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Abstract 

Good documentation is critical for user acceptance of any system. Advances in areas such as knowledge- 
based systems, text generation and multi-media have now made it possible to investigate the automatic 
generation of documentation from the underlying knowledge bases. Empirical studies have shown that 
examples can greatly increase the effectiveness of system documentation. However, studies also show 
that badly integrated text and examples can be actually detrimental compared to using either text or 
examples alone. It is thus clear that in order to provide useful documentation automatically, a system 
must be capable of providing well-integrated examples to illustrate its points. 

This thesis builds upon previous work in natural language generation, example generation, cognitive 
and educational psychology to identify relevant issues in the generation of coherent descriptions that 
integrate text and examples. We identify how text and examples co-constrain each other and show 
that a system must consider example generation as an integral part of the generation process. We 
describe an implementation, and present an initial evaluation of the system's effectiveness. 



Chapter 1 

Introduction 

Good documentation is critical for user acceptance of any system. Sophisticated on-line help facilities 
based on hypertext or similar retrieval methods are becoming increasingly common. Advances in areas 
such as knowledge-based systems, natural language generation (NLG) and multi-media now make it 
possible to investigate the automatic generation of documentation from the underlying knowledge 
bases. This has several important benefits: it is easily accessible; it avoids frequent problems of 
inconsistency, as the information presented is obtained directly from the underlying representation; 
and not the least, it can take the communication context, such as the user, into account. 

This thesis makes the following claims: examples are necessary in effective explanations; examples 
cannot just be presented as an after thought, but must be well integrated with the accompanying 
explanation; a text planning mechanism that plans text in terms of communicative goals can be used 
to generate explanations that integrate text and examples effectively if the examples are treated as an 
integral part of the planning process and their effect on the rest of the discourse is taken into account. 
In this thesis, we describe the generation of descriptions of the syntax/surface structure for constructs 
in programming languages. Even though the underlying semantics are not taken into account, the 
descriptions illustrate important ways in which the text and examples constrain each other. 

This thesis brings together results from cognitive psychology and education on effective presentation 
of examples, as well as work on computational generation of examples from intelligent tutoring systems. 
It also takes into account work in machine learning on computational learning from examples, and 
a characterization of good examples for this purpose. We present our own analysis of a corpus of 
instructional and explanatory texts to identify the different ways in which examples interact with 
the surrounding text We analyse relevant issues and derive a set of heuristics to generate effective 
descriptions that integrate both text and examples. We then describe an implemented text generation 
system that plans presentations of integrated text and exampl , by taking these factors into account. 

The rest of this chapter presents the motivation for the work: (t) the need for documentation 
in the understanding and user acceptance of complex systems; (it) the use of examples to enhance 
comprehension, and their use in documentation, and (tit) the interaction between the generation of 
text and examples in a description, as each constrains the other in several ways, and ignoring these 
interactions and constraints can lead to reduced understandability. 

After this background, this chapter concludes by briefly outlining the contributions of the work, and 
the organization of the thesis in terms of the chapters that follow. 



LI   The Need for Documentation 

Documentation of programs is one of the most vital and the 
most abused aspects of data processing. 

- P. W. Williams (1977) 
U.S. Comptroller-General 

Good documentation is a critical factor in user acceptance of any complex system. The following 
excerpt from TIME magazine illustrates the importance of good documentation: 

Coleco lost $35 million in the fourth quarter last year partly because people floored to return the initial 
version of its Adam computer which the company offered for $600. Coleco blamed much of the consumer   ' 
dissatisfaction on 'manuals which did not offer the first-time user adequate assistance'... Coleco has 
reintroduced the Adam complete with a new instruction manual. 

(Greenwald, 1984) 

There are numerous books and articles on writing good documentation, e.g., (Duin, 1990; Beard and 
Calamars, 1983; Bell and Evans, 1989).1 These deal with issues ranging from the effect of using 
different typefaces (Tinker, 1963) and the use of everyday metaphors (Norman, 1988; Doheny-Farina, 
1988; Hastings and King, 1986), to the effect of illustrations on user comprehension (Willows and 
Houghton, 1987a; Willows and Houghton, 1987b). It is notable that in spite of differences in their 
approach and ideology, all these books either stress the need for examples, or make extensive use of 
examples themselves to convey their point 

Maintaining consistency between the system and the documentation is an important desiderata. As 
complex systems evolve over time, in response to bug reports, maintenance fixes, and user requests, 
often the associated documentation fails to keep up with these changes. Such a situation can lead to 
documentation that is not useful, and worse, even wrong. Documentation generated by the system 
from the underlying representation of the system can help mitigate this problem of inconsistency 
between the documentation and the system's representation. 

LL1   Documentation: The Need for Examples 

Examples play an important role in documentation. Consider the two descriptions in Fig. 1.1 for 
instance. The first description is taken from a book on AI programming (Chamiak et al., 1987).2 

The textual explanation for the function is complete (in that it does not omit any facts); however, the 
second description, with appropriate examples added by us, is far more understandable.3 In this case, 
the examples highlight points that may not be immediately obvious from the explanation, such as the 
concatenation of the print name and the number in the output, the fact that the print-name can be 
different from the actual output, etc 

Other references to writing documentation are (Brockmann, 1990; Brockmann, 1986; Chinell, 1990; Crandall, 1987- 
Doheny-Farina, 1988; Duffy et d., 1983; Hasting» and King, 1986; Horton, 1991; Maynard, 1982; Morgan, 1980; Pakin and 
Associates, Inc., 1984; Simpson and Casey, 1988; Stuart, 1984; Yoder, 1986; Tinker, 1963; Willows and Houghton. 1987a; 
Willows and Houghton, 1987b; Norman, 1988). 

2The intial sentence enclosed in brackets does not explicitly appear in the book, but the description occurs with other function 
descriptions, and a generic statement such as this, about all the functions, appears before the group. 

In an evaluation with about 15 users, we found that all of the users found the second description easier to understand 
compared to the first one. 



(GENSYM ^optional (PREFIX "G")) 

[GEISYM is a function call with an optional argument called PREFIX. It] Returns a new, 
uninterned symbol, whose print name begins with PREFIX and ends with a number; the 
number is incremented with each call to GEISYM and the default value of PREFIX is reset to 
whatever is passed as an argument to GEISYM. 

From (Charniak et al, 1987), page 404. 

(GENSYM ^optional   (PREFIX "G")) 

GEISYM is a function call with an optional argument called PREFIX. For example: 

(GEISYM) 
(GEISYM "ABC") 

The function returns a new, uninterned symbol, whose print name begins with PREFIX and 
ends with a number. For example: 

(GEISYM "ABC")    "> #:ABC26 

The number is incremented with each call to GEISYM. 

(GEISYM "ABC")    **> #:ABC27 
(GEISYM "ABC")    ==> #:ABC28 

The default value of PREFIX is reset to whatever string is passed as an argument to GEISYM. 

(GEISYM "USC")  ==> #:USC29 
(GEISYM)      ==> #:USC30 

Figure 1.1: Descriptions with, and without, examples. 

A number of studies have shown the need for examples: a fifteen year survey on documentation 
carried out on behalf of Xerox, Control Data Corporation and Scientific Data Systems found that the 
lack of adequate numbers of examples was mentioned by users as one of the three most important 
user complaints (Maynard, 1982).4 Almost identical results were reported on military documentation 
by Beard and Calamars (1983). In yet another study, LeFevre and Dixon (1986) found that in 76% of 
the cases, users looking at documentation consistently skipped over the explanation initially, going 
directly to the accompanying examples, returning to the explanations only if the examples could not be 
understood. These studies show that users appreciate examples and the quality of the documentation 
or explanation is often judged to be adversely affected by their absence. 

4The other two were: (t) that manuals were software oriented rather than function oriented, and (it) that they did not have 
enough reference aids. 



LL2   Documentation: The Effectiveness of Examples 

Empirical studies of effectiveness of examples for comprehension have demonstrated significant 
differences between explanations with and without examples: a study by Reder, Chamey and 
Morgan (1986) found that the most effective manuals for instructing students on the use of a personal 
computer were those which contained examples; in one case, when the examples were replaced by 
'equivalent' textual descriptions (in an IBM PC manual), user comprehension fell to 48% of the 
previous case when the manual used examples in communication. The speed of learning was seen to 
increase significantly when examples were included, e.g., (Chamey et al., 1988; Reder et al., 1986; 
Doheny-Farina, 1988). Books on writing or generating good documentation all stress the need for 
effective, well structured examples, e.g., (Bell and Evans, 1989; Chinell, 1990; Pakin and Associates 
Inc., 1984; Simpson and Casey, 1988; Stuart, 1984; Hastings and King, 1986; Horton, 1991). 

The use of examples in the comprehension of complex concepts in programming and algebra was 
studied by a number of researchers, e.g., (Pirolli, 1991; Pirolli and Anderson, 1985; Woolf 1991- 
Woolf and McDonald, 1984a; Zhu and Simon, 1987). These studies reflect the importance of examples 
as an aid to comprehension in educational and instructional contexts. These studies found a need for 
effective examples in documentation. Most authors writing documentation for tutorial texts in fact 
recognize this need for examples. Similarly, a system designed to generate documentation on demand 
from the underlying representation should incorporate examples within the descriptions. 

L2   Examples and the Textual Description 

Examples are an integral part of any instructional or explanatory process. They help clarify ambiguous 
definitions and illustrate abstract descriptions. People often use examples to illustrate their point- 
most text-books include examples in explanations or descriptions of complex concepts. In particular' 
as we saw previously, examples are essential in certain text types, such as instruction manuals and 
user documentation. Thus, for an explanatory system to be effective, it must be capable of presentine 
examples to make its point 

Examples alone, however, are not enough. A number of studies have shown that subjects cannot 
generalize well from examples alone. They have difficulties solving problems that are minor variants 
of problems thay have seen as examples alone, e.g., (Reed et al., 1985; Reed et al., 1974; Gick and 
Holyoak, 1980; Sweller and Cooper, 1985).6 Examples cannot be effective without explanatory text 
nor can an explanation be effective without accompanying examples. ' 

Matters are not as simple as just presenting both the explanation and the examples. Sweller and his 
colleagues showed that examples that were not well integrated with the text could make matters worse 
for the user (Chandler and Sweller, 1991; Sweller and Cooper, 1985; Ward and Sweller, 1990) In the 
domain of geometry, for instance, they showed how the placement (next to the text, same page, separate 
page, etc.) of the diagrams that the proof dealt with could substantially affect user comprehension by 
distracting the user from the salient points in the description, and cause a deterioration in learning' It 
is also important that the textual descriptions and the examples complement each other: Chi and her 
colleagues (1989) showed that naive users understood examples very differently from advanced users 
Explanations accompanying examples that did not meet user requirements were not likely to help in 
understanding the examples, and might even have a negative effect in comprehension. It is therefore 
important to ensure that both the text and the examples are presented as part of a well integrated 
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An assignment is a construct that tells TfcX to assign a value to a register, to an internal 
parameter, to an entry in an internal table, or to a control sequence. Some examples of 
assignments are: 

\tolerance * 2000 
\advance\countl2 by 17 
\lineskip4pt plat 2pt 
\evexycr - {\nskip 3pt relax} 
\catcode\'« »11 
\let\graf * \par 
\xont\ayfont cabzl2 

From (Abrahams et al, 1990), page 49. 

Figure 1.2: Example of textual elision due to examples. 

coherent description that complement each other by taking their interactions, mutual constraints, and 
the context into account 

Examples depend upon the accompanying text (Feldman, 1972), and in turn, affect the actual textual 
explanation produced (Klausmeier and Feldman, 1975): the information content of the examples and 
the terms used in conveying that information are dependent on the accompanying description, while 
the presence of the examples helps the explanation to refer to features and properties of the example 
to better convey its point. In some cases, the introduction of examples can result in additional textual 
descriptions being presented; in other cases, some portion of the original textual explanation may be 
elided. Consider the description in Figure 1.2. It describes the assignment operation in TßX. The 
examples illustrate a number of things which are not mentioned explicitly in the description because 
they are illustrated in the examples. Some of these are: («') the variable being assigned a value appears 
on the left and the value on the right; (it) objects being assigned values can be either global variables, 
local variables, fonts, or control characters; (»»*) values being assigned can be either numbers, variables 
or expressions to be evaluated; (iv) the variable and the value can be separated by "=" or space or 
nothing at all (the "=" and space are optional). It is thus clear that the process of incorporating 
examples is inextricably linked to the process that generates the text. 

There is a large body of relevant experimental work on the interaction between examples and their 
context in education. Researchers have studied the cognitive effects of varying different parameters in 
the presentation of educational materials in the classroom, e.g., (Bruner, 1966; Carnine and Becker, 
1982; Chi et al., 1989).8 Much of this work dealt with the construction of conceptual models, studies of 
attention spans, and the development of effective teaching techniques. None of the studies reported 
had a computational perspective. However, there are important insights to be drawn from this work. 
The results on the cognitive effects of presenting contrasting positive and negative examples, the need 
to present simple examples before complex ones, and the need to vary the examples based on the user 
corroborate our analysis of the corpus used. The fact that these studies were conducted in different 
domains (biology, algebra, geometry, etc) implies that such results are not applicable just to a narrow 
application (such as programming languages), but are widely applicable. 

6Additional references are (Clark, 1971; Engelmann and Carnine, 1982; Feldman, 1972; Feldman and Klausmeier, 1974; 
Frederiksen, 1984; Gillingham, 1988; Houtz et al., 1973; Klausmeier, 1976; Klausmeier and Feldman, 1975; Klausmeier et al., 
1974; MacLachlan, 1986; Merrill and Tennyson, 1978; Moore, 1986; Michener, 1978; Rissland, 1978; Tennyson and Park, 1980; 
Tennyson et al., 1975; Tennyson and Tennyson, 1975; Tennyson et al., 1972). 
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Figure 1.3: A block diagram of the overall system. 

L3   The System and the Application Domain 

We have seen above that good documentation is an important aspect in user acceptance of a system, 
that examples are important for good documentation, and that examples cannot just be added to the 
text because they strongly interact with the accompanying description. To test the validity of the 
hypotheses that resulted from our corpus analysis, we chose to implement a system in the domain of 
automatic generation of system documentation. There are many reasons for this choice: (i) automatic 
documentation is an important application in which to investigate these issues because examples are 
crucial in documentation and documentation is a critical factor in user acceptance of a system; («') there 
is a large body of work on how documentation should be written; (Hi) a lot of actual material available 
for our corpus analysis, including numerous examples of different text types (such as introductory and 
advanced); and (t'v) we could implement our results within a large software system. 

A block diagram of the system is shown in Figure 1.3. The system consists of a text planner, an 
example generator, a grammar interface and a sentence generator. The system takes a high level 
communicative goal, such as 'describe the concept list*7 and can generate a description of the type 
shown in Figure 1.4. The system can also be used to generate advanced, reference manual type 
descriptions of concepts.8 Reference texts differ from introductory texts in many ways, and these can 
be handled by the system as well. The system is part of the larger framework in the Explainable 
Expert Systems Project (EES) (Neches et al., 1985; Swartout et al., 1992; Swartout and Smoliar, 1987), 
and builds upon previous work in text planning and explanation. 

7The formal notation for specifying such goals will be described in Chapter 5, where the system is discussed in greater detail. 
•introductory and reference texts are the two text types that the system can currently generate texts for. Intermediate texts, 

which are discussed for the sake of completeness cannot be handled by the system as yet, because the underlying semantics of 
the constructs in our domain are not yet represented. 



A list always begins with a left parenthesis. Then come zero or more pieces of data (called the elements 
of a list) and a right parenthesis. Some examples of lists are: 

(MOIXSYS) 
(RED PIZZA CARS PLAIES) 
(2 3 6 11 19) 
(5 BLUB 0 FISHES) 

A list may contain other lists as elements. Given the three lists: 

(BLUB ORAIGE)  (AARDVARKS BLEPHAITS)  (FISHES APPLES) 

we can make a list by combining them all with a parentheses. 

((BLUB ORAIGBKAARDVAMCS BLEPHAITS)(FISHES APPLES)) 

Figure 1.4: A description of the concept list using examples. 

L4   Contributions of the thesis 

This thesis is an attempt to synthesize related work on descriptions and examples in psychology, 
education, the computational generation of examples and natural language generation, together with 
the results of our corpus analysis. The contributions of this thesis are: 

• an analysis of both the interactions between text and examples, and their mutual constraints by 
corpus analysis (for instance the fact that examples can cause both deletion and addition of the 
text around them); 

• the identification and analysis of the different features in the examples that are important in the 
context of generation (the position of the examples, the type and amount of information in the 
examples, the necessity for prompts in some cases, etc.); 

• an improved categorization of example types that takes into account the context of the examples 
and is computationally implementable; 

• the identification of the differences between descriptions (in the BNF-documentation domain) 
generated for introductory texts and advanced texts; 

These claims have been validated by implementation of a text planning system which generates 
explanations using the heuristics identified in this thesis. The resulting texts not only closely matched 
with the typical' texts in our corpus, but were in some cases better based on an empirical evaluation 
of the cognitive effectiveness of our descriptions. 

L5   Organization of the thesis 

The thesis is organized as follows: 

Chapters 2-4 present the background material, and a discussion of the major issues in the 
presentation of examples. Chapter 2 presents the background and related work in the use of examples: 
as aids in intelligent tutoring systems (ITS), work in machine learning on the characteristics of good 
examples, and on the development of some instructional models that emphasize the use of examples. 
Chapter 3 discusses the issues that were identified by us as being important in the integration from 



our corpus analysis. Chapter 4 presents a categorization of example types, necessary in building a 
computational model. 

Chapter 5 presents an overview of an implemented system used in generating descriptions that 
integrate text and examples. It describes the text planning framework, and the representation of 
text planning knowledge in the constraints of the plan operators. A brief description of the grammar 
representation is given, followed by detailed descriptions of how the different examples are generated. 
This is essential as background for the chapters that follow. 

Chapters 6 and 7 illustrate how the system works by describing the generation of different scenarios. 
These scenarios illustrate certain aspects of the interaction between text and examples, such as textual 
elision and addition, the effect of negative examples, etc 

Chapter 8 discusses the effect of the text type on the descriptions. The text type significantly affects 
the explanations produced, both in terms of the content of the text and examples, as well as in the 
resulting positions of the examples. A description of a list is generated for two text types (introductory 
and advanced) to highlight some of these differences. 

Chapter 9 presents results from empirical studies on the effectiveness of our heuristics. Portions of 
the descriptions and the questions asked of the subjects are presented here. In all cases, the issues 
identified in this thesis were found to make noticeable differences in the comprehensibility of the 
descriptions. 

Finally, Chapter 10 concludes with a look at the research contributions and possible directions for 
future work. 



Chapter 2 

Related Work 

This chapter reviews some of the previous research that deals with examples in learning. This work 
has been primarily conducted in three fields: (i) intelligent tutoring systems (ITS), («) cognitive science 
and educational psychology, and (tit) machine learning (ML). Work in ITS has been concerned with the 
generation of examples suitable for education. Work in cognitive science has been focused on factors 
that affect understanding and human learning from examples. The work in machine learning reviewed 
here has concentrated on the characterization of good examples from the point of view of efficient 
learning by a system. The insights gained from this work on ML are relevant to this thesis because we 
believe that the characteristics that make examples good for a system to learn from can lead to useful 
heuristics for human learning. 

2.1   Intelligent Tutoring Systems 

Tutoring systems in different domains such as algebra, e.g., (Baxter, 1989), arithmetic, e.g., (Burton 
and Brown, 1982), legal reasoning, e.g., (Rissland, 1983; Rissland et al, 1984; Rissland and Ashley 
1986), LISP programming, e.g., (Reiser et al, 1985), etc. made use of examples in their interaction.' 
However, these systems concentrated on finding appropriate examples for specific aspects of the 
situation. They did not consider issues involved in presenting the examples as part of an overall 
description. As a result, issues in which the context of the examples plays an important role, such 
as the accompanying explanation, the number of examples, their order of presentation, etc.' were 
not considered. (These systems were able to do so because of two reasons: (i) the descriptions 
that were generated by these systems were done so using templates which had specific slots for 
examples, and in some cases, such a template based generation scheme can result in acceptable 
explanations, e.g., (Reiser et al., 1985); (it) they did not address the explanation issue at all, but 
concentrated on the examples in isolation, e.g., (Baxter, 1989; Rissland, 1983; Rissland et al., 1984; 
Rissland and Ashley, 1986). An exception was the WEST system (Burton and Brown, 1982), which 
specifically attempted to generate descriptions within a natural language interface. This system is 
described further in Section 2.1.3.) 

Most of the work on finding appropriate examples has concentrated on retrieving and modifying 
previously stored examples. For example, Rissland (1981) studied the issue of when to construct vs 
retrieve examples. Later work by her group led to the identification of twelve important dimensions 
along which legal examples could be indexed: this was implemented in the HYPO system (Ashley, 1991- 
Rissland and Ashley, 1986; Rissland, 1983), which used these twelve dimensions (or feature axes) to 
try to modify a retrieved example. A more general approach was adopted by Suthers et al. in their 
example generator (Suthers and Rissland, 1988; Woolf et al, 1988) in which definitions of objects in 
the domain were annotated with procedural specifications for modifying different features so as to 
satisfy various constraints. 
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importance; the system modeled that particular aspect very well. However, it did not address 
issues other than those covered by the twelve features, and therefore did not address any non-legal 
issues, such as language, comprehensibility, complexity, etc. HYPO could reason about the pre-defined 
dimensions, but the knowledge about how the dimensions related to one another was encoded in the 
procedural knowledge, and modification of the system (of any feature's relevance, for instance) was 
very difficult 

Recent work on HYPO has focused on the generation of examples based on a general specification of 
the goal (Aleven and Ashley, 1992; Ashley and Aleven, 1992). The examples (which are configurations 
of legal cases) are constructed by putting together individual cases that when put together, help make 
an argumentative point The system uses a KL-ONE representation to find suitable examples. HYPO 
illustrates how examples can be retrieved (and modified) even in complex, real world cases. 

2.L3   Presenting Context Dependent Examples -- WEST 

One of the most sophisticated game playing programs built to teach basic mathematical concepts 
such as addition, subtraction and multiplication was the WEST1 system (Burton and Brown, 1982). It 
generated examples to help illustrate better moves in any given situation. It is notable because it 
took into account the context while presenting an example. WEST had specialized modules to help it 
generate suitable natural language phrases in order to interact with the student. The central feature 
of WEST was its ability to present appropriate examples to help support its criticism if the student 
made sub-optimal moves. These examples were supposed to illustrate the alternative sequence of 
moves that the student should have explored but did not. If the student made moves which the system 
considered sub-optimal (based on the system's evaluation function), WEST would try and correct the 
student's high level strategic knowledge by generating a sequence of example moves to illustrate the 
better strategy. 

The system used rules about optimal strategies for the current board position to generate examples 
for presentation. In general, conjecturing alternative strategies is extremely difficult unless one has 
a sufficiently closed world, in which case the set of all possible strategies can be characterized. This 
characterization can be either a generative mechanism, such as a grammar, or an explicit enumeration 
of all possible alternatives, WEST'S world was small enough and closed enough that its designers felt 
that the latter strategy would work sufficiently well. 

WEST is relevant because it is one of the few ITS systems that was extensively field tested. It received 
high ratings from users. This was credited to the fact that it used natural language to communicate 
with the users, WEST'S success bolsters our position on the use of natural language interfaces. Our 
approach to designing the documentation system substantially differs from that of WEST. This is 
because WEST assumed a single user type, and because of its small domain, it had been possible to 
enumerate all of its examples a priori. This is not possible in domains such as system documentation. 

2.L4   Lessons Learnt 

The work on ITS illustrates the computational feasibility (CEG, HYPO) and importance (WEST) of 
generating examples in tutoring. CEG highlighted the issue of using simple elements in tutoring 
examples. HYPO illustrated the possibility of retrieving and modifying real life, complex examples. 
WEST demonstrated how the combination of natural language and examples could result in high user 
acceptance. 

1A tutor/coach for the game "How the West mat Won." 
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- cognitive problem solving routines 
— communications about events (fact systems) 

Each of these sub-types is then analysed to see how presentations of that particular form should 
be made in instructional contexts. DIM contains specifications that must be considered during initial 
instruction through examples. These are directly relevant in this research. For instance, it contains 
warnings such as: "... a concept cannot be taught through the presentation of only one example. 
Positive examples alone are not sufficient, negative examples should be presented as well," etc 

The DIM methodology is important because, unlike most other models in instructional design, it 
describes the generalization learnt by the reader in terms of the features presented in the examples. 
(Other models do so in terms of the internal processes of the user.) This allows the DIM model to be 
applied to a computational system where the initial presentation is planned based on the features 
of the concept to be described, rather than a detailed cognitive model of the user's learning abilities. 
Within DIM, individual differences in users are seen as irrelevant to the design of the instruction. 
Learning outcomes are determined not by constructs such as the development stage, but by features of 
the knowledge (in terms of the specific sets of examples) communicated to the user. Our system makes 
use of the directives in DIM (such as the presentation of a pair of contrasting examples to illustrate 
some features, etc) to plan the presentation. 

2.2.2   Adaptive Presentation Strategies 

Adaptive presentation strategies, in contrast to the Direct Instruction Model, attempt to vary the 
presentation based on the user's response. Work in this area of research has focused on various aspects 
of concept acquisition through the use of different instructional strategies in class-room instruction, 
e.g., (Park and Tennyson, 1980; Tennyson et al., 1972).2 

Adaptive presentation strategies are based on the hypothesis that concept learning is a two-stage 
process: conceptual knowledge is formulated first, followed by development of procedural knowledge, 
e.g., (Tennyson et al., 1981; Tennyson et al., 1983; Anderson, 1987), Adaptive presentation strategies 
dictate that example presentations should be sensitive to error patterns in these two learning phases: if 
the learner has just been presented initial information about a concept, the examples should be oriented 
towards learning the declarative, conceptual form. On the other hand, if the learner has already been 
presented with the conceptual information, 'interrogative'3 examples should be presented. Results 
have shown that this adaptive instructional strategy was superior to the fixed selection strategy in 
terms of both post-test and retention performance (Park and Tennyson, 1986). 

Presentations in which the number and order of examples were varied based on the user response 
were also seen to be useful in enhancing comprehension (Park and Tennyson, 1980). An experiment 
to test the discrimination ability found that examples should be presented that cause the learner to 
understand one discriminant before presenting further examples that deal with other discriminating 
features of the concept Thus, if succeeding examples are presented in reference to the classification 
of the response, rather than in a pre-determined (response insensitive) order, the number of examples 
could be minimized. 

This model underlines the need to present appropriate number of examples in the right order, as 
well as with the correct level of difficulty. If the learner's comprehension can be taken into account 

2Other references for adaptive presentation strategies are (Park and Tennyson, 1986; Merrill and Tennyson, 1977; Merrill 
and Tennyson, 1978; Tennyson and Park, 1980; Tennyson et al., 1975; Tennyson and Tennyson, 1975; Carnine, 1980a; 
Carnine, 1980b; Carnine and Becker, 1982). 

Interrogative examples are examples that highlight discriminant features. Such features can be used to categorize concepts 
in membership classes, and can be used to answer questions about whether an instance belongs to a particular concept class or 
not. 
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during the presentation process, adapting the examples from a declarative form initially (simple 
positive examples) to an interrogative form (negative, as well as positive examples that highlight 
discriminating features) as the learner gains familiarity with the concept can help in minimizing the 
number of examples that need to be presented. 

2.2.3 Cognitive Load Theory 

Cognitive Load Theory (Chandler and Sweller, 1991; Sweller and Cooper, 1985; Ward and Sweller, 
1990) suggests that effective instructional material facilitates learning by directing cognitive resources 
toward activities that are relevant to learning, rather than toward 'preliminaries to learning.' Thus, 
the presentation of unnecessary information (even information that was useful, but non-essential, 
such as for instance, a commentary on a figure) had deleterious effects on the learning process. On 
the other hand, a separation in the presentation of independent sources of information did not detract 
from comprehensibility. Thus, two unrelated pieces of information could be presented at different 
places, or different times, with no loss in user comprehension. 

On the other hand, separation of related sources of information, such as explanations and diagrams, 
or text and examples, resulted in reduced comprehension as compared to their integrated presentation. 
These studies indicate that there is a need to present different sources of information, such as text and 
examples, appropriately: physically close, mutually referent, if they are related and complementary; 
explicitly separated, or annotated as being independent, if the examples and text are not mutually 
referent and are not necessary for understanding each other. 

