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Abstract 

This work focuses on the use of truncated Gaussian distributions as models for bounded data - 
measurements that are constrained to appear between fixed limits. We prove that the truncated 
Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when 
mean and covariance are given. We present the characteristic function for the truncated Gaussian; 
from this, we derive algorithms for calculation of mean, variance, summation, application of Bayes 
rule and filtering with truncated Gaussians. As an example of the power of our methods, we 
describe a derivation of the disparity constraint (used in computer vision) from our models. Our 
approach complements results in Statistics, but our proposal is not only to use the truncated 
Gaussian as a model for selected data; we propose to model measurements as fundamentally 
bounded in terms of truncated Gaussians. 
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1    Introduction 

This work presents a new class of statistical models that are well suited for several Robotics 
applications, such as object recognition or computer vision. Our approach deals with bounded 
data: measurements that are constrained to appear in a bounded region in the measurement space. 
Bounded measurements have been studied in Statistics in connection with selection mechanisms; 
here we propose a different approach, in which the data is considered to be bounded to begin with. 

To date, few statistical models for bounded variables are available, none of them satisfactory. 
The most common approach is to use the Gaussian distribution and model bounds through an 
ad hoc selection mechanism [2, 1]. Another possibility is the uniform distribution [8], but this 
approach has computational problems: summation of uniform variables does not yield a uniform 
variable and application of Bayes rule is hard [11]. In short: even though bounds contain a lot of 
information, they have not received proper attention yet. 

Our work uses a class of distributions in the truncated Gaussian family in order to model 
bounded data. We derive a complete set of tractable algorithms for these models: calculation of 
moments, approximation methods for Bayes rule and summation and noise filtering. Overall, our 
results make the truncated Gaussian family an operational tool, much more powerful than the 
uniform or the Gaussian distributions. 

In order to illustrate the strength of our approach, we present a statistical derivation of the 
disparity constraint used in Computer Vision. So far no statistical analysis has been given for this 
constraint. 

Our analysis complements results scattered in the literature of Statistics, Information Theory 
and Control Theory. We contribute to Robotics by indicating a proper way to model bounded 
measurements and deriving tractable algorithms to handle them. Besides contributing to Robotics, 
our algorithms demonstrate that Robotics has much to contribute to Statistics itself. 

2    The Truncated Gaussian Family 

Our basic model is the elliptically truncated Gaussian family. A distribution in this family is 
proportional to a Gaussian inside an ellipsoid and is zero outside the ellipsoid. The truncated 
Gaussian model has been proposed in a variety of contexts in Statistics [9] as models of selection 
mechanisms. In Robotics, the first explicit mention of the possibility of using the truncated 
Gaussian appears to be by Erdmann [5]. 

A truncated Gaussian distribution for a n-dimensional random vector x is referred to as 



N,,tM,k((t,P)] its mathematical expression is: 

where /(•) is the indicator function and q(fj,,P,v,M,k) is a normalizing constant. The set {x : 
(x — u)TM~1(x — v) < k} defines an ellipsoid in n-dimensional space. Call k the radius of the 

distribution. 

As a special case, note that if \i = v and M = P, then the normalizing constant depends only 

on k: rk 

q{»,P,H,P,k) = Pr(xl <k)=      (2^T(n/2))-ix^-ie-^dx. 

In this case, q(fj,, P, /z, P, k) is the value (at k) of the distribution function of a chi-square variable 
with n degrees of freedom. Due to the importance of this sub-family for modeling purposes, we 

call it the radially truncated Gaussian family. 

2.1     Genesis of a Truncated Gaussian 

There are other situations where a truncated model is appropriate because data is purposefully 
truncated. Consider an n-dimensional source of (unbounded) Gaussian noise and an ellipsoid in 
this n-dimensional space. If any measurement outside the ellipsoid is discarded, then the resulting 
data obeys a truncated Gaussian. Examples of these procedures are the algorithms of Cox [2] 
and Bar-Shalom/Fortmann [1]. These algorithms use the Gaussian distribution associated with 
ad hoc selection mechanisms; none of these algorithms uses appropriate models for bounded data. 
This approach to bounded data is employed in Statistics in order to model selection mechanisms 
[9]. Results derived in this work can be understood as new tools for this type of analysis. 

There is a different way of looking at bounded data. We can use bounded models in order to 
model data that is fundamentally bounded, not bounded as the result of a selection. We elaborate 
on that. Suppose we know a random vector x has mean //, covariance matrix Q, and Pr(x) = 0 
for all x outside {x : (x - n)TQ~1(x - ß) < k}. In other words, possible values of x concentrate 
around the mean in a symmetric fashion, up to the distance k in the metric induced by Q. Under 

these conditions, we have (proof in Appendix A): 

Theorem 1 Given a expected value is \i, a covariance matrix Q and the fact that a distribution 
is zero outside the set {x : (x - n)rQ~l{x - y) < k}, a maximum entropy distribution that obeys 
these conditions is a truncated Gaussian Nß<cQtk'(ß,cQ), where c = Pr(xl < k)(Pr(xl+2 < &))_1 

and k' = kPr(x2
n+2 < k)(Pr(X

2
n < k))'1. 

This theorem strengthens the parallel between truncated and unbounded Gaussians. 
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Figure 1:   Distributions in the truncated Gaussian family:  No,i,o.oi{0,1) (left) and ^1.5,1,1(0,1) 
(right). 

The truncated Gaussian family is even more powerful than the unbounded Gaussian. The 
truncated Gaussian family can represent highly skewed distributions and distributions that are 
nearly constant. Figure 1 illustrates this claim. 

2.2    Numerical Evaluation of q(/j,, P, z/, M, k) 

The central problem in the characterization of a truncated Gaussian is the determination of 
q(/j,,P,v,M,k). We introduce an important linear transformation that will be used throughout 
the paper. 

