite, < is a wqo. Since it is clear that <C and < satisfy the conditions of proposition 

4.8, < is well-founded. □ 

Proposition 4.8 can be used to show that certain orderings on trees are well-founded. 

These orderings play a crucial role in proving the termination of systems of rewrite rules 

and the correctness of Knuth-Bendix completion procedures. An introduction to the theory 

of these orderings will be presented in section 11, and for more details, the reader is referred 

to the comprehensive survey by Dershowitz [7] and to Dershowitz's fundamental paper [8]. 

It is natural to ask whether there is an analogue to Kruskal's theorem with respect to 

well-founded preorders instead of wqo. Indeed, it is possible to prove such a theorem, using 

Kruskal's theorem. 

Theorem 4.10   If Q is a well-founded preorder on TE, then X is well-founded on TE. 

Proof. The proof is implicit in Levy [33], Dershowitz [8], and Lescanne [29]. Unfortunately, 

one cannot directly apply theorem 4.7, since C is not necessarily a wqo. However, there 

is a way around this problem. We use the fact that every well-founded preorder C can be 

extended to a total well-founded preorder <. This fact can be proved rather simply using 

Zorn's lemma. The point is that < being total and well-founded is also a wqo. Now, we 

can apply theorem 4.7 since < is a wqo on TE, and so << is a wqo on TE, and thus it is 

well-founded. Finally, we note that ^< contains <, which proves that ■< is well-founded. □ 

Exercise: Find a proof of theorem 4.10 that does not use Zorn's lemma nor Kruskal's 

theorem. 
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14 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

4.4  Kruskal's Theorem, A Special Version 

Kruskal's tree theorem is a very powerful theorem, and we state more interesting conse- 

quences. We consider the case where E is a finite set of symbols. 

Definition 4.11    The preorder ■< on Ts is defined inductively as follows: Either 

(1) / 1 f(U ,...,*„), for every / € E; or 

(2) s ^ /(...,*,...) iff s ±t; or 

(3) f(si,... ,sm) ^ f(t\,... ,tn) iff 1 < m < n, and there exist some integers ji,. . . ,jm 

such that I < ji < J2 < • ■ • < jm-i < jm < n and 

sl   J 'j! i    ■ ■ ■ i   sm   _1 *jm ■ 

Again, (1) can be viewed as the special case of (3) in which m = 0. For example, 

f(f(h,h),h(a,b)) =< /J(f(s(f(h(6),a,h(6))),S(a)>Mh(a,b,C)))). 

It is also easy to show that the preorder X can be defined as the least preorder 

satisfying the following properties: 

(1) s±f(...,s,...)- 

(2) /(...H/(...,.,...); 

(3) /(..., s,...) :< /(...,<,...) whenever s ■< t. 

Kruskal's theorem implies the following result. 

Theorem 4.12   Given a finite alphabet E, ■< is a wqo on T^. 

Proof. Since any preorder on a finite set is a wqo, the identity relation on E is a wqo. But 

then, it is trivial to verify that the preorder •< of definition 4.11 is obtained by specializing 

C to the identity relation in definition 4.4. Hence, the theorem is direct a consequence of 

theorem 4.5. □ 

In particular, when E consists of a single symbol, we have the well-known version 

of Kruskal's theorem on unlabeled trees [28], except that in Kruskal's paper, the notion 

of embedding is defined as a certain kind of function between tree domains. We find it 

more convenient to define the preorder ■< inductively, as in definition 4.4. For the sake of 

completeness, we present the alternate definition used by Simpson [47]. 
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4   WQO's On Trees, Kruskal's Tree Theorem 15 

4.5 Tree Domains And Embeddings: An Alternate Definition 

First, given a partial order < on a set A, given any nonempty subset S of A, we say that 

< is a total order on S iff for all x, y 6 5, either x < y, or y < x. We also say that S is a 

chain (under <). 

Definition 4.13   A finite tree domain is a nonempty set D together with a partial order 

< satisfying the following properties: 

(1) D has a least element _L (with respect to <). 

(2) For every x G D, the set anc(x) = {y G D \ y < x} of ancestors of x is a chain under 

<. 

Clearly _L corresponds to the root of the tree, and for every x £ D, the set anc(x) = 

{y G D | y < x} is the set of nodes in the unique path from the root to x. The main difference 

between definition 4.1 and definition 4.13 is that independent nodes of a tree domain as 

defined in definition 4.13 are unordered, and, in particular, the immediate successors of a 

node are unordered. 

Given any two elements x,y G D, the greatest element of the set anc(x) f) anc(y) is 

the greatest lower bound of x and y, and it is denoted as x A y. It is the "lowest" common 

ancestor of x and y. A (labeled) tree is defined as in definition 4.2, but using definition 

4.13 for that of a tree domain. The notion of an embedding (or homeomorphic embedding) 

is then defined as follows. Let E be a set with some preorder C. 

Definition 4.14   Given any two trees t\ and t2 with tree domains (D\, <\) and (D2, <2), 

an embedding h from ti to t2 is an injective function h : (Di, <i) —> (D2, <2) such that: 

(1) h(x A y) = h(x) A h(y), for all x, y G Di • 

(2) *i(x) C t2(h(x)), for every x G Di- 

It is easily shown that h is monotonic (choose x,y such that x <i y). One can verify 

that when the immediate successors of a node are ordered, definition 4.4 is equivalent to 

definition 4.14. 

Next, we shall consider an extremely interesting version of Kruskal's theorem due to 

Harvey Friedman. A complete presentation of this theorem and its ramifications is given 

by Simpson [47]. 
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5  Friedman's Finite Miniaturization of Kruskal's Theorem 

Friedman's version of Kruskal's theorem, which has been called a finite miniaturization 

of Kruskal's theorem, is remarkable from a proof-theoretic point of view because it is not 

provable in relatively strong logical systems. Actually, Kruskal's original theorem is also 

not provable in relatively strong logical systems, but Kruskal's version is a second-order 

statement (a Ti\ statement, meaning that it is of the form VXA, where A' is a second-order 

variable ranging over infinite sequences and A is first-order), whereas Friedman's version 

is a first-order statement (a II!] statement, meaning that it is of the form \/x3yA, where A 

only contains bounded first-order quantifiers). 

From now on, we assume that E is a finite alphabet, and we consider the embedding 

preorder of definition 4.11. 

Theorem 5.1 (Friedman) Let E be a finite set. For every integer k > 1, there exists 

some integer n > 2 so large that, for any finite sequence {t\,. . . ,tn) of trees in T% with 

\tm\ 5: k(m + 1) for all m, 1 < m < n, there exist some integers z, j such that 1 < i < j < n 

and ti -< tj. 

Proof. Following the hint given by Simpson [47], we give a proof using theorem 4.12 and 

König's lemma. Assume that the theorem fails. Let us say that a finite sequence (t\,..., tn) 

such that \tm\ < k(m + 1) for all m, 1 < m < n, is good iff there exist some integers i,j such 

that 1 < i< j < n and t{ -< tj, and otherwise, that it is bad. Then, there is some k > 1 

such that for all n > 1, there is some bad sequence (t\,... ,tn) (and \tm\ < k(m + 1) for all 

m, 1 < m < n). Observe that any initial subsequence (t\,... ,tj), j < n, of a bad sequence 

is also bad. Furthermore, the size restriction (\tm\ < k(m + 1) for all m, 1 < m < n) and 

the fact that E is finite implies that there are only finitely many bad sequences of length n. 

Hence, the set of finite bad sequences can be arranged into an infinite tree T as follows: the 

root of T is the empty sequence, and every finite bad sequence t is connected to the root by 

the unique path consisting of all the initial subsequences of t. From our previous remark, 

this infinite tree is finite-branching. By König's lemma, this tree contains an infinite path 

s. But since all finite initial subsequences of s are bad, s itself is bad, and this contradicts 

theorem 4.12. □ 

A stronger version of the previous theorem also due to Friedman holds. 

Theorem 5.2 (Friedman) Let E be a finite set. For every integer k > 2, there exists some 

integer n > 2 so large that, for any finite sequence (ti,..., tn) of trees in T% with \tm \ < m 

for all m, 1 < m < n, there exist some integers i\,... , z* such that 1 < z'i < ... < ik < n 

and tix ■< ... ■< tik. 
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Proof.  The proof is very similar to that of theorem 5.1, but lemma 2.5 also needs to be 

used at the end. □ 

Note that theorems 5.1 and 5.2 are both of the form Vk3nA(k,n), where A(k,n) only 

contains bounded quantifiers, that is, they are II2 statements. Hence, each statement defines 

a function Fr, where Fr(k) is the least integer n such that Vk3nA(k,n) holds. 

One may ask how quickly this function grows. Is it exponential, super exponential, 

or worse? Well, this function grows extremely fast. It grows faster than Ackermann's 

function, and, even though it is recursive, it is not provably total recursive in fairly strong 

logical theories, including Peano's arithmetic. We will consider briefly hierarchies of fast- 

growing functions in section 12. For more details, we refer the reader to Cichon and Wainer 

[4], Wainer [54], and to Smorynski's articles [50,51]. 

The other remarkable property of the two previous theorems is that neither is provable 

in fairly strong logical theories (ATR0, see section 10). The technical reason is that it 

is possible to define a function mapping finite trees to (rather large) countable ordinals, 

and this function is order preserving (between the embedding relation -< on trees and the 

ordering relation on ordinals). This is true in particular for the ordinal Fo (see Schütte [46], 

chapters 13, 14). For further details, see the articles by Simpson and Smorynski in [21]. We 

shall present the connection with To in sections 9 and 10. 
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6 The Countable Ordinals 

In this section, we gather some definitions and results about the countable ordinals needed 

to explain what r0 is. This ordinal plays a central role in proof theoretic investigations of 

a subsystem of second-order arithmetic known as "predicative analysis", which has been 

studied extensively by Feferman [13] and Schütte [46]. Schütte's axiomatic presentation of 

the countable ordinals ([46], chapters 13, 14) is particularly convenient (and elegant), and 

we follow it. Most proofs are omitted. They can be found in Schütte [46]. 

6.1  A Preview of To 

Proof theorists use (large) ordinals in inductive proofs establishing the consistency of cer- 

tain theories. In order for these proofs to be as constructive as possible, it is crucial to 

describe these ordinals using systems of constructive ordinal notations. One way to obtain 

constructive ordinal notation systems is to build up inductively larger ordinals from smaller 

ones using functions on the ordinals. For example, if Ö denotes the set of countable or- 

dinals, it is possible to define two functions + and a t-> u° (where u is the least infinite 

ordinal) generalizing addition and exponentiation on the natural numbers. Due to a result 

of Cantor, for every ordinal a G Ö, if a > 0, there are unique ordinals oj > ... > an, 

n > 1, such that 

a = u;Ql +---+ua". (*) 

This suggests a constructive ordinal notation system. Define C to be the smallest set of 

ordinals containing 0 and closed under + and a i—> ua. 

Do we have C = Ö? The answer is no. Indeed, strange things happen with infinite 

ordinals.  For some ordinals a,ß such that 0 < a < /?, we can have a + ß = ß, and even 

u° = a\ 

An ordinal ß > 0 such that a + ß = ß for all a < ß is called an additive principal 

ordinal. It can be shown that an ordinal is an additive principal ordinal iff it is of the form 

id71 for some TJ. 

The general phenomenon that we are witnessing is the fact that if a function / : Ö —> Ö 

satisfies a certain continuity condition, then it has fixed points (an ordinal a is a fixed point 

of / iff /(a) - a). 

The least ordinal such that ua = a (the least fixed point of a >—> ua) is denoted by eo, 

and C provides a constructive ordinal notation system for the ordinals < eo- The main point 

here, is that for every ordinal a < eo, we can guarantee that a, < a in the decomposition 

(*)• 
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6  The Countable Ordinals ^ 19 

Unfortunately €Q is too small for our purpose (which is to relate the embedding relation 

■< on finite trees with the ordering on To). To go beyond eo> we need functions more powerful 

than a i—> ua. Such a hierarchy (ipa)aeo can be defined inductively, starting from aHua, 

We let ipo be the function a >—>■ ua, and for every a > 0, tpa '■ O —■* Ö enumerates the 

common fixed points of the functions ipß, for all ß < a (the ordinals rj such that ^>ß(r]) = n 

for all ß < a). 

Then, we have a function </? : ö x Ö —► O, defined such that ip(a,ß) = <pQ{ß) for all 

a,ß eO. Note, <p(l,0) = e0\ 

The function <p has lots of fixed points. We can have ip(a,ß) = ß, in which case ß 

is called an a-critical ordinal, or ip(a,0) = a (but we can't have tp(a,ß) = a for ß > 0). 

Ordinals such that tp(a,0) = a are called strongly critical. 

It can be shown that for every additive principal ordinal *y = UJ
V
, there exist unique 

a,ß with a < 7 and ß < 7, such that 7 = <p(a,ß). But we can't guarantee that a < 7, 

because <p(a, 0) = a when a is a strongly critical ordinal. This is where To comes in! 

The ordinal To is the least ordinal such that (p(a,0) — a (the least strongly critical 

ordinal). It can be shown that for all a,ß < To, we have a + ß < To and y(ct,ß) < To, and 

also that for every additive principal ordinal 7 < To, 7 = <p(a,ß) for unique ordinals such 

that both a < 7 and ß < 7. This fact together with the Cantor normal form (*) yields a 

constructive ordinal notation system for the ordinals < To described in the sequel. 

The reason why we were able to build the hierarchy (fa)a£0 is that these functions 

satisfy certain conditions: they are increasing and continuous. Such functions are called 

normal functions. What is remarkable is that the function </?(—, 0) is also a normal function, 

and so, it is possible to repeat the previous hierarchy construction, but this time, starting 

from y(—, 0). But there is no reason to stop there, and we can continue on and on ...! 

We have what is called a Veblen hierarchy [53]. However, this is going way beyond 

the scope of these notes (transfinitely beyond!). The intrigued reader is referred to a paper 

by Larry Miller [34]. 

6.2  Axioms for the Countable Ordinals 

Recall that a set A is countable iff either A = 0 or there is a surjective (onto) function 

/ : N —» A with domain N, the set of natural numbers. In particular, every finite set is 

countable. 

Given a set A and a partial order < on A, we say that A is well-ordered by < iff every 

nonempty subset of A has a least element. 
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This definition implies that a well-ordered set is totally ordered. Indeed, every subset 

{x, y} of A consisting of two elements has a least element, and so, either x < y or y < x. 

We say that a subset S Q A of A is strictly bounded iff there is some b 6 A such 

that x < b for all x E S (recall that x < y iff x < y and x ^ y). A subset S of A that is 

not strictly bounded is called unbounded. The set of countable ordinals is defined by the 

following axioms. 

Definition 6.1    A set Ö together with a partial order < on O satisfies the axioms for the 

countable ordinals iff the following properties hold: 

(1) Ö is well-ordered by <. 

(2) Every strictly bounded subset of Ö is countable. 

(3) Every countable subset of O is strictly bounded. 

Applying axiom (3) to the empty set (which is a subset of O), we see that Ö is 

nonempty. Applying axiom (1) to O, we see that Ö has a least element denoted by 0. 

Repeating this argument, we see that O is infinite. However, Ö is not countable. Indeed if 

Ö was countable, by axiom (3), there would be some a £ O such that ß < a for all ß G O, 

which implies a < a, a contradiction. 

It is possible to show that axioms (l)-(3) define the set of countable ordinals up to 

isomorphism. From now on, the elements of the set Ö will be called ordinals (strictly 

speaking, they should be called countable ordinals). 

Given a property P{x) of the set of countable ordinals, the principle of transfinite 

induction is the following: 

• If P(0) holds, and 

• for every a £ O such that Q > 0, \/ß(ß < a D P(ß)) implies P(a), then 

• P(7) holds for all 7 G O. 

We have the following fundamental metatheorem. 

Theorem 6.2   The principle of transfinite induction is valid for Ö. 

