
Technical Report 1417

" A Lifetime-based
Garbage Collector for LISP Systems

on General-Purpose Computers

Patrick Sobalvarro

MIT Artificial Intelligence Laboratory

k—*—*
i-SäSS«*®

19950125 139 "*$$&'*

REPORT DOCUMENTATION PAGE Form Approved

OBM No. 0704-0188
Public reporting burden for this coltection of information is estimated to average 1 hour per response. Including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

February 1988
REPORT TYPE AND DATES COVERED
technical report

4. TITLE AND SUBTITLE
A Lifetime-based Garbage Collector for LISP Systems on
General-Purpose Computers

6. AUTHOR(S)
Patrick Sobalvarro

5. FUNDING NUMBERS

N00014-85-K-0124

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AI-TR 1417

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Garbage collector performance in LISP systems on custom hardware has been
substantially improved by the adoption of lifetime-based garbage collection
techniques. To date, however, successful lifetime-based garbage collectors
have required special-purpose hardware, or at least privileged access to data
structures maintained by the virtual memory system. I present here a
lifetime-based garbage collector requiring no special-purpose

14. SUBJECT TERMS

garbage collection, dynamic storage allocation, lifetime-based garbage
collection, LISP, storage reclamation

15. NUMBER OF PAGES

68

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500

A Lifetime-based Garbage Collector
for LISP Systems

on General-Purpose Computers

Patrick G. Sobalvarro

Submitted in Partial Fulfillment
of the Requirements of the Degree of

Bachelor of Science
in

Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
September 1988

© Copyright 1988 Patrick G. Sobalvarro

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis in whole or in part.

Author.
Department of Electrical Engineering and Computer Science

February 1, 1988

Certified by_
Robert H. Halstead, Jr.

Associate Professor
Department of Electrical Engineering and Computer Science «TTZ

Thesis Supervisor ——>-
QRA4I

Accepted by_
Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses

*

/

A Lifetime-based Garbage Collector
for LISP Systems

on General-Purpose Computers

Patrick G. Sobalvarro

Submitted in Partial Fulfillment
of the Requirements of the Degree of

Bachelor of Science
in

Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

Abstract

Garbage collector performance in LISP systems on custom hardware has
been substantially improved by the adoption of lifetime-based garbage col-
lection techniques. To date, however, successful lifetime-based garbage col-
lectors have required special-purpose hardware, or at least privileged access
to data structures maintained by the virtual memory system. I present here
a lifetime-based garbage collector requiring no special-purpose hardware or
virtual memory system support, and discuss its performance.

Thesis Supervisor: Robert H. Halstead, Jr.
Title: Associate Professor

Department of Electrical Engineering and Computer Science

CONTENTS i

Contents

Introduction u
A Note on Terminology iü
Acknowledgements • • iv

I Motivation and Prior Work 1

1 Garbage Collection in Modern LISP Systems 1
1.1 Copying Garbage Collection 1
1.2 Lifetime-Based Garbage Collection 2

1.2.1 Lieberman and Hewitt's Garbage Collector 2
1.2.2 Address Space Utilization and Physical Memory Uti-

lization in Lifetime-based Garbage Collection 4

2 Previous Implementations 6
2.1 Ungar's Generation-Scavenging Garbage Collector 6

2.1.1 Description 6
2.1.2 Address Space Utilization 7
2.1.3 Suitability 7

2.2 The Tektronix Large Object Space Smalltalk Garbage Collector 7
2.2.1 Description 7
2.2.2 Address Space Utilization 8
2.2.3 Suitability 8

2.3 The Symbolics Ephemeral Garbage Collector 9
2.3.1 Description 9
2.3.2 Implementing the Symbolics Ephemeral Garbage Col-

lector Without Special-Purpose Hardware 11
2.3.3 Address Space Utilization 15
2.3.4 Suitability 15

II A Lifetime-based Garbage Collector for LISP Systems
on General-Purpose Computers 16

3 Desiderata 16

CONTENTS "

4 Early Decisions 18
4.1 Optimizing the Task of Keeping Track of Ephemeral Objects 18
4.2 Set-Associative Pointer-Recording 19
4.3 Avoiding the Overhead of Determining Spaces When Storing

Pointers 21
4.4 The Organization of Ephemeral Spaces in Memory 23

4.4.1 Pointers Backwards in Time 23
4.4.2 Implications for Memory Organization 24

4.5 Allocation of Very Large Objects 26
4.6 Dynamic Garbage Collection in the Presence of Ephemeral

Objects 27

5 Card-Marking 30
5.1 Division of Memory; Determination of the Root Set 30
5.2 Performing a Garbage Collection 31
5.3 The Problem with Card-Marking 35

6 Word-Marking 36
6.1 Recording the Root Set 36

6.1.1 Modification Bit Tables 36
6.1.2 Entry Backpointer Lists 39

6.2 Performing a Garbage Collection 39

7 Performance Measurements and Analysis 44
7.1 Performance on the Gabriel Benchmarks 44
7.2 Performance of the Compiler Under Ephemeral Garbage Col-

lection 48

8 Conclusions and Future Work 52
8.1 Conclusions 52
8.2 Future Work 52

III Appendices 55

A Notes 55
A.l Performance of incremental garbage collection 55
A.2 Shaw's suggested extension to virtual memory systems 55
A.3 Time required to garbage-collect all levels 56
A.4 Scanning order and virtual memory performance 56

LIST OF FIGURES iii

A.5 Updating EBPLs between garbage collections 57

B Bibliography 58

List of Figures

1 Page-scanning on the MC68020 13
2 MC68020 code to record ephemeral reference locations in a

set-associative table 20
3 Layout of ephemeral spaces and overflow segment pools in

Lucid Common LISP 25
4 Marking a card on the MC68020 32
5 The card-marking garbage collection algorithm 33
6 Scanning and scavenging a card 34
7 MC68020 code to update an MBT and the segment modifi-

cation cache in a word-marking scheme 38
8 The word-marking garbage collection algorithm 40
9 Scavenging the words in a segment that point into ephemeral

space by examining its modification bit table. . 41

List of Tables

1 BOYER benchmark timings. Times are in seconds 45
2 DERIV benchmark timings. Times are in seconds 46
3 DESTRUCTIVE benchmark timings. Times are in seconds. . 47
4 Global recompilation performance measurements on Apollo

workstations. Times are in seconds 49

LIST OF TABLES iv

Introduction

The pointer-oriented semantics of LISP, and the nature of heap allocation,
often result in poor virtual memory performance on general-purpose com-
puters. Garbage collection, in particular, has traditionally required exami-
nation of at least all live data created by user programs (in copying garbage
collectors) and sometimes of storage recovered as well (in mark-sweep gar-
bage collectors).

Lieberman and Hewitt introduced in 1981 a garbage collection algorithm
based on the lifetimes of objects [9]. By grouping objects according to
their ages, the proposed garbage collector avoided examination of relatively
old objects when garbage collecting relatively young objects. LISP imple-
mentations on machines with special-purpose hardware or instruction sets
microcoded to support this algorithm have realized significant performance
improvements, as noted by Moon [10].

Moon's contention was that the overhead of bookkeeping required to keep
track of references to newly-created objects in lifetime-based garbage collec-
tors on general-purpose computers would result in prohibitive performance
degradation. Shaw [12] has recently described a scheme in which the vir-
tual memory hardware present on modern general-purpose computers can
be used to keep track of newly-stored pointers, provided one has access to
the data structures used by the virtual memory system.

I describe here the portable lifetime-based garbage collector used in Lucid
Common LISP on the Apollo and Sun workstations. As Lucid Common
LISP is portable, this garbage collector does not have the cooperation of the
virtual memory systems on the computers it runs on. Nor does it make use
of special-purpose hardware; still, the techniques of lifetime-based garbage
collection are sufficiently powerful that overall system performance is often
enhanced, and delays for garbage collection are unnoticeable, resulting in
better interactive behavior.

LIST OF TABLES v

A Note on Terminology

The popularity of lifetime-based garbage collectors since the publication of
Lieberman and Hewitt's paper has led to a number of implementations,
many of whose designers have invented their own terms to describe their
work. In what follows, I usually use Moon's terminology where it is appli-
cable, as this work was influenced most directly by his. In discussing the
techniques of copying garbage collectors, I use the terminology of Fenichel
and Yochelson [6]: memory in a copying garbage collector is divided into
semispaces, only one of which is in use at any time (the current semispace),
except during garbage collection, when both are used.

The names of LISP data types are used in discussions where they pertain;
in particular, list cells are referred to as cons cells.

An understanding of traditional garbage collection techniques is assumed; in
particular, the reader is assumed to understand the behavior of mark-sweep
garbage collectors, and of Cheney's copying, compacting garbage collection
algorithm [5]. This last will be referred to as copying garbage collection,
or sometimes as stop-and-copy garbage collection. The term root set will
be used to refer to the set of objects explicitly specified to the garbage
collector for preservation; all objects preserved through a garbage collection
are either in the root set or are encountered in some directed walk beginning
at an object in the root set.

During a copying garbage collection, the space copied from is called from-
space; the space copied to is called tospace, or copyspace. Scavenging is the
operation that copies objects referenced by a set of roots from fromspace to
tospace, and updates in the root set the references to the copied objects. It
may be used as a transitive verb; thus 'scavenging the stack' would mean
finding the objects in fromspace pointed to by pointers in the stack, copying
them and their descendants to tospace, and updating the pointers in the
stack to point to the newly relocated objects.

Fromspace and tospace together are called dynamic space, as the objects
in them are moved dynamically. In systems with lifetime-based garbage
collectors, if there is a space where long-lived objects are maintained and are
garbage-collected with a copying garbage collector that is not the lifetime-
based garbage collector, this space is also called dynamic space, and the

LIST OF TABLES vi

garbage collector is referred to as the dynamic garbage collector.

This paper assumes some knowledge of the behavior of virtual memory sys-
tems; in particular, an understanding of terms like page, main memory, and
backing store. The term dirty bit is sometimes used; this refers to the infor-
mation maintained on a per-page basis by virtual memory systems, stating
whether the page in question has been modified (made "dirty") while it has
been in main memory. The sections of main memory that hold individual
virtual memory pages are called page frames.

In discussions where it is advantageous to consider particular architectures,
I use as an example the Motorola. MC68020, using the assembler syntax in
[11]. My terminology differs from theirs only in that, when I refer to a word,
I mean a 32-bit quantity; Motorola refer to these as longwords.

Where specific LISP tagging schemes are considered, I use that employed
by Lucid Common LISP on the MC68020.

Acknowledgements

Much of the work described in this paper was performed at Lucid, Inc., of
Menlo Park, California, in 1986 and 1987. It was strongly influenced by
Moon's Ephemeral Garbage Collector for the Symbolics 3600 [10], but was
independent of Shaw's work [12].

The author owes a debt of gratitude to the following people, all of Lucid,
Inc.: Eric Benson, Dick Gabriel, Harlan Sexton, and Jon L. White, for many
illuminating discussions during the design of the program; James Boyce, for
his work in integrating the garbage collector into the LISP system and in
ferreting out obscure bugs; and Leonard Zubkoff, for performance measure-
ments on the Apollo. Prof. Rodney Brooks of M.I.T., and also of Lucid
Inc., gave me the opportunity to work at Lucid and encouragement in my
long struggle to buy a very expensive bachelor's degree.

Prof. Robert H. Halstead, Jr., was a most supportive thesis advisor, pro-
vided many useful comments during the writing of this document, and was
a helpful and friendly presence through its writing.

LIST OF TABLES vii

The performance analyses of the garbage collector and the writing of this
document were performed at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's ar-
tificial intelligence research is provided in part by Department of Defense
Advanced Research Projects Agency under Office of Naval Research con-
tract N00014-85-K-0124.

Part I

Motivation and Prior Work

1 Garbage Collection in Modern LISP Systems

1.1 Copying Garbage Collection

Fenichel and Yochelson [6] have described how performance will degrade
over time in LISP systems utilizing virtual memory. Their solution, copying
garbage collection, as further modified by Cheney [5], was widely adopted in
modern LISP systems; but its performance was limited by the need to scan
a potentially large root set, and to move from one area to the other, on each
garbage collection, all the structures maintained through a computation. In
a large LISP system running on a machine with virtual memory, garbage
collections could result in quite lengthy pauses; enough so that White pre-
scribes a scheme in which garbage collection is avoided altogether in virtual

memory systems [14].

Certainly refinements are possible. One popular refinement used in many
LISP systems [3] is to create in a "static" space those objects one knows will
be relatively permanent, and to scan these along with the root set; then,
while pointers in static objects to objects in dynamic space are still updated
during a garbage collection, static objects (as their name implies) are not
relocated, and the work of copying them is saved.