It is always possible to transform the original expression of a truncated Gaussian into the 
following: 

Nu,D,k(0,I) = ^   [1 exp (~2zTz) hz-.iz-^D-^z-u,)<k}(*), 
(2*) 

where D is a diagonal matrix.   The result is obtained through a linear transformation, named 
double diagonalization: 

z = $Ty/Ä~1VT{x-n) 

where: A is the eigenvalue matrix of P, V is the corresponding eigenvector matrix of P and $ is 
the eigenvector matrix of (\/X   VT)M(V\fK   ). The transformation is always possible since P 

and M are positive definite. The vector u is $VX Vr(/i-i/) 

We work with the transformed variable z, since q(u,D,k) = q(fji,P, v, M, k).   Then (d{ the 
inverse of the ith element in the diagonal of D): 

Kotz, Johnson and Boyd [9] give a numerical method for the evaluation of this integral based 



on its Laguerre expansion. We have: 

/ ,  \n/2 oo (?-lV 

9(W>£>,*) = Pr(xl < k/ß) + (^J      c-* £CjXi-1(fc/(2/?))r(^/2+^j.) 

where: 

r-1 

cr    =    (2rj      2_j sr-jcj   j    C0 = 1 

sr = {-riß)YtuiMi-diißy-x + Yt(i-diißy. 

Convergence is uniform for /? > 22SÜ1. In general, large values of 0 yield slow convergence. If 
we truncate the evaluation of the series at j = N, the truncation error is always smaller than: 

2~N exp (k/(2ß) + (n - 1) log 2 + AOJ
T

U) . 

As a one-dimensional example, consider iVi.5,i,i(0,1) (shown in figure 1). Numerical integration 
with 10 significant digits yields q(0,1,1.5,1,1) = 0.3023278734. Using ß = 1.1, N = 9, we get the 
same answer. 

2.3    Moment Generating Function of a Truncated Gaussian 

The moment generating function of any distribution is a fundamental tool in statistical analysis. 
We give here an expression for the moment generating function of a truncated Gaussian in the 
most general form (proof in Appendix A): 

Theorem 2  The moment generating function of a truncated Gaussian iV"a,,D,fc(0,7) is: 

For a particular value of t, we can evaluate <f>(t) using Kotz, Johnson and Boyd recursions for 
q(u> - t, D, k) and then plugging the result in (q(u, D, k))~lq(u - t, D, k) exp(tTt/2). 



2.4    Mean Vector and Covariance Matrix of a Truncated Gaussian 

The mean and covariance can be obtained by successive differentiations of <f>(i) [10]. Since Kotz, 
Johnson and Boyd recursions for <j>{t) are uniformly convergent we can differentiate these expres- 
sions term by term. We use Ji for the mean and P for the covariance of a truncated Gaussian. 

Direct differentiation of 2 yields: 

Theorem 3  We have: 

oo 

3=1 

oo 

P   =   I-JtfiT+ k0Y^kjGj, 
3=1 

where (kr are scalars, gr and hr are vectors, GT and Hr are matrices and I is an identity matrix): 

_   (j - l)!£i_1(fc/(2/g)) _ (k_Y12     e-A 
r(n/2+j) ' \2ßJ      q(u,D,k) 

T-l 

gr   =   (2r)-1^2(hr.jcj + sr-jgj)   ,  g0 = 0 

hr   =   j diag [d1{l-dl/ß)r-\...,dn(l-djßy-1]u 

T-l 

Gr   =   (2r)-1^2{cjHr-j+gjhJ_j + hr.jgj + sr.jGj)   ,   G0 = 0 
i=o 

Hr = -jdmg[d1(i-d1/ßy-\...,dn(i-dn/ßy-1} 

For a distribution N^p^ifi, P) in the radially truncated Gaussian family, the mean is \i and 
the covariance matrix is Pr(xl+2 ^ k)(Pr(Xn < k))~xP [9]. 

2.5    Linear Transformation and Summation of Truncated Gaussians 

A non-singular linear transformation applied to random vector with truncated Gaussian distribu- 
tion produces another truncated Gaussian random vector (proofs of theorems in this section are 
in Appendix A). 



Theorem 4 If x ~ NUfM,k(ß, P) and y = Ax (where A is any non-singular square matrix) then 
y~NMAMAT<k(Aii,APAT). 

It can be seen, through direct manipulation of truncated Gaussians even in one dimension, 
that the sum of truncated Gaussian random variables is not a truncated Gaussian. We can 
derive some results for particular cases. Suppose z = x + y where x ~ Nl/XtMI,kx(fix,Px) and 
y ~ Nv ,M»,ky(Vy,Py), x and y independent. Under these conditions: 

Theorem 5 The distribution of z has expected value ~pz =Jix+Jiy and covariance Pz = Px + Py; 
the distribution of z is positive only inside the ellipsoid defined by {z : (z - uz)

TM~1(z - vz) < 1} 
where 

Uz    =    fX   +   Vy MZ    =    kxMx   +   kyMy 

A reasonable approximation to the distribution of z is N^M^IO^-P*)- 

A special but important case is represented by vx = fix, Mx = Px, vy = fiy, My = Py, kx = ky. 
In this special case we can make statements about the distance between the approximation and 
the correct distribution. Call Gz the correct distribution for z; then: 

Theorem 6 For ps = fix + (xy, Mz = Mx + My, kz = kx = ky, supz \GZ - NVzMz,kz(vz,Mz)\ is 

0{exp(-k/2)). 

So for this case, the indicated approximation is fairly good. 

Consider now the most general case: z = x + y, where x and y are arbitrary truncated 
Gaussians. We shall indicate approximation strategies that work well under specific conditions. 
We consider the vector u, a linear transformation of z so that defining ellipsoid is {u : uTu < 1}. 
Call Hu the mean of u and Pu the covariance matrix of u. The distribution of u is obtained by 
convolution, so it is unimodal and closer to a bell-shaped function than the original distributions. 
We may expect that the distribution of u to be closer to a Gaussian than the distribution of x or 
y, invoking the Central Limit Theorem. 

Consider the approximation pi(u) = Noj^fi^Pu)- If all eigenvalues of Pu are much smaller 
than 1, then this approximation is reasonable because the mean will be approximately fiu and 
the variance will be approximately Pu. The distribution will always have a maximum inside the 
defining ellipsoid, so it will always yield a smooth approximation to pu{u). An example will 
illustrate this. Consider distribution Ni.5,i,i(°> !)> depicted in figure 1. Mean is 1.107 and variance 
is 0.21288. If we add two random variables with this same distribution, we obtain (numerically) 
the distribution shown in figure 2.a. Mean is 2.213 and variance is 0.4257. The approximation 
Ari,5,i(2.213,0.4257) is shown in figure 2.b. Both distributions are shown in figure 2.c. Agreement 
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Figure 2: Example: Approximation to Summation 

Figure 3: Example: Failure of Approximation to Summation 

is remarkable even in this highly skewed distribution; the strategy will work better if the means 
of the original summands are closer to zero. 

