NAVAL POSTGRADUATE SCHOOL
Monterey, California

F N

DESIGN AND SYNTHESIS
OF A REAL-TIME CONTROLLER
FOR AN UNMANNED AIR VEHICLE
by
Peter M. Hoffman
September 1994

Thesis Advisors: Michael K. Shields
Se-Hung Kwak

Approved for public release; distribution is unlimited.

DTIC CUALITY INESPECTED 8

19941202 169

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

tudi

Public reporting burden for this collection of information is estimated to average 1 hour per response, i g the time. reviewing ir ions, searching existing data sources
gathering and maintaining the data needed, and completing and ing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Bliank) 2. REPORT DATE 3. REFOE' I,VF! XN'B _BAiES COVEEEB
September 1994 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Design and Synthesis of a Real-Time Controller for an Unmanned Air
Vehicle (U)

6. AUTHOR(S)
Hoffman, Peter M.

8. PERFORMING ORGANIZATION

. ——————— T Ty .
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

Naval Postgraduate School
Monterey, CA 93943-5000

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

T . e
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES . .) -) .
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBU-TION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
The Naval Postgraduate School is developing an vertical take-off and landing (VTOL) unmanned air vehicle (UAV) that can transition to horizontal flight,

once airborne, in order to take advantage of the improvements in speed, range, and loiter time that horizontal, fixed-wing flight provides. This research
investigates the design requirements of the central controlling device for that UAV, including the specific problems of defining the necessary hardware
components and developing software for executive control. First, hardware requirements needed to be determined. By exploring the general operational
requirements of the UAV and taking into account space and weight limitations, a hardware suite was selected which could provide adequate functionality to

replace the human traits of a pilot. In order to provide “awareness™ of the operational environment, motion sensors, navigation equipment, and communication

intelligence, was selected in order to interoperate with the other hardware. Next, a Real-Time Executive (RTE) software program was designed to provide the
functionality and coordination of all hardware components. Device drivers for each component were developed, and overall coordination was planned using
a Yourdon style essential model. Periodic interrupts were used to control execution time. Last, the specifications and configuration of all hardware components
were completely documented, and the operation of the RTE program is fully explained. From this understanding of the overall control system, future

development can continue, resulting in a more effective and efficient UAV design.

14, SUBJECT TERMS

Real-Time Executive, DOS Interrupts, GPS, IMU, Datalink

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

Ty T T I T T T e S —
17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

OF ABSTRACT
Unclassified

Unmanned Air Vehicle, UAV, Remote Control, Controller, Microprocessor,

15. NUMBER OF PAGES
122

[16. PRICE CODE

T TN T S T~
19. SECURITY CLASSIFICATION

I ——
20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

DESIGN AND SYNTHESIS
OF A REAL-TIME CONTROLLER
FOR AN UNMANNED AIR VEHICLE

Peter M. Hoffman
Lieutenant, United States Coast Guard
B.S., United States Coast Guard Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

September 1994

S D

Peter M. Hefffman
Approved By: ’m K W

Michael K. Shields, ECE Thesis Advxsor

LAy

Se- Hung w , CS Thesm Adv1sor

/774 WW

Michael A. Morgan, d{airman
Department of Electrical and Computer Engineering

A i,

Ted Lewis, Chairman,
Department of Computer Science

il

ABSTRACT

The Naval Postgraduate School is developing an vertical take-off and landing (VTOL) unmanned air
vehicle (UAV) that can transition to horizontal flight, once airborne, in order to take advantage of the
improvements in speed, range, and loiter time that horizontal, fixed-wing flight provides. This research
investigates the design requirements of the central controlling device for that UAV, including the specific
problems of defining the necessary hardware components and developing software for executive control.

First, hardware requirements needed to be determined. By exploring the general operational
requirements of the UAV and taking into account space and weight limitations, a hardware suite was selected
which could provide adequate functionality to replace the human traits of a pilot. In order to provide
“awareness” of the operational environment, motion sensors, navigation equipment, and communication
equipment was required. Controllable servo motors were necessary to move control surfaces appropriately.
Computer hardware, necessary to provide system intelligence, was selected in order to interoperate with the
other hardware. Next, a Real-Time Executive (RTE) software program was designed to provide the
functionality and coordination of all hardware components. Device drivers for each component were
developed, and overall coordination was planned using a Yourdon style essential model. Periodic interrupts
were used to control execution time. Last, the specifications and configuration of all hardware components
were completely documented, and the operation of the RTE program is fully explained. From this
understanding of the overall control system, future development can continue, resulting in a more effective

and efficient UAV design.

aoae

T

~

iii

TABLE OF CONTENTS

I INTRODUCTION. . e e e e e 1
A. RESEARCHOBIECTIVE i 1
B. PREVIOUS AND CONCURRENT RESEARCH. 2
C. EXECUTIVE SUMMARY e 2

II. BACKGROUND e e e e et e 4
A. SYSTEMOVERVIEW i 4

1. Ailrcraft Sensors i e 4
2. Aircraft Components. i e 5
3. System Block Diagram.............. 5
4. ASSUMPHONSttt e e e 7
B. DESIGN CONSIDERATIONS i 8
1. Real-Time System Constraints 8
2. Structure Taxonomyt 9
3. Programming Language i 10
4. FaultTolerance... oo 11
C. ANESSENTIALMODEL. 11
1. ContextDiagram.ottt 11
2. Data-FlowDiagrams. 12
3. EventList e 16
4. State Chart. 17
D. CHAPTER SUMMARY 18

[Il. HARDWARE 19
A. SYSTEM OVERVIEW . .. e 19
B. PCA-6108: PASSIVEBACKPLANE 20
C. PCA-6146: CPUCARD i 21

1. Specifications 21
2. Configuration e 21
3. Basic Input Output System (BIOS). 22
D. PCD-890: RAMDisk i, 23
I. Specifications i 23
2. Configuration 24
E. PCL-744: SERIALI/OCARD 25
1. Specifications 25
2. Configurationt 26
F. PCL-812PG: ENHANCED MULTI-LABCARD 27
1. Specifications 27
2. Configuration 28
3. Calibration. o 30

G. PCL-830: COUNTER/TIMERCARDt 30

1. Specifications 30

2, Configurationuintiitit ettt 31

H. Global Positioning System (GPS) Receiver. 32
I Specifications i e 32

2. Configuration ittt 33

I. INERTIAL MEASUREMENT UNIT(IMU)........., 33
1. Specifications i e e 33

2. Configurationttt e 34

J. DATALINKS . e 35
K. ANCILLIARY EQUIPMENT i 37
L. CHAPTER SUMMARY ... it i e e e 37
IV, SOFTWARE. . .. e e e e et 38
A, OVERVIEW . i e e ettt 38
I. ReqQUITEMENLS ittt it e e eennnnn 38

2. Definitions.ot e 40

3. CONVENLIONS . . v ittt ettt e e et e e 41

B. COMPILER CONFIGURATION 42
1. ProjectFile e 42

2. CompilerOptionsot i 43

C. SYSTEM INITIALIZATION i, 44
1. Software Initialization. i 45

2. Hardware Initialization. o ueuvrinininnnennn.. 45

D. INTERRUPTS e e e 47
1. Generating Software Interrupts. 48

2. TheReal-TimeClock 49

E. THECONTROLCYCLE ittt eieneaenan 52
1. I/ODevice Driversttt ittt inenenn. 52

2. FlightControl 54

F. USER SERVICES e 54
G. CHAPTER SUMMARY ... e 57
V. CONCLUSIONS . e e e e e et e e 58
A. ACCOMPLISHMENTS i i e 58
B. RECOMMENDATIONS i 59
1. Command and Control Structure 59

2. Data Generation and Conversionvuinnn... 59

3. General System Modifications 60

C. SUMMARY . .61
LISTOF REFERENCES e e e e 62

APPENDIX A. Real Time Executive Source Code. o vt i i iennenn. 64

APPENDIX B. List of Variables e e e e e e 91
APPENDIX C. Hardware Data Sheets i 92
INITIAL DISTRIBUTION LIST e 102

7]

LIST OF TABLES

TABLE II-1: Process Comparison by Flight Mode 14
TABLE III-1: CPU Card Jumper Settingsttt 22
TABLE I11-2: Hard Drive C Parameters.o iiiiiiiiieinn.n. 23
TABLE III-3: Switch Settings for PCD-890 o .. 24
TABLE I1I-4: Switch Settings for PCD-890 SW3o it 25
TABLE III-5: Baud Rate Groups (bps)ot iiiinn et ee e eeennn, 26
TABLE I1I-6: PCL-744 Serial Port Settings.c.ciuiiii i, 27
TABLE II-7: PCL-812I/OAddressMap, 28
TABLE III-8: Switch Settings for PCL-812SW1 28
TABLE III-9: PCL-812 Jumper Settingsttt inninneenn.. 29
TABLE III-10: PCL-830 /O AddressMap ...ttt 31
TABLE UI-11: Switch Settings for PCL-830 SW1 o o it 31
TABLEI1I-12: IMUDataOutput.t 33
TABLE 1II-13: IMU Input Signals. e 34
TABLE HI-14: IMUPInout i i e 34
TABLE IV-1: CMOS Interrupt Frequencies iiiuiinnnn.n. 51

vii

Figure II-1:
Figure I1-2:
Figure I1-3:
Figure I1-4:
Figure II-5:
Figure II-6:
Figure II-7:
Figure I1-§:

Figure III-1:
Figure III-2:
Figure II1-3:
Figure I11-4:
Figure III-5:
Figure I11-6:
Figure IV-1:
Figure IV-2:
Figure I'V-3:
Figure [V-4:
Figure IV-5:
Figure IV-6:

LIST OF FIGURES

System Block Diagram. 6
Context Diagram for UAV Controller 12
Top Level Data-Flow Diagram for UAV Controller 13
Process 1.0, Update Control Display 14
Process 8.0, Kalman Filtering 15
Process 9.0, Determine Position and Posture. 15
Process 11.0, Generate Servo Commands 16
UAYV Controller State Chart. 17
Overall Hardware System Configuration. 20
PCL-890 Installation Confirmation Message 25
PCL-744 Installation Confirmation Message 26
PCL-&12 Connection Port Pin Alignments. 29
PCL-830 Connection Port Pin Alignments. 32
Datalink Throughput Requirements for Ground Control 36
Compiler Project Screen. 43
Diagram of Large Memory Model 44
Organization of CMOSMemory, 50
Main Menu Screen 55
Flight Data Menu Screenoouvinnii... 55
Break Handler Menu Screen. 56

vili

GLOSSARY OF TERMS

A/D Analog to Digital

ASCII American Standard Code for Information Interchange
BIOS Basic Input Output System

CMOS Complementary Metal Oxide Semiconductor
COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CTS Clear to Send Signal

D/A Digital to Analog

DCD Data Carrier Detect Signal

DR Dead Reckoning (Position)

DRAM D-Flip Flop Random Access Memory

DSR Data Set Ready Signal

DTE Data Terminal Equipment

DTR Data Terminal Ready Signal

EOI End of Interrupt Signal

FMU Flight Management Unit

GPS Global Positioning System

IDE Integrated Development Environment (used in Borland compiler)
IMU Inertial Measurement Unit

INS Inertial Navigation System

I/O Input/Output

IRQ Interrupt Request Signal

ISR Interrupt Service Routine

LKP Last Known Position

Modem Modulator-Demodulator

MS-DOS Microsoft Disk Operating System
PANDL Programming structure containing Pointer to a buffer AND the buffer [ength

PF Position Fix

PIC Peripheral Interrupt Controller
PIT Programmable Internal Timer
RPV Remotely Piloted Vehicle

RTC Real Time Clock

RTE Real-Time Executive

RTS Request to Send Signal

STC System Timing Controller

TNC Terminal Node Controller

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver and Transmitter
UAV Unmanned Air Vehicle or Unmanned Aerial Vehicle
UHF Ulra-High Frequency

VTOL Vertical Take-Off and Landing

I. INTRODUCTION

Control is defined as “‘the right or prerogative of determining or governing” [Ste73]. The control of any
moving entity requires a correct determination of the current state of that entity followed by the careful
governing of actions taken to correct any deviation from a given desired state. In an aircraft, this function is
usually done by a human being. When removing the pilot from the aircraft, this control falls to a coordinated
system of hardware and software called a controller. This controller must be built around some source of
intelligence, whether itis remotely linked to a human, or intelligent in its own right. In addition, the controller
must have the capability to create and govern the necessary changes in the aircraft’s state. Since the
controller’s roles are so varied and yet interrelated, there are many design options to consider -- the

permutations of which comprise many possible, workable solutions.

A. RESEARCH OBJECTIVE

This research examines the design and synthesis of a controller for an unmanned air vehicle (UAV).
The primary research question is “What is required to build a central controller for an UAV?” A central
controller is differentiated from any other auxiliary controllers that may be on board in that the central
controller governs the actual flight control of the aircraft. This primary research question encompasses both
hardware and software requirements, and leads to additional questions:

+ What sensors will be used to provide information about the state of the aircraft, in the absence

of human senses?

What is the form and limitations of the data provided by these sensors?

What aerodynamic surfaces are available to control the aircraft?

« What devices are available to move the control surfaces, and what signals are required to cause
these devices to move those surfaces?

« How must the movement of these control surfaces be coordinated to control the aircraft in its
six degrees of freedom?

» Does the UAV need to communicate with any external facilities?

« If the UAV does need to communicate with external facilities, how should this be

accomplished?

What are the format and buffering requirements for this communication link?

What other input and output (I/O) of data is required?

What are the timing constraints for all command, control, and communication operations?

« What hardware is necessary to achieve this functionality?

« What are the software requirements to interact with the chosen hardware?

With these questions in mind, the parameters of operation and the system requirements for a UAV controller

are investigated. The specifications and configuration of the hardware and software used are fully

documented. The goal of this research project is a functional UAV controller, including a comprehensive

Real-Time Executive software program fully integrated with the necessary hardware.

B. PREVIOUS AND CONCURRENT RESEARCH

Some of these questions have already been answered. This multi-faceted project is being developed in
several previous and concurrent research programs, bringing together disciplines from Aeronautical
Engineering; Mechanical Engineering; Electrical Engineering; Command, Control and Communications; and
Computer Science. The airframe was acrodynamically analyzed and modified by Stoney [St093). Significant
to this research was the addition of a canard on the front of the aircraft, which included two additional control
surfaces. The servo motors used to move these and other control surfaces were examined by Merz [Mer92]
and Moran [Mor93]. They developed a core control system for the aerodynamic control vanes. Two
datalinks have been developed to facilitate the transfer of data to and from a ground station. Reichert [Rei93]
designed a wide-band UHF system and Bess [Bes94] tested a spread spectrum datalink. For navigation,
Twite [Twi94] developed a differential GPS navigation system, and Hallberg [Hal94] investigated the inertial
measurement unit (IMU) which was used. Marquis [Mar93] designed a complementary Kalman filter to
blend the outputs of these two sensors, and the control algorithm has been worked on by Davis [Dav92],

Kuchenmeister [Kue93], Hallberg {Hal94), and Moats [Moa94].

C. EXECUTIVE SUMMARY

This document consists of five chapters, including this Introduction. Chapter 1I provides a generic
overview of the controller, discusses required functionality, and develops an essential model of this
tunctionality in order to better understand the constraints and criteria under which it must operate. Chapter
I fully documents the speciftcations and configuration of all hardware used for the controller. It is intended
to provide information in sufficicnt detail such that a new user would understand how to duplicate the existin g
hardware system upon receipt using similar equipment. Chapter IV fully documents the RTE software
written for this project. This includes compiler information to enable a new user to recreate the software
development environment under which the software was created. Chapter V delineates the conclusions
drawn from this research and provides recommendations for future improvements to the system. Appendix
A contains a listing of the source code for the RTE. Appendix B contains a glossary listing of all variables
used in the RTE program. Finally. Appendix C contains the manufacturer’s technical data sheets for the

hardware used for the controller.,

This research project will tie together the many individual sub-systems that have been designed for the
UAYV and provide the means for their operational use and coordination. Additionally, this research stands as
proof-of-concept for UAV technology, especially for vertical take-off and landing (VTOL) aircraft that can
transition to horizontal flight. This characteristic makes it especially useful for shipboard deployment, which
will benefit not only the Departiment of Defense, but also the U.S. Coast Guard by providing a cost-effective

and fatigue-resistant solution to many airborne missions, such as Search and Rescue and Law Enforcement.

II. BACKGROUND

This chapter provides background information detailing the objectives introduced in the last chapter.
In this chapter, a generic overview of a controller is provided, design considerations are discussed, and a
Yourdon style essential model [You89] is developed. Within this model, parameters and priorities unique to
this system are investigated. Since it is a real-time system, timing and intra-process communications are

determined. This analysis results in a more effective and efficient controller design.

A. SYSTEM OVERVIEW
In order to control the aircraft. a controller must have access to all information pertaining to the
operation of the airframe, including:

« Present and desired geographic position

» Present and desired altitude

« Present and desired airframe attitude (in 3 dimensions)

+ Present airframe acceleration (in 3 dimensions)

« Present state of power plant, including throttle and fuel state

» Present state of payload equipment and desired operation of such equipment

Then, & controller must be able to properly manipulate this information, develop signals to modify the
physical configuration of the aircraft’s control surfaces, and effect necessary data communications. To
accomplish these results, a controller must maintain control over the following:

+ Signals that control each of the aircraft’s control surfaces

« Signals that control the power plant (throttle)

« Signals that control the payload equipment

+ Communication channels with ground control and/or monitoring stations

Ina digital controller, these signals are processed by a set of software algorithms, interacting with specialized
hardware. This set of algorithms comprises a Real-Time Executive program; the hardware includes sensors,
servos, and communication equipment. As detailed by Moran [Mor93] and in Chapter 111, the Archytas

airframe uses the following components to meet these requirements:

1. Aircraft Sensors
The UAV needs specially designed sensors which can generate signals in response to position,
posture and acceleration of the aircraft. Among the sensors with which the processor must interact are:

+ Global Position System (GPS) Satellite Receiver
« Inertial Navigation Systemn (INS) Instruments

« Other (Non-INS) Flight Instruments

« Fuel Sensor

The GPS receiver yields a time stamp and a 3-dimensional position, including latitude, longitude, and
altitude. The INS instruments include accelerometers that measure linear acceleration in each of the three
dimensions, roll-rate sensors that measure angular velocity about each of the three coordinate axes, gyros that
indicate aircraft heading, and vertical inclinometers that measure the angle of tilt from vertical. Non-INS
instruments include a pitot tube airspeed indicator and a barometric altimeter. These sensors are “strapped
down” which means they are fixed in alignment with the body coordinate system, the 3-dimensional
coordinate system that uses the body of the aircraft as a reference. They detect acceleration, velocity or
displacement in a certain direction, in reference to the aircraft itself. To be useful, these signals must be
converted to the coordinate system of the environment surrounding the aircraft, called the inertial coordinate

system. This conversion involves only a basic matrix rotation, but can demand significant processing time.

2. Aircraft Components
In addition to the sensors, the controller has several extrinsic components with which the
processor must interact. These include:

« Pulse-Width Modulated Servos
« Communications Link
« Payload Equipment

The servos are electric motors that position aircraft controls as determined by the length of a received square
pulse. The communication link is usually a radio datalink transmitting digital data. It provides two-way
communication with the UAV., uplinking control information (commands) from the ground control station,
and downlinking flight instrument data to a ground monitoring station. Payload equipment includes cameras,

radar, and other sensors not necessary for flight control, but used to complete the assigned mission.

3. System Block Diagram
The components and sensors are merged together to form an integrated flight control system, as
shown in Figure 1I-1. The most basic UAV controller must be able to perform the following functionality:

+ Receive digital sensor inputs

« Perform analog to digital conversion of all analog sensor inputs

+ Provide digital filtering for sensor data

« Accept and process joystick and/or waypoint pilot commands from the uplink

- Using input above, calculate control functions and determine control surface positions.
» Generate appropriate command pulses and transmit them to servos.

« Relay necessary posture and navigation information to ground through downlink

The software components of this system are the Kalman filter and the control algorithms. The Kalman filter
is an algorithm that smooths the sensor data to provide the most reliable source of data input, based on the
varying accuracy of given sensors over difterent periods of time. The control algorithms are based on
acrodynamic properties specific to the UAV. These algorithms compare the posture and position of the
aircraft to the desired posture and position, and determine what corrective actions must be taken. These
software functions, in addition to the transfer of all data and signals coming from or going to the central
processor (shown as arrows to and from the shaded area in Figure I1-1), comprise the Real-Time Executive -

- the software component of the controller.

UAV
| UAV Motion 222 g! 1o
+ Noise
Noisy
Estimate
Control of Position
Surt, .
&UTharﬁif Kalman Slow GPS Fix + GPS
Filter
Noise
Servo
Command
Pulses + Non-INS
Servos & Con}rol
Actuators Algorithms
| —
Servo
Paosition B ¥ Noise
Feedback
nt
Com
Communication
Protocols
Joystick] o
Movement
. or
Nole: Waypoints
Shaded Area Cockpit
Indicates the PILOT .
Scope of the Display
Central
Processor U

Figure 11-1: System Block Diagram

6

4. Assumptions
Since this project is based on the work of several students working concurrently, the scope of the
controller’s functionality for this research is limited by several assumptions. All of these assumptions can be

substantiated once the controller is fully completed and tested on the aircraft in flight.

a. Filtering and control algorithms exist as system callable subroutines.
The filtering and control algorithins are specialized aeronautical engineering routines which
involve additional research, such as linear quadratic filter design and wind tunnel testing, which is being
accomplished by other students. For this project, it is assumed that the resulting routines will exist and can

execute within the allotted time constraints.

b. Input and output (1/0) will not require central processing resources.

Digital 1/0 will take place through eight 25-pin RS-232 serial ports. These ports reside on a
separate circuit board that has its own small processor. Although I/O must be initiated by a subroutine call
from the main controller program, the processing required to execute and control the data flow is handled by
this sub-processor and so will not require central processing resources. This form of parallel processing

greatly reduces the amount of processing time required for this function.

¢. Air to ground communications will not require central processing resources.

The radio data link hardware on hand conducts its own handshaking, parity checking, and
other data communication functions. Since it will connect to the I/O ports, this function is actually twice
removed from the controller itself. Even with an assumed 15% protocol overhead, the datalink is expected
to have sufficient throughput 1o avoid becoming a bottleneck in the communication process, without

requiring central processing resources.

d. The sensors’ data stream will be fast enough to provide fresh data for every cycle.

It is imperative that the digital data from the Inertial Measurement Unit (IMU) is current and
complete every control cycle. Additionally, sensor data which is not digital must first be converted from
analog to digital (A/D) through a sampling A/D circuit board. This A/D process is done in hardware and will
not affect the performance of the controller. However, if this A/D process takes too long, the most recent data
from the A/D card may not yet be available when read by the controller. It is assumed that current and

complete sensor data will be available when needed for each control cycle.

e. The controller’s processing speed will be sufficiently fast to perform all functions.
No matter how fasta processor is, it has a limited throughput. It is assumed that the CPU can
perform all required functions in the allotted real-time interval. If this assumption proves false, the present

processing speed of 33 MHz will have to be upgraded.

B. DESIGN CONSIDERATIONS

In the design of a real-time system, it is important to understand the constraints, structures, and
parameters of the system, as well as other design choices that are available to the designer. It is the
combination of these design choices that determines the successfulness of the resulting system. This section
details the constraints imposed by a real-time system, lists options for programming structure, and discusses

considerations for the selection of a programming language and fault tolerance measures.

1. Real-Time System Constraints

The term real-time covers a wide range of systems; however, all systems share a common feature
where results of some kind are demanded by timing deadlines imposed by the environment outside the system
[Sav85]. As time marches relentlessly onward, all system and subsystem responses must fit within their
allotted time frames. A real-time system can also be described as reactive or embedded. Reactive systems
are those which have some ongoing interaction with their environment. Embedded systems are those used to
control specialized hardware in which the computer system is installed. Since the UAV controller will
continuously monitor and interact with the position and posture of the aircraft within its environment and will
also simultancously control specialized hardware, it is both a reactive and an embedded system.

It can be argued that all practical systems are real-time systems. Even a word-processing system
must respond to user commands within a reasonable amount of time (e.g. 1 second), or it will become torture
to usc. Most literature refers 1o such systems as soft real-time systems -- systems where performance is
degraded but not destroyed by failure 10 meet response time constraints. Systems in which failure to meet
response time constraints leads to potential complete system failure are called hard real-time systems. Under
these definitions, the UAV controller is a hard real-time system under which missing a deadline could lead
to complete loss of control. Therefore deadlines, once established, become constraints inside which the
system must operate completely.

To meet these constraints. three measures of time, when applied to real-time systems, must be

carcfully managed: response time. survival time, and throughput [Sav85]. Each is defined below.

a. Response Time
Response time is the time the computer takes to recognize and respond to an external event.
This is the most important time measurement in control applications. If events are not handled in a timely
fashion, the system may literally go out of control. The UAV must not only respond to pilot commands, but
must continually monitor feedback signals from the servos and inertial navigation equipment to determine if
the response resulted in the correct, desired effect. Experimental evidence suggests that a total response time
from pilot input to final movement of control surfaces cannot exceed 100 msec without loss of positive flight

control by the pilot [Kam93].

b. Survival Time
Survival time is the time span during which data is available to be read. Since flight data is
stored in a buffer, the data may be read at any time that the buffer is not being written to. Read/write cycles,
therefore, must be sufficiently offset such that the reading and writing of the same data will not happen
simultaneously. The next consideration, then, is the validity of the data. Since the aircraft is anticipated to

move at speeds of up to 150 kis, it is important to have the latest sensor data available for every control cycle.

¢. Throughput

Throughput is the total number of events which the system can handle in a given time period.
For example, a communication controller may have a throughput expressed in characters per second. Since
a large amount of data must be relayed to the ground, the radio datalink must not be allowed to become a
bottleneck which could slow the central processor. The data stream must also be managed to flow evenly, so
that there are not bursts of data in excess of the channel capacity interspersed among long periods of under-
utilized capacity. In analog to digital (A/D) conversions, the bandwidth of the digital signal (equal to the
product of the sampling rate and the sampling width in bits) is usually much greater than the bandwidth of its
analog counterpart. Accordingly, the UAV A/D processes must be fast enough to provide fresh, accurate data

at the frequency needed by the controller.