Proof. Assume that the principle of transfinite induction does not hold. Then, P(0) 

holds, for every a € O such that a > 0, Vß(ß < a D P{ß)) implies P(a), but the set 

W = {a € O I P(a) = false} is nonempty. By axiom (1), this set has a least element 7. 

Clearly, 7 7^ 0, and P(ß) must hold for all ß < 7, since otherwise 7 would not be the least 
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element of W. Hence, V/? < fP{ß) holds, and from above, this implies that P(-y) holds, 

contradicting the definition of 7. □ 

By axioms (1) and (3), for every ordinal a, there is a smallest ordinal ß such that 

a < ß. Indeed, the set {a} is countable, hence by axiom (3) the set {ß G O \ a < ß} is 

nonempty, and by axiom (1), it has a least element. This ordinal is denoted by a', and is 

called the successor of a. We have the following properties: 

a < a' 

a<ß^a' <ß 

a < ß' => a < ß. 

An ordinal ß is called a successor ordinal iff there is some a£0 such that ß — o!. A limit 

ordinal is an ordinal that is neither 0 nor a successor ordinal. 

Given any countable subset M C O, by axiom (3), the set {a G O | V/9 G M(ß < a)} 

is nonempty, and by axiom (1), it has a least element. This ordinal denoted by (JM is the 

least upper bound of M, and it satisfies the following properties: 

a G M => a < [_JM 

a < ß for all a <E M => \J M < ß 

ß <\_\M =>3a e M such that ß < a. 

We have the following propositions. 

Proposition 6.3 If M is a nonempty countable subset of Ö and M has no maximal 

element, then \_\M is a limit ordinal. 

Proposition 6.4   For all a, ß e O, if 7 < ß for all 7 < a, then a < ß. 

Proof. The proposition is clear if a = 0. If a is a successor ordinal, a = 8' for some 8, 

and since 8 < a, by the hypothesis we have 8 < ß, which implies a = 8' < ß. If a is a 

limit ordinal, we prove that a = \J{j G O \ 7 < a}, which implies that a < ß, since by the 

hypothesis ß is an upper bound of the set {7 G O \ 7 < a). Let 8 = [J{7 G O | 7 < a). 

First, it is clear that a is an upper bound of the set {7 G Ö \ 7 < a}, and so 8 < a. If 

8 < a, since a is a limit ordinal, we have 8' < a, contradicting the fact that 6 is the least 

upper bound of the set {7 G O \ 7 < a}. Hence, 8 = a. □ 

Definition 6.5 The set N of finite ordinals is the smallest subset of Ö that contains 0 

and is closed under the successor function. 

It is not difficult to show that N is countable and has no maximal element. The least 

upper bound of N is denoted by a;. 
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Proposition 6.6    The ordinal u is the least limit ordinal.   For every a £ Ö, a < u iff 

a € N. 

It is easy to see that limit ordinals satisfy the following property:   For every limit 

ordinal ß 

a < ß => a   < ß. 

6.3  Ordering Functions 

Given any ordinal a e O, let 0(a) be the set {ß E 0 \ ß < a}. Clearly, O(0) = 0, 

0{UJ) = N, and by axiom (2), each 0(a) is countable. 

Definition 6.7 A subset A C 0 is an O-segment iff for all a, ß G 0, if ß € A and a < ß, 

then a € A. 

The set O itself is an 0-segment, and an 0-segment which is a proper subset of Ö is 

called a proper Ö-segment. It is easy to show that A is a proper C9-segment iff A = O(a) 

for some a 6 O. 

We now come to the crucial concept of an ordering function. 

Definition 6.8 Given a subset B C O, a function / : A —> B is an ordering function for 

£ iff: 

(1) The domain of / is an 0-segment. 

(2) The function / is strictly monotonic (or increasing), that is, for all a,ß £ O, if a < ß, 

then /(a) < /(/?). 

(3) The range of / is B. 

Intuitively speaking, an ordering function / of a set B enumerates the elements of 

the set B in increasing order. Observe that an ordering function / is bijective, since by 

(3), f(A) — B, and by (2), / is injective. Note that the ordering function for the empty 

set is the empty function. The following fundamental propositions are shown by transfinite 

induction. 

Proposition 6.9    If / : A —> B is an ordering function, then a < f(a) for all a■ G A 

Proof. Clearly, 0 < /(0). Given any ordinal a > 0, for every ß < a, by the induction 

hypothesis, ß < f(ß). Since / is strictly monotonic, /(/?) < f(a). Hence, ß < f(a) for all 

ß < a, and by proposition 6.4, this implies that a < /(o). D 
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Proposition 6.10   Every subset B C-Ö has at most one ordering function / : A —> B. 

Proof. Let /, : A, —> B, i = 1,2, be two ordering functions for B. We show by transfinite 

induction that, if a G Ai, then a G A2 and /i(a) = /2(a). If B = 0, then clearly 

fx = /2 : 0 —> 0. Otherwise, since Ai and ^42 are 0-segments, 0 E Ai and 0 G A2. Since 

/2 is surjective, there is some a G A2 such that /2(a) = /i(0). By (strict) monotonicity 

of /2, we have /2(0) < /i(0). Similarly, since f\ is surjective, there is some ß G Ai such 

that /i(/?) = /2(0), and by (strict) monotonicity of /1, we have /i(0) < /2(0). Hence 

/j(0) = /2(0). Now, assume a > 0. Since f2 is surjective, there is some ß G A2 such 

that /2(^) = /i(a)- If /? < «, since Ai is an ö-segment, ß G Au and by the induction 

hypothesis, ß E A2 and /i(/?) = f2(ß). By strict monotonicity, /2(ft = fi(ß) < fi(a), a 

contradiction. 

Hence, ß > a, and since A2 is an ö-segment and ß £ A2, we have a G ^42- Assume 

ß > a. By strict monotonicity, /2(a) < h{ß)- Since /1 is surjective, there is some 7 G ^i 

such that /!(7) = f2(a). Since /2(o) = /I(T), M/?) = /i(a), and /2(a) < f2(ß), we 

have /i(7) < /i(o). By strict monotonicity, we have 7 < a. By the induction hypothesis, 

fi(l) = /2(7), and since ^(7) = /2(a), then ^(7) = f2(a). Since f2 is injective, we have 

a = 7, a contradiction. Hence, a = ß and /i(o) = f2{a). Therefore, we have shown that 

Ai C A2 and for every a G Al5 /i(o) = /2(a)- Using a symmetric argument, we can show 

that A2 C ^4j and for every a G A2, /i(a) = /2(a). Hence, yli = A2 and /1 = f2. O 

Given a set B C C, for every /? G B, let B(/?) = {7 G 5 | 7 < ß). Sets of the form 

B(ß) are called proper segments of ß. Observe that JB(/3) = B D 0(/3). Using proposition 

6.10, we prove the following crucial result. 

Proposition 6.11    Every subset B C.Ö has a unique ordering function / : A —> B. 

Proof. First, the following claim is shown. 

Claim: If every proper segment B(ß) of a set B C Ö has an ordering function, then B has 

an ordering function. 

Proof of claim. The idea is to construct a function g : B —► Ö and to show that g is strictly 

monotonic and that its range is an 0-segment. Then, the inverse of g is an ordering function 

for B. By the hypothesis, for every ß G B, we have an ordering function fß-.Aß-^ B(ß) for 

each proper segment B(ß) of B. By axiom (2) (in definition 6.1), B(ß) is countable. Since 

fß is bijective, Aß is also countable, and therefore, it is a proper C-segment. Hence, for 

every ß G B, there is a unique ordinal 7 such that Aß = 0(7), and we define the function 

g:B-^ö such that g(ß) = 7. 

We show that g is strictly monotonic. Let ßi < ß2, ßi,ß2 € B. Since the function 

fß, : 0(g(ß2)) -> £(02) is surjective and ft G £(#>) (since ft < ft and ft G £), there is 
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some a < g(ß2) such that fß2(a) = ß\. Observe that the restriction of fß2 to 0(a) is an 

ordering function of B(ßi). Since fßx : Aßx —> B(ß\) is also an ordering function for B(ß\), 

by proposition 6.10, O(a) = ö(g(ßi)), and therefore, g{ß\) = a < g(ß2)- 

We show that g(B) is an (9-segment. We have to show that for every 7 G g(B), if 

a < 7, then a G g(B). Let ß G B such that 7 = #(/?). Since /^ : 0(g(ß)) -> B(/?) and 

a < <?(/?), //3(a) = ß0 for some /?0 G B(ß). The restriction of /^ to O(a) is an ordering 

function of B(ß0). Since /^0 : ö(g(ßo)) —> B(ß0) is also an ordering function for B(ß0), by 

proposition 6.10, a = g(ßo), and therefore a G g(B). 

Since the function g : B —> Ö is strictly monotonic and #(i?) is an (9-segment, say A, 

its inverse gr-1 : A —> 5 is an ordering function for B. This proves the claim. □ 

Let B C O. For every /? G 5, note that every proper segment of !?(/?) is of the form 

B(ßo) for some ßo < ß. Using the previous claim, it follows by transfinite induction that 

every proper segment B(ß) of B has an ordering function. By the claim, B itself has an 

ordering function. By proposition 6.10, this function is unique. □ 

An important property of ordering functions is continuity. 

Definition  6.12   A subset B C O is closed iff for every countable nonempty set M, 

M CB =>\_\M eB. 

An ordering function / : A —► B is continuous iff A is closed and for every nonempty 

countable set MCA, 

/(UM) = U/(M)- 
Proposition 6.13 The ordering function / : A —> B of a set B is continuous iff B is 

closed. 

Proof. Let / : A —► B be the ordering function of 5. First, assume that / is continuous. 

Since / is bijective, for every nonempty countable subset M C B, there is some nonempty 

countable subset U C A such that f(U) = M. Since / is continuous, /(|J U) — U/(^) = 

LJM, and therefore \_\M G f(A) = B, and B is closed. 

Conversely, assume that B is closed. Let U C A be a, nonempty countable subset 

of A. Since / is bijective, f(U) is a nonempty countable subset of B. Since B is closed, 

\Jf(U) G B. Since B = f(A), there is some a G A such that /(a) = |J/(^)- Since 

/(a) — U/(^)> f°r every 6 G U, we have /(6) < /(a), and by strict monotonicity of /, 

this implies that 6 < a. Hence \_\U < a. Since A is an C-segment, |J U G A. Hence, A is 

closed. For alU G U, 6 < \J U, and so f(S) < f(\J U). Then, /(|J U) is an upper bound for 
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f(U), and so \_\f(U) < /(U U). Also, since |J U < a, we have /(|J U) < f(a) = U/(^)- 

But then, U/C^-O = /(U ^0> an{^ / *s continuous. □ 

An ordering function that is continuous and whose domain is the entire set Ö is called 

a normal function. Normal functions play a crucial role in the definition of IV 

Proposition 6.14 The ordering function / : A —> B of a set B is a normal function iff B 

is closed and unbounded. 

Proof. By axiom (2) and (3) (in definition 6.1), a subset M of Ö is bounded iff it is 

countable. Since an ordering function / : A —► B is bijective, it follows that B is unbounded 

iff A is unbounded. But A is an ö-segment, and Ö is the only unbounded 0-segment (since 

a proper C?-segment is bounded). Hence, the ordering function / has domain O iff B is 

unbounded. This together with proposition 6.13 yields proposition 6.14. □ 

We now show that normal functions have fixed points. 

Proposition 6.15 Let / : O —> Ö be a continuous function. For every a £ Ö, let 

f°(a) = a, and fn+1(a) = f(fn(a)) for all n > 0.   If a < /(a) for every a e O, then 

Un>o fn(a) 1S tne least fixed point of / that is > a, and |_ln>o/"(a') ^s ^e ^east fixed 
point of / that is > a. 

Proof. First, observe that a continuous function is monotonic, by applying the continuity 

condition to each set {a, ß} with a < ß. Since / is continuous, 

/(|_Un(a))= LU(-f») 
n>0 

n>0 

= U /"(*) 
n>l 

n>0 n>0 

n>0 

since a < f(a). Hence, |Jn>o /"(Q) ^s a nxed point of / that is > a. Let ß be any fixed 

point of / such that a < ß. We show by induction that fn(a) < ß. For n = 0, this follows 

from the fact that f°(ot) = a and the hypothesis a < ß. If fn(a) < ß, since / is monotonic 

we have, f(fn(a)) < /(/?), that is, fn+1(a) < ß, since fn+1(a) = f(fn(a)) and f(ß) = ß 

(because ß is a fixed point of /). Hence, |_Jn>0 /"(ö) < ß, which shows that |_l„>0 f
n(a) iS 

the least fixed point of / that is > a. 

From above, |Jn>0 /n(a') is the least fixed point of / that is > a', and since ß > a1 

iff ß > a, the second part of the lemma holds. □ 
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Corollary 6.16   For every normal function /, for every a € O, U„>o/n(°) *s the least 

fixed point of / that is > a, and |_ln>o /"(a') is the least fixed point of / that is > a. 

Proof. Since a normal function is continuous and a < f(a) for all a, the corollary follows 

from proposition 6.15. □ 

Using the concept of a normal function, we are going to define addition and exponen- 

tiation of ordinals. 

6.4  Addition and Exponentiation of Ordinals 

For every a e Ö, let Da = {ß £ O \a < ß). Let fQ be the ordering function of Ba given by 

proposition 6.11. It is easy to see that BQ is closed and unbounded. Hence, by proposition 

6.14, fa is a normal function. We shall write a + ß for fQ(ß). The following properties of 

+ can be shown: 

a < a + ß. 

ß<1=>a + ß<a + ~f (right strict monotonicity). 

If a < ß, then there is a unique 7 such that a + 7 = ß. 

For every limit ordinal ß e O, \J ö(ß) = ß, and a + ß = \J{a + 7 | 7 G O(ß)}. 

a + 0 = a. 

a + ß' = (a + ß)'. 

ß <a + ß. 

0 + ß = ß 

(a+/?) + 7 = ct + (/? + 7). 

a<ß=>a + f<ß + f (left weak monotonicity). 

It should be noted that addition of ordinals is not commutative.   Indeed, 0' + u> = 

LJN = w, but u> < u> + 0' by right strict monotonicity. Also, 

Definition 6.17   An ordinal a € O is a principal additive ordinal iff a ^ 0 and for every 

ß < a, ß + a — a. 

Clearly, 1 = 0' is the smallest additive principal ordinal, and it is not difficult to show 

that u is the least additive principal ordinal greater than 1. Note that a + 1 = a'. 

If a is an additive principal ordinal, then O(a) is closed under addition. 
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Proposition 6.18   The set of additive principal ordinals is closed and unbounded. 

Proof. First, we show unboundedness. Given any ordinal a, let ßo = a', ßn+i — ßn + ßn-, 

M = {ßn I n E N}, and ß = \JM. Since ß0 = a' > 0, we have ßn > 0 for all n > 0, 

and by right strict monotonicity of + , ßn < ßn + ßn = ßn+i- Hence, a < ßn < ß for all 

n > 0, and ß > 0. If T] < ß, then there is some n > 0 such that r/ < ßn. Hence, for all 

m > n, T] + ßm < ßm + ßm = ßm+i < ß- Hence, |_J{77 + ßn \ n E N} < ß. But we also have 

ß < r} + ß = LK7? + ßn I " e N} < ß. Hence, T? + ß = ß for all 77 < /?. Therefore, ß is an 

additive principal ordinal. 

Next, we show closure. Let M be a nonempty set of additive principal ordinals. Since 

for every ß € M, # > 0, we have \_\M > 0. Let 77 < |JM. Then, there is some a € M 

such that 77 < Q. For every ß € M, if /? > a, then rj < ß, and since /? is additive principal, 

77 + /? = ß. Hence, |_J{T7 + ß | /3 € M} = |J M for all r\ < \J M, which shows that \_\M is 

additive principal. D 

By proposition 6.14, the ordering function of the set of additive principal ordinals is 

a normal function. 

Definition 6.19 The ordering function of the set of additive principal ordinals is a normal 

function whose value for every ordinal a is denoted by ua. 

The following properties hold. 

0<u>°. 

