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Abstract

The Space Modeler is the first truly immersive virtual environment that models the solar system,

models satellites in near-Earth orbit, and can operate in a Distributed Interactive Simulation (DIS)

environment. It increases the capabilities of the 1993 Satellite Modeler by expanding the physical

limits of the environment and by implementing a new three-dimensional user interface. Satellite orbits

are modeled using NASA two-line element sets. The positions of the Sun, Moon and planets are

computed using an algorithm based on planetary orbital element sets using a linear polynomial fit. For

higher precision, the planetary orbits can be computed using an algorithm based on VSOP87 planetary

theory. The user interface is a three-dimensional array of panels, with buttons for controlling all aspects

of the environment. The interface is easily accessible to an immersed user, and provides interactive

movement controls for five degrees of freedom, attachment to objects in the environment, setting the

rate at which the simulation runs, and toggling the display of all visual features. The Space Modeler can

model the solar system and render up to 50 satellites in near-Earth orbit using magnetic head tracking

with a 20-30 Hz frame- update rate.

ix



SPACE MODELER: AN EXPANDED, DISTRIBUTED,

VIRTUAL ENVIRONMENT FOR SPACE VISUALIZATION

I. Introduction

1.1 Background

In the past few years, virtual environment applications have become increasingly popular. Virtual

environments are interactive, computer generated surroundings that give the user the illusion of being

in another place, either real or imaginary. The technology used in these environments bridges the

gap between humans and machines and allows humans to interact more effectively with computers.

These environments potentially offer the most realistic simulations by allowing the most natural

human-computer interaction. According to one expert, these environments provide a new and valuable

communication medium for human-computer interaction. They have broad applications in education,

teleoperation, scientific visualization, procedural training and entertainment (10). However, to be

worthwhile, these environments must not only display accurate, realistic models within an acceptable

frame rate, but must respond reasonably to natural human movements and auditory commands.

AFIT's Virtual Environments, 3D Medical Imaging and Computer Graphics Lab has been de-

veloping and implementing virtual environment technology for the past four years. The Virtual

Cockpit, Synthetic BattleBridge and Satellite Modeler applications all provide immersive, computer-

generated, distributed environments which demonstrate the latest in off-the-shelf hardware and soft-

ware (31, 47, 26). However, because of the complex interaction and processing of the human sensory

system, virtual environments such as these have been limited in their ability to offer a truly natural user

interface for immersed applications. The user interfaces for these applications still require substantial

training to master, whereas the ideal virtual environment would allow any user to function with little

or no training.

1.2 Problem Statement

This thesis effort was aimed at improving the user interface as well as the functionality of the

Satellite Modeler. The Satellite Modeler from 1993 was a direct manipulation virtual environment for
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training space systems analysts. It modeled and rendered satellites in accurate near-Earth orbit and

could be incorporated into distributed simulations that use the Distributed Interactive Simulation (DIS)

protocol (27). By expanding its capabilities and ease of use, this tool can easily be extended in the near

future to an operational, remote procedural trainer for ground-based satellite controllers or even a real

time, satellite maneuver observation post for analysts.

Although the Satellite Modeler provided a very useful and appealing environment for viewing

satellite behavior in near-Earth orbit, it had some limitations as to what it modeled. Its user interface

was not conducive to immersive operation and its environment was limited to a small subset of outer

space, containing only the Earth and the Moon.

The purpose of this thesis effort, which resulted in the design and development of the Space

Modeler, was twofold. First, it was to address the problems associated with making the user interface

accessible to a person who is completely immersed in a virtual environment. Second, it was to explore

and implement efficient means for expanding the physical limits of the Satellite Modeler environment

to include the solar system.

1.3 Assumptions

I made several assumptions concerning all of the enhancements made to the Satellite Modeler.

First, I did not want to alter any of the orbital mechanics that were implemented in the original software.

Last year's thesis effort emphasized the development of accurate and realistic orbital propagation for

all satellites as well as the Earth (26). I assumed that all software for orbital propagations produced

valid results, including all two-line orbital element sets for individual satellite types. Second, I assumed

that the positioning of all the stars in the "celestial sphere" was accurate relative to the Earth. Third,

I assumed that real-time propagation of all entities in the space environment was valid and that all

information contained in the network broadcast packets was accurate. Finally, I assumed that all

software developed for this effort would meet the following guidelines:

"* All software would make use of the ObjectSim application development framework as well as

the Performer development libraries

"• All software would execute on the Silicon Graphics Onyx machine, under the IRIX operating

system

2



e All software would be written in AT&T C++

1.4 Approach

This thesis required three major steps. First, I had to design and implement a suitable immersive

user interface to a virtual environment. Second, this interface had to be incorporated into the 1993

Satellite Modeler along with small enhancements and corrections. Finally, I had to design a method

for modeling the rest of the solar system.

Designing a new three-dimensional, general-purpose user interface for virtual environments

presented an interesting challenge. Capt Jim Kestermann, Lt JJ Rohrer and I worked together on

this interface. We had to consider the advantages and disadvantages of current virtual environment

interfaces as well as research general human factors guidelines for human-computer interaction. We

also had to investigate the utility of various user input devices, such as the instrumented glove and the

three dimensional mouse. The results of these efforts are discussed in (24).

1.5 Thesis Presentation

This thesis is divided into six chapters and additional appendices. Chapter 1I presents back-

ground information on virtual environment technology as well as fundamentals of orbital mechanics

and distributed simulations. Chapter mI presents the overall requirements of this effort, Chapter IV

discusses the design and implementation of the software and Chapter V summarizes the results. Finally,

Chapter VI summarizes the thesis effort and presents recommendations for future work.
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II. Background

This chapter provides a foundation for understanding the concepts involved in developing a

distributed space visualization environment. It presents a brief explanation and history of virtual en-

vironment technology, gives an introduction to orbital mechanics, and describes distributed interactive

simulations.

2.1 Virtual Environment Technology

Virtual environments are computer generated surroundings that humans can enter. This paradigm

assumes that the surroundings contain information, such as other objects, that the user is motivated to

explore, interact with, and learn about. Such environments use computer displays enhanced by special

cues, such as colors, sounds and touch, to convince users that they are interacting in a synthetic world.

When coupled with an appropriate user interface, these environments are useful because they serve as

natural communications media for data analysis and scientific visualization (10, 28, 14).

All virtual environments require certain hardware and software components. Stephen Ellis states

that virtual environments require the following three hardware components:

"* Sensors to detect the user's body movements

"• Effectors to stimulate the operator's senses

"* Special-purpose hardware that links the sensors and effectors to produce sensory experiences

resembling those in a physical environment (10:18)

Figure 1 illustrates these components. The user interacts with the environment via hand, head or

other body movements. These movements are communicated to the hardware linkage via sensors

such as instrumented gloves or magnetic head tracking devices. The linkage, which is usually a high-

performance computer, interprets the sensor input and provides feedback to the user via an appropriate

effector, such as a computer CRT display or head-mounted display (HMD). Of course, the use of these

hardware components requires software.

The software architecture must address three issues:

9 The shape and kinematics of the actors and objects
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(Eyes, Ears) (CRT Display, HMD)

Human Simulation

Operator Computer

(linkage)

Effectors =. Sensors

(Hands, Head) (Sensored glove, Tr~acker)

Figure 1. The Hardware Components of a Virtual Environment

"* The physical interaction between objects and environment according to rules like Newtonian

laws of motion

"* The extent and character of the enveloping environment (10:18)

Additionally, the software architecture must be flexible enough to accomodate changes in its use of

network protocols, input devices and rendering platforms. Fortunately, many software development

architectures exist that consider these issues, such as the Performer library from Silicon Graphics as well

as AFIT's ObjectSim framework (35, 43). Used in conjunction with high-quality computer graphics

hardware, such architectures provide excellent development environments for virtual environment

simulations. With this background in mind, let us examine the history of this technology.

2.1.1 Virtual Environment History. Ever since Ivan Sutherland proposed the Ultimate Dis-

play in 1965, researchers have been striving toward building the ideal virtual environment. Sutherland

envisioned an environment in which computer generated objects would behave exactly as they do in

reality (6). Such environments, where computer generated chairs can be sat upon, computer generated

food tastes and looks real and computer generated weapons impart real damage, obviously do not
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exist today, yet researchers are finding more and more feasible versions of them as current technology

advances.

Virtual environment technology has its roots in systems which were based on vehicle simulation

and teleoperation. As early as the 1920s, researchers were building aircraft simulators. In the 1960s

teleoperation systems were using the first head-mounted displays (HMD) for controlling remote, closed-

circuit television cameras. In 1968, Sutherland presented his own stereoscopic HMD along with a head

tracking device, which was successfully used in computer-aided design (6). In the 1970s, other special

hardware sensors, such as instrumented gloves, were first used in virtual environments.

In the 1970s researchers at MIT successfully used a commercially available tracking sensor to

communicate hand position to a computer. This sensor, called the Polhemus, sensed position and

orientation of an object and allowed the user to point to and move graphical objects in a virtual

environment. Combining hand gestures with speech-recognition, this system was the first to provide

a coherent, natural human-computer interface in a virtual environment (3:263). Today, many virtual

environment applications still use versions of the Polhemus tracking system.

In 1977, the Air Force began work on a virtual aircraft simulator called the "Visually-Coupled

Airborne Systems Simulator" (VCASS). VCASS was designed to present a panoramic display of

cockpit information in three dimensional virtual space in such a way as to provide the pilot an improved

situational awareness. Implemented in the early 1980s, VCASS used a hand controller to allow the

pilot to activate switches and make other adjustments in the virtual cockpit (16). In addition to these

early developments, several space visualization environments have been built.

A majority of the virtual environments for space visualization were built because three-dimensional,

graphical representation of satellite orbital motion provides an important visual aid to understanding

complex orbital maneuvers. Such environments are primarily designed to simulate a first person pres-

ence in space, but have also been used to train ground-based operators and simulate mission planning

and launch activities (42). Ocampo's work in 1990 modeled the space environment in two and three

dimensions, using an Earth-Centered Inertial (ECI) coordinate system, and was used to visualize how

objects in geocentric orbit react to changes in orbital parameters (37). Similarly, Kobayashi and his

collaborators developed a system for the Japanese space program for viewing orbiting satellites in

real-time. Their system was used for satellite orbital analysis and allowed several user-defined con-
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figurations (25). The National Aeronautics and Space Administration (NASA) has sponsored several

virtual environment systems, including the Virtual Visual Environment Display (VIVED), the Virtual

Interactive Environment Workstation (VIEW), the Computer Graphics Pilot Project (CGPP) and the

Virtual Planetary Exploration (VPE) project (33, 20, 22). Specific mission simulators include the work

done by Eyles for visualizing space station operations (12), the satellite modeling system built for

the Air Force by Kaman Sciences Corporation, and the Global Positioning Satellite system by Sandia

National Laboratories.

Head/helmet-mounted display (HMD) and haptic devices have also been used extensively by

NASA. These devices immerse the user into the simulation by engaging the primary senses of sight

and touch. The NASA Space Station Freedom project has promoted research in this area as part of the

effort to train astronauts to function and perform activities in the natural conditions and constraints of

space without the associated risks. By applying virtual environment technologies, astronauts, mission

specialists, and station operators may be trained in "space simulators", such as VIEW, much like pilots

are trained in flight simulators. This capability provides a virtual experience that emulates reality

and may allow individuals to be more effective and productive once they begin to operate in the real

environment (13).