2. Structure Taxonomy
The simplest kind of software structure for a real-time system is a polling loop. The program
examines (polls) each of its inputs in turn to determine whether an event has occurred which requires a

response. This structure would be sufticient for the UAV if all polling was done at the same frequency. Since

9

this is not the case, a more complex, event-driven structure is needed. Event driven systems have three main

types: interrupt driven, multi-tasking, or multi-processing (multiple processors) [Sav85].

a. Interrupt Driven

In an interrupt driven system, counters are used to keep track of inter-process timing,
generating an interrupt when it is time to begin a new cycle. At the occurrence of an interrupt, the controller
saves its current state on the stack and jumps to the appropriate interrupt service routine (ISR). If the timer
generates an interrupt at regular intervals, and if the ISR is replaced by the control loop routine, it can be
assured that the control loop will be executed regularly and consistently. However, for this to work, the
execution time of the control loop must not exceed the interrupt time interval, or the subsequent ISR
exceution will interrupt the current ISR execution, resulting in a backlog of pending processes on the stack
and. eventually, a system crash. To get the most from each control cycle, the task load resulting from each

cycle should be kept as level as possible.

b. Multi-tasking
Task management could be delegated to the operating system if a multi-tasking environment
was adopted. Multi-tasking, however, requires a large amount of processor overhead and brings with it its
own unique problems when multiple tasks are forced to work with the same data. Since multi-tasking is not

available on the present operating system, this option was not considered.

¢. Multi-processing
To a certain degree, the UAV will have multiple processors, as mentioned in the
assumptions. The benefit of multi-processing is in the ability to take the processing load for these functions
off the central controller and to have them performed by a processor that is specially designed for that task.
It is important to cnsure that these auxiliary processors can access the same data buffers and to configure

memory aceess such that no two can read/write the same data simultaneously.

3. Programming Language
“C™ was chosen as the programming language for this project since it is almost unique among the
high-level compiler languages in that it does not (usually) come in between the programmer and the machine.
Il something can be done in assembly language. there is usually a way to express it in C [Sav85]. For
example, in C one can directly manipulate machine registers. /O addresses can be written to directly.

Interrupt handling is also possible. Interrupt vectors can be inspected and modified, and BIOS interrupts can

10

be exccuted by a system call. Memory allocation can be directly controlled, and bit-level programming is

possible. For any applications that cannot be completed in C, assembly language could be used.

4. Fault Tolerance

Fault tolerance, or system robustness, is the ability to recover from errors or system failures. With
an interrupt-driven system, provisions must be made for detecting and covering for a missed deadline. This
can be done by spatial or temporal methods [Lap92]. Spatial fault tolerance includes redundant hérdware and
software systems. Temporal fault tolerance involves careful design of algorithms to compensate for missed
deadlines. Since hardware on the UAV must be kept to a minimum, most of this redundancy must occur in
the software. Although this will add to the overall complexity and detract from the overall efficiency of the
system, the nature of the mission requires this redundancy. In addition, execution time for the fault tolerance
overhead must not cause timing constraint violations in an otherwise correct system [Nel92], Timing,
execution and resource constraints dictate the following provisions for any module, regardless of the language
that is used [Sta88}:

« Modules should have predetermined and bounded execution times.
(recursion and loops must be used carefully)
» The use of dynamic structures should be controlled.
« For predictable system behavior, provision should be made for all known types of exceptions.

In addition to the normal programming exceptions, the RTE for the UAV also has to deal with external

malfunctions, such as equipment failure, manual system reset, or loss of communication with the ground

station.

C. AN ESSENTIAL MODEL
From the foregoing descriptions and specifications, it is possible to construct an essential model of the
system, including a context diagram, an event list, leveled data-flow diagrams and state transition diagrams

[You89]. Process specitications may be gleaned from the requirements discussed previously.

1. Context Diagram
It is necessary for the controller to interact with many varied components, as evident from the
system block diagram. The context diagram in Figure II-2, shows the context in which the controller must
operate. The circle in the center represents the controller. Entities diagrammed outside the circle represent

systems outside of the controller’s realm of direct control, even though the controller communicates and

dictates timing constraints with them. The buffer, datalink, and track log, diagrammed with a line above and

below, represent data storage requirements. The arrows represent the transfer of data between systems.

INS
Inertial
Measurement GPS
Unit (IMU)
latitude
Dead Reckoned longitude
Position Estimate altitude
From Inertial Forces time
Buffer
Non-INS
Fuel Fuel Sensors
Sensor Leve! g
airspeed
altimeter
UAV —_—
Servo Controller Track Log
osition Position
Feedback Data
Servos BWM
Control Vanes (4) Signal
Wing Ailerons (2) -
Canard Ailerons (2) Datalink
Throttle (1)
Control
Pilot Display
Commands Data
Joystick Control
(or Waypoints) Display

Figure II-2: Context Diagram for UAV Controller

2. Data-Flow Diagrams
Data-flow diagrams (DFDs) are graphical representations depicting the system as a network of
tunctional processes and manifesting the interactions of data flowing between those processes. Although just
one of many modeling tools. DEDs are commonly used for operational systems in which the functions of the
system are of paramount importance and more complex than the data that the system manipulates [You89).

The top level DFD is followed by sub-level DFDs that further break down the functionality of the top-level

Processes.

a. Top Level
The top level data-flow diagram (DFD) for the UAYV shows the interaction of all of the major
processes. As shown in Figure II-3, the controller responds to pilot commands or waypoints, determining

control actions and providing teedback to the pilot’s control display, which completes the control loop.

Control Pilot Commands
Display or Waypoints
Data
1.0 2.0 Command 3.0
Update Command Feedback Poll Pilot \ Input Determine
Control Commands Desired
Display or Waypoints Posture
Fuel
Level
uel
Level
Desired
Servo Posture
Position
Feedback
Fuel
Sensor
Flight
Instrument
Data
I(DJurrent
i osition
5.0 GPS Fix/Flag 90 and 10.0
Kalman INS Posture Data Determine | Posture [Determine
Eh——) Ciored Nav Dar? | Position and Corrective
Filtering SElihaase Posture Response

Position
Data
12.0
Servo Re(;qrd
Pasition Position
Feedback
Control
Surface
Commands
INS Beginning
(DR Position Sensors of Pulse 11.0
Estimate from (airspeed, y
Inertial Forces) GPS altimeter) Generate
(Iatltu%e, gi‘g’;‘g | Servo
longitude,
Altude. Commands
time)

Figure I1-3: Top Level Data-Flow Diagram for UAV Controller

b. Single-Process Sub-Level Data-Flow Diagrams.
Many processes in the top level DFD have only one process in their sub-level which just
explains the function of the top-level process in more detail. For example, the following processes simply
read data from a buffer or A/D port and pass it on without processing:

4.1 = Read digital representation of fuel level from A/D port.

5.1 = Read digital INS sensor data from buffer.

6.1 = Read digital GPS fix data from buffer.

7.1 = Read digital representation of Non-INS sensor data from A/D port.
12.1 = Record position in Track Log.

Three other sub-level DFDs can be described by one process; however, that this process is
slightly different depending on the mode of flight. The UAV can be flown directly by a pilot using joystick

control or autonomously following a pre-established list of latitude/longitude/altitude waypoints.

TABLE II-1: Process Comparison by Flight Mode

Process Direct Control Mode Autonomous Flight Mode
2.1 Read joystick position Retrieve last/next waypoints
3.1 Convert composite com- | Calculate trackline of accept-

mand into vectored com- | able positions between the two
mands for each of 3 given waypoints.

reference axces (X,Y.Z)

10.1 Call Linear Quadratic Calculate corrective trackline
routine (Assumption 1) and, (10.2) call Linear Qua-
to determine corrective | dratic routine to determine cor-

control surface positions | rect control surface positions.

¢. Multi-Process Sub-Level Data-Flow Diagrams

Lastly, the multi-process sub-level DFDs are shown below:

Fuel
Level

Servo
Position
Feedback

1.2

1.1 Trandlat 1.3 Control
Receive Digital ranslate Graphical . Display
CL n(; r 5 Data Data to Data Display Data

o Graphical Graphical
o Representat Flight
Data cpresentation Data

Flight

Instrument

Data
Command
Feedback

Figure I1-4: Process 1.0, Update Control Display

Multi-Process Sub-Level Data-Flow Diagrams (con’t):

GPS Fix / Flag

P 8.2 -
K Pass as
It fix new New Position
i Fix (PF)
since last
cycle [Set Flag]
8.1 g\lst
osture
i Data
Latest
GPS Fix -
Position r

Use Filtering
Algorithm
(Assumption 1)

If fix same
as last cycle

Filtered Nav Data

INS Data to Determine >
Most Accurate
Nav Data
Air Data
Figure II-5: Process 8.0, Kalman Filtering
9.1 Filtered 9.3
If GPS PF Nav Apply DR
Received Data Correction to
Reset Dead LKP to0 Servo
Reckoning Estimate New
(DR) Point Corrected Position Feedback
LKP
DR Point
Set
GPS Corrected Position
Fix ~ GPS Aftitude] 9.4
Flag 9.2) Calcul
Get Last INS culate
Known Posture Posture
Position Data from INS
(LKP) Data
Current
Position
and
Posture
GPS
Corrected
Fla i
i sgt) 9.12 Altitude
9.1.1 Reset
Reset LKP Ba_rometn'c
GPS to Equal Altimeter to Corrected
Fix GPS PF Equal GPS LKP
Altitude

Figure 11-6: Process 9.0, Determine Position and Posture

15

Multi-Process Sub-Level Data-Flow Diagrams (con’t):

Note:
This must be
done separately

11.1 11.3 for each servo
Calculate the Set Timer :L:/‘g it;ntl: g;e
Commanded to Measure moved.

Position’s Length of
Percentage of Pulse Based
Total Servo on Calculations
Donein11.1

11.2 .
Control o When Timer
Surface Set Voltage Expired,
Commands on Servo Reset Servo
Command Command
Line to ;
High Line to

Low

Beginning
of Pulse >

End of

Pulse 1

Figure 11-7: Process 11.0, Generate Servo Commands

3. Event List

The cvent list looks deceptively simple. All events are temporal with the exception of
asynchronous joystick inputs from the pilot, but since the command inputs are polled, this event also becomes
temporal. Each event s either part of the control cycle or runs on its own frequency which would be an even
multiple of control cycles. The chatlenge is to keep cycles of different durations from becoming out of synch
and infringing on each other’s resources. The controller must handle the following event parameters:

Pilot inputs new joystick command.

Pilot commands must be polled once per control cycle.

INS data needs to be read once per control cycle.

GPS input needs 1o be read oncee per second.

Non-INS data needs to be read once per control cycle.

Each of eight control surtace servo command pulses must be generated each control cycle.
The throutle servo command pulse must be generated once per second.
The fuel level needs to be read every 60 seconds.

The control display must be updated at least twice per second.

16

4. State Chart

After considering many possible formats to depict state transition information, state charts

appeared to best represent the organization of the UAV controller. Developed by D.H. Harel, et al [Har90],

state charts combine the state transitions of standard state transition diagrams with process depth typically

represented in Warnier-Orr diagrams and then add elements of orthogonality and communication.

Orthogonality, represented by a dashed line, indicates separate tasks, and communication, represented by

arrows, is a method for allowing different orthogonal processes to react to the same event [Lap92].

Sensor Data

1
'
1 Second]
(QOL‘IM , Interrupt | I Fuel Status \
/ : 60 Second
\ 1 Interrupt Too Low
Real-Time | g_et SP[S !
; | ix Data
Executive ! : pr Fuel
: ' Signal or
i ! Return to
' : Base Seq.
Navigation 20 msec !
_~ Interrupt Y
r
20 msec ' Data)
Complete :
Read & Filter getermmc ' Caloulatons
Non-GPS urrent - Complete
Position & o

Posture

Poll Pilot
Commands
or Read

Waypoints

Data
Complete

Determine
Desired
Position &
Posture

500 msec

K— Interrupt

Control

Display

Wait Until
Current &
Desired
Position &
Posture
Available

Conditions
Met

Calculations
Complete

Determine
Corrective
Response

For Each Servo

Generate
Servo

Command
Pulses

Figure II-8: UAYV Controller State Chart

D. CHAPTER SUMMARY

As an unmanned vehicle, the UAV developed at the Naval Postgraduate School is completely
dependent upon its automated systems to provide control of the aircraft in flight. Directing the execution of
these automated systems is a controller running a Real-Time Executive program. The correct operation and
real-time coordination of all functions on board the aircraft depends on thetir interaction with this controller.

At present, the UAV is designed to have an on board GPS receiver, an inertial measurement device, and
other in-flight sensors. Appropriate data must be selected from this navigation suite, filtered, and analyzed
1o determine the current state of the aircraft at any given time. This state may have to be converted into a
ditferent referential coordinate system. Processing this state via appropriate control algorithms will yield
corrective positions for the available control surfaces and the throttle. These controls are moved by pulse-
modulated servos, which require a pulse of a specified width be generated and output at a precise time. Pilot
commands must be received and the aircraft state may be transmitted through a communication link, using
appropriate protocols. Data acquisition, processing. and I/O must be repeated at various intervals and
coordinated through a Real-Time Executive (RTE) software program. This RTE is driven by a periodic
interrupt and must be robust. The main challenge is to coordinate the complex scheduling of these executed

functions to yicld smooth and positive control of the UAV.

III. HARDWARE

Hardware selection represents a challenging task. Choosing from the myriad of possible systems and
configurations, each with their own cost, advantages, and disadvantages, it is easy to underestimate the
ultimate significance of that selection. Indeed, the hardware selected determines most, if not all, of the
system’s limitations. It impacts the flexibility of the system and the programmer’s control over the system.
It determines the method by which things can be accomplished on or by the system.

For the UAV controller, the selection of hardware was largely made prior to this research. In general,
it was constrained by the following criteria:

« The manufacturer should be from the United States, local if possible.

« All hardware should come from the same manufacturer, for interoperability purposes.

« Therefore, the manufacturer should offer hardware to meet all requirements.

« The composite hardware solution should be modular, for ease of upgrading and maintenance.
« The hardware must be immediately available (not under development).

« The hardware could operate on a standard +/- 5V and +/- 12V power supply.

+ The composite hardware solution would fit within the space available on the UAV.

« The composite hardware solution would have minimal weight.

« The hardware could execute commercially available software, including a C compiler.

The reasoning behind choosing an American manufacturer was that if there were any hardware related
problems, an American manufacturer, especially one with an office in the local area, would be easiest to
contact and could provide the quickest response to requests for technical assistance. A specific operating
system was not originally selected, but defaulted to MS-DOS because of the low cost and wide availability
of compatible hardware and software. The choice of MS-DOS precludes the use of multi-tasking scheduling
strategies, but it was determined that multi-tasking would not be required, at least for the first iteration of the
controller.

Ultimately, all controller hardware was purchased from American Advantech, Inc. Their offices and
technical staff are located in Sunnyvale, CA. This chapter delineates the most prominent features of the
hardware selected. It lists selected specifications for the chosen hardware and discusses the configuration of
that hardware as designed for the controller applications. These configurations have been carefully selected
to get maximum performance and complete interoperability out of each system component. Numbers listed

are Advantech model numbers. Technical data sheets are given in Appendix C.

19

A. SYSTEM OVERVIEW

Figure I1I-1 shows the configuration and connectivity of the overall hardware system. The oval shape
represents components that are needed for development only and are detached prior to installation. The
remaining components must be mounted on the UAV, most inside the control pod designed by Moran
{Mor93]. Racetrack shapes represent sensor and navigation subsystems, most designed through the research
of other students and incorporated into this controller design. Rectangular shapes indicate circuit cards or
power supplies, most from Advantech, that comprise the central part of the controller. The specifications and
configuration of each component is described in this chapter in sufficient detail such that a new user would

be able to recreate and understand the present hardware system.

| [486-33 Floppy Drive

— uProcessor Keyboard

CPUCard | - O
- Video
PCD-890 Video Card

é

m<—0Ow>ro

— RAM

Di

gl | EgbLEi}S) J 16 A/D Non-INS\! Pitot Tube, Altimeter, Inclinometer
Al |cCard | Inputs Sensors /| «and B sensors
C
K| | PCL-830 4 Control Vanes
P [| Counter/ J 10 PWM Servo 2 Wing Ailerons
L[] Timer | Outputs Motors 2 Canard Ailerons
Al | Card Throttle
Ej PCL-744 /(mg gtraotLi’c?r?
1 Serial 8 RS232 1 IMU
I/O Card Ports 2 @ " NS
+5V +5V]
GND Power GND +28V _GND
+1122\>/ Supply +1g ¥ Power Supply

Figure I11-1: Overall Hardware System Configuration

B. PCA-6108: PASSIVE BACKPLANE

This is primarily an external bus, facilitating communication and data transfer between all other
hardware components. The other computer circuit boards plug directly into each of the eight, PC/AT
compitible expansion slots. This card has a heavy duty, standard block connector for the power supply,

making +5V, +12V_-12V_and system ground available to all cards.

20)

C. PCA-6146: CPU CARD

1. Specifications

This board contains the central processor, an Intel 80486 running at 33 MHz with 8Kbytes of
cache on-chip, 256 Kbytes of 25ns double cache memory and 16 Mbytes of DRAM. Also included on the
board are ancillary electronics to support processor functions, such as the Peripheral Interrupt Controller
(PIC), Universal Asynchronous Receiver and Transmitter (UART) and counter/timer chips. The board
interfaces with the backplane through a 32 bit ISA bus operating at 8 MHz. Control circuits on the board
support two floppy disk drives, two IDE hard disks, two RS-232 nine-pin serial ports, one 25-pin parallel port,
and a keyboard port. Significant for this research, it features a 4-bit (15 level) interrupt vector and a
programmable watchdog timer. The watchdog timer ensures that the CPU will be reset if a program cannot
be executed normally, which is useful in real-time systems where a program or power glitch could lock up

the system. The maximum power requirement for this board is approximately 2.5 Aat +5 V.

2. Configuration

The CPU card has been configured to support parallel port LPT2, serial ports COM1 on the upper
port and COM2 on the lower port, and the floppy disk controller. To accomplish this, the J1 jumper pins must
be set as shown in Table III-1. Next, although the controller functions without a hard disk, one is needed for
software storage during the initial programming. Thus, jumper JP17 must be enabled (open). The watchdog
timer is enabled by closing jumper JP22 and leaving JP23 and JP24 open. The timer interval is set by closing
either JP19Y, JP20, or JP21. Due to the nature of this application, a timeout of 1.5 seconds was selected.
Should a power drop, software bug, or infinite loop halt the system, the aircraft would be without positive
control for a maximum of 14 seconds, including a total rebooting time of 12 seconds.

When connecting the CPU card to an external panel display, attach the lead wire for hard disk
indicator light (usually red and black) to the HD connection next to the red LED at the top of the CPU card.
Attach the lead wire for the turbo light (usually yellow and black) to JP5. The lead wires from the reset switch

(usually red and black) conncct to JP4, and the keylock connection is made at made at JP3. Pins 3 and 5 of

JP3 are ground connections, so the black wire should be at the bottom of the connector. Incidentally, pin 1

of JP3 is LED power, and pin 4 controls the keyboard lock.

TABLE III-1: CPU Card Jumper Settings

Jumper Setting jd Jumper Setting
IPY/I Close 1-2 Pl4 | Close2-3*
P12 Close 1-2 JP15 Open*
JP1/3 Close 1-2 JP16 Closed*
JP1/4 Close 1-2 JP17 Open
JPL/5 Close 1-2 JP18 Open*
JP1/6 Close 1-2 JP19 Closed
JP1/7 Close 1-2 JP20 Open

JP7 Close 2-3* JP21 Open

JPY Close 2-3* P22 Closed
JPIl Close 2-3* JP23 Open
JP12 Close 2-3* P24 Open
JP13 Close 2-3*

* Denotes factory setting

3. Basic Input Qutput System (BI10S)

For the system to work properly. the actual hardware and memory configuration must match the
setup configured in the non-volatile BIOS chip. This is a CMOS memory chip by American Megatrends, Inc.
which stores the system configuration and is read by the processor each time the system reboots. To access
the BIOS data. press the DEL key during the initial stages of the bootstrap process, while the processor is
cheeking the available memory. The program will present a main menu from which the user may choose
CHIPSET setup. standard CMOS sctup. or advanced CMOS setup. For this research, no changes are

necessary o the CHIPSET setup; all factory default values are used.

22

In the standard CMOS setup, values entered must correspond to the actual hardware in use. For
this research, a 102 MB hard disk and a 1.44 MB, 3.5 inch floppy drive are used. Accordingly, hard drive C
is set to USER TYPE 47. This should correspond to the following data fields:

TABLE II1-2: Hard Drive C Parameters

Cyln

Head

WPcom

LZone

Sect

Size

1024

12

1025

1025

17

102

When booting from the PCD-890 RAM Disk. no actual hard disk is used, so hard drive C must be changed
to Not Installed. Hard drive D should always be set to Not Installed, floppy drive A should be set to /.44,
and floppy drive B may be set appropriately, if one exists.

Among the many parameters set in the advanced CMOS setup, a few are important. The HD Data
Area should be set to 0:300. This should not be changed unless a different hard disk is used or if the present
hard disk is reinitialized. The System Boot Seq should be set to C: A:, which forces the system to boot off
the hard disk, if one exists. Finally, all cache should be enabled, all video ROM shadow-RAM should be
enabled, all adapter ROM shadow-RAM should be disabled, and the system ROM shadow-RAM should be

enabled.
D. PCD-890: RAM Disk

1. Specifications

The PCD-890 is a solid-state disk emulator with a capacity up to 12 MB, using EPROM, SRAM, or
Flash memory chips. For this rescarch, 24 Sony 581000P 128 KB SRAM chips were used to create a 2.88
MB emulated disk. Replacing mechanical drives with the RAM Disk not only allows data retrieval to be
accomplished five times faster, but the RAM Disk is also much less susceptible to damage from motion or
vibration. Two PCD-890’s may be installed on each system, and each PCD-890 has two memory banks that
may be configured as either one or two virtual disks. Each virtual disk can be configured as drive A, B, C,
or D which are fully software compatible with mechanical drives with no additional software development.
Each board features a 3.6 V rechargeable lithium battery that keeps the SRAM charged and lasts up to six
months. Memory loss is possible if this battery is allowed to run down; however, there is a connection at CN1

for an optional external battery power. Each card requires only 16 KB of system memory.

23

2. Configuration

The PCD-890 comes with a utility program which is used to load the on board BIOS chip with the
present configuration. This configuration is dependent on the position of various dip switches and jumpers.
Jumpers JP1 and JPS select the type of chips installed in each bank. Both of these should close the connection
between pins 2 and 3 to denote SRAM. JP10 and JP11 set the size of the installed chips. These should also
close pins 2 and 3 to denote 128 K or larger. Because there is only one PCD-890 installed, the JP9 jumper
should close pins 1 and 2. To cnable the SRAM battery. close pins1 and 2 on JP4. JP8 sets the interval of
the watchdog timer, which is not used on this card.

Dip switches SW1 and SW2 are used to enable each bank and set its drive designation. Position
I and 2 set the designation. For normal operation, bank 1 must be enabled, unprotected, and set to drive A
so that the computer will boot from the RAM Disk in the absence of a hard disk (Recall this bootstrap order
was cstablished in the BIOS of the CPU card.). Since it is desired to have one Contiguous memory space.
bank 2 must be disabled and called something other than drive A. Table I11-3 shows the switch settings used
for this configuration.

TABLE III-3: Switch Settings for PCD-890

SW1 SwW2
1 2 3 4 1 2 3 4
On for A On On On On Off On Off
Off for C

During system development, it is often desirable to use both the RAM Disk along with a hard drive
Cand a floppy drive A. In this case. designate the RAM Disk as drive C by turning off switch 1 of SW1. If
the PCD-890) is internally designated the same logical name as a hard disk existing in the same system, MS-
DOS will automatically assign the PCD-890 to the next available DOS drive, in this case drive D. Note that
the utility program will continue to refer to cach bank according to the Jjumper setting, not its DOS drive
designation. Also, the BIOS on the CPU card must be updated to correctly reflect the presence or absence of
the actual hard drive,

Finally, SW3 scts the memory and 1/0 addresses assigned to this card. These have been carefully

selected 1o avoid conflicts with other hardware and system services. If two PCD-890's are installed, they

24

must be set to occupy the same memory address (positions 1, 2, and 3 are the same on both cards), but

different I/O addresses (positions 4, 5, and 6 cannot all be the same). SW3 should be set as follows:

TABLE 11I-4: Switch Settings for PCD-890 SW3

1 2 3 4 5 6

Off On Off On On Off

The utility program can be invoked by executing the file named 890 in the PCD-890 directory.
Once the switches and jumpers have been properly set, the utility program should mirror that configuration.
Drivc A is listed as 5712KB SRAM with a disk size of 2.88 MB. All other entries should read Not Installed.
Pressing ESC will exit the program and load the configuration into the BIOS chip.

Once properly configured and plugged into the backplane, the PCD-890 will automatically install
itself in memory during the booting sequence. The only indication will be a message similar to Figure III-2
flashed on the screen for less than one second in between the RAM check sequence and the execution of the

AUTOEXEC.bat file. To view this screen, press the Pause key to halt the bootstrap process.

PCD-890 RAM/ROM DISK BIOS Rev. B1 (c) Copyright Advantech Co., Ltd. 1992
Configuration: /O MEMORY

Drive A: 2.88M RAM Disk formatted (write protect OFF) 0240 D400
BATTERY IS GOOD

Figure II1-2: PCL-890 Installation Confirmation Message

’

E. PCL-744: SERIAL 1/0 CARD

1. Specifications
The PCL-744 is an intelligent serial data communications interface card. It provides eight
asynchronous, full-duplex RS-232 or RS-422 ports per card, and up to four PCL-744 cards may be used
concurrently. It is equipped with a V20 (8088 compatible) 8 MHz CPU, which relieves the central processor
of all data handling and 1/O flow control tasks. Transmit and receive queues are stored in a 64 KB dual-port
RAM buffer, which frees main memory and prevents data loss. Dual-port refers to the fact that data can be
accessed by both the central processor and the on board CPU. This memory-mapped data transfer is generally

much faster than standard memory 1/0 with data copying. Each card maps to only 8 KB of system memory.

The PCL-744 has a single DB64 female port which connects to a special “octopus™ cable
branching out into eight DB25 male connectors. Each of the eight ports features complete modem flow
control signals (RTS, CTS, DSR, DTR, and DCD) and operate at a programmable communication rate
ranging from 50 to 38,400 bps. The PCL-744 uses four 2681 DUART (Dual Universal Asynchronous
Receiver and Transmitter) devices., with each 2681 controlling two ports. These two ports share one baud
rate divider, which is clocked by a 3.6864 MHz crystal. Baud rates may be selected for each of the two

channels independently, but because of the shared divider, both rates must be from the same group:

TABLE III-5: Baud Rate Groups (bps)

Group 1 1200, 2400, 7200, 9600, 38400
Group 2 1200. 1800, 2000, 4800, 9600, 19200

The PCL-744 sclects its IRQ level automatically in software and requires a maximum of 1.5 A at

SV, 120mAat 12 V, and 170 mA at -12 V. the latter necessary for RS-232 signalling.

2. Configuration

The PCL-744 has no jumpers or switches. Configuration options such as the number of cards,
IRQ channels, port numbers, and memory bufter starting addresses are all selected using the setup program.
To run the setup program, execute the program named SETUP in the PCLS-802 directory. Choose the 744
intelligent card choice to get to the PCL-744 setup screen. On this screen, set the select IRQ number to /0
hex and the select dual port bunk to AUTQ. The start port should be set to 03. This is because the two COM
ports on the CPU card become ports 1 and 2 by default. Pressing page-down gives access to the port
configuration menu. The Group Edit function ensures that all ports are configured identically. Ports 3
through 10 correspond with octopus cable connectors 1 through 8, and are configured as shown in Table I11-6.