Another refinement uses an "unscanned" space,1 in which permanent im-
mutable objects that contain only pointers to the static or unscanned spaces
are stored; because static objects are not copied by the garbage collector,
the pointers to them need not change, and so unscanned space need not be
scanned by the garbage collector; and, of course, the objects contained in it
will not be relocated, so that, again, the work of copying them is saved.

i Brooks et al. [3] refer to this as a "read-only" space; however, to avoid confusion with,
for example, pure shared pages, and concentrate exclusively on the garbage collection issue,

I refer to it as unscanned.

1 GARBAGE COLLECTION IN MODERN LISP SYSTEMS 2

There is something unsatisfactory about this sort of refinement, however.
The garbage collector does not needlessly transport objects placed in static
or unscanned spaces, or even examine those in unscanned space. But the
storage they occupy can never be recovered, either, as these spaces are not,
by their nature, garbage-collected. Thus, in order to decide whether to
place an object in a static space, that is, a space whose contents are never
relocated, the programmer must think about its lifetime; and this begins to
smack of the sort of storage management details from which LISP purports
to free programmers. Similarly, when deciding whether to place an object
in a unscanned space, whose contents will not be scanned by the garbage
collector, the programmer must decide whether it contains pointers to dy-
namic objects, and this, again, is the sort of task from which we would like
to free the programmer.

Although we are unsatisfied with the additional tasks these refinements force
on the programmer, we can see that they are motivated by a desire to
perform two valuable optimizations: reduction of the size of the root set,
and reduction of the number of times that relatively permanent objects
are copied. We may understand lifetime-based garbage collection as an
automation of these optimizations.

1.2 Lifetime-Based Garbage Collection

1.2.1 Lieberman and Hewitt's Garbage Collector

Baker [1] introduced in 1978 a copying garbage collection algorithm that
operated in an incremental fashion: the work of transporting objects from
one semispace to the other was interleaved with the normal object creation
and manipulation functions of the LISP system.2

In practice, as implemented on the Symbolics 3600, Baker's garbage collector

Incremental garbage collection has the advantage that there are no long pauses for
garbage collection; however, I choose not to discuss it in any detail here, as its practical
implementation requires the use of an architectural feature called the invisible pointer [8],
which is not usually present on general-purpose machines. As will be obvious, however,
Lieberman and Hewitt's methods have immediate application to stop-and-copy garbage
collection, despite the fact that, as originally presented, they make yet another use of
invisible pointers. This use, however, may be circumvented on general-purpose computers.

1 GARBAGE COLLECTION IN MODERN LISP SYSTEMS 3

suffered from poor virtual memory performance (see note A.l). Lieberman
and Hewitt [9] described a modification to Baker's algorithm, in which,
rather than being divided into semispaces, memory was divided into many

small sections called regions.

At any time there is a current creation region, in which new objects are
allocated. When the current creation region is filled, a new, empty region
is allocated to be the current creation region, and objects are created there,
rather than in the old region.

Each region has a number, called a generation number. Generation num-
bers increase monotonically with time. Occasionally the garbage collector
will be run on the contents of a region. When this happens, a new region is
allocated; the live contents of the old region are copied into it, and the old
region's storage is recycled. The old region's generation number is retained
for the new region. Thus this scheme distinguishes between the number of
garbage collections that an object may survive, and the object's chronolog-
ical age; this is motivated because the garbage collector is run on regions
individually, and thus there is not necessarily a relation between the two

numbers.

In a traditional copying garbage collection scheme, the garbage collection
of any of these regions would require scanning all others, both to discover
which objects in the region were being referenced by objects outside the
region, and thus needed to be preserved, and also to update the pointers
from other regions to objects within the garbage-collected region, as these
objects will be relocated during the garbage collection.

To avoid the necessity of scanning all other regions, Lieberman and Hewitt's
garbage collector maintains for each region an entry table. The entry table
is a table of pointers to objects in the region. Pointers from outside the
region to objects inside it are made to point to entries in the entry table.
Along with the stack and registers, the table is used as the root set when
the region is garbage-collected; thus other regions need not be scanned.

As proposed for implementation on the MIT LISP Machine [8], the entry ta-
ble was implemented using invisible pointers, an architectural feature which
causes references to a location in memory to be transparently forwarded to
another location. Thus no software overhead was incurred to check whether

1 GARBAGE COLLECTION IN MODERN LISP SYSTEMS 4

a pointer to an object actually pointed to an entry in an entry table. In prac-
tice, however, the lifetime-based garbage collectors discussed in the present
text do not maintain entry tables; rather, they use structures that instead
somehow record the locations of pointers outside a region to objects inside
the region.

Lieberman and Hewitt's scheme called for making entry table entries only
for objects pointed to from regions older than the region being garbage-
collected; these were referred to as "pointers forwards in time." Objects
pointed to only from regions younger than the region being garbage-collected,
called "pointers backwards in time," were not entered in the entry table;
and such regions were to be scanned as part of the root set during garbage
collection. This optimization was motivated by the consideration that the
majority of pointers would be pointers backwards in time, and that the re-
gions most often garbage-collected would be the youngest; and thus there
would be few regions younger than them to be scanned.

But what is it that makes this garbage collector lifetime-based? Lieberman
and Hewitt observed that the mortality rate of older objects is much lower
than that of younger objects. Thus garbage collections spaced at set intervals
will likely reclaim less space from regions containing older objects than from
regions containing younger objects, so that more storage will be reclaimed
per unit of garbage collector work by garbage-collecting younger regions
more often than older regions.

It should be noted, then, that lifetime-based garbage collection affords two
separate optimizations. By dividing memory into regions with recording
structures specifying the objects that point to them, they limit the size of
the root set. By allowing objects to be segregated according to age, and
garbage-collecting areas those containing relatively permanent objects less
often, they limit the amount of copying that must be done in a garbage
collection.

1.2.2 Address Space Utilization and Physical Memory Utiliza-
tion in Lifetime-based Garbage Collection

Lieberman and Hewitt's scheme allows for utilization during user compu-
tations of a higher percentage of the available address space than does

1 GARBAGE COLLECTION IN MODERN LISP SYSTEMS 5

simple stop-and-copy garbage collection. This is because not all regions
are garbage-collected simultaneously, and only as much storage as will be
needed to hold the data in the region or regions actually currently being
garbage-collected must be maintained free. In simple stop-and-copy gar-
bage collection (or in Baker's incremental garbage collection), however, a
semispace's worth of free storage must be maintained at all times; otherwise

a flip may fail.

The traditional wisdom about copying garbage collectors, as first advanced
by Fenichel and Yochelson in [6], is that address space utilization is of
no great importance; garbage collections are performed to improve local-
ity of reference, and address space recycling is only a secondary concern. In
lifetime-based garbage collectors, however, the frequency of garbage collec-
tions of younger levels is such that both the space being copied from and
the space being copied to must be considered part of the working set. We
expect, then, that the best results will be attained by memory layouts that
make the most efficient possible use of the address space occupied by the
most frequently garbage-collected levels.

Lieberman and Hewitt's garbage collector does allow for utilization of a
greater portion of the address space during user computations than would a
scheme that statically maintained semispaces for each generation, because
the space occupied by a region just copied from may be re-utilized in the
copying of another region. However, because the space occupied by the
youngest objects changes with each garbage collection of the youngest gen-
eration, the virtual memory performance of this system will not be all we
might hope for.

2 PREVIOUS IMPLEMENTATIONS 6

2 Previous Implementations

Lieberman and Hewitt's work has provided a basis for several lifetime-based
garbage collectors. I discuss here three garbage collectors examined during
the design of Lucid's lifetime-based garbage collector; these are: Ungar's
generation-scavenging garbage collector [13], the Tektronix Large Object
Space Smalltalk garbage collector [4], and Moon's ephemeral garbage col-
lector for the Symbolics 3600 [10]. The points considered in each case are:
division of memory, determination of the root set, and advancement policy.

2.1 Ungar's Generation-Scavenging Garbage Collector

2.1.1 Description

Ungar's Berkeley Smalltalk system divides objects into two classes: new and
old. The space that old objects live in is called OldSpace. These old objects
are garbage-collected offline; which is to say, not at all during a Smalltalk
session. There are three spaces for new objects: NewSpace, where new
objects are created, PastSurvivorSpace, where new objects are also stored,
but are never created, and FutureSurvivorSpace, which is the space into
which PastSurvivorSpace and NewSpace are copied.

New objects are always created in NewSpace. Every time a pointer is set,
if it is a pointer from Oldspace to NewSpace or PastSurvivorSpace, the lo-
cation in which the pointer was set, that is, the referring object, is recorded
in a table, called the remembered set. When NewSpace is full, a copy-
ing garbage collection is performed from NewSpace and PastSurvivorSpace
to FutureSurvivorSpace, using as the root set the references to NewSpace
and PastSurvivorSpace from the objects in the remembered set. FutureSur-
vivorSpace and PastSurvivorSpace are then exchanged.

Each object has associated with it a generation count; when an object has
survived a certain number of garbage collections, it is copied into OldSpace,
rather than PastSurvivorSpace.

2 PREVIOUS IMPLEMENTATIONS 7

2.1.2 Address Space Utilization

Ungar's generation-scavenging garbage collector, like that of Ballard and
Shirron [2], on which it is based, is capable of utilizing more than half of
its address space at any time, as only FutureSurvivorSpace remains unused
during a computation. Because the two survivor spaces are much smaller
than either NewSpace or OldSpace, a large percentage of the address space
is in use during user computations.

2.1.3 Suitability

There is an obvious problem with the use of an approach that requires the
storage of generation counts. LISP systems on general-purpose computers
usually have highly-optimized storage formats; thus a cons, for example, will
consist of exactly two pointers, with no space for a generation count. This
is not nearly such a problem in Smalltalk systems, where dynamic objects
are usually vector-structured, with object references to the object's class,
instance variables, etc.; but in high-performance LISP systems we would
probably have to store object generation counts externally.

Suppose we were to store four bits of age information for each object. In
order to memory-map these, we would need to allocate four bits of storage
for every sixty-four bits stored in the ephemeral spaces, as this is the greatest
common denominator of LISP object sizes on thirty-two bit machines. This
gives some 6.25% additional storage required, in addition to that required
for structures used to record the remembered set. We should like to avoid
this overhead if at all possible.

2.2 The Tektronix Large Object Space Smalltalk Garbage
Collector

2.2.1 Description

The Tektronix Large Object Space Smalltalk implementation [4] includes a
generation-scavenging garbage collector that differs from Ungar's mainly in
the organization of memory. Memory is divided into seven regions, each of

2 PREVIOUS IMPLEMENTATIONS

which consists of two semispaces. Objects still include generation counts;
during a garbage collection, they are copied from one semispace to the other,
and their generation counts are incremented. When an object's generation
count reaches some preset value, it is advanced to the next region.

Garbage collection is stop-and-copy, motivated by the filling of a region.
Stores to the stack are not recorded; rather, the stack is scanned on each
garbage collection. Remembered set tables, as used in Ungar's Berkeley
Smalltalk garbage collector, are maintained for each region, in order to limit
the size of the root set. These tables contain only pointers forwards in time;
that is, pointers from older objects to newer objects. As in Lieberman and
Hewitt's garbage collector, the entirety of each younger region is used as
part of the root set whenever an older region is garbage-collected.

2.2.2 Address Space Utilization

As in Cheney or Baker's garbage collectors, during user computations the
Tektronix garbage collector uses half of its address space for empty semi-
spaces.

2.2.3 Suitability

We anticipate problems with using in LISP systems a garbage collection
scheme like that used in Tektronix's Large Object Space Smalltalk. One
problem is that of recording generation counts; we discussed this in con-
sidering Ungar's generation-scavenging garbage collector, in Section 2.1.3,
above. Furthermore, as discussed in Section 1.2.2 above, the organization of
memory into semispaces should result in poorer virtual memory performance
than we might hope for.

2 PREVIOUS IMPLEMENTATIONS 9

2.3 The Symbolics Ephemeral Garbage Collector

2.3.1 Description

The Symbolics ephemeral garbage collector uses an allocation scheme dif-
ferent from that of either the Berkeley Smalltalk or the Tektronix Smalltalk
garbage collectors. Memory is divided into areas. The user may specify for
each area the number of ephemeral levels, the capacity of the youngest level,
and the ratio of the capacity of each succeeding level to that of the youngest
level.