While each of these systems presents information in a graphical format, they are all primarily

stand-alone workstation-based simulators that portray only a selected portion of our solar system,

which is usually Earth-centered. The Satellite Modeler was the first virtual environment simulation to

portray satellites in accurate, near-Earth orbits in an immersive, distributed setting. This system offers

an immersive or CRT-based environment and models satellite motion via the NORAD SGP4 orbital

model and associated orbital elements and can broadcast satellite position and attitude in real-time via

the Distributed Interactive Simulation (DIS) network protocol (26, 27).

One of the most important features of any virtual environment is its ability to accurately model

the motion of all virtual objects. Modeling satellites and planetary bodies requires an understanding of

the fundamentals of orbital mechanics.

7



2.2 Introduction to Orbital Mechanics

Which is more useful, the Sun or the Moon?.. .The Moon is the more useful, since it gives
us light during the night, when it is dark, whereas the Sun shines only in the daytime, when
it is light anyway. -fictitious philosopher

There are several methods for mathematically describing the behavior of objects in space, but all

are based on fundamental astrodynamic principles. In 1609, Johann Kepler published his famous laws

of planetary motion. This work, which was based on the observations of Tycho Brahe, represented the

first accurate description of planetary motion (1). Kepler's laws can be summarized as follows:

1. The orbit of each planet is an ellipse, with the sun at one focus

2. The line joining the planet to the sun sweeps out equal areas in equal times

3. The square of the period of a planet is proportional to the cube of its mean distance from the sun

In the late 1600's, Isaac Newton developed his laws of motion, which attempted to explain why

Kepler's laws were valid. Newton's laws of motion were defined as:

1. Every body continues in its state of rest or of uniform motion in a straight line unless compelled

to change that state by external forces

2. The rate of change of momentum is proportional to the force impressed and is in the same

direction as that force

3. To every action there is always an opposing and equal reaction

In addition, Newton also formulated his famous law of gravity, which states that any two bodies attract

one another with a force proportional to the product of their masses and inversely proportional to

the square of the distance between them (1). Based on these laws, a general equation of motion for

planetary bodies can be derived.

When depicting artificial satellites in orbit around the Earth, or the planets of our solar system

orbiting the Sun, the application of Kepler's and Newton's laws can be limited to the classical Two-Body

Problem. This problem makes two simplifying assumptions related to Newton's laws:

8



1. The bodies are spherically symmetric, allowing us to assume that their masses are concentrated

at their centers

2. There are no external nor internal forces acting on the system other than their mutual gravitational

forces

Based on these assumptions, as well as the use of an appropriate inertial reference coordinate system,

one can proceed to mathematically describe the relative motions of such bodies. (See (1) for a detailed

discussion of the derivation of the equation of motion.)

The motion of a satellite in orbit about a planet can be described using six orbital elements as

integration coefficients in differential equations. As Figure 2 illustrates, the "classical" orbital elements

are:

"* The semi-major axis, which is one-half the length of the orbit (a)

"* The eccentricity or shape of the orbit (e)

"* The inclination of the orbit, which is the angle between the equatorial plane and the orbital plane

(i)

"* The ascending node, which specifies the planetary longitude at which the satellite's orbit crosses

the equatorial plane (Q)

"* The argument of perigee, which specifies the angle between the ascending node and the point of

perigee (w)

"* The time of perigee passage, which is the time at which the satellite passes closest to the Earth

(T)

These six constants provide a basic orbital model that ignores the effects of perturbations upon

spacecraft behavior (7, 39). However, more accurate models are available, such as the one developed

at the North American Aerospace Defense (NORAD) Space Surveillance Center (SSC). The NORAD

model replaces the time of perigee passage element with mean anomaly, which is the average difference

between predicted and actual orbits. These "standardized" element sets are processed through one of

five mathematical models to calculate values for spacecraft position and velocity. The models make

9
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Figure 2. Orbital Elements
(30)

predictions for satellite position and velocity depending on whether they are in near-Earth (period

of less than 225 minutes) or deep-space (period greater than or equal to 225 minutes) orbits. The

Satellite Modeler uses NORAD's SGP4 model for satellite propagation. For a further description of

the fundamentals of near-Earth orbits see (7, 36, 1).

While the NORAD element sets and the NORAD satellite propagation model can be used for

satellites in near-Earth orbit, the equations do not apply to planetary, comet, or asteroid motion. To

calculate the position of a body in its orbit around the Sun, or even the position of a moon around

a planet, one may use numerical integration, calculate the sums of periodic terms based on orbital

elements, or use orbital elements to approximate a purely elliptical orbit (36).

Numerical integration provides the most accurate method of determining planetary positions.

According to Dr. Paul Chodas, the Jet Propulsion Laboratory in California uses this method for precise

solar system modeling. They use a file of coefficients of Chebyshev polynomial fits o-ýer 32-day time

spans. These coefficients are generated by numerically integrating data from all major solar system

bodies while fitting hundreds of thousands of observations from the Mariner, Viking, Voyager, and

10



other spacecraft. As Dr. Chodas points out, however, "this method is far too cumbersome for general

use (5)."

In 1982, the Frenchman P. Bretagnon published a method of computing planetary positions based

on series of periodic terms. His theory, which was labeled VSOP82, allowed one to obtain various

orbital parameters, such as the longitudes of the perihelion and ascending node, for a given instant.

These parameters could then be used to compute an accurate, true position for a planet. The VSOP82

method considered orbital perturbations but was not very convenient to use, since one had to arbitrarily

truncate the several series when no full accuracy was required (36).

In 1987, Bretagnon revised his original theory and published VSOP87. This newer method gave

periodic terms for calculating the planets' positions in heliocentric coordinates. These coordinates were

defined as the ecliptical longitude L, the ecliptical latitude B, and the radius vector R (distance from

the planet to the Sun). To compute each coordinate, sums of periodic terms were calculated and used

as polynomial coefficients, where the polynomial variable was time. VSOP87 was fairly accurate, but

again was cumbersome to use, especially if high precision was not required (36).

The simplest approach for computing planetary positions is to approximate the orbit as a true

ellipse, making no allowance for orbital perturbations. Meeus offers two methods for computing

planetary positions. The first is based on the VSOP87 theory and the second is based on the use of

orbital elements sets.

An elliptical planetary orbit can be described in geocentric coordinates using the VSOP87 theory.

Using the VSOP87 method, the heliocentric coordinates of the planet, denoted by L, B and R, and

those of the Earth, denoted L0 , B0 and R0 , are computed for a specific time. Then, as shown in

(36:209), the geocentric rectangular coordinates can be found using:

x = Rcos BcosL- R0 cos B 0 cos L0  (1)

y = R cos/ Bsin L - R 0 cos B0 sin L0  (2)

z = RsinB-RosinBo (3)

11



This method is still cumbersome, since computing the heliocentric coordinates requires summing

several periodic terms that must be extracted from published tables. Using orbital element sets to

describe elliptical motion is more straight forward.

By using planetary orbital elements along with the geocentric coordinates of the Sun, one can

easily obtain the geocentric rectangular coordinates of a planet. The orbital elements are:

"* The semi-major axis of the orbit (a)

"* The eccentricity of the orbit (e)

"* The inclination of the plane of the ecliptic (i)

"* The longitude of the ascending node (Q)

"* The longitude of the perihelion (w)

"* The mean longitude of the planet (L)

Figure 3 illustrates these elements. The arc from X" to G represents the ecliptic (the Earth's

orbital plane), as seen from the Sun. Point G represents the vernal equinox, which has longitude 00.

Point N is the ascending node of the planet's orbit and point P is the planet's perihelion (orbit position

closest to the Sun). At any given instant, point X represents the mean location of the planet and X'

represents the planet's true location. The semi-major axis of the planet's orbit along with the orbit's

eccentricity, a and e, are standard parameters of an ellipse. The planet's inclination, i, measures the

difference between the planet's orbital plane and the ecliptic. The longitude of the ascending node, 0,

is defined as arc 1. The argument of perihelion, which is w, is the length of arc 2. The mean longitude

of the planet, L, is the sum of arcs 1, 2, and 3. Note that L and w are measured from the vernal equinox

along the ecliptic to the orbit's ascending node and then from this node along the orbit.

The planetary orbital elements are computed from polynomials of the form

ao + aIT + a2T 2 + a 3T 3  (4)

where T is the time measured in Julian centuries from January 1.5, 2000, which is referred to as the

J2000 epoch (36:197). Note that the value of T is negative for dates before that epoch. The coefficients
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Figure 3. Planetary Orbital Elements
(36:198)

ao, a,, a2, and a3, which are based on planetary theory, are derived from linear or cubic polynomial

fits (36:200-204). The coefficients for a given body may have different values, depending on whether

the orbital elements should reference a mean equinox of the date or a standard equinox, such as the

J2000 epoch. Several published sources provide the orbital elements referred to the J2000 epoch, so

computing them is not necessary. The orbital elements are used in the following equations:

F = cos Q (5)

G = sin Qcose (6)

H = sin Qsine (7)

P = -sinQcosi (8)

Q = cosQcosicose - sinisine (9)

R = cosrQcosisinE +sinicose (10)
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These values are then used to compute intermediate angular values:

tanA = rasin(A+w+v) (11)

tanB = rbsin(B+w +v) (12)

tanC = rcsin(C+w +v) (13)

a = v/F2 ±P2 (14)

b = vrG2÷o2 (15)

c = VH2- 2 (16)

Before computing the final coordinates, the true anomaly and radius vector must be computed.

As Meeus describes, anomaly is the angular distance from the planet's perihelion to its current position.

True anomaly is the angle to the planet's actual position and mean anomaly indicates the position of the

planet if it moved around the Sun at a constant angular velocity in a circular orbit. Figure 4 distinguishes

the two. Point P represents the planet's true perihelion and P' is the circular (or mean) perihelion.

For any given instant, point K represents the actual position compared with point K', which is the

corresponding position in a circular orbit. Mean anomaly is easily found, since it is 0' at perihelion and

increases uniformly by time by exactly 3600 after one complete revolution around the Sun (36:182).

In Figure 4, the mean anomaly is depicted as angle M, while the true anomaly is angle v (which is

angle PSK). Unfortunately, planets do not move at constant angular velocity in an elliptical orbit, so

the true anomaly must be derived from the mean anomaly, using an approach described in (36).

For modeling elliptical orbits, true anomaly can be computed by solving Kepler's equation.

Kepler's equation is

E = M+esinE (17)

The variable M represents the mean anomaly and E is the eccentric anomaly, which is an angular

distance based on the center of the ellipse rather than a focus of the ellipse. Figure 5 illustrates the

difference between true and eccentric anomaly. True anomaly is angle PSK and eccentric anomaly
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is angle PCQ, where CQ represents a distance equal to the aphelion, or point of the elliptical orbit

farthest from the Sun.

)% Q
¢ir~lr
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P t E
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F 12 \
F C S

Figure 5. True vs Eccentric Anomaly

(36:181)

Since Kepler's equation is transcendental, it cannot be solved directly. Fortunately, a straight-

forward, iterative approach can be used to approximate E. One may approximate E with the mean

anomaly on the right hand side of the equation and then iteratively derive a new value for E (36:184).

Once a value of E is found, the true anomaly, v, and the radius vector, r, can be found from the

equations

tan(v/2) = VI(1 ± e)/(1 - e) tan(E/2) (18)

r = a(1-ecosE) (19)

(20)

Finally, the heliocentric rectangular equatorial coordinates are computed via:

x = rasin(A+w +v) (21)
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y = rbsin(B+w+v) (22)

z = rcsin(C+w+v) (23)

These coordinates can be transformed to geocentric via a simple coordinate translation matrix,

based on the Sun's current geocentric coordinates. Now that an explanation of the applicable orbital

mechanics theory has been presented, we will look at the design of a distributed virtual environment.