To install the PCL-744 driver. exccute the file 744-DRV.exe in the PCLS-802 directory. If it

installs corrcetly, the following message appears:

PCL-ComLib Communications Driver (Ver 3.00)
PCL-744 Muttiport Card 1: No [05477] Bank [C800] Port [03-10] IRQ 10

Device Driver Setup O.K.

Figure 11-3: PCL-744 Installation Confirmation Message
Exccuting the file STD-DRV.exe will also enable control of COM1 and COM2. Both of these

exeeutions are done automatically from the AUTOEXEC .bat program during system bootstrap.

26

TABLE III-6: PCL-744 Serial Port Settings

F. PCL-812PG: ENHANCED MULTI-LAB CARD

1. Specifications
The PCL-812 is a high speed, multi-function data acquisition card used primarily in this project
to accomplish analog to digital (A/D) data conversions. It features:

« 16 single-ended analog input channels

« Switch selectable bipolar analog input voltage ranges

« A programmable Intel 8253-5 timer to provide internal pacer (trigger) pulsing
« Choice of internal or external reference voltages

» A PCLD-780 wiring terminal breakout board for ease of connection

« Callable software drivers for all card features

» TTL compatible /O signal levels

Single-ended analog inputs require only one signal wire for each channel. The voltage is
measured with respect to common (system) ground. A signal source measured with respect to a reference
other than common ground is a floating source. For these signals, a second input called analog ground
(A.GND) is available.

The PCL-812 uses an industrial standard 12 bit successive approximation converter (HADCS574Z)
to convert analog inputs. Typical A/D conversion time is 25 usec. Because an 8 bit register cannot

accommodate all 12 data bits, the A/D data is stored in two registers located at the base address +4 and +5.

The least significant bits are in positions 0 (AD0) through 7 (AD7) of BASE +4, and the most significant bits
are in positions () (AD8) through 3 (AD11) of BASE +5, with AD11 being the most significant. Other
important 1/O addresses are shown in Table 1I-7. The PCL-812 requires 16 consecutive bytes of address

space and typically draws 500 mA at +5V, SOmA at +12V, and 14mA at -12V.

TABLE 1II-7: PCL-812 I/0 Address Map

2.

Location Read Function Write Function
Base Address | Counter () Counter 0
Base + 1 Counter 1 Counter 1
Base + 2 Counter 2 Counter 2
Base +3 Not Used Counter Control
Base +4 A/D Low Byte | Ch 1 D/A Low Byte
Base + 5 A/D High Byte { Ch 1 D/A High Byte
Base + 6 D/l Low Byte Ch 2 D/A Low Byte
Base + 7 D/1 High Byte | Ch 2 D/A High Byte
Basce + & Not Used Clear Interrupt Request
Base + Y Not Used Voltage Gain Control
Base +10 Not Used Mux Control
Buase +11 Not Used Mode Control
Base +12 Not Used Software A/D Trigger
Base +13 Not Used D/O Low Byte
Base +14 Not Used D/O High Byte
Base +15 Not Used Not Used

Configuration

The base address for the PCL-812 is selected using the first six switches of SW1. located at the

top of the circuit board. These should be set as shown in Table I11-8, giving an 1/O address of Hex 220.

TABLE I11-8: Switch Settings for PCL-812 SW1

2

3

4

5 6 7

On

On

On

Off

On On On

28

Switches 7 and 8 of SW1 control the number of wait states added to the PCL-812 to achieve stable
data transfer. It can be configured with zero, two, four, or six wait state delays for each transfer of data. Both
switches turned on selects zero delay. Jumpers are used to select the remaining configuration options.

Table HI-9 shows the present settings and their function.

TABLE III-9: PCL-812 Jumper Settings

Jumper Setting Function
JP1 Close 1-2 | Use internal A/D conversion trigger
P2 Close 1-2 Use internal 2 MHz clock for counter channel 0
JP3 Close 1-2 Use internal voltage (JP8) for D/A reference on Ch 1
JP4 Close 1-2 Use internal voltage (JP8) for D/A reference on Ch 2

JP5 Close contact 5 { Select IRQS5 to signal A/D completion

JPG Close contact X | Select no DMA data transfer (DRQ Channel)

JP7 Close contact X | Select no DMA data transfer (DACK Channel) -

JP8 Close 2-3 Use -5V for internal D/A reference voltage

JPY Close 2-3 Select +/- 5V for maximum A/D conversion range

If JPY is set to +/- 5V, the analog input ranges available for A/D conversion are +/- 5V, +/- 2.5V,
+/- 125V, +/-0.625V, or +/- 0.3125V, dependent on a software gain code parameter. These ranges could be
doubled by setting JP9 to +/- 10V, but only if Vce of the system power supply is strictly greater than 12V,
otherwise A/D conversions will not be correct. The output of the present power supply is only 11.8V.

Analog connections are made through connection ports CN1 and CN2 on the slot edge of the card.
Figure 11I-4 shows the pin alignment for each connector. For this research, a PCLD-780 wiring terminal

" breakout board was used to connect signal wires to the ports through ribbon cables.

CNi1 CN2
ADO 1 2]AGND AD10|1 2| AGND
AD113 4]|AGND AD11]3 4| AGND
AD2 |5 6|AGND AD1215 6| AGND
AD317 8]AGND AD13|7 8| AGND
AD4 (9 10| AGND AD14{9 10| AGND
AD5 | 11 12 | AGND AD15 | 11 12 | AGND
AD6 | 13 14 | AGND D/A 1] 13 14 | AGND
A/D7 | 15 16 | AGND D/A 2} 15 16 | AGND
AD8 [17 18 | AGND V.REF 1| 17 18 | AGND
A/D9 | 19 20 | AGND V.REF 2| 19 20 | AGND

Figure 111-4: PCL-812 Connection Port Pin Alignments

29

Prior to using the Lab Card, it is necessary to install the PCL-812 driver by executing the file
PCL 812 .¢xe in the PCL-812 directory. The computer will confirm correct installation with the message,
“PCL-812 Driver Version 1.0 is now installed.” This execution is also done automatically from the

AUTOEXEC.bat program during the system bootstrap process.

3. Calibration
For accurate results, the A/D inputs must be properly calibrated. Five variable resistors (VRs) on
the PCL-812 allow accurate adjustment. VR3 and VRS are used for A/D adjustment, VR1 and VR2 are used
for D/A adjustment, and VR4 adjusts the programmable amplifier offset. Executing the calibration program
in the PCL-812 directory, the user must specity the input voltage range setting and channel number. Then
the program will guide the setting of the programmable amplifier offset, the A/D offset, and the A/D gain. It
is important to note that the calibration on one A/D range may cause a small offset on other ranges, so it is

suggested 1o calibrate the A/D range for which the best accuracy is required.
G. PCL-830: COUNTER/TIMER CARD

1. Specifications

The PCL-830 is a multi-function counter-timer and digital 1/O card used primarily in this project
to generate high-resolution, programmable-duty-cycle square waves used to drive the Pulse Width
Modulation (PWM) servos, which move the aircraft’s throttle and control surfaces. It provides ten
independent 16 bit up/down counters. a 1 MHy crystal oscillator time base, and 16 bit TTL/DTL compatible
input and output ports. In the heat of the PCL-830 are two Advanced Micro Devices AMD9513 System
Timing Controller (STC) chips used for all counting and timing functions. These STC chips are highly
versatile and adaptable to many real time applications, including

« Retriggerable digital timing functions

« Time of day clocking

« Coincidence alarms

« Complex pulse generation

« Frequency shift keying

+ Event count accumulation

The STC is addressed by the main processor through two I/O ports: a Control port and a Data

port. The Control port provides direct access 1o the Status and Command registers, as well as allowing the
user to update the Data Pointer register. The Data port is used to provide the data used to communicate with

all other addressable intemnal locations. The Data Pointer register controls the Data port addressing. Among

3o

the registers accessible through the Data port are the Master Mode register and five Counter Mode registers,
one for each counter. The Master Mode register controls the programmable options that are not controlled
by the Counter Mode registers. Each of the five general purpose counters is 16 bits long and is independently
controlled by its Counter Mode register. Through this register, the user can software select one of 16 sources
as the counter input, a variety of gating and repetition modes, up or down counting in binary or binary coded
decimal (BCD), and active-high or active-low input and output polarities. Associated with each counter are
a Load register and a Hold register, both accessible through the Data port. The Load register is used to
automatically reload the counter to any predefined value, thus controlling the effective count period. The
Hold register is used to save count values without disturbing the count process.

The PCL-830 requires 6 consecutive bytes of address space, as follows:

TABLE III-10: PCL-830 I/O Address Map

Location Read Function Write Function
Base Address | 9513 Chip | Data In 9513 Chip 1 Data Out
Base + 1 9513 Chip 1 Command Register | 9513 Chip 1 Status Register
Base + 2 9513 Chip 1 Data In 9513 Chip 1 Data Out
Base +3 9513 Chip 1 Command Register | 9513 Chip 1 Status Register
Base + 4 Digital Output Bits 0 - 7 Digital Input Bits 0 - 7
Base + 5 Digital Output Bits 8 - 15 Digital Output Bits 8 - 15

All ports are 8 bits (one byte) wide. When loading data that is longer than 8 bits -- the digital data
used to generate PWM signals for this project are 12 bits long -- the low byte must be loaded first, followed

immediately by the high byte.

2. Configuration
The base address for the PCL-830) is selected using the first six switches of SW1, located at the

top of the circuit board. These should be set as shown in Table III-11, giving an I/O address of Hex 210.

TABLE III-11: Switch Settings for PCL-830 SW1

1 2 3 4 5 6 7 8

On On On On Off On On On

Switches 7 and 8 of SW1 control the number of wait states added to the PCL-830. It can be
configured with zero, two, four, or six wait state delays for each transfer of data. Both switches should be
turned on to select zero delay. There is only one jumper on the PCL-830. This jumper (JP1) should close
contact 3 to select IRQ3 as the interrupt level. The interrupt is not used in the present configuration, but to
use this interrupt, set the Interrupt Enable (CN1 pin 18) low. The positive edge on the Interrupt Input (CN1
pin 19) will then generate an IRQ level 3.

Signal connections are made through one of four 20 pin male connection ports. CN1 and CN2,
found on the slot edge of the card, are used to interface with the AMD9513 STC chips 1 and 2 respectively.
Figure [1I-5 shows the pin alignment for these connectors. For this research, a PCLD-780 wiring terminal
breakout board was used to connect signal wires to the ports through ribbon cables. The servos are attached
by first connecting the red and black voltage reference wires to +5 V and GND. The white command wires

arc then connected to OUT 1 through OQUT 10.

CN1 CN2
FOUT1 | 1 2| GATE1 FOUT2 | 1 2| GATE®
GATE2 | 3 4| GATE3 GATE7 [3 4| GATES
GATE4 | 5 6| GATES GATE9 | 5 6| GATE 10
SRC1 |17 8| SRC2 SRC6 |7 8| SRC7
SRC3 [9 10| SRC4 SRC8 |9 10| SRCY
SRC5 | 11 12| OUT 1 SRC10 | 11 12| OUT#6
OuT2 [13 14| OUT 3 OUT7 { 13 14| OUT8
OUT4 | 15 16| OUTS OuUT9 [15 16 | OUT 10
GND | 17 18| INT ENB GND | 17 18 | Not Used
+5V | 19 20 | INT +5V | 19 20 | Not Used

Figure I11-5: PCL-830 Connection Port Pin Alignments
It is not necessary to install any drivers prior to using the PCL-830; however, a counter on the
AMDY513 must be anned by sending an ARM command to the Control port before counting can commence.
Once armed, the counting process may be further enabled or disabled using the hardware gating options.
Additional commands are provided to step an individual counter by one count, set and clear an output toggle,

issuc a software reset, clear and set special bits in the Master Mode register. and load the Data Pointer register.
H. Global Positioning System (GPS) Receiver

1. Specifications
The Motorola GPS recciver used in this research, model PVT-6, is fully detailed by Twite
[Twiv4]. Itis a fully automatic position finding system that determines and digitally transmits autonomous

position, altitude. velocity, heading, satellite tracking status, and correct time in three different, user

selectable formats: Motorola Proprietary Binary Format, National Marine Electronics Association (NMEA-
0183) Format, or LORAN Emulation Format. Each of the six parallel channels can find, track, and monitor
one NAVSTAR satellite. If three satellites with adequate signal strength and bearing spread are available, a
two-dimensional (latitude and longitude) fix is calculated. If four or more usable satellites are available,
altitude can also be determined. Instantaneous speed and heading is determined by measuring signal doppler

shifts, although without differential corrections, this information is prone to small errors.

2. Configuration
The GPS receiver module and its antenna are fully self-contained units that require no special
configuration. The antenna plugs into the coaxial connector on the receiver module. Power and serial data
connections are made through a ten pin connector on the back of the unit. A special data cable has been
manufactured to provide +5 V and GND to pins 2 and 3 respectively. Serial data communications use pins 8
through 10 and terminate in a DBY female connector. This is, in turn, connected to PCL-744 octopus cable

number 2.
1. INERTIAL MEASUREMENT UNIT (IMU)

1. Specifications
The IMU selected for this project was manufactured by Watson Industries in Eau Claire, WI.

Model IMU-600D uses vibrating element sensors to provide the following nine sensor readings:

TABLE 111-12: IMU Data Output

Sensor Scale Limits
X-Axis Acceleration +3g to -3¢
Y-Axis Acceleration +3g to -3¢
Z-Axis Acceleration +3g to -3g

X-Axis Angular Velocity | +100 to -100 Degrees/Second

Y-Axis Angular Velocity | +100 to -100 Degrees/Second

Z-Axis Angular Velocity | +100 to -100 Degrees/Second

Magnetic Heading N=T7fff, E=c000, S=0000, W=3fff
Bank Anglc +60 to -60 degrees
Pitch Angle +60 10 -60 degrees

33

Each analog sensor reading is processed through a 16 bit A/D converter and the resulting digital
representation of the signal is in two’s complement format. To use acceleration as an example, 3g = Hex 7fff,
0g = Hex 0000, and -3g = Hex 8000. In all, there are nine 2-byte words of sensor data. Each word of data is
sent as a set of four ASCII characters (0-9 or ABCDEF) corresponding to the hexadecimal representation of
the 16 bit word. This complete bank of data is terminated by a carriage-return and line feed, bringing the total
size of one data reading cycle 10 38 bytes. The sensor data is sent continuously at 9600 baud with one start
bit, one stop bit, and no parity bit. At this speed. ignoring any overhead for data formation, a full data bank
could be received every 31.7 msec. or just over 31.5 Hz.

The IMU can also receive data. The receive line is used for calibration, so care should be taken
to send only the following signals:.

TABLE I11-13: IMU Input Signals

Signal Definition
I Continuously send bank 1 data
(Data described above)
R Continuously send bank 2 data
Q Exit Initialization

W Re-enter Initialization

The IMU normally requires 43 minutes to warm-up and initialize. During initialization, the unit should

not be moved for best accuracy. The IMU will send out the bank 1 data stream as it is initializing.

2. Contfiguration
The IMU is a tully seif-contained unit with only one nine pin port for power and serial data connections.

Table 11114 shows the pin configuration. A special data cable has been manufactured to provide GND and

TABLE III-14: IMU Pinout

Pin Function
1 Power GND
2 +28 VDC
3 Signal GND
5 Signal Receive
Y Signal Send

+28 V power to pins 1 and 2 respectively and terminates with a DB9 male connector. This is, in turn,
connected to PCL-744 octopus cable number 1. Although the manufacturer attests that the unit can operate
with as little as 22 VDC supplied. it must be with respect to system ground for the serial communications to
have the proper signal levels. Because of this the +12V to -12V spread available from the system power
supply cannot be used; a separate power supply was used for test purposes. Maximum power consumption

is 250 mA at +28 V.

J. DATALINKS
Two different datalinks have been developed for the UAYV so far. Both were commercial off-the-shelf
(COTS) products that had to meet several criteria:

» Cost limitations

» Weight limitations

- Power limitations

» Size limitations

« Standard serial interface

« Ability to transmit/receive beyond the line-of-sight
« Frequency agility

- Hardware reliability

+ Adequate data throughput

The first datalink solution was a X.25 packet radio teriinal node controller (TNC) connected to a 19.2
Kbps modem in combination with # UHF wide-band transceiver developed by Reichert [Rei93]. This is a
robust system that meets or exceeds almost every criteria. Reichert’s estimate of required data throughput is
accurate in scope, but may change slightly in the final design. For example, he lists the control refresh rate
as 40 Hz while this controller operates at 32 Hz. He estimates 8 bits per servo update, while the present
configuration uses 12; however, the present configuration could be reduced to 8 bits per servo with no
noticeable change in performance. An updated throughput requirement estimate is shown in Figure III-6.
Using this updated requirement, the capacity of this datalink, which yields 19.2 Kbps simplex or 9600 bps
duplex, is exceeded. Possible solutions would be to reduce the servo input to 8 bits and to refrain from
downlinking INS and non-INS sensor data for every control cycle.

The second datalink solution was a direct-sequence spread spectrum UHF datalink as developed by
Bess [Bes94]. This datalink also used a modified X.25 protocol with a top transfer speed of 19.2 Kbps. It
has programmable length packets and perfonns its own error correction and flow control. Spread spectrum

transmission has the added advantages of being less susceptible to jamming signals and may be operated

without an FCC license. The unit includes a serial data cable that terminates with a DB9 female connector.

This is, in turn, connected to PCL-744 octopus cable number 3.

Controls to be Uplinked

Refresh Bits per Required
Device Qty Rate Update Throughput
Throttle 1 16 Hz 12 192 bps
Control Vanes 4 32 Hz 12 1536 bps
Wing Ailerons 2 32 Hz 12 768 bps
Canard Ailerons 2 32Hz 12 768 bps

Servo Positions to be Downlinked

Refresh Bits per Required
Device Qty Rate Update Throughput
Throttle 1 16 Hz 12 192 bps
Control Vanes 4 32 Hz 12 1536 bps
Wing Ailerons 2 32 Hz 12 768 bps
Canard Ailerons 2 32 Hz 12 768 bps

Navigation and Sensor Data to be Downlinked

Refresh Bits per Required
Device Qty Rate Update Throughput
GPS Receiver 1 1 Hz 544 544 bps
INS Sensors 1 32 Hz 304 9728 bps
Non-INS Sensors 2 32 Hz 12 1152 bps

Total Datalink Throughput Requirement

‘ Required
Device Throughput
Controls 3264 bps
Servo Feedback 3264 bps
Sensor Data 11424 bps
Estimated Datalink Overhead (15%) 2693 bps
Total Datalink Throughput Required 20645 bps

Figure I1I-6: Datalink Throughput Requirements for Ground Control

The first datalink was not used in this research because of its complexity and licensing requirements.

The sccond datalink did not perform well in the laboratory environment, occasionally locking up or dropping

36

out of service for no apparent reason. Although configured for 9600 bps throughput, actual results were less
than half of that. It also required cycling the power and manual configuration to be restarted. Once
autonomous flight is achieved, the datalink will diminish in its importance, but as long as direct ground

control is required, the datalink is the lifeline and the weakest link in controller communications.

K. ANCILLIARY EQUIPMENT

In addition to the aforementioned hardware integral to the controller itself, ancillary eqdipmem was
necessary to fortn the complete system. In order to control the UAV, servos ana a source of power are
needed. Any COTS model airplane servo motors could be used, as described by Stoney [Sto93], provided
they generate sufficient torque to hold the control vanes position in the thrust stream. The servos used for
this UAV were Futaba high torque model FP-S34. The red and black wires connect to +5 V system power
and system GND respectively. The white command signal wire is attached to the PWM output signal from
the PCL-830 counter/timer card. The white feedback wire connects to one of the A/D analog input channels
on the PCL-812 lab card. Power for this research project was generated by a standard AMAX 200 W power
supply that provided up to 20 A at +5 V, 8 A at +12 V, and 0.5 A at both -5 and -12 volts, which was ample
for all hardware used. Power gcncrzuion and storage will vary according to the UAV design. Although not
investigated in this research, it is a very technical problem that affects the operation of all hardware.

A video graphics adapter (VGA) card linked with a standard VGA monitor and a Microsoft in-port
mouse, together with the hard disk and floppy drives represented the detachable part of this system hardware
which was necessary for system development only. Once the controller software was developed, it was
transferred to the RAM Disk. The system was then configured to boot from the RAM Disk and automatically
invoke the controller program. The keyboard and monitor are also detached prior to installation into the
airframe; however, the software must be modified slightly to accept user commands from the datalink prior

to operation without the keyboard and monitor.

L. CHAPTER SUMMARY

This chapter gives a detailed description of the specifications of the hardware selected for the UAV
controller, and the configuration details necessary to enable all equipment to interact together, including those
subsystems developed by other students. Using this information, system users and follow-on researchers will
know and understand how the system was designed to operate and the configuration details necessary to
reconstruct a similar system. For additional information about the specifications or operation of this

hardware, sce Appendix C or the published user’s manuals.

37

1V. SOFTWARE

Once the hardware has been selected, it is the software that actually shapes the operation of the
controller. The hardware and software have a symbiotic relationship by which neither can function without
the other, The software must operate within the confines of the hardware's capabilities and configuration, and
the hardware fulfills its tasks in a coordinated manner by taking its direction from the software. Software
gives the system its function and its personality. It provides for the interface by which the user comes to know
and recognize the system, it provides the transfer and organization of all the data crucial to the controller's
operation, and it coordinates the functions of and sets the cadence for the hardware components. Where
hardware is the body, software is the life blood.

This chapter will provide an overview of the scope of the software written for this research. Beginning
from the original requirements, it will specify the conventions, definitions, and structures necessary to help
the reader understand the code. 1t will detail the software environment in which the software is designed to
operate, and it will briefly describe the function of the various procedures. A complete listing of the code is

included in Appendix A.

A. OVERVIEW

The UAV is a multi-faceted project bringing together many varied disciplines. Since the scope of this
rescarch was 1o design the Real-Time Executive (RTE) for a central controller, it required the assimilation of
many sub-systems into one interoperable, cohesive, control system. These sub-systems were developed by
other students as part of an ongoing development effort. Among the many sub-systems previously developed,
this RTE was specifically designed 1o coordinate datalink development by either Bess [Bes94] or Reichert
[Rei93], navigation system development by Twite [Twiv4] and Hallberg [Hal94], servo control development
by Merz [Mer92] and Moran [Mor93]. and aeronautical control algorithm development begun by Davis

{Dav92] and Brynestad [Bry92], and continued more recently by Bolyard [Bol94] and Moats [Moa%4].

1. Requirements
As the backbone of the UAV controller. the RTE designed for this research acts like the conductor
of an orchestra, directing the low of data and cueing the execution of the various controller functions at the
correct moment in time. The controller's most basic requirement is to provide positive control of the aircraft.

This includes analyzing the present state, comparing the present state with the desired state, and making the

necessary adjustments. In order to provide this control, the control software must meet several other criteria
as well. Specifically:

« The software must be able to receive data from all flight sensors (GPS, INS, non-INS).

« The software must recognize and store a correct and complete data package from each sensor.

+ The software must recognize and discard corrupted data packages received from any sensor.

« The software must always maintain the most recent data available from each sensor.

« The software must provide Kalman filtering of navigation data, selecting the most appropriate
source for use by the control algorithm

» The software must recognize command input and determine desired aircraft posture and
position.

» The software must calculate corrections necessary to correct any deviations from desired
posture and position. '

» The software must generate PWM signals for servo motors to effect the necessary corrections.

+ The software must be able to transmit and receive data through the datalink as necessary.

Other requirements are not as obvious, but became apparent during the development of the system. They
include a predisposition to be written in C language and to be interrupt driven. In addition, the RTE must

deal effectively with exceptional circumstances, and it must be flexible and clearly written.

a. The RTE should be written in C language
Because of the low level programming requirements, the project did not fit well with an
object-oriented paradigm. In addition. acronautical engineering students developing the control algorithm are
using a program called Matrix-X which generates modules in C code. To interoperate with these modules,

and for reasons mentioned in Chapter 11, C was chosen as the programming language.

b. The RTE should be interrupt driven
As delineated in Chapter I1, hard real-time systems are required to meet timing deadlines
imposed by the outside environment or risk system failure. When the control loop is initiated by a timed
interrupt. it assures that the system will always execute positive control functions at a uniform interval which
is easily regulated. This not only {rees the processor to do other things when not executing the control loop,
but also allows the control loop to interrupt slower (by processor standards) processes, such as generating
servo command pulses or writing 1o the screen, prohibiting their occurrence from affecting system timing

deadlines.

¢. The RTE must deal effectively with exceptional or emergency occurrences
What if the datalink fails or the buffers are full? What if the CPU gets into an infinite loop

or comes to a halt? What if the operator wants to reset the system? What if the GPS or IMU do not deliver

39

acomplete message? These or any number of other possible mishaps or exceptions can occur, and the system
must be able to respond appropriately and reestablish positive control of the aircraft. Any problems with

system integrity come under the auspices of the RTE.

d. The RTE must be flexible to evolve with the rest of the system
The developinent of the UAV was designed in five phases, as outlined by Reichert [Rei93].
As the control of the UAV evolves from remote ground control to full automation, the software must be
flexible enough to evolve with it. To facilitate this requirement, it should be modular in design; each

procedure should be self-contained and should perform a specific function.

e. The RTE must be clearly written to facilitate follow on work
Just as this is not the first research project on the UAYV, it will not be the last; however,
interoperability and cohesiveness will still be requirements. The software programs are intended to be
self-explanatory through form, logic, and inserted comments. Where they are not, this research document is

intended to serve as a programmer’s manual for all functions of the software.

2. Definitions
All preprocessor directives, including compiler token definitions, global variable definitions, and
procedure prototypes are contained in the lone header file called DEFS.h. An index of all other variable
names is contained in Appendix B. which may be used as a glossary by subsequent programmers. Special

complex variables are stored in C structures. as described below.

a. Structures

Very few structures are used in the control software, as the necessary data types are not
complicated. The first is srruct T_GPS, introduced by Twite [Twi94] and fully defined in the header file
GPSTRUCT.h. This structure is globally maintained and gives access to all possible information obtained
from the GPS recciver by simple structure-member reference. For example, the control algorithm could
access the degrees of latitude of the present position by simply using the variable name
gps.pesatitude.degrees.

The second is a PANDL. which represents a pointer and its length, This is the preferred
mcthod of passing data contained in buffers of differing length. It allows one structure argument to be passed

and yet allow the same procedure to handle the various length buffers consistently.