We may take the approximation as valid for large variances, but there is a limit to such process. 
We cannot use this strategy for distributions with arbitrarily large variances. Again, we use an 
example to illustrate this situation. Consider the distribution A^o,i,i(0,50), depicted at figure 3.a. 
Consider the summation of two random variables with this same distribution. Figure 3.b shows 
both the correct distribution and the approximation ^0,1,4(0,100). The disagreement is evident. 
So we need a specific approximation for the case of large variances. 

A different strategy would be to approximate the distribution of u by a truncated Gaussian that 
matches the mean and variance of u. This approach is explored in Appendix B; approximation 
derived there are valid under restrictive conditions on the second moment of the distribution of 
u. Derivation of good approximations for all cases is still an open problem. 

3    Inferences with the Truncated Gaussian 

Inferences about a random variable are obtained by application of Bayes rule associated with a 
decision rule. We analyze two decision rules: maximum a posteriori estimate and minimum square 



loss estimate. 

Since the truncated Gaussian is not closed under multiplication, we should not expect to be 
able to apply Bayes rule and obtain a truncated Gaussian distribution. The next example reveals 
the problems that may arise here. 

Example 1 Suppose x and u are related by z = x + u>, p(x) is iVo(1+£)2i3(0, (1 + e)2) and p{z\x) 
is Nx(i+e)2t3(x,(l + e)2). Suppose the observation comes out to be z - 2\/3. Application of Bayes 
rule forp(x\z) yields a distribution concentrated between [\/3 - e,\/3 + e], tending to a spike as e 

goes to zero. □ 

Fortunately, we can find a good approximation methodology for a situation relevant to practical 
applications. We consider a linear set-up: 

z = Hx + tx)z (3) 

where x € 3£n and z <E 3ftm, A and H are matrices of appropriate dimensions, x is distributed as a 
truncated Gaussian #„„«,,*»(p*,-P*); <*>, is distributed as a radially truncated Gaussian with zero 
mean ./Vo,pz,fcz(0,.P*). As a result, z ~ NHx,Pz,k,(Hx,P2). 

The central question is: given that we observe the value of z, what can we say about xl 

The posterior is not a truncated Gaussian because the region where the distribution is positive 
is not an ellipsoid (it is the intersection of two ellipsoids). The distribution still is proportional to 
a Gaussian in the points where it is positive, as we show now. Consider two distributions: 

ft exp {-\{x - frfP^x - //,)) IA{X) ?2exp {-l-{z - Exf P;\z - #x)) IB{x), 

where A and B are arbitrary convex sets, not necessarily ellipsoids. If we multiply these distribu- 
tions together, the result is positive only on the set AflB;on this set the result is proportional 

to: /   1 \ 
W = exp {-'-{x - ^)TP-\x - px) + (z- ExfP;\z - Hx)) . 

By using the Matrix Inversion Lemma [1], we get the following standard result of linear systems 
theory: 

Waexp^x-z/fg-1^-//)) 

where Q = Px - PXH
T{HPXH

T + Pz)-
lHPx and p' = QiP'1^ + P;xHTz). This shows that the 

shape of the. distribution is proportional to a Gaussian. So the final distribution will be: 

_ exp {-\{x - p!)TQ-\x - //)) W*), (4) 
|27rdet(Q)| 

8 



where c is a normalizing constant. 

So we can easily recover the shape of the distribution; the normalizing constant c still is 
unknown and depends on AC\B. The main difficulty is to find a good and tractable approximation 
to this region. This is presented in the next section. 

3.1    Intersecting Ellipsoids 

In order to approximate the posterior, an ellipsoidal approximation can be built so that the 
approximate posterior is always a truncated Gaussian. This method was originally proposed by 
Fogel and Huang [7] in the context of tolerance sets for ARM A processes. Since the algorithm 
approximates only the geometric intersection of ellipsoids, the values of fi and P do not matter. 
We indicate truncated ellipsoids by N(v, M, k) in this section. 

3.1.1    Preliminary Approximation 

We make some preliminary approximations: 

• Consider expression (3). Suppose uz ~ Ar(0, W, l/a) and x ~ N(ii, P, b). 

• Now take a linear transformation A such that AWAT = I (always possible since W must 
be positive definite). So we have Az = AHx + AUJZ. Now consider B = AH, y = Az and 
Uy = Auy\ we have: 

y = Bx + Uy 

anduy ~N(0,J,l/a). 

• We know that auiyUy < 1; instead of trying to satisfy this inequality, we will satisfy the set 
of inequalities: 

The meaning of this approximation is the following: the original constraint defines a spheroid 
in 9Rm; the new constraint defines the m-dimensional cube that circumscribes the spheroid. 

au>l{ < 1 for i = 1,..., m. 

• By rearranging terms we have: 

a(yi - Bixf < 1 for i = 1,..., m. (5) 

where yi is the ith element of y and f?,- is the ith row of B. 

Now the problem is how to approximate the following set: 

em = {x: [(x - n)TP-\x -n)<b]fi [r\Ta(yi - Bixf < l]} . 



3.1.2    Fogel/Huang Algorithm 

Consider the following definitions: 

Po   =   P 
e0 = n 
b0   =   b 

G0 = {x: [{x - e0)
Tp0-\x - 60) < b0]} 

Si   =   {x : a(yi - B{x)2 < 1} for i = 1,..., m. 

Each set Si defines a strip (a region in 3£n between two hyperplanes). 

The Fogel/Huang strategy is to start with 0O and intersect this ellipsoid with one strip at a 
time, approximating the intermediate intersections by ellipsoids: We could generate 0TO by the 
recursion: 

0j+i = iSi+i n 0,-. 

• We approximate 0;+i as: 

0,-+1 = {x : [(x - p)TPC\x - pi) + aqi+1{yi+1 - Bi+1x)2 < (b{ + qi+1j\} (6) 

where qi+\ is a free parameter to be determined. 0,-+1 contains the intersection between 0i 
and the strip 5;+i. 