2.3 Distributed Simulations

The Satellite Modeler and Space Modeler rely upon distributed simulation technology to broad-

cast planetary position and velocity as well as satellite position and velocity data, via a computer

network, to other actors in a distributed simulation. Distributed Interactive Simulation (DIS) technol-

ogy uses heterogeneous hosts and a common synthetic environment definition to insert a wide variety of

both human and computer controlled actors into a single, shared synthetic environment. This approach

uses several networked virtual environment stations (using long-haul and/or local connections) to form

a single environment wherein each node has its own local model of the environment and there are no

clients or servers (46). Presently, the hosts are connected using TI data links and use a common sim-

ulation and network protocol to communicate. The DIS protocol is described further in (2, 21, 32, 29)

as well as IEEE standard 1278-1993.

Several virtual environment applications developed at AFIT rely on the DIS protocol for dis-

tributed interaction. The Virtual Cockpit immerses a user within an accurately modeled F-15E aircraft

and allows the user to engage remote airborne and ground-based targets as well as accept damage from

remotely launched weapons (11, 18, 9). The Synthetic BattleBridge offers an immersive situational

awareness tool for a battlefield commander, displaying all remote DIS players as well as visual cues

for battle intensity (45, 24, 40). The Red Flag Remote Debriefing Tool uses the DIS protocol for

providing a graphical display of stored Air Force Red Flag missions (17). Finally, the DIS Virtual

Cassette Recorder allows a user to store, retrieve and rebroadcast DIS data (15).
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2.4 Summary

Developing a distributed space visualization system requires knowledge of some fundamental

concepts. This chapter presented these concepts by describing virtual environment technology, provid-

ing an introduction to orbital mechanics, and explaining distributed interactive simulation technology.

The next chapter presents the general requirements of this thesis effort.
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III. General Requirements

This chapter presents the overall requirements for the new Space Modeler. The general goal

of this year's work was to improve the capabilities of the Satellite Modeler as a virtual environment.

The improvements consisted of enlarging the virtual environment boundaries, modeling new entities,

improving the user interface and improving the Distributed Interactive Simulation (DIS) capabilities.

3.1 The Space Environment

The Satellite Modeler environment consists of the Earth, its moon, some stars, and artificial

satellites in near-Earth orbit. It is an effective and realistic environment for Earth-centered observation

of satellites. However, in order to observe planetary orbits, appreciate interplanetary distances, and

simulate deep space operations, it is necessary to model the rest of the solar system. Extending the

virtual environment would naturally make the Satellite Modeler more realistic and useful.

The specific requirements for the Space Modeler were:

"* Make the environment totally immersive, including the user interface

"* Double the maximum number of satellites that can be modeled

"* Model the solar system, including the Sun and the other planets

"* Accurately model all planetary motion

"* Improve the lunar orbit

"* Broadcast the position of the Sun and Moon via the DIS network to provide a means of synchro-.

nizing DIS applications

The portrayal of comets, other planets' moons, and other celestial bodies was not required in the

scope of this effort since orbital data for these other bodies were not readily available.

3.2 Modeling New Entities

In order to portray a realistic environment, the Space Modeler had to use valid mathematical

algorithms for the movement of all new entities. Unlike the Satellite Modeler, which only had to
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incorporate mathematical algorithms for the propagation of the satellites, the Space Modeler needed

astronomical algorithms for propagating all the planets in their correct orbits around the Sun.

3.3 The User Interface

The original Satellite Modeler incorporated a user interface that allowed interactive configuration

of the simulation and also provided means for immersing the user via an HMD and head tracking

device (26). This interface was designed as a two-dimensional interface, with menus and buttons

displayed on the computer screen. For example, the user toggled the display of stars by clicking the

mouse on a two-dimensional "button" overlaid on the computer screen. Once immersed (via the HMD),

the user could not interact with the simulation, other than modifying the view direction according to

head movement. For a truly immersive environment it is imperative that the user interface be easily

accessible. This year's effort stressed designing such an interface.

Our goal for the immersive interface was to place the user within an information and control pod

that contains all the information and control capabilities of the CRT-based interface from the Satellite

Modeler while at the same time making their use more convenient and rapid by virtue of their position

around the user. The approach we decided upon was to place the devices around the user on sets of 3D

panels, with each panel devoted to specific categories of tasks.

Instead of overlaying a two-dimensional array of buttons on the computer screen, we decided

that a general purpose, three-dimensional virtual environment interface would be more accessible to

an immersed user. Such an interface would consist of panels, or collections, of buttons placed within

the environment, as opposed to overlaid on the computer screen. The buttons must not obstruct the

view, but must be within "reach" of the user. This new interface paradigm would resemble a "user

pod" which would travel throughout the environment with the user's viewpoint. By improving the user

interface, the Satellite Modeler environment would become a truly immersive application.

20



3.4 Distributed Interactive Simulation Capabilities

The Satellite Modeler is a DIS-compatible application because it can broadcast satellite posi-

tion and orientation information (26). Other DIS-compatible applications, such as AFIT's Synthetic

BattleBridge, can read this information and display geometry representing the relative locations of

those satellites (40). However, one of the limitations of most DIS-compatible environments, which are

Earth-based, is that they do not portray the Sun or Moon. Portraying the Sun and Moon and generating

shading effects based on those portrayals would make any DIS environment more realistic. Thus, one

of the requirements for the Space Modeler was to broadcast the position of the Sun and Moon relative

to the Earth. This capability would allow the Space Modeler to synchronize environmental lighting

conditions, thus enhancing truly distributed land, sea and space based simulations.

3.5 Summary

This chapter presented the general goals and requirements of this year's efforts to improve the

Satellite Modeler. Extending the boundaries of the space environment, accurately modeling the rest of

the solar system, broadcasting the positions of the Sun and Moon via the DIS protocol, and redesigning

the user interface would result in a more realistic and immersive virtual environment. The next chapter

discusses specifically how these requirements were fulfilled as well as implementation details of the

design.
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IV. Design and Implementation

In this chapter, I discuss how I designed software to meet the requirements and goals mentioned

in the previous chapter. First, I present the overall software architecture. Then I address several design

issues related to modeling the solar system. Finally, I describe the new user interface.

4.1 The Software Architecture

To integrate the expanded space environment and the new user interface, several new object

classes were designed. These new classes, along with classes from the original Satellite Modeler, were

organized into one overall simulation, which is depicted in Figure 6. The Space-Simulation class

encapsulates the entire simulation and is derived from the ObjectSim Simulation class. (See (43)

for a complete discussion of the ObjectSim framework.) My simulation class is similar to that of the

Satellite Modeler, in that it comprises a terrain, a view, the starnode, satellites, and the Earth's shadow.

However, my class also includes view modifiers, the planets, the Sun and a new user interface.

4.1.1 The Terrain. In ObjectSim, all simulations must have a terrain, which consists of some

type of geometry file. The terrain file's local origin establishes the coordinate system origin for the

entire simulation (43). The Satellite Modeler uses a model of the Earth for its terrain, so the Earth's

center is the origin for the entire "world". Because I wanted to limit the modifications to the original

Satellite Modeler design, the Space Modeler uses the same Space-Terrain class as the Satellite

Modeler. As Figure 6 shows, this class, which is derived from the abstract Terrain class, loads

and establishes the Earth model as the simulation's terrain. Thus, everything in the Space Modeler

environment is rendered relative to the center of the Earth. As mentioned in (43), this class is also

responsible for establishing the lighting for the simulation.

The Satellite Modeler defines an infinite light source for shading all of the entities in its envi-

ronment. This light source is defined in the direction of the Sun, relative to the center of the Earth,

so shading of the Earth, Moon and satellites is fairly realistic. Again, to limit the number of changes

to the original design, the Space Modeler uses the same infinite light source. This provides realistic

shading in the vicinity of the Earth, but unfortunately does not provide realistic shading for the planets,
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since an infinite light source would shade the same side of all planets, regardless of their position

relative to the Sun. To provide adequate shading for the entire solar system, the light source would

have to be modeled as a point light source. Unfortunately, as the documentation for the graphics library

indicates, point light sources do not provide adequate lighting over great distances, so a single point

light source at the Sun's location would produce incorrect shading effects for the outer planets (34).

As a compromise, each planet is textured with a shaded texture map and rendered without any shading

at all. Thus, each planet's shading effects come strictly from the texture map. (See (34) and (35) for

complete discussions of lighting calculations.)

Unfortunately, as (34) states, local light sources are very expensive, in terms of CPU time, to

render in a scene. As a compromise, each planet is textured with a shaded texture map and rendered

without any shading at all. Thus, each planet's shading effects come strictly from the texture map. (See

(34) and (35) for complete discussions of lighting calculations.)

In addition, the distances at which planets are rendered relative to the Sun prohibits the proper

lighting calculations for a local light source.

4.1.2 The View. Every ObjectSim application must have at least one instantiation of a

View, which must be attached to one entity, or AttachableP layer. The View object establishes the

characteristics of the graphics window and establishes the location of the viewpoint based on the entity

to which it's attached. As seen in Figure 6, the Space Modeler uses one instantiation of the View class

and attaches it to the Pod-Player object. Each View instantiation may also have a Modifier, which

controls the translation and orientation of the viewpoint (43). Because it's an immersive application,

the Space Modeler is designed to be displayed on an HMD, using a head tracking device to control

the position and orientation of the view. However, in order to facilitate monitoring of the simulation,

the Space Modeler can also be displayed on the conventional computer screen, using keyboard entry

for controlling the viewpoint. Thus, two instantiations of the Modifier class are needed, namely the

HMD-Modifier and the Keypad-Modifier.
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4.1.2.1 The HMDModifier. In order to use an HMD to control the viewpoint

characteristics, we had to design an interface to the Polhemus 3SPACE@ FastrakTM magnetic tracking

system. Because ObjectSim provided the Modifier class as a superclass for modifying viewpoint

characteristics, we derived the HMDModifier class from that. This class encapsulates the low-level

serial input/output (I/O) communication between the Polhemus device and the host computer, and allows

the application to transparently access the Polhemus output. It accomplishes this via its constructor

and three public methods. (See (44) for details on C++ object class methods and constructors.)

This class's constructor establishes which Polhemus station the modifier will use. The Polhemus

tracking system has four available stations, which allow four independent trackers to be used simulta-

neously (38). An instantiation of this class must be associated with its own station and only one such

instantiation may be used in a single application. An application may use more than one Polhemus

station, but only one Polhemus station can be used to modify the view. Once instantiated, this modifier

must be properly initialized.

The init () method allows the application to initialize various characteristics of the serial I/O.

This method reads a data file, called "fastrak. dat" and establishes the port number and port speed

based on its contents. Once initialized successfully, this modifier must be calibrated, in order to

establish a reference attitude for computing hpr and xyz changes.

The calibration method, Calibrate () records the most recent hpr and xyz data and offsets

all subsequent data by the stored values. This allows the modifier to compensate for different initial

positions of the tracking source, since one user's initial head position may be different from another.

After calibration, the modifier must retrieve new data for every rendered frame.

The poll () method forces the modifier to retrieve the latest hpr and xyz data from the serial I/O

port. After adjusting for the calibration offsets, the data are transformed into the Performer coordinate

system and stored for application use. Implementing this capability as a derivation of the Modifier

class allowed straightforward integration of the Polhemus tracker as a view modifier.

4.1.2.2 The Keypad-Modifier. While the HMDModifier controls the position and

orientation of the view via the Polhemus system, the Keypad-Modifier controls the view characteristics
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via the keypad on the keyboard. This modifier, which ObjectSim provides, is convenient for controlling

the view when the simulation is run without the HMD. The arrows on the keypad of the keyboard modify

the heading and pitch of the view, while the arrow keys next to the keypad translate the view up, down,

left, or right. The + and Enter keys on the keypad move the view forward and backward. In addition,

the user can toggle between the two modifiers via the <F2> and <F3> keys.