2.2.4 Examples and Explanations 

In an effort to study the utility of examples in complex subjects such a recursion (in programming 
languages), Pirolli and Anderson (1985) studied a group of nineteen students learning to program.4 

The success of their attempts was dependent upon how well they understood the working of the 
examples. The subjects, all novices in programming, were split into two groups; both groups were 
given explanations with examples that illustrated the concept of recursion. One group was given 
an explanation (of recursion) in terms of the structure of the examples (how it was written: the fact 
that the terminating condition was written before the recursive call, etc), while the other group was 
given a process oriented explanation of recursion (how the example worked). The examples in both the 
explanations were identical, while the textual explanations accompanying the examples differed. 

The group which was given the explanation in terms of the structure fared much better than the 
other group which was given process-oriented explanation (in terms of time taken for understanding). 
In the case of advanced users, however, (users with knowledge and experience of related concepts), 
upon presentation of the same examples and descriptions, the group which was given the process- 
oriented explanations fared better. Given that the examples remained the same, it is clear that the 
differences in the comprehension and learning time were due to the accompanying explanation. 

To investigate the importance of explanations further, Chi et al. (1989) analyzed self-generated ex- 
planations of students working through complex examples in the domain of mechanics. Since examples 
typically contain a series of unexplicated actions, self-explanations are important in understanding 
the significance of the example. The study found that good and poor students used the examples in 
different ways: good students tended to refine and expand conditions for the actions in the example 
solutions, and link them back to the principles in the textual explanations; poor students did not 

'Evidence of the popularity of examples can be seen in that 18 of the 19 students immediately attempted to use previously 
seen examples to write code. 
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generate sufficient self-explanations and relied very heavily on previously seen examples in attempt- 
ing to solve further problems. This study shows that in the case of naive students, the explanations 
that accompany the examples must encourage the linkage between the given example and the general 
principles. 

These studies emphasize the importance of presenting a textual explanation along with the examples 
to help clarify and disambiguate difficult or important features in the examples. 

2.2.5   Summary 

Each of the four approaches discussed - DIM, Adaptive Presentation, Cognitive Load Theory and 
combining examples and explanations - has important consequences for the comprehensibility of 
generated descriptions. The presentation directives in DIM are useful since a computational system 
can have, at best, a sketchy model of the learner's cognitive state. At the same time, it can have 
extensive information about the features and attributes of the concept it wishes to present. Adaptive 
Presentation techniques are important since the system has to generate for different user types with 
differing backgrounds; the system must also be responsive to the context, as well as the previous 
interaction. Cognitive Load Theory and the studies on explanations with examples emphasize the need 
to physically as well as conceptually integrate the related components, while explicitly separating the 
unrelated ones. As we shall see later, this becomes essential in cases where exceptional (or anomalous) 
examples are presented by the system. 

2.3   Machine Learning 

Examples have always been used in machine learning. Systems have been implemented to test various 
theories, and computational results have been derived. Inductive machine learning from examples 
and Explanation Based Learning (EBL) represent two of the approaches that have been studied in this 
area. In this section, we review some work in machine learning pertinent to this thesis. The work 
reviewed here deals with the characterization of good examples for machine learning. Since there are 
some similarities between machine learning and cognitive learning (and some of the work in machine 
learning is inspired by cognitive analyses, such as SIERRA, for instance), the hope is that examples 
which are good for machine learning have characteristics that are beneficial for learning in people as 
well. 

Particularly relevant is the work in computational learning theory, where it has been shown that 
factors such as the type of examples presented, the order in which they are presented, whether 
the target concept contains disjunctions, etc. can significantly influence the resources required for 
generalizing to a concept, e.g., (Valiant, 1984; Angluin, 1987) and the number of examples that are 
required to do so, e.g., (Ling, 1991; Rivest and Sloan, 1988). Similar results hold in cognitive studies of 
learning, where the limited amount of short term memory can determine which presentation sequences 
are likely to be effective (Anderson et o/., 1980; Anderson and Matessa, 1990). However, in this section, 
we describe some of the earlier work on learning from examples for illustration. 
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2.3.1   Learning from Near-Misses -• ARCH 

One of the earliest systems to leam from examples, the ARCH program (Winston, 1975; Winston et al, 
1983), learnt generalized structural5 descriptions from a series of examples. It identified the notion of 
a •near-miss' as being an important concept in learning. These 'near-miss' examples were examples 
that differed from positive examples in only one feature. When a negative example differs from the 
current understanding in more than one feature, the learner cannot determine which (or both) of these 
differences is the critical one. This can lead to considerable search and false refinement. The program 
used these near-misses to reason about mandatory- and inconsequential- relations in this model6 - 
the system learnt to distinguish these based on the classification of the examples it was shown. ARCH 
was among the first programs to emphasize the quality of examples as a factor in its learning process. 

ARCH is relevant to this thesis in several ways: it was the first attempt to characterize good examples 
in the learning process. The concept of near-misses - which exists in the Direct Instructional Model, 
and is expressed as the need to present a pair of contrastive examples - and the stress on the 
presentation sequence of examples are both important criteria that must be adhered to by the system. 

2.3.2   Version Spaces 

Mitchell's (1982) version space approach presents one of the first computational accounts of how 
negative examples can help constrain the search space of possible generalizations. The approach 
involves representing and revising the set of all hypotheses that are describable within the framework 
and are consistent with the observed examples. Two sets are used to represent the hypothesis 
space: S, which represents the most specific generalizations and G, which represents the most general 
specializations consistent with the examples. 5 and G are updated with each example. When the two 
sets are identical, the system stops since any further examples would not contribute new information. 
The version space approach requires the ability to order generalizations by specificity by direct 
examination. The advantage of the version space approach lies in the fact that G summarizes the 
implicit information in the negative examples (by bounding the 'maximum' level of generality) and S 
summarizes the implicit information in the positive instances. This representation of the version space 
in terms of G and S allows the algorithm to process examples without explicitly storing the training 
examples for later consideration. 

The results from version-spaces illustrate the necessity of negative examples in the learning process, 
rather than just their desirability: the G set is specialized based on the negative examples seen by the 
system. Similarly, the use of negative examples can help a learner prune his/her mental hypothesis 
space. 

2.3.3   Generating Examples - TJEY 

LEX (Mitchell et al, 1983) was a system designed to investigate the acquisition of problem solving 
heuristics in the domain of symbolic integration. LEX learnt heuristics by generating practice problems 
to solve, attempting to solve them, and then generalizing from the problem solving experience. The 
rate of learning was thus dependent upon the nature of problems that LEX attempted to solve. LEX 
used the version space approach to leam new knowledge. The two important points of LEX were- (i) it 
possessed heuristics to generate example problems, and (n) it had perfect knowledge of the internal 
state of the learner. 

'Structural descriptions portray object« as consisting of various components that have different relationships defined between 
cotoTete       * ^«"P«01*. °a «he other hand, list only global properties of the object, such as for instance, its height, weight, 

«These are similar to the critical and variable features defined in educational psychology. 
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One of the heuristics used by LEX in generating example problems was to generate a problem 
that would allow the refinement of some existing, partially learned domain heuristic. To do this, 
it would select a partially learned heuristic, find a previously solved problem that matched it, and 
then minimally modify the problem until it no longer matched the heuristic completely. Thus, LEX 
generated near-misses based on this heuristic, for its own learning mechanism. 

LEX is very relevant to this thesis because it was concerned with the issue of generating good 
examples for the system to solve. To this end, it generated near-miss problems; the difference between 
LEX and a human teacher is that LEX knew the exact state of the learner, and could therefore target its 
problems to refine partial heuristics. 

2.3.4 Importance of Example Sequences - SIERRA 

SIERRA (VanLehn, 1987) is a machine learning system that was inspired by class room observations. 
Thus, characterizations of good examples for SIERRA are based on good examples in classroom 
situations. Van Lehn found that people tend to regard as significant, the order in which the examples 
are presented to them. SIERRA, a computational learning system (VanLehn, 1987), was among the 
first to try and make use of the sequencing assumption: that the examples presented to it had been 
generated by someone who had taken the sequencing into account. SIERRA used this assumption to 
bridge gaps in the example sequences presented to it by considering the examples around the gap. 
The use of this assumption allowed SIERRA to significantly reduce the number of examples required 
to leam a procedure; previous systems had assumed that each of the training examples presented 
were independent of one another; they considered each example in isolation, ignoring information such 
as its position in a sequence, its neighbouring examples, etc, cues that are usually valuable in real 
teaching situations. 

This discussion on SIERRA is relevant because it underlines the fact that the presentation of examples 
in an appropriate sequence can greatly reduce the number of examples required to learn the concept. 

2.3.5 Relationships between Machine Learning and Documentation 

There is an interesting parallel between machine learning and documentation. The requirements 
in two approaches in machine learning from examples correspond to two different text types in 
documentation. One approach to learning from examples is induction, which assumes minimal 
background domain knowledge, e.g., (Holland et al., 1987; Michalski, 1983). The other is Explanation 
Based Learning (EBL), e.g., (Mitchell et al., 1986; DeJong and Mooney, 1986), which requires the 
presence of a strong domain theory. Induction often assumes no prior knowledge of the concept, and 
can require a great many number of examples to generalize. EBL on the other hand, with its strong 
domain theory, can sometimes learn from just a single, complex example. We noticed that introductory 
texts meant for naive users (with little or no domain knowledge) used a large number of examples 
to explain a concept, while reference materials targeted towards advanced users (with significant 
amounts of domain knowledge, as in EBL) had far fewer, and more complex examples. 

2.4   Discussion 

Much of the work on learning from examples in each of the three fields discussed above (cognitive 
science, intelligent tutoring systems, and machine learning) has significant implications for each other. 
For instance, the importance of 'near-misses' has been emphasized in both cognitive psychology as 
well as machine learning; the importance of presenting minimal irrelevant features, and ordering the 
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presentation sequence have also been studied in both fields. Computational complexity results on 
learning disjunctions in machine learning parallel some of the results in cognitive studies in children. 

Surprisingly few tutoring systems have attempted to make use of examples as one of their teaching 
strategies. This may be due to the fact that for example presentations to be effective, there are many 
other issues that must also be addressed before practical systems can be designed to take advantage 
of this strategy (issues such as the type and amount of information to be presented in each example, 
the description, their placement, etc.). Also, unless the examples used are appropriate for the context, 
they can be detrimental, rather than helpful, in user comprehension. 

Our system synthesizes the insights from previous work and builds upon them: its uses the results 
from ITS to find and construct good examples; results from cognitive science and educational psychology 
to plan effective and comprehensible presentations; and results from machine learning in modifying 
examples to construct near-misses and use them in presentation sequences. 

In the following chapter, we discuss the issues that arise in the generation of integrated descriptions 
with both text and examples. 
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Chapter 3 

Issues in the Integration of Text and Examples 

Examples, like eyeglasses, blur everything that they do not make more dear. 

-Anonymous 

Chapter 1 has argued that documentation is far more effective when it contains well integrated 
examples. Many issues must be addressed before a systematic account can be developed and a system 
can be implemented to generate such descriptions - we discuss them in this chapter. These issues were 
identified based on a corpus analysis, as well as a synthesis of previous studies in cognitive science 
and educational psychology. 

3.1   Corpus Analysis 

We studied a large number of descriptions in different manuals, books, help materials, and on-line 
documentation to identify the interactions between text and examples and help isolate relevant issues 
in their integration. The corpus consisted of books about LISP (Meehan, 1979; McCarthy et al., 1985 
Novak Jr., 1985; Shapiro, 1986; Steele Jr., 1984; Tatar, 1987; Touretzky, 1984; Charniak et al, 1987 
Norvig, 1992; Keene, 1989; Wilensky, 1983; Friedman and Fellesisen, 1987; Winston and Horn, 1984 
Lucid, 1990), as well as other programming languages: Postscript (McGilton and Campione, 1992 
Braswell, 1989), TfeX (Knuth, 1990; Knuth, 1979; Abrahams et al, 1990; Borde, 1992), C (Perry, 1992; 
Vetterling et al., 1990; Harbison and Steele, 1993), and Unix (ÜNTX Documentation, 1986; Waite et 
al., 1983; Stevens, 1990). Each of these publications is well regarded as either a good text-book or a 
definitive reference manual in its area. Some of these books such as (McGilton and Campione, 1992; 
Borde, 1992; Perry, 1992; Vetterling et al., 1990), explicitly attempt to explain by using examples. 

The availability of multiple books and publications on the same language allowed us to examine 
various descriptions of the same concept. In addition, we had available publications which were 
intended either for use as reference manuals by advanced users, or as introductory material meant for 
naive users. This proved invaluable, as the differences between these two genres is quite significant. 
In this chapter, we discuss some of the issues raised by our corpus analysis. When discussing each of 
these issues, we attempt to reference related work in cognitive psychology, to show that some of these 
issues had already been remarked upon, though usually in isolation, rather than as part of a set of 
criteria that determine the effectiveness of the presentation. 
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3.2   Issues in Integration 

It is essential when planning an explanation that involves examples to pick the examples carefully 
to fit into the accompanying text. A bad example can be worse than no example. However, choosing 
the correct example is not sufficient either, since care must be taken to present it in a way that it 
can be understood easily. This implies that the accompanying explanation must also complement the 
example. As Pakin observes (underlining ours): 

Examples and illustrations support and amplify verbal explanations. They help make concepts specific 
and show how things look and work... Simply including examples and illustrations does noU however. 
improve documentation. To be effective, each illustration must be an essential piece of documentation 
- well-planned, carefully prepared, properly labeled, and easily understood. The text should refer to the 
example specifically. 

(Pakin and Associates, Inc., 1984), page 9. 

Examples cannot be generated in isolation, but must form an integral part of the description, supporting 
and complementing the surrounding text A number of issues arise in generating descriptions and 
examples in a coordinated, coherent fashion, such that they complement and support each other. These 
issues are: 

1. When should an example be generated? 

2. How is each example generated? Is it retrieved from a knowledge base, or is it constructed? What 
attributes guide the construction/retrieval process? 

3. What information should each example contain? How does it relate to the explanatory text? How 
many examples should be used? Should the information to be communicated be divided across a 
number of examples, and if so, how? 

4. What order should examples be presented in, if more than example is to be presented? Does this 
order affect the structure of the accompanying text? 

5. How should the example be positioned with respect to the explanation? Should the example be 
within the text, before it, or after it? 

6. When should prompts1 be generated and how should they be indicated? 

7. What should be contained in the descriptive component of the explanation?2 

8. Are there different types of examples? If so, what, if any, are the consequence of membership in 
a particular category? Do different types of examples need to be presented differently? 

9. Does the text type play a role in the description? Does it place constraints on the textual 
explanation, the examples, or both? 

10. How does the type of information (concept vs relations) being communicated affect the explana- 
tion? textual explanation, examples, or both? 

We discuss the first six issues in turn in this chapter. Issue #7 will be discussed in the context of the 
other issues, as well as when the issue of the text type (issue #9) is dealt with in chapter 8. Issue #8 is 
described in detail in chapter 4. The last issue on the knowledge type is discussed briefly at the end of 
this chapter. 

'Prompt* are attention focusing devices such as arrows, marks, or additional text associated with examples. 
2Descriptions occurring in different text-types are often quite different. In this thesis, we are mainly concerned with the 

differences between introductory texts and advanced texts. 
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3.3   When should an example be generated? 

An important question to be addressed before a system can be implemented to effectively use examples 
in descriptions is the question of when it should attempt to use an example. The presentation of 
examples can be either system or user initiated. 

The system can decide to include an example as part of its description, to illustrate one or more 
features. This can be due to the fact that the explanation strategy being followed by the system 
specifies the need for examples. This is the case for certain text types, such as on-line help manuals: 
(these manuals have a fixed format of descriptions which are invariably followed by examples), and for 
certain types of concepts, such as abstract concepts. Exactly when an example is generated depends 
upon both the concept being described and the text type. This will be explained in detail later, in 
Chapter 6. 

The user can initiate example generation by signalling the need for an example in confusion over a 
complex or abstract definition. Indications of confusion can be responses such as "Huh?" or repeated 
requests for help on the same topic. Both Woolf and McDonald (1984a) and Moore's PEA system (Moore, 
1989) followed a strategy whereby the system would present an example if the user did not indicate 
an understanding after presentation of a definition. 

3.4   Retrieval vs. Construction of Examples 

Suitable examples need to be found before they can be used in a description. Examples can either be 
retrieved from a pre-defined example database and modified to suit the given situation, or constructed 
in response to a specified goal. HYPO (Ashley and Aleven, 1992; Ashley, 1991; Rissland and Ashley, 
1986; Rissland et dl., 1984) is an example of a system which took the former approach (retrieval). 
As discussed in chapter 2, it had twelve pre-defined dimensions along which the feature values 
could be modified to make the example specific to the given situation. So did the generator by 
Suthers and Rissland (1988). The Constrained Example Generator (CEG) by Rissland (Rissland, 1980; 
Rissland, 1981) took the other approach, investigating how examples could be constructed by putting 
together simpler examples. 

Cognitively, it is unclear when people use which method. Protocol analyses by Rissland (in 
the geometry domain) demonstrated that people were equally likely to do either one (Rissland, 
1981). Computationally, there are advantages and disadvantages for both approaches: retrieval and 
modification implies an efficient indexing scheme into a database of example instances and adequate 
rules to modify the example to fit the given situation. This approach relies on the assumption that 
a close match will be available, that modification will be relatively inexpensive and and that will 
result in an appropriate example. In some cases, however, this approach may prove to be more 
expensive than constructing the example from scratch (Rissland, 1981). Construction of an example, 
on the other hand, assumes the availability of sufficient knowledge to assemble an example by putting 
together its components in the correct manner; this requires some knowledge of how the different 
features of an instance interact and contribute to it being a goodfoad example. Modification can 
often be achieved with less background knowledge than construction, since the system need only 
change certain feature values. There has been considerable work on modification in Case Based 
Reasoning on adapting cases for particular situations, e.g., (Hammond, 1990; Kambhampati, 1990b; 
Kambhampati, 1990a; Veloso and Carbonell, 1990; Cook, 1989; Mostow, 1989; Stanfill and Waltz, 1986- 
Schänk and Riesbeck, 1981) 

It is likely that a flexible system will need both (retrieval as well as construction) capabilities. 
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3.5   The Number of Examples 

Studies have shown that user comprehension is enhanced when the message contains a minimum 
number of irrelevant features, allowing the user to focus on the important aspects of the message. 
This also holds if the message is in the form of examples, e.g., (Ward and Sweller, 1990). This maxim 
is particularly important for example presentation because examples are concrete instances, bristling 
with detail. It is usually not possible to construct examples without all the associated low level details, 
as some of these details are required for the example to have its illustrative power. For instance, 
the definition of a function (in most programming languages) requires the specification of three 
components: the function name, the parameters of the function, and the body of the function. However, 
examples of a function will contain not just these three conceptually important components, but will 
also contain low level syntactic requirements. Examples illustrating this are shown in Figure 3.1. 

In the first case, the example illustrates the use of defun as a means of defining a new function 
name. To do so, the example also presents a number of features not mentioned in the definition: the 
fact that there are a number of parentheses, the function has parameters, a documentation string, 
and a body that references the parameters, etc. The second example illustrates 'a procedure that does 
symbolic computation.' As in the previous case, a number of details necessary for the example to work 
are not mentioned in the description. For instance, the use of the CADR function to retrieve the second 
element of a list as an atom, and then the use of the LIST function to create a new list. In the third 
case, the example (from the PASCAL programming language), facts such as the statement separator is 
a semi-colon, the program terminator is a period, the use of the keywords 'begin' and 'end,' etc. 

Each example of a concept will necessarily include some features or attributes of the concept. These 
features can be classified into two categories, depending upon their role: 

• critical features: features that are required for the example to be an instance of the concept 
being illustrated. For instance, the definition of a function in LISP must begin with the left 
parenthesis, followed by the keyword d«f un, followed by the function name and a list (possibly 
empty) of the parameters. If either of these is missing, the example is not of a function. 

• variable features: features that can change within an example without causing the example 
to not be an example of the concept being illustrated. For instance, the name of a function, the 
name and number of parameters, etc are variable features. Their presence is critical, but their 
actual value is not 

It is essential that the user grasp this difference in the nature of the features. Thus, the system must 
take this factor into account when presenting examples. To minimize confusion, the system must 
present examples that highlight specific features and their type (critical or variable) clearly. This can 
be done, for instance, by presenting pairs of examples, which are identical in all respects, except for 
the feature being illustrated. This implies that the pair of examples which attempts to emphasize a 
critical feature will be a positive-negative3 example pair; the pair that emphasizes the variable nature 
of another feature will be either a positive-positive or a negative-negative pair. Since a concept can 
have a number of critical and variable features, the clearest possible presentation would have at least 
one pair of examples for each feature. However, this may not always be either possible (because of 
restrictions by the text type). This is reflected in the data, where descriptions in advanced, reference 
manual type texts have very complex examples with a large number of features. Consider, for instance, 
the examples in Figure 3.2. 

The first example, from (Harbison and Steele, 1993), illustrates the fact that in the C programming 
language: (i) type declarations can define a new type, (ü) specify that a variable is ofthat type, (tii) 

'Apotitivt example is an example of the concept being illustrated. A negative example is not an example of the concept being 
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The special form deiun stands for "define function." It is used here to define a new function 
called last-nuie. 

(defun last-name (name) 
"Select the last name from a name represented as a list" 
(first Oast name))) 

From (Norvig, 1992), page 12. 

Consider an example of a procedure that does symbolic computation, rather than a numerical 
one. This procedure exchanges the first and second elements of a two element lift: 

(defun exchange (pair) 
(list (cadr pair) (car pair)))        ; reverse elements 

From (Winston and Horn, 1984), page 42. 

When a program has more than one statement, each one is executed in the order it appears. 
For example: 

program SecondRun (output); 
begin 

writeln (Hello. I love you.'); 
writeln CHow about lunch?") 

end. 

From (Cooper and Clancey, 1982), page 8. 

Figure 3.1: Examples often contain many other details. 

any number of variables can be specified to be ofthat type, etc. The second example from (Steele Jr., 
1984) illustrates multiple different aspects of the format' statement in LISP: the fact that it can be 
used to combine symbols into strings, be used to select from different parameters passed to it, some 
directives may be recursive, etc 

The number of examples is also dependent on the intended user: the number of critical features the 
user can be expected to recognize and assimilate from each example. For an introductory text, each 
example should contain as few features as possible, to ensure that the user is able to recognize them, 
e.g., (Hausmeier, 1976; Feldman, 1972; Clark, 1971). On the other hand, an advanced user is likely to 
understand examples containing three to four features without significant difficulty. 

The number of examples will thus depend on the text type, as well as the total information content 
to be conveyed. Studies have suggested that there is a maximum number of examples before the user 
loses attention. Clark (1971) suggested that four examples were optimal to explain a concept to the 
user in most cases; more than four together resulted in loss of attention. Feldman and Klausemeier 
found that the number of examples required depended upon (i) the number of attributes, (:'»') the 
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An enumerated type in C is a set of integer values represented by identifiers ... [number of 
lines deleted]... For example: 

•ana iith { trout,  carp, halibut > 
■y_«ith, your.fiih ; 

From (Harbison and Steele, 1993) 

[A long description of various options that a ior«at statement can take appears here and 
has not been reproduced.] ' 

(format nil —•? "D" "<-A "D>" "Foo" 5 14 7) ==> "<Foo 5> 14" 

From (Steele Jr., 1984) 

Figure 3.2: Examples from advanced, reference manual type texts are complex and multi-featured. 

level of abstraction, and (,«) the student's learning characteristics; no fixed, optimal number was 
suggested (Feldman, 1972; Klausmeier and Feldman, 1975). Markle and Tiemann (1969), suggested 
required n ^        *** Variable attribute8" to determine the number of examples was 

3.6   The Order of Presentation of the Examples 

Snn^f pereu?y. b? a.numbel[ of espies to be presented, their presentation sequence is 
Zn^ Jy °l0eiCal

l.8tUdieS *?!** Ae ord*r of presentation of the examples plays an 
miportant role in comprehension. Feldman (1972) reported that sequencing was most effective 
when positive and negative examples were paired together. Houtz et aL(im) suggested Sat 
sequencing positive examples and minimally differing positive and negative examples together was 
the most effective sequencing strategy; Klausmeier et al. (1974), Litchfield et al. (1990), Markle and 
Tiemann (1969) and Tennyson et al. (1975) reported essentially the same (latter) conclusions 

Ordering the examples can be done on at least two levels: 

h ^at^?ieVe^'at *he "T"0'leVe1'the 0rder m which different feature* of the concept are to be illustrated using examples 

2. example level: at the «micro' level, the order within a set of examples illustrating a feature 

Empirical studies show that presenting easily understood examples before presenting more difficult 

Z i^^TJ^i*1 C?eCt °n *• hsteDeT (Carnine»1980b>- A "t of examXs HlustSng the ^Portance of ordering based on complexity are shown in Figure 3.3. This ordering is also 
suggested by the Principle of End-Weight in linguistics (Giora, 1988; Werth, 1984), wSe^uencW 
SSJSS^difflS? -derstood information before the presentation of inferred or uEwl 
fettoiÄ^Ä?0 rJT, IT recommended- ™«. while describing a concept, the simpler 
SflT***e.P? sented before the more complex ones. The determination of the complexity of a 
particular feature is domam dependent. In our domain of programming languages, an indication of the 
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Mathematical operators in TjgX can have limits. The lower limit is specified as a subscript, 
and the upper limit as a superscript. Examples of operators with limits are: 

$$\bigcap_{k=l}-r (a_k \cup b_k)$$ 

produces 
r 

while 

$${\int_0-\pi \iin-2 ax\,dx} = {\pi \ov«r 2>$t 

produces 

Jo 
sin azdx = — 

and 

$$a(\laabda) = {1 \over {2\pi>} \int\displayliaits 
_{-\infty>--C+\in*ty> l(x)e-{-i\laabda x>\,dx$$ 

produces 
+00 

iW = ± j f(x)e-»*dz 

From (Abrahams et al, 1990) 

Figure 3.3: It is important to order examples based on their complexity. 

complexity of a particular symbol in the grammar can be obtained by estimating the total number of 
unique examples that could be generated to illustrate that symbol. In a sense, the greater the number 
of examples possible, the greater its complexity.4 This will be explained in more detail in Section 5.3.5. 

Within a set illustrating a particular feature, the importance of sequencing becomes even more 
evident because of the implicit information that the sequence can be used to convey. The order of 
presentation is an important means of focusing the reader's attention. Sequencing can be used to 
highlight the critical features by presenting pairs of positive and negative examples, and emphasize 
the variable features by presenting different positive examples. Consider for instance, the examples in 
Figure 3.4. The first two pairs of examples illustrate the point that atoms and numbers are not lists 
unless they are enclosed in parentheses. The next three examples show that symbols or numbers or 
both can be elements in a list, and finally the last example shows that a list can also be made up 
of other lists. These points would have been much less obvious if the examples had been presented as 
in Figure 3.5, because the reader would have to realize the similarity between different examples and 
contrast them on his/her own. 

4The actual computation of the complexity uses a heuristic that takes into account the number of explicitly defined terminal 
symbols that a symbol can make use of; this prevents the non-terminal 'integer-number,' for instance, from being assigned a 
complexity value of infinity. 
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(aardvark) 
'aardvark 

(1) 
1 

(big blue iky) 
(14 6 8 9) 
(10 «kit« clouds) 

; «xaapl« of a list 
; not a list 

; exaaple of a list 
; not a list 

;  a list of atoms 
;  a list of nuabers 
;  a list of atoas and a number 

((big bin« sky)  (10 whit« clouds))     ;  a list of lists 

From (Novak Jr., 1985), page 4. 

Figure 3.4: Sequences carry implicit information in example sequences. 

(big blue sky) 
(10 «kit« clouds) 
(1) 
(aardyark) 
1 
'aardvark 
(14 6 8 9) 
((big bin« sky)  (10 «hit« clouds)) 

list of atOBI 
list of atoas and number 
a list 
another list 
not a list 
not a list 
list of nuabers 
list of lists 

Figure 3.5: Bad sequencing can cause loss of information content 

Thus, a critical feature can best be illustrated through a pair of examples, one positive (possessing 
the feature) and another negative (similar to the positive one, but without the critical feature). Variable 
features are best illustrated through a collection of positive examples similar to each other but varying 
widely in their variable features. To minimize information loss through bad sequencing (and to prevent 
the user from the errors of either over-generalization or under-generalization), the system should use 
the following two principles in structuring example presentations: 

1. Principle of Maximum Positive Variation: there should be maximum possible variation between 
positive examples about the same feature — this prevents the hearer from under-generalizing the 
concept based on the examples presented. 

2. Principle of Minimum Negative Difference: there should be minimal difference between positive 
and negative examples about the same feature - this helps the hearer rule out the maximum 
possible number of non-critical features. Features that change between a positive and negative 
example are then easier to identify as critical features. If the two examples are minimally 
different, there will be fewer features to consider as possible critical candidates. 