ß <ua =► ß + uQ =ua. 

a < ß =$> ua < uA 

For every additive principal ordinal ß, there is some a such that ß = u>a. 

For every limit ordinal ß, uß = U{wQ |o G O(ß)}. 

a < ß ^uQ +uß = iüß. 

u° = l. 

UJ1  = U). 

The following result known as the Cantor Normal Form for the (countable) ordinals 

is fundamental. 

Proposition 6.20 (Cantor Normal Form) For every ordinal a € O, if a > 0 then there 

are unique ordinals at\ > ... > an, n > I, such that 
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Proof. First, we show the existence of the representation. We proceed by transfinite 

induction. If a is an additive principal ordinal, then a = u>Ql for some ax since 7 t-> u1 

is the ordering function of the additive principal ordinals. Otherwise, there is some 8 < a 

such that 6 + a ^ a. Then, since a < 6 + a (by proposition 6.9), 8 > 0 and 8 + a > a. 

Since 8 < a, there is some 77 > 0 such that a = 8 + r). We must have 77 < a, since otherwise, 

by right monotonicity, we would have 8 + a<6 + T] = a, contradicting 6 + a > a. Hence, 

a = 6 + T], with 0 < 6,77 < a. By the induction hypothesis, 6 = u°x + ••• + u>Qm and 

77 = u0x + • • • + u>0", for some ordinals such that ax > ... > am and ß\ > ... > ßn. If we 

had a{ < ßi for all i, 1 < i < m, then we would have 6 + 77 = 77 (using the fact that for 

additive principal ordinals, if a < ß, then ua + u0 = u0), that is, a = 77, contradicting the 

fact that 77 < a. Hence, there is a largest k, 1 < k < m such that ak > ßx. Consequently, 

ai > . . . > ak > ßi > ...> ßn, and since ua> + ußx = UJ
01
 for k + 1 < j < m, we have 

o = 6 + 77 

= U>°1   + ■ ■ ■ + U°k   + UQk + >   + ■ ■ ■ + U°m   + LO0i   + • • • + uA 

= uai + ■ ■ ■ + UJQ" + U0X + • • • + u0" . 

Assume a = u°l + • • • + uarn = u01 + ■ ■ ■ + aA. Uniqueness is shown by induction on 

m. Note that a + ua'i = u°'i, which implies that a < uA (by right strict monotonicity, 

since u>ai > 0), and similarly, a < U
0

'K If we had ß[ < au we would have oA < u>ai < a, 

contradicting the fact that a < UJ
0

'K Hence, o^ < ß[. Similarly, we have ßx < a\. But 

then, ax < ßi and ß\ < Q1? and therefore, ax = ßx. Hence, either m = n = 1, or m,n > 1 

and CJ°
2
 H 1- ua'" = u07 + h w^n. We conclude using the induction hypothesis. □ 

As we shall see in the next section, there are ordinals such that ua = a, and so, we 

cannot ensure that a, < a. However, if n > 1, by right strict monotonicity of +, it is true 

that uai < a, 1 < i < n. We are now ready to define some normal functions that will lead 

us to the definition of IV 

6.5  a-Critical Ordinals 

For each a £ 0,we shall define a subset Cr(a) C O and its ordering function ipa inductively 

as follows. 

Definition 6.21 For each a e O, the set Cr(a) C O and its ordering function tpQ : Aa -> 

Cr(a) are defined inductively as follows. 

(1) Cr(0) = the set of additive principal ordinals, A0 = Ö, and for every a € C, V'o(ö) = 

ua, the ordering function of Cr(0). 
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(2) Cr(a') = {q G Aa \ ipaiv) = f?}5 the set of fixed points of <pa, and (pai : AQ> —► Cr(a') 

is the ordering function of Cr(a'). 

(3) For every limit ordinal ß G 0, 

Cr(ß) = {r1£  f| Aa | Va < ß, ^(77) = 77}, 
a</3 

and ifß : Aß —* Cr(ß) is the ordering function of Cr(ß). 

The elements of the set Cr(a) are called a-critical ordinals. The following proposition 

shows that for a > 0 the a-critical ordinals are the common fixed points of the normal 

functions <pß, for all ß < a. 

Proposition 6.22    For all a,rj G O, if a = 0 then 77 G Cr(0) iff 77 is additive principal, 

else 77 G Cr(a) iff 77 G fl/?<a A3 an<^ 't'ßi7]) = ^ f°r au ß < en- 

Proof. We proceed by transfinite induction. The case a = 0 is clear since Cr(0) is defined 

as the set of additive principal ordinals.  If a is a successor ordinal, there is some ß such 

that a = ß'. By the induction hypothesis, 77 G Cr(ß) iff 77 G f]-r<ß ^7 an<^ Pit7!) = V f°r an 

7 < ß. By the definition of Cr(ß'), 77 G Cr(ß') = Cr(a) iff 77 G A^ and v'/K7?) = ??• Hence, 

since a = ß', r\ G Cr(a) iff 77 G fl7<a ^T 
an<^ Vti1!) = V ^or au 7 < a- If a is a limit ordinal, 

the property to be shown is clause (3) of definition 6.21. □ 

The following important result holds. 

Proposition 6.23   Each set Cr(a) is closed and unbounded. 

Proof. We show by transfinite induction that Cr(a) is closed and unbounded and that 

AQ = 0. 

Proof of closure. For a = 0 this follows from the fact the the set of additive principal 

ordinals is closed. Assume a > 0, and let M C Cr(a) be a nonempty countable subset 

of Cr(a). By the induction hypothesis, for every ß < a, Cr(ß) is closed and Aß — Ö. 

Hence, by proposition 6.13, y>ß is continuous. Hence, fß(\_\M) = \_\M for all ß < a. By 

proposition 6.22, since we also have Aß = Ö for all ß < a, this implies that [J M G Cr(a). 

Hence, Cr(a) is closed. 

Proof of Unboundedness. For a = 0, this follows from the fact that the set of additive 

principal ordinals in unbounded and that AQ = Ö. Assume a > 0. Given any ordinal /?, 

let 70 = /?', 7n+i = UWTT.) I 77 < a}, M = {7n I n G N}, and 7 = [|M. By the 

induction hypothesis, for every 6 < a, Cr(£) is unbounded, and so fn is well defined for 

all n > 0.   We have /? < 70 < 7.   For every 6 < a, we have v^(7n) < 7n+i < 7, and so 
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LKv3«(7n) \ln E M) < 7. By the induction hypothesis, for every 8 < a, Cr(8) is closed and 

unbounded and Aß = Ö. Hence, ip$ is continuous and 

^(|jM) = |J{^(7n)|7„eM}. 

Hence, <fs(lf) < 7- By proposition 6.9, we also have 7 < ^,5(7). Hence, 7 = ^,5(7) for all 

8 < a. By proposition 6.22, we have 7 G Cr(a), and 7 is an a-critical ordinal > ß. Hence 

Cr(a) is unbounded, and so AQ = O. D 

Proposition 6.23 has the following corollary. 

Proposition 6.24   For every a G O, A0 = O and <pQ is a normal function. 

In view of proposition 6.24, since every function <pa has domain O, we can define the 

function tp : Ö x Ö -+ Ö such that <p(ayß) = ¥>«,(/?) for all a,ß G C From definition 6.21 

and proposition 6.24, we have the following useful properties. 

Proposition 6.25   (1) 77 G Cr(a') iff <^(a, 77) = 77. 

(2) For a limit ordinal ß, Cr{ß) = f|Q</? Cr(a). 

Proposition 6.26   (1) If a < ß then Cr(ß) C Cr(a). 

(2) Every ordinal </>(a,/?) is an additive principal ordinal. 

(3)¥>(0,/?) = üA 

An ordinal a such that a G Cr(a) is particularly interesting. Actually, it is by no 

means obvious that such ordinals exist, but they do, and To is the smallest. We shall 

consider this property in more detail. 

It is interesting to see what are the elements of Cr(l). By the definition, an ordinal 

a is in Cr{\) iff ua = a. Such ordinals are called epsilon ordinals, because their ordering 

function is usually denoted by e. The least element of Cr(l) is e0- It can be shown that e0 

is the least upper bound of the set 

w,w   ,w     ,...,w ,...}. 

This is already a rather impressive ordinal. What are the elements of Cr(2)? Well, denoting 

the ordering function of Cr(l) by e, a G CV(2) iff eQ = a. We claim that the smallest of 

these ordinals is greater than 

£Q, 61, . . . , (-u/1 • • • 1 £fo > • • • ' ef 1 ' • • • 1 cf«o' 
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Amazingly, the ordinal To dwarfs the ordinals just mentioned, and many more! 

The following proposition gives a rather explicit characterization of <pa> in terms of 

fixed points. It also shows that the first element of Cr(a') is farther down than the first 

element of Cr(a) on the ordinal line (in fact, much farther down). 

Proposition 6.27   For each a,ß EÜ, let ip"a(ß) - ß, and <p%+1(ß) = <pa(<p2(ß)) for every 

n > 0. Then, we have 

<P«(P) = u rim 
n>0 

<Pa>(ß')=   |J^a<(/?) + l), 
n>0 

fa'(ß) =   LI  V«'(7). 

for a limit ordinal ß. Furthermore, <pQ(0) < (fa'(0) for all Q£Ö. 

Proof.   Since <pa is a normal function, by proposition 6.15, | |T1>0 y?£(0) is the least fixed 

point of (fiQ, and for every ß G O, |_Jn>0 <p2(<Pa'(ß) + 1) is the least fixed point of <pQ that 

is > ipQ>(ß). Since <pQi enumerates the fixed points of (pa, <pQi(ß') = Un>o 'Pai'Pa'iß) + !)• 

Assume that ß is a limit ordinal. From the proof of proposition 6.4, we know that 

ß = |_|{-y | 7 < /?}. Since ipa' is continuous, we have 

¥>«<(/?) = <^a'(|J{7 I 7 </?})= U Vo'fr)- 

Since 0 < <^a(0), it is easily shown that y?"(0) < V?"+1(0) ^or all n > 0 (using induction 

and the fact that ipQ is strictly monotonic), and so, y>£(0) < <pQ'(0). Since <ßa(0) = <pa(0), 

the first element of Cr(a), we have <pa(Q) < fa'(0)- □ 

Proposition 6.27 justifies the claim we made about eo, and also shows that the first 

element of Cr(2) is the least upper bound of the set 

\e0i eeo5 ee<0 ) • • • > ee-.       ■>•••} 
«o 

It is hard to conceive what this limit is! Of course, things get worse when we look at the 

first element of Cr(3), not to mention the notational difficulties involved. Can you imagine 

what the first element of Cr(eo) is? Well, To is farther away on the ordinal line! 

The following proposition characterizes the order relationship between <p(ai,ßi) and 

<ß(a2,ß2). 
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Proposition 6.28   (i) <p(ai,ßi) = <p(a2, #2) iff either 

(1) a\ < a2 and ß\ = <p(a2,ß2), or 

(2) a\ = a2 and ft = ft, or 

(3) o2 < <*i and <^(ai,ft) = ß2. 

(ii) ^(a^ft) < ^(a2,ft) iff either 

(1) oti < OL2 and ft < ^(a2,ft>), or 

(2) O] = o2 and ß\ < ß2, or 

(3) o2 < Qi and 9(QI,Ä) < ß2. 

Proof (sketch). We sketch the proof of (ii). By the definition of <p, <^(a2,ß2) G C7'(o2). If 

Q\ < Q2, by proposition 6.22, ip(a2,ß2) is a fixed point of <^>ai, and so, 

ip(au<p(a2,ß2)) = ^(a2,ft>). 

Since (pQl is strictly monotonic, </?(ai,ft) < <p(ati, </>(a-2, #2)) iff ßi < V^^Ä)- The case 

where a2 < a\ is similar. For ot\ — a2, the assertion follows from the fact that ipQl is 

strictly monotonic. D 

Using proposition 6.9, since each function ipQ is an ordering function, we have the 

following useful property. 

Proposition 6.29   For all a,ß € O, ß < <p(a,ß). 

By proposition 6.28 and 6.29, we also have the following. 

Corollary 6.30 For all aua2,ßuß2 G O, if Qi < o2 and ft < ft, then ^(ct^ft) < 

<p(®2,ß2). 

The following can be shown by transfinite induction. 

Proposition 6.31 (i) For every a G Ö, a < c^(a,0). Furthermore, if ß G Cr(a), then 

a < ß. 

(ii) If a < ft then <p(a, ß) < <p(ß, a). 

Proof. We show a < tp(a,0) by transfinite induction. This is clear for a = 0. If a > 0, for 

every /? < a, by strict monotonicity and proposition 6.22, <p(ß, 0) < <^>(ft <y?(a,0)) = <y?(a,0), 

since 9(0:, 0) > 0 is a fixed point of <pß. By the induction hypothesis, we have ß < <p(ß,0), 

and so ß < </?(a,0) for all ß < a. By proposition 6.4, this implies that a < ip(a,0). 
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ß G Cr(a) iff ß = <p(a, 77) for some 77, and since a < <p(a, 0), by monotonicity, we have 

a < <p(a,0) < (p(a,n) = ß. 

Assume a < ß. Since ß < <£>(/?, 0), we also have ß < <p(ß,a). By proposition 6.28, 

<f(&, ß) < <p{ßi a)i since a < ß and ß < <p(ß, a). D 

Another key result is the following. 

Proposition 6.32 For every additive principal ordinal 7, there exist unique <x,ß G Ö 

such that, a < 7, ß < 7, and 7 = ip(a,ß). 

Proof.   Recall that an additive principal ordinal is not equal to 0.   By proposition 6.31, 

7 < fill 0). Since 0 < 7, by strict monotonicity of ip^, ^(7,0) < 9(7,7), and so 7 < (^(7,7). 

Since Ö is well-ordered, there is a least ordinal a < 7 such that 7 < 97(0,7). If a ^ 0, the 

minimality of a implies that V^IT) = 7 for all 77 < a, and by proposition 6.22, 7 6 Cr(a). 

If a = 0, since 7 is an additive principal ordinal, by the definition of Cr(0), a € Cr(0). 

Hence, 7 G Cr(a). Hence, there is some ß such that 7 = </?(a,/?). Since 7 < <{>(a,f), by 

strict monotonicity of (pQ, we must have ß < 7. 

It remains to prove the uniqueness of a and /?. If /?i < 7, /?2 < 7, and 7 = ^(öJ , /?!) = 
(p(<*2,ß2), by proposition 6.28, we must have a\ = ct<i and ß\ = /?2. D 

Observe that the proof does not show that a < 7, and indeed, this is not necessarily 

true. Also, for an ordinal 7, 7 = (,0(7, /?) holds for some ß iff 7 G Cr(7). Such ordinals exist 

in abundance, as we shall prove next. 

Definition 6.33   An ordinal a G O is a strongly critical ordinal iff a G Cr(a). 

Proposition 6.34   An ordinal a is strongly critical iff <p(a,0) — a. 

Proof. If a G Cr(o:), there is some ß such that a = <p(a,ß). By proposition 6.31, we have 

a < <£>(a,0), and by strict monotonicity of (pQ, we have ß = 0. Conversely, it is obvious 

that </>(o!, 0) = a implies a G Cr(a). □ 

Let ip : Ö —+ Ö be the function defined such that ^(a) = <p(a,0) for all a £ Ö. We 

shall prove that V' is strictly monotonic and continuous. As a consequence, ifi is a normal 

function for the set {(/?(a,0) | a G Ö}. 

Proposition 6.35 The function iß (also denoted by <p( — ,0)) defined such that VK**) = 

<p(a, 0) for all a G 0 is strictly monotonic and continuous. 

Proof. First, we prove the following claim. 
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Claim: ip satisfies the following properties: 

V>(0) = ^(0,0), 

W) = U VßMß))> 
n>0 

w) = U w- 
6<ß 

for a limit ordinal ß. 

