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Series Foreword 

Computational neuroscience is an approach to understanding the infor- 
mation content of neural signals by modeling the nervous system at many 
different structural scales, including the biophysical, the circuit, and the 
systems levels. Computer simulations of neurons and neural networks are 

I complementary to traditional techniques in neuroscience. This book series 
welcomes contributions that link theoretical studies with experimental ap- 
proaches to understanding information processing in the nervous system. 
Areas and topics of particular interest include biophysical mechanisms for 
computation in neurons, computer simulations of neural circuits, models 
of learning, representations of sensory information in neural networks, 
systems models of sensory-motor integration, and computational analysis 
of problems in biological sensing, motor control, and perception. 

Terrence J. Sejnowski 
Tomaso A. Poggio 



Introduction 

This book originated at a small and informal workshop held in Decem- 
ber of 1992 in Idyllwild, a relatively secluded resort village situated amid 
forests in the San Jacinto Mountains above Palm Springs in Southern Cal- 
ifornia. Eighteen colleagues from a broad range of disciplines, includ- 
ing biophysics, electrophysiology, neuroanatomy, psychophysics, clinical 
studies, mathematics and computer vision, discussed "Large Scale Mod- 
els of the Brain," that is, theories and models that cover a broad range 
of phenomena, including early and late vision, various memory systems, 
selective attention, and the neuronal code underlying figure-ground seg- 
regation and awareness (for a brief summary of this meeting, see Stevens 
1993). The bias in the selection of the speakers toward reseachers in the area 
of visual perception reflects both the academic background of one of the 
organizers as well as the (relative) more mature status of vision compared 
with other modalities. This should not be surprising given the emphasis 
we humans place on "seeing" for orienting ourselves, as well as the intense 
scrutiny visual processes have received due to their obvious usef ullness in 
military, industrial, and robotic applications. 

What distinguishes this volume from the myriad of edited books on 
brains, neural networks, and consciousness that currently flood the market 
is the ambitious—some would say overly ambitious—attempt at construct- 
ing theories from the bottom-up, that is firmly based on nerve cells, their 
firing properties, and their anatomical connections. Such theorizing stands 
in marked contrast to earlier attempts by psychologists—going back to Sig- 
mund Freud—and by theorists in the artificial intelligence community— 
such as David Marr—to understand the brain from a primarily psycholog- 
ical or computational point of view, that is from the top-down. 

In the top-down approach, modules derived from psychological or math- 
ematical constraints are imposed onto the brain, without knowing or caring 
to what extent the nervous system actually implements such structures. A 
case in point is the distinction between the various forms of short-lasting 
memories such as iconic, working, and short-term memory. It may well 
be that each part of the brain has some ability to change its response as a 
function of its previous history, without requiring the existence of a small 
number of discrete memory modules as postulated by cognitive science. 



Another misconception may be the division of the structure-from-motion 
module into two separate ones, one for solving the correspondence prob- 
lem and one for deriving three-dimensional structure from the moving 
two-dimensional image. 

While cognitive, psychophysical, and computational considerations are 
obviously crucial for understanding the brain—how else would we even 
know about focal attention or the mathematical problems associated with 
computing optical flow—they are by themselves not sufficiently powerful 
enough to uniquely derive, for instance, the specific algorithms underlying 
short-range motion perception. To achieve this, we need to know about 
direction-selective cells in cortex, their distribution along the Vl-MT-MST 
pathway, and the representation of velocity at the single cell level. Thus, 
in the long run, memory, perception, and awareness can be solved only by 
explanations at the neuronal level, explanations that can be tested using the 
tools of electrophysiology and imaging, in combination with psychophys- 
ical and theoretical studies. To the chagrin of many a theorist, however, 
this emphasis on neuronally based models does rule out a number of se- 
ductive, but from the point of view of the brain irrelevant, topics such as 
Schrödinger's cat, quantum gravity or whether or not the brain is a Turing 
machine. 

Est ubigloria mine Babylonia? After all has been said and done, what has 
remained of earlier brain theories? In the years since the end of the Second 
World War, many interdisciplinary meetings dedicated to the experimental 
and theoretical study of the brain have occurred. Three prominent ones 
were the MIT Endicott House Symposium on the "Principles of Sensory 
Communications" in 1959 (Rosenblith 1961), the Neurosciences Research 
Program work session on "Theoretical Approaches in Neurobiology" in 
Boston in 1978 (Reichardt and Poggio 1981), and the recent Dahlem Work- 
shop on "Exploring Brain Functions: Models in Neuroscience" that took 
place in a Berlin without a wall (Poggio and Glaser 1993). Yet almost all 
of the theories and models proposed and discussed in at least the first two 
volumes have fallen out of favor and have ceased to be part of the current 
scientific debate! 

In fact, with the exception of the Hodgkin and Huxley model of action 
potential generation and propagation (Hodgkin and Huxley 1952), as well 
as the correlation model of motion perception in beetles and flies (Hassen- 
stein and Reichardt 1956), no theory or model of brain function has sur- 
vived its birth by more than a decade (most of these models, in fact, die in 
infancy!). Yet for all their ephemeral nature, models profoundly affect the 
way we think about the brain. For instance, the idea of a Hebbian synapse 
whose strength increases during a conjunction of pre- and postsynaptic 
activity determines and shapes the LTP field. In visual perception, such 
theoretical notions as multiple spatial scales, the correspondence problem, 
epipolar lines, and the aperture problem attest to the legacy of theories of 
computational vision. Given the pre-Copernican state of brain sciences, 
this is the best we can hope for: that the models and theories presented 
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in this volume will shape and influence the way we think about the brain, 
the mind, and the interactions among the two in the years to come. 

We wish to gratefully acknowledge the Office of Naval Research, which 
has the vision and foresight to fund such interdisciplinary meetings as our 
Idyllwild Workshop, and Candace Hochenedel for "sweating it out at the 
keyboard" and converting all chapters into the appropriate dialect of UTgX. 
Danke schön. 

Christof Koch 
California Institute of Technology 
Pasadena 

Joel Davis 
Office of Naval Research 
Arlington 
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What Is the Computational Goal of the 
Neocortex? 

Horace Barlow 

INTRODUCTION 

The human species originated very recently and has been changing very 
rapidly. Since the neocortex is the main structure that enlarged in primates 
and now makes us (for our body size) the biggest brained of all animals, its 
selective advantage is probably responsible for this extraordinarily rapid 
evolution. Figure 1.1 attempts to give a perspective on all this by dis- 
playing the history of our species on a cosmic time scale, and it shows 
both that our status has been changing at a breathtaking rate over the past 
10,000 years, and that there is now a serious threat of overpopulation of 
the earth by humans. Does this mean that the neocortex has done its job 
too well? And if it has, is there any alternative to further trust in its sup- 
posed product—rational action planned by rational thought—to avert the 
overpopulation threat? How the neocortex evolved so rapidly and what 
it does are important problems. 

This chapter starts by emphasizing the inadequacy of the historical ac- 
count of the evolution of the human neocortex, and the insufficiency of the 
neurophysiological account of it as providing a processed representation of 
the current sensory input. Next a role for it is suggested that combines and 
reconciles the neurophysiologal view with that of comparative anatomists, 
who have told us that it acquires and stores knowledge of the world. At 
first these views appear to be quite different, but the hypothesis that the 
neocortical representation is specialized to facilitate the identification and 
learning of new associations amalgamates them. The middle part of the 
chapter sets out the requirements for such a specialized representation, and 
it is shown that a working model or cognitive map of the world is entailed 
in its production. This map or model would be used automatically in rep- 
resenting sensory information, but the knowledge that the code embodies 
might also be accessible by a different route for imagery and recall. I think 
the hypothesis provides a new and illuminating way of looking at the key 
role of perception in mediating between sensation and learning. The last 
part of the chapter outlines collaborative work, still incomplete, prompted 
by the hypothesis and done with A. R. Gardner-Medwin and D. J. Tol- 
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hurst, respectively. The two questions were (1) How easy is it to identify 
the association of reward or punishment with the logical conjunction of 
two or more active representational elements? This is the "Yellow Volks- 
wagen" problem posed by Harris (1980); Gardner-Medwin has shown that 
this can be done with reasonable efficiency in the case of frequently occur- 
ring conjunctions in sparse representations, but rare conjunctions in dense 
distributed representations will be masked by noise resulting from acci- 
dental associations with the separate constituents of the conjunction. (2) 
What features should be directly represented by single elements in order 
to promote the efficient identification of associations? It is argued that one 
should choose as primitives conjunctions of active elements that actually 
occur often, but would be expected to occur only infrequently by chance. 
Tolhurst has done measurements on natural images confirming that edges, 
which the brain certainly does use as representational elements, are aptly 
described as such "suspicious coincidences." 

Inadequacy of the Historical View of Cortical Evolution 

A historical explanation is usually given for our large brains and intel- 
lectual domination of the world. Our earliest mammalian ancestors, it is 
said, were ground-living creatures with smell as their dominant sense, but 
when they colonized the trees smell became less useful, whereas sight, 
sound, and muscular dexterity became more important. Smell formerly 
dominated the forebrain, and when it lost its importance this freed the 
protocortex for other purposes, so the small regions previously devoted 
to vision, hearing, touch, and muscular movement rapidly expanded and 
thus formed the primitive neocortex. This organization enabled our ances- 
tors to expand into new ecological niches, and the improved associative 
power of the new organ gave us the intellectual advantages, including 
versatility, insight, and adaptability, that have enabled us to dominate the 
world. The outline of this view dates back at least to Elliot Smith (1924), 
but many details have been added (Allman 1987; Jerison 1991). 

This crude sketch does not do justice to several nice aspects of this story, 
but it is basically unsatisfactory because the neocortex appears to have led 
the evolution of mammals, primates, and man, and not to have followed 
passively as a result of a series of historical accidents. What selective 
advantage could the forebrain, or future neocortex, provide that other 
brain regions could not? What is meant by improved associative power, 
and why should an organ formerly dominated by smell have it? These 
are the interesting questions, and the history of man's evolution is not the 
right place to look for the answers. 

The supposed origin of neocortex in a region specializing in olfaction 
is interesting, but that is a difficult fact to interpret and would not make 
a good starting point. Instead we look at the account of neocortex that 
neurophysiology has given us. 

What Is the Computational Goal of the Neocortex? 



Inadequacy of the Neurophysiological Account of Neocortex 

As many have recognized, the view of cortical function derived from neu- 
rophysiology is unsatisfactory. Something like 60% of the monkey cortex 
seems to be directly connected with vision (Van Essen and Maunsell 1980), 
but so far no one has really tried to understand how it does anything but 
represent the current visual scene. The same is true in other modalities—it 
is the function of representing the current input that has received attention. 
But we do not have a homunculus to look at these representations: our cor- 
tex and associated structures form the representation, look at it, analyze 
it, store results about it, use it, and continuously add to it. Animals learn 
almost everything they know through their senses, and academic knowl- 
edge apart, the same is true for us; but the means of acquisition, storage, 
and utilization of this knowledge have been little thought about or studied, 
and I think it is time to accept that the neocortex must do more for us than 
merely represent the current scene. 

A Hypothesis about the Computational Goal of Neocortex 

The outstanding question is: How does neocortex give the great selec- 
tive advantage that must lie behind our rapid evolution? Herrick (1926) 
said that the cerebral cortex provided the "filing cabinets of the central 
executive," and he also called it the "organ of correlation." Jerison (1991) 
summarizes its role as "knowing about the world." The importance for 
higher mental function of forming working models and cognitive maps 
of the world was pointed out by Craik (1943) and Tolman (1948), and— 
although heretical at that time—these ideas from psychology fit the view 
from comparative anatomy very well and are now widely accepted. Tol- 
man was thinking primarily of representing the geographic layout of the 
world, and Craik's working models imitated the dynamics of interactions 
in the material world, but as Humphrey (1976) pointed out, the interac- 
tions between people are the most complex and important things we have 
to understand, and the cortex is therefore likely to be much concerned with 
this aspect. 

Thus the hypothesis is that the cerebral cortex confers skill in deriving 
useful knowledge about the material and social world from the uncertain 
evidence of our senses, it stores this knowledge, and gives access to it 
when required. This extremely complex and difficult task specifies a def- 
inite computational goal for neocortex, providing a useful framework for 
thinking about its structure, organization, and function. First consider the 
problem of acquiring such knowledge. 

Information and Knowledge 

We understand the problem of acquiring knowledge of the world better 
now than in Herrick's day. It is not a matter of simply recording or video- 
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taping the succession of messages from the outside world that our senses 
provide, but is a much more analytic process. For present purposes it is 
convenient to distinguish two aspects of the stream of sensory data, in- 
formation and knowledge. Information is unpredictable, both from previous 
parts of the stream of data and from other parts of the current stream. As 
Shannon told us (Shannon and Weaver 1949), all this genuine information 
can in principle be encoded on to a channel of much lower capacity than 
that which is required for the physical data transduced by the sense or- 
gans. The structure and regularity in the stream of data are redundancy in 
terms of information theory, but this part constitutes the knowledge that the 
neocortex must continuously acquire and use. Both parts, information and 
knowledge, are important to the brain: it must recognize the structure and 
regularity both to distinguish what is new information and to make use- 
ful interpretations and predictions about the world. Finding the structure 
and regularity is the analytic part of dealing with the succession of sensory 
impressions that the brain receives, and this is the part that the neocor- 
tex performs better than other brain structures according to the current 
hypothesis: it gives meaning to the stream of sensory data. 

The Salience of Structure 

Look for a moment at the top left part of figure 1.2. It consists of a random 
array of dots. Compare it with the top right, where each dot has been 
paired at a position symmetric about the center line. The random parts of 
these two figures are identical, but this is not obvious. It is the symmetric 
structure on the right that leaps to the eye, while the structureless array 
means nothing to us—unless we look at it long enough and start to impose 
structure on it, such as faces or other imaginary forms. In the lower two 
figures the structure resulting from other pairing rules stands out equally 
clearly, and it is pretty obvious what these pairing rules are. However, it is 
not at all obvious that a pairing rule is solely responsible for the structure 
seen; it is hard to believe that the vivid streaks and swirls result just from 
pairs of dots, with no longer concatenations, but that is the case (for the 
first description of these figures see Glass 1969). 

One can detect structures of this sort when they are overlaid by a huge 
number of completely randomly placed dots (Maloney et al. 1987), so the 
suggestion is that our perceptual system grabs simple examples of world- 
knowledge of this sort and uses them to construct its representation of the 
world. It is plausible to suppose that mirror symmetry and translational 
symmetry are so abundant in our sensory diet that an animal is certain to 
encounter them; hence mechanisms for detecting these forms of structure 
will always prove useful, and their universal provision by ontogenetic 
mechanisms has selective advantage. 

But much of the knowledge we acquire is not like this at all; it consists 
of arbitrary forms whose regularity or structure results simply from the 
fact that they occur often, or are repeatedly associated with reward and 
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Figure 1.2 (A) An array of 200 randomly positioned dots. (B) Each dot in the array of A has 
been paired at a position mirror-symmetric about the vertical midline. (C) Each dot has been 
paired at a position up and to the left of the original position. (D) Each dot has been paired 
at a position displaced radially and tangentially from the center. It is the structure that leaps 
to the eye, though this is technically a form of redundancy; the random positions of the dots 
contain much more information, but the eye gives them less prominence. 

gratification. Each individual system has to discover these for itself, and we 
spend our lives finding, storing, and using knowledge of these regularities 
in our sensory diet. They range from the often-repeated experience of our 
parent's smell, voice, and appearance, through the geographic details of 
our environment and the acoustical specificities of our language, to the 
customs, myths, and true knowledge of our culture. Much of this process 
of acquisition is fostered by teaching, but each individual brain has to do 
a lot of discovering for itself. 

So far we have been considering the goal of the computations the cortex 
performs on the current sensory input, arguing that it prepares a represen- 
tation suitable for discovering associative structure, and that this process 
entails storing world knowledge. But each cortex not only has its own 
experience and history, but also an evolutionary history. Evolution results 
from natural selection acting on variants produced genetically, so perhaps 
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the pattern of variants produced by the cortex has enabled it to excel in the 
evolutionary acquisition of world knowledge. 

Evolutionary Learning and Neocortex 

Most people will accept the fact that there is such a thing as inherited 
knowledge of the world. Many of the most striking examples are found 
in insects—for example, the yucca moth could not fertilize the yucca plant 
and use its ovaries as incubators for its own eggs without such knowledge, 
nor could the ichneumon select a particular species of caterpillar to lay its 
eggs in. But it occurs in mammals too—the specialized skills of a retriever 
are quite different from those of a sheepdog or a greyhound—and no one 
doubts that these skills have a large inherited component. 

Now a characteristic cannot play an important role in the evolution of a 
species unless it is controlled genetically and subject to genetic variability. 
Therefore the view that neocortex is responsible for our rapid evolution 
implies that its function must be controlled genetically, for otherwise it 
could not have brought us to the position we are in. The full hypothesis 
must therefore be that the neocortex gives us useful knowledge of the 
world in two ways: not only does it discover the structure of its world 
by experience during its lifetime, but it also has mechanisms, adapted 
through the process of genetic selection, that confer skills for doing this. 
These mechanisms and skills are sometimes highly specialized and amount 
to inherited knowledge of the world. On this view both extreme schools of 
thought about the origin of our mental powers are correct: the neocortex 
acquires knowledge of the world by nature as well as by nurture, but 
these methods work toward the same end rather than being the mutually 
exclusive alternatives that we tend to think. For this reason they can be 
considered together when trying to define the computational goal of the 
neocortex. 

REPRESENTATIONS DESIGNED FOR KNOWLEDGE ACQUISITION 

What we know of the neurophysiology of neocortex does not at first suggest 
that it is concerned with acquiring, storing, and utilizing knowledge of the 
world. Instead, it seems to form representations of the current scene in the 
sensory areas, and perhaps the motor area could be thought of as forming 
a representation of current motor actions. But this representational func- 
tion does not necessarily conflict with the hypothesis about acquisition of 
knowledge. Different types of representation are suitable for different pur- 
poses, and the cortical representation may be one that is specially adapted 
to facilitate the learning of new associations. It turns out that storage and 
utilization of knowledge about the world is necessary to form such a rep- 
resentation, so the comparative anatomists' view that neocortex provides 
the filing cabinets of the central executive could be nicely reconciled with 
the neurophysiological facts about representation. 

What Is the Computational Goal of the Neocortex? 
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Figure 1.3 Flow diagram for perception suggested by the hypothesis that the cerebral cortex 
creates a representation of the current sensory scene that facilitates the identification of new 
associations. To separate new information from knowledge (i.e., redundancy) there must already 
be a store of the known structure and regularities found in sensory inputs, and this must be 
used to form a model that accounts for as much as possible of the current sensory input; 
what this accounts for is then removed from the input representation. Though we think we 
experience sensory messages directly what we see corresponds better to the contents of the 
heavily outlined boxes. 

Figure 1.3 illustrates a flow diagram for perception according to this 
hypothesis. The sensory messages are combined with a store of knowledge 
of the world to find the best model of the current sensory scene. This model 
is then compared with the sensory messages being received, and those 
parts that match are removed. The residue represents the part of the current 
sensory input that is unaccounted for by preexisting knowledge. Ideally 
this would correspond to new information, together of course with noise 
of random origin. We can be aware of this residue, but the subjectively 
salient and objectively useful parts of the sensory flow consist mainly of 
items that have been accounted for (i.e., items that have been successfully 
modeled), and also new regularities or structure in the parts that the current 
model does not account for. This flow diagram has features related to the 
"matching response" of MacKay (1955), the thalamic "active blackboard" 
of Mumford (1991,1992), and the adjusting feedback of Daugman (1988) 
and Pece (1992). 

Changing the Code Stores Associative Structure 

The suggested operation can be thought of in a different way, as a recoding 
to reduce redundancy. The presence of one type of associative structure 
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Figure 1.4 The image on the left was "whitened" by making the power spectrum of the 
spatial Fourier transform level, thus producing the image on the right which has a much 
narrowed autocorrelation function. The types of statistical structure that occur at the borders 
of objects survive whitening and can be more easily analyzed and detected in the absence of 
the autocorrelations that whitening removes. (From Tolhurst and Barlow 1993) 

in a body of data makes it more difficult to detect another type, so to 
detect this new type it is desirable to recode the messages to eliminate 
the first type. It is certainly very often the case that removing a known 
type of associative structure makes it easier to identify a new type, and 
figure 1.4 provides an illustration. The left part is a normal image and 
thus has an autocorrelation function that extends over a large fraction of 
the whole image. The counterpart of this is the great excess of low spatial 
frequencies in the power spectrum of the Fourier transform, and these 
can be removed by applying an inverse spatial filter to make the power 
spectrum level. This process of "whitening" eliminates the correlations, 
estimated over the whole image, between pairs of points with any fixed 
separation, and the result is shown in the right image. It is clear that the 
higher order structures, whatever they are, that correspond to borders and 
edges survive and can be more easily examined in this image. 

In outline then, the idea is that associative structure one already knows 
about should be removed from the data stream to make it easier to detect 
new associative structure. Knowledge of the old associations should be 
used to change the code and thus modify the representation so that these 
old associations are no longer present. This is the idea of recoding to 
reduce redundancy (Barlow 1959; Watanabe 1960) or, if you like a simpler 
analogy, it is like calculating the regression that corresponds to an already 
recognized correlation to make it easier to find further relationships in the 
residuals. Of course the modifications will not generally be as simple as 
subtracting out an expected regression, but a set of modifications aimed at 
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accounting for and reducing the known structure in a set of images would 
constitute stored knowledge about those images. 

To an outside observer, a system performing these operations would 
look like one that constructed Craik's working models (Craik 1943) and 
Tolman's cognitive maps of the environment (Tolman 1948), for it would 
show evidence of finding and using the associative structure that underlies 
such models and maps. Obviously this store of knowledge has many other 
potential uses, particularly in the processes of imagination and recall where 
we experiment and play with what we know. Possibly it could be made 
accessible in the absence of sensory input by lowering neural thresholds 
in the box marked "stored knowledge about the environment" in figure 
1.3, but this possibility cannot be pursued here. Using this knowledge to 
discount the expected in the representation of the current scene would have 
enormous selective advantage by improving learning and the acquisition 
of new knowledge, though it certainly seems wasteful not to use it for 
imagination and recall as well. 

Anything that improves the appropriateness and speed of learning must 
have immense competitive advantage, and the main point about this pro- 
posal is that it would explain the enormous selective advantage of the 
neocortex. Such an advantage, together with appropriate genetic variabil- 
ity, could in turn account for its rapid evolution and the subsequent growth 
of our species to its dominant position in the world. 

Although these notions do not obviously follow from the neurophysio- 
logical facts, I think suggestive evidence in support can be found from the 
changes in neural connectivity that occur in the sensitive period early in 
the life of cats and monkeys (Hubel and Wiesel 1970; Movshon and Van 
Sluyters 1981), and in the known phenomena of pattern-selective adap- 
tation discussed elsewhere (Barlow 1990, 1991). There are aspects of the 
evolution and neurophysiology of the cortex that we certainly do not yet 
understand properly, and the new hypothesis can give us a fresh viewpoint 
if we examine what it requires in more detail. 

Acquiring Knowledge from Representations of Features 

Acquiring knowledge means finding out about the regularities and pat- 
terns in the sensory input. It's a vast task to determine the associational 
structure of the continuous stream of sensory messages that we receive, 
and table 1.1 lists some of the requirements, starting with the point above 
about the desirability of removing evidence for the associations you al- 
ready know about. The next items have been discussed before (Barlow 
1991) but will be summarized below. 

Suppose that the representation of the current scene consists of reports 
of features, of which there can be a wide variety. For instance, one of them 
might be a point in the image having a luminance value above the mean for 
the neighborhood of that point, and this would correspond approximately 
to the feature that causes the firing of an on-center ganglion cell in the retina. 
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Table 1.1   What would make it easier to identify new associations? 

Remove evidence of the associations you To facilitate detecting new ones 
already know about 
Make available the probabilities of the To determine chance expectations 
features currently present 
Choose features that occur independently To determine chance expectations 
of each other in the normal environment of combinations of them 

Choose "suspicious coincidences" as To reduce redundancy and ensure 
features appropriate generalization 

Or it might be the occurrence of a visual pattern resembling a monkey's 
face, which would correspond to the occurrence of the trigger feature of a 
so-called face cell in inferotemporal cortex. Thus almost any representation 
one can imagine can be described as reporting the occurrence of features. 

There must be many levels in the actual representational system in the 
brain, and more complex features are presumably represented at higher 
levels. The first item in table 1.1 suggests that recoding to take account 
of identified regularities in sensory messages will be an important step in 
progressing to higher levels in the perceptual system. But for present pur- 
poses let us consider a single level and examine what is needed to identify a 
new association. We hope that the repetition of this one operation may lead 
to a system that identifies the complex associations that we undoubtedly 
use all the time. 

The Need for Prior Probabilities 

To identify new associations a representation must do more than just report 
the occurrence of features: it must also signal the unexpectedness of the 
features reported, or at least make this information immediately accessible. 
This might be done by adjusting the threshold for a unit so that, averaged 
over a long period, it fires once in a particular period; when it fires, it then 
signals an event that has a probability of occurring once in that period. 
Alternatively, the number of impulses in the volley signaling an event 
might be an inverse function of its probability such as —logp. Either 
of these would appear as forms of habituation, which is of course often 
observed in sensory systems. 

The reason prior probabilities are needed is obvious: to show that two 
features are associated one must show that they occur together at a rate dif- 
ferent from that expected by chance, and to calculate this expected rate one 
needs to know the expected rates of the constituent individual features. Of 
course one also needs to know how often the features occur together, but 
one can justifiably regard this as a requirement of the associative mecha- 
nism itself, while it seems more natural to suppose that the representation 
is responsible for storage and access to the rates of the individual features. 
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Two points may need clarifying. First we are assuming that the prob- 
ability of occurrence of a single feature can be estimated from its rate of 
occurrence over some period in the recent past. This would not always be 
justified, but in some cases it will be and to let the argument proceed let 
us assume it is. Second, the features we shall be dealing with will usually 
have prior probabilities well below half; this means that the predicted rate 
of occurrence of joint features will be low, and their expected number may 
be close to zero. Under these circumstances it becomes difficult to establish 
a negative association, and one must therefore look for joint features that 
occur more often than expected by chance. That is why they were called 
suspicious coincidences or cliches (Phillips et al. 1984; Barlow 1985), but 
the basic property is their nonaccidental nature. 

The Need for Independence 

Knowing and using the unexpectedness of features seem unavoidable for 
efficient associative learning, but there is another highly desirable property 
when detecting new associations, namely statistical independence, in the 
environment to which the system is adapted, of the features represented. 
Even in a simple case, such as finding a new association between a special 
occurrence such as reinforcement and an individual element of the repre- 
sentation, one would start by assuming they were independent to estimate 
the expected number of coincidences. The alternative would be to take ac- 
count of the known correlations, but this would become difficult when 
detecting associations between arbitrary pairs of elements, and virtually 
impossible if one wished to find an association with some logical function 
of a group of elements. In that case one either has to know the associational 
structure within that group, or else one must again assume independence, 
and if one is going to do the latter it is important to make sure that the 
events represented are in fact as nearly independent as possible. While it 
is plausible for a representation to store the rate of occurrence of its individ- 
ual elements, one cannot suppose that it stores the associational structure 
of arbitrary groups of such elements. 

Are we actually able to detect new associations with logical functions 
of representational elements? For simple functions, surely we can, and so 
can most animals. We learn to stop at red traffic lights and not at green 
ones, for example. In this case one might suppose that there are differ- 
ent representational elements for red and green lights, but it would be a 
great restriction on the utility of a representation if this was always neces- 
sary before separate associations could be formed. Harris (1980) brought 
this out very nicely when discussing contingent adaptation, for he noted 
that almost any contingency that had ever been tested seemed to produce 
adaptive effects. How could this be, he said, if contingent adaptation re- 
quires neurons specifically sensitive to each contingency? We might have 
neurons signaling yellowness, and perhaps Volkswagens, but surely we can- 
not have neurons reserved for signaling yellow Volkswagens1. This problem 
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will be considered again, but the advantage of distributed, as opposed 
to grandmother-cell, representations results from their supposed ability 
to utilize the vast number of combinations of active elements, and this 
advantage would vanish if, as a result of their prior probabilities being 
unavailable or grossly misleading, one could not form associations with 
these combinations efficiently. 

Following the idea that one should discount the expected, a possible 
course of action would be to devise a code in which the elements occur 
as nearly as possible independently, and some ways of doing this have 
been suggested elsewhere (Barlow 1959, 1989; Barlow and Földiäk 1989; 
Hentschel and Barlow 1991), together with evidence that something of 
the sort may be happening (Barlow 1990). As already pointed out, the 
codes that are required to obtain independence embody knowledge about 
the associational structure of the environment, and an outside observer 
watching behavior based on this modified representation should suspect 
that some kind of cognitive map or working model of the environment had 
been constructed. 

Forms of Representation 

A distributed representation is one in which the features that can be uti- 
lized effectively for further processing are represented by combinations 
of activity of the elements, rather than directly by the activity of neurons 
or elements specifically and selectively sensitive to each of these features. 
The 7-bit ASCII code provides a familiar example of a distributed repre- 
sentation, and because one must perform a logical manipulation on the 
representational elements before one can decide if the represented fea- 
ture has occurred, we say that they represent the features implicitly or 
indirectly rather than directly. Tony Gardner-Medwin and I have been 
exploring a limitation on the use of implicit representations for learning 
(Gardner-Medwin and Barlow 1992,1994). 

The limitation arises as follows. Consider classical conditioning, where 
an initially neutral sensory feature is "reinforced" by being presented re- 
peatedly in conjunction with a pleasant reward such as some food in the 
mouth. When the animal has identified the association, it uses the initially 
neutral feature to predict the reward. Now to determine whether there 
is a genuine association one must form a 2x2 contingency table for the 
feature and the reward, counting the numbers in each box of this table. If 
the feature is directly represented there is no great conceptual difficulty in 
obtaining all these numbers: assuming that knowledge of reinforcement is 
available everywhere, then local mechanisms at the element can estimate 
how often the feature and reinforcement occur by themselves, how often 
they occur together, and how often nothing occurs. A calculation equiv- 
alent to a chi-squared test can then be done on these numbers to decide 
if the association is genuine. In the case of implicitly represented features 
this is not so straightforward. 
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The difficulty is that there is no point in the system where all the infor- 
mation is available to estimate the necessary numbers. One can imagine 
the reinforcement signal being available at all the elements that carry the 
information telling one that the feature has occurred, but one of these 
elements by itself is not enough to determine whether that feature oc- 
curred or not: one must evaluate the logical function using all the ele- 
ments before one knows this. One can postulate an element that does this 
logical decoding, but such an element would directly represent the fea- 
ture and it would no longer be only implicitly represented. What can be 
done? 

Even though accurate counts of the required numbers are not available 
at any one spot, a relatively simple mechanism could collect together in- 
formation for an innaccurate estimate. In the logical representation of the 
feature there will be some elements that are positively correlated with the 
presence of the feature, and others that are negatively correlated. The 
appropriately weighted sum of the activities of these elements will give 
an indication of the presence of the feature, and the average over time 
of this measure can be used to estimate how often it occurs. We know 
from the limitations of perceptrons (Minsky and Papert 1969) that there 
are many logical functions that this method will be incapable of detecting 
correctly, but we also know there are many cases where it works satis- 
factorily. An approximation of this sort actually seems to be involved in 
most learning in artificial neural networks. We have been trying to de- 
termine for what types of representation such learning will be reasonably 
fast and efficient, and under what conditions it is bound to be slow and 
unreliable. 

Statistical Efficiency as a Measure of Performance 

To assess the merit of one representation against another we need a measure 
of associational performance, and we have used the statistical efficiency 
defined by R. A. Fisher (1925) for this purpose. To make any statistical 
decision up to a required standard of reliability a sample of a certain min- 
imum size is necessary, but if the method is inefficient a larger sample will 
be needed to obtain the same standard of reliability. Fisher's efficiency is 
simply the ratio of these two sample sizes. In our case the sample size is 
given by the maximum number of occurrences or coincidences that could 
occur in the time for which the counts were made, so if the method is in- 
efficient it will take longer to determine that an association is present, or 
more mistakes will be made if a decision is made in the same time. It is 
pretty clear that speedy and reliable learning about new causative factors 
in the environment will have high survival value, and the statistical effi- 
ciency attainable in a particular type of representation gives a very direct 
measure of how useful it would be for enabling an animal to detect new 
associations and acquire new knowledge of the world. 
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Explicit Representation 

So far we have referred to "directly represented features," where there are 
selectively sensitive representatational elements that respond when and 
only when the feature is present, and "implicitly represented features," for 
which there are no such selectively sensitive elements but the appropri- 
ate logical analysis of the pattern of activity in the whole representation 
nonetheless allows one to decide if the feature is present. We now intro- 
duce an intermediate type, explicitly represented features, for which we 
have been able to solve the problem of determining the statistical efficiency 
for detecting associations. 

An explicitly represented feature is one whose presence can be deter- 
mined by a simple logical operation performed on a subset of the elements 
in the representation, rather than on the whole representation. So far the 
simple logical operation we have analyzed is the presence of a particular 
pattern in the elements of the specified subset, since this seems both the 
simplest and perhaps the most interesting case. It turns out that inactive 
elements carry very little information if the representation is reasonably 
sparse (i.e., the average proportion of elements active at any one time is low, 
say less than 10%), so one need consider only the active elements. Each of 
these directly represents a different feature, so the occurrence of the pattern 
corresponds to the conjunction or joint occurrence of certain specific fea- 
tures. To return to Harris's example, if one element at a particular point in 
the visual field directly represented Volkswagens, and another element at 
that position directly represented Yellowness, Yellow Volkswagens would 
not be directly represented, but they would be explicitly represented by 
the joint occurrence of the above two elements. The question we think we 
have answered is "Under what conditions can a representation in which 
there are Yellowness (Y) units and Volkswagen (V) units, but no Yellow 
Volkswagen (YV) units, nonetheless be used to detect efficiently an asso- 
ciation with Yellow Volkswagens?" The answer is, however, more general 
than this, for it applies to multiple conjunctions and patterns in subsets 
with more than a pair of active elements. 

The outline of the analysis is as follows. To determine if an association is 
present between a feature and reinforcement (R) one does a chi-squared test 
on a 2x2 contingency table in which the feature (Y, V, or YV) is one of the 
variables and reinforcement (R) is the other. Because of the sampling errors 
in the numbers in such a table the result will be variable, and this variability 
determines how large a sample is required before one can confidently assert 
that an association is present. 

If there are no YV units one must look at the 2 x 2 tables for Y vs. R and V 
vs. R, and combine the results to assess whether YV is associated with R. 
Now for each of the Y vs. R and V vs. R tables there is a perturbing factor: 
Yellowness can occur with reinforcement even if there is no Yellow Volk- 
swagen present, and likewise for nonyellow Volkswagens. These intrusive 
extra occurrences will not bias the result if one knows the unexpectedness 
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of Y and V, but they will add to the variability of the two subtables, and 
even when optimally combined the decision about the association of rein- 
forcement with Yellow Volkswagens cannot be made as reliably as if they 
were represented directly. 

Sparse Coding Helps 

How serious is this factor? Note first that the problem arises when the 
same representational element is active in more than one of the features 
that may be reinforced. In the current example, the Y unit is active for all 
yellow things, not just yellow Volkswagens, and similarly for the V unit. 
The extent of this overlap depends on the sparseness of the representation, 
which is defined by the average fraction of the elements that are active. If 
it is very sparse, then only a small proportion of the units will be active for 
any input, and there will be little overlap. Indeed, if it is sparse enough 
there will be only a single unit active for each input, and each will therefore 
be directly represented. On the other hand if it is dense, a given unit will 
be active for a high proportion of inputs, and the overlap problem will be 
serious. 

When there is overlap, what matters is the number of these intrusive 
extra occurrences relative to the number of genuine occurrences of Yel- 
low Volkswagens, and this in turn depends upon the probability of the 
joint event (YV) relative to the single features (Y and V). If Yellowness 
and Volkswagens are both common, then the reinforcement of rare Yellow 
Volkswagens would be masked by the quite frequent chance reinforcement 
of other yellow things and other colored Volkswagens. 

One can show that the efficiency for detecting a feature X depends to 
a good approximation upon the value of a parameter rx that is equal to 
axpxZ/(a), where ax is the fraction of representative elements in the subset 
active for the representation of the feature X, (a) the average fraction active 
for all inputs, p, is the probability of the feature X, and Z is the number 
of representative elements in the subset. Figure 1.5 shows how efficiency 
varies with the value of this parameter. 

Improbable Features Need Denser Representation 

Note first that efficiency increases with r, and, as expected, r increases 
with the number of neurons in the subset and the average sparseness (low 
{a}). It also increases both with the probability px of the feature X, and 
with the activity ratio ax for the feature X; in fact these two are reciprocally 
related, so a very rare feature X can still form associations efficiently if 
it causes an unusually large proportion of the units in a subset of the 
representation to be active. Clearly there is scope here for genetic factors 
to improve selectively the performance of a learning network: factors of 
biological importance should cause many units in a learning network to 
become active.   Another way of putting this is to say that many of the 
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Figure 1.5 The curve shows how statistical efficiency for detecting associations with a feature 
X varies with the value of a parameter defined as follows: T = axpxZ/{a), where ax, (a) are 
the activity ratio for feature X and the average activity ratio, px is the probability of X, and Z 
is the number of neurons in the subset under consideration. For instance, one could identify 
an association with any one of the 45 possible pairs of active neurons in a subset of 10 with an 
efficiency of 50% provided that the neurons were active independently, the pair caused two 
neurons to be active, the probability of the pair occurring was 0.1, and the average fraction 
active was 0.2. (From Gardner-Medwin and Barlow 1994) 

directly represented features should correspond to features possessed by 
biologically important objects; then, when one of these objects appears, it 
will cause a high level of activity. 

Next look at the actual efficiencies attainable for various values of r. 
Although one needs r to be 10 or 100 for efficiencies in the 90% to 100% 
range, useful efficiencies of about 50% are obtained with r =~ 1; this is the 
order of magnitude of the efficiency of human subjects detecting bilateral 
symmetry in dot patterns such as those shown in figure 1.2 (Barlow and 
Reeves 1979). Consider a subset of 10 elements in a network; if one could 
specify 10 mutually exclusive features, the elements of the subset could 
each handle one of them and associations with them could be formed with 
100% efficiency. Now suppose that the features of interest do not all cause 
firing of only single elements among the ten. If a particular feature X 
does cause firing of just one element (ax = 0.1) but this element is also 
active in conjunction with other elements when other features occur, then 
if px = (a) = 0.1 we will have r = 1 and the efficiency for detecting asso- 
ciations will have dropped to around 50%. This reduction occurs because 
intrusive or accidental reinforcement occurs in conjunction with the activ- 
ity of any given element, but this is a small price to pay for the increased 
versatility resulting from the possibility of using and learning associations 
of combinations of the features, as illustrated below. 

Suppose the feature X is represented by the conjunction of two elements 
(ax = 0.2). If again px = 0.1 but we suppose (a) is now 0.2, the same as 
the new value of ax, then r still has the value 1, corresponding to the same 
efficiency, ca. 50%. There are 45 such conjunctions of pairs of elements 
among 10 elements, so a much wider range of features can be used to form 
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associations efficiently, and there is not an enormous loss of efficiency com- 
pared with the direct representation of features on single elements. Notice 
that the above applies to features represented by pairs of active units, but 
a particular merit of such a system is that it can form associations with 
patterns containing three or more active elements. Even if such multiple 
conjunctions of directly represented features are rare, provided that they 
cause activity in a high proportion of elements, they will be learned with 
reasonable efficiency. 

What this shows is that it is possible to learn about explicit conjunctions 
of any number of elements in known subsets of a representation, provided 
that the representation is sparse, provided that these conjunctions do not 
occur too infrequently and activate a substantial proportion of elements 
when they do, and provided that the representative elements can be con- 
sidered, a priori, to occur independently. How to achieve this, and read 
out the results in a useful way, cannot be gone into here. 

The analysis we have done so far is only a beginning. What can be done 
using the union rather than conjunction of representational elements in a 
subset? What can be done with threshold logic functions on the activity of 
members of a subset? We do not know the answer to these questions, but 
one point does seem evident. 

We have already seen that the features that are directly represented 
should (1) occur as closely as possible independently of each other in 
the environment to which the representative system is adapted; (2) oc- 
cur sufficiently frequently so that the representation is neither too dense 
nor too sparse. These requirements might not be too difficult to meet if one 
could postulate an indefinite number of directly represented features, but 
such an indefinitely large representation would have none of the capac- 
ity to generalize sensibly that is needed in a representation to be used for 
learning. This introduces another requirement for the selection of directly 
represented features: they must each represent as much as possible of the 
incoming stream of data from the environment and must occur frequently 
so that generalization occurs usefully. Some tests of this prediction on 
digitized images of natural scenes will now be described. 

SELECTION OF DIRECTLY REPRESENTED FEATURES 

It is generally agreed that the neurons of the primary visual cortex respond 
selectively to the borders and edges of objects in the visual image. There is 
argument about whether they should be regarded as edge-detectors, Gabor 
filters, or wavelet functions, but there is no disagreement that they do in 
fact respond to the oriented patterns of light that occur at the borders of 
objects. If the arguments (Barlow 1985) about the importance of nonchance 
associations are correct, then measurements of the distribution of light 
at the borders of objects should show that edges qualify as "suspicious 
coincidences." We set out to test whether this was so, and the main result 
confirms that it is (Barlow and Tolhurst 1992). 
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We took a selection of digitized images and removed the correlations 
between pairs of points, averaged over the whole image, by the "whiten- 
ing" process described before and shown in figure 1.4; this leaves behind 
the image structures we are now interested in that occur at the borders of 
objects. The distribution of pixel values in such whitened images gives 
us the basis for the chance expectation of combinations of pixel values, 
and what the hypothesis says is that at the borders of objects we shall find 
combinations of pixel values that occur more frequently than this chance 
expectation. 

Perhaps it is already obvious by inspection of the whitened figure that 
this is the case, for you would not expect to find by chance the rows of 
high or low values you can see in figure 1.4. To confirm this we measured 
the distribution of the sum of nine pixel values selected at random from 
all over the whitened image to provide the chance distribution, and from 
nine adjacent spots in a row to show what actually occurs. Figure 1.6 
shows the result: the distributions are strikingly different. For the sum 
of nine randomly selected pixels the range is from about 980 to 1320 on 
the horizontal scale, but as you can see values outside this range are very 
common for the sum of nine pixels in a row. 

Do these extreme values occur at the borders? Yes they do, as shown in 
figure 1.7, which marks the positions in the image where these extremes 
occur. As you see they occur at edges. 

Is this a consistent feature of the sum of pixels in a line? To answer this we 
looked at a varied selection of 15 images, and estimated the kurtosis excess 
for the sums in a line compared with randomly selected pixels and sums 
over square regions. This measure (Weatherburn 1961) is based on the 
fourth moment and values greater than 0 can be crudely taken to indicate 
that the distribution has an excess of extreme values compared with a 
gaussian. As shown in table 1.2, the kurtosis excess is much greater for the 
line sum than for the other distributions, though it has to be said that we 
do not understand why patches, and even single pixels, also show kurtosis 
excess. The large excess for lines, combined with the fact that the extreme 
values occur at the borders, vindicates the hypothesis that the features we 
use to represent an image are suspicious coincidences—at least in the case 
of the orientationally selective units of VI. 

SUMMARY AND CONCLUSIONS 

It was suggested initially that we dominate the world because we know 
more about it than other animals, and that it is the neocortex that is re- 
sponsible for this. How to acquire and store knowledge of the world is a 
vast problem, but although we have only scratched the surface we may be 
beginning to discover how the neocortex could, as the combined result of 
genetic selection and individual experience, provide us with a represen- 
tation of the current scene that automatically stores, gives access to, and 
adds to such knowledge. 
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Figure 1.6 Distributions of the sum of nine randomly selected pixels {top), and nine pixels 
in a line at four orientations (bottom) from the right hand (whitened) image of figure 1.4. The 
lower distribution has an excess of extreme values—that is, values unexpected on the basis of 
the distribution of individual pixel values in the whitened image. (Tolhurst and Barlow 1994) 

1. The first principle, suggested diagrammatically in figure 1.3, is that 
neocortex removes associative structure that has already been identified 
through past experience. This is analogous to discounting the mean lumi- 
nance in light adaptation, or removing a known regression when trying to 
make sense of residual deviations. Identified structure would be stored, 
and when recognized in the current scene it would form part of a matching 
model; the unmatched residue would contain new information about that 
scene. Stored knowledge of the associative structure of the world would 
be used continuously and automatically in this way, but there could be 
other methods of accessing it for purposes of imagery and recall. 
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Figure 1.7 The left panel is the whitened image from figure 1.4. In the right panel white 
dots are placed at the positions of the upper extreme values of the distributions of the sum 
of pixels in a line shown in figure 1.6, and dark dots at lower extreme values. The extreme 
values obviously occur at the borders of objects in the image. Hence the combinations of 
pixel values that occur at edges are ones that would not be expected by chance. 

Table 1.2   Kurtosis excess for 15 images 

Mean ± SE 
(» = 15) 

Sum of pixels over line 9x1 
Sum of 9 random pixels 
Sum over square 3x3 
Single pixels 

15.82 ± 3.66 
0.989 ± 0.76 

7.30 ± 1.68 
8.81 ± 1.70 

2. To prove that an association between two features exists you need to 
know their individual frequencies of occurrence, because you must es- 
timate the chance frequency of joint occurrence to show that the actual 
frequency is significantly greater. 

3. To detect associations with combinations of features, the features should 
be chosen so that they occur as nearly as possible independently of each 
other in the environment to which the sytem is adapted, for otherwise 
the expected frequency of occurrence of a combination is hard to deter- 
mine. 

4. In distributed representations, detecting associations with conjunctions 
of features is difficult because accidental associations with the constituents 
of the conjunctions mask associations with the conjunctions themselves. 
This problem tends to make the identification of associations with conjunc- 
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tions inefficient in dense distributed representations, and such representa- 
tions are therefore unlikely to be useful. 

5. On the other hand in sparse distributed representations associations can 
be identified reasonably efficienctly (say 50%) with features represented by 
the conjunction of directly represented features, provided that these con- 
junctions are not too sparsely represented and occur with a frequency not 
too far below that of the directly represented features. 

6. To generate a reasonably economical representation of the current scene 
the directly represented features should be suspicious coincidences—com- 
binations of signals from lower levels that occur frequently but would be 
rarely expected by chance. The representational elements at higher levels 
should be matched to the biological importance and statistical structure of 
occurrences at lower levels. 

7. This notion that the representational elements used by the brain corre- 
spond to suspicious coincidences, or combinations of simpler events that 
occur more often than expected by chance, has received some support from 
the statistical analysis of edges in images. 

8. The features that are directly represented at any level in the hierarchy 
will have a strong effect on the performance of a representational network, 
including the way that generalization occurs. The selection of these fea- 
tures is likely to be one way that genetic factors exert their influence. In 
addition, ontogenetic control of the connections between levels probably 
determines the way that information of different types is segregated and 
brought together according to nontopographic principles. In these two 
ways, and possibly others, genetic factors must influence how the cortex 
handles sensory information, and they can be regarded as an inherited 
store of world knowledge; the genetic variability that has enabled such a 
store to be formed may be at least as important as the ability of the cortex 
to acquire world knowledge by its own direct experience. 
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A Critique of Pure Vision1 

Patricia S. Churchland, V. S. Ramachandran, and 
Terrence J. Sejnowski 

INTRODUCTION 

Any domain of scientific research has its sustaining orthodoxy. That is, 
research on a problem, whether in astronomy, physics, or biology, is con- 
ducted against a backdrop of broadly shared assumptions. It is these as- 
sumptions that guide inquiry and provide the canon of what is reasonable— 
of what "makes sense." And it is these shared assumptions that constitute 
a framework for the interpretation of research results. Research on the 
problem of how we see is likewise sustained by broadly shared assump- 
tions, where the current orthodoxy embraces the very general idea that the 
business of the visual system is to create a detailed replica of the visual 
world, and that it accomplishes its business via hierarchical organization 
and by operating essentially independently of other sensory modalities as 
well as independently of previous learning, goals, motor planning, and 
motor execution. 

We shall begin by briefly presenting, in its most extreme version, the 
conventional wisdom. For convenience, we shall refer to this wisdom 
as the Theory of Pure Vision. We then outline an alternative approach, 
which, having lurked on the scientific fringes as a theoretical possibility, is 
now acquiring robust experimental infrastructure (see, e.g., Adrian 1935; 
Sperry 1952; Bartlett 1958; Spark and Jay 1986; Arbib 1989). Our charac- 
terization of this alternative, to wit, interactive vision, is avowedly sketchy 
and inadequate. Part of the inadequacy is owed to the nonexistence of an 
appropriate vocabulary to express what might be involved in interactive 
vision. Having posted that caveat, we suggest that systems ostensibly "ex- 
trinsic" to literally seeing the world, such as the motor system and other 
sensory systems, do in fact play a significant role in what is literally seen. 
The idea of "pure vision" is a fiction, we suggest, that obscures some of 
the most important computational strategies used by the brain. Unlike 
some idealizations, such as "frictionless plane" or "perfect elasticity" that 
can be useful in achieving a core explanation, "pure vision" is a notion 
that impedes progress, rather like the notion of "absolute downness" or 
"indivisible atom." Taken individually our criticisms of "pure vision" are 
neither new nor convincing; taken collectively in a computational context, 
they make a rather forceful case. 



These criticisms notwithstanding, the Theory of Pure Vision together 
with the Doctrine of the Receptive Field have been enormously fruitful in 
fostering research on functional issues. They have enabled many programs 
of neurobiological research to flourish, and they have been crucial in getting 
us to where we are. Our questions, however, are not about past utility, but 
about future progress. Has research in vision now reached a stage where 
the orthodoxy no longer works to promote groundbreaking discovery? 
Does the orthodoxy impede really fresh discovery by cleaving to outdated 
assumptions? What would a different paradigm look like? This chapter is 
an exploration of these questions. 

PURE VISION: A CARICATURE 

This brief caricature occupies one corner of an hypothesis-space concerning 
the computational organization and dynamics of mammalian vision. The 
core tenets are logically independent of one another, although they are often 
believed as a batch. Most vision researchers would wish to amend and 
qualify one or another of the core tenets, especially in view of anatomical 
descriptions of backprojections between higher and lower visual areas. 
Nevertheless, the general picture, plus or minus a bit, appears to be rather 
widely accepted—at least as being correct in its essentials and needing 
at most a bit of fine tuning. The approach outlined by the late David 
Marr (1982) resembles the caricature rather closely, and as Marr has been a 
fountainhead for computer vision research, conforming to the three tenets 
has been starting point for many computer vision projects.2 

1. The Visual World. What we see at any given moment is in general a fully 
elaborated representation of a visual scene. The goal of vision is to create a 
detailed model of the world in front of the eyes in the brain. Thus Tsotsos 
(1987) says, "The goal of an image-understanding system is to transform 
two-dimensional data into a description of the three-dimensional spatio- 
temporal world" (p. 389). In their review paper, Aloimonos and Rosenfeld 
(1991) note this characterization with approval, adding, "Regarding the 
central goal of vision as scene recovery makes sense. If we are able to 
create, using vision, an accurate representation of the three-dimensional 
world and its properties, then using this information we can perform any 
visual task" (p. 1250). 

2. Hierarchical Processing. Signal elaboration proceeds from the vari- 
ous retinal stages, to the LGN, and thence to higher and higher cortical 
processing stages. At successive stages, the basic processing achievement 
consists in the extraction of increasingly specific features and eventually 
the integration of various highly specified features, until the visual system 
has a fully elaborated representation that corresponds to the visual scene 
that initially caused the retinal response. Pattern recognition occurs at that 
stage. Visual leaning occurs at later rather than earlier stages. 

3. Dependency Relations. Higher levels in the processing hierarchy de- 
pend on lower levels, but not, in general, vice versa. Some problems are 
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early (low level) problems; for example, early vision involves determining 
what is an edge, what correspondences between right and left images are 
suitable for stereo, what principle curvatures are implied by shading pro- 
files, and where there is movement (Yuille and Ullman 1990). Early vision 
does not require or depend on a solution to the problems of segmentation 
or pattern recognition or gestalt.3 

Note finally that the caricature, and, most especially, the "visual world" 
assumption of the caricature, gets compelling endorsement from common 
sense. From the vantage point of how things seem to be, there is no deny- 
ing that at any given moment we seem to see the detailed array of whatever 
visible features of the world are in front of our eyes. Apparently, the world 
is there to be seen, and our brains do represent, in essentially all its glory, 
what is there to be seen. Within neuroscience, a great deal of physiolog- 
ical, lesion, and anatomical data are reasonably interpretable as evidence 
for some kind of hierarchical organization (Van Essen and Anderson 1990). 
Hierarchical processing, moreover, surely seems an eminently sensible en- 
gineering strategy—a strategy so obvious as hardly to merit ponderous 
reflection. Thus, despite our modification of all tenets of the caricature, we 
readily acknowledge their prima facie reasonableness and their appeal to 
common sense. 

INTERACTIVE VISION: A PROSPECTUS 

What is vision for? Is a perfect internal recreation of the three-dimensional 
world really necessary? Biological and computational answers to these 
questions lead to a conception of vision quite different from pure vision. 
Interactive vision, as outlined here, includes vision with other sensory 
systems as partners in helping to guide actions. 

1. Evolution of Perceptual Systems. Vision, like other sensory functions, 
has its evolutionary rationale rooted in improved motor control. Although 
organisms can of course see when motionless or paralyzed, the visual sys- 
tem of the brain has the organization, computational profile, and archi- 
tecture it has in order to facilitate the organism's thriving at the four Fs: 
feeding fleeing, fighting, and reproduction. By contrast, a pure visionary 
would say that the visual system creates a fully elaborated model of the 
world in the brain, and that the visual system can be studied and modeled 
without worrying too much about the nonvisual influences on vision. 

2. Visual Semiworlds. What we see at any given moment is a partially 
elaborated representation of the visual scene; only immediately relevant 
information is explicitly represented. The eyes saccade every 200 or 300 
msec, scanning an area. How much of the visual field, and within that, how 
much of the foveated area, is represented in detail depends on many fac- 
tors, including the animal's interests (food, a mate, novelty, etc.), its long- 
and short-term goals, whether the stimulus is refoveated, whether the stim- 
ulus is simple or complex, familiar or unfamiliar, expected or unexpected, 
and so on. Although unattended objects may be represented in some min- 
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Figure 2.1   The scan path of saccadic eye movements made by a subject viewing the picture. 
(Reprinted with permission from Yarbus 1967.) 

imal fashion (sufficient to guide attentional shifts and eye movements, for 
example) they are not literally seen in the sense of "visually experienced." 

3. Interactive Vision and Predictive Visual Learning. Interactive vision is 
exploratory and predictive. Visual learning allows an animal to predict 
what will happen in the future; behavior, such as eye movements, aids 
in updating and upgrading the predictive representations. Correlations 
between the modalities also improve predictive representations, especially 
in the murk and ambiguity of real-world conditions. Seeing an uncommon 
stimulus at dusk such as a skunk in the bushes takes more time than seeing 
a common animal such as a dog in full light and in full, canonical view. 
The recognition can be faster and more accurate if the animal can make 
exploratory movements, particularly of its perceptual apparatus, such as 
whiskers, ears, and eyes. There is some sort of integration across time as 
the eyes travel and retravel a scan path (figure 2.1), foveating again and 
again the significant and salient features. One result of this integration 
is the strong but false introspective impression that at any given moment 
one sees, crisply and with good definition, the whole scene in front of one. 
Repeated exposure to a scene segment is connected to greater elaboration 
of the signals as revealed by more and more specific pattern recognition 
[(e.g., (1) an animal, (2) a bear, (3) a grizzly bear with cubs, (4) the mother 
bear has not yet seen us]. 

4. Motor System and Visual System. A pure visionary typically assumes 
that the connection to the motor system is made only after the scene is 
fully elaborated.   His idea is that the decision centers make a decision 
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about what to do on the basis of the best and most complete representation 
of the external world. An interactive visionary, by contrast, will suggest 
that motor assembling begins on the basis of preliminary and minimal 
analysis. Some motor decisions, such as eye movements, head movements, 
and keeping the rest of the body motionless, are often made on the basis of 
minimal analysis precisely in order to achieve an upgraded and more fully 
elaborated visuomotor representation. Keeping the body motionless is not 
doing nothing, and may be essential to getting a good view of shy prey. A 
very simple reflex behavior (e.g., nociceptive reflex) may be effected using 
rather minimal analysis, but planning a complex motor act, such as stalking 
a prey, may require much more. In particular, complex acts may require an 
antecedent "inventorying" of sensorimotor predictions: what will happen 
if I do a, b, and g; how should I move if the X does p, and so forth. 

In computer science, pioneering work exploring the computational re- 
sources of a system whose limb and sensor movements affect the process- 
ing of visual inputs is well underway, principally in research by R. Bajcsy 
(1988), Dana Ballard (Ballard 1991; Ballard et al. 1992; Ballard and White- 
head, 1991; Whitehead and Ballard, 1991, Randall Beer (1990) and Rodney 
Brooks (1989). Other modelers have also been alerted to potential compu- 
tational economies, and a more integrative approach to computer vision is 
the focus of a collection of papers, Active Vision (1993), edited by Andrew 
Blake and Alan Yuille. 

5. Not a Good-Old-Fashioned Hierarchy Recognition. The recognition (in- 
cluding predictive, what-next recognition) in the real-world case depends 
on richly recurrent networks, some of which involve recognition of visuo- 
motor patterns, such as, roughly, "this critter will make a bad smell if I 
chase it," "that looks like a rock but it sounds like a rattlesnake, which 
might bite me." Consequently, the degree to which sensory processing 
can usefully be described as hierarchical is moot. Rich recurrence, es- 
pecially with continuing multicortical area input to the thalamus and to 
motor structures, appears to challenge the conventional conception of a 
chiefly unidirectional, low-to-high processing hierarchy. Of course, tem- 
porally distinct stages between the time photons strike the retina and the 
time the behavior begins do exist. There are, as well, stages in the sense 
of different synaptic distances from the sensory periphery and the motor 
periphery. Our aim is not, therefore, to gainsay stages per se, but only to 
challenge the more theoretically emburdened notion of a strict hierarchy. 
No obvious replacement term for "hierarchy" suggests itself, and a new 
set of concepts adequate to describing interactive systems is needed. (Ap- 
proaching the same issues, but from the perspective of neuropsychology, 
Antonio Damasio also explores related ideas [see Damasio 1989 b,d]). 

6. Memory and Vision. Rich recurrence in network processing also means 
that stored information from earlier learning plays a role in what the animal 
literally sees. A previous encounter with a porcupine makes a difference 
to how a dog sees the object on the next encounter. A neuroscientist and a 
rancher do not see the same thing in figure 2.2. The neuroscientist cannot 
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Figure 2.2 Stereo pair of a reconstructed layer five pyramidal neuron from cat visual cortex 
(courtsey of Rodney Douglas). The apical dendrite extends through the upper layers of the 
cortex and has an extensive arborization in layer 1. This neuron can be fused by placing a sheet 
of cardboard between the two images and between your two eyes. Look "through" the figure 
to diverge your eyes sufficiently to bring the two images into register. The basal dendrites, 
which receive a majority of the synapses onto the cell, fill a ball in three-dimensional space. 
Apical dendritic tufts form clusters. 

help but see it as a neuron; the rancher wonders if it might be a kind of 
insect. A sheep rancher looking over his flock recognizes patterns, such as 
a ewe with lambing troubles, to which the neuroscientist is utterly blind. 
The latency for fusing a Julesz random-dot stereogram is much shorter 
with practice, even on the second try. Some learning probably takes place 
even in very early stages. 

7. Pragmatics of Research. In studying nervous systems, it seems reason- 
able to try to isolate and understand component systems before trying to 
see how the component system integrates with other brain functions. Nev- 
ertheless, if the visual system is intimately and multifariously integrated 
with other functions, including motor control, approaching vision from 
the perspective of sensorimotor representation and computations may be 
strategically unavoidable. Like the study of "pure blood" or "pure diges- 
tion," the study of "pure vision" may take us only so far. 

Our perspective is rooted in neuroscience (see also Jeannerod and Decety 
1990). We shall mainly focus on three broad questions: (1) Is there empirical 
plausibility—chiefly, neurobiological and psychological plausibility—to 
the interactive perception approach? (2) What clues are available from the 
nervous system to tell us how to develop the interactive framework beyond 
its nascent stages? and (3) What computational advantage would such 
an interactive approach have over traditional computational approaches? 
Under this aegis, we shall raise issues concerning possible reinterpretation 
of existing neurobiological data, and concerning the implications for the 
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problem of learning in nervous systems. Emerging from this exploration 
is a general direction for thinking about interactive vision. 

IS PERCEPTION INTERACTIVE? 

Visual Psychophysics 

In the following subsections, we briefly discuss various psychophysical ex- 
periments that incline us to favor the interactive framework. In general, 
these experiments tend to show that whatever stages of processing are re- 
ally involved in vision, the idea of a largely straightforward hierarchy from 
"early processes" (detection of lines, shape from shading, stereo) to "later 
processes" (pattern recognition) is at odds with the data (see also Rama- 
chandran 1986; Nakayama and Shimojo 1992; Zijang and Nakayama 1992). 

Are There Global Influences on Local Computation? Subjective Motion 
Experiments Seeing a moving object requires that the visual system solve 
the problem of determining which features of the earlier presentation go 
with which features of the later presentation (also known as the Correspon- 
dence Problem). In his work in computer vision, Ullman (1979) proposed 
a solution to this problem that avoids global constraints and relies only on 
local information. His algorithm solves the problem by trying out all pos- 
sible matches and through successive iterations it finds the set of matches 
that yields the minimum total distance. A computer given certain corre- 
spondence tasks and running Ullman's algorithm will perform the task. 
His results show that the problem can be solved locally, and insofar it is 
an important demonstration of possibility. To understand how biological 
visual systems really solve the problem, we need to discover experimen- 
tally whether global factors play a role in the system's perceptions. In the 
examples discussed in this section, "global" refers to broad regions of the 
visual field as opposed to "local," meaning very small regions such as the 
receptive fields of cells in the parafoveal region of VI (~ 1°) or V4 (~ 5°). 

1. Bistable Quartets. The displays shown in figure 2.3 are produced on 
a television screen in fast alternation—the first array of dots (A: coded as 
filled), then the second array of dots (B: coded as open), then A then B, as in 
a moving picture. The brain matches the two dots in A with dots in B, and 
subjects see the dots moving from A position to B position. Subjects see 
either horizontal movement or vertical movement; they do not see diagonal 
movement. The display is designed to be ambiguous, in that for any given 
A dot, there is both a horizontal B dot and also a vertical B dot, to which it 
could correspond. Although the probability is 0.5 of seeing any given A-B 
pair oscillating in a given direction, in fact observers always see the set of 
dots moving as a group—they all move vertically or all move horizontally 
(Ramachandran and Anstis, 1983). Normal observers do not see a mixture 
of some horizontal and some vertical movements. This phenomenon is an 
instance of the more general class of effects known as motion capture, and 
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Figure 2.3 Bistable quartets. This figure shows that when the first array of dots (represented 
by filled circles, and indicated by A in the top left quartet) alternate with the second array of 
dots (represented by open circles, indicated by B in the top left quartet). Subjects see either 
all vertical or all horizontal oscillations. Normal observers do not see a mixture of some 
horizontal and some vertical movements, nor do they see diagonal movement. (Based on 
Ramachandran and Anstis 1983) 

it strongly suggests that global considerations are relevant to the brain's 
strategy for dealing with the correspondence problem. Otherwise, one 
would expect to see, at least some of the time, a mix of horizontal and 
vertical movements. 

2. Behind the Occludcr (figure 2.4). Suppose both the A frame and the 
B frame contain a shaded square on the righthand side. Now, if all dots 
in the A group blink off and only the uppermost and lowermost dots of 
the Bl group blink on, subjects see all A dots, move to the Bl location, 
including the middle A dot, which is seen to move behind the "virtual" 
occluder. (It works just as well if the occluder occupies upper or lower 
positions.) If, however, A contains only one dot in the middle position 
on the left plus the occluding square on its right, when that single dot 
merely blinks off, subjects do not see the dot move behind the occluder. 
They see a square on the right and a blinking dot on the left. Because 
motion behind the occluder is seen in the context of surrounding subjective 
motion but not in the context of the single dot, this betokens the relevance 
of surrounding subjective motion to subjective motion of a single spot. 
Again, this suggests that the global properties of the scene are important 
in determining whether subjects see a moving dot or a stationary blinking 
light (Ramachandran and Anstis 1986). 

3. Cross-Modal Interactions. Suppose the display consist of a single blink- 
ing dot and a shaded square (behind which the moving dot could "hide"). 
As before, A and B are alternately presented—first A (dot plus occluder), 
then B (occluder only), then A, then B. As noted above, the subject sees 
no motion (figure 2.4 III). Now, however, change conditions by adding an 
auditory stimulus presented by earphones. More exactly, the change is this: 
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Figure 2.4 This figure shows the stimuli used to elicit the phenomenon of illusory motion 
behind an occluder. When the occluder is present, the subjects perceive all the dots move to 
the right, including the middle left dot, which is seen to move to the right and behind the 
square. In the absence of the occluder, the middle dot appears to move to the upper right. 
When the display is changed so that only the middle dot remains while upper and lower 
dots are removed, the middle dot is seen to merely blink off and on, but not to move behind 
the occluder. When, however, a tone is presented in the left ear simultaneously with the dot 
coming on, and in the right ear simultaneously with the dot going off, subjects do see the 
single dot move behind the occluder. (Based on Ramachandran and Anstis 1986) 

Simultaneous with the blinking on of the light, a tone is sounded in the left 
ear; simultaneous with the blinking off, a tone is sounded in the right ear. 
With the addition of the auditory stimulus, subjects do indeed see the sin- 
gle dot move to the right behind the occluder. In effect, the sound "pulls" 
the dot in the direction in which the sound moves (Ramachandran, Intrili- 
gator, and Cavanaugh, unpublished observations). In this experiment, the 
cross-modal influence on what is seen is especially convincing evidence 
for some form of interactive vision as opposed to a pure, straight through, 
noninteractive hierarchy. (A weak subjective motion effect can be achieved 
when the blinking of the light is accompanied by somatosensory left-right 
vibration stimulation to the hands. Other variations on this condition could 
be tried.) 

It comes as no surprise that visual and auditory information is inte- 
grated at some stage in neural processing. After all, we see dogs barking 
and drummers drumming. What is surprising in these results is that the 
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Figure 2.5 Two frames in an apparent motion display. The four Pacmen give rise to the 
perception of an occluding square that moves from the left circles to the right circles. 

auditory stimulus has an effect on a process (motion correspondence) that 
pure vision orthodoxy considers "early." In this context it is appropriate to 
mention also influence in the other direction—of vision on hearing. Seeing 
the speaker's lips move has a significant effect on auditory perception and 
has been especially well documented in the McGurk effect. 

4. Motion Correspondence and the Role of Image Segmentation. Figure 2.5 
shows two frames of a movie in which the first frame has four Pacmen on 
the left, and the second has four Pacmen on the right. In the movie, the 
frames are alternated, and the disks are in perfect registration from one 
frame to the next. What observers report seeing is a foreground opaque 
square shifting left and right, occluding and revealing the four black disks 
in the background. Subjects never report seeing pacmen opening and 
closing their mouths; they never report seeing illusory squares flashing 
off and on. Moreover, when a template of this movie was then projected 
on a regular grid of dots, the dots inside the subjective square appeared to 
move with the illusory surface even though they were physically stationary 
(figure 2.6). "Outside" dots did not move (Ramachandran 1985). 

These experiments imply that the human visual system does not al- 
ways solve the correspondence problem independently of the segmenta- 
tion problem (the problem of what features are parts belonging to the same 
thing), though pure visionaries tend to expect that solving segmentation is 
a late process that kicks in after the correspondence problem is solved. Sub- 
jects' overwhelming preference for the "occluding square" interpretation 
over the "yapping Pacmen" interpretation indicates that the solution to the 
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Figure 2.6 When dots are added to the background of figure 2.5, those dots internal to 
the occluding square appear to move with it when it occludes the right side circles. The 
background dots, however, appear stationary. (Based on Ramachandran 1985) 

segmentation problem itself involves large-scale effects dominating over 
local constraints. If seeing motion in this experiment depended on solving 
the correspondence problem at the local level, then presumably yapping 
Pacmen would be seen. The experiment indicates that what are matched 
between frames are the larger scale and salient features; the smaller scale 
features are pulled along with the global decision. 

Are the foregoing examples really significant? A poo-pooing strategy 
may downplay the effects as minor departures ("biology will be biology"). 
To be sure, a theory can always accommodate any given "anomaly" by 
making some corrective adjustment or other. Nevertheless, as anomalies 
accumulate, what passed as corrective adjustments may come to be de- 
plored as ad hoc theory-savers. A phenomenon is an anomaly only relative 
to a background theory, and if the history of science teaches us anything, 
it is that one theory's anomaly is another theory's prototypical case. Thus 
"retrograde motion" of the planets was an anomaly for geocentric cosmol- 
ogists but a typical instance for Galileo; the perihelion advance of Mercury 
was an anomaly for Newtonian physics, but a typical instance for Ein- 
steinian physics. Any single anomaly on its own may not be enough to 
switch investment to a new theoretical framework. The cumulative effect 
of an assortment of anomalies, however, is another matter. 

Can Semantic Categorization Affect Shape-from-Shading? Helmholtz 
observed that a hollow mask presented from the "inside" (the concave 
view, with the nose extending away from the observer) about 2 m from 
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the observer is invariably perceived as a convex mask with features pro- 
truding (nose coming toward the observer). In more recent experiments, 
Ramachandran (1988) found that the concave mask continues to be seen 
as convex even when is it is illuminated from below, a condition that of- 
ten suffices to reverse a perception of convexity to one of concavity. This 
remains true even when the subject is informed about the direction of il- 
lumination of the mask. Perceptual persistence of the convex mask as a 
concave mask shows a strong top-down effect on an allegedly early visual 
task, namely determining shape from shading. 

Does this perceptual reversal of the hollow mask result from a generic 
assumption that many objects of interest (nuts, rocks, berries, fists, breasts) 
are usually convex or that faces in particular are typically convex? That 
is, does the categorization of the image as a face override the shading cues 
such that the reversal is a very strong effect? To address this question, 
Ramachandran, Gregory, and Maddock (unpublished observations) pre- 
sented subjects with two masks: one is right side up and the other is upside 
down. Upside-down faces are often poorly analyzed with respect to fea- 
tures, and an upside-down mask may not be seen as having facial features 
at all. In any case, upright faces are what we normally encounter. In the 
experiment, subjects walk slowly backward away from the pair of stimuli, 
starting at 0.5 m, moving to 5.0 m. At a close distance of about 0.5 m sub- 
jects correctly see both inverted masks as inverted (concave). At about 1 m, 
subjects usually see the upright mask as convex; the upside-down mask, 
however, is still seen as concave until viewing distance is about 1.5-2.0 m, 
whereupon subjects tend to see it too as convex. The stimuli are identical 
save for orientation, yet one is seen as concave and the other as convex. 
Hence this experiment convincingly illustrates that an allegedly "later" 
process (face categorization) has an effect on an allegedly "earlier" process 
(the shading predicts thus and such curvatures) (figure 2.7). 

Can Subjective Contours Affect Stereoscopic Depth Perception? Stereo 
vision has been cited (Poggio et al. 1985) as an early vision task, one that 
is accomplished by an autonomous module prior to solving segmenta- 
tion and classification. That we can fuse Julesz random dot stereograms 
to see figures in depth is evidence for the idea that matching for stereo 
can be accomplished with matching of local features only, independently 
of global properties devolving from segmentation or categorization deci- 
sions. While the Julesz stereogram is indeed a stunning phenomenon, the 
correspondence problem it presents is entirely atypical of the correspon- 
dence problem in the real world. The logical point here should be spelled 
out: "Not always dependent on a" does not imply "Not standardly de- 
pendent on a," let alone, "Never dependent on a." Hence the question 
remains whether in typical real world conditions, stereo vision might in 
fact make use of top-down, global information. To determine whether 
under some conditions the segmentation data might be used in solving 
the correspondence problem, Ramachandran (1986) designed stereo pairs 
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Figure 2.7 The hollow mask, photographed from its concave orientation (as though you are 
about to put it on). In (A) the light comes from above; in (B) light comes from both sides. 

where the feature that must be matched to see stereoptic depth is some 
high-level property. The choice was subjective contours, allegedly the re- 
sult of "later" processing (figure 2.8). 

In the monocular viewing condition, illusory contours can be seen in 
any of the four displays (above). The top pair can be stereoscopically 
fused so that one sees a striped square standing well in front of a back- 
ground consisting of black circles on a striped mat. The bottom pair can 
also be stereoptically fused. Here one sees four holes in the striped fore- 
ground mat, and through the holes, well behind the striped mat, one sees 
a partially occluded striped square on a black background. These are es- 
pecially surprising results, because the stripes of the perceived foreground 
and the perceived background are at zero disparity. The only disparity 
that exists on which the brain can base a stereo depth perception comes 
from the subjective contour. 

According to pure vision orthodoxy, perceiving subjective contours is 
a "later" effect requiring global integration, in contrast to finding stereo 
correspondences for depth, which is considered an "earlier" effect. This 
result, however, appears to be an example of "later" influencing—in fact 
enabling—"earlier." It should also be emphasized that the emergence of 
qualitatively different percepts (lined square in front of disks versus lined 
square behind portholes) cannot be accounted for by any existing stereo al- 
gorithms that standardly predict a reversal in sign of perceived depth only 
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Figure 2.8 By fusing the upper stereo pairs, one sees a striped square standing well fore of 
a background consisting of black circles on a striped mat. By fusing the bottom pair, one sees 
four holes in the striped foreground mat, and through the holes, a partially occluded striped 
square on a black background. (This assumes fusion by divergence. The opposite order is 
available to those who fuse by convergence.) In both cases, the stripes are at zero disparity. 
(Based on Ramachandran 1986) 

if the disparities are reversed. At the risk of repetition, we note again that in 
figure 2.8 (top and bottom), the lines are at zero disparity (Ramachandran 
1986; Nakayama and Shimojo 1992). 

Can Shape Recognition Affect Figure-Ground Relationships? Figure- 
ground identification is generally thought to precede shape recognition, 
but recent experiments using the Rubin vase/faces stimulus demonstrate 
that shape recognition can contribute to the identification of figure-ground 
(Peterson and Gibson, 1991). 

Does the discovery of cells in VI and V2 that respond to subjective con- 
tours (see below, p. 45) mean that detecting subjective contours is an early 
achievement after all? Not necessarily. The known physiological facts are 
consistent both with the "early effects" possibility as well as with a "later 
effect backsignaled" possibility. Further neurobiological and modeling ex- 
periments will help answer which possibility is realized in the nervous 
system. 

Visual Attention 

An hypothesis of interactive vision claims that the brain probably does not 
create and maintain a visual world representation that corresponds detail- 
by-detail to the visual world itself. For one thing, it need not, since the 
world itself is highly stable and conveniently "out there" to be sampled 
and resampled. On any given fixation, the brain can well make do with 
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a partially elaborated representation of the world (O'Regan 1992; Ballard 
1991; Dennett 1992). As O'Regan (1992) puts it, "the visual environment 
functions as a sort of outside memory store." 

For another thing, as some data presented below suggest, the brain prob- 
ably does not create and maintain a picture-perfect world representation. 
We conjecture that the undeniable feeling of having whole scene visual 
representation is the result mainly of (1) repeated visual visits to stimuli in 
the scene, (2) short-term semantic memory on the order of a few seconds 
that maintains the general sense of what is going on without creating and 
maintaining the point-by-point detail, (3) the brain's "objectification" of 
sensory perception such that a signal processed in cortex is represented as 
being about an object in space, i.e., feeling a burn on the hand, seeing a 
skunk in the grass, hearing a train approaching from the north, etc., and 
(4) the predictive dimension of pattern recognition, i.e., recognizing some- 
thing as a burning log involves recognizing that it will burn my hand if I 
touch it, that smokey smells are produced, that water will quench the fire, 
that sand will smother it, that meat tastes better when browned on it, that 
the fire will go out after a while, and so on and on. 

Evidence supporting the "partial-representation per glimpse" or "semi- 
world" hypothesis derives from research using on-line computer control to 
change what is visible on a computer display as a function of the subject's 
eye movements. When major display changes are made during saccades, 
those changes are rarely noticed, even when they involve bold alterations 
of color of whole objects, or when the changes consist in removal, shifting 
about, or addition of objects such as cars, hats, trees, and people (McConkie 
1990). The exception is when the subject is explicitly paying attention to a 
certain feature, watching for a change. 

Many careful studies using text-reading tasks elegantly support the 
"partial-representation per glimpse" hypothesis. These studies use a "mov- 
ing window paradigm" in which subjects read a line of text that contains a 
window of normal text surrounded fore and aft by "junk" text. As readers 
move their eyes along the line, the window moves with the eyes (Mc- 
Conkie and Rayner 1975; Rayner et al. 1980; O'Regan 1990) (figure 2.9). 
The strategy is to discover the spatial extent of the zone from which useful 
information is extracted on a given fixation by varying the size of the win- 
dow and testing using reading rate and comprehension measures. This 
zone is called the "perceptual" or "attentional" span. If at a given window 
width reading rate or comphrehension declines from a reader's baseline, 
it is presumed that surrounding junk text has affected reading, and hence 
that reader's attentional span is wider than the size of the window. By find- 
ing the smallest width at which reading is unaffected, a reader's attentional 
span can be quite precisely calibrated. 

In typical subjects, reading text the size you are now reading, the atten- 
tional span is about 17-18 characters in width, and it is asymmetric about 
the point of fixation, with about 2-3 characters to the left of fixation and 
about 15 characters to the right. On the other hand, should you be reading 
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This sentence shows the nature of the perceptual span. 
* 

xxxxxxxxxxx shows the nature xxxxxxxxxxxxxxxxxxxx 
* 

Maximum Perceptual Span 

2-3 character spaces left (beginning of current word). 

15 character spaces right (2 words beyond current word). 

Figure 2.9 The attentional ("perceptual") span is defined as that zone from which useful 
information can be extracted on a given fixation. Fixation point is indicated by an asterisk. 
This displays the width of the attentional span and the asymmetry of the span (Courtesy John 
Henderson) 

Hebrew instead of English, and hence traveling from page right to page left, 
the attention span will be about 2-3 characters to the right and 15 to the left 
(Pollatsek et al 1981), or reading Japanese, in which case it is asymmetric 
in the vertical dimension (Osaka and Oda 1991). This means that subjects 
read as well when junk text surround the 17-18 character span as when 
the whole line is visible, but read less well if the window is narrowed to 14 
or 12 characters. At 17-18 character window width, the surrounding junk 
text is simply never noticed. Interestingly, it remains entirely unnoticed 
even when the reading subject is told that the moving window paradigm 
is running (McConkie 1979; O'Regan 1990; Henderson 1992). 

Further experiments using this paradigm indicate that a shift in visual 
attention precedes saccadic eye movement to a particular location, pre- 
sumably guiding it to a location that low-level analysis deems the next 
pretty good landing spot (Henderson et al. 1989). Henderson (1993) pro- 
poses that visual attention binds; inter alia, it binds the visual stimulus to 
a spatial location to enable a visuo-motor representation that guides the 
next motor response. When the fovea has landed, some features are seen. 

