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ABSTRACT 

The Naval Postgraduate School is developing an vertical take-off and landing (VTOL) unmanned air 

vehicle (UAV) that can transition to horizontal flight, once airborne, in order to take advantage of the 

improvements in speed, range, and loiter time that horizontal, fixed-wing flight provides. This research 

investigates the design requirements of the central controlling device for that UAV, including the specific 

problems of defining the necessary hardware components and developing software for executive control. 

First, hardware requirements needed to be determined. By exploring the general operational 

requirements of the UAV and taking into account space and weight limitations, a hardware suite was selected 

which could provide adequate functionality to replace the human traits of a pilot. In order to provide 

"awareness" of the operational environment, motion sensors, navigation equipment, and communication 

equipment was required. Controllable servo motors were necessary to move control surfaces appropriately. 

Computer hardware, necessary to provide system intelligence, was selected in order to interoperate with the 

other hardware. Next, a Real-Time Executive (RTE) software program was designed to provide the 

functionality and coordination of all hardware components. Device drivers for each component were 

developed, and overall coordination was planned using a Yourdon style essential model. Periodic interrupts 

were used to control execution time. Last, the specifications and configuration of all hardware components 

were completely documented, and the operation of the RTE program is fully explained. From this 

understanding of the overall control system, future development can continue, resulting in a more effective 

and efficient UAV design. 
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I. INTRODUCTION 

Control is defined as "the right or prerogative of determining or governing" [Ste73]. The control of any 

moving entity requires a correct determination of the current state of that entity followed by the careful 

governing of actions taken to correct any deviation from a given desired state. In an aircraft, this function is 

usually done by a human being. When removing the pilot from the aircraft, this control falls to a coordinated 

system of hardware and software called a controller. This controller must be built around some source of 

intelligence, whether it is remotely linked to a human, or intelligent in its own right. In addition, the controller 

must have the capability to create and govern the necessary changes in the aircraft's state. Since the 

controller's roles are so varied and yet interrelated, there are many design options to consider - the 

permutations of which comprise many possible, workable solutions. 

A.      RESEARCH OBJECTIVE 

This research examines the design and synthesis of a controller for an unmanned air vehicle (UAV). 

The primary research question is "What is required to build a central controller for an UAV?" A central 

controller is differentiated from any other auxiliary controllers that may be on board in that the central 

controller governs the actual flight control of the aircraft. This primary research question encompasses both 

hardware and software requirements, and leads to additional questions: 

• What sensors will be used to provide information about the state of the aircraft, in the absence 
of human senses? 

• What is the form and limitations of the data provided by these sensors? 
• What aerodynamic surfaces are available to control the aircraft? 
• What devices are available to move the control surfaces, and what signals are required to cause 

these devices to move those surfaces? 
• How must the movement of these control surfaces be coordinated to control the aircraft in its 

six degrees of freedom? 
• Does the UAV need to communicate with any external facilities? 
• If the UAV does need to communicate with external facilities, how should this be 

accomplished? 
• What are the format and buffering requirements for this communication link? 
• What other input and output (I/O) of data is required? 
• What are the timing constraints for all command, control, and communication operations? 
• What hardware is necessary to achieve this functionality? 
• What are the software requirements to interact with the chosen hardware? 

Willi these questions in mind, the parameters of operation and the system requirements for a UAV controller 

are investigated.    The specifications and configuration of the hardware and software used are fully 



documented. The goal of this rese;irch project is a functional UAV controller, including a comprehensive 

Real-Time Executive software program fully integrated with the necessary hardware. 

B.      PREVIOUS AND CONCURRENT RESEARCH 

Some of these questions have already been answered. This multi-faceted project is being developed in 

several previous and concurrent research programs, bringing together disciplines from Aeronautical 

Engineering; Mechanical Engineering; Electrical Engineering; Command, Control and Communications; and 

Computer Science. The airframe was aerodynamically analyzed and modified by Stoney [Sto93]. Significant 

to this research was the addition of a canard on the front of the aircraft, which included two additional control 

surfaces. The servo motors used to move these and other control surfaces were examined by Merz [Mer92] 

and Moran [Mor93]. They developed a core control system for the aerodynamic control vanes. Two 

datalinks have been developed to facilitate the transfer of data to and from a ground station. Reichert [Rei93] 

designed a wide-band UHF system and Bess [Bes94] tested a spread spectrum datalink. For navigation, 

Twite [Twi94] developed a differential GPS navigation system, and Hallberg [Hal94] investigated the inertial 

measurement unit (IMU) which was used. Marquis [Mar93] designed a complementary Kaiman filter to 

blend the outputs of these two sensors, and the control algorithm has been worked on by Davis [Dav92], 

Kuchenmeister [Kue93], Hallberg [Hal94], and Moats [Moa94]. 

C.      EXECUTIVE SUMMARY 

This document consists of five chapters, including this Introduction. Chapter II provides a generic 

overview of the controller, discusses required functionality, and develops an essential model of this 

functionality in order to better understand the constraints and criteria under which it must operate. Chapter 

III fully documents the specifications and configuration of all hardware used for the controller. It is intended 

to provide information in sufficient detail such that a new user would understand how to duplicate the existing 

hardware system upon receipt using similar equipment. Chapter IV fully documents the RTE software 

written for this project. This includes compiler information to enable a new user to recreate the software 

development environment under which the software was created. Chapter V delineates the conclusions 

drawn from this research and provides recommendations for future improvements to the system. Appendix 

A contains a listing of the source code for the RTE. Appendix B contains a glossary listing of all variables 

used in the RTE program. Finally. Appendix C contains the manufacturer's technical data sheets for the 

hardware used for the controller. 



This research project will tie together the many individual sub-systems that have been designed for the 

UAV and provide the means for their operational use and coordination. Additionally, this research stands as 

proof-of-concept for UAV technology, especially for vertical take-off and landing (VTOL) aircraft that can 

transition to horizontal flight. This characteristic makes it especially useful for shipboard deployment, which 

will benefit not only the Department of Defense, but also the U.S. Coast Guard by providing a cost-effective 

and fatigue-resistant solution to many airborne missions, such as Search and Rescue and Law Enforcement. 



II. BACKGROUND 

This chapter provides background information detailing the objectives introduced in the last chapter. 

In this chapter, a generic overview of a controller is provided, design considerations are discussed, and a 

Yourdon style essential model [You89] is developed. Within this model, parameters and priorities unique to 

this system are investigated. Since it is a real-time system, timing and intra-process communications are 

determined. This analysis results in a more effective and efficient controller design. 

A.      SYSTEM OVERVIEW 

In order to control the aircraft, a controller must have access to all information pertaining to the 

operation of the airframe, including: 

• Present and desired geographic position 
• Present and desired altitude 
• Present and desired airframe attitude (in 3 dimensions) 
• Present airframe acceleration (in 3 dimensions) 
• Present state of power plant, including throttle and fuel state 
• Present state of payload equipment and desired operation of such equipment 

Then, a controller must be able to properly manipulate this information, develop signals to modify the 

physical configuration of the aircraft's control surfaces, and effect necessary data communications. To 

accomplish these results, a controller must maintain control over the following: 

• Signals that control each of the aircraft's control surfaces 
• Signals that control the power plant (throttle) 
• Signals that control the payload equipment 
• Communication channels with ground control and/or monitoring stations 

In a digital controller, these signals ;ue processed by a set of software algorithms, interacting with specialized 

hardware. This set of algorithms comprises a Real-Time Executive program; the hardware includes sensors, 

servos, and communication equipment. As detailed by Moran [Mor93] and in Chapter III, the Archytas 

airframe uses the following components to meet these requirements: 

1.      Aircraft Sensors 

The UAV needs specially designed sensors which can generate signals in response to position, 

posture and acceleration of the aircraft. Among the sensors with which the processor must interact are: 

• Global Position System (GPS) Satellite Receiver 
• Inertia! Navigation System (INS) Instruments 
• Other (Non-INS) Flight Instruments 
• Fuel Sensor 



The GPS receiver yields a time stamp and a 3-dimensional position, including latitude, longitude, and 

altitude. The INS instruments include accelerometers that measure linear acceleration in each of the three 

dimensions, roll-rate sensors that measure angular velocity about each of the three coordinate axes, gyros that 

indicate aircraft heading, and vertical inclinometers that measure the angle of tilt from vertical. Non-INS 

instruments include a pitot tube airspeed indicator and a barometric altimeter. These sensors are "strapped 

down" which means they are fixed in alignment with the body coordinate system, the 3-dimensional 

coordinate system that uses the body of the aircraft as a reference. They detect acceleration, velocity or 

displacement in a certain direction, in reference to the aircraft itself. To be useful, these signals must be 

converted to the coordinate system of the environment surrounding the aircraft, called the inertial coordinate 

system. This conversion involves only a basic matrix rotation, but can demand significant processing time. 

2. Aircraft Components 

In addition to the sensors, the controller has several extrinsic components with which the 

processor must interact. These include: 

• Pulse-Width Modulated Servos 
• Communications Link 
• Payload Equipment 

The servos are electric motors that position aircraft controls as determined by the length of a received square 

pulse. The communication link is usually a radio datalink transmitting digital data. It provides two-way 

communication with the UAV, uplinking control information (commands) from the ground control station, 

and downlinking flight instrument data to a ground monitoring station. Payload equipment includes cameras, 

radar, and other sensors not necessary for flight control, but used to complete the assigned mission. 

3. System Block Diagram 

The components and sensors are merged together to form an integrated flight control system, as 

shown in Figure II-1. The most basic UAV controller must be able to perform the following functionality: 

• Receive digital sensor inputs 
• Perform analog to digital conversion of all analog sensor inputs 
• Provide digital filtering for sensor data 
• Accept and process joystick and/or waypoint pilot commands from the uplink 
• Using input above, calculate control functions and determine control surface positions. 
• Generate appropriate command pulses and transmit them to servos. 
• Relay necessary posture and navigation information to ground through downlink 



The software components of this system are the Kaiman filter and the control algorithms. The Kaiman filter 

is an algorithm that smooths the sensor data to provide the most reliable source of data input, based on the 

varying accuracy of given sensors over different periods of time. The control algorithms are based on 

aerodynamic properties specific to the UAV. These algorithms compare the posture and position of the 

aircraft to the desired posture and position, and determine what corrective actions must be taken. These 

software functions, in addition to the transfer of all data and signals coming from or going to the central 

processor (shown as arrows to and from the shaded area in Figure II-l), comprise the Real-Time Executive - 

- the software component of the controller. 
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4.     Assumptions 

Since this project is based on the work of several students working concurrently, the scope of the 

controller's functionality for this research is limited by several assumptions. All of these assumptions can be 

substantiated once the controller is fully completed and tested on the aircraft in flight. 

a. Filtering and control algorithms exist as system callable subroutines. 

The filtering and control algorithms are specialized aeronautical engineering routines which 

involve additional research, such as linear quadratic filter design and wind tunnel testing, which is being 

accomplished by other students. For this project, it is assumed that the resulting routines will exist and can 

execute within the allotted time constraints. 

b. Input and output (I/O) will not require central processing resources. 

Digital I/O will take place through eight 25-pin RS-232 serial ports. These ports reside on a 

separate circuit board that has its own small processor. Although I/O must be initiated by a subroutine call 

from the main controller program, the processing required to execute and control the data flow is handled by 

this sub-processor and so will not require central processing resources. This form of parallel processing 

greatly reduces the amount of processing time required for this function. 

c. Air to ground communications will not require central processing resources. 

The radio data link hardware on hand conducts its own handshaking, parity checking, and 

other data communication functions. Since it will connect to the I/O ports, this function is actually twice 

removed from the controller itself. Even with an assumed 15% protocol overhead, the datalink is expected 

to have sufficient throughput to avoid becoming a bottleneck in the communication process, without 

requiring central processing resources. 

d. The sensors' data stream will be fast enough to provide fresh data for every cycle. 

It is imperative that the digital dato from the Inertia! Measurement Unit (IMU) is current and 

complete every control cycle. Additionally, sensor data which is not digital must first be converted from 

analog to digital (A/D) through a sampling A/D circuit board. This A/D process is done in hardware and will 

not affect the performance of the controller. However, if this A/D process takes too long, the most recent data 

from the A/D card may not yet be available when read by the controller. It is assumed that current and 

complete sensor data will be available when needed for each control cycle. 



e.     The controller's processing speed will be sufficiently fast to perform all functions. 

No matter how fast a processor is, it has a limited throughput. It is assumed that the CPU can 

perform all required functions in the allotted real-time interval. If this assumption proves false, the present 

processing speed of 33 MHz will have to be upgraded. 

B.      DESIGN CONSIDERATIONS 

In the design of a real-time system, it is important to understand the constraints, structures, and 

parameters of the system, as well as other design choices that are available to the designer. It is the 

combination of these design choices that determines the successfulness of the resulting system. This section 

details the constraints imposed by a real-time system, lists options for programming structure, and discusses 

considerations for the selection of a programming language and fault tolerance measures. 

1.     Real-Time System Constraints 

The term real-time covers a wide range of systems; however, all systems share a common feature 

where results of some kind are demanded by timing deadlines imposed by the environment outside the system 

[Sav85]. As time marches relentlessly onward, all system and subsystem responses must fit within their 

allotted time frames. A real-time system can also be described as reactive or embedded. Reactive systems 

are those which have some ongoing interaction with their environment. Embedded systems are those used to 

control specialized hardware in which the computer system is installed. Since the UAV controller will 

continuously monitor and interact with the position and posture of the aircraft within its environment and will 

also simultaneously control specialized hardware, it is both a reactive and an embedded system. 

It can be argued that all practical systems are real-time systems. Even a word-processing system 

must respond to user commands within a reasonable amount of time (e.g. 1 second), or it will become torture 

to use. Most literature refers to such systems as soft real-time systems - systems where performance is 

degraded but not destroyed by failure to meet response time constraints. Systems in which failure to meet 

response lime constraints leads to potential complete system failure are called hard real-time systems. Under 

these definitions, the UAV controller is a hard real-time system under which missing a deadline could lead 

to complete loss of control. Therefore deadlines, once established, become constraints inside which the 

system must operate completely. 

To meet these constraints, three measures of time, when applied to real-time systems, must be 

carefully managed: response lime, survival time, and throughput [Sav85]. Each is defined below. 



a. Response Time 

Response time is the time the computer takes to recognize and respond to an external event. 

This is the most important time measurement in control applications. If events are not handled in a timely 

fashion, the system may literally go out of control. The UA V must not only respond to pilot commands, but 

must continually monitor feedback signals from the servos and inertial navigation equipment to determine if 

the response resulted in the correct, desired effect. Experimental evidence suggests that a total response time 

from pilot input to final movement of control surfaces cannot exceed 100 msec without loss of positive flight 

control by the pilot [Kam93]. 

b. Survival Time 

Survival time is the time span during which data is available to be read. Since flight data is 

stored in a buffer, the data may be read at any time that the buffer is not being written to. Read/write cycles, 

therefore, must be sufficiently offset such that the reading and writing of the same data will not happen 

simultaneously. The next consideration, then, is the validity of the data. Since the aircraft is anticipated to 

move at speeds of up to 150 kts, it is important to have the latest sensor data available for every control cycle. 

c. Throughput 

Throughput is the total number of events which the system can handle in a given time period. 

For example, a communication controller may have a throughput expressed in characters per second. Since 

a large amount of data must be relayed to the ground, the radio datalink must not be allowed to become a 

bottleneck which could slow the central processor. The data stream must also be managed to flow evenly, so 

that there are not bursts of data in excess of the channel capacity interspersed among long periods of under- 

utilized capacity. In analog to digital (A/D) conversions, the bandwidth of the digital signal (equal to the 

product of the sampling rate and the sampling width in bits) is usually much greater than the bandwidth of its 

analog counterpart. Accordingly, the UAV A/D processes must be fast enough to provide fresh, accurate data 

at the frequency needed by the controller. 

2.     Structure Taxonomy 

The simplest kind of software structure for a real-time system is a polling loop. The program 

examines (polls) each of its inputs in turn to determine whether an event has occurred which requires a 

response. This structure would be sufficient for the UAV if all polling was done at the same frequency. Since 



this is not the case, a more complex, event-driven structure is needed. Event driven systems have three main 

types: interrupt driven, multi-tasking, or inuIti-processing (multiple processors) [Sav85]. 

a. Interrupt Driven 

In an interrupt driven system, counters are used to keep track of inter-process timing, 

generating an interrupt when it is time to begin a new cycle. At the occurrence of an interrupt, the controller 

saves its current state on the stack and jumps to the appropriate interrupt service routine (ISR). If the timer 

generates an interrupt at regular intervals, and if the ISR is replaced by the control loop routine, it can be 

assured that the control loop will be executed regularly and consistently. However, for this to work, the 

execution time of the control loop must not exceed the interrupt time interval, or the subsequent ISR 

execution will interrupt the current ISR execution, resulting in a backlog of pending processes on the stack 

and. eventually, a system crash. To get the most from each control cycle, the task load resulting from each 

cycle should be kept as level as possible. 

b. Multi-tasking 

Task management could be delegated to the operating system if a multi-tasking environment 

was adopted. Multi-tasking, however, requires a large amount of processor overhead and brings with it its 

own unique problems when multiple tasks are forced to work with the same data. Since multi-tasking is not 

available on the present operating system, this option was not considered. 

c. Multi-processing 

To a certain degree, the UAV will have multiple processors, as mentioned in the 

assumptions. The benefit of multi-processing is in the ability to take the processing load for these functions 

off the central controller and to have them performed by a processor that is specially designed for that task. 

It is important to ensure that these auxiliary processors can access the same data buffers and to configure 

memory access such that no two can read/write the same data simultaneously. 

3.      Programming Language 

"C" was chosen as the programming language for this project since it is almost unique among the 

high-level compiler languages in that it does not (usually) come in between the programmer and the machine. 

If something can be done in assembly language, there is usually a way to express it in C [Sav85]. For 

example, in C one can directly manipulate inachine registers. I/O addresses can be written to direcfJy. 

Interrupt handling is also possible. Interrupt vectors can be inspected and modified, and BIOS interrupts can 
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be executed by a system call. Memory allocation can be directly controlled, and bit-level programming is 

possible. For any applications that cannot be completed in C, assembly language could be used. 

4.     Fault Tolerance 

Fault tolerance, or system robustness, is the ability to recover from errors or system failures. With 

an interrupt-driven system, provisions must be made for detecting and covering for a missed deadline. This 

can be done by spatial or temporal methods [Lap92]. Spatial fault tolerance includes redundant hardware and 

software systems. Temporal fault tolerance involves careful design of algorithms to compensate for missed 

deadlines. Since hardware on the UAV must be kept to a minimum, most of this redundancy must occur in 

the software. Although this will add to the overall complexity and detract from the overall efficiency of the 

system, the nature of the mission requires this redundancy. In addition, execution time for the fault tolerance 

overhead must not cause timing constraint violations in an otherwise correct system [Nel92]. Timing, 

execution and resource constraints dictate the following provisions for any module, regardless of the language 

that is used [Sta88]: 

• Modules should have predetermined and bounded execution times. 
(recursion and loops must be used carefully) 

• The use of dynamic structures should be controlled. 
• For predictable system behavior, provision should be made for all known types of exceptions. 

In addition to the normal programming exceptions, the RTE for the UAV also has to deal with external 

malfunctions, such as equipment failure, manual system reset, or loss of communication with the ground 

station. 

C.      AN ESSENTIAL MODEL 

From the foregoing descriptions and specifications, it is possible to construct an essential model of the 

system, including a context diagram, an event list, leveled data-flow diagrams and state transition diagrams 

[You89]. Process specifications may be gleaned from the requirements discussed previously. 

1.     Context Diagram 

It is necessary for the controller to interact with many varied components, as evident from the 

system block diagram. The context diagram in Figure II-2, shows the context in which the controller must 

operate. The circle in the center represents the controller. Entities diagrammed outside the circle represent 

systems outside of the controller's realm of direct control, even though the controller communicates and 
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dictates timing constraints with them. The buffer, datalink, and track log, diagrammed with a line above and 

below, represent data storage requirements. The arrows represent the transfer of data between systems. 

INS 
Inertial 

Measurement 
Unit (1MU) 

Dead Reckoned 
Position Estimate 
From Inertial Forces 

latitude 
longitude 
altitude 
time 

Buffer 

Fuel 
Sensor 

Servos 
Control Vanes (4) 
Wing Ailerons (2) 

Canard Ailerons (2) 
Throttled) 

Non-INS 
Sensors 

► Track Log 

Datalink 

Pilot 
Commands/ 

Control 
Display 

iData 

Joystick 
(or Waypoints) 

Control 
Display 

Figure II-2: Context Diagram for UAV Controller 

2.     Data-Flow Diagrams 

Data-flow diagrams (DFDs) are graphical representations depicting the system as a network of 

functional processes and manifesting the interactions of data flowing between those processes. Although just 

one of many modeling tools. DFDs are commonly used for operational systems in which the functions of the 

system are of paramount importance and more complex than the data that the system manipulates [You89]. 

The top level DFD is followed by sub-level DFDs that further break down the functionality of the top-level 

processes. 
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a.     Top Level 

The top level data-flow diagram (DFD) fortheUAV shows the interaction of all of the major 

processes. As shown in Figure II-3, the controller responds to pilot commands or waypoints, determining 

control actions and providing feedback to the pilot's control display, which completes the control loop. 

INS 
(DR Position 
Estimate from 

Inertial Forces) GPS 
(latitude, 

longitude 
altitude, 

time) 

Figure II-3: Top Level Data-Flow Diagram for UAV Controller 
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b.    Single-Process Sub-Level Uata-Flow Diagrams. 

Many processes in the top level DFD have only one process in their sub-level which just 

explains the function of the top-level process in more detail. For example, the following processes simply 

read data from a buffer or A/D port and pass it on without processing: 

4.1 = Read digital representation of fuel level from A/D port. 
5.1 = Read digital INS sensor data from buffer. 
6.1 = Read digital GPS fix data from buffer. 
7.1 = Read digital representation of Non-INS sensor data from A/D port. 

12.1 = Record position in Track Log. 

Three other sub-level DFDs can be described by one process; however, that this process is 

slightly different depending on the mode of flight. The UAV can be flown directly by a pilot using joystick 

control or autonomously following a pre-established list of latitude/longitude/altitude waypoints. 

TABLE II-l: Process Comparison by Flight Mode 

Process Direct Control Mode Autonomous Flight Mode 

2.1 Read joystick position Retrieve last/next waypoints 

3.1 Convert composite com- 
mand into vectored com- 

mands for each of 3 
reference axes (X,Y,Z) 

Calculate trackline of accept- 
able positions between the two 

given waypoints. 

10.1 Call Linear Quadratic 
routine (Assumption 1) 
to determine corrective 

control surface positions 

Calculate corrective trackline 
and, (10.2) call Linear Qua- 

dratic routine to determine cor- 
rect control surface positions. 

c.     Multi-Process Sub-Level Üata-Flow Diagrams 

Lastly, the multi-process sub-level DFDs are shown below: 
Fuel 
Level 
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Graphical 
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Figure II-4: Process 1.0, Update Control Display 
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Multi-Process Sub-Level Data-Flow Diagrams (con't): 

GPS 
Fix 

Air Data 

Figure II-5: Process 8.0, Kaiman Filtering 
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Figure II-6: Process 9.0, Determine Position and Posture 
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Multi-Process Sub-Level Data-Flow Diagrams (con't): 

Figure II-7: Process 11.0, Generate Servo Commands 

3.     Event List 

The event list looks deceptively simple. All events are temporal with the exception of 

asynchronous joystick inputs from (he pilot, but since the command inputs are polled, this event also becomes 

temporal. Each event is either part of the control cycle or runs on its own frequency which would be an even 

multiple of control cycles. The challenge is to keep cycles of different durations from becoming out of synch 

and infringing on each other's resources. The controller must handle the following event parameters: 

Pilot inputs new joystick command. 

Pilot commands must be polled once per control cycle. 

INS data needs to be read once per control cycle. 

GPS input needs to be read once per second. 

Non-INS data needs to be read once per control cycle. 

Each of eight control surface servo command pulses must be generated each control cycle. 

The throttle servo command pulse must be generated once per second. 

The fuel level needs to be read every 60 seconds. 

The control display must be updated at least twice per second. 
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4.     State Chart 

After considering many possible formats to depict state transition information, state charts 

appeared to best represent the organization of the UAV controller. Developed by D.H. Harel, et al [Har90], 

state charts combine the state transitions of standard state transition diagrams with process depth typically 

represented in Warnier-Orr diagrams and then add elements of orthogonality and communication. 