4.1.3 The Pod-Player. The Pod-Player represents the immersive interface. As Figure 6

shows, it is derived from the AttachableP layer class from ObjectSim and serves as the attachment

point for the view. This object class encapsulates all the controls available to the user for interaction

and modification of the virtual environment. It is the only class in the simulation to which the view

attaches, and thus is the only one derived from the Att achableP layer class. (The implementation

of this object class is discussed in detail in a following section.)

4.2 The Starnode

The stars are rendered via a collection of the pf Light data structure in Performer. Approx-

imately 5000 star locations are defined in a data file and are used to establish the right ascension

and declination locations on a "celestial sphere." A point light source is rendered at each specified

location. This design was ported from the original Satellite Modeler; see (26) for further details on its

implementation.

4.3 Miscellaneous Players

The remaining object classes in the simulation represent the other entities in the virtual space

environment. The Earth-Moon and Earth-Shadow classes encapsulate the rendering of the Moon

and the Earth's umbra, respectively, and are taken directly from the Satellite Modeler architecture.

The Satellite class represents the man-made satellites that are propagated in near-Earth orbit. This

class encapsulates the necessary orbital mechanics for accurate satellite propagation, and is also taken

directly from the Satellite Modeler. (See (26) for details on these classes.) In order to render the rest of

the solar system, I designed the Planet and Sun object classes. As seen in Figure 6, all of these classes
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are derived from the Player class in ObjectSim , since they have associated geometry for rendering.

The next few sections present details about the implementation of the solar system and user interface

classes for the Space Modeler.

4.4 The Solar System

In order to make the Satellite Modeler space environment more realistic and more useful, I

was tasked to extend its boundaries to include the solar system. The sheer size of the solar system

required redesigning the placement of objects and modifying the viewing parameters. Based on an

initial analysis, the design requirements were:

"* Model all nine planets, the Earth's moon, and the Sun

"• Accurately model all planet orbits

"* Improve the portrayal of the lunar orbit

"* Allow viewpoint movement to any point in the solar system

"• Maintain solar and lunar positions in ECI coordinates for DIS broadcasting

"* Scale all distances and sizes to maintain an accurate model of the real solar system

To meet these requirements, I had to establish an appropriate world coordinate system, decide

on an appropriate modeling scale, and incorporate accurate mathematical equations for propagating the

objects in the solar system.

4.4.1 The Coordinate System. I used the Earth Centered Inertial coordinate system (ECI)

for this virtual environment. This rectangular system's origin is at the center of the Earth, with the

x-axis intersecting the equator at the vernal equinox, the z-axis intersecting the North Pole, and y-axis

perpendicular to the x-axis in the equatorial plane (26). (See Figure 7.) The ECI coordinate system was

selected for several reasons. First, the original Satellite Modeler used ECI coordinates, so I didn't need

to convert any algorithms for propagating satellites. Second, because I was going to have to broadcast

solar and lunar positions in ECI coordinates, I didn't want to convert to ECI every frame from some
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other coordinate system. Third, I wanted the Earth to remain the "center of attention" for this world,

considering that all the satellites are modeled in near-Earth orbit. The Earth serves as a good "default

starting position." Finally, no matter what coordinate system I used, it would be transparent to the user:

the planets would still appear to orbit the Sun.

Z-axis

North Pole

Ecliptic plane

E a rt h 's e q u a to r Y -a xi s

Vena equinox

X-axis

Figure 7. Earth-Centered Inertial Coordinate System

The ObjectSim framework makes it easy for an application to use the ECI coordinate system.

As previously mentioned, the terrain file's local origin establishes the coordinate system origin for the

entire simulation (43). Thus, through the ObjectSim framework, I could indirectly establish the ECI

coordinate system as the world coordinate system by using the Earth model as the terrain.

4.4.2 Scale. The sheer size of our solar system required the selection of a suitable scaling

factor. Our solar system is approximately 7 billion miles in diameter (23). Using a 1:1 scale for this

world would prevent the hardware from handling z-buffer depth processing correctly. According to our
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hardware documentation, the maximum z-buffer storage is 32 bits, which corresponds to a maximum

depth value of just over 2 billion units. A 1:1 scale would also require a large viewing frustum, which

would substantially increase the CPU time for rendering each frame (34). Thus, some scaling was

necessary.

The original Satellite Modeler used a scale of 1:10,000 and used meters for units: one unit in the

virtual world was one meter, which corresponded to 10 km in the real world (26). Using this scale would

allow the use of all the satellite propagation code from the old system, thus requiring fewer changes.

Fortunately, this scale was adequate for modeling the rest of the solar system since the largest units

that would be handled by the application would now never exceed 700,000,000. I realized that I could

also limit the viewing frustum to just one half of the solar system, since objects would be too small to

be seen across the entire solar system. However, additional visual cues were necessary to indicate the

positions of objects that were clipped from the viewing frustum. Finally, I had to maintain the "space

background" features: the stars and Sun. The Sun and stars would always need to be visible, assuming

an appropriate view direction. Based on this analysis, we established these additional requirements:

"* Never clip the stars or the Sun from the viewing frustum

"* Display visual cues for all planets' positions

Assuming that the rendering and propagation of the Earth and its satellites would not change,

the priority was establishing the "bounds" of the new space environment by modifying the viewing

frustum and establishing the positions of the stars.

4.4.3 The Viewing Frustum. Because I wanted to prevent the Sun and stars from getting

clipped from view, their location and size dictated the dimensions of the viewing frustum. When

the Sun is modeled relative to its actual diameter, it is visible at great distances. In my scaled

space environment, I determined that the Sun decreased to somewhat of a point light source at a

distance of about 35,000,000 units. Thus, I set my new viewing frustum to that length. Although the

documentation for GL Programming recommended placing the far clipping plane of the frustum as

close to the viewpoint as possible, I didn't want the Sun or larger planets constantly clipped from view

as the viewpoint was moved (34).
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4.4.4 The Stars. Extending the available space much beyond the Earth required redesigning

the rendering of the stars. The old system rendered the stars as point light sources fixed to a "celestial

sphere", which was centered at the Earth (26). If you moved far enough away from the Earth, you

could see this sphere, as shown in Figure 8. To prevent this, I decided to center the starfield at the

viewpoint. This would allow me to render the stars at a reasonable, fixed distance, yet prevent the user

from moving beyond the boundaries of the celestial sphere. The stars would never be clipped from

view, yet they would appear essentially at infinity. As long as the radius of the new celestial sphere was

close to the length of the viewing frustum, no objects in the environment would appear in front of the

stars. Naturally, this design does not render the stars in their "true" (heliocentric) position. However,

according to John Danby in his book Fundamentals of Celestial Mechanics, the difference between the

heliocentric positions of celestial bodies and their relative positions in an Earth-centered system "are

practically neglible for all but the nearest stars" (7). Centering the stars at the viewpoint introduces

more star placement error than Earth-centered stars, but this error would only be significant at the outer

portions of the solar system and would not be noticeable.

To center the starfield at the viewpoint, the initial "celestial coordinates" of each star are stored

when the starfield is initialized. From (26), the position on the celestial sphere is determined by

x = pcosasinb (24)

y = psinasin6 (25)

z = pcos6 (26)

where

p = the distance of each star from the Earth's center (27)

S= the star's right ascension (28)

6 = the star's declination (29)
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Each star is positioned 75% of the distance to the far clipping plane by the equation

p = .75 . FARCLIPPINGYPLANE (30)

This guarantees that they are never clipped, while still keeping them in the "background." Every time

the "user pod" is updated, the "celestial coordinates" are added to the pod's new xyz position and the

stars are repositioned. Note that the positions of the stars are independent of the hpr of the viewpoint.

As the view changes heading, pitch or roll, the visible stars change accordingly. This design allows the

user to place the viewpoint anywhere in the environment and still see the stars as a reference point.

Figure 8. Celestial Sphere in the Old SM

4.4.5 The Sun. Adding a model of the Sun to this environment ywas fairly simple. The

Satellite Modeler provided an algorithm for computing the solar position in ECI coordinates based on

the current Julian time. The algorithm specified a direction for an infinite light source for generating

realistic shading of the Earth and its satellites (26). To add a physical model, I derived a Sun-Type

object class from the Player class in ObjectSim.
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The Sun-Type object class inherits all the attributes for rendering geometry from its parent class.

Using a simple 3D model of a yellow sphere, this class positions the model at its correct location and

propagates it every frame. Because all objects in the environment are rendered in ECI coordinates,

the Sun propagates "around" the Earth, while the Earth remains at the origin. As long as an accurate

algorithm is used, the resulting motion of the Sun relative to a static Earth is the same as if the Earth

were orbiting the Sun.

To compute the Sun's ECI position, I used the algorithm described in (36), which is similar to the

method of deriving planetary positions from orbital elements described in Chapter II. This algorithm

generates an accuracy of 0.01 degree and assumes a purely elliptical motion of the Earth. First, the

current time is converted to Julian centuries from 1 January 2000. Based on that value, the geometric

mean longitude and anomaly of the Sun are computed. Using the mean anomaly and the Sun's equation

of center, the true longitude and anomaly can be found. Then, the current eccentricity of the Earth's

orbit and the true anomaly are used to compute the distance from the Earth to the Sun. Finally, this

distance R, the true longitude TL, and the eccentricity E are used to compute the ECI coordinates

from the following equations:

SunPositionX = R. cosTL (31)

SunPositionY = R- (sinTL- cosE) (32)

SunPositionZ = R. (sinTL-sinE) (33)

To prevent the Sun's being clipped, especially when the viewpoint is near the outer planets, I

never render the actual model beyond the viewing frustum. Each time the Sun's position is updated, I

determine the distance from the pod (which is where the view is attached) to the new solar position. If

this distance exceeds the viewing frustum then I force the Sun's model to be rendered just inside the

far clipping plane. Thus, the entire propagation algorithm for the Sun can be described by:

1. Calculate SolarECI Position (Julian-Time);
2. Distance = distance from Pod to new Solar position;
3. if (Distance > FarClipping_Plane) then

Distance = .97 * FarClippingPlane;
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4. SunPosition = Distance;

Broadcasting the Sun's ECI position is trivial, once computed for the current time. From the DIS

perspective, the Sun is treated as another "satellite" entity. Thus, it is initialized once as a DIS entity

and then broadcast during its propagation, provided the simulation is running in "real-time" mode.

4.4.6 The Planets. As mentioned in Chapter II, there are several methods for calculating a

planet's position, depending on the required precision. For a graphical depiction of the solar system,

the computation complexity associated with the numerical integration method far outweighs the utility

of its high precision results, especially since the available graphics hardware uses single precision

(32-bit) values for rendering, as opposed to the double precision (64-bit) values used in the numerical

integration method. On the other hand, using orbital element sets, which is the least precise method,

does not require as much CPU time but would not provide the precision required for rendering accurate

eclipses, planetary oppositions or planetary conjunctions.

For the Space Modeler, I used an orbital set algorithm and the method of summing periodic

terms. As the default method for computing planetary positions, I used orbital element sets with a

linear polynomial fit to approximate elliptical orbits. Even though this method is only accurate to

within tens of thousands of kilometers, it is far less computationally expensive and produces acceptable

visual results, considering that most of the planets are thousands of kilometers in diameter. For just

observing relative positions and distances of the planets, this method is acceptable. When the user

is "attached" to a planet, the method of summing periodic terms is used for computing that planet's

position. Depending on the number of terms used in the series, this method can produce results accurate

to within two degrees of heliocentric longitude (36:208). This design demonstrates that either method

can be used without a severe degradation in the frame update rate. The orbital element set algorithm

was tailored for use in the Space Modeler, but the summation of terms method was taken directly from

(41).