• We can transform expression (6) into an explicit ellipsoid expression1 

0,-+1 = {x:(x- ei+1)
TPtr+\(x - 0i+1) < li+1} (7) 

where: 

r& = Prl + ^«BjBi pj+. = fl - "i^r^Sm 
(8) 

6i+1 = Pi+iiP^Bi + aqi+iBfyi+1) bi+1 = k + qi+1 - aqi+i7-T~Z R VDT- 

• We must determine g,-+i by some convention. Fogel and Huang prove that it is possible to 
choose qi+i so that the square of the volume of the ellipsoid 0,+i is minimized. By doing 
so, we obtain (proof of this claim is in Appendix A): 

{0 if a\ - 3aia3 < 0 or -a2 + y/aj ~ 4o:ia3 < 0 
-c*2+\/'a\-4at\az ,  ^^    otherwise. 

1 Using the following standard result: (x - a)TA(x -a) + (x- b)TB(x -b) = (x- c)TC(x - c) where C = A + B 
and c = C~1(Aa + Bb), and the Matrix Inversion Lemma [1]. 

10 



where: 

oi   =   a3(n - lKBi+tPiBZJ2 

a2   =   (Bi+1PiBi+1 (2an -a + a\Bi+lPiBi+1 + a2(yi - BA)2 

a3   =   n(l - a{yi - BA)2) - aBi+1PiBi+1. 
(9) 

Summary of Fogel/Huang Algorithm    The algorithm is a sequence of m steps. At each step: 

1. Get qi+i from the results of the previous step using expressions (9). 

2. If <fr+i = 0, the measurement did not cause any change in the ellipsoids.  Updating is the 
ellipsoid is not necessary. 

3. Update 0t+i using expressions (7) and (8). 

4. If bi+i < 0, the likelihood and the prior are in conflict: the sets have empty intersection. 
This case is discussed below. 

We take the defining ellipsoid for the posterior distribution to be {x : (x — 9m)TP~1(x — 0m) < bm}. 

This is equivalent to the set [x : (x - ^)TP_1(x - y) + YT=\ aQi(Vi ~ Bixf ^ h + Ei+i 9«-}-  0ur 

approximation is complete. 

3.2    Updated Posterior 

The posterior distribution is a combined result of expression (4) and Fogel/Huang algorithm; we 
use Nemipmibm(lJ>',Q) as the posterior. By looking at the recursions in expressions (7) and (8), 
we notice that, if qi+ia = 1 for every i, then the final approximation is in the radially truncated 
Gaussian family. 

Some examples clarify the use of our algorithm. 

Example 2  Consider the situation: 

x + u oj ~ JVo,7,i (0,1) x ~ JV0lBfi/4(a, B) z = 
4   1 
2   3 

where x is unknown and: 

a = B = 
2   0 
0   2 

z = 
2 
3 

11 



Figure 4.a shows the initial ellipsoids of the problem. The region of possible values of x is the 
intersection of ellipsoids. Figure 4-b shows the strips generated at expression (5); the intersection 
of these strips with the prior ellipsoid will define the posterior approximation. 

The algorithm is applied and results are shown in figure 4-c. The largest hatched ellipse is the 
result of incorporating z\ = 2; the smallest hatched ellipse is the final result after incorporation of 
z2 = 3.  The approximate posterior is #c,D,e(/, <?) where e = 0.257 and: 

c = 
0.363 
0.547 

D = 
0.4488 

-0.3272 
-0.3272 
0.7555 / = 

0.321 
0.7418 

G = 
0.091 

-0.0867 
-0.0867 
1.8857 

.0 

The approximations found by the algorithm are correct in that the intersections are always 
interior to the successive approximations. It should be noted that the original prior distribution 
for x is almost flat; it is possible, using our approach, to approximate situations where the strict 
Gaussian model would be brittle. 

As a comparison, we analyze what would have happened if we had used an approximation 
strategy in the spirit of [1] or [2]. We would pretend x and u to be distributed as unbounded 
Gaussians (with same mean and variance). Now we find a crucial problem: how to combine the 
fact that x has an elliptic region with radius 1/4 and u has an elliptic region with radius 1? 
By using Bayes rule in the unbounded Gaussians N(0,I) and N(a,B), we obtain an unbounded 
Gaussian #(/, G). The hatched ellipsis in figure 4.d shows the results of using these values of 
mean and variance with radius 1/4, 5/8 and 1. All ellipsis fail to cover the region where x is known 
to lie. Radius 1/4 is extreme: almost all values of x inferred from this posterior are inconsistent 
with prior expectations! 

Example 3  Consider the situation: 

1   0 
z = 

0   1 
x+cv        uj ~ #0,7.9(0,7) x ~ #0,7,4(0,7), 

z = [3,7]T and x is unknown. 

Figure 5.a shows the ellipsis defined by prior expectations and measurements. It is clear that 
the measurement is inconsistent, indicating either the presence of outliers or mismodeling. Incor- 
poration of zi yields the hatched ellipse in the figure; t/i is consistent. When z2 is incorporated, 
we obtain b2 = —11.49, indicating failure. □ 

Notice that detection of inconsistency is important and not trivial when using Gaussian dis- 
tributions.  If we were to suppose that x ~ #(0,7) and u ~ #(0,7), then the posterior would 

be # 
1.5 
3.5 

0.5    0 
0    0.5 

I.  Again, it is not clear how to choose the radius for the truncated 

posterior. Figure 5.b shows the resulting ellipsis for radius 4, 6.5 and 9; none of them reflect the 
true state of affairs. 

12 



(a) Initial Ellipsoid! 

(b) Intersecting Strips 

Prior 5t*t« EUifespld 

(c) Bounded Approximation 
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(d) Unbounded Approximation 

Figure 4: Example of Inference Algorithm for Bounded Distributions 
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(a) Bounded Approximation (b) Unbounded Approximation 

First HaasurMMitt Updat« 

Figure 5: Example of Inference Algorithm for Bounded Distributions in Case of No Intersection 

3.3    Inferences based on Maximum a Posteriori 

A common estimate is the one obtained by maximizing the posterior density p(x\z). Consider 
x ~ Nu<M,k{Vi P)- We take the estimate x = arg m.axxNViM,k{p, P)- The optimization problem is 
simplified if we perform a double diagonalization. We look for: 

w = arg maxwNitDtk(0,I). 