Orthogonality, represented by a dashed line, indicates separate tasks, and communication, represented by 

arrows, is a method for allowing different orthogonal processes to react to the same event [Lap92]. 
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Figure II-8: UAV Controller State Chart 
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D.      CHAPTER SUMMARY 

As an unmanned vehicle, the UAV developed at the Naval Postgraduate School is completely 

dependent upon its automated systems to provide control of the aircraft in flight. Directing the execution of 

these automated systems is a controller running a Real-Time Executive program. The correct operation and 

real-time coordination of all functions on board the aircraft depends on their interaction with this controller. 

At present, the UAV is designed to have an on board GPS receiver, an inertia! measurement device, and 

other in-flight sensors. Appropriate data must be selected from this navigation suite, filtered, and analyzed 

to determine the current state of the aircraft at any given time. This state may have to be converted into a 

different referential coordinate system. Processing this state via appropriate control algorithms will yield 

corrective positions for the available control surfaces and the throttle. These controls are moved by pulse- 

modulated servos, which require a pulse of a specified width be generated and output at a precise time. Pilot 

commands must be received and the aircraft state may be transmitted through a communication link, using 

appropriate protocols. Data acquisition, processing, and I/O must be repeated at various intervals and 

coordinated through a Real-Time Executive (RTE) software program. This RTE is driven by a periodic 

interrupt and must be robust. The main challenge is to coordinate the complex scheduling of these executed 

functions to yield smooth and positive control of the UAV. 
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III. HARDWARE 

Hardware selection represents a challenging task. Choosing from the myriad of possible systems and 

configurations, each with their own cost, advantages, and disadvantages, it is easy to underestimate the 

ultimate significance of that selection. Indeed, the hardware selected determines most, if not all, of the 

system's limitations. It impacts the flexibility of the system and the programmer's control over the system. 

It determines the method by which things can be accomplished on or by the system. 

For the UAV controller, the selection of hardware was largely made prior to this research. In general, 

it was constrained by the following criteria: 

• The manufacturer should be from the United States, local if possible. 
• All hardware should come from the same manufacturer, for interoperability purposes. 
• Therefore, the manufacturer should offer hardware to meet all requirements. 
• The composite hardware solution should be modular, for ease of upgrading and maintenance. 
• The hardware must be immediately available (not under development). 
• The hardware could operate on a standard +/- 5V and +/- 12V power supply. 
• The composite hardware solution would fit within the space available on the UAV. 
• The composite hardware solution would have minimal weight. 
• The hardware could execute commercially available software, including a C compiler. 

The reasoning behind choosing an American manufacturer was that if there were any hardware related 

problems, an American manufacturer, especially one with an office in the local area, would be easiest to 

contact and could provide the quickest response to requests for technical assistance. A specific operating 

system was not originally selected, but defaulted to MS-DOS because of the low cost and wide availability 

of compatible hardware and software. The choice of MS-DOS precludes the use of multi-tasking scheduling 

strategies, but it was determined that multi-tasking would not be required, at least for the first iteration of the 

controller. 

Ultimately, all controller hardware was purchased from American Advantech, Inc. Their offices and 

technical staff are located in Sunnyvale, CA. This chapter delineates the most prominent features of the 

hardware selected. It lists selected specifications for the chosen hardware and discusses the configuration of 

that hardware as designed for the controller applications. These configurations have been carefully selected 

to get maximum performance and complete interoperability out of each system component. Numbers listed 

are Advantech model numbers. Technical data sheets are given in Appendix C. 

19 



A.      SYSTEM OVERVIEW 

Figure III-1 shows the configuration and connectivity of the overall hardware system. The oval shape 

represents components that are needed for development only and are detached prior to installation. The 

remaining components must be mounted on the UAV, most inside the control pod designed by Moran 

[Mor93J. Racetrack shapes represent sensor and navigation subsystems, most designed through the research 

of other students and incorporated into this controller design. Rectangular shapes indicate circuit cards or 

power supplies, most from Advantech, that comprise the central part of the controller. The specifications and 

configuration of each component is described in this chapter in sufficient detail such that a new user would 

be able to recreate and understand the present hardware system. 

Pitot Tube, Altimeter, Inclinometer 
and ß sensors 

4 Control Vanes 
2 Wing Ailerons 
2 Canard Ailerons 
Throttle 

Datalink) 

+5 V +5 V 
GND Power GND 
+12 V Supply +12 V 
-12V -12V 

Ground 
Station 

1 
+28V   GND 

Power Supply 

Figure III-l: Overall Hardware System Configuration 

B.      PCA-6108: PASSIVE BACKPLANE 

This is primarily an external bus. facilitating communication and data transfer between all other 

hiirdware components. The oilier computer circuit boards plug directly into each of the eight, PC/AT 

compatible expansion slots. This card has a heavy duty, standard block connector for the power supply, 

making +5V, +12V, -12V. and system ground available to all cards. 
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C.      PCA-6146: CPU CARD 

1. Specifications 

This board contains the central processor, an Intel 80486 running at 33 MHz with 8Kbytes of 

cache on-chip, 256 Kbytes of 25ns double cache memory and 16 Mbytes of DRAM. Also included on the 

board are ancillary electronics to support processor functions, such as the Peripheral Interrupt Controller 

(PIC), Universal Asynchronous Receiver and Transmitter (UART) and counter/timer chips. The board 

interfaces with the backplane through a 32 bit ISA bus operating at 8 MHz. Control circuits on the board 

support two floppy disk drives, two IDE hard disks, two RS-232 nine-pin serial ports, one 25-pin parallel port, 

and a keyboard port. Significant for this research, it features a 4-bit (15 level) interrupt vector and a 

programmable watchdog timer. The watchdog timer ensures that the CPU will be reset if a program cannot 

be executed normally, which is useful in real-time systems where a program or power glitch could lock up 

the system. The maximum power requirement for this board is approximately 2.5 A at +5 V. 

2. Configuration 

The CPU card has been configured to support parallel port LPT2, serial ports COM1 on the upper 

port and COM2 on the lower port, and the floppy disk controller. To accomplish this, the J1 jumper pins must 

be set as shown in Table III-1. Next, although the controller functions without a hard disk, one is needed for 

software storage during the initi;il programming. Thus, jumper JP17 must be enabled (open). The watchdog 

timer is enabled by closing jumper JP22 and leaving JP23 and JP24 open. The timer interval is set by closing 

either JP19, JP20, or JP21. Due to the nature of this application, a timeout of 1.5 seconds was selected. 

Should a power drop, software bug, or infinite loop halt the system, the aircraft would be without positive 

control for a maximum of 14 seconds, including a total rebooting time of 12 seconds. 

When connecting the CPU card to an external panel display, attach the lead wire for hard disk 

indicator light (usually red and black) to the HD connection next to the red LED at the top of the CPU card. 

Attach the lead wire for the turbo light (usually yellow and black) to JP5. The lead wires from the reset switch 

(usually red and black) connect to JP4, and the keylock connection is made at made at JP3. Pins 3 and 5 of 



JP3 are ground connections, so the black wire should be at the bottom of the connector. Incidentally, pin 1 

of JP3 is LED power, and pin 4 controls the keyboard lock. 

TABLE HI-1: CPU Card Jumper Settings 

Jumper Setting Jumper Setting 

JP1/1 Close 1-2 JP14 Close 2-3* 

JP1/2 Close 1-2 JP15 Open* 

JP1/3 Close 1-2 JP16 Closed* 

JP1/4 Close 1-2 JP17 Open 

JP1/5 Close 1-2 JP18 Open* 

JP1/6 Close 1-2 JP19 Closed 

JP1/7 Close 1-2 JP20 Open 

JP7 Close 2-3* JP21 Open 

JP8 Close 2-3* JP22 Closed 

JP11 Close 2-3* JP23 Open 

JP12 Close 2-3* JP24 Open 

JP13 Close 2-3* 
,.., 

* Denotes factory setting 

3.     Hasic Input Output System (BIOS) 

For the system to work properly, the actual hardware and memory configuration must match the 

setup configured in the non-volatile BIOS chip. This is a CMOS memory chip by American Megatrends, Inc. 

which stores the system configuration and is read by the processor each time the system reboots. To access 

the BIOS data, press the DEL key during the initial stages of the bootstrap process, while the processor is 

checking the available memory. The program will present a main menu from which the user may choose 

CHIPSET setup, standard CMOS setup, or advanced CMOS setup. For this research, no changes are 

necessary to the CHIPSET setup; all factory default values are used. 
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In the standard CMOS setup, values entered must correspond to the actual hardware in use. For 

this research, a 102 MB hard disk and a 1.44 MB, 3.5 inch floppy drive are used. Accordingly, hard drive C 

is set to USER TYPE 47. This should correspond to the following data fields: 

TABLE III-2: Hard Drive C Parameters 

Cyln Head WPcom LZone Sect Size 

1024 12 1025 1025 17 102 

When booting from the PCD-890 RAM Disk, no actual hard disk is used, so hard drive C must be changed 

to Not Installed. Hard drive D should always be set to Not Installed, floppy drive A should be set to 1.44, 

and floppy drive B may be set appropriately, if one exists. 

Among the many parameters set in the advanced CMOS setup, a few are important. The HD Data 

Area should be set to 0:300. This should not be changed unless a different hard disk is used or if the present 

hard disk is reinitialized. The System Boot Seq should be set to C: A:, which forces the system to boot off 

the hard disk, if one exists. Finally, all cache should be enabled, all video ROM shadow-RAM should be 

enabled, all adapter ROM shadow-RAM should be disabled, and the system ROM shadow-RAM should be 

enabled. 

D.      PCD-890: RAM Disk 

1.     Specifications 

The PCD-890 is a solid-state disk emulator with a capacity up to 12 MB, using EPROM, SRAM, or 

Flash memory chips. For this research, 24 Sony 581000P 128 KB SRAM chips were used to create a 2.88 

MB emulated disk. Replacing mechanical drives with the RAM Disk not only allows data retrieval to be 

accomplished five times faster, but the RAM Disk is also much less susceptible to damage from motion or 

vibration. Two PCD-890's may be installed on each system, and each PCD-890 has two memory banks that 

may be configured as either one or two virtual disks. Each virtual disk can be configured as drive A, B, C, 

or D which are fully software compatible with mechanical drives with no additional software development. 

Eacli board features a 3.6 V rechargeable lithium battery that keeps the SRAM charged and lasts up to six 

months. Memory loss is possible if this battery is allowed to run down; however, there is a connection at CN1 

for an optional external battery power. Each card requires only 16 KB of system memory. 
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2.     Configuration 

The PCD-890 comes with a utility program which is used to load the on board BIOS chip with the 

present configuration. This configuration is dependent on the position of various dip switches and jumpers. 

Jumpers JP1 and JP5 select the type of chips installed in each bank. Both of these should close the connection 

between pins 2 and 3 to denote SRAM. JPK) and JP11 set the size of the installed chips. These should also 

close pins 2 and 3 to denote 128 K or larger. Because there is only one PCD-890 installed, the JP9 jumper 

should close pins 1 and 2. To enable the SRAM battery, close pinsl and 2 on JP4. JP8 sets the interval of 

the watchdog timer, which is not used on this card. 

Dip switches SW1 and SW2 are used to enable each bank and set its drive designation. Position 

1 and 2 set the designation. For normal operation, bank 1 must be enabled, unprotected, and set to drive A 

so that the computer will boot from the RAM Disk in the absence of a hard disk (Recall this bootstrap order 

was established in the BIOS of the CPU card.). Since it is desired to have one contiguous memory space, 

bank 2 must be disabled and called something other than drive A. Table III-3 shows the switch settings used 

for this configuration. 

TABLE III-3: Switch Settings for PCD-890 

SWl SW2 

1 2 3 4 1 2 3 4 

On for A 
Off for C 

On On On On Off On Off 

During system development, it is often desirable to use both the RAM Disk along with a hard drive 

C and a floppy drive A. In this case, designate the RAM Disk as drive C by turning off switch 1 of SWl. If 

the PCD-890 is internally designated the same logical name as a hard disk existing in the same system, MS- 

DOS will automatically assign the PCD-890 to the next available DOS drive, in this case drive D. Note that 

the utility program will continue to refer to each bank according to the jumper setting, not its DOS drive 

designation. Also, the BIOS on the CPU card must be updated to correctly reflect the presence or absence of 

the actual hard drive. 

Finally, S W3 sets the memory and I/O addresses assigned to this card. These have been carefully 

selected to avoid conflicts with oilier hardware and system services. If two PCD-890's are installed, they 
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must be set to occupy the same memory address (positions 1, 2, and 3 are the same on both cards), but 

different I/O addresses (positions 4,5, and 6 cannot all be the same). SW3 should be set as follows: 

TABLE IH-4: Switch Settings for PCD-890 SW3 

1 2 3 4 5 6 

Off On Off On On Off 

The utility program can be invoked by executing the file named 890 in the PCD-890 directory. 

Once the switches and jumpers have been properly set, the utility program should mirror that configuration. 

Drive A is listed as 512KB SRAM with a disk size of 2.88 MB. All other entries should read Not Installed. 

Pressing ESC will exit the program and load the configuration into the BIOS chip. 

Once properly configured and plugged into the backplane, the PCD-890 will automatically install 

itself in memory during the booting sequence. The only indication will be a message similar to Figure III-2 

flashed on the screen for less than one second in between the RAM check sequence and the execution of the 

AUTOEXEC.bat file. To view this screen, press the Pause key to halt the bootstrap process. 

PCD-890 RAM/ROM DISK BIOS Rev . B1 (c) Copyright Advantech Co. Ltd. 1992 

Configuration: I/O MEMORY 

Drive A:   2.88M RAM Disk formatted (writ e protect OFF) 0240 D400 

BATTERY IS GOOD 

Figure III-2: PCL-890 Installation Confirmation Message 

E.      PCL-744: SERIAL I/O CARD 

1.     Specifications 

The PCL-744 is an intelligent serial data communications interface card. It provides eight 

asynchronous, full-duplex RS-232 or RS-422 ports per card, and up to four PCL-744 cards may be used 

concurrently. It is equipped with a V20 (8088 compatible) 8 MHz CPU, which relieves the central processor 

of all data handling and I/O flow control tasks. Transmit and receive queues are stored in a 64 KB dual-port 

RAM buffer, which frees main memory and prevents data loss. Dual-port refers to the fact that data can be 

accessed by both the central processor and the on board CPU. This memory-mapped data transfer is generally 

much faster than standard memory I/O with data copying. Each card maps to only 8 KB of system memory. 
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The PCL-744 has a single DB64 female port which connects to a special "octopus" cable 

blanching out into eight DB25 male connectors. Each of the eight ports features complete modem flow 

control signals (RTS, CTS, DSR, DTR, and DCD) and operate at a programmable communication rate 

ranging from 50 to 38,400 bps. The PCL-744 uses four 2681 DU ART (Dual Universal Asynchronous 

Receiver and Transmitter) devices, with each 2681 controlling two ports. These two ports share one baud 

rate divider, which is clocked by a 3.6864 MHz crystal. Baud rates may be selected for each of the two 

channels independently, but because of the sh;ired divider, both rates must be from the same group: 

TABLE III-5: Baud Rate Groups (bps) 

Group 1 1200, 2400, 7200,9600, 38400 

Group 2 1200. 1800, 2000,4800, 9600, 19200 

The PCL-744 selects its IRQ level automatically in software and requires a maximum of 1.5 A at 

5 V, 120 mA at 12 V,and 170 mA at-12 V. the latter necessary for RS-232 signalling. 

2.     Configuration 

The PCL-744 has no jumpers or switches. Configuration options such as the number of cards, 

IRQ channels, port numbers, and memory buffer starting addresses are all selected using the setup program. 

To run the setup program, execute the program named SETUP in the PCLS-802 directory. Choose the 744 

intelligent card choice to get to the PCL-744 setup screen. On this screen, set the select IRQ number to 10 

hex and the select dual port biuik to AUTO. The start port should be set to 03. This is because the two COM 

ports on the CPU card become ports 1 and 2 by default. Pressing page-down gives access to the port 

configuration menu. The Croup Edit function ensures that all ports are configured identically. Ports 3 

through 10 correspond with octopus cable connectors 1 through 8, and are configured as shown in Table I1I-6. 

To install the PCL-744 driver, execute the file 744-DRV.exe in the PCLS-802 directory. If it 

installs correctly, the following message appeals: 

PCL-ComLib Communications Driver (Ver 3.00) 
PCL-744 Multiport Card 1:   No [05477]   Bank[C800]   Port [03-10]   IRQ 10 

Device Driver Setup O.K. 

Figure 111-3: PCL-744 Installation Confirmation Message 

Executing the file STD-DRV.exe will also enable control of COM1 and COM2.  Both of these 

executions are done automatically from the AUTOEXEC.bat program during system bootstrap. 
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TABLE III-6: PCL-744 Serial Port Settings 

Ext RxDBuf Size 2K 

Baud Rale 9600 

Character Length 8 

Stop Bits 1 

Parity None 

DTR Output State Off 

KTS Output State Off 

CTS Flow Control No 

RTS Flow Control No 

TxXON/OFFCntd No 

RxXON/OFFCntrl No 

F.      PCL-812PG: ENHANCED MULTI-LAB CARD 

1.     Specifications 

The PCL-812 is a high speed, multi-function data acquisition card used primarily in this project 

to accomplish analog to digital (A/D) data conversions. It features: 

• 16 single-ended analog input channels 
• Switch selectable bipolar analog input voltage ranges 
• A programmable Intel 8253-5 timer to provide internal pacer (trigger) pulsing 
• Choice of internal or external reference voltages 
• A PCLD-780 wiring terminal breakout board for ease of connection 
• Callable software drivers for all card features 
• TTL compatible I/O signal levels 

Single-ended analog inputs require only one signal wire for each channel. The voltage is 

measured with respect to common (system) ground. A signal source measured with respect to a reference 

other than common ground is a floating source. For these signals, a second input called analog ground 

(A.GND) is available. 

The PCL-812 uses an industrial standard 12 bit successive approximation converter (HADC574Z) 

to convert analog inputs. Typical A/D conversion time is 25 usec. Because an 8 bit register cannot 

accommodate all 12 data bits, the A/D data is stored in two registers located at the base address +4 and +5. 
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The least significant bits are in positions Ü (ADO) through 7 (AD7) of BASE +4, and the most significant bits 

«ire in positions 0 (AD8) through 3 (AD11) of BASE +5, with AD11 being the most significant. Other 

important I/O addresses are shown in Table III-7. The PCL-812 requires 16 consecutive bytes of address 

space and typically draws 500 mA at +5V, 50mA at +12V, and 14mA at -12V. 

TABLE III-7: PCL-812 I/O Address Map 

Location Read Function Write Function 

Base Address Counter 0 Counter 0 

Base + 1 Counter 1 Counter 1 

Base + 2 Counter 2 Counter 2 

Base + 3 Not Used Counter Control 

Base + 4 A/D Low Byte Ch 1 D/A Low Byte 

Base + 5 A/D High Byte Ch 1 D/A High Byte 

Base + 6 D/I Low Byte Ch 2 D/A Low Byte 

Base + 7 D/I High Byte Ch 2 D/A High Byte 

Base + 8 Not Used Clear Interrupt Request 

Base + 9 Not Used Voltage Gain Control 

Base +10 Not Used Mux Control 

Base+11 Not Used Mode Control 

Base +12 Not Used Software A/D Trigger 

Base+13 Not Used D/O Low Byte 

Base+14 Not Used D/O High Byte 

Base+15 Not Used Not Used 

2.      Configuration 

The base address for the PCL-812 is selected using the first six switches of SW1, located at the 

lop of the circuit board. These should be set as shown in T«'ible III-8, giving an I/O address of Hex 220. 

TABLE III-8: Switch Settings for PCL-812 SW1 

1 2 3 4 5 6 7 8 

On On On Off On On On On 
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Switches 7 and 8 of SW1 control the number of wait states added to the PCL-812 to achieve stable 

data transfer. It can be configured with zero, two, four, or six wait state delays for each transfer of data. Both 

switches turned on selects zero delay. Jumpers are used to select the remaining configuration options. 

Table I1I-9 shows the present settings and their function. 

TABLE III-9: PCL-812 Jumper Settings 

Jumper Setting Function 

JP1 Close 1-2 Use internal A/D conversion trigger 

JP2 Close 1-2 Use internal 2 MHz clock for counter channel 0 

JP3 Close 1-2 Use internal voltage (JP8) for D/A reference on Ch 1 

JP4 Close 1-2 Use internal voltage (JP8) for D/A reference on Ch 2 

JP5 Close contact 5 Select IRQ5 to signal A/D completion 

JP6 Close contact X Select no DMA data transfer (DRQ Channel) 

JP7 Close contact X Select no DMA data transfer (DACK Channel) 

JP8 Close 2-3 Use -5V for internal D/A reference voltage 

JP9 Close 2-3 Select +/- 5V for maximum A/D conversion range 

If JP9 is set to +/- 5 V, the analog input ranges available for A/D conversion are +/- 5V, +/- 2.5V, 

+/- 1.25V, +/- 0.625 V, or +/- 0.3125 V, dependent on a software gain code parameter. These ranges could be 

doubled by setting JP9 to +/- 10V, but only if Vcc of the system power supply is strictly greater than 12V, 

otherwise A/D conversions will not be correct. The output of the present power supply is only 11.8V. 

Analog connections are made through connection ports CN1 and CN2 on the slot edge of the card. 

Figure III-4 shows the pin alignment for each connector. For this research, a PCLD-780 wiring terminal 

breakout board was used to connect signal wires to the ports through ribbon cables. 

A/DO 
CN1 

A/D 10 
CN2 

1       2 A.GND 1       2 A.GND 
A/D1 3      4 A.GND A/D 11 3      4 A.GND 
A/D 2 5      6 A.GND A/D 12 5      6 A.GND 
A/D 3 7      8 A.GND A/D 13 7      8 A.GND 
A/D 4 9    10 A.GND A/D 14 9    10 A.GND 
A/D 5 11   12 A.GND A/D 15 11  12 A.GND 
A/D 6 13 14 A.GND D/A 1 13 14 A.GND 
A/D 7 15  16 A.GND D/A 2 15 16 A.GND 
A/D 8 17 18 A.GND V.REF 1 17 18 A.GND 
A/D 9 19 20 A.GND V.REF2 19 20 A.GND 

Figure III-4: PCL-812 Connection Port Pin Alignments 
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Prior lo using the Lab Card, ii is necessary to install the PCL-812 driver by executing the file 

PCL 812.exe in the PCL-812 directory. The computer will confirm correct installation with the message, 

"PCL-812 Driver Version 1.0 is now installed." This execution is also done automatically from the 

AUTOEXEC.bat program during the system bootstrap process. 

3.     Calibration 

For accurate results, the A/D inputs must be properly calibrated. Five variable resistors (VRs) on 

the PCL-812 allow accurate adjustment. VR3 and VR5 are used for A/D adjustment, VR1 and VR2 are used 

for D/A adjustment, and VR4 adjusts the programmable amplifier offset. Executing the calibration program 

in the PCL-812 directory, the user must specify the input voltage range setting and channel number. Then 

the program will guide the setting of the programmable amplifier offset, the A/D offset, and the A/D gain. It 

is important to note that the calibration on one A/D range may cause a small offset on other ranges, so it is 

suggested lo calibrate the A/D nuige for which the best accuracy is required. 

<;.      PCL-830: COUNTER/TIMER CARD 

1.     Specifications 

The PCL-830 is a multi-function counter-timer and digital I/O card used primarily in this project 

to generate high-resolution, programmable-duty-cycle square waves used to drive the Pulse Width 

Modulation (PWM) servos, which move the aircraft's throttle and control surfaces. It provides ten 

independent 16 bit up/down counters, a 1 MH/ crystal oscillator time base, and 16 bit TTL/DTL compatible 

input and output ports. In the heart of the PCL-830 are two Advanced Micro Devices AMD9513 System 

Timing Controller (STC) chips used for all counting and timing functions. These STC chips are highly 

versatile and adaptable to many real time applications, including 

• Retriggerable digital timing functions 
• Time of day clocking 
• Coincidence alarms 
• Complex pulse generation 
• Frequency shift keying 
• Event count accumulation 

The STC is addressed by the main processor through two I/O ports: a Control port and a Data 

port. The Control port provides direct access lo the Status and Command registers, as well as allowing the 

user lo update the Data Pointer register. The Dala port is used to provide the data used to communicate with 

all other addressable internal locations. The Data Pointer register controls the Data port addressing. Among 
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the registers accessible through the Data port are the Master Mode register and five Counter Mode registers, 

one for each counter. The Master Mode register controls the programmable options that are not controlled 

by the Counter Mode registers. Each of the five general purpose counters is 16 bits long and is independently 

controlled by its Counter Mode register. Through this register, the user can software select one of 16 sources 

as the counter input, a variety of gating and repetition modes, up or down counting in binary or binary coded 

decimal (BCD), and active-high or active-low input and output polarities. Associated with each counter are 

a Load register and a Hold register, both accessible through the Data port. The Load register is used to 

automatically reload the counter to any predefined value, thus controlling the effective count period. The 

Hold register is used to save count values without disturbing the count process. 