Ephemeral levels are not divided into semispaces; rather, when a level is
garbage-collected, live objects within it are copied into the next older level.
As in Lieberman and Hewitt's garbage collection algorithm [9], ephemeral
garbage collection is incremental, and proceeds in parallel with user compu-
tation. Ephemeral levels are garbage-collected independently of each other;
pointers 'backwards in time' (see Section 1.2.1) are recorded by the same
means as are other pointers.

The capacity of an ephemeral level is the number of words that may be
allocated in it before a garbage collection is initiated. A garbage collection
is motivated when the youngest level's capacity is exceeded; this causes its
contents to be garbage-collected into the next oldest level. If that level's
capacity is exceeded, its contents are copied into the following level; objects
that survive through all the levels are advanced to dynamic space. Storage in
dynamic space is recovered with a separate Baker-style incremental garbage
collector.

The scheme used for recording the root set is different from those of either
of the Smalltalk implementations; instead of maintaining remembered sets
(or entry tables in the sense of Liebermann and Hewitt's original paper,
which the 3600 could implement because of its invisible pointer hardware),
the Symbolics scheme instead maintains one mark bit per page for each
ephemeral level. It detects when a pointer into an ephemeral level is being
stored, and marks the page in which the reference occurred. When an
ephemeral level is scavenged, marked pages are scanned for references to
that level, and such references, if found, are used as roots.

Note that the mark bits resemble the dirty bits maintained by virtual mem-

2 PREVIOUS IMPLEMENTATIONS 10

ory systems; but, unlike dirty bits, they are only set when the word stored is
actually a pointer to an ephemeral level. No great harm is done if the word
stored was not a pointer to an ephemeral level, though, and sometimes at
scavenging time the mark bit will be set for a page that contains no refer-
ences to ephemeral objects, as a word that is not a pointer to an ephemeral
object may overwrite all pointers to ephemeral objects on a page without
causing the mark bit to be reset. Shaw [12] has exploited this similarity to
a table of dirty bits in his lifetime-based garbage collector.

Scanning the entirety of each marked page may sound wasteful, but the 3600
has hardware to assist in the detection of references to ephemeral levels, and
so a 256-word page with no such references is scanned in 85 microseconds

[10, page 242].

The scheme used in the Symbolics ephemeral garbage collector for recording
pointers into ephemeral spaces is in fact more complex than is implied by
the short description above. Two tables are actually maintained; one, called
the Garbage Collector Page Tags (GCPT), holds a bit for each of the pages
present in physical memory. Only one bit is stored, and thus no informa-
tion about which ephemeral level the pointers in the page may point to is
recorded; the bit says only that a pointer to an ephemeral level may still be
present on the page.

Another table, called the Ephemeral Space Reference Table (ESRT), is
stored sparsely, and contains for each swapped-out page a bit for each ephe-
meral level; the bit is set to indicate that the page contains a reference to
the level in question. The table is maintained entirely in physical memory,
and allows the garbage collector to determine as it garbage-collects a level
whether to scan a page; because scanning a page requires fetching it from
backing store, the maintenance of per-level information saves page faults.
Clearly, the ESRT must be updated whenever a page is ejected from physi-
cal memory.

Given that the intention is to avoid any needless scanning of pages residing
on backing store, how must the ESRT be updated when pages are ejected
from physical memory? If the page has not been written at all, its ESRT
entry (if extant) need not be updated. If the page has been written, and
already has an ESRT entry, then the ESRT entry must be updated regardless
of the setting of the page's GCPT bit, because it is possible that data written

2 PREVIOUS IMPLEMENTATIONS 11

into it overwrote all the page's pointers to ephemeral objects. If the page
has no ESRT entry, then it need only be scanned if its GCPT entry is set;
only then might one have to create an ESRT entry for it.

2.3.2 Implementing the Symbolics Ephemeral Garbage Collector
Without Special-Purpose Hardware

Suppose one wished to implement a garbage collector similar to the Symbol-
ics Ephmeral Garbage Collector on a general-purpose computer in which one
had the cooperation of the virtual memory system. It will be immediately
apparent that the technique of scanning pages makes use of the 3600's fully
tagged architecture. Because each word has a tag that tells whether it is a
pointer, one may begin scanning memory in the midst of an object, without
risk of interpreting non-pointer data (such as, say, collections of characters
in a string) as pointers.

On a general-purpose machine, one would need to use some other method
of determining whether words examined were pointers. One possibility is
to divide all data into two types: those containing pointers and those not
containing pointers. This is certainly possible using the data formats in
(for example) Lucid Common LISP, but there is a price to be paid. Storage
management is complicated by the addition of a parallel set of storage spaces.
Locality of reference is degraded.

Another possibility is to maintain in a table an entry for each page giving the
offset from the base of the page to its first tagged word. A slight amount of
overhead at object creation time suffices to maintain the table entries. In the
data formats used by Lucid Common LISP, and a number of other modern
LISP implementations for general-purpose computers, untagged words never
follow tagged words without object headers appearing in between, because
otherwise the linear scan of a space used as the root set in copying garbage
collection would be impossible. The overhead for maintaining a memory-
mapped table of such offsets on a 32-bit computer with 256-word pages is 8
bits per 256 words, or about 0.1%; this is certainly not a deleterious amount
of storage.

We have surmounted, then, the problems for garbage collection associated
with maintaining untagged words in the system; what about maintaining

2 PREVIOUS IMPLEMENTATIONS 12

the GCPT? As the discussion above suggests, rather than maintaining a
GCPT, we may simply use the table of dirty bits in the virtual memory
system. When it is time to perform a garbage collection, we scan all the
pages whose dirty bits are set; because these pages are necessarily all in
physical memory, this operation should not take long compared to the time
required to fetch pages from backing store. Exactly how long might it take
to scan a page? Figure 1, on page 13, gives the MC68020 code and timing
to scan a 256-word page.

The common path through the loop, in the cache case, is some 51 cycles;
on an MC68020 clocked at 16 megahertz, this corresponds to some 816 mi-
croseconds for a 256-word page. The immediate tagged case is not included;
it would involve checking the high five bits of the low byte to determine the
object type. The immediate tagged case will often (in the case of vectors of
untagged data, for example) lead to the skipping of some number of words
of untagged data. This, and the fact that it is reasonable to expect that the
loop will reside entirely in the MC68020's 256-byte on-chip instruction cache,
give us some confidence that 816 microseconds is a conservative estimate.

Here is where special-purpose hardware comes into its own, then; the MC68020
takes nearly ten times as long to perform a page scan as does the 3600. How
significant is this page-scanning time? The difference between the two is
some 731 microseconds, but this does not tell nearly the whole story, as the
3600's GCPT bits are unlike dirty bits in that they are only set when the
word stored is actually a pointer to an ephemeral level. A general-purpose
computer does not perform tag or boundary checks, so many pages in the
LISP process's address space will have their dirty bits set without point-
ers to ephemeral levels actually having been stored in them. These pages
will be scanned needlessly at every garbage collection (see note A.2 for a
comparison with the scheme described by Shaw [12]).

Metering would allow us to determine how many pages would actually be
found needlessly dirty in typical LISP applications; however, even without
such measurements, we can envision a worst case. Let us consider the per-
formance of the Symbolics ephemeral garbage collector on a 3600 with 1
megaword of physical memory [10, table 2, page 244]. When running the
BOYER benchmark, an average of 11.5 seconds were taken for each flip;
when running the compiler benchmark, the figure was 1.6 seconds.

2 PREVIOUS IMPLEMENTATIONS 13

First tagged word is in aO; segment table in al, word

after last on page in a2. Parenthesized numbers after

instructions give best case, cache case, and worst case

timings, as per MC68020 User's Manual,

scanlp: cmp.l aO, a2 ;done yet? (14 4)

;; branch when done scanning, ge because untagged

;; structure may cross page boundary.

bge scandn ;(1 4 5) (branch not taken)

move.l (a0)+, dO ;d0 holds pointer (4 6 7)

;; fetch tag bits; bashes low byte

andi.b #$07, dO ;(0 2 3) + (0 2 3)

;; see if this might be a header

cmpi.b #dtp-other-immediate, dO
;(0 2 3) + (0 2 3)

handle if so; this is also the case for tagged

characters and small floats (i.e., not in strings

or vectors)
beq check-header ;(1 4 5) (branch not taken)

;; now want only low two bits of tag

andi.b #$03, dO ;(0 2 3) + (0 2 3)

;; low bits are 0 if fixnum

beq scanlp ;(1 4 5) (branch not taken)

;; if we got this far, this is a pointer. Fetch

;; segment index. Note high part still valid.

swap dO ;(1 4 4)

;; does the pointer point into an ephemeral segment?

cmpi.b #ephemeral-segment, (dO, al)

;(0 2 3) + (3 5 6)

;; no, continue

bne scanlp ;(3 6 9) (branch taken)

Totals:
Best Case

15
Cache Case

51
Worst Case

66

Figure 1: Page-scanning on the MC68020.

2 PREVIOUS IMPLEMENTATIONS 14

On our general-purpose computer, if every one of 1024 pages were found
dirt}' at garbage collection time, but contained no ephemeral references,
then there might be some 2.9 seconds of overhead per garbage collection.
This is 25.2% of the BOYER benchmark time, and 153% of the compiler
benchmark time. I stress that this is the worst possible case, with every
page in physical memory found dirty at garbage collection time. We expect
that in real applications a much smaller proportion of the pages would be
found dirty (many of them, for example, might contain pure code), and, of
those found dirty, many would not need to be scanned (for example, those
in the youngest ephemeral level, or in the unscanned spaces).

Consider now the time required to update the ESRT. On our general-purpose
computer, we use the virtual memory system's table of dirty bits for the
GCPT, so that, if we wish to ensure that ESRT entries are always correct
for pages on backing store, we must scan the page and potentially update or
create an ESRT entry whenever the ejected page's dirty bit is set. The case
where the 3600's special-purpose hardware will help it is that where a word
was written into a page, but the word was not a pointer to an object in an
ephemeral space. But here we assume that the virtual memory system on
our machine has given the garbage collector a trap after initiating a seek on
the disk; the scan time is easily entirely subsumed in the average seek time
of any modern disk drive, just as on the 3600.

Thus the 3600's special-purpose hardware does indeed help it, but not nearly
so much as one might think. Given our belief that the average overhead
for page-scanning on stock hardware will not account for most of the time
spent in garbage collection, we believe that with a slightly faster processor,
such as an MC68020 clocked at 25 megahertz, the 3600's speed advantage
will disappear. Note that the time estimates given are for time spent in
the garbage collector; the overhead required at user program run time to
keep track of ephemeral objects, estimated by Moon as 'at least 10% and
possibly a factor of two or more,' [10, page 243] is actually limited to the
nearly insignificant time added to object creation in order to update the
table of offsets to the first tagged object in each page - provided one has
the collusion of the virtual memory system.

2 PREVIOUS IMPLEMENTATIONS 15

2.3.3 Address Space Utilization

Both the Symbolics Ephemeral Garbage Collector and the stock-hardware
derivative we propose here copy objects from one ephemeral level to the next;
thus the pages used for the creation of new objects are the same before and
after a garbage collection. We expect good virtual memory performance
from this scheme.

2.3.4 Suitability

Moon's ephemeral garbage collector does not lend itself to easy criticism.
While his paper does not anticipate the implementation of his scheme on
general-purpose computers, and, indeed, discounts the idea, the author
feels that, given the cooperation of the virtual memory system, Moon's
garbage collection scheme would perform quite well on a general-purpose
computer. General-purpose computers are at a disadvantage in the task of
page-scanning, but even inefficient scanning of pages is a small price to pay
to escape the need to explicitly record using additional software the storage
of pointers into ephemeral levels.

16

Part II

A Lifetime-based Garbage
Collector for LISP Systems on
General-Purpose Computers

In what follows, I use Moon's terminology. I call objects that have not
yet been moved to spaces intended to hold relatively permanent objects
ephemeral objects. Moving an object from a space that holds newer objects
to a space that holds older objects is called advancement. The several spaces
that hold ephemeral objects, organized so that the ages of the objects within
them vary monotonically, are referred to as ephemeral levels. The ephemeral
level holding the youngest objects is called either the youngest ephemeral
level or the first ephemeral level; that holding the oldest objects is called
either the oldest ephemeral level or the last ephemeral level.

3 Desiderata

A number of constraints are forced by the use of general-purpose computers,
and by the desire to write a portable garbage collector; that is, one that does
not require the cooperation of the virtual memory system. A summary of
the design goals follows:

• Performance. We wanted each garbage collection to be fast; that is, we
wanted to minimize the amount of computation required for a garbage
collection, so that the ephemeral garbage collector would be suitable
for use in interactive systems.