There are two possible cases: 

• If £rjD-1£ < k then 0 is inside the defining ellipsoid. Since the Gaussian is unimodal, the 
maximum a posteriori is w = 0 (it must be transformed back to x). 

• Otherwise, the maximum occurs on the boundary of the defining ellipsoid. So the optimiza- 
tion problem is: 

w = arg mm{wiw_0TD-i{w_0=k}w
Tw 

Defining a Lagrange multiplier A, we obtain the Lagrangian: 

X w w w = \[(w- ZfD-^w - 0 ~ k] + 

Differentiation of the Lagrangian with respect to w and A produces a set of equations: 

Wi + A— = 0 tor i = 1, ,n     and     2^ = k. 
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If we isolate W{ in each one of the linear equations we obtain W{ = x+^~- Combining all 
equations: 

P'{xfmhk- 2 
(10) 

We must solve this equation for A. Consider the function g(X) = £"=1 Da {j+jj^) • #(A) 
is always positive and goes to zero if A goes either to infinity or minus infinity. g(X) has 
singularities at -Da for all i; at these points it goes to infinity. Suppose we order the values 
of -Da so that we have Dx < D2 < ... < Dn < 0. We know that the solution for equation 
(10) that corresponds to a minimum is a positive A, since this is the only way we can have 
Wi < & for all i. So the solution must lie in the interval (Dn,oo). So the constrained 
minimization is solved by performing a double diagonalization, sorting the values of Da and 
searching for the solution of equation (10) in the interval (Dn,oo). Since the function g(X) 
is decreasing in this interval, Newton's method will work if started with any value e, larger 
than Dn but smaller than the solution. 

3.4    Inferences based on Square Loss 

Another common estimate is obtained by minimizing expected square loss: L(x, x) = (x - x)T(x - 
x). The optimal estimate is the conditional mean x = E[x\z] [4]. Since we have the posterior, we 
can evaluate the mean by the methods previously presented. 

4    Filtering with the Truncated Gaussian 

Using all results so far presented, we can derive a filtering scheme akin to the Kaiman filter but 
using truncated Gaussians. 

Consider first the simple linear system: 

x,-+i   =   Axt 

(11) 
zi+i   =   Bxi+i + uii. 

We assume x0 distributed as a truncated Gaussian and to distributed as zero mean radially trun- 
cated Gaussian. A and B are matrices of appropriate dimensions. 

Given this set-up, we are interested in obtaining p(cct+i|zi,..., Zj+i): 

p(x,-+i|zi,...,z,-+i)   oc   p(zi+1\xi+1,z1,...,zi) xp(xi+i\z1,...,zi) 

=    p(zi+i\xi+1) X p(xi+i\zU . . . , Zi) 
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The distribution p(zi+i\xi+i) is directly obtained from the distribution of a;,-. We need to find the 
distribution p(xi+i\zu...,*,-) = JJ(AX,-|ZI, ..., z,). Using theorem 4 we can obtain p(Axi\zu..., z,-) 
from the available p(xi\zlt... ,z,-). So the filtering scheme has the following structure: 

1. Propagate forward the uncertainty in X{. 

2. Use expression (4) and Fogel/Huang algorithm in order to fuse the incoming information 
Zi+i with X{. 

If necessary, the best estimate of x can be obtained at any time. 

Extension of the filter above to a noisy state problem is straighforward. Consider the system 
model: 

Xi+i   =   Axi + wXi 

(12) 

zi+i   =   Bxi+1+uZi. 

In this case we must obtain p(x,+i|zi,... ,zt) by calculating p(Ax{\zi,... ,z,-) and combining it 
with p(wZi). Having done this, we can propagate forward the uncertainty in xi (by properly 
approximating the summation of Ax{ and uZi) and fuse it with the incoming information (through 
the Fogel/Huang algorithm). 

5    Using the truncated Gaussian: Disparity Constraint 

In this section we analyze a practical problem in Computer Vision using truncated Gaussians. 
The example will illustrate the power of the method. 

Consider two cameras perfectly aligned so that all epipolar lines are parallel. Suppose a feature 
is detected in one camera at pixel x2. The correspondence to the feature must lie in the epipolar 
line in the other camera in some pixel Xi. The question is: how much of the epipolar line should 
we explore in order to find the correspondence x{l 

From the basic optics of the problem we can derive the following equation [6]: 

X2 + ^, (13) Xl 
z 

where x2 is the known coordinate of the correspondence (in pixels), B is the baseline distance (in 
meters), / is the focal length (in pixels) and z is the depth of the feature (in meters). Only z is 
unknown; as an example, we take x2 = 0, / = 600 and B = 0.5. 
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A powerful constraint that can be used is the fact that the point xx cannot be arbitrarily far 
from the given value of x2. This constraint has not been justified or analyzed with the help of a 
statistical model. 

The model (13) does not take into account the fact that every camera has finite depth of view. 
Not all values of z are allowed in a real camera. This can be modeled by a radially truncated 
Gaussian: pz(z) = N^^faa2). As an example, we take fi = 5, a2 = 4 and k = 3. Note that the 
variance is large, reflecting a possible situation of ignorance with respect to z. The distribution 
of z is shown in figure 6.a. The distribution of X\ is [10]: 

K'(i')=BMKfek) 
This distribution is graphed in figure 6.b. 

A simple calculation will show that xx G [35.4438,195.325]. This could have been obtained from 
a tolerance set approach: if we simply assume z € [1.5359,8.4641], then xx <E [35.4438,195.325]. 
But notice that by using truncated distributions, we obtain much more information beyond the 
bounds: we know where we should invest time searching if we have only bounded resources; we 
know the means and variances of the quantities. 

Consider now the following extension of the problem: suppose we have additional noise present 
in the imagery process, so that: 

Bf 
Xi = x2-\ l-u. 

z 
where to ~ iVo,i,io(0,1). How are we to use this valuable information if we work only with bounds? 
We show now how to easily handle this in the framework of bounded distributions. 

We can easily obtain the mean and variance of x2 + (Bf)/z by numerical integration. If this 
is considered a burden, we can linearize expression (13) around the mean of z: 

Bf     Bf, 
Xl « x2 + -[Xi - fi) 

fi        n2 

and from this we can approximate the mean and variance of xx. With the values previously out- 
lined, we obtain mean 60 and variance 382.25. Since the standard deviation is much smaller than 
the domain of definition, we take #115.38,6490.5,1(60,382.25) as an approximation for the distribution 
of x2 + (Bf)/z. Figure 6.c shows the agreement between approximation and correct distribution. 
Now we can proceed and combine this with w; we can actually use this measurement for filtering 
purposes through algorithms outlined in previous sections. 