40

3. Conventions
As a means of standardization, a set of conventions have been established in the design of the
control software. Any procedures not part of the RTE, but subsequently added to the controller software
(hereafter termed participating procedures) should conform to these conventions. In order to avoid
contention and interference, the RTE must maintain control over several critical parameters, including
execution timing, data transfer, memory allocation, and the operation of the hardware, particularly the

datalink.

a. The RTE must maintain control over all timing
This is the defined function of the RTE, yet for it to be effective, participating procedures
should be of relatively constant execution time. Recursion and loops must be used carefully, and the
participating procedure should not call another procedure that should be under the control of the RTE. The
challenge of programming the RTE is then reduced to a complex scheduling problem among a relatively

small number of processes which all have concise scope and operating parameters.

b. The RTE must maintain control over all data
As a corollary to the previous requirement, the RTE also maintains control over all aspects
of data storage and transfer. This includes I/O port number definitions, flow control definitions, and actual
I/O requests including input from the keyboard, output to the screen, or data transfers with the datalink. This
is crucial to maintain coordinated operation of all controller functions. Any participating procedures must
refrain from making their own data transfer calls, unless it is the express function of that procedure. Data

information placed in a buffer is passed using the PANDL structure defined above.

¢. The RTE must maintain control over memory allocation
In the codrsc of operation, & given procedure may be called many times by the RTE. Memory
allocation is a relatively slow procedure, and should be minimized and carefully managed. Any procedures
that allocate memory must clear that memory prior to return to the calling program. It is preferred to have
the RTE allocate the memory and then pass that PANDL to the participating procedure fill the buffer and

modify the length.

d. The RTE must maintain control over the hardware
It is the function of the RTE to direct the execution of the hardware. Unless it is their defined

purposce, participating procedures should not send signals to hardware or in any manner change the operating

41

parameters of the hardware established by the RTE. This will preclude the RTE from coming into contention

with the operation of one of the participating procedures.

e. Messages coming from the ground must have a set format

Because the datalink was only used to transmit information down to the ground in this
research, this format has not been completely established. The read_datalink() procedure is written to expect
a special character to denote the start of the message (presently using '#'), followed by a two byte integer
representing the length of the message in bytes, followed by the message itself. It is possible to also include
a one byte action code after the message length to help the RTE determine what action to take with the
incoming message. Participating procedures that uplink information to the RTE must follow this convention

for the message to be properly deciphered.

B. COMPILER CONFIGURATION

The software was developed under Borland C/C++, version 2.0. Invoking this program using the
command BC, without any flags, brings the user into an integrated development environment (IDE). The
IDE, otherwise known as the Programmer's Platform, includes a multi-file editor, multiple overlapping
windows, an integrated debugger, a built in assembler, and support for in-line assembly of other object
modules. Pull down menu selections are at the top of the screen, and most are similar to other graphical user
interfaces. The following compiler configuration parameters are important to ensure that the code will

compile properly.

1. Project File

Using the Project pull down menu gives access to the project file. The project files are kept in the
CNborlandc\bin directory and perform two important functions. First, the status of the screen (or desktop)
and all preterences selected, including compiler options, are stored in the project file. Then, when the project
is opened, the screen and all preferences are automatically returned to the settings selected for that project.
Sccond. the project contains a list of files to be compiled at run time. This allows the user to specify other
files, like header files or separate object modules. 1o be included in the compilation. As shown in Figure [V-1,
two such files are required tor correct compilation of the controller software. 812CL.1ib is an object code
library for the intrinsic functions uscd 1o operate the PCL-812 board. MOXA-CL.obj is an object code

module for the intrinsic functions used 1o access the PCL-744 board. According to the manufacturer, both

boards require that the intrinsic functions be used to access the boards. Experience has confirmed that the

intrinsic functions are also the easiest and most efficient method of accessing the functions of these boards.

Project:. Monitor

File Name Location Line Code Data
Monitor.c .\.\Control 946 14788 4209
812CL.lib A\ APCL-812C n/a n/a n/a
MOXA-CL.obj .\ APCLS-802\LIB\C n/a n/a n/a

Figure IV-1: Compiler Project Screen

2. Compiler Options

The Options pull-down menu gives access to the selected compiler options. Most of these may
be set to the user's preference, but several are important and should not be changed. Under Code Generation,
the large memory model should be selected and Automatic Far Data should be checked. Because of the
“segment:offset” addressing scheme in the computer, several memory models are available. For each item
of code or data, the compiler can either generate explicit segment and offset addresses or can use the offset
alone within a default segment address. The large model generates explicit segment and offset addresses for
all data items, thus allowing an unlimited amount of code and data with only one constraint: no single data
item can exceed 64 Kbytes [BargY]. This model is shown graphically in Figure V-2, and is necessary for
direct memory access and for setting far pointers used in the interrupt service routines (ISRs).

In the Entry/Exit Code Generation menu, neither Standard Stack Frame or Test Stack Overflow
should be checked. Because of the heavy use of the stack for ISRs and console functions, like printing to the
screen, the stack frame should be as large as possible. Additionally, with the Standard Stack Frame option
turncd off, any function that does not use local variables and has no parameters is compiled with abbreviated
entry and return codes. This makes the resulting code shorter and faster. The Test Stack Overflow generates
code to check for stack overflow at run time. This code is not necessary, and can cause run-time problems in
the controller. Similarly, under the Linker option, no stack warning should be checked. During interrupts,
the stack is not where the stack checker expects it to be. Under Optimization options, select optimize for
speed. Under normal conditions, the compiler will choose to optimize for size, choosing the smallest code
sequence possible. With this item toggled, the compiler will choose the fastest sequence for each task. This

is important since the program docs not come close to exceeding the 2.88 Mbytes available on the RAM Disk,

43

but is significantly time-constrained. Last, under Directories, the compiler is operating with the Include
directory set to C:\borlandc\include, the Library directory set to C:\borlandc\lib, and the Ousput directory set

to C:\control.

——

!

Heap
(rest of
memory)

T «— 8S:SP
Stack l

* -— §S:0000
Default

Upto84K| pata Segment

+ , <— DS:0000

(CS loaded when

Code iggmem accessing code)

Code Segment
#1

-— (CS:0000

—

Figure IV-2: Diagram of Large Memory Model

C. SYSTEM INITIALIZATION

This scection highlights initializations that must be completed before the program can start the flight
management unit (FMU) sequence to control the UAV. For proper operation, the software program must
have been compiled in accordance with the compiler options described above. Then, once the program is

invoked. the main() procedure is the first code to execute.

44

1. Software Initialization

In the beginning of the main() procedure, special exit handling routines are set up. The atexit()
procedure directs the program to execute the shut_down() procedure whenever the program is terminating
| from any reason. This is a handy function because the termination point can éome anywhere, yet the
shut_down() procedure will always be executed, assuring that the ISR vectors have been returned to normal,

the allocated memory has been freed, and the [/O ports have been properly closed.
The cirtbrk() procedure establishes a return point in the program in the event of a control-break
key sequence. It can be seen in the break_handler() routine that this is a method for completely restarting the
program without having to reboot. After the exit handling routines are set up, the global structures needed to

hold sensor data are allocated. This includes a struct T_GPS, PANDLSs for the IMU and GPS information,

and data and param arrays for the PCL-812.

2. Hardware Initialization
After establishing exception handlers and memory allocation, the main program calls
initialize_hw() . This procedure controls the parameters of the hardware that must be set up in software,
which is necessary for three of the hardware cards: the PCL.-812 Lab Card, the PCL-744 Serial I/O Card, and

the PCL-830 Timer/Counter Card.

a. PCL-812

The PCL-812 relies solely on the param array for information concerning its operation. Itis
important that the hardware and software configurations match. Specifically, param[4], IRQ level, must
match the setting of jumper JP4; param|7], trigger level, must match the setting of jumper JP1; and
param|17], gain code, must match the setting of jumper JP9. Other important parameters are param[5] and
param[6], the product of which divides the 2 MHz clock to determine the speed of the internal trigger, and
param][14], [15], and [16] that set how many A/D conversions will be done and on which analog inputs. With
the param array established, the initialize_hw() procedure calls PCL-812 function 3 to initialize the hardware

and PCL-812 function 4 to begin A/D conversions.

b. PCL-744
The PCL-744 uses the same library of software functions as the PCLS-802 Serial 1/O Card,
which is not used in this project. The PCLS-802 software has three major parts: first is the complete RS-232

based software device driver for 1/0 processing and control; next are the interface libraries which allow the

45

use of high-level programming languages to control serial communications; and third are application
prograins which allow troubleshooting of the serial communications. All of these interface library procedures
begin with “'sio_" and so are hereafter termed sio functions. Advantech engineers have confirmed that the use
of these library functions is the only method available for accessing the PCL-744. These sio functions are
fully described in Chapter 3 of the PCLS-802 PC-ComLIB Manual by Advantech. The initialize_hw()
procedure uses these sio functions to configure each of the eight serial ports as follows:

+ 9600 baud rate

- 8 data bits

+ 1 stop bit

« No parity

« DTR off

RTS off

Hardware flow control off
Software flow control off

Compiler variables for the bit configurations needed for these settings are found in HEAD-C.h. Companion
sio functions are used in check_hardware() to read the values set for each port. After configuring the ports,
initialize_hw() opens each port, flushes the receive and transmit buffers, and sends initialization codes to the

GPS receiver and the IMU.

¢c. PCL-830
The last section of initialize_hw() initializes the PCL-830 card. The original software was
written by Moran [Mor93] for another circuit card that also used AMD9513 System Timing Controller (STC)
chips. and so it could be ported over with minor modifications. This code is well documented by Merz
[Mer92]. Each timer is configured as follows:

« Counter clock source set o Fl (1 MHz)

+ 8 bit wide data bus (mandatory for the PCL-830)

+ Binary counting on falling edge, counting down repetitively

+ Reload counter from Load or Hold register

+ Disabled data pointer increment (this is controlled by for-loops in software)
« No gating control

+ Output control sct to toggle on terminal count

This configuration is equivalent to a specialized version of the AMD9513 Mode F. Under this configuration,
the individual counter is alternatively loaded from its Load and Hold registers. First, the counter loads the
value from its Hold register and puts the output high (5 V) upon terminal count (counting down to zero). Then
the counter loads the value trom its Load register and toggles the output low (0 V) upon terminal count. The

value in the Load register creates the desired length of the PWM pulse, which should be between 0.6 ms and

46

2.4 ms. The sum of the Load and Hold registers sets the PWM signal refresh rate, which should not exceed
10 ms [Dav92]. Notably, this mode differs from Mode C in that the counters are not required to be loaded

and armed manually, except initially. This initial arming is done at the end of initialize_hw().

D. INTERRUPTS

Interrupts can come from two different sources: hardware and software. Both hardware and software
interrupts are decoded by hardware chips called Peripheral Interrupt Controllers (PICs), and both use the
interrupt vector table to find the location of the interrupt service routine (ISR), a small program designed to
address the cause of the interrupt. Hardware interrupts typically call the processor's attention to an external
event, such as a key stroke or other asynchronous action. Conversely, software interrupts are like
instructions; they are part of, and therefore synchronous with, the running program.

The lowest 1 Kbytes of memory is allocated for an interrupt table that can store the four byte
“segment:offset” address for each of 256 ISRs. The correct ISR is located by its number, no matter where it
is located in memory. The CPU simply has to multiply the interrupt number by 4 (since each segment has
four bytes) and jump to the address it finds at the resulting offset in segment 0. For example, the address of
the ISR that serves interrupt 70 is found in segment 0 at an offset of 70 X 4 = 280 = 118h. The interrupt table
does not contain the ISR code itself, but the address of the beginning of the ISR code. To change the
execution of an ISR, it is only necessary to change the address in the interrupt table for the desired interrupt.
Upon occurrence of an interrupt, the CPU will place the value of the program counter and all internal registers
on the stack for future reference. Then it will look up and jump to the address of the ISR. Upon completing
execution of the ISR, the CPU then retricves the information it had placed on the stack and resumes normal
operation [Nor85].

The PIC is the chip that translates external interrupt request signals (IRQs) into hardware interrupts,
allowing external devices to generate interrupts. The microprocessor itself has only two interrupt lines: one
for maskable interrupts and one for non-maskable interrupts. Maskable interrupts are those that can be
disabled or enabled in software. The PIC assigns priorities to its eight interrupt lines, with line 0 programmed
for the highest priority by default. When one of the lines is activated, the PIC blocks all IRQs of equal or
lower priority. It continues to block these IRQs until it receives an end-of-interrupt (EOI) code from the
processor. The processor communicates with the PIC at the microcode level. When its maskable interrupt
line goes high and interrupts are cnabled, it queries the PIC which is the highest pending IRQ and then jumps

1o the associated interrupt vector. The CPU card has two 8259A PICs. The output line of the secondary PIC

47

is attached 10 IRQ 2 of the primary PIC, and the output line of the primary PIC is connected to the processor.
This allows 16 different IRQ signals to be recognized by the processor. When IRQ 8 or higher is generated,
the processor queries the PICs and finds IRQ 0 through IRQ 7 of the secondary PIC is cascaded through IRQ
2 of the primary PIC [Rie93].

1. Generating Software Interrupts

As discussed in Chapter I, the cadence of the entire control loop is built around the periodic
occurrence of a software interrupt. Because the CPU will immediately jump to the ISR when interrupted,
placing the beginning address of the control loop program in the interrupt table, and generating a periodic
interrupt to jump there, will guarantee a consistent frequency of control loop execution. For the UAV, the
entity that executes the control loop is called the Flight Management Unit (FMU). Within the start_fmu()
procedure, the ISR for the RTC interrupt (70h) is replaced with a pointer to the control loop procedure
new_vector(). Start_tmu() then proceeds to generate a periodic interrupt, as described below.

Every computer has some version of a Programmable Interval Timer (PIT). Intel 80X86
processors usually use a 8253 or 8254 PIT that has three independently programmable 16 bit counters that
can be configured in any of six counter modes. On the CPU card, one of these counters is used to periodically
refresh the DRAM: one is used 1o generate tones for the speaker. The third timer is used to generate an
interrupt 8 (IRQ 0) at 18.2 Hz used to adjust the current time and date in the system BIOS area. It seemed
like a simple process 1o change the frequency of this interrupt and “hook™ it for the FMU; however, this led
o problems. Because IRQO is the highest priority, all other computer functions, such as serial
communications, disk operations, and keyboard activations, were all blocked out by the PICs. In addition,
some parts of MS-DOS that require periodic service hook this interrupt, and these functions could be
adversely affected by changing the frequency of the interrupt. Most significantly, the engineers at Advantech
confirmed that the 8254 functions on the CPU card are part of an “integrated chip set” and could not be
accessed independently. For these reasons, another timer had to be used. A timer on the PCL-830 could be
used, but this was discounted because it was on another card and would generate unnecessary data traffic on
the backplane bus. Fortunately, there is another timer available on the CPU card that generates interrupts --

one that is not widely documented. but is available on the hardware. It is called the Real-Time Clock.

4%

2. The Real-Time Clock
The real-time clock (RTC) is part of the Motorola MC146818A CMOS chip shared by the system
BIOS. As compared to the 8254 PIT, it has several disadvantages:

« The RTC is less flexible; it handles only 15 possible interrupt frequencies between 2 Hz and
32767 Hz.

« The default ISR switches off the RTC interrupt after a time-out expires.

+ The RTC and IRQ 8 are not well documented. Most of this information was gleaned from
online sources from the Internet.

Still, the RTC is perfect for this research application because it avoids all of the problems listed

above for the 8254 chip:

+ The RTC allows the higher priority keyboard and I/O interrupts to proceed normally.
« The RTC is not polluted with side effects.
 The RTC is available for use on the hardware being used.

Because the RTC exists outside of the normal address space, it cannot contain directly executable
code. Itis communicated with through I/O ports 70h and 71h. Port 70h is the index register and port 71h is
the data register, as defined in DEFS.h. All internal registers of the RTC are accessed by setting an index at
port 70h and reading from or writing (o port 71h. The output from the RTC is in hexadecimal. Figure IV-3
details the CMOS memory allocation. The ten clock data registers are not used in this research, although it
is envisioned that the system clock will be updated from the GPS time data in the future. In order to use the
RTC to generate periodic interrupts, only the four status registers are used.

There are a few caveats when programming the RTC. First, the data register must always be read
from or written to after writing to the index register. Also, there should not be a long delay between writing
to the index register and reading from or writing to the data register. Waiting too long between the two
operations can cause a malfunction of the CMOS chip [Dun86]. Interrupts must be disabled while
programming the RTC. The non-maskable interrupt (NMI) must also be disabled. Since the chip is
non-volatile, it continues to work even in the event of a system reboot caused by a NMI. The system reads
vital parameters from the chip, such as memory size and configuration. Malfunction of the RTC chip is to be
avoided at all costs. Therefore, it is safest to toggle the NMI off by toggling bit 7 of the index register when

selecting the status register to use. The following describes how the status registers are utilized.

49

The first 14 bytes of the MC146818 chip consist of ten read/write data registers
and four status registers, two which are read/write and two which are read only.

T

00h
01h
02h
03h
04h

05h
06h
07h
08h
0%h

rmat of the 1 registers is:

Seconds (BCD 00-59, Hex 00-3B) Note: Bit 7 is read only
Second Alarm (BCD 00-59, Hex 00-3B)

Minutes (BCD 00-59, Hex 00-3B)

Minute Alarm
Hours

Hour Alarm
Day of Week
Date of Month
Month

Year

(BCD 00-59, Hex 00-3B)

(24 Hr. Mode: BCD 00-23, Hex 00-17)
(12 Hr. AM: BCD 01-12, Hex 01-0C)
(12 Hr. PM: BCD 81-92, Hex 81-8C)
(Same as Hours, above)

(01-07, Sunday = 01)

(BCD 01-31, Hex 01-1F)

(BCD 01-12, Hex 01-1C)

(BCD 00-99, Hex 00-63)

The format of the four status registers is:
0Ah Status Register A (read/write)

0Bh

0Ch

0Dh

Bit 7 (Read Only)

Bits 6, 5, 4
Bits3-0

1 = update cycle in progress, data undefined
22 stage divider of 32.768 KHz time base
Rate selection bits for interrupt

Status Register B (read/write)

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Cycle update: 0 = disabled, 1 = enabled

Periodic interrupt: 0 = disabled, 1 = enabled
Alarm interrupt: 0 = disabled, 1 = enabled
Update-ended interrupt: 0 = disabled, 1 = enabled
Square wave output: 0 = disabled, 1 = enabled
Clock data mode: 0 = BCD, 1 = Binary

24/12 Hour Selection: 0=12,1 =24

Daylight Savings Time: 0 = disabled, 1 = enabled

Status Register C (read only)

Bit 7

Bit 6
Bit 5
Bit 4
Bits3-0

Interrupt request flag: 1 if any of bits 6 - 4 are 1 and

appropriate enables in Reg. B setto 1. Generates IRQS.

Periodic interrupt flag
Alarm interrupt flag
Update-ended interrupt tlag
Not Used

Status Register D (read only)

Bit 7
Bits6-0

Valid RAM: 0 = dead battery or disconnected, 1 = good

Not Used

Figure IV-3: Organization of CMOS Memory

50

Status register A is used to select an interrupt rate. The basic oscillator frequency is 32,768 Hz,
set in bits 4 - 6. The lower four bits (0 - 3) of status register A select a divider for this oscillator. The resulting
frequency is used to generate an interrupt 70h, or IRQ 8. The system initializes these bits to 0110 binary,
which selects a 1,024 Hz frequency according to the following formula:

InterruptFrequency = OscillatorFrequency >> (rate —1)

which can be simplified as
65536

InterruptFrequency = o~
2

Table 1V-1 lists the subset of interrupt frequencies likely to be used for the UAV controller. These
frequencies are generated when the corresponding rate is specified in DEFS.h. Presently, the controller is
executing a 32 Hz control cycle. The fastest frequency possible is 8 KHz using arate of 3. When using a rate

of either 2 or 1, the counter rolls over, resulting in the same frequencies as rates 9 and 8 respectively.

TABLE IV-1: CMOS Interrupt Frequencies

Rate Frequency
10 (OAh) 64 ;Iz
11 (OBh) 32 Hz
12 (0Ch) 16 Hz
13 (ODh) 8 Hz
14 (OEh) 4 Hz
15 (OFh) 2H:z

Status register B contains a number of flags. To enable the chip to generate periodic interrupts,
bit 6 must be set. Status register C is read only and also contains a number of flags. When several interrupts
of the RTC are connected to IRQ 8, these flags make it possible to detect which interrupt caused the IRQ 8:
periodic interrupt, alarm interrupt, or update ended interrupt. Lastly, the PIC status register must be
unmasked. Each PIC has an 8 bit mask that disables selected IRQs. The American Megatrands BIOS
disables IRQ 8 at startup. By clearing bit (0 of the secondary (slave) PIC, IRQ 8 is enabled.

These actions generate a periodic interrupt, but only a single one. Unless status register C is read,
IRQ & will not be generated again. This means status register C is read inside the ISR, even though its content
is not important for this application. The PICs also come into play here. Since the PIC blocks all IRQs of

equal or lower priority upon the occurrence of an interrupt, the next periodic interrupt cannot be generated

51

until the PICs receive an end-of-interrupt (EOI) code from the processor. This is accomplished by directly
outporting an EOI (value of 20h) to /0 addresses 20h and AOh, the addresses of the master and slave PICs
respectively. These repetitive actions must be done on every occurrence of the periodic interrupt and so are
accomplished inside the ISR in a subroutine called reset_int().

Common practice when writing ISRs is to jump to the old ISR after executing the new one, but
because the old ISR halts the periodic interrupt, this method was not used. Without the old ISR, some
interrupt 15h BIOS functions will fail: however this did not manifest any problems in the present
configuration. If necessary to alleviate this in the future, store at address 0040:009b a double word value that
is at least 976 and jump to the old ISR. The default ISR subtracts 976 from the value at that address and halts
the RTC pertodic interrupt it the result is less than zero. 976 is derived as the number of microseconds that
elapse between two invocations of interrupt 70h if the RTC is counting at its default frequency of 1024 Hz.
The default ISR also issues an interrupt 4Ah when timed out [Bro92].

In addition to resetting the interrupts, the ISR, new_vector(), also increments a count of the
number of cycles and calls the actual control loop procedure, execute_cycle(). It is within this control cycle

that all of the 1/O and tlight control operations takes place.

E. THE CONTROL CYCLE

The control cycle is embodicd in the execute_cycle() procedure. It is called by new_vector() upon each
occurrence of the periodic interrupt. During the control cycle, the controller first retrieves the information it
needs to determine the state of the aircraft by invoking each of four 1/O device drivers; next, it calculates any
corrective actions necessary in the flight_control() procedure; and finally, it generates the PWM signals
necessary for the servo motors o effect those corrective actions in the cmd_to_servos() procedure. It is
important to note that not all of these procedures are called during each cycle. Using modulo division of the
cycle count. it is possible to regulate the interval and period of the various functions. The objective is to keep
the task load for cach control cycle relatively steady. The actual timing of these functions is dependent on
the frequency of the interrupt. For example. the IMU is read every fourth cycle for control purposes. but is
only downlinked 1o the ground twice cach sccond. This programming strategy keeps the RTE flexible and

the timing parameters casily moditied. Each of these functions will be examined in detail.

I. 1/0 Device Drivers

Four I/O device drivers exist within execute_cycle() to take care of the data transfer and storage

from the four primary sources of data for the FMU. They are read_imu(), read_gps(). read_atod(). and

52

xmit_to_gnd(). Each of these procedures reads one complete data message from their appointed interface and
places that message in a pre-established global data buffer. |

As described in Chaﬁter III, the complete data méssage from the IMU is 38 bytes long and
terminates with a carriage return. The global buffer, imu_buf->ptr, has 100 bytes allocated in the main
program. Because of this buffer restriction, read_imu() reads the length of the queue and truncates it to 100
bytes. It then determines if the data in the receive buffer constitutes a partial or full message. If a partial
message exists, it reads it away before reading in the next full message. Last, it confirms whether the message
read was a complete 38 byte message and sets a flag accordingly.

Read_gps() works much the same way, excepf that a full position message is 68 bytes and
terminates with a carriage retum and a line feed. A 500 byte buffer is allocated in main(). This procedure
pares down the receive buffer until the buffer size constitutes at least one full message and at most one full
message plus a partial message. If a partial message exists, it reads it away and then reads in the next full
message. It also confirms whether the message read was a complete 68 byte message and sets a flag
accordingly.

The A/D process on the PCL-812 card was initiated in the initialize_hw() procedure. To read the
data generated into the data array, read_atod() needs only to call PCL-812 function 5, and the data is read in
automatically. Since the data received is a 12 bit digital conversion scalar value, determining the actual
analog voltages requires a calculation similar to that done in the show_air_data() procedure.

Depending on the mission and the mode of flight, varying amounts of data will be required to be
transmitted to, and received from, the ground station through the datalink. This data transfer is done by the
read_datalink() and xmit_to_gnd() procedures. Read_datalink() was written for functional completeness, but
is not utilized in this research. Based on the last convention in Section A.3 of this chapter, read_datalink()
will look for the beginning-of-message character, then read the message length, convert the length to an
integer, and use the length given to read in the appropriate number of bytes constituting the message. If a
message is read, it is stored in the global buffer di_buf, and a flag is set accordingly.

The xmit_to_gnd() procedure has the advantage that the length of the message to be transmitted
is known from the PANDL passed in. The procedure uses the sio_putb function to transfer the data to the
datalink's transmit buffer. Experimentation has shown that the sio_write function works equivalently well.
The only exception that must be considered is a full transmit buffer. This situation should never occur under

normal operating circumstances: however. in the event that it does occur, the buffer is flushed under the

assumption that the data presently attempting to be sent is the most recent and therefore more valuable than

the old data that was clogging the buffer.

2. Flight Control

Now that the controller has all the information it needs from the various I/O drivers, all that
remains is to calculate the control inputs necessary to fly the airplane and move the servo motors
appropriately. The flight_control() procedure in this research is only a placeholder for the control algorithm
module being developed in the Aeronautical Engineering Department. Eventually, this procedure will
provide the Kalman filtering options for choosing the appropriate navigation data from what is available and,
using this data, will calculate integer control commands for the throttle and for each of the standard
three-dimensional control surfaces: aileron, elevator, and rudder. These control surface commands are then
passed to the cimd_to_servos() procedure, which translates the three-dimensional control surface commands
into individual vane commands. The integer command expected by cmd_to_servos() presently represents the
number of degrees of deflection, but it could be changed to any agreed upon standard between flight_control
and cmd_to_servos. Cid_to_servos() then sends the appropriate signals to the PCL-830 to generate the
precise PWM signal needed by cach vane servo. This concludes the control loop segment of the program and
mects all of the requirements for positive control outlined above. The RTE now returns to the point of
execeution prior to being interrupted and continues its normal activity until the occurrence of the next periodic

interrupt,

F. USER SERVICES

When not executing the control foop, the computer is primarily available for user-oriented services.
These services include a gamut of small procedures designed to interact with the system user and provide
information. Because the system runs on interrupts, the control loop described above appears to be running
in the background, while these user services utilize the screen and keyboard and appear to run in the
forcground. The initial and primary interface with the user is the menu() procedure. Menu() presents a
command line, prompting for user input. A new user may respond with a question mark, which yields a menu
of possible choices. as shown in Figure 1V-4. The first three choices, check hardware, start flight
management unit. and quit flight management unit, have been described above. The remaining choices are

described below.