We also hoped not to unduly slow down user code. Because we do not
have the cooperation of the virtual memory system, pointer-settings
must be recorded explicitly, so that some slowdown is inevitable in
execution time of code that does not allocate storage, and thus does
not cause garbage collections. We wished to minimize this slowdown.

3 DESIDERATA 17

In code that creates and discards many objects, like the BOYER
benchmark [7], we wished to realize overall performance improvements.

• Portability. The design was not to require cooperation from the virtual
memory system, nor was it to be tied to a particular architecture. It
also had to be easy to retrofit into existing LISP implementations for
various machines.

• Predictability. Many users of LISP carefully code their programs to
avoid any object creation, so that no unexpected delays will occur; for
example, a robot control program cannot afford even a 20-milrisecond
delay. Programs that do not create objects should not cause garbage
collections, or be subjected to unexpected delays, as for reorganization
of internal tables.

• Flexibility. We wanted the ephemeral garbage collector to be tunable;
the number of levels and their sizes were to be easily modifiable, be-
cause the parameter settings for best performance were likely to vary
between applications.

• Robustness. The scheme we selected was not to be prone to fail-
ure during garbage collection. We wished to avoid schemes that could
conceivably run out of memory when advancing objects from one ephe-
meral level to the next.

4 EARLY DECISIONS 18

4 Early Decisions

With the goals discussed in the previous section in mind, it was possible
to make many design decisions before committing to a specific scheme for
recording pointers. These decisions are discussed below.

4.1 Optimizing the Task of Keeping Track of Ephemeral Ob-
jects

Without special support from the virtual memory system, the greatest
source of inefficiency in lifetime-based garbage collection systems on general-
purpose computers is the recording of pointers into ephemeral spaces. This
recording must be performed in software, replacing what was formerly one
instruction; this increases the size of the compiled code image, even if an
out-of-line call is performed, and has a varying, but always negative, effect
upon performance, dependent upon the dynamic frequency of pointer stores.

This effect is manifested most strongly in high-performance systems with
native code compilation; it is not nearly so much a problem in, for example,
Ungar's Berkeley Smalltalk system (discussed in Section 2.1, above), because
this system utilizes a byte-code interpreter that executes only some 9,000
instructions per second. In [10, page 246], Moon makes the point that the
performance of Ungar's generation-scavenging looked good because Berkeley
Smalltalk takes about 50 machine instructions to do a store; the overhead of
adding an object to the remembered set is not overwhelming by comparison.

One somewhat ameliorating factor is the possibility of performing certain
compile-time optimizations; as noted below, the Lucid Common LISP com-
piler does in fact perform these optimizations for the benefit of the lifetime-
based garbage collection scheme we implemented. The compiler optimizes
out pointer-recording when the pointer being stored is a constant immediate
quantity, such as a character or small integer, or points to a constant static
entity, such as a symbol.

One more significant optimization is performed; when the current object
creation area is the youngest ephemeral level, the object-creation subroutines
used do not record storage of initial values in newly-created objects, as these

4 EARLY DECISIONS 19

will have been created in the youngest ephemeral level, and any pointers from
them will be pointers 'backwards in time,' to use Lieberman and Hewitt's
terminology.

4.2 Set-Associative Pointer-Recording

One possible pointer-recording scheme would use a set-associative table of
locations holding pointers to ephemeral spaces.

Suppose we maintained a set-associative table of 256 lines, with 16 one-word
entries per line, for each ephemeral level; this gives some 16 kilobytes of table
per ephemeral level. Assume further that we worried only about updating
the table for pointer settings; that we did not worry about removing entries
in the table for pointers that were written over. When any line in the table
was completely full, we could use one of several (expensive) strategies to
reduce the problem; possibly we could begin allocating in the ephemeral
level in question a list of pointers into it, or perform a scavenge of the level
in question into the next older level, in which case we would need to add to
that level's table only the references that were not in that level, and we would
likely have enough space for them; etc. But leaving aside the question of
dealing with entirely full lines, we depict in Figure 2 an MC68020 instruction
sequence that performs a pointer-setting when using a set-associative table
for recording pointers into ephemeral levels.3

The common case (set a pointer from the current ephemeral level to the
current ephemeral level) requires nine instructions, not counting the pointer
setting. Making the table entry requires ten instructions in the case where
the first entry examined is empty, and five more instructions per time around
the loop. This sequence of instructions is so large as to mandate an out-of-
line subroutine call; this would entail further overhead at runtime. Note also
that we are making free use of two address registers beyond those holding
the pointer and the destination, and three data registers; thus the compiler
will have fewer registers at its disposal, with the attendant negative impact
on efficiency of surrounding code.

3We do not move using the MC68020 memory indirect post-indexed addressing mode
(although it would save one instruction), as it is slower than the combinations of instruc-
tions we do use.

4 EARLY DECISIONS 20

; on entry, aO holds the destination, and al the

; pointer. Fetch byte table of ephemeral levels

; from systemic quantities vector (SQ), which is

; held in an address register.

move.l (elevel, SQ), a2

;; prepare to fetch segment index of destination

move.1 aO, dO

swap dO ;get segment index in low 16

;; store in dl ephemeral level of destination

move.b (0, a2, dO.w), dl

move.l al, dO

swap dO

; ; d2 gets ephemeral level of pointer

move.b (0, a2, dO.w), d2

;; now we compare ephemeral levels to see if we need

;; to make a recording table entry.

cmp.b dl, d2

bne hktabl ;different levels, make entry

;; same, just set pointer (most common case)

(set pointer and exit)

;; fetch table of tables from SQ

hktabl: move.l (extbls, SQ), a2

;; index by ephemeral level of pointer

move.l (0, a2, d2.w), a2

move.l aO, dO ;get dest in data register again

lines are at 64-byte intervals; want bits 14-0

with low 6 cleared for index of our line. Get

line index in dO.

ori.l #$00003FC0, dO

add.l dO, a2 ;line address in a2

;; 16 entries per line, but testing at bottom

move.l #15, dl
;; find entry that's empty or same

loop: move.l (a2)+, a3

beq found ;0 is empty entry

cmp.l aO, a3 ;if same, done, go to setit

beq setit

dbra dl, loop

;; no empty entry in this line

(deal with the problem, possibly by creating an

extension to the line)

found: move.l aO,

bra setit

-(a2) ;make entry

;go set pointer

Figure 2: MC68020 code to record ephemeral reference locations in a set-
associative table.

4 EARLY DECISIONS 21

This scheme does have the advantage of compactness of representation of
the recorded information, but has two major disadvantages. The first is that
the number of instructions executed to set, for example, a special variable,
is at least nineteen, and likely more. The second disadvantage is that it
is not clear how to proceed when a line is filled; the delays necessary for
compaction or garbage collection might be too large. Two design goals,
performance and predictability, are violated; the scheme was not considered
further.

4.3 Avoiding the Overhead of Determining Spaces When
Storing Pointers

We noted that set-associative pointer-recording had two distinct disadvan-
tages; the second had to do exclusively with the structures used for recording
the storage of pointers into ephemeral levels, but the first disadvantage lay
partly in the expense of that recording, and partly in the expense of deter-
mining the spaces for a pointer being stored and the location it is stored
in.

On the 3600, when a word is stored into memory, it is examined (in parallel
with the memory access) to see if it is a reference to an ephemeral area being
stored into either another ephemeral area, or into a non-ephemeral area; if
it is, the fact is recorded by setting a bit in the GCPT. Moon states that the
reason custom hardware is required to implement a lifetime-based garbage
collector is that this examination would have to be performed in software
on a general-purpose machine, and would take between 2.5 and 25 microsec-
onds. As we saw in Figure 2, which showed MC68020 code for maintaining
set-associative tables of pointers into ephemeral spaces (the determination
of spaces would be the same), it would also require the use of several reg-
isters, thus slowing down execution of the surrounding code. Finally, the
nine instructions required simply to determine the ephemeral levels of the
pointer and the location in which it is stored, before ever recording its stor-
age, would have a serious impact upon performance of code that did not
garbage collect.

What we wish to do is move some of the overhead of this operation from
pointer-setting time to garbage collection time. The critical portions of the
garbage collector can be coded in assembly language, and can use as many

4 EARLY DECISIONS 22

registers as necessary; there will be only one copy of this code, so the number
of instructions used will not be critical to the image size, as it would be if
the operation were being coded in-line at every pointer storage. Two other
important points are:

• Many of the pointers stored during the execution of a program will
be stored in locations in the youngest ephemeral level. The garbage
collector will never have to determine the ephemeral level to which
these pointers point, because all pointers stored in the youngest level
are pointers backwards in time, in the terminology of Lieberman and
Hewitt.

• In many programs, a single set of locations is repeatedly written. If
there are several pointer stores to a single location between garbage
collections, the ephemeral level of only the last pointer stored matters;
thus the work done to determine ephemeral levels in the other pointer
stores is wasted.

These considerations suggest that, rather than determining the spaces of the
pointer and the location it is stored in at pointer-storage time, we should
adopt some sort of scheme whereby we record only that a location has been
modified, and postpone until garbage-collection time the determination of
the space the pointer was stored in and the space it pointed into. We do
not even attempt to determine at runtime whether the pointer is actually
an immediate constant, such as a character or fixnum.4

In using this scheme, we will often have to examine at garbage-collection time
locations that do not contain ephemeral references at all. This examination
will cost very little if the page containing the location in question is in main
memory; if it is on backing store, the cost will be much greater. Our hope is
that the technique of lifetime-based garbage collection so improves locality of
reference as to decrease substantially the number of cases where the working
set exceeds the available physical memory.5

4Although, as mentioned in Section 4.1 above, compile-time optimizations may be
exploited.

5Measurements of the number of pointer stores recorded, but not containing epheme-
ral references, during the execution of various symbolic processing tasks would be useful
in evaluating this scheme, as would a measurement of the number of pages containing

4 EARLY DECISIONS 23

4.4 The Organization of Ephemeral Spaces in Memory

We concluded that the maintenance of generation counts was undesirable in
LISP systems.6 Without generation counts, we have two alternatives when
performing lifetime-based garbage collection:

• We can organize each ephemeral level into semispaces, and copy ob-
jects from one semispace to another until a certain number of garbage
collections have been completed. This gives address space utilization
much like that of Tektronix's Large Object Space Smalltalk garbage
collector.

• We can garb age-collect each ephemeral level into the next older level,
as in the Symbolics ephemeral garbage collector.

We concluded that the first alternative is more likely to result in poor virtual
memory performance than the second;7 thus we chose to use a division of
memory into successive ephemeral levels, each of which is garbage-collected
into the next older level.

4.4.1 Pointers Backwards in Time

Lieberman and Hewitt's garbage collector (discussed in Section 1.2.1) recorded
only 'pointers forwards in time,' that is, those from either non-ephemeral
spaces to ephemeral spaces or from older ephemeral levels to younger ephe-
meral levels. Thus the garbage collection of a level required scanning all
younger levels as members of the root set; otherwise pointers 'backwards in
time,' from younger levels to older levels, would not be updated to point to
the newly copied referents, and might possibly lose their referents altogether.

Moon's ephemeral garbage collector is also incremental, and can scavenge
several levels at once while running user code. His solution is to record

recorded locations ejected to backing store between ephemeral garbage collections on sys-
tems with varying amounts of memory. These and other recommendations for future
analysis are described in Section 8.

6See Section 2.1.3.
7See Sections 1.2.2 and 2.2.2.

4 EARLY DECISIONS 24

pointers backwards in time by the same means as pointers forwards in time;
because his representation of recording information is very compact, this is
inexpensive.

In a stop-and-copy scheme, user code may not run until a garbage collection
has completed. When we have finished copying from a younger level to an
older level, the younger level will be empty. If the older level is now full, we
may scavenge it without scanning younger levels, as these will be empty.

4.4.2 Implications for Memory Organization

This ordering of events allows us to organize our ephemeral spaces in a
convenient fashion. Many operating systems on general-purpose computers
require contiguous memory allocation; thus, if garbage-collecting an ephe-
meral level would require filling the next level beyond its capacity, space
must be set aside for the overflow. Suppose we order our ephemeral spaces
as depicted in Figure layout.8 The size of the odd-level overflow segment
pool (OSP) is the sum of the sizes of all the even levels except for the last
ephemeral level, if it is an even level; similarly, the size of the even level OSP
is the sum of the sizes of all the odd levels except for the last ephemeral level,
if it is an odd level. Thus the total space occupied by overflow segments is
less than the space occupied by ephemeral data.