The PCL-830 requires 6 consecutive bytes of address space, as follows: 

TABLE 111-10: PCL-830 I/O Address Map 

Location Read Function Write Function 

Base Address 9513 Chip 1 Data In 9513 Chip 1 Data Out 

Base + 1 9513 Chip 1 Command Register 9513 Chip 1 Status Register 

Base+ 2 9513 Chip 1 Data In 9513 Chip 1 Data Out 

Base + 3 9513 Chip 1 Command Register 9513 Chip 1 Status Register 

Base + 4 Digital Output Bits 0 - 7 Digital Input Bits 0 - 7 

Base + 5 Digital Output Bits 8- 15 Digital Output Bits 8 -15 

All ports are 8 bits (one byte) wide. When loading data that is longer than 8 bits - the digital data 

used to generate PWM signals for this project are 12 bits long - the low byte must be loaded first, followed 

immediately by the high byte. 

2.     Configuration 

The base address for the PCL-830 is selected using the first six switches of SW1, located at the 

top of the circuit board. These should be set as shown in Table III-l 1, giving an I/O address of Hex 210. 

TABLE III-l 1: Switch Settings for PCL-830 SW1 

1 2 3 4 5 6 7 8 

On On On On Off On On On 
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Switches 7 and 8 of SW1 control the number of wait states added to the PCL-830. It can be 

configured with zero, two, four, or six wait state delays for each transfer of data. Both switches should be 

turned on to select zero delay. There is only one jumper on the PCL-830. This jumper (JP1) should close 

contact 3 to select IRQ3 as the interrupt level. The interrupt is not used in the present configuration, but to 

use this inteiTupt, set the Interrupt Enable (CN1 pin 18) low. The positive edge on the Interrupt Input (CN1 

pin 19) will then generate an IRQ level 3. 

Signal connections are made through one of four 20 pin male connection ports. CN1 and CN2, 

found on the slot edge of the card, are used to interface with the AMD9513 STC chips 1 and 2 respectively. 

Figure III-5 shows the pin alignment for these connectors. For this research, a PCLD-780 wiring terminal 

breakout board was used to connect signal wires to the ports through ribbon cables. The servos are attached 

by first connecting the red and black voltage reference wires to +5 V and GND. The white command wires 

are then connected to OUT 1 throunh OUT 10. 

CN1 CN2 
FOUT1 1 2 GATE1 
GATE 2 3 4 GATE 3 
GATE 4 5 6 GATE 5 

SRC1 7 8 SRC 2 
SRC 3 9 10 SRC 4 
SRC 5 11 12 OUT1 
OUT 2 13 14 OUT 3 
OUT 4 15 16 OUT 5 

GND 17 18 INT ENB 
+5V 19 20 INT 

FOUT2 
GATE 7 
GATE 9 

SRC 6 
SRC 8 

SRC 10 
OUT 7 
OUT 9 

GND 
+5 V 

1 2 
3 4 
5 6 
7 8 
9 10 
11 12 
13 14 
15 16 
17 18 
19 20 

GATE 6 
GATE 8 
GATE 10 
SRC 7 
SRC 9 
OUT 6 
OUT 8 
OUT 10 
Not Used 
Not Used 

Figure III-5: PCL-830 Connection Port Pin Alignments 

It is not necessary to install any drivers prior to using the PCL-830; however, a counter on the 

AMD9513 must be armed by sending an ARM command to the Control port before counting can commence. 

Once armed, the counting process may be further enabled or disabled using the hardware gating options. 

Additional commands are provided to step an individual counter by one count, set and clear an output toggle, 

issue a software reset, clear and sei special bits in the Master Mode register, and load the Data Pointer register. 

H.      Global Positioning System ((IPS) Receiver 

1.     Specifications 

The Motorola GPS receiver used in this research, model PVT-6, is fully detailed by Twite 

[Twi94|. It is a fully automatic position finding system that determines and digitally transmits autonomous 

position, altitude, velocity, heading, satellite tracking status, and correct time in three different, user 
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selectable formats: Motorola Proprietary Binary Format, National Marine Electronics Association (NMEA- 

0183) Format, or LORAN Emulation Format. Each of the six parallel channels can find, track, and monitor 

one NAVSTAR satellite. If three satellites with adequate signal strength and bearing spread are available, a 

two-dimensional (latitude and longitude) fix is calculated. If four or more usable satellites are available, 

altitude can also be determined. Instantaneous speed and heading is determined by measuring signal doppler 

shifts, although without differential corrections, this information is prone to small errors. 

2.     Configuration 

The GPS receiver module and its antenna are fully self-contained units that require no special 

configuration. The antenna plugs into the coaxial connector on the receiver module. Power and serial data 

connections are made through a ten pin connector on the back of the unit. A special data cable has been 

manufactured to provide +5 V and GND to pins 2 and 3 respectively. Serial data communications use pins 8 

through 10 and terminate in a DB9 female connector. This is, in turn, connected to PCL-744 octopus cable 

number 2. 

I. INERTIAL MEASUREMENT UNIT (IMU) 

1.     Specifications 

The IMU selected for this project was manufactured by Watson Industries in Eau Claire, WI. 

Model IMU-600D uses vibrating element sensors to provide the following nine sensor readings: 

TABLE 111-12: IMU Data Output 

Sensor Scale Limits 

X-Axis Acceleration +3g to -3g 

Y-Axis Acceleration +3g to -3g 

Z-Axis Acceleration +3g to -3g 

X-Axis Angular Velocity +100 to -100 Degrees/Second 

Y-Axis Angular Velocity +100 to -100 Degrees/Second 

Z-Axis Angular Velocity +100 to -100 Degrees/Second 

Magnetic Heading N=7fff, E=c000, S=0000, W=3fff 

Bank Angle +60 to -60 degrees 

Pitch Angle +60 to -60 degrees 
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Each analog sensor reading is processed through a 16 bit A/D converter and the resulting digital 

representation of the signal is in two's complement format. To use acceleration as an example, 3g = Hex 7fff, 

Og = Hex 0000, and -3g = Hex XO(X). In all, there are nine 2-byte words of sensor data. Each word of data is 

sent as a set of four ASCII characters (0-9 or ABCDEF) corresponding to the hexadecimal representation of 

the 16 bit word. This complete bank of data is terminated by a carriage-return and line feed, bringing the total 

size of one data reading cycle to 3K bytes. The sensor data is sent continuously at 9600 baud with one start 

bit, one stop bit, and no parity bit. At this speed, ignoring any overhead for data formation, a full data bank 

could be received every 31.7 msec, or just over 31.5 Hz. 

The IMU can also receive data. The receive line is used for calibration, so care should be taken 

to send only the following signals:. 

TABLE 111-13: IMU Input Signals 

Signal Definition 

I Continuously send bank 1 data 
(Data described above) 

R Continuously send bank 2 data 

0 Exit Initialization 

W Re-enter Initialization 

The IMU normally requires 43 minutes to warm-up and initialize. During initialization, the unit should 

not be moved for best accuracy. The IMU will send out the bank 1 data stream as it is initializing. 

2.      Configuration 

The IMU is a fully self-contained unit with only one nine pin port for power and serial data connections. 

Table 111-14 shows the pin configuration. A special data cable has been manufactured to provide GND and 

TABLE 111-14: IMU Pinout 

Pin Function 

1 Power GND 

2 +28 VDC 

3 Signal GND 

5 Signal Receive 

9 Signal Send 
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+28 V power to pins 1 ;uid 2 respectively and terminates with a DB9 male connector. This is, in turn, 

connected to PCL-744 octopus cable number 1. Although the manufacturer attests that the unit can operate 

with as little as 22 VDC supplied, it must be with respect to system ground for the serial communications to 

have the proper signal levels. Because of this the +12V to -12V spread available from the system power 

supply cannot be used; a separate power supply was used for test purposes. Maximum power consumption 

is 250 mA at +28 V. 

J.       DATALINKS 

Two different datalinks have been developed for the UAV so far. Both were commercial off-the-shelf 

(COTS) products that had to meet several criteria: 

• Cost limitations 
• Weight limitations 
• Power limitations 
• Size limitations 
• Standard serial interface 
• Ability to transmit/receive beyond the line-of-sight 
• Frequency agility 
• Hardware reliability 
• Adequate data throughput 

The first datalink solution was a X.25 packet radio terminal node controller (TNC) connected to a 19.2 

Kbps modem in combination with a UHF wide-band transceiver developed by Reichert [Rei93]. This is a 

robust system that meets or exceeds almost every criteria. Reichert's estimate of required data throughput is 

accurate in scope, but may change slightly in the final design. For example, he lists the control refresh rate 

as 40 Hz while this controller operates at 32 Hz. He estimates 8 bits per servo update, while the present 

configuration uses 12; however, the present configuration could be reduced to 8 bits per servo with no 

noticeable change in performance. An updated throughput requirement estimate is shown in Figure III-6. 

Using this updated requirement, the capacity of this datalink, which yields 19.2 Kbps simplex or 9600 bps 

duplex, is exceeded. Possible solutions would be to reduce the servo input to 8 bits and to refrain from 

downlinking INS and non-INS sensor data for every control cycle. 

The second datalink solution was a direct-sequence spread spectrum UHF datalink as developed by 

Bess [Bes94]. This datalink also used a modified X.25 protocol with a top transfer speed of 19.2 Kbps. It 

has programmable length packets and performs its own error correction and flow control. Spread spectrum 

transmission has the added advantages of being less susceptible to jamming signals and may be operated 

35 



without an FCC license. The unit includes a serial data cable that terminates with a DB9 female connector. 

This is, in turn, connected to PCL-744 octopus cable number 3. 

Controls to be Uplinked 

Device 
Refresh           Bits per 

Qty             Rate              Update 
Required 

Throughput 

Throttle 
Control Vanes 
Wing Ailerons 
Canard Ailerons 

1 16 Hz                 12 
4               32 Hz                  12 
2 32 Hz                  12 
2                32 Hz                   12 

Servo Positions to be Downlinked 

192 bps 
1536 bps 
768 bps 
768 bps 

Device 
Refresh            Bits per 

Qty            Rate             Update 
Required 

Throughput 

Throttle 
Control Vanes 
Wing Ailerons 
Canard Ailerons 

1 16 Hz                 12 
4               32 Hz                  12 
2 32 Hz                  12 
2                32 Hz                   12 

192 bps 
1536 bps 
768 bps 
768 bps 

Navigation and Sensor Data to be Downlinked 

Device Qty 
Refresh 

Rate 
Bits per 
Update 

Required 
Throughput 

GPS Receiver 1 1 Hz 
INS Sensors 1 32 Hz 
Non-INS Sensors 2 32 Hz 

544 
304 

12 

Total Datalink Throughput Requirement 

Device 

544 bps 
9728 bps 
1152 bps 

Required 
Throughput 

Controls 
Servo Feedback 
Sensor Data 
Estimated Datalink Overhead (15%) 

Total Datalink Throughput Required 

3264 bps 
3264 bps 

11424 bps 
2693 bps 

20645 bps 

Figure III-6: Datalink Throughput Requirements for Ground Control 

The first datalink was not used in this research because of its complexity and licensing requirements. 

The second datalink did not perform well in (he laboratory environment, occasionally locking up or dropping 
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out of service for no apparent reason. Although configured for 9600 bps throughput, actual results were less 

than half of that. It also required cycling the power and manual configuration to be restarted. Once 

autonomous flight is achieved, the datalink will diminish in its importance, but as long as direct ground 

control is required, the datalink is the lifeline and the weakest link in controller communications. 

K.      ANCILLIARY EQUIPMENT 

In addition to the aforementioned hardware integral to the controller itself, ancillary equipment was 

necessary to form the complete system. In order to control the UAV, servos and a source of power are 

needed. Any COTS model airplane servo motors could be used, as described by Stoney [Sto93], provided 

they generate sufficient torque to hold the control vanes position in the thrust stream. The servos used for 

this UAV were Futaba high torque model FP-S34. The red and black wires connect to +5 V system power 

and system GND respectively. The white command signal wire is attached to the PWM output signal from 

the PCL-830 counter/timer card. The white feedback wire connects to one of the A/D analog input channels 

on the PCL-812 lab card. Power for this research project was generated by a standard AMAX 200 W power 

supply that provided up to 20 A at +5 V, 8 A at +12 V, and 0.5 A at both -5 and -12 volts, which was ample 

for all hardware used. Power generation and storage will vary according to the UAV design. Although not 

investigated in this research, it is a very technical problem that affects the operation of all hardware. 

A video graphics adapter (VGA) card linked with a standard VGA monitor and a Microsoft in-port 

mouse, together with the hard disk and floppy drives represented the detachable part of this system hardware 

which was necessary for system development only. Once the controller software was developed, it was 

transferred to the RAM Disk. The system was then configured to boot from the RAM Disk and automatically 

invoke the controller program. The keyboard and monitor are also detached prior to installation into the 

airframe; however, the software must be modified slightly to accept user commands from the datalink prior 

to operation without the keyboard and monitor. 

L.      CHAPTER SUMMARY 

This chapter gives a detailed description of the specifications of the hardware selected for the UAV 

controller, and the configuration details necessary to enable all equipment to interact together, including those 

subsystems developed by other students. Using this information, system users and follow-on researchers will 

know and understand how the system was designed to operate and the configuration details necessary to 

reconstruct a similar system. For additional information about the specifications or operation of this 

hardware, see Appendix C or the published user's manuals. 
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IV. SOFTWARE 

Once the hardware has been selected, it is the software that actually shapes the operation of the 

controller. The hardware and software have a symbiotic relationship by which neither can function without 

the other. The software must operate within the confines of the hardware's capabilities and configuration, and 

the hardware fulfills its tasks in a coordinated manner by taking its direction from the software. Software 

gives the system its function and its personality. It provides for the interface by which the user comes to know 

and recognize the system, it provides the transfer and organization of all the data crucial to the controller's 

operation, and it coordinates the functions of and sets the cadence for the hardware components. Where 

hardware is the body, software is the life blood. 

This chapter will provide an overview of the scope of the software written for this research. Beginning 

from the original requirements, it will specify the conventions, definitions, and structures necessary to help 

the reader understand the code, li will detail the software environment in which the software is designed to 

operate, and it will briefly describe the function of the various procedures. A complete listing of the code is 

included in Appendix A. 

A.      OVERVIEW 

The UAV is a multi-faceted project bringing together many varied disciplines. Since the scope of this 

research was to design the Real-Time Executive (RTE) for a central controller, it required the assimilation of 

many sub-systems into one interoperable, cohesive, control system. These sub-systems were developed by 

other students as part of an ongoing development effort. Among the many sub-systems previously developed, 

this RTE was specifically designed to coordinate datalink development by either Bess [Bes94] or Reichert 

|Rei93], navigation system development by Twite [Twi94] and Hallberg [Hal94], servo control development 

by Merz [Mer92| and Moran [Mor93], and aeronautical control algorithm development begun by Davis 

[Dav92] and Brynestad [Bry92], ;uid continued more recendy by Bolyard [Bol94] and Moats [Moa94]. 

1.      Requirements 

As the backbone of the UAV controller, the RTE designed for this research acts like the conductor 

of an orchestra, directing the How of data and cueing the execution of the various controller functions at the 

correct moment in lime. The controller's most basic requirement is to provide positive control of the aircraft. 

This includes analyzing the present slate, comparing the present state with the desired state, and making the 
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necessary adjustments. In order to provide this control, the control software must meet several other criteria 

as well. Specifically: 

• The software must be able to receive data from all flight sensors (GPS, INS, non-INS). 
• The software must recognize and store a correct and complete data package from each sensor. 
• The software must recognize and discard corrupted data packages received from any sensor. 
• The software must always maintain the most recent data available from each sensor. 
• The software must provide Kaiman filtering of navigation data, selecting the most appropriate 

source for use by the control algorithm 
• The software must recognize command input and determine desired aircraft posture and 

position. 
• The software must calculate corrections necessary to correct any deviations from desired 

posture and position. 
• The software must generate PWM signals for servo motors to effect the necessary corrections. 
• The software must be able to transmit and receive data through the datalink as necessary. 

Other requirements are not as obvious, but became apparent during the development of the system. They 

include a predisposition to be written in C language and to be interrupt driven. In addition, the RTE must 

deal effectively with exceptional circumstances, and it must be flexible and clearly written. 

a. The RTE should be written in C language 

Because of the low level programming requirements, the project did not fit well with an 

object-oriented paradigm. In addition, aeronautical engineering students developing the control algorithm are 

using a program called Matrix-X which generates modules in C code. To interoperate with these modules, 

and for reasons mentioned in Chapter 11, C was chosen as the programming language. 

b. The RTE should be interrupt driven 

As delineated in Chapter II, hard real-time systems are required to meet timing deadlines 

imposed by the outside environment or risk system failure. When the control loop is initiated by a timed 

interrupt, it assures that the system will always execute positive control functions at a uniform interval which 

is easily regulated. This not only frees the processor to do other things when not executing the control loop, 

but also allows the control loop to interrupt slower (by processor standards) processes, such as generating 

servo command pulses or writing to the screen, prohibiting their occurrence from affecting system timing 

deadlines. 

c. The RTE must deal effectively with exceptional or emergency occurrences 

What if the datalink fails or the buffers are full? What if the CPU gets into an infinite loop 

or comes to a halt? What if the operator w;ints to reset the system? What if the GPS or IMU do not deliver 
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a complete message? These or any number of other possible mishaps or exceptions can occur, and the system 

must be able to respond appropriately and reestablish positive control of the aircraft. Any problems with 

system integrity come under the auspices of the RTE. 

d. The RTE must be flexible to evolve with the rest of the system 

The development of the UAV was designed in five phases, as outlined by Reichert [Rei93]. 

As the control of the UAV evolves from remote ground control to full automation, the software must be 

flexible enough to evolve with it. To facilitate this requirement, it should be modular in design; each 

procedure should be self-contained and should perform a specific function. 

e. The RTE must be clearly written to facilitate follow on work 

Just as this is not the first research project on the UAV, it will not be the last; however, 

interoperability and cohesiveness will still be requirements. The software programs are intended to be 

self-explanatory through form, logic, and inserted comments. Where they are not, this research document is 

intended to serve as a programmer's manual for all functions of the software. 

2.     Definitions 

All preprocessor directives, including compiler token definitions, global variable definitions, and 

procedure prototypes are contained in the lone header file called DEFS.h. An index of all other variable 

names is contained in Appendix B, which may be used as a glossary by subsequent programmers. Special 

complex variables are stored in C structures, as described below. 

a.     Structures 

Very few structures are used in the control software, as the necessary data types are not 

complicated. The first is struct TJJPS, introduced by Twite [Twi94] and fully defined in the header file 

GPSTRUCT.h. This structure is globally maintained and gives access to all possible information obtained 

from the GPS receiver by simple structure-member reference. For example, the control algorithm could 

access the degrees of latitude of the present position by simply using the variable name 

gps.pcs.latiiude.degrees. 

The second is a f'ANDL. which represents a pointer and its length. This is the preferred 

method of passing data contained in buffers of differing length. It allows one structure argument to be passed 

and yet ;tllow the same procedure to h;indle the various length buffers consistently. 
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3.     Conventions 

As a means of standardization, a set of conventions have been established in the design of the 

control software. Any procedures not part of the RTE, but subsequently added to the controller software 

(hereafter termed participating procedures) should conform to these conventions. In order to avoid 

contention and interference, the RTE must maintain control over several critical parameters, including 

execution timing, data transfer, memory allocation, and the operation of the hardware, particularly the 

datalink. 

a. The RTE must maintain control over all timing 

This is the defined function of the RTE, yet for it to be effective, participating procedures 

should be of relatively constant execution time. Recursion and loops must be used carefully, and the 

participating procedure should not call another procedure that should be under the control of the RTE. The 

challenge of programming the RTE is then reduced to a complex scheduling problem among a relatively 

small number of processes which all have concise scope and operating parameters. 

b. The RTE must maintain control over all data 

As a corollary to the previous requirement, the RTE also maintains control over all aspects 

of data storage and transfer. This includes I/O port number definitions, flow control definitions, and actual 

I/O requests including input from the keyboard, output to the screen, or data transfers with the datalink. This 

is crucial to maintain coordinated operation of all controller functions. Any participating procedures must 

refrain from making their own data transfer calls, unless it is the express function of that procedure. Data 

information placed in a buffer is passed using the PANDL structure defined above. 

c. The RTE must maintain control over memory allocation 

In the course of operation, a given procedure may be called many times by the RTE. Memory 

allocation is a relatively slow procedure, and should be minimized and carefully managed. Any procedures 

that allocate memory must clear that memory prior to return to the calling program. It is preferred to have 

the RTE allocate the memory and then pass that PANDL to the participating procedure fill the buffer and 

modify the length. 

d. The RTE must maintain control over the hardware 

It is the function of the RTE to direct the execution of the hardware. Unless it is their defined 

purpose, participating procedures should not send signals to hardware or in any manner change the operating 
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p;irameters of the hardware esuiblished by the RTE. This will preclude the RTE from coming into contention 

with the operation of one of the participating procedures. 

e.    Messages coming from the ground must have a set format 

Because the datalink was only used to transmit information down to the ground in this 

research, this format has not been completely established. The read_datalink() procedure is written to expect 

a special character to denote the start of the message (presently using '#'), followed by a two byte integer 

representing the length of the message in bytes, followed by the message itself. It is possible to also include 

a one byte action code after the message length to help the RTE determine what action to take with the 

incoming message. Participating procedures that uplink information to the RTE must follow this convention 

for the message to be properly deciphered. 

li.      COMPILER CONFIGURATION 

The software was developed under Borland C/C++, version 2.0. Invoking this program using the 

command BC, without any Hags, brings the user into an integrated development environment (IDE). The 

IDE, otherwise known as the Programmer's Platform, includes a multi-file editor, multiple overlapping 

windows, an integrated debugger, a built in assembler, and support for in-line assembly of other object 

modules. Pull down menu selections are at the top of the screen, and most are similar to other graphical user 

interfaces. The following compiler configuration parameters are important to ensure that the code will 

compile properly. 

1.      Project File 

Using the Project pull down menu gives access to the project file. The project files are kept in the 

C:\borlandcNbin directory and perform two important functions. First, the status of the screen (or desktop) 

and all preferences selected, including compiler options, are stored in the project file. Then, when the project 

is opened, the screen and all preferences arc automatically returned to the settings selected for that project. 

Second, the project contains a list of files to be compiled at run time. This allows the user to specify other 

files, like header files or separate object modules, to be included in the compilation. As shown in Figure IV-1, 

two such files arc required for correct compilation of the controller software. 812CL.lib is an object code 

library for the intrinsic functions used to operate the PCL-812 board. MOXA-CL.obj is an object code 

module for the intrinsic functions used to access the PCL-744 board. According to the manufacturer, both 
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boards require that the intrinsic functions be used to access the boards. Experience has confirmed that the 

intrinsic functions are also the easiest and most efficient method of accessing the functions of these boards. 

Project: Monitor 

File Name Location Line Code Data 

Monitor.c 
812CLIib 
MOXA-CL.obj 

.A.AControl 

..\..\PCL-812\C 

..\..\PCLS-802\LIB\C 

946 
n/a 
n/a 

14788 
n/a 
n/a 

4209 
n/a 
n/a 

Figure IV-1: Compiler Project Screen 

2.     Compiler Options 

The Options pull-down menu gives access to the selected compiler options. Most of these may 

be set to the user's preference, but several are important and should not be changed. Under Code Generation, 

the large memory model should be selected and Automatic Far Data should be checked. Because of the 

"segmentroffset" addressing scheme in the computer, several memory models are available. For each item 

of code or data, the compiler can either generate explicit segment and offset addresses or can use the offset 

alone within a default segment address. The large model generates explicit segment and offset addresses for 

all data items, thus allowing an unlimited amount of code and data with only one constraint: no single data 

item can exceed 64 Kbytes [Bar89]. This model is shown graphically in Figure IV-2, and is necessary for 

direct memory access and for setting far pointers used in the interrupt service routines (ISRs). 