54

Archytas Monitor Program

Command (‘? for help): ?

The following are valid commands:

(c)heck hardware

(s)tart flight management unit
(q)uit flight management unit
(flight data menu

{m)emory contents display
(r)egister contents display
(i)nterrupt vector display
(d)os command

(t)erminate program

Command (“?’ for help)

Figure IV-4: Main Menu Screen
Choosing flight data menu invokes the show_flight_data() procedure, which presents a secondary menu
as shown in Figure IV-5. This menu enables the user to inspect and verify the contents of the global buffers
containing the tlight data gathered during the control loop from each of the 1/O device drivers. This includes
ASCII representations of the untranslated GPS message and the output from the IMU, the hexadecimal values
and corresponding voltages of all A/D analog sources, and the present positions of all servos. These values
represent the instantaneous buffer contents at the moment in time they are retrieved. If the FMU is running,

the bufter contents may change immediately after being read.

Display which data?

(9)ps position
(Hmu data

(a)ir data
(s)ervo positions

Choice:

Figure IV-5: Flight Data Menu Screen

The memory contents display. register contents display, and interrupt vector display main menu choices
enable the user o inspect the contents of any block of memory, the contents of all storage and segment

registers of the processor, and the ISR address stored in the interrupt table for any given interrupt respectively.

Similar to the utility of a debugger. these procedures were used primarily during the development of this
program and arc included for future debugging needs. When programming at such a low level, interacting
with individual memory locations and /O ports. it is often necessary to have the utility of these procedures.
Lastly, the dos command imenu choice invokes an MS-DOS shell that the user can work in while the
FMU is still running. All basic DOS functions, such as copying files, directory listings, and invoking small
programs are available, as long as the intended task does not require BIOS interrupts 81h or 83h. Terminating
the program will also yield a DOS prompt, but only after the program completes its shutdown sequence.
Onc other secondary menu is available 1o the user, although it is not listed in the main menu. It is
invoked by the Crrl-Break or Cirl-C key sequence. Both of these are standard key sequences used when the
user wants lo terminate what is exccuting. In this case, the break_handler() procedure is invokes and a menu

similar to Figure 1V-6 is displayed.

Why did you break?

(c)old reboot machine

(w)arm reboot machine

(restart program (reinitialize hardware)
(g)o back to main menu

(t)erminate program

Choice:

Figure IV-6: Break Handler Menu Screen

The most drastic responsce to this prompt is a cold boot. This is similar to the system initialization done
when first powering up the computer., including all diagnostic and memory checking sequences. A warm boot
is similar to the Cirl-Alt-Del key sequence and causes the computer to reboot without the diagnostic and
memory cheeking sequences. This makes it slightly faster and less disruptive than a cold boot. Both of these
options invoke the bootstrap() procedure, passing in the chosen parameter of cold or warm. Because disk
caching is used. bootstrap() first Mushes the caches to insure that no information is lost and reboots the
computer. It the computer is operating correctly, the user may elect to re-initialize only the controller
hardware This resiart program option causes the computer to execute the hardware shutdown sequence and
then start the program again from just after the buffer allocation in main(). Other choices allow the user to

return 1o the main menu or terminate the program.

56

G. CHAPTER SUMMARY

This chapter gives a detailed description of the software program written to function as the control
software for the UAV. The reader should understand the full scope of the endeavor, including the
requirements and guidelines under which it was written, and the interoperability with the hardware, including
those sub-systems developed previously by other students. This chapter serves as a programmer’s manual,
to aid the understanding of the code shown in Appendix A, as well as to set conventions and guidelines for
subsequent code to follow trom other work on the UAV project. The operation of the Real-Time Clock chip,

in particular, is not documented elsewhere, and is therefore completely detailed in this chapter.

57

V. CONCLUSIONS

The goal of this research was to create a functional central controller for an UAV. This controller is
envisioned to integrate various subsystems designed by other students as part of an overall, interdisciplinary
development project. It represents the airborne half of a full UAV control system that is planned to evolve

trom remote ground controlled tlight 1o tully autonomous flight in five phases of development [Rei93].

A. ACCOMPLISHMENTS

From the general goal to create an UAV controller, specific operational requirements were derived.
From thesc operational requirements, system hardware was selected and design parameters were codified. In
the course of the design and synthesis of the controller. several significant milestones were achieved:

+ The system hardware was assembled and configured for proper operation.

* A method for generating periodic interrupts was determined and successfully implemented.
+ Multi-path serial 1/O was achieved using the PCL-744 card.

+ Datalink subsystems were successtully integrated.

+ Air data and navigation subsystems were successfully integrated.

+ Servo control subsystems were successfully integrated.

+ The RTE was designed and implemented to interrelate and coordinate all subsystems.

+ Communication and programming standards were developed.

+ Fault tolerant provisions were made to bolster system reliability.

+ User interfaces were designed and implemented.

The UAV controller was designed to be as simple as possible, given the hardware on hand and the
anticipated task load. A real-time exccutive (RTE) program, initiated by timed interrupts at various intervals,
calls appropriate task modules. and repeats this process indefinitely. The use of interrupts enabled the
processor to keep busy during slow (by processor standards) processes, such as generating servo command
pulses. Under this configuration, the challenge of programming the RTE was then reduced to a complex
scheduling problem among a relatively small number of processes which all have concise scope, known
parameters, and demonstrated characteristics. The only immutable programming requirement was to arrange
the process schedule of the RTE such that a called process can complete execution prior to the initiation of
another process. and so that the resources of interrupted processes are not needed by the interrupting process.

This rescarch details the inter-relations of the design criteria used for this controller, to give the reader
a better understanding of the overall system. From this understanding, present design decisions become
apparent, and future development is facilitated. The future development described below is recommended to

develop amore effective and cfficient controller design.

S8

B. RECOMMENDATIONS

In the course of development, it became evident that several improvements would be necessary for the
final implementation of the system. These included standardization of the command structure and
improvements in data conversion and transfer, in addition to some general system modifications. Also, other
subsystems with which the controller must interact, namely the aeronautical control module, were not
completed as of this writing. These arcas are recommended for future research and development and are

briefly delineated below.

1. Command and Control Structure

The basic operation of the controller is to determine the state of the aircraft, compare that state to
a state commanded by the pilot, whether that pilot is a human or the controller executing a set of
preprogrammed waypoints. Since the control module has not been completed, there is no standard command
syntax in place. Neither is there a structure for communicating these commands to and from the control
module. For this research, a temporary procedure named flight_control() was written which simply generated
vane commands in degrees. A future control module should have the capability to read the necessary flight
data from the global registers, determine the commanded state, and generate control vane angles compatible
with the cmd_to_servos() routine. It is this middle function that needs to be carefully defined.

The control module is expected to output these commands for each of the standard three-
dimensional control surfaces: aileron, elevator, and rudder. It is presently the responsibility of the
cmd_to_scrvos() procedure to translate these commands into appropriate coordinated commands for the eight
control vanes planned for installation on the Archytas [Sto93]. This translation is currently incomplete,
especially considering that the translation parameters must change as the aircraft transitions from vertical to
horizontal flight. This area requires additional study unless this translation process is absorbed into a control

module that incorporates both the flight_control() and cmd_to_servos() functions.

2. Data Generation and Conversion
Outside of the control algorithm. the controller’s main function is to gather and disseminate
necessary data (o appropriate functions. The faster this data can be generated, the better the controller can
perform. Several factors are impeding optimum performance, as described below.
First, the direct memory access (DMA) form of data transfer should be used where possible. This

would preclude the waste of processor resources to perform memory to memory copying of data. Several

accessory boards, specifically the PCL-744 serial card and the PCL-812 lab card advertise a DMA capability.
This utility was attempted, but never successlully implemented during this research.

Second, the serial ports can transter data more quickly. The serial card was set up at 9600 bps to
match with other subsystems that had been designed to operate with a standard RS-232 serial port, which
normally operate at that speed. The ports of the PCL-744, however, can be configured as high as 38400 bps
|PCL-744 Manual, p. 16]. Each port should be optimized separately, since some of the connected
subsystems, like the datalink, can be configured to run at variable speeds, while other subsystems, like the
GPS and the IMU run only at 9600 bps.

Third, the IMU is oo slow. As cxplained in Chapter 111, the fastest possible message frequency
would be 31.5 Hz. Empirical data has shown the actual message frequency to be closer to 20 Hz. To have
new IMU data for every control cycle requires slowing the cycle or increasing the output rate of the IMU.
Watson Industries doces offer various options which can increase the speed of the IMU, and these options
should be explored.

Fourth, the speed of the datalink is too slow. As shown in Chapter III, the data transfer
requirements for remote controlled operation from the ground is above the capacity of the datalink. This will
become less of a factor as the UAV development progresses towards autonomous flight, but it will always be
exacerbated by increasing the link overhead as propagation quality deteriorates. Field experimentation will
show which data is more crucial to control and which data could be sent less frequently. Overall, for positive
remote control, no more than 100 msec can elapse between pilot command input and the associated
movement of the control surfaces [KamY3]. In the early stages of development. the datalink is the weakest

and yet most important link in the control process.

3. General System Modifications

Because the datalink proved to be so unreliable, user menu selections were entered directly from
the keyboard. When the keyboard is removed to place the controller in the aircraft, these menu programs must
exceute through the datalink. Fortunately. hbecause of the case statements used to execute menu choices, the
user interface programs require only minor changes to read user input from the datalink, rather than the
console keyboard.

Sccond, the GPS routines need to be fully implemented. The procedure read_gps() was written in
place of Twite's procedure Slave_gps(), which was not fully completed. It is Twite’s program that decodes

the data stream from the GPS and places the navigation in a global structure, as discussed in Chapter IV. This

60)

convenient access to GPS data will not be available until Twite’s software is completely implemented. This
includes the potential for accessing GPS data other than the position change status message by uplinking
commands to the GPS receiver through the PANDL gps->in [Twi94, p. 125].

Third, the 25 pin serial connectors on the PCL-744 octopus cable are much too heavy and bulky
for actual implementation. For the RS-232 connections, only eight wires have the potential of carrying
signals and, because flow control is not used, only three wires are actually used. During actual
implementation, it is recommended that customized cables be used.

Last, a multi-tasking or muitiple processor CPU board should be investigated. Even without the
processing-intensive control algorithm, this controller is extremely constrained by real-time deadlines. The
addition of other processing requirements could force the system to be run at an unacceptably slow interrupt
interval. Although upgrading to a faster CPU would ease the problem somewhat, a multi-tasking or
segregated multiple processor environment should produce a better solution with higher flexibility and

greater throughput.

C. SUMMARY

Through this research, the goal of designing and building an UAV controller has been successfully
completed. The resulting aggregation of hardware and software represents a functional shell to which
improvements can be made, and into which other subsystems, developed in the future, may be added. From
the initial primary research question, down to the final working implementation, this research quantifies the
system mandates and documents the conceived solutions. This controller represents a proof-of-concept for

unmanned control of air vehicles, and one that, with the addition of a suitable control module, is ready to fly.

[Bar&9]

[Bes94}

[Bol94]

|Brov2|

[BryYy2]

[DavY?2]

[Dung6j
[Glag3)

{Hal94]

[HarY0)]

[Hel87)

[IntY2]

[KamY3|

[KocY2]

{KueY3)

[Lapv2]

LIST OF REFERENCES

Barkakati, Nabajyoti, The Wuite Group’s Turbo C Bible, Howard W. Sams and Co., Carmel,
IN, 1989.

Bess, Philip K.. Spread Spectrum Applications in Unmanned Aerial Vehicles, Masters
Thesis, Naval Postgraduate School, Monterey, CA, June 1994,

Bolyard, John W.. Stability and Control Analysis of a Ducted Fan Unmanned Air Vehicle,
Masters Thesis. Naval Postgraduate School, Monterey, CA, June 1994,

Brown, Ralf and Kyle. J., PC Interrupts: A Programmer’s Reference to BIOS, DOS, and
Third-Party Calls, Addison Wesley, 1992,

Brynestad, Mark E.. Investigation of the Flight Control Requirements of a Half-Scale
Ducted Fan Unmanned Aerial Vehicle, Masters Thesis, Naval Postgraduate School,
Monterey, CA, June 1992.

Davis, Joseph P., The Design of a Robust Autopilot for the Archytas Prototype via Linear
Quadratic Synthesis, Masters Thesis, Naval Postgraduate School, Monterey, CA, December
1992.

Duncan, Ray. Advanced MS-DOS, Microsoft Press, Redmond, WA, 1986,
Glass, Robert L. Real-Time Software, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983,

Hallberg, Eric N., Design of a GPS Aided Guidance, Navigation, and Control System for
Trajectory Control of an Air Vehicle, Masters Thesis, Naval Postgraduate School, Monterey,
CA. Junc 1994.

Harel, Lachover, Nawnad, Poueli, Politi, Sherman, and Trauring. “STATEMATE: A working
environment for the development of complex reactive systems.” IEEE Transactions on
Software Engineering, April 1990,

Heller, Philip, Real-Time Software Design: A Guide to Microprocessor Systems, Birkhauser
Publishers, 19¥7.

Intel Corporation. 80486 Programmer’s Reference Manual, Intel Corporation, Santa Clara,
CA. 1992,

Kamadine, Tom, UAV Project Engineer, McDonnell Douglas, Inc., St. Louis, MO, Phone
Conversation, May 1993,

Koch, Paul A.. Flight Testing of u Half-Scale Remotely Piloted Vehicle, Masters Thesis,
Navul Postgraduate School. Monterey, CA. September 1992,

Kuechenmeister, David R.. A Non-Linear Simulation for an Autonomous Unmanned Air
Vehicle, Masters Thesis, Naval Postgraduate School, Monterey, CA, September 1993,

Laplante, Phillip A Real-Time Systems Design and Analysis: An Engineer's Handbook,
IEEE Press, 1992.

62

[Lea91]

[Mar93]

[Mer92]

[Moa94]

[Mor93]

{Nel92]

[Nor&5]

[Rei93]

[R1eY3]

[SavB5]

[Sta&§]

[Ste73]

[StoY3]

[Twi94]

[War85]

[You&9]

Leatherman, Brent L., An Approach to Integration of Real-Time Software for an
Autonomous Underwater Vehicle, Masters Thesis, Naval Postgraduate School, Monterey,
CA, June 1991.

Marquis, Carl W.. lutegration of Differential GPS and Inertial Navigation Using a
Complementary Kalman Filter, Masters Thesis, Naval Postgraduate School, Monterey, CA,
September 1993.

Merz, Paul V., Development and Testing of the Digital Control System for the Archytas
Unmanned Air Vehicle, Masters Thesis, Naval Postgraduate School, Monterey, CA,
December 1992,

Moats, Michael., Automation of Hardware-in-the-Loop Testing of Control Systems for
Unmanned Air Vehicles, Masters Thesis, Naval Postgraduate School, Monterey, CA,
September 1994,

Moran, Patrick J., Control Vune Guidance for a Ducted-Fan Unmanned Air Vehicle, Masters
Thesis, Naval Postgraduate School, Monterey, CA, June 1993.

Nelson, M.L., Brutzman, D.P., Byrnes, R.B., Badr, S.M., Real-Time Systems, Term Paper,
Naval Postgraduate School, Monterey, CA, February 1992,

Norton, Peter, The Peter Norton Programmer’s Guide to the IBM PC, Microsoft Press,
Redmond, WA, 1985.

Reichert, Frederick W., Datalink Development for the Archytas Vertical Takeoff and Landing
Transitional Flight Unmanned Aerial Vehicle, Masters Thesis, Naval Postgraduate School,

Monterey, CA, June 1993.
Riemersma, Thiadmer, 100115.2074@ CompuServe.com, Electronic Mail, November 1993.

Savitzky, Stephen R.. Reul-lime Microprocessor Systems, Van Nostrand Reinhold
Company, 1985.

Stankovic, J.A. and Ramamritham, K., Tutorial: Hard Real-Time Systems. Computer
Society Press of IEEE, 1988.

Stein, Jess, The Random House Dictionary of the English Language, Random House, Inc.,
New York, NY, 1973.

Stoney, Robert B., Design. Fabrication, and Test of a Vertical Attitude Takeoff and Landing
Unmanned Air Vehicle, Masters Thesis, Naval Postgraduate School, Monterey, CA, June
1993,

Twite, E., Selection and huegration of a Global Positioning System with a CPU, Masters
Thesis, Naval Postgraduate School, Monterey, CA, June 1994,

Ward, Paul T. and Mellor, Stephen J., Structured Development for Real-Time Systems,
Volumes 1, I and 111, Yourdon Press, Englewood Cliffs, NJ, 1985.

Yourdon, Edward, Modern Structured Analysis, Yourdon Press, Englewood Cliffs, NJ, 1989.

APPENDIX A: REAL TIME EXECUTIVE SOURCE CODE

/***************************** DEFS H 3 3k ok sk ok ok e e ok o e ok ok ok sk 3k ok ok ok ok ok 3k 3k ok ok e ke ok ok ok ok ko

PROGRAM INITIALIZATION

**/

/* Note: MOXA-CL.obj and 812CL.lib must be linked into executable file */

include <stdio.h>
include <stdlib.h>

include <conio.h> /* For clrscr and cprint ¥/
include <alloc.h> /* For coreleft and malloc */
include <dos.h> /* For DOS and BIOS interrupts */
include <setjmp.h> /* For ctrl-break handler */
#include “c:\pcls-802\1lib\c\head-c.h” /* For PCL-744 definitions */

/***

VARIABLE DEFINITIONS

**/

define TRUE 1
define FALSE 0

/* Used for RTC Timer */

define RTC_INT 0x70 /* RTC fires interrupt 70h */
define RTC_INDEX 0x70 /* RTC Index Register I/O Address */
define RTC_DATA 0x71 /* RTC Data Register I/O Address */
define REG_A 0x0A
define REG_B 0x0B
define REG_C 0x0C
define REG_D 0x0D
define INT_FLAG 0x40 /* Periodic Interrupt Flag is bit 3 */
define NMI_FLAG 0x80 /* Non-maskable Interrupt Flag bit 4 */
define RATE_SET 0x0B /* Used to set control cycles per sec: */
define RATE 32 /* 32768 << (RATE_SET - 1) */

define PIC_STATUS 0xAl
/* Definitions for PCL-744 Serial I/Q */

#define IMUPORT 3 /* Port number from IMU */
#define SGPS_PORT 4 /* Port number for Slave GPS Revr */
#define DLPORT 5 /* Port number to Data Link */
#define MGPS_PORT 10 /* Port number for Master GPS Revr */
#define CR 0x0D /* Carriage Return is ASCII 13h */
#define LF 0x0A /* Line Feed is ASCII 10h */
#define IOMODE (BIT 8 | P_NONE | STOP_1) /¥ 8-N-1(p.12) ¥
#define MODMODE 0x00 /* DTR and RTS off (p.26) */
#define HWMODE 0x00 /* HW and SW flow ctrl off (p.33) */

/* Definitions for GPS routines are in GPSDEFIN.H. Each GPS module
contains its own prototypes, included in the file below: */

#include “c:\borlandc\twitefin \gpsfun.h”

/* DEFS. h, Page 2 */

JRERE R R Rk ko ok sokokot *%

SUBROUTINE PROTOTYPES FOR MAIN PROGRAM (Table of Contents)

**/

/* void main(void);

void menu(void);

void initialize_hw(void);

void check_hardware(void);

void start_fmu(void);

void quit_fmu(void);

unsigned char ReadRTC{unsigned char reg);
void SetRTC(unsigned char reg, unsigned char value);
/* void interrupt new_vector(void);
void reset_int(void);

void execute_cycle(void);

int read_imu(PANDL *buffer);

int read_gps(PANDL *buffer);

void read_atod(void);

void xmit_to_gnd(PANDL *buffer);
int read_datalink(PANDL *buffer);
void flight_control(int *thr, int *ail, int *elev, int *rud);
void emd_to_servos(int, int, int, int);
void show_flight_data(void);

void show_imu(void);

void show_gps_posit(void);

void show_air_data(void);

void show_servo_posit(void);

void close_ports(void);

void shut_down(void);

void int_vector(void);

void mem_dump(void);

void show_regs(void);

void bit_print(unsigned int v);

void dos_emd(void);

int break_handler(void);

void bootstrap(int input);

/* Variables for Serial I/O */
struct T_GPS *gps;
PANDL *imu_buf, *gps_buf, *gps_print, *dI_buf;

/* Yariables for AtoD */

extern pcl812(int, unsigned int *);
unsigned int param[60];

unsigned int data[20];

unsigned int far *dat;

/* ¥ari r nter/Timer */

int datreg = 0x210;
int conreg = 0x211;

65

/* Page 2%/
/* Page 3%/
/* Page 5%/
/* Page 8 */
/* Page 10 */
/* Page 12 ¥/
/* Page 13 */
/* Page 13 */
/* Page 13 */
/* Page 13 */
/* Page 14 */
/* Page 15 */
/* Page 15 */
/* Page 16 */
/* Page 16 */
/* Page 16 */
/* Page 17 */
/* Page 18 */
/* Page 19 %/
/* Page 19 ¥/
/* Page 20 */
/* Page 20 */
/* Page 20 */
/* Page 21 ¥/
/* Page 21 ¥/
/* Page 22 */
/* Page 22 */
/* Page 22 */
/* Page 23 */
/* Page 23 */
/* Page 24 */
/* Page 25 */

/* PCL-812 parameter array */
/* Conversion data buffer */

/* Ctr/timer board, base address */
/* Ctr/timer board, base addr +1 */

/***

Archytas Real-Time Executive Program (Page 1)
Author: LT Peter M. Hoffman
Written: 1 October 1993
Revised: 1 June 1994
Compiler: Borland C++ 2.0

This RTE program provides the basis of the controller for the Archytas
Unmanned Air Vehicle. Modifications to the flight_control() and
cmd_to_servos() procedures could adapt this controller to any UAV
using the same data path.

This controller is the center of a multi-dimensional inter-
disciplinary project collaborated by a number of students from
various departments of the Naval Postgraduate School, Monterey, CA.

Please see Thesis Document for complete details and explanation.
***/

#include “c:\control\defs.h” /* All definitions and prototypes */

int cyclecount = 0, vane_step = 0;

int thr_cmd, ail_cmd, elev_cmd, rud_cmd;
void interrupt new_vector(void);

void interrupt (*old_vector)();

int fmu_start_flag = FALSE;

jmp_buf cbreak_rtn;

66

/* RTE, Page 2 */

void main(void)
V**
The main program initializes the system, then calls menu() to

interface with the user for further actions.
'***/

/* Set up special exit handling routines */
atexit(shut_down);
ctrlbrk(break_handler);

/* Set up structures to hold data */

gps = malloc(sizeof{ struct T_GPS));
imu_buf = malloc(sizeofl PANDL));
imu_buf->ptr = calloc(100, sizeof(char));
gps_buf = malloc(sizeofl PANDL));
gps_buf->ptr = calloc(500, sizeof(char));
dl_buf = malloc(sizeof{ PANDL));
d1_buf->ptr = calloc(100, sizeof(char));

clrser();

/* Set up control-break resume point */
if{setjmp(cbreak_rtn) != 0) {clrscr(); printf(“\nRestarting Program...”);}

/* Begin user interface */
printf{“\t\tArchytas Monitor Program”);

printf(“\n\nlnitializing Hardware...");
initialize_hw();
menu();

} /* End Main */

67

/* RTE, Page 3 */

void menu(void)
{/**
This procedure interfaces with the user, querying for the desired
response and invoking the appropriate routine.
***/

char ch;

while(1) {
printf(“\n\nCommand (‘?’ for help): “);
scanfl“%s”, &ch);
switch (ch) {
case ‘c”: /* Check Hardware */
check_hardware();
break;
case ‘s’ /* Start FMU */
start_fmu();
break;
case ‘q’: /* Quit FMU */
quit_fmu();
break:
case ‘f: /* Flight Data */
show_flight_data();
break;
case ‘m’: /* Memory Dump */
mem_dump();
break;
case r’: /* Display Registers */
show_regs();
break;
case i’ /* Interrupt Vector */
int_vector();
break;
case ‘d: /* DOS command */
dos_cmd();
break;
case ‘7" /* List Alternatives */
printfl*“\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n”,
“The following are valid commands:”,

« ”»
?