Since our approach is mainly approximative, it is interesting to compare its performance with 
similar methods in the literature. We already mentioned the inability of tolerance sets to capture 
all the information in the most simple situations. We now analyze another common strategy. 
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Figure 6: Analysis of the Disparity Constraint 

Suppose we consider z as a unbounded Gaussian variable. We approximate the distribution of 
xx through a linearization: xx ~ JV(60,382.25). How to justify the disparity constraint? We must 
arbitrarily set a threshold, based on extraneous heuristic knowledge, if we want to decide whether 
a value of Xl is possible or impossible. The model neglects the physical source of the constraint, 
the camera's depth of field. And finally, the model is also an approximation, a bad one indeed. 
Figure 6.d shows the roughness of the approximation. The figure depicts the result of truncating 
the Gaussian iV(60,382.25) after 2 standard deviations: some possible values of Xl are discarded, 
many impossible values of xx are included. It the correct value of xx is located between 100 and 
195, a failure will result. We could try to cover all possible values of xu but unless we set the 
necessary thresholds in a very conservative way, some possible values of xx may be discarded as 

impossible. 

6     Conclusion 

The central idea of this research is: measurements that are bounded must be properly modeled in 
order to be consistently used. Our focus is not so much is data produced by selection mechanisms; 
we focus on data that is fundamentally bounded. We take this type of data to be fundamental in 
Robotics application such as computer vision or object recognition. Our proposal is to use a family 
of statistical models (the truncated Gaussian family) that captures measurement boundedness. 
We offered a comprehensive analysis of estimation aspects for the truncated Gaussian: algorithms 
for information handling, updating and filtering. An open problem is to find good approximations 

for summations of truncated Gaussians. 

The statistical approach implied by bounded distributions is more interesting than pure toler- 
ance sets in a variety of grounds. First, we can use the powerful language of Probability theory to 
draw conclusions. Second, usually the mean and variance of disturbances are known or can be es- 
timated. We should use this valuable information if available, as an example illustrates: Consider 
a variables a G [-TT/2, TT/2] and a derived quantity b = tan(a), such that a G [-TT/2, TT/2]. Without 
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any statistical knowledge, we only obtain that b € (-00,00)! If instead we take a ~ -/Vo,i,i(0,1), 
then we can obtain b ~ (1 + &2)iVo,i,i(0,1) [10], from where the analysis can proceed. Situations 
like this can appear, for example, when using triangulation in order to recover position. The 
adaptation of tolerance sets to the language of Probability theory is an area in which our models 
can be applied. 

Another possible application of our results is to use a Gaussian model for unbounded data, 
but define selection mechanisms on the data. We discussed this strategy in section 3.2; this is 
a common problem in Statistics. Our methods have the advantage that, although approximate, 
they never assign probability zero to a possible value of the underlying unknowns. Algorithms 
here developed can find application in any of the usual problems of measurement error analysis, 
when measurements are bounded and when measurements are selected. In particular, the correct 
development of a Bayesian analysis of validation gates, as used by Bar-Shalom and Fortmann or 
Cox, is an imediate example of application. 
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A    Proofs of Theorems 

Theorem 1 Given a expected value is \i, a covariance matrix Q and the fact that a distribution 
is zero outside the set {x : (x - ii)TQ~\x - //) < k), a maximum entropy distribution that obeys 
these conditions is a truncated Gaussian N^cQ^i^cQ), where c = Pr(xl < k){Pr(x2

n+2 < k)) 1 

and k' = kPr{x2
n+2 < k)(Pr(X

2
n < fc))"1. 

Proof: It is known that the distribution which is positive in a region C and which maximizes 
entropy for given mean and covariance matrix is of the form [10]: 

p(x) = A0exp (-Aix - (x - fi)T^l(x - ß)) 

for x € C and zero otherwise. A0, Ai and A2 are respectively a scalar, a vector and a matrix. 

The key to this optimization is to note that w log w is convex and the constraints are linear, 
so the solutions for A0, Aa and A2, if they exist, are unique and optimal. By straighforward 
substitution, we notice that if p(x) = Nß>cQikl(n,cQ) then the mean is fi, the variance is Q [9] and 
the defining ellipsoid is {(x - n)Q~l{x - /i) < k}. So the truncated Gaussian is the maximum 
entropy solution. □ 

Theorem 2  The moment generating function of a truncated Gaussian NWto,k(0,1) is: 

Proof: 

m = {q{"^ , :D—[ expf-^z + fz^dz 
^ßäy    •/(£?-! *(*-"">2<*)     ^ 2 ' 

M^iMlexp (™\ [ exp (-kz - t)T(z - t)) dz 

tTf 
=   (^w.A^r'expl — \q{u>-t,D,k) 

a 

Theorem 4 If x ~ Nv,M,k(^P) and V = Ax (where A is any non-singular square matrix) then 
V ~ NAl/tAMATik(A[i,APAT). 
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Proof: The distribution of y is given by pY(y) = ^e\,A)fx{A 1x); this gives: 

(\    _ 1       q(fi,P,v,M,k) 
PY{V}   ~    |det(A)||(27r)«det(P)|l 

exp (-ö(y - A.p)T A~T P'1 A~\y - A/*)) I{(y-Av)TA-TM-iA-i(y-Ai>)<k}(y) 

g((i, P, v, M, k) x 

|(27r)Met(A)det(M)det(A)|l 

exp i—j{y ~ AH)T{APAT)-1{X) - Afl)J I{(y-Av)T(AMAT)-l(y-Av)<k}(y) 

=   NAuAMAT>k(An,AMAT) 

Theorem 5 The distribution of z has expected value Jcz =~px+~py and covariance Pz = Px + Py; 
the distribution of z is positive only inside the ellipsoid defined by {z : [z — vz)

TM~1{z — uz) < 1} 
where 

Uz    =    VX   +   Vy MZ    =    kXMX   +    kyMy 

Proof: Given the independence of x and y, the expressions for yZz and Pz are straightforward. 
It is necessary to prove that p(z) is positive in an ellipsoid {z : (z — fiz)