Since the examples are an integrated part of the accompanying description an additional constraint 
in the order of example presentation is often the order in which the various features are mentioned in 
the accompanying description, or vice versa. 

Finally, possible example sequence orderings can also depend upon factors such as the type of concept 
being communicated: whether it is a disjunctive or a conjunctive concept, and whether it is a relation 
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or a process. In an interesting extension to the concept of sequencing, Tennyson and Tennyson (1975) 
2Eä^wTMtod P™entatj°n "h™ ** P°sitive e*"Me *"»«*1 to a negative one, was more 

^cS^Z^I^Z^ fa a 8tatic 8equence'because * drew attention to *e 

^ !SfT n°f ?6 7?" ^"T0011 iS P^^"^ evident from a curious anomalous result 
on the theoretical hmits of languages that can be learnt from examples. Gold (1965,1967) showed that 
certain concept* that could not be learnt when both positive and negative examples are prIsenS 
could however be learnt solely from positive examples when the presentation sequence was carefully 
constructed. This is the class of recursively enumerable languages. Consider for example the dass of 
S! ™~nH? T a1fi

uence: 5'"»»• 8>2'S> M' «*• reader is unlikely to be able to recognize 
£L ?w ST' Bh°^d Ae 8eqUenCe be Presented «: 1,2,3, 5,8,13,21, there is a much better 
chance thatthei hearer will recognize the sequence and be able to generalize to the set of Fibonacci 
numbers. The hearer actually recognizes the generating function or the algorithm to generate the 

^ples^ftdlf811        C0nC6Pt de8CTipti0n it8elf- Thi8 »totrates the importance of sequencing 

3.7   Positioning of the Example and the Description 

2^„?HnnPTS?riaS 2T*1' haS ^8B eeneratod' * needs to be presented with the accompanying 
explanation. Should the example be presented before, within or after the textual explanation? An 
example can either play a 'supporting- role where it illustrates the preceding text, or it can be the 

%Z2f^£*Vr5 De?endÜ*,0n *• r0le' *• e****1' either occJa^er&e aefmiSon of Se concept, or before the description of concept based on the example. If the text is introductory ihe 
SÄSTr* *fl5?n!? °*tiattribUtf °f *• «^ Mediately followingSSSStS 
£11™?^ "i*0 dB^tM!L ™« resulte * descriptions where each attribute specification is 
followed by examples, resulting in a description with examples interspersed within it. 

d^S^TPleS ***<?*** 1° elab0rate °? ?0intS *■* "e not exPUcitlv mentioned in the textual descnptaon they are often mter-woven with the textual description of the concept. They could have 
been replaced by text elaborating on these points. This was illustrated in the description rfXs « 
assignment operation, as shown in Figure 1.2, repeated here for clarity, in Figure 3 6. In this casV 
the examples could be replaced by a statement that conveys all the features bein^illustrated Aro^gh 
examples, as shown in the lower half of the figure. tnrougn 

(^^SS^ST^" *•• descriPtion of a lirt ^en in Figure 3.7.« The examples of li.t 
(m group II) of Figure 3.7 communicate information that could have been expressed textually by the 

two^ZcTJ ?*T°ftf?*? T **either«"**- numbersZacombinZnofthZ 
errate ™Ä* T"" **£* ** T**™ ^0Ve' however> *• *■*« may choose to elaborate using 6o*A examples, as well as text This is illustrated by groups III and IV in the fieure 
m which the information about lists being made up of sub-lists is expressed both tertuaJly (S IIlfTd 

t££j?Tfm "%& ^ m ^ **" b6tWeen ** "* eMmPle* Spends upon bofc te 
Vü^SSS^^T^*Fli,luStrated- ? *• «• of«introductory text, examples are presented 
rfthe definition has already been presented. In the case of anomalous or exceptional features boTh 
fe nrSn^ 4,e^nPleS «•.*""** ™- *• «Crated in the li.t case, where sub-h^needto 
This7l us^iJSl" • 7ST" "T^* lnd Ae SyStem presente * ■** both toxt and examples, 
dwcription 6XamP     Cann0t just be m8erted m a dogmatic fashion at the end of a 

in 2l?ta£ eXWnP,e8 ^ ^ deUneated by " for dari*: the text i. framed by a clear box, while the example, appear 
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An aicigxaent is a construct that tells 1£X to assign a value to a register, to an internal 
parameter, to an entry in an internal table, or to a control sequence. Some examples of 
assignments are: 

\tol«ranc« « 2000 
\advanc*\countl2 by 17 
\lin«>kip4pt pint 2pt 
\«Y«rycr * {\aakip 3pt relax} 
\catcod«\'C =11 
\l«t\graf « \par 
\font\ayxont cabxl2 

From (Abrahams et al., 1990), page 49. 

An assigxuna&t is a construct that tells TgX to assign a value to a register, to an internal 
parameter, to an entry in an internal table, or to a control sequence. TTie variable being 
assigned a value is specified first on the left, followed by the value. The variable and the 
value can be optionally separated by the '-' character, or a space. The value can be either a 
number, a dimension with units, a variable name, an expression, a control character or a 
font name. 

Figure 3.6: Example of textual elision due to examples. 

A list always begins with a left parenthesis. Then come zero 
or more pieces of data    (called the elements of the list), and 
a right parenthesis. Some examples of lists are: 

(AARDVARK) 

(RED YELLOW GREEN BLUE) 
(2351119) 
(3 FRENCH FRIES) 

II 

IV 

A List may contain other lists as elements. Given the three lists: 

(BLUE SKY)    (GREEN GRASS)    (BROWN EARTH) 

Mm can make a list by combining them all with a parenthesis: 

((BLUE SKY) (GREEN GRASS) (BROWN EARTH)) 

From (Touretzky, 1984), page 35. 

Figure 3.7: A description of litt using examples. 
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Numbers and symbols cannot be used as inputs to CAR because numbers and symbols 
unlike lists, are not built of CONS cells. Taking the CAR of FROB, for example, causes an" 
ERROR. 

(CAR 'FROB)  ==> Error!  lot a list. 

The function CDR returns the input list after removing its first element. Thus for example: 
(CDR  '(F00 BAR BAZ))  ==> (BAR BAZ) 
(CDR  '(ABC D)) ==>  (B C D) 

The CDR of a single-element list is the empty list, NIL. 
(CDR (FROB))  ~> IIL 

CDR will not work on inputs that are not lists: 

(CDR  'FROB) «> Error!  lot a list. 

CAR and CDR work on nested lists just as easily as on flat ones. For example: 
(CAR '((BLUE CUBE) (RED PYRAMID))) ==> (BLUE CUBE) 
(CDR '((BLUE CUBE)  (RED PYRAMID))) ==> (RED PYRAMID) 

Two more pairs are: 

(CAR  '((AB)   (C D)   (E F))) «>  (A B) 
(CDR  '((A B)   (C D)   (E F))) ==>  ((C D)   (E F)) 

From (Winston and Horn, 1984), page 24. 

Figure 3.8: A description with a large number of examples of the functions CAR and CDR. 

The function CDR returns the input list after removing its first element. The CDR of a 
single-element list is the empty list, NIL. CDR will not work on inputs that are not lists 
CAR and CDR work on nested lists just as easily as on flat ones. For example: 

(CDR  '(F00 BAR BAZ)) ==>  (BAR BAZ) 
(CDR (FROB)) ~> IIL 
(CDR 'FROB) ==> Error! lot a list. 
(CAR '((AB) (C D) (E F))) ==> (A B) 
(CDR '((A B) (C D) (E F))) *=> ((C D) (E F)) 

Figure 3.9: Alternative description for the functions CAR and CDR. 

The importance of the placement of examples is even greater when there are a large number of 
examples. Consider for instance, the description given in Figure 3.8. The examples are provided at 
appropriate points m the description, rather being all placed at the end of the description. While the 
equivalent description in Figure 3.9 is possible, most introductory texts resemble the description in 
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The idleArry contains the infonnation used by postscript for idle time font scan conversion. 
The array can be broken down into groups containing different pieces of information. For 
example: 

/Times-Bold % 
" X 
i* x 
o x 

x 
(abcdefghijklmnopqrstuvwxyz) % 

font name 
x seal« 
y teal« 
rotation 
conversion characters 
string length = 26 

From (Braswell, 1989), page 8-5. 

A function to convert temperatures from Fahrenheit to Celsius could be written as: 

(DEFUl F-TO-C (TEMP) 
(SETQ TEMP (- TEMP 32)) 
(/ TEMP 1.8)) 

subtract 
divide 

From (Winston and Horn, 1984), page 43. 

Examples of control strings are: 
n-gii 

'"3,-4:«s" 

"",+4S" 

An "S directive with no parameters or Modifiers 
An "S directive with two parameters, 3 and -4, 
and both the colon and at-sign flags 
First prefix parameter is omitted and takes 
on its default value; the second parameter is 4 

From (Steele Jr., 1984), page 386. 

Figure 3.10: Prompts are often used in examples. 

3.8   Prompt Generation for the Examples 

Examples can communicate a lot of information, some of which is communicated through their 
ordering. However, this information can sometimes be lost on the reader, especially if he/she is unable 
to discern the critical difference between juxtaposed examples. To prevent this, one can attempt to 
draw the reader's attention to the salient point through the use of prompts. Prompts are symbols or 
additional information presented along with the examples to help focus the reader's attention on the 
critical attributes. Consider for instance the examples in Figure 3.10. The notes in comments on the 
right represent prompts, focusing attention on a particular feature of the example. Prompts are often 
used to replace long, detailed explanations about the examples. 

h^naZ1L(195°) demons^ted that drawing attention to the changing attributes can significantly 
help the user focus on critical features of the examples and enhance understandability. There are 
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Consider the code to draw a triangle given below. The second line of the program is the 
first real line of code ~ an instruction to position the pen on the page. 72 144 moveto is an 
instruction to move to position (72,144) on the page. 

%!PS % Postscript magic number 
72 144 moveto % set initial point 
306 648 lineto % add line segment 
540 144 lineto % add another line segment 
closepath % finish the shape 
stroke % paint the path 
showpage % display page 

From (McGilton and Campione, 1992), page 11. 

Figure 3.11: Prompts can be indicated through the use of bold typefaces. 

many ways in which prompts can be generated. For instance, the critical features could have been 
indicated by using bold or italic typefaces. An example of this is illustrated in Figure 3.11. The 
writer is describing the use of the moveto operator, and presents a small code fragment in which it 
appears. To highlight the statement, the rest of the code is shown in grey (in the actual book), while 
the statement being considered is shown in bold face. In this work, we only consider the case of textual 
prompts like the ones shown in Figure 3.10. 

3.9   Summary 

In this chapter, we have identified some of the basic issues that arise in the presentation of descriptions 
that integrate both textual descriptions and examples. These issues were identified from our corpus of 
programming language manuals and text books. While some of these may be more relevant to software 
documentation than to other domains (such as physical devices, for instance), they are, nevertheless 
important, and need to be considered by a generation system. 

One issue that also arises in the integration of text and examples is the choice of lexical items 
for the text and the examples. Empirical work on lexical choice includes studies by Feldman and 
Hausmeier (1974) on the effect of different lexical terms in the definitions and the examples. Their 
study demonstrated that confusion and ambiguity was minimized by a consistent choice of the lexical 
terms, in both the definition and the example. Another study by Ward and Sweller (1990), showed 
that instructional and explanatory materials were most effective when they presented the definitions 
and the examples using the same lexical terms and constructions. It is therefore important to ensure 
that the lexical Hems used in both the descriptions and the examples be used consistently. However, 
the issue of lexical choice is a complicated one, and currently outside the scope of this work. In our 
system implementation, since both the text and the examples are generated using the same planner, 
we ensure that the terms used in both the text and the examples are consistent. 

In the following chapter, we describe a scheme for categorizing example types, one that differs 
significantly from all previously proposed categorizations. This categorization enables us to find 
appropriate examples in different situations, and use previous results from educational psychology on 
good presentation sequences for examples illustrating concepts belonging to certain categories. The 
chapters following that will be concerned with the actual system implementation, and present different 
traces of the system as it generates different scenarios. 
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Chapter 4 

A Categorization of Example Types 

The previous chapter discussed a number of issues related to the presentation of examples as part 
of integrated descriptions. Some of the issues raised there used the terms 'positive' and 'negative' 
examples. Are there any other types of examples? What are they, and how are they characterized? In 
this chapter, we consider these questions. We categorize examples into different classes, and define 
them. 

4.1   The Need for Categorizing Examples 

Since examples play an important role in comprehension, e.g., (Houtz et al., 1973; Pirolli, 1991; 
Reder et al, 1986), it is important for a system to be able to present examples to the user. A large 
number of examples can potentially be used to illustrate a given point. However, not all examples 
are equally effective in all situations; some are better than others in specific contexts, and others 
tend to illustrate different aspects of the same concept in different ways and achieve different goals. 
Categorizing examples is useful because identifying a category from which to generate an example can 
greatly constrain the number of possible examples that can be applicable in the given situation. 

Previous studies on the categorization of examples include studies by Polya (1945) and Michener 
(1978) on the suitability of examples in different situations. However, these categorizations did not 
explicitly take into account the context in which the example was presented. Yet, the context of an 
example affects its characterization and usefulness. To use examples effectively - i.e., as an important 
and a complementary part of the overall description - the system must reason with the constraints 
introduced by both the textual explanation, as well as the examples. This is because both the examples 
and the surrounding description affect each other. 

This chapter discusses the issue of characterizing the type of examples that appear in natural 
language descriptions. This can be of great help to a system in choosing appropriate examples to 
present. We first describe previous work on categorizing example types, and illustrate how the same 
example can be categorized in two different categories if the accompanying description is not taken 
into account. Then, we present a new categorization, that takes the context into consideration. This 
categorization is based on three orthogonal dimensions: (i) the information content, (it) the text type, 
and (itt) the knowledge type of the example. 

4.2   Previous Work on Categorizing Examples 

Polya (1945) categorized examples into three categories: 
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1. leading examples 

2. suggestive examples 

3. counter examples 

Leading examples were ones that contained mostly critical1 features and very few variable features; 
they were meant for naive users. Suggestive examples contained more variable features than leading 
examples and were meant to 'guide the student in the correct direction.' Counter-examples were 
negative examples that illustrated how instances were not indicative of some concept. 

In her work, Michener categorized examples into five categories (Michener 1977; 1978): 

1. introductory examples: perspicuous, simple cases, 

2. model examples: general, paradigmatic cases, 

3. reference examples: standard, ubiquitous cases, 

4. counter examples: limiting, falsifying cases, and 

5. anomalous examples: exceptional, pathological cases. 

These categorizations make significant contributions to our understanding, but are deficient in two 
respects: 

1. because they do not explicitly take into account the context of the presentation, the same example 
can often be classified into different categories; 

2. the definition of the category is not clearly specified; it is therefore difficult to implement in a 
computational system. 

Furthermore, the two categorizations above did not specify relationships (if any) between their different 
categories, nor did they specify whether these categories were mutually exclusive. 

4.3   The Need for Categorizing Examples in Context 

Our categorization of examples was driven by the need to be able to generate tutorial and explanatory 
descriptions that integrate text and examples coherently in a computational framework. In such a 
framework, a system must be able to present suitable examples to illustrate the description or the 
definition being presented. The suitability of an example is determined in the context it appears in, 
rather than in the abstract: it depends upon the goal of the description, what features are being 
presented, where in the overall description the example appears, etc 

Furthermore, the suitability of the example is also affected by other examples around it As we have 
described in Section 3.6, the presentation order of the examples plays an important role in reader 
comprehension. Thus, the appropriateness of a single example, presented for the same description, 
can be different based on other examples that appear with it, and where in the presentation sequence 

As discussed in Chapter 3, critical feature« are features that are neceuary for an example to be considered a positive 
example of a concept. Change« to a critical feature cause a positive example tc become a negative example. 

Variable features are feature« that can vary in a positive example. Changes to variable feature« create« different positive 
examples. 
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it appears. It would therefore seem obvious that an example can be categorized only in conjunction 
with the context in which it appears. 

We now describe the three dimensions along which we characterize an example in context: the 
relationship of the information in the example to that in the context, the text type in which the 
example is to be generated, and the knowledge type being communicated by the examples. 

4.3.1  The First Dimension: The Relationship between the Example and the 
Description 

One of the dimensions that an example can be characterized along is the relationship of the information 
contained in the example with the information contained in the accompanying descriptive explanation 
that it illustrates. Along this dimension, an example can fall into three categories: 

Positive Examples: These examples are instances of the concept being described and satisfy the 
properties of the concept as described in the accompanying description. These examples must possess 
all the critical features of the concept they illustrate. Such examples are usually in an elaborative role 
to the information in the description. 

Negative Examples: Negative examples (or counter-examples) are not instances of the concept being 
described. These are cases that do not meet the requirements specified in the accompanying description, 
and they play a contrastive role in the context. 

Negative examples can be very useful be- 
cause they help rule out non-critical features 
of a concept (Houtz et al., 1973). For instance, 
the examples of a list in ihe programming 
language LISP in Figure 4.1 illustrate the 
need for parentheses in a list. The negative 

example conveys the information that the symbol A1RDVARK by itself is not sufficient for an instance to 
be a list By virtue of the fact that the only difference between a positive and a negative example is 
the set of parentheses, it draws attention to the fact that the parentheses are important for something 
to be a list. Thus, features in common between positive and negative examples can be ruled out as 
sufficient features, while differing features are highlighted as necessary features and thus become more 
important. 

Anomalous Examples: Anomalous examples represent irregular or exceptional cases. These are 
either (t) instances of the concept described, but not covered by the description, or (it) instances 
likely to be mis-classified by the reader (because of an incomplete description). Thus, positive 
instances which appear to be very different from other positive examples, or negative instances which 
appear to be very similar to positive examples, would be classified as anomalous cases. Anomalous 
examples must be presented with appropriate introductory text, and presented apart from the other 
examples (Engehnann and Camine, 1982). 

The classification of an example into either of these categories depends upon the context established 
by the accompanying descriptive explanation. For instance, an anomalous example in one context 
could classified as a normal, positive example in another context Consider the following description of 
a list in LISP: 

(AARDVARK) ; example of a list 
AARDVARK ; not a list 

Figure 4.1: Two examples about a list. 

A left parenthesis followed by zero or more S-expressions followed by a right parenthesis is a list 
From (Shapiro, 1986) 
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Given the above definition of a list, the following examples would classify as positive, negative and 
anomalous cases: 

Positive Examples Negative Examples Anomalous Examples 
(AB CD) 
(12 3 4 5 67) 
(BLUE SKIES GREEN GRASS) 

THIS-IS-AN-ATOM 
1234567 
•BLUE 

NIL 

This categorization of examples could change with another definition: 

A list is a cois-cell whose CDR '» either the atom IIL or another list. The atom MIL is the identifier 
that represents the empty list and the boolean concept FALSE. 

From (Steele Jr., 1984) 

In this case, IIL becomes a positive example of a list. Similarly, a list may be so defined as to include 
the concept of a dotted-list as well. 

It is clear that it is difficult, and sometimes impossible, to classify an example as belonging to a 
certain category without taking into consideration the surrounding contextual information. It is also 
difficult to categorize examples as being 'suggestive' or 'model' or 'reference' without having a complete 
definition of these different categories. Correct classification of the examples is essential, because 
examples must be presented in accordance with the category they happen to classify in. For instance, 
anomalous examples need to be presented separately from the regular examples, with a suitable 
introduction to notify the user of the anomalous nature of such examples. 

4.3.2   The Second Dimension: The Text Type 

The second dimension that examples can be characterized along is dictated by the text type in which 
the generation is to take place. It has long been observed that naturally occurring texts fall into 
certain linguistic patterns which characterize the genre of that text. Many of these genres, such as, 
for instance, scientific papers, financial reports, etc. impose strong constraints on both the type and 
frequency of occurrence for certain types of linguistic phenomena such as the rhetorical structure, 
lexical types, grammatical features, etc. (Hovy et al., 1992). Several text typologies have been proposed 
by linguists, e.g., Biber (1988,1989) identified eight basic types of texts based on statistically derived 
grammatical and lexical commonalities; de Beaugrande (1980) proposed a general classification of text 
types, also arguing that text types determine the types of discourse structure relations used. 

The text type is an important constraint on the selection of information to be presented both in the 
description and the example. In our case, we only use three different text types in our categorization: 
(t) introductory texts, (t'i) intermediate texts, and (in) advanced, or reference manual type texts. 
Since these text types are based on the intended user,8 results in user modelling can also be taken 
into account Among the many studies on the need for varying both the amount of information 
and the manner of presentation based on the user are (Paris, 1993; Paris, 1988; Nwana, 1991; 
London, 1992). The results from these studies, on the differences in the textual descriptions presented 
to the user should also be taken into account. 

As we have already mentioned before, the major short-coming of both the previous example 
categorizations was due to the fact that they did not take the accompanying context into account. 

sThere is a close correspondance between the text type and the intended user type. Thus, this dimension can also be labelled 
as the intended user type. 
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A list always begins with a left parenthesis. Then come zero or more pieces of data (called 
the elements of a list) and a right parenthesis. Some examples of lists are: 

(AARDVARK) 
(RED YELLOW GREEI BLUE) 
(2 3 5 11 19) 
(3 FREICH FRIES) 

A list may contain other lists as elements. Given the three lists: 
(BLUE SKY) 
(GREEI GRASS) 
(BROWI EARTH) 

we can make a list by combining them all with a parentheses. 

((BLUE SKY)   (GREEI GRASS)  (BROWI EARTH)) 

From (Touretzky, 1984), page 35. 

Figure 4.2: Introductory examples are usually single featured. 

In contrast, we consider both the description and the example for categorization. This is essential 
because our system needs to generate both the text as well as the example in its explanation. 

From our corpus analyses, we have classified examples in the context of their accompanying 
descriptions into three main classes - introductory, intermediate and advanced. This classification 
constrains both the content and the presentation style of the descriptions and the examples: 

1. introductory: text type meant for users with little or no previous exposure assumed for the 
concept; goal is to learn about the concept, 

2. intermediate: text type meant for users with moderate previous exposure; goal is to learn to make 
use of the concept, 

3. advanced: text type meant for users with extensive knowledge; goal is to clarify some point or 
misconception about the concept 

Introductory Texte: Examples in introductory descriptions tend to be simple ones - where 'simple' 
refers to the fact that they are usually single-featured (or if they have multiple features, usually 
no more than two, where the two features are along two different feature dimensions) This has 

i «SSTe^0Tted fa other 8tudies' •*» (Clark> 1971; Michener, 1977; Carnine, 1980b; Litchfield et 
at., 1990). In our domain of programming languages, the accompanying description is syntactic or 
surface/appearance oriented. Anomalous examples are usually absent, and if they are presented they 
only appear after all the other examples. Examples are often introduced as soon as the point they 
illustrate is mentioned in the text 

Consider for instance the description in Figure 4.2. The descriptions are centered around the syntax 
or the surface appearance of the list. The examples are simple and illustrate a feature at a time (the 
type of data elements, except in one case where the type and the number, two different dimensions of 
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A list looks like a sequence of objects, without commas between them, enclosed in paren- 
theses. 

Appropriately constructed lists can also be used to call functions in LISP. If you type any of 
the lists in table 2-4 to LISP, you will get an appropriate response. 

Table 2-2: 
(12 3 4 5) ; List of numbers 
(A B C D) ; List of symbols 
(*\A #\B #\C #\D) ; List of characters 

Table 2-3: 
(This is (also) a list) ;third element is also a list 
((12 eggs (large)) (1 bread (whole wheat)) ;list of lists of numbers, 
(4 pizzas (frozen with anchovies))) ;     symbols and lists 

("this is a string in a list" -53) ;list of a string and a number 
((Beth "555-5834") (Pat "555-8098")) ;list containing two lists 

Table 2-4: 
(SQRT 2) ; the first element is the name of a function 
(+2 3) ; the first element is the name of a function 
(-6 5 4) ; the first element is the name of a function. 

Lists can be considered ways to store data. For example, you might want to store your 
inventory as a list, or group together names and phone numbers in a list 

From (Tatar, 1987), page 16. 

Figure 4.3: Intermediate 'use' oriented examples. 

variation, are illustrated). Examples do not always have prompts, because the same information is 
usually realized as sentences in the accompanying description. 

Intermediate Texts: Descriptions written for the 'intermediate' reader (who is already assumed to 
have introductory knowledge) tend to be more complex than the ones for introductory users, in that 
they include more detail on how the information may be used by the user. The examples are not always 
presented immediately; if there are a number of related points, these points are stated first, before a 
group of examples illustrating these points are presented. The examples themselves are usually briefly 
annotated (with prompts). Intermediate descriptions contain a few introductory examples, which are 
then followed by examples that illustrate the use of the concept. For example, the description in 
Figure 4.3 describes how a list can be used to represent shopping lists, store phone numbers and 
write function calls. 

Reference or Advanced Texts: Since the purpose of advanced or reference materials is not 
instruction, it is not surprising that both the textual description and the accompanying examples are 
very different from those in the introductory ones. The documentation and the examples usually occur 
in a fixed format, with the examples following the definition and the explanation. The examples are 
not simple, single-featured, but tend to be few and multi-featured. The examples are often almost 
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A list is recursively defined to be either the empty list or a COMS whose CDR component is a 
list. The CAR components of the COlSes are called the elements of the list. For each element 
of the list, there is a COIS. The empty list has no elements at all. 
A list is annotated by writing the elements of the list in order, separated by blank space 
(space, tab, or return character) and surrounded by parentheses. For example: 

(a b c) ; 1 list of 3 symbols 
(2.0*0 (a 1) #\*)        ; 1 list of 3 things:a floating point 

; number, another list, and a character 
; object 

The empty list IIL therefore can be written (), because it is a list with no elements. 

From (Steele Jr., 1984), page 26. 

Figure 4.4: Reference documentation has fewer, more complex examples. 

The list function takes any number of inputs and makes a list of them all. For example: 

INPUT to list OUTPUT 
foo bar baz —► (foo bar baz) 
foo -► (foo) 
(frob)        — ((frob)) 

From (Touretzky, 1984), p.51 

Figure 4.5: Examples of a relation. 

independent of the textual description, with little cross-referencing between the two. This almost 
invariably results in prompts being used to indicate some of the salient characteristics of the examples. 
Since the descriptions tend to be comprehensive, there are few (if any) anomalous examples. If there 
are any anomalous examples, they are always presented. For example, a description of a list from an 
advanced, reference manual is shown in Figure 4.4. 

4.3.3   The Third Dimension: The Knowledge Type 

The knowledge type can also be used during the generation process to determine the appropriate 
type and sequence of examples to be generated in an explanation. The knowledge type refers to the 
categorization of information into one of three broad classes: concepts, relations or processes. There can 
be significant differences in the presentation of examples and the accompanying descriptions based on 
whether the idea to be explained is a concept, relation or a process. Consider for instance the concept 
list' (as described in Figure 4.2) and the relation list' (functions are relations that hold between the 
input parameters and the output values of the function), as illustrated in Figure 4.5. 

The concept list is described as an object, and examples of list are instances of this object; the 
function list, on the other hand, is described in terms of its input and output parameters, and examples 
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Information 
£ Positive   Anomalous   Negative   Content 

Figure 4.6: The three dimensions used in categorization. 

of the function reflect this fact Similarly, processes, which are sequences of functions are described 
differently and their examples are often instances of function parameters at every step in the sequence. 
In generating examples of relations, it is important to keep in consideration that the examples used as 
input-output parameters must be known to the hearer. Also, since anomalous or pathological examples 
of concepts used as either input or output examples for examples of relations often result in anomalous 
examples of relations, the examples must be chosen carefully. 

Examples of processes consist of chains of events that take place in a particular order. The goal is 
to communicate the sequence of events and their cumulative effect. In case the reader does not know 
about certain relations or concepts involved in the steps of the routine, the generator must adequately 
explain such relations or concepts as well. This is to ensure that the hearer is familiar with the rest of 
the steps in the sequence before the difficult examples are encountered. 

4.4   Discussion 

In this chapter, we have presented one method of categorizing example types. Such a categorization 
is important, because different situations often require the presentation of different types of examples 
with specific presentation requirements about the number of examples, the sequence of presentation, 
the associated prompts, etc (Engelmann and Carnine, 1982). A specification of the different presen- 
tation requirements is particularly important in designing an effective explanation system. We have 
argued that examples must be characterized based on the context in which they appear. We have 
presented one such characterization, and illustrated it with examples from our corpus. 
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Our categorization is a generalization of the previous work by Michener and Polya, and extends 
the scope of the characterization to take into account the surrounding context of the example. This 
is important in generating well integrated text and examples. The categories along each of the 
three dimensions that we have mentioned can be sub-divided further into smaller classes and specific 
presentation methods can be associated with each class. 