Proof of claim. By definition, ip(0) — </>(0,0), and the second identity follows from propo- 

sition 6.15, since <^(0) = <p(ß,0) = 4>{ß), which implies that <^(V'(/?)) = ^+1(0) for all 

n > 0. By proposition 6.22, ip(ß) = <^(/#,0) = 770, where 770 is the least ordinal such that 

viliV) = "H f°r a^ 7 < ß- For every 7 < /?, since y>7 is continuous, 

V(7,|J^))= Lkfr,w) 

For 6 > 7, we have ip(~f,ip{6,0)) = y(<5,0) = t/^), and since ^ is monotonic in both 

arguments, 

L|v»(7,v(*,o))= |jvw 

Hence, 

V(7, U W)) = U W' 

for all 7 < ß, which shows that r?0 < \_\s<ß V'(^) (because 770 is the least such common 

fixed point). On the other hand, ip(8) = </>(<!>, 0) < ip(8,r]0) = r]0 for all 6 < ß. Hence, 

Us<ß W) < Vo- But then, \Js<ß W) = Vo = Hß)- □ 

We can now show that ip is continuous. Let M be a nonempty countable subset of Ö, 

and let ß = [J M. The case ß = 0 is trivial. If ß — a' for some a, we must have ß 6 M, since 

otherwise ß would not be the least upper bound of M (either 7 < a for all 7 G M, or 7 > Q 

for some 7 € M, a contradiction in either case). But then, ip(\jM) = 4>{ß) = [_\aeM il>(a), 

since ip is monotonic. If ß — \_\M is a limit ordinal, then ß = \_\M = [_\{6 \ 6 < ß}. Hence, 

for every a (E M, there is some 8 < ß such that a < 8, and conversely, for every 8 < ß, 

there is some a £ M such that 8 < a. By monotonicity of ip, this implies that 

[J  *{a) = (J W). 
a£M 6<ß 
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By the claim, 

v4J M) = </>(/?) = L|W' 
6<ß 

and therefore, 

^(|JM)=   U  j>(a), 

showing that ?/> is continuous. 

Finally, we show that t/> is strictly monotonic. Since </? is monotonic in both arguments, 

%j} = (/?(-,0) is monotonic.   Assume a < ß.   Then a < a' < ß and by proposition 6.27, 

V>(a) < rP(a') < ^(ß). D 

Proposition 6.35 implies that there are plenty of strongly critical ordinals. 

Proposition 6.36   The set of strongly critical ordinals is closed and unbounded. 

Proof. First, we prove unboundedness. Since ij> = </?(-, 0) is a normal function, by proposi- 

tion 6.22, for any arbitrary ordinal a, tp has a least fixed point > a. Since such fixed points 

are strongly critical ordinal, the set of strongly critical ordinals is unbounded. 

Next, we prove that the set of strongly critical ordinals is closed. Let M be a nonempty 

countable set of strongly critical ordinals. For each a G M, we have </>(a,0) = a. Hence, 

%1>{M) = M. Since ip = <p(-,0) is continuous, we have i(>(\_\M) = \J ip(M) = {JM. This 

shows that \_\M is a strongly critical ordinal, and therefore, the set of strongly critical 

ordinals is closed. □ 

From proposition 6.36, the ordering function of the set of strongly critical ordinals 

is a normal function. This function is denoted by T, and T(0), also denoted T0, is the 

least strongly critical ordinal. To is the least ordinal such that (p(a,0) = a. The following 

proposition shows that 0(To) is closed under + and <p. 

Proposition 6.37   For all a,ß € O, if a,ß < To, then a + ß < T0, and <p(a,ß) < T0. 

Proof (sketch). Since T0 is an additive principal ordinal, closure under + is clear. Let 70 = 0, 

7n+1 = y>(7n,0), U = {7„ I n e N}, and 7 = jj U. By proposition 6.15, we have 7 = r0. 

Now, if a,ß < To, since T0 = U^> tnere is some 7n such that a,ß < 7«. By proposition 

6.28, we have <p(a,ß) < ¥>(7„,0), because ß < 7« < v?(7n,0). Hence, <p(a,ß) < fn+i < T0. 

D 

Proposition 6.37 shows that T0 cannot be obtained from strictly smaller ordinals in 

terms of the function + and the powerful functions <pa, a < T0- As Smorynski puts it in 

one of his articles [50], 
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'To is the first countable ordinal which cannot be described without reference 

(if only oblique) to the uncountable." 

Indeed, referring to To as the least ordinal a satisfying a = tp(a,0) is indirect and 

somewhat circular - the word "least" involves reference to all ordinals, including IV One 

could claim that the definition of r0 as |_|{7n | n € N}, as in proposition 6.37, is "construc- 

tive", and does not refer to the uncountable, but this is erroneous, although the error is 

more subtle. Indeed, the construction of the function </?( — , 0) is actually an iteration of the 

functional taking us from y(a, —) to y?(a', —), and therefore, presupposes as domain of this 

functional a class of functions on ordinals and thus (on close examination) the uncountable. 

As logicians say, the definition of the ordinal To is imjpre.dica.tivc. 
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7 A Glimpse at Veblen Hierarchies 37 

7 A Glimpse at Veblen Hierarchies 

What have we accomplished in section 6.5? If one examines carefully the proofs of proposi- 

tions 6.23, 6.24, 6.27, 6.28, 6.31, 6.35, and definition 6.21, one discovers that the conditions 

that make everything go through are the fact that a i-> ua is a normal function*/? such that 

0 < <p(0). This suggests the following generalization. 

Definition 7.1 Given any normal function tp such that 0 < <p(0), mimicking definition 

6.21, we define the hierarchy {i,j'}ago of functions such that, 

• tp® = <P, and for every a > 0, 

• </?° enumerates the set {77 | p°g(r]) = 77, for all ß < a} of common fixed points of the 

functions ip°g for all ß < a. 

We have what is called a Veblen hierarchy (a concept due to Veblen [53]), and according 

to our previous remark, the following properties hold. 

Theorem 7.2 (Veblen Hierarchy theorem) Denoting each function y?° as <p°(a,—), each 

tp0(a,—) is a normal function, and the function <p°( — ,0) : a *-* ip°(a,0) is also a normal 

function such that 0 < </5°(0,0). 

But since <p°( — ,0) satisfies the conditions for building a Veblen hierarchy, we can 

iterate the process just described in definition 7.1. For this, following Larry Miller [34], it 

is convenient to define an operator Ai on normal functions, the 1-diagonalization operator, 

defined as follows. 

Given a normal function ip such that 0 < <p(0), Ai(<^>) is the normal function enumer- 

ating the fixed points of <p°( —, 0). 

Note that in a single step, Ai performs the Q iterations producing the Veblen hierarchy 

{ip^}Q<fi! (where fi denotes the first uncountable ordinal, i.e., the order type of Ö). Using 

the operator Ai, we can define a sequence {*plß}ß<si of normal functions, and so, a sequence 

of Veblen hierarchies - or a doubly indexed sequence of normal functions - {^p\(j, —)}/?,7<n 

defined as follows: 

• <fl = V, 

• iplß, = Ai(v?^), and 

• ip\ is the normal function enumerating f]^<g ran9e((p\)^ f°r a limit ordinal ß. 

But ß 1—► <p\(0) (also denoted y1(—,0)) is also a normal function such that 0 < V'o(O)- 

Hence, we can define an operator A2 enumerating the fixed points of ß i-+ y^(0), and build 
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a hierarchy. But we can iterate the operator A into the transfinite! This leads to the 

following definition. 

Definition 7.3 Given a normal function ip such that 0 < <p(0), we define by simultaneous 

induction the fi-indexed sequence {AQ}Q<p. of diagonalization operators and the doubly 

fi-indexed sequence {</>ß}a,0<n of normal functions as follows. 

• Ao(V') enumerates the fixed points of the normal function V'; 

• Aai(ip) = Ao(</>°( — ,0)) enumerates the fixed points of <^>Q( —,0) : ß H-> ipg(0); 

• Aa((f) enumerates f]1<a ran#e(A7(v>))> f°r a limit ordinal a; 

• vo = v; 

• ipQ
ß, = A0(^); 

• (fß enumerates fl7<^ ran9e(¥°)i f°r a limit ordinal ß. 

It is convenient to keep track of the diagonalization level (the index a) and the number 

of iterations of diagonalizations of level a (the index ß) by using indices beyond J7. Indeed, 

using the families {(Pß}Q,ß<n and the representation of the ordinals in base Q, it is possible 

to extend our original fi-indexed hierarchy {ip(ß, — )}/?<« (dropping the superscript 0 in 

<p°) to an Qn-indexed hierarchy {ip(6, — )}S<QO. Let us first consider the simple case where 

a = 1. 

Using the fact that every ordinal 6 < ft2 is uniquely expressed as 6 = Qßi +ß2 for some 

ordinals ßi,ß2 < fi, we can extend the Q-indexed hierarchy {<p(ß, — )}/?<fi to an ft2-indexed 

hierarchy {p(6, — )}i<n2 as follows. For any ßi,ß2 < fi, we let 

vWi+&.-) = (**)£,- 

With this convention applied to the function u( —) : a •—> uQ and the fi2-indexed se- 

quence {u(6, -)}«<n2, note that u\ = Ai(w(-)) = Ao(u;o(-,0)) is denoted by u(ti,-), 

and UJ(Q,0) = TQ denotes the least fixed point of o;0( —,0). Similarly, u\ = A2{u{ —)) = 

A0(o;1( —,0)) is denoted by CJ(Q
2
, —), and u(Q2,0) denotes the least fixed point of to1(-,0). 

In general, since every ordinal 8 < S7n is uniquely expressed as 

6 = na>ß1 + --- + üQ"ßn 

for some ordinals an < ... < a] < Q and ßi,...,ßn < Q, we can regard the multiply 

fi-indexed sequence 

{('"" (v^1) •" •)^)}on<...<oi<n,/?1,...,^n<n 
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as an !7fi-indexed sequence {<p(S, —)}«<nn, if we put 

Hence, a constructive ordinal notation system for the ordinals less than </?(S7n,0), the least 

fixed point of 8 H-> ip(8,0) (8 < fifi), can be obtained using the families 

{(• • • (v^1) • • •)S")}«»<...<c*n<n,0i,...,/0n<n- 

It is possible to go farther using Bachmann-Isles hierarchies, but we are already quite dizzy, 

and refer the reader to Larry Miller's paper [34]. Readers interested in the topic of ordinal 

notations should consult the very nice expository articles by Crossley and Bridge Kister [5], 

Miller [34], and Pohlers [42], and for deeper results, Schütte [46] and Pohlers [41]. 

8  Normal Form For the Ordinals < To 

One of the most remarkable properties of To is that the ordinals less than To can be 

represented in terms of the functions + and <p. First, we need the following lemma. 

Lemma 8.1 Given an additive principal ordinal 7, if 7 = <p(a, ß), with a < 7 and ß < 7, 

then a < 7 iff 7 is not strongly critical. 

Proof. By proposition 6.31, we have 7 < (p(j,0). By proposition 6.28, since a < 7 and 

ß < 7 < (p("f, 0), we have 7 = ip(a,ß) < </?(7,0) iff a < 7. By proposition 6.34 and 

proposition 6.31, 7 is not critical iff 7 < ^(7,0), iff a < 7 from above. □ 

We can now prove the fundamental normal form representation theorem for the ordi- 

nals less than IV 

Theorem 8.2 For every ordinal a such that 0 < a < To, there exist unique ordinals 

ai,... ,an,ßi,... ,ßn, n > 1, with aii,ßi < (p(oti,ßi) < a, 1 < i < n, such that 

(1) a = (p(ai,ßi) H 1- v?(a„,ßn), and 

(2) ?(<*!,ft) >...>v>(an,/9B). 

Proof. Using the Cantor Normal Form for the (countable) ordinals (proposition 6.20), there 

are unique ordinals rji > ... > r]n, n > I, such that 

a =um + hw,n. 

Each ordinal uVi is an additive principal ordinal, and let 7* = uVi. By Proposition 6.32, for 

every additive principal ordinal 7*, there exist unique a,-, ßi € O such that, a,- < 7;, ßi < 7,-, 
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and 7,- = </?(<*,,/?,). Since for each ordinal 7,, we have 7; < a < T0, and T0 is the least 

strongly critical ordinal, by proposition 8.1, a, < 7,. Since 7; < a, a{ < 7,, and /?, < 7,, we 

have ai < a and /?, < a. Property (2) follows from the fact that rji > ... > r]n implies that 

7i > • • • > 7n (since 7, = u;'"). □ 

We need a few more properties of the ordinals less than T0 before we establish the 

connection between To and Kruskal's theorem. 

Lemma 8.3   For all o. $ < r0, if o < /?, then 

Q<ß<ß + a <<p(ß,a), 

and if a < ß and ß < r-(n. .?). then 

/? + a<^(Q,/ö)<<^(/?,a). 

Proof. That a</?</? + ais easy to show. If a = 0, since by proposition 6.31, ß < p(ß, 0), 

we have ß + 0 = ß < ip(ß, 0). If 0 < a = ß, we have shown earlier that a < <p(a, a) (in the 

proof of proposition 6.32), and since i^>(a,a) is an additive principal ordinal, we also have 

a + a < (p(a,a). If 0 < a < ß, by proposition 6.29, we have ß < ^(0,/3), and by proposition 

6.31, we have ß < ip(ß,0). By strict monotonicity of ipß, since a > 0, we have ß < <p(ß,a). 

Hence, a < ß < ip(ß,a). By proposition 6.28, <p(0,ß) < <p(ß,a), since ß < <p(ß,a). Hence, 

ß + a<<p(0,ß)+<p(ß,a) = <p(ß,a), 

since <p(0,ß) < (p(ß,a) and tp(ß,a) is an additive principal ordinal. 

Now assume a < ß and ß < y(a,ß). If a = 0, since by proposition 6.29, ß < p(0,ß), 

we have ß + 0 = ß < <p(0,ß). If 0 < a = ß, the proof is identical to the proof of the previous 

case. If 0 < a < ß, then by proposition 6.28, ip(0,ß) < ip(a,ß), since ß < ip(a,ß). We can 

also show that a < <p(a, ß) as in the previous case (since ß > 0), and we have 

ß + a<ip(0,ß) + <p(a,ß) = <p(a,ß), 

since y?(0, ß) < tp(a, ß) and tp(a, ß) is an additive principal ordinal. The fact that tp(a, ß) < 

<p(ß,a) if a < ß was shown in proposition 6.31. □ 

It should be noted that if a < ß, when ß = <p(a,ß) (which happens when ß G Cr(a')), 

the inequality ß + a < tp(a,ß) is incorrect. This minor point noted at the very end of 

Simpson's paper [47, page 117] is overlooked in one of Smoryhski's papers [51, page 394]. 

In the next section, we will correct Smoryriski's defective proof (Simpson's proof is also 

defective, but he gives a glimpse of a "repair" at the very end of his paper, page 117). 

By theorem 8.2, the ordinals less than T0 can be defined recursively as follows. 
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Lemma 8.4   For every ordinal 7 < To, either 

(1) 7 = 0, or 

(2) 7 = ß + a, for some ordinals a, ß < 7 such that a < ß, or 

(3) 7 = <f(a, ß), for some ordinals a,ß < 7. 

Proof. The proof follows immediately from theorem 8.2 by induction on n in the decompo- 

sition 7 = <p(ai,ßi) H h v?(an,/?„). D 

In case (3), we cannot guarantee that a < ß, and we have to consider the three 

subcases a < ß, a = ß, and a > ß. Actually, we can reduce these three cases to two if we 

replace < by <• 

This recursive representation of the ordinals < To is the essence of the connection 

between To and Kruskal's theorem explored in section 9. 

Lemma 8.4 shows that every ordinal a < To can be represented in terms of 0, +, and tp, 

but this representation has some undesirable properties, namely that different notations can 

represent the same ordinal. In particular, for some a < ß < To, we may have ß = tp(a,ß) 

(which happens when ß G Cr(a')). For example, eo = 9(0,60) (since e0 = ^(150)). It 

would be desirable to have a representation similar to that given by lemma 8.2, but for a 

function xj) such that a < %ß(a,ß) and ß < ip(a,ß), for all a,ß < T0. Such a representation 

is possible, as shown in Schütte [46, Section 13.7, page 84-92]. The key point is to consider 

ordinals 7 that are maximal a-critical, that is, maximal with respect to the property of 

belonging to some Cr(a). 