TM~1(z - (JLZ) < k}. For 
this, apply a linear transformation to x and y so that: 

x'   =   $VA"V)(S-^) 
y'   =   $T{VTlVT){y-Hy) 

where: A is the eigenvalue matrix of Mx, V is the corresponding eigenvector matrix of My and $ 

is the eigenvector matrix of (y/X~ VT)My(\/X~ VT). As a result of this transformation: 

y'  ~  No,L,k!)(0,L) 

where I is an identity matrix of appropriate dimension and L is a diagonal matrix of appropriate 
dimension. The distribution of u = x' + y' is given by the multi-dimensional convolution between 
x' and y'. So the distribution of u is positive in a set obtained by sliding a spheroid along an 
ellipsoid. In other words, u is positive inside an ellipsoid defined by {u : uT(kxI + kyL^u < 1. 
In order to translate this into a constraint about z, we use two facts: 

u = (V(VTVT)) (X + y - 0, - N) = (<5>r(x/Ä~VT)) (z - p.) (15) 
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and 

-l 

(vVK 1${kxI + kyL)-x$Tyfh VT)      =   kxV\fk$$T\/KVT + kyVy/Ä$L<f>TVÄVT 

=   (kxMx + kyMy) (16) 

in order to obtain: 
{u : uT(kxI + kyL)~1u < 1} = 

{z : (*r(VX~V)(* - fxz)Y (kxI + k.L)'1 (<DT(v/Ä~VT)(z - M,)) < 1} = 

{z : (z - fiz)
T(kxMx + kyMy)~

1(z - fig) < 1} = 

{zi(z-iigfM;\z-iiz)<\} 

D 

Theorem 6 For vz = \ix + j/j,, Mz = Mx + My, kz = kx = fcj,, supz |GZ - NßztMz,k{Hz,Mz)\ is 
0(exp(-Jb/2)). 

Proof: It is enought to prove that, for a given fc0, there exists a constant a (which depends 
only on n) such that 

dsupz \G, - NßzMz>k(nz,Mz)\        aexp(-fc/2) for fe > fc 

e?& 2 

We start with the same double diagonalization used in the previous theorem.   Consider the 
vector [u,u]T given by: 

u   =   x' + y' 

v   =   y' 

The distribution of u is given by the multi-dimensional convolution between x' and y': 

Pu(u) = /    Px'(u — v)pyi{v)dv 

where Wu — {v : (u - v)T(u — v) < k} D {v : vTL~1v < k}. Using the distributions of x' and y' 
we obtain: 

Mu)=L \(JZ(m
exp ("5((M" ")T(""v)+"TL'^ *     (17) 

Expression (17) can be simplified by noting two facts: 
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Call /; an eigenvalue of L (L is diagonal): 

det(L) = ff U = IK1 + 'OTTT = IK1 + M IK1 + l/'O"1 = det(/ + I)det(J + ZT1)"1. 

Consider the quadratic form (u - v)T(u — v) + vTL 1v; it is a summation of terms 

<--->2 + f = Tf^-iT/^-^ + f 
-      «.'        ! + >•(   <M     _2K,B,--A_ + ^ 

l + jj     ;,   V(i + 'i)2        i + '. 

= ifjT-^fe-a + i/'.)".)2- 

Applying these results, expression (17) can be written as: 

Pu{u) = I{u) ^^ rexp (-\uT{I + L)-Xu) 
y K }       K ;|(27r)"det(/ + JL)|^        U     l ) 

where 

J(«) = /    uo ^ A «n'\ n m* exp (~l{v ~ (/ + ^^^ + ^^ ~ (/ + ^O ^ Jwu |(27r)7ldet((/ + L-1)-1)|2        V   2 / 

so u ~ I(u)Nk(0,I + L). By using expressions (15) and (16), we transform pu(u) into p(z): 

^=/wi(a,)SiM.)it°'(-^-'-)T^,^-'->) 
where Wu is transformed into Wz by straightforward substitution and 

I{*)   =   ?(*)    y^|(2x)ndet((/ + I-1)-1)|l 

exp f-| («-(/+1-1) (*vr V) (* - ^))T (/+L-1) 

(v-(I + L-1) (V\/Ä~VT) (z - A*,))) <fo. 

Observe that 7(z) is equal to g(fc)-1 times the integral of a Gaussian in a region of 3Jra (so this 
integral is strictly less than 1). We can state I(z) < g(&)-1. So we can write: 

sup \GZ - Nß„M„kx(iiz, Mz)\   =   sup \I(z)Nk{fiz, Mz) - Nk(iig, Mz)\ < 
z z 

(qik)-1 - l)supNßz<Mz,k(^,Mz) = -i     ^„..»r /..    wx      gW1^)-1-!) 
|(27r)»det(M,)| 
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Consider the following function of k: 

g(k) = q(k)-1(q(k)-1-l) 

Then: 
dg(k) 

dk .(/o ^k^)xn/2'lex^-x^dxT 
and since the term in brackets is larger than one: 

dg(k) P/^exp^l) fc0"/2-iexp(-|) 

dk    K 2"/2r(n/2)      "^ 2"/2r(n/2) 

for all k> k0. By collecting constants in a, the result is proven. □ 

p/^exp^f) 
2"/2r(n/2) 

Claims in Appendix 3 

qi+i is given by equations (9). 

Call Vi+1 the square of the volume of the ellipsoid 0,+i. Since 01+i always contains the desired 
intersections for any value qi+i, we are interested in the smallest possible 0;+i. The value of g;+i 
is then chosen so that Vi+i is minimal. 

We have K+i = c„6"+1det(Pt+i), where cn is the volume of a n-dimensional spheroid. Some 
algebraic manipulations show that in order to minimize VJ+i we must minimize 

k + ft+i - aqi+i(yi ~ BjOiYHl + aqi^BjPjBj) 
1 + aqi+1BiPiBj 

with respect to q%+\. 

Claims in Section B 

1. Equation (19) has a unique solution if 0 < a1 < l/(n + 2). 

Proof:  Call h = ccr2; there is a one-to-one correspondence between c and h.   So we can 
study the following equation: 

LPr(xl+2 < 1/fc) = a2 
Pr(xl < 1/h) 

We analyze the function g{h) = hP£$2^. Notice that Pr(xl<i/h) 
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• limh^o g(h) = 0. 