“(c)heck hardware”,

“(s)tart flight management unit”,
“(q)uit flight management”,
“(Mlight data menu”,

“(m)emory contents display”,
“(r)egister contents display”,
“(i)nterrupt vector display”,
“(d)os command”,

“(t)erminate program”);

break:

68

/* RTE, Page 4 */

case ‘t’: /* QUIT */
printf(“\nTerminating Program...”);
exit(0);

default:
puts(“\nNot a valid command. Type ‘? for help.”);
} /* End Switch */

} /* End While */

} /* End Menu */

69

void initialize_hw(void)

/* RTE, Page 5 */

V***

This procedure initializes the PCL-812, PCL-744 and PCL-830

hardware boards for UAV controller operation.
***/

int rtn_code, port, i;

int gpstart{l= {'@,@ B’ a’,0x01,0x32,0x0D,0x0A};

/¥ PCL-812 A/D Board Initialization ** % sssssttrriitiokdohkskthikkk/

/* Note:

I/0 Port Address (SW1): 220h, 0 Wait States
Trigger Mode (JP1): Internal

IRQ Level (JP4): 5

A/D Input Range (JP9): +/- 5V
Parameter Array as follows: */

dat = data;
param[0] = 0;
param[1] = 0x220;
param[4] = 5;
param[5] = 50;
param[6] = 100;
param|[7] = 0;
param[8] = 0;

param(10] = FP_OFF(dat);
param[11] = FP_SEG(dat);

param[12] = 0;
param[13] = 0;
param[14] = 5;
param[15] = 0;
param[16] = 5;
param[17] = 0;

/* Board number */

/* Base I/O address */

/* IRQ level :IRQ5 */

/* Pacer rate = 2M/ (50 * 100) = 400 Hz */

/* Trigger mode: internal pacer trigger */
/* Non-cyclic mode */

/* Offset of A/D data buffer A */

/* Segment of A/D data buffer A */

/* Data buffer B offset: 0 if not used */
/* Data buffer B segment: 0 if not used */
/* A/D conversion number */

/* A/D conversion start channel */

/* A/D conversion stop channel */

/* Overall gain code, 0 : +/- 5V */

/* param[18] = FP_OFF(gain_array); FYI: Output Registers
param[19] = FP_SEG(gain_array);

param{45] : Error code

param[46] : Return value 0
param{47] : Return value 1 ¥/

pcl812(3, param);
if (param[45] = 0) {

/* Func 3 : Hardware initialization */

printfl“\n PCL-812 Driver Initialization Failed!”);

exit(1);
)

pcl812(4, param):
if (param[45] != 0) {

/* Func 4 : A/D initialization */

printfl“\nA/D Initialization Failed!”);

exit(1);
)

70

/* RTE, Page 6 */

/*********************** PCL_744 Initialization ************************/

for (port = 3; port <= 10; port++) { /* Set up each port */
printf{*\nConfiguring port number %d (Cable #%d):”, port, port-2);
/* Set 1/0 control params */

rtn_code = sio_iocti(port, B9600, IOMODE);
if (rtn_code != 0)
printf(*\nI/O control error on port %d.”, port);

/* Set line control parameters */
rtn_code = sio_lctrl(port, MODMODE);
if (rtn_code != 0)
printf{“\nLine control error on port %d”, port);

/* Set flow control params */
rtn_code = sio_flowctrl(port, HWMODE);
if (rtn_code != 0)
printf{“\nFlow control error on port %d”, port);

/* Last, open the port which enables it for I/0 */
rtn_code = sio_open(port);
if (rtn_code != 0)
printf(“\nError opening port %d”, port);

} /* End For port++ Loop */

/* Send T'; tell IMU to begin sending */
rtn_code=sio_putch(IMUPORT, T’);

if (rtn_code == 1) printf(*\n IMU initialized OK”);
else printf(“\n IMU NOT initialized”);

/* Initialize GPS to send position msg every sec */
rtn_code=sio_putb(SGPS_PORT, gpstart, 8);

if (rtn_code <= 0) printf(“\n GPS NOT initialized”);
if (rtn_code == 8) printf{*\n GPS initialized OK”);

/* Set Tx/Rx timeout to 1 second */
rtn_code = sio_timeout(18);

/* Flush BRx and Tx Buffers */

sio_flush(SGPS_PORT, 2);

sio_flush(IMUPORT, 2);
sio_flush(DLPORT, 2);

/* RTE, Page 7 */

/**+ PCL-830 Initialization (Am9513A chip) #**+#ssxsrsrrararrxsaranser/

/¥ This portion of initialize() written by Pat Moran. */

/* All values are decimal, but represent binary register settings. */

/* See Am9513A Technical Manual for details */
outportb(conreg,255); /* Reset all board functions */
outportb(conreg,23); /* Select master mode register */
outportb(datreg,176); /* Low byte enables FOUT, F1 source */
outportb(datreg,65); /* Hi byte selects binary division */
/* Disable increment, 8 bit bus */

/* FOUT on, divide by 1. ¥/

/* RTE, Page 7 */

outportb(conreg,249); /* Diable prefetch for write ops */

for (i=1;1<=5;i++)
{
outportb(conreg,i);
outportb(datreg,98);
outportb(datreg,27);
}
for (1=25;i<=29;i++)
{
outportb(conreg,i);
outportb(datreg,0);
outportb(datreg,31);
)
for (i=9;i<=13;1++)
{
outportb(conreg,i);
outportb(datreg,103);
outportb(datreg,5);
}

/¥ Select ctrs 1-5 */
/* Low byte: set modes of ctrs 1-5 in CMR */
/* High byte: no gating for ctrs 1-5 */

/* Load hold registers for refresh rate */
/* Load + Hold = Refresh Rate */
/* This combo gives 25 ms rate (40 Hz) */

/* Select load registers for pulse width */
/* Sets time for next pulse */

for (i=233;i<=237;i++) outportb(conreg,i);

outportb(conreg,i);

outport(conreg,127);

/* Load & arm ctrs 1-5 */

printf“\nCompleted Initialization of Servos.”);

} /* End Initialize_ HW */

/* RTE, Page 8 */

void check_hardware(void)
V**

This procedure checks that all the hardware is properly

configured and operational.
***/

int 1, card_type = 0x744, card_no = 1, rtn_code, port;
char *buf = “Test String”;

union REGS xreg, yreg;

unsigned elist, drives=0, ports=0, printers=0;

elist = biosequip(); /* Determine BIOS Equipment */

if (elist & 0x0001) drives = ((elist & 0x00c0) >> 6)+1;

ports = (elist & 0x0e00) >> 9;

printers = (elist & 0xc000) >> 14;

printf(“\nThis system has %d diskette drives, %d serial ports, %d printer ports “,\
drives, ports, printers);

if ((elist & 0x0002) >> 1) printf{(“and a math co-processor.”);

printf(“\nlt has %uK of RAM and %lu stack available.”, \
biosmemory(), coreleft());

rtn_code = sio_bank(card_type, card_no); /* Display address of PCL-744 card */
printf(“\nThe PCL-744 card is mapped to address %Fp”, rtn_code);

rtn_code = sio_id(card_type, card_no); /* Display ID number of 744 card */
printf{“\nlt is card number %d”, rtn_code);

for (port = 3; port <= 10; port++) { /* Set up each port */
printf(“\n\nChecking port number %d (Cable #%d):”, port, port-2);

/* Check I/O Control Params */
rtn_code = sio_getbaud(port);
printf(“\nBaud rate of port %d set to %d”, port, rtn_code);

rtn_code = sio_getmode(port);
printf(“\nMode of port %d set to %d.”, port, rtn_code);

/* Check Line Control Params */
rtn_code = sio_lstatus(port);
if (rtn_code < 0)
printf“\nError in status for port %d”, port);
else
printf(“\nModem line status of port %d is %d.”, port, rtn_code);

/* Check Flow Control Params */

rtn_code = sio_getflow(port);
printf(“\nHardware flow control of port %d set to %d.”, port, rtn_code);

73

/* RTE, Page 9 */

/* Do loopback test */
if (sio_loopback(port, buf, 12) == 0)
printfl"\nPort %d loopback test OK.”, port);
else
printfl“\nPort %d failed loopback test.”, port);

printfl“\n\nReview data for port above.\nPress any key to continue.”);
getch(); /* Wait for key */
} /* End For port++ Loop ¥/

printfl“\n\nParameter Array for PCL-830 board set to:”);

for i=0;1<=17;1++) {
if (i==10 | | i==11) printf(“\nparam[%3d] = %Fp”, i, param[il);
else printf{“\nparam|[%3d] = %d”, i, paramlil);

)
} /* End Check_Hardware */

74

/* RTE, Page 10 */

void start_fmu(void)
U**

This procedure sets up the real-time clock to provide periodic

interrupts at 64 Hz which will trigger the flight management unit.
***/

unsigned char value, bit_set, new_value;

if (fmu_start_flag == TRUE) { /* Check if already started */
printf(“\nThe FMU has already been started.”);
return;

)
printfl“\n\n Starting the Flight Management Unit.”);

* rity */
old_vector = getvect(RTC_INT);
printf(“\nThe address of the old vector is: %Fp\n”, old_vector);

/* Now set RTC to generate interrrupt at rate set in DEFS.h */

/* Alter interrupt rate to new rate (32768 >> RATE_SET - 1) */

value = ReadRTC({REG_A); /* Read register A */
bit_set = value & 0xF0 | RATE_SET; /* Lowest 4 bits sets rate of int */
SetRTC(REG_A, bit_set); /* Set to new rate of periodic int */

new_value = ReadRTC(REG_A);
printf(“\nReg A was %zx, now %x with new rate set.”,value, new_value);

/* iodic inter ith th */

disable();

value = ReadRTC(REG_B); /* Read register B */
bit_set = value | INT_FLAG; /* Enable periodic interrupts */
SetRTC(REG_B, bit_set); /* on IRQ 8 (Int 70). */

new_value = Read RTC(REG_B);
printf(“\nReg B was %x, now %x with int flag set.”,value, new_value);

/* Change interrupt vector to run my program */
disable(); /* Disable interrupts when changing */

setvect(RTC_INT, new_vector);
enable();
printf(“\nlnstalled new vector: %p\n”, new_vector);

value = ReadRTC{REG_C); /* Clear pending int by reading reg */

/* RTE, Page 11 ¥/

/* Initialize PIC to enable interrupts */

value = inportb(PIC_STATUS); /* Read PIC Status Register */
bit_set = value & Oxfe;
outportb(PIC_STATUS, bit_set); /* Clear bit 0 to enable ints */

new_value = inportb(PIC_STATUS);
printf*\nPIC mask was %x, now %x with bit 0 cleared.” value, new_value);

enable();

fmu_start_flag = TRUE,;
} /* End Start_FMU */

76

/* RTE, Page 12 */

void quit_fmu(void)
V**

This procedure stops the periodic interrupt, effectively halting the
flight management unit, and resets the real-time clock chip back to

its original configuration.
***/

unsigned char value, bit_set, new_value;

if (fmu_start_flag == FALSE) { /* Make sure it has been started */
printf(“\nThe fmu has not yet been started.”);
return;

}

else {

printfi*\n\n Stopping the Flight Management Unit.”);

/* Put system back to normal */

/* First clean up RTC */

disable(); /* Disable interrupts while changing */

/* Clear periodic interrupt bit */
value = ReadRTC(REG_B);

bit_set = value & 0xBF;
SetRTC(REG_B, bit_set);

new_value = ReadRTC(REG_B);
printf“\nReg B was %x, now %x with int flag clrd.”,value, new_value);

/* Reset rate to 1024 Hz */
value = ReadRTC(REG_A);
bit_set = value & 0xF0 | 0x06;
SetRTC(REG_A, bit_set);

new_value B ReadRTC(REG_A);
printf(“\nReg A was %x, now %x with new rate set.”,value, new_value);

R . ieinal value %/
setvect(RTC_INT, old_vector);

enable();

printf(“\nThe cyclecount is: %d\n”, cyclecount);

fmu_start_flag = FALSE;

} /* End Else */
} /* End Quit_FMU */

77

/* RTE, Page 13 */

unsigned char ReadRTC(unsigned char reg)

V**

This function returns the value of the specified register on the

real-time clock chip.
***/

unsigned char reg_nmi, value;

reg_nmi =reg | NMI_FLAG; /* Disable Non-Maskable Int */
outportb (RTC_INDEX, reg_nmi); /* Tell CMOS which reg to read */
value = inportb (RTC_DATA); /* Read value of register */

return value;
} /* End Read_RTC */

void SetRTC(unsigned char reg, unsigned char value)

[/ HF AR ok skoktok sk sk koo sk ok R KRR R R Rk ko ok ek ok sk kb ko R okok R K ok

This procedure sets a new value into the specified register

of the real-time clock chip.
***/

unsigned char reg_nmi;

reg_nmi = reg | NMI_FLAG; /* Disable Non-maskable Int */
outportb (RTC_INDEX, reg_nmi); /* Tell CMOS which reg to set */
outportb (RTC_DATA, value); /* Write value to register */

} /* End Set RTC */

void interrupt new_vector()
V**
This is the flight management unit procedure that is run on each

accurrence of the periodic interrupt.
***/

cyclecount++; /* Count number of cycles */
cyclecount %= RATE*10; /* Normalize count every 10 seconds */
reset_int(); /* Reset Interrupt to enable next one */
execute_cycle(); /* Do something constructive */

} /¥ End New_Vector ¥/

void reset_int(void)
V**

This procedure resets the real-time clock chip and the PIC chips

in order to facilitate another periodic interrupt.
***/

unsigned char value;

value = ReadRTC(REG_C); /* Must read reg C to get another int */
disable();
outportb(0x0a0, 0x20); /* Send non-specific EOI to slave PIC */
outportb(0x20, 0x20); /* and master PIC */
enable();

} /* End Reset_Int */

78

/* RTE, Page 14 */

void execute_cycle(void)
V**

This procedure is the heart of the controller. It is the routine

that is invoked during every occurrence of the real-time clock

interrupt, coordinating the execution of other modules which

comprise the control and communication processes of the UAV.
***/

unsigned char value, bit_set;

int imu_ok, gps_ok, dl_ok;

value = inportb (0x61);

bit_set = value » 0x02; /* Toggle speaker enable bit */
outportb(0x61, bit_set); /* (Sounds like the motor is running) */
/* sio_putb({ DLPORT, “GPS: “, 5);
Slave_gps(gps); Calls to Eric Twite’s Stuff
xmit_to_gnd(&gps->out); (Not yet operational)
free(gps->out.ptr); FAAEE
dl_ok'= read_datalink(dl_buf); , /* Read uplink every cycle */
/* Put code to deal with info from datalink uplink here */
if (cyclecount % 4 == 0) { /* Read IMU every 4th cycle */
imu_ok = read_imu(imu_buf); /* Send every 0.5 sec */
if (cyclecount % (RATE/2) == 0 && imu_ok) {
sio_putb(DLPORT, “IMU: “, 5); /* IMU label in data stream */
xmit_to_gnd(imu_buf); ‘
}
}
iflcyclecount % (42) == 0) { /* Read GPS every 1.3 sec */
gps_ok = read_gps(gps_buf);
if (gps_ok) { /* If full msg revd, */
sio_putb(DLPORT, “GPS: ¢, 5); /* also send to ground */
xmit_to_gnd(gps_buf); /* with data stream label */
)
}
read_atod(); /* Read AtoD every cycle */
/* Last, with all flight data in hand, control aircraft */

flight_control(&thr_cmd, &ail_cmd, &elev_cmd, &rud_cmd);
cmd_to_servos(thr_emd, ail_cmd, elev_cmd, rud_cmd);

} /* End Execute_Cycle */

79

/* RTE, Page 15 */

int read_imu(PANDL *buffer)
V**
This procedure reads into a pre-established buffer the data

from the onboard Inertial Measurement Unit.
***/

int eol = CR;

int queue;

queue = sio_iqueue(IMUPORT);

if (queue > 100) queue = 100; /* Truncate to size allocated in main */
if (queue > 38) | /* Buffer has at least 1 full + partial msg */

buffer->len = sio_linput(IMUPORT, buffer->ptr, queue, eol);
buffer->len = sio_read(IMUPORT, buffer->ptr, 38);
]

else if (queue > 0) /* or has at most 1 full msg (usual condition) */
buffer->len = sio_linput{ IMUPORT, buffer->ptr, queue, eol);
else
buffer->len = 0; /* or has nothing in the buffer */
if (buffer->len == 38) return TRUE; /* Test if message is complete*/

else return FALSE;
} /* End Read_IMU %/

int read_gps(PANDL *buffer)

U**

This procedure reads into a pre-established buffer the data
from the onboard Global Positioning System.

***/

int eol = LF, queue;

queue = sio_iqueue(SGPS_PORT); /* How long is rcv queue? */
while (queue > 135) { /* Pare down to last 2*68-1 chars */
queue -= 135; /* (At most 1 full message) */
if (queue < 68) queue += 68; /* (But at least 1 full message) */
if (queue > 500) /* Max buffer space 500 bytes */
buffer->len = sio_read(SGPS_PORT, buffer->ptr, 500);
else

buffer->len = sio_read(SGPS_PORT, buffer->ptr, queue);
queue = sio_iqueue(SGPS_PORT);
}
/* ists i + i */
if (queue > 68) /* If partial msg exists, read it away */
buffer->len = sio_linput(SGPS_PORT, buffer->ptr, queue, eol);

e . 4%
buffer->len = sio_linput(SGPS_PORT, buffer->ptr, queue, eol);

if (buffer->len == 68) return TRUE; /* Test to make sure full msg */

else return FALSE;
} /* End Read_GPS */

80

/* RTE, Page 16 */

void read_atod(void)
U**

This procedure calls PCL-812 intrinsic function 5, which triggers an

A/D conversion on analog data inputs as set in the param array.)
***/

/* Record A/D Conversions */
pcl812(5, param); /* Func 5 : Pacer trigger A/D conversion */
if (param{45] != 0) /* with software data transfer */
printf(*\nA/D Conversion Failed!”);
} /* End Read_AtoD *

void xmit_to_gnd(PANDL *buffer)

V**

This procedure transmits the contents of the buffer to the ground
through the datalink.

***/

int strglen, txbuff;
if (buffer->len > 0) {

txbuff = sio_ofree(DLPORT); /* Get free space in xmit buffer */

if (buffer->len < txbuff) { /* If enough buffer space, send */
strglen = sio_putb(DLPORT, buffer->ptr, buffer->len);

if (strglen == 0) { /* Else */

sio_flush(DLPORT, 1); /* Get rid of the old data */

strglen = sio_write(DLPORT, “WARNING: Buffer cleared! ¢, 25);
strglen = sio_write(DLPORT, buffer->ptr, buffer->len);

}
}
} /* End Xmit_to_Gnd */

int read_datalink(PANDL *buffer)

V**

This procedure reads the contents of the datalink’s receive buffer
containing information sent from the ground through the datalink.
***/

. [FTEN
int queue, eol = ‘#’;

queue = sio_linput(DLPORT, buffer->ptr, 100, eol); /* Get queue length */
if (queue > 0) { /* If something is in queue, read it */
queue = sio_read(DLPORT, buffer->ptr, 2); /* Read length of msg */
buffer->len = atoi(buffer->ptr); /* Convert length to an integer */

/* Read in buffer of specified length */
queue = sio_read(DLPORT, buffer->ptr, buffer->len);
return TRUE;

}
else return FALSE; /* If nothing waiting in buffer, continue */
} /* End Read_Datalink */

81

/* RTE, Page 17 ¥/

void flight_control(int *thr, int *ail, int *elev, int *rud)
V**
This procedure is a place holder for the actual control algorithm
being designed by the Aeronautical Engineering Department.

The procedure envisioned here will perform appropriate data filtering

and will use the filtered data to calculate the necessary control

surface positions. The output of this procedure is the angle of each

of the standard control surfaces. The emd_to_servos procedure will

convert these standard control surfaces into individual control vane

angles. This conversion will differ depending on the mode of flight,

whether vertical or horizontal.
***/ s

/* Get or calculate pilot commands */

/* Calculate control surface inputs */

/* The steps below are just a demo to exercise the servos to their
full extension in increments of 2 degrees until replaced by the
actual control algorithm */

thr = 100; / Throttle stays constant */
vane_step +=2; /* Increase vanes 2 deg each cycle */
vane_step %= 200; /* All vanes go -30 to +30 deg */

*ail = vane_step;

*elev = vane_step;

*rud = vane_step;

/* Delete global variable step vane when this test routine deleted */
} /* End Flight_Control */

82

/* RTE, Page 18 */

void emd_to_servos(thr, ail, elev, rud)

V**/

/* Written by LCDR Pat Moran 5/14/93

/* Originally called chgangle() -- see thesis description

/* Basic PWM routine by LT Paul Merz [Mer92]

/* Demo to move aileron, rudder, elevator, & throttle from 2 joysticks.
/* Blends 3 degrees-of-freedom into 4 independent vane commands.

*/
*/
*/
*/
*/

/***/

int i,hibyte,lobyte,angle,vane[5];

vane[0] = ail/4 + rud/2; /* V1; Translation algorithm fm 3 */
vane[1] = ail/4 + elev/2; /¥ V2; control surfaces to 4 vanes */
vane[2] = ail/4 - rud/2; /*V3; */
vane[3] = ail/4 - elev/2; /* V4, */
vane[4] = thr; /* Throttle needs no conversion */
outportb(conreg,223); /* Disarm counters 1-5 */
for (i1=0;i<=4;i++) {
angle=((1900/206)*(vanel[i}}+600); /* Convert fm deg to dig # */
hibyte=(angle/256); /* Calc high byte, residue left */
lobyte=(angle-hibyte*256); /* Calc low byte fm residue */
outportb(conreg,(i+9)); /* Load counters 1-5 */
outportb(datreg,lobyte); /* Load low byte */
outportb(datreg,hibyte); /* Load high byte */

}
for (i=233;i<=237;i++)

outportb(conreg,i); /* Set toggle high for counters 1-5 */

outportb(conreg,127); /* Load & arm counters 1-5 */

} /* End Cmd_to_Servos */

/* RTE, Page 19 */

void show_flight_data(void)
V**
This procedure queries the user to determine which flight data to
display and calls the appropriate routine.
***/

char ch;

printf“\n%s\n%s\n%s\n%s\n%s\n%s\n\n%s”",
“Display which data?”,
“(g)ps position”, /* Can list other gps data here too */
“(i)mu data”,
“(a)ir data”,
“(s)ervo positions”,
“Choice: “);

scanf(“%s"”, &ch);

switch (ch) |

case ‘g" /* GPS Position */
show_gps_posit();
break;

case ‘1" /* IMU Data */
show_imu();
break;

case ‘a’: /* Analog Air Data */
show_air_data();
break;

case ‘s’ /* Servo Position */
show_servo_posit();
break;

default:
printfi“\nData choice not recognized!”);
return;

) /¥ End Switch */

} 7% End Show_Flight_Data */

void show_imu(void)
V**

This procedure prints the most recently acquired IMU data.

***/

int i;

printf(“\nLatest IMU data: %d characters.\n”, imu_buf->len);
for (i = 0; i < imu_buf->len; i++) {
putchar(imu_buf->ptrli));
if (1 % 4 == 0) putchar(‘®);
)
} /¥ End Show_IMU */

84

/* RTE, Page 20 */

void show_gps_posit(void)

U**

This procedure prints the most recently acquired GPS data.
***/

int i;

/* To print from Twite’s GPS structure, when complete */
/* printfi“\nLatest GPS position:\nLat: %d.%d N, Long: %d.%d W”,\

gps->pes.latitude.degrees, gps->pes.latitude.minutes, \
gps->pes.longitude.degrees, gps->pces.longitude. minutes);

*/
/* To print from gps buf raw data buffer */
gps_print = Bin_to_ascii(gps_buf, 4); /* Convert to ASCII chars */
printf(“\nLatest GPS data: %d / %d characters.\n”, \

gps_buf->len, gps_print->len);

for (i = 0; i < gps_print->len; i++) putchar(gps_print->ptrlil);
free(gps_print->ptr);
free(gps_print);

} /# End Show_GPS_Posit */

void show_air_data(void)
U**

This procedure prints the most recently acquired A/D data.
***/

unsigned int i;

float DataBuf;

/* 1 n 1 in */
for (i = 0; i < param[16]; i++) {
DataBuf = datali] & 0xFFF;
DataBuf = (10 * DataBuf/ 4096) + (-5);
/* Calculations:

10 : A/D input range (-5V to 5V)
4096 : Full scale 12 bit A/D data
DataBuf : A/D input data masked to 12 bits
(-5) : A/D input base “-5” V

*/
printf(“\ndata[%3d] = % 1.2f V returned as %x”, i, DataBuf, datalil);
} /* End For all data entries */
} /* End Show_Air_Data */

void show_servo_posit(void)
V**

This procedure prints the present position of all servos.
***/

printf“\nThr: %d, Ail: %d, Elev: %d, Rud: %d.”, \
thr_cmd, ail_emd, elev_cmd, rud_cmd);
} /* End Show_Servo_Posit */

85

/* RTE, Page 21 ¥/

void close_ports (void)
U**

This procedure closes all serial ports on the PCL-744 card and
flushes transmit and receive buffers for each port.
***/

int port, rtn_code;

for (port = 3; port <= 10; port++) {
rtn_code = sio_close(port);
if (rtn_code != 0)
printfl*“\nError closing port %d”, port);
else
printf{“\nClosed port %d”, port);
sio_flush(port, 2);
} /* End For all ports */
} /* End Close_Ports */

void shut_down(void)

V**
This procedure is invoked at program exit to ensure that the system,
including communication ports, ISR vectors, and allocated memory, is

properly terminated and returned to its normal operating configuration.
***/

quit_fmu(); /* Stop the flight management unit */
close_ports(); /* Close and flush all ports */
free(gps); /* Free all globally allocated memory */

free(imu_buf->ptr):
free(imu_buf);
free(gps_buf->ptr);
free(gps_buf);
free(dl_buf->ptr);
free(dl_buf);

} /* End Shut_Down */

86

/* RTE, Page 22 */

void int_vector(void)
U**

This procedure prints the address registered for the ISR of the

interrupt number given by the user.
***/

void interrupt (*int_handler)();

int intno;

printf(“\nEnter interrupt number in hex: “);

scanfli“%x”, &intno);

int_handler = getvect(intno);

printf(“\nThe address of the handler is: %Fp\n”, int_handler);
} /¥ End Int_Vector ¥/

void mem_dump(void)
V**

This procedure prints the values of a given portion of memory.
***/

int i, n;

char far *far_ptr;

printf(“\n\nEnter begin memory address to dump (eg. F000:E000): “);
scanf(“ %p”, &far_ptr);

printf(“\nHow many bytes to display? “);

scanf(“%d”, &n);

printf(“\nDump of %d bytes at %Fp\r\n”, n, far_ptr);
for(i=0; i<n; i++) {
printf“\n%Fp %Fx”, (far_ptr+i), *(far_ptr+1));

}
} /* End Mem_Dump ¥

void show_regs(void)
V**

This procedure prints the current values of all CPU and segment

registers.
***/

union REGS xr, yr;

struct SREGS sr;

segread(&sr);

printf(“\nax = %x, bx = %x, ¢x = %x, dx = %x”, \
Xr.X.ax, xr.x.bx, xr.x.cx, xr.x.dx);

printf(“\nsi = %x, di = %x, cflag = %x, flags =, \
xr.x.si, xr.x.di, xr.x.cflag);

bit_print(xr.x.flags);

printfli“\necs = %x, ds = %x, es = %x, ss = %x”, \
sr.cs, sr.ds, sr.es, ST.ss);

} /* End Show_Regs */

/* RTE, Page 23 */

void bit_print(unsigned int v)

V**

This procedure prints the binary representation of the given

hexidecimal number.
***/

int i, mask = 1 << 15;

printf(“%x = “, v);

for(i=1;i <= 16; i++) {
putchar(((v & mask) == 0) ? ‘0’ : ‘1’);
v <<= 1;
if G % 4 == 0) putchar(‘*);

}
} /* End Bit_Print */

void dos_cmd(void)
U**

This procedure invokes a DOS shell.