Suppose we perform a copying garbage collection from level 0 to level 1, and
level 1 is full, and all data in level 0 are retained; we may allow data to
overflow from level 1 into the odd-level overflow segment pool. Because the
size of the odd-level OSP is at least that of the level 0, we are guaranteed that
there will be room to copy the data from level 0 into level 1 and the odd-level
OSP, so our copying garbage collector may simply continue copying past the
end of level 1 into the OSP. When we garbage-collect level 1 into level 2,
level 1 may contain as much data as level 1 and level 0 put together. If level
2 were also entirely filled, we are guaranteed room to complete the garbage
collection, because level l's size was included in the size of the even-level
OSP, and level 0 is now empty, so we simply continue copying past the end
of level 1 into level 0.

8I am indebted to James Boyce, of Lucid, Inc., for this suggestion.

4 EARLY DECISIONS 25

+ +

other even-

numbered

ephemeral

levels

level

2

+ +.

low addresses

level

0

even-level overflow

segment pool

Size = sum of sizes

of all odd levels

except last, if odd.

high addresses

I other odd-

| numbered level level |

I ephemeral 3 1 I

I levels

odd-level overflow

segment pool

Size = sum of sizes

of all even levels

except last, if even.
+ +-

low addresses high addresses

Figure 3: Layout of ephemeral spaces and overflow segment pools in Lucid
Common LISP.

4 EARLY DECISIONS 26

Note that this strategy has good implications for virtual memory usage. The
pages overflowed into are pages that recently held other ephemeral data; thus
we have a good chance that they will still be present in physical memory.

The garbage collection strategy described above, in which no ephemeral
level is garbage-collected until all younger levels have been emptied, has a
number of implications. First, note that, occasionally, a garbage collection
will require garbage-collecting all the ephemeral levels. The defaults on the
3600 are to use semispaces that decrease in size by a factor of two; this may
or may not reflect something like the "average" persistence of objects, but
with this progression of sizes, the maximum amount of work required to
garbage collect m levels would be no more than 2m times the amount of
work to garbage-collect level 0 (for m = 4 levels the factor is actually about
6).9

For five levels, we approach an order of magnitude; one risk in emptying
younger levels before garbage-collecting older levels, then, is that the pauses
for garbage collection may become noticeable. In practice, this has not been
a problem. A more serious risk lies in the way that a garbage collection
that causes the objects in ephemeral space to be advanced all the way to
dynamic space (as some garbage collections inevitably do) cannot help but
advance, at the same time, all the live objects that were in the youngest
ephemeral level at the time of the garbage collection. These objects may in
fact become garbage very soon after their advancement; they have had less
than one garbage-collection period in which to mature before being advanced
to dynamic space. However, garbage collections that proceed all the way to
dynamic space are much more rare than those that do not; we do not expect
this "premature tenuring" (to use Ungar's term) to be a problem.

4.5 Allocation of Very Large Objects

Most very large objects have long lifetimes. These objects may be, for
example, bitmaps being processed by image understanding programs, or
arrays of cellular automata, or data collection buffers for input devices.
Sometimes these objects are so large that they exceed the capacity of the
youngest ephemeral level, which is typically a small fraction of the space

9See note A.3 for a precise formulation.

4 EARLY DECISIONS 27

allocated to the process; then they cannot be created in ephemeral space
at all. Some other very large objects will fit in the youngest ephemeral
level, but, because they are permanent, will simply be copied on succeeding
garbage collections through all the ephemeral levels until they are finally
advanced to dynamic space.

This sort of successive copying is inefficient; we would like to provide the
user with a means of causing objects larger than a given size to be created in
dynamic space. This is easily accomplished with a user-modifiable parameter
that is checked by the object creation routines.

Allocating objects in dynamic space when the normal allocation space is
ephemeral space will eventually result in the filling of dynamic space, and
the attendant dynamic garbage collection; and there will be objects in ephe-
meral space at this point. In fact, this situation is not unique to the allo-
cation of very large objects; whenever we are about to scavenge the oldest
ephemeral level into dynamic space, we must insure that there is enough
room in dynamic space to hold its contents. The allocation of this space
may result in a dynamic garbage collection, and there will be live data in
ephemeral space during the dynamic garbage collection.

4.6 Dynamic Garbage Collection in the Presence of Ephe-
meral Objects

When garbage-collecting dynamic space, if ephemeral space holds live ob-
jects, we must somehow arrange for these objects to have their references to
objects in dynamic space updated; possibly this could be done by garbage-
collecting the ephemeral spaces as well. Clearly we can not proceed as usual,
and simply not move ephemeral data when we encountered it while walking
the tree from the roots; the Cheney algorithm uses copying and reordering
in order to record pending branches, in the same way that other algorithms
use a stack, or pointer reversal. We also do not want to use these other
algorithms; the use of a stack has the well-known problem of deep nesting
causing overflow, and Deutsch-Schorr-Waite pointer reversal requires visit-
ing twice each node encountered.

One way of approaching the problem is to subdivide it into two cases: one
may either leave the ephemeral data in ephemeral space, or move them all

4 EARLY DECISIONS 28

into dynamic space.

1. The obvious way to proceed if we wish to leave the data in ephemeral
space is to treat ephemeral space as roots for the dynamic garbage
collection. This has the disadvantage of quite possibly causing preser-
vation of structures that are only pointed to by garbage in ephemeral
space, but we expect that these will be rare.

The algorithm is slightly complicated by the necessity of updating

pointer storage recording structures. We do this by first clearing
the structures recording pointers for the locations in dynamic from-
space. As scavenging is performed, when a pointer is stored in dynamic
tospace, if it points into ephemeral space, it is recorded in the proper
structure.

2. The other possibility, that of moving all the data into dynamic space,
causes premature tenuring, to use TJngar's term, but has the advantage
of being simpler. We simply treat data in ephemeral space in the same
way we treat data in oldspace; we copy them all into newspace. At
the end of the garbage collection, ephemeral space is empty, and all
recording structures are cleared.

The problem with scheme 2 is that, although it is indeed simpler than scheme
1, there is no obvious way to proceed if one exceeds the capacity of tospace
during the garbage collection and virtual memory is exhausted. Exceeding
the capacity of tospace is indeed possible, as the entire live contents of
ephemeral space are being added at once to dynamic space.

If we instead treat the ephemeral spaces as roots, we may perform the dy-
namic garbage collection without advancing ephemeral data. If we were in
the midst of performing an ephemeral garbage collection, and the dynamic
garbage collection freed enough space to allow the advancement of ephe-
meral objects into dynamic space, we would simply continue. If we found
that an amount of space insufficient to allow advancement of ephemeral data
was freed, we might disable dynamic garbage collection, copy the ephemeral
data into the unused semispace, and signal an error to the user, who could
respond by, for example, suspending the LISP process until more virtual
memory is available.

\

4 EARLY DECISIONS 29

The ability to continue in this fashion requires that the sum of the sizes of
the ephemeral levels be no larger than a dynamic semispace.

We cannot use the same sequence of operations with scheme 2, because we
cannot perform the dynamic garbage collection without also beginning to
copy in the ephemeral data, and, at that point, we no longer have the option
of using the other semispace if we should run out of space; we are already
using both semispaces.

Thus we chose to use scheme 1 in our garbage collector. ,. 10

10i 3 For simplicity, the pointer storage recording algorithms given in sections 5 and 6 do not
show the cases in which copying into dynamic space requires dynamic garbage collection,
and thus do not depict the necessity of examining recording structures that the dynamic
garbage collector may have updated during during garbage collection. These extensions
are, however, straightforward.

5 CARD-MARKING 30

5 Card-Marking

Two schemes for recording pointer stores were explored at length; only one
of these was implemented. The scheme that was discarded was called card-
marking. It was similar to the Moon's ephemeral garbage collector, as one
might implement it without virtual memory system cooperation; the signif-
icant differences had mostly to do with a desire to keep the pointer-setting
time low.

5.1 Division of Memory; Determination of the Root Set

The root set is recorded through a scheme much like Moon's. Memory is
divided at a fine level into pieces called cards; these correspond to the 3600's
pages, but we do not call them pages in order to avoid confusion with virtual
memory pages on the machine in question.

There are two tables used in determining the root set; these are called the
primary card mark table and the secondary card mark table. The primary
card mark table is a table of bits directly mapped to all the cards in the
address space. There is one bit per card; the bit is set whenever a pointer is
stored in the card. Thus the bit is a sort of dirty bit for the card; it indicates
that the card has been modified and must be scanned to determine whether
it contains a reference to some ephemeral level.

The secondary card mark table is implemented sparsely as a collection of
tables; every segment that can contain pointers has associated with it a
portion of the secondary card mark table. The secondary card mark table
contains one byte per card; each of these card entries contains one bit for each
ephemeral level (thus we have a maximum of eight ephemeral levels). An
ephemeral level's bit is set to indicate that the card contains a reference to
that particular ephemeral level. The secondary card mark table is updated
at garbage collection scan time.

The size of cards is a compromise between a desire to keep the card mark
tables small (which argues for a large card size) and a desire to minimize
the amount of time spent in scanning a card already in main memory for
a possibly nonexistent reference to an ephemeral object (which argues for a

1

5 CARD-MARKING 31

small card size). 256 words is probably a good card size on machines with,
say, 28 bits of address space, like the Sun-3; this would give a primary card
mark table size of 32 kilobytes, and the per-segment secondary card mark
table portions would be 64 bytes each. Machines with 32 bits of address
space may motivate larger card sizes, but in no case should the card size
be larger than a virtual memory page frame, because of the much increased
likelihood of unnecessary page faults at scan time.

As in the proposed stock hardware implementation of Moon's ephemeral
garbage collector (Section 2.3.2), card-marking requires that the object cre-
ation routines be modified to record in a table the location of the first tagged
word on each card; this allows scanning of cards containing untagged data.

Card-marking allows a compact representation of recorded pointer stores.
What are the dynamic characteristics of this technique; i.e., what does it
save us at pointer storage time? Assuming we have 256-word cards and a 28-
bit address space, a card's byte in the primary card mark table is determined
by the high 15 bits (13-27) of the 28-bit address; the bit in question is given
by bits 10-12 of the address. If we place the primary card mark table in
a register, or at some constant offset from a register, we can mark a card
in six instructions on the MC68020, with two temporary data registers; the
MC68020 code for this is shown in Figure 4.

Here is the advantage of card-marking, then: with only six instructions
required to make an entry in the primary card mark table, pointer storage
can probably continue to be coded in-fine, so that the expense of an out-
of-line subroutine call is saved; performance on pointer-storage-intensive
benchmarks that do not discard much storage is likely to be quite good.

5.2 Performing a Garbage Collection

Garbage collection in a card-marking scheme is similar to, although simpler
than, Moon's ephemeral garbage collection; first in being stop-and-copy, as
opposed to incremental, and second in not being directly concerned with
the virtual memory system. A Pidgin ALGOL description of card-marking
garbage collection is given in Figures 5 and 6.

Following is a description of how a card-marking garbage collection proceeds.

5 CARD-MARKING 32

Assume that the location to be stored in is in
aO, and that the primary card mark table is at a
constant offset crdtbl from the systemic
quantities vector (SQ), held in an address
register.
Store the reference location in temporary that
will get byte pointer,

move.l aO, dO
;; 68K can only immediate shift 8 places; we need 10
lsr.l #8, dO
move.l dO, dl ;other temporary for bit field
lsr.l #5, dO ;now we have the byte index in dO
lsr.l #2, dl ;and the bit index in dl
;; note bset will mask all but the low three bits of
;; the bit index
bset.b dl, (crdtbl, sq, dO.w) ;set the bit

Figure 4: Marking a card on the MC68020.

When we garbage-collect an ephemeral level, we first scavenge the stack and
mark registers, just as with a dynamic GC. Then we consult the secondary
card mark table, and scan all cards whose secondary marks state that they
contain pointers to this level, except those within the level itself; these need
not be scanned, because they cannot contain roots for this level.

The scan proceeds as follows: each word in the card is fetched. If the word
is a pointer to the ephemeral level being garbage-collected, it is treated
as a root, and a scavenge is performed on the object it points to; but, in
any case, if after the potential scavenge the word contains a pointer to any
ephemeral level at all, a flag for that level is set (note that the placement
of this operation after the scavenge guarantees that the appropriate level's
flag is set - the datum has changed levels in the scavenge). When the scan
of the card is finished, the secondary card mark table entries for this card
are reset from these flags, and the primary mark for this card is cleared, so
that we can avoid scanning the card twice.11

'Note A.4 gives a comparison with the Symbolics approach.