This categorization is not specific to a particular architecture for generation, and can be easily 
incorporated into any system such as CEG (Suthers and Rissland, 1988) or HYPO (Ashley, 1991). The 
dimensions can be further refined or modified if necessary to suit particular applications: for instance, 
recent work on categorizing dialectical examples (Ashley and Aleven, 1992) can be easily incorporated 
into our framework by further dividing the positive example category into representational,' 'conflict 
resolution,' 'ceteris paribus' and 'coherence' categories.4 Our categorization is general in the sense that 
it does not depend upon the aspect an example is supposed to illustrate. Given a particular context in 
a particular application domain, our classification scheme can be further refined into many different 
sub-categories. In addition, this categorization can help a system partition the search in the example 
knowledge base for suitable examples. Given that a particular concept needs to be illustrated, the 
system need only consider examples that meet the classification criteria, for instance, positive, simple 
(introductory texts) and of a concept 

The following chapter describes an implemented system to generate integrated descriptions. 

«These categories are all defined as positive examples, with different characteristics, depending upon the features) they 
illustrate in the context of legal reasoning. 
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Chapter 5 

The System Implementation 

In the previous chapters, we have presented the motivation, related work, relevant issues, and 
a categorization of different example types. In this chapter, we describe an implementation of a 
system capable of generating descriptions with integrated text and examples. The system consists 
of four major components: the text planner, the example generator, the knowledge representation, 
and the english interface (the grammar interface and the sentence realizer). As the basis for our 
implementation, we use the EES text planning system (Moore and Paris, 1989; Moore and Paris, 1988; 
Moore, 1989), to which we have added an example generator that retrieves/constructs actual examples 
given a specification of what is required. The planning system has access to several knowledge 
sources, such as the domain knowledge, the user model and the dialogue history containing a record 
of the previous discourse. While planning, the system passes requests for examples to the example 
generator. The output of the planning phase is a discourse structure tree, which is then passed through 
an interface and a sentence generator to produce english. A block diagram of the overall architecture 
is shown in Figure 5.1. 

The rest of this chapter describes the text planner, the knowledge representation and the example 
generator in more detail. 

5.1   The Text Planner 

The system uses a text planning framework to plan the overall discourse in terms of high level 
communicative goals. It uses a hierarachical, linear planning mechanism - based on the STRIPS 
planner (Fikes and Nilsson, 1990) - to plan the structure of the discourse: given a top level 
communicative goal, the system finds plans capable of achieving this goal. Plans typically post further 
sub-goals to be satisfied, and planning continues until primitive speech acts - i.e., directly realizable 
m English - are achieved. The result of the planning process is a discourse tree, where the nodes 
represent goals at various levels of abstraction with the root being the initial goal, and the leaves 
representing primitive realization statements, such as (IIFORM ...) statements. 

To ensure that the generated text is coherent, the system selects plan operators such that each 
communicative goal in the discourse tree is related to adjacent communicative goals through coherence 
relations. Coherence relations are used to generate appropriate connectives during the realization 
phase. We use relations from Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) as our 
set of coherence relations. 

The resulting discourse tree is then passed to a grammar interface which converts it into a set 
of inputs suitable for input to a sentence generator, which results in the actual english output. A 
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(define-text-plan-opera tor 
'EFFECT (elaboration-by-example ?ftr 'object) 
:CONSTRAINTS (and (isa? ?object concept) 

(get-exanple-available ?exa«ple ?ftr ?object) 
(prompt-required? ?exa«ple ?ftr ?object)) 

JJUCLEUS (bei hearer (present-example 'example)) 
:SATELUTES (elaboration (example-prompt ?itr ?object)))) 

Figure 5.2: Sample Text Plan Operator. 

detailed description of the system can be seen in (Moore, 1989; Moore and Paris, 1989; Paris, 1991; 
Moore and Paris, 1993; Moore and Paris, 1992). 

5.LI   Plan Operators 

Plan operators describe how to achieve a communicative goal. They are designed by studying (large) 
corpora of natural language texts and transcripts. They include conditions for their applicability. 
These conditions can refer to resources like the system knowledge base (KB), the user model, or the 
context (i.e., the dialogue context, the current text being generated, the text type, etc.). A sample text 
plan operator is shown in Figure 5.2. The operator has four slots: 

EFFECT: a specification of the goals that the plan operator may be capable of achieving; in the case of 
the plan operator in Figure 5.2, the EFFECT specifies that the operator can achieve the goal of 
presenting an example of an object (the variable ?object) to illustrate a particular feature (the 
variable ?xtr) 

CONSTRAINTS: the pre-conditions that must be true in the environment for the operator to be selected. 
These constraints can be either predicates, or functions that bind variables to specific values. For 
instance, in the case of Figure 5.2, the constraints check: (i) whether the object being described is 
a concept (as opposed to a relation, or a process, for instance); (it) whether an example is available 
(can either be retrieved or constructed) to illustrate the feature ?itr in the object ?object - 
this will cause the generation of the actual example, and if successful, bind it to the variable 
?example; if there is no example that can be either found or constructed, this constraint will fail, 
causing this plan operator to not be selected; (Hi) whether a prompt is required for the example 
selected (?example) for the object (? object) for feature (?ftr). Of the three constraints therefore, 
the first and the third constraints are purely predicate in nature, while the second one actually 
binds a variable with a new value. 

NUCLEUS and SATELLITE: according to RST, the communicative goal specified in the EFFECT slot can 
be achieved by providing some information: this information can often be further partitioned into 
two parts: (»') information playing the central role, which must necessarily be communicated: 
this is represented by the goal in the NUCLEUS; («) information playing a supportive role; such 
information is often used as background material, or as elaboration upon the information in the 
NUCLEUS: this is represented by the goal in the SATELLITE position. Information in the SATELLITE 
is often not required for the original discourse goal to be satisfied; in such cases, the SATELLITE 
may be marked '«optional*.' As stated earlier, the sibling goals posted as a result of the NUCLEUS 
and SATELLITE subgoals must be related through the use of coherence relations: in this case, the 
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relation 'elaboration' marks the relationship of the information in the SATELLITE to that in the 
NUCLEUS. 

In this framework, experimenting with additional sources of knowledge in the planner is not difficult, 
because these additional sources can be added to the system by incorporating additional constraints 
in the plan operators which reference these resources. In this system examples are generated by 
explicitly posting a goal within the text planning system: i.e., some of the plan operators used in the 
system include the generation of examples as one of their steps, when applicable. (Figure 5.2 shows a 
sample plan operator that can be used to present examples.) This ensures that the examples embody 
specific information that either illustrates or complements the information in the accompanying textual 
description. A snap shot of the screen with the text planner is shown in Figure 5.3. This shows the 
discourse structure being constructed, the plan operator being evaluated by the system at that time, 
and another window with a trace containing information on constraints being tested. 

At present, the system has about 60 plan operators in our domain of software documentation that 
deal with the generation of concept descriptions with examples. 

5.2   The Knowledge Representation 

Our system is part of the documentation facility we are building for the Explainable Expert Systems 
(EES) Project (Swartout et al., 1992), a framework for building expert systems capable of explaining 
their reasoning as well as their domain knowledge. In EES, a user specifies a domain model in the 
high level knowledge representation language LOOM (MacGregor, 1988),1 as well as problem solving 
principles, i.e., methods for solving problems in the domain. Given these and a variabilized goal to 
achieve, EES generates an expert system to solve goals of the same form. 

The problem solving methods have to be written in a specific plan language, INTEND, which was 
designed specifically for the project, with the goal of facilitating explanations. INTEND is specified in 
the Backus-Naur Form (BNF), a fragment of which is shown in Figure 5.4. The grammar contains 
productions, and, optionally filter functions' on the productions, i.e., tests that have to be satisfied 
before the production can be selected. For instance, 'pred-relation-form-test' is a filter-function defined 
on the prad-relation-fora production. The grammar of INTEND is quite complex, and thus provides a 
good test-bed for a documentation facility. With such an on-line facility, users can get information as 
to what might be wrong when a plan does not parse, as well as descriptions of the various constructs 
involved, together with examples. 

To generate documentation, the system must first convert the BNF-representation of the grammar to 
an equivalent LOOM representation. In our system, the BNF grammar is specified using POPART (Wile, 
1987). The POPART representation of the BNF form can be easily converted (in most cases) to the 
desired LOOM representation. 

The BNF representation must first be converted to LOOM for use by the generation facility; the 
form 

1 :> B C; 
is represented in LOOM as: 

(defconcapt A 
:is (:and B (:the graaunar-aequence C))) 

i.e., concept A consists of concept B followed by (related by the relation named grammar-aaquenca to) 
concept C; the form 

A  :« B  I  C; 

1Loom is a KL-ONE type language. 
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action-role-for« := 
'( action-role-nane restricted-expression ') ; 

predicate-fox« := 
pred-ralne-for» I    pred-relation-for« I 
pred-logical-for» I    pred-action-fora 11   ; 

pred-relation-for» := 
'( relation-description restricted-expression +  ') 

l> predicate-reJation-form-test ; 

Figure 5.4: A fragment of the EES grammar. 

(defconcept ACTION-ROLE-PORM 
as (and left-parenthesis 

(rthe grammar-sequence 
(and action-role-name 

(tthe grammar-sequence 
(and restricted-expression 

Gthe grammar-sequence right-parenthesis))))))) 

Figure 5.5: Representing BNF productions in LOOM. 

is represented as a disjoint covering (B or C) under concept A. 
(defconcept A 

:disjoint-covering (B C)) 
Consider also the grammar fragment shown in Figure 5.4. The first production specifies that an 
action-role-f or« is an action-role-nane followed by a restricted-expression, with both of these 
enclosed by parentheses. This is represented in LOOM as shown in Figure 5.5. 'grannar-seq'is a relation 
defined to order the grammar symbols in the correct sequence. The non-terminal «predicate-f om' can 
be easily represented in LOOM as a disjunction of the four possibilities. 

The production pred-relation-for»' is one that cannot be completely represented in LOOM au- 
tomatically. This is due to the fact that the specification of a pred-relat ion-font is more than 
just the syntactic specification of restricted-expressions following a relation-description; the 
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POPART representation also specifies that the form must satisfy the test represented by the filter 
function 'predicata-rslation-f or«-test.' These tests are defined in POPART to enforce non-syntactic 
constraints. For instance, in this case, the predic&te-relation-f ora-test checks to see whether the 
number of restrictad-sxpressionsin the parse tree is equal to the arity of the relation-description. 
This is specified in the form of LISP code, and this information must be manually added as an 
annotation to the automatically generated LOOM definition of the concept. 

Most BNF forms can be translated into an equivalent LOOM form in a straightforward fashion. 
Occasionally, however, certain constructs are more difficult to translate. The kleene-closure is one 
example of a construct that maps differently into LOOM. Consider the POPART and LOOM descriptions of 
a list as given in Figures 5.6 and 5.7 respectively. Since there can be any number of data elements in 
a list, some of which could be embedded lists, the system must necessarily be able to count the number 
of left and right parentheses in addition to checking for the types of data elements. Both of these - 
lists being part of lists, and the need for counting parentheses - cause problems in the representation 
for KL-ONE type languages (Paul, 1993). To get around this problem, it becomes necessary to 'escape' 
to the Lisp level. In LOOM, this can be done through the use of the "rpredicate" feature, which allows 
the definition of a Lisp predicate that can be used by LOOM in testing for membership for a class. The 
LOOM description of a list, along with the required LISP predicate - the function 'loo«-list-p' — used 
to determine whether a given instance classifies under the description or not is shown in Figure 5.8. 
However, this results in a LOOM representation that cannot be easily used by the text planner (which 
expects the syntactical (BNF) information expressed in terms of LOOM relations and concepts and 
not embedded in LISP code). It is thus necessary to add the structural/syntactic information about 
liats that the text planner expects and needs to generate from. In our domain, the list concept is 
represented as shown in Figure 5.9. 

There are many advantages to using a representation such as LOOM; the main one is the availability 
of the classifier mechanism. As we describe in the following section, the classifier allows the generation 
system to do two tasks very easily: (i) to categorize different features in an example as being either 
critical or variable, and (it) to determine if a negative example generated by the system is 'interesting' 
or not 

5.3   The Example Generator 

This section deals with the generation of examples to be used in the presentation. As discussed in 
Section 5.1, the text planner posts explicit goals to present examples as part of the overall description. 
In this section, we discuss issues such as the construction, storage and retrieval of examples, the 
determination of their critical and variable features and whether prompts are required. 

5.3.1   Construction of Examples 

Examples can either be retrieved from a pre-existing Example Knowledge Base, as in HYPO (Ashley, 
1991), or can be constructed, as in CEG (Suthers and Rissland, 1988). Our system uses both 
construction and retrieval to find suitable examples. Initially, the system possesses examples of the 
primitive grammar elements such as atoms, numbers, strings, etc., in the LISP domain. Examples of 
such elements are therefore always retrieved. When the system needs to present an example of a more 
complex grammar symbol, such as a list, for instance, the system constructs the example based on 
the BNF definition of a list, as well as the features being illustrated. Unlike HYPO, which used 12 
pre-defined features as indices, our system uses LOOM to allow us to retrieve examples with as few, or 
as many indices as necessary; the greater the number of indices specified in the retrieve, the fewer the 
number of possibilities returned by LOOM for consideration. 
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data-element := symbol  I number I  character I list  ; 

list  :* '( {data-element *}  ')   ; 

Figure 5.6: Description of a list in POPART. 

(delconcept data-element 
:is (:or symbol number character list)) 

(delconcept list 
:is  (:and grammar-symbol (predicate (?x)  (LOOM-LIST-P ?x)))) 

Figure 5.7: Description of a list in LOOM. 

(defun LOOM-LIST-P (x) 
(declare (special parent no-error)) 
(setf no-error t) 
(cond ((loon-type-p z 'left-parenthesis) 

(set! parens 1) (loon-list-1-p (get-range x  'grauar-sequence)) 
(and no-error (zerop parens))) 

(t nil))) 

(defun LOOM-LIST-1-P (x) 
(cond ((null x) nil) 

((looa-type-p x 'left-parenthesis) (setf parens (+ parens 1))) 
((loo»-type-p x 'data-elements)) 
((looM-type-p x 'right-parenthesis) (setf parens (- parens 1))) 
(t (setf no-error nil))) 

(if (and x (get-range x 'gramnar-seqnence)) 
(loon-list-1-p (get-range x 'grannar-sequence)))) 

Figure 5.8: The predicate used by LOOM to check for a list. 

(defconcept list 
:is (:and grammar-symbol (predicate (?z)  (loom-list-p ?z))) 
:annotations ((syntax 

(left-parenthesis (kleene-closure data-elements ) 
right-parenthesis)))) 

Figure 5.9: LOOM description of a list. 
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The example generator takes as input the list of features for a concept that needs to be illustrated by 
presenting an example of a particular object. The syntactic specification of the function and a typical 
call to it are given below:2 

function:  get-example 
(gat-axaapla ?conc«pt ?faaturea ?objact) 

typical call: 
(gat-axaapla 'data-alaaant  '(atom nuabar)   'liat) 

In the function above, ?concept refers to the concept being illustrated, ?faaturea specify the features 
of the concept that the example should try and illustrate, and ?objact is the object whose example 
should be presented. Thus, in the instantiated function call shown above, the system constructs an 
example of a list, where the concept to be illustrated is that of a data element, and the features that 
need to be highlighted are the facts that a data element can be either an atom or a number. The 
resulting output from such a function call would be 

(orangas 5) 

The function accesses global constraints such as the text type to determine the type of elements 
required; in the case of the advanced text type, the element representing the number could have been a 
more complex, floating point number (this is done by specifying default types for the text type: lacking 
any further information, if a number is required for use in an example in an advanced text, the system 
will retrieve a floating point number, as opposed to an integer. 

The function gat-axaapla also takes an optional parameter, the kl-cl-nuabar, which represents the 
number of elements desired for the feature in the concept that happens to be defined as a kleene-closure. 
In the case of a liat, for instance, the BNF definition (in POPART notation) is: 

list  :=  '(    data-alaaenta *    '); 

Since the default value of the kl-cl-nuabar is one, if the parameter is not specified, the system will 
generate examples of lists with one data-alaaent if no other information is available. In cases such as 
the one above, where the features to be exemplified are specified (in the variable iaaturas), the system 
will generate examples taking both the kl-cl-nuabar and the features into account. The generated 
examples are then also stored in the knowledge base. 

If the system is successful in generating an appropriate example, that example is then stored in 
LOOM as an example for the concept Given the classification facility in LOOM, this is automatically 
indexed underneath a liat, as well as any other grammar symbols it is applicable to. The next time 
the system needs to generate an example for the same features, the system can retrieve this example, 
rather than constructing one from scratch. 

The function gat-axaapla, described here, is a relatively low-level function, in that it takes a very 
specific request for the object, as well as the features that need to be highlighted. This was done so as 
to make the text plan operators more explicit. The reasoning to determine the number and order of 
examples to be presented, determining the critical and variable features, etc., is represented clearly 
in different constraints on the plan operators and are the focus of this study. This allows for easy 
modification of different strategies to observe their effects on the plan generated. 

2In the actual implementation, the function takes other arguments as well; these are to do with the variable that needs to be 
instantiated with the example, etc. 
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The next few subsections describe how the example generation component determines the critical 
and variable features, generates 'interesting* negative examples and, if necessary, prompts, for the 

.   examples. 

5.3.2   Determining Critical Features 

As we mentioned earlier, in Section 3.6, it is essential to convey to the user that some of the concept 
features are required for any instance to be an example of the concept These features are referred to 
as critical features. To be able to emphasize the critical nature of a feature, the system can (in tutorial 
contexts), present a pair of examples, one positive and one negative, identical in all respects, except 
for the critical feature being emphasized. To be able to do so, the system must be able to determine 
which of the many features of the concept are critical, and which are not 

In our system, the representation of the domain model in LOOM allows us to determine critical 
features relatively easily. This is because the classification facility in LOOM allows the system to 
query it regarding relationships between concepts and instances. This allows the system to determine 
whether a particular feature is critical or not by simply modifying the value of each feature along 
various dimensions and then testing (querying LOOM) to see if the modified instance still classifies 
as an instance of the original object. We have defined for our domain a number of ways to modify 
tiie definition of a concept3 The system successively attempts these operators on the given concept 
definition, and finds those features whose modification causes the example to fail to classify under the 
object being explained. The modifications attempted by the system are given in Figure 5.10. 

The generate-and-test approach taken by the system to determine whether a particular feature is 
critical or not is inefficient compared to say an alternative approach based on analytically examining 
the LOOM definition and determining the features from there. This, however, is not possible in our 
case, because certain constructs such as the kleene-closure in BNF cannot be represented in the LOOM 
semantics. Since these constructs are essential, they are represented as predicates in LISP that are used 
by LOOM during classification and matching. These predicates thus cannot be examined analytically to 
determine the critical and variable features, and it is therefore necessary to use the generate-and-test 
approach to classify the features as such. The representation of a list in LISP, which is defined using 
a kleene-closure will be seen in Chapter 6. 

There are a total of seven ways along two dimensions with which the system attempts to modify each 
feature of a concept definition in this domain to try and find a critical feature. Two of the seven ways 
ni which the systems attempts modification are with respect to the number dimension; the remaining 
five are with respect to the type dimension. We shall illustrate the working of the algorithm by taking 
the example of the concept list in the LISP domain. In the case of the introductory text type the 
system retrieves the syntactic, surface features for presentation. These are the left parenthesis' the 
data elements, and the right parenthesis. Given these three features, the system must now determine 
which of these features are critical and which are variable. The system attempts to generate and 
test different instances created from modifying the definition of a list. As stated above, the system 
attempts to modify features along two dimensions: 

Number Dimension: First, the system attempts to see if deleting the feature under consideration 
from the definition causes the system to classify this modified instance wrongly. If it does, the feature 
is marked as being critical. Secondly, the system checks to see whether adding an extra element 
identical to the feature causes the system to find the modified instance as belonging to another class 
In both these cases, the fact that the feature is critical with regard to the number is noted by the 
system. Thus, if the BNF definition is of the form 

»It is possible that these modification« will not be applicable in many domain*; the alternative (to not using »eh domain 
specinc modification information) is to use a representation as in CEG (Suthers and Riasland, 1988), in which every concept 
contained annotations on how various features could be modified. wncepi 
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For each feature in the set of input features, determine if the feature is a critical feature by 
creating an instance of a modified definition and checking whether the (modified) instance 
classifies under the original definition. The modified definitions are created by varying each 
feature in the definition as follows: 

1. Varying the Number: 

(a) modify the definition by omitting the feature from the definition 
(b) modify the definition by adding another symbol of the same type as the current 

symbol in the definition 
if in either of these two cases, the modified instance fails to classify under the original 
definition, mark the feature as being critical along the number dimension. 

2. Varying the Type: 

if the feature is a terminal symbol: 

(a) modify the definition by substituting the feature with another terminal symbol of 
the same type 

(b) modify the definition by substituting the feature with a terminal symbol of another 
type 

else if the feature is a non-terminal symbol: 
(a) modify the definition by substituting the feature with the superconcept of the 

feature 
(b) modify the definition by substituting the feature with the subconcept of the feature 
(c) modify the definition by substituting the feature with the sibling concept of the 

feature 

if in any of these cases, the modified instance fails to classify under the original 
definition, mark the type of the feature as a critical feature. 

Figure 5.10: Determing the Critical Features of a Concept in BNF. 

A — graam&r-seq — B — graaaar-ieq — C 

the system successively considers modified definitions of the form: 

A -- granar-t*q ~ A ~ gruuur-t«q — B ~ gra«»ar-i«q — C 
A — grunar-acq — B — gramaur-i«q ~ B — grumar-*«q — C 

see if in any of these cases, the modified concept description still classifies as a subconcept of the 
original concept 

For the case of a li.t, instances of a liit are created from modified definitions and tested to 
see whether they classify under the original definition of a li.t. Modifications along the number 
dimension, such as reducing the number of parentheses by one, or adding an extra parenthesis, cause 
the instances to not classify under the original definition. Thus, both the left and the right parentheses 
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are marked as critical.4 On the other hand, modifications to the number of data elements in the list, 
by either deleting one, or adding one, do not result in the instance failing to classify as a list At this 
point therefore, the data elements are not classified as critical features. 

Type Dimension: There are a number of different ways in which the system attempts to modify a 
feature by varying the type dimension: 

Terminals: If the feature being considered happens to be a terminal symbol (the POPART-to-LOOM 
transformer marks the grammar symbols appropriately as being terminal and non-terminal symbols 
based on their BNF representation), the system modifies the definition of the concept in two ways: (i) 
by replacing the symbol with another terminal symbol of the same type. For instance, if the terminal 
symbol happened to be a number, say 2, the system would try to replace 2 with another number, for 
instance, 7. (it) by replacing the terminal symbol with another terminal symbol of another type. For 
instance, in the previous case, the system could attempt to replace the number 2 with a character, 
such as 'a'. In the case of the list, the system can attempt to replace the left-parenthesis with 
another terminal symbol, such as the right-parenthesis, and in the second case, by a keyword, such 
as 'defun*. If in either of these cases, an instance of the modified definition did not classify as an 
instance of the original definition, the system would mark the fact that the type of the feature was a 
critical feature. 

Non-Terminals: If the feature being considered is a non-terminal symbol, the system attempts to 
modify the definition by changing the symbol in three different ways: («') by replacing it with a 
superconcept, (it) by replacing it with a sub-concept, and (n't) by replacing it with a sibling concept 
In the case of the list, case (t) is not applicable, because data-element is the most general type in 
the representation of a list, since it is the disjunction of the symbol, number, and list types; case (») 
could result in the system replacing data-element with another type such as number, and case (tit) is 
again not applicable in the case of data-element. Since a list of numbers is still a valid list the type 
aspect of data-elements is not marked as being a critical feature for a list. 

The algorithm is also given in Figure 5.10.6 The algorithm allows the system to determine the critical 
features of a concept. Once these features have been determined, the system caches these values so 
that it does not have to repeat this reasoning the next time it has to determine critical features for the 
same object and is given the same set of input features. 

As in the case of get-example, the function to find the critical features of an object has been designed 
for use as a function in the CONSTRAINTS of a text plan operator. The function is given a list of features 
and an object and returns those features from the set that are critical. A typical call is shown below: 

function: select-critical-features 
(select-critical-features ?features Tobject) 

typical call: 
(select-critical-features 

'(left-parenthesis (kleene-closure data-elements) 
right-parenthesis) 

'list) 

In this case, the function call returns: 

'Currently, the system does not attempt to vary more than one feature at a time while trying to determine the nature of the 
features. Thus, the system does not attempt to add/delete both the parentheses and see whether the resulting construct would 
still classify as a list or something else. 

sNote that this algorithm is a superset of the algorithm used by LEX (Mitchell et ed., 1983) to generate new problems: LEX 
only attempted substitution of a term with a sibling term. 
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(left-paranthaiii right-parenthesis) 

The function selects critical features from a list of features passed to it, rather than finding the 
critical features, because different cases may require the presentation of different sets of features. For 
instance, the generation of descriptions for introductory and advanced texts requires the presentation 
of quite different amounts and types of information in many domains. Thus, in our system, the 
constraints in the plan operator first select the appropriate features for the given text type from 
the LOOM representation, and then, determine the critical features from this set of features to be 
presented. 

5.3.3   Determining Variable Features 

As in the case of critical features, the system must know which features are variable in nature. A 
knowledge of the variable features then allows the system to illustrate the variability by presenting 
multiple positive examples that vary in the variable features. Since variable features are not critical 
features, if the critical features for a concept are known, the system can attempt to prune the set of 
features to be considered by removing the critical features.6 The remaining features are then processed 
exactly in the same manner in which the critical features are determined; the only difference is that 
the systems tests for successful classification (rather than a failure to classify) after each modification. 
Each feature is varied along both the type, and the number dimensions as in the previous case 
regarding the critical features: 

• Number Dimension: 

- vary the definition by omitting the current feature from the definition 
- vary the definition by adding another feature of the same type as the current feature 

• Type Dimension: 

- if feature is a terminal: attempt replacements with (i) other terminals of the same type, and 
(ii) terminals of another type 

- if feature is a non-terminal: attempt replacements with subtype, supertype and sibling types 

If instances created from the modified definitions still classify under the original definition of the 
concept, the feature is marked appropriately as a variable feature. As we mentioned previously, LOOM 
allows us to determine the class of the description very simply with its classification mechanism. As 
in the case of critical features, the variable features of the object are cached upon computation so that 
future calls to the function can be answered using simple retrieves. 

Features of a concept can be critical and variable at the same time-along different dimensions. 
Consider the case of the operator PLUS in LISP for instance. While the number of arguments that follow 
the operator are not critical, the type of the arguments is-they should be numbers. Similarly, in the 
case of the operator COIS in LISP, the number of arguments is critical, while their type is not It is 
therefore important to identify not just whether a feature is critical or variable,7 but also in what 
respect. 

eThe reasoning mechanism which determines the critical features also uses this null intersection criteria to prune the set of 
features it has to consider in finding critical features. 

7All features are either critical or variable, depending upon their role in the concept definition. However, some critical 
features such as parentheses in LISP are so ubiquitous that they can be a distraction when discussing complex constructs. To 
handle this aspect, we shall introduce the concept of fixed features, which are critical features and therefore appear in all 
examples, but are not explicitly used by the system to generate negative examples, or commented upon. We shall see an example 
of these fixed features in Chapter 7. 
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(GREEI GRASS BLUE SKIES) ; list of symbols 
GREEI GRASS BLUE SKIES ; not a list 

(AARDVARK) ; a list of one symbol 
AARDVARK ; an ATOM, not a list. 

Figure 5.11: Some negative examples are more interesting than others. 

5.3.4 Finding Interesting Negative Examples 

An important aspect in generating tutorial descriptions is the presentation of negative examples. 
Negative examples need to be presented to highlight the critical aspects of the concept being described. 
However, since there can be different negative examples that can be used in any given situation, it 
is beneficial to use examples that are 'interesting' in some sense, rather than any random example. 
Consider for instance, the case of a list in Figure 5.11. In this case, let us consider the two parentheses 
(left and right), as being one atomic unit in the grammar; i.e., the parentheses are either removed, 
or added, only as pairs. In the two pairs of positive-negative examples presented there, both the 
pairs emphasize the critical nature of the parentheses. However, the second pair of examples is more 
pedagogical, because it conveys not only the fact that the negative example is not a list, but also that it 
is an atom. It is therefore important to find such Interesting' negative examples, if they are available. 
Note also that this allows the system to opportunistically include more material if so desired (with a 
COITRAST relation). 