Experiments along very different lines suggest that the information ca- 
pacity of attention per glimpse is too small to contain a richly detailed 
whole-scene icon. Verghese and Pelli (1992) report results concerning the 
amount of information an observer's attention can handle. Based on their 
results, they conclude that the capacity of the attention mechanism is lim- 
ited to about 44 ± 15 bits per glimpse. Preattentive mechanisms (studied by 
Treisman and by Julesz) presumably operate first, and operate in parallel. 
Verghese and Pelli calculated that the preattentive information capacity is 
much greater—about 2106 bits. The attentional mechanism, in contrast to 
the preattentive mechanism, they believe to be low capacity. (Verghese 
and Pelli define a preattentive task as "one in which the probability of de- 
tecting the target is independent of the number of distracter elements" and 
an attentive task as one in which "the probability of detecting the target is 

38 Churchland, Ramachandran, and Sejnowski 



inversely proportional to the number of elements in the display" [p. 983].) 
Verghese and Pelli ran two subjects on a number of attention tasks of 

varying difficulty, and compared results across tasks. In a paradigm they 
call "finding the dead fly," subjects are required to detect the single station- 
ary spot among moving spots. The complementary task of finding the live 
fly—the moving object among stationary objects—is a preattentive task in 
which the target "pops out." They note that their calculation of 44 ± 15 bits 
is consistent with Sperling's (1960) estimate of 40 bits for the iconic store. 
In Sperling's technique, an array of letters was flashed to the observer. He 
found that subjects could report only part of the display, roughly 9 letters 
(= 41 bits). 

There are important dependencies between visual attention, visual per- 
ception, and iconic memory. To a first approximation: (1) if you are not 
visually attending to a then you do not see a (have a visual experience of a), 
and (2) if you are not attending to a and you do not have a visual experience 
of a, then you do not have iconic memory for a. Given the limited capacity 
of visual attention, these assumptions imply that the informational capac- 
ity of visual perception (in the rough and ready sense of "literally seeing") 
is approximately as small (see also Crick and Koch 1990b) 

Nevertheless, some motor behavior—and goal-directed eye movement 
in particular—apparently does not require conscious perception of the item 
to which the movement is directed, but does require some attentional scan- 
ning and some parafoveal signals that presumably provide coarse, easy to 
extract visual cues. During reading a saccade often "lands" the fovea near 
the third letter of the word (close enough to the "optimal" viewing posi- 
tion of the word), and small correction saccades are made when this is not 
satisfactory. This implies that the eyes are aiming at a target, and hence 
that at least crude visual processing has guided the saccade (McConkie et 
al. 1988; Rayner et al. 1983; Kapoula 1984). 

In concluding this section, we emphatically note that what we have 
discussed here is only a small part of the story since, as Schall (1991) points 
out, orienting to a stimulus often involves more than eye movements. It 
often also involves head and whole body movements. 

Considerations from Neuroanatomy 

The received wisdom concerning visual processing envisages information 
flows from stage to stage in the hierarchy until it reaches the highest stage, 
at which point the brain has a fully elaborated world model, ready for 
motor consideration. In this section, we shall draw attention to, though not 
fully discuss, some connectivity that is consistent with a loose, interactive 
hierarchy but casts doubt on the notion of a strict hierarchy. We do of course 
acknowledge that so far these data provide only suggestive signs that the 
interactive framework is preferable. (For related ideas based on back- 
projection data in the context of neuropsychological data, see Damasio 
1989b and Van Hoesen 1993.) 
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Backprojections (Corticocortical) Typically in monkeys, forward axon 
projections (from regions closer in synaptic distance to the sensory periph- 
ery to regions more synaptically distant; e.g., V2 to V4) are equivalent to or 
outnumbered by projections back (Rockland and Pandya 1979; Rockland 
and Virga 1989; Van Essen and Maunsell 1983; Van Essen and Anderson 
1990). The reciprocity of many of these projections (P to Q and Q to P) has 
been documented in many areas, including connections back to the LGN 
(figure 2.10). It has begun to emerge that some backprojections, however, 
are not merely reciprocating feedforward connections, but appear to be 
widely distributed, including distribution to some areas from which they 
do not receive projections. Thus Rockland reports (1992a,b) injection data 
showing that some axons from area TE do indeed project reciprocally to 
V4, but sparser projections were also seen to V2 (mostly layer 1, but some 
in 2 and 5) and VI (layer 1). These TE axons originated mainly in layers 6 
and 3a (figure 2.11). 

Diffuse Ascending Systems In addition to the inputs that pass through 
the thalamus to the cortex, there are a number of afferent systems that 
arise in small nuclei located in the brainstem and basal forebrain. These 
systems include the locus coeruleus, whose noradrenergic axons course 
widely throughout the cortical mantle, the serotonergic raphe nuclei, the 
ventral tegmental area, which sends dopamine projections to the frontal 
cortex, and cholinergic inputs emanating from various nuclei, including 
the nucleus basalis of Meynert. These systems are important for arousal, for 
they control the transition from sleep to wakefulness. They also provide the 
cortex with information about the reward value (dopamine) and salience 
(noradrenaline) of sensory stimuli. Another cortical input arises from the 
amygdala, which conveys information about the affective value of sensory 
stimuli to the cortex, primarily to the upper layers. Possible computational 
utility for these diffuse ascending system will be presented later. 

Corticothalamic Connections Sensory inputs from the specific modali- 
ties project from the thalamus to the middle layers (mainly layer 4) of the 
cortex. Reciprocal connections from each cortical area, mainly originating 
in deep layers, project back to the thalamus. In visual cortex of the cat it is 

Figure 2.10 (Top) Schematic diagram of some of the cortical visual areas and their connec- 
tions in the macaque monkey. Solid lines indicate projections involving all portions of the 
visual field representation in an area; dotted lines indicate projections limited to the rep- 
resentation of the peripheral field. Heavy arrowheads indicate forward projections; light 
arrowheads indicate backward projections. (Reprinted with permission from Desimone and 
Ungerleider 1989) (Bottom) Laminar patterns of cortical connectivity used for making "for- 
ward" and "backward" assignments. Three characteristic patterns of termination are indi- 
cated in the central column. These include preferential termination in layer 4 (the F pattern), 
a columnar (C) pattern involving approximately equal density of termination in all layers, 
and a multilaminar (M) pattern that preferentially avoids layer 4. There are also characteris- 
tic patterns for cells of origin in different pathways. Filled ovals, cells bodies; angles, axon 
terminals. (Reprinted with permission from Felleman and Van Essen 1991) 
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known that the VI projections back to the LGN of the thalamus outnumber 
thalamocortical projections by about 10:1. 

Corticofugal projections have collaterals in the reticular nucleus of the 
thalamus. The reticular nucleus of the thalamus is a sheet of inhibitory 
neurons, reminiscent of the skin of a peach. Both corticothalamic axons as 
well as thalamocortical projection neurons have excitatory connections on 
these inhibitory neurons whose output is primarily back to the thalamus. 
The precise function of the reticular nucleus remains to be discovered, but 
it does have a central role in organizing sleep rhythms, such as spindling 
and delta waves in deep sleep (Steriade et al. 1993b). 

Connections from Visual Cortical Areas to Motor Structures Twenty- 
five cortical areas (cat) project to the superior colliculus (SC) (Harting et 
al. 1992). These include areas 17,18,19, 20a, 20b, 21a, and 21b. Harting et 
al. (1992) found that the corticotectal projection areas 17 and 18 terminate 
exclusively in the superficial layers, while the remaining 23 areas termi- 
nate more promiscuously (figure 2.12). The SC has an important role in 
directing saccadic eye movements, and, in animals with orientable ears, 
ear movements. 

Nearly every area of mammalian cortex has some projections to the stria- 
turn, with some topological preservation. Although the functions of the 
striatum are not well understood, the correlation between striatal lesions 
and severe motor impairments is well known, and it is likely that the stria- 
tum has an important role in integrating sequences of movements. Lesion 
studies also indicate that some parts of the striatum are relevant to produc- 
ing voluntary eye movements, as opposed to sensory-driven or reflex eye 
movements. It appears that the striatum can veto some reflexive responses 
via an inhibitory effect on motor structures, whereas voluntary movements 
are facilitated by disinhibitory striatal output to motor structures. 

What is frustrating about this assembly of data, as with neuroanatomy 
generally, is that we do not really know what it all means. The number 
of neurons and connections is bewildering, and the significance of pro- 
jections to one place or another, of distinct cell populations, and so on, 
is typically puzzling. (See Young 1992 for a useful startegy for clarifying 
the significance.) Neuroanatomy is, nonetheless, the observational hard- 

TE   _ ^ ^ 

TEO «--* V4  « " V2 ~, » V1 
x 1 i 

Figure 2.11 Schematic diagram of the feedforward connections (solid lines) and backprojec- 
tions (broken lines) in the monkey. What is especially striking is that fibers from visual cortical 
areas TE (inferior temporal cortex) and TEO (posterior to TE and anterior to V4) project all 
the way back to V2 and VI. (Based on Rockland et al. 1992.) 
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Figure 2.12 Summary diagram in the sagittal plane of the superior colliculus (SC) showing 
the laminar and sublaminar distribution of axons from cortical areas to the SC in the cat, as 
labeled above each sector. (Reprinted with permission from Harting et al. 1992) 

pan for neuroscience, and the data can be provocative even when they are 
not self-explanatory. The prevalence and systematic character of feedback 
loops are particularly provocative, at least because such loops signify that 
the system is dynamic—that it has time-dependent properties. Output 
loops back to affect new inputs, and it is possible for a higher areas to 
affect inputs of lower areas. The time delays will matter enormously in 
determining what capacities the system display. 

The second point is that all cortical visual areas, from the lowest to 
the highest, have numerous projections to lower brain centers, including 
motor-relevant areas such as the striatum, superior colliculus, and cere- 
bellum. The anatomy is consistent with the idea that motor assembly 
can begin even before sensory signals reach the highest levels. Especially 
for skilled actions performed in a familiar context, such as reading aloud, 
shooting a basket, and hunting prey, this seems reasonable. Are the only 
movements at issue here eye movements? Probably not. Distinguish- 
ing gaze-related movements from extra-gaze movements is anything but 
straightforward, for the eyes are in the head, and the head is attached to 
the rest of the body. Foveating an object, for example, may well involve 
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movement of the eyes, head, and neck—and on occasion, the entire body. 
Watching Michael Jordan play basketball or a group of ravens steal a cari- 
bou corpse from a wolf tends to underscore the integrated, whole-body 
character of visuomotor coordination. 

Considerations from Neurophysiology 

In keeping with the foregoing section, this section is suggestive rather than 
definitive. It is also a bit of a fact salad, since at this stage the evidence 
does not fit together into a tight story of how interactive vision works. 
Such unity as does exist is the result of to the data's constituting evidence 
for various interactions between so-called "higher" and "lower" stages of 
the visual system, and between the visual and nonvisual systems, (see also 
Goldman-Rakic 1988; Van Hoesen 1993.) 

Connections from Motor Structures to Visual Cortex Belying the as- 
sumption that the representation of the visual scene is innocent of nonvi- 
sual information, certain physiological data show interactive effects even 
at very early stages of visual cortex. For example, the spontaneous activ- 
ity of VI neurons is suppressed according to the onset time of saccades. 
The suppression begins about 20-30 msec after the saccade is initiated, 
and lasts about 200 msec (Duffy and Burchfield 1975). The suppression 
can be accomplished only by using oculomotor signals, perhaps efference 
copy, and hence this effect supports the interactive hypothesis. Neurons 
sensitive to eye position have been found in the LGN (Lai and Friedlan- 
der 1989), visual cortical area VI (Trotter et al. 1992; Weyand and Malpeli 
1989), and V3 (Galleti and Battaglini 1989). Given the existence and causal 
efficacy of various nonvisual VI signals, Pouget e t al. (1993) hypothesized 
that visual features are encoded in egocentric (spatiotopic) coordinates at 
early stages of visual processing, and that eye-position information is used 
in computing where in egocentric space the stimulus is located. Their net- 
work model demonstrates the feasibility of such a computation when the 
network takes as input both retinal and eye-position signals. 

Consider also that a few VI cells and a higher percentage of V2 cells show 
an enhanced response to a target to which a saccade is about to be made 
(Wurtz and Mohler 1976). Again, these data indicate some influence of 
motor system signals, specifically motor planning signals, on cells in early 
visual processing. As further evidence, note that some neurons in V3A 
show variable response as a function of the angle of gaze; response was 
enhanced when gaze was directed to the contralateral hemifield (Galletti 
and Battaglini 1989). 

Inferior Parietal Cortex and Eye Position Caudal inferior parietal cortex 
(IPL) has two major subdivisions: LIP and 7a (figure 2.13). LIP is directly 
connected to the superior colliculus, the frontal eye fields. Area 7a has a dif- 
ferent connectivity: mainly polymodal cortex, limbic, and some prestriate. 
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Figure 2.13 Parcellation of inferior parietal lobule and adjoining dorsal aspect of the prelu- 
nate gyrus. The cortical areas are represented on flattened reconstructions of the cortex. {A) 
Lateral view of the monkey hemisphere. The darker line indicates the area to be flattened. 
(B) The same cortex isolated from the rest of the brain. The stippled areas are cortex buried in 
sulci, and the blackened area is the floor of the superior temporal sulcus. The arrows indicate 
movement of local cortical regions resulting from mechanical flattening. (C) The completely 
flattened representation of the same area. The stippled areas represent cortical regions buried 
in sulci and the contourlike lines are tracings of layer IV taken from frontal sections through 
this area. (D) Locations of several of the cortical fields. The dotted lines indicate borders of 
cortical fields that are not precisely determinable. IPL, inferior parietal lobule; IPS, intrapari- 
etal sulcus; LIP, lateral intraparietal region; STS, superior temporal sulcus. (Reprinted with 
permission from Andersen 1987). 

LIP responses are correlated with execution of saccadic eye movements; 
area 7a cells respond to a stimulus at a certain retinal location, but mod- 
ulated by the position of the eye in the head (Zipser and Andersen 1988). 
Hardy and Lynch (1992) report that both LIP and area 7a receive the ma- 
jority of their thalamic inputs from distinct patches in the medial pulvinar 
nucleus (figure 2.14). 

Illusory Contours and Figure Ground In 1984 von der Heydt et al. re- 
ported that neurons in visual area V2 of the macaque will respond to il- 
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case 1 

Figure 2.14 Diagram of sections of the thalamus showing the distribution of retrogradely 
labeled neurons within the thalamus resulting from inferior parietal lobule (IPL) injections in 
parietal areas 7a (open circles) and lateral intraparietal region (LIP) (filled circles). A single 
injection (1.2 ß) of the fluorescent dye DY (diamidino-dihydrochloride yellow) was made in 

7a and a single injection (0.5 /i) of fast blue in LIP. Each individual symbol denotes a singled 
labeled neuron. The densest labeling is in medial pulvinar nucleus of the thalamus (PM), with 
LIP and 7a showing a distinct projection pattern. BrSC, brachium of the superior colliculus; 
Cd, caudate nucleus; Cm/Pf, centromedian and parafascicular nuclei; GM, medial geniculate 
nucleus, pars parvicellularis; H, habenula; Lim, nucleus limitans; MD, mediodorsal nucleus; 
PAG, periaqueductal gray; PL, lateral pulvinar nucleus; Ret, reticular nucleus. (Reprinted 
with permission from Hardy and Lynch 1992) 

lusory contours. More recently, Grosof et al. (1992) report that some ori- 
entation selective cells in VI respond to a class of illusory contours. As 
noted earlier, these data are consistent with the possibility that low-level 
response depends on higher level operations whose results are backpro- 
jected to lower levels. This is lent plausibility by the facts that detection of 
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illusory contours will depend on previous operations involving interpola- 
tion across a span of the visual field. 

Neurons in area MT respond selectively to direction of motion but not 
to wavelength. Nonetheless, color can have a major effect on how these 
cells respond by virtue of how the visual stimulus is segmented (Dobkins 
and Albright 1993). 

Cross-Modal Interactions The responses of cells in V4 to a visual stim- 
ulus can be modified by somatosensory stimuli (Maunsell et al. 1991). 
Fuster (1990) has shown similar task-dependent modifications for cells in 
somatosensory cortex, area SI. 

Dynamic Mapping in Exotropia 

In this section we discuss an ophthalmic phenomenon observed in human 
subjects. Conventionally, this is a truly surprising phenomenon, and it 
seems to demonstrate that processing as early as VI can be influenced by 
top-down factors. The phenomenon has not been well studied, to say the 
least, and much more investigation is required. Nevertheless, we mention 
it here partly because it is intriguing, but mainly because if the description 
below is accurate, then we must rethink the Pure Vision's conventional 
assumptions about the Receptive Field. 

Exotropia is a form of squint in which both eyes are used when fixated 
on small objects close by (e.g., 12 in from the nose) but when looking at 
distant objects, the squinting eye deviates outward by as much as 45° to 60°. 
Curiously, the patient does not experience double vision—the deviating 
eye's image is usually assumed to be suppressed. It is not clear, however, at 
what stage of visual processing the suppression occurs. 

Ophthalmologists have claimed that, contrary to expectations, in a small 
subset of these patients, fusion occurs not only during inspection of near 
objects, but also when the squinting eye deviates. This phenomenon, called 
anomalous retinal correspondence or ARC, has been reported frequently in the 
literature of ophthalmology and orthoptics. The accuracy of the reports, 
and hence the existence of ARC, has not always been taken seriously, since 
ARC implies a rather breathtaking lability of receptive fields. Clinicians 
and physiologists raised in the Hubel-Wiesel tradition usually take it as 
basic background fact that (1) binocular connections are largely established 
in area 17 in early infancy and that (2) binocular fusion is based exclusively 
on anatomical correspondence of inputs in area 17. For instance, if a squint 
is surgically induced in a kitten or an infant monkey, area 17 displays a 
complete loss of binocular cells (and two populations of monocular cells) 
but the maps of the two eyes never change. No apparent compensation 
such as anomalous correspondence has been observed in area 17 and this 
has given rise to the conviction that it is highly improbable that an ARC 
phenomenon truly exists. 
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On the possibility that there might be more to the ARC reports, Ra- 
machandran, Cobb, and Valente (unpublished) recently studied two pa- 
tients who had intermittent exotropia. These patients appeared to fuse 
images both during near vision and during far vision—when the left eye 
deviated outward—a condition called intermittent exotropia with anomalous 
correspondence. To determine whether the patients do indeed have two (or 
more) separate binocular maps of the world, Ramachandran, Cobb, and 
Valenti devised a procedure that queried the alignment of the subject's 
afterimages where the afterimage for the right eye was generated inde- 
pendently of the afterimage for the left eye. Here is the procedure: (1) 
The subject (with squint) was asked to shut one eye and to fixate on the 
bottom of a vertical slit-shaped window mounted on a flashgun. A flash 
was delivered to generate a vivid monocular afterimage of the slit. The 
subject was then asked to shut this eye and view the top of the slit with the 
other eye (and a second flash was delivered). (2) The subject opened both 
eyes and viewed a dark screen, which provided a uniform background for 
the two afterimages. 

The results were as follows: (1) The subject (with squint) reported seeing 
afterimages of the two slits that were perfectly lined up with each other, so 
long as the subject was deliberately verging within about arm's length. (2) 
On the other hand, if the subject relaxed vergence and looked at a distant 
wall (such that the left eye deviated), the upper slit (from the anomalous 
eye) vividly appeared to move continuously outward so that the two slits 
became misaligned by several degrees. Then this experiment was repeated 
on two normal control subjects and it was found that no misalignment of 
the slits occurred for any ordinary vergence or conjugate eye movements. 
Nor could misalignments of the slits be produced by passively displacing 
one eyeball in the normal individuals to mimic the exotropia. It appears 
that eye position signals from the deviating eye selectively influence the 
egocentric localization of points for that eye alone. 

In the next experiment, a light point was flashed for 150 msec either to the 
right eye alone or the left eye alone; the subject's task was merely to point 
to the location of the light point. Subjects became quite skilled at deviating 
their anomalous eye by between about 1° and 40°, and the afterimage align- 
ment technique could be used to calibrate the deviation. Tests were made 
with deviations between 1° and 15°. It was found that regardless of the 
degree of deviation of the anomalous eye, and regardless of which eye was 
stimulated, subjects made only marginally more errors than normal sub- 
jects in locating the light point. Is the remapping sufficiently fine-grained 
to support stereopsis? Testing for accuracy of stereoptic judgments us- 
ing ordinary stereograms under conditions of anomalous eye deviations 
between 1° and 12°, Ramachandran, Cobb, and Valenti found that dispar- 
ities as small as 20 min of arc could be perceived correctly even though the 
anomalous eye deviated by as much as 12°. Even when the half-images of 
the two eyes were exciting noncorresponding retinal points separated by 
12°, very small retinal disparities could be detected. 
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Ramachandran and his colleagues have dubbed this phenomenon dy- 
namic anomalous correspondence. Their results suggest that something in the 
ARC reports is genuine, with a number of implications. 

First, binocular correspondence can change continuously in real time in a 
single individual depending on the degree of exotropia. Hence, binocular 
correspondence (and fusion) cannot be based exclusively on the anatomical 
convergence of inputs in area 17. The relative displacement observed be- 
tween the two afterimages also implies that the local sign of retinal points 
(and therefore binocular correspondence) must be continuously updated 
as the eye deviates outward. 

Second, since the two slits would always be lined up as far as area 17 is con- 
cerned, the observed misalignment implies that feedback (or feedforward) 
signals from the deviating eye must somehow be extracted separately for 
each eye and must then influence the egocentric location of points selec- 
tively for that eye alone. This is a somewhat surprising result, for it implies 
that time remapping of egocentric space must be done very early—before 
the eye of origin label is lost—i.e., before the cells become completely binoc- 
ular. Since most cells anterior to area 18 (e.g., MT or V4) are symmetrically 
binocular we may conclude that the correction must involve interaction 
between reafference signals and the output of cells as early as 17 or 18. 

Nothing in the psychophysical results suggests what the mechanism 
might be by which these interactions occur. Whatever the ultimate ex- 
planation, however, the results do imply that even as simple a perceptual 
process as the localization of an object in X/Y coordinates is not strictly and 
absolutely a bottom-up process. Even the output of early visual elements— 
in this case the monocular cells of area 17—can be strongly modulated by 
back projections from eye movement command centers. 

If indeed a complete remapping of perceptual space can occur selec- 
tively for one eye's image simply in the interest of preserving binocular 
correspondence, this is a rather remarkable phenomenon. It would be in- 
teresting to see if this remapping process can be achieved by algorithms of 
the type proposed by Zipser and Andersen (1988) for parietal neurons or 
by shifter-circuits of the kind proposed by Anderson and Van Essen (1987; 
see also chapter 13). 

COMPUTATIONAL ADVANTAGES OF INTERACTIVE VISION 

So far we have discussed various empirical data that lend some credibility 
to an interactive-vision approach. But the further question is this: Does it 
make sense computationally for a nervous system to have an interactive 
style rather than a hierarchical, modular, modality-pure, and motorically 
unadulterated organization? In this section, we briefly note four reasons, 
based on the computational capacities of neural net models, why evolution 
might have selected the interactive modus operandi in nervous systems. 
As more computer models in the interactive style are developed and ex- 
plored, additional factors, for or against, may emerge. The results from 
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neural net models also suggest experiments that could be run on real ner- 
vous systems to reveal whether they are in fact computationally interactive. 

Figure-Ground Segmentation and Recognition Are More Efficiently 
Achieved in Tandem Than Strictly Sequentially Segmentation is a dif- 
ficult task, especially when there are many objects in a scene partially 
occluding one another. The problem is essentially that global information 
is needed to make decisions at the local level concerning what goes with 
what. At lower levels of processing such as VI, however, the receptive 
fields are relatively small and it is not possible locally to decide which 
pieces of the image belong together. If lower levels can use information 
that is available at higher levels, such as representation of whole objects, 
then feedback connections could be used to help tune lower levels of pro- 
cessing. This may sound like a chicken-and-egg proposal, for how can you 
recognize an object before you segment it from its background? Just as the 
right answer to the problem "where does the egg come from" is "an earlier 
kind of chicken," so here the the answer is "use partial segmentation to help 
recognize, and use partial recognition to help segment." Indeed, interac- 
tive segmentation-recognition may enable solutions that would otherwise 
be unreachable in short times by pure bottom-up processing. 

It is worth considering the performance of machine reading of numerals. 
The best of the "pure vision" configured machines can read numerals on 
credit card forms only about 60% of the time. They do this well only because 
the sales slip "exactifies" the data: numerals must be written in blue boxes. 
This serves to separate the numerals, guarantee an exact location, and 
narrowly limit the size. Carver Mead (in conversation) has pointed out 
that the problem of efficient machine reading of zip codes is essentially 
unsolved, because the preprocessing regimentations for numeral entry on 
sales slips do not exist in the mail world. Here the machine readers have to 
face the localization problem (where are the numerals and in what order?) 
and the segmentation problem (what does a squiggle belong to?) as well 
as the recognition problem (is it a 0 or a 6?). 

Conventional machines typically serialize the problem, addressing first 
the segmentation problem and then, after that is accomplished, addressing 
the recognition problem. Should the machine missolve or fail to solve the 
first, the second is doomed. In the absence of strict standardization of 
location, font, size, relation to other numerals, relation of zip code to other 
lines, and so forth, classical machines regularly fumble the segmentation 
problem. Unlike engineers working with the strictly serial problem-design, 
Carver Mead and Federico Faggin (in conversation) have found that if 
networks can address segmentation and recognition in parallel, they well 
outperform their serial competitors. 

The processing of visual motion is another example of how segregation 
may proceed in parallel with visual integration. Consider the problem of 
trying to track a bird flying through branches of a tree; at any moment 
only parts of the bird are visible through the occluding foliage, which may 
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itself be moving. The problem is to identify fleeting parts of the bird that 
may be combined to estimate the average velocity of the bird and to keep 
this information separate from information about the tree. This is a global 
problem in that no small patch of the visual field contains enough infor- 
mation to unambiguously solve the segregation problem. However, area 
MT of the primate visual cortex has neurons that seem to have "solved" 
this segregation problem. A recent model of area MT that includes two 
parallel streams, one that selects regions of the visual field that contain reli- 
able motion information, and another that integrates information from that 
region, exhibits properties similar to those observed in area MT neurons 
(Nowlan and Sejnowski 1993). This model demonstrates that segmenta- 
tion and integration can to some extent be performed in parallel at early 
stages of visual processing. 

It would not be surprising if evolution found the interactive strategy 
good for brains. So long as the segmentation problem is partially solved, 
a good answer can be dumped out of the visual "pipeline" very quickly. 
When, however, the task is more difficult, iterations and feedback may be 
essential to drumming up an adequate solution. To speed up processing 
in the difficult cases—which will be the rule, not the exception, in real- 
world vision—the system may avail itself of learning. If, after frequent 
encounters, the brain learns that certain patterns typically go together, 
thereafter the number of iterations needed to find an adequate solution is 
reduced (Sejnowski 1986). Humans probably "overlearn" letter and word 
patterns, and hence seasoned readers are faster and more accurate than 
novice readers. Even when text is degraded or partially occluded, a good 
reader may hardly stumble. 

Movement (of Eye, Head, Body) Makes Many Visual Computations 
Simpler A number of reasons support this point. First, the smooth pur- 
suit system for tracking slowly moving objects supports image stability 
on the retina, simplifying the tasks of analyzing and recognizing. Second, 
head movement during eye fixation yields cues useful in the task of sep- 
arating figure from ground and distinguishing one object from another. 
Motion parallax (the relative displacement of objects caused by change in 
observer position) is perhaps the most powerful cue to the relative depth 
of objects (closer objects have greater relative motion than more distant 
objects), and it continues to be critical for relative depth judgments even 
beyond about 10 m from the observer, where stereopsis fades out. Head 
bobbing is common behavior in animals, and a visual system that integrates 
across several glimpses to estimate depth has computational savings over 
one that tries to calculate depth from a single snapshot. 

Another important cue is optical flow (figure 2.15). When an animal is 
running, flying, or swimming, for example, the speed of an image mov- 
ing radially on the retina is related to the distance of the object from the 
observer.4 This information allows the system to figure out how fast it is 
closing in on a chased object, as well as how fast a chasing object is closing 
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Figure 2.15    Optical flow represented by a vector field around a flying bird provides infor- 
mation about self-movement through the environment. (From Gibson 1966) 

in. Notice that any of these movements (eyeball, head, and whole body) on 
its own means computational economies. In combination, the economies 
compound. 

There are many more example of how the self-generated movement can 
provide solutions to otherwise intractable problems in vision (Ballard 1991; 
Blake and Yuille 1992). 

The Self-Organization of Model Visual Systems during "Development" 
Is Enhanced by Eye-Position Signals An additional advantage of inter- 
active vision is its role in the construction of vision systems. Researchers 
in computer vision often reckon—and bemoan—the cost of "hand" build- 
ing vision systems, but rarely consider the possibility of growing a visual 
system. Nature, of course, uses the growing strategy, and relies on ge- 
netic instructions to create neurons with the right set of components. In 
addition, interactions between neurons as well as interactions between the 
world and neurons, are critical in getting networks of neurons properly 
wired up. Understanding the development of the brain is perhaps as chal- 
lenging a problem as that of understanding the function of the brain, but 
we are beginning to figure out some of the relevant factors, such as posi- 
tion cues, timing of gene expression, and activity-dependent modifications. 
Genetic programming has been explored as an approach to solving some 
construction problems, but value of development as an an intermediary 
between genes and phenotype is only beginning to be appreciated in the 
computational community (Belew 1993). 
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Most activity-dependent models of development are based on the Hebb 
rule for synaptic plasticity, according to which the synapse strengthens 
when the presynaptic activity is correlated with the postsynaptic activity 
(Sejnowski and Tesauro 1989). Correlation-based models for self-organi- 
zation of primary visual cortex during development have shown that some 
properties of cortical cells, such as ocularity, orientation, and disparity, can 
emerge from simple Hebbian mechanisms for synaptic plasticity (Swin- 
dale 1990; Linsker 1986; Miller and Stryker 1990; Berns et al. 1993). Heb- 
bian schemes are typically limited in their computational power to finding 
the principal components in the input correlations. It has been difficult 
to extend this approach to a hierarchy of increasingly higher-order re- 
sponse properties, as found in the extrastriate areas of visual cortex. One 
new approach is based on the observation that development takes place 
in stages. There are critical periods during which synapses are particu- 
larly plastic (Rauschecker 1991), and there are major milestones, such as 
eye opening, that change the nature of the input correlations (Berns et al. 
1993). 

Nature exploits additional mechanisms in the developing brain to help 
organize visual pathways. One important class of mechanisms is based 
on the interaction between self-generated actions and perception, along 
the lines already discussed in the previous section. Eye movement in- 
formation in the visual cortex during development, when combined with 
Hebbian plasticity, may be capable of extracting higher-order correlations 
from complex visual inputs. The correlation between eye movements and 
changes in the image contains information about important visual proper- 
ties. For example, correlation of saccadic eye movements with the response 
of a neuron can be used in a Hebbian framework to develop neurons that 
respond to the direction of motion. At still higher levels of processing, 
eye movement signals that direct saccades to salient objects can be used 
as a reward signal to build up representations of significant objects (Mon- 
tague et al. 1993). This new view provides eye-movement signals with an 
important function in visual cortex both during development and in the 
adult. 

The plasticity of the visual cortex during the critical period is modulated 
by inputs from subcortical structures that project diffusely throughout the 
cortex (Rauschecker 1991). The neurotransmitters used by these systems 
often diffuse from the release sites and act at receptors on neurons some 
distance away. These diffuse ascending systems to the cerebral cortex that 
are used during development to help wire up the brain are also used in 
the adult for signaling reward and salience. The information carried by 
neurons in these systems is rather limited: there are relatively few neurons 
compared to the number in the cortex, they have a low basal firing rate, 
and changes in their firing rates occur slowly. This is, however, just the 
sort of information that could be used to organize and regulate information 
storage throughout the brain, as shown below. 
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Interactive Perception Simplifies the Learning Problem A difficulty fac- 
ing conventional reinforcement learning is this: Assuming the brain creates 
and maintains a picture-perfect visual scene at each moment, how does the 
brain determine which, among the many features and objects it recently 
perceived, are the ones relevant to the reward or punishment? An expe- 
rienced animal will have a pretty good idea, but how does its experience 
get it to that stage? How does the naive brain determine which "stimulus" 
in the richly detailed stimulus array gets the main credit when a certain 
response brings a reward? How does the brain know what synapses to 
strengthen? 

This "relevance problem" is even more vexing as there are increases in 
the time delay between the stimulus and the reinforcement. For then the 
stimulus array develops over time, getting richer and richer as time passes. 
The correlative problem of knowing which movement among many move- 
ments made was the relevant one is likewise increasingly difficult as the 
delay increases between the onset of various movements and the reward- 
ing or punishing outcome.5 These questions involve considerations that go 
well beyond the visual system, and include parts of the brain that evaluate 
sensory inputs. 

Suppose that evolution has wired the brain to bias attention as a func- 
tion of how the species makes its living, and that the neonate is tuned to 
attend to some basic survival-relevant properties. The evolutionary point 
legitimates the assumption that an attended feature of the stimulus scene 
is more likely to be causally implicated in producing the conditions for the 
reward, and assuming that the items in iconic and working memory are, by 
and large, items previously attended to, then the number of candidate rep- 
resentations to canvas as "relevant" is far smaller than those embellishing 
a rich-replica visual world representation. Granted all these assumptions, 
the credit assignment problem is far more manageable here than in the 
pure vision theoretical framework (Ballard 1991). 

By narrowing the number of visuomotor trajectories that count as salient, 
attention can bias the choice of synapses strengthen. Selective strengthen- 
ing of synapses of certain visuomotor representations "spotlit" by attention 
is a kind of hypothesis the network makes. It is, moreover, an hypothesis 
the network tests by repeating the visuomotor trajectory. Initially the net- 
work will shift attention more or less randomly, save for guidance from 
startle responses and other reflexive behavior. Given that attention down- 
sizes the options, and that the organism can repeatedly explore the various 
options, the system learns to direct attention to visual targets that it has 
learned are "good bets" in the survival game. This, in turn, contributes 
to further simplifying the learning problem in the future, for on the next 
encounter, attention will more likely be paid to relevant features than to 
irrelevant features, and the connections can be up-regulated or down- reg- 
ulated as a result of reward or lack of same (the above points are from 
Whitehead and Ballard 1990,1991; see also Grossberg 1987). 
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LEARNING TO SEE 

A robust property of animal learning is that responses reinforced by a re- 
ward are likely to be produced again when relevantly similar conditions 
obtain. This is the starting point for behavioral studies of operant con- 
ditioning in psychology (Rescorla and Wagner 1972; Mackintosh 1974), 
neuroscientific inquiry into the reward systems of the brain (Wise 1982) 
and engineering exploration of the principles and applications of reinforce- 
ment learning theory (Sutton and Barto 1981,1987). Both neuroscience and 
computer engineering draw on the vast and informative psychological lit- 
erature describing the various aspects of reinforcement learning, including 
such phenomena as blocking, extinction, intermittent versus constant re- 
ward, cue ranking, how time is linked to other cues, and so forth. The 
overarching aim is that the three domains of experimentation will link up 
and yield a unified account of the scope and limits of the capacity and of 
its underlying mechanisms (see Whitehead and Ballard 1990; Montague et 
al. 1994). 

Detailed observations of animal foraging patterns under well quanti- 
fied conditions indicate that animals can display remarkably sophisticated 
adaptive behavior. For example, birds and bees quickly adopt the most ef- 
ficient foraging pattern in "two-armed bandit" conditions (a: high-payoff 
when a "hit" and "hits" are infrequent; b: low payoff when a "hit" and 
"hits" are frequent) (see Krebs et al. 1978; Gould 1984; Real et al. 1990; Real 
1991). Cliff-dwelling rooks learn to bombard nest-marauders with pebbles 
(Griffin 1984). A bear learns that a bluff of leafy trees in a hill otherwise 
treed with pines means a gully with a creek, and a creek means rocks under 
which crawfish are often living, and that means tasty dinner. 

The questions posed in the previous section concerning reinforcement 
learning, along with the dearth of obvious answers, have moved some 
cognitive psychologists (e.g., Chomsky 1965, 1980; Fodor 1981) to con- 
clude that reinforcement learning cannot be a serious contender for the 
sophisticated learning typical of cognitive organisms. Further skepticism 
concerning reinforcement learning as a cognitive contender derives from 
neural net modeling. Here the results shows that neural nets trained up 
by available reinforcement procedures scale poorly with the number of di- 
mensions of the input space. In other words, as a net's visual representation 
approximates a rich replica of the real world, the training phase becomes 
unrealistically long. Consequently, computer engineers often conclude 
that reinforcement learning is impractical for most complex task domains. 
According to some cognitive approaches (Fodor, Pylyshyn, etc.), suitable 
learning theories must be "essentially cognitive," meaning, roughly, that 
cognitive learning consists of logic-like transformations over languagei 

like representations. Moreover, the theory continues, such learning is irre- 
ducible to neurobiology. (For a fuller characterization and criticism of this 
view, see Churchland 1986.) 

By contrast, our hunch is that much cognitive learning may well turn out 
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to be explainable as reinforcement learning once the encompassing details 
of the rich-replica assumption no longer inflate the actual magnitude of 
the "relevance problem." 

Natural selection and reinforcement learning share a certain scientific ap- 
peal; to wit, neither presupposes an intelligent homunculus, an omniscient 
designer, or a miraculous force—both are naturalistic, as opposed to super- 
naturalistic. They also share reductionist agendas. Thus, as a macrolevel 
phenomenon, reinforcement learning behavior is potentially explainable in 
terms of micromechanisms at the neuronal level. And we are encouraged to 
think so because the Hebbian approach to mechanisms for synaptic modifi- 
cation underlying reinforcement learning looks very plausible. These gen- 
eral considerations, in the context of the data discussed earlier, suggest that 
the skepticism concerning the limits of reinforcement learning should re- 
ally be relocated to the background assumption—the rich-replica assump- 
tion. Consequently, the question guiding the following discussion is this: 
What simplifications in the learning problem can be achieved by abandon- 
ing Pure Vision's rich-replica assumption? How much mileage can we get 
out of the reinforcement learning paradigm if we embrace the assumption 
that the perceptual representations are semiworld representations consist- 
ing of, let us say, goal-relevant properties? How might that work? 

Using an internal evaluation system, the brain can create predictive se- 
quences by rewarding behavior that leads to conditions that in turn permit 
a further response that will produce an external reward, that is, sequences 
where one feature is a cue for some other event, which in turn is a cue 
for a further event, which is itself a cue for a reward. To get the fla- 
vor, suppose, for example, a bear cub chances on crawfish under rocks 
in a creek, whereupon the crawfish/rocks-in-water relationship will be 
strengthened. Looking under rocks in a lake produces no crawfish, so 
the crawfish/rocks-in-lake relationship does not get strengthened, but the 
crawfish/rocks-in-creek relationship does. Finding a creek in a leafy-tree 
gully allows internal diffusely-projecting modulatory systems, such as the 
dopamine system, to then reward associations between creeks and leafy- 
trees-in-gullies, even in the absence of a external reward between creeks 
and leafy-trees-in-gullies. 

Given such an internal reward system, the brain can build a network 
replete with predictive representations that inform attention as to what is 
worth looking at given one's interests ("that big dead tall tree will proba- 
bly have hollows in it, and there will probably be a blue-bird's nest in one 
cavity, and that nest might have eggs and I will get eggs to eat"). To a first 
approximation, a given kind of animal comes to have an internal model 
of its world; that is, of its relevant-to-my-life-style world, as opposed to a 
world-with-all-its-perceptual-properties. For bears, this means attending 
to creeks and dead trees when foraging, and not noticing much in any- 
thing about rocks at lake edges, or sunflowers in a meadow. All of which 
then makes subsequent reinforcement tasks and the delimiting of what is 
relevant that much easier. (To echo the school marm's saw, the more you 
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know about the world, the better the questions you can ask of it and the 
faster you learn.) 

A neural network model of predictive reinforcement learning in the brain 
roughly based on a diffuse neurotransmitter system has been applied to 
the adaptive behavior of foraging bumble bees (Montague et al. 1994). 
This is an especially promising place to test the semiworld hypothesis, for 
it is an example in which both the sensory input and the motor output can 
be quantified, the animal gets quantifiable feedback (sugar reward), and 
something of the physiology of the reward system, the motor system, and 
the visual system in the animal's brain has been explored. Furthermore, bee 
foraging behavior has been carefully studied by several different research 
groups, and there are lots of data available to constrain a network model. 

Bees decide which flowers to visit according to past success at gathering 
nectar, where nectar volume varies stochastically from flower to flower 
(Real 1991). The cognitive characterization of the bees' accomplishments 
involves applications of computational rules over representations of the 
arithmetic mean of rewards and variance in reward distributions. On the 
other hand, according to the Dayan-Montague reinforcement hypothesis 
(Montague et al. 1994), when a bee lands on a flower, the actual reward 
value of the nectar collected by the bee is compared (more? or less? or 
right on?) with the reward that its brain had predicted, and the differ- 
ence is used to improve the prediction of future reward using predictive 
Hebbian synapses. Dayan and Montague propose that the very same pre- 
dictive network is used to bias the actions of the bee in choosing flowers. 
Using this nonhomuncular, nondivine, naturalistic learning procedure, the 
model network accurately mimics the foraging behavior of real bumble- 
bees (figure 2.16). 

That such a simple, "dumb" organization can account for the appar- 
ent statistical cunning of bumblebees is encouraging, for it rewards the 
hunch that much more can be got out of a reinforcement learning paradigm 
once the "pure vision" assumption is replaced by the "interactive-vision- 
cum-predictive-learning" assumption. As we contemplate extending the 
paradigm from bees to primates, it is also encouraging that similar diffuse 
neurotransmitter systems are found in primates where there is evidence 
that some of them are involved in predicting rewards (Ljunberg et al. 1992). 

Bees successfully forage, orient, fly, communicate, houseclean and so 
forth—and do it all with fewer than 106 neurons (Sejnowski and Church- 
land 1992). Human brains, by contrast, are thought to have upward of 1012 

neurons. Although an impressively long evolutionary distance stretches 
between insects and mammals, what remains constant is the survival value 
of learning cues for food, cues for predators and so forth. Consequently, 
conservation of the diffuse, modulatory, internal reward system makes 
good biological sense. What is sensitive to the pressure of natural selec- 
tion is additional processors that permit increasingly subtle, fine-grained, 
and long-range predictions—always, of course, relevant-to-my-thriving 
predictions. That in turn may entail making better and better classifications 
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Figure 2.16 Neural architecture for a model of bee foraging. Predictions about future ex- 
pected reinforcement are made in the brain using a diffuse neurotransmitter system. Sensory 
input drives the units B and Y representing blue and yellow flowers. These units project 
to a reinforcement neuron P through a set of plastic weights (filled circles w" and w*) and 

to an action selection system. S provides input to R and fires while the bee sips the nectar. 
R projects its output rj through a fixed weight to P. The plastic weights onto P implement 
predictions about future reward and P's output is sensitive to temporal changes in its input. 
The outputs of P influence learning and also the selection of actions such as steering in flight 
and landing. Lateral inhibition (dark circle) in the action selection layer performs a winner- 
takes-all. Before encountering a flower and its nectar, the output of P will reflect the temporal 
difference only between the sensory inputs B and Y. During an encounter with a flower and 

nectar, the prediction error <5/ is determined by the output of B or Y and R, and learning occurs 
at connections wB and wY. These strengths are modified according to the correlation between 
presynaptic activity and the prediction error St produced by neuron P. Before encountering 
a flower and its nectar, the output of P will reflect the temporal difference only between the 
sensory inputs B and Y. During an encounter with a flower and nectar, the prediction error 6j 
is determined by the output of B or Y and R, and learning occurs at connections ivB and w'. 

These strengths are modified according to the correlation between presynaptic activity and 
the prediction error 6j produced by neuron P. Simulations of this model account for a wide 
range of observations of bee preference, including aversion for risk. (From Montague et al. 
1994) 

(relative to the animals' lifestyle), as well as more efficient and predictively 
sound generalizations (relative to the animals' life-style). 

To a first approximation, cortical enlargement was driven by the com- 
petitive advantage accruing to brains with fancier, good-for-me-and-my- 
kin predictive prowess, where the structures performing those functions 
would have to be knit into the reward system. Some brand new represen- 
tational mechanisms may also have been added, but the increased "intel- 
ligence" commonly associated with increased size of the cortical mantle 
may be a function chiefly of greater predictive-goal-relevant representa- 
tional power, not to greater representational power per se. Whether some 
property of the world is visually represented depends on the represen- 
tation's utility in the predictive game, and for this to work, the cortical 
representational structures must be plastic and must be robustly tethered 
to the diffusely projecting systems. World-perfect replicas, unhitched from 
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the basic engines of reward and punishment, are probably more of a liabil- 
ity than an advantage—they are likely to be time-wasters, space-wasters, 
and energy-wasters. 

On this approach, various contextual aspects of visual perception, such 
as filling in, seeing the dot move behind the occluder, cross-modal effects, 
and plasticity in exotropia, can be understood as displaying the predictive 
character of cortical processing. 

CONCLUDING REMARKS 

A well-developed geocentric astronomy was probably an inevitable fore- 
runner to modern astronomy. One has to start with what seems most secure 
and build from there. The apparent motionless of the earth, the fixity of 
the stars, and the retrograde motions of the planets were the accessible 
and seemingly secure "observations" that grounded theorizing about the 
nature of the heavens. Such were the first things one saw—saw as system- 
atically and plainly as one saw anything. The geocentric hypothesis also 
provided a framework for the very observations that eventually caused it 
to be overhauled. 

In something like the same way, the Theory of Pure Vision is probably 
essential to understanding how we see, even if, as it seems, it is a ladder 
we must eventually kick out from under us. The accessible connectivity 
suggests a hierarchy, the most accessible and salient temporal sequence 
is sensory input to the transducers followed by output from the muscles, 
the accessible response properties of single cells show simple specificities 
nearer the periphery and greater complexity the further from the periphery, 
and so on. Such are the grounding observations for a hierarchical, modular, 
input-output theory of how we see. 

But there are nagging observations suggesting that the brain is only 
grossly and approximately hierarchical, that input signals from the sensory 
periphery are only a part of what drives "sensory" neurons, that ostensi- 
bly later processing can influence earlier processes; that motor business 
can influence sensory business, that processing stages are not much like 
assembly line productions, that connectivity is nontrivially back as well 
as forward, etc. Some phenomena, marginalized within the Pure Vision 
framework, may be accorded an important function in the context of a het- 
erarchical, interactive, space-critical and time-critical theory of how we see. 
Consider, for example, spontaneous activity of neurons, so-called "noise" 
in neuronal activity, nonclassical receptive field properties, visual system 
learning, attentional bottlenecks, plasticity of receptive field properties, 
time-dependent properties, and backprojections. 

Obviously visual systems evolved not for the achievement of sophisti- 
cated visual perception as an end in itself, but because visual perception 
can serve motor control, and motor control can serve vision to better serve 
motor control, and so on. What evolution "cares about" is who survives, 
and that means, basically, who excels in the four Fs: feeding, fleeing, fight- 
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ing, and reproducing. How to exploit that evolutionary truism to develop 
a theoretical framework that is, as it were, "motocentric" rather than "vi- 
suocentric" we only dimly perceive, (see also Powers 1973; Bullock et al. 
1977; Llinas 1987; Llinas 1991; Churchland 1986). In any event, it may be 
worth trying to rethink and reinterpret many physiological and anatomical 
results under the auspices of the idea that perception is driven by the need 
to learn action sequences to be performed in space and time. 
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NOTES 

1. With apologies to Immanuel Kant. 

2. For further research along these lines see for example, Ullman and Richards (1984), Poggio 
et al. (1985), and Horn (1986). For a sample of current research squarely within this tradition, 
see, for example, a recent issue of Pattern Analysis and Machine Intelligence. 

3. Poggio et al. (1985) say: "[Early vision] processes represent conceptually independent 
modules that can be studied, to a first approximation, in isolation. Information from the 
different processes, however, has to be combined. Furthermore, different modules may 

interact early on. Finally, the processing cannot be purely "bottom-up": specific knowledge 
may trickle down to the point of influencing some of the very first steps in visual information 
processing" (p. 314). Although we agree that this is a step in the right direction, we shall 
argue that "trickle" does not begin to do justice to the cascades of interactivity. 

4. These brief comments give no hint of the complexities of optic flow cues and their analysis. 
For discussion, see Cutting (1986). 

5. In the case of food-aversion learning the delay between ingested food and nausea may be 
many hours. 
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3 Cortical Systems for Retrieval of Concrete 
Knowledge: The Convergence Zone 
Framework 

Antonio R. Damasio and Hanna Damasio 

INTRODUCTION 

In this chapter we outline some ideas aimed at understanding the neural 
processes behind knowledge retrieval in primates. The proposal is neither 
a model nor a theory. It is a framework. It is large-scale, in both cognitive 
and neural terms, by which we mean that it deals with psychologically 
meaningful information, on the one hand, and with neural systems made 
up of macroscopic units (e.g., cortical regions, nuclei, etc.), and their con- 
nectional patterns as studied by current experimental neuroanatomy 

We also want to make clear that, by knowledge, we mean records of 
interactions between the brain, on the one hand, and the entities and events 
external to it, on the other. These entities and events exist both outside 
the organism and inside the organism, in its body proper. Our focus in 
this chapter is on concrete entities (and their properties) external to the 
organism. 

An additional qualification is in order. Although the entities and events 
we speak about are real, our framework does not require assuming that 
they are necessarily as we construct them with our neural machineries. 
On the contrary, we conceptualize them as neurobiological fabrications, 
shaped by the organism's dispositions, especially those that pertain to 
innate neural circuitries in charge of biological regulation for survival. 

The framework concentrates on cerebral cortex and has been developed 
from a background of neuropsychologic studies in humans with lesions in 
the telencephalon. For that reason we will begin by reviewing pertinent 
evidence. 

BACKGROUND 

The findings summarized below are based on both recognition and recall 
paradigms and on the use of nonverbal as well as verbal stimuli. In gen- 
eral, they show that individuals with lesions in association cortices within 
the visual, auditory, and somatosensory regions, and within "high-order" 
temporal cortices, can no longer effectively and reliably conjure up knowl- 
edge about some conceptual categories or about unique entities within 



certain categories. Those individuals have an impaired ability to gener- 
ate the internal representations on which concept evocation must rely. In 
other words, they can no longer generate the ephemeral displays of sen- 
sory information that, when enhanced by attention, would have become 
conscious and summed up knowledge pertaining to a concept. At the same 
time those individuals do not show defective attention, that is, their ability 
to focus on mental contents and bring them into clear consciousness is not 
altered. This is important to note since attention is necessary for retrieval of 
knowledge, and since it is known that patients with lesions in other systems 
(e.g., in parietal cortices) can perform deficiently on knowledge-retrieval 
tasks simply because of attention deficits. 

The key findings are as follows: First, patients with bilateral damage 
to the hippocampus proper are unable to learn factual knowledge. Ex- 
amples of factual knowledge (also known as declarative knowledge) in- 
clude new entities and events, both as members of a category and as 
unique exemplars. These patients, however, are able to learn percep- 
tuomotor skills whose retrieval does not require the generation of a con- 
scious internal representation (so-called procedural knowledge). Exam- 
ples of these skills include the learning of rotor pursuit, mirror tracing, 
and mirror reading, all of which require the gradual mastering of a task, 
over several sessions, along a learning curve. They are also able to re- 
trieve previously acquired factual knowledge about varied entities and 
events, both as members of a category and as unique exemplars. Their 
perception, language, and motor control are normal (Milner et al. 1968; 
Corkin 1984; Zola-Morgan et al. 1986; Gabrieli et al. 1988). Patients with 
Alzheimer's disease, in whom cell-specific and laminar-specific damage 
compromises hippocampal circuitry (bilaterally) and extensive sectors of 
high-order association cortices, are similar to patients with damage re- 
stricted to hippocampus in that they show defective learning of factual 
knowledge and normal learning of perceptuomotor skills (Eslinger and 
Damasio 1986; Van Hoesen and Damasio 1987). They differ from patients 
with restricted hippocampal damage, however, in that their retrieval of pre- 
viously acquired factual knowledge is defective, particularly as the disease 
progresses. 

Second, the results of bilateral damage to both the medial temporal 
region that contains hippocampus, entorhinal cortex, the remainder of 
parahippocampal gyrus, amygdala, and perirhinal cortex, as well as the 
nonmedial temporal cortices are remarkably different from those of hip- 
pocampal damage alone. The nonmedial temporal region includes area 38 
[temporal pole], and areas 21,20,36, and part of 37 [the human inferotem- 
poral region; see figure 3.1.] 

The patient known as Boswell is exemplary (Damasio et al. 1989). He has 
a severe impairment in the retrieval of previously acquired factual knowl- 
edge, which affects all unique entities and events. He cannot narrate any 
specific episode from the several decades of autobiography that preceded 
the onset of his lesion. He is unable to recognize family or friends (from 
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Figure 3.1 Lateral (fop) and mesial (bottom) surfaces of the human brain with the main gyri 
and cytoarchitectonic areas according to Brodmann. The images were obtained from high 
resolution MR cuts reconstructed in 3-D by BRAINVOX (Damasio and Frank 1992). 

face or voice), unique places or objects (from sight or sound), although he 
can recognize them at categorical level (as faces, as houses, or cars). 

He also shows a remarkable dissociation for nonunique entities. He can 
always assign any entity to its "supraordinate" taxonomic category. He 
can recognize different utensils or animals, as being a utensil or an animal; 
in other words, he can indicate the most general category to which an 
entity belongs. On the other hand he can provide only the "middle level" 
categorization, or the so-called "basic object" level for certain types of 
entities. As an example, he can provide "basic object" level recognition for 
houses and tools (ranch-type house, wrench), but most natural entities baffle 
him. Confronted with the picture of a camel or a zebra he will appropriately 
say it is an animal but not go beyond that supraordinate assignment. In 
brief, when shown the faces of unique persons he was previously familiar 
with (e.g., Roosevelt or his wife) he was unable to recognize them, but 
he knows that their faces are human faces. He also knows the meaning 
of the basic facial expressions shown in those faces (in stills or in motion) 
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even if those expressions are instantiated in faces whose identity he no 
longer retrieves. He has perfect knowledge of the components of those 
faces or other objects (shapes, colors, movements). When asked to think 
about specific faces (or places), he cannot conjure up the face of any one 
particular person (e.g., he cannot conjure up his wife's face). Yet he can 
generate an internal representation of a "generic" human face, or of part of 
a face (e.g., a nose), or of a geometric figure (a square), or of any color. He 
has no perceptual defect (olfaction excepted), no motor impairment, and 
he can attend effectively to all stimuli he is shown, including the stimuli 
that he cannot recognize. 

The evidence discussed so far suggests that (1) nonmedial temporal 
cortices (polar, inferotemporal, posterior parahippocampal) are essential 
for the retrieval of previously acquired factual knowledge, especially for 
unique exemplars, none of which can be retrieved after substantial bilat- 
eral damage to this sector, and (2) neither nonmedial nor medial temporal 
cortices play a role in the acquisition or retrieval of skill knowledge, basic 
visual perception, or motor control. 

Third, patients with bilateral damage in sectors of the inferior occipital 
and posterior temporal visual association cortices (areas 18, 19 and pos- 
terior 37 in figure 3.1) cannot conjure up the unique knowledge pertinent 
to a unique object when the object is presented visually (i.e., they cannot 
recognize a unique identity) but can see the object and provide descrip- 
tions of its visual details, and cannot generate an internal representation of 
a unique visual entity when the stimulus is not present (e.g., they are un- 
able to conjure a specific face in the absence of the model). Unlike patient 
Boswell, however, these patients can retrieve unique knowledge relative 
to a unique entity when the stimulus is presented through a nonvisual 
channel. The unique voice of a specific person allows the patient to know 
the unique identity behind it (Damasio et al. 1990b). 

The evidence thus indicates that damage placed anteriorly in the occipi- 
totemporal system precludes retrieval of any unique knowledge, regardless 
of the sensory channel used to trigger the retrieval, and that posterior dam- 
age in specific sectors of the visual system precludes retrieval of unique 
knowledge only when the stimulus is visual. The same kind of damage 
impairs visual imagery but not visual perception. 

Fourth, patients with bilateral damage in inferior visual association cor- 
tices within the occipital region (especially the medial sector of areas 18 
and 19 in figure 3.1) can no longer perceive colors normally, nor can they 
evoke an internal representation of those colors, such as picturing the color 
of blood (Damasio et al. 1980). It must be noted that damage to anterior 
visual and high-order association cortices does not preclude color knowl- 
edge or color perception. That color imagery is lost with "early" (posterior) 
cortical damage but not with "late" (anterior) integrative cortical lesions 
suggests that color is not rerepresented in high-order cortices. When the 
internal reconstruction of a complex representation requires the evocation 
of color, the color "content" is generated from "early" visual cortices. 
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Fifth, damage to human inferotemporal cortices, the areas 21, 20, 36, 
and 37 that collectively form IT, selectively impairs retrieval of knowledge 
about certain categories of entities. [Before we go any further an anatomi- 
cal clarification is in order. Please refer to figure 3.2, comparing the human 
and monkey temporal lobes. The difference is immense. It is important 
to note that the region that corresponds, in the human, to the monkey's 
IT is probably far more posterior and inferior than in the monkey. The 
results described here relative to the human IT must be considered in the 
context of this major anatomical difference. The region from which Tanaka 
and his group (Fujita et al. 1992) have recently recorded, which they call 
"anterior inferotemporal," is in the middle inferotemporal region of the 
monkey, and would be in the posteroventral temporooccipital region in 
humans.] Patients with such damage fail to conjure up knowledge per- 
taining to some entities but easily conjure up knowledge pertaining to 
others, along consistent patterns of dissociation (Warrington and Shallice 
1984; McCarthy and Warrington 1988; Damasio 1990). The IT region seems 
necessary to retrieve knowledge about entities that are learned through 
the visual modality alone and that share physical structures with several 
other different entities; typical examples are dog-like animals such as fox, 
raccoon, coyote, wolf, and German shepherd dog, whose physical traits 
strongly resemble each other. We have designated such entities as visu- 
ally "ambiguous." Retrieval of knowledge about visual entities with lesser 
ambiguity does not depend on this region, and that is why animals whose 
shapes are "outliers" (the elephant is the typical example) pose no prob- 
lem for recognition. Knowledge of entities that were learned through both 
the visual and somatosensory modalities (for instance, most manipulable 
tools and utensils) does not depend on this system either. The evidence 
uncovers a systematic correspondence between the presence of damage in 
certain systems and the impaired retrieval of certain types of knowledge. 
We believe the correspondence arises because of constraints dictated by 
the physical characteristics of the entities and by neuroanatomical design 
(Damasio 1989c; Damasio et al. 1990a). 

In brief, (1) access to previously acquired nonunique knowledge can be 
disrupted by lesions in specific neural subsystems, and (2) the defect is 
not equal for different categories of concrete knowledge. Access to differ- 
ent types of concrete knowledge thus depends on different subsystems. 
As we will note below, we do not believe that the damaged systems hold 
records of entity representations per se. We hypothesize that they direct 
the simultaneous activation of anatomically separate regions whose con- 
junction defines an entity. 

Sixth, damage to left anterior temporal cortices in the temporal pole (area 
38) and the anterior part of IT (areas 20 and 21 in figure 3.1) causes a severe 
defect for naming of concrete entities. Patients cannot access the word 
forms that belong to unique entities (proper noun), nor can they retrieve the 
word forms that go with varied nonunique entities. Patients can, however, 
generate accurate descriptions about all the entities they cannot name. 
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Figure 3.2 A comparison of human and monkey cortices. Human cortices are on the left 
and monkey cortices on the right. Note that they are not drawn to scale (the human brain 
is about 10 times larger than the macaque's). The different position of the inferotemporal 
cortex, and the different relation that inferotemporal cortex holds to the early visual cortices 
are obvious. 

Only the access to the lexical entries that denote the overall concept is 
defective. The nonverbal conceptual knowledge of the entities is intact. 
The patients have no grammatical or phonemic/phonetic defects. We have 
also discovered that these patients are able to generate the word form that 
accurately denotes an action or relationship, without the slightest difficulty. 
They can retrieve word forms (verbs) describing the action of entities whose 
names they cannot retrieve, or that they may not even know. For instance, 
shown the picture of a mother duck in a lake, being followed by several 
ducklings, Boswell said: "The little things [ducks or ducklings, not named] 
are following her, the mother [duck, not named]. They are all swimming." 

Seventh, damage to the cortices in the left temporal pole (sparing the 
anterior part of IT) causes a defect in the retrieval of word forms (e.g., the 
names of persons or places). Access to word forms for common noun is 
intact. Access to conceptual knowledge of the entities denoted by both 
proper and common nouns is also intact (Damasio et al. 1990c; Graff- 
Radford et al. 1990; Semenza and Zettin 1989). Damage to the same 
regions in the right hemisphere seems not to compromise lexical access. 

These findings suggest that the conjoining of nonverbal and verbal acti- 
vated representations pertaining to concrete entities depends on a mediator 
mechanism in left anterior temporal cortices. The mechanism promotes the 
reconstruction of a word form given the concept, or, conversely, the recon- 
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struction of the concept of an object given the word form. The systems 
that support this mediational mechanism do not contain records for either 
words or concepts themselves, but rather records of the probable combina- 
tion between them, that is, the combinations between (1) the many records 
that subsume the concept of a concrete entity, nonverbally, and (2) the many 
records that subsume acoustical, somatosensory, and motor patterns with 
which a given word form can be reconstructed. (It well may be the case that 
other aspects of lexical characterization, such as the syntactical properties 
of a given word, will also be activated from these systems.) In brief, these 
systems promote activity in other cortices (and probably basal ganglia), and 
it is through the resulting activity elsewhere that lexical access or concept 
access are achieved. 

Finally, damage in left lateral frontal cortices compromises retrieval of 
some word forms that denote some classes of verbs, while leaving ab- 
solutely intact the retrieval of word forms for nouns. This is interesting 
evidence for the fact that frontal cortices (and the parietal and mesial cor- 
tices that feed into them) are concerned with other aspects of conceptual 
representation (e.g., space-time trajectories of entities rather than entity 
structure itself), and neural processing (e.g., attention, governance of re- 
sponse selection, and motor planning). It is intriguing to find retrieval 
of some word forms for verbs connected with this system given the fact 
that some verbs do describe actions in space-time rather than structural 
characteristics of entities (Damasio and Tranel 1993). 

REGIONALIZATION OF KNOWLEDGE ACCESS AND 
CORTICOCORTICAL CONNECTIONS 

The evidence summarized here suggests that the access to different levels 
and types of knowledge depends on different neural systems and is thus 
regionalized. At first pass, the correspondence between retrieval impair- 
ment patterns and site of damage further suggests that 

1. Damage to early visual cortices compromises the retrieval of features 
(e.g., color); 

2. Damage to intermediately placed cortices leaves the retrieval of fea- 
tures intact, but may compromise the retrieval of knowledge pertaining to 
certain categories of concrete knowledge, that is, compromise retrieval of 
knowledge for some nonunique entities while sparing others; 

3. Damage to the anterior-most cortices compromises retrieval of knowl- 
edge regarding virtually any unique entity or event (scene) but leaves intact 
retrieval of features, entity components, and nonunique entities. 

Features, nonunique entities, and unique entities are constituted by 
knowledge of remarkably different ranks in terms of amount of compo- 
nents, relational complexity of those components within the entity, and 
relational complexity of associations between the entity itself and other 
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entities and events. For instance, to classify an entity as unique, we must 
know about intrinsic and relational details that are far more complex than 
those of a nonunique entity. In turn, nonunique entities require more com- 
plexity than features. 

These findings suggest a tentative principle: access to concrete knowl- 
edge of higher hierarchical status requires structures in anteriorly placed 
temporal cortices, whereas access to concrete knowledge of lower complex- 
ity only requires posterior occipital cortices. (It should be noted that when 
we refer to anterior, or intermediate, or posterior, we do not necessarily 
include anterior, intermediate, or posterior structure of both hemispheres. 
On the contrary, because of cerebral hemisphere dominance effects, certain 
types and levels of knowledge may require, say, an anterior, or intermedi- 
ate cortex of one hemisphere only.) 

The cortical regions whose damage we discussed above are anatomically 
distinguishable in a variety of ways (e.g., cytoarchitecture, subcortical con- 
nections, possibly intrinsic circuitry), but we have chosen to focus on their 
distinction in terms of long-range corticocortical projections. The impaired 
retrieval of more complex knowledge correlates with damage to the cortices 
located closest to the apices of feedforward chains culminating in entorhi- 
nal cortex, and farthest from the beginning of the feedforward chains in 
primary sensory cortices. Reciprocating feedback projections from those 
cortices recapitulate the feedforward projections in reverse direction (Van 
Hoesen 1982; Felleman and Van Essen 1991). The impaired retrieval of less 
complex knowledge correlated with damage in cortices located more pos- 
teriorly suggests that there is a principled relationship between "rankings" 
of knowledge access and "rankings" of corticocortical connections. 

As we will discuss later, access to, leading to retrieval of, must be dis- 
tinguished from represented at. The knowledge that can be accessed from 
anterior temporal cortex is not fully represented in anterior temporal cortex 
in the sense that no "image" is likely to be there. Incidentally, this is the 
position we take in interpreting the meaning of "face" cells or "hand" cells, 
or, for that matter, the cells recently described by Tanaka's group (Fujita et 
al. 1992). Rather, we see these cells as part of the network whose activity 
may reenact an explicit representation. When they are activated, these cells 
in high-order cortices contribute to the reenactment of the explicit repre- 
sentation, i.e., they are critical to the neural process on the basis of which 
we experience the representation, but they are neither the "sole basis for" 
nor the "site of" that neural process. There is no single basis or site for 
such a process. Finally, we should note that what we call knowledge cor- 
responds to records of interactions between (1) entities and events external 
to the individual (or internal to the individual but external to the brain), 
and (2) the brain (such as it is anatomically at the time of the interactions). 
Although the external entities and events are real, they are not necessarily 
as we construct them with our neural apparatus. 

The relationship suggested by the evidence, then, is between ranking 
of knowledge (as qualified above) and ranking of corticocortical connections. 
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The emphasis on this principle does not mean that we are ignoring the 
existence and contributory role of many other connections also available 
at all stations of these hierarchies, that include (1) heterarchical connec- 
tions between and among parallel cortico-cortical projection streams; (b) 
local (intrinsic) cortical connections; (c) subcortical connections, direct or 
re-entrant; and (d) commissural connections. It simply means that we 
suspect that ranking of cortico-cortical connections is the most distinctive 
aspect of these regions inasmuch as the substrates of knowledge are con- 
cerned. Those other distinctive anatomical aspects of different cortical 
stations are critical for the continued development and adjustment of the 
system. Elsewhere (Damasio 1989a,b) and below, we have argued that as 
the organism interacts with the environment, the selection of circuitries 
that corresponds to varied interactions with the environment is carried 
out with the help of those other systems. For instance, subcortical connec- 
tions hailing from nuclei concerned with biological drives are critical to 
this process. 

KNOWLEDGE REPRESENTATION 

Dispositional (Nonmapped) Representations versus Explicit (Mapped) 
Representations 

What did the areas damaged in the patients described above contain or 
contribute while they were healthy, to the mental representations on which 
knowledge is based? What is the relation between the knowledge that fails 
to be retrieved and the station of corticocortical connections destroyed by a 
lesion? We will entertain two alternatives. In the first alternative, the con- 
ceptual knowledge relative to a given entity is contained in the circuitry 
of the damaged region. (This is not only the classic alternative but the one 
that remains implicit behind most current work in neuropsychology and 
neurology.) Both the reactivation of sensory and motor properties defin- 
ing a concept, as well as the "know-how" needed to reconstitute those 
properties, would depend on that region alone. Their reinstantiation in 
consciousness would result from attended neural activity within that one 
region. In that traditional alternative, the failure in knowledge retrieval 
comes from the absence of the region and of the high-level representations 
previously contained in it. We must reject this alternative. We believe 
that the results discussed above are incompatible with this view, because 
the nature of the losses following lesions at different levels would be dif- 
ferent. Rather than respecting the levels of complexity and the relative 
functional kinship of entities, the lesions would lead to "unprincipled" 
losses in which all knowledge about entire categories of entities would 
simply vanish. 

In the alternative we favor the sensorimotor properties on which a con- 
cept is based would be retrieved from early sensory and motor cortices, and 
the effects of focal attention would be placed in those parts of the dis- 
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tributed network. The retrieval would have been directed by the area now 
damaged, had it been intact. The circuitry of the damaged region previ- 
ously contained knowledge about which separate brain regions should be 
reactivated to conjure up varied properties, and about how those regions 
should be related temporally and spatially. 

The failure in knowledge retrieval comes from the damaged region being 
unable to conduct the reconstruction, but the reconstruction itself would 
have depended on circuitry in many other regions. In short, a lesion in 
a given place modifies the "working habits" of nonlesioned regions that 
are connectionally related to the lesioned region. Following a lesion, the 
remainder of the brain works differently rather than as before. This may 
sound trivial but it is not. The results of lesion experiments are often inter- 
preted as if the healthy systems connected to the damaged area continue 
doing precisely what they did before the lesion. 

The alternative we favor implies a relative functional compartmental- 
ization for the normal brain. One large set of systems in early sensory 
cortices and motor cortices would be the base for "sense" and "action" 
knowledge, i.e., the highly multiregional substrate for "explicit" represen- 
tations which are the key to our experience of knowledge. Another set of 
systems in higher-order cortices would orchestrate time-locked activities 
in the former, that is, would promote and establish temporal correspon- 
dences among separate areas. Yet another set of systems would ensure the 
attentional enhancement required for the concerted operation of the oth- 
ers. These sets of systems would operate under two major influences: (1) 
internal biases, expressed in brain core networks concerned with enacting 
biological drives and instincts required for survival, and (2) the structures 
and actions in the external environment. 

In the overall system we envision, there is neither cartesian dualism be- 
tween matter and mind, nor homuncular dualism between "images" and 
a "perceiver" of those images. There is also no infinite regress. On the 
contrary, neurally speaking, there is a finite number of convergence steps 
downstream from the system in which the neural activity corresponding 
to explicit images takes place. But the top steps in the hierarchy are neither 
a homunculus nor a perceiver. They are merely the most distant conver- 
gence points from which divergent retroactivation can be triggered. What 
is infinite, instead, is the ceaseless production of new activity states, in 
early sensory cortices and in motor cortices, across time. It is those neu- 
ral states, one after the other, that can be said to constitute "regresses" 
for the previous state. But it should be noted that they occur in the same 
set of systems, at different times, unlike the classic and much maligned 
homuncular regress that occurs in different neural sites, ever more re- 
moved from the "perceptual" site, in space and in time. It is the perpetu- 
ally recursive property of corticocortical systems that permits this special 
form of regress. We have previously discussed evidence in support of this 
view (Damasio 1989a,b); additional arguments are discussed in Damasio 
(1994). 
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Reconstructing Mapped Representations 

The reconstruction of pertinent property "representations" is thus accom- 
plished in many separate cortical regions, by means of long-range cortic- 
ocortical feedback projections that mediate relatively synchronous excita- 
tory activation. In the large scale reconstruction that we envision from 
higher-order cortices (such as those in anterior temporal lobe), the time 
scale of the synchronization would be in the order of several hundred 
msec, and even beyond 1000 msec, the scale required for meaningful, con- 
scious cognition. But at more local levels, for instance, in posterior tem- 
poral cortices, the scale would be smaller, in the order of tens of millisec- 
onds. The return projections necessary for the reconstruction are aimed 
toward layers I and V of the cortex, mainly the former, in which feedfor- 
ward projections originated (see Rockland and Virga 1989). We have called 
the neural device from which reconstructions are conducted a convergence 
zone. 

Convergence Zones 

In essence, a convergence zone is an ensemble of neurons within which 
many feedforward/feedback loops make contact. Its connectional struc- 
ture is as follows: a convergence zone receives feedforward projections 
from cortical regions located in the connectional level immediately be- 
low, sends reciprocal feedback projections to the originating cortices; sends 
feedforward projections to cortical regions in the next connectional level 
and receives return projections from it; is influenced by a broad class of 
cortices concerned with attentional control and response selection, such 
as prefrontal and cingulate directly or indirectly, which are in turn reen- 
trantly connected to basal ganglia; receives projections from heterarchi- 
cally placed cortices; and receives projections from subcortical nuclei in 
thalamus, basal forebrain, brain stem, etc. This rich network of extrinsic 
connections is complemented by a complex network of intrinsic intralam- 
inar and interlaminar connections. 

A convergence zone is located within a convergence region. We envision 
that there are in the order of thousands of convergence zones, which are 
all microscopic neuron ensembles, located within the macroscopic conver- 
gence regions that have been cytoarchitectonically defined and that num- 
ber about one hundred. Both convergence regions and convergence zones 
come into existence under genetic control. But epigenetic control, as the 
organism interacts with the environment, may alter convergence regions, 
and massively alter convergence zones through synaptic strengthening. As 
noted above, synaptic strengthening occurs under particular conditions, 
in which circumstances external to the brain match the survival needs of 
the organism, its intentions so to speak, as expressed in biological drive 
networks. It is reasonable, then, to talk about synaptic strengthening as 
a selective process, in the sense in which Changeux (1976) and Edelman 
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(1987) have used the concept, although this does not commit us to a par- 
ticular unit of selection such as a neuron or a neuron group. 

A convergence zone is thus a means of establishing, through synaptic 
strengthening, preferred feedforward/feedback loops that use subsets of 
neurons within the ensemble. A subset of the neurons in the convergence 
zone would "learn" to activate a large number of spatially distributed neu- 
ral ensembles, in temporal proximity, by means of feedback projections. 
The convergence zone could be excited by any (or a subset) of the feedfor- 
ward projections that were originally paired with the feedbacks coming 
out of the convergence zone, or by feedback projections of convergence 
zones from a higher station, or from heterarchical connections. 

A convergence zone develops under the influence of (1) temporally close 
activity in multiple feedforward and feedback lines that are simultane- 
ously active when a number of anatomically separate regions are active 
and are providing the normal substrate for a given perceptual/thought 
process, and (2) modulatory action from feedback and feedforward pro- 
jections from ipsilateral and contralateral cortices, and subcortical nuclei, 
during (1). The development of a convergence zone also depends on local 
interactions among neurons (e.g., from their intrinsic collateral arboriza- 
tions). A convergence zone would be the result of convergence of feed- 
forward inputs, but its feedback projections operate by diverging toward 
the origin of feedforward projections. Naturally, when we refer to neurons 
in a convergence zone we refer to the synaptic pools made up of contacts 
among those neurons. 

We have hypothesized that there would be two main types of activity in 
a convergence zone. In the stable type, the excitation of one or a few neu- 
rons feeding into it generates maximal temporally close activity in many 
feedbacks that participate in the convergence zone. This then generates 
temporally close activations in several regions that originally projected 
forward to it. What we envision convergence zones achieving is the recre- 
ation of separate sets of neural activity that were grossly simultaneous, 
that is, that coincided during the time window necessary for us to attend 
to it and be conscious of it, which means hundreds of milliseconds. How- 
ever, this may not necessarily translate into simultaneous activity within 
the convergence zone. In fact, it is much more likely that there would be 
an extremely fast sequence of activations that would make separate neural 
regions come on-line in some order imperceptible to consciousness. 

Convergence zones also fire forward, through their feedforward pro- 
jections, into other convergence zones located at a higher level. In turn, 
feedback firing from that higher level convergence zones would broaden 
the scope of regions activated in response to the initial stimulus. This 
first type of activity depends on strong local synaptic linkages among 
subsets of neurons in a convergence zone. In a second type of activ- 
ity, less stable modes of firing would activate subsets of feedbacks, lead- 
ing to novel combinations of activity. This would depend on transient 
combinations. 
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In short, knowledge retrieval would be based on relatively simultaneous, 
attended activity in many early cortical regions, engendered over several 
recursions in such a system. Separate activities in early cortices would be 
the basis for reconstructed representations. The level at which knowledge 
is retrieved (e.g., supraordinate, basic object, subordinate) would depend 
on the scope of multiregional activation. In turn, this would depend on the 
level of convergence zone that is activated. Low level convergence zones 
bind signals relative to entity categories (e.g., the color and shape of a tool), 
and are placed in association cortices located immediately beyond (down- 
stream from) the cortices whose activity defines featural representations. 
In humans, in the case of a visual entity, this would include cortices in ar- 
eas 37 and 39, downstream from the maps in V3, V4, and V5. Higher-level 
convergence zones bind signals relative to more complex combinations, 
for instance, the definition of object classes by binding signals relative to 
its shape, color, sound, temperature, and smell. These convergence zones 
are placed at a higher level in the corticocortical hierarchy (e.g., within 
more anterior sectors of 37 and 39, 22, and 20). The convergence zones 
capable of binding entities into events and describing their categorization 
are located at the top of the hierarchical streams, in anterior most temporal 
and frontal regions. 

The "firing" knowledge embodied in the convergence zone is the result 
of previous learning, during which feedforward projections and reciprocat- 
ing feedback projections were simultaneously active. Both during learning 
and retrieval, the neurons in a convergence zones are under the control of 
a variety of cortical and noncortical projections. This includes: projections 
from thalamus, the nonspecific neurotransmitter nuclei, and other cortical 
projections from convergence zones in prefrontal cortices, cortices located 
higher up in the feedforward hierarchy, homologous cortices of the oppo- 
site hemisphere, and heterarchical cortices of parallel hierarchical streams. 
The essence of this framework, then, comprises reconstruction of entities 
and scenes from component parts and integration of component parts by 
time correlations. The requisite reactivation is mediated by excitatory pro- 
jections. 

CONCLUDING REMARKS 

In closing, we would like to add a few words concerning the evidence now 
available for this framework, as well as the relation it may have to other the- 
oretical approaches. In addition to the evidence adduced above, from hu- 
man neuropsychology and from experimental neuroanatomy there is also 
supporting evidence in the recent neurophysiological findings of Singer 
and colleagues (1993), Eckhorn and colleagues (1988), and Fetz et al. (1991), 
all of which indicate the presence of temporal correlations among anatom- 
ically separate cortical regions relative to a single stimulus. These results 
have been obtained in perceptual or motor experiments, but there is no rea- 
son why they cannot be extrapolated for the knowledge retrieval processes 
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we are discussing here. The essence of these results is that geographically 
separate regions of brain can be active at the same time when their activity 
is related to the same thing. There is also evidence for the type of function- 
ally segregated neuron ensembles we call convergence zones in the recent 
work of Fujita et al. (1992), and we interpret the classical "face" and "hand" 
cells as being part of convergence zones. Concerning other approaches, 
the massive recurrence of neuroanatomical pathways that we propose for 
knowledge retrieval is a component of Edelman's model of visual per- 
ception (Edelman 1987), in which feedback activity is subsumed by the 
concept of "reentry." There are, however, several distinctions. Edelman's 
model does not use a convergence-divergence architecture. The maps are 
fully and reciprocally interconnected, in both a hierarchical and heterarchi- 
cal manner. This characteristic seems well suited to the constructive roles 
that the very early visual cortical regions are likely to play, and for which 
a convergence zone architecture might not be sufficient. It is supported 
by neuroanatomical findings (Zeki and Shipp 1988; Rockland and Pandya 
1979). Another distinction concerns the fact that reentry's principal means 
of operation is the "synthesis of signals" within the neuronal populations 
that get reentered. The framework we have proposed does not include 
such a means of operation and relies instead on a correlative operation 
which appears similar to the one Singer and von der Malsburg envision 
(although in recent work from the same group, reentry also accomplishes 
a correlative function (see Tononi et al. 1992; Edelman 1992). 
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A The Interaction of Neural Systems for 
■* Attention and Memory 

Robert Desimone, Earl K. Miller, and Leonardo 
Chelazzi 

INTRODUCTION 

The visual recognition of objects depends on a cortical processing pathway 
that begins in area VI and continues through areas V2, V3, V4, and the 
inferior temporal (IT) cortex (Ungerleider and Mishkin 1982; Desimone et 
al. 1985; Maunsell and Newsome 1987; Desimone and Ungerleider 1989; 
Felleman and Van Essen 1991). As one proceeds along this pathway, the 
receptive fields of neurons increase steadily in size and the analysis of 
object features becomes increasingly complex. Although these large fields 
will typically contain many different stimuli, we have previously shown 
that spatial attentional mechanisms limit the amount of information that 
is processed within them. When one attends to a stimulus at one location 
within the receptive field of a neuron in V4 or IT cortex, the responses to 
stimuli at other, ignored, locations are suppressed (Moran and Desimone 
1985). Thus, spatially directed attention controls the information processed 
in extrastriate cortex and regulates access to memory. Generally speaking, 
we remember what we attend to. The spatial attention system that controls 
extrastriate processing appears to involve a number of different cortical 
and subcortical structures, several of which are closely associated with the 
oculomotor system (Desimone et al. 1990; Posner and Driver 1992; Posner 
and Petersen 1990; Colby 1992; see chapter 9 by Posner and Rothbart). 