Definition 8.5    An ordinal 7 (E Ö is maximal a-critical iff 7 G Cr(a) and 7 ^ Cr(ß) for 

all ß> a. 

By proposition 6.22 and proposition 6.23, 7 € Cr(a) iff 9^(7) = 7 for all ß < a. 

Thus, 7 is maximal a-critical iff <pQ(j) / 7. However, because (pQ is the ordering function 

of Cr(a), we know from proposition 6.9 that 8 < (pQ(8) for all 6, and so, 7 is maximal 

a-critical iff 7 = <pa{ß) for some ß < 7. It follows from proposition 6.32 that for every 

principal additive number 7, there is some a < 7 such that 7 is maximal a-critical. 

Definition 8.6    The function il>Q is defined as the ordering function of the maximal a- 

critical ordinals. 

We also define ip(a,ß) by letting tß(a,ß) = 4>Q(ß)- It is possible to give a definition 

of x\) in terms of 9, as shown in Schütte [46]. 
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Lemma 8.7   The function ip defined such that 

' if (a, ß + 1),    if ß = ß0 + n and <p(a, ß0) = ß0, 

ip(a, ß) = < for some ß0 and n £ N; 

k y?(a, /?)> otherwise. 

is the ordering function of the maximal a-critical ordinals for every a. 

We list the following properties of x[> without proof, referring the reader to Schütte 

[46] for details. 

Lemma 8.8    For every additive principal number 7, there are unique a,ß < 7 such that 

7 = ip(a,ß). 

Lemma 8.9    (1) If 7 = iß(a,ß), then Q < 7 iff 7 is not strongly critical. 

(2) ß <tP(a,ß) for &\\ a, ß. 

Lemma 8.10   V(ai ,ßi) < ^{^2,#2) holds iff either 

(1) c*i < a2 and /?] < rp(a2,ß2), or 

(2) ai = a2 and ßx < ß2, or 

(3) a2 < ai and ip{außi) < ß2. 

It should be noted that the set of maximal a-critical ordinals is unbounded, but it is 

not closed, because the function ipQ is not continuous. However, this is not a problem for 

representing the ordinals less than IV 

Since To is the least strongly critical ordinal, by lemma 8.9, we have the following 

corollary. 

Lemm 8.11   For all a,ß < T0, we have 

(1) a < xß(a,ß), and 

(2) ß<1>(a,ß). 

Using lemma 8.8, we can prove another version of the normal form theorem 8.2 for 

the ordinal less than To, using ip instead of (p. 

Theorem 8.12    For every ordinal a such that 0 < a < To, there exist unique ordinals 

ai,... ,an,ßi,... ,ßn, n > 1, with a,,/?, < ip(ai,ßi) < a, 1 < i < n, such that 

(1) a = ij>(ai,ßi) + \-if>(an,ßn),and 
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(2) ^(ai,/?i)>...>^(a„,0„). 

The advantage of the reprentation given by theorem 8.12 is that it is now possible 

to design a system of notations where distinct notations represent distinct ordinals, and 

V> satisfies the subterm property of lemma 8.11. Such a notation system will be given in 

section 11. 

9  Kruskal's Theorem and To 

The connection between To and Kruskal's theorem lies in the fact that there is a close 

relationship between the embedding relation -< on trees (definition 4.11) and the well- 

ordering < on 0(To) (recall that 0(To) is the set of all ordinals < To). 

We shall restrict our attention to tree domains, or equivalently assume that the set of 

labels contains a single symbol. Let T denote the set of all finite tree domains, which, for 

brevity are also called trees. In this case, by a previous remark, it is easy to show that X is 

a partial order. We shall exhibit a function h : T —> O(T0) from the set of finite trees to the 

set of ordinals less that To, and show that h is (1). surjective, and (2). preserves order, that 

is, if s X t, then h(s) < h(t) (where < is the embedding relation defined in definition 4.11). 

It will follow that Kruskal's theorem (theorem 4.12) implies that 0(TQ) is well-ordered by 

<, or put slightly differently, Kruskal's theorem implies the validity of transfinite induction 

on IV In turn, the provability of transfinite induction on large ordinals is known to be 

proof-theoretically significant. As first shown by Gentzen, one can prove the consistency of 

logical theories using transfinite induction on large ordinals. As a consequence, Kruskal's 

theorem in not provable in fairly strong logical theories, in particular some second-order 

theories for which transfinite induction up to To is not provable. 

We now give the definition of the function h mentioned above. In view of the recursive 

characterization of the ordinals < To, it is relatively simple to define a surjective function 

from T to 0(To)- However, making h order-preserving is more tricky. As a matter of 

fact, this is why lemma 8.3 is needed, but beware! Simpson defines a function h using 

five recursive cases, but points out at the end of his paper that there is a problem, due 

to the failure of the inequality ß + a < tp(a,ß) [47, page 117]. Actually, a definition with 

fewer cases can be given, and Smoryhski defines a function h using four recursive cases [51]. 

Unfortunately, Smoryhski's definition also makes use of the erroneous inequality [51, page 

394]. We give what we believe to be a repaired version of Smoryhski's definition of h (using 

five recursive cases). 

Remark. We do not know whether a definition using the function if> of the previous 

section can be given. Certainly a surjective function can be defined using ip, but the difficult 
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part is to insure monotonicity. 

Definition 9.1 The function h : T —> 0(To) from the set of finite trees to the set of 

ordinals less that To is defined recursively as follows: 

(0) h(t) = 0, when t is the one-node tree. 

(1) h(t) = h(t/l), if rank(t) = 1, i.e, the root of t has only one successor. 

(2) h(t) = ß + a, if rank{t) = 2, where a is the least element of {h(t/l), h(t/2)} and ß is 

the largest. 

(3) h(t) = (p(a,ß), if rank(t) — 3, where a < ß are the two largest elements of the set 

{h(t/l),h(t/2),h(t/3)}, and ß < <p(a,ß). 

(4) h(t) = ß + a, if rank(t) = 3, where a < ß are the two largest elements of the set 

{h(t/l), h{t 12), h(t/3)}, and ß = y>(a, /?). 

(5) /i(tf) = (p(ß, a), if rank(t) > 4, where a < ß are the two largest elements of the set 

{h(t/l), h(t/2),..., h(t/k)}, with k = rank(t). 

The following important theorem holds. 

Theorem 9.2 The function h : T —> C(r0) is surjective and monotonic, that is, for every 

two finite tree s, t, if s ^ i, then /i(s) < h(i). 

Proof (sketch). The fact that /i is surjective follows directly from the recursive definition 

shown in lemma 8.4. Note that clause (1) and (4) are not needed for showing that h is a 

surjection, but they are needed to ensure that h is well defined and preserves order. By 

clause (0), h(t) = 0, for the one-node tree t. Clause (2) is used when 7 = ß + a, with 

a,ß < 7 and a < ß. Clause (3) is used when 7 = tp(a,ß) with a,ß < 7 and a < ß, and 

clause (5) is used when 7 = <p(ß,a) with a,ß < 7 and a < ß. 

The proof that if s ■< t, then h(s) < h(t) proceeds by cases, using induction on 

trees, corollary 6.30, and lemma 8.3. The only delicate case arises when rank(s) — 2, 

rank(t) — 3, and, assuming that h(t/l) > h(t/2) > h(t/3) and h(s/l) > h(s/2), we have 

h(t/l) = tp(h(t/2), h(t/l)), s/l ^ t/l and s/2 ^ t/2. By the induction hypothesis, h(s/l) < 

h(t/l) and h(s/2) < h(t/2), and since h(s) = h(s/l) + h(s/2) and h(t) = h(t/l) + h(t/2), 

we have h(s) < h(t). If h(t/l) < <p(h(t/2),h(t/l)), then h(t) = <p(h(t/2),h(t/l)), and by 

proposition 8.3, h(s) = h(s/l) + h{s/2) < h(t/l) + h(t/2) < <p(h(t/2), h{t/\)) = h(t). The 

other cases are left to the reader. Q 

Theorem 9.2 implies that there exist total orderings of order type To extending the 

partial order ^ on (finite) trees. DeJongh and Parikh [6] proved that the maximum (sup) 
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of all the total extensions is attained, and they computed the maximum for certain of the 

(Higman) orderings. The ordinals associated with various orderings on trees arising in the 

theory of rewriting systems have been investigated by Dershowitz and Okada [9], Okada 

and Takeuti [38], and Okada [37, 39, 40]. 

Theorem 9.2 also has the following important corollary. 

Lemma 9.3   Kruskal's theorem implies that 0(To) is well-ordered by <. 

Proof. Assume that there is some infinite sequence (Q
,
,),>I of ordinals in Ö(TQ) such that 

ati+i < Qi for all i > 1. By theorem 9.2, since h is surjective, there is an infinite sequence of 

trees (<i),>i such that /?(/,) = Qi for all i > 1. By Kruskal's theorem (theorem 4.12), there 

exist i, j > 0 such that i < j and t{ ■< tj. By theorem 9.2, we have a, = h(ti) < h(tj) = QJ, 

contradicting the fact that Qj < o^. Hence, 0(To) is well-ordered by <. D 

Let us denote by WO(T0) the property that O(T0) is well-ordered by <, and by 

WQO(T) the property that the embedding relation X is a wqo on the set T of finite trees. 

WQO(T) is a formal statement of Kruskal's theorem. 

For every formal system S, if the proof that (WQO{T) D WO(T0)) (given in lemma 

9.3) can be formalized in S and WO(T0) is not provable in 5, then WQO(T) is not provable 

in S. In the next section, we briefly describe some subsystems of 2n(i-order arithmetic in 

which Kruskal's theorem and its miniature versions are not provable. 

10 The Subsystems ACAQ, ATR0, U\-CA0, of Second-Order Arith- 
metic 

Harvey Friedman has shown that WO(To) is not provable in some relatively strong sub- 

systems of 2nd-order arithmetic, and therefore, Kruskal's theorem is not provable in such 

systems. Friedman also proved similar results for some finite (first-order) miniaturizations 

of Kruskal's theorem. In particular, these first-order versions of Kruskal's theorem are not 

provable in Peano's arithmetic, since transfinite induction up to eo is not provable in Peano's 

arithmetic, due to a result of Gentzen. We now provide some details on these subsystems 

of 2nd-order arithmetic. 

Second-order arithmetic can be formulated over a two-sorted language with number 

variables (m, n,...) and set variables (X, F,...) . We define numerical terms as terms built 

up from number variables, the constant symbols 0, 1, and the function symbols + (addition) 

and • (multiplication). An atomic formula is either of the form t\ = £2, or *i < *2> or t\ £ X, 

where t\ and ^2 are numerical terms.   A formula is built up from atomic formulae using 
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A, V, D, =, -i, number quantifiers Vn,3n, and set quantifiers VX, 3X. We say that a formula 

is arithmetical iff it does not contain set quantifiers. 

All systems of second-order arithmetic under consideration include standard axioms 

stating that (N,0,1, +, ■, <) is an ordered semi-ring. The real power of a system of second- 

order arithmetic is given by the form of its induction axioms, and the form of its compre- 

hension axioms. 

For the systems under consideration, the induction axiom is 

[0 <E X A \/m(m € X D m + 1 G X)] D Wn(n G A'), 

where X is a set variable. This form of induction is often called restricted induction, in 

contrast with the principle of full induction stated as 

[y>(0) A Vm(<p{m) D y>(m + 1))] D Vntp(n), 

where <p is an arbitrary 2nd-order formula. Apparently, Friedman initiated the study of 

subsystems of 2"rf-order arithmetic with restricted induction (this explains the subscript 0 

after the name of the systems ACA, ATR, or Y[\-CA). 

The system U^-CAQ, also known as Z2, or second-order arithmetic, has comprehen- 

sion axioms of the form 

3XVn(n eX = <p(n)), 

where <p is any 2nd-order formula <p in which X is not free. This is a very powerful form of 

comprehension axioms. Susbystems of Z2 are obtained by restricting the class of formulae 

for which comprehension axioms hold. 

The system ACAQ is obtained by restricting the comprehension axioms to arithmetical 

formulae in which X is not free {ACA stands for Arithmetical Comprehension Axioms). It 

turns out that ACAQ is a conservative extension of (first-order) Peano Arithmetic (PA). A 

weak form of König's lemma is provable in ACA0, and a fairly smooth theory of continuous 

functions and of sequential convergence can be developed. For example, Friedman proved 

that the Bolzano/Weierstrass theorem (every bounded sequence of real numbers contains 

a convergent subsequence) is provable in ACAQ. In fact, Friedman proved the stronger 

result that no set existence axioms weaker than those of ACAQ are sufficient to establish 

the Bolzano/Weierstrass theorem. For details, the reader is referred to Simpson [48]. 

The system ATRQ contains axioms stating that arithmetical comprehension can be 

iterated along any countable well ordering (ATR stands for Arithmetical Transfinite Recur- 

sion).  A precise formulation of the axiom ATR can be found in Friedman, McAloon, and 
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Simpson [16] (see also Feferman [14]), but it is not essential here. The system ATRo permits 

a convenient development of a large part of ordinary mathematics, including, the theory of 

continuous functions, the Riemann integral, the theory of countable fields, the topology of 

complete separable metric spaces, the structure theory of separable Banach spaces, a good 

theory of countable well orderings, Borel sets, analytic sets, and more. 

The system Tl\-CAo is obtained by allowing comprehension axioms in which <p is any 

nj-formula in which X is not free. This is a system even stronger that ATRo, whose axioms 

imply many mathematical results in the realm of algebra, analysis, classical descriptive set 

theory, and countable combinatorics. 

The systems AC A, ATR and H\-CA allow full induction rather than restricted in- 

duction. It might be interesting to mention that the least ordinals for which transfinite 

induction cannot be proved in ACAQ and ATRo are respectively to and IV Such an ordinal 

has also be determined for H\-CAo, but the notation system required to describe it is be- 

yond the scope of this paper. In contrast, the least ordinals for which transfinite induction 

cannot be proved in AC A and ATR are respectively e6o and r€o. 

We now return to the connections with To and Kruskal's theorem. Friedman has 

shown that WO(To) is not provable in ATRo (Friedman, McAloon, and Simpson [16]). He 

also showed that (WQO(T) D WO(To)) is provable in ACAQ- Since ACAQ is a subsystem 

of ATRo, we conclude that WQO(T) is not provable in ATRo- This is already quite re- 

markable, considering that a large part of ordinary mathematics can be done in ATRo- But 

Friedman also proved that the miniature version LWQO(T) of Kruskal theorem given in 

theorem 5.1 is not provable in ATRo, an even more remarkable result. The proof of this 

last result is given in Simpson [47]. 

There is one more "tour de force" of Friedman that we have not mentioned! Harvey 

Friedman has formulated an extension of the miniature version of Kruskal's theorem (using a 

gap condition), and proved that this version of Kruskal's theorem is not provable in U\-CAo. 

The proof can be found in Simpson [47]. There are also some connections bewteen this last 

version of Kruskal's theorem and certain ordinal notations due to Takeuti known as ordinals 

diagrams. These connections ae investigated in Okada and Takeuti [38], and Okada [39, 

40]. 

11  A Brief Introduction to Term Orderings 

This section is a brief introduction to term orderings. These orderings play an important 

role in computer science, because they are the main tool for showing that sets of rewrite 

rules are finite terminating (Noetherian).  In turn, Noetherian sets of rewrite rules play a 
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fundamental role in automated deduction in equational logic. Indeed, one of the major 

techniques in equational logic is to complete a given set of equations E to produce an 

equivalent set R of rewrite rules which has some "good" properties, namely to be confluent 

and Noetherian. A number of procedures that attempt to produce such a set R of rewrite 

rules from a set E of equations have been designed. The first such procedure is due to 

Knuth and Bendix [27], but there are now many kinds of completion procedures. For more 

details on completion procedures, we refer the reader to Dershowitz [11] and Bachmair [2]. 