In our system, finding interesting negative examples is made quite easy using the classification 
mechanism in LOOM. Each time the system finds a critical feature, it tests to see whether the 
modification causing the example to become negative also causes the example to classify under another 
description in the knowledge base. If it does, the system marks this critical feature, as well as the 
classification of the negative example, and uses this in preference to some other example. 

This method of finding interesting negative examples is very dependent on the availablity of a 
classification mechanism.8 While the previously mentioned use of LOOM (in determining critical 
and variable features) could possibly be implemented even without the use of a classifier, finding 
interesting negative examples would be much harder to implement without this capability. 

5.3.5 Example Complexity and Sequencing 

An important issue in the presentation of examples is the issue of sequencing their presentation 
appropriately. As discussed in Section 3.6, the order of presentation is, in general, dependent on the 
relative complexity of the features of the concept to be presented. There are two levels at which the 
sequencing needs to be planned: 

• at the feature level, where the system must decide which features need to be presented first. This 
will determine the presentation order of example sets illustrating each feature. 

8 Classification - structural subsumption - is theoretically undecidable (Doyle and Patil, 1991). However, for certain 
restricted languages, exponential algorithms to determine whether one description logically entails another exist, and are 
widely used. 
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The complexity of the feature ftr is defined as: 

1. if tcrminal(ftr) then complexity(ftr) = 1 

2. if non-Urminal(ftr) and the right-hand side (RHS) of the grammar production is a 
disjunction, then complexity(ftr) is equal to the sum of the complexities of the types in 
the disjunction on the RHS. 

3. if non-terminal(ftr) and the RHS of the production is not a disjunction, then 
comphxity(ftr) is equal to the product of the complexities of each of the elements 
in the RHS. 

4. if kleenc-closure(ftr), and the ftr is defined as a disjunction of n types, then 
complexity(ftr) is equal to 

2n_1 *eomplexity(typei) + ■■■ + 2n_1 * complexity(typen) 
5. if recursive(ftr) then complexity(ftr) = oo 

Figure 5.12: Determining syntactic complexity of a term in the BNF domain. 

• at the individual example level, where the system must determine how examples within each 
example set (illustrating a feature) need to be sequenced. 

The complexity of a feature, or a concept in a domain cannot be determined completely independently 
of the domain: m our case (using BNF grammars for programming languages), the syntactic complexity 
of a particular construct is computed as foliows: 

• if the feature is a terminal symbol, the complexity measure ofthat feature is considered to be 1 
Thus, the complexity measures of terminal symbols such as left-parenthesis, characters such 
as ab, etc., numbers such as 5 and 7, are all l. This is because a terminal symbol can be 
considered a constant and needs only one example to illustrate. 

. if the feature is a non-terminal symbol where the non-terminal symbol is a disjunction of different 
types, then the complexity measure of the feature is the sum of the complexity measures of the 
different types in the disjunction. For instance, if data-element is a non-terminal defined as 
follows: 

data-element := aymbol  I number I  gtring I  character I  lilt; 

then the complexity measure of data-.l««t is defined to be the sum of the complexity-measures 
of »ymbol, number, »tring, character, and liet. 

This is because the number of examples that would be required to communicate the different 
features of the non-terminal on the left hand side of the production would be equal to the sum of 
the examples required for each of the right hand side elements. In the simplest case, if the right 
hand side consisted only of a number of terminal symbols, the complexity of the non-terminal on 
the left hand side would be the number of terminals in the disjunction. 

. if the feature is a non-terminal symbol which is not defined as a disjunction, then the complexity 
of the symbol is the product of the complexity of each of the elements in right-hand side (RHS) of 
the production. In this case, the complexity reflects the fact that the total number of examples 
needed to illustrate this non-terminal would be the total number of legal permutations possible 
for the production. For instance, consider the definition of a litt: 
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list  := lext-parenthesis {data-elements +> right-parenthesis ; 

In this case, the complexity measure of the symbol list is the product of the complexity measures 
of a leit-parenthesis, the term '{data-element +}' and the right-parenthesis. 

• the complexity of a kleene-closure of a symbol (such as {data-elements +}), is computed by 
calculating the sum of the products of the complexity of each of the symbol's derived types, 
and the number of examples that each of these derived types can occur in. Since a kleene- 
closure of a symbol represents the power set of all of the symbol's derived types, the total 
number of examples that a particular type can appear in is 2n_1 where n is the total number of 
derived types. For example, the complexity of the kleene-closure of data-element (the expression 
'{data-element +}'), could be computed as follows. If data-element is defined as a disjunction: 

data-elements := symbol I number I  list; 

the derived types are: symbols, numbers and lists, and n is equal to 3. 
complexity({data-elements +}) = 2* * complexity(symbol) 

-I-22 * complexity(number) + 22 * complexitydist) 

The rationale for this complexity measure lies in the fact that a kleene-closure can vary in two 
dimensions: (t) in the number of elements per set (it) the type of elements in each set. Thus, the 
total number of examples necessary for illustrating a term defined as a kleene-closure is the total 
number of examples in the power set, plus the additional examples generated due to the variable 
nature of each of the derived terms that are part of the examples. If the complexity measure of 
each of the derived types is 1 (for instance, if all of the derived types were terminal symbols), 
then the complexity of the term under consideration is equal to 2n, where n is the number of 
derived types (this represents the power set of the derived types). 

• if the feature is a recursive non-terminal (i.e., the non-terminal on the left-hand side of the 
production also appears on the right-hand side of the production), then the complexity of the 
feature is considered to be infinity. This is because the feature can potentially need an infinite 
number of examples to illustrate all the possible cases. 

The algorithm is summarized in Figure5.12. The algorithm is invoked by the top-level function 
ORDER-BY-COMPLEXITY, which is the function used in the CONSTRAINTS of the plan operators. This function 
also takes into account certain annotations which indicate whether the feature is a variable one. In the 
case of variable features, there are two ways in which they can vary: the number and the type. Given 
the goal of generating examples for two variable aspects of a feature, the system compares the relative 
complexity of the two features. For instance, in illustrating the variable nature of data-element of a 
list, the function would compare the complexity of the number aspect and the type aspect for data 
elements. The 'number' aspect is computed as 2 (one example at each end of the range is desired to 
illustrate the variable nature: one with a small number of elements, and another with a large number 
of elements). The complexity of the type' aspect is computed by finding the number of sub-types of 
the given feature. This is because the system needs to present at least one example of each sub-type. 
The ordering of the presentation is then done on the basis of their relative complexities. In the case of 
the data-elements given above, since the type complexity is greater than 2, examples illustrating the 
variable nature of the 'number' aspect are presented before the examples illustrating the type' aspect 

Apart from the complexity measure mentioned above, there is one more constraint that can 
sometimes influence the order in which examples are presented: if there is a 'significant' negative 
example that the system needs to present to the user, and the text type is introductory, the system will 
need to generate additional text discussing the negative example (and its differences with the 'close' 
positive example). In this case, the system orders the examples such that the 'positive'-'interesting- 
negative' example pair is the last pair presented in the sequence. This allows the system to present 
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all the positive examples together, before presenting a discussion of the interesting negative example. 
(An instance of this case will be seen in Section 7.3.) 

5.8.6   Generating Prompts 

There is another aspect of the presentation that must be dealt with at the same time as the example 
generation. This is the issue of presenting prompts. As mentioned earlier (in Section 3.8), prompts 
are meant to convey additional information that can help focus the user's attention; while they can 
be pictorial, formatting directives (such as bold-face fonts, changes in color, etc), or even animated 
characters, we only consider here the use of short phrases in text to achieve our purpose. Prompts are 
essential if the examples illustrate multiple features at the same time. Prompts become necessary: 

• if the example retrieved by the system in response to a communicative goal happens to possess 
more (or less in the case of a negative example) features than the communicative goal specified; 
this can be determined by analysing the number of variable features that a positive example 
possesses (positive examples will possess all critical features) and comparing them with what 
was asked for; in the case of a negative example, since a negative example may be deficient in 
more than one critical feature, the numbers of both critical and variable features need to be 
observed. If the number of features in the goal and the examples generated do not match, it is 
desirable that prompts be generated to highlight those features in the examples that the goal 
was supposed to illustrate. In our system, this will result in generation of a prompt 

• if the examples are presented physically far away from the point where the concept being 
illustrated is mentioned in the textual description. This is one of the reasons why prompts are 
seen so often in reference manual style texts, because the text type prevents the generation of 
examples until the description is complete: this often results, in the case of long descriptions, in 
examples being placed away from the concept's mention. 

• if the example is a result of combining more than one communicative goal: this may be either 
by design, as in the case of reference manual style texts, where goals to illustrate individual 
features are combined at the end to present one or two complex multi-featured examples, or 
serendipitously (as in the case of the planner finding two adjacent speech acts presenting 
examples that can fulfill each other's goal: an example of this occurs in a description of a list 
presented in the following chapter, where the following two goals are generated adjacent to each 
other in the discourse structure: 

(PRESEIT-BXAMPLE LIST (DATA-ELEMEIT (IUMBER MULTIPLE))) 
(PRESEIT-EIAMPLE LIST (DATA-ELEMEIT (TYPE ATOMS))) 

The first goal occurs as a result of another goal that illustrates how examples can contain different 
numbers of elements; as it happens, the planner generates an example of multiple elements that 
are all atoms to satisfy the goal. This example meets the requirements of the next goal, which 
specifies the need to generate an example of a list of atoms. In such cases, if the system folds 
these two goals into one, it needs to generate a prompt to highlight the fact that two features are 
being illustrated). 

• It is also essential to explicitly mark an example as being either anomalous or exceptionally 
difficult (for instance recursive constructions of a concept, such as a list of lists): such marking can 
be done either through the use of prompts, or through the generation of appropriate background 
text before the example is actually presented. In introductory texts, the system usually generates 
background text; in the case of advanced texts prompts are preferred over text explaining the 
examples. 
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5.4   Status of the System 

Our framework is thus centered around a text planner that generates text and posts explicit goals 
to generate examples that will be included in the description. Plans also indicate how and when to 
generate the prompt information. By appropriately modifying the constraints on each plan operator, 
we can investigate the effects of different resources in the framework. Our example generator uses 
the classifier mechanism in LOOM to determine critical and variable features, as well as interesting 
negative examples. We have devised a complexity heuristic for the BNF domain that works well in 
our application. We use this complexity information to devise the ordering of the examples in the 
presentation at the global level. 

The system currently contains about 60 plan operators that generate descriptions with integrated 
text and examples. The operators can model various interaction effects between text and examples 
such as the introduction of Interesting' negative examples in both LISP and the INTEND domains. 
The operators have been tested by planning the description of 20 LISP constructs and 10 constructs 
in INTEND;9 these are shown in Appendix D. The discourse structures generated were checked for 
correctness, and also whether Hie system had found the all the critical and variable features. 

The system is currently unable to generate meaningful descriptions for constructs in which the 
syntax does not contain enough information. For instance, the let-f or» is defined in INTEND as given 
below: 

let-tor» :=  '(  'LET '( { let-binding + >  ') 
expression +  ')   ; 

In this case, there is no further information that the variables defined in the let-binding should 
appear in the expression. Consequently, the system generates a description that does not reflect user 
expectations. Similarly, the loop statement is defined as: 

loop-fom :=  '(  'LOOP < loop-vith > 
{ loop-initially > 
{ iteration-driving-clause + > 
{ loop-condition-clause + } 
■C loop-action-iorm > 
■C loop-iinally > ')   ; 

However, the relationship between each of the components of a loop are not specified, and the system 
is unable to generate useful explanations about it This illustrates one of the major shortcomings 
of this implementation: it does not, as yet, represent any semantic information about the various 
constructs in the domain. This results in an inability to generate descriptions at present that are 
either Sise' oriented, and so depend upon the underlying semantics, as seen in intermediate texts, or 
in generating even purely syntactic descriptions in which different parts of the syntactic specification 
interact with each other in ways that are not captured by the BNF. These and other limitations of our 
current implementation are discussed further in Section 10.2. If this system is to be scaled up, the 
semantics of the constructs must be represented as well. 

In the following chapters, we illustrate the working of the system by generating descriptions about 
LISP as well as INTEND about some constructs for which the system can generate useful descriptions. 

'The system can generate explanations for a much larger percentage of the INTEND grammar, since many of the productions 
in the grammar are very similar - such as simple disjunctions, or a syntactic specification. 
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Chapter 6 

Generating Integrated Natural Language Descriptions 

An example is always more efficacious than precept. 

■■ Samuel Johnson 

The previous chapter described the text planner and example generator components of the system. 
In this section, we illustrate the working of the system by tracing through the generation of three 
descriptions for the same concept, a list in LISP. The descriptions are in the text-only mode, examples- 
only mode, and both text and examples. This will clarify many of the issues that were presented 
earlier. 

We have already discussed the representation of a list as a concept in LOOM (Figure 5.9). Using 
this representation of a list, we present three scenarios in which the system generates presentations 
that consist of only text, only examples, and finally, both text and examples. The target text 
type is introductory, so examples are generated wherever possible, usually interspersed within the 
description. This will illustrate the integration between text and examples. 

6.1   A Purely Textual Description of a LIST 

To generate a description for the concept list, the system starts with an initial top level goal of (BEL 
HEARER (COICEPT LIST) ).* Two of the plan operators in the plan library that match this goal (i.e., their 
EFFECT slot is specified as (BEL HEARER (COICEPT ?0B JECT)) and the variable ?ob j «et can be bound to 
list) are shown in Figure 6.1. 

Both the plan operators in Figure 6.1 can be used by the system to describe objects: the first 
plan operator is used to generate descriptions that have some textual explanation, with or without 
examples; the second plan operator is used to generate descriptions that have only examples. The first 
plan operator checks whether the object is a term in the grammar, and then finds the appropriate 
text type2 to use for the object This is done using a simple user model, which contains the objects 
the user is familiar with. If the object being described appears in the user model, the system selects 
the advanced text type, otherwise, the system generates an introductory text. In our current scenario, 

*In our initial implementation, the goal form contained the term I0UI, which in the DM model (Engelmann and Carnine, 
1982), represents a multi-featured basic form. 

In this implementation, we have not considered the generation of intermediate texts. 
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(define-text-plan-operator 
rEFFECT (bei hearer (concept ?object)) 
:CONSTRAINTS (and 

(isa? ?object grammar-object) 
(get-text-type-for-object ?text-type ?object) 
(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type) 
(not *use-examples-only*)) 

:NUCLEUS (bei hearer (ftrs-list ?ftrs 'object)) 
SATELLITES (((foreach ?ftrs  (elaboration ?ftrs ?object)) »optional*))) 

(define-text-plan-operator 
EFFECT (bei hearer (concept ?object)) 
.'CONSTRAINTS (and 

(i>a? ?object grammar-object) 
(get-text-type-for-object ?text-type ?object) 
(get-appropriate-ftrs-for-user ?ftrs ?object ?user-type) 
(select-critical-ftrs ?crit-ftrs ?ftrs ?object) 
(enumerate-ftrs ?ex-crit-ftrs ?crit-itre ?object) 
(order-by-complexity ?eg-crit-ftrs ?ex-crit-ftrs) 
(select-variable-ftrs ?var-ftrs ?ftrs ?object) 
(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object) 
(order-by-complexity ?eg-var-ftrs ?ex-var-ftrs) 
«use-examples-only*) 

aroCLEUS ((foreach ?eg-var-ftrs    (bei hearer (example-seq    ?eg-var-ftrs    ?object))) 
(foreach ?eg-crit-ftrs (bei hearer (example-pair ?eg-crit-ftrs ?object)))) 

SATELLITES (((background (present-eg-background ?object)) »optional*))) 

Figure 6.1: Top level Plan Operators to describe Objects. 

the user model contains only atom, and number. Thus, the system selects an introductory text type for 
generation. The constraints then cause the selection of appropriate features to be presented to the 
user. In this case, the text type cause surface, syntactic features to be selected for presentation. The 
plan operator also specifies that the object is to be described by first listing the features, and then 
elaborating upon each one of them. 

The second plan operator is discarded by the system because the *use-examples-only* constraint is 
not satisfied in the context. This plan operator is therefore inapplicable in the given situation. 

The constraints in the plan operator selected bind the variable ?f trs to the syntactic features of a 
list. This is because the text type is specified as introductory (the differences between introductory 
and advanced text types will be discussed in greater detail in Chapter 8). The system posts appropriate 
goals for both the NUCLEUS and the SATELLITE: 
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NUCLEUS: 
(BEL HEARER 

(FTRS-LIST (laft-paranthasis (kl«en«-closura data-ela»ents) 
right-par«thesis) 

lilt)) 

SATELLITE: 
(ELABORATE leit-paranthasis litt) 
(ELABORATE (klaana-closnra data-ala«ents) list) 
(ELABORATE right-paranthasis list) 

The relation ELABORATE appears in each of the subgoals posted as a SATELLITE; as we mentioned 
earlier, the presence of appropriate coherence relations between the text spans allows for the insertion 
of appropriate cue phrases to ensure that the final text is coherent 

The planner looks for applicable plan operators for the first subgoal, the one posted by the NUCLEUS.3 

The system finds two plan operators that have applicable EFFECT specifications: one of the plan 
operators is meant for listing a single feature, and the other one is meant for goals listing multiple 
features. Since there are three features to be listed in this case, the second plan operator is selected 
for this subgoal. This goal in turn, posts further subgoals that finally result in the posting of three 
primitive goals which mention each of the three features. Each of these subgoals is an IIFORM ... goal, 
or a speech-act, which can be realized in English without further planning. These three subgoals are 
linked to each other through the SEQUEICE relation, which here indicates the ordering of the syntactic 
elements. The SEQUEICE relation causes the realization component to insert the cue phrase followed 
by* between the phrases generated by the primitive goals. The text plan generated so far appears in 
Figure 6.2.4 At this point, the system can generate the following sentence, which mentions all the 
features of a list: 

A UstcoDsists of a left parenthesis, followed by zero or more data elements, followed by a right parenthesis. 

The system still needs to expand the goals which were posted as the SATELLITE goals of the original 
top-level goal: 

SATELLITE: 
(ELABORATE laxt-paranthasis list) 
(ELABORATE (klaana-dosura data-ala»ants) list) 
(ELABORATE right-paranthasis list) 

The system attempts each of these (optional) goals in turn. It fails to find further information in 
the domain model for the laft-paranthasis and is therefore unable to expand on this feature. Since 
the satellite was marked »optional*, the system does not try to backtrack up to the parent node 
(which was to describe a list). The second SATELLITE goal is to elaborate upon the kleene closure of 
data-slaments in a list. The system determines, based on the domain model, that data-ala»ants of a 
list can be of different types: symbols, numbers, or lists. It therefore expands this goal by generating 
a speech act which is an IIFORM goal about the kleen closure of symbols, numbers or lists. Since this 
is a primitive goal, it is not expanded further. The third satellite goal, to elaborate upon the right 

sIn moat cases, the NUCLEUS subgoals are generated first, before the satellite subgoals; however, certain RST relations, such 
as BACKGROUID and PURPOSE specify that the SATELLITE text should be generated before the nucleus subgoal is expanded. 

4The text plans shown here are simplified to show the communicative goals without the formal notation. 
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Figure 6.2: Plan skeleton for listing the main features of a list. 

parenthesis also fails due to a lack of further domain knowledge. Thus, the top level satellite goals 
result in a speech act that represents the fact that data elements of a list can be kleene closures of a 
set which contains symbols, numbers or other lists. 

The resulting discourse structure is then processed by the grammar interface and the sentence 
generator. The resulting output, with appropriate connectives generated because of the coherence 
relations, is shown in Figure 6.3. The figure contains a screen snap shot of the system showing the 
complete text plan (with goals and plan operator names truncated after 20 characters), as well as the 
resulting description. 

6.2   Communicating a Description of a LIST solely through 
Examples 

The previous section showed the system generating a purely textual description of a list in LISP. An 
alternative description of a list can be one in which the system generates only examples, without any 
accompanying explanation. 

Since the system must communicate all the features through examples only, the system must first 
categorize each feature as being either a critical feature, or a variable feature. This is necessary 
because critical and variable features are communicated using different strategies: critical features 
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through the pairing of minimally different5 positive and negative examples, and variable features 
through the presentation of groups (at least 2) of widely differing positive examples.8 The system must 
then also order these examples for presentation to the user. 

In the case of a list, there are only three features that can be expressed through examples: the 
left parenthesis, the data elements and the right parenthesis. The system determines (using the 
algorithm given in Sections 5.3.2 and 5.3.3) that the left parenthesis and the right parenthesis are 
critical features, because the instances that the system created without these features did not classify 
as instances of a list, whereas modifying the data-elements in different instances did not cause the 
instances to not classify as a list. 

The system must also determine the order in which examples illustrating different features are to 
be presented: it does this ordering within each group (critical features and variable features) using 
the algorithm presented in Section 5.3.5. Since both the left and the right parentheses are equally 
complex according to the algorithm, the system presents them without any particular ordering. Since 
data-elements is a non-terminal, the system first determines its sub-types (symbols, numbers and 
lists), finds the kleene closure (the power set of these 3 sub-types) and orders them in increasing 
complexity (again, using the algorithm in Section 5.3.5). The system must also ensure during the 
presentation of the variable features that it generates examples with varying number of elements in 
them. 

Finally, the system determines whether the number of examples required to communicate the 
critical features is more than the number of examples required to communicate the variable features. 
Since the variable features require more examples, the system presents examples illustrating the 
critical features before the variable features. This can be seen in the constraints of the plan operator 
in Figure 6.4.7 The plan operator posts a goal to present a pair of examples for each critical feature, 
and a set of examples for the variable features. 

It may seem that because critical features are important in the examples that the critical features 
should be presented first, before the variable features. While most of the texts in the corpus do display 
this phenomenon (critical features being presented first), we believe that the ordering of the features 
is actually caused by the fact that the number of examples necessary to illustrate the critical features 
in most cases are less than the number of examples necessary to illustrate the variable features, and 
thus according to our complexity heuristic, are presented first. It is also sometimes not possible to 
present critical features first, because the presence of significant negative examples could cause the 
generation of further explanation, which should be sequenced last Since the positive and negative 
examples should be presented adjacent to each other in the presentation sequence, that critical feature 
then gets presented last 

Since the examples are presented on their own, with no accompanying description, the system must 
also present prompts with the examples. The prompts should, at the very least identify the examples 
as being either positive or negative. In this case, if more than one feature is being illustrated, the 
system generates prompts which contain information about the types of data elements in the list The 
resulting text plan, and description are shown in Figures 6.5 and 6.6. The first four examples in the 
output are due to the critical features. The remaining examples are due to the variable features: a 
list of atoms, a list of numbers, a list of atoms and numbers, a list of a list, etc The system did not 
present negative examples of atoms (by stripping the parentheses) because as we stated earlier, the 
system only attempts to determine critical and variable features by modifying the original definition 
one feature at a time. 

sThe difference is in the presence and absence of the critical feature. 
6The examples are identical except in the varying feature, which is widely varied 
'The system actually posts goals in reverse order, i.e., if there are two goal» in the NUCLEUS, the system will first post the 

goal that appears second in the NUCLEUS. Thus, the actual plan operator in the system has the goals in the NUCLEUS reversed; 
however, for clarity, we have presented the goals here in the more conventional order. 
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(define-text-plan-opera tor 
EFFECT (BEL HEARER (I0U1 70BJECT)) 
:CONSTRAINTS 

(and (iia? ?object concept) 
(get-u«er-type-ior-object ?uaer-type 'object) 
(get-appropriate-ftre-ior-uaer    ?itre ?object ?uaer-type) 
(select-critical-itrs ?crit-itrt ?ftrs 'object) 
(enumerate-itri ?ex-crit-ftrs ?crit-itri 'object) 
(order-by-complexity ?eg-crit-itr« ?ex-crit-ftra) 
(select-variable-ftrs ?var-itrs ?itra ?object) 
(enumerate-ftn ?ex-var-itra ?var-itr» Tobject) 
(order-by-complexity ?eg-var-ftrs ?ex-var-itr«) 
(complexity-greater ?eg-crit-ftn ?eg-var-itra) 
♦USE-EXAMPLES-OILY*) 

:NUCLEUS ((FOREACH 7EG-CRIT-FTRS 
(bei hearer (example-pair ?eg-crit-itn Tobject))) 

(FOREACH 7EG-VAR-FTRS 
(bei hearer (example-seq    ?eg-Tar-ftr»    ?object)))) 

:SATELLITES  (((BACKGROUID 
(eg-background ?object)) «optional*))) 

Figure 6.4: Plan Operator to generate example-only descriptions. 

6.3   Generating an Integrated Description of a LIST 

Let us now see how the system generates an integrated description containing both text and examples. 
The system initially begins (as in the previous two cases) with the top-level goal being given as 
(BEL HEARER (COICEPT LIST)). The text planner searches for applicable plan operators in its plan 
library, and it picks one based on the EFFECT statement and the applicable constraints. The plan 
operator selected is the same plan operator initially selected when the system generated a purely 
textual description of a list The text type causes the syntactic features of the list to be selected for 
presentation, as in Section 6.1. The main features of list are retrieved, and two subgoals are posted: 
one to list all the features (the left parenthesis, the data elements and the right parenthesis), and 
another to elaborate upon them. 

At this point, the discourse tree has only three nodes: the initial node of (BEL HEARER (COICEPT 
LIST)),8 and its two children nodes, namely LIST-FEATURES and DESCRIBE-FEATURES, linked by a 
coherence relation, ELABORATE. 

The text-planner now has these one NUCLEUS and three SATELLITE goals to expand: 

8For the sake of clarity, we ihall refer to such goals as (DESCRIBE-... 
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Figure 6.5: Text Plan Generated for the Examples-Only description of a list. 
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Examples 

Figure 6.6: Output generated in the examples-only mode of a list description. 

(LIST-MAIH-FEATURES 
LIST (LEFT-PAREHTHESIS (KLEEHE-CLOSURE DATA-ELEMEHT) 

RIGHT-PAREHTHESIS)) 

(DESCRIBE-FEATURE LEFT-PAREHTHESIS LIST) 
(DESCRIBE-FEATURE (KLEEIE-CLOSURE DATA-ELEMEMT) LIST) 
(DESCRIBE-FEATURE RIGHT-PAREITHESIS LIST) 

The planner searches for appropriate operators to satisfy the first of these goals. The operator 
to describe a list of features indicates that the features should be mentioned in a sequence. Three 
goals are appropriately posted at this point. These goals result in the planner generating a plan for 
describing the main features of a list: the left parenthesis, the data elements and the right parenthesis. 
At this point, the portion of the discourse tree that has been constructed is identical to the one that 
was constructed for the top level NUCLEUS goal in the 'purely textual' description that was presented 
in Section 6.1. The discourse tree contains the structure and information necessary to generate the 
first sentence of the description: "A list consists of a left parenthesis, zero or ... ". A skeleton of the 
resulting text plan is shown in Figure 6.2. 

The system needs to expand the three SATELLITE goals to describe each of the three components 
of a list. As in the previous case, described in Section 6.1, two of these SATELLITE goals, the ones to 
elaborate upon the left and the right parentheses, founder for lack of additional information. Being 
♦optional*, the system continues without trying to backtrack up a level. 

The system now attempts to satisfy the goal DESCRIBE-DATA-ELEMEITS by finding an appropriate plan. 
Data elements can be of three types: numbers, symbols, or lists. The system can either communicate 
this information by realizing an appropriate sentence, or through examples (or both). The system is 
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now no longer constrained to generate purely textual descriptions, as in Section 6.1. Since the text is an 
introductory one, and the definition of a list has already been presented, heuristics in the system cause 
it to select examples for presentation. The introductory text type specifies that if a concept definition 
has been presented, elaborations are preferably realized in the form of examples immediately following 
the definition. The system therefore attempts to generate examples of a list which illustrate these 
different types of data elements. Since data elements can vary in two dimensions, it generates two 
goals, one for each dimension: the number of elements, and the type of different elements. The goal 
to illustrate the variable number of data elements causes the posting of two goals, one to generate an 
example with a single element, and one to generate an example with multiple (four) elements. 

(GEHERATE-EXAMPLE (VAR-FTR DATA-ELEMEHT)  1 LIST) 

(GEHERATE-EXAMPLE (VAR-FTR DATA-ELEMEIT) 4 LIST) 

Note that the system picks the numbers 1 and 4 for the following reasons: the system needs to pick an 
example at the lower end of the range of possible numbers, and selects zero, but a list with no elements 
is defined as the symbol HIL as well. Since the symbol IIL classifies as an anomalous example, and 
this is an introductory text, the system chooses 'one' as the number of elements to present. At the 
other end of the range, four' is specified in the system as the higher limit. Both of these goals causes 
other goals to be posted to actually construct the example. The example generation algorithm ensures 
that (i) the examples selected for related sub-goals (such as the two above) differ in only the dimension 
being highlighted; (it) the remaining dimensions are kept as simple as possible: thus the examples 
generated contain only atoms. (Both numbers and atoms are considered to be equally complex in 
this implementation, and numbers could also have been chosen to construct the three simpler lists; 
however, the implementation in LOOM returns the first of the retrieved list, and this happens in this 
case to be atoms.) The resulting output of these two goals is the presentation of two lists of atoms, one 
with a single element, and another with four elements. 