Although attention may regulate access to memory, the reverse also oc- 
curs. Consider the following scenarios. While driving to work, you pay 
little attention to all of the surrounding cars traveling in their lanes but 
react immediately to a car that makes an unexpected change in direction 
in front of you. At work, you walk into your office and are startled that 
your familiar desk chair has been replaced by a new one. After studying 
the new chair, you search for your coffee cup buried among the objects 
cluttering your desk. When it is found, you switch your attention to the 
wall of the room, where you know you will find your clock. 

Each of the everyday behaviors described above illustrates how memory 
guides attention. In the case of the car changing direction, the car violated 
the expectation of its behavior built up over the course of the previous few 
seconds or minutes, thereby eliciting attentional and orienting responses. 



In the case of the new chair, attention was attracted by the mismatch be- 
tween the new chair's image and the representation of the familiar chair 
in long-term memory. In both cases, the representation of stimuli in short- 
and long-term memory contributed as much to their salience as did purely 
visual properties such as color or brightness. In the case of the coffee cup, 
it was the representation of the cup in long-term memory that guided the 
attentional search of the cluttered desk. Even in the case of the clock on 
the wall, which might be considered a simple case of spatially directed 
attention, it was the memory of the location of the clock in the room that 
guided the locus of attention. As we will see below, memory not only 
influences attention, but is intertwined with the on-going processing of 
visual information in the cortex. 

In this chapter we take a bottom-up approach to developing models of 
higher brain function. We first describe some new results on the proper- 
ties of cortical neurons in monkeys performing mnemonic and attentional 
tasks. With these physiological findings serving as both constraints and 
inspiration, we begin to sketch out how the neural systems underlying 
memory and attention interact, resulting in self-directed behavior. 

SHORT-TERM MEMORY 

Most cognitive scientists and neuroscientists would probably accept the 
notion that the neural mechanisms of memory include a facility for the 
temporary storage of information. The neuropsychological evidence for 
separate mechanisms of long- and short-term memory is dramatic, as am- 
nesic patients with damage to the medial temporal lobe may show normal 
retention of information for a few seconds or minutes but may be com- 
pletely unable to hold memories for longer periods of time (see Baddeley 
1986,1990, for reviews of both normal human memory and amnesia). Al- 
though one can make numerous additional distinctions among different 
types or components of both long- and short-term memory, we will use 
the terms in a generic sense and describe some of the physiological results 
first before speculating on what aspects of memory they may explain. 

Recent physiological results suggest that at least one type of short-term 
memory may be an intrinsic property of visual cortex. In our work, we 
record from neurons in anterior IT cortex of rhesus monkeys performing 
delayed matching to sample tasks (Miller et al. 1991b, 1993). In the stan- 
dard form of this task, a monkey is shown a "sample" stimulus followed, 
after a short delay, by a "test" stimulus, and it must indicate whether or 
not the test stimulus matches the sample. Thus, the task requires a type of 
stimulus memory, or recognition memory, lasting for the length of a behav- 
ioral trial. Several studies have shown that IT neurons respond differently 
to the test stimulus depending on whether it matches the sample (Gross 
et al. 1979; Mikami and Kubota 1980; Baylis and Rolls 1987; Vogels and 
Orban 1990; Riches et al. 1991; Eskandar et al. 1992), and other studies 
have shown that some IT neurons have elevated activity during the de- 
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lay period, as if they are actively maintaining the memory of the sample 
(Fuster and Jervey 1981; Mikami and Kubota 1980; Miyashita and Chang 
1988; Miyashita 1988; Sakai and Miyashita 1991; Fuster 1990). However, 
for a neural memory mechanism to be useful, it must have the capacity 
to retain information over long intervals that are not blank but rather are 
filled with new stimuli entering the visual system, competing for process- 
ing, and presumably activating the same cells involved in the storage of 
memory traces. To study this interplay between perceptual and mnemonic 
processing, we record from neurons in anterior ventral IT cortex in a task 
that requires the monkeys to retain items in memory while concurrently 
processing new stimuli (Miller et al. 1991b, 1993). 

On each trial of the task, from 0 to 5 stimuli intervene between the sample 
and the final matching test stimulus. The stimuli are complex patterns, 
such as faces, fruit, or textures, which the monkey has seen before. These 
stimuli elicit stimulus-selective responses from the large majority of cells, 
but we do not attempt to understand which features of the stimuli activate 
a given IT neuron. The basis of object coding in IT cortex is currently not 
understood—we simply assume that it occurs (see chapter 8 by Poggio and 
Hurlbert). 

How is the memory of the sample maintained? The surprising result is 
that, for nearly half the cells in the cortex, the memory of the sample is re- 
flected in the responses to the test stimuli. That is, of the cells that respond 
to a given sample stimulus, the responses of about half of them are a joint 
function of the current stimulus (i.e., the magnitude of response depends in 
part on how well the stimulus fits within the cell's "feature domain") and 
the stimulus in memory. For the large majority of these cells, responses to 
the test items are suppressed if they match the sample in memory (see also 
Baylis and Rolls 1987; Riches et al. 1991; Eskandar et al. 1992). The reduc- 
tion in response is typically proportional to the magnitude of the response 
to a given stimulus (measured when it is presented as a sample or non- 
matching item). For example, if a cell prefers red stimuli, these stimuli will 
show the greatest reduction in response when they match the sample item. 
Furthermore, the suppression is maintained even if up to five nonmatching 
stimuli intervene, which is the maximum we have tested. The "memory- 
span" of this suppressive effect seems to be as long as the monkey can per- 
form the task. A few cells show opposite behavior (enhanced responses 
with matching), and the remaining cells (about half the population) seem 
to convey only sensory information and are not affected by memory. 

Not only are responses to matching items affected by the specific item 
in memory, but so are responses to nonmatching items, an effect that has 
been observed by Eskandar et al. (1992). That is, the response to a given 
nonmatching item depends on which stimulus had been seen as the sample. 
There is suggestive evidence that these effects are related to the similarity 
of a given nonmatching item to the stimulus in memory (Miller et al. 1993). 
The more similar is the current stimulus to the one in memory, the more the 
response to the current stimulus appears to be suppressed. Thus, IT cells 
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Figure 4.1 Responses of a population of IT neurons to test stimuli that matched the sample 
stimulus in memory and, for comparison, the response to the same stimuli when they did not 
match. The difference line plots the difference between the two histograms. The bin width is 
10 msec. (Adapted from Miller et al. 1993) 

seem to be computing similarity to memory traces, rather than matching 
per se. 

On the basis of these data, we have proposed that a population of IT 
neurons functions as "adaptive mnemonic filters" whose responses are a 
joint function of the current stimulus and stored memory traces. A given 
IT neuron gives its best response to stimuli that contain features within the 
cell's feature domain (i.e., has the appropriate color, shape, texture, etc.) 
but that have not been recently seen. Repetition is, in a sense, a type of 
stimulus feature. 

A critical question for constructing a model of short-term memory is 
whether the mnemonic influences on IT responses are generated within 
(or before) IT cortex or result from feedback from other structures. An 
analysis of the time course of the effects in IT argues against certain types 
of feedback. Figure 4.1 shows the time course of the population response 
to matching and nonmatching items in IT cortex. The suppression of re- 
sponse to matching items (compared to nonmatching) begins at the onset 
of the visual response (i.e., within 80 msec of stimulus onset). Thus, it 
seems highly unlikely that the suppression is due to feedback from mem- 
ory structures beyond IT cortex that do the actual detection of matching 
items. It is still possible, however, that critical feedback occurs at the time 
of storage of the memory trace and persists through the time of retrieval. 

The fact that the suppression begins by nearly the first stimulus-evoked 
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action potential in IT cortex also argues against the idea that the effect 
depends on lengthy temporal processing in this region. We have tested 
whether the match-nonmatch status of a stimulus is coded by specific tem- 
poral variations in response (i.e., responses that differ in their time-course 
but have the same average rate) by using the principal components of the 
spike trains of IT cells to classify stimuli as matching or nonmatching, on a 
trial-by-trial basis. In contrast to recent findings of Eskandar et al. (1992), 
we find no advantage in using the first three principal components of the 
responses to classify stimuli as matching or nonmatching, compared to 
using just the average firing rate. Since Eskandar et al. found significant 
temporal variations in IT responses in monkeys performing a matching 
to sample task with short delays and without intervening items, the two 
results together suggest that successive stimulus presentations do cause 
significant temporal variations in neuronal responses but that do not span 
long delays or intervening items (although other explanations are possible, 
including differences in recording sites in IT cortex). These results do not, 
of course, rule out "fast" temporal mechanisms such as synchronized fir- 
ing among IT cells, which could, in principle, cause virtually instantaneous 
changes in firing rates among coupled IT cells (see chapter 5 by Koch and 
Crick and chapter 10 by Singer). 

We have also examined activity during the delay intervals of the match- 
ing task, to see whether cells might maintain a representation of the sample 
in memory through maintained activity in the retention interval (Fuster 
and Jervey 1981; Mikami and Kubota 1980; Miyashita and Chang 1988; 
Miyashita 1988; Fuster 1990; Sakai and Miyashita 1991). Although a quar- 
ter of the cells show stimulus-specific activity in the delay interval immedi- 
ately following the sample stimulus, this activity appears to be "reset" by 
the first intervening item (Miller et al. 1993). That is, after the first interven- 
ing test item, the amount of activity in the subsequent delay interval seems 
to be determined more by the intervening item than by the sample stimu- 
lus in memory. Thus, it is unlikely that maintained IT activity in the delay 
mediates the memory of the sample in this particular short-term memory 
task. Nonetheless, as we will see later in the chapter, maintained activity 
during delay periods is a prominent feature of neuronal activity in some 
tasks. Further, we have evidence that the delay activity can be switched 
on and off under the monkey's voluntary control (Chelazzi and Desimone, 
unpublished data). Maintained activity during retention intervals, easily 
disrupted by intervening stimuli, may nonetheless serve as a type of visual 
"rehearsal," that helps solidify memory traces (for example, its effect on 
memory may be equivalent to that of a longer stimulus presentation time), 
or as a kind of visual "sketchpad" (Baddeley 1986) for comparing stimuli 
presented in different modalities or different spatial locations (see below). 

The sensitivity of IT neurons to repetition suggests an analogy to figure- 
ground separation in the spatial domain. Many cells at all levels of the 
visual system respond best to contrast of some sort. For these cells, the 
greater the similarity between the stimulus in the receptive field and those 
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in the silent surround (stimulation of which does not elicit responses by it- 
self), the more the response to the receptive field stimulus is suppressed. As 
one advances through the visual system, the stimulus features that are con- 
trasted may become more sophisticated and the spatial areas over which 
the interactions occur may become larger. Based on these properties, it has 
been conjectured that one of the functions of visual cortex is to separate 
figures from background (Allman et al. 1985a; Desimone et al. 1985). 

The properties of IT neurons suggest that figure-ground separation oc- 
curs in the temporal domain as well. As a result, stimuli that have not 
been recently seen or are unexpected may tend to pop out from an array 
of repeated items. In a sense, the past functions as the surround, which is 
compared with the present stimulus in the receptive field. This temporal 
figure-ground extraction may occur automatically, as repetition effects in 
IT cortex have been found both in passively fixating and in anesthetized 
animals (Miller et al. 1991a). 

If the analogy with spatial receptive fields is valid, temporal figure- 
ground extraction is probably not unique to IT cortex but may be an in- 
trinsic property of visual cortex. Figure-ground separation in the spatial 
domain appears to build incrementally as one moves through the visual 
system, and there may be a comparable build up of temporal process- 
ing. Nelson (1991), for example, finds that cells in striate cortex of the 
cat show orientation-specific suppression lasting a few hundred millisec- 
onds. Orientation-specific temporal interactions are also found in area V4 
(Haenny et al. 1988; Maunsell et al. 1991). Our own preliminary evidence 
in V4 in monkeys performing the same task and viewing the same stimuli 
that we used in IT cortex suggests that suppression with repetition occurs 
in V4 (Miller, Li, and Desimone, unpublished data). Presumably, the tem- 
poral interval over which stimuli are compared is much smaller (and less 
able to span intervening stimuli) in earlier visual areas, and the features 
that are compared are less complex than in IT cortex. The results of the ex- 
periments described below indicate that, in IT cortex at least, the temporal 
interval over which stimuli are compared can span periods comparable to 
long-term memory. 

The notion of temporal figure-ground may also have applications to 
artificial visual systems. Current artificial systems typically separate vi- 
sual processing from visual memory, whereas the biological visual system 
seems to integrate both at relatively early stages, building on them incre- 
mentally. This integration and incremental build-up may not only result 
in processing efficiencies and in a natural interface to attentional systems, 
but may also simplify visual recognition, which would not have to be ac- 
complished in one final stage. 

REPRESENTATION OF FAMILIARITY 

Physiological studies of short-term memory, like those described above, 
typically use stimuli that are highly familiar to the monkey, and mnemonic 
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effects are confined to a single trial of the monkey's task. However, by test- 
ing the responses to novel stimuli that the monkey has never seen before, 
one can observe adaptive memory filtering spanning time periods consis- 
tent with long-term memory formation for stimuli in IT cortex (Miller et 
al. 1991b; Li et al. 1993). As with short-term memory, we use the term 
"long-term memory" here in a generic sense, without (initially) claiming 
any specific type or component. The behavioral task we use to study long- 
term memory is basically the same as in the short-term memory study, 
but we monitor changes in the response to the initially novel sample stim- 
uli over the session, as the animal gradually becomes familiar with them. 
Thus, we study the memories that are incidentally acquired during task 
performance. For a third of the cells, the response to novel stimuli sys- 
tematically declines as the stimuli become familiar to the animal over the 
course of an hour-long recording session. This decline is stimulus-specific 
and is found even when more than 150 other stimuli (the maximum tested) 
intervene between repeated presentations. Virtually all of these cells also 
show selectivity for particular visual stimuli and, thus, are not "novelty 
detectors" in the sense of cells that respond to any novel stimulus. Rather, 
IT cells combine sensitivity to novelty and familiarity with sensitivity to 
other objects features such as shape and color. Furthermore, as shown in 
figure 4.2, these same cells show suppression to matching stimuli within a 
trial, which is added to the suppression caused by familiarity. Thus, these 
cells appear to communicate both types of information—both recency and 
familiarity—and the effects of memory appear to be additive. As in the 
short-term memory experiment, at least half the cells convey sensory in- 
formation only and are unaffected by the contents of memory. 

To assess the possible role of feedback, we measure the time course of 
the response suppression to familiar stimuli in the population of cells. We 
compare the average population response to novel sample stimuli and to 
the same stimuli after they had been seen just once before. The response 
waveform to the stimuli seen once before does not show suppression until 
170-180 msec after stimulus onset. This is clearly enough time for the 
suppression to be mediated by feedback to IT. However, after the stimuli 
had been seen as samples just one additional time, suppression is evident 
from the very onset of the visual response, 80 msec after stimulus onset. 
Thus, after the first couple of presentations of a stimulus, IT networks 
appear to detect familiar stimuli on their own. 

Because fewer IT cells respond strongly to a stimulus after it has be- 
come familiar, familiarity may cause a "focusing," or narrowing, of activ- 
ity across IT cell populations, resulting in a sparser representation of the 
stimulus (see chapter 1 by Barlow and chapter 8 by Poggio and Hurlbert). 
Cells that poorly represent the important features of a given familiar stim- 
ulus may be winnowed out of the population of strongly activated cells 
through the adaptive filtering mechanism, in much the same way that an 
excess of cells and connections are pruned during development. If the 
remaining activated cells have the appropriate association with cells cod- 
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Figure 4.2 Average responses of IT neurons whose responses declined significantly with 
increasing stimulus familiarity over the recording session. The curves show the average 
response to 20 initially novel stimuli tested for each cell (each cell was tested with a new 
set). The solid line indicates the responses to the stimuli when they were samples, the dotted 
line indicates responses to the same stimuli when they were matching test items at the end 
of each trial, and the dashed line gives the baseline (prestimulus) firing rate. Trial number 
is measured from the first trial of a given stimulus. The staircase appearance results from 
two different numbers of intervening trials between successive presentations of a given novel 
stimulus as the sample. Three or 35 trials, in alternation, intervened before a given stimulus 
was repeated as the sample on another trial. Responses declined most when only 3 trials 
intervened but the decrement was retained ("remembered") even when 35 trials intervened. 
The greater decrement after 3 trials demonstrates that the decrement is stimulus-specific 
and cannot be explained by simple fatigue. If the cells were simply becoming fatigued, the 
decrement should have been greater after 35 intervening trials, as the cells were stimulated 
by far more stimuli during that interval than when only three trials intervened. (Adapted 
from Li et al. 1993) 

ing contextual information (the circumstances in which the stimuli were 
seen, for example), they might mediate, in part, an explicit memory of the 
familiar stimulus. 

On the other hand, the adaptive filtering mechanism might mediate 
priming phenomena, which reflect implicit memory. In a typical priming 
task for visual patterns, subjects are first shown a list of drawings, without 
any instruction to remember them. Later, they are given a picture recogni- 
tion task, and their performance is usually faster or better for the stimuli 
that had been seen before, even if they have no conscious memory of hav- 
ing seen them (Schacter et al. 1990, 1991; Squire 1992). It is commonly 
believed that priming is due to a tendency of neuronal populations to be 
more easily activated if they have been activated previously (see chapter 9 
by Posner and Rothbart). For individual cells, we have shown that this is 
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not the case, at least in IT cortex. However, as we suggest above, it is the 
elimination of certain cells from the activated population that may be im- 
portant in forming the underlying neuronal representation of a stimulus. 
Repetition may speed the construction of this critical population, resulting 
in faster and better recognition when a stimulus is repeated. Results from 
a recent PET study of priming are consistent with the idea that priming is 
associated with a reduction of activity in the cortex. Subjects performing 
a word-stem completion task showed less activation of temporal cortex 
when they had previously seen the words (Squire et al. 1992). 

ADAPTIVE FILTERING CELLS AND BEHAVIOR 

Could the responses of IT cells actually support the animal's behavioral 
performance in recency memory tasks or in tasks requiring judgments of 
novelty and familiarity? We have used both simulated neural networks 
and statistical models (discriminant analysis) to classify stimuli as match- 
ing or nonmatching based on the trial-by-trial responses of individual IT 
neurons (Miller et al. 1993). The networks or models are trained on half 
the data and then applied to the other half, for cross-validation. Although 
no individual cell performs as well as the animal as a whole, we find that 
we can, in principle, achieve the animal's behavioral level of performance 
by averaging the responses of only 25 neurons. We would expect to ob- 
tain similar results from the novelty-familiarity data. Thus, mnemonic 
information equivalent to the animal as a whole is apparently distributed 
down to the level of small neural populations. Comparable results have 
been found in area MT for motion information (Britten et al. 1992). 

The classification model we used assumes that the decision networks 
which interpret the outputs of IT cells "know" (or have been trained on) 
the match-nonmatch response distributions of the cells for specific stimuli. 
One can avoid this assumption if the decision network is supplied with 
information from both the adaptive cells in IT as well as from the cells that 
provide purely sensory information. The responses of these latter cells, 
which make up about 50% of the total population of cells in IT cortex, would 
provide a stable sensory "referent" for comparison with responses of the 
adaptive cells. As shown in figure 4.3, the difference in response of the two 
populations would be proportional to the similarity of the current stimulus 
to stimuli held in either short- or long-term memory. If the responses 
of the minority of cells showing match enhancement were added to the 
sensory pool, the magnitude of the response difference would be even 
larger, resulting in a better signal-to-noise ratio. 

Beyond its role in memory tasks, we believe that the activation level 
of adaptive cells in IT cortex (or the mismatch signal between the adap- 
tive cells and the sensory cells) may be an important drive on attentional 
and orienting systems. Although no individual cells in IT cortex appear 
to be either "novelty detectors" or "unexpected stimulus detectors," the 
summed activity of adaptive cells in IT cortex could provide a signal to 
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Figure 4.3 Model of how sensory cells and adaptive mnemonic filter cells in IT cortex con- 
tribute to novelty or match-nonmatch decisions. The plus and minus are meant to indicate 
that the outputs of the adaptive and sensory cells work in opposition, and are not meant to 
imply excitation or inhibition. (Adapted from Miller et al. 1993) 

other systems that the current stimulus is new and deserving of attention. 
Conversely, it could be regarded as a mechanism for discounting the fa- 
miliar and the expected. As Barlow points out in chapter 1, discounting 
the expected features of the incoming sensory messages seems to be an es- 
sential element of effective learning. As the organism orients and attends 
to a new stimulus, activated IT cell populations shrink to the critical set 
necessary for representing the stimulus. This shrinkage reduces the overall 
activity in IT cortex, reducing the drive on the orienting system and freeing 
the organism's attention for other, competing, stimuli. Thus, it is behavior 
that completes the loop. One could view this as a memory-guided system 
for self-directed behavior, whose goal is to incorporate knowledge about 
new stimuli into the structure of the cortex (see figure 4.4). Carpenter 
and Grossberg's (1987) Adaptive Resonance Theory (ART) makes use of 
a similar sort of feedback between memory and attention as a means for 
adaptively adjusting the categories in which items are stored in memory. 

The adaptive filtering mechanism suggests that attention will be auto- 
matically biased toward stimuli that are novel or have not been recently 
seen. However, it is frequently necessary to voluntarily attend to familiar 
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Figure 4.4 Interaction between systems for memory and attention. In this scheme, a stimulus 
that is novel or has not been recently seen will activate adaptive memory filter cells in IT 
cortex, which in turn will drive attentional and orienting systems. This will lead to increased 
attention and contact with the new stimulus, causing adaptation of synaptic weights in IT 
cortex, reducing the activation of the cells. When the novelty of the new stimulus and the 
activation of IT cortex is sufficiently diminished, the system will be ready to process other 
competing stimuli. (Adapted from Li et al. 1993) 

or expected stimuli and even suppress attention to novel stimuli (e.g., when 
looking for a pariticular item or when trying to "pay attention"). How this 
might be accomplished neurally is considered in the next section. 

ACTIVE MEMORY MECHANISMS 

It is commonly assumed that the standard matching to sample task that we 
and others have used is solved by holding the sample, A, "in mind" (i.e., 
in some short term storage buffer) during the delay and comparing each 
of the test items to it. That is, the memory mechanism is thought to require 
an active process, or "working memory," linked specifically to the sample 
stimulus, much the way one might rehearse a new phone number. How- 
ever, in the standard form of the task, the sample stimulus (e.g., "A") is the 
only stimulus repeated within a given trial (e.g., "A B C D A"). Conceivably, 
then, the task might as well be solved by a neural mechanism that auto- 
matically detects any stimulus repetition (e.g., "A A"), without requiring 
active maintenance of the sample stimulus memory. Does the adaptive fil- 
tering mechanism function automatically, or does it require active storage 
of the sample item? To distinguish between these possibilities, we record 
from IT neurons in two versions of the matching to sample task (Miller and 
Desimone 1994). One version is the same as used previously, which may 
be solved by detecting any repetition within a trial ("A B C A"). In the other 
version, intervening nonmatch items during the delay period may match 
each other, but the animal must ignore these and respond only to the one 
item that matches the sample (e.g., "A B B A," where only A is a match). 
We will refer to these as the standard and ABBA versions, respectively. 

Interestingly, animals initially taught the standard task respond to the 
repeated nonmatch stimuli when first presented with ABBA trials (i.e., they 
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respond to the second occurrence of "B"). The animals therefore apparently 
learn to solve the task using a simple repetition rule. After additional train- 
ing, animals eventually learn to match items to only the sample stimulus. 

After the monkeys have learned the ABBA task, we still find adaptive 
filtering cells whose responses are suppressed to the matching stimulus. 
However, the ABBA trials reveal that the responses of these cells are also 
suppressed to the intervening stimuli that match each other. Thus, the 
adaptive filtering mechanism seems to be sensitive to simple repetition. It 
should be noted that human observers easily notice the repeated interven- 
ing stimuli when performing the ABBA task, at the same time that they are 
able to detect the one stimulus that matches the sample. 

By contrast, another class of IT cells gives enhanced responses to match- 
ing stimuli (which was rarely found prior to the training on the ABBA trials) 
but only to the one stimulus that matches the sample item on a given trial, 
that is, the one stimulus the animal is actively holding in memory. Simple 
stimulus repetition has no effect on these cells, as repeated intervening 
items show no enhancement. These cells apparently can be dynamically 
"biased" to respond to a specific stimulus, and this bias can span many sec- 
onds and at least several intervening stimuli. Such a bias is presumably me- 
diated by "back projections" to IT cortex (see chapter 2 by Churchland, Ra- 
machandran, and Sejnowski and chapter 12 by Ullman), possibly from pre- 
frontal cortex. The fact that the bias is apparently under the animal's control 
suggests a relation to the active components of "working memory." In this 
case, IT cortex appears to be the site of dual short-term memory mech- 
anisms operating in parallel: a suppressive mechanism underlying the 
automatic detection of repetition and an enhancement mechanism under- 
lying working memory. In the next section, we consider how these different 
memory mechanisms function when viewing a typical crowded scene. 

VISUAL SEARCH 

In visual search for a particular object, the representation of the object in 
memory is used to guide the search of the external scene (e.g., searching 
for a face in a crowd). This type of search is often distinguished from 
"preattentive" or "pop-out" tasks, where a subject finds a stimulus that 
stands out from its background on the basis of a strong featural cue such as 
color or luminance. Most agree that such stimuli are extracted from their 
background based on a parallel process operating over the full display. 
However, there are two competing notions of how search of the former 
sort takes place. We will describe the two extremes, but hybrid models 
are possible. According to the serial search account, the scene is searched 
element by element by a "spotlight" of attention (Bergen and Julesz 1983; 
Treisman 1988). The element selected by attention is evaluated by a recog- 
nition memory process, which is terminated when the target is found. As 
elements are added to the scene, it takes longer and longer to find the tar- 
get. By contrast, according to parallel search accounts, all elements of the 
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scene are processed in parallel and compete for access to decisional mecha- 
nisms, attentional mechanisms, and so on (Duncan and Humphreys 1989; 
Bundesen 1992). The mnemonic template of the searched-for object biases 
the competition in favor of the neurons coding that particular object, much 
the same way that a strong color difference may bias the competition to- 
wards a unique element in a "pop-out" display. As elements are added 
to the scene, it takes longer to find the target because of the reduction in 
signal-to-noise ratio. Attentional scrutiny may follow the localization of 
the target according to this view, but is not essential to find it. We have 
recently begun to investigate the neural basis of this type of visual search 
in anterior IT cortex (Chelazzi et al. 1993). Although we are not yet able to 
provide a full account of the mechanism of search, the results show how 
memory and attention interact in IT cortex. 

Monkeys are presented with a complex picture (the cue) at the center of 
gaze to hold in memory. The cue is always either a "good" stimulus that 
elicits a strong response from the cell or a "poor" stimulus that elicits little 
or no response. Both good and poor cues are highly familiar to the monkey. 
After a delay, the good stimulus and the poor stimulus are both presented 
simultaneously as choice stimuli, at extrafoveal locations in the contralat- 
eral visual field. Because of the large receptive fields of IT neurons, the two 
choice stimulus locations are typically both within the receptive field. The 
animal is trained to make a saccadic eye movement to the target stimulus 
that matches the cue, ignoring the nonmatching stimulus (the "distractor"). 
Thus, unlike in our previous short-term memory experiments, the animal 
does not have to indicate whether a matching stimulus was present (one 
was always present in the choice array), but rather must find the matching 
stimulus, or separate it from the nonmatching stimulus in the array. Any 
suppression of response to the matching stimulus in this task might place 
it at a competitive disadvantage to the nonmatching stimulus, possibly 
interfering with its ability to capture attention. A further difference is that 
the cue and the matching choice stimulus are never presented at the same 
retinal location, that is, the cue and matching target never activate the same 
retinal elements. It is possible, therefore, that the animal must compare the 
choice stimuli with a more abstract representation of the cue. 

We find that the cue typically initiates activity that persists through the 
following delay period among the neurons that are tuned to the cue's 
features. Although the frequency of this maintained activity is relatively 
low (average = 7.9 Hz following best cue and 5.6 Hz following worst cue) 
it is much more common than in our previous memory experiments and 
lasts for a considerable time (at least 3 sec, the maximum delay tested). 

In addition to information about the cue, IT cells communicate informa- 
tion about the target. Relative to the preceding delay activity, the initial 
population response to the array is about the same regardless of which 
choice stimulus is the target. By contrast, the late phase of the response 
changes dramatically depending on whether the animal is about to make 
an eye movement to the good or poor stimulus. If the target is the good 
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Figure 4.5 Average firing rates of IT cells to choice arrays in a visual search task, in which 
either the good (solid lines) or poor (dashed lines) stimulus was the target. («) Responses 

time-locked to array onset. Average time of saccade onset, 306 msec after array onset, is 
indicated by an asterisk, (b) Same data as in (a), but responses are time-locked to saccade 
onset. Data in all graphs are from trials in which the target and distractor appeared in the 
hemifield contralateral to the recorded cell, whether the target was in the upper quadrant 
and the distractor in the lower, or vice versa. (Adapted from Chelazzi et al. 1993) 

stimulus, the response remains high, but if the target is the poor stimulus, 
the response to the good distractor stimulus is suppressed even though it 
is still within the receptive field (figure 4.5). This suppression of response 
begins about 200 msec after the onset of the choice array, or about 90-120 
msec before the start of the eye movement. The cells respond as though 
100 msec or so before the eye movement, the target stimulus "captures" the 
response of the cells, so that neuronal activity in IT would reflects only the 
target's properties. This target information in IT cortex is available to drive 
attentional as well as oculomotor systems, resulting in eye movements to 
the chosen object (Glimcher and Sparks 1992). More generally, networks 
in IT cortex may select the visual objects that are acted on by attentional 
and motor systems when selection is guided by object features. 

These effects are found when target and distractor are both within the 
hemifield contralateral to the recorded neuron. By contrast, there is little 
effect on responses prior to the eye movement when the stimuli are sepa- 
rated by the vertical meridian. Moran and Desimone (unpublished data) 
and Sato (1988) also found reduced effects of spatially directed attention 
in IT cortex when attended and ignored stimuli were located in opposite 
hemifields, suggesting that stimuli in the two hemifields may be processed 
largely independently. Although IT neurons often have bilateral fields, the 
response to stimuli in the contralateral hemifield is typically much larger 
than to stimuli in the ipsilateral hemifield. When both choice stimuli are in 
the contralateral hemifield, a further surprising result is that many IT cells 
respond differently depending on the relative spatial locations of target 
and distractor. Thus, some spatial (retinal) information appears to be re- 
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Figure 4.6 Upper diagrams are schematic representations of activity in a population of IT 
neurons during performance of the task. Each dot represents an individual cell, and the size 
of the dot indicates relative firing rate. Lower diagrams illustrate the visual displays during 
the relevant portions of the task. A specific cue activates the subpopulation of IT cells tuned 
to any of the various features of the cue. During the delay period, this subpopulation remains 
more active than other cells. When the choice array first appears, cells are initially activated by 
whichever stimulus they prefer in the array, regardless of which is the target. In some cases the 
initial responses are identical but in others the response to the array with the good target starts 
off at a higher rate because of persisting activity from the delay. Later, within 90-120 msec of 
saccade onset, the cells tuned to the properties of the target stimulus remain active, whereas 
cells tuned to the properties of the distractor are suppressed. Whether this final divergence 
in activation results from competitive interactions within IT cortex (e.g., through mutual 
inhibition between cells selective for target and distractor) or from interactions between IT 
cortex and an attentional control system is not yet known. (Adapted from Chelazzi et al. 1993) 

tained in IT cortex, despite the large receptive fields. Retinal location may 
simply be another coarsely coded feature in IT cortex and thus be available 
to oculomotor systems for directing the eyes. 

It seems as though we have narrowed the selection component of vi- 
sual search to a 200-msec period following the onset of a peripheral search 
array. By the end of this time, neural responses begin to communicate 
almost exclusively the properties of the chosen target. Within this criti- 
cal 200-msec period, we have observed the same mnemonic phenomena 
we observed in IT cortex in the memory tasks with a single stimulus in 
the field, namely suppressed responses when the target array contains a 
stimulus that matches the previously seen cue (adaptive filtering cells), 
enhanced responses (for other cells) when the good stimulus is the target, 
and elevated activity in the delay interval when the good stimulus is the 
cue/target. Any or all of these effects on responses may bias competi- 
tion within IT networks such that only those cells coding the target are 
responding by the end of 200 msec (figure 4.6). 

It is particularly intriguing that the maintained activity during the delay 
interval is much more pronounced than in the previous memory experi- 
ments and, in some conditions, it persists into the initial response to the 
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choice array. If the monkey is given the good stimulus as a cue, for example, 
the cell often shows higher activity during the delay, increasing the initial 
response to the array with the good stimulus as the target. This heightened 
activity may give those cells tuned to the properties of the target a compet- 
itive advantage within IT, causing them to win a competition against the 
cells tuned to the properties of the distractor. Such a mechanism would 
be consistent with the "parallel search" model described above. Increas- 
ing the steady-state firing rate of a population of cells coding a particular 
stimulus may be a way of segregating, or binding, those cells that will con- 
tribute the most to a later perceptual decision. Consistent with this idea, 
we have recently found evidence for sustained firing of V4 cells when at- 
tention is directed to the center of the cell's receptive field (Luck et al. 1993). 
Alternatively, the higher steady-state activity might turn out to be simply a 
reflection of greater synchronous firing among the relevant population of 
neurons, in which case the synchronicity itself could be the binding mech- 
anism, not the maintained activity (see chapter 5 by Koch and Crick and 
chapter 10 by Singer). 

Finally, although we have described the responses of IT cells as though 
all of the critical interactions take place within IT cortex itself, it is possible 
that the ultimate suppression of IT responses to distractors is due to inter- 
actions with attentional systems outside of IT cortex. A spatial attention 
system could, for example, gate inputs into IT from one stimulus in the 
array at a time. The appropriate modulation of IT responses by the joint 
action of the selected stimulus and the stimulus held in memory would 
constitute "recognition," terminating the scan. Such a mechanism would 
be consistent with the "serial scan" model described above. Anatomical 
considerations dictate that such a mechanism could operate in either of two 
ways (Desimone 1992): either by gating the inputs into IT cells (Anderson 
and Van Essen 1987) or by gating the cells themselves on and off (Crick and 
Koch 1990b; Niebur, Koch, and Rosin 1993). Different approaches to atten- 
tional gating are described in chapter 5 by Koch and Crick and chapter 13 
by Van Essen, Anderson, and Olshausen. 

CONCLUSIONS 

It is natural to think of attention as the gateway to memory, as we typically 
remember only those things that we attend to. Correspondingly, ignored 
stimuli are filtered from the receptive fields of extrastriate neurons. In- 
formation cannot be remembered if it has been removed from the visual 
system. However, as we have seen, the contents of memory also guide our 
attention. Memory for objects is reflected both in the maintained activity 
of IT cells in the absence of any stimuli as well as in the responses of cells 
to current stimuli. New or not-recently-seen stimuli cause the greatest ac- 
tivation of adaptive filtering cells in IT cortex, and the difference in overall 
activity between these cells and sensory cells unaffected by memory may 
be one of the signals that drives attentional mechanisms. This temporal 
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"figure-ground" mechanism most likely builds up incrementally within 
the visual cortex. As the organism attends to the new inputs, activity in 
the adaptive filtering cells declines, reducing the drive on attentional sys- 
tems. Many times, though, we need to search for a particular familiar object 
and suppress orienting to novel ones. In this case, top-down mechanisms 
are able to bias those cells that code the searched-for item, resulting in en- 
hanced activation when the stimulus occurs. An even more pronounced 
case of memory-guided attention occurs in visual search, where the rep- 
resentation of a target item in memory is used to guide the search of an 
external scene containing many stimuli. Within 200 msec, the interaction 
between the neural representation of the external array and the memory 
trace of the target results in the target "capturing" the responses of IT cells. 
Information about nontargets is almost completely suppressed. Thus, in- 
teractions between memory and attention in IT cortex result in the selection 
of objects that are foveated and acted on. 
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Some Further Ideas Regarding the Neuronal 
Basis of Awareness 

Christof Koch and Francis Crick 

INTRODUCTION 

What goes on in our head while we perceive a seagull gliding effortlessly 
through the air? And what happens if we drive down the freeway, con- 
centrating on an upcoming lecture and barely aware of our visual sur- 
roundings? While our "mind" is occupied with perceiving the seagull or 
contemplating some future event, our brain continues to perform a series of 
quite complex functions such as climbing over rocks on a beach or maneu- 
vering a car. What causes one event to capture our attention (i.e., to have 
access to an privileged internal state that is central to our conscious expe- 
rience), while the myriads of other sensory events that we are continously 
being bombarded with never reach awareness? Because we are neurosci- 
entists, we are couching this question in a radical reductionist framework: 
What is the correlate of awareness (and ultimately consciousness) at the 
level of nerve cells? Expressed differently: What telltale signs should the 
electrophysiologist look for when searching for the neuronal correlate of 
awareness? A particular type of neuron in a particular part of the brain? 
A special form of neuronal electrical activity? 

With very few exceptions, almost no modern neuroscientist has asked 
this sort of question, let alone provided an answer. The problem of "aware- 
ness" is either felt to be purely philosophical or too elusive to study ex- 
perimentally. In our opinion, such timidity in the face of one of the most 
puzzling questions that we can ask is ridiculous! Given the pre-Copernican 
state of the field, it is too early for any definite theory of the neuronal basis 
of awareness. Yet we believe that the time is ripe to provide at least a 
theoretical framework to allow us to seek answers using the well-proven 
tools of the neuroscience, in particular electrophysiology! 

We have already (Crick and Koch 1990a,b, 1992) described our general 
approach to the problem of visual awareness. In brief, we believe the next 
important step is to find experimentally the neural correlates of various 
aspects of visual awareness, that is, how best to explain our subjective 
mental experience in terms of the behavior of large groups of nerve cells. At 
this early stage in our investigation we will not worry too much about many 
fascinating but at the moment unrewarding aspects of the problem, such as 



the exact function of visual awareness, what species do and what species 
do not have awareness, different forms of awareness (such as dreams and 
visual imagination), and the deep problem of qualia. We here restrict our 
attention mainly to results on man and on the macaque monkey, since their 
visual systems appear to be somewhat similar and, at the moment, we 
cannot obtain all the information we need from either of them separately. 
When this information is lacking we will refer to related results on the cat. 

Our main assumption is that, at any moment, the firing of some but not 
all the neurons in what we call the visual cortical system (which includes 
the neocortex and the hippocampus as well as a number of directly as- 
sociated structures, such as the visual parts of the thalamus and possibly 
the claustrum) correlates with visual awareness. Yet, visual awareness is 
highly unlikely to be caused by the firing of all neurons in this system that 
happen to respond above their background rate at any particular moment. 
If at any given point in time only 1% of all the neurons in cortex fire signif- 
icantly, about one billion cells in sensory, motor, and association cortices 
would be active and we would never be able to distinguish any particular 
event out of this vast sea of active nerve cells. We strongly expect that the 
majority of neurons will be involved in doing computations, while only a 
much smaller number will express the results of these computations. It is 
probably that we become aware of only the latter. There is already prelim- 
inary evidence from the study of the firing of neurons during binocular 
rivalry that in area MT of the macaque monkey only a fraction of neu- 
rons follows the monkey's percept (Logothetis and Schall 1989). We can 
thus usefully ask the question: What are the essential differences between 
those neurons whose firing does correlate with the visual percept and those 
whose firing does not? Are the "awareness" neurons of any particular cell 
type? Exactly where are they located, how are they connected, and is there 
anything special about their patterns of firing? 

To look for such neurons it may be useful to have some tentative ideas as 
to where they are and how they might behave, if only to guide experiments. 
The following suggestions are offered in that spirit. 

In our previous papers (Crick and Koch 1990a, 1992) we outlined the 
ideas of psychologists that consciousness involves a form of short-lasting 
memory, possibly including both iconic as well as short-term memory, and 
that it appears to be greatly enriched by selective attention. Accordingly, 
we need to search for a mechanism that mediates selective visual attention 
as well as a short form of visual memory. 

We also explained that there does not appear to be one single cortical 
area whose activity corresponds to what we see. The necessary visual 
information is distributed over many cortical areas. Thus, there has to 
be a process that in some way binds together the neural activity in many 
different places to form our unitary view of an object or event in the visual 
scene. How this is done is often referred to as the binding problem. 

It is important to distinguish at least three different forms of binding 
(Crick and Koch 1990a). A simple cell, responding best to motion perpen- 
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dicular to its optimal orientation, can be thought to exemplify a low-level 
type of binding (at least three features, spatial location, orientation and di- 
rection of motion are combined in one such cell). The second type of bind- 
ing is acquired by learning a small class of ecological very important stim- 
uli, such as faces (or letters for humans). Due to repeated exposure to these 
patterns, a set of neurons has become uniquely responsive to just these 
stimuli. Because both of these mechanisms have only a fairly limited ca- 
pacity, a third type of very rapid and transient form of binding with a prac- 
tically infinite capacity is proposed. It seems probable that an attentional 
mechanism is usually necessary for this rapid and transient binding to oc- 
cur. This rapid form of binding, can, by overlearning, eventually be carried 
out by a specialized set of neurons (i.e., by the second form of binding). 

We also hypothesized that in addition to vivid visual awareness there 
may be an extremely transient form of awareness that symbolizes only 
rather primitive features without binding them together. We will return to 
this in the last section. 

OUR THEORETICAL FRAMEWORK 

It may be useful to state our 'fundamental' assumptions at the beginning. 
We assume the following: 

1. To be aware of an object or an event the brain has to construct an ex- 
plicit, multilevel, symbolic interpretation of part of the visual scene. By explicit 
we mean that one such neuron (or a few closely associated ones) must be 
firing above background at that particular time in response to the feature 
they symbolize. The pattern of color dots on a TV screen, for instance, 
contains an "implicit" representation of, say, a person's face, but only the 
dots and their locations are made explicit here; an explicit face representa- 
tion would correspond to a light that is wired up in such a manner that it 
responds whenever a face appears somewhere on the TV screen. By mul- 
tilevel we mean, in psychological terms, different levels such as those that 
correspond, for example, to lines, eyes, or faces. In neurological terms we 
mean, loosely, the different levels in the visual hierarchy (see Felleman and 
Van Essen 1991). By symbolic, as applied to a neuron, we mean that neu- 
ron's firing is strongly correlated with some "feature" of the visual world 
and thus symbolizes it (this use of the word "symbol" should not be taken 
to imply the existence of a homunculus who is looking at the symbol). The 
meaning of such a symbol depends not only on the neuron's receptive field 
(i.e., what visual features the neuron responds to) but also on what other 
neurons it projects to (its projective field). Whether a neural symbol is best 
thought of as a scalar (one neuron) or a vector (a group of closely associated 
neurons as in population coding in the superior colliculus; Lee et al. 1988) 
is a difficult question that we shall not discuss here. 

2. Awareness results from the firing of a coordinated subset of cortical (and 
possible thalamic) neurons that fire in some special manner for a certain 
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length of time, probably for at least 100 or 200 msec. This firing needs to 
activate some type of short-term memory by either strengthening certain 
synapses or maintaining an elevated firing rate or both. Experimental 
studies involving short-term memory tasks in the temporal lobe of the 
monkey (Fuster and Jervey 1981) have provided evidence of elevated firing 
rates for the duration of the interval during which an item needs to be 
remembered. It is at present not possible to assess empirically to what 
extent synapses undergo a short-term change during a memory task in the 
animal. We are assuming that the semiglobal activity that corresponds to 
awareness has to last for some minimum time (of the order of 100 msec) 
and that events within that time window are treated by the brain as approximate!}/ 
simultaneous. An example would be the flashing for 20 msec of a red light 
followed immediately by 20 msec of a green light in the same position. 
The observer sees a transient yellow light (corresponding to the mixture 
red and green) and not a red light changing into a green light (Efron 1973). 
Other psychophysical evidence shows that visual stimuli of less than 120- 
130 msec produce perceptions having a subjective duration identical to 
those produced by stimuli of 120-130 msec (Efron 1970a,b). 

3. Unless a neuron has an elevated firing rate and unless it fires as a mem- 
ber of such an (usually temporary) assembly, its firing will not directly 
symbolize some feature of awareness at that moment. 

These ideas, taken together, place restrictions on what sort of changes 
can reach awareness. An example would be the awareness of movement 
in the visual scene. Both physiological and psychophysical studies have 
shown that movement is extracted early in the visual system as a primitive 
(by the so-called short-range motion system; Braddick 1980). We can be 
aware that something has moved (but not what has moved) because there 
are neurons whose firing symbolizes movement as such, being activated 
by certain changes in luminance. To know what has moved (as opposed 
to a mere change of luminance) there must be active neurons somewhere 
in the brain that symbolize, by their firing, that there has been a change of 
that particular character. In any instance, such neurons may be present in 
the brain but it cannot be assumed that they must be there. 

3.1 As a corollary, we formulate our activity principle: Underlying every 
direct perception is a group of neurons strongly firing in response to that 
stimulus that come to symbolize it. An example is the "Kanizsa triangle" 
illusion, in which three Pacmen are situated at the corners of an triangle, 
with their open mouths facing each other. Human observers see a white 
triangle with illusory lines, even though the intensity is constant between 
the Pacmen. As reported by von der Heydt et al. (1984), cells in V2 of the 
awake money strongly respond to such illusory lines. Another case is the 
filling-in of the blind spot in the retina (Fiorani et al. 1992). Since we do 
not have neurons that explicitly represent the blind spot and events within 
it, we are not aware of small objects whose image projects onto them and 
can only infer such objects indirectly. 

96 Koch and Crick 



A semiglobal activity that corresponds to awareness does not itself sym- 
bolize a change within that short period of awareness unless such a change 
is made explicitly by some neurons whose firing makes up the semiglobal 
activity (for what else but another group of neurons can express the notion 
that a change has occurred?). These ideas are very counterintuitive and are 
not easy to grasp on first reading, since the "fallacy of the homunculus" 
slips in all too easily if one does not watch out for it. 

3.2 It follows that active neurons in the cortical system that do not take 
part in the semiglobal activity at the moment can still lead to behavioral 
changes but without being associated with awareness. These neurons are 
responsible for the large class of phenomena that bypass awareness in 
normal subjects, such as automatic processes, priming, subliminal percep- 
tion, learning without awareness, and others (Tulving and Schacter 1990; 
Kihlstrom 1987) or take part in the computations leading up to awareness. 
In fact, we suspect that the majority of neurons in the cortical system at 
any given time are not directly associated with awareness! 
The elevated firing activity of these neurons also, of course, explain blind- 
sight and similar clinical phenomena where patients with cortical blindness 
can point fairly accurately to the position of objects in their blind visual 
field (or detect motion or color) while strenuously denying that they see 
anything (Weiskrantz 1986; Störig and Cowey 1991). 

We have argued (from the experiments on binocular rivalry) that the 
firing of some cortical neurons does not correlate with the percept. It is 
conceivable that all cortical neurons may be capable of participating in the 
representation of one percept or another, though not necessarily doing so 
for all percepts. The secret of visual awareness would then be the type of 
activity of a temporary subset of them, consisting of all those cortical neu- 
rons that represent that particular percept at that moment. An alternative 
hypothesis is that there are special sets of "awareness" neurons somewhere 
in cortex (for instance, layer 5 bursting cells; see below). Awareness would 
then result from the activity of these special neurons. 

In any case, it is crucial to ask what exactly is the detailed nature of the 
particular type of neuronal activity giving rise to awareness? Does it in- 
volve oscillatory activity, synchronized firing, or bursts of high-frequency 
activity? And how can this activity be decoded? 

THE NEURONAL SPIKE CODE OF AWARENESS 

Earlier, we postulated that awareness is mediated by a coordinated subset 
of cortical (and possibly also thalamic) neurons firing in some special man- 
ner for a certain length of time. How can this coordinated subset of cells 
be formed—and disbanded—quickly? Given that the only rapid mode of 
communication among cortical cells involves action potentials, at least four 
possibilities for defining membership in this assembly using spikes come to 
mind: high-frequency activity (rate code), oscillations in the 40 Hz range, 
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bursting, and synchronized firing activity. We do not discuss here the later 
idea, that all cortical neurons whose detailed spike patterns are temporally 
synchronized to each other, firing action potentials at about the same time, 
constitute the neuronal assemply coding for awareness, but refer the inter- 
ested reader instead to chapter 10 by Singer on this topic (see also Abeles 
1991). Singer also discusses the relationship between oscillations in the 7 
range and synchronization. 

It is possible, of course, that the brain uses much more complex spa- 
tiotemporal neuronal activity patterns than discussed here to encode as- 
pects of awareness. The principal component analysis of spike trains in the 
awake monkey (Richmond and Optican 1990,1992) suggests such a possi- 
ble coding. We feel that at this preliminary stage in our investigations it is 
best to first investigate the more obvious possibilities. 

When discussing these different scenarios, it is important to keep in mind 
that at the psychological level, awareness of an event or object appears to 
involve attending to this object and placing it into short-term memory. We 
must therefore ultimately find a link between the different forms of con- 
stituting a neuronal assembly and short-term or working memory (Crick 
and Koch 1990a). 

Rate Coding 

The simplest encoding uses mean firing frequency. Visual awareness of 
objects is correlated with all neurons, say in inferior temporal (IT) cortex, 
that fire above a certain threshold, irrespective of the temporal charac- 
ter of the spike train. This assumes that all IT neurons corresponding to 
nonattended features are suppressed, as suggested by the attentional ex- 
periment of Moran and Desimone (1985) in monkey IT In other words, 
at any given time only those neurons whose features correspond to the 
current content of awareness are highly active, while the firing of the vast 
majority of neurons is not significantly elevated above their background 
rate. Here the binding problem is solved trivially by virtue of the fact that 
only those neurons corresponding to the attended event or object are active 
and the problem of incorrect binding does not arise. 

The beautiful experiments carried out by Newsome and his colleagues 
(Newsome et al. 1989; Britten et al. 1992) support the notion that the 
firing rate of MT cells directly encode motion perception. Analyzing the 
total number of spikes discharged by a cell during the 2 sec long exper- 
iment allows an "ideal" observer to mimic the observed psychophysical 
performance of the animal to a remarkable extent. In these experiments, 
the direction and speed of the random dot motion stimulus used were 
optimized for each cell recorded from. 

As shown by the Logothetis and Schall (1989) experiment, only a mi- 
nority of neurons in MT follow the changing percept associated with the 
binocular rivalrous stimulus. Thus, it may well be possible that awareness 
only correlates with high-frequency activity in parts of cortex further re- 
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moved from the sensory periphery, such as V4, IT, or prefrontal cortex due 
to relevant differences in circuitry or biophysics (only enabling neurons in 
these areas, for instance, to store short-term memory). In our opinion it is 
unlikely that cells behave in such an all-of-none manner in higher cortical 
areas, that is firing only if they belong to the neuronal assembly encoding 
awareness. 

The major computational disadvantage of rate encoding for solving the 
binding problem is the associated loss in bandwidth. Using a sort of tem- 
poral code allows the superposition of information coded via the firing fre- 
quency (i.e., orientation, speed, hue, etc.), and information coded in time, 
here that the neurons are part of a particular assembly (von der Malsburg 
1981; von der Malsburg and Schneider 1986). 

Neuronal Oscillations 

In our original publication on this topic (Crick and Koch 1990a), we hy- 
pothesized that all neurons corresponding to various aspects of the object 
the observer is currently directing attention to fire in an oscillatory and 
semisynchronous manner, binding them together. Chapter 10 by Singer 
discusses the background and current status of these oscillations (see also 
Koch 1993). We here briefly highlight their status with respect to cat and 
monkey cortex. 

Oscillations in the Cat Semisynchronous oscillations in local field poten- 
tials as well as multi- and single-unit activity in the 30-70 Hz range were 
reported in the first visual (VI) area of the lightly anesthetized cat (Eckhorn 
etal. 1988; Gray and Singer 1989; Gray et al. 1989). These oscillations were 
subsequently shown to be present in awake kittens and more recently in 
alert cats. 

The 40-Hz oscillations are most clearly seen in the local field potentials, 
rather than in individual neuron, although recently, Jagadeesh et al. (1992) 
using in vivo patch-clamping, reported that the intracellular membrane po- 
tential of cells in cat visual cortex oscillate in the 40 Hz range. About 10% 
of simple cells, but more than half of all recorded complex cells show oscil- 
lations with a mean value around 50 Hz. The oscillations may last for rela- 
tively short periods (such as 200 msec) and vary in frequency between trials, 
so that averaging over longer periods may make them almost invisible. The 
oscillations themselves are not locked to the stimulus. The site of origin of 
these oscillations is still controversial. Two intracellular studies have re- 
vealed depolarization-dependent subthreshold oscillations in cortical cells 
in the 40 Hz range (Llinas et al. 1991; Nunez et al. 1992). Yet, strong 50-Hz 
oscillations have been seen in cat geniculate cells and may originate already 
in the retina (Ghose and Freeman 1992); furthermore, subthreshold oscilla- 
tions in the 20-40 Hz band can be evoked by intracellular current injections 
in cat thalamocortical relay cells (Steriade et al. 1991). It appears that 40-Hz 
oscillations can be generated at a number of sites in the nervous system. 

99 Some Further Ideas Regarding the Neuronal Basis of Awareness 



When recording from two distinct sites in cortex, the oscillations can 
be phase-locked with a phase-shift of ±3 msec around the origin (Engel 
et al. 1990; see also chapter 10 by Singer). When the distance between 
the two sites is small, the cross-correlation depends little on the preferred 
orientation of the units being recorded from. However, at distances up 
to 10 mm and across the vertical midline (i.e., when recording from the 
two cortical hemispheres; Engel et al. 1991b) the cross-correlation shows 
a significant peak only if the two stimuli are spatially aligned with each 
other. It can be shown that stimulation of the two sites by an elongated 
single bar leads to strong synchronization among the firing activities at the 
two sites, while stimulation with two separate, but still aligned, bars leads 
to a reduced cross-correlogram (Gray et al. 1990). This has yet to be shown 
for the alert animal. 

The fact that the 40-Hz oscillations are seen in lightly anesthetized cats is 
not by itself fatal to our theory, as the anesthetic may remove or reduce some 
other essential aspect of visual awareness, such as short-term memory. 

Oscillations in the Monkey There has, so far, been much less work on the 
oscillations in monkey visual cortex. Livingstone (1991) has seen strong 
oscillations in both single-unit as well as local field potentials in VI in the 
anesthetized monkey (see also Freeman and van Dijk 1987). Recording 
from two sites with two electrodes, she often observes phase-locked oscil- 
lations using either a single bar or two bars. Kreiter and Singer (1992) report 
brief periods of highly oscillatory activity in multiunit data in the awake 
and fixating monkey in area MT. Based on their criteria, 58% of units show 
significant oscillatory activity in the 30-60 Hz range. Oscillatory response 
episodes are often of short duration (< 300 msec), do not occur on each trial, 
and can vary in their oscillation frequency both within and between trials 
(Kreiter and Singer 1992). Thus, averaging cell responses over long time 
will render the oscillations invisible. Nakamura et al. (1991,1992) record 
single neurons in the temporal lobe of monkey during a short-term mem- 
ory task. About one quarter of their neurons show a stimulus-dependent, 
sustained firing following the short display of a particular figure. The asso- 
ciated autocorrelograms showed pronounced oscillations whose frequency 
varied from one stimulus to the next between 3 and 28 Hz. However, the 
majority of oscillations had frequencies less than 8 Hz. 

A thorough search for oscillatory neuronal responses in the monkey was 
carried out by Young et al. (1992). The autocorrelation function associated 
with multiunit activity showed oscillations in the 12-13 Hz (a range) at 
about 10% of recording sites in areas VI and MT and no oscillations in in- 
ferior temporal cortex of the anesthetized monkey. In the behaving monkey 
(performing a face discrimination task), only 2 of 50 recording sites in IT 
showed oscillations in the 40-50 Hz range (Young et al. 1992; see also 
Tovee and Rolls 1992). Bair et al. (1994) analyzed the response of 212 cells 
in extrastriate cortex (area MT) in the macaque monkey while the monkey 
performed a very demanding motion discrimination task (Newsome et 

100 Koch and Crick 



al. 1989). Applying the same criteria as Kreiter and Singer (1992) in their 
study of multiunit activity in MT, Bair et al. (1993) find only a single gell 
that shows strong oscillatory activity. This result, obtained using random- 
dot stimuli, is quite distinct from the high percentage of oscillatory cells 
reported to be found in the same cortical area when using high-contrast 
bar stimuli (Kreiter and Singer 1992). 

Two groups find oscillations in somatosensory and motor regions of the 
alert monkey. Murthy and Fetz (1992) report the existence of large, 25- 
35 Hz, oscillations in both local field potentials and single-unit activity in 
pre- and postcentral cortex of two awake rhesus monkeys. These oscilla- 
tions are synchronized across up to 20 mm. Sanes and Donoghue (1993) 
record local field potentials from up to 12 sites in motor and premotor cor- 
tical areas while the monkey is waiting for a visual cue to carry out a hand 
movement. These potentials show oscillations in the 20-50 Hz range that 
are phase-locked across different sites. Once the visual cue appears and the 
movement is executed, both the oscillations as well as the synchronization 
of neuronal activity abruptly ceases. 

Our original hypothesis (Crick and Koch 1990a) was that the phase- 
locked firing of a set of neurons at 40 Hz was the neural correlate of visual 
awareness. Such a set would correspond to the semiglobal activity referred 
to earlier. So far the experimental evidence has lent rather little support to 
this hypothesis, though it may still be true that the 40 Hz oscillations are 
used as part of the processes leading up to visual awareness, such as figure- 
ground segregation, as first suggested by Milner (1974) and discussed at 
length by von der Malsburg (1981; von der Malsburg and Schneider 1986). 
More experimental work on the natural history of the 40-Hz oscillations, 
where and when they can be evoked, etc., is urgently required, especially 
in the alert macaque monkey. 

Bursting and the Lower-Layers Hypothesis 

Although it is possible that all cortical neurons can, at one time or another, 
be part of the neural correlate of awareness, it is sensible to explore the idea 
that only a limited subset of cortical neurons has this property. Our lower- 
layer hypothesis states that the neural correlates of visual awareness occur 
mainly in the lower layers 5 and 6 of the cortex. The input layer as well as 
neurons in the upper layers 2 and 3 are assumed to be mainly concerned 
with unconscious processing. We were led to this hypothesis for several 
reasons. 

What Becomes Conscious Cognitive scientists, such as Johnson-Laird 
(1988), have suggested that the content of consciousness consists of the 
results of neural computation while the interim results associated with the 
computations leading up to these results are themselves largely uncon- 
scious. The only cortical layer that has neurons that project right out of the 
cortical system (that is, neither to other cortical areas, nor to the thalamus 
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nor the claustrum) are in layer 5. For instance, layer 5 pyramidal cells in 
the early visual cortices, including VI, V2, V3, and MT (Ungerleider et al. 
1983) project to the superficial layers of the superior colliculus and to the 
pontine nuclei. The corticospinal pyramidal tract, with one milion axons 
the largest descending fiber tract from the human brain, originates in layer 
5 of primary motor, supplementary motor, and premotor cortical areas and 
projects onto interneurons and motoneurons in the spinal cord. Similarly, 
the massive projection system linking virtually the entire neocortex with 
the striatum in the monkey originates in layer 5 (Jones et al. 1977). It could 
be argued that what the cortex sends elsewhere in the brain are likely to 
be the results of its computations. 

Sleep and the Lower Layers A second reason that attracted our attention 
to the lower layers comes from the study by Livingstone and Hubel (1981) 
of the same neuron in cat striate cortex, both when the animal was awake 
and when it was in slow-wave sleep. Their main result was that the general 
character of the neuronal responses was similar in these two states, though 
the signal-to-noise ratio was improved in the awake animal. In addition, 
some neurons fired more strongly when the animal was awake. Such neu- 
rons were found predominantly (but not exclusively) in the lower cortical 
layer. They confirmed this result by using double-labeled deoxyglucose 
studies. These showed that the average neuronal activity was greater in 
the lower cortical layers of VI when the animal was awake. 

We would like to note in this context that Livingstone (1991) reports 
high-frequency oscillations only in the superficial layers and in layer 4, but 
not in layers 5 and 6 of primary visual cortex in the anesthetized monkey. It 
would be quite intriguing to know to what extent oscillations can be found 
in the deep layers of V2. 

Bursting Cells There exists a subclass of pyramidal cells in the lower 
layers that behaves differently from other pyramidal or spiny stellate cells. 
Intracellular current injections into cells in rodent slices of sensorimotor 
cortex has revealed two types of pyramidal cells (McCormick et al. 1985; 
Connors and Gutnick 1990; Agmon and Connors 1992). The majority of 
these in vitro cells respond to a sustained, intracellular current by a train 
of action potentials, which adapt within 50-100 msec to a more moder- 
ate discharge rate ("regular spiking" cells; figure 5.1A) and correspond to 
pyramidal cells throughout all layers, including layer 5 (figure 5.1B). A 
second class of neurons responds to the depolarization by generating a 
short burst of 2-4 spikes, followed by a long hyperpolarization. This cycle 
of burst and hyperpolarization persists for as long as the current stimulus 
persists ("intrinsically bursting" cells; figure 5.1C). The latter cells appear 
to be confined (at least in rat and guinea pig slice) to layer 5 (Agmon and 
Connors 1992). Bursting cells are quite large and have apical dendrites 
that extend up to layer 1 and arborize there (Chagnac-Amitai et al. 1990; 
Larkman and Mason 1990; figure 5.1D). In rat and cat visual cortex, the 
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Figure 5.1 "Regularly spiking" and "intrinsically bursting" pyramidal cells from rodent 
somatosensory slice. (A) The majority of pyramidal cells in all layers respond to a rectangular 
current pulse injected at the soma by a train of adapting action potentials. They are found 
throughout layers 2-6. (B) The morphology of a such a "regular spiking" biocytin-filled layer 
5 pyramidal cell. Notice the sparse dendritic tuft in layer 1. Frequently, the apical tree of 
"regularly spiking" cells does not extend past layers 2/3. (C) Burst cells, limited to layer 5, 
respond to the same intracellularly delivered current step with a typical pattern of bursts. 
(D) Their morphology reveales extensive dendritic branching in layer 1. Layer 5 bursty cells 
project to subcortical targets. (Drawings are modified from Agmon and Connors 1992 and 
B. W. Connors, personal communication) 

axons of these cells project subcortically, here to the ipsilateral superior 
colliculus, while pyramidal cells with short dendrites not reaching into 
layer 1 project into other parts of cortex (Hübener et al. 1990; Kasper et al. 
1991). In guinea pig sensorimotor and visual cortex maintained in vitro, 
layer 5 bursting cells project to the superior colliculus and to the pontine 
nuclei (Wang and McCormick 1993). 

Layer 5 burst-generating neurons typically exhibit rhythmic burst firing 
in the frequency range of 0.2-10 Hz, depending on the level of somatic de- 
polarization (Wang and McCormick 1992), while Silva et al. (1991) demon- 
strated that layer 5 slice neurons can generate brief periods of oscillatory 
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field potentials in the 5-10 Hz band in response to activation of excitatory 
afferents. 

This classification of pyramidal cells into "regular spiking" and "intrin- 
sically bursting" cells has not be carried out in primate cortex. How- 
ever, extracellularly recorded cells in the awake monkey frequently show 
a burst-like pattern (figure 5.2). In their statistical analysis of firing prop- 
erties of neurons in area MT in the behaving monkey Bair and colleagues 
(1994) found that two thirds of the recorded cells frequently fire in bursts of 
2-4 spikes within 2-6 msec and show a small peak in the 25-50 Hz band in 
the associated power spectrum. The amplitude of the peak of spectrum in 
this frequency band relates directly to their propensity to fire bursts. The 
statistical properties of this cell class can be fitted by the assumption of 
Poisson-distributed bursts with a burst-dependent refractory period. The 
remaining third of their cells have an autocorrelation function and an in- 
terspike interval distribution compatible with the notion that spikes are 
Poisson distributed with a refractory period (figure 5.2). Cells are either of 
the bursting or of the nonbursting type and do not change from one type 
to the other. It is not known whether these bursting cells correspond to the 
intracellularly defined "intrinsic bursters." 

In their study of the relationship between single unit firing properties 
and the behavior of the animal, Newsome and colleagues (Newsome et 
al. 1989; Britten et al. 1992) recorded from MT cells while the monkey 
performed a near-threshold direction-of-motion discrimination task. Us- 
ing signal-detection theory (ROC analysis) based on the total number of 
spikes occurring during the trial (here 2 sec), they obtain a neuronal thresh- 
old and compared it against the more conventional psychometric threshold 
of the animal, finding that the two are very similar. Bair et al. (1994) show 
that the sensitivity of the ROC analysis can be improved, in a few cases 
by a factor two, if a "burst" of spikes is treated as a single event, rather 
than as consisting out of a variable number of single action potentials. This 
argues for the idea that "bursts" are events that are treated differently by 
the nervous system than isolated spikes (see also Bonds 1992). 

Bursting and Short-Term Memory Why should the nervous system have 
two types of neurons, one signaling isolated spikes and the other predom- 
inantly responding in bursts of spikes? Could these two cell types convey 
fundamental different types of information (Crick 1984)? One biophysical 
plausible argument is that bursting neurons are much more efficient at ac- 
cumulating calcium in their axonal terminals than cells that fire isolated 
spikes (that is, four spikes within a 10-msec interval cause a much larger 
increase in intracellular calcium at the end of the last spike than four spikes 
arriving within a 40-msec interval). Because intracellular calcium accumu- 
lation in the presynaptic terminal is thought to be mainly responsible for 
various forms of short-term potentiation (in particular facilitation and aug- 
mentation; Magleby 1987), it may well be that the primary function of layer 
5 bursting neurons is to induce this non-Hebbian (that is, nonassociative) 
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Figure 5.2 Spike train statistics from two extracellularly recorded cells in cortical area MT 
in the behaving monkey responding to randomly moving dots. The top row illustrates a 
typical 500-msec segment of spike occurrence times. The distribution of intervals between 
two consecutive spikes (ISI) is shown in the middle row (note the different scales). The power 
spectra of the two cells are shown in the bottom row. Both cells fire at roughly similar average 
rates (40-60 spikes/sec). One-third of all cells are of the nonbursty type, with an ISI and a 
power spectrum expected from a Poisson process with a refractory period. Statistics from 
one such cell are shown in the right column (averaged over 30 trials). About two-thirds of 
cells are of the bursty type, with a significant fraction—if not the majority—of the interspike 
intervals falling into the first three bins of the ISI and a peak in the power spectrum in the 
20-60 Hz range. Statistics from such a bursty cell, based on 15 trials, are shown in the left 
column. The relationship—if any—between these bursting and the "intrinsically bursting" 
pyramidal cells from slices (see figure 5.1) is not known. (Drawings are modified from Bair 
et al. 1993) 

type of synaptic plasticity at its postsynaptic targets outside of the cortical 
system. Recurrent spiking activity within one or several seconds at these 
synapses will then cause a greater postsynaptic signal than without the 
"priming" by the previous burst. In essence, the burst of spikes acts to 
turn on short-term memory, which then decays over several seconds (an 
interesting theoretical question is whether or not very short-term memory 
needs to be associative). 

Thus a very simplistic answer to the question "Which neurons fire in 
such a way that they correlate with awareness?" would be "The large 
pyramidal cells in layer 5 that fire in bursts and project outside the cortical 
system!" It would be marvelous if this were true but the answer is unlikely 
to be as simple as that. 
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The Lower Layers and the Thalamus Pyramidal cells in both layer 5 and 
layer 6 project to the various thalamic nuclei, including the lateral genic- 
ulate nucleus (LGN), as well as the inferior, lateral, and medial pulvinar 
nuclei. In monkey, only layer 6 of area VI projects back to the LGN, while 
higher cortical areas project to—and receive from—the different pulvinar 
nuclei. In primate area VI, cells in layer 5 as well as the deep part of layer 
6 project to the pulvinar (Conley and Raczkowski 1990), while higher cor- 
tical areas project from the deep layers into the different pulvinar nuclei 
(with the general rule that as one goes from occipital lobe to more anterior 
cortical areas, the thalamic target areas move from inferior to lateral to me- 
dial pulvinar). The precise layer of origin of this corticothalamic projection 
is not know. 

In cat, about half of all pyramidal cells in layer 6 project back to the LGN 
while others project to the claustrum. This corticogeniculate projection 
is so massive that at least 10 times more fibers project down than project 
from the LGN in VI (Sherman and Koch 1986). It is known in cat that 
the propagation delay of these cells is unusually long and heterogeneous, 
ranging from 2 to 20 or more msec (Tsumoto et al. 1978), in agreement with 
their unmyelinated nature. These could conceivably form reverberating 
circuits that hold activity in very short-term memory. Furthermore, the 
circuit LGN —> layer 6 —+ LGN is composed of neurons whose axons have 
very few horizontal collaterals. This may prevent the "reverberation" from 
spreading too easily to adjacent neurons. Under an anesthetic such possible 
reverberations may be too weak to become established (incidentally, almost 
all work on the function of the corticogeniculate pathway has been done 
only on anesthetized animals and therefore its main function may have 
been missed; Sherman and Koch 1986). 

A final observation of possible relevance to the distinction between lower 
and upper layers is that visual-induced activity can be blocked by NMDA 
antagonists in the superficial, but not in the deep layers of cat visual cortex 
(Fox et al. 1989,1990). Iontophoretic and radioligand binding studies from 
a number of different labs argue for high densities of NMDA receptors in 
superficial and low densities in the input and the deep layers of cortex 
(summarized in Tsumoto 1990). 

HYPOTHESES ABOUT CONNECTIONS 

So much for the lower cortical layers. Are there any signs of connections 
between cortical areas that might relate to visual awareness? We have been 
able to think of three different clues. 

1. Uses of content of "consciousness." The first asks the question, What is 
conscious information used for? In neuronal terms one might expect that 
the information is not only exported subcortically but is also made avail- 
able to at least the hippocampal system and the higher, planning levels of 
the motor system, probably located in or near the anterior portion of the 
cingulate sulcus. We will not describe these connections in detail as so far 
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we have not been able to turn up any neuroanatomical data that might 
help. For example, exactly which neurons project from the higher levels of 
the visual system to those to the motor system? We will not detail this idea 
further though we shall continue to keep an eye on it. 

2. Visual processing and backprojections. The second idea was put forward 
some time ago in a general way by Milner (1974). He proposed that an 
essential feature of visual processing would turn out to be the back pro- 
jections to VI (or conceivably to VI and/or V2) as these areas are the only 
ones with detailed information about precise visual location. Supporting 
evidence comes from a study of the somatosensory system that uses a com- 
bination of current source analysis and somatosensory-evoked potentials 
in the awake monkey (Cauller and Kulics 1991a,b). These authors argue 
that the backward projections from S2 to SI (that are targeted specifically 
to the superficial layers 1 and 2) are involved in the conscious process of 
touch sensation as measured by the evoked potentials. 
Looking at the diagram of Felleman and Van Essen (1991) for the connec- 
tions between cortical areas in the visual system of the macaque monkey 
it would appear that while areas MT and V4 do send projections back to 
VI, the inferotemporal regions do not. However, more recent evidence 
(K. Rockland, personal communication) suggests that projections between 
cortical areas may frequently be nonreciprocal. While the inferotemporal 
regions do not receive a direct projection from VI, Rockland claims that 
they do send backprojections to VI. Of course there may be several kinds 
of backprojections. Clearly this idea of Milner's needs to be kept in mind 
as further results come in. 

3. Reentrant projections. The third idea about connections is based on 
"reentrant" or backward connections, so strongly emphasized by Edel- 
man (1987). The basic idea is that consciousness is, in some sense, the 
brain reflecting on itself and that this needs reentrant connections—,that 
is, connections that form a circuit that finishes where it began. 
An obvious case of massive reentrant connections is those formed by the 
hippocampal system in the medial temporal lobe. Its input comes mainly 
from the entorhinal cortex and its output returns there, though to a differ- 
ent cortical layer. However, as we know from such patients as H.M. and 
Boswell, the complete removal of this system by certain types of brain dam- 
age in humans does not affect immediate awareness, though the patient 
cannot remember any recent incident that took place more than a minute 
or so before (Squire and Zola-Morgan 1991). There are very many other 
reentrant connections in the brain, so it is not easy to discover which ones 
might be intimately involved in visual awareness. Are there any that have 
some unusual character? 

DIFFERENT FORMS OF AWARENESS 

Before closing, let us return to a topic we discussed only tangentially. In 
our original manuscript (Crick and Koch 1990a), we postulated the ex- 
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istence of two forms of awareness: a brief and very transient one and a 
form associated with selective, visual attention. It is the presence of the 
latter, coupled with short-term memory, that we believe mediates vivid 
awareness. However, in the absence of the former, our visual environment 
would have the appearance of a tunnel, in which the currently attended 
location appears in vivid detail with its associated perceptual attributes 
while everything else is invisible or hazy. We were therefore led to postu- 
late another form of fleeting awareness, enough to mediate the perceptual 
richness we take for granted when looking at the world. 

Due to its lack of an attentional mechanism, we believe that fleeting 
awareness is not associated with solving the transient type of binding prob- 
lem but to encode only perceptual features that are bound within single 
neurons due to epigenetic factors or overlearning. 

However, given the complexities of the brain, it may well be possible 
that many more different forms of awareness coexist at all times, each 
with different functional abilities. For instance, it may well be that each 
corticothalamic-cortical loop instantiates it own form of short-term mem- 
ory and awareness, each with its own representation and time scale. 

Recent psychophysical experiments by Braun and Sagi (1992) and Braun 
(1994) support this point of view. The visual attention of subjects was "tied 
down" to a particular spot on a monitor by asking them to carry out a 
difficult discrimination experiment. With focal attention thus distracted, 
Braun projected a number of objects in an annulus around the focus of 
attention and asked subjects to respond if an odd-man-out was present 
in these displays. His results show that subjects could well detect a large 
object among many small objects, a red among many grays, a low-spatial 
frequency grating among many high-frequency ones, a circle among many 
triangles, or a triangle among many distracting circles. However, subjects 
were frequently unable to detect a small object among large ones, a gray 
object among many distracting red ones, etc. In the absence of attention, 
subjects could even reliably report the hue of two bright spots, one above 
and one below the location of attention. Thus, in this case, awareness of 
these objects is mediated in the absence of focal attention, supporting the 
idea that different forms of "vivid awareness" might exist, each one with 

its own set of properties. 
It is important that neurobiological theories of these phenomena do not 

treat short-term memory, visual perception, or awareness as single, mono- 
lithic entities with but a single neuronal implementation. They may rather 
be the end product of a large number of highly interactive neuronal mech- 

anisms (Minsky 1985). 

A SUMMARY OF OUR SPECULATIONS 

To assist the reader we now list very briefly the various speculative ideas 
put forward in this chapter. These speculations do not all make a coherent 
set, though certain combinations of them do. 
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1. The brain constructs an explicit, multilevel, symbolic interpretation of 
parts of its environment. 

1.1. To do this it usually needs some form of attentional mechanism. 

2. The form of awareness associated with focal attention is caused by the 
firing of a temporally coordinated assembly of neurons firing in some spe- 
cial manner for at least 100 or 200 msec. 

2.1. This special form of neuronal activity induces short-term memory. 

3. If neurons are not part of this transient subset, they can still influence 
behavior but do not contribute toward awareness. 

3.1. Underlying every direct perception is a group of neurons strongly 
firing and participating in the temporally coordinated neuronal assembly. 

4. Semisynchronous, neuronal oscillations in the 25-55 Hz band could 
cause neurons to be coordinated, giving rise to short-term memory and 
thus to awareness. 

5. The neural correlate of awareness occurs mainly in the lower layers. 

5.1. The neural correlate of awareness is associated with the bursting neu- 
rons in layer 5, some of which project outside the cortical system. 

5.2. The loop between deep layers in cortex, the different thalamic nuclei, 
and back to cortex may implement short-term memory. 

5.3. The neurons in the upper cortical layers are mainly concerned with 
unconscious processing. 

6. Various types of neural connections may be associated with some forms 
of visual awareness. Possible examples are: 

6.1. Connections to the hippocampal system and the higher planning levels 
of the motor system, direct backprojections to VI (and possibly V2), and 
reentrant connections within layer 4 or between cortical areas at the same 
level in the anatomical hierarchy. 
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/I Perception as an Oneiric-like State 
^ Modulated by the Senses 

Rodolfo R. Llinäs and Urs Ribary 

An issue clearly fundamental to the understanding of central nervous sys- 
tem function lies in the similarities and differences between wakefulness 
and dreaming. Indeed, from the standpoint of the thalamocortical system 
it has been shown that, as will be described in detail later, these two states 
have a common intrinsic implementation mechanism and so may be con- 
sidered, in that sense, as fundamentally equivalent (Llinäs and Pare 1991). 
The implications of such a hypothesis could be far-reaching if wakefulness 
is demonstrated to be, as is dreaming, a closed intrinsic functional state. 
If this were the case, the central difference between the two would be the 
degree of their modulation by sensory input. 

WAKEFULNESS AND REM SLEEP 

Paradoxical sleep is characterized by the repeated occurrence of rapid eye 
movement (REM)—from which the alternative designation "REM sleep" 
was derived—and by muscular atonia. One of the most salient differences 
between the wakefulness and dreaming states resides in the fact that sen- 
sory input does not generate the expected cognitive consequences that it 
does in the awake state. With respect to other sleep states, REM sleep dif- 
fers in that sensory thresholds for awakening are the highest in REM sleep, 
except for stage IV (Rechtschaffen et al. 1966; Williams et al. 1964), and that 
subjects awakened during REM sleep often report having been dreaming. 

Of central interest here is the finding that the averaged evoked poten- 
tials (AEPs) recorded from the scalp in response to sensory stimulation 
during waking and REM sleep are very similar, but they differ strikingly 
from those recorded during non-REM sleep. For instance, the early com- 
ponents of the auditory evoked potential in humans (<10 msec) (Möller 
and Burgess 1986) do not display state-dependent fluctuations during the 
sleep-waking cycle (Campbell and Bartoli 1986; Giard et al. 1988; Picton 
and Hillyard 1974). However, those middle-latency components (10-80 
msec) that seem to reflect early thalamocortical activity decreased in am- 
plitude from waking to stage IV but returned to normal (Chen and Buch- 
wald 1986) or surpassed waking values in REM sleep (Deiber et al. 1989; 
Mendel and Goldstein 1971; Mendel and Kuperman 1974). 



Likewise, short-, middle-, and long-latency components may also be 
distinguished in somatosensory evoked potentials. Among the early com- 
ponents, only the positivity at 15 msec (P ~ 15) does not display state- 
dependent fluctuations (Yamada et al. 1988). The amplitude of the other 
components decreases markedly from waking to stage IV but partially 
recovered in REM sleep (Yamada et al. 1988). The latency of the P20 
component (which presumably reflects the primary cortical response) in- 
creases from waking to stage IV but returned close to waking values in 
REM sleep. 