In the Entry/Exit Code Generation menu, neither Standard Stack Frame or Test Stack Overflow 

should be checked. Because of the heavy use of the stack for ISRs and console functions, like printing to the 

screen, the stack frame should be as large as possible. Additionally, with the Standard Stack Frame option 

turned off, any function that does not use local variables and has no parameters is compiled with abbreviated 

entry and return codes. This makes the resulting code shorter and faster. The Test Stack Overflow generates 

code to check for stack overflow at run time. This code is not necessary, and can cause run-time problems in 

the controller. Similarly, under the Linker option, no stack warning should be checked. During interrupts, 

the stack is not where the stack checker expects it to be. Under Optimization options, select optimize for 

speed. Under normal conditions, the compiler will choose to optimize for size, choosing the smallest code 

sequence possible. With this item toggled, the compiler will choose the fastest sequence for each task. This 

is important since the program does not come close to exceeding the 2.88 Mbytes available on the RAM Disk, 
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but is significantly time-constrained. Last, under Directories, the compiler is operating with the Include 

directory set to C:M)orlandc\include, the Library directory set to C:\borlandc\lib, and the Output directory set 

to C:\control. 

Upto64K 

Heap 
(rest of 
memory) 

t 
Stack  J 

Default 
Data Segment 

Code Segment 
#2 

Code Segment 
#1 

SS:SP 

SS:0000 

DS:0000 

(CS loaded when 
accessing code) 

CS:0000 

Figure IV-2: Diagram of Large Memory Model 

C.      SYSTEM INITIALIZATION 

This section highlights initializations that must be completed before the program can start the flight 

management unit (FMU) sequence to control the UAV. For proper operation, the software program must 

have been compiled in accordance with the compiler options described above. Then, once the program is 

invoked, the main() procedure is the first code to execute. 
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1. Software Initialization 

In the beginning of the main() procedure, special exit handling routines are set up. The atexit() 

procedure directs the program to execute the shut_down() procedure whenever the program is terminating 

from any reason. This is a handy function because the termination point can come anywhere, yet the 

shut_down() procedure will always be executed, assuring that the ISR vectors have been returned to normal, 

the allocated memory has been freed, and the I/O ports have been properly closed. 

The ctrlbrk() procedure establishes a return point in the program in the event of a control-break 

key sequence. It can be seen in the break_handler() routine that this is a method for completely restarting the 

program without having to reboot. After the exit handling routines are set up, the global structures needed to 

hold sensor data are allocated. This includes a struct T_GPS, PANDLs for the IMU and GPS information, 

and data and param arrays for the PCL-812. 

2. Hardware Initialization 

After establishing exception handlers and memory allocation, the main program calls 

initialize_hw() . This procedure controls the parameters of the hardware that must be set up in software, 

which is necessary for three of the hardware cards: the PCL-812 Lab Card, the PCL-744 Serial I/O Card, and 

the PCL-830 Timer/Counter Card. 

a. PCL-812 

The PCL-812 relies solely on the param array for information concerning its operation. It is 

important that the hardware and software configurations match. Specifically, param[4], IRQ level, must 

match the setting of jumper JP4; parainl7], trigger level, must match the setting of jumper JP1; and 

param[ 17], gain code, must match the setting of jumper JP9. Other important parameters are param[5] and 

param[6], the product of which divides the 2 MHz clock to determine the speed of the internal trigger, and 

param[ 14], [ 15], and [16] that set how many A/D conversions will be done and on which analog inputs. With 

the param array established, the iniiialize_hw() procedure calls PCL-812 function 3 to initialize the hardware 

and PCL-812 function 4 to begin A/D conversions. 

b. PCL-744 

The PCL-744 uses the same library of software functions as the PCLS-802 Serial I/O Card, 

which is not used in this project. The PCLS-802 software has three major parts: first is the complete RS-232 

based software device driver for I/O processing and control; next are the interface libraries which allow the 
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use of high-level programming languages to control serial communications; and third are application 

programs which allow troubleshooting of the serial communications. All of these interface library procedures 

begin with "sio_" and so are hereafter termed sio functions. Advantech engineers have confirmed that the use 

of these library functions is the only method available for accessing the PCL-744. These sio functions are 

fully described in Chapter 3 of the PCLS-802 PC-ComLIB Manual by Advantech. The initialize_hw() 

procedure uses these sio functions to configure each of the eight serial ports as follows: 

• 9600 baud rate 
• 8 data bits 
• 1 stop bit 
• No parity 
• DTR off 
• RTSoff 
• H;irdware flow control off 
• Software flow control off 

Compiler variables for the bit configurations needed for these settings are found in HEAD-C.h. Companion 

sio functions are used in clieck_hardware() to read the values set for each port. After configuring the ports, 

initialize_hw() opens each port, flushes the receive and transmit buffers, and sends initialization codes to the 

GPS receiver and the IMU. 

c.     PCL-830 

The last section of initialize_hw() initializes the PCL-830 card. The original software was 

written by Moran |Mor93] for another circuit card that also used AMD9513 System Timing Controller (STC) 

chips, and so it could be ported over with minor modifications. This code is well documented by Merz 

|Mer92|. Each timer is configured as follows: 

• Counter clock source set to Fl (1 MHz) 
• 8 bit wide data bus (mandatory for the PCL-830) 
• Binary counting on falling edge, counting down repetitively 
• Reload counter from Load or Hold register 
• Disabled data pointer increment (this is controlled by for-loops in software) 
• No gating control 
• Output control set to toggle on terminal count 

This configuration is equivalent to a specialized version of the AMD9513 Mode F. Under this configuration, 

the individual counter is alternatively loaded from its Load and Hold registers. First, the counter loads the 

value from its Hold register and puts the output high (5 V) upon terminal count (counting down to zero). Then 

the counter loads the value from its Load register and toggles the output low (0 V) upon terminal count. The 

value in the Load register creates the desired length of the PWM pulse, which should be between 0.6 ms and 
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2.4 ms. The sum of the Load and Hold registers sets the PWM signal refresh rate, which should not exceed 

1Ü ms [Dav92J. Notably, this mode differs from Mode C in that the counters are not required to be loaded 

and armed manually, except initially. This initial arming is done at the end of initialize_hw(). 

D.     INTERRUPTS 

Interrupts can come from two different sources: hardware and software. Both hardware and software 

interrupts Jire decoded by hardware chips called Peripheral Interrupt Controllers (PICs), and both use the 

interrupt vector table to find the location of the interrupt service routine (ISR), a small program designed to 

address the cause of the interrupt. Hardware interrupts typically call the processor's attention to an external 

event, such as a key stroke or other asynchronous action. Conversely, software interrupts are like 

instructions; they are part of, and therefore synchronous with, the running program. 

The lowest 1 Kbytes of memory is allocated for an interrupt table that can store the four byte 

"segment:offset" address for each of 256 ISRs. The correct ISR is located by its number, no matter where it 

is located in memory. The CPU simply has to multiply the interrupt number by 4 (since each segment has 

four bytes) and jump to the address il finds at the resulting offset in segment 0. For example, the address of 

the ISR that serves interrupt 70 is found in segment 0 at an offset of 70 X 4 = 280 = 118h. The interrupt table 

does not contain the ISR code itself, but the address of the beginning of the ISR code. To change the 

execution of an ISR, it is only necessary to change the address in the interrupt table for the desired interrupt. 

Upon occurrence of an interrupt, the CPU will place the value of the program counter and all internal registers 

on the stack for future reference. Then it will look up and jump to the address of the ISR. Upon completing 

execution of the ISR, the CPU then retrieves the information it had placed on the stack and resumes normal 

operation [Nor85|. 

The PIC is the chip that translates external interrupt request signals (IRQs) into hardware interrupts, 

allowing external devices to generate interrupts. The microprocessor itself has only two interrupt lines: one 

for maskable interrupts and one for non-maskable interrupts. Maskable interrupts are those that can be 

disabled or enabled in software. The PIC assigns priorities to its eight interrupt lines, with line 0 programmed 

for the highest priority by default. When one of the lines is activated, the PIC blocks all IRQs of equal or 

lower priority. It continues to block these IRQs until it receives an end-of-interrupt (EOI) code from the 

processor. The processor communicates with the PIC at the microcode level. When its maskable interrupt 

line goes high and interrupts ;ue enabled, it queries the PIC which is the highest pending IRQ and then jumps 

to the associated interrupt vector. The CPU card has two 8259A PICs. The output line of the secondary PIC 
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is attached to IRQ 2 of the primary PIC, and the output line of the primary PIC is connected to the processor. 

This allows 16 different IRQ signals to be recognized by the processor. When IRQ 8 or higher is generated, 

the processor queries the PICs and finds IRQ 0 through IRQ 7 of the secondary PIC is cascaded through IRQ 

2 of the primary PIC [Rie93]. 

1.      Generating Software Interrupts 

As discussed in Chapter II, the cadence of the entire control loop is built around the periodic 

occurrence of a software interrupt. Because the CPU will immediately jump to the ISR when interrupted, 

placing the beginning address of the control loop program in the interrupt table, and generating a periodic 

interrupt to jump there, will guarantee a consistent frequency of control loop execution. For the UAV, the 

entity that executes the control loop is called the Flight Management Unit (FMU). Within the start_fmu() 

procedure, the ISR for the RTC interrupt (7()h) is replaced with a pointer to the control loop procedure 

new_vector(). Start_fmu() then proceeds to generate a periodic interrupt, as described below. 

Every computer has some version of a Programmable Interval Timer (PIT).    Intel 80X86 

processors usually use a 8253 or 8254 PIT that has three independently programmable 16 bit counters that 

can be configured in any of six counter modes. On the CPU card, one of these counters is used to periodically 

refresh the DRAM; one is used to generate tones for the speaker.  The third timer is used to generate an 

interrupt 8 (IRQ 0) at 18.2 Hz used to adjust the current time and date in the system BIOS area. It seemed 

like a simple process to change the frequency of this interrupt and "hook" it for the FMU; however, this led 

to problems.     Because  IRQO is the highest priority, all other computer functions, such as serial 

communications, disk operations, and keyboard activations, were all blocked out by the PICs. In addition, 

some pails of MS-DOS that require periodic service hook this interrupt, and these functions could be 

adversely affected by changing the frequency of the interrupt. Most significantly, the engineers at Advantech 

confirmed that the 8254 functions on the CPU card are part of an "integrated chip set" and could not be 

accessed independently. For these reasons, another timer had to be used. A timer on the PCL-830 could be 

used, but this was discounted because it was on another card and would generate unnecessary data traffic on 

the backplane bus. Fortunately, there is another timer available on the CPU card that generates interrupts - 

one that is not widely documented, but is available on the hardware. It is called the Real-Time Clock. 
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2.     The Real-Time Clock 

The real-time clock (RTC) is part of the Motorola MC146818A CMOS chip shared by the system 

BIOS. As compared to the 8254 PIT, it has several disadvantages: 

• The RTC is less flexible; it handles only 15 possible interrupt frequencies between 2 Hz and 
32767 Hz. 

• The default ISR switches off the RTC interrupt after a time-out expires. 
• The RTC and IRQ 8 are not well documented. Most of this information was gleaned from 

online sources from the Internet. 

Still, the RTC is perfect for this research application because it avoids all of the problems listed 

above for the 8254 chip: 

• The RTC allows the higher priority keyboard and I/O interrupts to proceed normally. 
• The RTC is not polluted with side effects. 
• The RTC is available for use on the hardware being used. 

Because the RTC exists outside of the normal address space, it cannot contain directly executable 

code. It is communicated with through I/O ports 70h and 71h. Port 70h is the index register and port 71h is 

the data register, as defined in DEFS.h. AH internal registers of the RTC are accessed by setting an index at 

port 70h and reading from or writing to port 71h. The output from the RTC is in hexadecimal. Figure IV-3 

details the CMOS memory allocation. The ten clock data registers are not used in this research, although it 

is envisioned that the system clock will be updated from the GPS time data in the future. In order to use the 

RTC to generate periodic interrupts, only the four status registers are used. 

There are a few caveats when programming the RTC. First, the data register must always be read 

from or written to iifter writing to the index register. Also, there should not be a long delay between writing 

to the index register and reading from or writing to the data register. Waiting too long between the two 

operations can cause a malfunction of the CMOS chip [Dun86]. Interrupts must be disabled while 

programming the RTC. The non-maskable interrupt (NMI) must also be disabled. Since the chip is 

non-volatile, it continues to work even in the event of a system reboot caused by a NMI. The system reads 

vital parameters from the chip, such as memory size and configuration. Malfunction of the RTC chip is to be 

avoided at all costs. Therefore, it is safest to toggle the NMI off by toggling bit 7 of the index register when 

selecting the status register to use. The following describes how the status registers are utilized. 
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00h Seconds 
01h Second Alarm 
02h Minutes 
03h Minute Alarm 
04h Hours 

05h Hour Alarm 
06h Day of Week 
07h Date of Month 
08h Month 
09h Year 

The first 14 bytes of the MC146818 chip consist of ten read/write data registers 
and four status registers, two which are read/write and two which are read only. 

The format of the 10 data registers is: 

(BCD 00-59, Hex 00-3B) Note: Bit 7 is read only 
(BCD 00-59, Hex 00-3B) 
(BCD 00-59, Hex 00-3B) 
(BCD 00-59, Hex 00-3B) 
(24 Hr. Mode: BCD 00-23, Hex 00-17) 
(12 Hr. AM: BCD 01-12, Hex 01-0C) 
(12 Hr. PM: BCD 81-92, Hex 81-8C) 
(Same as Hours, above) 
(01-07, Sunday = 01) 
(BCD 01-31, Hex 01-1F) 
(BCD 01-12, Hex 01-1C) 
(BCD 00-99, Hex 00-63) 

The format of the four status registers is: 

OAh   Status Register A (read/write) 
Bit 7 (Read Only)      1 = update cycle in progress, data undefined 
Bits 6, 5, 4 22 stage divider of 32.768 KHz time base 
Bits 3 - 0 Rate selection bits for interrupt 

OBh   Status Register B (read/write) 
Bit 7 Cycle update: 0 = disabled, 1 = enabled 
Bit 6 Periodic interrupt: 0 = disabled, 1 = enabled 
Bit 5 Alarm interrupt: 0 = disabled, 1 = enabled 
Bit 4 Update-ended interrupt: 0 = disabled, 1 = enabled 
Bit 3 Square wave output: 0 = disabled, 1 = enabled 
Bit 2 Clock data mode: 0 = BCD, 1 = Binary 
Bit 1 24/12 Hour Selection: 0 = 12,1 = 24 
Bit 0 Daylight Savings Time: 0 = disabled, 1 = enabled 

OCh   Status Register C (read only) 
Bit 7 Interrupt request flag: 1 if any of bits 6 - 4 are 1 and 

appropriate enables in Reg. B set to 1. Generates IRQ8. 
Bit 6 Periodic interrupt flag 
Bit 5 Alarm interrupt flag 
Bit 4 Update-ended interrupt flag 
Bits 3-0 Not Used 

ODh   Status Register D (read only) 
Bit 7 Valid RAM: 0 = dead battery or disconnected, 1 = good 
Bits 6-0 Not Used 

Figure IV-3: Organization of CMOS Memory 
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Status register A is used to select an interrupt rate. The basic oscillator frequency is 32,768 Hz, 

set in bits 4 - 6. The lower four bits (0-3) of status register A select a divider for this oscillator. The resulting 

frequency is used to generate an interrupt 70h, or IRQ 8. The system initializes these bits to 0110 binary, 

which selects a 1,024 Hz frequency according to the following formula: 

InlerruplFrequency = OscillatorFrequency » (rate-l) 

which can be simplified as 

InierruptFrequency = 
65536 

Table IV-1 lists the subset of interrupt frequencies likely to be used for the UAV controller. These 

frequencies are generated when the corresponding rate is specified in DEFS.h. Presently, the controller is 

executing a 32 Hz control cycle. The fastest frequency possible is 8 KHz using a rate of 3. When using a rate 

of either 2 or 1, the counter rolls over, resulting in the same frequencies as rates 9 and 8 respectively. 

TABLE IV-1: CMOS Interrupt Frequencies 

Rate Frequency 

10 (OAh) 64 Hz 

11 (OBh) 32 Hz 

12 (OCh) 16 Hz 

13 (ODh) 8 Hz 

14 (OEh) 4 Hz 

15 (OFh) 2 Hz 

Status register B contains a number of flags. To enable the chip to generate periodic interrupts, 

bit 6 must be set. Status register C is read only and also contains a number of flags. When several interrupts 

of the RTC are connected to IRQ 8, these flags make it possible to detect which interrupt caused the IRQ 8: 

periodic interrupt, alarm interrupt, or update ended interrupt. Lastly, the PIC status register must be 

unmasked. Each PIC has an 8 bit mask that disables selected IRQs. The American Megatrands BIOS 

disables IRQ 8 at startup. By clearing bit 0 of the secondary (slave) PIC, IRQ 8 is enabled. 

These actions generate a periodic interrupt, but only a single one. Unless status register C is read, 

IRQ 8 will not be generated again. This means status register C is read inside the ISR, even though its content 

is not important for this application. The PICs also come into play here. Since the PIC blocks all IRQs of 

equal or lower priority upon the occurrence of an interrupt, the next periodic interrupt cannot be generated 
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until the PICs receive an end-of-inicnupt (EOI) code from the processor. This is accomplished by directly 

outporting an EOI (value of 2()h) to I/O addresses 20h and AOh, the addresses of the master and slave PICs 

respectively. These repetitive actions must be done on every occurrence of the periodic interrupt and so are 

accomplished inside the ISR in a subroutine called reset_int(). 

Common practice when writing ISRs is to jump to the old ISR after executing the new one, but 

because the old ISR halts the periodic interrupt, this method was not used. Without the old ISR, some 

interrupt 15h BIOS functions will fail: however this did not manifest any problems in the present 

configuration. If necessary to alleviate this in the future, store at address 0040:009b a double word value that 

is at least 976 and jump to the old ISR. The default ISR subtracts 976 from the value at that address and halts 

the RTC periodic interrupt if the result is less than zero. 976 is derived as the number of microseconds that 

elapse between two invocations of interrupt 70h if the RTC is counting at its default frequency of 1024 Hz. 

The default ISR also issues an interrupt 4Ah when timed out [Bro92]. 

In addition to resetting the interrupts, the ISR, new_vector(), also increments a count of the 

number of cycles and calls the actu;d control loop procedure, execute_cycle(). It is within this control cycle 

that all of the I/O and flight control operations takes place. 

E.      THE C( )NTR( )L CYCLE 

The control cycle is embodied in the execute_cycle() procedure. It is called by new_vector() upon each 

occurrence of the periodic interrupt. During the control cycle, the controller first retrieves the information it 

needs to determine the state of the aircraft by invoking each of four I/O device drivers; next, it calculates any 

corrective actions necessary in the flight_control() procedure; and finally, it generates the PWM signals 

necessary for the servo motors to effect those corrective actions in the cmd_to_servos() procedure. It is 

important to note that not all of these procedures are called during each cycle. Using modulo division of the 

cycle count, it is possible to regulate the interval and period of the various functions. The objective is to keep 

the task load for each control cycle relatively steady. The actual timing of these functions is dependent on 

the frequency of the interrupt. For example, the IMU is read every fourth cycle for control purposes, but is 

only downlinked to the ground twice each second. This programming strategy keeps the RTE flexible and 

the timing parameters easily modified. Each of these functions will be examined in detail. 

I.      I/O Device Drivers 

Four I/O device drivers exist within execute_cycle() to take care of the data transfer and storage 

from the four primary sources of data for the FMU.   They are read_imu(), read_gps(), read_atod(), and 
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xmit_to_gnd(). Each of these procedures reads one complete data message from their appointed interface and 

places that message in a pre-established global data buffer. 

As described in Chapter III, the complete data message from the MJ is 38 bytes long and 

terminates with a carriage return. The global buffer, imu_buf->ptr, has 100 bytes allocated in the main 

program. Because of this buffer restriction, read_imu() reads the length of the queue and truncates it to 100 

bytes. It then determines if the data in the receive buffer constitutes a partial or full message. If a partial 

message exists, it reads it away before reading in the next full message. Last, it confirms whether the message 

read was a complete 38 byte message and sets a flag accordingly. 

Read_gps() works much the same way, except that a full position message is 68 bytes and 

terminates with a carriage return and a line feed. A 500 byte buffer is allocated in main(). This procedure 

pares down the receive buffer until the buffer size constitutes at least one full message and at most one full 

message plus a partial message. If a partial message exists, it reads it away and then reads in the next full 

message. It also confirms whether the message read was a complete 68 byte message and sets a flag 

accordingly. 

The A/D process on the PCL-812 card was initiated in the initialize_hw() procedure. To read the 

data generated into the data array, read_atod() needs only to call PCL-812 function 5, and the data is read in 

automatically. Since the data received is a 12 bit digital conversion scalar value, determining the actual 

analog voltages requires a calculation similar to that done in the show_air_data() procedure. 

Depending on the mission and the mode of flight, varying amounts of data will be required to be 

transmitted to, and received from, the ground station through the datalink. This data transfer is done by the 

read_datalink() and xmit_lo_gnd() procedures. Read_datalink() was written for functional completeness, but 

is not utilized in this research. Based on (lie last convention in Section A.3 of this chapter, read_datalink() 

will look for the beginning-of-message character, then read the message length, convert the length to an 

integer, and use the length given to read in the appropriate number of bytes constituting the message. If a 

message is read, it is stored in the global buffer dl_buf, and a flag is set accordingly. 

The xmit_to_gnd() procedure has the advantage that the length of the message to be transmitted 

is known from the PANDL passed in. The procedure uses the sio_putb function to transfer the data to the 

daialink's transmit buffer. Experimentation has shown that the sio_write function works equivalently well. 

The only exception that must be considered is a full transmit buffer. This situation should never occur under 

normal operating circumstances; however, in the event that it does occur, the buffer is flushed under the 
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assumption that the data presently attempting to be sent is the most recent and therefore more valuable than 

the old data that was clogging the butter. 

2.     Flight Control 

Now that the controller has all the information it needs from the various I/O drivers, all that 

remains is to calculate the control inputs necessary to fly the airplane and move the servo motors 

appropriately. The flight_control() procedure in this research is only a placeholder for the control algorithm 

module being developed in the Aeronautical Engineering Department. Eventually, this procedure will 

provide the Kidman filtering options for choosing the appropriate navigation data from what is available and, 

using this data, will calculate integer control commands for the throttle and for each of the standard 

three-dimensional control surfaces: aileron, elevator, and rudder. These control surface commands are then 

passed to the cmd_to_servos() procedure, which translates the three-dimensional control surface commands 

into individual vane commands. The integer command expected by cmd_to_servos() presently represents the 

number of degrees of deflection, but it could be changed to any agreed upon standard between flight_control 

and cmd_to_servos. Cmd_lo_servos() then sends the appropriate signals to the PCL-830 to generate the 

precise PWM signal needed by each vane servo. This concludes the control loop segment of the program and 

meets all of the requirements for positive control outlined above. The RTE now returns to the point of 

execution prior to being interrupted and continues its normal activity until the occurrence of the next periodic 

interrupt. 

F.       USER SERVICES 

When not executing the control loop, the computer is primarily available for user-oriented services. 

These services include a gamut of small procedures designed to interact with the system user and provide 

information. Because the system nins on interrupts, the control loop described above appears to be running 

in the background, while these user services utilize the screen and keyboard and appear to run in the 

foreground. The initial and primary interface with the user is the menu() procedure. Menu() presents a 

command line, prompting for user input. A new user may respond with a question mark, which yields a menu 

of possible choices, as shown in Figure IV-4. The first three choices, check hardware, start flight 

management unit, and quit flight management unit, have been described above. The remaining choices are 

described below. 
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Archytas Monitor Program 

Command ('?' for help): ? 

The following are valid commands: 

(c)heck hardware 
(s)tart flight management unit 
(q)uit flight management unit 
(f)light data menu 
(m)emory contents display 
(r)egister contents display 
(i)nterrupt vector display 
(d)os command 
(t)erminate program 

Command ('?' for help):  

Figure IV-4: Main Menu Screen 

Choosing/Z/#/if data menu invokes the show_flight_data() procedure, which presents a secondary menu 

as shown in Figure IV-5. This menu enables the user to inspect and verify the contents of the global buffers 

containing the flight data gathered during the control loop from each of the I/O device drivers. This includes 

ASCII representations of the untranslated GPS message and the output from the IMU, the hexadecimal values 

and conesponding voltages of all A/D analog sources, and the present positions of all servos. These values 

represent the instantaneous buffer contents at the moment in time they are retrieved. If the FMU is running, 

the buffer contents may change immediately after being read. 