Similarly, the goal to illustrate the type variability of elements in a list causes the generation of 
multiple goals: a goal to illustrate the fact that data elements can be atoms, numbers, number+atoms, 
lists, numbers+lists, etc. The fact that there exists a kleene-closure of the data-elements causes the 
system to generate a power-set of all the sub-types. These are then sorted in order of increasing 
complexity, using the top-level function ORDER-BY-COMPLEXITY. As mentioned previously, this function 
is based on the complexity algorithm described in Section 5.3.5. The first four goals to present examples 
are selected. This is based on Clark's maxim of four examples (Clark, 1971). These four goals are: 

(GEHERATE-EXAMPLE (VAR-FTR ATOM) LIST) 

(GEHERATE-EXAMPLE (VAR-FTR IUMBER) LIST) 

(GEHERATE-EXAMPLE (VAR-FTR (ATOM IUMBER)) LIST) 

(GEHERATE-EXAMPLE (VAR-FTR LIST)) LIST) 

The first three goals are further expanded by posting appropriate goals to construct and present 
appropriate examples. However, in the fourth case, the text type prevents the system from simply 
generating an example of a list which has other lists as its data elements. This is because in 
introductory cases, the system cannot simply present examples of either recursive or anomalous 
cases without explicitly marking them as such: this is done through the presentation of information 
explaining such concepts to the user. The system therefore posts two goals, one to provide background 
information (which presents three simple lists), and the other to build a list from these three lists. 
The system needs to present three simple lists (three is chosen as a number 'midway' between 1 
and 4 the two limits in our system): these lists need to be simple, and therefore the previously 
presented lists which varied in their number of elements as well as their type, are not selected for 
re-use. Presentations of recursive examples can either be annotated by prompts, or (as in this case), 
accompanied (usually prefaced) with additional textual explanations.   In the case of introductory 
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texts, the system has the option of generating text (for advanced texts, however the system would be 
constrained from generating additional text, and would therefore generate prompts). 

The resulting discourse structure is shown in Figure 6.7.9 The discourse structure is processed by 
the sentence realizer to an intermediate form, which represents only the speech acts and the rhetorical 
relations between them. This is shown in Figure 6.9. The resulting english output is shown in 
Figure 6.10. 

6.4   Discussion 

In this chapter, we have presented traces of the system in three different operating modes so as to 
clarify the working of the system. These traces illustrate the integration between text and examples 
discussed earlier in this thesis. The generation of the integrated description illustrates: 

• Examples can replace textual explanations. The sentence describing the different types of data 
elements possible is replaced by examples illustrating the different types. This results in the 
elision of text. 

• Examples can cause additional text to be generated; when anomalous or exceptional examples 
are presented, background text is added to introduce them. For example, the recursive example 
of a list of lists is prefaced with additional information. 

The description in this chapter also illustrated two issues mentioned previously; the ordering of 
features and examples by complexity, and the selection of certain parameters so as not to present 
anomalous examples with the other regular examples (the system chose 1 rather than 0 as the 
minimum number of elements in a list so as to avoid having to present the anomalous case of IIL.) In 
the next chapter, we discuss the generation of documentation for a more complex concept; this will help 
illustrate some other conditions in which additional textual explanations are necessary if examples 
are presented. 

9A amplified version of the text plan with the communicative goals is shown in Figure 6.8. 
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(elaboration 
(sequence 
((ftr list  (left-parenthesis))) 
(sequence 
((ftr list   ((kleene-closure data-elements)))) 
((ftr list   (right-parenthesis))))) 

(background 
((for-eg)) 
(((generate-eg-for-ftr 

(:var-ftr  (kleene-closure data-elements)   1)  list)) 
((generate-eg-for-ftr 

(:var-ftr  (kleene-closure data-elements) 4)  list))) 
(((generate-eg-for-ftr (atom)  list)) 
((generate-eg-for-ftr (lisp-number) list)) 
((generate-eg-for-ftr (atom lisp-number) list)) 
(background 
((recursive-case (list)  list)) 
(background 
((simple-egs 

("   (  oranges oranges  )   " 
"   (  aardvarks elephants  )   " 
"   (  fishes apples  )  ")  list)) 

(complex-eg 
(("   (  oranges oranges  )   " 

"   (  aardvarks elephants  )   " 
"   ( fishes apples  )   "))  list)))))) 

Figure 6.9: Intermediate form used by the sentence realizer in generating the integrated description. 
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Chapter 7 

Negative Examples and their Effect on Explanations 

Technical Prose is almost immortal. 

» Frederick P. Brooks, Jr. 
The Mythical Man-Month' 

The previous chapter presented three different modes in which our system can generate concept 
descriptions illustrating how the presentation of examples can cause the elision of some text from the 
descriptive explanation, and how the presence of difficult (either recursive or anomalous) examples can 
require additional text to be presented with the example. In this chapter, we discuss the presentation 
of negative examples and how they affect the surrounding text. As we have already mentioned 
(Section 3.6), negative examples are very useful in helping to convey the critical features of the 
concept. In this chapter, we illustrate how the system handles the issue of negative examples by 
generating documentation for concepts from the INTEND grammar (used in EES). 

7.1   A Documentation Example from INTEND 

The INTEND grammar used in EES is large and complex, with 125 productions, 21 filter functions 
and 91 terminal symbols. Many of these productions are seemingly identical. This is because while 
the BNF specifications of the syntax are the same, the filter functions test for different properties. 
For instance, consider the grammar productions for a predicate-relation-form and a function-form 
shown in Figure 7.1. Thus, with a grammar such as INTEND, it is important that the documentation 
generated for a concept take into account other concepts that are very similar to the one being 
described, and contrast them for the reader. Productions such as these, represent patterns which 
can be very effectively contrasted by using examples (Polya, 1973). The introduction of contrasting 
examples can result in the generation of additional explanation. We will illustrate this aspect of the 
tight interaction between text and examples in this chapter. 

An explanation generated by the system for the grammar symbol predicate-form, whose BNF 
definition is shown in Figure 7.1, is shown in Figure 7.2. Consider tie examples and the textual 
explanation generated by the system. There are four examples presented in the explanation, three 
of which are positive, and the fourth is negative. The negative example serves to highlight the 
differences between two closely related forms: a predicate-relation-f ornand a function-form. Since 
the problem solving domain in question happened to be that of local area networks, all of the examples 
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if-fom  :=   '(   'IF predicate-fon   'THEI  expression 
{   'ELSE  expression  }   ')   ; 

restricted-expression   : -  var-najne     !   concept-desc      I 
functlon-fora     I   predicate-fora   ; 

predicate-form   :=   pred-relation-ions     I 
pred-logica.l-f ora     I   pred-actlon-fora   ; 

pred-relation-form' 

'(   relation-name  restricted-expression +   ') 
|>    pred-relation-form-test   ; 

pred-action-fora   :=   action-form        |>  pred-action-test   ; 

pred-logical-form   : = 
'(    'AHD  predicate-form +   ')      i 
'(    'OR    predicate-form +   ')      I    '(    'HOT  predicate-form   ') 

function-form 
'(  relation-name restricted-expression +   ') 

|>    function-relation-form-test   ; 

Figure 7.1: A fragment of the grammar for the INTEND plan language in EES. 

A predicate-form is a restricted-expression. It returns a boolean value, and the number of arguments 
in a predicate-form is equal to the arity of the relation. A predicate-form can be of three types: a 
predicate-relation-form, a predicate-action-form, or a predicate-logical-form. 

A predicate-relation-form consists of a relation-name followed by Borne arguments. The arguments 
are restricted-expressions, such as variables, concepts, function-forms and predicate-forms. Examples 
of predicate-relation-forme are: 

(IHDICATOR-STATE LED-1 01) 
(HARDWARE-STATUS LASBRIDGE-2 FAULTY) 
(COHHECTED-TO DECSERVER-1  VAI-A) 

However, the following example is not a predicate-relation-form, but a function-form, because the 
number of arguments is not equal to the ariry of the relation: 

(C0BIECTED-T0 DECSERVER-1) 

The difference between a function-form and a predicate-relation-form is that the function-form takes 
one less argument than the arity of the relation, and returns the range of the relation, while the 
predicate-logical-form takes as many arguments as the arity and returns a boolean value. 

A predicate-action-form is ... 

Figure 7.2: The documentation for 'predicata-f ora'. 

that the system constructed are from that domain. As in the scenario presented in Section 6.3, the 
interaction of the text and the examples can be seen in various places: 
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1. the   examples   illustrate   features   mentioned   in   the   text,    namely   the   syntax   of  the 
predicate-relation-form 

2. to make sure the first three examples are understood as positive examples, the system generates 
appropriate background text to introduce the examples:  "Examples of predicate-relation-forms 
are ... " 

3. the sentence "However, the following is not a (positive example)... "is generated to explicitly 
highlight the contrast between positive and negative examples 

4. the negative example selected causes the generation of additional text both before and af- 
ter the presentation of the example. This is because the example is not just not a 
predicate-relation-form, but it is also a function-form, a different, but similar construct 
which can be contrasted with the predicate-relation-for». Additional text is generated first 
to introduce the negative example as a contrast to the positive ones, and later to explain the 
differences between the two similar constructs. 

This scenario also illustrates the other aspects that have to be taken into consideration when 
generating integrated text and examples: 

• Fixed Features: As previously mentioned in Section 3.6, it is important for the system to 
differentiate between variable features and critical features because of the differences in the way 
examples are presented to illustrate them. It is also useful for the system to represent and reason 
about fixed features. Fixed features are critical features representing terminal symbols that are 
specified as being known to the user.1 For instance, terminal symbols such as the keywords 
'defun' and 'defmacro' in the LISP domain may be specified as fixed features once the system has 
presented definitions and examples of functions and macros to the user. After these keywords 
(which are critical features in the examples) have been annotated in the system as being fixed', 
the system will 

~ not explicitly mention these features in its textual explanation when explaining either the 
same concept or its sub-concepts; 

- not generate negative examples for these features. 

For instance, if the system is generating examples of functions to calculate, for instance, the 
factorial of a number, the system will not generate negative examples of functions that do 
not have the keyword 'defun;' instead the negative examples would be concerned with other 
aspects of the functional specification. Fixed features are dependent upon the context (what 
has been presented earlier, or what is represented in the user model), and are used to prevent 
the system from generating overly verbose explanations. In this scenario, the fact that a 
predicat«-r«lation-for» must begin and end with a parenthesis is considered by the system 
an instance of a fixed feature. Thus, the parentheses are not mentioned in the accompanying 
explanation, nor does the system generate negative examples with missing parentheses. 

Variable features are those which can vary within a certain range in a positive example — in this 
case, the relation-name is a variable feature. It is usually necessary to provide several examples 
to communicate the variable nature of the feature (Clark, 1971). In this case, several different 
relation-names are used in an attempt to ensure that the user realizes its variable nature. 

Critical features are features which, if modified, cause the example to change from positive to neg- 
ative. Critical features in this case are the number of arguments that follow the relation-naae; 
there must be exactly as many arguments as the arity of the relation. 

1Thi« also satisfies Grice's Second Maxim of being concise by omitting fact« that are already known to the user. 
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• 

Presentation Order: The presentation order of the examples depends upon the complexity of the 
features they illustrate; the ordering is also important to communicate the critical features of a 
concept (as discussed in Section 3.6). In this case, the variable features and the critical features 
both require two examples; since the negative example of the second pair is an 'interesting' 
negative example (resulting in more explanations), the examples illustrating the variable feature 
are presented before the second pair. 

Additional Explanation: text to draw attention to specific points in the examples might be needed 
to render explicit the implicit informauon that may otherwise be overlooked. In this case, the 
need to introduce the positive and negative examples is quite clear; however, the information on 
the negative example being a function-*om could have been easily overlooked. 

This scenario illustrates again the close relationship between text and examples. The next section 
describes how our generation system can generate such explanations. 

7.2    Plan Operators 

Two of the plan operators used in this example are shown in Figure 7.3.2 As mentioned earlier, the 
constraints of the plan operators indicate how the text and the examples co-constrain each other. 

The first plan operator can be used to describe a concept and one of its role restrictions, e.g., it 
could be used to describe the fact that a predicate-form is constrained to return a BOOLEAI value. The 
first constraint finds the type of the role restriction on the concept (whether its a value restriction - 
as in the case of the BOOLEAH, or whether its a number restriction, etc.). This is necessary because 
the eventual phrasing depends upon this information. The second constraint finds all the features 
pertaining to this role and the concept that need to be presented, taking into account the user model 
and the previous discourse. The next constraint determines which of these features can be presented 
in the form of examples: this is dependent upon both the features themselves -- syntactic features can 
be expressed through examples, but not structural features - as well as the explanation context -- 
whether for instance, the appropriate definition has already been presented. The last constraint filters 
out the fixed features that the planner should not present in text. At this point, the operator can be 
selected, since all of its constraints have been satisfied. It therefore posts two sub-goals: one to present 
a textual explanation of the role restriction on the concept, and another, optional sub-goal, to present 
examples of the concept that illustrate the role restriction. 

The second plan operator can be used to present a contrasting pair of positive-negative examples. 
The first constraint finds a positive example for the concept illustrating the role. The second constraint 
finds a negative example by using the same information, as well as the positive example constructed 
as a result of the previous constraint being satisfied. The third constraint checks to see whether the 
negative example constructed is an interesting one or not. If all of these constraints are satisfied, the 
planner can apply this operator. This results in the planner posting three sub-goals: one to present the 
positive example and two for the negative example. The two sub-goals for the negative example result 
in the background text ("However, this is not a ... ") and the actual example and the differences. 

The plan operators shown here have been simplified somewhat; for instance, the constraints that take into account the text 
type have been removed from these two operators for the sake of brevity. 
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(define-text-plan-operator 
:EFFECT (BELHEARER  (ref  (defining-attributes ?concept)  ?role)) 
:CONSTRAINTS 

(and 
(get-restriction-type ?restriction-type ?role 'concept) 
(get-features 'features ?role ?concept *user-model* 

♦explanation-context*) 
(get-features-for-eg ?features-only-in-eg ?features ?role 

'concept *user-model* *explanation-context*) 
(filter-fixed-ftrs ?features-in-text ?features 

?features-only-in-eg *user-model* «explanation-context*))) 
:NUCLEUS 

(INFORM S hearer (?restriction-type ?role ?features-in-text)) 
SATELLITES 

(((ELABORATION-BY-EXAMPLE 'features »role ?concept) »optional*))) 

(define-text-plan-operator 
:EFFECT (EXAMPLE ?ftrs ?concept ?role)) 
CONSTRAINTS 

(and 
(get-pos-example ?pos-example ?ftrs ?concept ?role) 
(get-neg-example ?neg-example ?pos-example ?ftrs ?concept 

?role-re>tricted) 
(significant-negative-example? ?new-concept ?neg-example)) 

:NUCLEUS 
(BEL HEARER (example ?pos-example ?ftrs ?concept ?role)) 

SATELLITES 
(((BACKGROUND (neg-example ?neg-example ?concept ?role)) 

«optional*) 
((EVIDENCE (counter-example ?neg-example ?ftrs ?new-concept 

?role)) *optional*))) 

Figure 7.3: Text Plan operators used in in presenting Examples. 

7.3   Generating the Documentation on Predicate-Relation-Form 

The system initially begins with the top-level goal of (BEL HEARER 
(COICEPT PREDICATE-FORM)). The text planner searches for applicable plan operators in its plan- 
library, and, finding an applicable plan operator,3 it posts two subgoals: one to give a definition of 
the concept (predicate-form), and another (optional one) to elaborate upon this definition. (This is 
the same plan operator that was utilized by the planner for generating the descriptions of a list in 
Sections 6.1 and 6.3.) At this point then, the planner has two goals:4 

3
There are several plans available in the plan library for describing objects. The system chooses one using selection heuristic» 

designed by Moore (Moore, 1989). 
* As in the previous chapter, we shall not use the formal notation in presenting goals for the sake of clarity. 
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DESCRJBE-PREDICATE-FORM 

ELABORATION 

DEFINITION 
(PREDICATE-FORM) 

N^ 
INFORM 
(ISA PRED-PORM 

RESTR-EXPR) 

A predicate-form 
Is a restricted 
-expression 

ELABORATION 

INFORM 
(RETURNS BOOLEAN) 

(AR1TY EQUAL) 

It return* a boolean 
value and the number 
at arguments ij 
equal to the arity 
of the relation 

DESCRIBE 
(DISJOINT-COVER PRED-FORM) 

ELABORATION 

N 
INFORM 
(SUB-TYPES 
PRED-REL-FORM 
PRED-ACnON-FORM 
PRED-LOCICAL-FORM) 
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Figure 7.4: A skeletal fragment of the text plan generated for the initial text. 

(DESCRIBE  (COICEPT PREDICATE-FORM)) 

(ELABORATE PREDICATE-FORM) 

The planner expands the first subgoal by providing a definition of the concept predicate-form. There 
are a number of different ways in which a concept definition can be provided. For instance, a concept 
can be defined in terms of its parent with their differentiating attributes clearly specified. Another 
way would be to present its syntactic or structural description, as was done in the case of the list. Yet 
another way is to describe the concept in terms of its disjoint coverings (such as describing 'humans' 
as being either "male" or female'). Which of these methods is used to describe the concept depends 
upon the concept: for instance, in the case of list, the parent concept of the list was grammar-symbol. 
Since a grammar-symbol is any symbol in the grammar, the system did not describe a list as being a 
grammar-symbol. In the case of a predicate-form, the system does not have the option of presenting 
the syntactic definition, because it does not have a syntactic definition. The system could present a 
description of the predicate-form in terms of its sub-types, but the selection heuristics pick the first 
method (describing it in terms of its parent) over the third method (in terms of its children). This 
results in the first two sentences of the explanation: 

A predicate-form is a restricted-expression. It returns a boolean value and the number 
of arguments is equal to the arity of the relation. 

The SATELLITE goal to elaborate upon a predicate-form is now expanded by the planner. The 
only information that the system has about the predicate-form that has not been expressed, is that 
predicate-forms can be of three types: predicate-relation-forms, predicate-action-forms, and 
predicate-logical-forms. The planner expands the satellite goal by posting two goals: one to present 
this information about the three sub-types, and another to describe each of the three sub-types. The 
NUCLEUS sub-goal is a primitive goal which results in the generation of the third sentence in the 
documentation: 
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A predicate-form can be one of three types: a predicate-relation-form, a predicate-action- 
form, or a predicate-logical-form. 

The goals to elaborate upon each sub-type of a predicate-Ion» will be expanded in turn. Because 
these sub-types might be of differing complexity, and it is important to present the information from the 
simplest one to the most complex one6 The resulting ordering is: predicate-relation-form followed 
by predicate-action-form followed by predicate-logical-form. Each elaboration results in posting 
the goal of describing a sub-type. So the three sub-goals are posted in turn. 

(ELABORATE (COICEPT-DESCRIPTIOI PREDICATE-RELATIOI-FORM) 
(ELABORATE (COICEPT-DESCRIPTIOI PREDICATE-ACTIOI-FORM)) 
(ELABORATE (COICEPT-DESCRIPTIOI PREDICATE-LOGICAL-FORM) 

This portion of the planning process is recorded in the skeleton text-plan shown in Figure 7.4. This 
text plan shows the communicative goals that have been posted as well as the coherence relations 
between them. 

The first goal that the planner expands is the one to describe the concept predicate-relation-form. 
As in the case of predicate-form, the system has a number of options to describe it. The first option, 
which is to describe it in terms of its parent concept - a predicate-form ~ is not chosen because the 
concept-parent relationship between a predicate-relation-form and a predicate-form has already 
been mentioned (the predicate-relation-form was introduced as a sub-type of predicate-form). The 
second option of describing a concept in terms of its syntax is applicable in this case, because there is a 
syntactic definition associated with the concept. The third option of describing the concept in terms of 
its sub-types is not applicable in this case. Thus, the planner selects the plan operator that describes 
the syntax of the concept. In this case, the syntax is: 

PREDICATE-RELATIOI-FORM :=   '( RELATIOI-IAME { ARGUMEIT + }  ') 

Instantiating the plan operator, the system has the option of describing the syntax in textual form, or 
through examples (since the text type is introductory, the system can present examples at any point). 
However, the system has not yet presented a definition of predicate-relation-form. In introductory 
texts examples can be presented only after the definition of the concept The plan operator chosen by 
the system posts two sub-goals: one to present the definition (in text), and the other to elaborate upon 
predicate-relation-form through examples. 

(PRESEIT (COICEPT-DEFIIITIOI PREDICATE-RELATIOI-FORM)) 
(ELABORATE (COICEPT-DEFIIITIOI PREDICATE-RELATIOI-FORM)) 

Before the two sub-goals are posted, the constraints of the plan operator selected compute the pa- 
rameters that determine what gets expressed via text, via examples and both. The plan operator in this 
case is very similar to the first plan operator in Figure 7.3. In the case of the predicate-relation-form, 
the system determines6 that there are three critical features, i.e., the left parenthesis, the right paren- 
thesis, and the number of arguments in the predicate-relation-form (which must be equal to the 
arity of the relation). There is only one variable feature: the relation-name (the arguments to the 
relation-name are constrained by the relation chosen, so they are not independently variable) The 
system also determines that the parentheses should not be mentioned in the text as they are fixed 
features, and will be mentioned in all the examples. 

The system now has enough information to continue with the presentation planning process: the 
first sub-goal posted, to present the definition of the concept expands into two sub-goals: 

6as mentioned in Section 3.6, one of the constraints in the plan operator selected explicitly orders the sub-types using the 
function ORDER-BY-COMPLEXITY, before posting the sub-goals to describe them in turn. 

6As described in Section 5.3.2, the system determines critical features and variable features by modifying the definitions and 
seeing whether an example of the modified definition becomes a negative example of the concept, using the LOOM classifier. 
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(IIFORM S HEARER (ISA RELATIOI-IAME PREDICATE-RELATIOI-FORM)) 
(SEQUEICE (SYITAI-FTRS ARGUMEITS PREDICATE-RELATIOI-FORM)) 

The first sub-goal results in "A predicate-relation-form consists of a relation-name". The coherence 
relation SEqUElCE between the two goals causes the generation of the cue phrase followed by", and the 
second sub-goal results in "A predicate-relation-form has some arguments". When these two sub-goals, 
along with the coherence relation, are processed by the sentence generator, it results in: 

A predicate-relation-form consists of a relation name followed by some arguments. 

The sub-goal to describe the arguments also causes the posting of a goal to elaborate upon the fact 
that restricted-expressions can be of different types such as variables, concepts, and function-forms. 
This is realised by a primitive speech act as shown in Figure 7.5. Thus, the planner has generated the 
first four sentences at this point. 

The planner now has to expand the goal of 
(ELABORATE (COICEPT-DEFIIITIOI PREDICATE-RELATIOI-FORM)) 

Since at this point the definition of a predicate-relation-form has already been presented, the system 
can present examples of a predicate-relation-f or« to satisfy this goal. As described in Section 5.3.2, 
the variable and critical features computed previously are retrieved. During the computation of the 
critical features, the system modifies the definition of the predicate-relation-form by reducing the 
number of arguments by one (as described in the algorithm in Section 5.3.2). An example generated 
for this modified definition classifies under the concept function-form. Since the system finds an 
interesting negative example, it orders the other examples so that the negative example is presented 
last (according to the ordering criteria given in Section 5.3.5). The system needs to present at least two 
examples to illustrate a variable feature. These two examples illustrating the variable feature (the 
relation-name) are to be presented first, followed by the pair for the critical features. The planner 
must also indicate that the examples are positive and negative as well. This is done through the 
posting of a BACKGROUID goal to generate text to introduce the positive examples. This is followed by 
a goal to generate the examples for the variable features, and the goal to generate examples for the 
critical feature. Since examples illustrating variable features should be widely different, the system 
generates examples with two different relations, and the first two examples are generated. This part 
of the text plan is shown in Figure 7.5. 

In the case of the positive-negative pair to illustrate the critical feature, the positive example can be 
presented without any introduction because the immediately preceding examples are positive examples 
as well. To present the negative example, the system must generate additional introductory text to 
explicitly mark the example as being negative. The planner posts an appropriate goal to generate text 
to introduce the negative example. This is linked to the goal for presenting the positive example with 
the coherence relation COITRAST. This results in the generation of a cue phrase such as "However, 
." The presentation of the negative example is accompanied by the presentation of a goal to elaborate 
upon the differences between a predicate-relation-form and a Inaction-form. The relevant portions 
of the text-plan are shown in Figure 7.6. 

The planner continues expanding goals in this fashion, until all the goals are primitive speech-acts, 
such as (IIFORM ...). Finally, the completed discourse tree is passed to an interface which converts 
the IIFORM goals into the appropriate input for the sentence generator. The interface constructs the 
individual sentences as well as connects them appropriately, using the rhetorical information from the 
discourse tree. For example, it chooses "However" to reflect the COITRAST relation. It also chooses the 
appropriate lexical items. Finally the sentence generator produces the English. The resulting output 
is shown in Figures 7.7 and 7.8. 
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Figure 7.5: Plan fragment for the predicate-relation-form. 

7.4   Discussion 

In this chapter, we have seen additional ways in which both examples and text interact with and 
co-constrain each other. It is important to recognize and present interesting negative examples when 
they are available; however, such examples can cause additional text to be generated, as well as affect 
the order in which the examples are to be presented. It is important to recognize this interaction in 
order to provide an appropriate, well-structured and coherent presentation to the user. This chapter 
has reinforced the argument that example generation must be considered as an integral part of the 
generation process. Our scenario from the documentation system has illustrated some of these issues. 

In the next chapter, we look at the effect of the text type on the generation process, and study the 
major differences between the descriptions that occur in introductory us. advanced texts. 
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Figure 7.6: Text-plan fragment for the generation of the examples for the critical feature. 
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r IF Predicate-Relation-Form n 

BURY ROTATE 

A predicate-form is a restricted-expression. It 
returns a boolean value, and the number of arguments 
in a predicate-form is equal to the arity of the 
relation. A predicate-form can be of three types: a 
predicate-relation-form, a predicate-action-form, or 
a predicate-logical-form. 

A predicate-relation-form is a relation-name followed 
by some arguments. The arguments are 
restricted-expressions, such as variables, concepts, 
function-forms and predicate-forms. Examples of 
predicate-relation-forms are: 

(INDICATOR-STATE LED-1      ON) 
(HARDWARE-STATUS LANBRIDGE-2 FAULTY). 
(CONNECTED-TO   DECSERVER-1 VAX-A) 

However, the following example is not a 
predicate-relation-form, but. a function-form, because 
the number of arguments is not equal to the arity of 
the relation: 

(CONNECTED-TO DECSERVER-1) 

The difference between a function-form and a 
predicate-relation-form is that the function-form has 
one less argument than the arity of the relation, and 
returns a range of the relation, while the 
predicate-logical-form has as many arguments as the 
aritv of the relation and returns a boolean value. 

Figure 7.7: Documentation for predicat«-relation-for»with Examples. 
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Chapter 8 

The Effect of the Text Type on Descriptions 

The previous chapters discussed two instances of the interaction between the text and the examples: 
the elision of text due to the presentation of'equivalent' examples, and the addition of text, due to the 
presence of anomalous, or negative examples. All of the previous descriptions have been generated 
for an introductory text type. Given another text type, the descriptions can be very different. It 
is important to generate appropriate descriptions in different situations. This chapter analyses the 
differences between introductory, intermediate, and advanced text types. While we shall discuss the 
main points of each of these three text types, it must be emphasized that our implementation as yet 
does not have a representation for the intermediate text type. Thus, our generation can only be done for 
the introductory and advanced text types. This is because we do not, as yet, represent the semantics of 
the various constructs, and these are essential in the generation of descriptions for intermediate texts. 
This chapter presents the main differences between these three types, describes how introductory and 
advanced texts affect the generation of concept descriptions. We have already seen the generation of 
a list for an introductory text; in this chapter, we shall trace the generation of a description for an 
advanced text to contrast the two processes and thus illustrate our points. 