The Central Paradox 

Since the brain's response to sensory stimulation is very similar during 
REM sleep and wakefulness, the threshold for awakening should be lowest 
in REM sleep. As stated above, however, this is not the case in humans or 
in other mammals where the auditory threshold for awakening is clearly 
higher in REM sleep than in deep slow-wave sleep (Jouvet and Michel 
1959). These studies point to a central paradox of REM sleep: stimuli that 
are perceived in the waking state do not awaken subjects in REM sleep 
even though the amplitude of the primary evoked cortical responses is 
generally similar to, or higher than, those in the waking state. In other 
words, although the thalamocortical network is as excitable during REM 
sleep as in the waking state, the input is mostly ignored. 

The resolution of this paradox probably lies in the nature of brain func- 
tion in a most fundamental sense. In particular, the fact that the late po- 
tentials (P100, P200, P300) following sensory stimuli are abolished in REM 
sleep (Goff et al. 1966; Velasco et al. 1980) suggests that the ongoing activity 
that generates cognition during dreaming prevents the early thalamocor- 
tical activation from being incorporated into the intrinsic cognitive world. 
Perhaps then, an altered state of attention is the most likely origin for the 
high threshold for awakening from REM sleep (Llinäs and Pare 1991). 

Is "Cognition" during REM Sleep Similar to That in Wakefulness? 

One tool available to study the functional state of the brain during REM 
sleep is a comparison of the dreams of control subjects with those of patients 
suffering from various central or peripheral nervous system dysfunctions. 

The decline of higher cognitive abilities following circumscribed lesions 
of the temporal and parietal associative areas is also reflected in dream con- 
tent. For instance, patients afflicted with unilateral neglect resulting from 
right parietal lobe damage, in which the opposite half of the visual field 
is not perceived, report similar lack of perception in their dreams (Sacks 
1991; M. Mesulam, personal communication). Similarly, people inhabiting 
the dreams of prosopagnosic subjects are faceless (A. Damasio, personal 
communication). Interestingly, when awake these patients perceive facial 
features but they cannot use such features to recognize individual faces. 
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These observations indicate that mentation during dreaming operates on 
the same anatomical substrate as does perception during the waking state. 

From the fact that similar deficits are formed in wakefulness and dream- 
ing, it may be concluded that a possible approach to understanding the 
nature of wakefulness is to consider it as one element in a category of 
intrinsic brain functions, in which REM sleep is another element. The dif- 
ference between these two states would be that in REM sleep, the sensory 
specification of the functionalities carried out by the brain is fundamentally 
altered. That is, REM sleep can be considered as an intrinsic state in which 
"attention" is turned away from sensory input (Llinäs and Pare 1991). 

In proposing that wakefulness is nothing other than a dreamlike state 
modulated by the presence of specific sensory inputs (Llinäs and Par6 
1991), the following must be considered. The thalamus is classically re- 
garded as the functional and morphological gate to the forebrain (Steriade 
et al. 1990). Indeed, with the exception of the olfactory system, all sensory 
messages reach the cerebral cortex through the thalamus (Jones 1985). Yet, 
synapses established by specific thalamocortical fibers comprise a minor- 
ity of cortical contacts. For example, in the primary somatosensory and 
visual cortices, the axons of ventroposterior thalamic and dorsal LGN neu- 
rons account for, respectively, 28% and 20% of the synapses in layer IV and 
adjacent parts of layer III (LeVay and Gilbert 1976), where most thalam- 
ocortical axons project. Even in primary sensory cortical areas, most of 
the connectivity does not represent sensory input transmitted by the thala- 
mus, but rather input from cortical and nonthalamic CNS nuclei. Indeed, 
corticostriatal, corticocortical and corticothalamic pyramidal neurons re- 
ceive, respectively, 0.3-0.9%, 1.5-6.8%, and 6.7-20% of their synapses from 
specific thalamocortical fibers, and less than 4% of the synaptic contacts 
on multipolar aspiny neurons in layer IV originate in the thalamus (White 
and Hersch 1981,1982). 

Moreover, the connectivity between the thalamus and the cortex is bidi- 
rectional. Indeed, layer 6 pyramidal cells project back to that area of the 
thalamus where their specific input arises (Jones 1984), and layer 5 cells 
project to the nonspecific thalamus. The number of corticothalamic fibers 
is about one order of magnitude larger than the number of thalamocortical 
axons (Wilson et al. 1984). Looking at the peripheral input, the number of 
optic nerve axons projecting to the LGN is much smaller than the number 
of corticothalamic axons projecting to the LGN (Wilson et al. 1984). 

Clearly, the sensory input arising from the thalamus is necessary for 
perception; in the absence of specific inputs, there is no externally guided 
sensory function. However, the specific thalamocortical input accounts for 
a minority of the synaptic contacts in the cortex. 

Let us briefly discuss the nature of the interaction between this set of 
innate mechanisms and the sensory world. At the outset, it must be rec- 
ognized that sensory events are nothing other than simplifications deter- 
mined by the physical properties of our sensory organs. Similarly, the in- 
ternal representation derived from the sensory specification is constrained 
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by the "computational" capabilities of the brain. According to this view, 
the model of the world emerging during ontogeny is governed by innate 
predispositions of the brain to categorize and integrate the sensory world in 
certain ways. Although the particular computational world model derived 
by a given individual is a function of his sensory exposure, the resulting 
functional accommodation is genetically determined. As a result, sensory 
inputs presented during adult life would convey only the parameters re- 
quired to specify the dimensions relevant to the cognitive domains which 
stemmed from this evolutionary process. These cognitive domains could 
be used to recreate world-analogues during dreaming or, once specified by 
sensory inputs, to generate an adaptive representation of the environment. 

Thus, we may consider a closely related problem, that of the open (ex- 
trinsic) or closed (intrinsic) nature of nervous system function. One view 
stipulates that the brain states that represent the external world are point- 
to-point representations, having as their basic currency a set of elaborate 
reflexes. This view may be traced back, in modern times, to William James 
(1890). An opposite point of view is that the brain is basically a recurrent or 
closed system. Support for the latter proposal comes from electrophysio- 
logical studies indicating that the intrinsic membrane properties of neurons 
allow them to oscillate or resonate at different frequencies (Llinäs 1988a) 
and that such intrinsic activity, by supporting rhythmic oscillatory events, 
may play a fundamental role in CNS function (Llinäs 1988a; see chapter 10 
by Singer). It can be argued that the insertion of such elements into com- 
plex synaptic networks allows the brain to generate dynamic oscillatory 
states that deeply influence the brain activity evoked by sensory stimuli. 

PERCEPTION AS GENERATED BY A CLOSED SYSTEM 

Several factors suggest that the brain is essentially a closed system capable 
of self-generated oscillatory activity that determines the functionality of 
events specified by the sensory stimuli. First, as stated above, only a minor 
part of the thalamocortical connectivity is devoted to the reception and 
transfer of sensory input. Second, the number of cortical fibers projecting 
to the specific thalamic nuclei is much larger than the number of fibers 
conveying the sensory information to the thalamus (Wilson et al. 1984). 
Thus, a large part of the thalamocortical connectivity is organized in what is 
presently known as reentrant activity (Edelman 1987) or previously viewed 
as reverberating activity (Lorente de No 1932). Third, the insertion of 
neurons with intrinsic oscillatory capabilities into this complex synaptic 
network allows the brain to generate dynamic oscillatory states which 
shape the computational events evoked by sensory stimuli. In this context, 
functional states such as wakefulness (or REM sleep and other sleep stages) 
appear to be particular examples of the multiple variations provided by 
the self-generated brain activity. 

Much neuropsychological evidence also supports this view of the brain 
as a closed system in which sensory input plays an extraordinarily im- 
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portant but, nevertheless, mainly modulatory role. The cases of prosopag- 
nosic patients dreaming of faceless characters indicate that the significance 
of sensory cues is largely dependent on their incorporation into larger cog- 
nitive entities and on the functional state of the brain. In other words, 
sensory cues gain their significance by virtue of triggering a preexisting 
disposition of the brain to be active in a particular way. 

That for the most part connectivities present at birth in humans are mod- 
ified only in detail during normal maturation has been suspected from the 
inception of neurological research (Cajal 1929; Harris 1987). The localiza- 
tion of function in the brain began with the identification of a cortical speech 
center by Broca and was followed by the discovery of point-to-point soma- 
totopic maps in the motor and sensory cortices (Penfield and Rasmussen 
1950), and in the thalamus (Mountcastle and Hennemann 1949,1952). 

A totally different type of functional geometry (Pellionisz and Llinäs 
1982) suggests the existence of temporal mapping. This has been far more 
difficult to conceptualize, since its study requires an understanding of si- 
multaneity in brain function not usually considered in neuroscience. 

40-HZ ACTIVITY AND COGNITIVE CONJUNCTION: THE CASE FOR 
TEMPORAL MAPPING 

Synchronous activation has recently been seen in the mammalian cerebral 
cortex. Visual stimulation with light bars of optimal dimensions, orienta- 
tion, and velocity may synchronously activate cells in a given column in 
the visual cortex (Eckhorn et al. 1988; Gray et al. 1989; Gray and Singer 
1989). Moreover the components of a visual stimulus that relate to a singu- 
lar cognitive object (such as a line in a visual field) produce coherent 40-Hz 
oscillations in regions of the cortex that may be separated by as much as 
7 mm (Gray et al. 1989; Gray and Singer 1989). And a high correlation 
coefficient has been found for 40-Hz oscillatory activity between related 
cortical columns. 

These findings have inspired a number of theoretical papers with the 
view that temporal mapping is very important in nervous system function. 
The central tenet can be summarized simply. Spatial mapping allows a 
limited number of possible representations. However, the addition of a 
second component (serving to form transient functional states by means of 
simultaneity) generates an indefinitely large number of functional states, 
as the categorization is accomplished by the conjunction of spatial and 
temporal mapping. 

Magnetoencephalographic recordings performed in awake humans 
(Llinäs and Ribary 1992) revealed the presence of continuous and coher- 
ent 40-Hz oscillations over the entire cortical mantle. The presentation of 
auditory stimuli produced a clear resetting of this 40-Hz activity. Phase 
comparison of the oscillatory activity recorded from different cortical re- 
gions revealed the presence of a 12- to 13-msec phase shift between the 
rostral and caudal pole of the brain (Llinäs and Ribary 1992). 
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The high degree of spatial organization displayed by this 40-Hz oscilla- 
tion suggests that it may be a candidate mechanism for the production of 
temporal conjunction of rhythmic activity over a large ensemble of neu- 
rons. Furthermore, it has been shown that the sparsely spiny layer IV neu- 
rons of the cortex (Llinäs et al. 1991) are capable of 40-Hz activity (figure 
6.1). This inhibitory input would produce rebound sequences (probably 
dependent on persistent sodium conductances) in thalamically projecting 
pyramidal neurons. These cells would then generate a 40-Hz inhibitory 
rebound oscillation in cells of the reticularis (RE) thalamic nucleus, a group 
of GABAergic neurons projecting to most relay nuclei of the thalamus (Ste- 
riade et al. 1984). More recently, it has been demonstrated that, in addition 
to oscillations due to cortical circuit properties, thalamic neurons in vivo 
can also oscillate intrinsically at 40-Hz, using ionic mechanisms similar to 
those of the spiny-layer neurons (Steriade et al. 1991). Consequently, spe- 
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Figure 6.1 In vitro intracellular recording from a sparsely spinous neuron of the fourth layer 
of the frontal cortex of guinea pig. (A) The characteristic response obtained in the cell follow- 
ing direct depolarization, consisting of a sustained subthreshold oscillatory activity on which 
single spikes can be observed. The intrinsic oscillatory frequency was 42 Hz, as demonstrated 
by the autocorrelogram shown in the upper right corner. (B) The same record as in {A) but at 
slower sweep speed, demonstrating how the response outlasts the first stimuli but comes to 
an abrupt cessation in the middle of a second stimulus. (Modified from Llinäs et al. 1991) 
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cific corticothalamocortical pathways could be led to resonant oscillation at 
40-Hz. According to this hypothesis, RE cells would be responsible for the 
synchronization of the 40-Hz oscillations in distant thalamic and cortical 
sites. Indeed it has been shown that neighboring RE cells are linked by 
dendrodendritic and intranuclear axon collaterals (Deschenes et al. 1985; 
Yen et al. 1985). 

BRAINSTEM INFLUENCE ON THALAMIC FIRING MODE 

While the firing mode of thalamocortical cells is related to the expression of 
intrinsic membrane properties, the state-dependent fluctuations in mem- 
brane potential seem to result from extrinsic synaptic influences. Thus, 
during REM sleep temporal associations that generate subjectivity may 
not coincide with the temporal maps, and only strong sensory inputs are 
capable of resetting such temporal conditions. In short, if the sensory input 
coming to the brain is not put in the context of thalamocortical reality by 
being correlated temporally with ongoing activity, the stimulus does not 
exist as a functionally meaningful event. 

If this is the case, we may conclude that the perception of external reality 
is an intrinsic function of the CNS, developed and honed by the same evo- 
lutionary pressures that generated other specializations. Moreover this 
implies that secondary qualities of our senses such as colors, identified 
smells, tastes, and sounds are inventions of our CNS that allow the brain 
to interact with the external world in a predictive manner (Llinäs 1988a). 
The degree to which our perception of reality and "actual" reality overlap 
is inconsequential as long as the predictive properties of the computational 
states generated by the brain meet the requirements of successful interac- 
tion with the external world. 

If we assume that the phase shift observed in these preliminary studies 
is related to the presence of coherent waves that scan our brain at 40 Hz, 
we can conclude that consciousness is not a continuous event. Rather it is 
determined by the simultaneity of activity in the thalamocortical system 
modulated by the brainstem, and fed—when one is awake, by sensory 
input and when one is asleep, by circuits that support memories. 

THALAMOCORTICAL RESONANCE AS THE FUNCTIONAL BASIS 
FOR CONSCIOUSNESS 

From the above, it follows that the major development in the evolution 
of the brain of higher primates, including man, is the enrichment of the 
corticothalamic system. This is supported by evolutionary studies if one 
considers the increase in corticalization in mammals. The increase in the 
surface area of the neocortex in man is approximately three times that of 
higher apes (Lande 1979). 

How can this thalamocorticothalamic functional state generate the 
unique experience we all recognize as existence of self or existence of the 
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here and now? In principle, the activity generated via thalamocortical 
interactions may mimic the responsiveness generated during the waking 
state (i.e., reality-emulating states, such as hallucinations, may be gener- 
ated). The implications of this proposal are of some consequence, for this 
means that if consciousness is a product of thalamocortical activity, it is the 
dialogue between the thalamus and the cortex that generates subjectivity. 

EXPERIMENTS SUPPORTING THE SIMILARITIES OF REM SLEEP 
AND WAKEFULNESS 

If, as stated above, 40-Hz thalamocortical resonance is responsible for the 
global temporal mapping that generates cognition, such global conjunction 
should be present during the dreaming state. In fact, it has been recently 
reported that 40-Hz activity occurs in an organized fashion and demon- 
strates a rostrocaudal phase shift during REM sleep (Llinäs and Ribary 
1993). 

Magnetoencephalography (MEG) was utilized in that study. Three sets 
of studies addressed issues concerning (1) the presence of 40-Hz activity 
during sleep, (2) the possible differences between 40-Hz resetting in dif- 
ferent sleep/wakefulness states, and (3) the question of 40-Hz scan during 
REM sleep. 

To this effect, spontaneous magnetic activity was continuously recorded 
and filtered at 35-45 Hz during wakefulness, delta sleep, and REM sleep, 
using a 37-channel sensor array Because Fourier analysis of the sponta- 
neous, broadly filtered rhythmicity (1-200 Hz) demonstrated a large peak 
of activity at 40-Hz over much of the cortex, we feel that such filtering is 
permissible. Large coherent signals with a very high signal-to-noise ratio 
were easily recorded from all 37 sensors, corresponding to activity in differ- 
ent regions of the cortex (figure 6.2B). This single 0.6-sec epoch illustrates 
the global spontaneous oscillation in an awake individual. 

A second set of experiments examined the responsiveness of the 40- 
Hz oscillation to stimuli during these three different functional states. As 
shown previously, 40-Hz oscillation may be reset by sensory stimuli (Llinäs 
and Ribary 1993; Galambos et al. 1981; Pantev et al. 1991). This is clearly 
observed following auditory stimulation. In these experiments, the audi- 
tory stimulus consisted of frequency-modulated 500-msec tone bins, trig- 
gered 100 msec after the onset of the 600-msec recording epoch, randomly 
sampled over a time period of approximately 10 minutes. The stimuli were 
delivered to the subject during conditions of wakefulness (figure 6.2C), 
delta sleep (figure 6.2D), and REM sleep (figure 6.2E). In agreement with 
previous findings (Llinäs and Ribary 1993; Galambos et al. 1981; Pantev 
et al. 1991), auditory stimuli (arrowhead) produced well-defined 40-Hz 
oscillation (Ribary et al. 1991). When a similar set of stimuli was delivered 
during delta sleep, no resetting was observed in this or any of six other 
subjects where this experiment was performed, resetting was not observed 
during REM sleep, as shown in figure 6.2E. 
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Figure 6.2 Forty-Hertz oscillation in wakefulness and a lack of 40-Hz reset in delta sleep, 
and REM sleep. Recording using a 37-channel MEG. (A) Diagram of sensor distribution over 
the head; in (B) the spontaneous magnetic recordings from the 37 sensors during wakefulness 
are shown immediately below (filtered at 35-45 Hz). In (C-F) averaged oscillatory responses 
(300 epochs) following auditory stimulus. In (C), the subject is awake and the stimulus is 
followed by a reset of 40-Hz activity. In (D) and (E), the stimulus produced no resetting of 
the rhythm. (F) The noise of the system in femtotesla (fT). (Modified from Llinäs and Ribary 
1993) 

The level of coherence present at all recording points was illustrated 
by superimposing the 37 traces recorded during a 600-msec epoch (figure 
6.2C). It is clear from such recording that while there is coherence among 
the different recording sites there is also a phase shift of the oscillation 
along the different sites (Llinäs and Ribary 1992). 

These findings indicated that while electrically the awake and REM sleep 
states are similar with respect to the presence of 40-Hz oscillations, the 
central difference between these states is the lack of sensory reset of the 
REM 40-Hz activity. By contrast, during delta sleep, the amplitude of these 
oscillators differs from that of wakefulness and REM sleep, but as in REM 
sleep, there is no 40-Hz sensory response. 

The findings indicate therefore that during wakefulness and REM sleep 
a very specific 40-Hz thalamocortical resonance is active and has very sim- 
ilar global properties. Moreover, while both states can generate cognitive 
experiences, the recordings indicate, as is commonly known, that the ex- 
ternal environment is, for the most part, excluded from the imaging of the 
oneiric states. This further substantiates a recent proposal (Llinäs and Pare 
1991) that the dream state is characterized by an increased attentiveness 
to an intrinsic state in the sense that external stimuli do not perturb the 
intrinsic activity. 
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Figure 6.3 Rostrocaudal phase shift of 40-Hz during REM sleep as measured using MEG 
(see also figure 6.2). The upper trace (A) shows synchronous activation in all 37 channels 
during a 600-msec period. The oscillation in the left part of trace (A) has been expanded in 
trace (B) to show five different recording sites over the head. The five recording sites of trace 
(B) are displayed in (C) for a single epoch to demonstrate the phase shift for the different 
40-Hz waves during REM sleep. The direction of the phase shift is illustrated by an arrow 
above (C). The actual traces and their site of recordings for a single epoch are illustrated in 
(D) for all 37 channels. fT, femtotesla. (Modified from Llinäs and Ribary 1993) 

In a third set of experiments the issue of the front-to-back phase shift 
of the 40-Hz activity over the head during REM sleep was addressed. 
Spontaneous 40-Hz activity during a single 0.6-sec epoch in REM sleep 
(figure 6.3A and B) and an expanded portion of this burst (figure 6.3B) show 
the well-organized 12-msec phase shift for the 40-Hz oscillation observed 
from recording sites 1 to 5, as illustrated schematically in figure 6.3C. The 
actual recording sites are illustrated for the epoch shown in A in figure 6.3D. 
A similar 12-msec phase shift was also observed in the same individual in 
the awake state with the exception that, during REM sleep, the rostrocaudal 
sweep is better organized and more repeatable, probably since the sweep 
is not continually reset by incoming sensory stimuli. 

The significant new finding here is the fact that during the period cor- 
responding to REM sleep (in which a subject, if awakened, reports hav- 
ing been dreaming), 40-Hz oscillation similar in distribution phase and 
amplitude to that observed during wakefulness is observed. In the five 
individuals in whom these recordings were made, the overall speed of 
the rostrocaudal scan, which averaged approximately 12.5 msec, corre- 
sponded quite closely to half a 40-Hz period. This number is the same as 
that calculated by Kristofferson (1984) for a quantum of consciousness in 
his psychophysical studies in the auditory system. 
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A second significant finding related to the fact that during the dream- 
ing state, 40-Hz oscillations are not reset by sensory input although clear 
evoked potential responses indicate that the thalamoneocortical system is 
accessible to sensory input (Llinäs and Par6 1991; Steriade 1991). This we 
consider to be the central difference between dreaming and wakefulness. 
The recordings suggest that we do not perceive the external world during 
REM sleep because the intrinsic activity of the nervous system does not 
place sensory input in the context of the functional state being generated 
by the brain at that time (Llinäs and Pare 1991). That is, that the dreaming 
condition is a state of hyperattentiveness in which sensory input cannot 
address the machinery that generates conscious experience. Relating to 
the morphophysiological basis for this scanning property, a very attractive 
hypothesis could be that the "nonspecific" thalamic system—in particular, 
the intralaminar complex—may be an important part of this process. In- 
deed, the intralaminar complex represents a cellular mass that projects to 
the most superficial layers of all cortical areas, to include primary sensory 
cortices (Jones 1985) in a spatially continuous manner. The cells in this 
group may also have the necessary interconnectivity to sustain a propaga- 
tion wave within the nucleus, which could result in the 40-Hz phase shift 
observed at the cortical level that is generating the rostrocaudal 12.5-msec 
phase shift. This possibility is particularly attractive given that damage 
of the intralaminar system results in lethargy or coma (Facon et al. 1958; 
Castaigne et al. 1962) and that the electrophysiological properties of sin- 
gle neurons, especially during REM sleep, burst in firing with a 30-40-Hz 
periodicity (Steriade et al. 1993) as is in keeping with the macroscopic 
magnetic recordings observed in this study. 

BINDING BY SPECIFIC AND NONSPECIFIC 40-HZ RESONANT 
CONJUNCTIONS 

The results reported above and other recent findings indicate that 40-Hz 
oscillation is present at many levels in the CNS. Indeed, such a property 
is found in sites as peripheral as the retina (Ghose and Freeman 1992), 
and olfactory bulb (Bressler and Freeman 1980), in the thalamus, specific 
and nonspecific (Steriade et al. 1993a), in the thalamic reticular nucleus 
(Pinault and Deschenes 1992a), and in the neocortex (Llinäs et al. 1991). 
Moreover, it has been shown that some of the 40-Hz recorded in the visual 
cortex is correlated with retinal 40-Hz (Ghose and Freeman 1992). Thus, 
40-Hz oscillation involves not only the cortical but also the thalamocortical 
interactions. Such a possibility is indicated in the diagrams in figure 6.4. 
Forty-Hertz oscillation of specific thalamocortical neurons (Steriade et al. 
1991) can establish (as shown in figure 6.4, left) thalamocortical resonance 
via fourth-layer inputs, which resonates with inhibitory interneurons at 
that level (Llinäs et al. 1991). Such oscillation can reenter the thalamus 
via the layer 4 pyramidal cells (Steriade et al. 1990) and resonate with 
both the nucleus reticularis and in the specific thalamic nuclei (Pantev et 
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LAYER I 

SPECIFIC 
NUCLE 

NTRALAMINAR 
NON-SPECIFIC NUCLEI 

Figure 6.4 Thalamocortical circuits proposed to subserve temporal binding. Diagram of 
two thalamocortical systems. (Left) Specific sensory or motor nuclei project to layer 4 of 
the cortex, producing cortical oscillation by direct activation and feedforward inhibition via 
40-Hz inhibitory interneurons. Collaterals of these projections produce thalamic feedback 
inhibition via the nucleus reticularis. The return pathway (circular arrow on the left) reenters 

this oscillation to specific and reticularis thalamic nuclei via layer 6 pyramidal cells. (Right) 
Second loop shows nonspecific intralaminary nuclei projecting to the most superficial layer 
of the cortex and giving collaterals to the reticular nucleus. Layer 5 pyramidal cells return 
oscillation to the reticular and the nonspecific thalamic nuclei, establishing a second resonant 
loop. The conjunction of the specific and nonspecific loops is proposed to generate temporal 
binding. (Modified from Llinäs and Ribary 1993) 

al. 1991). This view is therefore different from the binding hypothesis 
proposed by Crick and Koch where the authors proposed cortical binding 
due to the activation of specific thalamic inputs (Crick and Koch 1990a; see 
also chapter 5). 

On the other hand, a second system (figure 6.4, right) is represented 
by the intralaminary cortical input to layer 1 of the cortex and its return- 
pathway projection via fifth and sixth layer pyramidal systems to the in- 
tralaminary nucleus, directly and indirectly, via collaterals to the nucleus 
reticularis (Jones 1985). The cells in this system have been shown to oscil- 
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late in 40-Hz bursts (Steriade et al. 1993a), and to be organized in space as 
a toroidal mass having the possibility of recursive activation (Krieg 1966), 
which could result in the recurrent activity ultimately responsible for the 
rostrocaudal cortical activation found in the present MEG recordings. 

Finally, it is also evident from the literature that neither of these two 
circuits alone can generate cognition. Indeed, as stated above, damage 
of the nonspecific thalamus produces deep disturbances of consciousness 
while damage of specific systems produces loss of the particular modality. 

From the above, a very tentative hypothesis may be proposed relating to 
the overall organization of brain function in very gross and oversimplified 
terms. Indeed, the "specific" thalamocortical system (to be understood not 
only as that relating to the primary sensory modalities but rather to nuclei 
that project mainly, if not exclusively, to layer 4 in the cortex, whether 
sensorimotor or associative) is viewed as encoding specific sensory and 
motor "information" by the resonant thalamocortical system specialized 
to receive such inputs (e.g., the LGN and visual cortex). 

If this were to be the case and optimal activation of any such loop would 
tend to oscillate at close to 40-Hz, activity in the "specific" thalamocortical 
system could then be easily "recognized" over the cortex by this oscillatory 
characteristic. In such a scheme then, areas of cortical sites "peaking" at 
40-Hz would represent the different components of the cognitive world 
that have reached optimal activity at that point in time. The problem now 
would be that of the conjunction of such a fractured description into a 
single cognitive event. This could be done, we propose, by the summation 
of 40-Hz activity along the radial dendritic axis of the cortical elements, 
which would occur when the specific and nonspecific 40-Hz activity is 
superposed in time, and on the same set of neurons. 

In short, the system would work by bringing central neurons to opti- 
mal firing patterns via dendritic integrations based on passive and active 
dendritic conduction along the apical dendritic core conductors. In this 
manner, the time-coherent activity of the specific and unspecific oscilla- 
tory inputs, by summing distal and proximal activity in given dendritic 
elements, would serve to enhance de facto 40-Hz cortical coherence by their 
multimodal character, and serve as one mechanism for global binding. 

In this manner the specific system would provide the content, and the 
nonspecific system the temporal conjunction of such content, into a single 
cognitive experience. 

SO, WHY DO WE DREAM? 

At this time nothing other than hypotheses can be offered with respect to 
the final physiological role of dreaming in brain function. An excellent 
summary of these different points of view has been published recently. 
(Hobson 1988). 

The categories discussed most often today relate to either (1) the Freudian 
view concerning a subconscious drive or (2) the "mesencephalic" origin, in 
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which dreaming is considered as the forebrain interpretation of otherwise 
meaningless "brainstem noise." We have a different view that is based on 
the fact that more often than not one either dreams about recent events or 
about ongoing problems. On this basis one may consider that dreaming 
may be the necessary consequence of the parallel nature of the neuronal 
organization in the CNS. So, given a particular question to be resolved, the 
CNS generally embarks on simultaneous but diverse possible solutions to 
such problems, in a parallel fashion. Given this strategy, chances are that 
a given solution is arrived at before other alternatives. 

This, however, does not mean that the alternatives are not considered 
further. In fact, it often happens that having come to a solution considered 
adequate, a second may "pop up" in one's mind at a later time. We may 
further consider that at the end of the day we may have many such partial 
computations being performed prior to our falling asleep. The possibility 
is there that in dreaming we "download" the other possible solutions and 
thus prevent the overloading of circuits with the accumulation of an ever- 
increasing set of ongoing partial solutions as new problems are considered. 
This particular point of view may be supported in part by the fact that 
excellent solutions to problems may arise in dreams. 

Something quite similar may be said with regard to slow-wave sleep. 
In this case the very slow oscillatory nature of the neuronal rhythmicity 
observed during this functional state (Steriade et al. 1993c) is probably 
closer to the grooming functions that most animals perform upon finishing 
a task—whether it is the smoothing of ruffled feathers after flight or the 
grooming of vibrissa following ingestion of food. What all of this may have 
in common is that the time spent to generate repeating and rather simple 
movements (i.e., grooming) or repeating and rather simple patterns of 
brain activity facilitates the return of neuronal circuits to a readiness state 
that follows the end of grooming of peripheral receptors and effectors. 

The use of such metaphors is but a first approximation to what may 
ultimately be shown to be the real function of sleeping and dreaming. 
However, when one considers the fact that sleeping is of such importance 
that no higher nervous system has evolved away from this time-consuming 
activity, we must assume that its presence is vital to normal brain function. 
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Neuronal Architectures for Pattern-theoretic 
Problems 

David Mumford 

As is abundantly clear from the other chapters of this book, there are many 
levels at which one can attack the problem of modeling the computations 
of the cortex. For example, at one extreme, one can model how the action 
potentials received at each synapse are combined in the dendritic tree, or, 
at the other, one can develop a functional theory of the different cortical 
areas. But, in addition to choosing a level, modeling requires you to choose 
some description for the class of problems that you expect the cortex is solv- 
ing, or the class of signals that you expect the cortex to be processing. Folk 
psychology provided the labels for the original cortical area theory of Gall, 
and cognitive psychology continues to provide a more sophisticated frame- 
work for assigning task and function labels to cortical areas (cf. Luria 1962; 
Fodor 1983; Kosslyn and Koenig 1992). Neurologists use the results of a 
limited battery of tests, supplemented by their own ability to empathize 
with the mental state of their patients, as the evidence to be correlated with 
the nature of the brain damage. For several decades, visual neurophys- 
iologists have relied on the presentation of moving edges and bars and 
sine wave gratings: the implicit assumption is that distinctive patterns of 
response to these embody the basic elements of low level visual processing. 

The point of departure of this chapter is the proposition that the com- 
putational analysis of vision—and speech, tactile sensing, motor control, 
etc.—(the theory of the computation as Marr called it [Marr 1982]) is reach- 
ing a point where it can provide a clearer and deeper description of the 
essential tasks of vision as well as a wide range of other cognitive tasks. 
For instance, the development of algorithms for character recognition or 
for face recognition or for road tracking from a moving vehicle (three prob- 
lems that have been much studied on account of their potential applica- 
tions) forces the researcher to deal with noisy, complex real world data. In 
doing this, one's initial ideas about what parts of the problem are difficult, 
what parts are simple, may turn out to be quite wrong. Quite often, a 
step that one thinks of as a simple preprocessing clean up operation turns 
out to be very difficult and pinpoints for you a new class of problems that 
had been ignored. Introspection turns out often to be a very poor guide to the 
complexity of a problem. The reason for this, we believe, is our subjective 
impression of perceiving instantaneously and effortlessly the significance 



of sensory patterns (e.g., the word being spoken or which face is being 
seen). Many psychological experiments, however, have shown that what 
we perceive is not the true sensory signal, but a rational reconstruction of 
what the signal should be. This means that the messy ambiguous raw sig- 
nal never makes it to our consciousness but gets overlaid with a clearly and 
precisely patterned version that could never have been computed without 
the extensive use of memories, expectations, and logic. Only when you at- 
tempt to duplicate such a skill by computer do you discover all the hidden 
complexity in the computation. 

We believe that this analysis, which we call "Pattern Theory" (a term 
introduced in the pioneering work of Grenander some 15 years ago), leads 
not merely to a few broad guidelines on the problems faced by a brain, but 
to a rather specific set of computational tasks, and to a flow chart of how 
the pieces should be put together. This analysis is very different from most 
of the orthodox analyses of cognitive problems: it is very distinct from 
the standard AI view, which takes formal logic and the formal linguists' 
analysis of language into atomic units and air tight rules, as the universal 
language of cognition. As we shall see, it fits naturally, instead, with such 
nonlogical data structures as probabilities, fuzzy sets, and population cod- 
ing. Moreover, it is very distinct from the pure feedforward analyses such 
as Marr's analysis of vision (Marr 1982), in that it is based in an essential 
way on a relaxation between feedforward and feedback processes. Hav- 
ing this analysis, we can go directly to neuroanatomy and neurophysiology 
and ask if there are structures in the brain that suggest being designed to 
implement one or more of these basic computational building blocks. If 
these computations do indeed represent fundamental cognitive operations, 
one hopes that the basic circuitry is not hidden, but clearly expressed in 
the anatomy of the cortex, especially in its layers, pathways, and cell types. 
The method to follow, we believe, is to seek the simplest mechanisms com- 
patible with present knowledge of the anatomy and physiology of cortex, 
seeking direct analogies between the computational architecture and the 
neural architecture. 

In the next section, we outline the ideas of Pattern Theory and introduce 
three basic ideas of this theory. There follow sections in which each of 
these ideas is detailed and its connections with neuroanatomy and neuro- 
physiology are described. We suggest, where possible, the most specific 
predictions these theories make and propose experimental tests in sev- 
eral cases. The biological ideas in this paper are developments of those 
described in our earlier two-part paper (Mumford 1991, 1992). The for- 
malism of Pattern Theory presented here is developed at greater length in 
Mumford (1993). 

WHAT IS PATTERN THEORY? 

The starting point of Pattern Theory is the idea that sensory signals are 
coded versions of what is really going on in the world, and that the task 
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of sensory information processing is to reconstruct as much as possible a 
full description of the state of the world. We may define the goals of the 
field as 

the analysis of the patterns generated by the world in any modality, with 
all their naturally occurring complexity and ambiguity, with the goal of 
reconstructing the processes, objects, and events that produced them. 

For example, these patterns may be those of visual signals, that is, 2D 
arrays of intensity and color measurements as received by the rods and 
cones in the retina. Or they may be the patterns of auditory signals, that 
is, the time-varying vibration patterns of the inner hair cells generated 
by the complex cochlear filter. In the visual example, one seeks first to 
reconstruct the pattern of discrete objects in the world, their distances 
from the observer, surface markings, and how they are illuminated so 
as to produce the observed signal. In the case of speech, the first step is 
to reconstruct the events in the throat and mouth of the speaker and then 
to label these as the events associated to specific phonemes in a specific 
language, plus pitch and stress data to be used in further processing. 

But Pattern Theory goes further and asserts that a parallel analysis can be 
applied to higher cognitive levels as well. Consider a medical expert sys- 
tem—or a physician. Both of these educated devices accept as input a des- 
cription of the symptoms, test results, and a partial history of a specific pa- 
tient. This data can be viewed as a coded signal generated by the processes 
at work in the patient's body. The task of medical expert system or the phy- 
sician is to reconstruct a full description of these hidden processes. Many 
cognitive tasks can be analyzed in this way. The world contains unknown 
processes, objects, and events—hidden random variables in the language 
of the probabilist. But they are not totally hidden, as partial encoded infor- 
mation about them comes to the observer through various sensory channels 
or lower level analyses. The goal is to estimate the world variables. 

How does Pattern Theory propose to carry out this reconstruction? There 
are three characteristic ideas in Pattern Theory. The first idea is that to suc- 
cessfully reconstruct the world variables, one must learn to synthesize the 
coded signals that one observes, so that tentative reconstructions of the 
world variables can be checked by comparing the actual observed signal 
with synthesized signals. This means that the architecture is not purely 
feedforward, bottom-up, but fundamentally recursive combining feedfor- 
ward actions with feedback, top-down processing with bottom-up. The 
second idea is that the encoding processes, which transform the state of 
the world into the received sensory signal, are not completely arbitrary 
(e.g., the logician's general recursive functions), but processes of several 
restricted sorts—deformations is Grenander's word—that reoccur in all sen- 
sory channels and in higher cognitive problems. This means that the archi- 
tecture can be customized to decode these specific types of deformations to 
reconstruct the state of the world. The third idea is that this reconstruction 
can (and must) be learned from experience, that one learns both which 
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hidden variables best describe the patterns in the signals, hence the world 
itself, and the priors on these variables to be able to best compute them. In 
the rest of this chapter, we want to discuss these three ideas. 

THE ANALYSIS-SYNTHESIS LOOP AND CORTICAL FEEDBACK 
PATHWAYS 

Two Different Flow Charts 

The first basic idea of Pattern Theory is that to analyze some class of signals, 
you must learn to synthesize these signals given typical values of the world 
variables. To recognize some class of objects visually, you must know how 
to synthesize images of them; to recognize words, you must know how to 
synthesize the actual sound patterns; to diagnose a disease, you must be 
able to describe its typical presenting symptoms. 

Although this sounds like common sense, it distinguishes Pattern The- 
ory from the majority of computational and modeling theories, because it 
implies that top-down feedback processes are just as important as bottom- 
up feedforward processes. Consider how many classification algorithms 
are purely feedforward: feature-based winner-take-all ("Pandemonium") 
algorithms, feedforward neural nets (even with backpropagation, in which 
feedback is used for learning, but not in practice), tree-based classifiers like 
CART, and parametric statistical modeling. None of these handles grace- 
fully a new and unexpected stimulus, because they have not explicitly mod- 
eled the stimuli they have been trained on, and therefore cannot recognize 
novelty. At best, they can incorporate significance levels, and flag suspi- 
cious stimuli if none of their categories fits with overwhelming significance. 
Unfortunately, this often miscarries with borderline cases. One reason is 
that, because of the distortions caused by "interruptions" (i.e., overlapping 
objects, events or processes—see below), correct instances of a category are 
often present but with part of their characteristic pattern missing (e.g., a 
letter partially covered by an ink blot). In this case, part of the stimulus 
will fit the category very well, part not at all, and a feedforward classifier 
may mistake them for a different category. In contrast, incorrect instances, 
like a letter from a foreign alphabet, may roughly resemble one of expected 
categories, say an english letter, and therefore be mistaken for it by a feed- 
forward classifier. The moral is that it is much more significant for a part 
of the stimulus to match closely the prototype of a category, than for all 
of it to match slightly. This kind of distinction cannot be made unless a 
top-down synthesis stage is part of the recognition algorithm. 

The simplest type of pattern synthesis consists in simply storing proto- 
types or templates for each category to be recognized. Note that this is 
not the same thing as storing prototype feature vectors (e.g., mean values 
of the features for all instances of signals from a given category). This 
is because there is usually no way to reconstruct the signal itself from its 
features. In contrast, a template (as the word is used in traditional pat- 

128 Mumford 



tern recognition) is a particular signal that can be directly compared with 
the incoming signal. Such templates are also incorporated in the pattern 
completion operation of various neural nets such as Kohonen's and in the 
seeking of "energy minima" in the attractive neural nets of Hopfield. In a 
simple world such templates might suffice but, because the many different 
signals belonging to a single category (e.g., all varieties of the letter A) differ 
by complex transformations such as domain warping (see below), a single 
template will rarely match the actual signal at all well. Too many factors 
affect every real world stimuli for a simple Sears-Roebuck catalog of pat- 
terns to be useful. Each instance of a category can be positively identified 
only by actively synthesizing it: combining the templates of those objects 
or processes present on all scales, distorting them in the correct ways, and 
removing parts that are absent. This is why Pattern Theory presupposes an 
analysis-synthesis loop in which feature extraction and feedforward style 
classification is combined with a feedback step in which the system at- 
tempts to duplicate the stimulus by combining and transforming its basic 
prototypes. 

Figure 7.1 contrasts the flow charts of traditional bottom-up recognition 
systems with that of Pattern Theory. Note that Pattern Theory proposes 
that analysis and synthesis should be carried out iterative!}/. Thus, at the 
first stage, if there is no expected pattern, the features of the actual signal 
are extracted exactly as in the traditional flow chart and passed to a recog- 
nizer. However, next the recognizer draws on its database of prototypes to 
synthesize a standard instantiation of the hypothetical object being seen. In 
subsequent iterations, the hypothesis will be refined: details on size, orien- 
tation, shading if present, and missing and/or extra parts will be computed 
by comparing the synthesized image with the true image and computing 
features of the residual or difference between these. That does not mean 
that the true image is thrown away. But a steady state would mean that the 
synthesized image agrees, up to acceptable error, with the true image and 
the features of the residual are too small to modify the hypothesis further. 
There is no need to send any more feedforward signals when the feedback 
pathway already predicts the input signal. (This is like driving home on 
a well-known road and not needing to pay attention to anything that you 
see because it always agrees with what you expect, hence never generates 
a residual.) 

What is an acceptable error in synthesizing the signal is something that 
must also be modeled explicitly and differently for each category of signal. 
Thus modeling the detailed contour of the nose is quite significant for face 
recognition, but modeling the shape of a stapler is not significant when 
performing office tasks. Modeling the details of the grain of an oak floor 
is not significant, but the exact shape of the stripes or spots on the back 
of a large member of the cat family is. This is a major difference between 
Pattern Theory and Barlow's theory (see chapter 1). In Barlow's theory, 
modeling patterns allows you to distinguish that part of the signal that is 
familiar and has predictable structure from the novel information in the 
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Figure 7.1 (Top) The traditional bottom-up approach to recognition in which a feature vector 
is computed first and this compared with prototype vectors, one for each category. (Bottom) 
The alternative proposed by Pattern Theory in which a bottom-up/top-down relaxation ex- 
plicitly models the image by comparing it with images synthesized from high-level descrip- 
tions. 

signal—which resembles noise. Pattern Theory, however, distinguishes 
two parts to this "information": the high-level description from which the 
signal is being synthesized and the residual error that is hard or impossible 
to model. The former is truly informative and is passed on to higher levels, 
and the latter is discarded as being truly noise. 

Note that the flow chart of Pattern Theory is also different from that pro- 
posed by Poggio (e.g., in chapter 8 by Poggio and Hurlbert). They propose 
a very specific mechanism for combining multiple instances of a specific 
category by comparing each with the true signal and interpolating. But this 
comparison is feedforward and is hard-wired by radial basis functions, 
so that if further kinds of variability are encountered, one must multiply 
the sets of stored instances, allowing for all combinations of each type of 
variability. In contrast, Pattern Theory is feedback, so it can synthesize dy- 
namically every new signal and thus potentially model a much larger class 
of deformations. How this can be done neurally will be discussed below. 

This feedback stage is not unlike mental imagery, which, as Kosslyn has 
discovered, is a complex synthesis and reconstruction of something that has 
all the qualities of actual stimuli from the external world. As he suggests 
and both MRI and PET scans seem now to confirm, this something may be 
low-level activity in the sensory areas of the brain, even VI, just like what 
we propose for our feedback (see Le Bihan et al. 1992; Kosslyn et al. 1993). 
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We may summarize our argument by saying: 

„     , , Use of (flexible)     Mental 
Feedback = signals from = = . 

templates imagery 
memory 

To give these ideas a more concrete flavor, we want to take a particular 
image: the old man on a bench shown in figure 7.2a. We assume that you 
instantly recognize the content of the image. But how did you do this? A 
blow up of his face (at the same resolution) is shown in figure 7.2c: his 
ear is the only vaguely recognizable part of his face and his hand blends 
into his face, creating the two utterly misleading spots of light where you 
see past his face. Figure 7.2b shows what a state-of-the-art edge detector 
(Canny's) produces (such detectors require various parameters to be set 
by the user and we have selected those that seemed more or less optimal): 
not only are the edges of his face not found, but even the outline of his coat 
is fragmented. Finally, note that the most salient "object" in the image is 
his cap, which, by itself, could be virtually anything. How do feedback 
loops help you analyze this man? There are two stages here: in the low- 
level feedback loops, low-level templates and low-level segmentation (= 
clustering into distinct objects) take place, while in the high-level feedback 
loops, models of objects such as bodies, heads, and benches are fit to the 
image. To make this plausible, let me point out how much could, in prin- 
ciple, be done in low-level fitting operations: first, the pieces of the bench 
on each side of the man can be grouped, using an interupted line template. 
Next, a textured, fragmented contour along the back of his coat can be as- 
sembled into a model of a backlit, wrinkled, and rounded object. And his 
cap comes forward because it occludes the background and his face and 
simultaneously the fact that the black triangle over his eyes is a shadow 
can be deduced. All of these deductions involve fitting simple models of 
scene fragments. At this point, there is finally a chance for high-level mod- 
els to find the right parts of the scene to fit and we already know enough 
about the lighting to know what would be in shadow and what would be 
brightly lit (e.g., the back of his head). 

Besides arguing for the flow chart in figure 7.1, this example is also 
useful in contrasting Pattern Theory with the feedback theory of Ullman 
(chapter 12). Our analysis of the old man example requires multiple in- 
dependent and concurrent loops, low-level and high-level, some modeling 
shading, some modeling depth planes, some modeling clothed bodies, 
and some modeling faces. This suggests that Ullman's theory with a sin- 
gle bottom-up search and single top-down search could not easily solve 
the old man puzzle. Postulating multiple independent feedback loops, 
instead of one global feedback from stored knowledge to the sensorium, 
is also helpful in comparing Pattern Theory with Marr's theory of vision 
(Marr 1982). Marr was very influenced by several examples in which top- 
down information was either not needed or ignored in accomplishing some 
feedforward computational task (e.g., fusing random-dot stereograms or 
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Figure 7.2 An image that illustrates some difficulties in recognition. (Top) The image. (Bot- 
tom left) Canny's edge detector applied to the image. (Bottom right) A blow-up of the face 
showing the lack of recognizable features. 

construction of 3D models from unorthodox 2D views by victims of ag- 
nosia). This led him to propose a purely feedforward theory of vision. We 
would argue that all his examples are evidence against strong feedback mod- 
els, like Ullman's, in which high-level knowledge is fed back all the way to 
low-level stages, and that none of his examples contradicts the hypothesis 
that multiple, more local, feedback loops are being used. 

Evidence from Neuroanatomy 

We now turn to the cortex itself and ask whether we can find a confirma- 
tion in its structures of the theory that bottom-up pattern analysis cannot 
be done independently of top-down pattern synthesis. Indeed, one of the 
main themes in neuroanatomy in the last several decades has been the 
discovery that the cortex is naturally divided into distinct areas that are 
reciprocally connected by pathways created by the axons of their pyramidal 
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neurons. Pattern theory strongly suggests that these pairs of pathways 
should instantiate the dual computational processes of analysis and syn- 
thesis. This proposal is strongly supported by the still emerging picture of 
the cortical layers connected by these pathways. Some of these pathways 
terminate principally in layer 4, the standard "input" layer for bottom-up 
cortical processing, the route from raw sensory input to higher association 
areas: it is natural to propose that these pathways carry out pattern analy- 
sis. Other pathways terminate mostly in layers 1 and 6, the top and bottom 
of the cortical plate, and are typically dual to the first set (i.e., if area A is 
connected by the first type of pathway to area B, then one of the second 
type connects area B back to area A). Pattern Theory suggests that these 
pathways should carry out pattern synthesis. 

These cortical feedback pathways are, perhaps, the most complex piece 
of wiring in the brain and it is astonishing that evolution has been able to 
create them. Does their evolution support our proposal that all cortico- 
cortical pathways should belong to two separate systems, a bottom-up 
processing pathway and a top-down processing pathway? The homolo- 
gies between mammalian neocortex and reptilian telencephalic structures 
are not obvious and there has been much debate on them. One set of ho- 
mologies is the so-called dual origin hypothesis, which goes back to the 
pioneering work of Marin-Padilla (1978). This theory has been developed 
by Karten and most recently by Deacon (see Karten and Shimizu 1989; 
Deacon 1990) and has been gaining adherents. It proposes that the six- 
layered mammalian neocortex is not homologous to a single structure in 
the reptile, but that two structures, separate in the reptile, have become 
merged in the mammal. More specifically, (1) the top and bottom layers of 
the mammalian neocortex when originally formed in the embryo are ho- 
mologous to the two-layered dorsal cortical plate, or pallium, of the reptile, 
and (2) that the population of neurons that migrates during mammalian 
embryogenesis to form the inner layers of the neocortex is homologous to 
the neurons of the dorsal ventricular ridge in the reptile. 

This theory is shown, in simplified form, in figure 7.3. What Deacon has 
pointed out is that this theory explains beautifully the existence of recip- 
rocal pathways and their most common laminar patterns (Deacon 1990, 
pp. 686-691, especially last paragraph). Note that in the reptile, there are 
no directly reciprocal pathways, all loops being longer and more indirect. 
But the original pallium carries its own internal connections, labeled "A" 
in figure 7.3, many of which emanate from the olfactory and limbic cortex 
and proceed caudally. Moreover, the dorsal ventricular ridge (DVR) has 
its internal pathways labeled "B," which proceed rostrally. When in the 
mammalian embryo the homologous structure to the latter migrates inside 
the homologous structure to the former, Deacon proposes, because of the 
conservatism of evolution, that homologous connections will still be estab- 
lished: the pathways A, descending from limbic areas and synapsing on 
layers 1 and 6, the residues of the dorsal cortical plate, are still laid down 
and become the top-down pathways of the mammal; and the pathways B, 
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Figure 7.3 A comparison of the main structures in the reptilian (left) and mammalian (right) 

brains, illustrating Marin-Padilla and Deacon's theories of the dual origin of the neocortex 
and its reciprocal pathways from the pallium and dorsal ventricular ridge. 

ascending from sensory areas in the DVR, synapsing in the middle layers, 
become the bottom-up pathways of the mammal. Moreover, the thalamo- 
cortical reciprocal pathways arise in a similar way, from the thalamus —* 
DVR pathway B', and the pallium —► thalamus pathway A'. (We have sim- 
plified the picture somewhat by excluding the geniculocortical pathway 
and its precursor.) 

One can make a suggestive link of Pattern Theory with the 40- to 60-Hz 
cortical oscillations that have been observed in the last decade in so many 
structures in so many distinct recording modes (cf. Singer, chapter 10). 
The link is the proposal that this oscillation is a reflection of the basic cycle 
of computation in which bottom-up features are compared with top-down 
memories and expectations, of the iterative operation of the loop in figure 
7.1 (bottom). The strongest evidence for this is the observation that these 
oscillations lock when the cells are responding to linked parts of the stimu- 
lus, both in different parts of VI and between VI and V2. It is important to 
realize that if successive cycles of this oscillation represent successive itera- 
tions in a computation, one would not expect exactly the same cells to par- 
ticipate in each cycle. Therefore, the oscillation would be much stronger in 
field potentials than in single cell recordings. This is exactly what is found. 
For instance, field potential oscillations were discovered by Freeman in the 
1970s (Freeman 1975) in the olfactory bulb and cortex. It is interesting to 
note that one form they take here is repeated sweeps of rostral-to-caudal 
excitation, as though the two poles of the olfactory bulb are like two neo- 
cortical areas communicating and oscillating via long axons (compare the 
model of Wilson-Bower 1992). The oscillation even shows up on the entire 
cortex in human MEG recordings: see Llinas et al. (1991), which shows a 
40-Hz oscillation sweeping over the whole cortex and Ribary et al. (1991), 
which shows the oscillation between cortical and thalamic activity. 
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If we make a crude connectivity model of the type of circuit that emerges 
from this analysis, what does it look like? Is it like the "blackbox" compu- 
tational models that have long been the staples of the computer metaphor 
(figure 7.4, top)? These diagrams stem from 50 years of development of the 
computer, starting from Von Neumann. The major computational steps are 
carefully dissected and put in separate boxes, necessary data flow paths 
are added, and the whole thing operates like a chemical factory. This 
point of view is highly developed in the books of Fodor and Kosslyn; its 
computational foundation has been beautifully expounded in the book by 
Abelson and Sussman (1985). But this is not what's there! In the cortex, 
roughly 65% of all cells are pyramidal cells that send their output to dis- 
tant cortical areas, as well as locally via their axon collaterals. This means 
that there is no hiding of local information, no "local variables" or protected 
data. A better picture is figure 7.4, bottom. Instead of black boxes with 
opaque walls, we have apartments in a cheap housing complex with very 
thin walls! All your neighbors hear everything that is going on in your 
home. Instead of "hiding local variables," a device central to all modular 
programming, every little whimsy that occurs to you goes out instantly to 
all and sundry. 

It seems to me that the computational metaphor itself is flawed. Pattern 
Theory has a clear explanation: these tightly coupled cortical areas are ex- 
actly the higher and lower level areas of pattern theory that seek, by a sort 
of relaxation algorithm, to come to a mutual understanding in which the 
lower area's more concrete data are fit with a known, more abstract, cate- 
gory expressed by the higher area's activity. This is a fundamental shift in 
focus from the computational metaphor. Just as, for instance, Edelman has 
proposed Darwinian, evolutionary metaphors as the right ones for mod- 
eling brain function (cf. Edelman 1987), similarly pattern theory implies 
a new paradigm: that of many different parts of the brain attempting to 
reconcile their states, their implicit descriptions of part of reality, with the 
states of other areas, either through bottom-up assertions of facts that have 
to be dealt with or top-down memories of expected patterns. This is re- 
lated to Minsky's idea of the brain consisting of many agents, in "Society 
of Mind" (Minsky 1985). 

Does all this speculation mean anything for the experimenter? Does it 
have any predictive force? To begin with, it implies that there will be more 
correlation between single-cell responses in different areas than would be 
expected if the areas were black boxes, hiding their characteristic internal 
computations from each other. For instance, we see this in the tremendous 
overlap of the characteristics of single cells in the various visual areas, 
which has prevented assigning any clear functional role to V3 or V4 (aside 
from generalities like being concerned with shape or color). What we think 
is the most important implication, however, depends on a refinement of 
multiple cell recording techniques: Pollen has proposed a technique for 
preparing an animal with electrodes recording from cells in two areas that 
show significant cross-correlation in their spiking (cf. preliminary work 
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Figure 7.4 (Top) The modular approach to cognition and computation, in which individual 
steps are carried out "privately" and only final results are broadcast. {Bottom) The relaxation 
approach of the cortex, in which two-thirds of all neurons send their output both locally and 
to distant areas. 

by Liu et al. 1992). At this point, instead of looking at the responses of the 
two cells in isolation, one can separate for analysis the correlated spikes from the 
full spike trains. The theory suggests that this set of spikes may be much 
less stochastic, carrying the information transmitted between areas, and 
hopefully correlated much more precisely and predictably with identifiable 
aspects as the stimulus. To be more specific, we must turn to what the 
theory conjectures about the content and nature of the representation in 
individual areas and, using this, its description of the data transmitted 
back and forth between areas. 
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THE FOUR BASIC DEFORMATIONS 

What They Are 

The second basic idea of Pattern Theory is that the processes that trans- 
form the world variables into the observed variables are not arbitrarily 
complicated, varying widely from one channel to another. Instead, four 
basic transformations, or deformations as Grenander called them, can be 
found at work in every channel. These are the following: 

1. Noise and blur. These effects are the basis of standard signal processing, 
caused, for instance, by sampling error, background noise, and imperfec- 
tions in your measuring instrument such as imperfect lenses, veins in front 
of the retina, dust, and rust. Typically, the full real world signal is mea- 
sured only at discrete sample points; its value at each point gets averaged 
with its neighbors—this is blur—and corrupted by the addition of some 
unknown noisy factors. In more cognitive applications, like the medical 
expert systems, errors in tests, the inadequacy of language in conveying the 
nature of some pain or symptom, confusing extraneous factors, all belong 
to this class. 

2. Multiscale superposition. Signals typically reveal one set of structures 
caused by one set of phenomena in the world when analyzed locally, at 
high precision, and other structures and phenomena when analyzed glob- 
ally and coarsely, at low precision. For instance, in images, local proper- 
ties include sharp edges, texture details, and local irregularities of shapes, 
which coexist with global properties like slowly varying shading or texture 
statistic gradients and the overall shape of an object. In speech, information 
is conveyed by the highest frequency formants, by the lower frequency vi- 
bration of the vocal cords and the even slower modulation of stress. These 
spatial or temporal frequency bands may be combined additively (as in 
Fourier analysis or wavelets), multiplicatively (as in AM coding) or by 
more complex nonlinear rules. In higher order processing, the analog of 
this decomposition into the "overall" shape versus fine local detail is the 
hierarchical model of concepts embodied in semantic nets. These mod- 
els describe a situation partly by its general properties, the very inclusive 
superordinate categories (in the terminology of Rosch 1978) to which it be- 
longs, and partly by its details, the subordinate categories of Rosch. Thus 
a patient is in simplest terms "very ill"; in more precise terms the patient 
has pneumonia, is contagious, should be hospitalized, and in very precise 
terms is infected by such and such a bacteria, has a temperature of 103, etc. 

3. Domain warping. Two signals generated by the same object or event in 
different contexts typically differ because of expansions or contractions of 
their domains, possibly at varying rates: phonemes may be pronounced 
faster or slower, the image of a face is stretched or shrunk by varying 
expression and viewing angle. In speech, this is called "time warping" and 
in vision this is modeled by "flexible templates." In both cases, there is a 
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mapping from the domain of one signal to the domain of the other, either a 
map of time intervals or a map between two-dimensional domains, which 
carries the salient parts of one signal to the corresponding parts of the other. 
The cognitive version of this type of distortion is thinking with analogies. 
In an analogy, some or all the elements in two situations can be mapped 
to each other, preserving many of their interrelations, just as the same 
elements occur in two faces, with nearly the same spatial relationships. In 
all cases, the map may be incomplete, in that some parts of one situation 
may not have corresponding parts in the other. Thus one face may be 
partially obscured by hair or a bandage, and only the unoccluded parts 
match up. 

4. Interruptions. Natural signals are usually analyzed best after being bro- 
ken up into pieces consisting of their restrictions to subdomains. This is 
because the world itself is made up of many objects and events and different 
parts of the signal are caused by different objects or events. For instance, 
an image typically shows different objects partially occluding each other 
at their edges. In speech, the phonemes naturally break up the signal and, 
on a larger scale, one speaker or unexpected sound may interrupt another. 
Obviously, in the cognitive realm too, several processes may be at work at 
once, as in a patient who has several medical problems at once. To infer 
the correct values of the hidden variables, the effects of the different pro- 
cesses must be separated from each other. A general term for isolating the 
effects of one process, object, or event from all the myriad others going on 
simultaneously is figure/ground separation. 

This part of Pattern Theory has a great deal to say to neuronal models. If 
these four transformations are universal coding mechanisms, which must 
be decoded by a brain, there should be mechanisms for all of them if you 
look in the right way. If they are truly universal, these mechanisms should 
be general circuits that occur in all areas of cortex. This is the challenge 
of Pattern Theory. We will discuss in separate sections below possible 
neuronal correlates of deformations 1, 3, and 4. 

Deformation 2, multiscale superposition, has often been discussed for 
vision as the "pyramid" data structure and associated algorithms often 
using a moving window of attention. It was only at this meeting, however, 
that we heard Van Essen and Anderson propose how such a pyramid could 
be laid out cortically using the three areas VI, V2, and V4 (see chapter 13). 
We will not discuss the decoding of this deformation except to mention 
that one of the major computations using a pyramid is the discovery of 
the "part-of" relations between blobs of different sizes (for instance, as a 
step to recognition of complex objects, e.g., Hong and Rosenfeld 1984). 
Striking evidence that this is done by the recognition of small and large 
blobs in parallel, with hard-wired "part-of" connections, was recently found 
by Jeremy Wolf (unpublished), who found that (1) red houses with yellow 
windows pop-out in a field of differently colored houses and windows, 
while (2) duplex half red and half yellow houses do not pop-out! I believe 
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this strongly supports Anderson and Van Essen's theory, because it can be 
explained by the concurrent recognition of the red houses in V2 and yellow 
windows in VI with reciprocal VI, V2 pathways marking "part-of" rapidly 
strengthening the activation to threshold. 

Nonlinear Filtering and the Thalamocortical Loop 

Let us look at the lowest level loops in the circuitry of the cortex and 
its immediate neighbors. The most basic of these are the loops connect- 
ing various cortical areas with various nuclei in the thalamus, especially 
the loop between visual area VI and the LGN. In many cases, these give 
primary sensory input to the cortex and a natural idea, in the context of 
pattern theory, is that these would be concerned with correcting for the 
most basic "deformation" of the sensory signal—noise and blur. For in- 
stance, Grossberg has often pointed out that the visual signal coming from 
the retina must be distorted by the presence of veins on the inner surface 
of the retina, not to mention the blind spot itself. Ever since Yarbus (1967), 
it has been known that within each fixation, the eye is far from still, but 
drifts irregularly, with a constant tremor of several minutes of arc (enough 
to move sharp edges across several adjacent cones in the fovea). In addi- 
tion, the light signal, as it strikes the eye, is already the result of conflicting 
processes that obscure its origin: the "accidental" markings on textured 
surfaces obscure their shape, and lighting effects are complicated by local 
self-shadowing and mutual reflections. Although part of the rich com- 
plexity of the world, they act like noise and blur if you are attempting to 
reconstruct the outlines of the major objects in view. 

For many years, engineers have proposed appropriate filtering as the 
universal solution to the problem of compensating for noise and blur. But 
pattern theory would propose that, like the other types of deformations, 
they must be corrected for, not by a blind bottom-up filter, but by an adap- 
tive feedback process. This is a logical role to propose for the thalamo- 
cortical loop. Specifically, the reciprocal LGN ^ VI pathways should 
implement an image processing algorithm, which "cleans up" and disam- 
biguates the visual signal. Typical functions of image processing are noise 
removal and edge enhancement. No wonder single cell recordings could 
never find any role for the VI —► LGN feedback: the squeaky clean labo- 
ratory signals, with edges, bars, and sine wave gratings do not need any 
image processing! Experimental tests for this hypothesis are easy to draft, 
once one is committed to presenting more complex and realistic stimuli, 
for which the response cannot be summarized by linear approximations, 
like the impulse transfer function. Several such proposals are presented in 
Mumford (1991,1992). 

How are these image processing tasks accomplished? We assume that 
the complex cells, whose response, to a first approximation, is like a power 
Gabor filter with a preferred scale and orientation, attempt to find the 
salient edges and bars in an image. But typically, many of these will be 
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responding simultaneously in each local region and one must find how to 
reconcile them (e.g., one such cell "sees" a strong long line, the other an 
edgelet that is part of texture; or one marks the end of a bar, the other its 
sides). Before a consistent interpretation is found for each part of an image, 
many conflicting local organizations may be detected and there is a need 
for some kind of decision mechanism such as a "winner-take-all" circuit. 

There are several hints of such decision mechanisms in the cortico- 
thalamic projection. Several groups (cf. McGuire et al. 1984 in cat, White 
and Keller 1987 in mouse) have reported that the axon collaterals of the 
layer 6 VI pyramidal cells and especially the corticothalamic projection 
cells appear to synapse largely on aspinous interneurons, presumably in- 
hibitory cells. This has the look of a winner-take-all network, an organiza- 
tion long predicted in the neural net literature, but never clearly identified 
in the cortex to our knowledge. Alternately, the inhibitory cells in the LGN 
could provide a voting mechanism. In other words, if these were absent, 
the various feedback signals from cortex would simply be averaged in 
the dendritic trees of LGN "relay" cells. But if some of them synapse on 
inhibitory cells, they can effectively suppress other feedback and feedfor- 
ward signals. 

Shifter Circuits, Flexible Templates, and Population Coding 

A more radical part of the pattern theory analysis is the proposal that do- 
main warping is a universal deformation. This means that in analyzing 
signals, and matching signals against patterns in memory, the pattern of activity 
on the cortex must be displaced (in the two-dimensional coordinates of the cortical 
surface). Such operations have been proposed under the name of "shifter 
circuits," most recently in Anderson and Van Essen (1987). Although ar- 
gued for by theorists for some time, only recently has evidence appeared 
for their existence in cortex. In a beautiful paper on recordings in the pari- 
etal lobe, Duhamel et al. (1992) found that activity correlated to the visual 
location of different objects in front of an awake monkey is shifted on the 
parietal lobe surface in anticipation of a saccade that will shift the visual 
sensory signal. In a totally different part of the cortex, Georgopoulos and 
his group have found that activity in the primary motor area Ml is shifted 
as the precise coordinates of an intended arm movement are computed. 
Note that this example is not sensory but motor-planning related: here the 
activity pattern for one standard arm movement is first recreated in Ml, 
and then it is modified over a 100-msec period by domain warping until it 
is appropriate for the specific movement presently desired. 

The simplest example where there is a need for this mechanism is in 
the computations of stereo vision, in the correlation of the left and right 
eye movement. This example was used by Anderson and Van Essen and 
by Poggio. As they point out, what makes it especially compelling is the 
existence of tremors in eye position of up to 10 min of arc during a period 
of fixation: without active compensation for this, stabilizing the image, 
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it is very hard to imagine how stereo cells in VI can respond robustly to 
left/right eye feature disparities of only several minutes, let alone account 
for the psychophysical evidence of disparity hyperacuity of less than a 
minute of arc. Anderson and Van Essen propose that, in the primate, this is 
carried out by shifter circuits in VI that has developed a highly specialized 
layer 4, making it unique for its cell density among mammalian cortical 
areas. In the less specialized case of the cat, we would propose that this 
stabilization results from the action of the LGN ^ VI loop, rather than a 
hard-wired shifter circuit in VI (and that this circuit is reprentative of the 
general mechanism used to implement domain warping). 

What neural circuitry could accomplish this? In figure 7.5, we make a 
simple proposal. We suggest that (in the cat) each retinal ganglion cells' 
axons synapse on multiple LGN "relay" cells and that populations of such 
cells synapse in overlapping ways. Thus one LGN cell receives input from 
multiple retinal cells, but on distinct branches of its dendritic tree. Nor- 
mally one of these is the strongest and that retinal cell takes charge of that 
particular LGN cell. But under cortical influence, both excitatory and in- 
hibitory, some of these synapses can be strengthened and some weakened 
by local postsynaptic potentials on the different branches of its dendritic 
arbor. This could be done by a variety of mechanisms, including NMDA 
channels. In the figure, we have drawn one possibility using inhibitory 
effects, caused by the dendrodendritic triadic synapses with inhibitory 
glomerular interneurons. Following Sherman and Koch (1990, pp. 256- 
266), we have assumed that this interaction takes place on spines of the 
"relay" cell, where the retinal and glomerular inputs are combined in a 
synaptic triad functioning like an "x and NOT y" gate. The effect is that 
each LGN cell is driven by a different retinal cell and the pattern of activa- 
tion is shifted in the LGN. Note that such shifts must be vertical as well as 
horizontal, as evidence (cf. Motter and Poggio 1984) shows that the two 
eyes are usually misaligned vertically by 5 to 10 min of arc. This shifting 
can accomplish two things at once: it can compensate for tremor and mis- 
alignment and it can create a simulated vergence movement to align more 
closely the left and right eye images, thus reducing the disparity of the sig- 
nal received by VI so that the exquisitely sensitive "tuned excitatory cells" 
of VI can measure extremely fine residual disparities. One prediction that 
this makes is that the left and right eye layers of the LGN should interact 
through cortical feedback. Varela and Singer (1987) show that this does hap- 
pen, and, even more interesting, if the left and right eyes are stimulated 
with radically conflicting signals, which cannot be put in binocular regis- 
tration, then the LGN "relay" signals decrease markedly after about 1 sec. 

At all levels of the cortex, there is a need to shift patterns of activation 
in order to find matches between memories and expectations and the par- 
ticularities of the present situation: a very concrete example is the need to 
recognize a familiar face with any of the millions of possible combinations 
of viewpoint, lighting, and expression that can occur. Shifter circuits can 
accomplish this and we propose that this shifting is accomplished in general by 
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Figure 7.5 A possible implementation of shifter circuits in the LGN: VI feedback excites in- 
hibitory glomerular interneurons that combine with retinal input in "x and NOTy" trisynaptic 
connections on the LGN relay cells. 

the extensive arborization of the feedback pathways, selectively exciting and in- 
hibiting the collateral spread of activity in a given cortical area. This is the natural 
generalization of the circuits in figure 7.5. Rockland's beautiful tracings 
of the axons of recurrent axons have shown how amazingly diverse and 
extensive their arborizations can be (cf. Rockland and Virga 1989,1993). 

From an evolutionary perspective, we can contrast this with what hap- 
pens in the reptile. The reptile has a more or less rigid body and its tectum 
contains maps of its visual, auditory, and somatosensory systems in, more 
or less, hard-wired registration. In such a structure, the sensory systems 
are forced to combine their data with very little flexibility. In contrast, 
mammalian cortex has a unique flexibility due to the separation and du- 
plication of cortical mappings. It should be noted that the existence of 
multiple sensory maps is not particular to higher mammals, but is uni- 
versal in mammalian neocortex, even in the evolutionary side branches of 
marsupials and edentates (e.g., essentially all mammals have a homolog 
of both VI and V2 [Kaas 1989]). To some extent, this may be a response 
to the increased flexibility of the trunk, especially the neck, and the de- 
velopment of limbs, which require that the animal have the capability of 
combining visual, auditory, and tactile sensory data in flexible ways. But 
it also affords new computational capabilities: in particular, the sensory 
maps in distinct areas can be dynamically interleaved, creating the domain 
warping needed for much more sophisticated pattern matching. 

An objection to these ideas is that only in primary and (to a lesser extent) 
secondary sensory and motor areas can one find a coherent meaning to the 
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two-dimensional cortical layout of activation. In higher cognitive areas, 
it is very hard to imagine why abstract thoughts should have any two- 
dimensional structure or why shifting patterns of activation on the cortical 
surface would be useful! We think the answer to this paradox lies in 
another biological principle, which is strongly at odds with traditional 
cognitive modeling. This is population coding: many experiments reveal 
that the brain does not store facts cleanly and discretely, with one neuron 
firing for one possibility, another for a second, etc. Instead, there is a 
graded pattern of firing for each possibility, but with shifting strengths 
(possibly with coherent pulse timing too) for each situation. It seems to 
me that this is directly connected to the linguistic fact that the meaning 
of individual words in human languages is not simple and clean either: 
words always cover a great variety of different related situations. This 
is exactly what you would expect if language reflects the way neurons 
fire, and if higher level concepts are population coded like sensory and 
motor signals. But a corollary of population coding is that the set of higher 
level concepts will automatically have geometric structure. This is because two 
concepts can, at one extreme, excite nearly identical populations with a 
small change in the degree of excitation and the marginally excited neurons; 
and, at the other extreme, can excite totally disjoint populations. We may 
thus define the distance between two concepts by the degree of overlap of 
their representations, or the correlation of the vectors of neuron-by-neuron 
excitations that each concept arouses. 

Chapter 4 by Desimone et al. describes experiments in area IT that fit 
nicely into this theory. Their data suggest that perhaps in many cortical 
areas, there is a tendency to form more and more localized responses to 
exactly repeating stimuli (this is shown negatively by the large numbers of 
cells whose responses decrease to repetitions). In other words, the cells of 
a certain class tend to specialize in responding to very precise patterns. If a 
category is formed by a cluster of such precise instances, we will naturally 
get a graded population response to new instances of this category, because 
it will resemble to a greater and lesser degree each of the previously learned 
instances. 

One construct that has often been suggested in this connection is to 
make a graph out of the set of all concepts, or the set of all English words. 
The edges of the graph represent the most closely connected concepts. 
Such a graph was proposed, for instance, in Quillian (1967) under the 
name of an associative net. Perhaps the earliest attempt to do this with 
a whole language was the Thesaurus of Roget, which is precisely such 
a graph. Bell labs put this graph "on-line." They found curious facts 
such as that the average number of edges needed to join a word to its 
antonym is 5 or 6! A quite curious graph is formed in Dixon's analysis of 
the five word classes in the Australian aboriginal language Dyirbal. These 
appear to be clusters gotten by stringing together related concepts in long 
chains (cf. Lakoff 1987, pp. 92-102). Once we have this graph, we can 
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talk about domain warping in situations involving high-level cognitive 
data structures and we find that it corresponds to well-known cognitive 
operation: namely finding analogies, finding a mapping between two sets 
of concepts that bear the same mutual relation to each other. Matching a 
heavily shadowed face in front of you with your memory of general face 
structure is the same warping of a template that is accomplished when you 
match your knowledge of the Pope with the general concept of a bachelor. 
Our proposal is that what happens neurally when you analyze the sentence 
"The Pope is a bachelor" (a classic example of philosophers) is that one 
cortical area with a "bachelor" template, stored with all sorts of typical 
properties, activities, life histories of bachelors attempts to fit this activity 
pattern to the specific data conjured up in a second area describing the 
Pope and his properties, activities, and life history. A partial match can be 
achieved, after suitable warping of the archetype. This will also highlight 
the nonmatching qualities (e.g., the Pope does not date), which is what we 
want to look at next. 

Interruptions and Foreground/Background Coloring 

We want to consider the fourth type of deformation in pattern theory, in- 
terruptions. Recall that this refers to the fact that we are bombarded by 
signals from many different objects and events at any given instant and all 
contribute to the activity being received and processed by the brain. We 
must locate the boundaries between these objects or events, so we can iden- 
tify them one at a time. To do this, we have to label or "color" explicitly 
the parts of the present activity pattern that result from this foreground 
object or event, suppressing for the time being the rest as background. 
From the point of view of single cell activity, this is very mysterious: each 
cell is population coded and, via its collaterals, there is a tendency for a 
spread of activation. What we need is a mechanism to say a and b are 
linked but NOT c. Much has been said about this issue, under the names 
of dynamic linking, compositionality of concepts, etc. In particular, Singer 
has argued forcefully for synchrony of pulse timing as a possible mecha- 
nism (see chapter 10). In the context of pattern theory, the key thing is that 
whatever mechanism is used, it must involve correlating activity in reciprocally 
connected areas. This is because only by separating foreground from back- 
ground can the features of the foreground be extracted without confusing 
them with those of the background. Pattern theory proposes that this is 
done iteratively: a preliminary foreground/background separation leads 
to a preliminary computation of features, hence to a preliminary identifi- 
cation, then by feedback a refined foreground/background separation, etc. 

We would like to discuss a very simple specific case of this problem, 
which has been extensively studied in computer vision: the segmentation 
of a two-dimensional visual signal into distinct objects. Our discussion 
of the "Old Man" example (earlier) shows that many processes contribute 
to segmentation. (That example dealt with a photograph, hence it omit- 
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ted stereo and motion that, in real life, are extremely effective additional 
processes in segmentation.) One of the processes we discussed was the 
linking of interrupted edges and the clustering of similarly textured blobs, 
with the preliminary goal of segmenting the image into homogeneously 
textured areas. Our hypothesis is that this segmentation is the main goal of 
one or both of the VI ^ V2 (^ V4) feedback loops. Note that in the theory 
of Anderson and Van Essen, these are the areas holding a pyramid-based 
description of the image; in their terms, our hypothesis is that segmenta- 
tion is the main internal computational goal of this pyramid (in its loops 
with higher areas, V4 may participate in other things, like the computation 
of shape features for identification of objects). Two quite different math- 
ematical discussions of the segmentation problem can be found in Hong 
and Rosenfeld (1984), which uses a pyramid-based dynamic linking algo- 
rithm, and Lee et al. (1992), which uses Bayesian methods of combining 
edge and region data. 

There are two very specific things to look for if this computation is going 
on. The first is the need to trace extended edges, that surround the objects 
in the scene. Simple Gabor-filter-like cells do not do this: they are misled by 
gaps in edges, small texture responses, blur, and local shadows. Lateral 
inhibition, which is known to occur for a subpopulation of complex cells, 
is the first step in finding the important edges, as this will often distinguish 
region boundaries from texture edges. Filling gaps and finding alignments 
of edge terminators, as von der Heydt has shown is done in V2 (von der 
Heydt and Peterhans 1989), is another step. But all this information must 
be put together. A strong suggestion that the the V2 —► VI feedback may be 
involved was found recently by Mignard and Malpeli (1991): they found 
that vigorous upper layer activity in VI can be sustained by feedback from 
V2 in the absence of direct stimulation from the LGN —»VI, layer 4 pathway. 
It is possible that V2 —> VI paths carry a reconstruction of the extended 
edges in an image which are then compared with the detailed local signal 
by the pyramidal cells in layers 2 and 3 of VI, resulting in a new refined 
signal of edge strength going back to V2, where it is linked up further 
into larger edges, etc. Algorithms to do this in a computer have been 
extensively studied both by our students (cf. Nitzberg et al. 1993) and 
those of Zucker (cf. David and Zucker 1990). 

However, correctly tracing extended edges is only one part of the prob- 
lem. The other is to "color" a region that is surrounded by such a contour, 
that is, marking explicitly homogeneous areas not interrupted by strong 
edges. Until a region is so colored, there is no way to compute the features 
of its shape, such as its center, its area and orientation, etc., hence to begin an 
identification procedure. The most dramatic evidence that such an active 
"coloring" process does take place in the cortex is the experiments on mask- 
ing of Nakayama and Paradiso (1991). Masking seems to freeze the pro- 
cessing at an intermediate stage and they find partial stages at which the ho- 
mogeneity of part of a region has been made explicit, but not the whole. The 
underlying neural activity expressed in this coloring process might take 
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place in the cytochrome-oxidase blobs, especially if some mechanism for 
dynamically linking those blob cells that are responding to two parts of the 
same object were found. Coloring might mean, for instance, progressive 
entrainment of larger and larger populations of cells in synchronized firing. 

From a computational point of view, it is very important to realize that 
coloring is not a simple mechanical step (as it seems in artificially sim- 
plified stimuli) but requires in real images adaptively determining what 
homogeneous means, that is, what matters is that the stimulus within the 
cells receptive field is relatively homogeneous compared to variations in a 
larger surround, and therefore cannot be done by purely local computa- 
tions. Figure 7.6, for example, shows two images on top of which we have 
drawn a dotted circle to represent the classical receptive field of a VI neu- 
ron. In these images, the interiors of the dotted circles are identical, hence 
the VI neuron "sees" the same blurry contour. But in one, however, the 
blurry central contour is the perceptual boundary of a foreground object in 
front of a background; in the other, the blurry contour is merely a shading 
effect on the surface of a different object. In the first case, the central region 
is not homogeneous; in the second it is. Thus we predict that at least some 
VI neurons with this receptive field would exhibit modulation from out- 
side their classical receptive field that reflects this difference. Whether this 
modulation was excitatory or inhibitory would depend on whether the 
local evidence for an edge was strengthened or weakened by the global 
evidence (as in figure 7.6). It might also have a longer latency than the local 
response (e.g., this modulation might take effect 50 msec after the initial 
response). We expect that this modulation is a typical effect of feedback 
from V2, where the larger receptive fields allow more global integration of 
the percept. 

Another hypothesis for the marking of object boundaries and inhibiting 
the sideways spread of activity was made by Somogyi and Cowey (1981). 
They hypothesized that "curtains" of inhibitory double-bouquet cells may 
activate, cutting off activity in vertical columns from neighboring columns 
on the other side of this curtain, thus allowing integration of activity within 
the population of cells responding to one portion of the visible field, but 
preventing this from interfering with activity related to other parts of the 
field. This could have a similar effect in dynamically linking cell popula- 
tions as pulse synchrony. 

SPATIOTEMPORAL PATTERNS AND TEMPORAL BUFFERING 

There is a strong tendency in analyzing cognition to regard space and time 
as two quite different things. From the point of view of Pattern Theory, 
however, the signals received by the brain are functions of both space and 
time and they exhibit patterns in both dimensions. All of the characteristic 
deformations present in spatially distributed patterns are present in tem- 
porally distributed ones and in signals depending on both space and time. 
The input to the eyes is a function I(x, y, t) of two spatial and one temporal 
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Figure 7.6 Two stimuli, identical locally within a receptive field (indicated by dotted line), 
differing globally. On the left, a blurry figure on a black ground, its edge within the receptive 
field; on the right, a single shaded figure on a textured ground, its edge outside the receptive 
field. 

variable; the output of the cochlea is a filtered function s(u, t) of frequency 
and time; the signal from the proprioceptive system is a function m(k, t) 
indicating the stretch and tension of the A:th muscle at time t. In this section, 
we want to examine the specific problems of computing temporal patterns 
in signals. 