***/
char emd([40];
printf(“\nDOS COMMAND:> “);
gets(cmd);
system(emd);

} /* End DOS_Cmd */

88

/* RTE, Page 24 */

int break_handler(void) v
(/**
This procedure is invoked upon a control-break or control-c sequence
from the keyboard. It gives the user more flexibility in determining
how extensively he desires to reset the system.
***/
char ch;
union REGS xreg, yreg;

printf(“\n%s\n%s\n%s\n%s\n%s\n%s\n%s\n%s”,
“Why did you break?”,

»
b4

“(e)old reboot machine”,
“(w)arm reboot machine”,
“(r)estart program (reinitialize hardware)”,
“(g)o back to main menu”,
“(t)erminate program”,
“Choice: “);

scanf(“%s”, &ch);

switch (ch) {

case ‘¢’ /* Cold Reboot */
bootstrap(0);
break;

case ‘w’; , /* Warm Reboot */
bootstrap(1);
break;

case T’ /* Restart Program */
shut_down();
longjmp(cbreak_rtn, 1);
break;

case ‘g /* Main Menu */
menu();
break;

case ‘t’: /* QUIT */
printf(“\nTerminating Program...”);
exit(0);

default:
menu();

} /* End Switch */

} /* End Break_Handler */

89

/* RTE, Page 25 */

void bootstrap(int input)

{
union REGS reg;
void (far *reboot)(void);
int far *boottype;

/* Set Far Pointers to the Boot Sector */
FP_SEG(reboot) = Oxfiff;

FP_OFF(reboot) = 0;
FP_SEG(boottype) = 0x40;
FP_OFF(boottype) = 0x72;

/* Issue a DOS disk reset request to flush caches*/

reg.h.ah = 0x0d;

int86(0x21, ®, ®);

/* Set boot type and execute reboot */

boottype = (input ? 0x1234 :0); / 0= Cold, 1 = Warm */

(*reboot)();
} /* End Bootstrap */

/* End of Real-Time Executive Program */

90

APPENDIX B: LIST OF VARIABLES

The following is a reference listing of the definitions of all variables used in the Real-Time Executive source
code shown in Appendix A. (G) indicates a globally maintained variable.

angle Value of digital representation of servo command angle
bit_set Bit value to be written to register from the Real-Time Clock (RTC) chip
*boottype Pointer to memory location specifying hard or cold boot

buffer->len Lenght field of PANDL structure. Represents the length of the buffer.
buffer->ptr Pointer field of PANDL structure. Points to the actual data buffer.

cbreak_rtn Pointer to position in program to return to after control-break (G)
ch Variable to hold user response to menu selection

cyclecount A counter incremented on every cycle of a control loop (G)

*dat The pointer to the data array (G)

data[20] An array in which the PCL-812 stores the results of its A/D conversions (G)
DataBuf Value of actual voltage calculated from A/D conversion data
dl_buf PANDL to store raw data received through the datalink (G)
dl_ok Boolean set true if message received on datalink

eol Character which ends complete message from IMU or GPS
*far_ptr Pointer to memory location to begin inspection

fmu_start_flag Boolean variable toggled on when FMU is started (G)

gps_buf PANDL to receive raw data retrieved from GPS receiver (G)
gps_start Array to hold start sequence to be sent to GPS receiver

gps_ok Boolean set true if GPS message received is complete

hibyte Value of high byte given to PCL-830 for the PWM signal

i Loop increment used in various places

imu_buf PANDL to receive raw data retrieved from IMU (G)

imu_ok Boolean set true if IMU message received is complete

intno Number of interrupt for which requesting ISR vector address
lobyte Value of low byte given to PCL-830 for the PWM signal
*old_vector Pointer to hold value of old interrupt ISR vector (G)

new_value Value of register read from RTC after a modification

param[60} An array of parameters used to configure the PCL-812 board (G)
port For loop increment to configure all ports

queue Length of receive queue buffer from IMU or GPS

*reboot Pointer to memory location to jump to causing reboot

reg_nmi Value of register read from the RTC with Non-Maskable Interrupt (NMI) bit set
rtn_code Code returned from execution of PCL-744 I/O program

sr, Xr, yr Values read from computer internal registers

strglen Number of characters transmitted to datalink buffer

txbuff Length of free space available in datalink transmit buffer

value Value of register read from the RTC

vane Array holding vane servo commands for each of the servos

vane_step Temporary variable holding command for control vane position (G)

APPENDIX C: HARDWARE DATA SHEETS

92

PCA-6147

- Specifications

CPU 80486SX'DX'DX2 25:33/40/50/66 MH.

Cache memory stze 8 KB on-chip and 256 KB 2nd ieve:
Bus Inlertace !SA (PC/AT) pyc

Data bus: 32 v

Processing ability 22 bt

Coprocassor Socket for Weitek 41567

RAM memory 1 MB 10 64 MB, uses tour banks of SIMM
sockets composed of exght 30 pin sockets and two 72-pin
sockets (72-pin sockets accept 1. 2. 4. 8 and 16 MB
SIMMs)

Shadow RAM memory: Supports system and video B10S of
up to 256 KB in 32 KB blocks

IDE hard disk drive intertace: Supports up to two IDE (AT
bus) hard disk drives BI0S enabiled/disabled

Floppy disk drive imertace’ Supports up to two tioppy disk
anives, 5.25° (360 KB and 1.2 MB) andsor 3.5° (720 KB and
1.44 MB). BIOS enabled/disabled ’

Bi-directional paraliel port Configurable to LPT1, LPT2.
LPT3 or disabled. Standard DB-25 temaie connector
provided

Serial ports Two RS-232 senal ports can be indvidually
set 1o COM1, COM2 or disabled. Each can be accessed
through a DB-9 male connector

Real tims clock/calendar Dallas DS-1287 with Ithium
battery back-up for 10 years of data retention

Watchdog timer Jumper configurable to. always disabied
or software enabied/disabled. The timer mtervai 1s 1.6 sec
Your program uses /O ports hex 043 and 443 to control the
watchdog timer and generate a system reset or {RQ15

Piggyback connector 16-bit bus connector (64 + 36 pins)
tor expansion modules

DMA channels 7
interrupt levels 15

Keyboard connector A 6-pin muni DIN keyboard connector
1s located on the mounting bracket for easy access. An
external keyboard adapter s included. An on-board
keyboard pin header connector 1s also available

Bus speed: 8 MH:

System performance (w/ 80488DX-50 MHz CPU): 200 MH:,
Landmark speed V1.14; 167 MHz, Landmark speed V2.0

Max. power requirements: +5V @ 2.5 A

Power suppiy voitage:
+5V(4.75V10525V). +12V, -12V

Operating temperature: 32 to 140°F (0 to 60°C)
Board size: 13 1° (L) x 4 8" (W) (334 mm x 122 mm)
Board weight: 1.2 Ibs (0.5 Kg)

Ordering Information

J PCA-8147-33/Bare: Ah-in-one 80486 CP. Lard witho.'
CPU Incluges 256 KB cache memory users manuai ID:

hara gisk cable tioppy Orrve cabie ang pa-aniet pragarte

J PCA-81478X-25/0K: Same as above bul wil™ 25 M
80486SX CPU instaties

<) PCA-81478X-33/0K: Same as above bul w :~ 33 MK
80486SX CPU instaied

O PCA-8147DX-33/0K: Same as above bul with 33 M-
804860X CPU nstatied

D PCA-8147DX-50/0K: Same as above but with 50 M+
804860X CPU instalied

O PCA-S147DX2-50/0K: Same as sbove but with 50 MH;
80486DX2 CPU mstailed

O PCA-6147DX2-68/0K: Same as above but with 66 MH;
804860X2 CPU instadled

On-board POST diagmostic LEDs

-
-~

indostriol Single Beard Computer Sevies

§15

' PCA-614

with GCache

All-in-One 486 CPU Card

Fixed Hole for
Piggysack Moeduie
HEDD (IBE) FBD
Intertace Intertace

1IN LE]

: $04350X CPU Piggysack ROMBIOS |
Up to 16 M8 268 Tag Maduie Keyboard
DRAM Cache RAM ETEQ Chipest Connecter Connester
Introduction Each PCA-6146 ships with either an Features
80486DX-33 MHz, 80486D0X2-50 MHz
We designed the PCA-6146 for users or an 80486DX2-66 MHz CPU. These » Completely 80486 PC/AT compatibie
who require high speed system state-of-the-art CPUs feature an on-chip « 32 to 140°F (0 to 60°C) operating

performance in their industrial PC
applications. The card is available in five
80486 CPU versions: 80486SX-25,
804865X-33, 80486DX-33. 804860X2-
50 or 80486DX2-66. The card's all-in-
one design includes memory caching.
disk drive controliers, a watchdog timer
and serial/paraliel ports. We grve every
card a 24-hour dynamic burn-in test to
ensure component reliabiity in harsh
environments at temperatures up 10
140°F (60°C).

With the PCA-6146 plugged into your
passive backplane, your industrial PC
becomes a true 32-bit 80486
compatibie computer system.

The card’s highly compact size,
numerous features and unmatched cost/
performance ratio make it ideal for
high-end industrial applications where
high CPU speed, minimum space and
short MTTR are crucial.

math coprocessor and an 8 KB cache
memory for floating point calculations
and fast memory access. 256 KB of
2nd-level cache memory atlows the card
to run at Landmark speeds in excess of
150 MHz.

Other standard features inciude two
RS-232 senal ports, one paraliel/pnnter
port. an IDE hard disk drive intertace. a
tioppy disk controtler. a watchdog
timer, piggyback module connectors
and an on-board keyboard connector.
You can configure system memory to
anywhere from 1 MB to 16 MB using
256 KB, 1 MB or 4 MB SIMM DRAM in
the PCA-6146's four memory sockets.

temperature
* Watchdog timer

* Optional Flash/RAM/ROM Disk
Piggyback Module (PCD-8931) and/c-
Flat-panel/CRT VGA Piggyback
Moduie (PCA-6443) instali on the
piggyback connector

+ 80486 processor and AMI BIOS
* ETEQ's Cougar chipset

* 256 KB 2nd-level cache memory
* Up to 16 MB of on-board DRAM

 Built-in IDE (AT bus) hard disk Orrve
interface

= Built-in fioppy disk dnive controtier
» Two serial RS-232 ports

* One paralleV/printer port

» On-board keyboard connector

« Lithium battery back-up for real-time
clock/calendar

W 816

PCA-6146

Specifications

* CPU: 80486SX/DX/DX2-25/33/50/66 MHz
« Cache memory size: 256 KB

* Bus interface: ISA (PC/AT) bus

* Data bus: 32 bit

* Processing ability: 32 bit

* Chipset: ETEQ's Cougar chipset

RAM memory: 1 MB, 4 MB and 16 MB. Uses 256Kx9
(SIMM-256-8), 1Mx9 (SIMM-1000-8) or 4Mx9 (SIMM-
4000-8) SIMMs with access time of 80 ns or less

* CPU Comparison:

Buii-in Buildn

EHB+ 252 K8 EKBE + 255 KB S KB v 258 K8

1F0 MEy

=200 Wy

5 Mz SE Mz

* Shadow RAM memory: Supports up to 256 KB of memory
in 16 KB blocks for system and video BIOS

* Hard disk drive interface: Supports up to two IDE (AT-Bus)
hard disk drives. Jumper enabled/disabled

* Floppy disk drive interface: Supports up to two floppy disk
drives: 5% (360 KB and 1.2 MB) and/or 3%" (720 KB and
1.44 MB). Jumper enabled/disabled ~

* Parallel/printer port:
Configurable to LPT1, LPT2, LPT3 or disabled. A standard
female DB-25 connector is provided

* Serial ports: Two RS-232 serial ports individually
configurable to COM1, COM2 or disabled. Each port is
accessed through its own male DB-9 connector

* Real time clock/calendar:
Real time clock/calendar with lithium battery back-up
(3.6 V @ 850 mAH). External battery connector provided

* Watchdog timer: Jumper configurable to always ON, always
OFF, or programmable ON/OFF. The time-out interval is
jumper selectable to 1.5, 15 or 150 seconds

* Piggyback connector: 64-pin, 8-bit bus connector with
a low-line detector and battery back-up reserved for option
modules such gs FlaSh/RAM/ROM disk module and/or Fiat-
panel/CRT VGA modules

* DMA channels: 7

* Interrupt levels: 15

* Keyboard connectors: A 6-pin mini-DIN keyboard connector
is located on the mounting bracket for easy access. An
external keyboard adapter is included. An on-board
keyboard pin header connector is also available

* Bus speed: 8 MHz.

* System performance: 150 MHz with an 80486DX-33 MHz
(Landmark speed V1.14).

* Max. power requirements: +5V @ 2.5 A

* Operating temperature: 32 to 140°F (0 to 60°C)

* Board size: 13.1" (L) x 4.8" (W) (334 mm x 122 mm)
* Board weight: 1.5 Ibs (0.7 Kg)

» EMI: meets FCC class A and BZT Class A

» MTBF: 87,100 hrs @ 25°C; 21,900 hrs @ 60°C

Ordering Information

0 PCA-6146-33/Bare:
All-in-one 80486 CPU Card without CPU. Includes 256 KB
memory, user's manual, IDE hard disk drive cable, floppy
disk drive cable, parallel port adapter and keyboard
adapter.

QO PCA-6146SX-25/0K:
All-in-One 80486SX-25 CPU Card with 256 KB cache
memory and all accessories of the PCA-6146-33/Bare

Q PCA-6146SX-33/0K:
All-in-One 80486SX-33 CPU Card with 256 KB cache
memory and all accessories of the PCA-6146-33/Bare

O PCA-6146DX-33/0K:
All-in-One 80486DX-33 CPU Card with 256 KB cache
memory and all accessories of the PCA-6146-33/Bare

0 PCA-6146DX2-50/0K:
All-in-one 80486DX2-50 CPU Card with 256 KB cache
memory and all accessories of the PCA-6146-33/Bare

Q PCA-6146DX2-66/0K:
All-in-one 80486DX2-66 CPU Card with 256 KB cache
memory and all accessories of the PCA-6146-33/Bare

ISBC Series

industrial Single Board Computer Series

' Q&A Solid State Storage Devices

0. What specta!l teatures does a Flagh:
RAM/ROM disk otter tor the
industrial environment?

A. Flash/RAM/ROM qisks are the solig
state equivaients ot mechan:23t g9is-
arives Thev Ofter taster gata access
and tonger MTBF . charactenstic:,
which make them the igeal solution
tor cntical commercial or industna’
apphicanons

Mecnhanical 6isks are highty
susceptibie 10 Dreakaown in severe
industnial environments A Flash
RAM/ROM disk uses Flash. SRAM
and EPROM memory 1o store your
0ata ang appiication programs
instead of the magnetic particies on a
rotating disk Although the initiai
cost tor the solid-state disk 1S mghe-
it gives you taster and more etticien’
operation. a longer litespan and a
lower nsk of breakdown or data Joss
dunng criical manutactunng or
commercial processes

Q. What is 2 memory-card drive?

A. A memory-cargd drive uses credit-
card sized memory cartndges to
store data using procedures
establisned in the PCMCIA 1 0/JSIDA
4.0 stangard Card arives unk with
the PC/ISA bus and allow you to
write 10 and read trom an IC memory
card as you would a magnetic disk
Like a floppy disk. you can remove a
cartnidge trom a drive on one PC and
use it 1n another PC s card arive

Our memory-card dnves ofter a seek
time that 1s orders of magnitude
faster than mechanical disks Card
drives are also much less vuinerable
1o wear, part fallure or vibration
industrial PCs are onty one of many
candidates for these systems
Memory card drives are ideal in any
environment that requires portability.
ruggedness and tast access. That's
why they are poputar for fieet
vehicies, robots, remote data loggers
and mobile computer systems.

industrisl PC Penpherols o

Q. What are the ditterences between

applications tor Flash/RAM/ROM
disk cards and appiications tor
memory-card drives?

Fiash/RAM/ROM 0isks appear -
applications which demand large
storape capacity. easy memon,
expansion, compiete DOS
compatibiiity and the security which
diskiess operation proviges

They make excelient direct
replacements for mechanical gnves
because they completely emuiate
DOS operations. withstand more
severe conditions and read and write
much taster. Their watchdog tmers
make stand-alone or unmanned
operations much easier to manage
because they can tngger auto-resets
or auto-reboots in case 0f power
failures Disk cards aiso work well in
migh-secunty environments because
they re entirely enclosed within your
PC and theretore tar more tampe:-
proof than disk drives Applications
that generate lots of data will hng -
ampie storage space on a disk card

Any application that rewards
portabiirty. mobility and low power
consumption will benetit trom a
memory-card orve They ve won
tavor with designers of test
equipment, data-control systems anc
data loggers because of their small
size. ight weight ang the availability
ot standarg memory cards in several
sizes from 128 KB to 64 MB The
cards themsetves weigh little (trom
110 15 ounces [138 10 206 g}) and
can be moved from drive 10 dnive just
hke tloppy disks

. What are the difterent types of

memories used in solid-state
disks?

. Three types of memory are avaiabie

EPROMSs, battery-backed SRAM and
Flash memory. Ali three types offer
you storage capacities that equal or
beat those of fioppy disks. At the
same time, since they have no
moving parts, they offer greater
reliability than mechanica! drives.

An EPROM (trasabie Programmab:-
Read-Onh Memony . prowiges storac:
that 1s nearty nonvolatue tor it
writien electncaily ang can onty be
erased by UV isgn! SRAMS wit*
battery backing are normal stat::
RAMsS coupled wit™ a batt»~ tna
retains gata when no ™.z power
withdrawn Fissh memory operate
hke 3an EPROM except that it can p-
programmed ang erased whiie -
board. It provides the same long dats
retention but reguces the t:r--
required to store the data

: How does the el state disk wert?
: The sohd state disk uses memory

chips (Flash SRAM or EPROM) I
store programs and data instead o!
the magnetic particies on the
mechamcai grrve s gisk When the
systemn boots the disk card modihes
the BIOS INT-13 aisk O routine The
routine then transiates read and wrte
commands 1o the gesk card so that
they will correctly access the
memory Ciups YOu 00Nt need any
special dnvers You simply set the
arive 1o act as dnve A or C and use
stanaarg DOS commanas (COPY

DIR. etc) to mampulate your Gata

It you use Fash or SRAM 1or the
sohd state O1Sk. you Can reag or wnte
gata it you use EPROM ties on the
disk are reas onny The PCD-890 car
program some common £ PROV
chips on boarc Otherwse you wiii
need an external programmes 10 koac
your program and data files on the
EPROMs

: How go | boot frem 3 solid state

disk?

. IU's easy Simpry set the jumpers on

your Sohd state gisk 10 emutate gnve
A (the 151 FDD). then copy your
apphcation files to the disk along
with the standard system hies
required to boot (command.com.
10.Sys, autoexsc.bat. etc) Next time
you start your computer. it will boo!
trom the sohd state disk

9318

-
&

Peripherals

PC D '8 90 Dual Flash/RAM/ROM Disk Card

On-board EPROM
Programming Clrcuitry ——— *l —-— Watchdog Timer
SW1 Contro!
Fias/RAWROM Disk Drive 1 3.6V (1.8 Al Fiask/ RAN/AGH
12 Memory Sockets — T Lithium Battery ————— Disk Drive 1
External
Signal
Connmector
Flash/RAW/ROM Disk Drive 2 | f
12 Memory Sockets T o ROM BIOS SW2 Controls
Flash/RAM/ROM
Disk Drive 2
Introduction Aa PP"“'”“"S * Power-on auto-boot feature; user-

The PCD-890 solid-state disk emulates
two floppy disk drives. it provides
anywhere from 360 KB to 12 MB of
storage using Flash/EPROM/SRAM
memories. When you replace
mechanical disk drives with the PCD-
890, your critical PC applications will
run faster in harsh industrial
environments with a higher degree of
reliability.

The size of the PCL-890's disks
depends on the number of chips
installed. The unit works with a wide
assortment of supported chips from
standard manufacturers or their
equivalents. You can designate each as
drive A, B, C or D. You can install up to
two PCD-890s in your PC for at total of
24 MB of storage.

The PCD-890's on-board watchdog
timer protects your applications from
system standstills, particularly useful in
stand-alone or unattended
environments requiring auto reset or
auto reboot.

[LR

 Diskless PCs
« High-reliability industrial PCs
» Stand-alone or unmanned machines

Sites that demand high-speed or
heavy-duty disk operations

Industrial controtlers
Network terminals

Industrial PCs requiring high-speed
disk 1/0

Features
« Emulates up to two floppy disk drives

* Disk sizes: 360 KB to 12 MB (both
banks linked together)

* Drive designation: DOS drive A, B, C
or D (1st, 2nd, 3rd and 4th FDDs)

« Offers 24 individual 32-pin memory
sockets divided into two banks, one
bank for each drive

* Accepts 128Kx8 Flash/EPROM/SRAM
or 512Kx8 Flash/EPROM/SRAM

* Fully software-compatible with
mechanical floppy disk drives.
Requires no special software
development

defined password and user's prompt,
excellent for OEMs

* Up to two PCD-890s can be installed
in one PC

« On-board EPROM programming
circuitry with easy-to-use menu
driven programming utility software

« Lithium backup battery
(3.6 V@ 1.8 AHr) for 5-year data
retention (with maximum load of 24
SRAM chips)

= Connector for external battery

= Each card occupies only 16 KB of
system memory space

« Watchdog timer with selectable time-
out period (100 msec and 1.6 sec)

» Memory-mapped data transfer

* Switch (enable/disable) between
floppy disk drives and PCD-890s by
software

» Connector with pins for +5 V, +12 V,
GND, PFO (Power Failure Output) and
WDO (Watchdog Output) signals

« All solid-state construction for
environments hostile to diskettes

 Industrial P(Peripherals

PCD-890

Specifications

« Flash: ATMEL 29C010 (128 Kx8),
29C040 (512 Kx8)
INTEL or AMD 28F010 (128 Kx8)

« EPROM: ATMEL 27C010 (128 Kx8),
27C040 (512 Kx8)

e SRAM: CXK581000P (128 Kx8),
CXK584000P (512 Kx8)

Note: You may use code-equivalent
chips but make sure to use only
memories from recognized suppliers

« Battery: 3.6 V (1.8 AHr) lithium
battery backup

« Operating temperature:

32 to 140°F (0 to 60°C)

« Power: +5V @ 1 A maximum for
normal applications, +12 V @ 300 mA
maximum for programming EPROMs

* Board size: 13.3" (L) x 4.2° (W)

(340 mm x 107 mm)

Memory Configuration

Ordering Information

C PCD-890:
Dual Flash/RAM/ROM Disk Card with
0 KB memory, user's manual and
utility diskette

O M-27C010x3:
Three 128 KB EPROM devices

Q M-27C040x3:

Three 512 KB EPROM devices
Q M-581000x3:

Three 128 KB SRAM devices

Q M-584000x3:
Three 512 KB SRAM devices

Q M-29C010x3:
Three 128 KB (+5 V) Flash memories

0 M-29C040x3:
Three 512 KB (+5 V) Flash memories

The following table shows the number of EPROM, Fiash or SRAM chips required for

each disk size.

3
oy

s
(435 I S

et
3
3

b
3
sl
¥

£
3]

(0
23

industrial PC Peripherals

IPC
Peripherals

Flash/RAM/ROM Disk Card

FRBFLBERGUNE

Introduction

The PCD-892 half-size Flash/RAM/ROM
disk card uses up to 6 MB of SRAM,

Features

PC/AT compatible half-size card
Can be enabled or disabled in

Specifications
 Supporis the following memory

devices:

Flash

ATMEL 29C010 +5 V (128 Kx8),
ATMEL 29C040 +5 V (512 Kx8)
AMD/INTEL 28F010 +12 V (128 Kx8)
or equivalent. Approved
manufacturers only.

EPROM

ATMEL 27C010 (128 Kx8),
27C040 (512 Kx8) or equivalent.
Approved manufacturers only.

SRAM

CXK 581000P (128 Kx8),
CXK584000P (512 Kx8) or equivalent.
Approved manufacturers only.

Power requirements:

+5V @ 0.5 A max. (normal
operations); +12 V @ 50 mA max.
(during flash memory programming)

EPROM or Flash memory chips to
replace a floppy disk drive. It offers
faster access times and better pro-
tection from the vibration, vapors and
contaminants found in harsh industrial
environments. The emulated drive is

software * Board size:

* Fully software-compatible with 7.3'x3.9' (185 mm x 98 mm)
conventional drives, requires no
special software development

Auto-bootable when emulating Order ing Infor mation

identified conventionally as A, B, C or D drive A Q PCD-892A:
and obeys standard DOS commands; no Disk size from 360 KB to 6 MB Flash/RAM/ROM Disk Card with
special software is required. battery
i . Accepts 128Kx8 Flash/EPROM/SRAM
An optional lithium battery (3.6 V, or 512Kx8 Flash/EPROM/SRAM QO PCD-892B:

Flash/ROM Disk Card without battery

0 M-27C010x3:
Three 128 KB EPROM devices

0 M-27C040x3:
Three 512 KB EPROM devices

Q M-581000x3:

Three 128 KB SRAM devices
O M-584000x3:

Three 512 KB SRAM devices

0 M-29C010x3:
Three 128 KB (+5 V) Flash memories

Q M-29C040x3:
Three 512 KB (+5 V) Flash memories

1.8 AHr) preserves data stored on an
SRAM disk in case of power failure. The
PCD-892 alsig f:omes (Equip;rle(aj with a SRAM data retention of no less than
watchdog timer which outputs a TTL- ten years

low signal if the CPU's processing * On-board connections for external
comes to a halt due to a software bug or battery, V.. and +12 V power sources,
EMI. You can use this signal to activate power failure warning and watchdog
an LED or alarm or to trigger an auto- timer outputs

reset or auto-reboot. * Each card occupies only 16 KB of
system memory space

* Selectable watchdog timer intervals of
100 msec and 1.6 sec

* Memory-mapped data-transfer

* 32 to 140°F (0 to 60°C) operating
temperature

« Password protection against
unauthorized changes

User-defined prompt offers easy
customizing for OEMs

* Lithium battery (3.6 V@ 1.8 AHr) for

Applications

* Programs that require frequent, high-
speed disk access

* Diskless PCs and workstations

» Security systems

* Embedded control systems

» Unmanned (run-only) controllers

* Industrial cantro! systems .