First we discuss the need to vary the descriptions. Then we describe what a text type is considered 
to be, and its implications for the text as well as the examples. We later deal with each of the 
effects, and describe how one of the differences noticed in our corpus - the placement of the examples 
with respect to the text - can be explained by using the text type. Finally, the rest of the chapter 
traces the generation of the advanced text scenario to show how these issues are considered in this 
implementation. 

8.1   The Need to Vary Descriptions 

Different situations can result in widely varying descriptions. The variation can occur in both the 
textual descriptions and the accompanying examples. Contrast the two descriptions for the same 
concept - a list - given in Figures 8.1 and 8.2. Not only is the textual description different, the 
examples ~ in terms of number, content, position, etc. - are different as well. It is therefore essential 
to generate descriptions which take into account the situation. In this case, we are concerned with 
generating descriptions in different text types. 

Researchers have studied the effect of different situations on the textual description: for example, 
Paris (1988) and Paris and Bateman (1989) studied the changes resulting in the text based on the 
intended user (a concept analogous to the text type). Polya (1945) and Michener (1978) presented 
characterizations of different example types. However, there has been no work on the characterization 
of descriptions that include examples in different text types. 
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A list always begins with a left parenthesis. Then come zero or more pieces of data (called the element« 
of a list) and a right parenthesis. Some examples of lists are: 

(AARDVARK) 
(RED YELLOW GREEI BLUE) 
(2 3 5  11  19) 
(3 FREICH FRIES) 

A list may contain other lists as elements. Given the three lists: 

(BLUE SKY)   (GREEI GRASS)  (BROVI EARTH) 
we can make a list by combining them all with a parentheses. 

((BLUE SKY)   (GREEI GRASS)   (BROVI EARTH)) 

From (Touretzky, 1984), page 35. 

Figure 8.1: A description of list in an introductory text. 

A list is recursively defined to be either the empty list or a COIS whose CDR component is a 
list. The CAR components of the COlSes are called the elements of the list For each element 
of the list, there is a COIS. The empty list has no elements at all. 

A list is annotated by writing the elements of the list in order, separated by blank space 
(space, tab, or return character) and surrounded by parentheses. For example: 

(a b c) 
(2.0s0 (a 1)  #\*) 

A list of 3 symbols 
A list of 3 things:a 
floating point nuabsr, 
another list,  and a 
character object 

From (Steele Jr., 1984), page 26. 

Figure 8.2: A description of list from a reference manual. 

One cannot independently plan a description tailored to a user, separately generate examples 
tailored to the user, and then present them together: Sweller et al. found that if the examples 
and the descriptive component were not integrated, the combination could result in reduced user 
comprehension (Chandler and Sweller, 1991; Ward and Sweller, 1990). Examples and text must be 
presented to the user as a coherent whole, and together, appropriately tailored to the situation. Yet, the 
issue of tailoring descriptions that include examples for the situation at hand has not been addressed. 

8.2   The Notion of a Text Type 

It has long been observed that certain types of linguistic phenomena such as the rhetorical structure, 
lexical types, grammatical features, etc. closely reflect the genre of the text, e.g., introductory tutorial 
material, reference manuals, etc. Several text typologies have been proposed by linguists. For 
instance, Biber (1989) identified eight basic types of texts based on statistically derived grammatical 
and lexical commonalities ; the Washington School proposed a detailed classification of different 
genres of written scientific and technical English (Trimble, 1985), and de Beaugrande (1980) proposed 

87 



a general classification of text types, arguing that text types determine the types of discourse structure 
relations used. 

A text generation system can make use of the notion of text types to constrain its options, such as 
which communicative goals to achieve, which discourse relations to favor, any appropriate grammatical 
constraints, etc. In our case, text types play a particularly important role in the generation of examples 
and their positioning. More specifically, for descriptions, two text types - introductory and advanced - 
constrain the positioning of examples with respect to the descriptive material. These are the two text 
types that we describe in this chapter and are used by the implemented system. 

8.3   Integrating Examples: Issues Related to the Text Type 

Many issues need to be considered when generating descriptions that integrate descriptive text and 
examples, because both these components co-constrain and affect each other. While we have discussed 
these issues in previous chapters, especially Chapter 3, we review some of them here: 

• What should be in the text, in the examples, in both? 

• What is a suitable example? How much information should a single example attempt to convey? 
Should there be more than one example? 

• If multiple examples are to be presented, what is the order of presentation? 

• If an example is to be given, should the example be presented immediately, or after the whole 
description is presented?1 

• Should prompts be generated along with the examples? 

Answers to these questions depend on whether the text is an introductory or advanced text Consider, 
for example, the descriptions of list given in Figure 8.1 taken from (Touretzky, 1984), an introductory 
book, and Figure 8.2 taken from (Steele Jr., 1984), an advanced, reference book: they contain very 
different information in both their descriptive portions as well as their examples; while Figure 8.1 
contains eight lists (which are used either as examples or as background to the examples), Figure 8.2 
has only two lists as examples. The elements of the examples in the two descriptions are also 
significantly different: the numbers in Figure 8.1 are integers, such as 2 and 3, while the number used 
as an element in Figure 8.2 is a more complex instance: 2.0s0. The examples in Figure 8.1 do not 
contain prompts, while those in Figure 8.2 do. Finally, the examples appear very differently placed 
(with respect to the explanation) in the two figures. 

The next section discusses each of these issues in turn. 

8.4   Introductory versus Advanced Texts 

We now consider how descriptions that contain examples differ from introductory to advanced text 
Note that this is one of the dimensions for example categorization that we described in Chapter 4. We 
shall address each of the questions presented in Section 8.3. The different components that can vary 
are: 

1This will determine whether the example(s) appear within, before, or after the descriptive text. 
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• The descriptive component: in the case of the introductory texts, the descriptive component 
contains surface or syntactic information. This fact was found to be true in our entire corpus 
without exception; it was also noticed in other studies, e.g., (MacLachlan, 1986; Chamey et dl., 
1988; Rederefa/., 1986). 
Reference material is technical, detailed and comprehensive. The material usually contains all 
the facts about the system (including the internal structure of the concept), forming the basis for 
all other types of documentation (Brockmann, 1986). 

• The actual examples: examples in both text types illustrate critical features of the surface or 
syntactic form of the concept or its realization. In introductory texts, however, examples are 
simple and tend to illustrate only one feature at a time. (Sometimes it is not possible to isolate 
one feature, and an example might illustrate two features; in this case, the system will need to 
generate additional text -- such as a prompt -- to mention this fact) On the other hand, examples 
in reference texts are multi-featured. 

• The number of examples: since introductory texts contain usually single-featured examples, 
the number of examples depend upon the number of critical features that the concept pos- 
sesses. In contrast, as reference texts contain examples that contain three or four features per 
example (Clark, 1971), proportionately fewer examples need to be presented. 

• The polarity of the examples: introductory texts make use of both positive and negative 
examples, but not anomalous examples. Advanced texts on the other hand, contain positive and 
anomalous examples, but usually not negative ones. 

• The position of the examples: in introductory texts, the examples are presented immediately 
after the point they illustrate is mentioned. This results in descriptions in which the examples 
are interspersed in the text. On the other hand, examples in reference texts must be presented 
only after the description of the concept is complete. 

• Prompts: in general, prompts are generated when an example contains more than one feature. 
The system must also generate prompts in the case of recursive examples (these are examples 
that have as elements other examples of the concept), and anomalous examples if background 
text has not yet been generated. In introductory texts, background text is usually generated and 
thus prompts are not necessary. In contrast, in advanced texts, the examples are grouped at the 
end, after the textual description; background text cannot be generated at that point, so prompts 
may be necessary. 

These observations are summarized in Figure 8.3. 

The six factors listed above are the major reasons for differences between introductory texts and 
advanced texts.2 Taking these into account, our system can generate descriptions that match naturally 
occurring ones in the corpus. The role these factors play will be illustrated by working through the 
generation of descriptions similar to ones presented in Figures 8.1 and 8.2. 

Each of the factors described in the previous section affects some of the other factors in varying 
degrees. For instance, the number of examples is dependent upon the number of features presented in 
each of the examples; the presence of prompts depends upon the number of features and the number 
of examples, etc. However, one of these factors, the placement of the examples with respect to the text, 
is more important than the others. This is because this factor, the positioning of the examples, directly 
affects all of the other five factors. The next section describes the effect of the text type on the other 
factors. 

2These factor« do not take into consideration differences in the phrasing and lexical choice. 
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For each issue, the effect of the text-type is: 

• Examples: 

introductory: simple, single critical-feature 

advanced: complex, multiple critical-features 

• Accompanying Description: 

introductory: surface, syntactic information 
advanced: complete information, including internal structure 

• Number of Examples: 

introductory: depends upon number of critical features 
advanced: few (each example contains three to four features) 

• Positioning the Examples: 

introductory: immediately after points being illustrated 

advanced: after the description is complete 

• Prompts: 

introductory: prompt if example has more than one feature 
advanced: prompts if anomalous and recursive examples 

Figure 8.3: Brief description of differences between examples in introductory and advanced texts. 

8.5   Positioning the Examples 

Examples can either occur before the text, within the text, or after the text Consider for instance, 
the descriptions in Figure 8.4, taken from two introductory books, one on UNIX (Waite et al., 1983), and 
the other on TßX (Abrahams et al., 1990). In both cases, the descriptions have examples interspersed 
within the text Consider the descriptions given in Figure 8.5 where the examples occur before the 
accompanying description, and Figure 8.6 where the examples occur after the description. 

The three descriptions of a liit in LISP given in Figure 8.7, illustrate three different descriptions 
occurring in three different text types. The placement of the examples in each of the descriptions 
is different: in the introductory case, the examples are interspersed within the description, in the 
intermediate case, the examples are before the description, and in the advanced case, the examples 
are after the description. These descriptions of a list emphasize how the same object can be presented 
very differently in different situations. We have already presented the generation of a list for an 
introductory text previously; in this chapter, we shall generate a description for an advanced text to 
illustrate how the placement of the examples affects the resulting descriptions. 

8.5.1   Effect of the Placement on Comprehension 

The position in which the examples appear affect the descriptions significantly. Studies on the efficacy 
of presenting examples in different positions with regard to the accompanying description showed that 
examples within and after the description are used most often. Klausmeier showed that texts for naive 
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UNIX has a who command, which results in a list of the people logge i onto the system at 
that moment. An example of the command and its output is: 

*/. who 
bob tty04 Aug 23 8:27 
catfish tty07 Aug 23 8:16 
■neezy ttyl6 Aug 23 8:52 
granny tty21 Aug 23 23:13 
'/. 

The first column gives the login name of the user. The second column identifies the terminal 
being used. The remaining columns give the date and time each user logged in. 

From (Waite et al., 1983), page 50. 

A delimiter in TjjX is a character that is intended to be used as a visible boundary of a math 
formula. For example, the left and right parentheses are delimiters. If delimiters are used 
around a formula, TfX makes the delimiters big enough to enclose the box that contains the 
formula. For example: 

$$ \left( a \over b \right) $$ 

yields: 

(?) 
TfX made the parentheses big enough to accomodate the fraction. But, if instead of the 
previous expression, one had: 

** ({a \over b»$$ 

the result would be: 

(?) 
Since the parentheses are not in a delimiter context, they are not enlarged. 

From (Abrahams et al., 1990), page 58. 

Figure 8.4: Introductory Text: Examples within the description. 

users were most effective when the example immediately followed the definition of the concept being 
illustrated (Klausmeier, 1976). Maclachlan (1986) found a number of correlations between the position 
of examples and their comprehension. His study found that the presentation of an example followed 
by an explanation of that example3 (rather than an explanation of the concept that the example 
was an instance of) was an effective teaching method when the user was already familiar with the 

3Thus resulting in a description where the example appeared before the accompanying explanation. 
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Consider the following expression, in which + is followed by something other than raw 
numbers: 

(+ (* 2 2)  (/ 2 2)) 

It is easy to see that (* 2 2) produces 4, (/ 2 2) produces 1, and these results, fed in turn 
to +, give 6 as the result. If, instead, we think of this expression as data, then we see that 
we have the three element list: + is the first element, the expression (* 2 2) is the second 
element and (/ 2 2) is the third. Thus lists themselves can be part of other lists. 

From (Winston and Horn, 1984), page 20. 

Figure 8.5: Intermediate Text: Examples often occur before an explanation. 

Used without arguments, who lists the login name, terminal name, and login time for each current user, who 
gets this information from the /etc/utmp file. 

[... 16 lines deleted... ] 

example'/, who am i 
example"ralph   ttypO Apr 27 11:24 
example'/, 
example'/, who 
mktg  ttymO  Apr 27 11:11 
gwen  ttypO  Apr 27 11:2S 
ralph ttypi  Apr 27 11:30 
example'/, 

From (UNIX Documentation, 1986) 

Figure 8.6: Advanced Text: Examples usually occur after the description. 

concept.4 Most reference manuals include examples clustered after the description, e.g., (Meehan, 1979; 
Lucid, 1990; Steele Jr., 1984; ÜNK Documentation, 1986). It is clear therefore, that each of these three 
possibilities may occur during generation, and must be handled by the generation system. 

8.5.2   Determining the Placement of the Examples 

Our corpus analysis has enabled us to identify two factors which govern the positioning of examples 
with respect to the description: 

1. the text type in which the description is being generated, and 

2. the communicative goal that the example achieves. 

*This method is most effective when the user possesses a declarative knowledge of the concept, but lacks sufficient procedural 
knowledge about it to use the knowledge to do something with it. 
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A list always begins with a left parenthesis. Then come zero or more pieces of data (called the elements 
of a list) and a right parenthesis. Some examples of lists are: 

(A ARD V ARK) 
(RED YELLOW GREEI BLUE) 
(2 3 S 11 10) 
(3 FREICH FRIES) 

A list may contain other lists as elements. Given the three lists: 

(BLUE SKY)  (GREEI GRASS)   (BROVI EARTH) 

we can make a list by combining them all with a parentheses. 

((BLUE SKY)   (GREEI GRASS)  (BROVI EARTH)) 

Introductory text (Touretzky, 1984) 

(FORMAT «standard-output* '"a'd'a" 
(naae parson) (age person) 
(if  (> (age person) 65)  "••nior"  ()   )) 

A list can contain atoms, numbers, strings or other lists as elements. For instance, the example above 
contains two atoms, a string and three lists as elements. A list can have any number of elements, as 
in the example above, where the top-level list contains six elements, and the some of the other lists 
contain two, three and zero elements. A list can ateo be a function, if it can be evaluated: in this case, 
the first element of the list is the name of the function. 

Intermediate text (Winston and Horn, 1984) 

A liit is recursively defined to be either the empty list or a COIS whose CDR component is a list. The 
CAR components of the CONSes are called the elements of the list. For each element of the list, there 
is a COIS. The empty list has no elements at all. A list is annotated by writing the elements of the list 
in order, separated by blank space (space, tab, or return character) and surrounded by parentheses. 
For example: 

(ab c) 
(2.0i0 (a 1) #\*) 

A list of 3 symbols 
A list of 3 things: a short floating point 
number, another list and a character object 

Advanced text (Steele Jr., 1984) 

Figure 8.7: Three descriptions of a list in different text types. 

The notion of a text type has previously been discussed in this chapter. The communicative goal,6 or 
intentional goal, represents a desired state of affairs for the system to achieve. Examples of such goals 
in our system are: 

(BEL HEARER (C01CEPT LIST)) 
(BEL HEARER (DISJOIIT-COVERIIG 

6Communicative goal« have been mentioned previously in the context of our description of the system generating explanations. 
We briefly present it here, for the sake of completeness. 
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The decision to place an example before, within or after the description depends upon two 
co-constraining factors: 

1. The Text Type: 
• if the text type is either tutorial or introductory, and appropriate examples are 

available, generate examples to illustrate points as soon as they are mentioned in 
the description (examples occur within the description) 

• if the text type is a reference text, prevent examples from being generated until 
the description is complete (examples appear after the description) 

2. The Communicative Goal: 
• if the top-level communicative goal can be achieved through an example, and the 

text type does not prevent it, then present the example and elaborate upon it in 
the description, (example occurs before the elaboration in the description) 

• if a communicative goal, which is not a top-level communicative goal, can be 
realized through the presentation of examples, and the text type does not prevent 
it, then present the examples (within the description) 

• if the presentation of example(s) achieves a goal to elaborate on a concept, and this 
goal is posted after a goal (at the same level in the discourse structure) to provide 
descriptive information about that concept, these examples will appear after the 
descriptive explanation 

Figure 8.8: Algorithm for determining the placement of examples in a description. 

S-EXPRESSIOI (ATOM IUMBER STRUG LIST))) 

The first communicative goal, for instance, causes the system to present to the hearer a description of 
a list. The second generates a description of the fact that an s-«xpr«ssion has a disjoint-covering 
of either an atom, a number, a string or a list. Among the many advantages in representing the 
intentional goals explicitly in the discourse structure that is generated by the planner is the ability to 
recover from communication failures, to engage in dialogue, and answer follow-up questions (Moore 
and Paris, 1989; Moore and Swartout, 1989). Communicative goals are also essential in determining 
where an example should be positioned with respect to the accompanying explanation. 

An algorithm to determine the placement of examples is shown in Figure 8.8. The algorithm 
generates descriptions with examples that match the texts in our corpus, as well as the desiderata 
mentioned in psychological literature, e.g., examples should be presented after the definition in 
introductory texts (Feldman, 1972; Hausmeier, 1976); cases where the examples are the focus of 
instruction should have an elaboration on the features of the example rather than the concept, etc. 

The next section elaborates on the algorithm, and discusses the effects of the positioning on the five 
other factors that vary with the text type. 

8.5.3   Effect of the Positioning on the Other Factors 

This section describes how the algorithm determines where the example can be presented, and its 
implications for other issues in the generation. The cases that the system can encounter are: 
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• the system finds an example to directly achieve the top-level discourse goal: if the text type is 
intermediate,8 the presentation of the example, followed by additional descriptive information 
elaborating on the features in the example satisfies the goal. In this case, the example is treated 
like a concept definition: the example is presented first, followed by an elaboration on the features 
in the example. 

Consider for instance, the description from (Winston and Hom, 1984) in Figure 8.7. The 
description begins with an example followed by the explanation.7 In such descriptions, the 
examples can be quite complex, depending upon the initial communicative goal. 

• the system finds an example that satisfies an intermediate level discourse goal: if the text type is 
introductory, there are three possibilities for the system: 

1. the goal can be satisfied without using the example (only text is generated), 
2. the goal can be satisfied by presenting the example(s) (and some text may be elided), or 
3. the goal can be satisfied by presenting the example(s), as well as some text. 

The planner must now make a choice between these three possibilities, based on the context (the 
knowledge base, user model, as well as the dialogue history). If either #2 or #3 are chosen, the 
result will be examples interspersed within the description, as in the description from (Touretzky, 
1984) given in Figure 8.7. The choice is made as follows: if the definition of the concept has not yet 
been presented, then the system cannot present examples at that point, but must generate text 
(this is what happened in the case of prtdicate-relation-forain Section 7.3). If the definition 
has been presented, the goal is to elaborate upon a recursive, or an anomalous feature (such as, 
for instance, a list of lists), then the system generates both text and examples. Otherwise, the 
system presents only examples. 

Consider the description from (Touretzky, 1984) in Figure 8.7: the first set of examples are used 
to illustrate two features about data elements in a list: («') the fact that the number of elements 
in a list can vary, and (2) the type of elements in a li»t can also vary. This fact could also 
have been expressed by a descriptive explanation as in: The types of the elements of a list can be 
either atoms, numbers, or both", following the statement about the number of elements. As can 
be seen in this description, the communicative goal of expressing the different types of elements 
is satisfied by presenting a group of examples, causing the sentence above (in italics) to be elided 
from the resulting description. 

In the last example, when the system had a goal of elaborating upon a list of lists, the system 
presented both the textual explanation, as well as an example. 

• the text type constraint prevents the generation of examples by communicative goals before the 
top-level goal to describe the concept has been achieved: this is the case in reference texts as seen 
in the description from (Steele Jr., 1984) in Figure 8.7. There are two important implications of 
postponing the presentation of examples until the complete description has been given: 

1. Since the text type constraints prevent the generation of examples to satisfy intermediate 
level discourse goals immediately, all intermediate level discourse goals must be realized in 
text. This implies that the textual description generated cannot have portions replaced by 
example elaboration, thus resulting in descriptions that are comprehensive and complete. 

2. Since all the goals to generate examples are postponed till the end, examples that satisfy 
multiple goals can be generated. This results in examples that are more complex, have 
multiple features and illustrate more than one point This results in the need to generate 
prompts with the examples to ensure that the user does not miss the points being made 

sThe system reasons that in an intermediate text type, basic definitions of concepts are known to the intended user. 
'While the description begins with a "background' statement, this statement serves as background to the example, and in our 

system would be generated as part of the example. 
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by the examples. Prompts may also become necessary because the examples may now be 
presented physically distant from the description. 

We have presented our algorithm, and some of the implications that arise from the use of this 
algorithm in the generation of descriptions with examples. The algorithm has worked well in 
determining the placement of examples in descriptions generated by our system; in addition, the 
algorithm correctly predicted the position of examples in hand simulations of other texts in our corpus. 

8.6   A Trace of the system 

The generation of an integrated description for introductory texts has already been described in 
Section 6.3. We will illustrate the working of the algorithm by generating a description of a LISP 
list when the text type is advanced. The descriptions of the concept list should resemble the ones 
presented in Figure 8.1 and 8.2. Since the generation of the description for an introductory text type 
has previously been described, we will only discuss the points at which the text type plays a role in the 
decision making process. 

8.6.1 Text Type: Introductory 

The top-level goal given to the system in both cases is (BEL HEARER (COICEPT LIST)). In the case of 
an introductory text, the text type restricts the choice of the features to present to be syntactic ones. 
The main features of list are retrieved, and two subgoals are posted: one to list the critical features 
(the left parenthesis, the data elements and the right parenthesis), and another to elaborate upon 
them (Figure 8.9 shows the skeletal text plan again). The system also needs to elaborate upon the 
data elements of a list. These can be of three types: numbers, symbols, or lists. The system can either 
communicate this information by realizing an appropriate sentence, or through examples ~ since it 
can generate examples for each of these types, or both. The introductory text type constraints cause 
the system to pick examples to satisfy this intermediate level discourse goal. The system posts two 
goals to illustrate the two dimensions along which the data elements can vary: the number of elements 
and the type. 

At this point, the system can present a few complex, multi-featured examples of data-elements in 
a list, or it can present a larger number of simpler examples. The text type constraints force the 
system to choose the simple, single featured examples. Thus the planner generates a goal to present 
an example of each type: symbols, numbers, symbols and numbers, and sub-lists. Because the text 
type is introductory, the last data type, sub-lists, is marked by the planner as a recursive use of the 
concept, and has to be handled specially. In the case of an introductory text, such examples must be 
introduced with appropriate explanations added to the text. For this data type therefore, the planner 
realizes the goal through both text and examples. The resulting skeletal text-plan generated by the 
system is shown in Fig. 8.10. The resulting output is shown in the screen dump in Figure 8.11. 

8.6.2 Text Type: Advanced 

Consider the second case, in which the text type is specified as 'advanced.' The system starts with 
the same top-level goal as before, but the text type constraints cause the planner to select both the 
structural representation of a list, as well as the syntactic structure for presentation. This results in 
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Figure 8.9: Skeletal plan for listing main features of litt. 
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Figure 8.10: Skeletal plan for generating examples of lists. 
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the planner selecting the following features for presentation:8 

Structural Features: 
(ISA LIST (OR EMPTY-LIST 

(COIS-CELL (CAR  :type :naae "list-el««ents") 
(CDR  :type LIST  :na*e )))) 

Syntactic Features: 
(LEFT-PAREITHESIS  (KLEEIE-CLOSURE DATA-ELEMEITS) 

RIGHT-PAREITHESIS 

The planner posts two goals, one a NUCLEUS subgoal to describe the li»t textually, and a SATELLITE 
subgoal to present examples about it, related by the coherence relation EXAMPLE. (This results in the 
phrase "For example ... .") The NUCLEUS sub-goal is to describe a list (textually). It posts two 
NUCLEUS goals: one to describe the underlying structure, and one to describe the syntactic form of a 
list. These two goals are linked by the coherence relation JOIIT (this is because, unlike SEQUEICE in the 
previous description, there is no particular ordering between the structural and syntactic descriptions 
here). 

The goal to describe the structure paraphrases the feature as follows: 

A list is defined to be either the empty list or a CONS cell whose CDR component is a list. 
The CAR components of the CONSes are called elements of the list. 

The planner queries the knowledge representation for any further information regarding a list Two 
other facts are retrieved about list-elements: there is a CONS cell for each element, and there are no 
elements in an empty-list. The planner generates English for these two facts as well. Both of these 
statements are linked to the (DESCRIBE (STRUCTURE LIST)) goal through the ELABORATE coherence 
relation. The final output as a result of the (DESCRIBE (STRUCTURE LIST)) goal is: 

A list is defined to be either the empty list or a CONS cell whose CDR component is a list 
The CAR components of the CONSes are called elements of the list. For each element of the 
list, there is a CONS cell. The empty list NIL has no elements. 

The second sub-goal posted because of the top-level NUCLEUS goal is for generating a syntactic 
description of a list. Since the text type prevents the generation of any examples for intermediate level 
discourse goals, the sub-goal of (DESCRIBE (SYITAX LIST)) results in a purely textual description. The 
generation of such a description is described in Section 6.1, and will not be repeated here. Since our 
system does not currently address the phrasing issue, the description about the syntactic specification 
of a list is exactly the same as in the introductory case (without examples). The only difference is that 
since the text type is advanced, the system retrieves two additional types of data elements: characters 
and strings. These are not presented in introductory texts.9 This results in the following output: 

A list consists of a left parenthesis, followed by zero or more data elements, followed by a 
right parenthesis. Data elements can be either symbols, numbers, characters, strings, lists, 
or a mixture thereof. 

Since the advanced text type constrains the system from realizing any of the intermediate level 
discourse goals by presenting examples, the description generated so far is: 

8The structural element selected for paraphrasing is illustrated here in simplified fashion, rather than the LOOM notation 
for clarity. 

•Both of these types are not defined in introductory texts before the list is described. Quite often, the eh»r»et«r type is not 
mentioned through out the introductory book. We implemented our text type constraint« to take these types to be 'advanced.' 
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• free of any examples: the only examples presented are due to the top-level SATELLITE goal, 

• the textual description is comprehensive: all the information is presented in the description, 
since examples cannot possibly cause the elision of text 

The system still needs to expand the top level SATELLITE goal to present examples. This sub-goal is 
related to the NUCLEUS sub-goal through the EXAMPLE relation, which results in the generation of 
the Tor example:" phrase between the two text spans which result from the nucleus and the satellite 
expansions. The text type constrains the system to generate as few examples as possible. Since at 
least two examples are required to show the variable nature of any feature, the system generates two 
examples of a list to illustrate the data elements. To generate the maximum contrast possible between 
two examples of a list, the system posts two goals: one to generate an example of a list illustrating 
the following features: 

Example 1 Example 2 
data elements can be: 
symbols 

data elements can be: 
numbers, characters, 
lists, strings, or 
a mixture, 

In constructing the two examples, the system picks simple symbols for the first example, and complex 
instances to build the second example: thus the system selects a floating point number rather than an 
integer as an element of the list. The example generator also ensures that the lists generated are all of 
different lengths. The planner finds that the second example is recursive: there is a list as an element 
of the list. Since the planner cannot generate background text in this text type, the planner generates 
prompts for the examples.10 The resulting text plan and output is shown in Figures 8.12 and 8.13. 

8.7   Discussion 

We have presented an analysis of the differences in descriptions that integrate examples for introduc- 
tory and advanced texts. The variations occur not just in the descriptive part of the explanations, but 
also in the examples that accompany them. Since the examples and the descriptive component are 
tightly integrated and affect each other in many ways, a system designed to generate such descriptions 
must take into account these interactions and be able to structure the presentation accordingly. We 
have presented information necessary to generate descriptions for these two text types. The algorithm 
used by the system was illustrated by tracing the generation of two descriptions of the LISP litt. 

10The planner need only generate a prompt for the second example; however, in an attempt to replicate the texts in our corpus, 
the system generates prompts for all examples in a group if a prompt is necessary for one of them. 
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Chapter 9 

Evaluation 

The proof of the pudding is in the eating. 

-- Don Quixote de la Mancha^ 

The previous chapters have dealt with . r rent aspects of the generation of descriotions with 
integrated examples. Weh:". - enumerated ' .iportar.t issues involved, and presented system -races 
of the generation of various descriptions. :: -ever r.h- validity of the issues identified as relevant 
must be verified before acceptance, in empirical evaluation of the efficacy of the different issues 
involved can also help in gaining a better understanding of the relative importance of the issues. This 
chapter presents an evaluation of the different heuristics that the system uses. 