In vision, we often make the assumption that after initial temporal fil- 
tering by the ganglion and amacrine cells in the retina, the remainder of 
the visual system is presented with an instantaneous representation of the 
image and its optical flow, which can be analyzed as a fixed signal. Observ- 
ing experimentally the modulation of a response to time varying patterns 
is difficult because of the apparently stochastic nature of spiking, which 
requires averaging the cell's response for as long as possible. The stan- 
dard experimental approach has been finding a way of keeping up a fixed 
optimal stimulus for as long as possible, "tickling" the cell as it were. In 
the visual system, this leads the experimenter to prefer repetitively and 
constantly moving stimuli and this prevents one from analyzing the de- 
pendence of the response on subtler temporal variations of the signal. 

None of this addresses an obvious aspect of natural stimuli: in general, 
these are neither still nor moving regularly. Natural stimuli often move 
and change in complex ways that are essential for the proper identification 
of their source. A simple example is the identification of people through 
characteristic gestures and fleeting expressions: it is as though we preserve 
movie clips of typical things our friends do, and can match this memory 
against the fleeting temporal signal that we receive. Likewise, it is well 
known that the recognition of phonemes cannot be done successfully from 
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the analysis of speech at any single instant, but requires the integration of 
clues hidden in the preceding and succeeding phonemes as well (Liberman 
1982). All of these tasks require temporal buffering: the temporary storage of 
the sensory signal or its features while the remainder of the signal continues 
to unfold. To model this will require neural mechanisms that, as far as we 
know, have not yet been described and to find these mechanisms will 
require the presentation and analysis of responses to more complex time 
varying signals than have been studied as yet. 

A specific case is the LGN and the motion pathway (called magnocellular 
or M in the monkey, and Y pathway in the cat). During a single fixation of 
the eyes, a small moving object may stimulate many ganglion cells in the 
M pathway as its image crosses the retina. Often, we may want our eyes to 
make a transition to pursuit mode, following the object to "freeze" its image 
on the retina. To do so requires that we predict where the object will be after 
the next 100 msec or so, hence that we have an accurate record of where 
the object was in the last 100 msec. Since M cells are very transient, some 
mechanism is needed to sustain activity until the end of the fixation, while 
its velocity is being calculated. We would like to make the hypothesis that, 
at least in the cat, the LGN Y pathway cells are used for this temporal buffering, 
their activity being sustained by corticothalamic feedback after the moving object 
passes their receptive field. This possibility is suggested by the cell counts in 
the cat LGN that show that there are about 12 times as many LGN cells 
in its Y pathway as there are retinal ganglion cells (Sherman and Koch 
1986). Such a population could encode the time history of the stimulus in 
many ways. It could store a sequence of activity states in different cells; 
more likely, the cells might population code this history, or features of this 
history, like acceleration, stops, and starts. 

Other prime candidates for detecting temporal buffering are Al and Ml. 
In both areas, it seems essential to buffer the temporal activity pattern (i.e., 
the auditory signal over something like the last 200 msec) or the motor 
commands over the next 200 msec). In Al, this should be especially sim- 
ple to check: one needs to record and analyze responses to pairs of sounds, 
presented sequentially. The null hypothesis, that there is no buffering, 
would imply that the response to the second part of the stimulus is inde- 
pendent of the first part of the stimulus. Temporal buffering would predict 
some kind of modulation of the second response. As far as we know, a 
neurophysiological experiment to look for this kind for buffering has not 
been done. 

LEARNING THE HIDDEN VARIABLES AND THEIR PRIORS VIA 
MINIMUM DESCRIPTION LENGTH 

Bayesian statistics was one of the main inspirations for Pattern Theory. It 
goes like this: assume that X is a set of variables describing the world— 
called the hidden variables—and that Y is the data we observe. We assume, 
moreover, that from experience we know the "prior" probability pr(X = x) 
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[or pr(x) for short] that the variables X take on every possible set of values 
x (e.g., you know it is very unlikely that your grandmother is wearing a 
bikini), and that we also know the conditional probability of every possible 
observation y given the state of the world x, written pr(Y = y\X = x) [or 
pr(x|y) for short]. Then if we have observations y, we will want to estimate 
the most likely a posteriori values x of the hidden variables describing the 
world. Bayes says to do this by finding the x that makes the conditional 
probability pr(x\y) the largest, which by Bayes's theorem is the x that max- 
imizes [pr(y\x) ■ pr(x)]. (So if we think we see Granny in a bikini at a great 
distance, we reject the conclusion, but if we see her so attired close up, we 
have to accept it as fact.) The optimal value x so calculated is called the 
maximal a posteriori or "MAP" estimate of the world variables. This is 
standard stuff. 

To use this rule, one needs to learn, store, and apply via Bayes's rule 
both the prior probability distribution on the world variables X and the 
conditional probability on the observations Y given X. In a biological 
setting, it is possible to imagine that these probability distributions were 
somehow learned by natural selection and have become encoded into the 
genes. Perhaps this happens with some animals—for instance the overall 
structure of a bird's song seems to be genetically encoded—but this does 
not seem to account for the flexibility of mammalian responses. For in- 
stance, a human infant born into a complex technological culture has no 
trouble learning how to use TV sets. There are various approaches to learn- 
ing these probability distributions "on the fly," but one that fits in cleanly 
with both Bayesian statistics and Pattern Theory is to use the Minimum 
Description Length Principle. This approach is particularly attractive in 
that it suggests how the world variables X themselves might be learned, 
not merely their distribution. 

The Minimum Description Length (or MDL) Principle says that, starting 
with many observations Y = yn/ you may take advantage of the patterns 
and repetitions in this string of observations to reencode Y so that, with 
high probability, if every new observation is reencoded in this way, it will 
have much shorter length (in bits). For example, suppose five different 
bird songs are heard regularly in your back yard. You can assign a short 
distinctive code to each such song, so that instead of having to remember 
the whole song from scratch each time, you just say to yourself something 
like "Aha, song #3 again." Note that in doing so, you have automatically 
learned a world variable at the same time: the number or code you use for 
each song is, in effect, a name for a species, and you have rediscovered a 
bit of Linnaean biology. Moreover, if one bird is the most frequent singer, 
you will probably use the shortest code (e.g., "song #1") for that bird. In 
this way, you are also learning the probability of different values for the 
variable "song #x." This is nothing more than the fundamental theorem 
of Shannon's information theory that provides the link between coding 
length and probabilities. His theorem states that if you want to encode the 
different values x of variables X so that the average length of the code is 
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smallest, then the length of the code c(x) in bits will be 

c(x) = -log2[pr(X = x)]. 

(A technical point: in this formula, the log is a positive real number that 
need not be an integer. But the number of bits in a code is always an 
integer. So what Shannon did, to get this elegant relationship, was to 
consider "block coding," codes where several signals were encoded at 
once. If k signals were encoded, the code length for each signal is 1/k 
times the length of the block code. Then the exact theorem states that by 
considering longer and longer block codes, the left hand side gets as close 
as you want to the right.) 

How could finding the MAP estimate be implemented cortically? The 
natural hypothesis is that the probabilities of each set of values x of the 
hidden world variables and of the probabilities of making an observation 
pr(y|x) are stored in the mechanism for pattern synthesis, so that there is a 
tendency to synthesize the most likely patterns first, the less likely coming 
to the fore only if the more likely ones are inhibited by mismatch with the 
input (as in Carpenter and Grossberg 1987). For instance, when a pattern 
is synthesized to imitate a new signal, the most likely values might be 
chosen by some summation of activation proportional to log[pr(x, y)] (see 
Lee 1992). In terms of MDL, we can say that the higher level cortical area 
somehow seeks the most economical way, the simplest pattern of firing, 
that will generate a top-down synthesized signal close to the true sensory 
signal. 

I would like to give a more elaborate example to show how MDL can 
lead you to the correct variables with which to describe the world using 
an old and familiar vision problem: the stereo correspondence problem. 
The usual approach to stereo vision is apply our knowledge of the three- 
dimensional structure of the world to show how matching the images JL 

and JR from the left and right eyes leads us to a reconstruction of depth 
through the "disparity function" d(x, y) such that IL(x + d(x, y), y) is approx- 
imately equal to 7R(X, y). In doing so, most algorithms take into account 
the "constraint" that most surfaces in the world are smooth, so that depth 
and disparity vary slowly as we scan across an image. The MDL approach 
is quite different. First, the raw perceptual signal comes as two sets of N 
pixel values h(x, y) and IR(X, y) each encoded up to some fixed accuracy 
by d bits, totaling 2-d-N bits. But the attentive encoder notices how often 
pieces of the left image code nearly duplicate pieces of the right code: this 
is a common pattern that cries out for use in shrinking the code length. So 
we are led to code the signal in three pieces: first the raw left image It(x, y), 
then the disparity d(x, y), and finally the residual h(x, y) - IL(x + d(x, y), y). 
The disparity and the residual are both quite small, so instead of d bits, 
these may need only a small number e and/ bits, respectively. Provided d 
> e +/, we have saved bits. In fact, if we use the constraint that surfaces are 
mostly smooth, so that d(x, y) varies slowly, we can further encode d(x, y) by 
its average value do(y) on each horizontal line and its x-derivative dx(x, y), 
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which is mostly much smaller. The important point is that MDL coding 
leads you introduce the third coordinate of space, that is, to discover three- 
dimensional space! A further study of the discontinuities in d, and the 
"nonmatching" pixels visible to one eye only goes further and leads you to 
invent a description of the image containing labels for distinct objects, that 
is, to discover that the world is usually made up of discrete objects. For a more 
complete discussion, see Mumford (1993, §5d). 

Can the learning phase of MDL be implemented in a natural way in 
cortex? We think this is one of the most interesting challenges to Pattern 
Theory. We have no proposal except to say that recent work (Intrator 
1992; Jordan and Jacobs 1993; Hinton, unpublished observations) shows 
that many learning rules, more complex than simple Hebbian learning, are 
possible and suggestive. Hinton's, especially, looks like it might solve the 
stereo problem along the lines proposed above. 

SUMMARY 

Starting from the theoretical perspective of Pattern Theory, this chapter has 
made some specific proposals for the data structures and computational 
mechanisms to be expected in the cortex. These include (1) the need for 
feedback loops activating template-like patterns in lower corical areas, 
(2) a mechanism for shifting or warping patterns of cortical activity, (3) 
marking both boundaries between unrelated features and the complexes of 
related activity with a common source, (4) the need for temporal buffering, 
(5) multiscale population coded representations, and (6) the possibility 
that the Minimum Description Length Principle can be used as a basis of 
learning world structures. 

A common thread in all the specific proposals above is the need for 
more sophisticated experimental stimuli, motivated by computational or 
psychological theory. A well-known experimenter laughed at me 10 years 
ago when we suggested that one should look for cell responses in higher 
visual areas correlated to global features of the image outside its "classical" 
receptive field. Shortly thereafter, von der Heydt's experiments provided 
the first dramatic proof that this occurs (von der Heydt et al. 1984). Real 
world stimuli have a huge number of complexities and subtleties not even 
remotely present in typical laboratory stimuli and these should be studied, 
one at a time, to see how the cortex handles them. For example, one can 
present edges that are blurred or noisy, curved or interrupted, embedded 
in textures or with contrast reversals. One can use complex temporal orga- 
nization, comparing an extended continuous movement with many small 
movements that flicker off. Two general paradigms suggest themselves: 
one is to use pairs of stimuli that are locally identical, but globally quite 
different. In this case, the higher cortical area can respond to the larger 
features and so modulate the responses of a cell in the lower area to two 
stimuli identical within its receptive field. The second is really a special 
case of this: to present stimuli that are neutral locally, not stimulating a 
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particular cell, but that have major global organization that may imply 
local structure, and see if it affects the original cell. 

A second thread is the need to consider feedback effects when modeling 
cortical responses. Our observation is that there is a strong bias toward 
seeking simple feedforward explanations of what the cortex is doing. For 
instance, Marr's book (Marr 1982) is essentially a purely feedforward the- 
ory of vision. If any of the above theorizing is half right, feedback plays a 
major role in both low- and high-level processing and cannot be ignored, 
even in primary sensory and motor areas. 
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Q Observations on Cortical Mechanisms for 
Object Recognition and Learning 

Tomaso A. Poggio and Anya Hurlbert 

INTRODUCTION 

One of the main goals of vision is object recognition. But there may be 
many distinct routes to this goal and the goal itself may come in several 
forms. Anyone who has struggled to identify a particular amoeba swim- 
ming on a microscope slide or to distinguish between novel visual stimuli 
in a psychophysics laboratory might admit that recognizing a familiar face 
seems an altogether different and simpler task. Recent evidence from sev- 
eral lines of research strongly suggests that not all recognition tasks are 
the same. Psychophysical results and computational analyses suggest that 
recognition strategies may depend on the type of both object and visual 
task. Symmetric objects are better recognized from novel viewpoints than 
asymmetric objects (Poggio and Vetter 1992); when moved to novel lo- 
cations in the visual field, objects with translation-invariant features are 
better recognized than those without (Nazir and O'Regan 1990; Bricolo 
and Bülthoff 1992). A typical agnosic patient can distinguish between a 
face and a car, a classification task at the basic level of recognition, but 
cannot recognize the face of Marilyn Monroe, an identification task at the 
subordinate level (Damasio et al. 1990b). A recently reported stroke patient 
cannot identify the orientation of a line but can align her hand with it if 
she imagines posting a letter through it, suggesting strongly that there are 
also multiple outputs from visual recognition (Goodale et al. 1991). 

Yet although recognition strategies diverge, recent theories of object 
recognition converge on one mechanism that might underlie several of 
the distinct stages, as we will argue in this chapter. This mechanism is 
a simple one, closely related to template matching and nearest neighbor 
techniques. It belongs to a class of explanations that we call memory- 
based models (MBMs), which includes memory-based recognition, sparse 
population coding, generalized radial basis functions networks, and their 
extension, hyper basis functions (HBF) networks (Poggio and Girosi 1990b) 
(figure 8.1). In MBMs, classification or identification of a visual stimulus 
is accomplished by a network of units. Each unit is broadly tuned to a 
particular template, so that it is maximally excited when the stimulus ex- 
actly matches its template but also responds proportionately less to similar 



Figure 8.1 An RBF network for the approximation of two-dimensional functions (left) and 
its basic "hidden" unit (right), x and y are components of the input vector which is compared 
via the RBF h at each center t. Outputs of the RBFs are weighted by the C; and summed to 
yield the function F evaluated at the input vector. N is the total number of centers. 

stimuli. The weighted sum of activities of all the units uniquely labels a 
novel stimulus. Several recent and successful face recognition schemes for 
machine vision share aspects of this framework (Baron 1981; Bichsel 1991; 
Brunelli and Poggio 1992; Turk and Pentland 1991; Stringa 19923,1)). 

We will consider how the basic features of this class of models might be 
implemented by the human visual system. Our aim is to demonstrate that 
such models conform to existing physiological data and to make further 
physiological predictions. We will use as a specific example of the class 
the HBF network. HBF networks have been used successfully to solve 
isolated visual tasks, such as learning to detect displacements at hyper- 
acuity resolution (Poggio et al. 1992) or learning to identify the gender of 
a face (Brunelli and Poggio 1992). We will discuss how the units of a HBF 
network might be realized as neurons and how a similar network might 
be implemented by cortical circuitry and replicated at many levels to per- 
form the multicomponent task of visual recognition. We hope to show that 
MBMs are not merely toy replicas of neural systems, but viable models that 
make testable biological predictions. 

The main predictions of memory-based models are as follows: 

• The existence of broadly tuned neurons at all levels of the visual pathway, 
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tuned to single features or to configurations in a multidimensional feature 
space. 

• At least two types of plasticity in the adult brain, corresponding to two 
stages of learning in perceptual skills and tasks. One stage probably in- 
volves changes in the tuning of individual neuron responses; this resembles 
adaptation. The other probably requires changes in cortical circuitry spe- 
cific to the task being learned, connecting many neurons across possibly 
many areas. 

OBJECT RECOGNITION: MULTIPLE TASKS, MULTIPLE PATHWAYS 

Recognizing an object should be difficult because it rarely looks the same on 
each sighting. Consider the prototypical problem of recognizing a specific 
face. (We believe that processing of faces is not qualitatively different from 
processing of other 3D objects, although the former might be streamlined 
by practice, and biological evidence supports this view [Gross, 1992].) The 
2D retinal image formed by the face changes with the observer's viewpoint, 
and with the many transformations that the face can undergo: changes in 
its location, pose, and illumination, as well as nonrigid deformations such 
as the transition from a smile to a frown. A successful recognition system 
must be robust under all such transformations. 

Here we outline an architecture for a recognition system that contains 
what we believe are the rudimentary elements of a robust system. It is best 
considered as a protocol for and summary of existing programs in machine 
vision, but it also represents an attempt to delineate the stages probably 
involved in visual recognition by humans. The scheme (diagrammed in 
figure 8.2) has dual routes to recognition. The first is a streamlined route 
to recognition in which the features extracted in the early stages of im- 
age analysis are matched directly to samples in the database. The second 
potential route to recognition diverges from the first to allow for the pos- 
sibility that both the database models and the extracted image features 
might need further processing before a match can be found. 

Our task in recognizing a face—or any other 3D object—consists of mul- 
tiple tasks, which fall into three broad categories that characterize both 
routes: 

• Segmentation: Marking the boundaries of the face in the image. This 
stage typically involves segmenting the entire image into regions likely 
to correspond to different materials or surfaces (and thereby subsumes 
figure-ground segregation) and is a prerequisite for further analysis of a 
marked region. Image measurements are used to convert the retinal array 
of light intensities into a primal image representation, by computing sparse 
measurements on the array, such as intensity gradients, or center-surround 
outputs. The result is a set of vector measurements at each of a sparse or 
dense set of locations in the image. Features may then be found, and used 
to partition the image. 
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Figure 8.2 A sketch of an architecture for recognition with two hypothetical routes to recog- 
nition. Single arrows represent the classification and indexing route described in appendix 
A. Double arrows represent the main visualization route, and dashed arrows represent alter- 
native pathways within it. 
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• Classification, or basic-level recognition: Distinguishing objects that are 
faces from those that are not. Parameter values estimated in the preceding 
stage—(e.g., the distance between eyes and mouth)—are used in this stage 
for classification of a set of features—(e.g., as a potential face, animal, or 
man-made tool). This stage requires that the boundaries or the location of 
at least potential faces be demarcated, and hence generally depends on the 
preceding step of image segmentation, although it may work without it at 
an added computational cost. 

• Identification, or subordinate-level recognition: Matching the face to a 
stored memory, and thereby labeling it. This stage requires some form of 
indexing of the database samples. Because it is computationally implausi- 
ble that the recognition system contains a stored sample of the face in each 
of its possible views or expressions, or under all possible illumination con- 
ditions at all possible viewing distances, this step in general also requires 
that the face be transformed into a standard form for matching against its 
stored template. Thus in parallel with the direct route from classification 
to identification there exists a second route that we call the visualization 
route, which may include an iterative sequence of transformations of both 
the image-plane and the database models until it converges on a match. 

These stages, and some open questions on the overall architecture, are 
discussed further in appendix A. 

As outlined here, the stages are distinct and could be implemented in 
series within each route to recognition. Most artificial face recognition 
systems tackle the stages separately, being designed either to detect and 
localize a face in an image cluttered with other objects (segmentation and 
classification), or to identify individual faces presented in an expected for- 
mat (database indexing and identification). Some artificial recognition 
systems have been constructed to achieve invariant recognition under iso- 
lated transformations (visualization). Examples are systems that recognize 
frontal views of faces under varying illuminations (Brunelli and Poggio 
1992); recognize simple paper-clip-like objects independently of viewpoint 
(Poggio and Edelman 1990); or identify simple objects solely by color under 
spatially varying illumination (Swain and Ballard 1990). 

Yet in biological systems, and in some artificial systems, the stages may 
act in parallel or even merge. For example, there may be many short-cuts 
to recognizing a frequently encountered object such as a face. 

Finding the face might be streamlined by a quick search at low resolu- 
tion over the whole image for face-like patterns. The search might employ 
simplified templates of a face containing anthropometric information (for 
example, a two-eyes-and-mouth mask). Once located, salient features such 
as eyes can be used to demarcate the entire object to which they belong, 
eliminating the need to segment other parts of the image. These detec- 
tors would scan the image for the presence of these face-specific features, 
and using them, locate the face for further processing (translation, scaling, 
etc.). (Some machine vision systems already implement this idea, using 
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translation-invariant face-feature-detectors such as eye detectors [Bichsel 
1991] or symmetry detectors.) Thus segmentation may occur simultane- 
ously with classification. The existence of these face detectors in the human 
visual system might explain why we so readily perceive faces in the sim- 
plest drawings of dots and lines, or in symmetric patterns formed in nature 
(Hurlbert and Poggio 1986), and why we detect properly configured faces 
more readily than arbitrary or inverted arrangements of facial features 
(Purcell and Stewart 1988). Indeed, we wonder whether face recognition 
may have become so inveterate that the human brain might first classify 
image regions into face or nonface. 

Recognizing an expected object might also be more speedy and efficient 
than identifying an unexpected one. In the classification stage, only those 
features specific for the expected object class need be measured, and cor- 
rect classification would not require that all features be simultaneously 
available. This step might therefore be itself a form of template matching, 
where part-templates may serve as well as whole-templates to locate and 
classify the object. In many cases the classification stage may lead by itself 
to unique recognition, especially when situational information, such as the 
expectedness of the object, restricts the relevant database. 

Yet many questions are left hanging by this sketch of a recognition sys- 
tem. In biological systems, is matching done between primal image rep- 
resentations, like center-surround outputs at sparse locations, or between 
sets of higher level features? Computational experiments on face recogni- 
tion suggest that the former strategy performs much better. What exactly 
are the key features used for identifying, localizing and normalizing an 
object of a specific class? Is there an automatic way to learn them (Huber 
1985)? Do biological visual systems acquire recognition features through 
experience (Edelman 1991)? Do humans use expectation to restrict the 
database for categorization? Some psychophysical experiments suggest 
that we do not need higher-level expectations to recognize objects quickly 
in a random series of images, but these experiments have used familiar 
objects such as the Eiffel Tower (M. Potter, personal communication). 

A Sketch of a Memory-Based Cortical Architecture for Recognition 

We suggest that most stages in face recognition, and more generally, in ob- 
ject recognition, may be implemented by modules with the same intrinsic 
structure—a memory based module (MBM). At the heart of this structure 
is a set of neurons each tuned to a particular value or configuration along 
one or many feature dimensions. Let us take as an example of such a 
structure the hyper basis functions (HBF) network. This is a convenient 
choice because HBFs have been successfully applied already to several 
problems in object recognition as well as an unrestrictive, easily modifi- 
able choice because HBFs are closely related to other approximation and 
learning techniques such as multilayer perceptrons. 
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RBF Networks HBF networks are approximation schemes based on, but 
more flexible than, radial basis functions (RBF) networks (see figure 8.1; 
Poggio and Girosi 1990b; Poggio 1990). The fundamental equation under- 
lying RBF networks states that any function/(x) may be approximated by 
a weighted sum of RBFs: 

N 

/(x) = 5^cI-Ä(||x-ti||)
2 + p(x). (8.1) 

i=l 

The functions h may be any of the class of RBFs, for example, Gaussians. 
p(x) is a polynomial that is required by certain RBFs for the validity of 
the equation. (For some RBFs, e.g., Gaussians, the addition of p(x) is not 
necessary, but improves performance of the network.) In an RBF network, 
each "unit" computes the distance ||x - t|| of the input vector x from its 
center t and applies the function h to the distance value, that is, it computes 
the function /z(||x-t||)2. The N centers t, corresponding to the N data points, 
thus behave like templates, to which the inputs are compared for similarity. 

A typical and illustrative choice of RBF is the Gaussian [h(\\x - t||) = 
exp(—(||x — t||)2/2cr2)]. In the limiting case where h is a very narrow Gaus- 
sian, the network effectively becomes a look-up table, in which a unit gives 
a nonzero signal only if the input exactly matches its center t. 

The simplest recognition scheme based on RBF networks that we con- 
sider is that suggested by Poggio and Edelman (1990) (see figure 8.3) to 
solve the specific problem of recognizing a particular 3D object from novel 
views, a subordinate-level task. In the RBF version of the network, each 
center stores a sample view of the object, and acts as a unit with a Gaussian- 
like recognition field around that view. The unit performs an operation that 
could be described as "blurred" template matching. At the output of the 
network the activities of the various units are combined with appropriate 
weights, found during the learning stage. An example of a recognition 
field measured psychophysically for an asymmetric object after training 
with a single view is shown in figure 8.4. As predicted from the model 
(see Poggio and Edelman 1990), the shape of the surface of the recognition 
errors is roughly Gaussian and centered on the training view. 

In this particular model, the inputs to the network are spatial coordinates 
or measurements of features (e.g., angles or lengths of segments) computed 
from the image. In general, though, the inputs to an RBF network are 
not restricted to spatial coordinates but could include, for example, colors 
or configurations of segments, binocular disparities of features, or texture 
descriptions. Certainly in any biological implementation of such a network 
the inputs may include measurements or descriptions of any attribute that 
the visual system may represent. We assume that in the primate visual 
system such a recognition module may use a large number of primitive 
measurements as inputs, taken by different "filters" that can be regarded as 
many different "templates" for shape, texture, color, and so forth. The only 
restriction is that the features must be directly computed from the image. 
Hence the inputs are viewer-centered, not object-centered, although some, 
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Figure 8.3 (a) The HBF network proposed for the recognition of a 3D object from any of 
its perspective views (Poggio and Edelman 1990). The network attempts to map any view 
(as defined in the text) into a standard view, arbitrarily chosen. The norm of the difference 
between the output vector f and the standard view s is thresholded to yield a 0,1 answer 
(instead of the standard view the output of the netwok can be directly a binary classification 
label). The IN inputs accommodate the input vector v representing an arbitrary view. Each 
of the n radial basis functions is initially centered on one of a subset of the M views used to 
synthesize the system (n < M). During training each of the M inputs in the training set is 
associated with the desired output (i.e., the standard view s). (b) A completely equivalent 
interpretation of (a) for the special case of Gaussian radial basis functions. Gaussian func- 
tions can be synthesized by multiplying the outputs of two-dimensional Gaussian receptive 
fields, that "look" at the retinotopic map of the object point features. The solid circles in the 
image plane represent the 2D Gaussians associated with the first radial basis function, which 
represents the first view of the object. The dotted circles represent the 2D receptive fields 
that synthesize the Gaussian radial function associated with another view. The 2D Gaussian 

receptive fields transduce values of features, represented implicitly as activity in a retino- 
topic array, and their product "computes" the radial function without the need of calculating 
norms and exponentials explicitly. (From Poggio and Girosi 1990c) 
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Figure 8.4 The generalization field associated with a single training view. Whereas it is 
easy to distinguish between, say, tubular and amoeba-like 3D objects, irrespective of their 
orientation, the recognition error rate for specific objects within each of those two categories 
increases sharply with misorientation relative to the familiar view. This figure shows that 
the error rate for amoeba-like objects, previously seen from a single attitude, is viewpoint- 
dependent. Means of error rates of six subjects and six different objects are plotted versus 
rotation in depth around two orthogonal axes (Bülthoff et al. 1991; Edelman and Bülthoff 
1992). The extent of rotation was ±60° in each direction; the center of the plot corresponds 
to the training attitude. Shades of gray encode recognition rates, at increments of 5% (white 
is better than 90%; black is 50%). (From Bülthoff and Edelman 1992). Note that viewpoint 
independence can be achieved by familiarizing the subject with a sufficient number of training 
views of the 3D object. 

like color, will be viewpoint-independent. The output of the network is, 
though, object-centered, provided there is a sufficient number of centers. 
This generality of the network permits a mix of 2D and 3D information in 
the inputs, and relieves the model from the constraints of either. 

This feature of the model also renders irrelevant the question on whether 
object representations are 2D or 3D. The Poggio-Edelman model makes it 
clear that 2D-based schemes can provide view invariance as readily as a 3D 
model can, and compute 3D pose as well (see Poggio and Edelman 1990). 
So the relevant questions are what is explicit in neurons? and what does 
it mean for information about shape to be explicit in neurons? In a sense, 
some 2D-based schemes such as the Poggio-Edelman model may be con- 
sidered as plausible neurophysiological implementations of 3D models. 

We do not suggest that the cortical architecture for recognition consists 
of a collection of such modules, one for each recognizable object. Certainly 
it is more complex than that cartoon, and not only because viewpoint in- 
variance is not the only problem that the recognition system must solve. 
For example, the cortex must also learn to recognize objects under vary- 
ing illumination (photometric invariance) and to recognize objects at the 
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basic as well as subordinate level. (Preliminary results on real objects 
[faces] suggest that HBF modules can estimate expression and direction 
of illumination equally as well as pose [Brunelli, personal communication; 
Beymer, personal communication].) Yet each of these and other distinct 
tasks in recognition may be implemented by a module broadly similar 
to the Poggio-Edelman viewpoint-invariance network. We might expect 
that the system could be decomposed into elementary modules similar in 
design but different in purpose, some specific for individual objects (and 
therefore solving a subordinate-level task), some specific to an object class 
(solving a basic-level task), and others designed to perform transforma- 
tions or feature extractions, for example, common to several classes. The 
modules may broadly be categorized as follows: 

• Object-specific. A module designed to compensate for specific transfor- 
mations that a specific object might undergo. As in the Poggio-Edelman 
network, the module would consist of a few units, each maximally tuned 
to a particular configuration of the object—or the face, say, a particular 
combination of pose and expression. A more general form of the network 
may be able to recognize a few different faces: its hidden units would be 
tuned to different views but of not just one face, and therefore behave more 
like eigenfaces. 

• Class-specific. A module that generalizes across objects of a given class. 
For example, the network may be designed to extract a feature or aspect of 
any of a class of objects, such as pose, color, or distance. For example, there 
might be a network designed to extract the pose of a face, and a separate 
network designed to extract the direction of illumination on it. Any face 
fed as input to network would elicit an estimate of its pose or illumination. 

• Task-specific. Networks that solve tasks, such as shape-from-shading, 
across classes of objects. An example would be a generic shape-from- 
shading network that takes as input brightness gradients of image regions. 
It might act in the early stages of recognition, helping to segment and clas- 
sify 3D shapes even before they are grouped and classified as objects. 

The distinctions between these types of recognition module might be 
blurred if, for example, the visual system overlearns certain objects or 
transformations. For example, a shape-from-shading network might de- 
velop for a frequently encountered type of material, or for a specific class 
of object. Indeed, our working assumption is that any apparent differences 
between recognition strategies for different types of objects arise not from 
fundamental differences in cortical mechanisms but from imbalances in the 
distribution of the same basic modules across different objects and different 
environments. Savanna Man, like us, probably had task-specific modules 
dedicated to faces, but although we might have shape-from-shading mod- 
ules specific to familiar pieces of office furniture, he might not be able 
to recognize a filing cabinet at all, much less under varying illumination. 
This suggests a decomposition into modules that are both task- and object- 
specific, which is a rather unconventional but plausible idea. 
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Transformations specific to a particular object may also be generalized 
from transformations learned on prototypes of the same class. For example, 
the deformation caused by a change in pose or, for a face, a change in 
expression or age, may be learned from a set of examples of the same 
transformation acting on prototypes of the class. Some transformations 
may be generalized across all objects sharing the same symmetries (Poggio 
and Vetter 1992). 

The big question is, if the recognition system does consist of similar 
modules performing interlocking tasks, how are the modules linked, and 
in what hierarchy (if it makes sense at all to talk of ordered stages)? In con- 
structing a practical system for face recognition, it would make sense first 
to estimate the pose, expression, and illumination for a generic face and 
then to use this estimate to "normalize" the face and compare it to single 
views in the database (additional search to fine tune the match may be nec- 
essary). Thus the system would first employ a class-specific module based 
on invariant properties of faces to recover, say, a generic view—analogous 
to an object-centered representation—that could feed into face-specific net- 
works for identification. The information that the system extracts in the 
early stages concerning illumination, expression, context, etc. would not 
be discarded. Within each stage, modules may be further decomposed and 
arranged in hierarchies: one may be specific for eyes, and may extract gaze 
angle, a parameter that may then feed into a module concerned with the 
pose of the entire face. 

For face recognition, the generic view may be recovered by exploiting 
prior information such as the approximate bilateral symmetry of faces. In 
general a single monocular view of a 3D object (if shading is neglected) 
does not contain sufficient 3D information for recognition of novel views. 
Yet humans are certainly able to recognize faces rotated 20-30° away from 
frontal after training on just one frontal view. One of us has recently dis- 
cussed (Poggio 1991) different ways for solving the following problem: 
from one 2D view of a 3D object generate other views, exploiting knowledge of 
views of other, "prototypical" objects of the same class. It can be shown theo- 
retically (Poggio and Vetter 1992) that prior information on generic shape 
constraints does reduce the amount of information needed to recognize 
a 3D object, since additional virtual views can be generated from given 
model views by the appropriate symmetry transformations. In particular, 
for bilaterally symmetric objects, a single nonaccidental "model" view is 
theoretically sufficient for recognition of novel views. Psychophysical ex- 
periments (Vetter et al. 1992) confirm that humans are better in recognizing 
symmetric than nonsymmetric objects. 

An interesting question is whether there are indeed multiple routes to 
recognition. It is obvious that some of the logically distinct steps in recog- 
nition of figure 8.2 may be integrated in fewer modules, depending on the 
specific implementation. Figure 8.5 shows how the same architecture may 
appear if the classification and the visualization routes are implemented 
with HBF networks. In this case, the database of face models would es- 
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expression 

Figure 8.5 A sketch of possibly the most compact (but not the only!) implementation of the 
proposed recognition architecture in terms of modules of the HBF type. 

sentially be embedded in the networks (see Poggio and Edelman 1990). 
There are of course several obvious alternatives to this architecture and 

many possible refinements and extensions. Even if oversimplified, this 
token architecture is useful to generate meaningful questions. The pre- 
ceding discussion may in fact be sufficient for performing computational 
experiments and for developing practical systems. It is also sufficient for 
suggesting psychophysical experiments. It is of course not enough from 
the point of view of a physiologist, yet the physiological data in the next 
section provides broad support for its ingredients. 

Physiological Support for a Memory-Based Recognition Architecture 
At least superficially physiological data seems to support the existence 
of elements of each these modules. Perrett et al. (1985, 1989) report evi- 
dence from inferotemporal cortex (IT) not only for cells tuned to individual 
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faces but also for face cells tuned to intermediate views between frontal 
and profile, units that one would expect in a class-specific network de- 
signed to extract pose of faces. Such cells also support the existence of the 
view-centered units predicted by the basic Poggio-Edelman recognition 
module. Young and Yamane (1992) describe cells in anterior IT that re- 
spond optimally to particular configurations of facial features, or "physical 
prototypes." These may conceivably provide input to the cells described 
by Perrett et al. as "person recognition units," or to the approximately 
view-independent cells described by Hasselmo et al. (1989) that would in 
turn correspond almost exactly to the object-centered output of the Poggio- 
Edelman model. Perrett et al. (1985, 1989) also report cells that respond 
to a given pose of the face regardless of illumination—even when the face 
is under heavy shadow. Such cells may resemble units in a task-specific 
network. In the superior temporal sulcus, Hasselmo et al. (1989) also find 
cells sensitive to head movement or facial gesture, independent of the view 
or identity of the face. Such cells would also appear to be both class- and 
task-specific. (See Perrett and Oram [1992] for a more detailed review of 
relevant physiological data.) 

Fujita and Tanaka (1992) have also reported cells in IT that respond 
optimally to certain configurations of color and shape. These may well 
represent elements of networks that generalize across objects, classifying 
them according to their geometric and material constitution. More signif- 
icantly, Fujita and Tanaka (1992) report that cells in the anterior region of 
IT (cytoarchitectonic area TE) are arranged in columns, within which cells 
respond to similar configurations of color, shape, and texture. Each con- 
figuration may be thought of as a template, which in turn might encode an 
entire object (e.g., a face) or a part of an object (e.g., the lips). Within one 
column, cells may respond to slightly different versions of the template, 
obtained by rotations in the image-plane, for example. Fujita and Tanaka 
(1992) conclude that each of the 2000 or so columns in TE may represent 
one phoneme in the language of objects, and that combinations of activity 
across the columns are sufficient to encode all recognizable objects. 

The existence of such columns supports the notion that the visual sys- 
tem may achieve invariance to image-plane transformations of elementary 
features by replicating the necessary feature measurements at different po- 
sitions, at different scales and with different rotations. 

In the next section we describe how key aspects of the architecture could 
be implemented in terms of plausible biophysical mechanisms and neuro- 
physiological circuitries. 

NEURAL MODELING OF MEMORY-BASED ARCHITECTURES FOR 
RECOGNITION 

In this section we discuss in more detail the possible neural implemen- 
tations of a recognition system built from MBMs. The main questions 
we address are: How are MBMs constructed when a new object or class 

165 Cortical Mechanisms for Object Recognition and Learning 



of objects is learned? and How might MBM units be constructed from 
known biophysical mechanisms? We propose that there are two stages 
of learning—supervised and unsupervised—and illustrate to which ele- 
ments of a memory-based network they correspond. Where could they 
be localized in terms of cortical structures? What mechanisms could be 
responsible? We discuss the memory-based module itself and the circuitry 
that might underlie it. 

The Learning-from-Examples Module 

The simple RBF version of an MBM, discussed earlier in this chapter, learns 
to recognize an object in a straightforward way. Its centers are fixed, chosen 
as a subset of the training examples. The only parameters that can be 
modified as the network learns to associate each view with the correct 
response ("yes" or "no" to the target object) are the coefficients c„ the 
weights on the connections from each center to the output. 

The full HBF network permits learning mechanisms that are more bi- 
ologically plausible by allowing more parameters to be modified. HBF 
networks are equivalent to the following scheme for approximating a mul- 
tivariate function: 

n 

r M = E C«G(IKX - *°)Hw) + P(x) (8.2) 

where the centers tQ and coefficients ca are unknown, and are in general 
fewer in number than the data points (n < N). The norm is a iveighted norm 

ll(x - Mlw = (x - ta)TWTW(x - tQ) (8.3) 

where W is an unknown square matrix and the superscript T indicates 
the transpose. In the simple case of diagonal W the diagonal elements 
Wj assign a specific weight to each input coordinate, determining in fact 
the units of measure and the importance of each feature (the matrix W is 
especially important in cases in which the input features are of a different 
type and their relative importance is unknown) (Poggio and Girosi 1990a). 
During learning, not only the coefficients c but also the centers tQ, and the 
elements of W are updated by instruction on the input-output examples 
(figure 8.6). 

Whereas the RBF technique is similar to and similarly limited as template 
matching, HBF networks perform a generalization of template matching in 
an appropriately linearly transformed space, with the appropriate metric. 
HBF networks are therefore different in both interpretation and capabilities 
from "vanilla" RBF. An RBF network can recognize an object rotated to 
novel orientations only if it has centers corresponding to sample rotations 
of the object. HBFs, though, can perform a variety of more sophisticated 
recognition tasks. For example, HBFs can 

1. Discover the Basri-Ullman result (Basri and Ullman 1989; Brunelli and 
Poggio, unpublished).   (In its strong form, this result states that under 
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Figure 8.6 A network of the hyper basis functions type. For object recognition the inputs 
could be image measurements such as values of different filters at each of a number of 
locations in the image. The network is a natural extension of the template matching scheme 
and contains it as a special case. The dotted lines correspond to linear and constant terms 
in the expansion. The output unit may contain a sigmoidal transformation of the sum of its 
inputs (see Poggio and Girosi 1990b) 

orthographic projection any view of the visible features of the 3D object 
may be generated by a linear combination of two other views.) 

2. With a nondiagonal W, recognize an object under orthographic projec- 
tion with only one center. 
3. Provide invariance (or near invariance under perspective projection) 
for scale, rotation, and other uniform deformations in the image plane, 
without requiring that the features be invariant. 

4. Discover symmetry, collinearity, and other "linear-class" properties (see 
Poggio and Vetter 1992). 

Gaussian Radial Basis Functions In the special case where the network 
basis functions are Gaussian and the matrix W diagonal, its elements W\ 
have an appealingly obvious interpretation. A multidimensional Gaussian 
basis function is the product of one-dimensional Gaussians and the scale 
of each is given by the inverse of Wj. For example, a 2D Gaussian radial 
function centered on t can be written as 

G(||x- ■m) = e - „- x-t w = e 
<y-y2 

(8.4) 
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where ax = \/wx and ay = l/w2, and wx and zv2 are the elements of the 
diagonal matrix W. 

Thus a multidimensional center can be factored in terms of one-dimensional 
centers. Each one-dimensional center is individually tuned to its input: 
centers with small w» or large 07, are less selective and will give apprecia- 
ble responses to a range of values of the input feature; centers with large 
ID» or small 07, are more selective for their input and, accordingly, have 
greater influence on the response of the multidimensional center. The 
template represented by the multidimensional center can be considered 
as a conjunction of one-dimensional templates. In this sense, a Gaussian 
HBF network performs the disjunction of conjunctions: the conjunctions 
represented by the multidimensional centers are "or"ed in the weighted 
sum of center activities that forms the output of the network. 

Expected Physiological Properties of MBM Units 

The Neurophysiological Interpretation of HBF Centers   Our key claim 
is that HBF centers and tuned cortical neurons behave alike. 

A Gaussian HBF unit is maximally excited when each component of 
the input exactly matches each component of the center. Thus the unit is 
optimally tuned to the stimulus value specified by its center. Units with 
multidimensional centers are tuned to complex features, formed by the 
conjunction of simpler features, as described in the previous section. 

This description is very like the customary description of cortical cells 
optimally tuned to a more or less complex stimulus. So-called place coding 
is the simplest and most universal example of tuning: cells with roughly 
Gaussian receptive fields have peak sensitivities to given locations in the 
input space; by overlapping, the cell sensitivities cover all of that space. In 
VI the input space may be up to five dimensional, depending on whether 
the cell is tuned not only to the retinal coordinates x,y but also to stim- 
ulus orientation, motion direction, and binocular disparity. In V4 some 
cells respond optimally to a stimulus combining the appropriate values of 
speed and color (N. K. Logothetis, personal communication; Logothetis 
and Charles 1990). Other V4 cells respond optimally to a combination of 
colour and shape (D. Van Essen, personal communication). In MST cells 
exist optimally tuned to specific motions in different parts of the receptive 
field and therefore to different motion "dimensions." Most of these cells 
are also selective for stimulus contrast. In "later" areas such as IT cells may 
be tuned to more complex stimuli which can be changed in a number of 
"dimensions" (Desimone et al. 1984). Gross (1992) concludes that "IT cells 
tend to respond at different rates to a variety of different stimuli." Thus it 
seems that multidimensional units with Gaussian-like tuning are not only 
biologically plausible, but ubiquitous in cortical physiology. This claim 
is not meant to imply that for every feature dimension of a multidimen- 
sionally tuned neuron, neurons feeding into it can be found individually 
tuned to that dimension. For example, for some motion-selective cells in 
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MT the selectivities to spatial frequency and temporal frequency cannot 
be separated. Yet for these, it may be inappropriate to consider time and 
space as two independent dimensions and more appropriate to consider 
velocity as the single dimension in which the neuron is tuned. On the 
other hand, it is well known that at lower levels in the visual system there 
do exist cells broadly tuned individually to spatial frequency, orientation, 
and wavelength, for example, and from these dimensions many complex 
features can be constructed. 

We also observe that not all MBMs have the same applicability in de- 
scribing properties of cortical neurons. In particular, tuned neurons seem 
to behave more like Gaussian HBF units than like the sigmoidal units typi- 
cally found in multilayer perceptrons (MLPs): the tuned response function 
of cortical neurons resembles exp(- (11 x -111 )2/2a2, more than it does E(x • w), 
where E is a sigmoidal "squashing" function and we define w as the vec- 
tor of connection weights including the bias parameter 6. (The typical 
sigmoidal response to contrast that most neurons display may be treated 
as a Gaussian of large variance.) For example, when the stimulus to an 
orientation-selective cortical neuron is changed from its optimal value in 
any direction, the neuron's response typically decreases. The activity of 
a Gaussian HBF unit would also decline with any change in the stimulus 
away from its optimal value t. But for the sigmoid unit certain changes 
away from the optimal stimulus will not decrease its activity, for example 
when the input x is multiplied by a constant a > 1. 

Lastly, we observe that although the Gaussian is the simplest and most 
readily interpretable RBF in physiological terms, it might not ultimately 
provide the best fit to all the physiological data once in. In espousing the 
general theory of MBMs for cortical mechanisms of object recognition, we 
do not confine ourselves to Gaussian RBFs as the only model of cortical 
neurons, but only at present the most plausible. 

Centers and a Fundamental Property of Our Sensory World   We can 
recognize almost any object from any of many small subsets of its features, 
visual and nonvisual. We can perform many motor actions in several 
different ways. In most situations, our sensory and motor worlds are 
redundant. In the language of the previous section this means that instead 
of high-dimensional centers any of several lower dimensional centers are often 
sufficient to perform a given task. This means that the "and" of a high- 
dimensional conjunction can be replaced by the "or" of its components—a 
face may be recognized by its eyebrows alone, or a mug by its color. To 
recognize an object, we may use not only templates comprising all its 
features, but also subtemplates, comprising subsets of features. This is 
similar in spirit to the use of several small templates as well as a whole-face 
template in the Brunelli-Poggio work on frontal face recognition (Brunelli 
and Poggio 1992). 

Splitting the recognizable world into its additive parts may well be 
preferable to reconstructing it in its full multidimensionality, because a 
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system composed of several independently accessible parts is inherently 
more robust than a whole, simultaneously dependent on each of its parts. 
The small loss in uniqueness of recognition is easily offset by the gain 
against noise and occlusion. This reduction of the recognizable world into 
its parts may well be what allows us to "understand" the things that we 
see (see appendix B). 

How Many Cells? The idea of sparse population coding is consistent with 
much physiological evidence, beginning even at the retinal level where 
colors are coded by three types of photoreceptors. Young and Yamane 
(1992) conclude from neurophysiological recordings of IT cells broadly 
tuned to physical prototypes of faces: "Rather than representing each cell 
as a vector in the space, the cell could be represented as a surface raised 
above the feature space. The height of the surface above each point in 
the feature space would be given by the response magnitude of the cell 
to the corresponding stimuli and population vectors would be derived by 
summing the response weighted surfaces for each cell for each stimulus." 
MBMs also suggest that the importance of the object and the exposure to 
it may determine how many centers are devoted to its recognition. Thus 
faces may have a more "punctate" representation than other objects simply 
because more centers are used. Psychophysical experiments do suggest 
that an increasing number of centers is created under extended training to 
recognize a 3D object (Bülthoff and Edelman 1992). 

While we would not dare to make a specific prediction on the absolute 
number of cells used to code for a specific object, computational experi- 
ments and our arguments here suggest at least a minimum bound. Sim- 
ulations by Poggio and Edelman (1990) suggest that in an MBM model a 
minimum of 10-100 units is needed to represent all possible views of a 3D 
object. We think that the primate visual system could not achieve the same 
representation with fewer than on the order of 1000. This number seems 
physiologically plausible, although we expect that the actual number will 
depend strongly on the reliability of the neurons, training of the animal, 
relevance of the represented object and other properties of the implemen- 
tation. Thus we envisage that training a monkey to one view of a target 
object may "create" at least on the order of 100 cells tuned to that view 
in the relevant cortical area, with a generalization field similar to the one 
shown in figure 8.4. Training to an additional view may create or recruit 
cells tuned to that view. Overtraining a monkey on a specific object should 
result in an overrepresentation in cortex of that object—more cells than 
normally expected would be tuned to views of the object. Recent results 
from Kobatake et al. (1993) suggest that up to two orders of magnitude 
more cells may be "created" in IT (or, rather, the stimulus selectivities of 
existing cells altered) on overtraining to specific objects. 

Note that we do not mean to imply that only 10 -1000 cortical cells would 
be active on presentation of an object. Many more would be activated than 
those that are critical for its representation. We suggest only that the activity 
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of approximately 100 cells should be sufficient to discriminate between two 
distinct objects. This conclusion is broadly supported by the conclusion of 
Young and Yamane (1992) that the population response of approximately 
40 cells in IT is approximately sufficient to encode a particular face, and 
by the related observation of Britten et al. (1992) that the activity of a small 
pool of weakly correlated neurons in MT is sufficient to predict a monkey's 
behavioral response in a motion detection task. 

HBF Centers and Biophysical Mechanisms How might multidimen- 
sional Gaussian receptive fields be synthesized from known receptive fields 
and biophysical mechanisms? 

The simplest answer is that cells tuned to complex features are con- 
structed from a hierarchy of simpler cells tuned to incrementally larger 
conjunctions of elementary features. This idea—a standard explanation— 
can immediately be formalized in terms of Gaussian radial basis functions, 
since a multidimensional Gaussian function can be decomposed into the 
product of lower dimensional Gaussians (Marr and Poggio 1977; Ballard 
1986; Mel 1988; Poggio and Girosi 1990b). 

The scheme of figure 8.7 is a possible example of an implementation 
of Gaussian radial basis functions in terms of physiologically plausible 
mechanisms. The first step applies to situations in which the inputs are 
place-coded, that is, in which the value of the input is represented by its 
location in a spatial array of cells—as, for example, the image coordinates 
x, y are encoded by the spatial pattern of photoreceptor activites. In this 
case Gaussian radial functions in one, two, and possibly three dimensions 
can be implemented as receptive fields by weighted connections from the 
sensor arrays (or some retinotopic array of units whose activity encodes 
the location of features). If the inputs are interval-coded, that is, if the 
input value is represented by the continuously varying firing rate of a 
single neuron, then a one-dimensional Gaussian-like tuned cell can be 
created by passing the input value through multiple sigmoidal functions 
with different thresholds and taking their difference. 

Consider, for example, the problem of encoding color. At the retinal 
level, color is recorded by the triplet of activities of three types of cell: the 
cone-opponent red-green (R-G) and blue-yellow (B-Y) cells and the lumi- 
nance (L) cell. An R-G cell signals increasing amounts of red or decreasing 
amounts of green by increasing its firing rate. Thus it does not behave like 
a Gaussian tuned cell. But at higher levels in the visual system, there exist 
cells that behave very much like units tuned to particular values in 3D 
color space (Schein and Desimone 1990). How are these multidimensional 
tuned color cells constructed from one-dimensional rate-coded cells? We 
suggest that one-dimensional Gaussian tuned cells may be created by the 
above mechanism, selective to restricted ranges of the three color axes. 

Gaussians in higher dimensions can then be synthesized as products 
of one- and two-dimensional receptive fields. An important feature of 
this scheme is that the multidimensional radial functions are synthesized 
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Figure 8.7 A three-dimensional radial Gaussian implemented by multiplying a two- 
dimensional and a one-dimensional Gaussian receptive field. The latter two functions are 
synthesized directly by appropriately weighted connections from the sensor arrays, as neural 
receptive fields are usually thought to arise. Notice that they transduce the implicit position 
of stimuli in the sensor array into a number (the activity of the unit). They thus serve the 

dual purpose of providing the required "number" representation from the activity of the 
sensor array and of computing a Gaussian function. 2D Gaussians acting on a retinotopic 
map can be regarded as representing 2D "features," while the radial basis function represents 

the "template" resulting from the conjunction of those lower-dimensional features. (From 
Poggio and Girosi 1989a) 

directly by appropriately weighted connections from the sensor arrays, 
without any need of an explicit computation of the norm and the expo- 
nential. From this perspective the computation is performed by Gaus- 
sian receptive fields and their combination (through some approximation 
to multiplication), rather than by threshold functions. The view is in the 
spirit of the key role that the concept of receptive field has always played 
in neurophsyiology. It predicts a sparse population coding in terms of low- 
dimensional feature-like cells and multidimensional Gaussian-like recep- 
tive fields, somewhat similar to template-like cells, a prediction that could 
be tested experimentally on cortical cells. 

172 Poggio and Hurlbert 



The multiplication operation required by the previous interpretation of 
Gaussian RBFs to perform the "conjunction" of Gaussian receptive fields is 
not too implausible from a biophysical point of view. It could be performed 
by several biophysical mechanisms (see Koch and Poggio 1987; Poggio 
1990). Here we mention several possibilities: 

1. Inhibition of the silent type and related synaptic and dendritic circuitry 
(see Poggio and Torre 1978; Torre and Poggio 1978). 

2. The AND-like mechanism of NMDA receptors. 

3. A logarithmic transformation, followed by summation, followed by ex- 
ponentiation. The logarithmic and exponential characteristic could be im- 
plemented in appropriate ranges by the sigmoid-like pre- to postsynaptic 
voltage transduction of many synapses. 
4. Approximation of the multiplication by summation and thresholding 
as suggested by Mel (1990). 

If the first or second mechanism is used, the product of figure 8.7 can 
be performed directly on the dendritic tree of the neuron representing the 
corresponding radial function. In the case of Gaussian receptive fields 
used to synthesize Gaussian radial basis functions, the center vector is 
effectively stored in the position of the 2D (or ID) receptive fields and in 
their connections to the product unit(s). This is plausible physiologically. 

Linear terms (direct connections from the inputs to the output) can be 
realized directly as inputs to an output neuron that summates linearly its 
synaptic inputs. An output nonlinearity such as a threshold or a sigmoid 
or a log transformation may be advantageous for many tasks and will not 
change the basic form of the model (see Poggio and Girosi 1989). 

Circuits There is at least one other way to implement HBFs networks 
in terms of known properties of neurons. It exploits the equivalence of 
HBFs with MLP networks for normalized inputs (Maruyama et al. 1991). 
If the inputs are normalized (as usual for unitary input representations), an 
HBF network could be implemented as an MLP network by using thresh- 
old units. There is the problem, though, in normalizing the inputs in a 
biologically plausible way. MLP networks have a straightforward imple- 
mentation in terms of linear excitation and inhibition and of the threshold 
mechanism of the spike for the sigmoidal nonlinearity. The latter could 
also be implemented in terms of the pre- to postsynaptic relationship be- 
tween presynaptic voltage and postsynaptic voltage. In either case this 
implementation requires one neuron per sigmoidal unit in the network. 

Mel (1992) has simulated a specific biophysical hypothesis about the role 
of cortical pyramidal cells in implementing a learning scheme that is very 
similar to a HBF network. Marr (1970) had proposed another similar model 
of how pyramidal cells in neocortex could learn to discriminate different 
patterns. Marr's model is, in a sense, the look-up table limit of our HBF 
model. 
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Mechanisms for Learning 

Reasoning from the HBF model, we expect two mechanisms for learning, 
probably with different localizations, one that could occur unsupervised 
and thus is similar to adaptation, and one supervised and probably based 
on Hebb-like mechanisms. 

The first stage of learning would occur at the site of the centers. Let us 
remember that a center represents a neuron tuned to a particular visual 
stimulus, for example, a vertically oriented light bar. The coefficients ca 

represent the synaptic weights on the connections that the neuron makes 
to the output neuron that registers the network's response. In the simple 
RBF scheme the only parameters updated by learning are these coefficients. 
But in constructing the network, the centers must be set to values equal to 
the input examples. Physiologically, then, selecting the centers t„ might 
correspond to choosing or retuning a subset of neurons selectively respon- 
sive to the range of stimulus attributes encountered in the task. This stage 
would be very much like adaptation, an adjustment to the prevailing stim- 
ulus conditions. It could occur unsupervised, and would strictly depend 
only on the stimuli, not on the task. 

The second stage, updating of the coefficients ca, could occur only su- 
pervised, since it depends on the full input and output example pairs, or, in 
other words, on the task. It could be achieved by a simple Hebb-type rule, 
since the gradient descent equations for the c are (Poggio and Girosi 1989): 

N 

cQ=u,^A,G(||x,-tX) (8.5) 
1=1 

with a = 1,..., n and A, the squared error between the correct out- 
put for example / and the actual output of the network. Thus equation 
(8.5) says that the change in the ca should be proportional to the prod- 
uct of the activity of the unit i and the output error of the network. In 
other words, the "weights" of the c synapses will change depending on 
the product of pre- and postsynaptic activity (Poggio and Girosi 1989; Mel 
1988,1990). 

In the RBF case, the centers are fixed after they are initially selected to 
conform to the input examples. In the HBF case, the centers move to opti- 
mal locations during learning. This movement may be seen as task-specific 
or supervised fine-tuning of the centers' stimulus selectivities. It is highly 
unlikely that the biological visual system chooses between distinct RBF-like 
and HBF-like implementations for given problems. It is possible, though, 
that tuning of cell selectivities can occur in at least two different ways, 
corresponding to the supervised and unsupervised stages outlined here. We 
might also expect that these two types of learning of "centers" could occur 
on two different time scales: one fast, corresponding to selecting centers 
from a preexisting set, and one slow, corresponding to synthesizing new 
centers or refining their stimulus specificities. The cortical locations of 
these two mechanisms, one unsupervised, the other supervised, may be 
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different and have interesting implications on how to interpret data on 
transfer of learning (see Poggio et al. 1992). 

For fast, unsupervised learning, there might be a large reservoir of cen- 
ters already available, most of them with an associated c = 0, as suggested 
by Mel (1990) in a slightly different context. The relevant ones would gain a 
nonzero weight during the adaptive process. Alternatively, the mechanism 
could be similar to some of the unsupervised learning models described 
by Linsker (1990), Intrator and Cooper (1991), Földiak (1991), and others. 

Slow, supervised learning may occur by the stabilization of electrically 
close synapses depending on the degree to which they are co-activated 
(see, e.g., Mel 1992). In this scheme, the changes will be formation and 
stabilization of synapses and synapse clusters (each synapse representing 
a Gaussian field) on a cortical pyramidal cell simply due to correlations 
of presynaptic activities. We suggest that this synthesis of new centers, 
as would be needed in learning to recognize unfamiliar objects, should 
be slower than selecting centers from an existing pool. But some recent 
data on perceptual learning (e.g., Fiorentini and Berardi 1981; Poggio et 
al. 1992; Kami and Sagi 1990) indicate otherwise: the fact that human 
observers rapidly learn entirely novel visual patterns suggests that new 
centers might be synthesized rapidly. 

It seems reasonable to conjecture, though, that updating of the elements 
of the W matrix may take place on a much slower time scale. 

Do the update schemes have a physiologically plausible implementa- 
tion? Methods like the random-step method (Caprile and Girosi 1990), 
that do not require calculation of derivatives, are biologically the most 
plausible. (In a typical random-step method, network weight changes are 
generated randomly under the guidance of simple rules; for example, the 
rule might be to double the size of the random change if the network per- 
formace improves and to halve the size if it does not.) In the Gaussian 
case, with basis functions synthesized through the product of Gaussian 
receptive fields, moving the centers means establishing or erasing connec- 
tions to the product unit. A similar argument can be made also about the 
learning of the matrix W. Notice that in the diagonal Gaussian case the 
parameters to be changed are exactly the a of the Gaussians (i.e., the spread 
of the associated receptive fields). Notice also that the a for all centers on 
one particular dimension is the same, suggesting that the learning of wt 

may involve the modification of the scale factor in the input arrays rather 
than a change in the dendritic spread of the postsynaptic neurons. In all 
these schemes the real problem consists in how to provide the "teacher" 
input. 

PREDICTIONS AND REMARKS 

To summarize, we highlight the main predictions made by our interpreta- 
tion of memory-based models of the brain. 
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1. Sparse population coding. The general issue of how the nervous sys- 
tem represents objects and concepts is of course unresolved. "Sparse" or 
"punctate" coding theories propose that individual cells are highly specific 
and encode individual patterns. "Population" theories propose that dis- 
tributed activity in a large number of cells underlies perception. Models 
of the HBF type suggest that a small number of cells or groups of cells (the 
centers), each broadly tuned, may be sufficient to represent a 3D object. 
Thus our interpretation of MBMs predicts a "sparse population coding," 
partway between fully distributed representations and grandmother neu- 
rones. Specifically we predict that the activity of approximately 100 cells 
is sufficient to distinguish any particular object, although many more cells 
may be active at the same time. 

2. Viewer-centered and object-centered cells. Our model (see the module of 
figure 8.3) predicts the existence of viewer-centered cells (the centers) and 
object-centered cells (the output of the network). Evidence pointing in this 
direction in the case of face cells in IT is already available. We predict a 
similar situation for other 3D objects. It should be noted that the module 
of figure 8.3 is only a small part of an overall architecture. We predict 
the existence of other types of cells, such as pose-tuned, expression-tuned, 
and illumination-tuned cells. Very recently N. Logothetis (personal com- 
munication) has succeeded in training monkeys to recognize the same 
objects used in human psychophysics, and has reproduced the key results 
of Bülthoff and Edelman (1992). He also succeeded in measuring gener- 
alization fields of the type shown in figure 8.4 after training on a single 
view. We believe that such a psychophysically measured generalization 
field corresponds to a group of cells tuned in a Gaussian-like manner to 
that view. We expect that in trained monkeys, cells exist corresponding 
to the hidden units of an HBF network, specific for the training view, as 
well as possibly other cells responding to subparts of the view. We conjec- 
ture (although this is not a critical prediction of the theory) that the step of 
creating the tuned cells (i.e. the centers) is unsupervised: in other words, 
that to create the centers it would be sufficient to expose monkeys to target 
views without actually training them to respond in specific ways. 

3. Cells tuned to full viezvs and cells tuned to parts. Our model implies that 
both high-dimensional and low-dimensional centers should exist for recog- 
nizable objects, corresponding to full templates and template parts. Physi- 
ologically this corresponds to cells that require the whole object to respond 
(say a face) as well as cells that respond also when only a part of the object 
is present (say, the mouth). 

4. Rapid synaptic plasticity. We predict that the formation of new centers 
and the change in synaptic weights may happen over short time scales 
(possibly minutes) and relatively early in the visual pathway (see Poggio 
et al. 1992). As we mentioned, it is likely that the formation of new cen- 
ters is unsupervised while other synaptic changes, corresponding to the c, 
coefficients, should be supervised. 
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HBF-LIKE MODULES AND THEORIES OF THE BRAIN 

As theories of the brain (or of parts of it) HBFs networks replace computa- 
tion with memory. They are equivalent to modules that work as interpolat- 
ing look-up tables. In a previous paper one of us has discussed how theories 
of this type can be regarded as a modern version of the "grandmother cell" 
idea (Poggio 1990). 

The proposal that much information processing in the brain is performed 
through modules that are similar to enhanced look-up tables is attractive 
for many reasons. It also promises to bring closer apparently orthogonal 
views, such as the immediate perception of Gibson (1979) and the representa- 
tional theory of Marr (1982), since almost iconic "snapshots" of the world 
may allow the synthesis of computational mechanisms equivalent to vision 
algorithms. The idea may change significantly the computational perspec- 
tive on several vision tasks. As a simple example, consider the different 
specific tasks of hyperacuity employed by psychophysicists. The proposal 
would suggest that an appropriate module for the task, somewhat similar 
to a new "routine," may be synthesized by learning in the brain (see Poggio 
et al. 1992). 

The claim common to several network theories, such as multilayer per- 
ceptrons and HBF networks, is that the brain can be explained, at least in 
part, in terms of approximation modules. In the case of HBF networks 
these modules can be considered as a powerful extension of look-up ta- 
bles. MLP networks cannot be interpreted directly as modified look-up 
tables (they are more similar to an extension of multidimensional Fourier 
series), but the case of normalized inputs shows that they are similar to 
using templates. 

The HBF theory predicts that population coding (broadly tuned neurons 
combined linearly) is a consequence of extending a look-up table scheme— 
corresponding to interval coding—to yield interpolation (or more precisely 
approximation), that is, generalization. In other words, sparse population 
coding and neurons tuned to specific optimal stimuli are direct and strong 
predictions of HBF schemes. It seems that the hidden units of HBF models 
bear suggestive similarities with the usual descriptions of cortical neurons 
as being tuned to optimal multidimensional stimuli. It is of course possible 
that a hierarchy of different networks—for example, MLP networks—may 
lead to tuned cells similar to the hidden units of HBF networks. 

APPENDIX A: AN ARCHITECTURE FOR RECOGNITION 

The Classification and Indexing Route to Recognition 

Here we elaborate on the architecture for a recognition system introduced 
in section 2. Figure 8.2 illustrates the main components of the architec- 
ture and its two interlocking routes to recognition. The first route, which 
we call the classification and indexing route, is essentially equivalent to 
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Figure 8.8 Different M-arrays corresponding to different types of measurements (from left 
to right: I, 1/(1), |A/|L] and dxxI + dyyl). The measurements to be used are obtained on a 
much coarser grid than the original image. (From Brunelli and Poggio 1992) 

an earlier proposal Poggio and Edelman 1990) in which an HBF network 
receives inputs in the form of feature parameters and classifies inputs as 
same or different from the target object. This is a streamlined route to recog- 
nition that requires that the features extracted in the early stages of image 
analysis be sufficient to enable matching with samples in the database. 
Its goal may be primarily basic level recognition, but it is also the route 
that might suit best the search for and recognition of an expected object. 
In that case it may be used to identify objects (at the subordinate level) 
whose class membership is known in advance. It consists of three main 
stages: 

1. Image measurements The first step is to compute a primal image repre- 
sentation, which is a set of sparse measurements on the image, based on 
appropriate smoothed derivatives, corresponding to center-surround and 
directional receptive fields. It can be argued that the (vector) measure- 
ments to be considered should be multiple nonlinear functions of differ- 
ential operators applied to the image at sparse locations (for a discussion 
of linear and nonlinear measurement or "matching" primitives see Ap- 
pendix in Nishihara and Poggio 1984). (Similar procedures may involve 
using Gaussians of different scales and orientations [e.g., Marr and Poggio 
1977], Koenderink's "jets" [Koenderink and VanDoorn 1990], Gabor filters, 
or wavelets. A regularized gradient of the image also works well.) We call 
this array of measurements an M-array; in general, it is a vector-valued 
array (figure 8.8). For recognition of frontal images of faces an M-array as 
small as 30 x 30 has been found sufficient to encode an image of initial size 
512 x 512 (Brunelli and Poggio 1992). 

2. Feature detection and measurements. Key features, encoded by the pri- 
mal measurements, are then found and localized. These features may be 
specific for a specific object class—for the expected class, if it is known in 
advance, or for an alternative class considered as a potential match. This 
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step can be regarded as performing a sort of template matching with sev- 
eral appropriate examples; when a face is the object of the search, templates 
may include eye pairs of different size, pose, and expression. In the HBF 
case the templates would effectively correspond to different centers, and 
matching would proceed in a more sophisticated way than direct compar- 
ison. It is clear that this step may by itself accomplish segmentation. 

3. Classification and indexing. Parameter values estimated by the preceding 
stage for the features of interest (e.g., the distance between eyes and mouth) 
are used in this stage for classification and indexing in a database of known 
examples. In many cases this may lead by itself to unique recognition, 
especially when situational information, such as the expectedness of a 
particular object, restricts the relevant data base. Classification could be 
done via a number of classical schemes such as nearest neighbor or with 
modules that are more biologically plausible such as HBF networks. 

Some open questions remain: 

• What are the features used by the human visual system in the feature 
detection stage? A plausible idea is that there is a large set of filters tuned 
to different 2D shape features and efficiently doing a kind of template 
matching on the input. Some functional of the correlation function is then 
evaluated (such as the max of the correlation or some robust statistics on 
the correlation values). The results represent some of the components (for 
that particular filter, i.e., template) of the input vector to object-specific 
networks consisting of hidden units each tuned to a view and an output 
unit which is view-invariant. Networks of this type may also exist not only 
for specific objects but also for general object components, perhaps similar 
to more precise versions of some of Biederman's geons (Biederman 1987). 
They would be synthesized by familiarity and their output may have a 
varying degree of view invariance depending on the type and number 
of the tuned cells in the hidden layer. Networks of this type, tuned to 
a particular shape, could easily be combined conjunctively to represent 
more complex shapes (but still exploiting the fundamental property of 
additivity). This general scheme avoids the correspondence problem since 
the components of the input vectors are statistics taken over the whole 
image, rather than individual pixel values or feature locations. It may 
well be that in the absence of a serial mechanism such as eye motions and 
attentional shifts the visual system does not have a way to keep and use 
spatial relations between different components or feaures in an image and 
that it can only detect the likely "presence" of, say, a few hundred features 
of various complexity. 
• The architecture described here consists of a hierarchy of HBF-like net- 
works. Does the human visual system operate with a similar hierarchy? 
For instance, an eye-recognizing MBM network may provide some of the 
inputs to a face recognition network that will combine the presence (and 
possibly relative position) of eyes with other face features (remember that 
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an MBM network can be regarded as a disjunction of conjunctions). The 
inputs to the eye-recognizing networks may be themselves provided by 
other RBF-like networks; this is similar to the use in the eye-recognizing 
networks of inputs that are the result of filtering the image through a few 
basic filters out of a large vocabulary consisting of hundreds of "elemen- 
tary" templates, representing a vocabulary of shapes of the type described 
by Fujita and Tanaka (1992). The description of Perrett and Oram (1992) is 
consistent with this scenario. At various stages in this hierarchy more in- 
variances may be achieved for position, rotation, scaling, etc., in a manner 
similar to how complex cells are built from simple ones. 

The Visualization Route to Recognition 

The second potential route to recognition takes a necessary detour from the 
first route to fine-tune the matching mechanisms. Like the classification 
pathway it begins with the two stages of image measurement and feature 
detection, but diverges because it allows for the possibility that a match 
between the database and measured image features might not directly be 
found. Further processing may take place on the image or on the stored 
examples to bring the two into registration or to narrow the range of the 
latter. The main purpose of this loop is to correct for deformations before 
comparing image to data base. 

Computational arguments (Breuel 1992) suggest that this route should 
separate transformations to be applied to the image (to redress image- 
plane deformations such as image-plane translations, scaling, and rota- 
tions) from those to be applied to the database model (which may include 
rotations-in-depth, illumination changes, and alterations in facial expres- 
sion, for example). The system may try a number of transformations in 
parallel and on multiple scales of spatial resolution (see chapter 13 by Van 
Essen, Anderson, and Olshausen) until it finds the one that succeeds. In 
general the whole process maybe iterated several times before it achieves a 
satisfactory level of confidence (see chapter 7 by Mumford and chapter 12 
by Ullman for similar proposals). In the primate visual system, the likely 
site for the latter transformations is cortical area IT, whereas the former 
would probably take place earlier, as available results on properties of IT 
seems to suggest (Gross 1992; Perrett et al. 1982; Perrett and Harries 1988; 
Perrett et al. 1989). The main steps of this hypothetical second route to 
recognition are as follows: 

1. Image measurement. 

2. Feature detection. 

3. Image rectification. The feature detection stage provides information 
about the location of key features that is used in this stage to normalize 
for image-plane translation, scaling and image-plane rotation of the input 
M-array. 
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4. Pose estimation. 3D pose (two parameters), illumination, and other pa- 
rameters (such as facial expression) are estimated from the M-array. This 
computation could be performed by an MBM module that has "learned" 
the appropriate estimation function from examples of objects of the same 
class. 

5. Visualization. The models (M-arrays in the database corresponding to 
known objects) are warped in the dimensions of pose and expression and 
illumination, to bring them into register with the estimate obtained from 
the input image. The transformation of the models is performed by ex- 
ploiting information specific to the given object (several views per object 
may have been stored in memory) or by applying a generic transformation 
(e.g., for a face, from "serious" to "smiling") learned from objects of the 
same class. Several transformations may be attempted at this stage before 
a good match is found in the next step. 

6. Verification and indexing. The rectified "image" is compared with the 
warped database of standard representations. Open questions remain on 
how the database may be organized and what are the most efficient means 
of indexing it. 

APPENDIX B: ON THE DECOMPOSITION OF MULTIDIMENSIONAL 
INPUTS 

It is well known (see earlier, and Poggio and Girosi 1989) that the simplest 
version of a regularization network approximates a vector field y(x) as 

N 

y(x) = 5>G(x-x,-) (8.6) 

with G being the chosen Green function and 

(G)cm = ym. (8.7) 

It follows that the vector field is approximated as the linear combination 
of example fields, that is 

N 

y(x) = 5>(x)y, (8.8) 

where the b; depend on the chosen G. 
Thus/or any choice of the regularization network—even HBF—and any choice 

of the Green function—including Greenfunctions corresponding to additive splines 
and tensor product splines—the estimated output (vector) image is always a linear 
combination of example (vector) images with coefficients that depend (nonlinearly) 
on the desired input value. This observation together with the fundamental 
hypothesis suggests that an output vector (say a vectorized image) can be 
represented as a linear combination of examples. This is similar to decom- 
position in parts. 
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Q Constructing Neuronal Theories of Mind 

Michael I. Posner and Mary K. Rothbart 

What should a theory of higher brain function be about? If it is to be a 
theory of the brain, it is clear that it should be about neurons and neu- 
roanatomy. Yet it is widely agreed that even a complete description of 
the functions of neurons is unlikely to be adequate to provide a theory of 
higher brain function. Nor do studies of the brain's structure provided by 
the new neuroimaging methods, such as positron emission tomography or 
magnetic resonance imagery, by themselves provide a clear answer to the 
question of brain functions. In our view, the term "higher" indicates that 
such a brain theory should also be concerned with mind. If so, it becomes 
important to know what "mind" is like, how to measure it, and what a 
theory of mind must explain. 

Many descriptions of mind begin with subjective experience and mea- 
sure "mind" by self reports given verbally or nonverbally about that expe- 
rience. We believe the task of connecting brain to mind requires as fine an 
analysis of mind as we have been able to make of neuronal activity. In our 
view, the analysis of mind necessary to make connections with brain sys- 
tems involves its specification into the elementary operations that provide 
a basis for localization of function within neural systems. Over the past 
25 years researchers in cognitive science have developed ways of defining 
and measuring mental operations. 

FRAMEWORK 

Cognitive Systems 

We find it useful to view the connection between cognitive systems and 
neurosystems in terms of a very general framework shown in figure 9.1. 
This framework involves five levels of analysis. At the highest level is per- 
formance of the tasks of every day life. These include activities like reading, 
recognizing faces, daydreaming, moving from place to place, playing mu- 
sic, writing, and planning a trip. Verbal report is often informative at this 
level; we can report what faces look like or our intention to go someplace. 

A great deal of evidence from studies of lesioned patients indicates that 
these tasks may be grouped together into a somewhat lesser number of 
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Figure 9.1   Framework for linking cognitive and neural systems. 

"cognitive systems," with many tasks of daily life draw on the same cogni- 
tive system. Thus reading, writing, speaking, and conversing are all tasks 
of daily life and they all involve the cognitive system we call "language." 
Brain damage (lesions) at various locations of the left hemisphere impairs 
aspects of this language system.The idea of a cognitive system has some 
analogies with an organ system in that it is a set of structures functioning 
together to allow the performance of a general function. Sometimes "plan- 
ning ahead" is thought to involve a common cognitive system. Lesions 
of the frontal lobes often impair planning and thus there may be a brain 
system that underlies it. Similarly, selective attention appears to involve 
particular brain systems. 

Elementary Operations 

Complex cognitive tasks such as playing chess, reading, or manipulating 
visual images have also been subjected to detailed analysis. These analy- 
ses have divided a task into logical operations that might form the basis 
for programming a computer to simulate human performance. Consider 
the task of imagining you are walking along a familiar route. One anal- 
ysis of the imagery process identifies 12 elementary operations (Kosslyn 
1980). Each operation has an input, a computation, and an output. When 
organized into an appropriate sequence, one has a computational model 
capable of performing an imagery task. 

This approach to mental imagery is a form of artificial intelligence (AI) 
called symbol processing. Its emphasis is on the logic of a set of operations 
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that would be sufficient to program or simulate the task being studied. 
Although AI models do not directly model the brain, they sometimes help 
in the construction of neural models by making clear what the logical 
operations are. The logical analysis of the model may or may not relate to 
what happens when people actually perform the task. The model provides 
a kind of sufficiency analysis, in that it shows the task can be analyzed into 
a set of subroutines sufficient to perform it. 

Psychological Pathways 

The next step in our effort to link cognitive processes to neural systems is to 
ask how a human mind performs the postulated operation. To achieve that 
goal, we need to design a model task incorporating the operations under 
study. How, for example, does one generate a visual image? Suppose you 
are presented with either a visual or an auditory letter. Your task is to 
determine as quickly as possible if a second (probe) letter is the same letter 
as the first (Posner 1978). If the first letter is a visual upper case A and a 
probe letter in the same case is presented immediately (e.g., AA), it takes 
about 80 msec less to process than if the probe is in the opposite case (e.g., 
Aa). Following a spoken letter, both upper- and lowercase visual probes 
also take about 80 msec longer than would a direct visual physical match. 
After a half second delay between the first letter and the probe, uppercase 
probes are handled just as fast, whether the first letter is visual or auditory, 
but lowercase probes still take longer. It takes about half a second to 
generate an optimal visual representation of the auditory stimulus. By 
this objective test, you have now generated an image. 

How in detail is an image generated? If you are presented with the letter 
name F (Kosslyn 1988) and asked to form a visual image, how can we tell 
if you are doing so? We can, of course, ask you. But even if we take your 
answer as definitive, we would have no way of going further to ask in 
detail how the image is constructed, because you really have little insight 
into that level of your processing system. To find out if an image has been 
formed, a slightly different probe can be used. This time you are asked 
whether a probe X that appears is located on or off the image you have 
created. Immediately after the presentation of the first letter, you will be 
slow to verify whether the X lies on the image or not because the image is 
not yet created. After a short delay you are fast to verify probes that lie on 
the upright of the letter but slow for those on the cross bar. It is as though 
you have generated the left part of the image but not yet the rest of it. In 
fact, these images appear to be generated stroke by stroke. What is most 
remarkable is that as you generate them, verification of probes lying on 
the stroke that has already been generated is facilitated. 

Suppose you are presented with an upright letter, and asked to rotate 
clockwise in your mind's eye (Cooper and Shepard 1975). Are you actually 
performing the rotation? To test whether you are, we probe with letters 
at varying angles from the upright. You are asked to report by pressing 
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one key if the probe is a correct letter and another key if it is a mirror- 
image letter. Prior to starting the experiment we calculate your rotation 
speed from the reaction time to respond to letters presented at different 
angles of orientation. Suppose your calculated rotation speed is 100°/sec. 
After 0.3 sec you should be faster to 30° probes and slower to upright or 60° 
probes. That is exactly what is found; you are actually faster in responding 
to a probe letter at 30° orientation than to one that is upright at the usual 
angle at that we experience letters. Your mental rotation has objective 
consequences that can be measured precisely in terms of the time to verify 
the probe, and they are strong enough to overcome the usual preference 
for upright letters based on past experience. 

It is also possible to study inhibition of processing performance. Suppose 
you are shown a red S on top of a green K (Allport 1989). You are asked to 
name the red letter and ignore the green letter that is under it. On one trial 
you name S and the rejected letter is K. If on the next trial the red letter 
is a K you will be slow in naming it. When you select the red item you 
also inhibit the green one. This inhibition remains present for 1-2 sec and 
retards your performance on the subsequent trial. 

These experiments have shown that the performance of a cognitive op- 
eration can be observed in terms of exquisitely time-locked facilitations 
in the speed of processing probe items. We call this level of analysis the 
"performance domain" because we are looking at facilitation or inhibition 
in performance measures such as reaction time or threshold detection. The 
use of the words facilitation and inhibition is biased to make one inquire 
whether such patterns are related to the activity of the populations of neu- 
ral cells that might perform the computation. To answer the question of 
how facilitation and inhibition measured in performance relate to neural 
activity requires methods to link mental operation to underlying neural 
systems (see below). 