Using software from the Jet Propulsion Laboratory as a basis, I implemented the orbital element

set algorithm as follows. First, the current time is converted to Julian centuries from the epoch

J2000. Based on the converted time, the non-angular true elements (semi-major axis and eccentricity)
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are computed from the mean orbital values. Then, the angular elements of inclination, longitude of

ascending node, longitude of perihelion and mean longitude are computed. Then, Kepler's equation

is iteratively solved to find the eccentric anomaly. Finally, these values are transformed to ECI by

subtracting the Earth's heliocentric position after which they are scaled appropriately. This algorithm

is summarized by:

1. ComputeHeliocentricCoordinates (Julian-Time);
2. EarthHeliocentricPosition = - SolarECIPosition;
3. PlanetECI Pos = PlanetHeliocentricPos - EarthHeliocentricPos;
4. Scale (PlanetECIPos);

Because all the planets have similar attributes, one object class was designed to represent them.

Each planet is instantiated with the name of its model file as well as the name of its orbital element set.

The file containing the orbital element set is loaded into attributes representing the Keplerian elements

and then used by the propagation method to update the orbit every frame.

Because of the relatively large distances between planets, it was important to implement a visual

cue for the direction of the various planets whenever they are outside the viewing frustum. As each

planet is propagated in its orbit, if its distance from the viewpoint exceeds the limits of the viewing

frustum, a text label is rendered just inside the viewing frustum along the vector from the pod to the

planet's location. The display of the text labels can be enabled or disabled via the user interface.

4.4.7 The Earth's Moon. Because accurate portrayal of the Moon's orbit was not critical in

the Satellite Modeler, the Moon model was propagated in a circular orbit, parallel with the Earth's x-y

plane, instead of its actual inclined, elliptical orbit (26). To improve this, I mathematically described

the actual lunar orbit and propagated the model according to the algorithm in (36).

In (36), Jean Meeus provides a convenient algorithm for computing the position of the Moon

for a given time. The algorithm requires the current time in Julian centuries from the J2000 epoch.

Using the converted time (T) along with published lunar orbital elements, the Moon's mean longitude

(L'), mean elongation (D), mean anomaly (M') and argument of latitude (F) are computed using the
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following formulae:

L' = 218.31645 + 481267.88134T - 0.001326T 2 + T 3/53884 - T 4/6519400 (34)

D = 297.85020 + 445267.11151T - 0.001630TI2 + T 3/54586 - T 4/1130650 (35)

MI = 134.96341 + 477198.86763T + 0.008997T 2 + T3 /69699 - T 4/1471200 (36)

F = 93.272099 + 483202.01752T - 0.003402T 2 - T 3/35260 + T4 /8633100 (37)

Then, the sums of the periodic terms for the Moon's longitude (El), distance from Earth (Fr)

and latitude (Eb) must be computed to allow the final calculation of the positional coordinates. There

are hundreds of periodic terms in the Moon's longitude, latitude and distance from the Earth which

must be considered to accurately compute a position. However, by limiting the computation to the

three most significant terms, one can produce a position vector accurate to within 10 degrees in the

longitude and 4 degrees in the latitude (36:307). For higher accuracy, more periodic terms may be

considered. The final coordinates are computed via the following:

A = L' + EI/1000000 (38)

S= Eb/1O00000 (39)

A = 385000.56 + Er/1000 (40)

These angular coordinates can then be transformed into geocentric rectangular coordinates. (All

of these computations were implemented using commercially available software (41).)

4.5 The User Interface

The new user interface consists of three-dimensional panels that surround the view. These

panels contain buttons which allow the user to modify attributes of the simulation, such as moving

the viewpoint, toggling the display of visual features, and attaching to different entities. It assumes

the presence of a head-mounted display or large-screen surround display as well as input devices such

as a DataGlove@, 3D mouse, 2D mouse, spaceball, or BioMuse® controller for interacting with the
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buttons. Because the panels "follow" the viewpoint as it is moved, it resembles a "space pod" in which

the user is placed for interacting with the space environment. (See (24) for a complete discussion of

the new user interface.)

To maintain the capabilities of the original Satellite Modeler, several user interface features had

to be available in the new interface. These were:

"* Setting the simulation time

"* Moving view left, right, up, down, forward and backward

"* Changing heading and pitch of view

"* Toggling visual features, such as stars

"• Attaching to satellites or moon

"* Modifying satellite orientation

"* Displaying satellite information

To provide these capabilities, the PodP layer (or pod) for the Space Modeler consists of three

panels. As Kestermann states, each panel comprises sub-panels, which contain the actual buttons for

different pod capabilities (24). As Figure 9 illustrates, the Space Modeler pod contains a left, center

and right panel, each derived from the Panel-Type object class. In addition, it contains a Mouse

object for encapsulating the use of the computer mouse as an input device for controlling the panel

cursor. The pfSeg attribute corresponds to a data type in the Performer library and represents the

"pointing" device used for button selection, which in this case is the mouse cursor. The pfChannel

attribute, which is also a Performer type, is used for displaying rendering statistics, such as the frame

update rate. As Figure 11 shows, the left panel contains sub-panel classes for hiding the buttons on that

panel (HideSubPanel), attaching to the different objects in the environment (AttachSubPanel)

and pausing the simulation (PauseSubPanel). Each sub-panel instantiation, which is derived

from the SubPanelType object class, contains the actual buttons for implementing the various

capabilities. Each button can be instantiated with its own size, decoration, and arm/disarm colors. In

addition, each of the sub-panels uses a configuration text file for defining the locations of the actual
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buttons and button labels. As Figure 10 shows, the center panel comprises six sub-panels, in addition

to the HideSubPanel and PauseSubPanel. The Rotation-Type, Translation-Type, and

Zoom-Type all encapsulate the movement controls. The Panic-Type sub-panel contains one button

for returning the pod to its initial default position. The PositionSubPanel contains toggle buttons

for displaying the pod's current position and orientation. Finally, Figure 12 depicts the organization

of the right panel. The TerrainFeaturesButtons sub-panel contains the buttons for the visual

features. The SatFeaturesSubPanel contains controls for satellite trails, locators and ground trace

cones and the SiteToSitePodInteface-Type sub-panel encapsulates the "transport" capability.

PodPlayer

pfSeg
PanelType pf~hannel

LeftPanel Type CenterPanel

Zý Derived From

Consists of One or More

>Comprises

Figure 9. The Pod-Player Class

All the panels are fixed in relation to the user, so that by turning his head the user can bring the

desired panel into view. The viewer enables a panel by looking at it, but can remove it from the field of

view by clicking on a hide button for the panel. To avoid confusing the user, only one panel is "active"

at any time. When active, the panel's border is highlighted and its buttons are visible. When not active,

a panel is surrounded by a thin border, with a label describing its features. Figure 13 shows an inactive

panel, and Figure 15 shows the same panel when it is active.
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SubPanelType CenterPanelType

RotationType TranslationType Zoom_Type

-ý F I I!IPaicType HideSubPanel TimeSubPae

z2ý. Derived From Pause-Sub-Panel °PositionSubPane!

Consists of One or More

c Comprises

Figure 10. The CenterPanelType Class

4.5.0.1 The Center Panel. The center panel for the Space Modeler is tilted at an angle

and located forward and slightly lower than the viewpoint, similar to an automobile's dashboard. This

prevents the panel from obstructing the user's view while still allowing easy access. As Figure 14

shows, it contains the following controls:

"* Heading and pitch changes

"* Left and right movement

"* Up and down movement

"* Forward and backward movement

"* Pod position display

"* Simulation time changes

"* Panic positioning
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SubPanel Type LeftPanel Type

HieSub-_Pane~l] [AttachSub-Panel F PauseSubPanel

Z\ Derived From

Consists of One or More

<>Comprises

Figure 11. The LeftPanelType Class

In order to allow the user to move the view to any point in the environment, the pod provides

movement controls for five degrees of freedom. There are three buttons associated with each direction,

representing slow, medium and fast speeds. As long as each button is pressed, movement continues in

the specified direction and speed.

Because it is extremely easy to get disoriented in a space environment, it was imperative that

the interface provide positional feedback to the user. Based on work by Darken and Sibert, which

demonstrated the importance of navigational feedback in a virtual environment (8), the user can toggle

the display of the pod's rectangular coordinates via a button on the center panel. When activated, this

information is displayed on the top portion of the scene, and follows the view similar to a Heads-Up

Display. The information consists of an xyz location, using kilometers from the center of the Earth as

units, and an hpr display, corresponding to the current orientation of the pod. All movement of the pod

is relative to its current attitude. For example, left and right movement is relative to the current pitch

and heading. However, the pod does not allow direct manipulation of its roll, in order to minimize
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TerrainFeaturesButtons Sat_FeaturesSubPanel Pause_Subý_Panel7
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HideSub Panel Site To Site PodInterfaceType
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* Consists of One or More
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Figure 12. The RightPanelType Class

Figure 13. An Inactive Panel
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Figure 14. The Front Panel

the number of controls needed for pod movement and decrease the complexity of computing relative

movement.

4.5.0.2 The Left Panel. The left panel is angled 450 to the viewer to facilitate access

to its buttons. As Figure 15 shows, it contains the following controls:

* Detach from object

F Attach to Moon

* Attach to satellite

P Attach to planet

The user may attach to only one objecteat a time, so only one of the selections may be chosen at

a time. When one attachment button is selected, all others are automatically deselected.

As Figure 16 shows, when the user is attached to a satellite, the following controls are displayed

"on the panel:
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Figure 15. The Left Panel

* Change satellite'

* Change constellation

"* Change heading, pitch and roll of satellite

All of the satellites are organized into constellations. The simulation can have one or more con-

stellations and a single constellation can contain one or more instances of a single type of satellite (26).

Thus, there is an "increase" and "decrease" button for the satellite number as well as the constellation

number. When attached to a satellite, the user can modify the heading, pitch or roll of the satellite to

simulate attitude corrections. In addition, the panel displays the name of the satellite, the name of its

orbit, the satellite's position relative to the Earth's center, and its altitude above the Earth.

To prevent disorientation, the pod is attached such that it is always facing the Earth. Because

each satellite's heading, pitch and roll are updated to keep it in a nadir-pointed attitude, the pod must

be explicitly positioned every frame, relative to the satellite's orientation. To properly position the pod

"behind" the satellite, the following algorithm is used:
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Figure 16. The Left Panel - Attached to a Satellite

1. Normalize the satellite's position vector;
2. Linearly scale result by some arbitrary offset so pod

isn't attached to the middle of the satellite model;
3. Add that result to the original satellite position vector

to get the 8attach" point;
4. Orient the pod toward the earth;

5. Add in any user-input pod movements;

Figure 17 illustrates the derivation of the attach point, relative to the satellite's current position.

Vector P represents the satellite's current position, vector d represents the offset distance based on the

normalized P and the arbitrary offset o, and the point of attachment is the sum P + d.

Attaching to the Moon is accomplished in the same manner, except a larger offset is used since

the Moon is so much larger than a satellite. However, a different approach is used for attaching to

planets.