Display which data? 

(g)ps position 
(i)mu data 
(a)ir data 
(s)ervo positions 

Choice: 

Figure IV-5: Flight Data Menu Screen 

The memory contents display, register contents display, and interrupt vector display main menu choices 

enable the user to inspect the contents of any block of memory, the contents of all storage and segment 

registers of the processor, and the ISR address stored in the interrupt table for any given interrupt respectively. 
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Similar to the utility of a debugger, these procedures were used primarily during the development of this 

program and are included for future debugging needs. When programming at such a low level, interacting 

with individual memory locations and I/O ports, it is often necessary to have the utility of these procedures. 

Lastly, the das command menu choice invokes an MS-DOS shell that the user can work in while the 

FMU is still running. All basic DOS functions, such as copying files, directory listings, and invoking small 

programs are available, as long as the intended task does not require BIOS interrupts 81h or 83h. Terminating 

the program will also yield a DOS prompt, but only after the program completes its shutdown sequence. 

One other secondary menu is available to the user, although it is not listed in the main menu. It is 

invoked by the Col-Break or Cirl-C key sequence. Both of these are standard key sequences used when the 

user wants to terminate what is executing. In this case, the break_handler() procedure is invokes and a menu 

similar to Figure IV-6 is displayed. 

Why did you break? 

(c)old reboot machine 
(w)arm reboot machine 
(r)estart program (reinitialize hardware) 
(g)o back to main menu 
(t)erminate program 

Choice: 

Figure IV-6: Break Handler Menu Screen 

The most drastic response to this prompt is a cold boot. This is similar to the system initialization done 

when first powering up the computer, including all diagnostic and memory checking sequences. A warm boot 

is similar to the Ctrl-Alt-Del key sequence and causes the computer to reboot without the diagnostic and 

memory checking sequences. This makes it slightly faster and less disruptive than a cold boot. Both of these 

options invoke the bootstrapO procedure, passing in the chosen parameter of cold or warm. Because disk 

caching is used. bootstrapO first Hushes the caches to insure that no information is lost and reboots the 

computer. If the computer is operating correctly, the user may elect to re-initialize only the controller 

hardware This restart program option causes the computer to execute the hardware shutdown sequence and 

then slain the program again from just after the buffer allocation in main(). Other choices allow the user to 

return to the main menu or terminate the program. 
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Li.      CHAPTER SUMMARY 

This chapter gives a detailed description of the software program written to function as the control 

software for the UAV. The reader should understand the full scope of the endeavor, including the 

requirements and guidelines under which it was written, and the interoperability with the hardware, including 

those sub-systems developed previously by other students. This chapter serves as a programmer's manual, 

to aid the understanding of the code shown in Appendix A, as well as to set conventions and guidelines for 

subsequent code to follow from other work on the UAV project. The operation of the Real-Time Clock chip, 

in particular, is not documented elsewhere, and is therefore completely detailed in this chapter. 
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V. CONCLUSIONS 

The goal of this research was to create a functional central controller for an UAV. This controller is 

envisioned to integrate various subsysteins designed by other students as part of an overall, interdisciplinary 

development project. It represents the airborne half of a full UAV control system that is planned to evolve 

from remote ground controlled flight to fully autonomous flight in five phases of development [Rei93]. 

A.      ACCOMPLISHMENTS 

From the general goal to create an UAV controller, specific operational requirements were derived. 

From these operational requirements, system hardware was selected and design parameters were codified. In 

the course of the design and synthesis of the controller, several significant milestones were achieved: 

• The system hardware was assembled and configured for proper operation. 
• A method for generating periodic interrupts was determined and successfully implemented. 
• Multi-path serial I/O was achieved using the PCL-744 card. 
• Datalink subsystems were successfully integrated. 
• Air data and navigation subsystems were successfully integrated. 
• Servo control subsystems were successfully integrated. 
• The RTE was designed and implemented to interrelate and coordinate all subsystems. 
• Communication and programming standards were developed. 
• Fault tolerant provisions were made to bolster system reliability. 
• User interfaces were designed and implemented. 

The UAV controller was designed to be as simple as possible, given the hardware on hand and the 

anticipated task load. A real-time executive (RTE) program, initiated by timed interrupts at various intervals, 

calls appropriate task modules, and repeats this process indefinitely. The use of interrupts enabled the 

processor to keep busy during slow (by processor standards) processes, such as generating servo command 

pulses. Under this configuration, the challenge of programming the RTE was then reduced to a complex 

scheduling problem among a relatively small number of processes which all have concise scope, known 

parameters, and demonstrated characteristics. The only immutable programming requirement was to arrange 

the process schedule of the RTE such that a called process can complete execution prior to the initiation of 

another process, and so that the resources of interrupted processes are not needed by the interrupting process. 

This research details the inter-relations of the design criteria used for this controller, to give the reader 

a better understanding of the overall system. From this understanding, present design decisions become 

apparent, and future development is facilitated. The future development described below is recommended to 

develop a more effective and efficient controller design. 
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B.      RECOMMENDATIONS 

In the course of development, it became evident that several improvements would be necessary for the 

final implementation of the system. These included standardization of the command structure and 

improvements in data conversion and transfer, in addition to some general system modifications. Also, other 

subsystems with which the controller must interact, namely the aeronautical control module, were not 

completed as of this writing. These areas are recommended for future research and development and are 

briefly delineated below. 

1.     Command and Control Structure 

The basic operation of the controller is to determine the state of the aircraft, compare that state to 

a state commanded by the pilot, whether that pilot is a human or the controller executing a set of 

preprogrammed waypoints. Since the control module has not been completed, there is no standard command 

syntax in place. Neither is there a structure for communicating these commands to and from the control 

module. For this research, a temporary procedure named flight_control() was written which simply generated 

vane commands in degrees. A future control module should have the capability to read the necessary flight 

data from the global registers, determine the commanded state, and generate control vane angles compatible 

with the cmd_to_servos() routine. It is this middle function that needs to be carefully defined. 

The control module is expected to output these commands for each of the standard three- 

dimensional control surfaces: aileron, elevator, and rudder. It is presently the responsibility of the 

cmd_lo_servos() procedure to translate these commands into appropriate coordinated commands for the eight 

control vanes planned for installation on the Archytas [Sto93]. This translation is currently incomplete, 

especially considering that the translation parameters must change as the aircraft transitions from vertical to 

horizontal flight. This area requires additional study unless this translation process is absorbed into a control 

module that incorporates both the flight_control() and cmd_to_servos() functions. 

2.     Data Generation and Conversion 

Outside of the control algorithm, the controller's main function is to gather and disseminate 

necessary data to appropriate functions. The faster this data can be generated, the better the controller can 

perform. Several factors are impeding optimum performance, as described below. 

First, the direct memory access (DMA) form of data transfer should be used where possible. This 

would preclude the waste of processor resources to perform memory to memory copying of data. Several 
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accessory boards, specifically the PCL-744 serial card and the PCL-812 lab card advertise a DMA capability. 

This utility was attempted, but never successfully implemented during this research. 

Second, the serial ports c;in transfer data more quickly. The serial card was set up at 9600 bps to 

match with other subsystems that had been designed to operate with a standard RS-232 serial port, which 

normally operate at that speed. The ports of the PCL-744, however, can be configured as high as 38400 bps 

IPCL-744 Manual, p. 16]. Each port should be optimized separately, since some of the connected 

subsystems, like the datalink, can be configured to run at variable speeds, while other subsystems, like the 

GPS and the IMU run only at 9600 bps. 

Third, the IMU is tot) slow. As explained in Chapter III, the fastest possible message frequency 

would be 31.5 Hz. Empirical data has shown the actual message frequency to be closer to 20 Hz. To have 

new IMU data for every control cycle requires slowing the cycle or increasing the output rate of the IMU. 

Watson Industries does offer various options which can increase the speed of the IMU, and these options 

should be explored. 

Fourth, the speed of the datalink is too slow. As shown in Chapter III, the data transfer 

requirements for remote controlled operation from the ground is above the capacity of the datalink. This will 

become less of a factor as the UA V development progresses towards autonomous flight, but it will always be 

exacerbated by increasing the link overhead as propagation quality deteriorates. Field experimentation will 

show which data is more crucial to control and which data could be sent less frequently. Overall, for positive 

remote control, no more than KM) msec can elapse between pilot command input and the associated 

movement of the control surfaces [Kam93]. In the early stages of development, the datalink is the weakest 

and yet most important link in the control process. 

3.     General System Modifications 

Because the datalink proved to be so unreliable, user menu selections were entered directly from 

Ihe keyboard. When the keyboard is removed to place the controller in the aircraft, these menu programs must 

execute through the datalink. Fortunately, because of the case statements used to execute menu choices, the 

user interface programs require only minor changes to read user input from the datalink, rather than the 

console keyboard. 

Second, the GPS routines need to be fully implemented. The procedure read_gps() was written in 

place of Twite's procedure Slave_gps(), which was not fully completed. It is Twite's program that decodes 

the data stream from the GPS and places the navigation in a global structure, as discussed in Chapter IV. This 
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convenient access to GPS data will not be available until Twite's software is completely implemented. This 

includes the potential for accessing GPS data other than the position change status message by uplinking 

commands to the GPS receiver through the PANDL gps->in [Twi94, p. 125]. 

Third, the 25 pin serial connectors on the PCL-744 octopus cable are much too heavy and bulky 

for actual implementation. For the RS-232 connections, only eight wires have the potential of carrying 

signals and, because flow control is not used, only three wires are actually used. During actual 

implementation, it is recommended that customized cables be used. 

Last, a multi-tasking or multiple processor CPU board should be investigated. Even without the 

processing-intensive control algorithm, this controller is extremely constrained by real-time deadlines. The 

addition of other processing requirements could force the system to be run at an unacceptably slow interrupt 

interval. Although upgrading to a faster CPU would ease the problem somewhat, a multi-tasking or 

segregated multiple processor environment should produce a better solution with higher flexibility and 

greater throughput. 

C.      SUMMARY 

Through this research, the goal of designing and building an UAV controller has been successfully 

completed. The resulting aggregation of hardware and software represents a functional shell to which 

improvements can be made, and into which other subsystems, developed in the future, may be added. From 

the initial primary research question, down to the final working implementation, this research quantifies the 

system mandates and documents the conceived solutions. This controller represents a proof-of-concept for 

unmanned control of air vehicles, and one that, with the addition of a suitable control module, is ready to fly. 
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APPENDIX A: REAL TIME EXECUTIVE SOURCE CODE 

/***************************** DEFS.H ********************************** 
PROGRAM INITIALIZATION 

/*Note: MOXA-CL.obi and 812CL.lib must be linked into executable file */ 
# include <stdio.h> 
# include <stdlib.h> 
# include <conio.h> /* For clrscr and cprint */ 
# include <alloc.h> /* For coreleft and malloc */ 
# include <dos.h> /* For DOS and BIOS interrupts */ 
# include <setjmp.h> /* For ctrl-break handler */ 

#include "c:\pcls-802\lib\c\head-c.h" /* For PCL-744 definitions */ 

Z********************************************************************^.^.,. 

VARIABLE DEFINITIONS 
********************************************************** 

# define TRUE        1 
# define FALSE      0 

/* Used for RTC Timer 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 
# define 

RTCJNT 
RTCJNDEX 
RTC_DATA 
REG_A 
REG_B 
REG_C 
REG_D 
INT_FLAG 
NMI_FLAG 
RATE_SET 
RATE 
PIC STATUS 

*/ 
0x70 
0x70 
0x71 
OxOA 
OxOB 
OxOC 
OxOD 
0x40 
0x80 
OxOB 

32 
OxAl 

/* RTC fires interrupt 70h */ 
/* RTC Index Register I/O Address */ 
/* RTC Data Register I/O Address */ 

/* Periodic Interrupt Flag is bit 3 */ 
/* Non-maskable Interrupt Flag bit 4 */ 

/* Used to set control cycles per sec: */ 
/* 32768 « (RATE.SET - 1) */ 

/* Definitions for PCL-744 Serial T/O */ 
#define   IMUPORT 3 
#define SGPS_PORT 4 
#define   DLPORT 5 
#define   MGPS.PORT      10 
#define   CR OxOD 
#define   LF OxOA 
#define   IOMODE (BIT_8 I P_NONE I 
#define   MODMODE   0x00 
#define   HWMODE     0x00 

/* Port number from IMU */ 
/* Port number for Slave GPS Rcvr */ 

/* Port number to Data Link */ 
/* Port number for Master GPS Rcvr */ 

/* Carriage Return is ASCII 13h */ 
/* Line Feed is ASCII 10h */ 

STOP_l) /* 8-N-l (p. 12) */ 
/* DTR and RTS off (p.26) */ 

/* HW and SWflow ctrl off (p.33) */ 

/* Definitions for GPS routines are in GPSDEFIN.H. Each GPS module 
contains its own prototypes, included in the file below: */ 

#include "c:\borlandc\twitefin\gpsfun.h" 
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/* DEFS.h, Page 2 */ 

SUBROUTINE PROTOTYPES FOR MAIN PROGRAM (Table of Contents) 

/* void main(void); 
void menu(void); 
void initialize_hw(void); 
void check_hardware(void); 
void start_fmu(void); 
void quit_fmu(void); 
unsigned char ReadRTC(unsigned char reg); 
void SetRTC(unsigned char reg, unsigned char value); 
/* void interrupt new_vector(void); 
void reset_int(void); 
void execute_cycle(void); 
int read_imu(PANDL *buffer); 
int read_gps(PANDL *buffer); 
void read_atod(void); 
void xmit_to_gnd(PANDL *buffer); 
int read_datalink(PANDL *buffer); 
void flight_control(int *thr, int *ail, int *elev, int *rud); 
void cmd_to_servos(int, int, int, int); 
void show_flight_data(void); 
void show_imu(void); 
void show_gps_posit(void); 
void show_air_data(void); 
void show_servo_posit(void); 
void close_ports(void); 
void shut_down(void); 
void int_vector(void); 
void mem_dump(void); 
void show_regs(void); 
void bit_print(unsigned int v); 
void dos_cmd(void); 
int break_handler(void); 
void bootstrap(int input); 

/* Variables for Serial I/O */ 
struct T_GPS *gps; 
PANDL *imu_buf, *gps_buf, *gps_print, *dl_buf; 

/♦Page 2*/ 
/*Page 3*/ 
/*Page 5*/ 
/*Page 8*/ 

/* Page 10 */ 
/* Page 12 */ 
/* Page 13 */ 
I* Page 13 */ 
/* Page 13 */ 
/* Page 13 */ 
/* Page 14 */ 
/* Page 15 */ 
/* Page 15 */ 
/* Page 16 */ 
/* Page 16 */ 
/* Page 16 */ 
/* Page 17 */ 
/* Page 18 */ 
/* Page 19 */ 
/* Page 19 */ 
I* Page 20 */ 
/* Page 20 */ 
I* Page 20 */ 
/* Page 21 */ 
/* Page 21 */ 
/* Page 22 */ 
/* Page 22 */ 
/* Page 22 */ 
/* Page 23 */ 
/* Page 23 */ 
/* Page 24 */ 
/* Page 25 */ 

I* Variables for AtoD */ 
extern pcl812(int, unsigned int *); 
unsigned int param[60]; 
unsigned int data[20]; 
unsigned int far *dat; 

/* PCL-812 parameter array */ 
/* Conversion data buffer */ 

/* Variables for Counter/Timer */ 
int datreg = 0x210; 
int conreg = 0x211; 

/* Ctr/timer board, base address */ 
/* Ctr/timer board, base addr +1 */ 
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/*#********** ****************************************** *******:!„); Jit********* 

Archytas Real-Time Executive Program (Page 1) 

Author: LT Peter M. Hoffman 
Written: 1 October 1993 
Revised: 1 June 1994 
Compiler: Borland C++ 2.0 

This RTE program provides the basis of the controller for the Archytas 
Unmanned Air Vehicle. Modifications to the flight_control() and 
cmd_to_servos() procedures could adapt this controller to any UAV 
using the same data path. 

This controller is the center of a multi-dimensional inter- 
disciplinary project collaborated by a number of students from 
various departments of the Naval Postgraduate School, Monterey, CA. 

Please see Thesis Document for complete details and explanation. 
*************************************************************************/ 

# include "c:\control\defs.h" /* All definitions and prototypes */ 

int cyclecount = 0, vane_step = 0; 
int thr_cmd, ail_cmd, elev_cmd, rud_cmd; 
void interrupt new_vector(void); 
void interrupt (*old_vector)(); 
int fmu_start_flag = FALSE; 
j mpjtmf cbreak_rtn; 
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/* RTE, Page 2 */ 

void main(void) 

The main program initializes the system, then calls menu() to 
interface with the user for further actions. 

/* Set UP special exit handling routines */ 
atexit(shut_down); 
ctrlbrk(break_handler); 

/* Set up structures to hold data */ 
gps = malloc( sizeof( struct T_GPS)); 
imujbuf = malloc( sizeofl PANDL )); 
imu_buf->ptr = calloc( 100, sizeoft char )); 
gps_buf = malloc( sizeofl PANDL )); 
gps_buf->ptr = calloc( 500, sizeofC char )); 
dl_buf = malloc( sizeof( PANDL)); 
dl_buf->ptr = calloc( 100, sizeof( char )); 

clrscrO; 

/* Set up control-break resume point */ 
if(setjmp(cbreak_rtn) != 0) {clrscrO; printf("\nRestarting Program...");) 

/* Begin user interface */ 
printf("\t\tArchytas Monitor Program"); 
printf("\n\nlnitializing Hardware..."); 
initialize_hw(); 
menu(); 

I /* End Main */ 
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/* RTE, Page 3 */ 

void menu(void) 
l/************************************** ******** ************************** 

This procedure interfaces with the user, querying for the desired 
response and invoking the appropriate routine. 

*************************************************************************; 
char ch; 

while(l) { 
printfl"\n\nCommand ('?' for help): "); 
scanft"%s", &ch); 
switch (ch) ( 

check_hardware(); 
break; 

case 's': 
start_fmu(); 
break; 

case 'q': 
quit_fmu(); 
break; 

case 'f: 
show_flight_data(); 
break; 

case 'm': 
mem_dump(); 
break; 

case V: 
show_regs(); 
break; 

case 'i': 
int_vector(); 
break; 

case 'd': 
dos_cmd(); 
break; 

case '?': 

/* Check Hardware */ 

/* Start FMU */ 

/* Quit FMU */ 

I* Flight Data */ 

/* Memory Dump */ 

/* Display Registers */ 

/* Interrupt Vector */ 

/* DOS command */ 

/* List Alternatives */ 
printf("\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n", 
'The following are valid commands:", 

"(c)heck hardware", 
"(s)tart flight management unit", 
"(q)uit flight management", 
"(Dlight data menu", 
"(m)emory contents display", 
"(r)egister contents display", 
"(i)nterrupt vector display", 
"(d)os command", 
"(t)erminate program"); 
break; 
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/* RTE, Page 4 */ 

case V: /* QUIT */ 
printfl" \ nTerminating Program..."); 
exit(O); 

default: 
puts("\nNot a valid command. Type '?' for help."); 
} /* End Switch */ 

) /* End While */ 
/* End Menu */ 
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/* RTE, Page 5 */ 

void initialize_hw( void ) 

This procedure initializes the PCL-812, PCL-744 and PCL-830 
hardware boards for UAV controller operation. 

int   rtn_code, port, i; 
int   gpstart[]= ('@','@','B',,a,

)0x01>0x32,0x0D>0x0A}; 

/* PCL-812 A/D Board Initialization **********************************/ 
/* Note: Jumpers on the PCL-812 must he set, as follows: 

I/O Port Address (SW1): 220h, 0 Wait States 
Trigger Mode     (JP1): Internal 
IRQ Level        (JP4): 5 
A/D Input Range (JP9): +/-5V 
Parameter Array as follows: */ 

dat = data; 
param[0] = 0; 
param[l] =0x220; 
param[4] = 5; 
param[5] = 50; 
param[6] = 100; 
param[7] = 0; 
param[8] = 0; 
param[10] = FP_OFF(dat); 
paramfll] = FP_SEG(dat); 
param[12] = 0; 
param[13] = 0 
param[14] = 5 
param[15] = 0 
param[16] = 5 
param[17] = 0 

/* Board number */ 
/* Base I/O address */ 

/* IRQ level   : IRQ5 */ 
/* Pacer rate = 2M / (50 * 100) = 400 Hz */ 

/* Trigger mode: internal pacer trigger */ 
/* Non-cyclic mode */ 

/* Offset of A/D data buffer A     */ 
/* Segment of A/D data buffer A */ 

/* Data buffer B offset: 0 if not used      */ 
/* Data buffer B segment: 0 if not used */ 

/* A/D conversion number */ 
/* A/D conversion start channel */ 
/* A/D conversion stop channel */ 

/* Overall gain code, 0 : +/- 5V */ 

I* param[18] = FP_OFF(gain_array); 
param[19] = FP_SEG(gain_array); 
param[45] : Error code 
param[46]: Return value 0 
param[47]: Return value 1 */ 

FYI: Output Registers 

/* Func 3 : Hardware initialization */ pcl812(3, param); 
if(param[45] != 0) 1 

print«" \n PCL-812 Driver Initialization Failed!"); 
exit(l); 

pcl812(4, param); 
if(param[45]!=0)( 

printfT"\nA/D Initialization Failed!"); 
exit(l); 

/* Func 4 : A/D initialization */ 
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for (port = 3; port <= 10; port++) { /* Set up each port */ 
printft"\nConfiguring port number %d (Cable #%d):", port, port-2); 

/* Set I/O control params */ 
rtn_code = sio_ioctl( port, B9600, IOMODE ); 

if (rtn_code != 0) 
printf("\nI/0 control error on port %d.", port); 

/* Set line control parameters */ 
rtn_code = sio_lctrl( port, MODMODE ); 

if(rtn_code!=0) 
printf("\nLine control error on port %d", port); 

/* Set flow control params */ 
rtn_code = sio_flowctrl( port, HWMODE ); 

if(rtn_code!=0) 
printf("\nFlow control error on port %d", port); 

/* Last, open the port which enables it for I/O */ 
rtn_code = sio_open( port); 

if (rtn_code != 0) 
printf("\nError opening port %d", port); 

I /* End For port++ Loop */ 

I* Send T; tell IMU to begin sending */ 
rtn_code=sio_putch( IMUPORT, T); 
if ( rtn_code == 1) printf("\n   IMU initialized OK"); 
else printf("\n   IMU NOT initialized"); 

/* Initialize GPS to send position msg every sec */ 
rtn_code=sio_putb( SGPS_PORT, gpstart, 8); 
if ( rtn_code <= 0 ) printf("\n   GPS NOT initialized"); 
if ( rtn_code == 8 ) printf("\n   GPS initialized OK"); 

/* Set Tx/Rx timeout to 1 second */ 
rtn_code = sio_timeout( 18 ); 

I* Flush Rx and Tx Buffers */ 
sio_flush( SGPS_PORT, 2); 
sio_flush( IMUPORT, 2); 
sio_flush( DLPORT, 2 ); 
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/*** PCL-830 Initialization (Am9513A chip) *****************************/ 
/*      This portion of initializeO written by Pat Moran. */ 
/*      All values are decimal, but represent binary register settings. */ 
/*      See Am9513A Technical Manual for details */ 

outportb(conreg,255); 
outportb(conreg,23); 
outportb(datreg,176); 
outportb(datreg,65); 

outportb(conreg,249); 
for (i=l;i<=5;i++) 

/* Reset all board functions */ 
/* Select master mode register */ 

/* Low byte enables FOUT, Fl source */ 
/* Hi byte selects binary division */ 

/* Disable increment, 8 bit bus */ 
/* FOUT on, divide by 1. */ 

/* RTE, Page 7 */ 

/* Diable prefetch for write ops */ 

outportb(conreg,i); 
outportb(datreg,98); 
outportb(datreg,27); 

I 
for (i=25;i<=29;i++) 

/* Select ctrs 1-5 */ 
/* Low byte: set modes of ctrs 1-5 in CMR */ 
/* High byte: no gating for ctrs 1-5 */ 

outportb(conreg,i); 
outportb(datreg.O); 
outportb(datreg,31); 

/* Load hold registers for refresh rate */ 
/* Load + Hold = Refresh Rate */ 

/* This combo gives 25 ms rate (40 Hz) */ 

for(i=9;i<=13;i++) 

outportb(conreg,i); 
outportb(datreg, 103); 
outportb( datreg,5); 