• limbec g(h) = -—^. This is obtained by using the following expansion of the chi-square 

probability: Pr\X
2

n < x) = C-/
2(*/2)"/2 ££o j^fey. 

• #(/&) is equal to: 
1 /   xTx\ J exp   ———   ax, 9(h) = JT 

Jx1 x< "<i yj(2irh)n \     2h 

which is increasing with h (variance increases with k). 

So g(h) is increasing from 0 to l/(n + 2). Any value of a2 strictly between these limits will 
produce a solution for d and hence for c. □ 

2. Integral JXTX<1 xxTp4(x)dx is equal to expression (23). 

Proof: We have four terms to integrate: 

• IxTx<i xxT\pi(x)dx is equal to a21. 

• fxTx<l xxTcr2tr(L)p4(x)dx is equal to cr4ti(L)I. 

• JXTX<1 xxT^Txp4(x)dx is zero. 

• IxTx<i xxT(xTLx)p4(x)dx is a diagonal matrix. Consider element i in the diagonal 
of this matrix. It is a summation of one term La JXTX<1 xfp4(x)dx, and n — 1 terms 
Ljj JXTX<I x2x2p4(x)dx. The fourth moment of any a;,- is 6<r47 and the second crossed 
moments of x2x2- are 2cr4j. So the matrix is equal to Aa4jL + 2cr27tr(X)7. 

Putting all these terms together, we obtain expression (23). □ 

B    Approximations of Bounded Distributions given First 
and Second Moments 

One may want to approximate a distribution with bounded support by a truncated Gaussian. 
For example, it may be necessary to obtain an approximation for summations of truncated Gaus- 
sians. A natural approximation is to pick a truncated Gaussian that matches the first and second 
moments of the original distribution. 

In this section, we assume that the distribution to be approximated is positive in the spheroid 
{x : xTx < 1} and has a diagonal second moment matrix Q. This may be assumed without loss 
of generality if the original distribution is positive in an ellipsoid (since we can perform a double 
diagonalization). Approximations are valid if no eigenvalue of Q exceeds l/(n + 2), where n is the 
dimension of the space. 
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B.l    Equal Variances Case 

In this section we consider a distribution fx(%) with Q = a21 and mean //.   Take an initial 
approximation of the form: 

1 /    xTx \ 
PiW =     I, exp   ~^Z5   J>c<i(aO, (18) 

where c is the solution of the equation: 

/r(xl+2 < l/(ca2)) 

This equation always has a unique solution if 0 < a2 < l/(n + 2), as proved in Appendix A. The 
limiting value l/(n + 2) corresponds to the second moment of a constant distribution. 

The variance of X under the approximation pi(x) is exactly a21. But the mean is zero. We 
adjust the mean through a linear term: 

*')=^^A-&){i+!*'h-*i')-      (20) 

The function P2(x) is not a distribution, since it may have negative values.   So we use another 
approximation: (1 + (fj,T/a2)x) « exp(fj,T/a2x), in order to obtain: 

Essentially, we are constructing a Edgeworth-like expansion [3] for fx{x) and then approximat- 
ing it by an exponential. If we have higher moments we can increase the number of terms in the 
approximation by building a sequence of orthogonal polynomials (with norm based on exp(-a:2)), 
as detailed by Cramer [3]. 

Example 4 Consider the distribution f(x) = ((1 - x)/2)Ix2<1(x), with mean -1/3 and variance 
2/9. This distribution is highly skewed. We obtain c = 1.51696 and: 

i ^ 1 /   (* + (c/3))2\ _      , , 
p3(x) =  exp   -    0,0/Q/       W(a:). 

1.16599y2*r(2/9)c        V       2(2/9)c    / 

Figure 7 shows the graphs of f(x) and p3(x). □ 
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Figure 7: Distribution f(x) and the approximation P3(x). 

B.2    General Case 

We relax the assumptions of last section, taking Q to be diagonal. Take function pi(-) in expression 
(18) as an initial approximation. There is freedom in the choice of a2. We choose a2 to be the 
largest eigenvalue of Q; the constant c is the solution of equation (19). Approximation pi(-) does 
not produce the correct mean and variance. First we adjust the mean through a linear term 
obtaining function p2(-) as in expression (20). Approximation p2(-) is natter than the original 
distribution. We can stop here and obtain p3(-) as in expression (21). 

Alternatively, we can improve the approximation by adding more terms to p2{-)-   Pick a 
quadratic term: 

p4(x) = 
1 

^(271-ccr2)71 
exp 

xTx > 

'2ÖÖ2 
P 1 + !-jx + (xTLx - a2tr(L))   IXTX<1(X). 

L is a diagonal matrix that produces the correct second moment for P4(-)- Since p2(-) is natter 
than the original distribution, we define L as a diagonal negative definite matrix. 

Function p±(x) may not be a distribution. So we use another approximation: 

1 - aHx(L) 1 - aHv(L) + ^x + xTLx) w exp I /' + i^jn^ + xTLx (22) 

where /' must be obtained numerically by solving /'exp(f) = 1 — a2ti(L). Solution is always 
possible since L is defined to be negative definite. The final approximation is the product of p\(x) 
and the approximation in expression (22). 

We now indicate how to obtain L. The value of JXTX<X xxTp4(x)dx is (Appendix A): 

47<74L + (27<r4 - a4)tr(L)7 + a2I (23) 
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where 7 = c2Pr(X
2

n+4 < (l/(ccr2)))(Pr(x2 < {l/{ca2))))-\ Call A the vector of diagonal elements 
of Q and B the vector of diagonal elements of L; then (1 is a vector of ones): 

Closed form solution of this equation is: 

BJI-,'1-1      11*) ^g. (24) 
V       (4 + 2n)7-n       )    47a4 v    ' 

From B we can obtain L. These formal manipulations do not guarantee that the resulting L 
matrix is negative definite, as required. Notice that (A - cr2l)/(470-4) is a vector of non-positive 
numbers. From the geometry of expression (24) it is clear that all eigenvalues of Q must lie in a 
wedge in the first quadrant. If this fails to happen, we can increase a2. It this fails, we can set 
the negative elements of L to zero. Albeit crude, the strategy will always improve upon P2(-)- 
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