There are many classes of term orderings, but an important class relevant to our con- 

siderations is the class of simplification orderings, because Kruskal's theorem can be used to 

prove the well-foundedness of these orderings. For a comprehensive study of term orderings, 

the reader is referred Dershowitz's excellent survey [7] and to Dershowitz's fundamental pa- 

per [8]. 

Given a set of labels E, the notion of a tree was defined in definition 4.2. When 

considering rewrite rules, we usually assume that E is a ranked alphabet, that is, that there 

is a ranking function r:S-»N assigning a natural number r(/), the rank (or arity) of /, 

to every / £ E. We also have a countably infinite set X of variables, with r(x) = 0 for every 

x £ X, and we let TY,{X) be the set of all trees (also called H-terms, or terms) t £ T^x 

such that, for every tree address u £ dom(t), r(t(u)) = rank(t/u). In other words, the rank 

of the label of u is equal to the rank of t/u (see definition 4.3), the number of immediate 

successors of u. 

Given a tree t, we let Var{t) = {x £ X \ 3u £ dom(t), t(u) = x) denote the set of 

variables occurring in t. A ground term t is a term such that Var(t) — 0. 

Definition 11.1 A set of rewrite rules is a binary relation R C T-z(X) x T-^(X) such that 

Var(r) C Var(l) whenever (l,r) £ R. 

A rewrite rule (/, r) £ R is usually denoted as / —► r. The notions of tree replacement 

and substitution are needed for the definition of the rewrite relation induced by a set of 

rewrite rules. 

Definition 11.2 Given two trees t\ and ^2 and a tree address u in t\, the result of replacing 

t2 at u in <i, denoted by t\[u <— £2], is the function whose graph is the set of pairs 

{(v,ti(v)) I v £ dom(ti), u is not a prefix of v] U {(uv,t2(v)) | v £ dom(22)}- 

Definition 11.3 A substitution is a function a : X —> T^(X), such that, cr(x) ^ x for only 

finitely many x €. X. Since T%(X) is the free E-algebra generated by X, every substitution 

a : X —> T-£,(X) has a unique homomorphic extension a : Tr(X) —> T^(X). In the sequel, 

we will identify a and its homomorphic extension a, and denote a(t) as t[a\. 
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Definition 11.4 Given a substitution a, the domain of a is the set of variables D(a) = 

{x | cr(x) ^ x}. Given a substitution o~, if its domain is the set {xi,... ,xn}, and if ti = cr(xi), 

1 < i < n, then a is also denoted by [ii/xi,... ,tn/xn}. 

Definition 11.5 A substitution a is a renaming iff cr(x) is a variable for every x £ D(a), 

and a is injective. Let R C Ts(A') x Ts(X) be a set of rewrite rules. A rewrite rule 

s —► t is a variant of a rewrite rule u —* v € i? iff there is some renaming p with domain 

Var(u) U Var(u) such that s — u[p] and t = v[p\. 

Definition 11.6 Let —► be a binary relation —> C T%(X) x TY,{X). (i) The relation —► 
is monotonic (or stable under the algebra structure) iff for every two terms s,t and every 

function symbol / € E, if s —> t then /(... ,5,...) —► /(...,£,...). 

(ii) The relation —* is stable (under substitution) if s —► i implies s[a] —> <[a] for 

every substitution <r. 

Definition 11.7 Let R C Ts(A') x T%(X) be a set of rewrite rules. The relation —>R 

over Ts(A') is defined as the smallest stable and monotonic relation that contains R. This 

is the rewrite relation associated with R. 

This relation is defined explicitly as follows: Given any two terms t\, £2 £ Tx(X), then 

ti —>Ä <2 

iff there is some variant I -> r of some rule in R, some tree address a in t\, and some 

substitution cr, such that 

t\/a = /[cr],     and    £2 = <i[a <— r[cr]]. 

We say that a rewrite system R is Noetherian iff the relation —>R associated with R 

is Noetherian. 

Now, our goal is to describe some orderings that will allow us to prove that sets of 

rewrite rules are Noetherian. First, it is convenient to introduce the concept of a strict 

ordering. 

Definition 11.8 A strict ordering (or strict order) -< on a set A is a transitive and 

irreflexive relation (for all o,a/ a.) 

Given a preorder (or partial order) X on a set A, the strict ordering -< associated with 

^ is defined such that s -< t iff s ■< t and t ■£ s.   Conversely, given a strict ordering -<, 
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the partial ordering ■< associated with ■< is defined such that s ■< Hff s -< t or s = t. The 

converse of a strict ordering -< is denoted as >-. 

We now introduce the important concepts of simplification ordering, and reduction 

ordering. Let E be a set of labels (in most cases, a ranked alphabet). 

Definition  11.9   A strict order -< on T% satisfying conditions 

(1) s -< /(...,5,...), and 

(2) /(...)-</(...,*,...), 

is said to have the subtcrm property and the deletion property. 

A simplificatioji ordering -< is a strict ordering that is monotonic and has the subterm 

and deletion property.1 

A reduction ordering -< is a strict ordering that is monotonic, stable under substitution, 

and such that >- is well-founded. 

With a slight abuse of language, we will also say that the converse y of a strict ordering 

-< is a simplification ordering (or a reduction ordering). The importance of term orderings 

is shown by the next fundamental result. 

Lemma 11.10    A set of rules R is Noetherian if and only if there exists a reduction 

ordering >- on Tz(X) such that  / >- r for every / —> r € R. 

Unfortunately, it is undecidable in general if an arbitrary system R is Noetherian 

since it is possible to encode Turing machines using a system of two rewrite rules, and this 

would imply the decidability of the halting problem (see Dershowitz [7]). The importance 

of simplification orderings is shown by the next theorem. 

Theorem 11.11    (Dershowitz) If £ is finite, then every simplification ordering on TE is 

well-founded. 

Proof. This is a consequence of proposition 4.8, which uses Kruskal's tree theorem. □ 

In practice, we want theorem 11.11 to apply to simplification orderings on TE(A'), but 

since X is infinite, there is a problem. However, we are saved because we usually only care 

about terms arising in derivations. 

When E is a ranked alphabet, the deletion property is superfluous. 
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Definition 11.12 An ordering >- is well-founded for derivations iff >- f~l —>R is well- 

founded for every finite rewrite system R. 

Since Var(r) C Var(l) for every / —► r £ R, every derivation of a finite rewrite system 

involves only finitely many symbols. Thus, as corollary of the above theorem we have: 

Corollary 11.13 (Dershowitz) Every simplification ordering is well-founded for deriva- 

tions. 

Warning: There exists rewrite systems whose termination cannot be shown by any 

total simplification ordering as shown by the following example. 

Example 11.14 

/(«) - f{b) 
g(b) -» g(a) 

Next, we are going to describe two important classes of simplification orderings, the 

recursive path ordering, and the lexicographic path ordering. But first, we need to review 

the definitions of the lexicographic ordering and the multiset ordering. 

Definition 11.15 Given n partially ordered sets (5,, -<,•) (where each -<i is a strict order, 

n > 1), the lexicographic order -<iex on the set S\ x • ■ • x Sn is defined as follows. Let 

(aj, ... , an) and (bi, ... , bn) be members of S\ x ■ • • x Sn. Then 

(ai,...,an)   -<iex   {bi,---,bn) 

if and only if there exists some i, 1 < i < n, such that a{ -<,• bi, and a.j = bj for all j, 

1 < j < i. 

We now turn to multiset orderings. Multiset orderings have been investigated by 

Dershowitz and Manna [10], and Jouannaud and Lescanne [24]. 

Definition 11.16 Given a set A, a multiset over A is an unordered collection of elements 

of A which may have multiple occurrences of identical elements. More formally, a multiset 

over A is a function M : A —► N (where N is the set of natural numbers) such that an 

element a G A has exactly n occurrences in M iff M(a) = n. In particular, a does not 

belong to M when M{a) = 0, and we say that a e M iff M(a) > 0. 

The union of two multisets M\ and M2, denoted by M\ UM2, is defined as the multiset 

M such that for all a € A, M(a) = Mi (a) + M2(a). 
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Let (5, -<) be a partially ordered set (where -< is a strict order), let M be some finite 

multiset of objects from 5, and finally let n, n\, ... ,n'k 6 S. Define the relation <=m on 

finite multisets as 

M\j{n\, ... ,n'k}   4=m   MU{n), 

where k > 0 and n'j -< n for all i, 1 < i < k. 

The multiset ordering -<M(S) 
iS simply the transitive closure <=m. 

In other words, N' -<M(S) N iff N' is produced from a finite multiset N by removing 

one or more elements and replacing them with any finite number of elements, each of which is 

strictly smaller than at least one element removed. For example, {4,4,3,3,1} -< {5,3,1,1}, 

where -< is the multiset ordering induced by the ordering < of the natural numbers. 

It is easy to show that for any partially ordered set (S, ■<), we have associated partially 

ordered sets (M(S), -<M(S)) (where M(S) is the set of all finite multisets of members of S), 

and (Sn,:</ez) for n > 0. Furthermore < is total (respectively, well-founded) iff -<ux (for 

any n) is total (respectively, well-founded). 

Using König's lemma, we can also show the following useful result. 

Lemma 11.17   If ■< is well-founded (respectively, total) on 5, then -<M{S) i-s well-founded 

(respectively, total) on M(S). 

There is an interesting connection between the multiset ordering and ordinal expo- 

nentiation. Given a well ordering -< on a set S, it is well know that there is a unique ordinal 

a and a unique order-preserving bijection ip : S ^ a. 

The connection is that (M(S), -<M(S)) is order-isomorphic to ua. Indeed, the function 

V>: M(S) -* UJ° defined such that V(0) = 0, and 

V>({mi, • • •, m*}) = u/*(mi) + • ■ • + u^<m*\ 

where <p(mi) > ... > <p(m,k) is the nonincreasing sequence enumerating ^({mj,... ,m<;}),2 

is easily shown to be an order-isomorphism. 

The lexicographic ordering and the multiset ordering can also be defined for preorders. 

This generalization will be needed for defining rpo and Ipo orderings based on preorders. 

Definition  11.18    Given n preordered sets (Si,<t) (n > 1), the lexicographic preorder 

dilex on the set Si x • • • x Sn is defined as follows: 

(au ... ,a„)   ^iex   (6i, ... , 6„) 

2   In the theory of ordinals, the sum u)v''mi ' -f • ■ • + uj^mk ^ is a natural sum. 
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if and only if there exists some i, 1 < i < n, such that a, ■<{ &,-, and a,j «_,- bj for all j, 

1 < i < i-3 

Definition 11.19   Let (5, ^) be a preordered set, let M be some finite multiset of objects 

from 5, and finally let n, n[, ... ,n'k 6 S. Define the relation <=m on finite multisets as 

MU{n'i, ... ,n'k}  ^m  MU{n}, 

where either k = 1 and n « n'j, or k > 0 and n(- ^ n for all i, 1 <i < k.A 

The multiset preorder ^M(S) is the transitive closure 4=m. 

Two finite multisets Mi and M2 are equivalent (Mi «M(S) -^2) iff they have the same 

number of elements, and every element of Mi is equivalent to some element of M2 and vice 

versa. It is easy to show that for any preordered set (S, X) we have associated preordered 

sets (M(S),Z<M(S)) (where M(S) is the set of all finite multisets of members of 5), and 

(Sn,^iex) for n > 0. Furthermore ^ is total (respectively, well-founded) iff -<ux (for any 

n) is total (respectively, well-founded). 

Using König's lemma, we can also show that lemma 11.17 holds for preorders. 

Lemma 11.20    If •< is a well-founded preorder (respectively, total) on S, then diM(S) 1S 

well-founded (respectively, total) on M(S). 

A naive ordering on terms based on the notion of lexicographic order is as follows. 

For any given ordering >- on E we say that 

s = f(su ... ,sn)ytlex g(tu ... ,tm) = t 

iff either 

(i)   / >- g; or 

(ii) / = fir and (su ... ,sn) y\[e* (tu ... ,t„), 

where ^j^1 is the lexicographic extension of yilex to n-tuples of terms (the success of this 

recursive definition depends on the fact that we use the lexicographic extension over terms 

smaller than s and t). 

It is easy to show by structural induction on terms that tlex is total on ground terms 

whenever the >- is total on E, but it has a severe defect: it is not well-founded. For example, 

3 As usual, the equivalence « associated with a preorder < is defined such that a « 6 iff a ■< b and 
b< a. 

4 As usual, given a preorder <, the strict order -< is defined such that a -< b iff a < b and 6 ^ a. 
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if a y f then we have a ytlex fa ytlex f2 a ytlex — The problem arises since it is possible 

for a term to be strictly smaller than one of its subterms. 

The most powerful forms of reduction orderings are based on the relative syntactic 

simplicity of two terms, i.e., on the notion of a simplification ordering. Although there are 

many types of simplification orderings, one of the most elegant and useful is the recursive 

path ordering, for short, rpo. 

Definition 11.21 Let X be a preorder on E. The recursive path ordering Xrpo on TJC(A'), 

for short, rpo, is defined below. Actually, we give a simultaneous recursive definition of 

hrpo, yrpo, and «rpo, where s >-rp0 t \R s hrPo t and s ^rpo t, and 5 zzrpo t iff 6 >zrp0 t and 

^  —rpo *• 

Then, /(si, ... ,sn) yrpo g(U, • •• , *m) holds iff one of the conditions below holds: 

(i)    /««/and {si, ••• ,«„}  h"rp
u

0"  {ti *m};or 

(ii)    f y g and f(su ... ,sn) yrpo tt for all i, 1 < i < m; or 

(iii)    s,  yrpo g(ti, ... ,tm) for some i, 1 < i < n, 

where >z^,"" ^s ^ie extension of yrpo to multisets,5 

Note that since the preorder X is only defined on E, variables are regarded as incom- 

parable symbols. In (ii), the purpose of the condition f(sx, ... ,s„) yrpo t, for all i, is to 

insure that f(su ... ,sn) yrpo g(tu ... ,tm). 

Theorem 11.22 (Dershowitz, Lescanne) The relation yrpo is a simplification ordering 

stable under substitution. Furthermore, if the strict order X is well-founded on E, then 

yrpo is well-founded, even when E is infinite. 

Proof sketch. Proving that rpo is a simplification ordering is laborious, especially transi- 

tivity. The complete proof can be found in Dershowitz [8]. In order to prove that yrpo is 

well-founded when >- is well-founded on E, it is tempting to apply proposition 4.8 to the 

preorders < and Xrpo, where < is defined such that s < t iff root(s) X root(t), since the 

conditions of this lemma hold. Unfortunately, X is not a wqo. However, we can use the 

idea from theorem 4.10 to extend X to a total well-founded ordering <. Then, by theorem 

4.7, the embedding preorder X< induced by < (see definition 4.6) is a wqo, and thus, it is 

well-founded. We can now apply proposition 4.8, which shows that <rpo (the rpo induced 

by <) is well-founded. Finally, we prove by induction on terms that <rpo contains Xrp0l 

which proves that yrpo itself is well-founded. □ 

5  Other authors define >-£J,""  as the multiset extension of the strict order >rpo, and s >3™""  t iff 

s >-£J,o    / or s = (. Our definition is more general. 
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A proof not involving Kruskal's theorem, but using Zorn's lemma, is given in Lescanne 

[29]. Of course, a strict order on a finite set is always a wqo, and the significance of the 

second part of the theorem is that it holds even when E is infinite. 

Example 11.23    Consider the following set of rewrite rules to convert a proposition to 

disjunctive normal form: 

-.(P V Q) —> -iP A -Q, 

-(PAQ)—>-.PV--Q, 

P A (Q V P) —»(PAQ)V(PA P), 

(P V Q) A P —♦ (P A P) V (Q A P), 

-W —P, 

py P —► P, 

PAP —► P. 

This system can be easily shown to be Noetherian using the rpo induced by the following 

ordering on the set of operators: -> y A >- V. 