/* Select load registers for pulse width */ 
/* Sets time for next pulse */ 

for (i=233;i<=237;i++) outportb(conreg,i); 
outportb(conreg,i); /* Load & arm ctrs 1-5 */ 

outport(conreg,127); 
printfT"\nCompleted Initialization of Servos."); 

/* End Initialize HW */ 
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void check_hardware(void) 

This procedure checks that all the hardware is properly 
configured and operational. 

int   i, card_type = 0x744, card_no = 1, rtn_code, port; 
char *buf= "Test String"; 
union REGS xreg, yreg; 
unsigned elist, drives=0, ports=0, printers=0; 

elist = biosequipO; /* Determine BIOS Equipment */ 
if (elist & 0x0001) drives = ((elist & OxOOcO) » 6)+l; 
ports = (elist & OxOeOO) » 9; 
printers = (elist & OxcOOO) » 14; 
printf("\nThis system has %d diskette drives, %d serial ports, %d printer ports ",\ 

drives, ports, printers); 
if ((elist & 0x0002) » 1) printf("and a math co-processor."); 

printf("\nlt has %uKof RAM and %lu stack available.", \ 
biosmemoryO, coreleftO); 

rtn_code = sio_bank(card_type, card_no);   /* Display address of PCL-744 card */ 
printf("\nThe PCL-744 card is mapped to address %Fp", rtn_code); 

rtn_code = sio_id( card_type, card_no);     /* Display ID number of 744 card */ 
printf("\nlt is card number %d", rtn_code); 

for (port = 3; port <= 10; port++) { /* Set up each port */ 
printf("\n\nChecking port number %d (Cable #%d):", port, port-2); 

/* Check I/O Control Params */ 
rtn_code = sio_getbaud( port); 
printf("\nBaud rate of port %d set to %d", port, rtn_code); 

rtn_code = sio_getmode( port); 
printf("\nMode of port %d set to %d.", port, rtn_code); 

/* Check Line Control Params */ 
rtn_code = sio_lstatus( port); 

if (rtn_code < 0) 
printf("\nError in status for port %d", port); 

else 
printfT"\nModem line status of port %d is %d.", port, rtn_code); 

/* Check Flow Control Params */ 
rtn_code = sio_getflow( port); 
printf("\nHardware flow control of port %d set to %d.", port, rtn_code); 
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/* Do loopback test */ 
if (sio_loopback( port, buf, 12 ) == 0) 

printf("\nPort %d loopback test OK.", port); 
else 

printf("\nPort %d failed loopback test.", port); 

printfT"\n\nReview data for port aboveAnPress any key to continue."); 
getchO; /* Wait for key */ 

I /* End For port++ Loop */ 

printf("\n\nParameter Array for PCL-830 board set to:"); 
for(i = 0;i<= 17; i++) { 

if (i==10 I I i==ll) printf("\nparam[%3d] = %Fp", i, param[i]); 
else printf("\nparam[%3d] = %d", i, param[i]); 

) 
) /* End Check Hardware */ 
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void start_fmu(void) 
I/************************************************************************ 

This procedure sets up the real-time clock to provide periodic 
interrupts at 64 Hz which will trigger the flight management unit. 

unsigned char value, bit_set, new_value; 

if (fmu_start_flag == TRUE) { /* Check if already started */ 
printf("\nThe FMU has already been started."); 
return; 

printf("\n\n Starting the Flight Management Unit."); 

/* Get old vector number for posterity */ 
old.vector = getvect(RTCJNT); 
printf("\nThe address of the old vector is: %Fp\n", old_vector); 

/* Now set RTC to generate interrrupt at rate set in DEFS.h */ 
/* Alter interrupt rate to new rate (32768 » RATE_SET - 1) */ 
value = ReadRTC(REG_A); /* Read register A */ 
bit.set = value & OxFO I RATE_SET; /* Lowest 4 bits sets rate of int */ 
SetRTC(REG_A, bit_set); /* Set to new rate of periodic int */ 

new_value = ReadRTC(REG_A); 
printf("\nReg A was %x, now %x with new rate set.",value, new_value); 

/* Enable periodic interrupts with the RTC */ 
disableO; 
value = ReadRTC(REG_B); I* Read register B */ 
bit_set = value I INT_FLAG; /* Enable periodic interrupts */ 
SetRTC(REG_B, bit_set); /* on IRQ 8 (Int 70). */ 

new_value = ReadRTC(REG.B); 
printf("\nReg B was %x, now %x with int flag set.",value, new_value); 

/* Change interrupt vector to run mv program */ 
disableO; /* Disable interrupts when changing */ 
setvect(RTC_INT, new_vector); 
enableO; 
printf("\nlnstalled new vector: %p\n", new_vector); 

value = ReadRTC(REG_C); /* Clear pending int by reading reg */ 
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/* Initialize PIC to enable interrupts */ 
value = inportb(PIC_STATUS); /* Read PIC Status Register */ 
bit_set = value & Oxfe; 
outportb(PIC_STATUS, bit.set); /* Clear bit 0 to enable ints */ 

new_value = inportb(PIC_STATUS); 
printfI"\nPIC mask was %x, now %x with bit 0 cleared.".value, new_value); 
enableO; 

fmu_start_flag = TRUE; 
/* End Start FMU */ 
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void quit_fmu(void) 

This procedure stops the periodic interrupt, effectively halting the 
flight management unit, and resets the real-time clock chip back to 
its original configuration. 

unsigned char value, bit_set, new_value; 

if (fmu_start_flag == FALSE) { /* Make sure it has been started */ 
printf("\nThe fmu has not yet been started."); 
return; 

I 
else { 
printf("\n\n Stopping the Flight Management Unit."); 

/* Put system back to normal */ 
/* First clean up RTC */ 
disabled /* Disable interrupts while changing */ 

/* Clear periodic interrupt bit */ 
value = ReadRTC(REG_B); 
bit_set = value & OxBF; 
SetRTC(REG_B, bit_set); 

new_value = ReadRTC(REG_B); 
printf("\nReg B was %x, now %x with int flag clrd.",value, new_value); 

/* Reset rate to 1024 Hz */ 
value = ReadRTC(REG_A); 
bit_set = value & OxFO I 0x06; 
SetRTC(REG_A, bit_set); 

new_value = ReadRTC(REG_A); 
printfl"\nRegA was %x, now %x with new rate set.",välue, new_value); 

/* Reset interrupt vector to original value */ 
setvect(RTC_INT, old_vector); 
enableO; 
printf("\nThe cyclecount is: %d\n", cyclecount); 

fmu_start_flag = FALSE; 
(/* End Else */ 

} /* End Quit_FMU */ 
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unsigned char ReadRTC( unsigned char reg ) 
i/************************************************************************ 

This function returns the value of the specified register on the 
real-time clock chip. 

*************************************************************************/ 
unsigned char reg_nmi, value; 

reg.nmi = reg I NMI_FLAG; /* Disable Non-Maskable Int */ 
outportb (RTCJNDEX, reg_nmi); /* Tell CMOS which reg to read */ 
value = inportb (RTC_DATA); /* Read value of register */ 
return value; 

) /* End Read_RTC */ 

void SetRTCC unsigned char reg, unsigned char value ) 
1^******************************************5,-^**^**^^^^^;,,^^;,,^^.;,;;,.^^;,,^^^^^^^ 

This procedure sets a new value into the specified register 
of the real-time clock chip. 

*************************************************************************/ 
unsigned char reg_nmi; 

reg_nmi = reg I NMI_FLAG; /* Disable Non-maskable Int */ 
outportb (RTCJNDEX, reg_nmi); /* Tell CMOS which reg to set */ 
outportb (RTC_DATA, value); /* Write value to register */ 

) /* End Set RTC */ 

void interrupt new_vector() 
{/************************************************************************ 

This is the flight management unit procedure that is run on each 
occurrence of the periodic interrupt. 

*************************************************************************, 

cyclecount++; /* Count number of cycles */ 
cyclecount %= RATE* 10; /* Normalize count every 10 seconds */ 
reset_int(); /* Reset Interrupt to enable next one */ 
execute_cycle(); /* Do something constructive */ 

) /* End New Vector */ 

void reset_int(void) 
j/************************************************************************ 

This procedure resets the real-time clock chip and the PIC chips 
in order to facilitate another periodic interrupt. 

*************************************************************************, 
unsigned char value; 

value = ReadRTC(REG_C); /* Must read reg C to get another int */ 

disableO; 
outportb(0x0a0, 0x20); /* Send non-specific EOI to slave PIC */ 
outportb(0x20, 0x20); /* and master PIC */ 
enableO; 

) /* End Reset Int */ 
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void execute_cycle(void) 

This procedure is the heart of the controller. It is the routine 
that is invoked during every occurrence of the real-time clock 
interrupt, coordinating the execution of other modules which 
comprise the control and communication processes of the UAV. 

unsigned char value, bit_set; 
int imu_ok, gps_ok, dl_ok; 

value = inportb (0x61); 
bit.set = value A 0x02; 
outportb(0x61, bit_set); 

/* sio_putb( DLPORT, "GPS: ", 5); 
Slave_gps( gps); 
xmit_to_gnd( &gps->out); 
free( gps->out.ptr); 

/* Toggle speaker enable bit */ 
/* (Sounds like the motor is running) */ 

Calls to Eric Twite's Stuff 
(Not yet operational) 

dl_ok = read_datalink( dl_buf); /* Read uplink every cycle */ 
/* Put code to deal with info from datalink uplink here */ 

if (cyclecount % 4 == 0) ( /* Read IMU every 4th cycle */ 
imu_ok = read_imu( imu_buf); /* Send every 0.5 sec */ 
if ( cyclecount % (RATE/2) == 0 && imu_ok ) { 

sio_putb( DLPORT, "IMU: ", 5); /* IMU label in data stream */ 
xmit_to_gnd( imu_buf); 

iflcyclecount % (42) == 0) { 
gps_ok = read_gps( gpsjbuf); 
if(gps_ok){ 

sio_putb( DLPORT, "GPS: ", 5); 
xmit_to_gnd( gpsjtmf); 

/* Read GPS every 1.3 sec */ 

/* If full msg rcvd, */ 
/* also send to ground      */ 
/* with data stream label */ 

read_atod(); /* Read AtoD every cycle */ 

/* Last, with all flight data in hand, control aircraft */ 
flight_control( &thr_cmd, &ail_cmd, &elev_cmd, &rud_cmd); 
cmd_to_servos( thr_cmd, ail_cmd, elev_cmd, rud_cmd); 

I /* End Execute_Cycle */ 
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int read_imu( PANDL *buffer ) 
I/************************************************************************ 

This procedure reads into a pre-established buffer the data 
from the onboard Inertial Measurement Unit. 

******************************************************** *****************/ 

int eol = CR; 
int queue; 

queue = sio_iqueue( IMUPORT ); 
if (queue > 100) queue = 100; /* Truncate to size allocated in main */ 
if (queue > 38) ( /* Buffer has at least 1 full + partial msg */ 

buffer->len = sio_linput( IMUPORT, buffer->ptr, queue, eol); 
buffer->len = sio_read( IMUPORT, buffer->ptr, 38); 

I 
else if (queue > 0) /* or has at most 1 full msg (usual condition) */ 

buffer->len = sio_linput( IMUPORT, buffer->ptr, queue, eol); 
else 

buffer->len = 0; /* or has nothing in the buffer */ 
if (buffer->len == 38) return TRUE; /* Test if message is complete*/ 
else return FALSE; 

I /* End Read IMU */ 

int read_gps( PANDL *buffer ) 
1^************************************************************************ 

This procedure reads into a pre-established buffer the data 
from the onboard Global Positioning System. 

************************************************************************** 

int eol = LF, queue; 

queue = sio_iqueue( SGPS_PORT ); /* How long is rev queue? */ 
while (queue > 135) { /* Pare down to last 2*68-1 chars */ 

queue -= 135; /*      (At most 1 full message)       */ 
if (queue < 68) queue += 68; /* (But at least 1 full message) */ 
if (queue > 500) /* Max buffer space 500 bytes     */ 

buffer->len = sio_read( SGPS_PORT, buffer->ptr, 500); 
else 

buffer->len = sio_read( SGPS_PORT, buffer->ptr, queue); 
queue = sio_iqueue( SGPS_PORT ); 

I 
/* Now, at most 1 full msg exists in the queue + mavhe a partial msg */ 
if(queue>68) /* If partial msg exists, read it away */ 

buffer->len = sio_linput( SGPS_PORT, bufferoptr, queue, eol ); 

/* Now, only 1 full msg should exist in the queue, so read it */ 
buffer->len = sio_linput( SGPS_PORT, buffer->ptr, queue, eol); 

if (buffer->len == 68) return TRUE; /* Test to make sure full msg */ 
else return FALSE; 

) /* End Read GPS */ 

80 



/* RTE, Page 16 */ 

void read_atod(void) 
I/************************************************************************ 

This procedure calls PCL-812 intrinsic function 5, which triggers an 
A/D conversion on analog data inputs as set in the param array. 

/* Record A/D Conversions */ 
pcl812(5, param); /* Func 5 : Pacer trigger A/D conversion */ 
if(param[45] != 0) /* with software data transfer */ 

printf("\nA/D Conversion Failed!"); 
}   /* End Read AtoD */ 

void xmit_to_gnd( PANDL *buffer) 

This procedure transmits the contents of the buffer to the ground 
through the datalink. 

int strglen, txbuff; 

if(buffer->len>0){ 
txbuff = sio_ofree( DLPORT ); /* Get free space in xmit buffer */ 
if (buffer->len < txbuff) { /* If enough buffer space, send   */ 

strglen = sio_putb(DLPORT, buffer->ptr, buffer->len); 
if (strglen == 0) { /*Else */ 

sio_flush(DLPORT, 1); I* Get rid of the old data        */ 
strglen = sio_write(DLPORT, "WARNING: Buffer cleared! ", 25); 
strglen = sio_write(DLPORT, buffer->ptr, buffer->len); 

1 /* End Xmit to Gnd */ 

int read_datalink( PANDL *buffer) 

This procedure reads the contents of the datalink's receive buffer 
containing information sent from the ground through the datalink. 

int queue, eol = '#'; 

queue = sio_linput(DLPORT, buffer->ptr, 100, eol);     /* Get queue length */ 
if (queue > 0) ( /* If something is in queue, read it */ 

queue = sio_read(DLPORT, buffer->ptr, 2);        /* Read length of msg */ 
buffer->len = atoi(buffer->ptr); /* Convert length to an integer */ 

/* Read in buffer of specified length */ 
queue = sio_read(DLPORT, buffer->ptr, buffer->len); 
return TRUE; 

I 
else return FALSE; /* If nothing waiting in buffer, continue */ 

} /* End Read Datalink */ 
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void flight_control(int *thr, int *ail, int *elev, int *rud) 
r/************************************************************************ 

This procedure is a place holder for the actual control algorithm 
being designed by the Aeronautical Engineering Department. 

The procedure envisioned here will perform appropriate data filtering 
and will use the filtered data to calculate the necessary control 
surface positions. The output of this procedure is the angle of each 
of the standard control surfaces. The cmd_to_servos procedure will 
convert these standard control surfaces into individual control vane 
angles. This conversion will differ depending on the mode of flight, 
whether vertical or horizontal. 

******************************************************#******************/ 
/* Get or calculate pilot commands */ 
/* Calculate control surface inputs */ 

/* The steps below are just a demo to exercise the servos to their 
full extension in increments of 2 degrees until replaced by the 
actual control algorithm */ 

*thr = 100; /* Throttle stays constant */ 
vane_step+= 2; /* Increase vanes 2 deg each cycle */ 
vane_step %- 200; /* All vanes go -30 to +30 deg */ 
*ail = vane_step; 
*elev = vane_step; 
*rud = vane_step; 

/* Delete global variable step vane when this test routine deleted */ 
) /* End Flight_Control */ 
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void cmd_to_servos(thr, ail, elev, rud) 

*/ 
*/ 
*/ 
*/ 
*/ 

/* Written by LCDR Pat Moran 5/14/93 
/* Originally called chgangleO - see thesis description 

Basic PWM routine by LT Paul Merz [Mer92] 
Demo to move aileron, rudder, elevator, & throttle from 2 joysticks. 
Blends 3 degrees-of-freedom into 4 independent vane commands. 

/* 
/* 
I* 

int i,hibyte,lobyte,angle,vane[5]; 

vane[0] = ail/4 + rud/2; 
vane[l] = ail/4 + elev/2; 
vane[2] = ail/4 - rud/2; 
vane[3] = ail/4 - elev/2; 
vane[4] = thr; 
outportb(conreg,223); 

for (i=0;i<=4;i++) { 
angle=((1900/206)*(vane[i])+600); 
hibyte=(angle/256); 
lobyte=(angle-hibyte*256); 
outportb(conreg,(i+9)); 
outportb(datreg,lobyte); 
outportb(datreg,hibyte); 

/* VI; Translation algorithm fm 3 */ 
/* V2; control surfaces to 4 vanes */ 
I* V3; */ 
/* V4; */ 

/* Throttle needs no conversion */ 
/* Disarm counters 1-5 */ 

/* Convert fm deg to dig # */ 
/* Calc high byte, residue left */ 

/* Calc low byte fm residue */ 
/* Load counters 1-5 */ 

/* Load low byte */ 
/* Load high byte */ 

for (i=233;i<=237;i++) 
outportb(conreg,i); 

outportb(conreg, 127); 
/* End Cmd to Servos */ 

/* Set toggle high for counters 1-5 */ 

/* Load & arm counters 1-5 */ 
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void show_flight_data(void) 
I/************************************************************************ 

This procedure queries the user to determine which flight data to 
display and calls the appropriate routine. 

*************************************************************************/ 

char ch; 

printfT'\n%s\n%s\n%s\n%s\n%s\n%s\n\n%s", 
"Display which data?", 

"(g)ps position", 
"(i)mu data", 
"(a)ir data", 
"(s)ervo positions", 
"Choice:"); 

scanf("%s", &ch); 
switch (ch) ( 

case 'g': 
show_gps_posit(); 
break; 

case 'i': 
show_imu(); 
break; 

case 'a': 
show_air_data(); 
break; 

show_servo_posit(); 
break; 

default: 
printf("\nData choice not recognized!"); 
return; 

) /* End Switch */ 
/* End Show_Flight_Data */ 

/* Can list other gps data here too */ 

I* GPS Position */ 

/* IMU Data */ 

/* Analog Air Data */ 

/* Servo Position */ 

void show_imu(void) 
| /************************************************************************ 

This procedure prints the most recently acquired IMU data. 
*************************************************************************/ 

int i; 

printf("\nLatest IMU data: %d characters.\n", imu_buf->len); 
for (i = 0; i < imu_buf->len; i++) { 

putchar(imu_buf->ptr[i]); 
if(i%4==0)putchar("); 

) 
) /* End Show IMU */ 
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void show_gps_posit(void) 

This procedure prints the most recently acquired GPS data, 

int i; 

/* To print from Twite's GPS structure, when complete */ 
/*   printf("\nLatest GPS position:\nLat: %d.%d N, Long: %d.%d W",\ 

gps->pcs.latitude.degrees, gps->pcs.latitude.minutes, \ 
gps->pcs.longitude.degrees, gps->pcs.longitude.minutes); 

*/ 
/* To print from yns huf raw data buffer */ 
gps_print = Bin_to_ascii( gps_buf, 4); /* Convert to ASCII chars */ 
printf("\nLatest GPS data: %d / %d charactersAn", \ 

gps_buf->len, gps_print->len); 
for (i = 0; i < gps_print->len; i++) putchar(gps_print->ptr[i]); 
free(gps_print->ptr); 
free(gps_print); 

} I* End Show_GPS_Posit */ 

void show_air_data(void) 

This procedure prints the most recently acquired A/D data. 

unsigned int i; 
float DataBuf; 

/* Calculate analog- values from raw data in data array */ 
for (i = 0; i < param[16]; i++) 1 

DataBuf = data[i] & OxFFF; 
DataBuf = (10 * DataBuf / 4096) + (-5); 

/* Calculations: 
10 : A/D input range (-5V to 5V) 
4096 : Full scale 12 bit A/D data 
DataBuf   : A/D input data masked to 12 bits 
(-5) : A/D input base "-5" V 

*/ 
printf("\ndata[%3d] = % 1.2f V returned as %x", i, DataBuf, data[i]); 

) /* End For all data entries */ 
} /* End Show Air Data */ 

void show_servo_posit(void) 

This procedure prints the present position of all servos. 

printf("\nThr: %d, Ail: %d, Elev: %d, Rud: %d.", \ 
thr_cmd, ail_cmd, elev_cmd, rud_cmd); 

) /* End Show_Servo_Posit */ 

85 



/* RTE, Page 21 */ 

void close_ports (void) 

This procedure closes all serial ports on the PCL-744 card and 
flushes transmit and receive buffers for each port. 

int port, rtn_code; 

for (port = 3; port <= 10; port++) ) 
rtn_code = sio_close( port); 
if (rtn_code != 0) 

printf("\nError closing port %d", port); 
else 

printf("\nClosed port %d", port); 
sio_flush( port, 2); 

) /* End For all ports */ 
} /* End Close Ports */ 

void shut_down(void) 

This procedure is invoked at program exit to ensure that the system, 
including communication ports, ISR vectors, and allocated memory, is 
properly terminated and returned to its normal operating configuration 

quit_fmu(); /* Stop the flight management unit */ 
close_ports(); /* close and flush all ports */ 
free(gps); /* Free all globally allocated memory */ 
free(imu_buf->ptr); 
free(imujbuf); 
free(gps_buf->ptr); 
free(gpsjbuf); 
free(dl_buf->ptr); 
free(dljbuf); 

) /* End Shut Down */ 
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void int_vector(void) 
l /*********** ***************** ********* * * * * * ** * *** * ****** * *** ***** * * * ***** 

This procedure prints the address registered for the ISR of the 
interrupt number given by the user. 

*************************************************************************/ 

void interrupt (*int_handler)(); 
int intno; 

printfTXnEnter interrupt number in hex: "); 
scanfT%x", &intno); 
int_handler = getvect(intno); 
printf("\nThe address of the handler is: %Fp\n", int_handler); 

}   /* End Int Vector */ 

void mem_dump(void) 
I /************************************************************************ 

This procedure prints the values of a given portion of memory. 
*****************#*******************************************************/ 

int i, n; 
char far *far_ptr; 

printfl"\n\nEnter begin memory address to dump (eg. F000:E000): "); 
scanfT" %p", &far_ptr); 
printfC'XnHow many bytes to display? "); 
scanfT%d", &n); 

printfl"\nDump of %d bytes at %Fp\r\n", n, far_ptr); 
for(i=0; i<n; i++) { 

printf("\n%Fp   %Fx", (far_ptr+i), *(far_ptr+i)); 
} 

} /* End Mem_Dump */ 

void show_regs(void) 
r/************************************************************************ 

This procedure prints the current values of all CPU and segment 
registers. 

*************************************************************************/ 
union REGS xr, yr; 
struct SREGS sr; 

segread(&sr); 
printfTXnax = %x, bx = %x, ex = %x, dx = %x", \ 

xr.x.ax, xr.x.bx, xr.x.cx, xr.x.dx); 
printfCXnsi = %x, di = %x, cflag = %x, flags = ", \ 

xr.x.si, xr.x.di, xr.x.cflag); 
bit_print(xr.x.flags); 
printfT"\ncs = %x, ds = %x, es = %x, ss = %x", \ 

sr.es, sr.ds, sr.es, sr.ss); 
1 /* End Show.Regs */ 
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/* RTE, Page 23 */ 

void bit_print(unsigned int v) 
I/************************************************************************ 

This procedure prints the binary representation of the given 
hexidecimal number. 

******************************************************************** I*****/ 

int i, mask = 1 « 15; 

printfT%x = ", v); 
for (i = 1; i <= 16; i++) { 

putchar(((v & mask) == 0) ? '0': '1'); 
v «= 1; 
if(i%4==0)putchar("); 

) 
) /* End BitJPrint */ 

void dos_cmd(void) 
r/************************************************************************ 

This procedure invokes a DOS shell. 
*************************************************************************; 

char cmd[40]; 

printfT\nDOS COMMAND:> "); 
gets(cmd); 
system(cmd); 

) /* End DOS Cmd */ 
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/* RTE, Page 24 */ 

int break_handler(void) 

This procedure is invoked upon a control-break or control-c sequence 
from the keyboard. It gives the user more flexibility in determining 
how extensively he desires to reset the system. 