When the user attaches to a planet, the view is oriented toward the Sun, since, for most of the

planets, the Earth is clipped from view. To attach to a planet, the following algorithm is used:
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Attach Point= P +a

Satellite nP
IPI

P= Position Vector (from xyz coordinates)

Earth's center

Figure 17. Attaching the Pod to a Satellite
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1. Determine planet's position in heliocentric coordinates;

2. Normalize that vector;
3. Linearly scale result;

4. Add that result to the original heliocentric position vector;

5. Convert back to ECI coordinates;
6. Orient the pod toward the Sun;
7. Add in any user-input pod movements;

The simulation maintains the Sun's position in ECI coordinates, so it is trivial to transform ECI

coordinates to heliocentric. The Earth's heliocentric position is simply the inverse of the Sun's ECI

position. Thus, any ECI position can be converted to heliocentric by adding the Earth's heliocentric

position. Figure 18 illustrates this relationship, along with the resulting attach point. Vector j represents

the planet's heliocentric position, which is computed by • = •' - S. Vector S is the Sun's ECI position

and vector V' is the planet's ECI position.

Once in heliocentric coordinates, the attach point is determined in a similar fashion to the satellite

attachment algorithm. However, because planetary size varies, a different offset is used for each planet.

Transforming the attach point back to ECI coordinates (vector A) is accomplished by adding it to the

Sun's ECI position.

4.5.0.3 The Right Panel. The right panel is also angled 450 to the viewer. As

Figure 19 shows, it contains the following controls:

e Toggles for the display of:

- Moon

- Stars

- Earth's umbra

- Planet locators

- Satellite inter-visibility links

- Satellite ground trace

- Satellite locators
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Figure 18. Attaching the Pod to a Planet
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- Satellite trails

"* Set length of satellite trails

"* Reset satellite trails

"* Transport the pod to user-defined positions

Figure 19. The Right Panel

Toggling the display of various visual features is critical to letting users customize the environ-

ment for their needs. As prescibed in (4), items should only be displayed when needed in order to

avoid overwhelming the user. This design lets the user decide what is needed. In the Space Modeler,

there is a button for each visual feature. To display a particular feature, the user presses the appropriate

button. The button will stay pressed "in" until the user selects it again. As a visual cue for the user,

when a button is pressed "in," it is green and returns to gray when pressed "out."

The toggle buttons determine if specific visual cues are rendered. Most of the toggles set flags

in shared memory, which are used to insert or remove their respective objects to or from the Performer

rendering tee. The Moon, Stars, Umbra, and Trace toggles work this way. The Links and Trails
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toggles are used by the draw process to determine whether to calculate and render the cues for the

satellite communication links and the satellite trails. The 3D lines representing the satellite links are

computed using a standard algorithm for ray intersection with a sphere (19). The trails are rendered by

transforming the stored world coordinates of the satellites into viewing coordinates. The Locators

toggle for the satellites determines whether to render a locator "bubble" for each satellite when it is

too far from the viewer to be seen. Similarly, the Planets toggle for the planet locators determines

whether to display the text label for each planet.

Through the capabilities provided by the three panels, the new 3D user interface provides all

necessary environment controls without obstructing the user's view. By not using valuable screen

space and by rendering 3D interface panels, this interface is well suited to an immersive environment.

4.6 Conclusion

This chapter presented the software architecture of the Space Modeler and discussed the imple-

mentation of the various object classes. New object classes were needed for the Sun and the planets

as well as for the new user interface. Using the ObjectSin framework, we built a modified simulation

comprising instantiations of these new object classes. The next chapter presents the overall results and

recommendations for future enhancements.
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V Results

In any computer graphics intensive application, the appearance of the rendered scene and the

frame update rate are the two most important criteria for judging overall quality. In order to judge the

appearance of the rendered scenes, this chapter presents several photographs of different simulation

entities and maps those scenes to specific project requirements. Also, a summary of user feedback

from a public demonstration of the Space Modeler is included. Finally, tabulated frame update rates

are provided as a general performance metric.

5.1 Satellite Modeling

Because all the software for satellite propagation was taken from previous years' work, no

attempt was made to validate the accuracy of any of the satellite orbits within the Space Modeler.

In (26), Kunz spent ample time validating the satellite propagation methods from the Satellite Modeler

from proven results from NORAD's SGP4 model. The software for the Space Modeler uses her SGP4

model with no modifications, so no additional validation was necessary.

As a general comparison to the Satellite Modeler application, Figure 20 illustrates the default

view from the Space Modeler. It shows the Earth, with several satellites in orbit, along with the ground

trace cones for each satellite. Note that in the Space Modeler, satellite trails are color coded to identify

the different constellations.

To demonstrate that "tethered" views are still possible in the Space Modeler, Figure 21 depicts a

view tethered to a GPS satellite. In "tethered" (or attached) mode, all movement of the pod is relative

to the satellite to which it is attached. Since the Space Modeler uses the same orbital propagation

code as the Satellite Modeler, the same two-line element sets can be modeled along with the same

actual satellite models, namely the GPS, Molniya and DSCS satellites. In addition, the Space Modeler

also has the capability of loading and rendering a model of NASA's proposed Freedom Space Station.

Figure 22 illustrates the Freedom in low-altitude orbit.
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Figure 20. Default View for the Space Modeler

Figure 21. View Attached to a Satellite
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Figure 22. The Freedom Space Station

5.2 The Solar System

One of the major goals of the Space Modeler was to model the rest of the solar system. Using

the attach/detach capabilities of the new user interface, it was easy to verify that all the modeled planets

appeared in their correct position relative to the Sun and the Earth.

In order to validate the rendered positions of the Sun, Moon, and other planets, commercially

available software from Willman-Bell, Inc. was used. This software, referred to as "the PC'software",

runs on an IBM-compatible personal computer and comprises several executables which compute

complete ephemerides for the Sun, Moon, planets and other celestial bodies (41).

5.2.1 Sun. The Sun was modeled using a 180-polygon sphere, which was scaled appro-

priately relative to the world coordinate system. In order to prevent the facets of the geometry from

showing, the Sun model was rendered without hardware shading. Thus, it appears in the simulation as

a uniformly-shaded, light-emitting sphere.
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The Sun's position, as rendered by the Space Modeler, was validated using the PC software. The

initial solar position in ECI (geocentric mean equatorial) coordinates computed by the Space Modeler

was displayed for three arbitrary dates. The positions were compared to those computed by the PC

software and the results are shown in Table 1. The "Source" field entry is labeled "PC" to indicate the

PC software and "SM" to indicate the Space Modeler. All locations are relative to the Earth's center

and all times are Greenwich times. A slight difference in the manners in which the Space Modeler and

the PC software computed Julian time accounts for the small difference in values.

Date Time Source x (krn) y (kin) z (k1m)
15 Jan 1987 00:00:00 PC: 60550623.852 -123042999.194 -53349968.763

SM: 60550623.557 -123042999.315 -53349968.815
02 Oct 1992 00:00:00 PC: -147855290.999 -21613342.401 -9370953.105

SM: -147855291.054 -21613342.115 -9370952.980

06 Nov 1994 00:00:00 PC: -107846253.049 -93391896.452 -40491640.210
SM: -107846253.271 -93391896.243 -40491640.119

Table 1. Comparison of XYZ Positions for the Sun

5.2.2 Moon. The Earth's moon can be viewed from two different perspectives. Figure 23

shows the view when attached to the Earth's moon. When attached to the Moon, the view is always

oriented toward the Earth, thus the Earth is in the background. Figure 24 depicts the Earth's moon with

the Sun in the background. This figure verifies the relative sizes and distances of the objects rendered.

This view is from the vicinity of the Earth's surface and demonstrates that the Moon appears as big as

the Sun, which is accurate as demonstrated in total solar eclipses.

To validate the rendered position of the Moon, I compared output from the moon program from

the PC software to the rendered position in the Space Modeler. For each test, I chose an arbitrary date

and time, ran the Space Modeler simulation, attached to the Moon, paused the simulation and used the

displayed date/time and pod position as the reference point. Table 2 summarizes the xyz positions as

reported by the PC software and those displayed by the Space Modeler for the indicated dates and times.

The PC software outputs xyz positions with three decimal places of precision, while the Space Modeler

only displays one decimal place of precision. Note that the results for 22 Jul 1994 are approximately
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Figure 23. View Attached to the Moon

Figure 24. The Moon Against the Sun
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the same as those for 25 Jun 1994, since the period of the Moon's orbit is approximately 27 days. These

results indicate that the Space Modeler accurately models the Earth's moon.

Date Time Source x (km) y (km) 7z7(ki)

25 Dec 1903 03:16:03.8 PC: 380949.332 -133665.925 12893.682

SM: 380949.3 -133666.0 12893.7
25 Jun 1994 01:10:43.2 PC: 152256.411 -339131.344 29421.498

SM: 152256.4 -339131.4 29421.5
22 Jul 1994 10:48:08.2 PC: 153539.671 -340254.553 29340.711

SM: 153539.6 -340254.6 29340.7

Table 2. Comparison of XYZ Positions for Earth's Moon

5.2.3 Planets. To validate the rendered positions of the planets, I compared results from

the three methods described in Chapter HI. I used the Space Modeler to generate planetary coordinates

based on orbital element sets with linear polynomial fits. Then, I used the PC software to generate the

coordinates using a cubic polynomial fit as well as the VSOP87 method. Since the VSOP87 method is

the most accurate, I used it as the reference for comparing the results from the other two methods. Some

modifications were necessary for both the Space Modeler and the PC software to make this comparison

successful.

The Space Modeler required two modifications for this comparison. First, I had to con-

sider the attachment point for the individual planets. The Space Modeler uses a data file called

attach-points. dat to determine the offset at which to attach to the different entities in the environ-

ment. I made the offsets for all the planets 0.0 to ensure that the pod position displayed on the HUD

would correspond to the planet's position, when the pod was attached. Second, I had to modify the

propagation of the planets' orbits. Recall that the Space Modeler uses a linear-fit implementation of the

orbital element method for computing planetary positions when the pod is not attached, but uses the

VSOP87 method when the pod is attached. For this test, I wanted to compare the linear-fit algorithm

results with the others, so I changed the Space Modeler temporarily. To find the coordinates for the

linear-fit algorithm, I ran the simulation in "real-time" mode and attached to the planet of interest.

Then, I paused the simulation and read the results from the HUD position display.
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The PC software also required two modifications. The planet program displays planetary

information for a given date, time and location but only displays spherical coordinates. Since the

Space Modeler uses rectangular coordinates, I had to modify the source file planet .c to convert those

spherical coordinates to geocentric rectangular. By default, this program uses the VSOP87 method for

computing positions. In order to compare the results of using a cubic-fit version of the orbital element

set method, I had to add another computation. The software library provided with the PC software

contains a function for computing positions based on the cubic-fit algorithm. So I just added the

additional code to the planets. c source. The modified version of planets displays ECI coordinates

for the planets based on the VSOP87 method as well as the cubic-fit version of the orbital element set

method. (The version of planets used for this test is in -mstytz/sax.planetary. code.)

Table 3 lists the results of these comparisons. For each planet, the xyz position in kilometers is

given in ECI coordinates for each of the three algorithms for an arbitrary date and time. The linear-fit

algorithm is referred to as the "Chodas" method, the cubic-fit algorithm is referred to as the "Sax"

method, and the method of using summation of periodic terms is referred to as the "VSOP87" method.

Because of the way the cubic-fit algorithm was implemented in the PC software, it will not compute a

position for Pluto. (See (36) and (41) for more information.) The numbers in parentheses next to each

result represent the percentage error of that figure relative to the corresponding value for the VSOP87

method.

As for the visual results of rendering the planets, Figures 25 through 32 depict the rest of the

planets, with the Sun in the background. Notice that the relative size of the Sun decreases as the view

progresses to the outer planets.