It is possible to show that >zrpo is total on ground terms whenever y is total on 

E. It is also possible to define reduction orderings which are total on ground terms; the 

problem with hrPo is that it is not a partial order in general, but only a preorder, i.e., the 

equivalence relation &rpo is not necessarily the identity. For example, for any >- we have 

f(a,b) &rpo f(b,a) but clearly /(a,b) ^ f(b,a). It is easy to show by structural induction 

on terms, and using only clause (i) of the definition of rpo that for any two ground terms 

s = f(s1, ... ,sn) and t = g{tu ... ,tm), we have 5 «rpo t iff f zz g and st ztrpo t„{i), for 

1 < i < n, where IT is some permutation of the set {1, ... ,n}. (In other words, s ztrp0 t 

iff s and t are equal up to equivalence of symbols, and up to the permutation of the order 

of the terms under each function symbol, where the permutation of subterms arises by the 

comparison of multisets of subterms in clause (i) of the definition.) 

This motivates the following definition. 

Definition  11.24   For any ordering >- on E, let the term ordering yrpol be defined such 

that s yrpoi t iff either s yrpo t or s and t are ground, s «rpo t, and s ytUx t. 

Clearly for any total >- on E this is a reduction ordering total on ground terms, since 

yrpo is total on ground terms and if s yrpo t and s <rpo t then, since ytlex is total on 

ground terms, we must have either s ytlex t or s -<tlex t. 

Thus, any time the underlying ordering on E is total we have a total ordering on 

Ts, even though the ordering may not be total on T^(X).  This is a major problem with 
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term orderings: in order to preserve stability under substitution, they must treat variables as 

incomparable symbols. Thus equations such as commutative axioms (e.g. f(x, y) = f(y, x)) 

can never be oriented. 

Warning: It is possible that for R and 5 rewrite systems on disjoint sets of function 

(and constant) symbols, both R and S are Noetherian, but R U S is not, as shown by the 

following example due to Toyama. 

Example 11.25 

R= {f (0,1, z)-+f(z,z,z)} 

S= {g(x,y) -» x 

g(x,y) -» y} 

Observe that the term f(g(0,l),g(0,l),g(0,l)) rewrites to itself: 

f(g(0, l),g(0, l),g(0,1)) — f(0,g(0, l),g(0,1)) 

—>/(0,1,0(0,1)) 

—>f(g(0,l),g(0,l),g(0,l)). 

Another interesting kind of term ordering is the lexicographic path ordering due to 

Kamin and Levy. 

Definition 11.26 Let X be a preorder on E. The lexicographic path ordering ^ipo on 

T%(X), for short, Ipo, is defined below. Actually, we give a simultaneous recursive definition 

of hlpo, yipo, and ^ipo, where s >-ipo t iff s ^/po t and s ^ipo t, and s %/po t iff -s hlpo t and 

s -<ipo t. 

Then, f(s\, ... , s„) >zipo g{t\, ■ ■ ■ ,tm) holds iff one of the conditions below holds: 

(i)    / ~ 9, si ~lPo <i,...,5i_i faipo U-\,Si >zip0 U, and 5 ylpo t,+i,...,s ytpo tn, for 

some i, 1 < i < n, with s = f(si,... ,sn) and m = n; or 

(ii)   f y g and /(si, ... , s„) X/po i, for a// i, 1 < i < m; or 

(iii)    5,- ci/po «7(^1, ... ,tm) for -some i, 1 < i < n. 

Note that since the preorder ■< is only defined on E, variables are regarded as incom- 

parable symbols. Also, condition (i) is sometimes stated as: 

0') / ~ 9, {si,...,sn) y\e
p
x

0 (tu...,tn), m = n, and f(su...,sn) ylpo tt for all i, 

1 < i < n, where ^f* is the lexicographic extension of >zipo on n-tuples.6 

6  Other authors define y\ex as the lexicographic extension of the strict order >-|p0, and s >i\ex t iff 

s >-\ex ( or s = (. Our definition is more general. 
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It is easily seen that (i) and (i') are equivalent. In (i), the purpose of the conditions 

s yipo ti+i,...,s yipo tn is to insure that /(si, ... ,s„) >~ipo g(U, ■■ • ,<m) iff «t >-/j>o *»• 

Similarly, in (ii), the purpose of the condition f(s\, ... , $n) >~ipo ti for all i, is to insure 

that f(si, ... ,sn) yipo g{t\, ■■■ ,tm). 

Theorem 11.27 (Kamin, Levy) The relation X;po is a simplification ordering stable under 

substitution. Furthermore, if the strict order >- is well-founded on E, and equivalent symbols 

have the same rank, then Xjpo is well-founded, even when E is infinite. 

Proof. The proof uses the techniques used in theorem 11.22 (Kruskal's theorem). □ 

As in the previous theorem on rpo, the significance of the second part of the theorem 

is that it holds even when E is infinite. 

Example 11.28 Consider the following set of rewrite rules for free groups (Knuth and 

Bendix [27]). 

(x * y) * z — -* x * (y * z), 

1 * x — -f x, 

I(x) * x — -1, 

I(x) * (x * y) — -»y> 

'(I)- -»i, 

x * 1 — -> X, 

/(/(*)) - -> X, 

x * I(x) — -»1, 

x * (I(x) * y) — -»y5 

I(x * y) — - /(y)* /(x) 

This system can be easily shown to be Noetherian using the Ipo induced by the following 

ordering on the set of operators: />-*>- 1. 

It is possible to combine Ipo and rpo (Lescanne [32]). It is also possible to define 

semantic path orderings (Kamin, Levy), as opposed to the above precedence orderings. 

Semantic path orderings use orderings on Ts rather than orderings on E (see Dershowitz 

[7])- 

The relative strength and the ordinals associated with these orderings have been stud- 

ied by Okada and Dershowitz [37, 9]. For instance, given a strict ordering -< on a finite 

set E of n elements, then Ts under -<rpo is order-isomorphic to <pn(0), the first n-critical 
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ordinal.7 In particular, there is a very natural representation of the ordinals less than eo 

in terms of nested multisets of natural numbers. It is even possible to define an rpo whose 

order-type is To (see Dershowitz [7]), if we allow terms to serve as labels.8 

Okada has showed that it is possible to combine the multiset and lexicographic ordering 

to obtain term orderings subsuming both the rpo and Ipo ordering, and also obtain a system 

of notations for the ordinals less than T0 (see Okada [37], and Dershowitz and Okada [9]). 

Such systems are inspired by some earlier work of Ackermann [1], and we briefly describe 

one of them. 

Let C be a set of constants, and F a set of function symbols (we are not assuming 

that symbols in F have a fixed arity). 

Definition 11.29 For any n > 0, the set An(F,C) of generalized Ackermann terms is 

defined inductively as follows: 

(1) c € An(F,C) whenever c£C. 

(2) /(*!,...,*„)€ An{F,C) whenever/€ F and tu ... , tn € An{F,C). 

The terms defined by (1) and (2) are called connected terms. 

(3) <i# • • • #tm G An(F,C), whenever tt,... ,tm are connected terms in An(F,C) (m > 

2).9 

Given a set E = C U F of labels, note that the set of trees T% can be viewed as a 

subset of Ai(F,C), using the following representation function: 

rep(c) = c, when cEC, and 

rep(/(<i, • • • , tm)) = /(repiU )# • • • #rep(tn)). 

Given a preorder ^onCUF.we define a preorder <ack on An(F, C) as follows. 

Definition 11.30 The Ackermann ordering -<ack on An(F,C) is defined below. Actually, 

we give a simultaneous recursively definition of >Zack, ^ack, and «ocjt, where 5 yack t iff 

s hacJt t and s ^ack t, and s ~act t iff 5 hack t and s diack t- 

(1) If s,t e C, then 5 yack t iff s ^ t. If s e C and t <£ C, then t yack s (and t ^ack s). 

(2) Let s = f(si,... ,s„) and / = g(ti, ...,/„).   Then, s >zack t iff one of the conditions 

below holds: 

In this case, £ is not a ranked alphabet. We allow the symbols in E to have varying (finite) ranks. 
8 These terms are formed using a single symbol • that can assume any finite rank. 
9 Compared to the definition in Dershowitz and Okada [9], we require that t\, . . . ,tm  are connected 

terms. This seems cleaner and does not seem to cause any loss of generality. 
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(i)     / w 9i sl  ~ack *1,-- • ,-Si-l  ~ack ^i-li^i  hack ti, and S ^ack ti+i,...,S ^ack *n, 

for some i, 1 < i < n; or 

(ii)   / >- 5» and /(si, ... ,s„) >-0cJfc <i for a// i, 1 < i < n; or 

(iii)   5,- ^acit g(ti, ... ,<„) for «ome i, 1 < i <n. 

(3) Let s = 5i# • ■ ■ #6m (or s = $i) and t = ti# ■ • • #<p (or i = *i). Then, s >:ac;t < iff 

{Sl,...,5m} >I™fc'  {<!,..., <j,}, 

where hj^*'* is the multiset extension of hack- 

The following results are stated in Okada [37], and Dershowitz and Okada [9]. 

Theorem 11.31 (1) If the strict order >- is well-founded on Co F, then yack is well- 

founded on An(F, C). 

(2) The multiset extension of rpo is identical to yack on Ai(F,C). 

Proof. The proof of (1) uses the techniques used in theorem 11.22 (Kruskal's theorem). 

The proof of (2) is straightforward. □ 

Equivalently, part (2) of theorem 11.31 says that the restriction of hack to connected 

terms in Ai(F,C) is identical to rpo (we use the representation of terms given by the 

function rep described earlier). 

Finally, as noted by Okada, (A2({ip},{0}), ^ack) provides a system of notations for the 

ordinals less than IV This is easily seen using theorem 8.12. To show that diack corresponds 

to the ordering on the ordinals less than To, we use lemma 8.11 and lemma 8.10. We can 

even define a bijection ord bewteen the equivalence classes of A2({il>}, {0}) modulo pzack 

and the set of ordinals less than To as follows: 

ord(ip(s,t)) = xß(ord(s),ord(t)), 

ord(si# ■ ■ ■ #sm) = ax H \-am, 

where a\ > ... > am is the sequence obtained by ordering {ord(si),... ,ord(sm)} in 

nonincreasing order. 

12  A Glimpse at Hierarchies of Fast and Slow Growing Functions 

In this section, we discuss briefly some hierarchies of functions that play an important 

role in logic because they provide natural classifications of recursive functions according to 

their computational complexity. It is appropriate to discuss these classes of functions now, 
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because we have sufficient background about constructive ordinal notations at our disposal. 

When restricted to the ordinals less than eo, these hierarchies provide natural rate-of-growth 

and complexity classifications of the recursive functions which are provably total in Peano's 

arithmetic. In particular, for two of these hierarchies, F(0 and H(0 dominate every such 

function (for all but finitely many arguments). Thus, the statement UF(0 is total recursive" 

is true, but not provable in Peano's arithmetic. The relationship with Kruskal's theorem is 

that the function Fr mentioned in the discussion following theorem 5.2 dominates Ft0 (for 

all but finitely many arguments). In fact, Fr has the rate of growth of a function FQ where 

a is considerably larger that To! The results of this section are presented in Cichon and 

Wainer [4], and Wainer [54], and the reader is referred to these papers for further details. 

For ease of understanding, we begin by defining hierarchies indexed by the natural 

numbers. There are three classes of hierarchies. 

1. Outer iteration hierarchies. 

Let g: N —> N be a given function. The hierarchy (<7m)m€N is defined as follows: For 

all n e N, 

go(n) = 0, 

9m+i(n) - g(gm(n)). 

The prime example of this kind of hierarchy is the slow-growing hierarchy (Gm)meN based 

on the successor function g(n) — n + 1. This hierarchy is actually rather dull when the 

Gm are indexed by finite ordinals, since Gm(n) = m for all n € N, but it is much more 

interesting when the index is an infinite ordinal. 

2. Inner iteration hierarchies. 

Again, let g: N —> N be a given function. The hierarchy (/im)mgN is defined as follows: 

For all n € N, 

h0(n) = n, 

hm+i(n) = hm(g(n)). 

The prime example of this kind of hierarchy is the Hardy hierarchy (i/m)mgN based on the 

successor function g(n) = n + 1. This hierarchy is also rather dull when the Hm are indexed 

by finite ordinals, since Hm (n) — n + m for all n E N, but it is much more interesting when 

the index is an infinite ordinal. 

3. Fast iteration hierarchies. 
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Let g:N —► N be a given increasing function.  The hierarchy (/m)mGN is defined as 

follows: For all n G N, 

fo(n) = g(n), 

/ra+1(n) = /£(n), 

where /£(x) = fm(fm(- ■ ■ (fm(x)).. .)), the nth iterate of fm applied to x. The prime 

example of this kind of hierarchy is the Grzegorczyk hierarchy (Fm)mes based on the 

successor function g(n) = n + 1. This hierarchy is not dull even when the Fm are indexed 

by finite ordinals. Indeed, Fi(n) = 2n, F2(n) = 2nn, and 

v2 

2n   -I 

r < F3(n). 

In order to get functions growing even faster than those obtained so far, we extend 

these hierarchies to infinite ordinals. The trick is to diagonalize at limit ordinals. How- 

ever, this presuposes that for each limit ordinal a under consideration, we already have a 

particular predefined increasing sequence a[0], a[l],..., a[n],..., such that a = |Jn6N a[nl' 

a so-called fundamental sequence. The point of ordinal notations is that they allow the 

definition of standard fundamental sequences. This is particularly simple for the ordinals 

less than eo, where we can use the Cantor normal form. 

For every limit ordinal 6 < e0, if 8 = a + ß, then 6[n] = a + ß[n], if 8 = ua+1, then 

8[n] = uan (i.e. ua + • • • + ua n times), and when 8 = u>Q for a limit ordinal a, then 

8[n) = u>aK For e0 itself, we choose e0[0] = 0, and e0[n + 1] = u;£°K 

Fundamental sequences can also be assigned to certain classes of limit ordinals larger 

than e0, but this becomes much more complicated. In particular, this can be done for limit 

ordinals less than To, using the normal form representation given in theorem 8.2. 

Assuming that fundamental sequences have been defined for all limit ordinals in a 

given subclass J of O, we extend the definition of the hierarchies as follows. 

Definition 12.1    Outer iteration hierarchies. 

Let j:N->Nbea given function. The hierarchy {ga)a£i is defined as follows: For 

all n G N, 

g0(n) = 0, 

9a+i(n) = g{ga(n)), 

9a(n) = 0a[„](n), 
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where in the last case, a is a limit ordinal. The prime example of this kind of hierarchy 

is the slow-growing hierarchy (GQ)Qgj based on the successor function g(n) — n + 1. This 

time, we can show that for any n, ga(n) = gGa(*n\0), and GQ+ß(n) = Ga(n) + Gß(n), 

from which it follows that Gw«(rj) = nGa^n\ This means that if a is represented in Cantor 

normal form, then GQ(n) is the result of replacing u by n troughout the Cantor normal 

form! Thus, we have 

Gf0[n](n) = nn        r   \ 

Definition  12.2   Inner iteration hierarchies. 

Again, let g: N —► N be a given function. The hierarchy (ha )agj is defined as follows: 

For all n G N, 

h0(n) = n, 

ha+i(n) = hQ(g(n)), 

hQ(n) = ha[n](n), 

where in the last case, a is a limit ordinal. The prime example of this kind of hierarchy is 

the Hardy hierarchy (HQ)aej based on the successor function g(n) = ?? + 1 (Hardy [20]). It 

is easy to show that hQ+ß(n) = ha(hß(n)), and so h^a+^n) = h"a(n). 

Definition  12.3    Fast iteration hierarchies. 

Let j: N -+ N be a given increasing function. The hierarchy (/a)Qgr is defined as 

follows: For all n € N, 

fo(n) = g(n), 

/Q+i(n) = /Q
n(n), 

fa(n) = fa[n](n), 

where /£(a:) = fa(fa(- • ■ (fa(x)) ■••))> the nth iterate of fa applied to x, and in the last 

case, a is a limit ordinal. 