* Instrumentation systems

» Testing systems

Industrial PC Peripherals

9

PCL-743/745

Fl_-T43 B_.T: CiaGRs~
- -
- ﬁ—* 2 8S-. SEEIL, &5 422 4p* s B:
. v — — M
TS Communilation T Rezeves Tl Lo,
segaaT: CONTEZ__F= — DaIvE: —
L= el D Lo oenzc .o
ZT=rs- o TN
SE.€77 § JEZCTEFO— e
. — —_ CISaB_E
. ~, PEFISTEZ ENAB_E
IR ®iee-e- — —_—————
e ® “ATC~ CoOnNTRZ
ouwoes gp_g-- T Be _ZATCT TR
= - o — 8432 rw?
. CeTa BFSESL -
€ e os: B
§ Ll et R A T T T T

(
l

[. -
. .t ¥, ASv~ SE@la_) .
LLLLEL! Z as €22 4@ v s

mmunication

Sy
]
=
bl
>
)
b

cm o2 : o Pom- rommunzzationT Lo oo, Pt e
AITRESE g g-- ¢ DE’:’;oga: 7 conTROLLEE — SnsEive
185 e1ecce- - ,_'_i_ __,?sm-s
ooweEa SE € ~— 3 aEgIsTER C E~aBoE
————> LaATe- T soacac.
RS-422/485 intertace Card Block Diagram
Pin Assignment Wiring Diagram (2-wire)
ﬁ\ TX-
RTS. 3
2 e — , .
RTS. 7 Ar i —)) [
3 RX. ; ' i '
cts. {8 — — .
4 RXx- —_— —— ——
CTs- 9 ; [)
NS/ GAC YN 7Y ol .
Vo e v e v x-,
Device 0 Dewvice Device
RS-485 Pragramming Example
1C ‘Configured as COM1 with the .
driver /receiverbit enabled Ordering information
20 BASE® = £ 3F8 O PCL-743;
.. General-purpose RS-422/485 intertace Card. user's manuai
- - O PCL-745:
100 OPEN “COM1:9600,N,8,1,RS"AS #1
| .
110 OUTBASEAs7, 1 . ledriver D::iated R.S-422/RS-485 intertace Card. user's manua!
120 PRINT#1, DATALS ‘Senddata PC-ComLIB Serial Communication Programming Library
200 OUT BASE&+7,2 ‘Enable receiver
210 INPUT $1, DATA2S ‘Receivedata
300 OUT BASE%+7,0 ‘Disabledriver
er—; g

5

P CL' 844 8-port Intelligent RS-232 Card

Introduction

We designed the PCL-844 inteligent 8-port RS-232 or RS-
422 imertace card for lab and industnial appiications where a
PC needs to communicate with terminals, modems or other
instruments. RS-422 applications use the optional PCL-8442
8-port 1solated RS-232 to RS-422 converter. shown on the
totlowing page You caninstalt up to four PCL-844 cards for a
total of 32 ports in anv AT/ISA bus 286/386/486 based PC

The PCL-844 s on-board 12 MHz 80286 processor takes over
the communications 10ad trom the host PC When you are
processing large amounts of data trom multiple ports.
servicing the interrupts alone consumes a large percentage c!
the capacity of your computer s CPU The PCL-844 serves as
a igh-speed dedicated interrupt processor 1ts CPU girectiv
controls the board s CD180 RISC-based UART. guaranteeing
38.400 bps pertormance over eight high-speed data ports

The PCL-844 is wirtually a se!t contained computer in its own
nght it contains 512 KB of dual-ported RAM which you can
use 1o store ana run programs The dual-port RAM maps into
the host system s address space 10 give you the tastes!
possible data transters between the PCL-844 and PC-memory

When the PCL-844 mitializes. 1t downloads the driver software
(which functions ike a PC s BIOS) into on-board SRAM This
improves pertormance and makes version upgrading easy.
with no hardware redundancy

tach PCL-B44 comes with sottware drivers for DOS and
Windows (PC-ComLIB. described on the following page)
These drivers support most common languages. including C.
Pascal. Visual Basic, Quick Basic. assembly and Chipper. The
PC-ComLIB package aiso incluges the DataScope data viewer.
terminal emulator and self-diagnostic utiities for easy
troubleshooting and debugging

Features

+ 12 MH7 80286 processc: CD180 R.SC Basw3 LA
512 KB dua! ported RAM

* Bauo rate up 10 38400 bps with eigh: oot £ - ve
» Complete RS-232 modem control signa:

* Maps 1o just 16 KB ot system memor, Choose pne ~tc..
addresses from C8000 to DCOOC

* ManvIRQoptions 2 3 4.5 7 1C ** 70 s
* Easy-lo-use menu drven instatianon prograr

» LEDs on connection box let you monito’ the TxD/Rx. <tate
ot any port

« Links to peripherals up to 4000 ft trom controier (RS-422 .

Applications

+ Data acquisition and control with RS-232/RS-422 bases
devices

* PLC monitoring and contro!

* Instrument controlier, distributec control system
* Modem server, database server POS controte
* Multi-user system

Specifications

Board

* Number of ports' 8

» Processor 12 MHz 80286

* Dual-ported RAM 512 KB

- SRAM 16 KB

» UART RISC-based CD180

» Total ports in one system 3?2

» Operating temperature 32 10 122 F (0 50

* Power consumption
+3V@15A +12VE120mA. -12V Q 180 m&

* Dimensions 13.3 x4 7.n {338 x 120 mm:
* Weight 1.51b (067 Kg)

RS§-232 interface

« Signals
TxD, RxD, RTS. CTS, DTR. DSR. DCD and GND

* Mode: asynchronous full duplex
Communication rate. 50 to 38.400 bps
Stop bits: 1 or 2

* Parity: even, odd or none

Data bits: 7 or 8

industriol (ommunicenen

Specifications e - PCL-1800

- Biock diagram for the PCI-1800 Pin ﬁssigmseﬁi

Connector 1 (A/D, D/A)
+12V pd

AGND

. AlHO 1
P AlLS g
AlH1 e
ALY o
AlH2 (&
AIL10
AlH3 %o
i AlL11 P
AlH4
AIL13 =
AlH5 =
AH7 AlL15
AlL15
AGND
| VREF AGND
EI }G;EM AGND DAOOUT
S DA1VREF DAQVAEF
AGND DA1OUT
DGND AGND
DGND
DAECLK
_ TRIGO
g = Data Bus ouTo gﬁé‘ég
of a 5 T 5V
3. : 1
i 1
Gonnector 2 (0/0)
1K Words —
FIFO D/00 ¢ .} D/O1
Doz D03
D/G4 /05
D06 D07
D08 p/og
B/0 10 Do 11
J—— D/0 12 D/0 13
DO 14 D015
D.GND DAY D.GND
DI Contres Bigoa +5V +12V
w2
Connector 3 (D7}
DAG B U
DAZ }o3
Ordering inforr o
5
1 PEL-1800; A8
330 KHz High-speed DAS Card, user's manual and utility disketre with BARIC, D410
G/C++ and Pascal drivers iRV
D14
D.GND
‘?’5 \,‘{

-PCL-812/812PG

MultiLab Analog
& Digital I/0 Card

Introduction

The PCL-812 and PCL-812PG are multitunction analog and
digital 1/0 cards which offer the five most desired measure-
ment and control functions for PC/AT and compatible sys-
tems: A/D conversion, D/A conversion, digital input. digital
output and counter/imer. They neatly package 16 12-bit
analog input channels, two 12-bit analog output channels.
16 digital input channels. 16 digitat output channeis and a
programmable counter/timer on a full-size cardg.

In addition to all the features iisted above the PCL-812PG
ofters the convenience ot programmable analog input ranges
With the PCL-B12PG selection of an analog input range 1s not
done by DiP switches, but by sottware commands For
applications which need different gains tor ditterent channels
or ditterent gains tor difterent stages of a process. the PCL-
812PG otfers convenience and maximum resolution

Rich sottware support. numerous 1/0 options and a wide
range of available daughterboards make the PCL-812 and
PCL-812PG ideal for industnal apphications that require a
combination of analog and digitat I/0

Features

PCL-812 and PCL-812PG

* 16 single-ended 12-bit analog input channe!s
« Two 12-bit analog output channels

* Programmable sampling rate of up to 30 KHz
* A/D with DMA or interrupt

* 16 digital output channeis

= 16 digitat input channels

* Programmable timer/counter

* Includes C/C++ PASCAL and BASIC grivers as we . &
calibration. demo and example prograr

* Ricnh application software suppor:
* Wige vanetv of externai daughter toar-

PCL-812PG only
* Programmable A/D ranges (gains,

Applications

» DC voltage measuremen!

* Transducer/sensor interfacing

* Wavetorm analysis

* Process control

* Programmable voltage output

= Contact closure monitoring

+ Digital signal and BCD intertacing

* industrial ON/OFF control

* Multiplexer and relay contro!

= Frequency, penod and pulse width measurement
« Event counting and pulse train generatior

1/0 functions

Analog input

The PCL-812 and PCL-812PG use an ngustnal stangarg
12-bit successive approximation A/D converter (AD574) we
sampie and hold for accurate, high-speed A’D conversion:
The typical conversion time is 25 microsecond:

You can trigger the A/D conversion in three wavs by progra~
control, by on-board programmable pacer ot by an externa
tngger pulse. The on-board pacer uses two 16-bit ime-
counter channels from an Intel 8253 A crysta oscillatc:
provides a 2 MHz time base This oscillator ets the pace:
generate trigger pulses with frequencies ranging from

500 KHz to 0.00046 Hz (1 pulse every 36 minutes

You can perform A/D data transfer in three ways by progra~:
control, by interrupt service routine or by DMA 1t you use
interrupt data transter you can jumper-seiect any IRQ ieve’
between 2 and 7. |f you use DMA data transter you can jumps-
select either DMA channel 1 or 3

Analog output

As a complement to the analog inputs. the PCL-812 and PCL-
812PG also provide two 12-bit double-buttered analog outpu!
channels. You can operate their D/A converters with an
internal fixed reference in the 0 to 5 V output range or with an
external reference for 0to +10 V or 0 to -10 V output

W

DAL(Senes

Specifications

PCL-812/812PG

Digital 110

re PCL-8 2 and PZL 8'2P(come w!* 1o igiar inpLls a- °
16 dig11a! OUtpULS. accessen via two 20-01n Quai-in-lins
connectors These connectors are standas3 on mos! 0 cars
and gauqnierboards in the PO Lablara tam -, Digital inputs
are normaity set high (value = Yy withcu! anv input anc
Cnhange state with the input signals azcorgingl, Digita
cetpuls are normatiy set tow (value = 03 al imtia state an:
Stay al the same state (buttereq) unti! tre next outpu:
operanon occurs

Timer/counter

The third timer/counter channe! on the Intel 8253 poweregd by
an internai or éxternal ime base. can be used t0 count events
or measure trequency. penod and putse wigdth

Walt state insertion

Because of the wide vanety of CPU ang bus speeds in the
market we designed the PCL-812 and 812PG witn a wait-state
nsertion capability. Wail-state insertion addresses most
speed compatibility problems. allowing you 10 use these cargs
in PCs with speeds ranging trom 16 M2 (80286) up to 66
MHz (80486DX2) This feature ensures that your card wili
keep up with future technology

Specifications

Analog input

+ Channels 16 singie-enged

» Resolution 12 bits

» Converter Honeywell HADC 574ACC. cr equivaien!
* Conversion time. 25 microseconds (max 30 KH:

* Input range (in V)
PCL-812 110, 25, 22 ¢
PCL-B12PG £10. 15 225 =125 +0625 +0312¢

* Range selection
PCL-812 by DIP switches PCL-812PG by sottware

» Trigger mode: by sottware on-board/externai tnigger

* Data transter: by program control interrupt (1IRQ 2 10 7) or
DMA (Channe! 1 or 3) for single channe! scan

* Accuracy 0.01% ot reading +1 bt

= Common mode rejection 60 dB typical
* Inpu! impedance >10 MQ

' Overvoltage: Continuous £30 V,. max

Analog outpu!
* Channels Two ooub.e Bultere? 12-Du channe

* D/A range (in V)
°C.-812 0-5 0-10 twrexternat reterenc-
SCL-B12PG 0-5 C-10 tw'internal reference, ¢15 v M-
with external AC or DC reterence {accuracy 1cr outnLt aboy-
+9 vV mav vary depenging on power suppty use”

+ Settling ime 30 microseconds

* Output current; 10 mA max

* D/A device MP7623KN or AD7541AKN of equivaier'
* Linsarity 2% bnt

Digital input
* Channels- 16
* Logiclevel D Oto 0BV,
* Logiclevel1 201050V,
* input ioad
04mAmax @05V (low) 50 uAmax @27V (hghi

Digital output

» Channels 16

* Logiclevel0 0to 04V,

* Logiclevel1 241050 V.

* Driving capacity Sink. 80mA@ 05V
Source 04mMA@ 24V

A/D pacer and counter (8253}
* A/D pacer 32-bit irmer with 3 2 MHZ time Dase

* Max. and min. rates 500 KHz to 0 00046 H7 icre samg -
every 36 minutes)

» Counter One 16-bit counter with a 2 MH? ime pas«

General

* Power consumption
+ 5V @500 mA typical 10 A max
+ 12V @ 50 mA typical. 100 mA max
-12V @ 14 mA typical, 20 mA max

* Operating temperature 32°F 10 140<F (0 to 50*C -
* 1/0 poris- 16 consecutive byles

* Connectors. All I/0 channels are accessed through trve on
board. 20-pin. dual-in-hine connectors

+ Base address
DIP-switch selectable. default setting 1s H220

DAL(Series

150

DA&C Series

PCL-812/812PG

Ordering Information ~ - s.ssicnme-
Q PCL-812; PCL-812 Multi-Lab Card, user's manual and utiiity diskette. with BASIC,
C/C++ and PASCAL dnvers

0O PCL-812PG: PCL-812PG. user's manual and utility diskette with BASIC, C/C++
and PASCAL drivers

. i
QO OPT 002: Wining kit: includes PCLD-780 winng terminat board, PCL-10501/PCL - §
10502 industrial wiring adapters and cables.]

0 OPT 003: Three application software packages: PCLS-700-1 PC-LabDAS, PCLS-
800 PC-Scope and PCLS-702 LABTECH ACQUIRE

Q PCL-812-CS: Compiete package: PCL-812 + OPT 002 + OPT 003
O PCL-812PG-CS: Complete package: PCL-812PG + OPT 002 + OPT 003
0 PCLS-DLL-2: Windows DLL dnver for PCL-812/PG or PCL-7118

Lb
|
—_— IS LI S FIRSN
Fm::‘%_re 2 012 8171 |2 ¢~ 12 8IM—30/6 ; ;
NSO : CODE LATCH | |D/A CONVERTER—) O/a 2 IS : I
M ': r-—_—:?—'(ci'.cu.‘ - » .
{170 POR”™ e POR™ 2 € a253-5 - o ey s
DTECSSS orcones g oger 15 IF: COUNTER o8 — QLT @ .
i~ — ¢ > 7w AN
| TIEYE > oate BurrEe T ""‘zi._,;"‘” COUNTER o1 ———3 1O BACER - "N 4 s
S JS— o L T2man TRIC 2 = ul PR
(D] O o1 OR 3 F— & v) %
| ———— APER SEECT € . ""Sm“ *2; 8s v x -
p——" —_— 2
pn——
G e2---e” ! ‘§ | | | 16 BIT =—30/02 ppita.

| arero stroy M | . L_|ot. our 00 15 OB~
Serrr————— ~——>0/C 1%
INTE N ! | 16 8T =< Cs: e v Coonectsr :
° ovtmoL . Oacx [T Pe : : OIG. N o s ol::.‘: X 7Bt
4 o — ! Yewrers) | Tt osi1s - fr—
—= b— | Lscan Locic _ EE .
—e———— (=12 BIT AD : Dot ’
CTRIL LOGIC [| MR ux el i
P Soweeres ROG.|_|16 Ot " e : s e
J—— | rSINGLE Ene T <O S e L
Ex"(anaL | SOF TWeRt | PACER ! . = !
LT R 1TRIC = j :
- = ' cone LATc- .
oy
I
PCL-812PG Biock Diagram B
' N S——
PCL-712E BLOCK Oladham Lesnector 4 T
———
—_— H
. < L2 Cm 12 BIT [2 Cm 312 @IV D/a i
m D COOE LATCH s O/A CONVERTER=w—) O/a 2 ‘ & i
. ‘170 BORY ——) PORT C £ \ <. l
LADDBESS pecooes —3 poaT 13 N COUNTER 80 =——3 Ou~ © PO
—_ Ot pm— . m———— i l
| P OALA_AOAva BUFFER o |ammzl (Fese2 ‘(I COUNTER 1 — *c macen R
i S— e; | osc ! t ol ‘ ————— ra1c o “3
i.;___lavAa;o-.:L—s ‘i) .
| Com et smmER SELECT K]E §‘. s 1
——— e g [T s
. | e
IRG eF~-ee? i | | 18 817 —0D/C 21817aL g on !
.% [S TR OO e
igl INTR Tepo — o/ e OlG1Tac
! comtao, | _DACK | surrens lcar1 15 new Cosascter 5 (Coastr
i L Lo6IC | §L
P —— 12 BIT A/D aNA . SeX e
b |TR16 Loszc convenTen L | 6 Coaarmee. S 0 amaLoc e~ 3 e
Cha -
; [— sinGLE Eno X En 38 MU ¢ e .
i!xf:mui | SO% TwARE jpaces GAIN A} "
Ta1G TRIG {TRIG sELECT s 0 e
"o S
PCL-812 Block Diagram 1 . -
" ‘!
‘2 xi
B2 DALC Series

P CL' 8 3 0 10-channel Timer/Counter Card

Introduction

The PCL-830 is a general purpose counter/timer and digital

I/0 card for PC/AT compatible computers. It provides ten

16-bit up/down counter channels and frequency dividers for

its on-board 4 MHz crystal time base. It also includes 16

digital outputs and 16 digital inputs. Two AMD 9513 chips
provide a variety of powerfui counter/timer function modes to

match your industrial and laboratory applications.

Applications

« Event counting

Programmable frequency synthesis

* Frequency counter

Pulse-width and period measurement
¢ Time-delay generation

Frequency-shift keying

« F/V conversion and pulse accumulation

Features

« Periodig-interrupt generation

» 10 independent 16-bit up/down counters

« Binary or BCD counting

« Programmable frequency output

» Complex duty-cycle output

» Two alarm comparators (on counters #1/#2 and #6/#7)
Single-shot or continuous output
Programmable count/gate source seiection
Programmable input and output polarity
Programmable gate functions

16-bit TTL input and 16-bit TTL output ports
Selectable interrupt input channel

Up to 6.8 MHz input frequency

» Time-of-day option

Industrial automation (flowmeter and wattmeter monitoring)

Specifications

GCounter

« Description: Ten independent 16-bit counters

+ Input level: TTL-compatible

* Output level: TTL-compatible, V,, = 0.4 V max @ 3.2 mA
sink; V,,= 2.4V min @ 0.2 mA source

« Input frequency: 6.8 MHz max
« Input pulse width: >70 ns
« Connector: Two 20-pin flat-cable connectors

+ Time base: 1.00 MHz

+ Frequency stability: +100 PPM

Digital I/0

» Channels: 16 TTL-compatible outputs (16 bits)
« Driving capacity: Sink 8.0 mA @ 0.5 V (low), source

0.4 mA @ 2.4V (high)

General

* Dimensions: 7* x 4.2" (179 mm x 107 mm)
 Power consumption: +5 V @ 600 mA typical

Pin Assignment

chip #1 oscillator out
counter #2 gate
Counter #4 gate
counter #1 input
counter #3 input
counter #5 input
counter #2 output
counter #4 output

ground
+5 V power

chip #2 osclilator out
counter #7 gate
counter #9 gate
counter #6 input
counter #8 input
counter #10 input
counter #7 output
counter #9 output

ground
+5 V power

Ordering Information

CN1

- o o BN

counter #1 gate
counter #3 gate
counter #5 gate
counter #2 input
counter #4 input
counter #1 output
counter #3 output
counter #5 output

interrupt enable
interrupt input

counter #6 gate
counter #8 gate
counter #10 gate
counter #7 input
counter #9 input
counter #6 output
counter #8 output
counter #10 output

not used
not used

0 PCL-830: 10-channe! Counter/Timer Card,

user’s manual and utility diskette

DA&C Series

1411

DA&C Series

i Pc l -8 3 8 Stepping Motor Control Card

' Specifications

Pulsq-traln generator

+ Independent channels: 3

« Steps per command: 1 to 65,535

» Speed range: From 1 to 7000 pps (pulses per second)

« Operating modes: Either two-pulse (CW, CCW) mode or
pulse-direction mode, selectable by DIP switch

+ Signals: Opto-coupled with open collector
« Pull-up voltdge: +5 V, 412V, or external

« Pull-up resistor;: 4.7 KQ

« Driving capacity: 30 mA@ 05V

Digital I/0
Introduction « Input: 24 channels, TTL compatible

The PCL-838 Stepping Motor Control Card turns your PC into « Output: 24 channels, TTL compatible
a multi-axis motion-control station. The intelligent PCL-838

fetches operation data from its dual-port RAM to generate General
pulses for each channel, giving higher performance. * Dimensions: 13.3" (L) x 3.8" (W) (340 mm x 88 mm)
You can install more than one card in your PC, each card » Power consumption:
controlling up to three motors at the same time. The included 5V @ 1.2 Atypical, 12 V external load only
DOS device driver provides powerful commands that support .
you to easily incorporate motion control in your application Pin assignment
software.
. . COMMON (CH1) ’1\20 DIR/CW (CH1)
APP"(G tions Pu:;;/;(;vz :2:;; : 21 EXT.VCC (CH1)
* Precise X-Y-Z position control PULSEICCW (CH2) |4 2| DREW(EH)
. i i COMMON (CH3) 5 s EXT.VCC (CH2)
Precise rotation control PuLSECoW (CH)) Ul DROW (CHY)
* Robotics and assembly equipment £ STOP (CH1) 7 %] EXTVCC(CH)
. 26 GND
« Other stepping-motor applications ESTOP(CH2) 18 . oy
E.STOP (CH3) 9 28 5V
GND 10
Features o b B o
30 D/00
* Independent and simultaneous contro! of up to three LA L B
motors I | L
0/12 14
« Device driver with a language-independent high-level oy hs ¥ ©o3
command interpreter o4 he :; gig‘;
« Programmable step rate from 1 to 7000 pps (pulses per E;:Z :: | oos
second) o w 0/0 7
» Programmable initial speed, final speed and time duration .)
with calculated linear acceleration and deceleration COMMON: Isofated common point

o EXT.VCC: External power source
* Supports one clock (pulse and direction) and two clock (CW PULSE/CCW: Stepping pulses or CCW pulses

pulse and CCW pulse) control modes DIR/CW: Direction signal or CW pulses
E.STOP: Emergency stop
GND: Ground of the PC
D/1 0 to D/t 7: Digital inputs
D/0 0 to D/0 7: Digital outputs

Bi47 DAZC Series

0.15" @ Hole
4 Places

"a Tt °[T| | INERTIAL
| MEASUREMENT

1 UNIT _

3.24

‘ [.
4.68" 9 PINMALE
[D-SUB
FORWARD ﬂ“r
1.00"
4. L*'lﬂ‘l { ose}
oo ' " N
: MILLED ALUMINUM PLATE

INERTIAL MEASUREMENT UNIT
9 PINMALE CONNECTOR

1 POWER GND
2 +28 VDC IN
3 SIGNAL GND
4

5 RX

6

7

8

9 X"

+THE USER RECEIVES ON THIS LINE.

WATSON [INDUSTRIES, INC.

3041 Melby Road Eau Claire, WI 54703
Phone (715)839-0628 + FAX (715)839-8248

7/09/93

u..w. DU UOE] ‘;

agexoed
JOSU3s U0 A[UO [relsut nox - AONAINIANOD

JUdWUSre-sn

JOSU3s 0} anp eJep Jo uopdniLcd AqQ PIUIPIYMISA0

9Q Ued JOSUIS B JO UOPNJOSAI Y] °SIOSUIS JO

19§ [erxe-1n & J0J [EORHO S| 3IMIEd) SIYL “o£°0 Uey
a1owr ou Aq srxe Jodoad s31 P paufresiur aq 03 jou
pasjuereng ore sIOSUIS [IV - INTANOITV YOSNAS

D08+ O} Du(2- 3ANLVAIIdWAL
.0 0S NDOHS
s> LHOIIM
ONIMVRIQ 338 3218
90IVNY (IVNOILdO)
ZeTsy “vUSIa VW04 INdINO
VWoSZ >
Dansz+ INIWRINDI JINMOJ
HL oS1 Of ofF ADWVINODV ONIAVIH
(BuiposH 'Yoid ‘oY) ZH §'0-Da
(ey0y) pUD *1820Y) ZH 02-04 3ISNOJSRI ADNINDIYA

SYOSNIS TV - 520> INJANOINY JOSNIS

OEO} o0 ADWRAINJODV ‘AT13 ANV XNVE

S, OW G NVHL J3L38 NOLNMIOS3Y NOUVYITAOOV
'§d %S0 > SVi8 NOUWYTI3ODV

Sd %S0> ADWVINODOV NOUWITIZOOV

sB¢F FONWY NOUWVITIIOOV

'S'd %SF Svig AW

038/.500 > NOUNIOS3Y 31V

S'd %l ADVINDODV 3w

08s/.001F JONWY 3V

SNOILVOI4103dS avo009-nNINI

"S[eqUIIS JO Isn I} INOYIM UOPBULION] Suipesy

dJeImndde Ul §IMNSAI SNYI, ‘Elep OpduSew JO UORRULIOJSURT)
9JeUIPIOO0D JIMI Ue J0j uopeuwoyu; sapoixd siosuas yojd
pue [[01 3y} WOy ejep 3yl -EIep Suipesy opouSew jemooe
9p1r01d ‘SIOSUSS UOREBAI[? PUE YUeq Y} M PaujquIod
‘I9jowojpuBewt rerxe-1n v - YJOSNAS ONIAVAH OLLANOVIA

"BJep JI3jawo}dudew [erxe-[n ayy

U0 UORBULIOJSURI} UORBUIPIO0D JIMF J0J UOHEULIOJU] SE [[oM SE
SI3}3UIOIIAIDE Y} 0] SFUNISS SBIq Y} ABIGEI 0} I0UIII}II
3y} apuoad SI0SUIS UOPEBAI[S PUE YUe(Y], ‘IZIS [[EWS €

SE [[om SE ‘uopnjosa ‘fymiqueadas Juafeoxe apmoxd yomym ste
aappeded pmbyy are siosuds asayL - NOLLVAZTE ANV JNVL

‘3[qe[feAe are safuel ajewIdy -operd
UOREIUSWNSU] 918 SIOJOWOIIIIE UL - SYALAWONTTIDIV

‘Jomod mo[pue Izis [feuls
Pim dueULIoNRd JUIPIXS IUIqUIod A3Y] 'S0ILS el JemSue
JUSWRR SuReIqiA ‘3)e}S-PIIOS Xk S0IA8 9Bl YL - SOYAD ALV

‘Aoemooe

1q 91 YIm puodas e sawp OGS pajdures sy eyep v afeyoed
3oedwod 3uo uy [re - Surpesy opsufew pue ‘UOREBAS]? pue

queq ‘UoOpeIa[adOe pue Ijel [eXy-1L - a5exqoed Josuas 3jaduiod
B JIATIP 0} IspIadxe 10suas uasoid I LASojouyds) junow
30BLMS JoAR[-RMUW SIUIqUIOd QVO09-NINI YL ‘Ish 0} Asea pue
s[qerna ATYSTy st yorym s8exoed Josuas spueudp 9391duiod e 1of
SPUBWIP AUeW 93} 0} PIUSISI] 9ABY 9\ '9PIM PlIOM SIIWI0}SND
0} sagexoed Josuas Jo farrea e papmoid sey sILSNpPU] UOS}EM

(@vo09-NIAID 1INN
INFNRINSYIN TVILIAN

9.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library

Code 52

Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Electrical and Computer Engineering Department
Naval Postgraduate School

Monterey, CA 93943-5121

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

Dr. Michael K. Shields, Code EC/MS

Electrical and Computer Engineering Department
Naval Postgraduate School

Monterey, CA 93943-5121

Dr. Se-Hung Kwak

Loral, Inc.

Advanced Distributed Simulation
50 Moulton Street

Cambridge, MA 02138

Commandant (G-EAE)

U.S. Coast Guard Headquarters
ATTN: LCDR Pat Moran
2100 2nd Street S.W.
Washington, DC 20593

Commanding Officer

U.S. Coast Guard Research and Development Center
ATTN: ENS Carlton Williams

Avery Point

Groton, CT 06340-6096

LT Peter M. Hoffman
63 Lexington Drive
Croton-on-Hudson. NY 10520