There is a second objective method for studying mental operations. In 
addition to requiring time, they also tend to show specific interference 
when they compete for the same computation. To explain this feature, 
consider a task involving timing (Keele et al. 1985). In this task, subjects 
listen to a tone occurring every 0.5 sec and tap a key in synchrony with 
it. After the tone is turned off they continue to tap at the same interval. 
Performance in this task is measured by the variability of the key presses. 
In the focal condition, subjects perform the task by itself, but in a second 
condition they do it at the same time as a secondary task. Two different 
secondary tasks are used, both designed so that they do not involve the 
same input or output mode as the primary task. Both secondary tasks are 
designed to be equivalent in difficulty and to demand the same amount of 
attention. One task is to determine if the interval between one pair of tones 
is the same or different as the interval between a second pair. The other 
task involves the same tones, but now the person judges if the difference 
in loudness between one pair is the same or different than the second 
pair. The interval judging secondary task involves an internal operation 
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of timing to determine the tone time differences. The loudness secondary 
task involves judgments of intensity that, unlike the interval task, do not 
overlap with the timing required by the primary tapping task. The tones 
occur while the subject is steadily pressing the key at an interval that must 
be timed internally. The finding is that the interval judging secondary task 
interferes much more with the primary task than does the loudness judging 
task. When the internal mental operation of timing is shared between the 
two tasks, performance is affected, thus revealing an underlying hidden 
operation thought to involve a clock that is common to both perception 
and action. The use of dual-task methods has been an important one in 
the objective measurement of mental operations (Posner 1978). 

TOOLS FOR THEORY CONSTRUCTION 

Methods play a particularly important role in every scientific endeavor and 
this is certainly true of the effort to relate the facilitations and inhibitions in 
the performance of mental operations to their underlying neural systems. 
To move from elementary operations and their effects upon performance to 
the level of neural systems (see figure 9.1) it is important to have methods 
of localization. Although theories of localization of mental function have 
been present for decades, methods for examining the relation between 
cognitive function and brain activity have been indirect. Much of the classic 
work has involved examinations of brain sections following death, with 
damaged areas of the brain related to the prior behavior of the organism. In 
vivo examinations of the human brain by measurement of electrical activity 
have been possible for 50 years, but the use of imaging techniques based on 
X ray, radionuclides, and magnetic resonance is more recent. We are only 
now developing appropriate strategies to combine these various methods. 

The heart of the problem of constructing neural models of cognition is to 
move from the level of performance to underlying neural systems or micro- 
circuits. Neuroscience approaches have placed somewhat greater empha- 
sis on spatial methods that give hope for studying localization. Cognitive 
approaches have tended to place emphasis on the temporal organization 
of information flow in the nervous system. 

Cognitive neuroscience requires the integration of methods that trace 
the time dynamics of information processing with those that provide in- 
formation on the location of neural systems activated. Fortunately new 
methods and adaptations of older methods have become available in the 
last dozen years. Two methods prominent in this chapter emphasize the 
advantage of combining spatial and temporal precision. 

Spatial Localization 

Positron emission tomography (PET) is a radioactive tracer method of mea- 
suring cerebral blood flow or metabolic activity that provides a means of 
tracing cerebral activity during sustained cognitive tasks. As used in the 
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studies discussed here, oxygen 15-labeled water is injected (Raichle 1987) 
and the water is carried along with the blood to various parts of the brain. 
The distribution of labeled substance is monitored by radiation generated 
when positrons are absorbed. This radiation is sensed by an array of de- 
tectors. While the spatial resolution of this method is limited, the method 
becomes quite accurate when successive scans are compared. It is possi- 
ble to compare scans because the data acquired for blood flow images can 
be obtained within 40 sec. Differences between the central tendencies of 
blood flow changes in the two conditions can be measured to within a few 
millimeters. Although current PET methods are not Chronometrie in the 
sense of being sensitive to changes in milliseconds, their probable physical 
limit involves the rate at which blood vessels reflect neural changes. At 
present, it is possible to obtain localization of blood flow activity in the 
range of a few millimeters, and to look at changes during tasks that last 
for less than a minute. 

Temporal Dynamics 

So far, the spatial imaging methods used with humans (e.g., PET) have 
not provided the kind of temporal precision of information required for 
the analysis of many cognitive tasks, where differences of 20-100 msec are 
frequently of theoretical importance (Posner 1978). Event-related electri- 
cal activity recorded from the scalp of humans provides one method for 
achieving high temporal information and limited spatial resolution (Man- 
gun et al. 1992). The use of event-related potentials (ERP) has been quite 
helpful in linking mental operations studied by Chronometrie methods to 
brain systems in general. By combining PET and ERP studies we have 
been working on using the former to compensate for the more limited lo- 
calization possible with measurements on the scalp (Compton et al. 1991). 

BUILDING A NEURAL THEORY OF MIND 

In 1992 (Posner and Rothbart 1992) we summarized evidence arising from 
PET studies suggesting that the anterior cingulate gyrus plays a critical 
role in one aspect of attention. The anterior cingulate lies on the midline of 
the frontal lobe and has strong connections with a variety of other neural 
areas. The aspect of attention related to the anterior cingulate is close to 
what is often meant by consciousness and relates to both awareness and 
to voluntary control (figure 9.2). 

Below we summarize the major pieces of evidence that formed the core 
of the paper by Posner and Rothart (1992). 

The anterior attention network seems to be much more directly related 
to awareness than the posterior network, as has been indicated by the 
PET studies cited previously. The use of subjective experience as evidence 
for a brain process related to consciousness has been criticized by many 
authors. However, we note that the evidence for the activation of the an- 
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Figure 9.2 The cortical projections of the attention networks. The data are mainly from PET 
studies. The attentional networks are shown by solid shapes on the lateral and medial surfaces 
of the right and left hemisphere. Squares are the posterior attention network (parietal lobes), 
triangles, the vigilance network (right frontal), and diamonds, the anterior attention network 
(anterior cingulate, supplementary motor area). The open shapes refer to word-processing 
systems (ellipse, visual word form; circle, semantic associates) that have been shown to relate 
to the posterior and anterior attention systems, respectively. 

terior cingulate is entirely objective; it does not rest upon any subjective 
report. Nevertheless, if one defines consciousness in terms of awareness, 
it is necessary to show evidence that the anterior attention network is re- 
lated to phenomenal reports in a systematic way. In this section, we note 
five points, each of which appears to relate subjective experience to activa- 
tion of the anterior attention system. First, the degree of activation of 
this network increases with the number of targets presented in a semantic 
monitoring task and decreases with the amount of practice in the task. At 
first one might suppose that target detection is confounded with task dif- 
ficulty. But in our semantic monitoring task the same semantic decision 
must be made irrespective of the number of actual targets. In our tasks 
no storage or counting of targets was needed. Thus we effectively dissoci- 
ated target detection from task difficulty. Nonetheless, anterior cingulate 
activation was related to number of targets present. The increase in activa- 
tion with number of targets and reduction in such activation with practice 
corresponds to the common finding in cognitive studies that conscious at- 
tention is involved in target detection and is required to a greater degree 
early in practice (Fitts and Posner 1967). As practice proceeds, feelings of 
effort and continuous attention diminish and details of performance drop 
out of subjective experience. 

Second, the anterior system appears to be active during tasks requiring 
the subject to detect visual stimuli, when the targets involve color form, 
motion, or word semantics (Petersen et al. 1989; Corbetta et al. 1990). 

Third, the anterior attention system is activated when listening pas- 
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sively words, but not when watching those words. This finding appears to 
correspond subjectively to the intrusive nature of auditory words to con- 
sciousness when they are presented in a quiet background. They seem to 
capture awareness. Reading does not have this intrusive character. For a 
visual word to dominate awareness, an act of visual orienting is needed to 
boost its signal strength. 

Fourth, the anterior attention system is more active during conflict 
blocks of the Stroop test than during nonconflict blocks (Pardo et al. 1990). 
This is consistent with the commonly held idea that conflict between word 
name and ink color produces a strong conscious effort to inhibit saying the 
written word (Posner 1978). Finally, there is a relation between the vigi- 
lance system and awareness. When one attends to a source of sensory input 
in order to detect an infrequent target, the subjective feeling is of emptying 
the head of thoughts or feelings. This subjective "clearing of conscious- 
ness" appears to be accompanied by an increase in activation of the right 
frontal lobe vigilance network and a reduction in the anterior cingulate. 
Just as feelings of effort associated with target detection or inhibiting pre- 
potent responses are accompanied by evidence of cingulate activation, so 
the clearing of thought is accompanied by evidence of cingulate inhibition, 
(pp. 97-99) 

Both those who read the paper and the authors were somewhat uneasy 
about one aspect of its content. It is not an easy thing to be writing some- 
thing that might be interpreted as meaning there is a spot inside the nervous 
system that represents the neural correlate of consciousness. This is prob- 
ably even more true following Dennett's (1992) philosophical critique of 
those who implicitly cling to a view that one area is the arena of conscious- 
ness or what he calls the Cartesian Theater of the Mind. Nonetheless, the 
specific points made above seemed to us to identify cingulate activation 
with aspects of awareness in so much tighter a way than previous efforts 
that it was reasonable to set them down with as much clarity as possible. 

Since writing that paper, much has happened both to increase our uneasi- 
ness with identifying consciousness with precise brain coordinates and to 
allow us to build out from that rather uncomfortable position by specifying 
in somewhat more detail what role the anterior cingulate might actually 
play. 

Reentry 

One new development was our increased understanding of how the brain 
actually executes a voluntary instruction to attend to something (Grossen- 
bacher et al. 1991). Studies employing PET have revealed important anatom- 
ical aspects of word reading (Petersen et al. 1989,1990). Two major areas 
of activation appear within the visual system. A right posterior temporal 
parietal area is activated passively by both consonant strings and words. 
This activation appears to be enhanced when subjects are required to de- 
tect a feature. This area is thought to be a visual representation that is 
prelexical. A left ventral occipital area is activated by both words and 
pseudowords (e.g., tweal), but not by consonant letter strings. The loca- 
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tion and properties of this left posterior activation suggest it is involved in 
what is called the visual word form. The visual word form is a representa- 
tion of the orthography of the letter string in which individual letters are 
combined into a single chunk. 

These recent PET findings, together with many cognitive studies, imply 
that letter strings are represented within the visual system both as unorga- 
nized features or letters and within a unified visual word form. However, 
the PET images used in these studies require an average of 40 sec and could 
also involve feedback from more anterior to posterior areas. For example, 
the occipital visual word form may be set up only after the subject accesses 
the word meaning. 

To study the time course of word processing, we developed tasks that 
take advantage of another recent PET result showing that when subjects 
attend to color, motion, or form, appropriate posterior prestriate areas 
are increased in activation. Attention appears to amplify the activity of 
anatomical areas in which the related computations occur (Corbetta et al. 
1990). We considered a task that requires the subject to deal with the 
individual features of a letter (Compton et al. 1991). To study attention to 
visual features, subjects are required to detect a line thickening within one 
letter of a four- or six-letter word or consonant string. To link cognitive 
results with anatomy we studied these tasks along with passive perception 
while recording electrical activity from 32-64 electrodes positioned over 
occipital, temporal, parietal, and frontal areas. 

The results of this study provide encouragement for the effort to relate 
PET anatomical data to time dynamic ERP data. We found a very strong 
posterior tempoparietal asymmetry in which electrical activity at about 
100 msec is larger from the right hemisphere than from the left. This effect 
is quite strong, but only at temporal and inferior parietal sites. The effect 
fits with the idea of a right posterior generator related to visual features 
because it occurs within the first 100 msec and similarly for word and 
nonword strings in all task blocks. 

We asked subjects to respond to the presence of a thick feature by pressing 
one key if it was present and another if it was not. There was no difference 
between the strings that made words and those that did not. On trials when 
a target was present, reaction times appeared to reflect the distance of the 
target from the center of vision. Moreover, the differences in reaction time 
between four and six letters (the slope of the search function) was about 
the same whether the target was present or absent. If subjects had been 
searching serially and stopped when they found a target, the slopes for the 
target absent trials would be twice that for the target present trials, since 
when a target was present subjects could respond as soon as they detected 
a target, which on the average would require searching only half the list. 
These results make it seem reasonable that when attending to features, 
subjects search a representation located in the right posterior temporal lobe. 

The second anatomical area relates to the visual word form system of 
the left ventral occipital lobe. To study the difference between words and 
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consonant strings we superimposed their event-related potentials. While 
differences between the two stimulus types are found in a number of elec- 
trodes, these appear to occur first along a posterior band of areas extending 
from the right posterior temporal lobe to the left anterior temporal lobe. 
These findings are generally consistent with the location of the PET gener- 
ator in the anterior left occipital lobe near the midline, although the degree 
of anatomical localization from the scalp voltage data is low and the evi- 
dence for lateral asymmetry in the voltage data is not strong. We are seeing 
differences over a large part of the posterior scalp of both hemispheres. It 
is possible to gain a somewhat better notion of the localization of these 
effects if the data are transformed by use of an average reference based on 
all of the electrodes other than the one being considered, weighted by their 
distance from the active electrode site. This transformation suggests a left 
posterior generator in the neighborhood of the posterior temporal lobe. 

If the ERP effect is coming from the visual word form area, our findings 
suggest this area is making the initial discrimination between words and 
nonwords starting at about 200 msec after input. Since the PET result 
is averaged over 40 sec of activity, activation in posterior locations could 
have been fed back from some more anterior area. However, the ERP data 
clearly suggest that in the passive conditions, the posterior discrimination 
is being made first, because no other electrodes show this difference prior 
to the posterior ones. 

In PET studies an area of the left frontal area is active when subjects deal 
with the meaning of a word. When the process is extended by requiring 
association of several words to a given input or by slowing the rate of 
presentation, this left frontal area is joined by activation in Wernicke's 
area (Fiez and Petersen, 1993). To study semantic and feature activation 
together we used tasks that clearly involved both. The feature task was 
again looking for a thick letter; the semantic task required the subject to 
determine if the word referred to a natural or a manufactured item. Our 
reasoning was that in the first task, subjects would be attending to the 
feature level and in the semantic task to the meaning of the word. If, as has 
been described in the PET work, attention serves to amplify computations, 
it should be possible to see amplifications of the voltages in the waveforms 
in the right posterior area in feature analysis and in the left frontal area in 
semantics, depending on the task used. We used exactly the same stimuli 
in the two tasks. 

Results showed that the left frontal area was more positive at about 
200-300 msec when the task was semantic, while the right posterior area 
showed more positivity when the task was feature search. These effects 
were not confined to single electrode sites. For the posterior area, it was 
possible to compare the electrode sites first showing the greater right hemi- 
sphere activation at 100 msec associated with the visual attribute, with 
those showing the amplification due to attribute search at about 250 msec. 
Our comparison generally supported the idea that roughly the same areas 
that first carried out the visual attribute computations on the letter string 
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were reactivated 150 msec later when subjects were looking for the thick 
letter. This fit with the idea that subjects can voluntarily reactivate areas of 
the brain that performed the task automatically when they are instructed 
to deal with that computation voluntarily. The semantic effect was found 
at several frontal sites bilaterally. This differs from the PET data, which 
were strictly left lateralized, although there was some evidence that the 
left frontal area showed the effect more strongly than the right. 

A popular idea in modern physiology is called reentrant processing 
(Edelman and Mountcastle 1978). Basically, this is the idea that higher level 
associations are made by fibers that reenter the brain areas that processed 
the initial input. Mountcastle has written about the basic organization of 
cortical anatomy as follows: 

It is well known from classical neuroanatomy that many of the large entities 
of the brain are interconnected by extrinsic pathways into complex systems, 
including massive reentrant circuits. 

Simulations based on the coordination of wide spread neural systems 
also rely upon this principle, as described by Sporns et al. (1989): 

Signaling between neuronal groups occurs via excitatory connections that 
link cortical areas, usually in a reciprocal fashion. According to the theory 
of neural group selection, selective dynamical links are formed between 
distant neural groups via reciprocal connections in a process called reentry. 
Reentrant signaling establishes correlations between cortical maps, within 
or between different levels of the nervous systems. 

Reentrant processing may be contrasted with more traditional notions 
that higher functions are confined to higher associational areas of the brain. 
A similar viewpoint to reentrant processing is expressed by Damasio and 
Damasio (chapter 3). In our studies, the visual computation occurs at 100 
msec, followed by a semantic computation which might be complete by 
200-300 msec. When the instruction is to search the string for a feature, the 
electrodes around the area originally performing the visual computation 
are reactivated. Similarly, when asked to make a semantic computation, 
the area thought to perform such computations was amplified in electrical 
activity about 100 msec after its initial computation. 

If the brain operates in this way we might then be able to instruct the 
subject to compute the same functions in different orders and thus repro- 
gram the order of the underlying computations. To investigate this, we 
(Grossenbacher et al. 1991) defined what we call a conjunction task. We 
ask the subjects to respond with a key if a word refers to an object that is 
manufactured (e.g., paper) and has a thick letter and otherwise to respond 
with a second nontarget key. On one day we have the subjects perform 
the thick letter task and then ask them to respond with the target key if 
the stimulus has a thick letter and refers to a manufactured object. On an- 
other day we have subjects perform the semantic task and then ask them 
to respond with the target key if the word is manufactured and has a thick 
letter. The function to be computed is thus exactly the same. The inputs 
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are identical and the responses (if correct) are identical, but the order of 
the underlying computations is reversed. 

We did not expect the subjects to actually compute the functions in a 
serial fashion. Our hope was only that they would emphasize the priority 
computation and perhaps complete it somewhat earlier than the second 
nonpriority computation. To see if this happens one can look at the reaction 
time data from this task. We examined the nontarget reaction times where 
subjects can quit when they find either computation inappropriate for a 
target. In general the thick letter task is somewhat faster; subjects quit 
sooner when there is no thick letter present. They are also relatively faster if 
the thick letter task has been given priority by training. On the other hand, 
if a thick letter is present and responses must be based on semantic analysis, 
subjects are faster if the semantics was given priority by training. Thus the 
reaction time data suggest that we have been successful in reordering the 
computation times. 

We can now look at images of the underlying brain activity recorded 
from above the left frontal or right posterior areas. The two forms of the 
conjunction task differ at about 300 msec following input. In the left frontal 
area, the semantic priority task returns to baseline first; later, the physical 
priority task returns to baseline. A reversed effect is found in the posterior 
area. This time the physical priority task returns first to baseline followed 
by the semantic priority task. The two brain areas seem to reflect the 
relative priority emphasized in the directions. We believe that the subject 
has used attention to program the relative order of the two computations 
represented by the two anatomical areas. 

These results suggest that the person is able to reorder the priority of 
the underlying computations in the conjunction task. They also provide 
us with a basis for understanding how the brain can carry out so many 
different tasks on visual input. Aspects of the underlying computations do 
not seem affected by the instructions. The visual attribute area of the right 
posterior brain seems to carry out the computation on the input string at 100 
msec irrespective of whether the person is concerned with visual features 
as a part of the task or not. However, when the task is identified as looking 
for a thick letter these same brain areas are reactivated and presumably 
carry out the additional computations necessary to make sure that one of 
the letters has just enough thickening to constitute a target. Attention thus 
can amplify computations within particular areas, but often does so by 
reentering the area, not by amplifying its initial activation. 

Models of Control 

The data on reentrant processing imply two important ideas related to the 
attentional control of information processing. First, the results of atten- 
tional control are widely distributed, resulting in amplification of activity 
in the anatomical areas that originally computed that information. Sec- 
ond, the source of this attentional control need not involve a system that 
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has access to the information being amplified, but can be a system that 
has connections to places where the computations occur. This sense of 
control by a separate attentional system over widely distributed computa- 
tions is suggested physiologically by Van Essen, Anderson, and Olshausen 
(chapter 13) and computationally by Ullman (chapter 12). 

As the result of activity within the attention network, the relevant brain 
areas will be amplified and/or irrelevant ones inhibited, leaving the brain 
to be dominated by the selected computations. If this were the correct the- 
ory of attentional control, one would expect to find the source of attention 
to lie in systems widely connected to other brain areas, but not otherwise 
unique in structure. As pointed out by Goldman-Rakic (1988), this appears 
to be the basic organization of frontal networks. Anterior cingulate connec- 
tions to limbic, thalamic, and basal ganglia pathways would distribute its 
activity to the widely dispersed connections we have seen to be involved 
in cognitive computations. 

To illustrate this framework for attention, we use a recent model of 
control of covert visual attention developed at our center by Jackson and 
Houghton (1992). The model involves location expectations held by the 
anterior attention network interacting with location cues that influence the 
posterior attention network. The basic architecture of the model is shown 
in figure 9.3. 

The posterior attention network (including the parietal lobe and asso- 
ciated thalamic and midbrain areas) and the anterior attention network 
(including the anterior cingulate) influence each other via direct cortical 
projections, but also indirectly through a comparator operation involving 
the basal ganglia. The direct loops have the effect of allowing activations 
at common locations in the two systems to support one another. A sensory 
event facilitates processing at a location due to activation of the poste- 
rior network, but an expectation also operates via the anterior network to 
facilitate the expected location. 

The role of the basal ganglia loops are more complex. A direct path- 
way between the anterior cingulate and striatum serves as a reverberating 
circuit to maintain expected locations and to amplify them when their lo- 
cations match. The indirect pathway operates when there is a mismatch 
between the two attention systems to dampen down activation within the 
anterior system at any locations for which there is no input from the pos- 
terior attention system. This allows expectations to be overcome. 

The resulting system is rather complicated but it is constrained by the 
anatomical structures of the relevant components. It make predictions of 
performance in cognitive experiments using cues and targets. For example, 
the model can predict some reaction time results accumulated from cogni- 
tive experiments involving manipulations such as lesions of the posterior 
system, blocking of NE or DA into the system, competition from dual tasks, 
etc. We do not wish to present the model as a final answer to the coordina- 
tion of attentional systems, but merely to show that the logic of the opera- 
tions we have discussed can be embodied in a functioning computer model. 
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Figure 9.3 Architecture indicating the role of attention networks in covert orienting to visual 
locations. The top of the figure indicates the areas of the posterior attention network (e.g., 
parietal cortex) and anterior attention network (e.g., anterior cingulate). The lower parts of 
the figure indicate areas of basal ganglia and its connections. The open arrows represent 
excitatory and the closed arrows inhibitory connections. 
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The type of attentional control of orienting suggested above can thus 
lead to specific simulations allowing tests at the cognitive level in consid- 
erable detail. Recent PET data (Corbetta et al. 1993) show that involuntary 
shifts of attention to visual locations induced by cues produce strong supe- 
rior parietal activation within the posterior system. When a subject must 
shift attention endogenously to report a target, this activation is accompa- 
nied by frontal and anterior cingulate activation, as would be expected if 
endogenous shifts are controlled from frontal areas. 

Some recent developmental findings (Posner and Rothbart 1992) show 
that the distributed connections by which the attention systems assume 
control over various functions may develop over a considerable period of 
life. The control of orienting by the posterior attention system appears to 
develop mainly between 4 and 6 months. During this period the infant de- 
velops the ability to disengage from visual stimuli and to control the areas 
of the visual field to which they will attend. An important goal of early 
infant development is the control of pain and distress. PET studies suggest 
that the highest representation of pain is within the anterior cingulate (Tal- 
botetal. 1991). This finding suggests that attentional manipulations might 
be important in the control of distress. We have shown the evidence of such 
control at about three months. Orienting to visual events can be employed 
to quiet or calm negative vocalizations. However, the distress appears to 
be maintained and reappears when the infant's attention to the stimulus is 
reduced. Caregivers also report the use of visual orienting to block overt 
manifestations of distress at about this age. It appears that the attention 
system continues to develop later in the first year of life and beyond. One 
the hallmarks of the higher level attentional system involving the anterior 
cingulate is in involvement in tasks that involve conflict between signals 
such as the stroop effect (Pardo et al. 1990). At 9 to 12 months one begins to 
see how control of reaching behavior allows the infant to reach separately 
from the line of regard (Diamond 1988). Control of language behavior by 
the attentional system occurs even later. Studies of development provide 
another method for observing attention and for testing models. 

PRINCIPLES CONNECTING COGNITIVE AND NEURAL SYSTEMS 

It is often difficult to grasp the principles that arise out of various exper- 
imental demonstrations and modeling efforts, particularly when they are 
presented in abbreviated form such as in this chapter. Below we attempt 
to summarize some of the general ideas related to our framework that 
appear to arise from our review. Each of these principles seeks to con- 
nect mental experience to neural areas via the methods we have described 
above. 

1. Elementary mental operations are localized in discrete neural areas. Evidence 
supporting this point rests both upon work in attention and in language. 
Operations involved in selective attention discussed in this chapter are 
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carried out by diverse networks. The study of areas active during auditory 
and visual words processing leads us to a similar conclusion (Petersen et 
al. 1989). In addition, we view current discussions of motor control, object 
and face recognition, and memory as providing additional support for this 
general idea. 

2. Cognitive tasks are performed by a network of widely distributed neural sys- 
tems. We have illustrated this idea in this chapter by showing that the atten- 
tion involves several networks of cortical and subcortical areas. Studies of 
visual and auditory word processing also suggest networks of anatomical 
areas are involved even in very simple word-association tasks (Petersen et 
al. 1989). 

3. Computations in a network interact by means of "reentrant" processes. Cog- 
nitive experiments give good evidence that the successful ordering of com- 
putations is necessary for performance. Ordering does not take place by 
a strict serial organization. Instead, computations appear to pass infor- 
mation back and forth to coordinate their results. While it has been clear 
that precise connections exist between anatomically distant areas, it ap- 
pears that a particular anatomical area is active whenever its computation 
is required. Since computations are often contingent on information from 
another area, this can take place only if that information is fed back to 
reenter the critical areas. 

4. Hierarchical control is a property of network operation. Discovery of a sepa- 
rate network of anatomical areas devoted to attention has been described. 
This view provides a basis for establishing executive control over widely 
distributed networks. The requirement for such control systems is clear 
from cognitive experiments showing interference between simultaneous 
performance of cognitive tasks irrespective of the nature of their constituent 
computations. Moreover, the control appeared to be largely inhibitory. 
That is, attention to one concept reduces the probability that other con- 
cepts receive attention. Selection between simultaneously operating rep- 
resentations appears to require inhibition of one of them. These findings 
supported the idea of executive control by attention systems. 

5. Activation of a computation produces a temporary reduction in the threshold 
for its reactivation. This principle underlies the cognitive phenomenon of 
priming. Whenever a code has been active it becomes easier for a stimulus 
to reactivate it. For the processing of words, priming exists at the level of 
attributes, word forms, phonology, and semantics. 

6. When a computation is repeated its reduced threshold is accompanied by reduced 
effort and less attention. This principle may seem the inverse of the last, but in 
fact it is a corollary. The repetition of a computation improves its efficiency; 
as a result, the overall activity accompanying the computation is reduced. 
Blood flow is less, electrical activity reduced, and the interference between 
the repeated computation and other activity is reduced. Thus a habituated 
activity will produce less orienting of attention, the memory of it having 
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been performed will be reduced, and other signs that the activity has been 
automated will be found. 

7. Activating a computation from sensory input (bottom-up) and from attention 
(top-down) involves many of the same neurons. Attention to motion, color, or 
form activates many of the same prestriate areas that were active when 
passively receiving information of the same type. There is some evidence 
that the size and/or number of prestriate areas active in attention condi- 
tions are greater than during the comparable passive perception condition. 
The same principle was discussed above from recording scalp electrical ac- 
tivity during word processing. We believe attention can be used to mark 
the activity underlying a particular computation. 

8. Practice in the performance of any computation will decrease the neural net- 
works necessary to perform it. The idea that repetition of events leads even- 
tually to their automation, that is, to performance without attention, is 
well established in psychology (Posner 1978). Recent PET data suggest 
that repetition of the same performance leads to reduced blood flow in the 
neural areas that are originally required to generate the response (Fiez and 
Petersen, 1993). We believe that this principle, like others in this section, 
will apply to cognitive tasks in general. 
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"f f\     Putative Functions of Temporal Correlations 
•*•**     in Neocortical Processing 

Wolf Singer 

INTRODUCTION 

The ability to record from individual neurons in the central nervous system 
of animals while these engage in perceptual tasks, memorize, or perform 
a motor response has revealed numerous and fascinating correlations be- 
tween the activity of individual nerve cells and complex behavioral pat- 
terns. Cells have been found whose responses distinguish between familiar 
and unfamiliar objects (Baylis and Rolls 1987; Miyashita and Chang 1988; 
Fuster 1990; Miller et al. 1991a,b), are selective for particular aspects of faces 
(for review see Rolls 1991; Gross 1992), reflect precisely the location of a 
remembered target (Goldman-Rakic et al. 1990), or predict with accuracy 
the direction of an eye movement (Goldberg et al. 1990; Wurtz et al. 1990). 
Cells have been described in the visual cortex whose response thresholds 
correspond precisely to the behavioral thresholds of the animal (Parker 
and Hawken 1985; Newsome et al. 1990). Finally, activating a local clus- 
ter of neurons by microstimulation in a visual area specialized for motion 
processing biases the perception of motion as if additional moving targets 
were added to the visual stimulus (Salzman et al. 1992). Results of this kind 
are strong support that the activation of individual neurons can represent a 
code for highly complex functions, a notion that is commonly addressed as 
the "single neuron doctrine" (Barlow 1972). However, there have always 
also been speculations that additional coding principles might be realized. 
Most of these begin with Donald Hebb's proposal that representations of 
sensory or motor patterns should consist of assemblies of cooperatively 
interacting neurons rather than of individual cells. This coding principle 
implies that information is contained not only in the activation level of in- 
dividual neurons but also, and actually to a crucial extent, in the relations 
between the activities of distributed neurons. If true, the description of a 
particular neuronal state would have to take into account not only the rate 
and the specificity of individual neuronal responses but also the relations 
between discharges of distributed neurons. Over the last decade, these 
speculations have received some support both from experimental results 
and theoretical considerations. Search for individual neurons responding 
with the required selectivity to individual objects was only partly success- 



ful and has so far revealed specificity only for faces and for a limited set 
of objects with which the animal had been familiarized extensively before 
(see below). And even in these cases it is likely that a particular face or 
object evokes responses in a very large number of neurons. Recordings 
from motor centers such as the deep layers of the tectum and areas of the 
motor cortex provided no evidence for command neurons such as exist in 
simple nervous systems and code for specific motor patterns. Rather, these 
studies provided strong support for a population code as the trajectory of a 
particular movement could be predicted correctly only if the relative con- 
tributions of a large number of neurons were considered (Georgopoulos 
1990; Mussa-Ivaldi et al. 1990; Sparks et al. 1990). Arguments favoring the 
possibility of relational codes have also been derived from the growing evi- 
dence that cortical processes are highly distributed (Zeki 1973; Ungerleider 
and Mishkin 1982; Maunsell and Newsome 1987; Desimone and Ungerlei- 
der 1989; Newsome et al. 1990; Felleman and Van Essen 1991; Zeki et al. 
1991; Goodale and Milner 1992). Further indications for the putative signif- 
icance of relational codes are provided by theoretical studies that attempted 
to simulate certain aspects of pattern recognition and motor control in ar- 
tificial neuronal networks. Single cell codes were found appropriate for 
the representation of a limited set of well-defined patterns but the number 
of required representational elements scaled very unfavorably with the 
number of representable patterns. Moreover, severe difficulties were en- 
countered with functions such as figure-ground distinction because single 
cell codes turned out to be too rigid and inflexible, again leading to a combi- 
natorial explosion of the required representational units. By implementing 
population or relational codes some of these problems could be solved or 
at least alleviated. Exploiting relational codes also opens up the possibility 
to use time as an additional coding space. By defining a narrow temporal 
window for the evaluation of coincident firing and by temporal pattern- 
ing of individual neuronal responses, relations between the activities of 
spatially distributed neurons can be defined very selectively (Milner 1974; 
von der Malsburg 1985). If such temporal coding is added to the principle 
of population coding the number of different patterns or representations 
that can be generated by a given set of neurons increases substantially. 
Moreover, it has been demonstrated that perceptual functions like scene 
segmentation and figure-ground distinction that require flexible associa- 
tion of features can in principle be solved if one relies on relational codes 
in which the relatedness of distributed neurons is expressed by the tempo- 
rary synchronization of their respective discharges (Milner 1974; von der 
Malsburg 1985; von der Malsburg and Schneider 1986; Shimizu et al. 1986). 

Arguments emphasizing the importance of temporal relations between 
the discharges of cortical neurons have also been derived from recent data 
on connectivity and synaptic efficacy. Cortical cells receive many thou- 
sand synaptic inputs but on the average a particular cell contacts any of its 
target cells only with one synapse (Braitenberg and Schütz 1991). In vitro 
studies from cortical slices indicate that the efficacy of individual synapses 
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is low and that not every presynaptic action potential triggers the release of 
transmitter (Stevens 1987; see chapter 11 by Stevens). Thus, many presy- 
naptic afferents need to be activated simultaneously to drive a particular 
cell above threshold and to ensure reliable transmission. Even more co- 
operativity is required for the induction of synaptic modifications such 
as long-term potentiation and long-term depression. These modifications 
have high thresholds and require substantial and prolonged postsynap- 
tic activation (Artola and Singer 1987, 1990). Temporal coordination of 
cortical responses appears thus necessary both for successful transmission 
across successive processing stages and for the induction of use-dependent 
synaptic modifications. 

Despite these numerous arguments supporting the putative importance 
of temporal relations among distributed neuronal responses in the neo- 
cortex, systematic search for temporal relations among the activities of 
simultaneously recorded cortical neurons is still at an early stage. Initially, 
cross-correlation analysis of multielectrode recordings has been used pri- 
marily as a tool of functional anatomy to reveal excitatory and inhibitory 
connections among neurons. Hence, analysis was often confined to spon- 
taneous activity. If cells were activated with sensory stimuli this was done 
to increase activity and to reduce the duration of the measurements, but 
not with the goal to disclose dynamic, stimulus-related interactions. It 
is only recently that cross-correlation analysis has been extended to re- 
sponses evoked by selected stimulus configurations to test whether the 
responses of spatially distributed cortical neurons exhibit temporal rela- 
tions that are sufficiently consistent to serve a functional role in cortical 
processing. Many of these latter experiments were designed to test specific 
predictions derived from recent theories on population coding. Therefore, 
the review of these cross-correlation studies will be preceded by a brief de- 
scription of the conceptual background. As most of the theoretical models 
have dealt with problems of visual pattern processing and recognition and 
as most of the experimental studies have been performed in the visual sys- 
tem, the conceptual background will be illustrated mainly on the basis of 
visual processes. 

REPRESENTATIONS AND THE BINDING PROBLEM 

Most perceptual objects can be decomposed into components and in gen- 
eral the features of these components are not unique for a particular object. 
The individuality of objects results from the specific composition of ele- 
mentary features and their relations rather than from the specificity of the 
component features. Hence, for a versatile representation of sensory pat- 
terns in the nervous system three basic functions have to be accomplished: 
(1) elementary features need to be represented by neuronal responses, (2) 
responses to features constituting a particular object have to be distin- 
guished and bound together in a flexible way, and (3) the specific relations 
among these features have to be encoded and preserved. 
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One way to achieve the grouping of features and to establish an unam- 
biguous code for their specific relations is to connect the set of neurons that 
responds to the component features of a particular object to a higher order 
neuron that will represent the object. If the thresholds of these higher or- 
der neurons are adjusted so that each cell responds only to one particular 
combination of feature detectors, the responses of these higher order neu- 
rons would provide an unambiguous description of the relations between 
the component features and hence would be equivalent to the represen- 
tation of the pattern. In this scheme the features of the object are bound 
together by convergence of fixed connections that link neurons represent- 
ing component features with neurons representing the whole pattern. The 
relations between features are encoded by the specific architecture of these 
convergent connections. 

However, not all of the predictions following from this latter assump- 
tion are supported by experimental evidence. First, while cells occupying 
higher levels in the processing hierarchy tend to be selective for more com- 
plex constellations of features than cells at lower levels, many continue 
to respond to rather simple patterns such as edges, gratings, and simple 
geometric shapes (Tanaka et al. 1991; Gallant et al. 1993). Second, apart 
from cells responding preferentially to aspects of faces and hands (Gross 
et al. 1972; Desimone et al. 1984,1985; Baylis et al. 1985; Rolls 1991) it has 
been notoriously difficult to find other object-specific cells except in cases 
where animals had been familiarized with a limited set of objects during 
extensive training (Miyashita 1988; Sakai and Miyashita 1991). Third, no 
single area in the visual processing stream has yet been identified that 
could serve as the ultimate site of convergence and that would be large 
enough to accommodate the vast number of neurons that are required if 
all distinguishable objects including their many different views were rep- 
resented by individual neurons. Finally, the point has been made that 
"binding by convergence" may not be flexible enough to account for the 
rapid formation of representations of new patterns. To allow for the rep- 
resentation of new, hitherto unknown objects one would have to postu- 
late a large reservoir of uncommitted cells. These neurons would have 
to maintain latent input connections from all feature-selective neurons at 
lower processing stages and subsets of these connections would have to 
be selected and consolidated instantaneously when a new representation 
is established. 

Similar combinatorial problems arise in the case of motor control but they 
have received less theoretical consideration. Here, the solution equivalent 
to "binding by convergence" is that individual command neurons at the 
top of a hierarchically organized motor system each triggers one complex 
motor act. Their activity would have to become distributed through di- 
vergent and highly selective connections to subsets of effector neurons 
that eventually activate particular muscle groups. This coding concept 
encounters the same problem as its homologous concept on the sensory 
side: First, no such command neurons were found in areas that could per- 
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haps be regarded as being on the top of the processing hierarchy such as 
the supplementary motor field or prefrontal motor areas. Second, given 
the sparseness of connections between individual cortical cells (see above) 
it is hard to see how activation of only a few neurons could give rise to 
the mass action required for the execution of a movement. Third, one 
would again have to postulate a large reservoir of uncommitted cells to 
allow for the representation of newly learned motor patterns. These un- 
committed command cells would have to maintain latent connections to 
virtually all effector muscles and the appropriate subsets of these con- 
nections would have to become functional only, but then would have to 
be recruited permanently, when the particular motor skill is established 
for which these connections are required. Finally, there is the problem of 
temporal patterning. This problem needs to be solved also for the pro- 
cessing of sensory patterns if these are spread out in time, but it is par- 
ticularly obvious in motor programming. For the execution of a motor 
act it is necessary to generate complex and precisely coordinated tempo- 
ral sequences according to which the distributed muscle groups are ac- 
tivated. One solution would be sets of delay lines to distribute the ac- 
tivity of the command neuron in the appropriate temporal order to the 
effector neurons at more peripheral levels. But this would further in- 
crease the number of command neurons because each motion executed 
at different speeds would require a command cell connected to a differ- 
ent set of delay lines. The inverse problem exists for the representation 
of sensory patterns that have not only a spatial but also a temporal struc- 
ture. 

Because these difficulties cannot be overcome easily in architectures that 
solve the binding problem by serial recombination of converging (in the 
motor path "diverging") feedforward connections alternative proposals 
have been developed. 

Before discussing these alternative concepts it is necessary to emphasize 
that "binding by convergence" may be a viable solution for specialized 
representational systems. However, because of the limitations discussed 
above this coding strategy can be used only for the representation of a 
limited set of stereotyped patterns. 

Alternative proposals for the solution to the binding problem are based 
on the assumption that representations consist of assemblies of a large 
number of simultaneously active neurons that may be contained in a sin- 
gle cortical area but that may also be distributed over many cortical areas 
(Hebb 1949; Braitenberg 1978; Edelman and Mountcastle 1978; Crick 1984; 
Grossberg 1980; Palm 1982, 1990; Singer 1985, 1990; von der Malsburg 
1985; Edelman 1987,1989; Abeles 1991). The essential feature of assembly 
coding is that individual cells can participate at different times in the rep- 
resentation of different objects. The assumption is that just as a particular 
feature can be present in many different patterns, a neuron coding for this 
feature can be shared by many different representations. This reduces sub- 
stantially the number of cells required for the representation of different 
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objects and allows for considerably more flexibility in the generation of 

new representations. 
Basic requirements for representing objects by such assemblies are as fol- 

lows: First, the responses of the cells responding to a visual scene need to be 
compared with one another and examined for possible, "meaningful" rela- 
tions. Second, cells coding for features that can be related need to become 
organized into an "assembly." This should be the case for the cells that are, 
for example, activated by the constituent features of a particular object. 
Third, if patterns change, neurons must be able to rapidly change partners 
and to form new assemblies. Fourth, neurons that have joined a particu- 
lar assembly must become identifiable as members of this very assembly. 
Their responses must be tagged so that they can be recognized as being re- 
lated (i.e., the distributed responses of the assembly must be recognizable 
as representing a "whole"). It is commonly assumed that these organiz- 
ing steps, the probing of possible relations, the formation of an assembly, 
and the labeling of responses are achieved in a single self-organizing pro- 
cess by selective reciprocal connections between the distributed neuronal 
elements. The idea is that the probabilities with which neurons become or- 
ganized into particular assemblies are determined, first, by the respective 
constellation of features in the pattern and, second, by the functional archi- 
tecture of the assembly forming coupling connections. Several proposals 
have been made concerning the mechanisms by which these connections 
could serve to "label" the responses of neurons that have joined into the 
same assembly Most of them assume that the assembly-generating con- 
nections are excitatory and reciprocal and serve to enhance and to prolong 
the responses of neurons that were organized in an assembly (Hebb 1949; 
Singer 1979,1985; Grossberg 1980; Palm 1982). 

Another proposal is that assemblies should be distinguished in addition 
by a temporal code (von der Malsburg 1985; von der Malsburg and Schnei- 
der 1986). A similar suggestion, although formulated less explicitly, had 
been made previously by Milner (1974). This hypothesis assumes that the 
assembly-forming connections should establish temporal coherence on a 
millisecond time scale between the responses of the coupled cells. Thus, 
neurons having joined into an assembly would be identifiable as mem- 
bers of the assembly because of the synchronization of their discharges. 
Expressing relations between members of an assembly by the temporal 
coherence rather than the amplitude of their responses has several ad- 
vantages: First, it reduces the ambiguities that result from the fact that 
discharge rates depend strongly on variables such as stimulus intensity 
and quality of fit between stimulus features and receptive field properties. 
If assemblies were solely defined by a rate code it would be impossible to 
decide whether a strongly active cell is discharging at a high rate because 
it joined an assembly or because it was activated by a particularly effective 
stimulus. Relying on temporal relations preserves the important option 
to use discharge rates as a code for stimulus parameters. This is essential 
in systems using coarse codes because the information about the presence 
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of particular features and about their precise location is contained in the 
graded responses of populations of cells. Second, exploiting temporal rela- 
tions increases the number of assemblies that can be active simultaneously 
without becoming confounded. In most cases simultaneously active as- 
semblies will be distinguished by spatial segregation due to retinotopy 
and compartmentalization of cortical areas. But there may be conditions 
in which additional distinctions are required to avoid fusion of unrelated 
assemblies. Responses of neurons could overlap on a coarse time scale but 
still remain distinguishable as coming from a particular assembly if they 
are correlated at a fine time scale. Third, cells that succeeded in synchro- 
nizing their discharges have a stronger impact on target cells. This follows 
from the plausible assumption that afferents to cortical neurons will be 
more efficient in driving a postsynaptic cell if they discharge in synchrony. 
This effect will be particularly strong when the activation levels of the af- 
ferent fibers are low and when the postsynaptic potentials evoked by the 
individual fibers are small. Both conditions seem to be fulfilled for corti- 
cal networks (see above). Thus, formation of coherently active assemblies 
can serve to enhance the saliency of responses to features that can be as- 
sociated in a "meaningful" way. This may contribute to the segregation 
of object-related features from unrelated features of the background. This 
concept of "binding by synchrony" has also been applied to intermodal 
integration (Damasio 1990) and even to high level processes underlying 
phenomena such as attention (Crick 1984) and consciousness (Crick and 
Koch 1990a). 

PREDICTIONS 

A network that allows for the self-organization of pattern specific assem- 
blies must meet the following constraints: 

1. Neurons within the same cortical area as well as neurons distributed 
across different areas must be coupled reciprocally by connections ensuring 
the selection and dynamic stabilization of specific assemblies. 

2. These connections must be exceedingly numerous because their num- 
ber, together with the number of cells, limits the number of possible con- 
stellations. 

3. The assembly forming connections must be highly specific as the group- 
ing criteria according to which features are bound together into object rep- 
resentations reside in the functional architecture of these connections. 

4. The network must allow for highly dynamic interactions to enable in- 
dividual cells to link at different times with different partners. 

5. The coupling connections must have adaptive synapses allowing for 
use-dependent long-term modifications of synaptic gain to permit the for- 
mation and stabilization of new grouping criteria when new object repre- 
sentations are to be installed during learning. 
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6. These use-dependent synaptic modifications should follow a correlation 
rule whereby synaptic connection should strengthen if pre- and postsynap- 
tic activity is often correlated, and they should weaken in case there is no 
correlation. This is required to enhance grouping of features that often oc- 
cur in consistent relations as is the case for features constituting a particular 
object. 
7. These grouping operations should occur over multiple processing stages 
because search for "meaningful" groupings has to be performed at different 
spatial scales and according to different feature domaines. This could be 
achieved by distributing the grouping operations over different cortical 
areas in which different neighborhood relations are realized with respect to 
the representation of retinal location and of feature domains by remapping 
of inputs. 

These seven predictions need to be fulfilled irrespective of whether as- 
semblies are defined by rate or temporal codes. If cells having joined an 
assembly are distinguished by a rate code the prediction is that cells ac- 
tivated by features of a particular object engage in stronger and perhaps 
also more sustained responses than cells responding to features resisting 
grouping. However, no differences should be found between the enhanced 
responses of cells participating in different assemblies representing differ- 
ent objects. They should all be enhanced to a similar extent. If assemblies 
are distinguished in addition or alternatively by the temporal coherence of 
the responses of the constituting neurons a further set of predictions can 
be derived. 

1. Spatially segregated neurons should synchronize their responses if ac- 
tivated by features that can be grouped together. This should be the case 
for features constituting a single object. 

2. Synchronization should be frequent among neurons within a particular 
cortical area but it should also occur across cortical areas. 

3. The probability that neurons synchronize their responses both within a 
particular area and across areas should reflect some of the Gestalt criteria 
used for perceptual grouping (Kofka 1935; Köhler 1969). 

4. Individual cells must be able to rapidly change the partners with which 
they synchronize their responses if stimulus configurations change and 
require new associations. 
5. If more than one object is present in a scene several assemblies should 
form. Cells belonging to the same assembly should synchronize their re- 
sponses while no consistent temporal relations should exist between the 
discharges of neurons belonging to different assemblies. 

6. Synchronization probability should at least in part depend on the func- 
tional architecture of reciprocal corticocortical connections and should 
change if this architecture is modified. 
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EXPERIMENTAL EVIDENCE FOR TEMPORAL RELATIONS 

To test these predictions it is necessary to record simultaneously from spa- 
tially distributed neurons in the brain and to search for systematic tem- 
poral correlations among their responses (Gerstein et al. 1985). It is not 
sufficient to analyze synchronization probability of spontaneous activity 
as this would reveal only the architecture and coupling strength of con- 
nections and not the dynamic properties of the network that emerge only 
on stimulation. Thus, the correlation studies that have been performed 
with the goal of revealing anatomical connection patterns are relevant in 
the present context in as much as they provide data on the organization of 
coupling connections but they usually do not address the more dynamic, 
stimulus-dependent interactions that are predicted from the assembly hy- 
pothesis. 

In the visual cortex correlations between the activities of simultaneously 
recorded cortical cells were found to be frequent, especially when they 
were closely spaced and located within single functional columns. The 
observed correlation patterns were indicative of constellations where cells 
receive either common excitatory or inhibitory input or where one cell ex- 
cites or inhibits the other. (Toyama et al. 1981a,b; Michalski et al. 1983; 
Abeles and Gerstein 1988; Hata et al. 1988; Gochin et al. 1991). For cells lo- 
cated in different functional columns and hence being separated by several 
hundred micrometers along trajectories parallel to the pial surface corre- 
lations were more difficult to detect. This agrees with anatomical data 
that indicate that connections are densest between cells staggered within 
narrow cylinders orthogonal to the lamination and rapidly decrease along 
trajectories tangential to the lamination (for review see Douglas and Mar- 
tin 1993). When interactions were found over larger tangential distances 
the cross-correlograms usually had a peak centered around zero delay that 
was interpreted as indicative of common excitatory input (Tso et al. 1986; 
Krüger and Aiple 1988; Gochin et al. 1991) or of common modulation of 
excitability (Aiple and Krüger 1988; Krüger and Aiple 1988). However, as 
detailed below, there may be interpretations other than common input for 
this type of interaction. 

Data from the visual cortex of cats and monkeys suggested in addition 
that long-range interactions are confined to neurons that share similar pref- 
erences for the orientation and/or the spectral composition of stimuli (Tso 
et al. 1986; Tso and Gilbert 1988; Schwarz and Bolz 1991). This agrees with 
anatomical data that show that tangential intracortical connections are se- 
lective and link preferentially evenly spaced patches of cortical tissue that 
are closely related to functional columns (Rockland and Lund 1982; Gilbert 
and Wiesel 1989; but see Matsubara et al. 1985). 

Systematic search for more dynamic stimulus-dependent interactions 
between spatially distributed cortical neurons had been initiated by the 
observation that adjacent neurons in the cat visual cortex can transiently 
engage in highly synchronous discharges when presented with their pre- 
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ferred stimulus (Gray and Singer 1987). Groups of neurons recorded 
simultaneously with a single electrode were found to discharge in syn- 
chronous "bursts" that followed one another at intervals of 15-30 msec. 
Typically, individual neurons would contribute only one or two spikes to 
such synchronous events but in the multicell recordings these episodes 
of synchronous discharge appeared as bursts. These sequences of syn- 
chronous rhythmic firing occur preferentially when cells are activated with 
slowly moving light stimuli. They last no more than a few hundred mil- 
liseconds and may occur several times during a single passage of the mov- 
ing stimulus (figure 10.1). Accordingly, autocorrelograms computed from 
such response epochs often exhibit a periodic modulation (Gray and Singer 
1987, 1989; Eckhorn et al. 1988; Gray et al. 1990; Schwarz and Bolz 1991; 
Livingstone 1991). During such episodes of synchronous firing a large 
oscillatory field potential is recorded by the same electrode, the negative 
deflections being coincident with the cells' discharges. The occurrence of 
such a large field response indicates that many more cells in the vicinity 
of the electrode than those actually picked up by the electrode must have 
synchronized their discharges (Gray and Singer 1989). 

However, neither the time of occurrence of these synchronized response 
episodes nor the phase of the oscillations is related to the position of the 
stimulus within the neuron's receptive field. When cross-correlation func- 
tions are computed between responses to subsequently presented identical 
stimuli, these "shift predictors" reveal no relation between the temporal 
patterning of successive responses (Gray and Singer 1989; Gray et al. 1990). 
The rhythmic firing is thus not related to some fine spatial structure in the 
receptive fields of cortical neurons. 

This phenomenon of local response synchronization has been observed 
with multiunit and field potential recordings in several independent stud- 
ies in different areas of the visual cortex of anesthetized cats (areas 17,18, 
19, and PMLS) (Eckhorn et al. 1988,1992; Gray and Singer 1989; Gray et al. 
1990; Engel et al. 1991a), in area 17 of awake cats (Raether et al. 1989; Gray 
and Viana di Prisco 1993), in the optic tectum of awake pigeons (Neuen- 
schwander and Varela 1990), and in the visual cortex of anesthetized (Liv- 
ingstone 1991) and awake behaving monkeys (Kreiter and Singer 1992). 

Subsequently, it has been shown with multielectrode recordings in anes- 
thetized and awake cats (Gray et al. 1989; Raether et al. 1989; Engel et al. 
1990; Kreiter and Singer, 1992; Kreiter et al. 1992) and anesthetized and 
awake monkeys (Kreiter and Singer 1992; Kreiter et al. 1992) that similar 
response synchronization can occur also between spatially segregated cell 
groups within the same visual area. When cells engage in such long dis- 
tance synchronization the firing patterns of the local groups often exhibit 
the synchronous repetitive firing described above. Interestingly, the syn- 
chronization of responses over larger distances also occurs with zero phase 
lag. Hence, if the cross-correlograms show any interaction at all, they typi- 
cally have a peak centered around zero delay. The half-width at half-height 
of this peak is on the order of 2-3 msec, indicating that most of the action po- 
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Figure 10.1 MUA and LFP responses recorded from area 17 in an anesthetized adult cat to the 
presentation of an optimally oriented light bar moving across the receptive field. Oscilloscope 
records of a single trial showing the response to the preferred direction of movement. In the 
upper two traces, at a slow time scale, the onset of the neuronal response is associated with an 
increase in high-frequency activity in the LFP. The lower two traces display the activity at the 
peak of the response at an expanded time scale. Note the presence of rhythmic oscillations 
in the LFP and MUA (35-45 Hz) that are correlated in phase with the peak negativity of the 
LFP. Upper and lower voltage scales are for the LFP and MUA, respectively. (Adapted from 
Gray and Singer 1989) 

tentials that showed some consistent temporal relation had occurred nearly 
simultaneously. This peak is often flanked on either side by troughs that 
result from pauses between the synchronous bursts. When the duration 
of these pauses is sufficiently constant throughout the episode of synchro- 
nization, the cross-correlograms show in addition a periodic modulation 
with further side peaks and troughs. But such regularity is not a necessary 
requirement for synchronization to occur. There are numerous examples 
from anesthetized cats (see, e.g., Engel et al. 1991c; Nelson et al. 1992c) and 
especially from awake monkeys (Kreiter and Singer 1992) that responses of 
spatially distributed neurons can become synchronized and lead to cross- 
correlograms with significant center peaks without engaging in rhythmic 
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activity that is sufficiently regular to produce a periodical modulation of 
averaged auto- and cross-correlograms. However, there are relations be- 
tween oscillatory discharge patterns and response synchronization that 
will be discussed in detail in a later section. 

The Dependence of Response Synchronization on Stimulus 
Configuration 

As outlined above the hypothesis of temporally coded assemblies requires 
that the probabilities with which distributed cells synchronize their re- 
sponses should reflect some of the Gestalt criteria applied in perceptual 
grouping. Another and related prediction is that individual cells must 
be able to change the partners with which they synchronize whereby the 
selection of partners should occur as a function of the patterns used to 
activate the cells. In this section experiments are reviewed that were de- 
signed to address these predictions. Detailed studies in anesthetized cats 
and recently also anesthetized and awake monkeys have revealed that 
synchronization probability for remote groups of cells is determined both 
by factors within the brain as well as by the configuration of the stimuli 
(Gray et al. 1989; Engel et al. 1990,1991a,b,c; Kreiter et al. 1992; König et al. 
1993). In general, synchronization probability within a particular cortical 
area decreases with increasing distance between the cells. If cells are so 
closely spaced that their receptive fields overlap, the probability is high 
that their responses will exhibit synchronous epochs if evoked with a sin- 
gle stimulus. This requires that the orientation and direction preferences 
of the cell pairs are sufficiently similar or that their tuning is sufficiently 
broad to allow for coactivation by a single stimulus. As recording distance 
increases synchronization probability becomes more and more dependent 
on the similarity between the orientation preferences of the neurons (Tso 
et al. 1986; Engel et al. 1990). 

Concerning the dependence of synchronization probability on stimulus 
configuration single linearly moving contours have so far been found to 
be most efficient. Gray et al. (1989) recorded multiunit activity from two 
locations in cat area 17 separated by 7 mm. The receptive fields of the 
cells were nonoverlapping, had nearly identical orientation preferences, 
and were spatially displaced along the axis of preferred orientation. This 
enabled stimulation of the cells with bars of the same orientation under 
three different conditions: two bars moving in opposite directions, two 
bars moving in the same direction, and one long bar moving across both 
fields coherently. No significant correlation was found when the cells were 
stimulated by oppositely moving bars. A weak correlation was present for 
the coherently moving bars. But the long bar stimulus resulted in a robust 
synchronization of the activity at the two sites. This effect occurred in 
spite of the fact that the overall number of spikes produced by the two 
cells and the oscillatory patterning of the responses were similar in the 
three conditions. 
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In a related experiment Engel et al. (1991a) demonstrated that the syn- 
chronization of activity between cells in areas 17 and PMLS of the cat also 
depends on the properties of the visual stimulus. They recorded from cells 
in the two areas that had nonoverlapping receptive fields with similar ori- 
entation preference that were aligned colinearly. This made it possible to 
examine the effects of coherent motion on response synchronization be- 
tween cells located in different areas. Little or no correlation was found 
when the cells were activated by oppositely moving contours but a robust 
synchronization occurred when the cells were coactivated by a single long 
bar moving over both fields (figure 10.2). (Engel et al. 1991a). These find- 
ings, combined with the earlier results, indicate that the global properties 
of visual stimuli can influence the magnitude of synchronization between 
widely separated cells located within and between different cortical areas. 
Single contours but also spatially separate contours that move coherently 
and therefore appear as parts of a single figure are more efficient in in- 
ducing synchrony among the responding cell groups than incoherently 
moving contours that appear as parts of independent figures. 

These results indicate clearly that synchronization probability depends 
not only on the spatial segregation of cells and on their feature preferences, 
the latter being related to the cells' position within the columnar architec- 
ture of the cortex, but also and to a crucial extent on the configuration of the 
stimuli. So far, synchronization probability appears to reflect rather well 
some of the Gestalt criteria for perceptual grouping. The high synchro- 
nization probability of nearby cells corresponds to the binding criterion of 
"vicinity," the dependence on receptive field similarities agrees with the 
criterion of "similarity," the strong synchronization observed in response 
to continuous stimuli obeys the criterion of "continuity," and the lack of 
synchrony in responses to stimuli moving in opposite directions relates to 
the criterion of "common fate." 

Experiments have also been performed to test the prediction that simul- 
taneously presented but different contours should lead to the organization 
of two independently synchronized assemblies of cells (Engel et al. 1991c; 
Kreiter et al. 1992). If groups of cells with overlapping receptive fields but 
different orientation preferences are activated with a single moving light 
bar they synchronize their responses even if some of these groups are sub- 
optimally activated (Engel et al. 1990, 1991c). However, if such a set of 
groups is stimulated with two independent spatially overlapping stimuli 
that move in different directions, they split into two independently syn- 
chronized assemblies, those groups joining the same synchronously active 
assembly that have a preference for the same stimulus (figure 10.3). Thus, 
the two stimuli evoke simultaneous responses in a large array of spatially 
interleaved neurons but these neurons become organized in two assemblies 
that can be distinguished because of the temporal coherence of responses 
within and the lack of coherence between assemblies. Cells representing 
the same stimulus exhibit synchronized response epochs while no con- 
sistent correlations occur between the responses of cells that are evoked 
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Figure 10.2 Multielectrode recordings from an anesthetized cat showing that interareal syn- 
chronization is sensitive to global stimulus features. (A) Position of the recording electrodes. 
A17, area 17; LAT, lateral sulcus; SUPS, suprasylvian sulcus; PMLS, posterior mediolateral 
suprasylvian sulcus; P, posterior; L, lateral. (B1-B3) Plots of the receptive fields of the PMLS 
and area 17 recording. The diagrams depict the three stimulus conditions tested. The circle 
indicates the visual field center. (C1-C3) Peristimulus time histograms for the three stimulus 
conditions. The vertical lines indicate 1-sec windows for which autocorrelograms and cross- 
correlograms were computed. Comparison of the autocorrelograms computed for the three 
stimulus paradigms. Note that the modulation amplitude of the correlograms is similar in all 
three cases (indicated by the number in the upper right corner). (E1-E3) Cross-correlograms 
computed for the three stimulus conditions. The number in the upper right corner represents 
the relative modulation amplitude of each correlogram. Note that the strongest correlogram 
modulation is obtained with the continuous stimulus. The cross-correlogram is less regular 
and has a lower modulation amplitude when two light bars are used as stimuli, and there 
is no significant modulation (n.s.) with two light bars moving in opposite direction. (From 
Engel et al. 1991a) 
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by different stimuli. The parameters of the individual responses such as 
their amplitude or oscillatory patterning were not affected by changes in 
the global configuration of the stimuli. Thus, it is not possible to tell from 
the responses of individual cells whether they were activated by a single 
contour or by two different stimuli. Even if one evaluated the extent of 
coactivation of the simultaneously recorded cells on a coarse time scale 
of several 100 msec as would be sufficient for the analysis of rate-coded 
populations, one would not be able to decide whether the cells had been 
activated by one composite figure whose features satisfy the preferences 
of the active cells or by two independent figures that excite the same set of 
cells. The only cue for this distinction was provided by the evaluation of 
synchronicity at a millisecond time scale. 

The results of these experiments also prove that individual groups can 
change the partners with which they synchronize when stimulus con- 
figurations change. Cell groups that engaged in synchronous response 
episodes when activated with a single stimulus no longer did so when 
activated with two stimuli but then synchronized with other groups. One 
methodological caveat following from this is that cross-correlation analysis 
does not always reliably reflect anatomical connectivity (see also Aertsen 
and Gerstein 1985). In agreement with the predictions from the assembly 
hypothesis interactions between distributed cell groups were found to be 
highly dynamic, variable, and strongly influenced by the constellation of 
features in the visual stimulus. 

Synchronization between Areas 

Experiments have also been designed to test the prediction that cells dis- 
tributed across different cortical areas should be able to synchronize their 
responses if they respond to the same contour. This prediction applies 
not only for interactions between cells distributed within different visual 
areas in the same hemisphere but also for cells in different hemispheres. 
The reason is that because of the partial decussation of the optic nerves, 
neurons responding to a figure extending across the vertical meridian are 
distributed across both hemispheres. As the responses of these cells have 
to be related to one another in the same way as those of cells located within 
the same hemisphere response synchronization should occur also across 
hemispheres and depend on stimulus configurations in the same way as 
intrahemispheric synchronization. 

In the cat, interareal synchronization of unit responses has been observed 
between cells in areas 17 and 18 (Eckhorn et al. 1988, 1992; Nelson et al. 
1992a), between cells in areas 17 and 19 and areas 18 and 19 (Eckhorn et al. 
1992), between cells in area 17 and area PLMS, an area specialized for mo- 
tion processing (figure 10.2) (Engel et al. 1991a; Munk et al. 1992), and even 
between neurons in area 17 of the two hemispheres (Engel et al. 1991b; Eck- 
horn et al. 1992; Nelson et al. 1992b). In the macaque monkey synchronous 
firing has been observed between neurons in areas VI and V2 (Bullier et 
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Figure 10.3 Stimulus dependence of short-range interactions. Multiunit activity was 
recorded from four different orientation columns of area 17 of cat visual cortex separated 
by 0.4 mm. The four cell groups had overlapping receptive fields and orientation preferences 
of 22° (group 1), 112° (group 2), 157° (group 3), and 90° (group 4), as indicated by the thick 
line drawn across each receptive field in (A-D). The figure shows a comparison of responses 
to stimulation with single moving light bars of varying orientation (left) with responses to 
the combined presentation of two superimposed light bars (right). For each stimulus con- 
dition, the shading of the receptive fields indicates the responding cell groups. Stimulation 
with a single light bar yielded a synchronization between all cells activated by the respective 
orientation. Thus, groups 1 and 3 responded synchronously to a vertically oriented (0°) 
light bar (A), groups 2 and 4 to a light bar at an orientation of 112° (B), and cell groups 2 
and 3 to a light bar of intermediate orientation. (C) Simultaneous presentation of two stimuli 
with orientations of 0° and 112° respectively, activated all four groups (D). However, in 
this case the groups segregated into two distinct assemblies, depending on which stimulus 
was closer to the preferred orientation of each group. Thus, responses were synchronized 
between groups 1 and 3, which preferred the vertical stimulus, and between 2 and 4, which 
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Figure 10.3 (continued) preferred the stimulus oriented at 112°. The two assemblies were 
desynchronized with respect to each other, and so there was no significant synchronization 
between groups 2 and 3. The cross-correlograms between groups 1 and 2,1 and 4, and 3 and 
4 were also flat (not shown). Note that the segregation cannot be explained by preferential 
anatomical wiring of cells with similar orientation preference (T'so et al. 1986) because cell 
groups can readily be synchronized in all possible pair combinations in response to a single 
light bar. The correlograms are shown superimposed with a numerically fitted Gabor func- 
tion. The number to the upper right of each correlogram indicates the relative modulation am- 
plitude, n.s., not significant. Scale bars indicate the number of spikes (From Engel et al. 1991c) 

al. 1992; Roe and Tso 1992). In all of these cases, whenever tested, synchro- 
nization depended on receptive field constellations and stimulus configu- 
rations, similar to the intraareal synchronization (Engel et al. 1991a,b). In 
the studies of Eckhorn et al. (1988,1992) and Engel et al. (1991a) interareal 
and interhemispheric synchronous firing was found to occur primarily, if 
not exclusively, during coactivation of the cells by visual stimuli, and was 
particularly pronounced during periods of oscillatory firing (König 1994). 
In the studies of Nelson et al. (1992a) interareal synchronous firing was 
observed both during spontaneous activity and during the presentation 
of visual stimuli. The interactions span a wide "tripartite" range of tem- 
poral scales giving rise to correlograms having central peaks of narrow, 
medium, and broad width. The narrow (tight) coupling is most often seen 
between cells having overlapping receptive fields with similar properties. 
The broader coupling encompasses a much wider range of receptive field 
separations and differences in orientation preference (Nelson et al. 1992a). 
Synchronous firing between cells in VI and V2 in the monkey shows simi- 
lar features. Synchrony occurs between cells having both overlapping and 
nonoverlapping receptive fields (Bullier et al. 1992) and is most frequent 
between cells of similar color selectivity in the two areas (Roe and Tso 
1992). Interestingly, whenever cells in VI and V2 engage in synchronous 
discharges, on the average cells in V2 lead over cells in VI by a few millisec- 
onds (Bullier, personal communication). Synchronization of responses can 
thus occur over considerable distances and between cell groups located in 
different cortical areas and even hemispheres. 

THE SYNCHRONIZING CONNECTIONS 

It is commonly assumed in interpretations of cross-correlation data that 
synchronization of neuronal responses with zero-phase lag is indicative of 
common input (Gerstein and Perkel 1972). Because response synchroniza- 
tion occurred often in association with oscillatory activity in the range of 
30-60 Hz, it has been proposed, that the observed synchronization phe- 
nomena in the visual cortex are due to common oscillatory input from 
subcortical centers (see chapter 6 by Llinäs and Ribary, and Llinäs and Rib- 
ary 1993). Oscillatory activity in the 30-60 Hz range has been described 
both for retinal ganglion cells and thalamic neurons (Doty and Kimura, 
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1963; Bishop et al. 1964; Fuster et al. 1965; Arnett, 1975; Ariel et al. 1983; 
Munemori et al. 1984; Ghose and Freeman 1990; Steriade et al. 1991; Ghose 
and Freeman 1992; Pinault and Deschenes, 1992a,b; Steriade et al. 1993). 
In both structures oscillatory activities have been observed in about 20% of 
the cells. They occurred during spontaneous activity and were often un- 
influenced by visual stimulation or even suppressed (Ghose and Freeman 
1992). These oscillatory patterns in afferent activity are likely to contribute 
to oscillatory responses in the visual cortex, but the possibility must also be 
considered that part of the thalamic oscillations are backpropagated from 
cortex by the corticothalamic projections. 

Another question is whether these thalamic oscillations also play a role in 
stimulus-dependent synchronization of spatially distributed cortical neu- 
rons. Because the terminal arbors of thalamic axons span only 3-4 mm in 
the cortex (Ferster and LeVay 1978), the long distance correlations within 
areas but especially between areas and different hemispheres would re- 
quire that thalamic activity becomes synchronized not only across different 
nuclei but even across the thalami of the two hemispheres to contribute 
effectively to long distance correlations at the cortical level. Large-scale 
synchronization of distributed thalamic neurons is common during sleep 
spindles (Steriade et al. 1990) but so far correlated 30-60 Hz oscillatory ac- 
tivity has been observed only between closely spaced cells (Arnett 1975). 

If the synchronization phenomena observed at the cortical level were 
solely a reflection of common subcortical input, this would be incompati- 
ble with the postulated role of synchronization in perceptual grouping. The 
hypothesis requires that synchronization probability depends to a substan- 
tial extent on interactions between the neurons whose responses actually 
represent the features that need to be bound together. As thalamic cells 
possess only very limited feature selectivity one is led to postulate that 
corticocortical connections should also contribute to the synchronization 
process. This postulate is supported by the finding that synchronization 
between cells located in different hemispheres is abolished when the cor- 
pus callosum is cut (Engel et al. 1991b; Munk et al. 1992). This is direct 
proof (1) that corticocortical connections contribute to response synchro- 
nization and (2) that synchronization with zero-phase lag can be brought 
about by reciprocal interactions between spatially distributed neurons de- 
spite considerable conduction delays in the coupling connections. Thus, 
synchrony is not necessarily an indication of common input but may also 
be the result of a dynamic organization process that establishes coherent 
firing by reciprocal interactions. 

Simulation studies are now available that confirm that synchrony can be 
established without phase lag by reciprocal connections even if they have 
slow and variable conduction velocities as long as the propagation delays 
do not exceed about one quarter of the oscillatory period (Schulen and 
König 1990; Schuster and Wagner 1990a,b; König and Schulen 1991). Use- 
dependent developmental selection of corticocortical connections could 
further contribute to the generation of architectures that favor synchrony. 
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During early postnatal development corticocortical connections are sus- 
ceptible to use-dependent modifications and are selected according to a 
correlation rule (Löwel and Singer 1992; see below). This favors consolida- 
tion of connections whose activity is often in synchrony with the activity of 
their respective target cells. Hence, it is to be expected that connections are 
selected not only according to their feature-specific responses but also as a 
function of conduction velocities that allow for a maximum of synchrony. 

However, the possibility to achieve synchrony through reciprocal corti- 
cal connections does not exclude a contribution of common input to the 
establishment of cortical synchronization. Especially if temporal patterns 
of responses need to be coordinated across distant cortical areas, bifurcat- 
ing corticocortical projections or divergent corticopetal projections from 
subcortical structures such as the "nonspecific" thalamic nuclei, the basal 
ganglia, and the nuclei of the basal forebrain could play an important role. 
By modulating in synchrony the excitability of selected cortical areas they 
could influence very effectively the probability with which neurons dis- 
tributed across these selected areas engage in synchronous firing. A contri- 
bution of diverging cortical backprojections to long-range synchronization 
is suggested by the observation that unilateral focal inactivation of a pre- 
striate cortical area reduces intraareal and interhemispheric synchrony in 
area 17 (Nelson et al. 1992b). A contribution of thalamic mechanisms to 
the establishment of cortical synchrony has yet to be demonstrated. 

EXPERIENCE-DEPENDENT MODIFICATIONS OF SYNCHRONIZING 
CONNECTIONS AND SYNCHRONIZATION PROBABILITIES 

The theory of assembly coding implies that the criteria according to which 
particular features are grouped together reside in the functional architec- 
ture of the assembly forming coupling connections. It is of particular inter- 
est, therefore, to study the development of the synchronizing connections, 
to identify the rules according to which they are selected, to establish corre- 
lations between their architecture and synchronization probabilities, and, 
if possible, to relate these neuronal properties to perceptual functions. 

In mammals corticocortical connections develop mainly postnatally (In- 
nocenti 1981; Price and Blakemore 1985a; Luhmann et al. 1986; Callaway 
and Katz 1990) and attain their final specificity through an activity-depen- 
dent selection process (Innocenti and Frost 1979; Price and Blakemore 
1985b; Luhmann et al. 1990; Callaway and Katz 1991). Recent results from 
strabismic kittens indicate that this selection is based on a correlation rule 
and leads to disruption of connections between cells which often exhibit 
decorrelated activity (Löwel and Singer 1992). Raising kittens with artifi- 
cially induced strabismus leads to changes in the connections between the 
two eyes and cortical cells so that individual cortical neurons become con- 
nected to only one eye (Hubel and Wiesel 1965a). Cortical neurons split into 
two subpopulations of about equal size, each responding rather selectively 
to stimulation of one eye only. Because of the misalignment of the two eyes 
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it is also to be expected that there are no consistent correlations between 
the activation patterns of neurons driven by the two eyes. Recently it has 
been found that strabismus, when induced in 3-week-old kittens, leads to 
a profound rearrangement of corticocortical connections. Normally these 
connections link cortical territories irrespective of whether these are dom- 
inated by the same or by different eyes. In the strabismics, by contrast, the 
tangential intracortical connections come to link with high selectivity only 
territories served by the same eye. These anatomical changes in the archi- 
tecture of corticocortical connections are reflected by altered synchroniza- 
tion probabilities. In strabismic cats response synchronization no longer 
occurs between cell groups connected to different eyes while it is normal 
between cell groups connected to the same eye (König et al. 1990,1993). 

These results have several important implications. First, they are com- 
patible with the notion that tangential intracortical connections contribute 
to response synchronization (see above). However, as strabismus also abol- 
ishes convergence of projections from the two eyes onto common cortical 
target cells, this result is also compatible with the view that synchrony is 
caused by common input. Second these results agree with the postulates 
of the assembly hypothesis that the assembly forming connections should 
be susceptible to use-dependent modifications and be selected according 
to a correlation rule. Third, the modifications of intracortical connections 
and synchronization probabilites add to the list of substrate changes that 
may be related to the specific perceptual deficits associated with early on- 
set squint. Strabismic subjects usually develop normal monocular vision 
in both eyes, but they become unable to fuse signals conveyed by different 
eyes into coherent percepts even if these signals are made retinotopically 
contiguous by optical compensation of the squint angle (von Noorden 
1990). Thus, in strabismics, binding mechanisms appear to be abnormal or 
missing between cells driven from different eyes. The lack of corticocorti- 
cal connections and the lack of response synchronization could be among 
the reasons for this deficit in addition to the loss of binocular neurons. 

These findings are, at least, compatible with the view that the architecture 
of corticocortical connections, by determining the probability of response 
synchronization, could set the criteria for perceptual grouping. Since this 
architecture is shaped by experience, this opens up the possibility that 
some of the binding and segmentation criteria are acquired or modified by 
experience. 

CORRELATION BETWEEN PERCEPTUAL DEFICITS AND RESPONSE 
SYNCHRONIZATION IN STRABISMIC AMBLYOPIA 

Further indications for a relation between experience-dependent modifi- 
cations of synchronization probabilities and functional deficits come from 
a recent study of strabismic cats who had developed amblyopia. Strabis- 
mus, when induced early in life, does not only lead to a loss of binocular 
fusion and stereopsis but may also lead to amblyopia of one eye (von 
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Noorden 1990). This condition develops when the subjects solve the prob- 
lem of double vision not by alternating use of the two eyes but by con- 
stantly suppressing the signals coming from the deviated eye. The ambly- 
opic deficit usually consists of reduced spatial resolution and distorted and 
blurred perception of patterns. A particularly characteristic phenomenon 
in amblyopia is crowding, the drastic impairment of the ability to discrim- 
inate and recognize figures if these are surrounded with other contours. 
The identification of neuronal correlates of these deficits in animal models 
of amblyopia has remained inconclusive because the contrast sensitivity 
and the spatial resolution capacity of neurons in the retina and the lateral 
geniculate nucleus were found normal. In the visual cortex identification of 
neurons with reduced spatial resolution or otherwise abnormal receptive 
field properties remained controversial (for a discussion see Crewther and 
Crewther 1990; Blakemore and Vital Durand 1992). However, multielec- 
trode recordings from striate cortex of cats exhibiting behaviorally verified 
amblyopia have revealed highly significant differences in the synchroniza- 
tion behavior of cells driven by the normal and the amblyopic eye, respec- 
tively. The responses to single moving bars that were recorded simultane- 
ously from spatially segregated neurons connected to the amblyopic eye 
were much less well synchronized with one another than the responses 
recorded from neuron pairs driven through the normal eye (Roelfsema et 
al. 1993). This difference was even more pronounced for responses elicited 
by gratings of different spatial frequency. For responses of cell pairs ac- 
tivated through the normal eye the strength of synchronization tended 
to increase with increasing spatial frequency while it tended to decrease 
further for cell pairs activated through the amblyopic eye. Apart from 
these highly significant differences between the synchronization behavior 
of cells driven through the normal and the amblyopic eye no other dif- 
ferences were found in the commonly determined response properties of 
these cells. Thus, cells connected to the amblyopic eye continued to re- 
spond vigorously to gratings whose spatial frequency had been too high 
to be discriminated with the amblyopic eye in the preceding behavioral 
tests (see figure 10.4). These results suggest that disturbed temporal co- 
ordination of responses such as reduced synchrony may be one of the 
neuronal correlates of the amblyopic deficit. Indeed, if synchronization 
of responses at a millisecond time scale is used by the system for feature 
binding and perceptual grouping, disturbance of this temporal patterning 
could be the cause for the crowding phenomenon, as this can be regarded 
as a consequence of impaired perceptual grouping. 

THE RELATIONSHIP BETWEEN SYNCHRONY AND OSCILLATIONS 

Before reviewing the evidence on context-dependent synchronization 
across spatially segregated groups of neurons in structures other than the 
visual cortex it is necessary to examine the relationship between response 
synchronization on the one hand and oscillatory responses on the other, 
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Figure 10.4 Amplitudes and synchronization of responses to gratings of different spatial fre- 
quencies recorded from cats with strabismic amblyopia. (A-D) Responses to low (A and B) 

and high (C and D) spatial frequency gratings, recorded simultaneously from two cell groups 
driven by the normal eye (N-sites) (A and C) and two cell groups driven by the amblyopic 
eye (A-sites) (B and D), respectively. The left and right panels show the response histograms 

and the corresponding cross-correlograms, respectively. Note that response amplitudes de- 
crease at the higher spatial frequency in both cases, while the relative modulation amplitude 
increases for the N-N pair but decreases for the A-A pair. (E) Cumulative distribution func- 
tions of the differences between the amplitude of responses to low and high spatial frequency 

gratings of optimal orientation. N-sites, squares (n=53); A-sites, triangles (n=35). Abscissa, 
responses to high spatial frequency minus responses to low spatial frequency gratings. Note 
the similarity of the two distributions (P > 0.1). (F) Cumulative distribution functions of the 
differences between relative modulation amplitudes (DRMA of cross-correlograms obtained 
for responses to high and low spatial frequency gratings of N-N pairs (squares, n=24) and A-A 

pairs (triangles, n=\\). DRMA values (abscissa) were calculated by subtracting the relative 

modulation amplitude obtained with the low spatial frequency from that obtained with the 
high spatial frequency. The difference between the DRMA distributions of N-N pairs and 
A-A pairs is highly significant. (From Roelfsema et al. 1993) 

222 Singer 



as the two phenomena are often but not necessarily always related. The 
occurrence of oscillatory responses does not logically imply that cells dis- 
charge in synchrony. Likewise, the nonoccurrence of oscillations does not 
exclude synchrony. Furthermore, it is useful to analyze to what extent dif- 
ferent recording methods are appropriate for the assessment of synchrony 
or oscillatory behavior because there are a number of difficulties with the 
detectability of oscillatory firing patterns in single cell recordings and with 
the definition of oscillations. 

No inferences can of course be drawn from single cell recordings as to 
whether the responses of the recorded cell are synchronized with others 
irrespective of whether the recorded cell is found to discharge in an oscilla- 
tory manner. The situation is different when multiunit recordings are ob- 
tained with a single electrode. In this case periodically modulated autocor- 
relograms are always indicative not only of oscillatory firing patterns but 
also of response synchronization, at least among the local group of simul- 
taneously recorded neurons. The reason is that such periodic modulations 
can build up only if a sufficient number of the simultaneously recorded 
cells are oscillating synchronously and at a sufficiently regular rhythm. 
However, not observing periodically modulated autocorrelograms of mul- 
tiunit recordings neither excludes that the recorded units oscillate, because 
nonsynchronized oscillations would not be observable, nor excludes that 
the recorded cells actually fire in synchrony, because they could do so in a 
nonperiodic way. The same arguments are applicable to field potential and 
even more so to EEG recordings. If they exhibit an oscillatory pattern this 
always implies that a large number of neurons must have engaged in syn- 
chronized rhythmic activity because otherwise the weak fields generated 
by activation of individual synapses and neurons would not sum to poten- 
tials recordable with macroelectrodes. But again, the reverse is not true: 
neither oscillatory discharge patterns nor response synchronization can be 
excluded if macroelectrode recordings fail to reveal oscillatory fluctuations. 