** ************ ****** ************************************** ******* ****** * */ 

char ch; 
union REGS xreg, yreg; 

printf("\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s", 
"Why did you break?", 

"(c)old reboot machine", 
"(w)arm reboot machine", 
"(r)estart program (reinitialize hardware)", 
"(g)o back to main menu", 
"(t)erminate program", 
"Choice:"); 

scanfT%s", &ch); 
switch (ch) { 

case V: /* Cold Reboot */ 
bootstrap(O); 
break; 

case 'w': /* Warm Reboot */ 
bootstrap(l); 
break; 

case V: /* Restart Program */ 
shut_down(); 
longjmp(cbreak_rtn, 1); 
break; 

case 'g': /* Main Menu */ 
menu(); 
break; 

case Y: I* QUIT */ 
printfl"\ nTerminating Program..."); 
exit(O); 

default: 
menu(); 

} I* End Switch */ 
I* End Break Handler */ 
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/* RTE, Page 25 */ 

void bootstrap(int input) 
( 

union REGS reg; 
void (far *reboot)(void); 
int far *boottype; 

/* Set Far Pointers to the Boot Sector */ 
FP_SEG(reboot) = Oxffff; 
FP_OFF(reboot) = 0; 
FP_SEG(boottype) = 0x40; 
FP_OFF(boottype) = 0x72; 

/* Issue a DOS disk reset request to flush caches*/ 
reg.h.ah = OxOd; 
int86(0x21, &reg, &reg); 

/* Set boot type and execute reboot */ 
*boottype = (input ? 0x1234 : 0);    /* 0 = Cold, 1 = Warm */ 
(*reboot)(); 

) /* End Bootstrap */ 

/* End of Real-Time Executive Program */ 
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APPENDIX B: LIST OF VARIABLES 

The following is a reference listing of the definitions of all variables used in the Real-Time Executive source 
code shown in Appendix A. (G) indicates a globally maintained variable. 

angle Value of digital representation of servo command angle 
bit_set Bit value to be written to register from the Real-Time Clock (RTC) chip 
♦boottype Pointer to memory location specifying hard or cold boot 
buffer->len Lenght field of PANDL structure. Represents the length of the buffer. 
buffer->ptr Pointer field of PANDL structure. Points to the actual data buffer. 
cbreakrtn Pointer to position in program to return to after control-break (G) 
ch Variable to hold user response to menu selection 
cyclecount A counter incremented on every cycle of a control loop (G) 
*dat The pointer to the data array (G) 
data[20] An array in which the PCL-812 stores the results of its A/D conversions (G) 
DataBuf Value of actual voltage calculated from A/D conversion data 
dlbuf PANDL to store raw data received through the datalink (G) 
dlok Boolean set true if message received on datalink 
eol Character which ends complete message from IMU or GPS 
*far_ptr Pointer to memory location to begin inspection 
fmu_start_flag   Boolean variable toggled on when FMU is started (G) 
gpsjbuf PANDL to receive raw data retrieved from GPS receiver (G) 
gps_start Array to hold start sequence to be sent to GPS receiver 
gpsok Boolean set true if GPS message received is complete 
hibyte Value of high byte given to PCL-830 for the PWM signal 

Loop increment used in various places 
mubuf PANDL to receive raw data retrieved from IMU (G) 
muok Boolean set true if IMU message received is complete 
ntno Number of interrupt for which requesting ISR vector address 

lobyte Value of low byte given to PCL-830 for the PWM signal 
*old_vector Pointer to hold value of old interrupt ISR vector (G) 
new_value Value of register read from RTC after a modification 
param[60] An array of parameters used to configure the PCL-812 board (G) 
port For loop increment to configure all ports 
queue Length of receive queue buffer from IMU or GPS 
♦reboot Pointer to memory location to jump to causing reboot 
reg_nmi Value of register read from the RTC with Non-Maskable Interrupt (NMI) bit set 
rtncode Code returned from execution of PCL-744 I/O program 
sr, xr, yr Values read from computer internal registers 
strglen Number of characters transmitted to datalink buffer 
txbuff Length of free space available in datalink transmit buffer 
value Value of register read from the RTC 
vane Array holding vane servo commands for each of the servos 
vanestep Temporary variable holding command for control vane position (G) 

91 



APPENDIX C: HARDWARE DATA SHEETS 

92 



PCA'6147 

Sperifitations 
• CPU 80486SXDX/DX2 25 33/40/50/66 MH; 

• Cache memory sue 8 KB on-chip and 256 KB 2nd leve 

• Bus interface ISA |PC/AT i DU: 

• Data bus: 32 D■: 

• Processing ability 32 0! 

• Coprocessor Sockel tor Weitek 416? 

• RAM memory 1 MB to 64 MB. uses tour banks of SIMM 
sockets comoosed ot eight 30 pin sockets and two 72-pin 
sockets (72-om sockets accept 1 2. 4. 8 and 16 MB 
SIMMs) 

• Shadow RAM memory: Supports system and video BIOS ot 
up to 256 KB in 32 KB blocks 

• IDE hard disk drive interlace Supports up to two IDE (AT 
bus) hard disk dnves BIOS enabled/disabled 

• Floppy disk drive Interface Supports up to two floppy disk 
dnves. 5.25' (360 KB and 12 MB) and/or 3 5' (720 KB and 
1.44 MB). BIOS enabled/disabled 

• Bl-directlonal parallel port Configurable to LPT1. LPT2 
LPT3 or disabled Standard DB-25 female connector 
provided 

• Serial ports Two RS-232 serial ports can be individually 
set to C0M1. COM2 or disabled. Each can be accessed 
through a OB-9 male connector 

• Real lime clock/calendar Dallas DS-1287 with lithium 
battery back-up tor 10 years ot data retention 

• Watchdoo timer Jumper configurable to. always disabled 
or software enabled/disabled The timer interval is 1.6 sec 
Your program uses I/O ports hex 043 and 443 to control the 
watchdog timer and generate a system reset or IRQ15 

• Piggyback connector 16-bit bus connector (64 ♦ 36 pins) 
tor expansion modules 

• DMA channels 7 

• Interrupt levels 15 

• Keyboard connector A 6-pin mini DIN keyboard connector 
is located on the mounting bracket tor easy access. An 
external keyboard adapter is included An on-board 
keyboard pin header connector is also available 

• Bus speed 8 MHz 

• System performance (w/ M4MDX-50 MHz CPU): 200 MHz 
Landmark speed V1.14; 167 MHz. Landmark speed V2.0 

• Max. power requirements +5 V © 2 5 A 

• Power supply voltage: 
+5 V (4.75 V to 5.25 V). +12 V, -12 V 

• Operating temperature: 32 to 140°F (0 to 60*C) 

• Board size 13 V (L) x 4 8' (W) (334 mm x 122 mm) 

• Board weight 1.2 lbs (0.5 Kg) 

Ordering Information 
3 PCA-6147-33/Bare: All-in-one 80486 CP« Lard wttr>0i. 

CPU includes 256 KB cacne memory users manual ID: 

hard disk cable tioppy drrve cawe ana wanei prq aaar'r 

U PCA-6147SX-25/DK: Same as aoove but witr 25 MH; 
80486SX CPU installed 

ü PCA-6147SX-33AMC: Same as above but * :■. 33 MH • 
80486SX CPU installed 

□ PCA-6147DX-33/ML Same as above but with 33 v-: 
80486DX CPU installed 

Q PCA4147DX-50/0K: Same as above but with 50 M- 
80486DX CPU installed 

□ PCA-I147DX2-HWHI Same as above but with SO MH; 
80486DX2 CPU tnstaHod 

O PCA-«147OX2-M/0K: Same as above but with 66 MH; 
80486DX2 CPU mstaMed 

On-board POST diagnottit If0s 
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PCA-6146 All-in-One 486 CPU Card 

with Cache 

256 KB data 
Cache RAM 

Baser 
RDDflBE) 
I •terrace 

Fixe« Hole tor 
PiofTkack Moaele 

FBD 
latertace 

Dp to 111 32 D lea 
Cache RAM 

MMS60XCPU 

ETHI 

Pimkack 

Introduttion 
We designed the PCA-6146 for users 
who require high speed system 
performance in their industrial PC 
applications. The card is available in five 
80486 CPU versions: 80486SX-25, 
80486SX-33, 80486DX-33. 80486DX2- 
50 or 80486DX2-66. The card's all-in- 
one design includes memory caching, 
disk drive controllers, a watchdog timer 
and serial/parallel ports. We grve every 
card a 24-hour dynamic burn-in test to 
ensure component reliability in harsh 
environments at temperatures up to 
140°F (60°C). 

With the PCA-6146 plugged into your 
passive backplane, your industrial PC 
becomes a true 32-bit 80486 
compatible computer system. 

The card's highly compact size, 
numerous features and unmatched cost/ 
performance ratio make it ideal for 
high-end industrial applications where 
high CPU speed, minimum space and 
short MTTR are crucial. 

Each PCA-6146 ships with either an 
80486DX-33 MHz, 80486DX2-50 MHz 
or an 80486DX2-66 MHz CPU. These 
state-of-the-art CPUs feature an on-chip 
math coprocessor and an 8 KB cache 
memory for floating point calculations 
and fast memory access. 256 KB of 
2nd-level cache memory allows the card 
to run at Landmark speeds in excess of 
150 MHz. 

Other standard features include two 
RS-232 serial ports, one parallel/printer 
port an IDE hard disk drive interface, a 
floppy disk controller, a watchdog 
timer, piggyback module connectors 
and an on-board keyboard connector. 
You can configure system memory to 
anywhere from 1 MB to 16 MB using 
256 KB. 1 MB or 4 MB SIMM DRAM in 
the PCA-6146's four memory sockets. 

Features 
• Completely 80486 PC/AT compatible 

• 32 to 140°F (0 to 60»C) operating 
temperature 

• Watchdog timer 

• Optional Flash/RAM/ROM Osk 
Piggyback Module (PCD-89311 and'c 
Flat-panel/CRT VGA Piggyback 
Module (PCA-6443) install on m* 
piggyback connector 

• 80486 processor and AMI BIOS 

• ETEQ's Cougar chipset 

• 256 KB 2nd-level cache memory 

• Up to 16 MB of on-board DRAM 

• Built-in IDE (AT bus) hard disk drive 
interface 

• Built-in floppy disk drive controUer 

• Two serial RS-232 ports 

• One parallel/printer port 

• On-board keyboard connector 

• Lithium battery back-up tor real-time 
clock/calendar 
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PCA-6146 

Specifications 
• CPU: 80486SX/DX/DX2-25/33/50/66 MHz 

• Cache memory size: 256 KB 

• Bus interface: ISA (PC/AT) bus 

• Data bus: 32 bit 

• Processing ability: 32 bit 

• Chipset: ETEQ's Cougar chipset 

• RAM memory: 1 MB, 4 MB and 16 MB. Uses 256Kx9 
(SIMM-256-8), 1Mx9 (SIMM-1000-8) or4Mx9 (SIMM- 
4000-8) SIMMs with access time of 80 ns or less 

• CPU Comparison: 

:;-. :|§1BI°*Ä| ||l|iijjfi~g§ r S048S3X2-SS 

Co-prosessor Built-in BuNt-ir? <      Sw 1- ~ 

Cadw memory S KB + 258 KB ' 3 K3 ^ 253 KS 

ft t-lläi»lilfifit 
150.2 >,:HZ ~7z*. u?.z >2CC ^HK    i 

Systerr Clock ..33.MHz .. ...25 MHz.    ... 33 .'»'Hz      | 

1 Shadow RAM memory: Supports up to 256 KB of memory 
in 16 KB blocks for system and video BIOS 

■ Hard disk drive interface: Supports up to two IDE (AT-Bus) 
hard disk drives. Jumper enabled/disabled 

Floppy disk drive interface: Supports up to two floppy disk 
drives: 5W (360 KB and 1.2 MB) and/or 3Vz (720 KB and 
1.44 MB). Jumper enabled/disabled   ' 

Parallel/printer port: 
Configurable to LPT1, LPT2, LPT3 or disabled. A standard 
female DB-25 connector is provided 

Serial ports: Two RS-232 serial ports individually 
configurable to COM1, COM2 or disabled. Each port is 
accessed through its own male DB-9 connector 

Real time clock/calendar: 
Real time clock/calendar with lithium battery back-up 
(3.6 V @ 850 mAH). External battery connector provided 

Watchdog timer: Jumper configurable to always ON, always 
OFF, or programmable ON/OFF. The time-out interval is 
jumper selectable to 1.5,15 or 150 seconds 

Piggyback connector: 64-pin, 8-bit bus connector with 
a low-line detector and battery back-up reserved for option 
modules such.a.s Flash/RAM/ROM disk module and/or Flat- 
panel/CRT VGA modules 

DMA channels: 7 

• Interrupt levels: 15 

• Keyboard connectors: A 6-pin mini-DIN keyboard connector 
is located on the mounting bracket for easy access. An 
external keyboard adapter is included. An on-board 
keyboard pin header connector is also available 

• Bus speed: 8 MHz. 

• System performance: 150 MHz with an 80486DX-33 MHz 
(Landmark speed V1.14). 

• Max. power requirements: +5 V @ 2.5 A 

• Operating temperature: 32 to 140°F (0 to 60°C) 

• Board size: 13.1' (L) x 4.8" (W) (334 mm x 122 mm) 

• Board weight: 1.5 lbs (0.7 Kg) 

• EMI: meets FCC class A and BZT Class A 

• MTBF: 87,100 hrs @ 25°C; 31,900 hrs @ 60°C 

Ordering Information 
□ PCA-6146-33/Bare: 

All-in-one 80486 CPU Card without CPU. Includes 256 KB 
memory, user's manual, IDE hard disk drive cable, floppy 
disk drive cable, parallel port adapter and keyboard 
adapter. 

□ PCA-6146SX-25/0K: 
All-in-One 80486SX-25 CPU Card with 256 KB cache 
memory and all accessories of the PCA-6146-33/Bare 

□ PCA-6146SX-33/0K: 
All-in-One 80486SX-33 CPU Card with 256 KB cache 
memory and all accessories of the PCA-6146-33/Bare 

□ PCA-6146DX-33/0K: 
All-in-One 80486DX-33 CPU Card with 256 KB cache 
memory and all accessories of the PCA-6146-33/Bare 

□ PCA-6146DX2-50/0K: 
All-in-one 80486DX2-50 CPU Card with 256 KB cache 
memory and all accessories of the PCA-6146-33/Bare 

□ PCA-6146DX2-66/0K: 
All-in-one 80486DX2-66 CPU Card with 256 KB cache 
memory and all accessories of the PCA-6146-33/Bare 
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Q&A Solid State Storage Devices 

0 What special features does a Flash 
RAM/ROM disk otter tor the 
industrial environment? 

A Flash/RAM/ROM disks are tne solifl 
state equivalents ot mecnamcai div 
drives lhev otter taster data access 
and longer MTBK characteristics 
which mane n»m the ideal solution 
tor critical commercial or industna' 
applications 

Mecnamcai disks are highly 
susceptible to oreakoown m severe 
industnai environments A Flasfv 
RANDOM disk uses Flash. SRAM 
and BPROM memory to store your 
data and application programs 
instead ot the magnetic particles on a 
rotating disk Although the initial 
cost tor the solid-state disk is highc 
it gives you raster and more ernaen- 
operation, a longer litespan and a 
lower risk of breakdown or data loss 
during critical manufacturing or 
commercial processes 

Q. What is a memory-card drive? 

A. A memory-card drive uses credit 
card sized memory cartndges to 
store data using procedures 
established in the PCMCIA 1 0/JElDA 
4 0 standard Card drives unk with 
the PC/ISA bus and allow you to 
write to and read trom an IC memory 
card as you would a magnetic disk 
Like a tloppy disk, you can remove a 
cartndge trom a dnve on one PC and 
use it in another PC s card drive 

Our memory-card drives otter a seek 
time that is orders of magnitude 
faster than mechanical disks Card 
drives are also much less vulnerable 
to wear, part failure or vibration 
Industrial PCs are only one ot many 
candidates for these systems 
Memory card drives are ideal in any 
environment that requires portability, 
ruggedness and fast access That's 
why they are popular for fleet 
vehicles, robots, remote data loggers 
and mobile computer systems. 

0 What are the differences between 
applications tor Flash/RAM/ROM 
disk cards and applications tor 
memory-card drives? 

A Fiash/RAM/ROM disks appear i: 
applications which demand large 
storage capacity, easy memon, 
expansion, complete DOS 
compatibility and the security which 
diskless operation provides 

They make excellent direct 
replacements for mechanical drives 
because they completely emulate 
DOS operations, withstand more 
severe conditions and read and write 
much taster. Their watchdog bmers 
make stand-alone or unmanned 
operations much easier to manage 
because they can tngger auto-resets 
or auto-reboots in case of power 
failures Disk cards also work well in 
high-secunty environments because 
they re entirely enclosed within your 
PC and therefore tar more tamper - 
proof than disk drives Applications 
that generate lots of data will find 
ample storage space on a disk card 
Any application that rewards 
portability, mobility and low power 
consumption will benefit trom a 
memory-card drive They ve won 
tavor with designers of test 
equipment, data-control systems anc 
data loggers because of their small 
size, light weight and the availability 
ot standard memory cards in several 
sizes trom 128 KB to 64 MB The 
cards themselves weigh little (from 
1 to 1 5 ounces [138 to 206 g)| and 
can be moved trom drive to dnve lust 
like floppy disks 

Q. What are the different types ot 
memories used In solid-state 
disks? 

A. Three types of memory are available 
EPROMs. battery-backed SRAM and 
Flash memory. All three types otter 
you storage capacities that equal or 
beat those of floppy disks. At the 
same time, since they have no 
moving parts, they offer greater 
reliability than mechanical drives. 

An EPROM ifcrasabtf f»roorammapi. 
Read Only Memory < oroviflfs storao- 
that is nearN nonvoutiie tor it, 
written eiectncaiiv anc can only r>* 
erased 0v UV ugnt IRAMs wrr 
battery tooting »re normal statt: 
RAMs coupied witt a Dart»-v trw 
retains data wnen no*~,j power i 
withdrawn Has* memory operate 
like an EPROM except that it can r> 
programmed and erased white . 
board It provides tne same long data 
retention but reduces tne r<m~ 
required to store the oau 

Q: Ho« dots Ike st4M stets «ist wert? 
A: The solid state dtsk uses memory 

Chips (Flash SRAM or EPROM) tc 
store programs and data instead ot 
the magnetic partxJes on me 
mechanical drrve s disk When tne 
system boots the disk card modifies 
the BIOS INT-13 disk I/O routine The 
routine men translates read and write 
commands to the disk card so mat 
they will correctly access the 
memory Craps You don't need any 
special drivers You simply set the 
drive to act as dnve A or C and use 
standard DOS commands (COPv 
DIR. etc | to manipulate your data 
it you use Ftasn or SRAM tor the 
solid state disk, you can read or wm> 
data it you use EPROM hies on me 
disk are read onty Tne PCD-890 car 
program some common EPROM 
chips on board Otherwise you wis; 
need an external programmer to toac 
your program and data tiies on the 
EPROMs 

Q: How do I aoot tram a solid state 
disk? 

A: Us easy Simpiv set me lumpers on 
your solid state disk to emulate dnve 
A (the 1st FDD), men copy your 
application tiles to the dsk along 
with the standard system files 
required to boot (command.com 
io.sys. autoexec bat. etc) Nexttane 
you start your computer, it will boot 
trom the solid state dsk 
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PCD-890 Dual Flash/RAM/ROM Disk Card 

Flash/RAM/ROM Disk Drive 1 
12 Memory Sockets 

On-board EPROM 
Programming Circuitry 

3.6 V (1.8 AHr) 
Ltthinm Battery 

Watchdog Timer 

SW1 Controls 
Flash/RAM/ROM 
Disk Drive 1 

External 
— Signal 
Connector 

"M-"- äK-VS^*'    •■«--.::..-     ■'^•?-.  ■■,■77 
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Flash/RAM/ROM Disk Drive 2 
12 Memory Sockets 

J ROM BIOS SW2 Controls 
Flash/RAM/ROM 

Disk Drive 2 

J 

Introduction 
The PCD-890 solid-state disk emulates 
two floppy disk drives. It provides 
anywhere from 360 KB to 12 MB of 
storage using Flash/EPROM/SRAM 
memories. When you replace 
mechanical disk drives with the PCD- 
890, your critical PC applications will 
run faster in harsh industrial 
environments with a higher degree of 
reliability. 

The size of the PCL-890's disks 
depends on the number of chips 
installed. The unit works with a wide 
assortment of supported chips from 
standard manufacturers or their 
equivalents. You can designate each as 
drive A, B, C or D. You can install up to 
two PCD-890s in your PC for at total of 
24 MB of storage. 

The PCD-890's on-board watchdog 
timer protects your applications from 
system standstills, particularly useful in 
stand-alone or unattended 
environments requiring auto reset or 
auto reboot. 

Applications 
• Diskless PCs 

• High-reliability industrial PCs 

• Stand-alone or unmanned machines 

• Sites that demand high-speed or 
heavy-duty disk operations 

• Industrial controllers 

• Network terminals 

• Industrial PCs requiring high-speed 
disk I/O 

Features 
• Emulates up to two floppy disk drives 

• Disk sizes: 360 KB to 12 MB (both 
banks linked together) 

• Drive designation: DOS drive A, B, C 
or D (1st, 2nd, 3rd and 4th FDDs) 

• Offers 24 individual 32-pin memory 
sockets divided into two banks, one 
bank for each drive 

• Accepts 128Kx8 Flash/EPROM/SRAM 
or512Kx8 Flash/EPROM/SRAM 

• Fully software-compatible with 
mechanical floppy disk drives. 
Requires no special software 
development 

Power-on auto-boot feature; user- 
defined password and user's prompt, 
excellent for OEMs 

Up to two PCD-890s can be installed 
in one PC 

On-board EPROM programming 
circuitry with easy-to-use menu 
driven programming utility software 

Lithium backup battery 
(3.6 V@ 1.8 AHr) for 5-year data 
retention (with maximum load of 24 
SRAM chips) 

Connector for external battery 

Each card occupies only 16 KB of 
system memory space 

Watchdog timer with selectable time- 
out period (100 msec and 1.6 sec) 

Memory-mapped data transfer 

Switch (enable/disable) between 
floppy disk drives and PCD-890s by 
software 

Connector with pins for +5 V, +12 V, 
GND, PFO (Power Failure Output) and 
WDO (Watchdog Output) signals 

All solid-state construction for 
environments hostile to diskettes 

U Industrial PC Peripherals 



PCD-890 

Spedfuations 
• Flash: ATMEL29C010 (128 Kx8), 

29C040(512Kx8) 
INTEL or AMD 28F010 (128 Kx8) 

• EPROM: ATMEL 27C010 (128 Kx8), 
27C040(512Kx8) 

• SRAM: CXK581000P (128 Kx8), 
CXK584000P(512Kx8) 
Note: You may use code-equivalent 
chips but make sure to use only 
memories from recognized suppliers 

• Battery: 3.6 V (1.8 AHr) lithium 
battery backup 

• Operating temperature: 
32to140°F(0to60°C) 

• Power: +5 V @ 1 A maximum for 
normal applications, +12 V @ 300 mA 
maximum for programming EPROMs 

• Board size: 13.3'(L)x 4.2'(W) 
(340 mm x 107 mm) 

Ordering Information 
□ PCD-890: 

Dual Flash/RAM/ROM Disk Card with 
0 KB memory, user's manual and 
utility diskette 

□ M-27C010x3: 
Three 128 KB EPROM devices 

□ M-27C040X3: 
Three 512 KB EPROM devices 

□ M-581000x3: 
Three 128 KB SRAM devices 

□ M-584000X3: 
Three 512 KB SRAM devices 

□ M-29C010X3: 
Three 128 KB (+5 V) Flash memories 

□ M-29C040X3: 
Three 512 KB (+5 V) Flash memories 

Memory Configuration 
The following table shows the number of EPROM, Flash or SRAM chips required for 
each disk size. 
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PCD-892 Flash/RAM/ROM Disk Card 

SpedfUations 

:"mimtminmmtiiiHM;' 

Introduttion 
The PCD-892 half-size Flash/RAM/ROM 
disk card uses up to 6 MB of SRAM, 
EPROM or Flash memory chips to 
replace a floppy disk drive. It offers 
faster access times and better pro- 
tection from the vibration, vapors and 
contaminants found in harsh industrial 
environments. The emulated drive is 
identified conventionally as A, B, C or D 
and obeys standard DOS commands; no 
special software is required. 