5 CARD-MARKING 33

procedure card_marking_gc ();

begin
push marked registers on stack;

from_level := 0;

done := false;

while (not(done))

begin
to_level := from_level + 1, or dynamic space, if

from_level is the last ephemeral level;

scavenge_stack(from_level, to_level);

for each card number c
if card_ephemeral_level[c] = from_level

then begin
for each level

secondary_card_mark_table[c, level] :=

false;
primary_card_mark[c] := false

end

else
if secondary_card_mark_table[c, from_level] =

true

then begin
scan_and_scavenge_card(c, from_level,

to_level);

primary_card_mark[c] := false

end

if from_level = 0
then for each card number c

if primary_card_mark[c] = true

then begin
scan_and_scavenge_card(c, from_level,

to_level);

primary_card_mark[c] := false

end
if to_level is not full, or is dynamic space

then done := true
else from_level := from_level + 1

end

end

Figure 5: The card-marking garbage collection algorithm.

5 CARD-MARKING 34

procedure scan_and_scavenge_card

(card_number, from_level, to_level);

boolean vector level.flags[number_of_ephemeral_levels];

begin

for i from 0 until number_of_ephemeral_levels

do level_flagsCi] := false;

for each word in the card, beginning at the first tagged

word

begin

if the word is an immediate constant

then continue at the next word;

if the word is the header of a vector of untagged

data

then continue at the first word after the vector;

if the word points into from.level

then scavenge_word(word, from_level, to_level);

if word points to an ephemeral level

then begin

1 := the level pointed to;

level_flags[i] := true

end

end

for i from 0 until number_of_ephemeral_levels

do secondary_card_mark_table[card_number, i] :=

level_flags[i]

end

Figure 6: Scanning and scavenging a card.

5 CARD-MARKING 35

When we have finished scanning all the cards whose secondary marks state
that they contain references to the ephemeral level being garbage-collected,
we scan all the cards whose primary marks are still set, except those within
the ephemeral level being garbage-collected.12 The scan is exactly like that
performed for cards found through the secondary card mark table; note that
this means that secondary card marks are updated and primary card marks

are cleared.

When we have finished scanning all the cards whose primary marks were
set, we have scavenged all the data in the ephemeral level that was being
garbage-collected, and we can clear its primary and secondary card mark
tables. Note that this means that the entire primary card mark table is now

clear.

5.3 The Problem with Card-Marking

The inner loop of the piece of code that scans a card on the MC68020 was
presented in Figure 1, on page 13. The time required to scan a 256-word card
on the MC68020 was estimated at 816 microseconds. The gain in pointer-
storage speed afforded by card-marking is substantial, but it was estimated
at less than the loss due to card-scanning.13

Furthermore, the gain in pointer-storage speed was likely to be lost on ma-
chines with thirty-two bit address spaces, especially those in which the LISP
address space was to be organized sparsely. Here a contiguous primary card
mark table would be prohibitively large, and so a two-level map would be
necessary; but this would be nearly as expensive at pointer-storage time
as the scheme we actually implemented, which we shall call, for want of a
better name, word-marking.

12Note A.4 discusses the virtual memory behavior that will result from this scanning
order.

13This was only an estimate, however, and we have come to wonder whether it was cor-
rect. A prototype card-marking implementation would certainly answer these questions;
see Section 8, however, for other possibilities.

6 WORD-MARKING 36

6 Word-Marking

6.1 Recording the Root Set

The scheme used to record the root set in the Lucid Common LISP Ephe-
meral Garbage Collector is called word-marking. Word-marking uses two
different data structures to record the root set. The first is a table of modi-
fication bits; the second is a set of explicitly-managed lists.

6.1.1 Modification Bit Tables

We divide the address space into large pieces called segments; on the MC68020,
these are 64 kilobytes in length. Their exact size is not critical; making them
64 kilobytes in length allows a simple instruction sequence to extract a seg-
ment number from a pointer.

There is for each allocated segment a table of bits, called a modification bit
table (MBT). The MBT contains one bit for each longword in the segment;
thus, on the MC68020, MBTs will be 2 kilobytes in length. Every segment
has associated with it an MBT, but the MBTs are sparsely allocated, in that
there will be a single MBT shared by all the segments for which we do not
need to record pointers into ephemeral space; these include the segments
in the youngest ephemeral level, the unscanned segments, and segments
holding non-pointer data. This MBT is called the non-recording MBT, and
is specially recognized by the garbage collector.

The MBTs reside in static space, and are explicitly managed by the memory
manager. They are allocated in groups, and stored contiguously, for slightly
better locality on systems with page frames larger than 2 kilobytes.

The MBT stores the same sort of information that the primary card mark
table was to hold in the card-marking scheme, but the information is stored
on a per-word basis. That is: in card-marking, when one modifies a location,
the bit for the card in which the location resides is set. In word-marking,
when one modifies a location, the MBT for the segment in which the location
resides is fetched, and the bit within it corresponding to the location is set.

6 WORD-MARKING 37

So that the garbage collector need not examine the MBT for each segment
that might have been modified, there is a table, called the segment mod-
ification cache, which contains one byte for each segment; the byte for a
segment is set nonzero whenever an entry is made in its modification table.
A byte is used for each segment because the table must be modified quickly
when a pointer is stored.

The segment modification cache must also be read quickly at garbage collec-
tion time. On a machine with a 28-bit address space, the segment modifica-
tion cache is 4 kilobytes in length.14 With a longword test, the entries for 4
segments can be checked at once. A table of bits would have allowed quicker
examination, but would make pointer-setting slower by several instructions.

Note that the segment modification cache cannot practically be spread
among the modification bit tables, through some technique where a des-
ignated location in the MBT held a value indicating whether the MBT had
been modified since the last garbage collection. This would allow us to save
an instruction at pointer storage time, but would degrade virtual memory
performance at garbage collection time, as every allocated MBT would have
to be examined. The MBTs may occupy some 3% of allocated storage;
examining each one could significantly increase virtual memory traffic.

Updating both the modification bit and the segment modification cache re-
quires some ten instructions,15 a temporary address register, and two tem-
porary data registers on the MC68020; the code is shown in Figure 7.

The length of this instruction sequence is sufficiently great that it must be
coded as an out-of-line call, or significantly increase the amount of code in

the LISP image.
14Of course, in most applications, only a fraction of the address space of the processor

is allocated; the table is only searched as far as the last allocated segment.
15By using the MC68020's memory indirect post-indexed addressing mode, we can

shorten this to nine instructions, and this would be faster on the MC68030; however,
it will be considerably slower in most cases on the MC68020.

6 WORD-MARKING 38

SQ is an address register holding the base

address of a vector of systemic quantities.

SMCACHE is the constant offset from the base of

the SQ vector to the base of the segment

modification cache. MBTTBLS is the constant

offset from the base of the SQ vector to the slot

holding a pointer to the base of the

segment-number indexed table of MBTs.

move.l aO, dO ;location being modified is in aO

move.l aO, dl ;d0 and dl are temporaries

swap dl ;low 16 bits of dl now hold segment

the segment modification cache lies directly

after the SQ vector. Set location to indicate

segment modified.

move.b #-1, (smcach, SQ, dl.w)

For compactness, the next two instructions

may be replaced by the single instruction

move.l ([mbttbls, SQ], dl.w*4, 0), al,

but this would be slower on the 68020.

Get address of table of modification tables in al

move.l (mbttbls, SQ), al

;; get address of this segment's MBT in al

move.l (0, al, dl.w*4), al

;; get bit field in dO (low 3 are bit to set)

lsr.w #2, dO

move.l dO, dl ;dl will be byte in table
;; make 11 bits in low half be byte in table
lsr.w #3, dl
bset.b dO, 0(al,d2.w) ;set the bit

Figure 7: MC68020 code to update an MBT and the segment modification
cache in a word-marking scheme.

6 WORD-MARKING 39

6.1.2 Entry Backpointer Lists

The modification bit tables hold very little information; we must examine
the locations that were modified to determine whether they contain pointers
to an ephemeral level. We do this at garbage collection time. The garbage
collector examines modified locations and adds the addresses of locations
that point into an ephemeral level to that ephemeral level's entry back-
pointer list, or EBPL. The EBPLs are explicitly-managed lists maintained
in a block of static space by the garbage collector.

The EBPLs are managed in such a fashion that their entries are unique;
there is no duplication of entries. They are lists, rather than queues, because
those for different levels grow and shrink dynamically. They are grown only
when the youngest ephemeral level is garbage-collected and modification
bit tables are examined. They will also shrink at this time; a modification
may mean that a pointer to an ephemeral level was replaced by a pointer to
some other ephemeral level, or to a location outside of ephemeral space. The
management of the EBPLs is explicit: when an entry is removed, its cons
cell is returned to a freelist. When the oldest ephemeral level is garbage-
collected into dynamic space, its entire EBPL is linked into the freelist.

Because the EBPLs are updated at garbage collection time, if a program
does not create objects, it will not pause. Also because the EBPLs are
updated at garbage collection time, it is possible in a linear pass through
them to maintain unique entries; such a linear pass would not be possible
at pointer-setting time.

Note that the use of EBPLs for level-specific information means that word-
marking imposes no limitation on the number of ephemeral levels allowed.

6.2 Performing a Garbage Collection

A Pidgin ALGOL routine that performs a word-marking garbage collection
is shown in Figures 8 and 9. An explanation of its working follows.

Initially, we scan the stack and mark registers, just as with a dynamic GC.
Then we make a pass over the EBPLs. Any EBPL entry corresponding
to a location whose MBT entry is set is elided; the scavenge from MBTs

6 WORD-MARKING 40

procedure word_marking_gc ();

begin

push marked registers on stack;

from_level := 0;

done := false;

mbts_not_empty := true;

iailed_to_clear_mbt := false;

while (not(done)) begin

to_level := from_level + 1, or dynamic space, if

from_level is the last ephemeral level;

scavenge_stack(from_level, to_level);

for each location in each EBPL

if mbt_entry_set(location)

then remove the location from the EBPL;

for each location in the EBPL for from_level begin

if location is in from_level or to_level

then remove the location from the EBPL;

if location is not in from_level

then scavenge_word(location, from_level,

to_level)

end

if mbts_not_empty then begin

for each segment whose segment modification

cache entry is set

if segment_mbt(segment) = non_recording_mbt

then clear_segment_mod_cache_entry(segment)

else if scavenge_segment_from_mbt

(segment, from_level, to_level) ;

then clear_segment_mod_cache_entry(segment)

else failed_to_clear_mbt := true;

mbts_not_empty := failed_to_clear_mbt

end

if to_level is dynamic space

then link from_level's EBPL to the EBPL freelist

else link from_level's EBPL to to_level's EBPL;

set from_level's EBPL to nil;

if to_level is not full, or is dynamic space

then done := true

else from_level := from_level + 1

end

end

Figure 8: The word-marking garbage collection algorithm.

6 WORD-MARKING 41

procedure scavenge_segment_from_mbt(segment, from_level,
to_level);

begin
mbt := segment_mbt(segment);
entries_not_cleared := false;
for each location corresponding to a set entry in mbt

if the location contains immediate constant data, or
does not point into an ephemeral level

then clear_mbt_entry(location)
else begin

level := the ephemeral level into which location
points;

if level = from_level
then scavenge_word(location, from_level,

to_level);
if location itself is in to_level

then clear_entry := true
comment add_to_ebpl returns true if successful
else clear_entry := add_to_ebpl(level, location);

if clear.entry
then clear_mbt_entry(location)
else entries_not_cleared := true;

end
return(not(entries_not_cleared));

end

Figure 9: Scavenging the words in a segment that point into ephemeral space
by examining its modification bit table.

6 WORD-MARKING 42

performed later will examine the contents of the location and determine
which EBPL it should now be placed on, if any. This operation guarantees
uniqueness of entries on EBPLs, and also guarantees that for the rest of the
garbage collection, the locations listed in EBPLs will be known to contain
pointers into the corresponding ephemeral level.

Then we fetch the EBPL for this level.16 For each location listed in the
EBPL, we determine whether the location is in the space being garbage-
collected or the space being garbage-collected into; in either case we reclaim
the EBPL cons. We can do so because pointers stored within an ephemeral
level are not considered part of the root set for that ephemeral level; thus
they should not be on the level's EBPL.

If the location is not in fromspace,1' we scavenge it.

Now we scan the segment modification cache entries for the segments that
may contain pointers to this ephemeral level. When we find a segment that
has been modified, we fetch and examine its MBT. If the MBT is the unique
non-recording MBT, we need not examine it further, as it is associated only
with segments that cannot contain ephemeral references. Otherwise, the
MBT is examined a word at a time for nonzero entries; because this is
simply a check for nonzero entries, it is a two-instruction dbne loop on
the MC68020, performed for 512 words. The scan could be optimized by
recording the least and greatest locations modified in the segment, but this
would make pointer storage still slower.