The prime example of this kind of hierarchy is the extended Grzegorczyk hierarchy 

(Fa)a£2 based on the successor function g(n) = n -f 1. It is interesting to note that 

Ackermann's function has rate of growth roughly equivalent to that of F^. 

It is not difficult to show that fQ(n) = h^c^n). Thus, even though the fast-growing 

hierarchy seems to grow faster than the inner iteration hierarchy, the /i-hierarchy actually 

"catches up" with the /-hierarchy at Co, in the sense that 

fe0(n-l)<heo(n)<feo(n + l). 
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Given two functions /, gr:N —> N, we say that g majorizes f (or that g dominates 

f) iff there is some k G N such that g(n) > f(n) for all n > k. It is shown in Buchholz 

and Wainer [3] that Fß majorizes Fa and that Hß majorizes HQ if ß > a. This property- 

can also be shown for the slow-growing hierarchy. Buchholz and Wainer [3] also show that 

every recursive function provably total in Peano's arithmetic is majorized by some FQ+i in 

the fast-growing hierarchy up to eo, and that every FQ for a < €Q is recursive and provably 

total in PA. It follows that Feo is recursive, but not provably total in PA. Going back to 

the function Fr associated with Friedman miniature version of Kruskal's theorem (theorem 

5.2), Friedman has shown that Fr majorizes Fr0, and in fact, Fr has the rate of growth of 

a function Fa where a is considerably larger that To! 

We noted that the /i-hierarchy catches up with the /-hierarchy at e0- It is natural 

to ask whether the slow-growing hierarchy catches up with the fast-growing hierarchy. At 

first glance, one might be skeptical that this could happen. But large ordinals are tricky 

objects, and in fact there is an ordinal a such that the slow-growing hierarchy catches up 

with the fast-growing hierachy. 

Theorem 12.4   (Girard) There is an ordinal a such that Ga and Fa have the same rate 

of growth, in the sense that 

GQ(n) < FQ(n) < Ga(an + b), 

for some simple linear function an + b. □ 

This remarkable result was first proved by Girard [17]. The ordinal a for which GQ 

and Fa have the same rate of growth is nonother than Howard's ordinal, another important 

ordinal occurring in proof theory. Unfortunately, we are not equipped to describe it, even 

with the apparatus of the normal functions tp(a,ß). Howard's ordinal is greater than To, 

and it is denoted by y>€n+1+i(0), where £2 is the least uncountable ordinal, and en+i is 

the least e-number after 0 (so en+i = 0n ). Alternate proofs of this result are given 

in Cichon and Wainer [4], and Wainer [54] (among others). A fairly simple description of 

Howard's ordinal is given in Pohlers [41]. 

Before closing this section, we cannot resist mentioning Goodstein sequences [18], 

another nice illustration of the representation of ordinals less than e0 in Cantor normal 

form. 

Let n be any fixed natural number, and consider any natural number a such that 

a < (n + lf 
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We express a in complete base n + 1 by first writing a = m0 + mi(n + 1) + ... + rrik(n + l)ak, 

where m; < n, and a, < a,+i, and then recursively writing each a{ in complete base n + 1, 

until all the exponents are < n. Given a, denote by rep(a, n + 1) its associated representation 

in complete base n + 1. Given a number a and its representation rep(a,n + 1), we denote 

by shiftrep(a,n + 1) the result of replacing n + 1 by n + 2 throughout the representation 

rep(a,n + 1), and by \shiftrep(a,n + 1)| the numerical value of this new term. 

Definition 12.5 The Goodstein sequence starting with a > 0 is defined as follows. Choose 

n as the least number such that 

0<(n + i)(«+iV |(n+1). 

Set a0 = a — 1, and a^+i = \shiftrep(ai;,n + k + 1)| — 1. 

In the above definition, a — b is the usual difference between a and 6 when a > b, and 

it is equal to 0 otherwise. Thus, we obtain o^+1 from a^ by changing n + k + 1 to n + £ + 2 

in the representation rep(a.k,n + fe + 1) of a* and subtracting 1 from this new value. 

Theorem 12.6 (Goodstein, Kirby and Paris) Every Goodstein sequence terminates, that 

is, there is some k such that a* = 0. Furthermore, the function Good such that Good(a) = 

the least k such that a* = 0 is recursive, but it majorizes the function H(0 from the Hardy 

Hierarchy. 

Proof. The proof that every Goodstein sequence terminates is not that difficult. The trick 

is to associate to each a* an ordinal a* < e0 obtained by replacing n + k + 1 by u throughout 

rep(a,k,n + k + l). Then, it is easy to see that ctjt+i < cu-, and thus, the sequence a* reaches 

0 for some k. The second part of the theorem is due to Kirby and Paris [26]. Another 

relatively simple proof appears in Buchholz and Wainer [3]. D 

Since HfQ is not provably recursive in PA, Goodstein's theorem is a statement that is 

true but not provable in PA. 

Readers interested in combinatorial independence results are advised to consult the 

beautiful book on Ramsey theory, by Graham, Rothschild, and Spencer [19]. 

13  Constructive Proofs of Higman's Lemma 

If one looks closely at the proof of Higman's lemma (lemma 3.2), one notices that the proof 

is not constructive for two reasons: 

(1) The proof proceeds by contradiction, and thus it is not intuitionistic. 
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(2) The definition of a minimal bad sequence is heavily impredicative, as it involves uni- 

versal quantification over all bad sequences. 

Thus, it is natural, and as it turns out, quite challenging, to ask whether it is possible 

to give a constructive (and predicative) proof of Higman's lemma. 

In a remarkable (and short) paper, Friedman [15] introduces a new and simple tech- 

nique, the A-translation, which enables him to give simple proofs of the fact that first-order 

classical Peano arithmetic and classical higher-order arithmetic are conservative over their 

respective intuitionistic version over Il^-sentences. His technique also yields closure un- 

der Markov's rule for several intuitionistic versions of arithmetic (if -i-i3xip is provable, 

then 3x<p is also provable, where £ is a numeric variable, and 9 is a primitive recursive 

relation). Using Friedman's ^-translation technique, it follows that there is an intuition- 

istic impredicative proof of Higman's lemma. However, it would still be interesting to 

see whether a constructive (predicative) proof can be extracted directly from the classical 

proof, and Gabriel Stolzenberg was among the first researchers to propose this challenge, 

and eventually solve it. It turns out that (at least) two constructive (predicative) proofs of 

a constructive version of Higman's lemma have been given independently by Richman and 

Stolzenberg [45], and Murthy and Russell [35]. Steve Simpson has proven a related result 

for the Hubert's basis theorem [49], and his proof technique seems related to some of the 

techniques of Richman and Stolzenberg. The significance of having a constructive proof is 

that one gets an algorithm which, given a constructively (and finitely presented) infinite 

sequence, yields the lefmost pair of embedded strings. Murthy and Russell [35] do extract 

such an algorithm using the NuPRL proof development system. The next challenge is to 

find a constructive proof of Kruskal's theorem. 

Acknowledgment: I wish to thank Robert Constable, Thierry Coquand, Nachum 

Dershowitz, Jean-Yves Girard, Pierre Lescanne, Anil Nerode, Mitsu Okada, Wayne Snyder, 

Rick Statman, and Gabriel Stolzenberg, for helpful comments and for pointing out related 

work. 

14 References 

[1]      Ackermann, W. Konstruktiver Aubfau eines Abschnitts der zweiten Cantorschen Zal- 

henklasse. Math. Zeit. 53, 403-413 (1951). 

[2]      Bachmair, L. Canonical Equational Proofs. John Wiley and Sons, New York (1990). 

[3]      Buchholz, W., and Wainer, S.S. Provably Computable Functions and the Fast Grow- 

ing Hierarchy. Logic and Combinatorics, edited by S. Simpson, Comtemporary Math- 

Draft/September 30, 1993 



66 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

ematics, Vol. 65, AMS (1987), 179-198. 

[4] Cichon, E.A., and Wainer, S.S. The Slow-Growing and the Grzegorczyk Hierarchies. 

J. of Symbolic Logic 48(2) (1983), 399-408. 

[5] Crossley, J.N., and Bridge Kister, J. Natural Well-Orderings. Arch. math. Logik 26 

(1986/1987), 57-76. 

[6] DeJongh, D.H.J., and Parikh, R. Well partial orderings and hierarchies. Indagationes 

Mathematicae 14 (1977), 195-207. 

[7] Dershowitz, N. Termination of Rewriting. J. Symbolic Computation (3), 1-2 (1987), 

69-116. 

[8]      Dershowitz, N. Orderings for Term-Rewriting Systems.  TCS 17(3) (1982), 279-301. 

[9] Dershowitz, N., and Okada, M. Proof-theoretic techniques for term rewriting the- 

ory. 3rd Annual Symposium on Logic In Computer Science, IEEE Computer Society, 

Edinburgh, Scotland, July 1988, 104-111. 

[10] Dershowitz, N., and Manna, Z. Proving termination with multiset orderings. Com- 

munications of the ACM 22, 465-476 (1979). 

[11] Dershowitz, N. Completion and its Applications. In Resolution of Equations in Alge- 

braic Structures, Vol. 2, Ait-Kaci and Nivat, editors, Academic Press, 31-85 (1989). 

[12] Dickson, L.E. Finiteness of the odd perfect and primitive abundant numbers with n 

distinct prime factors. Am. J. Math 35, (1913), 413-426. 

[13]    Feferman, S. Systems of Predicative Analysis. J. of Symbolic Logic 29 (1964), 1-30. 

[14]    Feferman, S. Proof Theory: A Personnal Report. In [52], 447-485. 

[15] Friedman, H. Classically and intuitionistically provably recursive functions. Higher 

set theory (G.H. Müller and Dana S. Scott, editors), Lecture Notes in Mathematics, 

Vol. 699, Springer-Verlag, Berlin (1978), 21-28. 

[16] Friedman, H., McAloon, K., and Simpson, S. A finite combinatorial principle which 

is equivalent to the 1-consistency of predicative analysis. Logic Symposion I (Patras, 

Greece, 1980), G. Metakides, editor, North-Holland, Amsterdam, (1982), 197-230. 

[17]    Girard, J.Y. n^-logic. Annals of Mathematical Logic 21 (1981), 75-219. 

[18] Goodstein, R.L. On the restricted ordinal theorem. J. of Symbolic Logic 9 (1944), 

33-41. 

[19] Graham, R.L., Rothschild, B.L., and Spencer, J.H. Ramsey Theory, John Wiley & 

Sons, Inc., 2nd edition, pp. 196 (1990). 

Draft/September 30, 1993 



14 References 67 

[20]    Hardy, G.H. A theorem concerning the infinite cardinal numbers. Quarterly J. Math. 

35 (1904), 87-94. 

[21]    Harrington, L.A. et al.   Harvey Friedman's Research on the Foundations of Mathe- 

matics. Harrington, Morley, Scedrov, and Simpson, Editors, North-Holland (1985). 

[22]    Higman, G. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 

(3), 2 (1952), 326-336. 

[23]    Janet, M. Sur les systemes d'equations aux derivees partielles. J. de Mathematiques 

111(8) (1920). 

[24]    Jouannaud, J.P., and Lescanne, P. On multiset orderings.   Information Processing 

Letters 15(2), 57-63 (1982). 

[25]    Kaplanski, I. Ph.D. thesis, 1941. 

[26]    Kirby L., and Paris, J. Accessible independence results from Peano arithmetic. Bull. 

London Math. Soc. 14 (1982), 285-293. 

Knuth, D.E. and Bendix, P.B., "Simple Word Problems in Univeral Algebras," in 

Computational Problems in Abstract Algebra, Leech, J., ed., Pergamon Press (1970). 

[27 

[28; 

[29 

Kruskal, J.B. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture. Trans. 

American Math. Soc. 95 (1960), 210-225. 

Lescanne, P. Some properties of decomposition ordering. A simplification ordering 

to prove termination of rewriting systems. RAIRO Informatique Theorique 16(4), 

331-347 (1982). 

[30] Lescanne, P. Well rewrite orderings. Extended Abstract, Centre de Recherche en 

Informatique de Nancy, France (1989). 

[31] Lescanne, P. Well quasi orderings in a paper by Maurice Janet. Bulletin of the EATCS, 

No. 39, (1989), 185-188. 

[32] Lescanne, P. On the recursive decomposition ordering with lexicographical status and 

other related orderings. To appear in Journal of Automated Reasoning (1990). 

[33]    Levy, J.J. "Kruskaleries et Dershowitzeries", unpublished notes (1981). 

[34] Miller, L.W. Normal functions and constructive ordinal notations. J. of Symbolic 

Logic 41(2) (1976), 439-459. 

[35] Murthy, C.R., and Russell, J.R. A constructive proof of Higman's lemma. 5th Annual 

Symposium on Logic In Computer Science, IEEE Computer Society, Philadelphia, PA, 

257-267, June 4-7, 1990. 

Draft/September 30, 1993 



68 WHAT'S SO SPECIAL ABOUT KRUSKAL'S THEOREM? 

[36] Nash-Williams, C. St. J. A. On well-quasi-ordering finite trees. Proc. Cambridge 

Phil. Soc. 59 (1963), 833-835. 

[37] Okada, M. Ackermann's ordering and its relationship with ordering systems of term 

rewriting theory. Proceedings of the 24th Allerton Conference on Communication, 

Control, and Computing, Monticello, ILL (1986). 

[38] Okada, M., and Takeuti. G. On the theory of quasi ordinal diagrams. Logic and 

Combinatorics, edited by S. Simpson, Comtemporary Mathematics, Vol. 65, AMS 

(1987), 295-307. 

[39] Okada, M. Kruskal-type theorems on labeled finite trees in term-rewriting theory, 

graph theory, and proof theory. Manuscript (19S7). 

[40] Okada, M. Quasi-ordinal diagrams and Kruskal-type theorems on labeled finite trees. 

Manuscript (19S7). 

[41] Pohlers, W. Proof Theory, an Introduction. Lecture Notes in Mathematics No. 1407, 

Springer Verlag (1989). 

[42] Pohlers, W. Proof theory and ordinal analysis. Preprint, MSRI, Berkeley, California 

(1989) 

[43] Puel, L. Bon preordres sur les arbres associes a des ensembles inevitables et preuves 

de terminaison de systemes de reecriture. These d'Etat, (1987), Universite de Paris 

VII. 

[44] Puel, L. Using unavoidable sets of trees to generalize Kruskal's theorem. Technical 

Report 86-4, Laboratoire d'Informatique de l'Ecole Normale Superieure, Paris, France 

(1986). 

[45] Richman, F., and Stolzenberg, G. Well quasi-ordered sets. Technical report submit- 

ted for publication, Northeastern University, Boston MA, and Harvard University, 

Cambridge, MA, April 1990. 

[46]    Schütte, K. Proof Theory. Springer-Verlag (1977). 

[47] Simpson, S.G. Nonprovability of certain combinatorial properties of finite trees. In 

[21], 87-117. 

[48] Simpson, S.G. Which set existence axioms are needed to prove the Cauchy/Peano 

theorem for ordinary differential equations? J. of Symbolic Logic 49(3) (1984), 783- 

802. 

[49] Simpson, S.G. Ordinal numbers and the Hilbert basis theorem. Journal of Symbolic 

Logic 53 (1988), 961-964. 

Draft/September 30, 1993 



14 References 69 

[50]    Smoryriski, C. "Big" News From Archimedes to Friedman. In [21], 353-366. 

[51]    Smoryhski, C. The Varieties of Arboreal Experience. In [21], 381-397. 

[52]    Takeuti, G. Proof Theory.   Studies in Logic, Vol.   81, North-Holland, Amsterdam, 

Second Edition (1987). 

[53]    Veblen, O. Continuous increasing functions of finite and transfinite ordinals.  Trans- 

actions of the American Mathematical Society, Vol. 9 (1908), 280-292. 

[54]    Wainer, S.S. Slow Growing Versus Fast Growing. J. of Symbolic Logic 54(2) (1989), 

608-614. 

Draft/September 30, 1993 