An optional lithium battery (3.6 V, 
1.8 AHr) preserves data stored on an 
SRAM disk in case of power failure. The 
PCD-892 also comes equipped with a 
watchdog timer which outputs a TTL- 
low signal if the CPU's processing 
comes to a halt due to a software bug or 
EMI. You can use this signal to activate 
an LED or alarm or to trigger an auto- 
reset or auto-reboot. 

Appli<ations 
Programs that require frequent, high- 
speed disk access 

Diskless PCs and workstations 

Security systems 

Embedded control systems 

Unmanned (run-only) controllers 

Industrial control systems 

Instrumentation systems 

Testing systems 

features 
• PC/AT compatible half-size card 

• Can be enabled or disabled in 
software 

• Fully software-compatible with 
conventional drives, requires no 
special software development 

• Auto-bootable when emulating 
drive A 

• Disk size from 360 KB to 6 MB 

• Accepts 128Kx8 Flash/EPROM/SRAM 
or 512Kx8 Flash/EPROM/SRAM 

• Lithium battery (3.6 V® 1.8 AHr) for 
SRAM data retention of no less than 
ten years 

• On-board connections for external 
battery, Vcc and +12 V power sources, 
power failure warning and watchdog 
timer outputs 

• Each card occupies only 16 KB of 
system memory space 

• Selectable watchdog timer intervals of 
100 msec and 1.6 sec 

• Memory-mapped data-transfer 

• 32 to 140°F (0 to 60°C) operating 
temperature 

• Password protection against 
unauthorized changes 

• User-defined prompt offers easy 
customizing for OEMs 

Supports the following memory 
devices: 

Flash 
ATMEL29C010+5V(128Kx8), 
ATMEL29C040+5V(512Kx8) 
AMD/INTEL 28F010 +12 V (128 Kx8) 
or equivalent. Approved 
manufacturers only. 

EPROM 
ATMEL27C010(128Kx8), 
27C040 (512 Kx8) or equivalent. 
Approved manufacturers only. 

SRAM 
CXK581000P(128Kx8), 
CXK584000P (512 Kx8) or equivalent. 
Approved manufacturers only. 

Power requirements: 
+5 V @ 0.5 A max. (normal 
operations); +12 V @ 50 mA max. 
(during flash memory programming) 

Board size: 
7.3" x 3.9" (185 mm x 98 mm) 

Ordering Information 
a PCD-892A: 

Flash/RAM/ROM Disk Card with 
battery 

O PCD-892B: 
Flash/ROM Disk Card without battery 

□ M-27C010x3: 
Three 128 KB EPROM devices 

□ M-27C040x3: 
Three 512 KB EPROM devices 

□ M-581000x3: 
Three 128 KB SRAM devices 

□ M-584000x3: 
Three 512 KB SRAM devices 

□ M-29C010X3: 
Three 128 KB (+5 V) Flash memories 

□ M-29C040X3: 
Three 512 KB (+5 V) Flash memories 
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PCL'743/745 
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CONTROLLED 

l«tOXSTfE 
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«u Assignment 

RTS- 
TX 

2 TX 
RTS. 7 

3 RX 
CTS. 8 

4 RX 
CTS- 9 

^J J GN 

RS-422/435 Interlace Card Block Diagram 

Wiring Diagram (2-wtre) 

RS-485 Programming Example 

1C    ' Configured as CCaO. with the 
driver /receiver bit enabled 

20    BASE%-i3F8 

«T[ 
-VA- 

->>- J >- ^1 RT 

Dwic* 

100 

110 

120 

200 

210 

OPEN-COM1:9600,N,8,1,RS"AS#1 
OUT BASE% +7,1      'Knabledriver 

PRINT#1, DATA1$    'Sanddata 

Ordering Information 
a PCl-743 

General-purpose RS-422/485 Interface Card, user s manuai 
□ PCL-745: 

Isolated RS-422/RS-485 Intertace Card, users manual 
□ PCLS-S02 

PC-ComLIB Serial Communication Programming Library 

OUTBASE% + 7,2 

INPUT#1, DATA2S 
'Enable receiver 

'Receive data 

•3 e 

L 

300        OUTBASE% + 7,0 'Disable driver 

twdntiua 
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PCL-844 8-port Intelligent RS-232 Card 

Introduttion 
We designed the PCL-844 intelligent 8-oorl RS-232 or RS 
422 interlace card tor lao and industrial applications where a 
PC needs to communicate with terminals, modems or other 
instruments RS-422 applications use the optional PCL-8442 
8-pon isolated RS-232 to RS-422 converter, shown on the 
following page You can install up to four PCL-844 cards for a 
total ot 32 ports in any AT/ISA bus 286/386M86 based PC 

The PCL-844 s on-ooard 12 MHz 80286 processor takes over 
the communications load from the host PC When you are 
processing large amounts ot data from multiple ports 
servicing the interrupts alone consumes a large percentage ct 
the capacity of your computer s CPU The PCL-844 serves as 
a high-speed dedicated interrupt processor Its CPU directly 
controls the board s CD180 RISC-based UART. guaranteeing 
38.400 Dps performance over eight high-speed data ports 

The PCL-844 is virtually a seit contained computer in its own 
right It contains 512 KB ot dual-ported RAM which you can 
use to store and run programs The dual-port RAM maps intc 
the host system s address space to give you the tastes! 
possible data transfers between the PCL-844 and PC-memorv 

When the PCL-844 initializes, it downloads the driver software 
(which functions like a PC s BIOS) into on-board SRAM This 
improves performance and makes version upgrading easy, 
with no hardware redundancy 

Each PCL-844 comes with software drivers for DOS and 
Windows (PC-ComLIB described on the following page) 
These drivers support most common languages, including C 
Pascal. Visual Basic, Quick Basic, assembly and Clipper The 
PC-ComLIB package also includes the DataScope data viewer 
terminal emulator and self-diagnostic utilities tor easy 
troubleshooting and debugging 

features 
• 12 MHz 80286 process^ CD180 R.Sc öas*.: „A- 

512 KB dual ported RAM 

• Baud rate up to 38400 bos witn eion: cot > ; •. i ■ 

• Complete RS-232 modem control siQna; 

• Maps to tust 16 KB ot svstem memor, Cnoos? of»? "'■ i■■• 
addresses trom C8000 to DC00C 

• Many IRQ options 2 3 4. 57 1C "   '? <■ ,; 

• Easy-to-use menu driven installation program 

• LEDs on connection oox let you monito' the TiD-'RxJ statt 
of any port 

• Links to peripherals up to 4000 ft trom controller (RS-422 

Applnations 
• Data acquisition and control with RS 232'RS-422 base:? 

devices 

• PLC monitoring and control 

• Instrument controller, distributed control systerr 

• Modem server, database server POS control*• 

• Multi-user system 

Sperifitations 

Board 
• Number of ports 8 

• Processor 12 MHz 80286 

• Dual-ported RAM 512KB 

• SRAM  16KB 

• UART RISC-based CD180 

• Total ports in one system 32 

• Operating temperature 32 to 122 F (O 50"t 

• Power consumption 
+ 5 V@ 1.5 A. +12 V 8 120 mA.-12 V a 180 mA 

• Dimensions 13.3x4 7 in (338 x 120 mm i 

• Weight 1.5 lb (0.67 Kg) 

RS-232 interface 

• Signals 
TxD. RxD. RTS. CTS, DTR. DSR. DCD and GND 

• Mode: asynchronous full duplex 

• Communication rate 50 to 38 400 bps 

• Stop bits: 1 or 2 

• Parity: even, odd or none 

• Data bits: 7 or 8 
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Bio A diagram for fie PCI-1600 

-<v 
Siwtsh 

AjftfrwW St;» 

ASICAD1801       j.    ^P? 
 • v&j&mil 
mmmmm mmssm am _ 

D«fca Bus 

V" -j    :. ■•   .1 : 0-.. 

QS3A COfttTQi S%ftaS 

Dis&ai 

Ctasut 
JL*, ötÄpufcü 

fcl    Convert» -§■* 

D/A 
CfanrntM 

<JF' 
FPGA   EPM513Ö   ' 

1$-chanoei 
Analog 
inputs 

1 K Words 
F!FO 

P» »if 

Connector 1 (A/D, D/A) 

+12 V 
Al HO 
Aim 
AfH2 
AIH3 
ÄIH4 
AIH5 
AIH6 
AIH7 

AGND 
VREF 

AGND 
DA1VREF 

AGND 
DGND 

DAECLK 
ECLK 
OUTO 
+5V 

1 
2; 
3! 

4 
5: 
6 
7' 
8 

I9 

!10 
|11 
'12 
13 
14 
15 
15 
17 
18 
19 

20 AQSD 
21 A1L8 
22 AfL9 
23 Att.10 
24 AIL11 
25 AIL13 
26 A1L14 
27 AJL15 
28 A1L15 
29 AGND 
30 DAOOUT 
W »* DAOVREF 
32 DA10UT 
33 AGND 
34 DGND 
35 TRlßO 
36 GATED 
37 0UT2 

Connector 2 (D/O) 

0/0 0 
D/0 2 
D/0 4 
D/0 6 
D/0 8 

D/0 10 
DA) 12 
D/0 14 
D.GND 

+5V 

1 2 
3 4 
5 5 
7 8 
9 10 

11 12 
13 14 
15 16 
17 •8 
19 20 

D/01 
D/0 3 
D/0 5 
D/0 7 
D/0 9 
D/0 11 
D/0 13 
D/015 
D/0 D.GND 
+ 12 V 

m 
»2 

• ; 

«»■«»' 

□ PCL-1800: 
330 KHz High-speed DAS Card, user's manual and utility diskette with BASIC, 
C/C++ and Pascal drivers 

Connect or 3 (D/I) 

D/IO ' 2 D/i 1 
D/i 2 3 4 D/I 3 
D/I4 5 6 D/I 5 
D/I 8 7 8 D/I 7 
D/I 8 9 10 D/I 9 

D/110 11 Vc D/111 
D/112 13 14 D/l 13 
D/114 IS 16 D/I 15 
D.GND 17 18 D/I D.GND 

* 5 V 19 20 

" Siärifts 



PCL-812/812PG SSSSa. 

lntrodu<tion 
The PCL-812 and PCL-812PG are multifunction analog and 
digital I/O cards which offer the five most desired measure- 
ment and control functions for PC/AT and compatible sys- 
tems A/D conversion. D/A conversion, digital input, digital 
output and counter/timer They neatly package 16 12-bit 
analog input channels, two 12-bit analog output channels. 
16 digital input channels. 16 digital output channels and a 
programmable counter/timer on a full-size card 

in addition to all the features listed above the PCL-812PG 
offers the convenience of programmable analog input ranges 
With the PCL-812PG selection of an analog input range is no! 
done by DIP switches, but by software commands For 
applications which need different gains for different channels 
or different gains for different stages of a process, the PCL- 
812PG offers convenience and maximum resolution 

Rich software support, numerous I/O options and a wide 
range of available daughterboards make the PCL-812 and 
PCL-812PG ideal for industrial applications that require a 
combination ol analog and digital I/O 

Features 
PCL-812 and PCL-812PG 
• 16 single-ended 12-bit analog input channels 

• Two 12-bit analog output channels 

• Programmable sampling rate of up to 30 KHz 
• A/D with DMA or interrupt 

• 16 digital output channels 

• 16 digital input channels 
• Programmable timer/counter 

• includes C/C++ PASCAL and BASIC anvers ü we I a 
calibration, demo and example proorar- 

• Ricn application software suppon 

• Wioe variety ot external dauqnter roar- 

PCL-812PG only 

• Programmable A/D ranges (gams, 

Applitations 
• DC voltage measurement 

• Transducer/sensor interlacing 

• Waveform analysis 

• Process control 

• Programmable voltage output 

• Contact closure monitoring 

• Digital signal and BCD interlacing 

• Industrial ON/OFF control 

• Multiplexer and relay control 

• Frequency, period and pulse width measurement 

• Event counting and pulse train generatior 

I/O fututions 
Analog Input 

The PCL-812 and PCL-812PG use an industrial sunoarc 
12-bit successive approximation A/D convener (AD574i w<- 
sample and hold for accurate, high-speed A/D conversion 
The typical conversion time is 25 microsecond:. 

You can trigger the A/D conversion in three wavs Dv proora- 
control, by on-board programmable pacer or Dy an extern^ 
trigger pulse The on-board pacer uses two 16-bit timr 
counter channels from an Intel 8253 A crystal oscillate 
provides a 2 MHz time base This oscillator lets the pace- 
generate trigger pulses with frequencies ranging trorr 
500 KHz to 0.00046 Hz (1 pulse every 36 minutes i 

You can perform A/D data transfer in three wavs bv orogra1" 
control, by interrupt service routine or Dy DMA it you use 
interrupt data transfer you can lumper-select any IRQ teve 
between 2 and 7. If you use DMA data transfer you can lump«- 
select either DMA channel 1 or 3 

Analog output 

As a complement to the analog inputs, the PCL-812 and PCL 
812PG also provide two 12-bit double-buffered analog outpu! 
channels. You can operate their D/A converters with an 
internal fixed reference in the 0 to 5 V output range or with an 
external reference for 0 to +10 V or 0 to -10 V output 
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Specifications PCL-812/812PG 

Digital I/O 

>p PC;.-S'? and PCL 8'?p(> COT» w r 16 OiQitai inputs ar: 
16 (JiQitai outputs, accesseo via \<f.u 20-pin ouaimiin- 
ronnecto's These connectors are sianaa-3 on most t 0 care 
a^a dauamerboards in trip ^C LaDLara tar, ,  Digital inputs 
are normally set high (value = 11 witneu! any input anc 
cnange state with trie input sirjnais a:coromgi, Digita; 
cutculs are normally set low ivaiu*1 = Oi at mitiai state an:: 
stay at me same state Ibuftereai untn tre next outpu' 
operation occurs 

Timer/counter 

The third timer/counter channel on tne Intel 8253 powered Oy 
an internal or external time oase. can be used to count events 
or measure frequency, period ano puise widtn 

Walt state insertion 

Because of the wide variety of CPU and bus soeeds in the 
market we designed the PCl-812 and 812PG with a wait-state 
insertion capability Wait-state insertion addresses most 
speed compatibility problems, allowing you to use these cards 
in PCs with speeds ranging from 16 MHz '80286) up to 66 
MHz (80486DX2) This feature ensures that vour card will 
keep up with future technology 

Spe<ifi<ations 
Analog Input 

• Channels 16 single-ended 

• Resolution 12 bits 

• Converter Honeywell HADC-574ACCJ cr erjuivaiem 

• Conversion time. 25 microseconds imax 30 KH;! 

• Input range (in V) 
PCL-812        ±10. ±5. ±2. :' 
PCL-812PG    ±10. ±5 ±2 5  •' 2b ±0 625 ±0 31?f 

• Range selection 
PCL-812 by DIP switches PCL -812PG Dv software 

• Trigger mode: by software on-board/erternai trigger 

• Data transfer by program control interrupt (IRQ 2 to 7i or 
DMA (Channel 1 or 3) tor single channel scan 

• Accuracy 0.01% of reading ±1 bit 

• Common mode rejection 60 dB typical 

• Input impedance >10 MT2 

• Overvoltage: Continuous ±30 V„ max 

Analog output 

• Channels Two double buttered l?-pi: cr.anr.f 

• D/A range (in V) 
DC.-812 0-5 0-10 iw/exiernai reteren:-. 
pCi-812PG 0-5 C-10iwinternai reference, tic* rw 
with external AC or DC reference (accuracy »cr output atx»- 
•9 v mav vary depending on power supply used 

• Settling time 30 microseconds 

• Output current: ±10 mA max 

• D/A device MP7623KN or AD7541AKNor eourvater- 

• Linearity . ±Wbtt 

Digital Input 

• Channels 16 

• Logic level 0 OtoOSV^ 

• Logic level 1 2 0 to 5 0 vK 

• Input load 
0 4 mA max © 0 5 V (low)   50 u.A max 0 2 7V (rugni 

Digital output 

• Channels 16 

• Logic level 0 Oto04VK 

• Logic level 1   2 4 to 5 0 VK 

• Driving capacity  Sink. 8.0 mA © 0 5 v 
Source 0 4mA© 24 V 

A/D pacer and counter (8253) 

• A/D pacer 32-bit timer with a 2 MM; time bast 

• Max. and mln. rates 500 KHz to 0 00046 Hz lore sane • 
every 36 minutes) 

• Counter One 16-bn counter with a 2 MHz time oas* 

General 

• Power consumption 
♦ 5 V @ 500 mA typical 1 0 A max 
♦ 12 V © 50 mA typical 100 mA max 
-12 V@ 14 mA typical. 20 mA max 

• Operating temperature 32«F to i40tF (0 to 50*C 

• I/O ports 16 consecutive bytes 

• Connectors All I/O channels are accessed through five on 

board. 20-pin. duai-m-line connectors 

• Base address 
DIP-switch selectable, default setting is H220 

i 
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PCL-812/812PG 

Ordering Information 
D PCL-812: PCL-812 Multi-Lab Card, user's manual and utility diskette, with BASIC. 

C/C++ and PASCAL drivers 

U PCL-812PG: PCL-812PG. user's manual and utility diskette with BASIC, C/C++ 
and PASCAL drivers 

□ OPT 002: Wiring kit: includes PCLD-780 wiring terminal board. PCL-10501/PCL- 
10502 industrial wiring adapters and cables. 

□ OPT 003: Three application software packages: PCLS-700-1 PC-LabDAS, PCLS- 
800 PC-Scope and PCLS-702 LABTECH ACQUIRE 

□ PCL-812-CS: Complete package: PCL-812 + OPT 002 + OPT 003 

□ PCL-812PG-CS: Complete package: PCL-812PG + OPT 002 + OPT 003 

D PCLS-DLL-2: Windows DLL driver for PCL-812/PG or PCL-711B 
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PCL-830 10-channel Timer/Counter Card 

Specifications 

£*■ J' 

Introduction 
The PCL-830 is a general purpose counter/timer and digital 
I/O card for PC/AT compatible computers. It provides ten 
16-bit up/down counter channels and frequency dividers for 
its on-board 4 MHz crystal time base. It also includes 16 
digital outputs and 16 digital inputs. Two AMD 9513 chips 
provide a variety of powerful counter/timer function modes to 
match your industrial and laboratory applications. 

Applications 
• Event counting 
• Industrial automation (flowmeter and wattmeter monitoring) 
• Programmable frequency synthesis 
• Frequency counter 
• Pulse-width and period measurement 
• Time-delay generation 
• Frequency-shift keying 
• F/V conversion and pulse accumulation 

Features 
Periodi»4nterrupt generation 
10 independent 16-bit up/down counters 
Binary or BCD counting 
Programmable frequency output 
Complex duty-cycle output 
Two alarm comparators (on counters #1/#2 and #6/#7) 
Single-shot or continuous output 
Programmable count/gate source selection 
Programmable input and output polarity 
Programmable gate functions 
16-bit TTL input and 16-bit TTL output ports 
Selectable interrupt input channel 
Up to 6.8 MHz input frequency 

Time-of-day option 

Counter 
• Description: Ten independent 16-bit counters 

• Input level: TTL-compatible 

• Output level: TTL-compatible, V0L= 0.4 V max @ 3.2 mA 
sink; V0H= 2.4 V min @ 0.2 mA source 

• Input frequency: 6.8 MHz max 

• Input pulse width: >70 ns 

• Connector: Two 20-pin flat-cable connectors 

• Time base: 1.00 MHz 

• Frequency stability: ±100 PPM 

Digital I/O 

• Channels: 16 TTL-compatible outputs (16 bits) 
• Driving capacity: Sink 8.0 mA @ 0.5 V (low), source 

0.4 mA @ 2.4 V (high) 

General 
• Dimensions: 7" x 4.2" (179 mm x 107 mm) 

• Power consumption: +5 V @ 600 mA typical 

Q8 

i 
Pin Assignment 

CN1 
chip #1 oscillator out 

counter #2 gate 

Counter #4 gate 
counter #1 input 

counter #3 input 

counter #5 input 

counter #2 output 

counter #4 output 

ground 
♦5 V power 

9 10 

11 12 

13 14 

15 16 

17 1B 
19 20 

CN2 
chip #2 oscillator out 1   2 

counter #7 gate 3   4 

counter #9 gate 5   6 

counter #6 input 7   6 

counter #8 Input 9   10 

counter #10 input 11   12 

counter #7 output 13   14 

counter #9 output 15   16 

ground 
+5 V power 

17   18 
19   20 

counter #1 gate 

counter #3 gate 

counter #5 gate 

counter #2 input 

counter #4 input 

counter #1 output 

counter #3 output 

counter #5 output 

interrupt enable 
interrupt input 

counter #6 gate 

counter #8 gate 

counter #10 gate 

counter #7 input 

counter#9 input 

counter #6 output 

counter #8 output 

counter #10 output 

not used 
not used 

Ordering Information 
□ PCL-830: 10-channel Counter/Timer Card, 

user's manual and utility diskette 
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PCL-838 Stepping Motor Control Card 

SpedfUations 

Introdudion 
The PCL-838 Stepping Motor Control Card turns your PC into 
a multi-axis motion-control station. The intelligent PCL-838 
fetches operation data from its dual-port RAM to generate 
pulses for each channel, giving higher performance. 

You can install more than one card in your PC, each card 
controlling up to three motors at the same time. The included 
DOS device driver provides powerful commands that support 
you to easily incorporate motion control in your application 
software. 

Applnations 
• Precise X-Y-Z position control 

• Precise rotation control 

• Robotics and assembly equipment 

• Other stepping-motor applications 

Features 
• Independent and simultaneous control of up to three 

motors 

• Device driver with a language-independent high-level 
command interpreter 

• Programmable step rate from 1 to 7000 pps (pulses per 
second) 

• Programmable initial speed, final speed and time duration 
with calculated linear acceleration and deceleration 

• Supports one clock (pulse and direction) and two clock (CW 
pulse and CCW pulse) control modes 

Pulse-train generator 

• Independent channels: 3 

• Steps per command: 1 to 65,535 

• Speed range: From 1 to 7000 pps (pulses per second) 

• Operating modes: Either two-pulse (CW, CCW) mode or 
pulse-direction mode, selectable by DIP switch 

• Signals: Opto-coupled with open collector 

• Pull-up voltage: +5 V, +12 V, or external 

• Pull-up resistor: 4.7 KI2 

• Driving capacity: 30 mA @ 0.5 V 

Digital I/O 
• Input: 24 channels, TTL compatible 

• Output: 24 channels, TTL compatible 

General 
• Dimensions: 13.3" (L) x 3.8' (W) (340 mm x 98 mm) 

• Power consumption: 
5 V @ 1.2 A typical, 12 V external load only 

Pin assignment 

COMMON (CH1) 

PULSE/CCW(CH1) 

COMMON (CH2) 

PULSE/CCW (CH2) 

COMMON (CH3) 

PULSE/CCW (CH3) 

E.STOP(CHI) 

E.STOP (CH2) 

E.STOP (CH3) 

GND 

GNO 

D/IO 

D/l 1 

D/I2 

D/l 3 

D/l 4 

D/l 5 

D/l 6 

D/l 7 

DIR/CW (CH1) 

EXT.VCC(CHI) 

DIR/CW (CH2) 

EXT.VCC (CH2) 

DIR/CW (CH3) 

EXT.VCC (CH3) 

GND 

♦12 V 

♦5 V 

GND 

D/OO 

D/Ot 

D/0 2 

D/0 3 

D/O 4 

D/0 5 

D/0 6 

D/0 7 

COMMON: Isolated common point 
EXT.VCC: External power source 
PULSE/CCW: Stepping pulses or CCW pulses 
DIR/CW: Direction signal or CW pulses 
E.STOP: Emergency stop 
GND: Ground of the PC 
D/l 0 to D/l 7: Digital inputs 
D/O 0 to D/O 7: Digital outputs 
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0.15" 0 Hole 
4 Places' WT. 25" R Typical 

0.06" Typical 

^ 

4.74" 

.5.25" 

5.78" 

2.50" 

3.12" 

INERTIAL 
MEASUREMENT 
UNIT 

3.24" u 

4.68" 

0.38' 

MILLED ALUMINUM PLATE 

INERTIRL MEASUREMENT UNIT 
9 PIN MALE CONNECTOR 

1  POWER GND 
2 +28 VDC IN 
3 SIGNAL GND 
4 
5 RX 
6 
7 
8 
9 TX** 

"THE USER RECEIVES ON THIS LINE. 

WATSON   INDUSTRIES,   INC. 
3041   Melby  Road   Eau  Claire,  Wl  54703 

Phone (715)839-0628        •        FAX (715)839-8248 
7/09/93 
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