When a modified location is found, its contents are examined; if these do
not point into an ephemeral level or are constant immediate data, the MBT
entry for the location is cleared, and the search continues at the next word.
If the location contains a pointer to an ephemeral object, then, if the object
is in the level being garbage-collected, that is, fromspace, the location is

16Note that, if this is a garbage collection of the youngest ephemeral level, the EBPL
will be empty, because the modification table is scanned only when a garbage collection
happens (but see note A.5).

17This check is redundant if the algorithm is implemented exactly as shown, as we re-
claim EBPL entries for locations in tospace before linking fromspace's EBPL into tospace's
EBPL, to reduce the chance of running out of EBPL conses. If the obvious simplification
is made, however, this step would be necessary to allow the reclamation of EBPL conses
and ephemeral objects pointed to only by dead ephemeral objects at later levels; for ex-
ample, the ephemeral garbage collector could not otherwise reclaim circular structures
spread across more than one ephemeral level.

6 WORD-MARKING 43

scavenged. If the location itself was in tospace, we simply clear its MBT
entry; this guarantees that MBTs for empty levels are cleared. Otherwise
we attempt to add it to the appropriate EBPL. If we were not out of EBPL
conses and thus succeeded in adding the location to the appropriate EBPL,
we may clear the location's MBT entry, but otherwise we must leave it set,
so that we examine the location at the next garbage-collection, as it is known
to contain an ephemeral reference. This state, in which the EBPL freelist is
empty, will not persist, because eventually a garbage collection of the oldest
ephemeral level will happen; when it completes, all EBPLs will again be
null.

When we have finished scavenging ephemeral references recorded in the mod-
ification tables, we have copied all the live data out of the ephemeral level
being garbage-collected. If we succeeded in clearing all MBTs, we note the
fact, so that we need not examine the segment modification cache on the
next garbage collection. Note that we have necessarily cleared the segment
modification cache entries and MBTs for the segments in fromspace; we have
also elided from the EBPL for fromspace all entries whose locations were in
tospace. We must now update the EBPL for tospace to include entries for
locations that point to the data just copied into it; this we do by linking to
its end the EBPL for fromspace, and setting the EBPL for fromspace to nil.

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 44

7 Performance Measurements and Analysis

We describe two sets of performance measurements. The first was collected
in January of 1988, on a preliminary release of the ephemeral garbage col-
lector running on various Sun workstations, and measures performance on
several of the Gabriel benchmarks [7]. The second set of measurements mea-
sures performance of a prototype version of the system, running the Lucid
Common LISP production compiler on Apollo workstations; these measure-
ments were collected in the summer of 1987.

7.1 Performance on the Gabriel Benchmarks

The Sun benchmarks are summarized in Tables 1, 2, and 3. Timings were
measured on single-user machines with network paging over a 10-megabaud
Ethernet to a Sun-3/180 file server; the paging devices on the file server
were fast disks operating through SMD interfaces. There was essentially no
network contention when the timings data were collected.

All three machines used in benchmark timings used MC68020 processors
clocked at 16 megahertz. The Sun-3/75 was configured with 4 megabytes
of physical memory; the Sun-3/110, with 8 megabytes of physical memory,
and the Sun-3/180 with 16 megabytes of physical memory.

The benchmarks were run with the operating system in single-user mode to
avoid any anomalies from running daemons. They were compiled with the
Lucid Common LISP/Sun 3.0 production compiler, with speed and safety
settings of 3 and 0, respectively. The version of LISP used was a beta-test
version of Lucid Common LISP/Sun Release 3.0. It was configured with
82-segment dynamic semispaces (5.4 megabytes each), and three ephemeral
levels; level 0 was 8 segments (512 kilobytes) in length, and levels 1 and
2 were each 10 segments (640 kilobytes) in length. In each case the best
timing from several runs is given. These benchmarks are described in detail
in [7].

In most cases, ephemeral garbage collection reduced the elapsed real time
for execution of these benchmarks; this is especially so in cases where several
dynamic garbage collections had to be performed. The difference is most

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 45

(dotimes (i 10) (boyer-setup) (boyer-test))
Processor Parameter

Measured
Garbage Collector

Dynamic only Ephemeral

Sun-3/75
16mhz MC68020
4mb main memory

Elapsed Real Time 235.5 206.7
CPU Time 162.7 190.46
Dynamic Bytes
Consed

18,139,280 1,665,216

Dynamic Garbage
Collections

3 0

Sun-3/110
16mhz MC68020
8mb main memory

Elapsed Real Time 244.2 176.5
CPU Time 166.4 174.4
Dynamic Bytes
Consed

18,139,280 1,665,216

Dynamic Garbage
Collections

3 0

Sun-3/180
16mhz MC68020
16mb main memory

Elapsed Real Time 148.6 171.9
CPU Time 144.0 171.9
Dynamic Bytes
Consed

18,139,576 1,533,040

Dynamic Garbage
Collections

4 0

Table 1: BOYER benchmark timings. Times are in seconds.

PERFORMANCE MEASUREMENTS AND ANALYSIS 46

(dotimes (i 20) (de 3riv-run))

Processor Parameter
Measured

Garbage Collector
Dynamic only Ephemeral

Sun-3/75
16mhz MC68020
4mb main memory

Elapsed Real Time 389.0 98.4

CPU Time 172.9 89.0

Dynamic Bytes
Consed

39,205,320 0

Dynamic Garbage
Collections

7 0

Sun-3/110
16mhz MC68020
8mb main memory

Elapsed Real Time 387.8 89.8

CPU Time 177.0 89.2

Dynamic Bytes
Consed

39,205,320 0

Dynamic Garbage
Collections

7 0

Sun-3/180
16mhz MC68020
16mb main memory

Elapsed Real Time 103.8 89.3

CPU Time 101.2 89.3

Dynamic Bytes
Consed

39,205,320 0

Dynamic Garbage
Collections

7 0

Table 2: DERIV benchmark timings. Times are in seconds.

PERFORMANCE MEASUREMENTS AND ANALYSIS

(dotimes (i 100) (destructive 600 50))
Processor Parameter

Measured
Garbage Collector

Dynamic only Ephemeral

Sun-3/75
16mhz MC68020
4mb main memory

Elapsed Real Time 415.8 196.3
CPU Time 249.0 178.1
Dynamic Bytes
Consed

34,489,080 0

Dynamic Garbage
Collections

6 0

Sun-3/110
16mhz MC68020
8mb main memory

Elapsed Real Time 437.2 176.9
CPU Time 259.6 176.9
Dynamic Bytes
Consed

34,489,080 0

Dynamic Garbage
Collections

6 0

Sun-3/180
16mhz MC68020
16mb main memory

Elapsed Real Time 194.5 177.5
CPU Time 191.5 177.5
Dynamic Bytes
Consed

34,489,080 0

Dynamic Garbage
Collections

6 0

Table 3: DESTRUCTIVE benchmark timings. Times are in seconds.

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 48

dramatic on the machines configured with less memory; this is because ephe-
meral garbage collection drastically reduces the size of the working set. Note
that the differences between central processing unit time and real time on
these machines is large under dynamic garbage collection, and much smaller
under ephemeral garbage collection; as the machines were running in single-
user mode, the discrepancy between real and central processing unit times
will be due almost totally to virtual memory system overhead.

It is interesting to note that, in some cases, ephemeral garbage collection
reduced the amount of central processing unit time required for the execution
of a benchmark. We expect that the reduced size of the root set accounts for
much of the performance improvement, as, among these benchmarks, only
BOYER retains for long the large structures created. Thus it seems unlikely
that much transporting occurred in dynamic garbage collection.

The DESTRUCTIVE benchmark timings (Table 3) show particularly good
performance under ephemeral garbage collection. Reference to the source
code reveals one reason: only two of the six destructive operations used will
result in invocation of the out-of-line subroutine that records pointer stores.
The others are stores either of declared fixnums or constant symbols; as
noted in Section 4.1, the compiler can optimize out pointer-recording in

these cases.

In the BOYER timings (Table 1), we see a pattern characteristic of the
Lucid ephemeral garbage collector: enhanced virtual memory performance
is gained at the expense of increased central processing unit load. The
size of the working set has been decreased; the improved virtual memory
performance has resulted in reduced elapsed times to perform a task, but
at a cost of more work for the central processing unit. On machines with
better virtual memory performance, use of the ephemeral garbage collector
is less attractive.

7.2 Performance of the Compiler Under Ephemeral Garbage
Collection

The Apollo performance measurements are summarized in Table 4. These
measurements were taken on single-user machines with local paging and file
disks; network traffic was virtually nil. The Apollo DN4000 processor is an

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 49

Processor Parameter
Measured

Garbage Collector
Dynamic only Ephemeral

DN570-T
20mhz MC68020
8mb main memory
154mb disk, ST506

Elapsed Real Time 32,171.5 28,554.7
CPU Time 16,429.0 20,275.1
Process Disk I/O 499,881 285,034
Dynamic Bytes
Consed

722,183,608 87,741,088

DN3000
12mhz MC68020
8mb main memory
348mb disk, ESDI

Elapsed Real Time 30,269.8 31,535.6
CPU Time 19,768.3 26,316.8
Process Disk I/O 485,096 256,155
Dynamic Bytes
Consed

7.22,163,960 90,460,272

DN4000
25mhz MC68020
32mb main memory
348mb disk, ESDI

Elapsed Real Time 12,358.1 15,693.7
CPU Time 11,680.3 15,012.1
Process Disk I/O 8,226 6,484
Dynamic Bytes
Consed

722,121,048 92,014,816

Table 4: Global recompilation performance measurements on Apollo work-
stations. Times are in seconds.

MC68020 clocked at 25 megahertz; the DN4000 in question was configured
with 32 megabytes of physical memory and a fast 348 megabyte disk drive
operating through an ESDI interface. The DN3000 processor is an MC68020
clocked at 12 megahertz; the DN3000 used was configured with 8 megabytes
of physical memory and a fast 348 megabyte disk drive with the same ESDI
interface as on the DN4000. Finally, the DN570-T processor is an MC68020
clocked at 20 megahertz; the DN570-T used for performance measurements
was configured with 8 megabytes of physical memory and a relatively slow
154 megabyte disk drive operating through an ST506 interface.

The task executed was a recompilation of all the files in the LISP system;
it also served as a testbed for debugging the ephemeral garbage collector
prototype.

18In its default configuration, the Apollo version of the Lucid Common LISP compiler
makes use of a facility that allows block allocation and deallocation of temporary storage.
In the results shown here, this facility has been disabled, as such block allocation and
deallocation is not available to user programs, and our intention is to provide an analysis
of the behavior under ephemeral garbage collection of large programs utilizing the usual
storage allocation facilities.

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 50

Use of the ephemeral garbage collector degraded performance in the global
recompilation task on both the DN4000 and the DN3000. On the DN4000,
the task took 27% more elapsed real time under ephemeral garbage collection
than under dynamic garbage collection; on the DN3000, the figure was about
4.2%. On the DN570-T, however, the elapsed real time under ephemeral
garbage collection is 11.2% less than under dynamic garbage collection.

These results confirm the conclusion we reached in examining our timings
on Sun workstations: the Lucid Ephemeral Garbage Collector improves vir-
tual memory performance at the expense of central processing unit time.
Examination of the "Disk I/O" figures show a reduction in virtual memory
traffic on all three systems; on the DN3000 and DN570-T this reduction
was in excess of 42% ofthat observed under dynamic garbage collection; on
the DN4000, configured with 4 times the amount of physical memory, the
reduction in disk I/O was only 21%. The DN3000 and DN570-T disk I/O
figures are very close, as would be expected from machines with identical
amounts of physical memory; however, the DN570-T's faster processor gives
it a lower elapsed time under ephemeral garbage collection. Under dynamic
garbage collection, this advantage is reversed by the DN3000's faster paging
device.

On the whole, however, these measurements show much worse performance
under ephemeral garbage collection while performing a global recompilation
on Apollo workstations than while running benchmarks on Sun worksta-
tions. Leaving aside momentarily the fact that the tasks being performed
are different, we would still expect some discrepancy in performance, due to
the different virtual memory characteristics of the systems being compared.

The Sun-3 has 8-kilobyte page frames, as compared to the Apollo's 1-kilobyte
page frames; the coarser page size hurts performance in a pointer-oriented
language with heap allocation, like LISP. Furthermore, the Apollos whose
performance we measured had more memory and faster paging devices than
did the Suns. But we also see wide discrepancies in factors besides virtual
memory behavior; in particular, the central processing unit time expense
of ephemeral garbage collection is far greater in the Apollo performance
measurements.