Furthermore, it needs to be considered that single cell recordings may 
not be particularly well suited for the diagnosis of oscillatory activity. This 
is suggested by results from the visual cortex (Gray et al. 1990) and in 
particular from the olfactory bulb (Freeman and Skarda 1985). Individual 
discharges of single units may be precisely time-locked with the oscillating 
field potential, which proves that these discharges participated in an oscil- 
latory process and occurred in synchrony with those of many other cells, 
without, however, showing any sign of oscillatory activity in their auto- 
correlation function. The reasons for this apparent paradox are sampling 
problems and nonstationarity of the time series. If the single cell does not 
discharge at every cycle and if the oscillation frequency is not perfectly con- 
stant over a period of time sufficiently long to sample enough discharges for 
an interpretable autocorrelation function, the oscillatory rhythm to which 
the cell is actually locked will not be disclosable. Thus, the less active a cell 
and the higher and more variable the oscillation frequency, the less legiti- 
mate it is to infer from nonperiodically modulated autocorrelograms that a 
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cell is not oscillating. This sampling problem becomes more and more ac- 
centuated as the frequency of the oscillations increases. This explains why 
7-band oscillations have been observed first with macroelectrodes and re- 
main difficult to observe with microelectrodes unless one can record from 
several, synchronously active cells simultaneously. Finally, some ambigu- 
ities are associated with the term "oscillations." Most commonly, oscilla- 
tions are associated with periodic time series such as are produced by a pen- 
dulum or an harmonic oscillator. But there are also more irregular or even 
aperiodic time series which are still called oscillatory. Such irregular oscil- 
lations typically occur in noisy linear or in nonlinear systems and cover a 
large spectrum of phenotypes from slightly distorted, periodic oscillations 
to chaotic oscillations to nearly stochastic time series. Oscillatory phenom- 
ena in the brain are rarely of the harmonic type and if so only over very short 
time intervals. Most often, oscillatory activity in the brain is so irregular 
that autocorrelation functions computed over prolonged periods of time 
frequently fail to reveal the oscillatory nature of the underlying time series. 

These considerations need to be taken into account for the interpretation 
of the data reviewed below as these have been obtained with very different 
methods and often also different goals. 

The evidence that in most structures investigated phases of response 
synchronization tend to be associated with episodes of oscillatory activity 
raises the question as to whether oscillations and synchrony are causally 
related. 

One possibility is that oscillatory activity favors the establishment of 
synchrony and hence is instrumental for response synchronization. In 
oscillatory responses, the occurrence of a discharge predicts with some 
probability the occurrence of the next. It has been argued that this pre- 
dictability is a necessary prerequisite to synchronize remote cell groups 
with zero phase lag, despite considerable conduction delays in the cou- 
pling connections (for review see Engel et al. 1992). This view is supported 
by simulation studies that have shown that zero-phase lag synchroniza- 
tion can be achieved despite considerable conduction delays and variation 
of conduction times in the synchronizing connections if the coupled cell 
groups have a tendency to oscillate (Schulen and König 1990,1992; Schus- 
ter and Wagner 1990a,b; König and Schulen 1991). Another feature of 
networks with oscillatory properties is that network elements that are not 
linked directly can be synchronized via intermediate oscillators (König 
and Schulen 1991). This may be important, for instance, to establish rela- 
tionships between remote cell groups within the same cortical area, or for 
cells distributed across cortical areas that process different sensory modal- 
ities. In both cases, linkages either via intermediate cortical relays or even 
via subcortical centers must be considered. The latter possibility is sup- 
ported by the occurrence of 7-oscillations in a variety of thalamic nuclei 
(see above). These considerations suggest that oscillations, while not con- 
veying any stimulus-specific information per se, may be instrumental for 
the establishment of synchrony over large distances. This conjecture is sup- 
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ported by the evidence that synchronization over larger distances within 
an area (> 2 mm) or between areas is in most cases associated with an os- 
cillatory patterning of the local discharges (König et al. 1992a). However, 
it is also conceivable that oscillations occur as a consequence of synchrony. 
Simulation studies indicate that networks with excitatory and inhibitory 
feedback have the tendency to converge toward states where discharges of 
local cell clusters become synchronous (Sporns et al. 1991; Koch and Schus- 
ter 1992; Deppisch et al. 1992). Once such a synchronous voley has been 
generated, the network is likely to engage in oscillatory activity. Because of 
recurrent inhibition and because of Ca2+-activated K+ conductances (Llinäs 
1988a, 1990b), the cells that had emitted a synchronous discharge will also 
become simultaneously silent. On fading of these inhibitory events, fir- 
ing probability will increase simultaneously for all cells and this, together 
with maintained excitatory input and nonlinear voltage-gated membrane 
conductances such as the low threshold Ca2+ channels (Llinäs 1990b) will 
favor the occurrence of the next synchronous burst, and so on. Thus, os- 
cillations are a likely consequence of synchrony and it actually becomes 
an important issue to understand how cortical networks can be prevented 
from entering states of global oscillations and, if they do, how these can 
be terminated (see, e.g., Freeman and Skarda 1985). These issues have 
recently been addressed in a number of simulation studies (Hansel and 
Sompolinsky 1992; König and Schulen 1991; König et al. 1992; Schulen 
and König 1991,1993; Sporns et al. 1991). 

EVIDENCE FOR RESPONSE SYNCHRONIZATION IN NONVISUAL 
STRUCTURES 

Most experiments have concentrated on the analysis of oscillatory activity, 
but those that used multiunit or field potential methods provide informa- 
tion not only on the occurrence of oscillations but also allow one to make 
inferences on response synchronization. Only few studies are available 
that explicitly address the question of response synchronization with mul- 
tielectrode recordings in structures other than the visual cortex. Such data 
are now available for the somatosensory and motor cortex (Murthy and 
Fetz 1992), the acoustic and the frontal cortex (Aertsen et al. 1991; Vaadia et 
al. 1991; Ahissar et al. 1992), and the pigeon optic tectum (Neuenschwander 
and Varela 1993). In every case evidence has been obtained for transient 
interactions between simultaneously recorded neurons. As in the visual 
cortex these episodes of manifest interactions were usually of short dura- 
tion. In the acoustic and the somatomotor cortex as well as in the optic 
tectum the interactions resembled those in the visual cortex (i.e., the cells 
synchronized their responses with zero phase lag). In the sensorimotor 
cortex synchronization has been tested between different cortical areas 
and found between the arm representations in the somatosensory and the 
motor cortex and even between the motor cortices of the two hemispheres. 
In the other areas, only within-area correlations were sought. Some indi- 
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cations are available that the observed episodes of coupled discharges and 
synchrony are correlated with behavior. Synchronization between units 
in somatosensory and motor cortex is particularly pronounced while the 
monkey tries to solve a difficult reaching task but vanishes once the task 
is learned and reaching is executed without difficulty (Murthy and Fetz 
1992). Synchronization between units in the frontal cortex has been re- 
ported to occur in contiguity with certain behavioral sequences in a com- 
plex delayed matching to sample task (Aertsen et al. 1991). And, most 
importantly, a recent study showed in the acoustic cortex of awake mon- 
keys that learning a stimulus-stimulus association transiently increases the 
coupling between nearby cells responsive to the two stimuli with the effect 
that their responses become more synchronous (Ahissar et al. 1992). 

EEG and field potential recordings from humans and higher mammals 
have provided abundant evidence for 7-band oscillations in a variety of 
nonvisual cortical and subcortical structures (for further review of the ex- 
tensive literature see Basar 1980; Basar and Bullock 1992; Gray 1993; Singer 
1993). In the mammalian olfactory system, for example, 40-80 Hz oscilla- 
tory activity is evoked during the inspiratory phase in both the olfactory 
bulb and piriform cortex (Adrian 1942; Freeman 1975). This activity is 
synchronous over a scale of several millimeters both within and betwen 
the two structures (Freeman 1975; Bressler 1984,1987; Freeman and Skarda 
1985). The patterns of activity that emerge during these coherent states cor- 
respond to specific odors, the animal's past experience with the odors and 
their behavioral significance (Freeman and Skarda 1985). The oscillatory 
activity in itself is not thought to convey any specific information, rather 
it is viewed as a basic neuronal mechanism for establishing synchrony 
among large populations of coactive cells. As discussed above, these data 
can be taken as evidence for the occurrence of synchrony, at least among 
the local cluster of neurons contributing to the electrical field that is picked 
up by the macroelectrode. 

Similar field oscillations have been recorded from a variety of neocortical 
areas in cats and monkeys. This activity was particularly prominent when 
the subjects were aroused and in a state of focused attention (Dumenko 
1961; Rougeul et al. 1979; Spydell et al. 1979; Bouyer et al. 1981; Montaron 
et al. 1982; Sheer 1984,1989; Ribary et al. 1991; Gaal et al. 1992; Murthy and 
Fetz 1992; Tiitinen et al. 1993). These rhythmic activities are synchronous 
over relatively large areas of cortex (Bouyer et al. 1981), in cases of the 
sensorimotor cortex they occur in phase with similar activity in the ven- 
trobasal thalamus (Bouyer et al. 1981) and are regulated by dopaminergic 
input from the ventral tegmentum (Montaron et al. 1982). Oscillatory field 
potential and unit activities in the range of 20-40 Hz have been observed in 
the motor cortex of alert monkeys (Gaal et al. 1992; Murthy and Fetz 1992). 
These signals are synchronous over widespread areas of the motor corti- 
cal map within and between the two cerebral hemispheres, between the 
motor and somatosensory cortices, and are enhanced in amplitude when 
the animals are preparing new and complicated motor acts (Murthy and 
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Fetz 1992). The rhythms are suppressed, however, during the execution of 
trained movements (Donoghue and Sanes 1991). 

Oscillatory components in the ß- and 7-frequency ranges have also been 
extensively documented in humans. In several early studies depth record- 
ings of the local EEG from a number of cortical and subcortical sites re- 
vealed pronounced episodes of synchronous rhythmic activity in relation 
to particular behavioral states (Sem-Jacobsen et al. 1956; Chatrian et al. 
1960; Perez-Borja et al. 1961). Surface EEG and MEG recordings have re- 
vealed 7-frequency components in the auditory evoked potential (Galam- 
bos et al. 1981; Galambos and Makeig 1988; Basar 1988; Pantev et al. 1991) 
and showed a broad distribution over the entire cerebral mantle (Ribary et 
al. 1991). During a number of different behavioral states the hippocampus 
is known to exhibit some of the most robust forms of synchronous rhyth- 
mic activity to be observed in the central nervous system. Foremost among 
these is the theta-rhythm, a sinusoidal-like oscillation of neuronal activ- 
ity at 4-10 Hz that occurs during active movement and alert immobility. 
Theta-field potentials are often synchronous between the two hemispheres 
and over distances extending up to 8 mm along the longitudinal axis of 
the hippocampus (Bland et al. 1975). Local populations of cells also ex- 
hibit a high degree of synchronous firing during theta-activity (Kuperstein 
et al. 1986). In addition, two other hippocampal neuronal rhythms have 
been discovered, one having a frequency near 40 Hz that occurs during a 
variety of behavioral states (Buzsaki et al. 1983) and is both locally and bi- 
laterally synchronous. Another more recently discovered signal having a 
frequency around 200 Hz is associated with alert immobility and the pres- 
ence of sharp waves in the hippocampal EEG (Buzsaki et al. 1992). These 
events have been termed population oscillations because single cells do 
not exhibit high frequency periodic firing. Rather they fire at low rate in 
synchrony with the surrounding population of cells, which in the com- 
posite yields a periodic structure that is synchronous over distances up to 
1.2 mm (Buzsaki et al. 1992). 

There is thus ample evidence from brain structures other than the visual 
cortex that groups of cells engage in synchronous rhythmic activity in the 
7-frequency range. The fact that this activity occurs in the awake brain 
and increases with attention and preparation of motor acts suggests that 
it is functionally relevant. An early Russian study described phase coher- 
ence for intracortically recorded field oscillations in the 7-band between 
visual, acoustic, and motor cortex of dogs. This coherence developed in a 
highly selective way in the course of Pavlovian conditioning while the dog 
acquired sensorimotor reactions to visual or acoustic stimuli (Dumenko 
1961). When the dog was conditioned to withdraw the front paw after a 
visual warning stimulus, coherent oscillations became manifest over the 
motor representation of the front paw and the visual cortex. When the 
withdrawal reflex was shifted to the hind paw and the warning stimulus 
to a tone, coherent oscillations appeared over the acoustic cortex and the 
hind-paw representation. 
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EVIDENCE FOR ß- AND 7-BAND OSCILLATIONS IN UNIT 
RECORDINGS FROM VISUAL AND NONVISUAL STRUCTURES 

In contrast to the numerous field potential studies that have disclosed the 
presence of ß- and 7-oscillations in many different cortical and subcortical 
areas, single unit analyses designed specifically for the search of such os- 
cillatory discharge patterns have often failed to confirm their presence or 
have led to controversial results: So far, all investigators agree that oscillat- 
ing unit activity in the 7-range occurs in the primary visual cortex of cats 
and monkeys, whether anesthetized or awake (Gray and Singer 1987,1989; 
Eckhorn et al. 1988,1992; Raether et al. 1989; Ghose and Freeman 1990,1992; 
Livingston 1991; Schwarz and Bolz 1991; Jagadeesh et al. 1992; Gray and 
Viana di Prisco 1993), in cat area 18 (Eckhorn et al. 1988,1992; Nelson et al. 
1992a), and in area PMLS of cat visual cortex (Engel et al. 1991a). For area 
MT(V5) of the visual cortex of awake monkeys one positive report (Kreiter 
and Singer 1992) stands against two negative findings (Young et al. 1992; 
Bair et al. 1992). No evidence was found in temporal visual areas of the 
monkey (Tovee and Rolls 1992) but Nakamura et al. (1992) observed both 
low- and high-frequency oscillations associated with a recognition task in 
the temporal pole of Macaca mulatta. High-frequency oscillations in single 
cell activity have also been observed in somatosensory cortex where they 
were suppressed during sensory stimulation (Ahissar and Vaadia 1990), 
in the frontal cortex where they occurred in relation to preparatory phases 
of motion (Murthy and Fetz 1992; Donoghue and Sanes 1991; Gaal et al. 
1992), and in prefrontal cortex where they were associated with particular 
behavioral sequences (Aertsen et al. 1991). Finally, synchronous multiu- 
nit responses very similar to those occurring in the cat visual cortex have 
been observed in the optic tectum of awake pigeons (Neuenschwander 
and Varela 1990). Thus, single unit data from a number of different labs 
agree with the evidence from field potential and EEG recordings that os- 
cillatory activity in the 7-range is a common phenomenon in certain brain 
structures but there are also several negative findings that challenge this 
view. A possible reason for this discrepancy between single cell and field 
potential data is that single cell recordings are not well adapted to disclose 
the participation of a cell in an oscillatory process if oscillation frequency 
is high and irregular and the cell's discharge rate low (see above). 

THE DURATION OF COHERENT STATES 

It has been argued that synchronous oscillatory activity is unlikely to serve 
a function in visual processing because the time required to establish and 
to evaluate synchrony would be incompatible with the short recognition 
times common in visual perception (Tovee and Rolls 1992). The following 
considerations suggest that time constraints may not be that critical even 
if synchrony is used as a code. In a study by Gray et al. (1992a) recordings 
of field potential and unit activity were performed at two sites in cat visual 
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cortex having a separation of at least 4 mm. Field potential responses were 
chosen for analysis in which the signals displayed particularly robust oscil- 
lations, a close correlation to the simultaneously recorded unit activity, and 
a statistically significant average cross-correlation. Under these conditions 
it became possible to determine (1) the onset latency of the synchronous 
activity; (2) the time-dependent changes in phase, frequency, and duration 
of the synchronous episodes within individual trials; and (3) the intertrial 
variation in each of these parameters. 

The results, combined with previous observations (Engel et al. 1990), 
demonstrated that correlated responses in cat visual cortex exhibit a high 
degree of dynamic variability. The amplitude, frequency, and phase of the 
synchronous events vary over time. The onset of synchrony is variable and 
bears no fixed relation to the stimulus. Multiple epochs of synchrony can 
occur on individual trials and the duration of these events also fluctuates 
from one stimulus presentation to the next. Most importantly, the results 
demonstrated that response synchronization can be established within 50- 
100 msec, a time scale consistent with behavioral performance on visual 
discrimination tasks (Gray et al. 1992a). 

Similar, rapid fluctuations between synchronous and asynchronous states 
have been observed in other systems, and recent methodological develop- 
ments have made a quantitative assessment of these rapid changes possi- 
ble. Using the joint-PSTH (Aertsen et al. 1989) and gravitational clustering 
algorithms (Gerstein et al. 1985; Gerstein and Aertsen 1985) it has been 
possible to examine the time course of correlated firing among pairs and 
larger groups of neurons, respectively (Aertsen et al. 1991). These findings 
clearly indicate that the formation of coherently active cell assemblies is a 
dynamic process. Patterns of synchronous firing can emerge from seem- 
ingly nonorganized activity within tens of milliseconds, and can change 
as a function of stimulus and task conditions within similarly short time 
intervals. These findings suggest that the temporal constraint imposed by 
perceptual performance can be met by the dynamic processes that underlie 
the organization of synchronously active cell assemblies. 

Theoretical considerations point in the same direction. Assemblies de- 
fined by synchronous discharges need not oscillate at a constant frequency 
over prolonged periods of time. Rather, it is likely that neuronal networks 
that have been shaped extensively by prior learning processes can settle 
very rapidly into a coherent state when the patterns of afferent sensory 
activity match with the architecture of the weighted connections in the 
network. Such a good match can be expected to occur for familiar patterns 
that during previous learning processes had the opportunity to mould 
the architecture of connections and to optimize the fit. If what matters 
for the nervous system is the simultaneity of discharges in large arrays of 
neurons, a single episode of synchronous discharges in thousands of dis- 
tributed neurons may actually be sufficient for recognition. Obviously, the 
nervous system can evaluate and attribute significance to coherent activity 
even if the synchronous event is only of short duration and not repeated 
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because its parallel organization allows for simultaneous assessment of 
highly distributed activity. 

Especially if no further ambiguities have to be resolved, or if no further 
modifications of synaptic connectivity are required, it would actually be 
advantageous if the system would not enter into prolonged cycles of rever- 
beration after having converged toward an organized state of synchrony. 
Rather, established assemblies should be erased by active desynchroniza- 
tion as soon as possible to allow for the build-up of new representations. 
Thus, when processing highly familiar patterns or executing well-trained 
motor acts that raise no combinatorial problem the system would function 
nearly as fast as a simple feedforward network. Activity will be routed 
selectively through the network of tuned connections and a pattern of si- 
multaneous discharges could emerge in the corresponding assembly of 
distributed cells with latencies that are only a little longer than the sum of 
the conduction and integration delays along the path of excitation. Con- 
vergence toward coherent states and hence "recognition" might actually 
occur even faster than one might predict from models that assume that 
retinal signals are relayed serially from one cortical area to the next and 
that recognition occurs only once cells in areas at the top of the processing 
hierarchy get driven. 

In the present model it is assumed that the interconnected cortical areas 
are permanently active, collectively striving toward coherent states. In this 
case the role of retinal signals is not to provide the energy for the successive 
excitation of serially connected cells but to select paths of convergence to- 
ward coherent states by shifting the time of occurrence of discharges, most 
of which would have occurred anyway. The differential and flexible rout- 
ing of activity that is required to organize the appropriate assemblies could 
thus be achieved in parallel within and among the different processing ar- 
eas and within only a few reentrant cycles. Because the network is assumed 
to be engaged in an active exchange of signals even if "at rest" and because 
during the organization phase interactions only need to influence firing 
probability, excitatory postsynaptic potentials can effectively contribute to 
the organization without having to summate until they evoke strong dis- 
charges. Thus, not much time has to be reserved for temporal summation 
and hence the duration of reentrant cycles can be as short as the sum of the 
net conduction and synaptic transmission times. This possibility of rapid 
convergence toward coherent states and the option to maintain such states 
only for short durations is fully compatible with the hypothesis that repre- 
sentations consist of large assemblies of coherently active neurons. But it 
may become very difficult to experimentally identify the coherent states of 
assemblies if these last only for very short periods of time and if only a few 
neurons can be recorded simultaneously. Thus, as long as experimenters 
can assess the activity of only a few neurons at a time, coherence will be 
detectable only if it is maintained over sufficiently long periods. Such is 
likely to be the case when ambiguities have to be resolved and when novel 
patterns have to be learned. 
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But why then do episodes of prolonged coherence occur in anesthetized 
preparations and in response to rather simple stimulus configurations. In 
this case there are no ambiguities to be resolved and there is no learning. 
At present one can only speculate. One possibility is that anesthesia de- 
creases the efficiency of feedback loops and associative connections (see, 
e.g., Cauller and Kulics 1991b) and that this reduces the complexity of the 
system. In the absence of feedback, neurons at peripheral processing lev- 
els can organize their responses only according to the criteria set by local 
connections and this is likely to result in rather stereotyped repetition of 
"attempts" to organize. Moreover, it is likely that anesthesia abolishes also 
the processes that would normally terminate states of synchrony once the 
system has successfully converged toward a coherent state and "recogni- 
tion" has occurred (see below). This interpretation agrees with the con- 
sistent observation that episodes of response synchronization are shorter 
and less stereotyped in awake behaving animals (Kreiter and Singer 1992; 
Gray and Viana di Prisco 1993). 

EYE MOVEMENTS AND SELECTIVE ATTENTION 

So far, only grouping operations that do not require scanning eye move- 
ments or shifts of selective attention have been considered. However, un- 
der normal viewing conditions both processes certainly contribute. While 
familiar scenes, even if they are complex, are usually perceived readily 
within a few hundred milliseconds, recognition of unfamiliar objects or 
analysis of scenic details does require more time. Often it is even necessary 
to successively sample parts of the pattern by scanning eye movements. 
This requires that representations of components of the pattern are main- 
tained (remembered) during successive eye movements to allow for the 
synthesis of successively perceived components. But it also requires that 
patterns at the more peripheral levels of analysis change from eye move- 
ment to eye movement. Thus, the possibility needs to be considered that 
the temporal scales at which activity patterns become organized differ at 
different levels of integration. At the levels directly involved in the seg- 
mentation of scenes and the appropriate grouping of features, organized 
states should last only briefly and they should definitely not outlast the 
duration of the retinal image. Moreover, they should be reset with each 
eye movement to reduce confusion between successive, often unrelated 
images. Both postulates agree with psychophysical evidence. 

Patterns that are too complex to be remembered at a semantic level or 
that defy semantic description remain represented only little more than 
100 msec after their offset. If interrupted for more than 150 msec, the ap- 
proximate duration of visual persistence, modifications of the patterns go 
undetected when introduced during the interruption interval (Phillips and 
Singer 1974; Di Lollo and Wilson 1978). Likewise, saccadic eye movements 
also disrupt the ability to detect changes if these are introduced while the 
eyes move.  Thus, disrupting the continuous flow of retinal activity by 
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transiently obscuring the pattern or by making a saccadic eye movement 
appears to erase completely the organized state induced by the pattern 
that was present prior to the interruption. In case of eye movements it 
actually appears as if this resetting is an active process. The fact that the 
pontogeniculooccipital waves (PGO waves) that accompany saccadic eye 
movements are prominent in the lateral geniculate nucleus and in visual 
areas of the occipital lobe but not in more frontally located areas is com- 
patible with such a view. 

It has been suggested that the PGO waves or eye movement potentials 
reflect corollary activity that is generated in the brain stem in association 
with saccadic eye movements and serve to erase or reset activation patterns 
in peripheral visual centers each time an eye movement is executed (for 
review see Singer 1977,1979). In the framework of the present model this 
resetting would have to consist of disrupting assemblies that have become 
organized in response to the pattern processed prior to the saccade. Hence 
this resetting should act by decorrelating previously synchronized activity. 
Evidence is indeed available that the activity that underlies PGO waves 
does have a desynchronizing effect both at the thalamic and the cortical 
level (for review see Singer 1977, 1979; Steriade and McCarley 1990). In 
addition it raises cortical excitability (for review see Singer 1979; Steriade 
1991), which should in turn favor rapid self-organization of new assemblies 
in response to the pattern that is going to be processed after the saccade has 
occurred. In higher areas, by contrast, which are located more frontally 
and perform much more abstracted, semantic descriptions of patterns, 
such automatic eye movement-related resetting must not occur. Here, the 
time frames for the organization of assemblies should be set in a flexible 
way and adjusted according to the actual time it takes to organize coherent 
assemblies. If oscillatory activity is instrumental to establish coherence 
among distributed cells and to organize assemblies, one might then also 
expect that the frequency of these oscillations could be much slower in 
these higher areas and perhaps even varied as a function of the actually 
required integration times. 

SYNCHRONIZATION AND ATTENTION 

The hypothesis that information about feature constellations is contained 
in the temporal relation between the discharges of distributed neurons, 
and, in particular, in their synchrony, has also some bearing on the organi- 
zation of attentional mechanisms. It is obvious that synchronous activity 
will be more effective in driving cells at higher levels than nonorganized 
asynchronous discharges. 

Thus, those assemblies would appear as particularly salient and hence 
effective in attracting attention that succeed to make their discharges coher- 
ent with shorter latency and higher temporal precision than others. Con- 
versely, responses of neurons reacting to features that cannot be grouped or 
bound successfully, and, hence, cannot be synchronized with the responses 
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of other neurons, would have only a small chance of being relayed further 
and to influence shifts of selective attention. It is thus conceivable that 
of the many responses that occur at peripheral stages of visual process- 
ing only a few are actually passed on toward higher levels. These would 
either be responses to particularly salient stimuli causing strong and si- 
multaneous discharges in a sufficient number of neurons or responses of 
cells that succeeded in being organized in sufficiently coherent assemblies. 
Thus, responses to changes in stimulus configuration or to moving targets 
have a good chance to be passed on even without getting organized in- 
ternally because they would be synchronized by the external event. But 
responses to stationary patterns will require organization through internal 
synchronization mechanisms to be propagated. 

This interpretation implies that neuronal responses that attract atten- 
tion and gain control over behavior should differ from nonattended re- 
sponses not so much because they are stronger but because they are bet- 
ter synchronized among one another. A neuronal network model using 
synchronization rather than rate modulation of discharges as a code for 
saliency in attentional processes has recently been realized by Niebur et 
al. (1993). Following the same reasoning, shifting attention by top-down 
processes would be equivalent with biasing synchronization probability of 
neurons at lower levels by feedback connections from higher levels. These 
top-down influences could favor the emergence of coherent states in se- 
lected subpopulations of neurons—the neurons that respond to contours 
of an "attended" object or pattern. Thus, the mechanism that allows for 
grouping and scene segmentation—the organization of synchrony—could 
also serve the management of attention. The advantage would be that 
nonattended signals do not have to be suppressed, which would hitherto 
eliminate them from competition for attention. Rather, cells could remain 
active and thus be rapidly recruitable into an assembly if changes of af- 
ferent activity or of feedback signals modify the balance among neurons 
competing for the formation of synchronous assemblies. 

In a similar way shifts of attention across different modalities could be 
achieved by enhancing selectively synchronization probability in particu- 
lar sensory areas and not in others. This could be achieved, for example, 
by modulatory input from the basal forebrain or nonspecific thalamic nu- 
clei. If these projection systems were able to modulate in synchrony the 
excitability of cortical neurons distributed in different areas this would 
greatly enhance the probability that these neurons link selectively with 
each other and join into coherent activity. Such linking would be equiva- 
lent with the binding of the features represented in the respective cortical 
areas. Again, this view equates grouping or binding mechanisms with 
attentional mechanisms. The "attention" directing systems would simply 
have to provide a temporal frame within which distributed responses can 
then self-organize toward coherent states through the network of selective 
corticocortical connections. In doing so the attentional systems need not 
themselves produce responses in cortical neurons. It would be sufficient 
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that they cause a synchronous modulation of their excitability. It is con- 
ceivable that the synchronous field potential oscillations that have been 
observed in animals and humans during states of focused attention are 
the reflection of such an attention mechanism (for review of the extensive 
literature see Singer 1993). The observations that these field potential os- 
cillations are only loosely related to the discharge probability of individual 
neurons, are coherent across different cortical areas, are particularly pro- 
nounced when the subjects are busy with tasks requiring integration of ac- 
tivity across different cortical areas and stop immediately when the binding 
problem is solved—as witnessed by the execution of a well-programmed 
motor act—are in agreement with such an interpretation. 

SUMMARY 

In this section a scenario of cortical processes is developed in which re- 
sponse synchronization is used for scene segmentation, perceptual group- 
ing, and the organization of sensory representations. The essential ingre- 
dients of this model are depicted schematically in figure 10.4. The different 
boxes stand for some of the numerous cortical areas devoted to the process- 
ing of retinal signals. The arrows between them symbolize the possibility 
of a reciprocal flow of signals between areas at similar and different levels 
of the processing hierarchy. For a detailed description of the connectivity 
pattern between different visual areas the reader is referred to Felleman 
and Van Essen (1991) and Young (1992). On presentation of a complex 
visual scene the following sequence of events is assumed to occur. Neu- 
rons in VI that encounter a preferred feature in their receptive field start 
responding. At the very same time these responses become organized due 
to the action of the tangential connections within VI. Because of the spe- 
cific architecture of these connections neurons coactivated by continuous 
contours or nearby contours with similar orientation, or neurons activated 
by colinear contour segments will tend to synchronize their activity. While 
this organization proceeds in VI signals are passed on to other areas where 
similar organization processes are initiated. Of the many responses in VI 
those that became synchronized best will be particularly effective in influ- 
encing neurons in higher areas. Therefore, response constellations that fit 
the grouping criteria set by the architecture of tangential connections in 
VI will be passed on and processed further with higher probability than 
incoherent responses that also arrive from VI. Because the connections 
from VI to the other areas convey already preprocessed activity and by 
divergence and convergence allow for remapping of neighborhood rela- 
tions, the grouping criteria in these higher areas should differ from those 
in VI. Thus, it is assumed that in V5 those neurons have a tendency to 
synchronize their responses which code for the same direction of motion. 
Because the neurons in V5 have large receptive fields, and hence a great 
aperture, and are also sensitive to relative motion, this area can evaluate 
coherent motion both in relative and absolute terms over large distances. 
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While the responses in V5 become organized according to the grouping 
criteria set by the intrinsic interactions within V5 it is assumed that they 
influence via the backprojections the organization process in VI, adding 
the criterion of coherent motion to the grouping process in VI. This top- 
down influence is thought to bias synchronization probability between 
neurons in VI either toward more or toward less synchrony, depending 
on stimulus configuration. Responses to contour elements that are far 
apart and have different orientations have a low probability of becoming 
synchronized by local interactions within VI. However, if these contour 
elements move coherently their coherence would be detected by neurons 
in V5 responses to these contours would synchronize in V4 and through 
the backprojections increase synchronization probability for the respective 
set of neurons in VI. Such top-down influences from motion-sensitive ar- 
eas with large aperture could account for the observation that coherently 
moving line segments lead to synchronization of responses in area 17 even 
if the cortical representations of these line segments are much further apart 
than the maximal span of the tangential intracortical connections (see, for 
example, Gray et al. 1989). The finding that pharmacological inactivation 
of cells in motion-sensitive areas reduces considerably response synchro- 
nization to coherently moving contours in VI supports this possibility 
(Nelson et al. 1992b). Conversely, responses to nearby contours of simi- 
lar orientation that would have a tendency to become synchronized due 
to the local interactions in VI may be prevented from synchronizing by 
top-down influences from motion-sensitive areas if the contours move in 
different directions and with different speed. Such differences in motion 
trajectories have been shown to prevent neurons in motion-sensitive areas 
from synchronizing (Kreiter and Singer 1992), and hence, activity in the 
backprojections would either not favor the occurrence of synchrony in VI 
or even actively reduce its probability. Similar grouping operations are 
assumed to occur simultaneously in numerous other prestriate areas but 
according to different criteria. 

Thus, while one area explores similarities in color space, another may 
search for related textures, and yet another for similarities in retinal dis- 
parity etc. The results of these evaluations, which can all occur in parallel, 
are sent back to VI where they all contribute to the ongoing organization 
process. As a consequence, the synchronization probabilities among neu- 
rons in area 17 change and this in turn modifies the input configurations 
to prestriate areas. While the distributed search for the most probable 
grouping constellations proceeds, areas at the top of the processing hier- 
archy will also become involved. Because of the polysynaptic nature of 
the input to these areas they will probably become active only once ac- 
tivity in the preceding areas has become sufficiently coherent, but then 
responses should be organized in the higher areas according to the same 
general rules as at peripheral levels given the similarity of the intrinsic 
organization of the different cortical areas. The grouping criteria will be 
much more complex at these higher levels, however, because interactions 
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now involve neurons that represent complicated constellations of features 
such as figural components and higher order geometric shapes (Tanaka 
et al. 1991; Gallant et al. 1993). Because these higher areas are connected 
to lower areas via massive backprojections, it must be assumed that once 
coherent patterns became organized at higher levels these influence in turn 
the organization of patterns at lower levels. These processes can all occur 
nearly simultaneously as the areas concerned are all interconnected either 
directly or via oligosynaptic pathways. Thus, the process of organizing 
the neuronal representation of a scene consists of parallel operations that 
occur nearly simultaneously at different levels of the processing hierarchy 
and according to similar rules. But because of differences in the way in 
which ascending activity from VI is mapped into different areas, the eval- 
uation criteria differ for each area and increase in complexity as one moves 
away from VI. In this model decisions required for successful perceptual 
grouping and scene segmentation are thus based on a highly distributed 
voting operation where each of the different areas contributes its "point of 
view" and where both bottom-up and top-down processes are intimately 
interleaved. 

Each of the areas explores the feature space for which it is predisposed by 
its specific afferent and intrinsic connectivity, searches for coherence, and 
distributes the result of its computation simultaneously to all the areas to 
which it is connected. These messages are assumed to bias the probabilities 
with which neurons in the respective target areas are going to synchronize 
or desynchronize their discharges. 

Successful segmentation could thus be viewed as the result of a self- 
organizing process that converges toward the state of maximal probability. 
If scenes contain little ambiguity with respect to the grouping criteria that 
are stored in the architecture of connections within and between areas, the 
organization process can be very rapid and in extreme cases it may not even 
require the contribution of backprojected activity. This could even be true 
for complex scenes if they contain mainly familiar objects. In this case the 
pattern of sensory activity would match directly with the functional archi- 
tecture of coupling connections that has been shaped by previous learning 
and the system can converge nearly instantaneously into a coherent state. 
Under such conditions the system would function in a way that is not too 
different from a multilayered feedforward network. However, if the scene 
contains ambiguities allowing for several equally likely groupings or if 
it is highly unfamiliar, convergence may occur only after seconds. Such 
extreme processing times may actually be required for the segmentation 
of figures defined solely by similar disparity in random dot patterns or 
for the detection of figures hidden in background textures by camouflage 
as for example the well-known Dalmatian dog. In both cases it is helpful 
and reduces recognition time if one already knows what the figure is, a 
pragmatic proof of the notion that high level representations can directly 
influence figure-ground segmentation via top-down biasing of peripheral 
grouping criteria. In case of the Dalmatian dog, for example, recognition 
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could be sped up either by top-down propagation if previous experience 
has already installed grouping criteria at the levels where figural attributes 
are bound together or if one provided additional cues that would facilitate 
grouping by bottom-up processes at peripheral levels. If the contour ele- 
ments constituting the dog had any of the properties in common which VI 
and prestriate areas can probably evaluate and relate to one another, such 
as disparity, color, motion, orientation, and texture, segmentation would 
occur much faster. 

In this scenario a pattern is perceived as soon as segmentation is com- 
pleted and neurons have become organized in distinct, coherently active 
assemblies. In that case, their output will be sufficiently coherent to allow 
for the propagation of signals to remote cortical areas and ultimately to 
effector levels. For this to occur it is necessary not only that enough cells 
coordinate their responses, but also that the spatial distribution of these 
coherently active cells matches the "receptive field" properties of cells at 
higher levels. Just as cells in VI are selective for particular spatiotemporal 
patterns of retinal input, cells in higher cortical areas are likely to be activat- 
able only by the appropriate spatiotemporal patterns that have organized 
in more peripheral cortical areas. But in contrast to the retinal and thala- 
mic activation patterns, these cortical activation patterns are no longer a 
direct reflection of the retinal image but a result of a highly dynamic self- 
organizing process. The organization of the spatial and temporal structure 
of these patterns is initiated by the retinal input, but then it is extensively 
modified by dynamic interactions that are determined essentially by the 
functional architecture of connections linking cells within and between 
areas. The proposal is that this organization process converges toward 
coherent states in which responses that need to be related to one another 
are tagged by their synchrony. 

Following the same line of reasoning it is also possible that access to the 
level of processing where representations reach consciousness is gated by 
coherence. As proposed by Crick and Koch (1990a) it is conceivable that 
only those activation patterns (assemblies) reach the threshold of conscious 
awareness that are sufficiently organized, that is coherent. 
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"I "I       What Form Should a Cortical Theory Take? 

Charles R Stevens 

Although neurobiology has accumulated an impressive body of informa- 
tion about neocortical structure and operation, the nature of the mathe- 
matical computations performed by cortex remains a mystery. A descrip- 
tion of these computations is equivalent to developing a theory of cortical 
function, and the construction of such a theory is necessarily one of neu- 
robiology's central problems. Although this chapter deals with cortical 
theory, its goal is much less ambitious than proposing what cortex com- 
putes. Rather it attempts one of the first steps in that direction: to outline 
what form a cortical theory should take. 

Why try to define the form for such a theory when we surely are a long 
way from being able to develop an adequate theoretical structure? A strong 
form of the argument for this approach is as follows: A particular cortical 
region—primary visual cortex, for instance—performs some computations 
on its inputs to determine what information is sent to other areas. The types 
of computations one tends to think of are Fourier or Gabor transforms, cal- 
culation of cross-correlation functions, or deconvolutions, but the actual 
computations may not be ones that are currently familiar. As a prerequisite 
for understanding the role of a particular region in the overall cortical pro- 
cessing of information, then, we must identify the computations carried out 
by that region. And before these computations can be recognized, we must 
decide what sort of mathematical machinery is to be used for their charac- 
terization. For example, should we make a probabilistic description, or is 
a deterministic one adequate? Identifying the nature of the theory we seek 
is essential, because this determines, to a great extent, what sort of experi- 
ments are needed and what further theoretical approaches should be tried. 

FOUR REQUIREMENTS FOR A THEORY OF CORTEX 

The first step in defining the nature of a cortical theory is to identify some 
of the theory's requirements. Here four requirements for a theory of cortex 
are proposed and discussed. 

Before a complete cortical theory could be developed, one must know: 
How many different types of cortex are there? That is, how many theories 
are required? Clearly, very many functionally distinct cortical regions can 



be recognized, over 30 in the visual system alone (Felleman and Van Essen, 
1991). But functionally distinct areas may not be computationally unique. 
For example, the functional differences between areas (e.g., VI vs. MT) 
might reside more in the nature and distribution of cortical inputs and on 
the disposition of cortical outputs than in the operations performed by the 
cortical circuits on the information they receive. Specifically, functionally 
distinct cortical regions, like VI and MT, might perform identical mathe- 
matical operations on different sorts of inputs. This general notion has been 
proposed repeatedly (Lorente de N6 1949; Creutzfeldt 1977; Powell 1981; 
Eccles 1984), and is supported by a variety of developmental, anatomical, 
and physiological observations. 

If "type of cortex" refers to the mathematical computation performed, 
rather than to the some functional difference between areas revealed, say, 
by different receptive field structures, one might believe that only a single 
major computational type of cortex exists; this can be called the "unitary 
theory." Alternatively, activity-dependent rewiring of cortical circuits (see, 
for example, Shatz 1990) could modify the computations performed by 
even initially uniform cortices, so that the character of some mathemati- 
cal operation might vary continuously across even an apparently uniform 
cortical region like primary visual cortex; this other limiting case could be 
termed the "continuous diversity theory." Most hopeful for neurobiology 
is the unitary theory: if this were true, understanding the basic computa- 
tions carried out by any cortical area would then provide an answer for 
all of cortex. Unraveling cortical function in this limit would simply (!) 
amount to learning how inputs and outputs are mapped. 

The first requirement for the framework of a cortical theory, then, is that 
it must be able to accommodate the spectrum of possibilities, from the 
unitary to the continuous diversity views. 

How many inputs and outputs are present in cortex? The answer de- 
pends on how many classes of neurons are present. Currently available in- 
formation (see, for example, Purves et al. 1992) indicates that the number of 
input and output types should be greater than one, but not a large number, 
perhaps 10 to 100. The cortical inputs and outputs must thus be described 
by vectors whose dimensions are to be determined experimentally. Note 
that inputs include information sent to one cortical region from another 
one and that outputs are defined in any convenient way. At this stage, a 
cortical theory must be able to accommodate an arbitrary number of inputs 
and outputs. This constitutes an additional part of the first requirement. 

The second requirement is that the theory be an explicitly probabilistic one 
because synaptic transmission is a stochastic process (Katz 1969): Neu- 
rotransmitter is released at axon terminals in packets—called quanta—so 
that the total effect of a nerve impulse arrival is an integral multiple of 
the smallest effect, the one produced by a single quantum. The quanta, 
however, are released probabilistically according to a Poisson process (see 
Barrett and Stevens 1972) with a Poisson rate A(f) that depends on time t. 
Normally, \{t) is very small, but just after a nerve impulse arrives at the 
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synapse, the release rate increases transiently. The net effect is that the 
size of the postsynaptic response due to the arrival of a nerve impulse at 
an axon terminal varies at random. The specific need for a probabilistic 
theory in brain arises from the following considerations. 

The high signal-to-noise ratio of whole cell recording and the use of 
methods that cause localized release of neurotransmitter have permitted 
the characteristics of individual quanta to be determined for central neu- 
rons (Bekkers and Stevens 1989; Edwards et al. 1990; Bekkers et al. 1990; 
Manabe et al. 1992; Raastad et al. 1992; Silver et al. 1992). Further, this 
knowledge of quantal size, and its variation, has made possible a rigorous 
quantal analysis of central synapses (Bekkers and Stevens 1989,1990). The 
conclusion of these investigations is that the probability of release at an 
individual synapse is generally very low, about 0.1 to 0.5. 

Sometimes the number of synapses one neuron makes with another 
can be determined: in cortex, any particular neuron generally seems to 
receive only one or two synapses from any other neuron. In hippocampus, 
for example, Andersen (1990) estimated that a given axon usually makes 
only a single synapse (average estimated to be 1.3) on its target cell. The 
lateral geniculate axons that project to visual cortex also make only one or 
a few (up to about eight) synapses on their targets (Freund et al. 1985). 
Taken together, then, these observations indicate that when a pair of cells 
is connected, the communication link between them is quite unreliable for 
a single impulse arrival, although it is predictable in a statistical sense. 

Experimental confirmation of this conclusion is available for hippocam- 
pus and primary visual cortex. When the intensity of a stimulus applied to 
axons that project onto CA1 neurons is reduced to low levels—intensities 
perhaps adequate for stimulating just a single axon — only a small fraction 
of stimuli (about 0.1 to 0.5) produces postsynaptic currents, that is, about 
five out of ten of the nerve impulses generated by a cell produce no post- 
synaptic response at a given target neuron. These "minimal"stimuli may 
actually stimulate more than one axon, and each axon may make more than 
one synapse with its target cell. In any event, two conclusions are secure 
for hippocampus: (1) the release probability of about 0.5 estimated in this 
way is an upper limit for the actual release probability and (2) the effect of 
one neuron on another is generally small and uncertain. This conclusion is 
supported in a general way by the correlational analysis by Tanaka (1983), 
which shows that even when geniculate and VI receptive fields overlap, 
the extent to which a geniculate discharge predicts a cortical neuronal dis- 
charge is only about 0.1. Note that although the Tanaka result is difficult 
to connect directly to our argument because of the complexity of his ex- 
perimental situation and the indirect nature of his measures of cell-to-cell 
connections, his observations do support the notion that a single input has 
only a relatively small effect on its target. Because transmission at a sin- 
gle synapse is so unreliable, and because each neuron makes only a few 
synapses with its target cell, neuron to neuron communication must also 
be quite unreliable: the random nature of synaptic transmission makes 
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neuronal behavior uncertain and thus networks of such neurons must be 
described probabilistically. These statements apply, of course, to many, 
but probably not all, cortical neurons. Examples are known (Purkinje cells 
in the cerebellum, for example) in which one neuron makes thousands of 
synapses on its target cell, and statistical fluctuations in synaptic strength 
are very small. 

Now we begin the background discussion for the third requirement, 
which is, we shall argue, that the theory should be continuous and should 
treat the cortex in a coarse-grained way One might think that, ideally, 
a cortical theory should start from details of neuronal properties and the 
principles that determine connections of cortical circuitry, and then derive 
from these a description of the computations performed by each neuron 
and thus by the network as a whole. But such a cell-by-cell description 
is probably neither feasible nor desirable. A cubic millimeter of cortex—a 
good candidate for the size of a computational unit—contains 105 neurons, 
109 synapses, and two miles of axons; each neuron receives about 104 

synapses and communicates with about 104 other neurons (see White 1989; 
Stevens 1989; Braitenberg and Schüz 1991). Most of these connections are 
intracortical (Peters 1987). Furthermore, the average effect one cortical 
neuron has on another is quite small, ranging from less than 50 /iV to 
several millivolts (Thompson et al. 1988; Mason et al. 1991). Because single 
neurons have small and uncertain effects on other neurons, the cortical 
description must be carried out in terms of neuronal populations rather 
than at the level of individual cells. 

A consideration of cortical anatomy points to the nature of the neuronal 
populations that form the natural basis for a cortical theory. The argument 
will be made in terms of cat primary visual cortex layer 4, but the same 
conclusions are reached for any cortical region. Layer 4 neurons have 
a dendritic tree with a diameter of about 0.3 mm (Martin 1984). Pick a 
particular neuron as a reference and ask: how many layer 4 cells have 
dendritic trees that overlap that of the reference cell and thus potentially 
have access to the reference cell's synaptic input? Layer 4 is about 0.3 
mm thick and cortex has a density of about 105 neurons per mm3 (Powell 
1981). All of the neurons in layer 4 that fall within a cylinder with a radius 
of about 0.3 mm will have overlapping dendritic trees. The number of 
neurons that overlap with the reference cell is thus 7r(0.3)2(0.3)(mm3) times 
(105)(cells/mm3), or approximately 8000 neurons; within this population, 
a number of distinct neuronal types might be found. Each type could have 
different input patterns, but still a significant fraction of the population 
should represent essentially the same information. 

In addition to the fact that overlapping dendritic trees tends to define 
equivalence classes of neurons (here, an equivalence class would be all of 
the neurons that would potentially have anatomical access to a particular 
set of axon terminals), a given axon generally arborizes over a considerable 
region of cortex with an arbor diameter of perhaps 0.5 mm (Martin 1984), 
and forms about 2000 boutons, each of which makes one or two synapses 
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(Freund et al. 1989). Thus, neurons of the same functional class and in 
the same cortical layer share nearly the same potential synaptic inputs 
whenever their cell bodies are separated by several hundred microns or 
less, and the degree of similarity in their inputs increases as the distance 
between cell bodies decreases. In cat primary visual cortex, about one 
third of the neurons whose receptive field overlaps with that of a particular 
geniculate neuron receive input from the geniculate cell (Tanaka 1983). 

Altogether, these observations—together with the stochastic nature of 
neuronal behavior—suggest that the physiologically meaningful signal 
from cortex should be the average firing rates of a population of perhaps 
100 to 1000 neurons near a particular cortical site. The behavior of cortex 
at a particular point would then be described by the firing in a population 
of neurons. The total firing that represents this population would be de- 
termined by a weighted average of the appropriate neurons in the cortical 
region that surrounded the point, perhaps with weights that are described 
by a spatial Gaussian. As one moved from one cortical location to an ad- 
jacent one, the neuronal population whose firing defined the state of the 
new cortical point would overlap with the previous population so that the 
variables describing cortical state would vary continuously with cortical 
position. Features of cortical structure such as ocular dominance columns 
are treated with a straight forward extensions of these notions in which the 
cortex is viewed as interleaved continuous regions. 

The third requirement for a theory of cortex, then, is that it must be coarse- 
grained and treat cortical inputs and outputs as continuous variables that 
represent the summed behavior of appropriately sized and selected neuron 
populations. 

Although individual neurons behave probabilistically, if the population 
of cells needed in this coarse-grained description were sufficiently large, 
a deterministic description would suffice. Indeed, deterministic theories 
probably will be adequate for many purposes, like the Hartline-Ratliff 
equation described below. But in certain situations—the treatment of 
activity-dependent modification of neuronal circuit connections discussed 
later, for example—the stochastic nature of brain operation will have to be 
treated explicitly. Furthermore, some of the essential calculations made by 
cortex, like the computation of cross-correlation functions, may well turn 
out to require a probabilistic description. 

Finally, the prominent recurrent nature of lateral intracortical connec- 
tions and relatively wide spatial distribution of cortical inputs mean that 
the cortical output at any one location must depend on both the input and 
output over relatively great expanses of cortex (for example, Gilbert and 
Wiesel 1979). That is, the output at any one point must be a functional 
of both inputs and outputs (for a brief description of functionals and the 
relevant literature, see Stevens 1987). This is the fourth requirement. 

What are the chances that these are the right four requirements for a start 
on a theory for cortex? Not great, of course, but little explicit attention has 
been given to the types of theories we should attempt, and this issue seems 
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to be an important one: the requirements selected should be examined and 
debated, alternatives explored, and questions raised should be addressed 
by experiments. If, for example, theories that use continuous mathematics 
are unsuitable, that would be important information. 

SIMPLEST VERSION OF THE GENERAL APPROACH 

According to the requirements outlined above, the goal of a cortical theory 
is to develop an equation, using continuous mathematics, for the proba- 
bility functional of cortical outputs given the inputs. For simplicity in this 
initial description, the cortex will be considered to be one-dimensional, 
with cortical position specified by the variable x; the temporal coordinate 
will be suppressed. Further, only a single input s(x) and a single output 
f(x) will be used for this introductory treatment. The input and output at 
position x represent the firing rates of input and output neurons averaged 
over a small cortical volume. What is needed to describe this simple cortex, 
then, is the functional P\f(x); s{x)] that specifies the probability of finding 
the output/(x) (note that this function represents the entire output of the 
cortex) given that the input of the cortex is described by the function s(x). 
This sort of formulation meets the four requirements: The macroscopic 
nature of the theory comes in the coarse-grained treatment used to define 
input and output, the inputs and outputs are treated as continuous func- 
tions, the requirement for a probabilistic formulation is explicit, and the 
effects of lateral connections reside in the fact that P is a functional. 

A starting point for a useful description of cortex is the identity 

P]f(x); s{x)] = e~sV;s] 

where S\f, s] = - ln(P\f(x); s(x)]), by definition. The motivation for this 
definition is as follows: Under some circumstances, for example, an input 
s(x) that varies only very slightly across the cortex, a functional power se- 
ries expansion in the arguments/(x) and s(x) should approach an accurate 
representation of cortical function. By transforming P is this way, we de- 
fine a slowly varying functional that is more amenable to a power series 
approach; this is the case we want in the limit of inputs that are sufficiently 
close to a constant. 

The functional S contains a complete description of the cortical operation. 
Cortical processing, however, occurs at specific locations, so S needs to be 
recast in a form that makes the local nature of the description explicit. 
Expand S in a functional power series (Volterra 1959) 

S\f; s] = A0[s] + IdxAy[s; x]f{x)dx + f f dxdx'A2[s; x,x']f(x)f(x') + ■■■ 

where the Ak[s,x,x'...] are functionals of s(x) and functions of x. Now 
rearrange the terms so that 

S]f;s] = JL\f{x); s{x),x]dx 
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where L is defined as 

L\f;s,x]=f(x) Ai(x) + f dx,A2[s; x,xTjftf) + 

Because L provides a local specification of cortical function, it will be called 
the cortical characterization functional. Note that the AQ functional has been 
excluded because this term would appear in the normalization of the prob- 
ability functional. Now the probability functional that describes the cortex 
is just 

P]f(x);s(x)] ~e-fL[f's'x]dx 

and the job of a cortical theory is to identify the cortical characterization 
functional L. So far, of course, the only physical content has been the four 
initial requirements in addition to the notion of a formulation in terms of 
local cortical properties. The extent to which this sort of formulation is 
useful depends on developing ways to determine L. 

THE SIMPLEST CORTICAL CHARACTERIZATION FUNCTIONAL 

An Approximate Cortical Characterization Functional 

The preceding formulation was designed for a power series expansion 
approach. The simplest way to get closer to L, then, is to expand it in a 
functional power series and discard the higher order terms. Because the 
functionals to be expanded depend on both / (x) and s(x), it is easier to 
keep things straight if S\f; s] itself, rather than L, is expanded; L can then 
be recognized in the resulting expressions. Expand S to second order in 
both of its arguments: 

S[f; s] = A0 

+ / dxA\(x)f(x) + / dxA2(x)s(x) 

+\ f f dxdx'K(x,x')f(x)f(x') 

+1 / I dxdx'A3(x,x')s(x)s(x') 

here the Ak, K, and M are functions that arise in the Volterra expansion. 
Each of the Ak terms vanishes: they contribute to the probability of an 
output/(x) without depending on that function, so they are included in 
the normalization of the probability. The final expression, to second order, 
for the probability functional P is thus 
P\f(x); S(X)] ~ e-l J Jdxdx'f(x)\f(X')K(x-x')+s(x')M(x-x')] 

Note the additional assumption that the cortical circuitry is spatially uni- 
form across the particular cortical region being treated so that the integrals 
are convolutions. The cortical characterization functional L can be identi- 
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fied in this approximation as 

L]f; s,x]=f-^-J dx' \f(x')K(x - x') + s(x')M(x - x')] 

The equation for P defines the probability of any output for a given 
input; K and M are functions that arise in the Volterra expansion. In this 
approximation describing cortical operation involves discovering the form 
of two functions, K and M. 

Experiments generally measure the average output to a particular stim- 
ulus, so an expression for the average response must be extracted from the 
equation to provide a link between theory and experiment. 

Because probabilities are specified, the equation for P also describes 
the output noise for no (or constant) input. In this preliminary treatment 
the time dependence of inputs and outputs has been suppressed, so the 
resting output noise would be spatial variations in neuronal firing f(x) 
predicted for an unstimulated cortex. The statistics of these resting output 
fluctuations refer to an hypothetical ensemble of identical corticies. The 
average response and resting fluctuations are considered in turn. 

Average Response 

The average response/(x) for a given s(x) is found, by definition, from the 
functional integral 

f(x) = Jvfe-fdxLf(x) 

Here Vf is a volume element in function space and is related to the Wiener 
measure (see the appendix of Stevens 1987 and the references cited there). 
Although this functional integration can be carried out for the simple L 
produced by the power series approach, an easier way to the desired 
result—and one that works in a wider variety of situations—is to find 
not the average, but rather the most probable response. In this particular 
situation, the average and the most likely responses happen to be iden- 
tical (because, as will be seen, the fluctuations are Gaussian). The most 
likely response is found by discovering the output/(x) that maximizes the 

e~Jx term, which is equivalent to finding the/(x) that minimizes / dxL. 
The extremum is found from the Euler-Lagrange equation 

6 
Sf(0 

The functional differentiation gives, for the simple L obtained above, 

■^-)jdxL = jdx [l/?(x)K(Z -x) + s(x)M(Z - x) 

so that 

I L]?;s,x]dx = 0 

= 0 

1/ JdxJ(x)K£ -x) = - J dxs{x)M{i - x) 
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This equation relates the most likely response f(x) to the cortical input 
s(x); note that both the functions K and M, which arise in the Volterra 
expansion, are needed to determine the response, and also that expansion 
of L to second order gives a linear relation between input and average 
output. 

Since the most likely response/ is described by linear equations, the 
appropriate characterization of a cortex in this limit is the Green function, 
defined to be H(x); this function would, of course, define the receptive 
field structure of sensory cortical neurons. The Green function satisfies the 
equation [because s(x) would be taken to be a delta function] 

/ 
dxH(x)K(£ -x) = -M(0 

so that (take the Fourier transform) 

where .F-1{-} denotes the inverse Fourier transform and the tilde indicates 
the Fourier transformed function. 

Fluctuations 

In addition to the average response, our probabilistic formalism also de- 
scribes the cortex's random output fluctuations in the absence of an input. 
If s(x) = 0, the basic equation reduces to 

P\f(x); 0] = e~*//ÖI'M(*^') 

This equation describes a Gaussian random process (Feynman and Hibbs 
1965) with a covariance function C(x) that is the functional inverse of K; 
that is, 

/ 
dx'K(x')C(x - x') = 6(x) 

specifically, the covariance function is given by (take Fourier transforms of 
the preceding equation) 

C(x) = ?-1{R-1} 
Thus, the spatial fluctuations in the output should be Gaussian, and the 
statistical structure of these fluctuations is specified by the inverse of the 
function K. 

Because the Green function and the covariance both involve K, the struc- 
ture of the spontaneous fluctuations and the driven response are related 
by a sort of fluctuation-dissipation theorem. Specifically, if K is eliminated 
between the equations for the Green function and the covariance, the result 
is 

H(x) = Jd£M(OC{x-0 
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This equation relates the average evoked response (through the Green func- 
tion H) to the spontaneous output fluctuations about the mean (through 
the covariance function for the fluctuations C). 

A Specific "Cortex" 

How might the functions K and M be determined? These functions are, of 
course, dependent on the precise nature of the neural circuits that are being 
described and information about them must ultimately come from obser- 
vations on cortical structure and function. The formulation developed here 
should apply to any essentially cortex-like network with a well-defined in- 
put and output. In particular, it should apply to the (one-dimensional) 
Litnulus eye, a neuronal system whose descriptive equation is already 
known (Ratliff 1965). For the Limidus eye, the function M that describes 
the distribution of the input (light) should be a delta function, so that the 
term - Jdxs(x)M(£ -x) = ms(£), for some constant m. An ommatidium at 
position £ in the eye is excited according to the input at that location [ms(Q] 
and is subject to lateral inhibition by the surrounding cells. The magnitude 
of the inhibition at location £ depends on the response of the inhibiting cell 
at x and on its distance (x - £) from the neuron being inhibited according 
to the function G{x - £)• This means that the function K is given by 

K(x-0 = 6(x-0-G(x-0 

with G specifying the lateral inhibitory interactions, so that the equation 
describing the eye's behavior would be the Hartline-Ratliff equation 

HO = ms(0 - I dxf(x)G(x - 0 

Finally, anatomical constraints would make G a Gaussian: the distribution 
of inhibition in Limidus eye is rotationally symmetric and the formation of 
inhibitory connections in the x and y directions should be independent; the 
functional equation that results from these constraints has a Gauss function 
as its solution. In summary the structure of the Limidus eye, together with 
the existence of rotationally symmetric lateral inhibition, serves to define 
the functions K and M, and the formalism then yields the Hartline-Ratliff 
equation. 

For the special case of M(x) = m6(x) (this is the situation for the Hartline- 
Ratliff equation), the Green function is just proportional to the covariance; 
this is the usual fluctuation-dissipation theorem. 

Fluctuations in Development 

The relation between the Green function and the covariance—this relation 
is a natural consequence of the inherently probabilistic nature of synap- 
tic transmission—could be of importance for brain development (Mas- 
tronarde 1983). Activity-dependent modification of neural circuits has 
been proposed to be critical for the shaping of the final pattern of con- 
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nections that determines what computation a circuit performs (Stent 1973; 
Changeux 1976; see Shatz 1990). The existence of these fluctuations at one 
level, with a correlation function that is related to the receptive field struc- 
ture, would thus provide the appropriate activity during development 
in utero (when patterned input to cortex related to external stimulation 
should be minimal) for the selforganization of circuits at the next level. 

EXTENSIONS OF THE SIMPLEST CASE 

In the preceding sections, the cortex treated was one-dimensional, the time 
dependence of its operations was suppressed, cortical computations were 
supposed to be linear (functional expansion of L to second order), and 
only a single input and output cell type was permitted. The goal now is to 
remove these restrictions. 

Including Additional Coordinates (Space and Time) 

The extension to include two spatial dimensions and time is immediate; 
the cortical characterization functional now depends on two spatial dimen- 
sions (specified by the vector x) and on time (t): 

P\f(x,tyis(x,t)] = e-Iä2xIdtL[f:s'x't] 

so that L becomes a functional of/(x) and s(x) and a function of x and t. 
When L is approximated by carrying out a Volterra expansion and neglect- 
ing terms higher than second order, the probability functional becomes 

P\f(x, t); S(X, t)] = e'1* /d2*dV /rffdt'/(x,0[/(x',(')K(x-x',(-(')+s(x',f')M(x-x',t-t')] 

The specialization of this equation to the Limulus eye gives 

/(x, f) = ms(x, t) - f cfx' fdtG(x-x',t- t')j{x>', t') 

with the inhibitory influence function G known from experiment to be 

G(x,t) = ke-"*e-bt 

k, a, and b are constants. 

A Nonlinear Cortex 

Up to this point the Volterra expansion has been carried out to second or- 
der in both/ and s. Expansion to this order in the output fix) means the 
fluctuations are described by a Gaussian process, whereas the s(x) expan- 
sion relates mean output to input by a linear operator. One might expect 
fluctuations still to be Gaussian even for a nonlinear cortex. To treat this 
case, the Volterra expansion must be carried out to higher order in s—here 
third order is used as an example, although any order is possible—but 
second order in/ to maintain Gaussian fluctuations around the mean. If 
fluctuations happened to be non-Gaussian, the expansion could be carried 
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out to higher order terms in/, but this would entail severe mathematical 
difficulties. 

To simplify the equations, the cortex will again be one-dimensional and 
the following convention will be adopted: what was represented earlier as 
integrals, for example, 

I fdxdx'K(x,x')f(x)f(x') 

will now be expressed in operator notation: Kf2. A third-order term in- 
volving an operator R would be 

Rfs2 = l\\ dxd¥dzR(x, y, z)f(x)s(y)s(z); 

often the integrals will be convolutions, but they need not necessarily be. 
With this notation, a Volterra expansion of S\f; s] to second order in/ and 
third order in s is 

S\f; s] = \Kp- - M/s + Afs2 + Iß^s 

where A and B are operators that arise in the functional expansion, and 
terms that vanish into the normalization have not been included. Carry 
out the integration over one of the variables in the last two terms and define 
two new operators: 

B' = Bs 

A' = As 

note that ,4' and B' are functionals of s. With this notation, S can be written 

S\f;s] = l(K-B')f2-(M-A')s 

Again, 

P]f,s] = e-iW-B')fHM-A')s 

represents a Gaussian process with a covariance function 

C = (K - B')_1 

The inverse here is in the functional sense, and the covariance now is a 
functional of the input s, even if the input is uniform across the cortex. 
Thus, for a nonlinear cortex, the spatial correlations would change with 
the input's magnitude and pattern. As before, the most likely response/ 
to a given input s can be found through the Euler-Lagrange equations and 
is 

?=[(M-A')C]s 
The impulse response, therefore, is just 

H = (M- A')C 

this is a generalized fluctuation-dissipation relation, but now the impulse 
response (called the Green function in the earlier discussion of the linear 
cortex) is more complicated because A' and C are functionals of the input s. 
This would mean that the receptive field structure of a nonlinear sensory 
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cortex could vary according to how it was measured (delta function input 
vs. noise, for example). 

Multiple Inputs and Outputs 

For simplicity, the treatment so far has considered only a single input and 
output. Here the theoretical framework for a cortical theory is extended to 
include multiple inputs and outputs. For example, primary visual cortex 
would require at least on- and off-center inputs for color coded cells, x 
and y cells, and left and right eye cells; the total number of inputs would 
thus be between one and two dozen. Because color and parvocellular and 
magnocellular pathways (each with on- and off-center varieties) project 
separately from primary visual cortex, at least about the same numbers of 
outputs would be necessary. 

Use of the functional Fourier transform simplifies a treatment of multiple 
inputs and outputs. An A/-dimensional functional Fourier transform of a 
probability functional P[f] is defined by 

*[w]= /V/P[f]<r''/fwd*, 
where f is an N-vector of input functions and w is a vector of transform 
functions. The input and output functions are treated here as if they de- 
pended only on a single spatial variable, but generalization to two spatial 
variables and time is immediate. Note that 3>, known as the characteristic 
functional, depends on the vector of transform functions w. The character- 
istic functional is especially useful because the mean output, covariance of 
the output, etc. can be found from it immediately. For example, 

*%\   = hNfm)P[i\ L^;(OJW=0    J 
which is, by definition, the mean^(£) of the/th output. Similarly, 

**       1       = f VNf fjiOMOPld 
w=0      •' 

the covariance function (assuming, for simplicity, a zero mean). Thus, 
moments of the outputs are readily found if $ is known; fortunately, the 
characteristic functional for a Gaussian process, the type of process that 
results when the cortical characterization functional is expanded to second 
order in the outputs, is not difficult to calculate for multiple output and 
inputs functions. 

What is required is a generalization of the single input-output cortical 
characterization functional 

L]f;s,x]=f-^J dx' \f(x')K(x - x') + s{x')M{x - x')} 

The functional L can be written in the shorthand operator notation em- 
ployed above as 

L\fs,x]=f-Q[Kf + Ms] 
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and the S functional, in this same notation, is 

S\f;x] = ±[Kf2 + Mfs] 

To generalize to multiple inputs-outputs, consider vectors of output and 
input functions f and s, and matrices K and M that contain operators. For 
example^ would be the output from the/'th class of cortical neuron and the;', 
kih operator (matrix element) would be interpreted, for a one-dimensional 
cortex with multiple inputs and outputs, as 

j) v* = J Jdxdx' */*(* - *')/;(*)/*(*') 
The S functional for such a cortex is just 

S[f;s] = i[£Kf + sM£] 

and the probability functional is 

P[f;s] = e-5ffKf+sMfl 

The problem is to identify the covariance functions and mean associated 
with the probability functional. 

The starting place is the corresponding characteristic functional 

$[w] =   j pNy e-W
K{ +sMf]-i/*rf., 

The idea is to simplify this expression so that covariance and mean are 
apparent. This is done by completing squares. That is, the vector of output 
functions f is transformed to a new vector in such a way that the result 
contains only linear and squared terms in the transform variable w that 
can be immediately identified. 

For a vector of constants a, transform f according to f —► f = f - a. When 
this change of variables is made, some terms in the expression for $[w] 
contain only f and the operator matrix K, some do not contain the vector of 
functions f', and some — the cross-terms — contain combinations of f with 
s, a, and w. The vector a can be chosen to make these cross-terms vanish, a 
condition that makes a = -(iw - sM)C, where C = K_1. The combinations 
of elements in C that arise from K are most easily computed, when cortex 
is uniform (so convolutions can be used), with Fourier transforms. For 
example, Coo might be given (as it is for a cortex with just two outputs) 
by KU/{KQQKI\ - JC^); this would mean that Coo is found from the inverse 
Fourier transform of the Fourier transformed K entries in the algebraic 
expression. The result of eliminating the cross terms by the appropriate 
selection of a is 

$[w] = e~ I [wCw-2.sMCw+sMCMs]     f X>Nf'e~ 5 jf'Kf 

(Note that VNf = VNf because a is a constant with respect to differential.) 
The integral and the exp(-lsMCMs) term vanish in the normalization so 
the final expression for the characteristic functional is 
$[w] = e-5[wCw-2.sMCw] 
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The mean can be recognized as 

f = sMC 

and the covariance functional is given by C. Thus, the same formalism can 
be easily generalized to corticies with multiple inputs and outputs, and a 
generalized fluctuation-dissipation relations still holds. 

HOW CAN THE CORTICAL CHARACTERIZATION FUNCTIONAL BE 
FOUND? 

If the formalism described here is an appropriate one, then the job of a cor- 
tical theorist is to specify the cortical characterization functional. A power 
series approach gives the form of the equations, but the number of inputs 
and outputs, and the nature of the functions that appear as a result of the 
Volterra expansion must be determined by biological and other constraints. 
In the simple Limulus eye example, anatomical and electrophysiological 
investigations revealed the number of inputs and outputs (one) and the 
existence of lateral inhibitory connections; symmetry conditions identify 
the inhibitory influence function as Gaussian. 

Doubtless a cortical theory will involve the same sort of anatomical and 
physiological information combined with general constraints. Analysis 
of receptive field structure will partly specify the unknown functions (for 
example, Reid et al. 1991), but additional constraints—derived from prin- 
ciples like minimal redundancy (Atick and Redlich 1992), scale invariance, 
and other symmetries—will probably be required as well to fill in gaps left 
by incomplete information about cortical structure and function. The ini- 
tial attempts may have to restrict the problem in some ways, for example, 
by considering an appropriately chosen subset of the inputs and outputs 
and by dealing with only a single cortical layer or sublayer (like primary 
visual cortex layer 4). 

An alternative approach is to postulate the general nature of the cortical 
computation. For example, one might suppose that the job of cortex is to 
solve an underconstrained inverse problem (Poggio et al. 1985). Consider, 
again for simplicity, a one-dimensional cortex with time suppressed, and 
suppose that the desired output f(x) is the one that minimizes (Af - Bs)2 

over the entire cortex for linear operators A and B. This problem might be 
ill-posed so that it must be regularized by adding (Rfj2 for another linear 
operator R. The computation made by cortex then is to find the output/ 
that satisfies the equation 

J^Jdx[(Af-Bs)2 + (Rf)2}=0 

If the S functional is taken to be 

S\f;s] = Jdx[(Af-Bs)2 + (Rf)2] 

then the most likely response/(x) will be the one that the cortex is supposed 
to compute. This means that the cortical characterization functional L can 
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be immediately identified for this case as 

L\f;s,x) = (Af-Bs)2 + (Rf)2 

Examination of this last relation reveals that it has just of the same form as 
the expression for L developed earlier with the power series approach when 
the expansion was carried out to second order in both/ and s. Specifically, 
if a uniform cortex is assumed so the integral operators are represented by 
convolutions, the S functional will be 

S]f; s] = 1j Jdxd^vA(x - QA(x - v)f(Of(v) 

-lj 11 dxd^dV A(x- OB(x - r))f(Os(v) 

+ j J j dxd^dV R(x - OR(x - v)f(Om 
+ (Bs)2 

Now, define 

K(Z -V)= fdxA(x - QA(x - r?) + f dxR(x - OR(x - v) 

and 

M(4-r/) = JdxA(x-OB(x-ri) 

With these definitions, the S functional is written, up to a functional that is 
independent of/ and thus vanishes in the normalization of the probability 
functional, as 

S\f; s] = j fdtdr,K(Z - v)f(Om -2 j Jdtdr,M{Z - v)f(Os(v) 

This is, of course, of just the same form as obtained earlier by expansion of 
S to second order in/ and s. If the inverse problem to be solved involves 
just linear operators, it is thus equivalent to approximate (second-order) 
theory developed above. If the operators are nonlinear, however, then the 
situation would be more complex and the relationship to the power series 
approach would have to be established for each specific case. Whether the 
operators A, B, and R are linear or nonlinear, this approach permits the 
cortical characterization functional to be identified immediately. 

To reiterate, the goal here has not been to formulate a theory of cortex 
but rather to identify the form that any such theory should take. Insofar as 
the arguments are correct, this initial step in considering cortical theories 
has defined the problem to be solved (specify the cortical characterization 
functional) and has indicated some of the paths that might be followed to 
do this. 

The real challenge, of course, is to decide what requirements for a cortical 
theory are the correct ones and then to use the resulting theoretical frame- 
work to increase our understanding of how the brain works. Whether 
this will be possible is by no means obvious. Nevertheless, this effort is 
already producing beneficial results: our laboratory is carrying out exper- 
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iments designed specifically to answer questions posed in the discussion 
of the requirements for the theory. 
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*| O      Sequence Seeking and Counterstreams: A 
J-^B     Model for Bidirectional Information Flow in 

the Cortex 

Shimon Ullman 

Considering the wide range of functions it performs, the mammalian neo- 
cortex is notably uniform in structure. Although cytoarchitectonic dif- 
ferences exist between neocortical areas (e.g., the striate cortex in certain 
primates, or the giant Betz cells in motor cortex), in terms of laminar or- 
ganization, number of cells, cell types, and general connectivity patterns 
there are close similarities among different cortical areas in the same ani- 
mal, and across species (Rockel et al. 1980; Van Essen 1985, Martin 1988; 
White 1989). In the words of Martin (1988), "it would take an expert to 
distinguish rat frontal cortex from sheep parietal cortex, or cat auditory 
cortex from monkey somatosensory cortex." 

This structural uniformity has suggested the possibility of common com- 
putational principles that may be used, with suitable local variations, 
throughout the neocortex (Creutzfeldt 1978; Barlow 1985; Crick and 
Asanuma 1986; Sejnowski 1986). Several proposals have been made re- 
garding the possible general operation of the neocortex (Marr 1970; 
Creutzfeldt 1978; Edelman 1978; Barlow 1985; Grossberg 1988; Mumford 
1991,1992; Poggio 1990; Ullman 1991). 

In this chapter, a model for some general aspect of information flow in 
the neocortex is proposed. The proposed computation is quite general in 
nature, but the focus of the discussion will be on vision and the visual 
cortex. The first part of the chapter outlines the general computation pro- 
posed by the model, and the second its biological implementation. The 
model is used to account for known features of cortical circuitry, and to 
derive a number of new predictions. 

SEQUENCE SEEKING AND COUNTERSTREAMS 

A general task frequently faced by the brain is one of establishing a link 
between two different representations. For example, in visual recognition, 
the task involves establishing a connection between an incoming pattern 
and stored object representations in visual memory. The two will often 
fail to match exactly, due to changes in size, position, viewing direction, 
etc. A common view is therefore that prior to the matching the input is 
processed through a sequence of stages that includes, for example, edge 



detection, extracting features of varying complexity, normalization for size, 
position, and orientation. The model below modifies this general view in 
two directions. First, it proposes a bidirectional search, where the matching 
can occur at intermediate levels rather than some "topmost" level. Second, 
rather than following a single path, multiple processing alternatives are 
explored in parallel. 

Bidirectional Search 

In applying a sequence of transformations to match an incoming pattern 
P with stored patterns M„ the transformations could be applied to P, or to 
M„ or to both. A simple transformation, such as overall shift or scaling, 
is best applied to the input pattern, because then it will be applied to a 
single pattern. Other transformations are specific to a stored model (e.g., 
how a face may transform by facial expressions) and cannot be applied to 
the image in a "bottom-up" manner. An attractive solution is to apply a 
bidirectional search, which is also economical in terms of the number of 
patterns explored. More generally, the suggestion is to use two streams 
of processing, an ascending one starting at the input, and a descending 
one starting at the stored models. From a biological standpoint, these will 
correspond to the "forward" and "backward" connections between cortical 
areas. 

Exploring Multiple Alternatives 

A large number of alternative routes may have to be explored before a link is 
successfully established between a "source" and a "target" representation. 
To achieve fast computation, it will be necessary to explore simultaneously 
a large number of alternative routes. In many models of visual process- 
ing, the input pattern undergoes a single sequence of processing stages. 
In contrast, in the sequence-seeking scheme an input pattern gives rise to 
multiple sequences of transformations and mappings that are explored in 
parallel. The terms "transformations" and "mappings" should be taken 
here in a broad sense; they may include geometric transformations such as 
changes in size, position, and orientation, the recovery of different prop- 
erties such as color, motion, texture, and 3D shape, as well as exploring 
alternative ways of representing the pattern (e.g., in terms of its parts and 
its abstract shape properties). 

Linking the Ascending and Descending Streams, the Counterstreams 
Structure 

The bidirectional processing is diagrammed schematically in figure 12.1a. 
The basic operation in this scheme is to seek a sequence of processing steps 
linking a source pattern (S in figure 12.1a) in one area with stored repre- 
sentations (such as Mi, M2) in another. The nodes in this schematic figure 
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represent patterns of activity (e.g., subpopulations of neurons acting to- 
gether, possibly with some degree of synchrony) (Abeles 1991; Engel et al. 
1992), and the arrows indicate how patterns activate subsequent patterns 
(e.g., S can activate A2, A3, and A5). Since different patterns may share 
neurons, implementation constraints will place some limitations on the 
coactivation of patterns; for example, patterns (B2, B3, B4) may be prohib- 
ited from being coactive. In expanding the sequence down from Mi, only 
a subset of these patterns will be activated initially, and will later decay 
and be replaced by others. 

The search is bidirectional, and a linking sequence is successfully estab- 
lished when the two searches meet somewhere in this large network of 
interconnected patterns. How can a successful link of patterns be found 
by the system? The proposed scheme (figure 12.1b) has two main compo- 
nents. First, the ascending and descending streams proceed along separate, 
complementary pathways. Second, when a track is being traversed in one 
stream, it is assumed to leave behind a primed trace in the complementary 
stream, making it more readily excitable, as explained further below. The 
scheme shown schematically in figure 12.1b is similar to that shown in fig- 
ure 12.1a except that each node is now split into two complementary nodes 
(e.g., B2 in figure 12.1a is now split into B2 on the ascending pathway and 
its complementary pattern B2 on the descending one). 

The full bidirectional search now proceeds as follows. A number of 
sequences originating at S begin to be activated along the ascending path- 
way. At the same time, sequences originating at Mi and M2 begin to 
expand downward along the descending pathway. Not all of the possi- 
ble sequences are expanded simultaneously, but whenever a track (subse- 
quence) is being traversed, the complementary track remains in a primed 
state, ready to be activated. Suppose that by the time S has activated A2 

along the ascending stream, the track Mi -+ B3 -* A2 had already been 
traversed in the descending stream. Due to the primed traces, this will 
result in the immediate activation of the complete sequences S —> Mi and 
Mi -* S, establishing a complete link between the source and target pat- 
terns. This will also select Mi as the stored pattern corresponding to the 
input image S. (A selection among models may be required if more than a 
single model is matched with the input.) 

Two properties of this linking process are worth noting. First, a link 
between the ascending and descending streams can take place at any level. 
Second, to establish a link, the ascending and descending patterns need not 
arrive at a given node simultaneously; a meeting is also possible between 
an active pattern and a pattern that had been active some time before and 
decayed, but left a primed trace in the complementary stream. 

In terms of connectivity, the excitatory connections between patterns are 
reciprocal, obeying the following general rule: whenever A is connected 
to B, there is a back-connection from B to A, with cross-connections (of 
the priming type) between A and A and B and B (figure 12.1c). The reci- 
procity of the connections is an inherent aspect of the model, and it is also 
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Figure 12.1 (a) The sequence-seeking computation seeks a sequence of mappings linking a 
source pattern (S) in one area with stored representations (Mi, M2) in another. Nodes rep- 
resent patterns of activity and arrows indicate how patterns activate subsequent patterns. 
In expanding sequences only a subset of patterns will be activated initially, and will later 
decay and be replaced by others. The processing is bidirectional, and a linking sequence 
is successfully established when the two searches meet somewhere in this large network of 
interconnected patterns, (b) Similar to (<?), except that each node is split into two complemen- 
tary ones. The ascending and descending streams proceed along complementary pathways. 
When a track is being traversed in one stream, it leaves behind a primed trace in the com- 
plementary stream, (c) The basic unit of the counterstreams structure. Patterns A, B on the 
ascending, A, B on the descending path. Horizontal arrows denote connections of the priming 
type. This repeating unit is embedded in a network of richly interconnected patterns. 
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a distinguishing feature of cortical connectivity. Note that although the 
counterstreams structure uses "forward" and "backward" connections, it 
does not necessarily imply a hierarchical structure; it can incorporate a 
more general structure as long as the above connectivity rule is obeyed. 
(Inhibitory connections also play a role, but will not be discussed.) 