5.3 User Interface

Measuring the overall success of this thesis effort was somewhat subjective since the quality of

any virtual environment is directly related to how effectively the user is immersed and how naturally the

user can interact with the environment. Fortunately, we had an opportunity to demonstrate the Space

Modeler to the public at the annual Air Force Association Symposium in Washington, D.C. Over three
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Figure 25. View Attached to Mercury
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Figure 26. View Attached to Venus
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Figure 27. View Attached to Mars

Figure 28. View Attached to Jupiter
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Figure 29. View Attached to Saturn

Figure 30. View Attached to Uranus
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Figure 32. View Attached to Pluto
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days, approximately 70 users entered and interacted with the Space Modeler. Most provided valuable

feedback.

Several of the users had difficulty coordinating the use of the standard mouse with the HMD. A

few users had no experience with a computer mouse and thus naturally had difficulty using the mouse

to control the pointer on the user interface panels. Others had trouble keeping the mouse pointer in

sight, especially when changing panels. However, after a few minutes of using the interface, most

users were able to accomplish at least simple tasks, such as movement.

A few of the users were simulation experts who had substantial knowledge of virtual environment

technology. Most of their feedback concerned improving the capabilities of the Space Modeler, such

as allowing interactive picking via the mouse, modeling dynamic orbits, and computing collision

detection. However, they were impressed with the basic simulation and especially appreciated the

distributed simulation broadcasting capabilities.

Overall, most of the AFA users were impressed with the immersive interface of the Space

Modeler and its rendering abilities. They appreciated the environment as a demonstration of current

off-the-shelf virtual environment technology and recognized that this technology can easily be tailored

to specific application needs.

5.4 Frame Update Rates

To measure the performance of this simulation, I ran four different simulation configurations

on two Silicon Graphics Onyx machines. The configurations ranged from modeling a maximum of

fifty satellites to a minimum of four satellites, using a broad range of two-line element sets for orbit

propagation. The tests were run in an NTSC-size graphics window, as opposed to a full-screen window,

in order to simulate the conditions under which the Space Modeler is run as an immersive application.

(To drive an NTSC-driven HMD, the graphics window must be no larger than 640 pixels wide and 480

pixels high.) These benchmark tests certainly did not represent an exhaustive, precise measurement of

the CPU performance of the simulation. They served only as a guideline for expected performance of

the Space Modeler system.
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The Space Modeler will execute on any of the Silicon Graphics machines, but will only execute

with reasonable response time on the Onyx platforms. Thus, the two machines used for the benchmarks

were:

"* Machine A : Two-processor Onyx, with RE2 graphics and one RM using IRIX 5.2 and Performer

1.2

"* Machine B : Four-processor Onyx, with RE 2 graphics and one RM using IRIX 5.2 and Performer

1.2

The different simulation configurations represented the range of satellites that may be modeled

by the Space Modeler. The first benchmark modeled four constellations, comprising a total of fifty

satellites. Each satellite had a unique two-line orbital element set. The second bechmark modeled

one constellation of twenty-five Global Positioning System (GPS) satellites. The third and fourth

benchmarks modeled four constellations comprising a total of four unique satellites. The only difference

between these two was that the fourth benchmark used the "molniya" two-line element set for one of

the satellites. Because this particular orbit was extremely elliptical, it required more processing time

than the other orbits (as measured by these benchmarks). (See Appendix A for complete listings of

each benchmark configuration.)

The results of the benchmark tests are summarized in Table 4 and Table 5. For each benchmark,

the test was run with and without the Polhemus head tracking system, in order to demonstrate that

the serial I/O of the Polhemus incurred additional CPU time. For each test, an average time spent

in the application, cull and draw threads, per frame, is given. Finally, an overall average frame

rate is provided. All of these values were produced via the p fDrawChanStats method provided by

Performer.

An ideal minimum frame rate, especially when considering the "lag time" of a head tracking

system, is 12.0 to 15.0 HZ. As seen from these tables, the best performance for an immersive simulation

is provided by modeling no more than twenty-five satellites on a four-processor Onyx machine.

Additionally, if modeling the Molniya satellite orbit, the total number of satellites should not exceed

five.
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Benchmark Number Polhemus[ app (cull draw Frame
of sat's tracker (ms) (ms) (ms) Rate (HZ)

1 50 no 133.4 5.9 87.7 7.8

yes 144.8 1.8 61.8 6.7

2 25 no 71.3 1.9 66.1 12.5

yes 99.3 2.6 62.0 10.3

3 4 no 49.6 1.9 54.4 12.5
yes 78.4 2.0 61.5 11.0

4 4 no 93.1 1.5 65.8 9.8
_ yes 112.1 2.2 55.8 9.8

Table 4. Performance Specs for Two-Processor Onyx

Benchmark Number Polhemus appI cull draw Frame
of sat's tracker (ms) (ms) (ms) Rate (HZ)

1 50 no 105.3 2.7 32.0 9.3
yes 148.7 2.8 33.7 6.7

2 25 no 47.3 2.5 29.7 20.0
yes 90.2 2.7 30.8 11.0

3 4 no 33.3 2.2 30.1 28.0

yes 73.3 2.3 33.5 13.0
4 4 no 66.3 2.5 28.5 15.0

yes 107.3 2.5 29.1 10.0

Table 5. Performance Specs for Four-Processor Onyx

5.5 Conclusion

Important aspects of evaluating a virtual environment application are examining the rendered

scenes for realistic images, validating mathematical algorithms used to propagate entities, measuring

the frame update rate, and soliciting feedback from potential users. This chapter presented photographs

of various scenes from the Space Modeler, discussed the validity of its propagation algorithms, sum-

marized user feedback and discussed the frame update rate based on various simulation configurations.

The final chapter summarizes this thesis effort and provides recommendations for future work.
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VI. Conclusions and Recommendations

6.1 Overview

This thesis presented the design and implementation of the Space Modeler virtual environment.

This environment, which was based on the Satellite Modeler, expanded the physical boundaries of the

Satellite Modeler by modeling the solar system and included a new three-dimensional user interface

based on the paradigm described in (24). Chapter II discussed a history of virtual environment

technology and presented the fundamentals of modeling celestial objects. Chapter mI provided the

general requirements of the Space Modeler and Chapter IV explained how those requirements were

met by the system design and implementation. Chapter V summarized the results and offered validations

of the algorithmias that were used to model the celestial bodies. Although the Space Modeler is a useful

virtual environment for modeling and observing satellite and planetary motion in our solar system,

several enhancements to its basic capabilities should be made.

6.2 Recommendations for Future Work

Future work with the Space Modeler should concentrate on improving the space environment,

improving satellite modeling and improving the user interface. The most important improvement to the

overall environment is to change the world coordinate system to a Sun-centered (heliocentric) system.

As mentioned, in order to save time and to use implemented code from the Satellite Modeler, the Space

Modeler uses an ECI coordinate system. Unfortunately, this leads to erroneous images. For example,

when the pod is near one of the outer planets, and is not attached to any object, the user should be free

floating in space. However, the pod is actually attached to the Earth, in the sense that everything is

rendered relative to an ECI coordinate system, so when a planet "floats" by, it may actually be the user

"floating" by the planet. Because our solar system is Sun-centered, it would make more sense to render

the environment that way. This modification would require applying an additional coordinate transform

to all the satellite coordinates, the Moon coordinates, and the Earth's rotation but would simplify the

propagation of the planets' orbits. The addition of more celestial bodies would also improve the space

environment.
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Based on the algorithms provided in (36) and the software designed by (41), many more celestial

bodies can be accurately modeled. Meeus provides algorithms for describing the motion of comets,

asteroids, and even the moons of Jupiter. In addition, there are mathematical models for describing the

dynamics of the rings of Saturn. If the Space Modeler were to be tailored to outer space operations,

these enhancements would add a great deal of realism to the environment, assuming that accurate

geometry is used to represent the celestial bodies.

Better geometric models for the planets are needed, since the texture mapped models used by

the Space Modeler are rather crude approximations of the planets. As mentioned, the one infinite light

source that is used by the Space Modeler does not provide realistic shading for the planets. Since

hardware shading is disabled for the planets, their crude textures are easily seen. With improved

geometry and texture maps, local light sources could be implemented that would provide appropriate

shading effects.

The rendering of satellites can be enhanced in several ways. Dynamic satellite orbits should be

modeled, such as the Hohmann transfer for satellite rendezvous as well as orbit decay due to gravitational

forces. The satellites should model sensor systems by displaying DIS entities that are located within

their line of sight. This would require that a "receive capability" be added to the simulation. Because

the other AFIT virtual environment applications all have DIS "receive" capability, it should be trivial

to add that to the Space Modeler. Finally, the most useful enhancement to modeling satellite behavior

would be to use live telemetry data from currently orbiting satellites to render the models. This would

give ground controllers real-time visual feedback of satellite position and orientation in an.immersive

environment.

Finally, to make the user interface easier to use, research should be directed toward integrating

true 3D input devices, such as the BioMuse® controller and the 3D Mouse. Table 6 summarizes all

these suggestions.
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Functional Area Suggested Work Possible Source

Space Environment Change to heliocentric world coordinate system
Model comets and asteroids see (36:pp 209-224)

Model Jupiter's moons see (36:pp 285-299)
Animate Saturn's rings see (36:pp 301-306)

Incorporate better models of the planets

Implement correct shading of the planets see (34)

Satellite Modeling Model dynamic orbits
Model orbit decay
Incorporate satellite DIS receive capability see (40)
Implement DIS remote satellite ground station
Model non-orbiting satellites such as Voyager
Incorporate live telemetry data

User Interface Incorporate 3D input devices

Table 6. Future Enhancements

6.3 Conclusions

The Space Modeler is the first truly immersive virtual environment that models the solar system,

models satellites in near-Earth orbit, and can operate in a Distributed Interactive Simulation (DIS)

environment. It was designed and built using off-the-shelf hardware and software and thus serves as an

excellent demonstrator of current virtual environment technology. Enhancing the current capabilities

of this system will only improve its utility as a space-based virtual environment for observation and

interaction.
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Appendix A. Benchmark Configurations

The Space Modeler uses the file constellation-setup. dat to establish how many satellite

constellations to model. For benchmarking purposes, four configuration files were made. Each file is

organized by constellation and lists the number of constellations, a constellation name, a country code,

an RGB triple for defining its color of tails, the number of satellites in the constellation, the name of

the geometry file, and the list of two-line element sets that describe the orbits.