Of course, we are comparing apples and oranges; the tasks being performed
were different. What is interesting is how they are different. The compiler

7 PERFORMANCE MEASUREMENTS AND ANALYSIS 51

makes heavy use of hash tables, especially when reading input files, and
hash tables are invalidated by copying garbage collection, as the hash values
of objects stored in them are computed from their addresses, which are
assumed to have changed. Thus references to hash tables between garbage
collections require recomputing hash values for all objects in the tables.
Because ephemeral garbage collections occur so much more often than do
dynamic garbage collections, this task will have to be performed many times
more often under ephemeral garbage collection; we believe that this accounts
for a lot of the central processing unit time.

Other measurements have led us to believe that the default configuration
of ephemeral spaces is less than ideal for use of the compiler. The compiler
creates large data structures while compiling a file, and retains some of
them through the entire compilation of the file; thus there is the possibility
that these large structures will be moved several times by ephemeral garbage
collection, and finally advanced into dynamic space, where they are released.
We have in fact observed this behavior by metering compilation.

This is not a problem pecubar to the compiler; we expect that many pro-
grams that build large temporary data structures will exhibit similar be-
havior. Note that, because these structures are built out of small parts,
the automatic allocation of very large objects in dynamic space (see Sec-
tion 4.5) is of no help here. This is called the pig-in-the-snake problem.19

In general, it can be solved only by tuning the number and the sizes of
ephemeral levels for optimal behavior on the problem at hand. In the case
of the compilation benchmark, we can see that a greater delay between
garbage collection times, as occurs in dynamic garbage collection (because
semispaces are larger), would result in moving these structures less often or
possibly not at all; they might perish first. We expect that a larger first
ephemeral level would have much the same effect.

Finally, the compiler performance measurements were made on an earlier
version of the system; some of the continued development in the interim may
have led to better performance in the later benchmarks. Further testing is
planned to analyze compiler performance with the current system.

19I am indebted to Jon L. White for this terminology.

8 CONCLUSIONS AND FUTURE WORK 52

8 Conclusions and Future Work

8.1 Conclusions

The performance analysis presented in Section 7 may be summarized broadly
and in brief:

•

•

•

•

At tasks in which large amounts of data are allocated and then dis-
carded, the Lucid Ephemeral Garbage Collector reduces both the elapsed
real time and the central processing unit time required.

At tasks in which large amounts of data are allocated and retained,
the ephemeral garbage collector will enhance performance by reducing
the size of the working set, gaining virtual memory performance (and
thus elapsed real time) at the expense of central processing unit time.

On processors with very good virtual memory performance (those
configured with large amounts of physical memory and fast paging
devices) the ephemeral garbage collector may degrade performance
significantly. We believe that this is mostly due to the overhead of
recording pointer storage.

Ephemeral space configuration should be tuned to individual problems
to avoid extra transporting work.

Additionally, ephemeral garbage collections do not cause noticeable pauses.
This, and the performance characteristics described above, promise much for
the manufacturer of interactive systems built in LISP and delivered on work-
stations. Ephemeral garbage collection allows smaller workstations without
local disks to be used as symbolic processing delivery vehicles without pro-
hibitive effects on performance.

8.2 Future Work

We did not establish conclusively that our means for recording the root set
was superior to card-marking. More performance measurements should be
made to support or controvert this argument.

8 CONCLUSIONS AND FUTURE WORK 53

We do not know for certain that overall performance is actually enhanced by
our strategy of delaying until garbage collection time the determination of
the spaces in which a pointer is stored and to which it points. Instrumenta-
tion of the pointer storage routine and careful metering of paging behavior
will yield an answer to this question.

A scheme by which repeated scanning of the stack on scavenges of successive
levels could be avoided would be useful; the stack often grows to consider-
able size during the execution of LISP programs, as recursion is encouraged.
The obvious means by which to avoid scans after the initial one would be to
use the EBPLs to hold backpointers to ephemeral references on the stack;
however, this would mean less efficient use of EBPL conses, as many EBPL
entries for the stack would become invalid between invocations of the gar-
bage collector. As we would need to scan the stack at the inception of
each invocation of the garbage collector, we could modify the initial scan
of EBPLs (which elides entries for locations whose MBT entries are set) to
remove entries for locations on the stack.

However, because most ephemeral garbage collections are only of the first
ephemeral level, the additional bookkeeping overhead of this scheme might
not pay off. Possibly we could invoke it only when the succeeding level
was filled nearly to capacity, as this would signify increased likelihood of a
scavenge of that level.

It would be useful to have a means of determining the best configuration
of ephemeral space for a given problem. The configuration of ephemeral
spaces is a compromise between several conflicting constraints. Increas-
ing the number of ephemeral levels causes fewer objects to be advanced to
dynamic space, decreasing the number of dynamic garbage collections; how-
ever, it increases the number of times a relatively permanent object must
be copied before it is advanced to dynamic space. Increasing the size of the
first level will give ephemeral objects more time to perish before we ever
transport them; but it also reduces locality of reference. A good model of
these constraints would allow us to build a tool that could analyze the dy-
namic behavior of a program and make configuration recommendations, or
possibly even vary dynamically the configuration of ephemeral space.

Some means of performing approximately depth-first copying (either that
used by Moon [10, page 238], or some other scheme) would improve locality

8 CONCLUSIONS AND FUTURE WORK 54

of reference.

Of course, the availability of support from virtual memory systems would
make a scheme like the one described in Section 2.3.2 more attractive than
the one we implemented.

55

Part III

Appendices

A Notes

A.l Performance of incremental garbage collection

Baker [1, page 26] noted that his incremental garbage collector would re-
quire a larger working set size than would a simple stop-and-copy garbage
collector, as the user computation running would require a certain amount of
working storage, made larger by the necessity of following forwarding point-
ers through evacuated objects in fromspace, and the scavenger would also
constantly be cycling through memory in tospace and fromspace unrelated
to that currently in use by the user computation.

Empirical evidence bears out Baker's concern. Moon [10, page 236] reports
that the poor virtual memory performance of the Baker-style garbage col-
lector on the Symbolics 3600 resulted in users' avoidance of its use whenever
possible.

A.2 Shaw's suggested extension to virtual memory systems

Shaw [12] suggests a scheme in which the virtual memory system allows the
LISP process to clear the dirty bits actually maintained by the hardware;
prior to actually clearing the bits, the virtual memory system saves their
state away, so that two tables are consulted by the virtual memory system
when a page is ejected from physical memory.

Such a facility would allow the LISP process to remember and clear mark bits
just before a garbage collection. During the garbage collection, it would scan
the pages remembered to have been marked; it would write them if they had
ephemeral references, as these references would need to be updated. Thus
only the pages with ephemeral references would be marked dirty immediately
after a garbage collection; this would eliminate some useless page-scanning.

A NOTES 56

Note, however, that the facility Shaw suggests, while potentially valuable,
is not essential to the success of Moon's garbage collection scheme on a
general-purpose computer. Dirty bits alone, maintained in the usual sense,
will work, because the wasted page scans are of in-core pages; the expense of
this operation, even on general-purpose machines, is dwarfed by any backing
store operations that garbage collection may require.

It is interesting to note that Shaw's scheme does not provide any means
to verify whether ejected dirty pages contain pointers to ephemeral levels
before they are written to backing store; thus unnecessary backing store
operations will occur at garbage collection time when a dirty page ejected
from physical memory does not contain any references to ephemeral spaces.

A.3 Time required to garbage-collect all levels

Call the oldest level level 1, and the youngest level level m. If each succeeding
level is half the size of the next younger level, and level m is of size x, the nth
level is of size 2n~mx. The data in the mth level might have to be copied m
times. Say that the work required to copy x words is x; then, if every level
is entirely full of live data, the work required for m, levels is Y^=\ 2™_mm.T,
or mx J2™=i 2n~m. In the limit, this is 2rra, where x was the work required
to copy the youngest level.

A.4 Scanning order and virtual memory performance

On the 3600, an ephemeral garbage collection first scavenges the pages with
GCPT bits set, and then pages whose ESRT entries are set. This probably
results in many pages being scanned twice, but, as Moon comments, it is
very cheap to scan a page with no ephemeral references on it, and the second
scan will encounter no references in fromspace.

In our card-marking scheme, we scan the cards with set secondary marks
first, and then the cards whose primary marks are set, but whose secondary
marks were not set; thus we avoid re-scanning some cards. We perform
the scanning in this order to optimize the overall paging behavior of the
algorithm. If we wished, we could first scan the cards whose primary marks

A NOTES 57

were set; when we were finished scanning them, the data would have changed
levels and the secondary card mark table would reflect that, so we would
also not scan any cards twice with this approach.

Scanning the cards with set secondary marks first optimizes the paging
behavior in this way: the cards whose primary card marks were set are those
that were recently written, and thus we assume that they may be written
again soon and should be in physical memory after a garbage collection; if
we were to scan them first, the cards whose secondary marks were set would
be left in physical memory after a garbage collection; this would mean that
the user program would first have to page them out.

One reason why Symbolics might perform the scan in the opposite order
is that, because their garbage collector is incremental, the user program
continues to execute very early in the garbage collection process, and thus
they would like to delay disturbing the pages in physical memory as long as
possible.

A.5 Updating EBPLs between garbage collections

It would be possible to update the EBPLs from the modification tables (and
clear the modification tables) between garbage collections; for example, we
could cause the object creation routines to scan modification tables whenever
we began allocating objects in a new segment. This would not violate the
design goal of predictability, which states that programs that do not create
objects should not cause garbage collections, because the scanning would be
motivated only by object creation. This might lead to better virtual memory
performance, as the garbage collector would not then have to examine such
chronologically distant locations. One result of making this modification to
the system would be the possibility that level O's EBPL would have entries
at the inception of garbage collection.

B BIBLIOGRAPHY 58

B Bibliography

References

[1] Henry G. Baker, Jr. List Processing in Real Time on a Serial Computer.
Massachusetts Institute of Technology Artificial Intelligence Laboratory
Working Paper 139, Cambridge, Massachusetts, 1977.

[2] Stoney Ballard and Stephen Shirron. The Design and Implementation
of VAX/Smalltalk-80. In Smalltalk-80: Bits of History, Words of Ad-
vice, pp. 127-150. G. Krasner (ed.), Addison-Wesley, Reading, Mas-
sachusetts, 1983.

[3] Rodney A. Brooks, Richard P. Gabriel, and Guy L. Steele. S-l Common
LISP Implementation. In Conference Record of the 1982 ACM Sym-
posium on LISP and Functional Programming, 108-113, Pittsburgh,
Pennsylvania, August, 1982.

[4] Patrick J. Caudill and Allen Wirfs-Brock. A Third Generation
Smalltalk-80 Implementation. In Object-Oriented Programming Sys-
tems, Languages and Applications Conference Proceedings, ACM SIG-
PLAN Notices 21(11)':119-129, Portland, Oregon, 1986.

[5] C. J. Cheney. A Nonrecursive List Compacting Algorithm. In Commu-
nications of the ACM, 13(ll):677-678, November, 1970.

[6] R. R. Fenichel and J. C. Yochelson. A LISP Garbage-Collector for
Virtual-Memory Computer Systems. In Communications of the ACM,
12(11):611-612, November, 1969.

[7] Richard P. Gabriel. Performance and Evaluation of LISP Systems.
MIT Press Series in Computer Systems, MIT Press, Cambridge, Mas-
sachusetts, 1985.

[8] Richard Greenblatt, et al. LISP Machine Progress Report. Mas-
sachusetts Institute of Technology Artificial Intelligence Laboratory
Memo 444, Cambridge, Massachusetts, 1977.

[9] Henry Lieberman and Carl Hewitt. A Real Time Garbage Collector
Based on the Lifetimes of Objects. Massachusetts Institute of Tech-

REFERENCES 59

nology Artificial Intelligence Laboratory Memo 569, Cambridge, Mas-

sachusetts, 1981.

[10] David A. Moon. Garbage Collection in a Large LISP System. In ACM
Symposium on LISP and Functional Programming, 235-246, Austin,

Texas, 1984.

[11] Motorola, Inc. MC68020 32-bit Microprocessor User's Manual, Second
Edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

[12] Bob Shaw. Improving Garbage Collector Performance in Virtual Mem-
ory. Hewlett-Packard Laboratories STL-TM-87-05, Palo Alto, Califor-

nia, 1987.

[13] David Ungar. Generation Scavenging: A Non-disruptive High Perfor-
mance Storage Reclamation Algorithm. In ACM SIGSOFT/SIGPLAN
Practical Programming Environments Conference, 157-167, April, 1984.

[14] Jon L. White. Address/Memory Management for a Gigantic LISP Envi-
ronment or, GC Considered Harmful. In Conference Record of the 1980
LISP Conference, 119-127, Redwood Estates, California, July, 1980.