The basic design of the sequence-seeking model is relatively straightfor- 
ward, comprising two complementary networks going in opposite direc- 
tions, with interaction between them primarily (but not exclusively) in the 
form of enhancing patterns across the two streams. Compared with other 
models, the scheme places more emphasis on the parallel exploration and 
selection of multiple alternatives, rather than relaxation and iterative com- 
putations. Timing considerations (Maunsell and Gibson 1992; Thorpe et al. 
1991; Rolls et al. 1991) appear to place rather stringent restrictions on the 
use of multiiteration relaxation processes in tasks such as visual recogni- 
tion. A visual cortical area may introduce an average delay of about 10-15 
msec, and there are about six stations spanning the hierarchy from VI to 
anterior IT. This suggests that visual processing should usually require a 
limited number of sweeps through the system. It is desirable, therefore, 
especially for a highly parallel system, to explore multiple alternatives 
simultaneously, rather than explore and refine them in sequence. 

This is the skeleton of the computation, a number of elaborations and 
properties of the basic process are discussed below. 

Express Lines 

In expanding the descending sequences, how can the initial selection of 
models be performed? To cut down the number of competing sequences 
in the descending stream, it would be useful to expand with higher prior- 
ity alternatives that appear more promising. For example, in attempting 
to recognize an object, some models (a face, say) may become more likely 
than others on the basis of partial analysis, although it may not yet be pos- 
sible to identify the individual face. It would be advantageous under these 
circumstances to expand many face-related sequences, possibly at the ex- 
pense of others. Such an effect can be obtained by using "express lines," 
directly connecting low-level to higher-level nodes along the ascending 
stream. The express lines will activate (directly or indirectly) patterns on 
the descending path. This will initiate an expansion of sequences from 
the selected patterns. This selection of higher-level patterns can be viewed 
as invoking a hypothesis suggested by the data, but which has yet to be 
confirmed. A link to the ascending stream will still be required to confirm 
the hypothesis. Note that, unlike the priming interaction between streams, 
in the case of express lines the ascending stream can directly activate the 
descending one. Express lines could also use inhibition rather than facili- 
tation; if the partially expanded sequences in the ascending stream render 
some higher-level nodes unlikely, inhibitory "express lines" could be used 
to suppress their expansion in the descending stream. 
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The express lines provide one mechanism for "indexing" into the large 
number of models stored in memory. "Indexing" is a term used in com- 
putational vision for the initial selection of a general class, or classes of 
models, that might correspond to the input image. The express lines play 
a role in this process by the selection of likely models on the descending 
stream. This initial selection is not limited to the activation of models at 
a single "topmost" level; models at different levels along the descending 
stream can also be indexed and serve as the starting point for descending 
subsequences. For example, in addition to the selection of a complete face 
model, intermediate models of face parts can also be activated. Anatomi- 
cally, such express lines may correspond to direct connections from low to 
high visual areas (such as the connections from area V4 to AIT, or from V3 
and VP to area TF; Felleman and Van Essen 1991). 

Another mechanism for model selection is provided by the effects of 
expectation and context. Knowledge about the current situation can lead 
to the activation or priming of a subset of models that will then become 
preferential sources for descending sequences. The set of active models will 
then be modified and refined throughout the sequence-seeking process, as 
described below. 

The Effect of Context 

Context can have a powerful influence on the processing of visual infor- 
mation (as well as in other perceptual and cognitive domains). A pair of 
similar, elongated blobs in the image may be ambiguous, but in the appro- 
priate context (e.g., under the bed) they may be immediately recognized 
as a pair of slippers. 

Context effects can operate in the framework of the sequence-seeking 
scheme by a prior priming of some of the nodes. The effect will be similar 
to the mutual priming of the ascending and descending streams but with 
longer time scales. (Priming between the streams may last for tens to 
hundreds of milliseconds, context effect should last for considerably longer, 
up to minutes or hours.) Sequences passing through the primed nodes will 
then become facilitated. In the above example, the location of the blobs 
under the bed will prime patterns representing objects that are commonly 
found in that location, making slippers a likely interpretation. 

The general notion of priming internal representations is a common one, 
but its effects in the framework of the sequence-seeking scheme are par- 
ticularly broad. When certain nodes are activated (e.g., by noticing and 
identifying the bed in the image) they will initiate sequences of their own, 
and an entire set of patterns may end up in a primed state. (Context may 
possibly involve also inhibitory effects, making some of the paths less fa- 
vorable.) Later on, a large number of possible sequences passing through a 
primed node will be facilitated, compared with the nonprimed sequences. 
Context effects are thus not limited to directly increasing or decreasing the 
likelihood of a single match, but they can have indirect, widespread effects, 
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by facilitating otherwise less favorable sequences. A context pattern A may 
help to bring about the activation of B, not as a result of direct association, 
but because A may have a sequence leading to some intermediate pattern 
C, and, later on, an activated pattern may have another sequence leading 
to B via the primed pattern C. 

These general characteristics capture some of the fundamental aspects 
of context effects in humans. Humans' perception and cognition appear to 
have an almost uncanny capacity (which is extremely difficult to reproduce 
in artificial systems) for bringing in relevant context information in a broad 
and flexible manner. It seems that broad, indirect, context effects can be 
reproduced by the sequence-seeking computation. 

Learning Sequences 

A simple and local learning rule is sufficient in the counterstreams struc- 
ture to reinforce selectively complete successful sequences. Every pattern 
node in a successful sequence will receive both a direct activation and a 
priming signal from the complementary track, while patterns on dead-end 
tracks will receive one or the other but not both. The approximate temporal 
coincidence of the two signals can be used to preferentially strengthen the 
successful sequence. This rule is local, since it depends on the activation 
of a single pattern. Yet, it is sufficient to reinforce preferentially successful 
sequences forming an uninterrupted link between source and target pat- 
terns. Following practice, out of the huge number of possible sequences, 
those that proved useful in the past will be explored with higher priority 
is future use of the network. 

In the process of reinforcing successful sequences, changes due to learn- 
ing are distributed throughout the system, and are not confined to high 
level centers specializing in learning (Sejnowski 1986). Recent studies of 
learning certain perceptual skills suggest that low level visual areas, in- 
cluding primary visual cortex, are indeed involved in the modifications 
that take place during the learning process (Kami and Sagi 1991). 

In addition to the learning of complete sequences, as above, the system 
may also be engaged in the learning of the individual mappings, that is, 
the basic steps that make up the sequences (Poggio 1990). This aspect of 
the learning is, however, outside the scope of the current discussion, since 
the focus is not on the specifics of individual processes, but on their overall 
common structure. 

Refining the Expansion 

The matching between streams is not an all-or-nothing event, but a graded 
one: some sequences will lead to better matches than others, and then 
serve as starting points for exploring additional sequences, that will lead 
in turn to an improved match. This process has some features in common 
with a family of optimization and search procedures known as "genetic al- 
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gorithms" (Holland 1975). Recent evaluations have shown such methods 
to behave quite efficiently (Brady 1985; Peterson 1990). Our own simula- 
tions in the context of pattern matching have also shown that computations 
based on sequence-seeking compare favorably with alternative methods, 
such as gradient descent and simulated annealing. 

General Aspects of Sequence Seeking 

The discussion above of the sequence-seeking process used as an example 
the domain on visual recognition. However, the process of establishing a 
sequence of transformations, mappings, or states, linking source and tar- 
get representations, could provide a useful general mechanism for various 
aspects of perception as well as for nonperceptual functions. For exam- 
ple, the planning of a motor action can be cast at some level in terms of 
seeking a sequence of possible moves linking an initial configuration with 
a desired final state. Movement trajectories will be based in a sequence- 
seeking scheme on a stored repertoire of elementary movements. These 
basic movements could then be transformed (scaled, stretched, rotated, 
etc.) and concatenated together to generate more complex movements. In 
analogy with sequence seeking in vision, motion planning will involve the 
application of transformation and the generation of compound sequences. 
Similarly, more general planning and problem solving can also often be de- 
scribed in terms of establishing a sequence of transformations, mappings, 
or intermediate states, linking some source and target representations. The 
general aspects of the sequence-seeking process therefore provide a useful 
computation that could be applied, with appropriate modification, to a 
large variety of different tasks. 

BIOLOGICAL EMBODIMENT 

The sequence-seeking model requires two streams going in opposite di- 
rections with the appropriate cross-connections. A schematic diagram 
proposing how the counterstreams structure may be embedded in cor- 
tical connections is shown in figure 12.2a. The proposed implementation 
is presented in schematic outline only, focusing on a number of central 
aspect, and without discussing details or possible variations of the model. 

The ascending stream goes through layer 4 to a subpopulation of the 
superficial layers, denoted in the figure as AS (for ascending superficial), 
and then projects to layer 4 of the next cortical area (II in the figure). The 
descending stream goes through a different subpopulation of the superfi- 
cial layers (DS, for descending superficial) to DI (for descending infra), a 
subpopulation of the infragranular layers (often in layer 6), and from there 
to DS of a preceding area. The connections can also leap over one step (or 
occasionally more) in the stream (e.g., AS directly to AS on the ascending 
stream, and DS —* DS or 6 —► 6 on the descending stream) (thin lines in 
figure 12.2b). 
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Layer 5 is left out of the diagram because, according to the model, it (or 
a part of it) is involved primarily not in the main streams, but with their 
control, via subcortical structures. There are two reasons for assuming that 
layer 5 (or parts of it, e.g., 5b of the macaque's VI) may be involved in con- 
trol functions. First, its orderly connections to subcortical structures (e.g., 
from visual cortex to the pulvinar and the superior colliculus, structures 
implicated in controlling attention and eye movements) that are recipro- 
cally connected in turn in a topographic manner to multiple visual areas. 
Second, the firing pattern of a population of pyramidal cells in this layer 
that "can initiate synchronized rhythms and project them on neurons in all 
layers" (Silva et al. 1991). 

Note that the counterstreams structure suggests a natural organization 
in about 5-6 main layers: one or two performing control functions, two (an 
input and an output layer) for the ascending and two for the descending 
streams. The division between the roles of the different layers may in reality 
be less clear cut, however, the main goal of the diagram is to emphasize 
the common underlying structure according to the model, rather that to 
account for possible variations. 

Connections of VI: Data and Predictions 

Figure 12.2b,c shows an expanded version of the diagram, applied to cor- 
tical area VI (which is somewhat special, but for which the data are more 
comprehensive than for other visual areas), and its connections to the LGN 
and cortical area V2 (VI is also connected to other visual areas, not shown 
in the diagram). Figure 12.2b shows the connections in the macaque of the 
magnocellular stream and figure 12.2c of the parvocellular stream (Rock- 
land and Lund 1983; Lund 1988a,b; Martin 1988). The diagram shows the 
main connections; additional secondary ones will not be considered. The 
connections are drawn in a manner suggested by the model, and they in- 
cludes both known connections (thick arrows) and connections predicted 
by the proposed scheme but for which empirical evidence is partial or 
lacking (thin arrows). 

The pattern of connections in the two streams appears to be in gen- 
eral agreement with the counterstreams structure and figure 12.2a. This 
structure can be used as a repeating circuit to utilize the cortex inherent 
parallelism and combine ascending and descending information flows. If 
the general hypothesis regarding the counterstreams structure is broadly 
correct, then a number of predictions can be made regarding the main 
connectivity patterns within and between areas. One general prediction is 
the possible distinction between the AS and DS subpopulations. This sep- 
aration reflects the most straightforward implementation of the scheme, 
however, some alternatives can exist without violating the constraints of 
the model. 

A separation between the ascending and descending populations is ev- 
ident in the connections involving layer 4: the ascending streams termi- 
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Figure 12.2 (n) How the basic counterstream structure may be embodied in cortical connec- 
tivity. The structure contains two interconnected streams, and ascending and a descending 
one. The ascending path goes through layer 4 and the ascending superficial population (AS) 
to the next area. The descending path goes from the descending superficial (DS) population 
to DI (descending infra) back to the first area. Thin arrows show pathways that "leap over" a 
step in the stream. Inhibitory and long-range intraareal connections are not shown. See text 
for more details, (b) The main connections according to the model along the magno stream 
from the LGN via VI to V2. VI is also connected to other visual areas, not shown in the 
diagram. The connections are drawn in a manner suggested by the model and (a). Thick 
arrows, established connections; thin arrows, connections predicted by the model, (c) The 
main connections according to the model along the parvo stream from the LGN via VI to V2. 
Thick arrows, established connections; thin arrows, connections predicted by the model. 

266 Ullman 



nate in layer 4, the descending streams always avoid it. In the superficial 
layers the situation is more difficult to assess, and the available evidence 
is at present restricted. In the magnocellular projection from VI to V2 
the forward projection originated mainly in 4B, while the back projec- 
tion in mainly to other layers (2b). It is further expected that even when 
the superficial layers provide both the source and the target of connec- 
tions to another area, there will in fact often be a separation to the AS/DS 
subpopulations (presumably a vertical, rather than horizontal separation; 
Wong-Riley 1978; Zeki and Shipp 1988). If these populations exist, they 
should be connected in a reciprocal manner. A related expectation derived 
from the model is the existence of priming-type synaptic interactions, that 
is, excitatory synaptic input that by itself may not be very effective in driv- 
ing the target cells, but that facilitates the effects of subsequent inputs to 
these cells. 

An example of a more specific prediction is that in the magnocellular 
stream the model suggests reciprocal interconnections between layer 4B 
(playing the part of AS in the model), and layers 1-3, the recipients of 
descending projections from V2 (DS in the model). The projection from 4B 
to the superficial layers is well established. It is also known (Lund 1988a) 
that 4B pyramidal cells send apical dendrites to the superficial layers where 
the connection may take place. It has been noted in this regard (Lund 
1988a) that the significant 4B projection has a surprisingly limited effect 
on properties of superficial layers units (such as directional selectivity). 
In figure 12.2b, this connection has mainly a priming role, and therefore 
the lack of direct effect is not unexpected. A related prediction is the 
expectation that the same superficial cells connected to 4B will also be the 
recipients of descending projections from V2. 

The model also includes a reciprocal connection between layer 4 and 
the LGN-projecting cells in layer 6. The projection from 6 to 4 is well- 
established in both cat (McGuire et al. 1984) and monkey (Lund 1988a), 
and there is support for the opposite connection as well (Lund and Boothe 
1975). It is also interesting to note in this regard that the population of 
layer 6 cells projecting back to the LGN was found (in the cat) to be the 
same cells that are also connected to layer 4C, by axonal collaterals and 
dendritic arbors (Katz et al. 1984), in accordance with the connectivity in 
figure 12.2b,c. 

The connections between layers 4 and 6 are expected in the model to 
have a priming effect (not necessarily the only effect, see Martin 1988), 
and this notion has some physiological support. It was found (Ferster 
and Lindström 1985) that using electrical activation of layer 6 cells by 
antidromic activation increased the probability of layer 4 firing, and most 
cells fire multiple spikes in response to each stimulus. Under the opposite 
conditions, when layer 6 is inactivated, the main observed effect was the 
reduction in excitability of layer 4 cells (Grieve et al. 1991). 

From an anatomical standpoint, EM reconstructions (McGuire et al. 
1984) have shown terminations of layer 6 axons on smooth and sparsely 
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spiny cells. The model suggests also a projection onto layer 4 spiny cells, 
and this remains to be clarified in future anatomical studies. 

Lateral Connections between Areas 

Connections between cortical areas (not only visual, also somatosensory 
and motor) can be classified into "forward," "backward," and "lateral" 
connections, on the basis of the laminar distribution of their source and 
destination (Rockland and Pandya 1979; Maunsell and Van Essen 1983; 
Friedman 1983; Van Essen 1985; Zeki and Shipp 1988; Andersen et al. 
1990; Boussaud et al. 1990; Felleman and Van Essen 1991). Lateral connec- 
tions terminate in all layers, and their origin is bilaminar, from the supra 
and infra layers. The lateral pattern is relatively complex and sometimes 
perplexing (Felleman and Van Essen 1991). It is therefore interesting that a 
number of its main features can be derived almost directly from the model. 
The counterstreams structure does not have a distinct, third type of con- 
nections, but it allows forward and backward connection simultaneously 
in both directions, and it can include lateral connections by assuming that 
they are the "union" of ascending and descending connections. If this view 
is correct, then the main connections participating in the lateral connection 
can be inferred from the basic scheme (figure 12.2a). According to the 
model, they include the direct connections: AS —> 4, and 6 —► DS, as well 
as the connections that leap over one stage in the diagram, namely, AS —* 
AS, DS — DS,DI, and DI -> DI. 

The origin of the projections according to the model would be bilaminar, 
and the terminations would span all layers, in agreement with the observed 
pattern. This can also explain several difficulties such as the problem of 
irregular terminations (Felleman and Van Essen 1991), that occurs, e.g., 
when some of the terminations are restricted to layer 4 of the target area 
while others show columnar terminations. This was termed F/C (i.e., a 
mixture of "four" and "columnar") paradoxical termination, since termi- 
nation in layer 4 is usually a signature for ascending connections, while a 
columnar termination signifies lateral connections. Usually these connec- 
tion types are distinct, but some interconnections exhibit a mixed type. In 
the counterstreams structure, the main point to note is that the lateral con- 
nections from the superficial layers of area A to target area B are composed 
of two subprojections: AS —> 4 (ascending) and DS —► DS, DI (descending). 
(In addition, there is a descending connection DI —> DI.) Anterograde la- 
beling of the upper layers of area A can therefore show a mixed pattern 
of terminations: 4 alone (from AS of A), or a columnar termination (from 
AS and DS). This is in agreement with the F/C paradoxical termination 
(Felleman and Van Essen 1991). It can also (by labeling the DS alone) show 
a bilaminar pattern of connections; this can account for the other types of 
irregular terminations. If this account is correct, it also provides support 
for the existence of the separate AS and DS subpopulations. 
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Possible Priming Mechanisms 

Synaptic interactions in the model include priming-type effects between 
the complementary streams. Although this has not been studied directly, 
some known or physiologically plausible mechanisms may play a role in 
such priming interactions. 

One such mechanism has been investigated by Miller et al. (1989). In 
this study, responses of cells in the cat's visual cortex to visual stimulation 
were profoundly suppressed by the blocking of NMDA receptors (by using 
APV). A possible mechanism proposed by Miller et al. (1989) by which 
NMDA receptors could control the responsiveness of cells is that such 
receptors, when activated in neocortex pyramidal cells, cause a slow, long- 
lasting EPSP that rises to a peak in 10-75 msec. They suggest that this 
slow EPSP could provide a base on which subsequent subthreshold input 
would become suprathreshold. 

Another mechanism has been proposed by Koch (1987) and by empirical 
studies in the LGN (Esguerra et al. 1989; Sherman et al. 1990). The 
proposed mechanism makes use of the capacity of NMDA receptors to 
increase the cell's response in a nonlinear fashion, as a function of the 
depolarization in the postsynaptic cell. The proposal, in the context of 
the LGN (Koch 1987), is that the descending stimulation from the cortex 
can cause long-lasting subthreshold depolarization, and that the ascending 
stimulation involves receptors of the NMDA type. If ascending stimulation 
arrives while the units are still in a depolarized state, the response will 
be enhanced significantly. A similar mechanism based on the nonlinear 
properties of the NMDA-type receptor could be used for priming between 
the streams. 

The long-lasting depolarization could be contributed by postsynaptic 
responses with slow time course, similar to the persistent Na+ channel, 
or the IT calcium channel (McCormick 1990). Synaptic mechanisms of this 
type have been implicated in cortical cells (Hirsch and Gilbert 1991; Amitai 
et al. 1993). A similar effect can also be contributed by the activation of 
distal parts of the dendritic tree. Simulations of pyramidal cells (Stratford et 
al. 1989) have shown that such stimulation can have a significant temporal 
extent. 

Priming can thus be obtained by long-lasting depolarization, caused by 
the properties of ionic channels, the NMDA receptors, or the stimulation of 
distal dendritic branches, combined with subsequent input, added either 
linearly or nonlinearly. Other mechanisms, not considered here, might 
participate as well. Although the details are not known, it appears that 
synaptic mechanisms for priming connections are physiologically plausi- 
ble, and it will be of interest to try to test them empirically. 
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Effects of the Feedback Projection 

According to the sequence-seeking scheme, the physiological effects of the 
descending projections can assume two different forms: either the priming 
and modulation of the ascending stream or the direct activation of a lower 
area. 

Both effects have been observed in physiological studies, modulatory 
(Nault et al. 1990; Sandell and Schiller 1982), as well as direct excitatory 
effects (Mignard and Malpeli 1991; Cauller and Kullics 1991b). Further 
predictions of the model regarding the modulatory effects include (1) the 
facilitation by the back projections will not require strict temporal coin- 
cidence, (2) similar modulatory effects are also likely to be induced by 
ascending signals on descending ones, (3) the two effects may be segre- 
gated into two distinct subpopulations: in figure 12.1c B can be directly 
driven along the descending stream, but patterns such as B on the ascend- 
ing stream are expected to show modulatory effects. 

In summary, the computation proposed by the sequence-seeking model 
is a bidirectional search performed by top-down and bottom-up streams 
seeking to meet. Key properties of the scheme include the simultaneous 
exploration of multiple alternatives, the relatively simple, uniform, and 
extensible structure, the flexible use of "bottom-up" and "top-down" se- 
quences that can meet at any level, and the learning of complete sequences 
by a simple local reinforcement rule. The implementation in the coun- 
terstream structure proposes a computational account for several basic 
features of cortical circuitry, such as the predominantly reciprocal connec- 
tivity between cortical areas, the forward, backward, and lateral connection 
types, the regularities in the distribution patterns of interarea connections, 
the organization in 5-6 main layers, and the effects of back projections. 
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*1 *i      Dynamic Routing Strategies in Sensory, 
-*-^      Motor, and Cognitive Processing 

David C. Van Essen, Charles H. Anderson, and 
Bruno A. Olshausen 

INTRODUCTION 

Our understanding of how the cerebral neocortex carries out its essential 
functions has progressed through several important stages over the past 
three decades. In the 1960s, Hubel and Wiesel provided the first detailed 
characterization of orientation selectivity, direction selectivity, and binocu- 
lar interactions in visual cortex. Equally important, they proposed simple 
and attractive models that could account for these properties by invoking 
"bottom-up" convergence of ascending inputs in a strictly serial processing 
hierarchy (Hubel and Wiesel 1965b). 

In the 1970s these ideas were modified by the discovery of parallel path- 
ways within the visual system and by evidence for the importance of intra- 
cortical inhibition and other aspects of local intrinsic circuitry of the cortex 
(Stone et al. 1979; Orban 1984). This picture subsequently became enriched 
by the realization that intrinsic connections extend rather widely within 
each cortical area (Gilbert 1983) and also that there are massive feedback 
pathways projecting from higher to lower cortical areas (Rockland and 
Pandya 1979; Maunsell and Van Essen 1983). The function of these long- 
distance and feedback pathways is not fully understood, but it is widely 
presumed that they subserve the strong modulatory effects known to arise 
from outside the classical receptive field (Allman et al. 1985a; Knierim 
and Van Essen 1992). This represents a form of "top-down" processing 
that makes cortical responses to sensory stimuli highly dependent on the 
context in which they are presented. 

Recently, we and others (Poggio 1984; Baron 1987; Anderson and Van Es- 
sen 1987,1993; Van Essen and Anderson 1990; Olshausen et al. 1992,1993) 
have argued that a critical component is missing from this view of corti- 
cal processing, namely, an explicit mechanism for dynamically regulating 
the flow of information within and between cortical areas. The need for 
such a mechanism arises from computational considerations relating to (1) 
the vast amounts of data continuously impinging on the nervous system, 
(2) the finite computational resources that can be dedicated to any given 
task, and (3) the need for highly flexible linkages between a large number of 
physically separate modules. In our previous articulations of this hypothe- 



sis we have focused on the visual system, but we believe that the concepts 
and issues are equally applicable to other systems as well. To provide 
an intuitive illustration of this point, we begin by considering two exam- 
ples, one relating to sensory processing and the other to motor processing. 
While superficially rather different, we will argue that these two types of 
processing may share important similarities in their "deep structure" at the 
computational level and at the level of neurobiological implementation. 

Visual Attention 

First, consider the phenomenon of directed visual attention, which has a 
number of characteristics illustrated by the following hypothetical task. 
Suppose that an observer stares at a fixation spot on an otherwise blank 
screen. A simple cuing stimulus is flashed on the screen, and it is followed 
after a brief interval by an array of letters arranged concentrically about 
the fixation point. If the cue is a small spot occurring in the location of the 
leftmost target letter, then attention will be directed to that location (figure 
13.1a); the observer will be able to identify that letter as a C but will be 
unable to reliably identify the remaining letters in the array (cf. Nakayama 
and Mackeben 1989; Kröse and Julesz 1989). If the cue is switched to the 
rightmost letter, the observer's attention will likewise shift so as to allow 
identification of the letter T (figure 13.1b). A very different result will occur, 
though, if the cuing spot is expanded to cover the entire target array (figure 
13.1c). In attending to the overall pattern, the observer will immediately 
recognize the ring-shaped geometric configuration of letters, but the spatial 
resolution within this broader "window of attention" will be too coarse to 
allow reliable identification of any of the individual letters, let alone the 
entire word that they form (cf. Van Essen et al. 1991). 

Our analysis of this phenomenon starts with the argument that visual 
attention is a process that has evolved to subserve general purpose object 
recognition. The ability to recognize a wide range of highly complex pat- 
terns (e.g., faces) is too computationally demanding to have the requisite 
neural machinery replicated separately for each location in the visual field. 
Instead, this machinery is relegated to a small number of modules situated 
at high levels of the visual hierarchy in inferotemporal cortex. In our view, 
visual attention is a mechanism for dynamically regulating information 
flow so as to bring information from the appropriate region of the visual 
field and in an appropriate format to the appropriate high-level object 
recognition center. Five general characteristics of spatially directed visual 
attention warrant explicit mention in connection with this hypothesis. 

• Attention can readily be directed to different locations and to different 
spatial scales (Sperling and Dosher 1986; Eriksen and Murphy 1987; Julesz 
1991). 

• Attentional shifts can be initiated by bottom-up cues and/or top-down 
influences. When initiated by bottom-up cues (as in the above example), 
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Figure 13.1 Directed visual attention (o-c) and directed motor control (d-f). The process of 
shifting attention to different locations and to different scales (shaded regions) is analogous in 
important ways to the process of directing a basic motor routine (e.g., up-down movements 
signified by arrows) to different digits or combinations of digits in response to instructions 
embodied, say, by the blinking light icons. 

attentional shifts occur with a finite temporal delay (50-100 msec) and tend 
to persist at any given location for a relatively brief period (Nakayama and 
Mackeben 1989; Krose and Julesz 1989). In this respect, they are analogous 
to saccadic eye movements, except that they occur on a faster time scale. 

• Attention is directed not simply to the initial cue, but to whatever image 
data lie within the window of attention once it has been shifted. For exam- 
ple, a highly salient cue might be followed by a very subtle spatial pattern 
whose characteristics can nonetheless be scrutinized via attentive process- 
ing (Nakayama and Mackeben 1989; Kröse and Julesz 1989; Julesz 1991). 
In this respect, the cue evidently serves simply as a gating mechanism to 
regulate the flow of image data. 

• Visual attention acts as an informational bottleneck that reduces to man- 
ageable levels the amount of image data reaching high-level cortical centers 
involved in pattern recognition. By our estimate, less than 0.1% of the in- 
formation carried in the optic nerve at any given moment passes through 
the attentional bottleneck (Van Essen et al. 1991). 

• For complex patterns to be recognized, it is important that information 
about spatial relationships be preserved within the window of attention. 
However, because of the narrowness of the information bottleneck, the 
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spatial resolution within the window is limited to the equivalent of about 
30 x 30 resolution elements. 

Directed Motor Control 

An analogous set of issues arise in certain aspects of motor function, which 
we shall refer to as "directed motor control." The essential notion is that our 
motor system is capable of selecting among a large repertoire of stereotyped 
motor routines, each of which can be distributed to different body parts 
according to specific instructions and cues. An instructive example of this 
is that of an orchestral conductor. In general, a given section of music has 
a steady beat that must be communicated to the orchestra by rhythmic 
movements of the baton. The conductor has a wide repertoire of specific 
movement routines (simple up-down strokes, triangular strokes, and a 
variety of more complex patterns), from which one must be selected to 
convey the desired beat. In addition, any particular set of strokes can 
be transmitted via movements of the hand, the arm, a single finger, or 
whatever combination the conductor chooses from moment to moment. 

To sharpen the analogy with directed visual attention, note that the cues 
for switching from one type of movement to another can be dictated by 
bottom-up sensory cues as well as the top-down cognitive control that 
would occur in the case of the orchestral conductor. For example, suppose 
that an observer is instructed to move an appendage up and down at a 
steady rate, in response to a set of lights situated adjacent to the fingertips 
(figure 13.1, bottom row). Thus, according to which particular lights were 
blinking, the observer would wiggle the index finger (figure 13.1d), the 
little finger (figure 13.le), or all fingers simultaneously (figure 13.If). 

We contend that motor coordination is too computationally demanding 
to have the circuitry for de novo generation of each possible motor rou- 
tine separately represented for each of the many dozens of appendages 
in the body. Instead, we support the notion that there exist only one or a 
few central representations of each motor routine (wiggles, circles, figure-8 
movements, etc.) that can be generated via top-down (cognitive) process- 
ing (Keele 1981,1986). Directed motor control is a process for dynamically 
regulating information flow so as to distribute information about a desired 
motor routine to the appropriate target appendage(s). More specifically 
there are five characteristics of directed motor control that share important 
similarities with those outlined above for visual attention. 

• A given motor routine can be distributed to target appendages at differ- 
ent locations and to different spatial scales (e.g., one digit or many). 

• Directed motor control can be initiated by a variety of bottom-up cues 
and/or top-down influences. A given motor routine can be sustained more 
or less indefinitely if desired, though; it does not show the strong transient 
component characteristic of some aspects of visual attention. 

• The cue used for initiation need not be a direct replica of the trajectory 
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that is to be carried out in any given motor routine. Rather, the cue can 
be an essentially arbitrary abstract stimulus that serves simply as a gating 
mechanism to regulate the flow of motor signals. 

• Directed motor control represents a strategy that reduces to manageable 
levels the amount of learned information that needs to be stored in the 
circuits involved in generating specific motor routines. 

• For a given motor routine to be executed, it is important that the spa- 
tiotemporal sequence of information associated with a given pattern be 
preserved as it is distributed to the appropriate target appendages. 

The common theme in both of these examples is that a sophisticated 
system for dynamically controlling information flow may be essential for 
the brain to carry out its duties. The notion that gating mechanisms are 
important in CNS function is by no means new. For example, gating has 
long been suspected to play a critical role in the modulation of pain sen- 
sitivity (Melzack and Wall 1965; Fields and Basbaum 1978). However, the 
evidence for it in cortical function has been fragmentary and controver- 
sial. To guide further experimentation, there is a clear need for detailed, 
neurobiologically plausible models. In this chapter, we will review the 
key features of our model of directed visual attention, emphasizing recent 
progress in making it an autonomous, self-contained process. Then we 
will discuss ways in which this model might be adapted to account for 
motor functions. Finally, we will briefly consider the relevance of these 
strategies for cognitive processing. 

A MODEL OF DIRECTED VISUAL ATTENTION 

The goal of our model is to provide a neurobiologically plausible mecha- 
nism for shifting and rescaling the representation of an object from the reti- 
nal reference frame into an object-centered reference frame. Information in 
the retinal reference frame is represented on a neural map (for instance, the 
topographic representation in VI), and we hypothesize that information 
in the object-centered reference frame is also represented on a neural map 
that preserves some degree of information about local spatial relationships. 
This is illustrated in the simplest possible scheme in figure 13.2a, which 
shows a purely pixel-based (but object-centered) representation providing 
the input to a high-level associative memory. However, we do not presume 
that only "pixels" are being routed into the high level areas. Rather, each 
sample node in the high level map may be thought of as a feature vector 
representing various local image properties, such as orientation, texture, 
and depth (figure 13.2b). For simplicity, our current computer model simu- 
lates the routing of only pixel-based data. However, it should be relatively 
straightforward to incorporate into future models the additional process- 
ing needed for dynamic routing of more complex feature vectors. 

To topographically map an arbitrary section of the input (retina) onto 
the output (object-centered reference frame), each neuron in the output 
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Figure 13.2 Shifting and rescaling the window of attention. The image within the window 
of attention in the retina is remapped onto an array of sample nodes in an object-centered 

reference frame, (a) In the simplest scheme, each "pixel" in the object-centered reference 
frame represents image luminance, (b) More realistically, each pixel should presumably 
correspond to a feature vector that integrates over a somewhat larger spatial region and 
represents orientation, depth, texture, etc. 

stage needs to have dynamic access to a large number of neurons in the 
input stage. In the brain, this access must necessarily be obtained via 
the physical hardware of axons and dendrites. Since these pathways are 
physically fixed for the time scale of interest to us (< 1 sec), there needs 
to be a way of dynamically modifying their strengths. We propose that 
the efficacy of transmission of these pathways is modulated by the activity 
of control neurons whose primary responsibility is to dynamically route 
information through successive stages of the cortical hierarchy. 

A Simple Dynamic Routing Circuit 

Figure 13.3a illustrates a simple, ID dynamic routing circuit. Each node 
in the circuit forms a linear weighted sum of its inputs, and the weights 
are dynamically modified by a set of control neurons to set the position 
and scale of the window of attention. The hierarchical connection scheme 
shown has the attractive property of keeping the fan-in (number of inputs) 
on any node fixed to a relatively low number while allowing the nodes in 
the output layer access to any part of the input layer. This property will be 
important in scaling-up the model. 

An example of how the weights might be set for different positions and 
sizes of the window of attention is shown in figure 13.3b,c. When the 
window is at its smallest size (i.e., at the same resolution as the input 
stage, figure 13.3b) , the weights are set so as to establish a one-to-one 
correspondence between nodes in the output and the attended nodes in 
the input.  When the window is larger, the weights must be set so that 
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Figure 13.3 A simple, one-dimensional dynamic routing circuit, (a) Connections are shown 
for the leftmost node in each layer. The connections for the other nodes are the same, but 
merely shifted. N denotes the number of nodes within each layer. A set of control units (not 
explicitly shown) provides the necessary signals for modulating connection strengths so that 
the image within the window of attention in the input is mapped onto the output nodes. 
(6, c) Some examples of how the weights would be set for different positions and sizes of the 
window of attention. The gray-level of each connection denotes its strength. Essentially, the 
sets of weights feeding into each node are samples of a Gaussian interpolation function that 
is shifted and rescaled according to how the window of attention is shifted and rescaled. 
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multiple inputs converge onto a single output node, resulting in a lower- 
resolution representation of the contents of the window of attention on the 
output nodes. One can see from this illustration, then, that the challenge in 
controlling the routing circuit lies in properly setting the weights to yield 
the desired position and size of the window of attention. Note that in 
general there are many possible solutions in terms of the combinations of 
weights that could achieve any particular input-output transformation. 

Control 

Since the purpose of attention is to focus the neural resources for recog- 
nition on a specific region within a scene, it would make sense for the 
attentional window to be automatically guided to salient, or potentially 
informative areas of the visual input. Salient areas can often be defined 
on the basis of relatively low-level cues — such as pop-out due to motion, 
depth, texture, or color (e.g., Koch and Ullman 1985). Here, we utilize 
a very simple measure of salience based on luminance pop-out in which 
attention is attracted to "blobs" in a low-pass filtered version of a scene. (A 
blob may be defined simply as a contiguous cluster of activity within an im- 
age.) Attention can also be directed via voluntary or cognitive (top-down) 
influences, but these are not incorporated into our current model. 

We propose the following simple but useful strategy for an autonomous 
visual system (see figure 13.4): 

1. Form a low-pass filtered version of the scene so that objects are blurred 
into blobs. 

2. Select one of the blobs from the low-pass image — whichever is brightest 
or largest — and set the position and size of the window of attention to 
match the position and size of the blob. 

3. Feed the high-resolution contents of the window of attention to an as- 
sociative memory for recognition. 

4. If a match with one of the memories is close enough (by some as yet 
unspecified criterion), then consider the object to have been recognized; 
note its identity, location, and size in the scene. If there is not a good match, 
then consider the object to be unknown; either learn it or disregard it. 

5. Now inhibit this part of the scene and go to step 2 (find the next most 
salient blob). 

The next three sections describe details for carrying out steps 2,3, and 5. 
Step 1 is trivial, whereas step 4 is a high-level problem beyond the scope 
of this paper (see chapter 7 by Mumford). 

Focusing the Window of Attention on a Blob To formulate a solution for 
controlling the routing circuit, we will simplify matters even further and 
consider controlling a simple two-layer, one-dimensional network consist- 
ing of an input layer and an output layer only (figure 13.5). The output 
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Figure 13.4 A simple attentional strategy for recognizing objects in a scene. Objects are 
preattenti vely segmented via lowpass filtering. Once an object has been localized, the contents 
of the window of attention are fed to an associative memory for recognition. This process is 
then repeated ad infinitum. 

units, Iout, compute their activation from the input units, Im, via a simple 
linear summation 

r^X^f (13.1) 

and the weights are dynamically modified by a set of control neurons, c, 
via 

Wii YLCkTi}k (13.2) 

where r^ denotes the weight with which control neuron c^ modulates the 
strength of synapse (i, j) between neuron; in the input layer and neuron i in 
the output layer. For ease of notation, this equation describes the general 
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Figure 13.5 A very simple one-dimensional routing circuit with a Gaussian blob presented 
to the input units. Each control unit corresponds to a different position of the window of 
attention: left (co), center (c\), or right fo). For example, to accomplish the remapping shown, 
the values on the control units should be cj = 1 and CQ = C] = 0. The circuitry for autonomous 
control is shown on the left, with each control unit receiving input from a Gaussian receptive 
field in the input layer; the control units then compete among each other via negatively 
weighted interconnections, so that only the control unit corresponding to the strongest blob 

in the input prevails. 

case in which each control neuron may modulate any or all synapses (i, j). In 
fact, each control neuron actually modulates only a local group of synapses, 
and so r,yjt will be nonzero for only a few combinations of i, j, and k. In the 
particular circuit of figure 13.5, the r,^ are set simply so that each control 
unit Ck corresponds to a global position of the window of attention, but in 
general this need not be the case. 

To focus the window of attention on a blob in the input, the network's 
"goal" will be to fill the output units with a blob while maintaining a topo- 
graphic correspondence between the input and output nodes (figure 13.4, 
step 2). Since the dynamic variables in this network are the c^, we need to 
formulate a dynamic equation for the Cjt that accomplishes this objective. 
We can achieve this by letting c^ follow the gradient of an objective func- 
tion, Ebiob/ that provides a measure of how well a blob is focused on the 
output units. 

Ebloh = -J2CGi (13.3) 
i 

where G denotes the desired blob shape (e.g., in the circuit of figure 13.5, 
G, = e~',_1' ). The second part of the objective (maintaining topography) 
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may be accomplished by letting ck follow the gradient of a constraint func- 
tion that favors control states corresponding to translations or scalings of 
the input-output transformation. 

Econstraint = - ~ ]C °k "^ C' (13"4) 

where the constraint matrix Tc is chosen so as to appropriately couple the 
control neurons. For example, in the particular circuit of figure 13.5, Tc is 
set to accomplish a winner-take-all function (T£, = -1, k^l) since each ck 

corresponds to a global position of the window of attention. 
A dynamic equation for ck that simultaneously minimizes both of these 

objective functions (Ebi0b and Econstraint) is given by 

ck = a{uk) (13.5) 

^+auk = VJ2YlG^Ii, + f3ETtiCi (13-6) 
i      j I 

where a, rj, and ß are constants that determine the rate of convergence of 
the system, and a is a sigmoidal squashing function. The neural circuitry 
required for computing equations (13.5) and (13.6) is shown in figure 13.5. 
The first term on the right of equation (13.6) is computed by correlating the 
Gaussian, G, with a shifted version of the input (the amount of shift de- 
pends on the index k). The second term is computed by forming a weighted 
sum of the activities on the other control units. These two results are then 
summed together and passed through a leaky integrator and squashing 
function to form the output of the control unit, ck. Thus, the ck essentially 
derive their inputs directly from a "blob map," and then compete among 
each other so that the ck corresponding to the strongest blob prevails. 

This circuit could easily be modified to allow for different sizes of the 
window of attention by adding another set of control units for each desired 
size of the window of attention. For example, a control unit corresponding 
to a large window of attention would be connected to the weights, wq, 
so as to converge multiple inputs into a single output node, as in figure 
13.3c. Such a control unit would then have a larger Gaussian receptive 
field in the input (or, correspondingly, it would receive its input from a 
coarser-grained blob map). The control units for each different size and 
position would then compete among each other to constrain the attentional 
window to be of a single size and position. 

Note that since equations (13.5) and (13.6) are nonlinear in ckr there exists 
the potential for getting stuck in local minima. This is not a serious problem 
for the circuit of figure 13.5, however, because the control neurons are so 
tightly constrained due to their global connectivity (each control neuron 
corresponds to a global position of the window of attention, so the winner- 
take-all circuit ensures a single, affine transformation). On the other hand, 
in larger circuits where the control neurons must be connected to local 
groups of synapses instead of globally, the existence of local minima will 
present a significant problem. This problem can be overcome by utilizing 
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a coarse-to-fine control architecture, in which routing is at first performed 
by a small number of control neurons on a low-pass filtered version of the 
image. This smaller set of control neurons can then be used to constrain 
the activities of the fine-grained, locally connected control neurons that are 
routing the high-resolution information. 

Recognition Once the window of attention has focused on a blob, the 
underlying high-resolution information can also be fed through the rout- 
ing circuit and into the input of an associative memory for recognition. 
However, it is likely that the initial estimation of position and size made 
by routing the blob was only approximately correct, and this may cause 
problems for matching the high-resolution information. Thus, it would 
be desirable to have the associative memory help adjust the position and 
scale of the attentional window while it converges. How, then, shall the 
associative memory be incorporated into the control of the routing circuit? 

If a Hop field associative memory (Hop field 1984) is used for recognition, 
we can replace the blob search objective function, £b,ob, with the associative 
memory's objective function, £mcm. Normally, the only dynamic variables 
in a Hopfield associative memory are the output voltages, V,-, which evolve 
by simply following a monotonically increasing function of the gradient 
of the energy. 

Vi=gi(uT) (13.7) 
A 

Ci 
du'!'        ßP 

dt   ~       dVj 

■■J2TiJVJ-lk+I?cm (13.8) 
; 

where T,-, denotes the connection strength between neurons i and /, C, and 
Ri are constants that determine the integration time constant of each neu- 
ron, and g is a squashing function (usually tanh). Since the inputs of the 
associative memory, J^em, are to be obtained directly from the outputs of 
the routing circuit, the ck now become additional dynamic variables incor- 
porated into the associative memory's energy function. By letting the ck 

follow the gradient of the energy along with the Vit the combined asso- 
ciative memory/routing circuit should relax to the closest stored pattern 
and to the correct position and size of the window of attention simultane- 
ously. A dynamic equation for ck that simultaneously minimizes both the 
associative memory's energy and the constraint function for preserving 
topography is given by 

ck = o-(Mfc) (13.9) 

j+^^EE v' r<7* T+?Y, n, ci (13.10) 

A neural circuit for computing equations (13.9) and (13.10) is shown in 
figure 13.6.  The first term on the right-hand side of equation (13.10) is 
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Associative memory 

Figure 13.6 An autonomous routing circuit for recognition. Each node of the associative 
memory receives its external input from an output node of the routing circuit. Hence, each 
node of the associative memory has dynamic connections to many input nodes. The outputs 
of the associative memory are then fed back and correlated with the inputs to drive the control 
units. 

computed by correlating the inputs, Jj", and memory outputs, V{, whose 
connection pathways are influenced by control unit Ck (specified by r^). 
The other terms are computed as before. Thus, the main qualitative dif- 
ference between this circuit and the "blob finder" (figure 13.5) is that the 
control is guided by the interaction between top-down and bottom-up sig- 
nals rather than purely bottom-up sources. 

Again, since the equations (13.9) and (13.10) are nonlinear in ck, the 
potential exists for the routing circuit to get stuck in local minima. This 
problem can be overcome in a similar manner as outlined previously by 
having the associative memory and routing circuit work at varying levels of 
resolution. Matching would first be performed at low resolution, and this 
information would then be used to constrain the matching at progressively 
higher resolutions. 

Shifting Attention to the Next Object Once an object has been recog- 
nized, the window of attention should move on to another interesting part 
of the scene. One way this could be accomplished would be for the control 
units to be self-inhibited through a delay. Thus, when a group of control 
units is active for some time (long enough for recognition to take place) it 
should begin to shut off. This would allow other blobs or interesting items 
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to compete successfully for control of the window of attention (see also 
Koch and Ullman 1985). 

Computer Simulation Figure 13.7 shows the results of a computer sim- 
ulation of a simple attentional system for recognizing objects, based on the 
principles elucidated above. The network begins in blob search mode, at- 
tempting to fill the output of the routing circuit with something interesting. 
In figure 13.7a the network has settled on the A, since it has the greatest 
overall brightness in the input. (Since the shapes used in this example 
are so compact and simple we have bypassed the step of prefiltering them 
into blobs. Thus, during blob search, an object is low-pass filtered by the 
routing circuit itself.) After settling on a potentially interesting object, the 
network is switched into recognition mode and the output of the routing 
circuit is fed to an associative memory. Two patterns—^ and C—have 
been previously stored in the associative memory. The blurred version of 
the object initially drives the inputs of the associative memory to begin 
the pattern search. If the position of the window of attention is slightly 
off, the blurred version of the object is not affected much and still sends 
the memory searching in the correct direction. As the associative memory 
converges, control units compute the correlation between outputs and in- 
puts and set their activation correspondingly. This tends to maximize the 
similarity between the outputs of the memory and the outputs of the rout- 
ing circuit, which will also refine the position of the attentional window 
so that the high-resolution components can be properly matched (figure 
13.7b). After allowing a fixed amount of time for the associative memory to 
converge (another time constant or two), the simulation states the position 
and presumed identity of the object. The current control state is then self- 
inhibited and the network switches back into blob search mode. This then 
puts the next interesting object at a competitive advantage in attracting the 
window of attention so that it may also be recognized (figure 13.7c,d). 

This simulation demonstrates the operation of simple, neural-like cir- 
cuits for routing and control in both "preattentive" (blob search) and "at- 
tentive" (recognition) modes. Although we have greatly oversimplified 
matters for the purpose of explanation, the same basic principles can be 
extended to larger, hierarchical circuits. We now turn to the issue of how 
such circuits may possibly be implemented in the brain. 

Neurobiological Substrates and Mechanisms 

Figure 13.8a illustrates the major visual processing pathways of the primate 
brain. Information from the retinogeniculostriate pathway enters the vi- 
sual cortex through area VI in the occipital lobe and proceeds through a 
hierarchy of visual areas that can be subdivided into two major functional 
streams (Ungerleider and Mishkin 1982). The so-called "form" pathway 
leads ventrally through V4 and inferotemporal cortex (IT) and is mainly 
concerned with object identification, regardless of position or size. The so- 
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Figure 13.7 Computer simulation of a simple attentional system for recognizing objects. 
The input to the routing circuit consists of a 22 x 22 pixel array of sample nodes and the 
output of the routing circuit is an 8 x 8 array of sample nodes. There are three sets of control 
units, each one corresponding to a different size of the window of attention (small [8 x 8], 
medium [11 x 11], and large [16 x 16]). Each control neuron within a set corresponds to 
particular position of the window of attention. The Hopfield associative memory network 
("Mem output," see figure 13.6) is composed of 64 units, fully interconnected and arranged 
into an 8 x 8 grid (i.e., one node for each output of the routing circuit). The dashed outline 
denotes the position and size of the window of attention, (a) In blob search mode, the network 
settles on the A, since it has the greatest overall brightness, (b) The network is then switched 
into recognition mode and settles on the identification of the object. The position and size of 
the object are encoded in the activities of the control neurons. After a fixed amount of time, 
the current control state is self-inhibited and the network is switched back into blob search 
mode so that the next most interesting object may be recognized (c, d). 

called "where" pathway leads dorsally into the posterior parietal complex 
(PP), and seems to be concerned with the locations and spatial relation- 
ships among objects, regardless of their identity. The pulvinar, a subcorti- 
cal nucleus of the thalamus, makes reciprocal connections with all of these 
cortical areas (cf. Robinson and Petersen 1992). The following subsections 
describe how we envision the dynamic routing circuit mapping onto this 
collection of neural hardware. 

Cortical Areas Figure 13.8b shows the scaled-up routing circuit that we 
propose as a model of attentional processing in visual cortex. The different 
stages of the network correspond to the major cortical areas in the "form" 
pathway. There are two stages for VI: Via corresponding to layer 4C, and 
Vlb corresponding to superficial layers, because VI has about twice the 
density of neurons per unit surface area as the rest of neocortex (O'Kusky 
and Colonnier, 1982). The remaining areas—V2, V4, and inferotemporal 
cortex (IT)— occupy one stage apiece. Each node represents, in the simplest 
sense, a sample of image luminance. More realistically, each node would 
correspond to a feature vector that is represented by the activity profile 
of a large group (hundreds or thousands) of neurons in each visual area. 
For example, in VI, each group would include cells selective for various 
orientations, spatial frequencies, etc. in a small region of visual space. It 
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Figure 13.8 Neurobiological substrates of the model, (a) The major visual processing path- 
ways of the primate brain. Some connection pathways (e.g., V4-PP) are not shown to avoid 
clutter, (b) Proposed neuroanatomical substrates for dynamic routing. The label beside each 
layer indicates the corresponding cortical area and the number of sample nodes in one di- 
mension. The number of sample nodes in two dimensions is approximately the square of this 
number (of course, there would be many neurons at each node in any model that represented 
complex features rather than pixels.) At the bottom is shown a scale of the approximate 
eccentricity of the input nodes to the circuit. Connections are shown for the middle node in 
each layer. (Individual nodes are indistinguishable here because of their density.) Control 
signals originate from the pulvinar to effectively gate the feedforward synapses. 
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is impractical at this stage to include these characteristics explicitly in our 
model, but we contend that these details can be safely neglected for now 
without losing the predictive value of the model. 

The size of each stage scales roughly with the relative size of each corre- 
sponding cortical area. (A notable exception, of course, is the IT complex, 
due to the fact that much of the neural resources in IT are probably de- 
voted to recognition rather than representing the contents of the window 
of attention itself.) In addition, the fan-in per node (~1000:1) and resulting 
receptive field sizes are consistent with neuroanatomical and neurophys- 
iological data (Gattass et al. 1985; Cherniak 1990; Douglas and Martin 
1990). The number of nodes in the output (~ 30 nodes in diameter) corre- 
sponds to the spatial resolution of the window of attention in our model, 
which seems to be consistent with several lines of psychophysical evidence 
(Campbell 1985; Van Essen et al. 1991). 

A number of physiological experiments indicate that the posterior pari- 
etal complex (PP) may be representing the locations of potential attentional 
targets in the visual scene (Mountcastle et al. 1981; Robinson et al. 1991; 
Steinmetz et al. 1992). For this reason, we propose that PP may act as a 
"saliency map" (e.g., Koch and Ullman 1985), analogous to the blob map 
utilized in the simple attentional system described previously. The supe- 
rior colliculus may also supplement PP in this role by acting as a crude 
saliency map, but with a quicker response time due to its direct retinal 
input. These neurons would then drive the control neurons that compete 
for control of the window of attention. 

Subcortical Areas We hypothesize that the pulvinar plays an important 
role in providing the control signals required for the routing circuit (see 
also chapter 5 by Koch and Crick). The pulvinar is reciprocally connected 
to all areas in the form pathway, thus making it a plausible candidate for 
modulating information flow from VI to IT. In addition, the pulvinar re- 
ceives projections from both PP and superior colliculus, which are known 
to encode the direction of saccade targets and may also be involved in 
setting up attentional targets (Posner and Petersen 1990). Finally, neuro- 
physiological studies (Petersen et al. 1985), lesion studies (Desimone et 
al. 1990), and PET studies (LaBerge and Buchsbaum 1990) of the pulvinar 
suggest that it plays an important role in visual attention. 

A subcortical nucleus such as the pulvinar also has the important prop- 
erty of being spatially localized while at the same time being able to com- 
municate with vast areas of the visual cortex. The relative proximity of 
pulvinar neurons to each other would facilitate the competitive and coop- 
erative interactions among the control neurons that are necessary to en- 
force the constraint of having a single window of attention. Intrapulvinar 
communication could possibly be subserved by interneurons within the 
pulvinar (Ogren and Hendrickson 1979) or through the reticular nucleus 
of the thalamus (Conley and Diamond 1990). 

Although it is difficult to estimate exactly how many control neurons 
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would be required for a cortical routing circuit, we estimate that roughly 
106 neurons would suffice, which is in the range of the total number of 
neurons we estimate for the pulvinar (see Olshausen et al. 1993). 

Gating Mechanisms Neural gating mechanisms are believed to play an 
important role in many aspects of nervous system function. For example, 
the extent to which a noxious stimulus is perceived as painful varies greatly 
as a function of one's emotional state and other external factors. This is 
subserved, at least in part, by gating mechanisms in the spinal cord, where 
descending fibers from the raphe nuclei form part of a control system that 
modulates pain transmission via presynaptic inhibition in the dorsal horn 
(Fields and Basbaum 1978). Gating mechanisms are also thought to play an 
important role in sensorimotor coordination; for example, central pattern 
generators in the spinal cord are known to gate sensory inputs according 
to the phase of the movement cycle in which the input occurs (Sillar 1991). 
A somewhat different form of gating seems to take place in the LGN, in 
which thalamic relay cells seem to exhibit two distinct response modes: a 
relay mode, in which cells tend to more or less faithfully replicate retinal 
input, and a nonrelay burst mode, in which cells burst in a rhythmic pattern 
that bears little resemblance to the retinal input (Sherman and Koch 1986). 
In this instance, the reticular nucleus of the thalamus is thought to be the 
source of the signal that switches the LGN into the nonrelay burst mode. 

Although there is as yet no explicit evidence for gating mechanisms 
in the visual cortex, there are several possible biophysical mechanisms 
that would allow control neurons to gate synapses along the Vl-IT path- 
way. Presynaptic inhibition, as in the spinal cord, would provide the most 
localized gating effect. However, to date there exists no morphological 
evidence for this type of mechanism (Berman et al. 1992). Postsynapti- 
cally, a control neuron could decrease or possibly nullify the efficacy of 
a corticocortical synapse via shunting inhibition. Evidence for this type 
of mechanism playing a role in orientation or direction tuning is mixed, 
with some for (Volgushev et al. 1992; Pei et al. 1992) and some against 
(Douglas et al. 1988). Another possible postsynaptic gating mechanism 
could be realized via the combined voltage- and ligand-gated NMDA re- 
ceptor channel, which has been shown to play an important role in normal 
visual function (Nelson and Sur 1992; Miller et al. 1989). In this case, a 
neuron could effectively boost the gain of a corticocortical synapse by lo- 
cally depolarizing the membrane in the vicinity of the synapse. Also, there 
exist voltage-gated Ca2+ channels in dendrites that could provide nonlin- 
ear coupling between inputs (Llinäs, 1988a). All of these mechanisms, and 
possibly others, offer a multiplicative-type effect that is suitable for gating 
information flow through the cortex (see also Koch and Poggio 1992). 

From a computational viewpoint, gating inputs within the dendrites 
provides a much higher degree of flexibility than would merely gating the 
outputs of pyramidal cells. Since the output of a pyramidal cell may branch 
to several cortical areas and make synaptic connections to a multitude of 
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neurons, any modulation of the cell's output will simply be duplicated 
at all these input points. Gating inputs within the dendrites, on the other 
hand, allows many intermediate results, J2k ckrijkl)n, to be computed within 
the postsynaptic membrane and then summed together within a single 
cell. This results in a computational structure far richer and more compact 
(Mel 1992), and provides a higher degree of flexibility in remapping visual 
information. We believe the demonstrable computational advantage of 
dendritic gating mechanisms for visual processing motivates the need to 
specifically look for such mechanisms experimentally. 

Predictions 

Neurophysiology The most obvious prediction of the dynamic routing 
circuit model is that the receptive fields of cortical neurons should change 
their position or size as attention is shifted or rescaled. This effect should 
be especially pronounced in higher cortical areas. Moran and Desimone 
(1985) found that receptive fields of neurons in areas V4 and IT of primate 
visual cortex seem to be dynamically modulated so that unattended stim- 
uli have a reduced effect on the cells response, even though they lie within 
the classical receptive field. This result is consistent with the prediction of 
the model, as explained graphically in figure 13.9. The stronger prediction 
of the model—that receptive fields should shift and rescale proportional to 
the position and size of the attentional window—needs to be tested by ex- 
plicitly mapping out receptive fields under different attentional conditions. 

Since we hypothesize that pulvinar neurons control the remapping pro- 
cess, we would predict that lesions to the pulvinar should dramatically 
degrade attentional and pattern recognition abilities. Neurophysiological 
data thus far indicate that pulvinar lesions do indeed degrade attentional 
capabilities, but tests of pattern recognition capabilities (e.g., Chalupa et al. 
1976) have used such simple stimuli that it is difficult to discern to what ex- 
tent detailed spatial recognition is affected. One would also expect to find 
some form of enhancement in the response of pulvinar neurons projecting 
to those areas of the cortex within the topographic vicinity of the attentional 
beam. Petersen et al. (1985) reported such an enhancement effect for neu- 
rons in the dorsomedial portion of the pulvinar (which is connected with 
PP), but not in the inferior or lateral portion (which is connected to Vl-IT). 
The lack of enhancement here may be due to the fact that the task used in 
this experiment was very simple (detecting the dimming of a spot of light). 

Neuroanatomy Our particular routing circuit model predicts that the size 
of the cortical region from which a cell receives its input should increase 
by roughly a factor of two at each stage in the hierarchy of visual areas in 
the form pathway (see figure 13.8). While there exists some evidence in 
.support of this prediction—for example, projections from V4 to IT are more 
diffuse than projections from VI to V2 (Van Essen et al. 1986; DeYoe and 
Sisola 1991; see also Rockland 1992b)—more accurate and higher resolution 
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Figure 13.9 The dynamic routing circuit interpretation of the Moran and Desimone (1985) 
experiment. The node in layer V4 indicates the cell under scrutiny. The hatched region indi- 
cates those connections to the cell that are enabled; the others are disabled. The bounds of the 
window of attention in each area are shown by the stippled lines, (a) In the nonattentive state, 
all connections will be open and the effective stimulus can excite the cell anywhere within 
its classical receptive field, (b) When attending to the effective stimulus, the cell's response 

should be unaltered since the neural pathways to the stimulus are still open, (c) When at- 
tending to the ineffective stimulus, the cell's response should decrease substantially since the 
neural pathways to the effective stimulus are gated out. (d) When attending outside the cell's 
classical receptive field, there is no need to gate the cell's inputs since it is no longer taking 
part in the process of routing information within the window of attention. 

data are needed to confirm or contradict the specific architecture of the 
proposed routing circuit. The model also predicts that pulvinar afferents 
should terminate in the cortex in such a way that they could effectively 
modulate intercortical synaptic strengths. Neuroanatomical studies thus 
far seem to be in agreement with this prediction (e.g., Trojanowski and 
Jacobson 1976), but it would be of interest to know if the pulvinar afferents 
make contact with inhibitory interneurons or directly onto the dendrites of 
pyramidal cells. If the latter is true, it would be of interest to know whether 
these synapses are made near corticocortical synapses. Finally, the model 
predicts that there should exist lateral interconnections among pulvinar 
neurons to constrain their activity to be consistent with a single position and 
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size of the window of attention. This is partially supported by the existence 
of interneurons within the pulvinar (Ogren and Hendrickson 1979), but it 
remains to be seen if the axons of projection neurons have collaterals that 
spread horizontally within the pulvinar, or to what extent the reticular 
nucleus of the thalamus may subserve intrapulvinar communication. 

Psychophysics The number of sample nodes in the top layer of the rout- 
ing circuit implies that the spatial resolution of the window of attention 
is limited to a diameter of about 30 pixels. Although this estimate is con- 
sistent with several lines of psychophysical evidence, including studies of 
spatial acuity, contrast sensitivity to gratings, and recognition (Campbell 
1985; Van Essen et al. 1991), none of these studies was actually directed at 
studying visual attention. Most of the experiments had long display times 
that could conceivably have allowed several attentional fixations (although 
we doubt that this would have been a major contaminating factor in most 
cases). One possible approach to testing this prediction more thoroughly 
would be to test pattern discrimination ability as a function of the position, 
size, and resolution of the object. Assuming a subject could be properly pre- 
cued to attend to a certain position and size of the visual field, and that dis- 
play times were limited to the order of 50 msec, we would predict that per- 
formance would drop off sharply once the task-specific spatial frequency 
content of the stimulus exceeded approximately 15 cycles across the object. 

The model also suggests that once a location has been attended to in 
the visual field, it should be difficult to stay there or immediately revisit it 
since the the control neurons corresponding to that part of the visual field 
are currently inhibited from firing. This is consistent with the psychophys- 
ical observation that involuntary attentional fixations tend to be transient 
(Nakayama and Mackeben 1989) and appear to be inhibited from return 
(Posner and Cohen 1984). 

Recognition of Highly Complex Patterns The current version of our 
dynamic routing model is capable of subserving translation and scale- 
invariant pattern discrimination when tested with small numbers of rela- 
tively simple stimuli (see figure 13.7). These rudimentary capabilities are a 
far cry from those of our own visual system, which can effortlessly discrimi- 
nate, for example, among hundreds or thousands of human faces, indepen- 
dent of size, position, and viewing angle. Besides quantitatively scaling to 
a higher density representation, two types of qualitative refinement, both 
alluded to already, will be needed for our model to more closely approach 
human performance. First, there needs to be a much more sophisticated 
control structure that provides for warping of image representations, in 
addition to the translational and scaling capacities already achieved in our 
current model. Second, substantial processing of form and textural cues 
should be carried out at early and intermediate stages, rather than hav- 
ing only pixel-based information transmitted to the high-level associative 
memory. For example, it might be sensible to have cells at the high levels 
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Figure 13.10 The importance of preserving spatial relationships. The two objects (a) and (b) 
contain the same spatial features but result in very different percepts. 

of the routing circuit, just before the associative memory stage (cf. figure 
13.2), that have attained selectivity for complex local features, such as the 
shapes of particular parts of the face (e.g., the eyes, nose, or mouth). In- 
deed, cells with characteristics of this type have been reported in posterior 
inferotemporal cortex of anesthetized monkeys (Fujita et al. 1992). A cru- 
cial (but untested) aspect of our model is that such cells should also be 
tuned for the location of features within the window of attention, thereby 
preserving an explicit representation of local spatial relationships. 

To illustrate how this strategy might work, consider the example of two 
readily distinguishable cartoon faces that are made up of identical ele- 
ments, one in a natural configuration (figure 13.10a) and the other in a 
spatially scrambled configuration where the positions of the eyes, nose, 
and mouth are interchanged (figure 13.10b). When one attends to the face 
as a whole, we propose that each pattern activates very different popu- 
lations of the aforementioned feature-selective neurons in posterior infer- 
otemporal cortex, even though they consist of identical components. For 
example, the normal face would activate cells that are selective for eyes 
situated in the upper part of the window of attention, whereas the scram- 
bled face would activate a different set of cells selective for eyes situated 
in the middle and lower part of the window. (The former cells might be 
more numerous than the latter as a result of biased exposure in normal 
visual experience.) In each case, the inputs would feed into an associative 
memory, where they would elicit different patterns of activity and hence 
different visual percepts. We contend that the preservation of information 
about local spatial relationships up to (but not including) the associative 
memory stage provides an efficient basis for discriminating among a wide 
variety of complex natural objects. 

One possible concern about this proposed strategy is the requirement 
for a large number of cells, because these would need to be tuned for many 
different positions of each featural type relative to the boundaries of the 
window of attention. This difficulty could be minimized by having rea- 
sonably broad tuning for position as well as featural characteristics. In 
any event, similar issues must be addressed by any model that is capable 
of complex pattern recognition. For example, one alternative would be to 
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have cells that are explicitly tuned for the distance between particular fea- 
tures as well as the orientation of the axis between them (F. Crick, personal 
communication). To discriminate between figure 13.10a and 13.10b using 
this strategy, it would be important to have cells that are selective both for 
particular feature conjunctions and for certain positional relationships (e.g, 
a nose-like feature that is a particular distance directly above a mouth-like 
feature). We contend that this strategy would lead to an even more severe 
combinatorial explosion in the numbers of cells needed to encode all of the 
requisite combinations of featural and positional cues. 

Comparison with Other Network Models 

Control vs. Synchronicity Recently, there has been widespread interest 
in the possibility that synchrony of neural firing could serve as a code for 
linking features common to a given object. Synchronous activation could 
operate by transient increases in connection strengths (Crick 1984; von der 
Malsburg and Bienenstock 1986). In this way, temporal information might 
be used to solve the "binding problem" (see chapter 10 by Singer) and 
thereby mediate aspects of figure/ground segregation, attention, and per- 
haps even consciousness (see chapter 5 by Koch and Crick). A potential 
weakness common to these approaches is that information about what is 
being connected to what at any instant in time is not explicitly encoded 
anywhere in the system. In our model, this information is encoded ex- 
plicitly in the activities of the control neurons, which then allows it to be 
utilized advantageously in a number of ways. 

One way that information about connectivity can be utilized is in con- 
straining the active connections between retinal and object-based reference 
frames to be in accordance with a global shift and scale transformation. 
This constraint is incorporated in our model via the competitive and coop- 
erative interactions among the control neurons. During object recognition, 
this constraint drastically reduces the number of degrees of freedom in 
matching points between the retinal and object-centered reference frames, 
because once a few point-to-point correspondences have been established, 
the number of potential matches between other pairs of points is greatly 
reduced. Researchers in machine vision have termed this the viewpoint 
consistency constraint, and it has proved to be a powerful computational 
strategy for object recognition systems (Hinton 1981b; Lowe 1987). 

Another advantage of having information about active connection states 
readily available is that the ensemble of control neurons together forms a 
neural code for the current position and size of the window of attention. 
Therefore, the position and size of an object can be inferred by simply 
reading-out the state of the control neurons. In addition, it would also be 
possible for the control neurons to warp the reference frame transformation 
to form object representations that are invariant to distortion (e.g., hand- 
written digits), in which case information about the particular shape of 
the object (e.g., its slant or style) could also be preserved. Note that such 
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information is typically lost in networks that utilize feature hierarchies 
of complex cells (Fukushima 1980, 1987; LeCun et al. 1990) or Fourier 
transforms (e.g., Pollen et al. 1971; Cavanagh 1978, 1985) for forming 
position-, scale-, and/or distortion-invariant representations. 

One final advantage of having control explicitly represented is that it 
allows attention to be easily directed "at will," or by other modalities, since 
those areas of the brain that have access to the control neurons (such as 
parietal cortex) can directly influence where attention is directed. This also 
provides a convenient format for mediating the access to control among 
various competing demands. 

An interesting issue is whether the control strategy advocated in our 
model could be implemented using oscillations or temporal synchrony 
rather than the multiplicative synaptic interactions suggested in an ear- 
lier section. While we cannot rule this out, we find it difficult to envision 
precisely how such a model could route information flow within the cor- 
tex while simultaneously preserving local spatial relationships within the 
attentional window. Alternatively, oscillations might provide, by anal- 
ogy to digital computers, a clocking signal to control the precise timing of 
switches in information flow. 

Control-Based Network Models A number of other network models of 
attention have also utilized the concept of control neurons for directing 
information flow. Niebur et al. (1993), Ahmad (1992), Tsotsos (1991), 
and Mozer and Behrmann (1990), among others, have proposed various 
schemes for selecting and routing information from a select portion of the 
visual scene. However, none of these models explicitly preserves spa- 
tial relationships within the window of attention, which we consider to 
be a critical component of the routing process. Hinton (1981a), Hinton 
and Lang (1985), and Sandon (1990) have proposed control-based models 
that do preserve spatial relationships within the window of attention and 
share the same basic flavor as the model presented here (i.e., remapping 
object representations from retinal into object-centered reference frames). 
Although these latter models attempt to model psychophysical data, we 
feel that they lack the necessary level of neurobiological detail to give them 
strongly predictive value in biology. 

Recently, Postma et al. (1992) proposed a neural model based on the orig- 
inal shifter circuit proposal (Anderson and Van Essen 1987) to account for 
translational invariance in visual object priming (Biederman and Cooper 
1992). This model shares many similarities to the model presented here, 
including top-down, or template-driven control, although it differs in the 
specifics of the control structure. 

Ullman (see chapter 12 by Ullman) has proposed that pattern recogni- 
tion is achieved by a "counterstreams" strategy, in which information about 
stored patterns flows top-down at the same time that information about 
currently viewed patterns flows in the bottom-up direction. Multiple coex- 
isting representations flow in each direction, and recognition is manifested 
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by a winner-take-all competition to find the best match between patterns 
propagating in the two directions. His model shares with ours the notion 
that explicit control processes are needed to regulate information flow. 
However, these processes are different in many respects, particularly with 
regard to the multiplicity of actively propagated stimulus representations. 

Lastly, there are important lines of convergence and divergence in com- 
paring our model to the ideas of Mumford (see chapter 7 by Mumford) 
that are based on Grenander's Pattern Theory (Grenander 1976-81). He 
invokes the need for "domain warping" that can be mediated by neural 
shifter circuits analogous to those we have proposed. 

A MODEL OF DIRECTED MOTOR CONTROL 

Computational Framework 

In the introduction, we argued that directed motor control and directed 
visual attention share common computational underpinnings, in terms of 
requirements for a high degree of anatomical convergence and divergence 
and for mechanisms for dynamically controlling information flow. These 
commonalities are illustrated schematically in figure 13.11. As noted al- 
ready, visual attention involves the transient selection of a tiny subset of 
the information being transmitted along the optic nerve. In the preceding 
section, our model included only a single high-level center mediating all 
aspects of pattern recognition. In reality, though, there may well be distinct 
neural populations responsible for qualitatively different types of pattern 
recognition. For example, the population of cells responsible for recogniz- 
ing faces may be largely or entirely different from those responsible for rec- 
ognizing alphanumeric characters or from those responsible for recogniz- 
ing different flowers and trees. If so, there needs to be an output selection 
process for determining the target population to which attended informa- 
tion is sent in addition to the aforementioned input selection process for di- 
recting the position and scale of the window of attention (figure 13.11a; see 
also figure 5 in Anderson and Van Essen 1987). For simplicity, we assume 
here that the different target populations can be represented by separate en- 
tries at the top, even if they happen to overlap physically within the cortex. 

For directed motor control, there needs to be a cognitively driven input 
selection process to generate the appropriate motor routine and an output 
selection process that determines to which appendage or combination of 
appendages this pattern is directed. Consider, once again, the example of 
the orchestral conductor discussed in the introduction. The basic rhythm 
(say, for a brisk march having two beats per measure) is presumably repre- 
sented in some central pattern generator (an internal metronome, in effect) 
that can be activated and modulated by auditory, visual, and other cues 
(figure 13.11b). For any given rhythm, the conductor must transform this 
beat into a particular motor routine (e.g., up-down or left-right strokes, or 
circular strokes) and then direct this routine to the appropriate digit(s) or 
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Figure 13.11 Control of information flow for visual attention (n) and directed motor control 
(b). The direction of information flow is bottom-up for sensory processing and top-down 
for motor function, but in both cases we propose the need for separate control mechanisms 
to regulate the flow dynamically. The attentional selection process tends to be relatively 
transient, whereas directed motor routines can be very sustained. 

other appendage(s) (cf. Keele 1981). Note that information flow is directed 
downward in this scheme, because it involves top-down communication 
from high-level centers to ones that are closer to the periphery. 

A Simplified Vector-Code Scheme 

The motor system is extremely complex and is arguably more diverse than 
the visual system in the layout of its major components, which include cere- 
bellar as well as cerebral cortical areas and numerous subcortical nuclei in 
the forebrain (basal ganglia), thalamus, midbrain, and brainstem. It has 
been intensively studied using anatomical, physiological, and computa- 
tional approaches in attempting to decipher how information flows and is 
processed in this complex network (cf. Houk et al. 1993; Hoover and Strick 
1993). For our purpose in this preliminary analysis, it is sufficient to focus 
on a highly simplified scheme in which the representation at both middle 
and lower levels in figure 13.11b involves a vector-code strategy similar to 
that proposed by Georgopolous and colleagues for primary motor cortex 
(Georgopolous et al. 1988, 1989). In this scheme, each neuron "votes" 
for a particular direction of movement for the portion of the limb that it 
influences, and the strength of its vote is proportional to its firing rate. 
We further assume that there is an orderly representation of movement 
direction across the cortical surface. In the example illustrated, neurons 
on the left represent upward movement, and neurons further to the right 
represent progressively more clockwise directions of movement. Thus, the 
up-down movements schematized in figure 13.1 would be represented as 
a motor routine in which activity would alternate between neurons repre- 
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senting upward and downward movement. To have a particular digit or 
other appendage execute this movement, this stereotyped spatiotemporal 
pattern would be selectively routed to the neural populations in motor cor- 
tex that control the relevant digits. By having direction of movement be 
encoded in the same way at both levels in this scheme, the routing process 
is simplified so that neurons at the lower level can project in a 1:1 mapping 
to neurons within the representation for each appendage. Note that for 
conceptual clarity, we have treated the representation of each digit or other 
appendage as a separate neural ensemble. In reality, it is likely that these are 
often overlapping, interleaved ensembles of neurons (Schieber 1990,1992). 
However, we will ignore these complexities in our zeroth-order model, for 
the same reason that our attention model involves major simplifications 
that we regard as not crucial to the initial formulation even though they in 
due course will necessitate expansion and refinement of the model. 

In considering how this scheme might be implemented in the primate 
motor system, it is important to identify the cortical and/or subcortical 
structures in which different motor routines are represented and the major 
anatomical pathways along which this information is transmitted. Unfor- 
tunately, these basic issues are not well understood. One interesting ob- 
servation is that primary motor cortex is at a lower level than other motor 
areas in an anatomically based hierarchy that derives from the laminar pat- 
terns in which different pathways originate and terminate (Felleman and 
Van Essen 1991). A priori, there is no compelling reason why this need be 
the case, as opposed to a situation in which primary motor cortex was at 
the pinnacle of a sensory input to motor output hierarchy. The observed 
relationship fits nicely with our presumption that directed motor control 
involves top-down flow of information, as already indicated in figure 13.11. 
However, it raises the puzzling possibility that the spatiotemporal patterns 
associated with different motor routines might be communicated between 
cortical areas via anatomically descending (feedback) pathways, whose 
terminations preferentially avoid the middle layers of cortex. This would 
contrast with the basic pattern of information flow in visual, auditory, and 
somatosensory systems, which is characterized by ascending inputs that 
preferentially terminate in the middle layers of cortex (see Felleman and 
Van Essen 1991). On the other hand, it would correspond to the pattern 
of information flow in olfactory cortex and related areas, where ascending 
pathways tend to terminate in layer 1 and other superficial layers (Haberly 
and Price 1978; Carmichael 1993). 

An intriguing alternative is that information about a given motor rou- 
tine might be communicated indirectly between cortical areas, via the well- 
known route involving the basal ganglia and thalamus (Alexander et al. 
1986), rather than via direct corticocortical connections. Since thalamic 
motor nuclei (VA and VL) terminate mainly in the middle layers of motor 
cortex (Sloper and Powell 1979), this would represent a better match to 
the laminar patterns associated with ascending information flow in sen- 
sory cortex. In short, our current level of understanding is insufficient to 
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determine whether the information for encoding a given motor routine 
(1) flows through cortical areas and is gated by thalamic projections, (2) 
flows through corticosubcortical loops and is gated by descending cortico- 
cortical pathways, or (3) flows in a very different way that does not involve 
the explicit gating mechanisms proposed in our model. 

COGNITIVE PROCESSING 

In this chapter, we have concentrated on sensory and motor processing, 
where the conceptual issues can be most sharply formulated and their pos- 
sible neurobiological substrates most rigorously analyzed. However, we 
suspect that similar processing strategies apply also to language process- 
ing and to other cognitive functions as well. This supposition derives from 
thinking about examples such as the following. 

Suppose that an observer is asked to remember the identity of an object 
(say, an apple) whose picture is briefly flashed on a screen. After a brief 
delay, the observer is asked to report the identity of the object by (1) stating 
its name verbally, (2) writing its name on a sheet of paper, or (3) signing 
its name in American Sign Language. In another variation of this task, 
a multilingual observer could be asked to state the name of the object in 
different languages (e.g., English, French, or Polish). In situations of this 
type, we presume that information about the object's identity is stored in a 
restricted number of central representations and that this information can 
be routed to a variety of different output modalities and in a variety of 
different formats. For the purposes of this argument, it does not matter 
whether the object's identity is stored as a visual memory, in a particular 
language-specific format, or as some completely abstract cognitive con- 
struct. Whatever the format of the representation, the brain must be able 
to access the information, rapidly translate it into an appropriate format, 
and transmit it to the appropriate motor structures. We have already ar- 
gued that the sensory and motor components of such tasks are likely to 
entail dynamic routing strategies. It requires only a modest conceptual 
leap to suppose that analogous routing strategies may be used to control 
the flow of information in whatever central structures are used to represent 
semantic information and other high-level abstractions that are the coinage 
of cognitive function. 

CONCLUDING REMARKS 

Our approach to formulating models of cortical function has been guided 
by a number of computational and systems engineering considerations. 
Some of these can be illustrated by the following analogy We regard the 
brain as a system designed to treat information as an essential commodity, 
much as an efficient factory is designed for optimal handling of the phys- 
ical materials that traffic across its floors. In both cases, the raw materials 
that enter the system generally represent only a small fraction of the final 
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product. The production process involves careful selection of useful mate- 
rials, discarding of excess or unnecessary materials, and transforming and 
repackaging of the desired materials in an appropriate configuration for 
the particular applications for which the product is intended. For efficient 
function, the flow of material must be carefully monitored and controlled. 
This requires specialized systems that are explicitly designed for this pur- 
pose, rather than for construction and fabrication processes per se. 

In the nervous system, we believe that an important general strategy 
for attaining these objectives is the systematic use of multiplicative opera- 
tions, whereby one set of inputs from a class of "control neurons" dynam- 
ically modulates the connections between two other groups of neurons. 
In this chapter our emphasis has been on the modulation of feedforward 
pathways, although in the future the coordinated modulation of the corre- 
sponding feedback pathways will be included in our discussions. Conven- 
tional neural network models typically rely on computations that are dom- 
inated by linear combinations of synaptic feedforward inputs followed by 
a nonlinear operation. This simple neural network structure has proven to 
be too rigid and unwieldy when applied to large problems. More complex 
nonlinearities have been introduced to achieve flexibility in neural compu- 
tational systems using, for example, dynamic links (von der Malsburg and 
Bienenstock 1986) or oscillations (Koch and Crick, chapter 5; Singer, chap- 
ter 10). While these models have encompassed feedback projections, they 
have kept the basic input-output structure and have effectively introduced 
what we would call control functions in an implicit fashion, rather than the 
explicit fashion we favor. We suggest that models that do not distinguish 
control functions from information flow and processing will not scale well 
with increased problem complexity. 

Explicit three-way interactions provide a contextual framework for mod- 
ifying the interpretation of information, which is an essential ingredient 
for cognitive processing. Hierarchical interpretative systems can be de- 
signed in a cleaner more efficient fashion using a substrate of modules 
specialized in terms not only of memory and processing, but control as 
well. Implementing complex circuits of the type described in this chapter 
requires their physical structure to be largely laid down by genetic fac- 
tors. Numerous anatomical and physiological facts support the picture 
of a rather well-defined structure for the neocortex and its connections to 
subcortical bodies that is replicated across individuals and not modified on 
a gross scale by experience. This would suggest there are preprogrammed 
strategies for learning how to interact with and adapt to the environment. 
Thus, while the details of the information about complex objects contained 
within the inferotemporal cortex differs between individuals, the strategies 
for acquiring that information, and the way it is stored and retrieved, is 
presumed to be very similar. Our brains did not evolve as general purpose 
computational systems, but rather to compete and thrive in the rich, but 
restricted context of human society and the world we live in. 
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