A.] Benchmark ]

4
GlobalPos

91
255 100 100
25
GPS.flt
./tle/GPSBI-09.tie

./tie/GPSBI-10.tie

./tie/GPSBI-1l.tie

./tie/GPSBII-01.tte

./tle/GPSBII-02.tie

./tle/GPSBII-03.tie

./tie/GPSBII-04.tie

./tie/GPSBII-05.tie

./tie/GPSBII-06.tie

./tle/GPSBII-07.tie

./tie/GPSBII-08.tie

./tle/GPSBII-09.tie

./tle/GPSBIIA-IO.tle

./tie/GPSBIIA-li.tie

./tie/GPSBIIA-i2.tIe

./tie/GPSBIIA-13.tie

./tle/GPSBIIA-14.tIe

./tle/GPSBIIA-15.tle

./tle/GPSBIIA-16.tIe

./tle/GPSBIIA-17.tie

./tle/GPSBIIA-iS.tie
./tle/GPSBIIA-19.tie

./tie/GPSBIIA-20.tie
./tle/GPSBIIA-21.tie
./tie/GPSBIIA-22.tle

Glonass

92
0 255 50
10
Molniya. lt

./tle/glonass34.tle

./tle/glonass36.tle
./tle/glonass39.tle
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* /tle/glonass4O .tle
* /tle/glonass4l .tle
* /tle/glonass44.tle
* /tle/glonass45.tle
* /tle/glonass46.tle
* /tle/glonass47 .tle
* /tle/glonass4S .tle

Shuttles
91
100 100 255

Freeclom.dwb
* /tle/sts .tle
./tle/sts l.tle
./tle/sts_2.tle

Miscellaneous
92
2310 2310 230
12
DSCSII Alt
./tle/alouettel.tle
./tle/comstar2.tle
.Itle/comstar4.tle
./tle/dmsp5d2-5.tle
* /tle/gorizontl .tle
./tle/gorizont2.tle
* /tle/kristall .tle
./tle/kvant.tle
* /tle/kvant2 .tle
* /tle/mir. tie
* /tle/progress~l4.tle
./tle/soyuzTM-15.tle

-------------------------------------
IIFormat:
II- Number of constellations
//- Constellation Name
II- Country Code (defined by enum entity_country)
//- Trail color - R G B values
1/- Number of satellites
II- model name for satellite
1/- Two-line element data file (*.tle)
II for each satellite

/---------------------------------------
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A.2 Benchmark 2

1

GlobalPos

91

255 100 100

25

GPS lit

* /tle/GPSBI-09.tle

* /tle/GPSBI-l0 .tle

* /tle/GPSBI-1ll.tle

* /tle/GPSBII-01 .tle

* /tle/GPSBII-02 .tle

* /tle/GPSBII-03.tle

* /tle/GPSBII-04.tle

* /tle/GPSBII-05.tle

* /tle/GPSBII-06.tle

* /tle/GPSBII-07 .tle

* /tle/GPSBII-08 .tle

* /tle/GPSBII-09.tle

* /tle/GPSBIIA-10 .tle

* /tle/GPSBIIA-1ll.tle

* /tle/GPSBIIA-12.tie

* /tle/GPSBIIA-13.tle

* /tle/GPSBIIA-14.tle

* /tle/GPSBIIA-15.tie

* /tle/GPSBIIA-16.tle

* /tle/GPSBIIA-17 .tle

* /tle/GPSBIIA-18.tle

* /tle/GPSBIIA-19.tle

* /tle/GPSBIIA-20 .tle

* /tle/GPSBIIA-21 .tle

* /tle/GPSBIIA-22 .tle

/-------------------------------------
IIFormat:
II- Number of constellations

II- Constellation Name

II- Country Code (defined by enum entity_country)

II- Trail color - R G B values

II- Number of satellites

/1- model name for satellite

II- Two-line element data file (*.tle)

II for each satellite

/-------------------------------------
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A.3 Benchmark3

4
GlobalPos
91
255 100 100
1
GPS.flt
./tle/GPSBI-09.tle

Glonass
92
0 255 50
1
Molniya.flt
./tle/glonass34.tle

Shuttles
91
100 100 255
1
Freedom.dwb
./tle/sts.tle

Miscellaneous
92
230 230 230
1
DSCSII.flt
./tle/alouettel.tle

/-/ --------------------------------
II Format:
// - Number of constellations
// - Constellation Name
// - Country Code (defined by enum entity-country)
// - Trail color - R G B values

// - Number of satellites
// - Model name for satellite
// - Two-line element data file (*.tle)
// for each satellite
//---------------------------------
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A.4 Benchmark 4

4
GlobalPos
91
255 100 100
1
GPS. ft
./tle/GPSBI-09.tle

Glonass
92
0 255 50
1
Molniya.fit
./tle/molniya.tle

Shuttles
91
100 100 255
1
Freedom.dwb
./tle/sts.tle

Miscellaneous
92
230 230 230
1
DSCSII.fit
./tle/alouettel.tle

/-/ ---------------------------------
// Format:
// - Number of constellations
// - Constellation Name
// - Country Code (defined by enum entitycountry)
// - Trail color - R G B values
/1 - Number of satellites
// - Model name for satellite
// - Two-line element data file (*.tle)
// for each satellite
// ---------------------------------
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Appendix B. User Manual

This appendix describes how to operate the Space Modeler simulation. It will run successfully
on any of the SGI platforms that are running IRIX 5.2 or greater, but will have the best performance on
one of the Onyx machines. Directions are provided for running the DIS daemons, using an HMD as
well as configuring the simulation for different satellite scenarios.

B.1 Running the DIS Daemons

Because the Space Modeler is a DIS application, the DIS network daemons, sgisend and
sgirecv, must be running. These daemons allow access to the DIS PDUs that are broadcast across
the network. If the DIS daemons are not running when you execute the Space Modeler, you will see
the following message:

Could not get semid: No such file or directory
Bus error (core dumped)

Several UNIX shell scripts are provided for interfacing with the DIS daemons. These scripts are located
in /rem4/afa9 4/bin and are used as follows.

* startnet: starts both daemons and executes them in the background

* stopnet: stops both daemons

* port: indicates which port the daemons are using

* statnet: displays status information similar to the following:

IPC status from /dev/kmem as of Mon Nov 7 18:22:44 1994
T ID KEY MODE OWNER GROUP
Message Queues:
Shared Memory:
m 0 0x53637444 -- rw-r--r-- root sys
M 101 OxOObacOed -- rw-rw-rw- jfortner eng

m 2902 Oxccbac0ed -- rw-rw-rw- jfortner eng

m 2903 OxOObac0ec -- rw-rw-rw- jfortner eng

m 2204 Oxccbac0ec -- rw-rw-rw- jfortner eng
m 2205 0x000009a4 -- rw-rw-rw- jfortner eng

Semaphores:
s 290 OxOObacOed -- ra-ra-ra- jfortner eng
s 221 OxOObac0ec -- ra-ra-ra- jfortner eng

jfortner 7290 1 0 Oct 31 30:18 ./sgisendd -blO0 -p3000
jfortner 7291 1 1 Oct 31 20:59 ./sgirecvd -blOC -p3000

This information indicates how many shared memory segments are currently being used. The daemons
require four shared memory id's and two semaphore id's. In addition the userid of the person who
started the daemons will be displayed. (See the IRIX "man page" on ipcs for more information.)
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B.2 Running the Space Modeler

To execute the simulation correctly, it must be run from a directory that contains all the necessary
data files. The executable filename is smpod and the following data files must be available in the
directory from which it is run:

/ ./t le / * . t 1e files - the two-line element files for satellite orbits

* constellation-setup. dat - the configuration for the simulation

* timeparms .dat - defines the start time for the simulation
f *. fit files - model files for planets, satellites, locators, etc. (MultiGen format)

* *. rgb files - textures for models

* *. attr files - texture attributes

* *. ob j files - model files for satellites (SGI binary format)

* *. dwb files - model files for satellites (Designer's Workbench format)

s starfield . tx - definitions for all the stars

* fastrak .dat - configuration file for the HMD

* miscellaneous *. dat files - configuration files for the 3D panels

The default screen shows a view of the Earth behind part of the front panel. The following keys
are functional:

"* Keypad 8: increase view pitch

"* Keypad 2: decrease view pitch

* Keypad 6: increase view heading

* Keypad 4: decrease view heading

"* Keypad 5: restore original view orientation

"* Keypad +: move viewpoint forward

* Keypad Enter: move viewpoint backward

* UPARROW: translate viewpoint up

* DOWNARROW: translate viewpoint down

* LEFTARROW: translate viewpoint left

* RIGHTARROW: translate viewpoint right

• <Fl>: toggle display of rendering stats

* <F2>: switch view modifier to the Polhemus tracker

* <F3>: switch view modifier to the keyboard

* <F4>: decrease field of view (essentially zooms in)

* <F5>: increase field of view (essentially zooms out)

* <F6>: restore field of view to default

* PKEY: toggles pausing of the simulation

o <ESC>: exit the program

If the view is controlled by the HMD, the Keypad keys above do not have any effect on the view.
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B.3 Using an HMD

The Space Modeler has been successfully run with three different HMDs: the PT-O1, the nVision
and the Kaiser VIM. All of the HMDs require the use of the Polhemus head tracking system.

B.3.1 Using the Polhemus. The Polhemus is an input device that uses an RS-232 serial
connection to the host computer. Several 9-wire cables have been designed with DB9 connectors for
interfacing the Polhernus to the SGI machines. Connect the Polhemus box to one of the SGI serial
ports (preferable port 2 or 3) using one of these cables. Set the DIP switches on the Polhemus box
according to the baud rate and the number of stations you would like to use. (See (38) for DIP switch
settings.) Make sure the entries in the fastrak.dat file specify the proper port number and baud
rate and make sure the last entry in the file is "1". (See the fastrak, dat file for more information.)
Place the Polhemus sensor above and behind the user. We usually use the ladder in the lab to support
the sensor. Then, turn on the PoIhemus box, wait ten seconds to allow it to initialize, and then run
the Space Modeler. You will be prompted to calibrate the Polihemus. Do so by placing the HMD in
whatever position and orientation you would like to use as the origin and press the <ENTER> key. Use
the <F2> key to make the Polhemus control the view.

B.3.2 Using the PT-01 HMD. The PT-01 is the easiest and most portable HMD we have. It
uses a "beltpack" connector for interfacing the HMD with the video signal from the computer. Both
Onyx machines have coax ports which drive NTSC signals. Use a coax cable to connect one of these
ports to the "beltpack" HMD connector. Simply turn the "beltpack" connector on and you should see
an image in the HMD. Use a 640x480 window in the upper left portion of the CRT for displaying on
the entire HMD. Attach a Polhenmus tracker on top of the HMD for tracking head movement. The
NTSC signal can be split using a "T" connector and piped through the VCR or TV for recording or
monitoring the view.

B.3.3 Using the nVision HMD. The nVision HMD has the highest resolution of our HMDs,
but is more complicated to use. First, use a "T" connector to pipe the BLUE RGB connector from
the Onyx to the interface unit for the HMD. The BLUE signal from the computer must be connected
to both the left and right GREEN inputs on the interface unit. Then, the computer must be put into a
special mode for driving the appropriate video signal. This must be done remotely, since the graphics
console will be unusable while the computer is in the special mode. To set up the special mode, log in to
the Onyx as root and execute the nVision-setup shell script in the /usr/gfx/ucode/RE/dg2/vof
directory. This script file sets the computer in a field-sequential, 640x480 mode. As soon as this is
done, the login screen should be visible in the HMD. Simply log in, and execute the Space Modeler. To
monitor the view on a TV screen, run the make-ntsc-work script in the /usr/gfx/patch directory.
To return the computer to its default configuration, execute the Load60HZ shell script as root.

B.3.4 Using the Kaiser VIM HMD. To use the VIM HMD, connect all three RGB connectors
from the computer to the interface box. Set the computer to the proper display mode by executing the
Loadivim script in the /usr/gfx/ucode/RE/dg2/vof directory. Unfortunately, while using this
HMD, no NTSC signal can be generated simulataneously for display to a TV monitor. To return the
computer to its default configuration, execute the Load60HZ shell script. Remember that these scripts
can only be executed as the root user.
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B.4 Configuring the Simulation

The number and types of satellites that are modeled are defined in the file conste iat ion-setup. dat.
This file defines the number of constellations and, for each constellation, the number of satellites, the
model file for the satellites, the country code, the trail color, and the "tie" files for each satellite. Several
configuration files have already been defined:

* constellation-setup.dat.benchl - represents the first benchmark configuration

* constellation-setup.dat.bench2 - represents the second benchmark configuration

• constellation-setup.dat.bench3 - represents the third benchmark configuration

* constellation.setup.dat.bench4 - represents the fourth benchmark configuration

• constellation-setup.dat.GPS - eleven Global Positioning System satellites

• constellation-setup.dat.twelve - twelve assorted satellites in multiple constellations

To use any particular configuration, simply copy that file to constellation-setup. dat and run the
simulation.

Finally, the start time for the simulation is defined in the file time-parms .dat file. Only the
year, month and day are used to initialize the time.
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