9.1   Evaluating the Output 

Evaluating Natural Language Generation (NLG) systems is a difficult task. A workshop on NLG 
evaluation (Hovy and Meteer, 1990) acknowledged the importance of evaluation, but did not reach 
any definite conclusion on how NLG systems may be evaluated. Previous approaches to this question 
have been based on an introspective analysis of the fluency of the generated text. Kukich (1983) and 
Mellish & Evans (1989) performed such an analysis for their systems. While fluency is important, 
our emphasis in this case is to do with information presented in a useful and effective form. The 
descriptions generated by our system for the INTEND grammar were liked by the members of our 
project. The LISP descriptions were also considered very readable by people who took part in our 
evaluation. 

The main motivation for our system was the presentation of examples and their integration with the 
accompanying explanation. It is essential that the writer explicitly consider the communicative effects 
of each example on the reader and take these into account during the discourse planning process. This 

' In (de Cervantes, 1981), page 322. 
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(GENSYM ftoptional   (PREFIX  "G")) 

GEISYM is a function call with an optional argument called PREFIX. It returns a new, 
uninterned symbol, whose print name begins with PREFIX and ends with a number; the 
number is incremented with each call to GEISYM and the default value of PREFIX is reset to 
whatever is passed as an argument to GEISYM. 

(GENSYM ftoptional   (PREFIX  "G")) 

GEISYM is a function call with an optional argument called PREFIX. For example: 

(GEISYM) 
(GEISYM "ABC") 

The function returns a new, uninterned symbol, whose print name begins with PREFIX and 
ends with a number. For example: 

(GEISYM "ABC")     ==> #:ABC26 

The number is incremented with each call to GEISYM. 

(GEISYM "ABC")     ==> #:ABC27 
(GEISYM "ABC")    ==> #:ABC28 

The default value of PREFIX is reset to whatever string is passed as an argument to GEISYM. 

(GEISYM "USC")    ==> #:USC29 
(GEISYM) ==> #:USC30 

Figure 9.1: Descriptions with and without Examples. 

likely initial users of such help facilities; all of them use advanced equipment almost constantly 
throughout the day. All of these subjects represented the naive user being introduced to the domain. 
However, for more representative results, these tests should ideally be administered on a broader cross 
section of subjects with different backgrounds. An initial problem with the use of graduate students 
was that they were very unwilling to be 'beaten' by a question; they would consequently spend large 
amounts of time reading and re-reading the description until they could answer the questions. The 
first few questionnaires were returned with almost all of the answers marked correctly, though the 
time taken to answer the tests differed drastically. We decided that the only way to test for relative 
superiority among the concept descriptions was to limit the amount of time available for answering 
the questions.4 This forced the subjects to try and understand the concept from the two descriptions in 
similar amounts of time. The rest of the section describes the results obtained in our study. 

4This is the same approach taken in most of the standardized tests, such as the GRE, SAT, etc. 
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FUNCTION CALL => OUTPUT CORRECT INCORREC 
(GEISYM) => ERROR! a a 
(GEISYM) =^ #:G27 a a 
(GEISYM "ABC") => #:ABC27 a a 
(GEISYM "ABC") => *:GABC27 D a 
(GEISYM "ABC") => *:GABC27*:GABC28 a D 
(GEISYM "ABC") =*• *:ABC28 a a 
(GEISYM) => *:G29 a a 
(GEISYM) =*• *:G30 a a 
(GEISYM) =^ #:ABC31 a a 
(GEISYM) => *:ABC29 D a 
(GEISYM) => #:ABC30 a a 
(GEISYM "ABC") 
(GEISYM "G") 
(GEISYM) 
(GEISYM) 
(GEISYM "#:G28") 
(GEISYM) 
(GEISYM "XYZ") 
(GEISYM "XYZ") 
(GEISYM "XYZ") 

a 
a 
a 
a 
a 
a 
a 
a 
a 

Figure 9.2: Questionnaire on GEISYM used to test effectiveness of examples. 

9.2.1 Descriptions With and Without Examples 

There have been a number of studies on the usefulness of examples, especially in documentation, 
e.g., (Charney et al., 1988), but we decided to see the results with our subjects. The subjects were split 
into two groups. Four different concept descriptions were given to the subjects. Each description had 
two versions: one with examples, and another without examples which were given to the two groups. 
One such pair of descriptions on the LISP function GEISYM is shown in Figure 9.1 and the questions are 
shown in Figure 9.2. 

The group given the description without the examples made between 4 and 11 mistakes out of the 
21 questions. The average number of mistakes made were 6 mistakes. (Most of these mistakes were 
around the notion of the prefix being Yeset') However, in the second group - the group who were given 
the description with included examples - the maximum number of mistakes made by people was 4 
(the average number of mistakes was 2), and there were 6 people who made no mistakes. The results 
indicate that the inclusion of examples helped clarify the issues for the users. 

9.2.2 Positioning the Example 

It is important that examples be placed appropriately with respect to the accompanying text We 
have seen in previous chapters how examples can sometimes occur before the text, within the text, 
and after the text, depending upon the text type. Empirical studies have shown that in the case of 
introductory users, the best placement of examples seems to be immediately following the point they 
are supposed to illustrate. We presented the descriptions shown in Figure 9.3 and 9.4 to our test 
subjects, who were novices with respect to TfcX. For a description with examples before the explanation, 

106 



Stacking operations are used in TßX to produce fractions: \over produces fractions with the 
argument on the left hand side becoming the numerator, and the right hand side argument 
becoming the denominator. Other variations of \ov«r are: 

• \atop which leaves out the fraction bar 
• \above which provides a fraction bar of a specified thickness 
• \choo«e which leaves out the fraction bar and encloses the construct in parentheses 

• \brace which leaves out the fraction bar and encloses the construct in braces 
• \brack which leaves out the fraction bar and encloses the construct in brackets. 

For example: 

*${n+l \over n-1} \qquad {n+1 \atop n-l> \qquad 
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-l> \qquad 
{n+1 \brace n-1}    \qquad {n+1 \brack n-l}$* 

produces: 

C-0 C-i} C-J n+1 n+1 
n-1 n-1 

Figure 9.3: Description with examples after the description. 

we used the same description as in Figure 9.3, with the positions of the example and the explanation 
interchanged. 

The test subjects were split into three groups, one for each description. Each of the groups was 
given a minute to study the descriptions (this is the time it takes to read the description twice). The 
subjects were made to answer 10 questions related to the stacking operator in TßX. In the group 
with interspersed examples, only one person made a mistake. In the group with examples after the 
description, 5 people made an average of 3 mistakes, and in the group with the examples given before 
the description, the result was almost identical, with one additional person making a mistake. 

In the case of naive users therefore, the placement of examples immediately after the concept's 
definition seems indicated as the most beneficial. 

9.2.3   Presentation of Different Example Types 

Chapter 4 dealt with the different example types in our system. According to our categorization, 
examples can vary along three dimensions: their polarity with respect to the definition they accompany, 
the text type for which they are generated, and the knowledge type of which they happen to be instances. 
For a concept therefore, an example (and its associated presentation) can be varied along the polarity 
and the text type. In this section, we consider the issue of polarity. 

The polarity of an example can either be positive, negative, or anomalous. The importance of negative 
examples in concept learning has already been shown by empirical studies, e.g., (Feldman, 1972; 
Houtz et al., 1973). However, we are not aware of studies on the presentation of anomalous examples 
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\ov«x produces fractions, with the argument on the left hand side becoming the nu- 
merator, and the right hand side argument becoming the denominator.   For instance: 
$${n+l \ov«r n-l}$$ produces 

n + 1 
n-1 

Other variations of \over are: \atop which leaves out the fraction bar.   For instance: 
$${n+l \atop n-l>$$ produces: 

n + 1 
n-1 

\above    which    provides    a   fraction    bar    of   a    specified   thickness. Thus: 
$${n+l \above 2pt n-l}$$ produces: 

n + 1 

n-1 
\choose which leaves out the fraction bar and encloses the construct in parentheses, as in: 
$${n+i \choose n-l>$$ which produces: 

C-D 
\brace which leaves out the fraction bar and encloses the construct in braces, as in: 
$${n+l \brace n-l}$$, which produces: 

{:-!} 
and \brack which leaves out the fraction bar and encloses the construct in brackets, as in 
$$<n+l \brack n-l>$$, which produces 

n + 1 
n-1 

Figure 9.4: Description with examples within the description. 

with, or apart (marked as specifically different) from the regular examples.6 We therefore decided to 
study the differences in the presentation of anomalous examples together with, and apart from the 
normal examples. 

Consider the two descriptions of the UNK command who shown in Figures 9.5 and 9.6. In the case 
of Figure 9.5, even though the description talks only about files as being arguments to the command, 
the examples presented include the two6 anomalous cases of who. The distinction between the normal 
arguments to who (files) and the exceptional cases of who are much more clearly marked in Figure 9.6. 
This is clearly a case of an anomalous example, since by the classification presented in Chapter 4, 
anomalous examples are defined to include Instances that are examples, but are not covered by the 
definition.' In the evaluation, all of the subjects given the first description (with unmarked anomalous 
examples) got all questions of the form: 

"Though this has been suggested in (Engelmann and Carnine, 1982). 
6The command whoami is not considered here, since by UNK standards, it is not a special form of the who am i command, 

but an entirely different one. 
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who i» <u»er-na»«> 
«ho <ui«r-na»«> 

wrong.7 Only 2 out of the 6 people given the second description with marked analogous examples got 
questions of this type wrong. It would seem therefore that it is important to separate and explicitly 
present anomalous examples as such. 

9.2.4   On the Complexity and Number of Examples 

As we have already stated in Chapter 3, the more the number of features illustrated in each example 
the less the number of examples required to illustrate all the features of the concept. Even if the 
same number of examples are used in two cases, one with simple examples, and one with complex 
multi-featured examples, the descriptions are likely to be understood to different extents. In our test 
we asked our volunteers to look at two descriptions that featured the FORMAT statement in LISP and 
then answer questions on simple aspects of the FORMAT statement.8 The description with the two sets 
of examples is shown in Figure 9.7. 

We conducted two tests with these descriptions: in the first case, four members of the group were 
given the description and the three simple examples. The second group was given the description 
with the three complex examples, while the third group was given the description with only the last 
example. The first group got all their answers right, while the second group made an average of 2 
mistakes out of the 10 questions (one person got all the answers correct). The third group, which was 
given a single question, fared the worst, with none of the four getting all the answers correct, and the 
average number of mistakes per person being 3.25. 

In another test on the number of examples required, the subjects were given more examples than 
the number of features being illustrated. The success rate did not rise significantly beyond that in 
which the each example illustrated one feature. It would thus appear that the larger the number of 
examples presented to naive users, the better their understanding of the concept 

9.2.5   Order of Presentation of the Examples 

It is important that the examples be presented in the correct sequence. Since examples are not 
generated m isolation, but with associated material such as prompts, background information or 
contrasting negative examples, the associated information will also be moved around if the example 
Wves away* from its correct position in the sequence. An instance of this can be seen in Figure 9 8 
where the original description of a list (described in Section 6.3) was generated with the ordering 
constraint on the plan operators reversed. The system generated the goals to elaborate upon the data 
elements of a list To satisfy this goal, the system needed to present examples of lists in which the 
data-elements were atoms, numbers, lists, and a mixture of the above. The system chose (because of 
reversed ordering) to satisfy the goal of presenting a list of lists first However, since this is a recursive 
case, the system was forced to present background material in the form of other lists, resulting the 
description presented in Figure 9.8, which does not resemble any of the descriptions we have observed 
in our corpus. This figure also illustrates again the strong mutual interaction of the examples and 
text ma description. Changing any of the factors that affect one is likely to affect the other as 
well. From this description, it is clear that ordering is an important factor in ensuring the overall 
description generated is coherent and useful. In other descriptions, where the description took into 

People with some previous exposure to UNIX were especially prone to making errors in the first ca« because of the presence 
of the »hoi» command in UNIX. yi*—>w 

and2 on"* "^^ **"* " ****** 9'? ™ accomPanied *** extr* information that gave the values for 'Cg.t-n«a. person)' 
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who: When used without arguments, who lists the login name, terminal name, and login 
time for each current user. When a file name is specified, who examines its contents and 
lists it as shown: 

example'/, who 
ramesh      console Aug 23 09:34 
ramesh      ttypO      Aug 24 14:19      (:0.0) 
macgreg    ttyp2      Sep    2 09:36       (128.9.208.151:0.) 
mittal      ttypb      Sep    4 11:18      (■•nis.iai.edu) 

example'/, who /var/adm/wtmp 
■ittal      ttypS      Fab 12 13:13 (power-chow.isi.e) 
■ittal      ttypS      Feb 12 13:IB (power-chow.isi.e) 
ees ttyp7      Feb 12 13:24 (doc.isi.edu) 
koda ttyp7      Feb 12 13:30 (rising.isi.edu) 

example'/, who an i 
doc.isi.edu!«ittal 

example'/, who is who 
doc.isi.edu!«ittal 

Figure 9.5: Description with anomalous examples not explicitly marked. 

ttypb Sep 4 11:18 (seuss.isi.edu) 

ttypb Sep 4 11:18 (seuss.isi.edu) 

who: When used without arguments, who lists the login name, terminal name, and lo- 
gin ... [lines deleted]... contents. Examples of the usage of who are: 

example'/, who 
ranesh      console Aug 23 09:34 

koda ttyp7     Feb 12 13:30 (rising.isi.edu) 

However, there are two cases in which the argument to who need not be a file name, who 
can be used to find out who you are logged in as: it displays your hostname, login name, 
terminal name, and login time. 

example'/, who am i 
doc.isi.edulmittal     ttypb     Sep   4 11:18 (seuss.isi.edu) 

exampleX who is who 
doc.isi.edulmittal      ttypb      Sep    4 11:18 (seuss.isi.edu) 

Figure 9.6: Description with anomalous examples clearly marked. 

account the pairing of positive and negative examples for critical features and the pairs were ordered 
by the complexify of the feature being illustrated, the group that was given the ordered description 
fared better (2 mistakes out of 10) than the group which did not (6 mistakes on the average). 
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Description: 

FORMAT is a powerful, generalized string manipulation function. FORMAT takes three types 
of arguments: a stream on which to write (this can be IIL), a control string containing 
directives, and the information to be used by the directives. Different directives are used 
to process different types of data to be inserted into the output string, a is used for ASCII 
strings, while   c is used to print characters, and  d to print integers in decimal notation. 

Simple Examples: 

(format nil "Blue Bird") =»   "Blue Bird" 

(format nil ""a"  "Green Grass") =>   "Green Grass" 

(format nil "Its a _A!  Its a "A!" "bird" "plane") 
=>■   "Its a bird!  Its a plane!" 

(format nil "-a"'/.-a" "who?" "what?") => 
"who? 
what?" 

Complex Examples: 

(format nil "The answer is " D."  (expt 47 5)) =* 
"The answer is 229,345,007." 

(format nil "Type "C to "A." 
(set-char-bit #\D  :control t)  "delete all files") 

=* "Type Control-D to delete all files." 

(format nil "'% lame:  "a'X "a'a" (get-name person) 
(if  (get-address person)   (get-address person) "lo known address") 
(if (get-age person)  (format nil ""a:"a" "Age:" (get-age person)))) 

Figure 9.7: Descriptions with simple and complex examples. 
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A list begins with a left parenthesis. Then come zero or more pieces of data (called the 
elements of a list) and a right parenthesis. A list may contain other lists as elements. Given 
the three lists: 

(BLUE SKY)   (GREEI GRASS)   (BROWI EARTH) 

we can make a list by combining them all with a parentheses 

((BLUE SKY)   (GREEI GRASS)  (BROWI EARTH)) 

Other examples are: 

(3 FREICH FRIES) 
(RED ORAIGE GRAPE CAR) 
(RED YELLOW GREEI BLUE) 
(AARDVARK) 
(2 3 5 11 19) 

Figure 9.8: The description of a list, with no ordering on the examples. 

*/.!PS 
/inch { 72 mil } def 
306 396 270 0 360 arc 
cloiepath 
gsave 

0.50 setgray 
«ill 

grestore 
72 setlinewidth 
■troka 
/Palatino-Bold findfont 
360 scalafont 
■etfont 
96 275 Boveto 
(PS) fall« charpath 
g«ava 

18 >«tlin«vidth 
■trok« 

grattor« 
1.0 metgray 
fill 
■hovpaga 

% define inch procedure 
% draw a circle 
% finish circle 
% remember graphics state 
% medium gray shade 
% fill circle 
% restore graphics state 
% fat line width 
% paint outline of circle 
% find a font 
% make letters large 
% set current font 
% position current point 
% get character path 
% remember graphics state 
% fat line width 
% paint outline of characters 
% restore graphics state 
% white color 
% fill character outlines 
% display page 

Figure 9.9: Example used in testing the effect of prompts. 
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9.2.6   On the Need for Prompts 

Figure 9.10: Output generated by 
code in Figure 9.9. 

As we have mentioned previously (Section 3.8), prompts 
are usually seen in reference texts, where complex examples 
illustrating multiple points are presented. Prompts serve 
to highlight factors in the example that may not have been 
mentioned immediately before the example is presented. To 
test for the efficacy of prompts in the presence of such de- 
scriptions, we presented our subjects with relatively long de- 
scriptions (more than 10 lines) from different books and pre- 
sented multi-featured examples, with and without prompts 
to them. An instance of the multi-featured example presented 
in this evaluation is shown in Figure 9.9. The same example 
was used, once with prompts as shown, and once without 
prompts. (The postscript code generates the output shown in 
Figure 9.10). The description accompanying these examples 
in the test was a page from (McGilton and Campione, 1992). 
The group given the example with prompts fared better than 
the one without prompts: the average number of mistakes 
made in the two groups were 3 and 5, out of a possible 12 
questions. Thus, it would seem that prompts play a useful 
role in certain text types. 

9.3   Discussion 

The evaluation reported in this chapter on the effect of different factors in the generation of integrated 
descriptions indicate their importance and necessity for coherence and comprehensibility. This chapter 
presented some of the descriptions that were used in the evaluation. There are undoutedly many ways 
in which the evaluation could have been improved: for instance, the number of participants could have 
been increased, the issues could have been analysed at finer levels of detail, and statistical correlations 
derived. However, due to a lack of both resources and time, we conducted the limited experiments 
described here. These experiments suggest that the issues identified from the corpus analysis may be 
worth further study. This skeletal evaluation served that goal satisfactorily: each of the issues tested 
for did indeed suggest a correlation with comprehension. Thus, it may be useful to further consider 
these, and related issues, in the design of systems meant to generate descriptions integrating text and 
examples together. 

An important issue that we discussed briefly in Section 9.1 was on how closely the descriptions 
generated by our system matched those found in naturally occurring texts. It is important to state 
here that our system cannot generate any descriptions that depend upon the underlying semantics in 
any way because we do not have represent these semantics now. Almost all of the texts in our corpus 
show some variation in their writing style, even among the reference manuals. In most cases, this is 
because while the major part of the manual may have been written by one person (albeit over a long 
period of time), there are often sections that are written by other authors. Thus, for instance in the 
case of the LISP manual (Steele Jr., 1984), whole chapters (on format and loop, for instance) have been 
written by other people. Writing styles can thus vary even within the same book. An example of such 
a book is the one on LISP programming by Winston and Horn (1984); on the other hand, some of the 
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manuals, or reference texts in our corpus were written in a very rigid format, e.g., (Meehan, 1979; 
McCarthy et al., 1985). 

Our heuristics cover perhaps about 80 per cent of the texts that we have seen in our corpus. The 
figure refers to how often our heuristics matched naturally occurring texts in the following criteria: 
(i) the position of the examples with respect to the explanation; (it) if the example(s) are within the 
explanation, the point at which the example(s) occur; (tit) type of examples (single featured, positive, 
negative, etc); (iw) the order of presentation of the examples; (v) the communication of information 
through text, examples and both; (vi) the presence or absence of anomalous examples, and their 
treatment; (wit) the presence of background explanation and examples for recursive cases, and (viii) 
the use of prompts. The figure does not take into account the actual examples themselves, i.e., whether 
the quality of the examples generated by the example generator component matched the quality of 
examples found in our corpus. This was due to the use of only syntactic and type knowledge by our 
system in the example generation process. Since the current implementation does not represent, or 
reason with, the semantics of the different constructs, the actual examples generated are often quite 
unlike the ones seen in the corpus. Examples in naturally occurring texts are usually written by taking 
into account the semantics of the construct, their typical usage and the non-syntactic relationships 
between different parts of the examples. This will be seen clearly in Appendix D, where some of the 
descriptions planned by the system are presented. 
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Chapter 10 

Conclusions and Future Work 

Everybody talks about documentation, 
but nobody does anything about it. 

-- Anonymous 

This thesis argues for the presentation of examples in user help and automatically generated 
documentation. Documentation is an important factor in user acceptance of any system; it is essential 
that a system designed to automatically generate documentation be able to generate descriptions that 
mclude examples. Previous approaches to the generation of descriptions did not address the issue of 
presenting examples as an integrated part of a coherent description. This thesis presents one approach 
to the planning and presentation of such descriptions that integrate examples and text 

10.1   Contributions 

There are a number of issues that must be identified and addressed if a system is to be designed to 
plan complex descriptions that involve both text and examples. In this thesis, we presented these 
issues - based on a synthesis of results in related fields such as educational psychology as well as 
our own corpus analysis - and showed how they may be addressed in a computational framework to 
succesfully plan the presentation of complex descriptions that include examples. The contributions of 
this thesis are: 

• the synthesis of results and ideas from different fields on the generation and presentation of good 
examples for learning and understanding; 

• the identification and analysis of the different ways in which examples and text influence each 
other (deletion and addition of text under specific circumstances); 

• the specification of the different factors that are important in the context of natural language 
generation (the position of the examples, the type of examples, prompts, etc.); 

• a new and improved categorization of example types that takes into account the context of the 
examples; 

• the finding that interesting negative examples are not only useful, but can affect the choice of 
the positive examples; 
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The let-form consists of a left parenthesis followed by the word LET followed by a list of 
local variables followed by a number of forms. Finally, there is a right parenthesis. A local 
variable is specified as a list of the variable name which is a symbol and an initial value. 
Examples of let-forms are: 

(LET ((ORAIGES FISHES)) MEM) 
(LET ((BICYCLES 3)   (PIZZAS  «MEM)) 2 9 CARS) 
(LET ((YELLOW SKY)   (FISHES BLUE))  (MEI AARDVARKS)) 
(LET ((APPLES APPLES)   (FISHES SHARKS))   ((MEI CARS)   (MEI BLUE))) 

Figure 10.1: Explanation of a let-lora planned by the system. 

• the identification of the differences between descriptions (in the BNF-documentation domain) 
generated for introductory texts and advanced texts; 

• a validation of these claims by implementation of a system to generate such descriptions; 

• an empirical evaluation of the cognitive effectiveness of some of the heuristics developed in the 
thesis. 

10.2   Limitations of the Work 

There are some issues that we did not address in this work. One of these was the generation of 
descriptions for intermediate texts (intended for users between the introductory, naive users and the 
advanced, expert users): such descriptions (and the associated examples) are very hose' oriented, i.e., 
they illustrate different ways in which the concept could be made use of. For instance, in the case of 
a list, the typical descriptions seen are about how lists can be used to associate names and phone 
numbers, write functions, etc For the system to be able to generate descriptions of this sort, the 
representation of the concept would have to include its typical uses, along with examples of each use. 

Perhaps the greatest limitation of this thesis was this lack of a semantic representation for the 
constructs. This lack of semantic representation prevented us from generating not only intermediate 
texts, but also from generating meaningful descriptions of constructs such as loop and let forms. 
Such a representation was not explored in this thesis, which looked at the generation of descriptions 
and examples of only the syntactic form from an underlying representation that was generated almost 
automatically from the BNF representation. The issue of representing the semantics is, however, a 
problem of knowledge representation; given the appropriate knowledge of the semantics, the system 
would be able to take the knowledge into account and generate suitable descriptions.1 

Some of the problems this caused our system can be seen in the descriptions for the lt/t-f or» shown 
in Figure 10.1. The fact that the BNF form does not specify that the variables declared initially in the 
lst-xora are usually then used in the body of the l«t-for* causes the system to generate examples of 
let-forms that reflect this lack of knowledge. The last example also shows how this lack of semantic 
representation can cause the system to generate a syntactically correct, but semantically incorrect 
example where the unbound variable 'apples' is assigned its own undefined value. Such problems 

1One of the goals of EES was to design a knowledge representation scheme for precisely this reason: explainability. It has 
a sophisticated and complex representation for actions, operators, their effects, etc. In the current implementation, we have 
attempted to generate descriptions at the purely syntactic level to see how useful such descriptions may be without extensively 
representing each construct in the system. 
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are compounded in the case of a the description for a function-form (described in Appendix D), where 
the parameters, the keyword arguments and the optional arguments have different implications on 
their presence or absence which is not recognized in the BNF specification. To a lesser extent, the 
same problem affects the system in generating examples of a list: examples of lists in our corpus were 
of the form (BLUE SKY), (GREEI GRASS), or (3 FREICH FRIES). Since there is no representation of the 
relationship between each of the elements, the examples generated by the system do not emulate these 
naturally occuring examples. 

These shortcomings on the part of the current implementation can be overcome if the semantics of 
the constructs and the relationship between the different parts of these constructs are represented in 
the system. The semantics would need to be represented using a language that both the text planner 
and the example generator would be able to understand and reason with during the planning process. 
Such a representation could also be augmented with stereotypical uses of the constructs; this would 
allow the system to generate intermediate texts with examples. 

Another aspect that we did not address in depth in this thesis was the issue of generating descriptions 
of relations and processes; only concept descriptions were considered here. There are many similarities 
and some differences between descriptions generated about concepts and descriptions about relations 
and processes. Many of the issues raised earlier, such as determining the number of examples, 
determining critical and variable features, sequencing based on example complexity, integration with 
the textual description, etc. remain the same. However, the examples themselves generated for 
relations and processes are different from those of concepts. For instance, in the case of relations, 
the examples are not of the relation itself, but consist of n-tuples of instances, where n is the arity 
of the relation, and the instances are objects between which the relation holds. Thus, to generate 
such examples, the system must first generate examples for the different concepts that the relation 
exists between; such examples (for each concept) would need to follow all of the issues presented 
in this thesis, such as that of complexity, sequencing, prompts, etc. Each example for the relation 
would then need to be evaluated in terms of complexity, critical features, etc in terms of the relation 
definition, as well as the examples of the different constituent concepts. Similarly, 'process-examples' 
are also quite different from 'concept-examples' and 'relation-examples', because each process-example 
can require the presentation of a number of relation-examples, thus compounding the issues that need 
be considered. 

The thesis did not address any issues relating to the lexical choice or phrasing in this work. The 
thesis also did not touch the issues of either formatting or the presentation of graphical examples 
(pictures or diagrams). Each of these issues is a very complicated one, and is currently not considered 
by the system. 

Perhaps one of the most important limitations of this thesis was the application domain used: 
programming languages. While all of the issues described in Chapter 3 on the integration of examples 
with text remain valid in other domains as well, the heuristics on determining the relative complexity 
of an element and finding interesting negative examples will no longer be applicable. Also, the 
the differences between introductory and advanced texts will almost certainly be different in other 
domains. 

10.3   Future Work 

Future directions in which this work can be extended to include all of the current limitations.  In 
addition, there are other promising areas in which this work can be extended: 

• Critiquing: There are many similarities between explanation generation and critiquing: they 
both involve explaining aspects of the system to the user in natural language. However, there are 
also many differences between an explanation and a critique. For instance, while an explanation 

117 



can be blunt and to the point,' a critique must be phrased very differently, so that it plays up the 
positive aspects of the user's solution, and tactfully suggests better alternatives for the incorrect 
aspects of the solution. 

Presenting counter examples for the weak points (or gaps) in the solution could help convince 
the user more effectively than just a plain statement. The WEST system, with its pre-enumerated 
examples, was very successful in its critic's role in mathematics. The example generator would 
need to generate good counter-examples. 

• Knowledge Acquisition: An interesting extension of such a system would be in the application area 
of knowledge acquisition. Should the system's internal representation be faulty or incomplete, 
the explanations generated by the system will also be faulty or incomplete. Such gaps and 
inconsistencies are much more easily noticeable in the form of a wrong example than in a 
text. Given that the discourse structure represents the relationship of the example to the text 
and the internal representation, it should be possible for the system to modify the knowledge 
representation based on the user's input about a faulty example. There are at least three 
advantages of using explanations with examples over plain text explanations in knowledge 
acquisition: (i) given that there are multiple examples are presented for each feature, an 
indication of a faulty example can be much more precise (and helpful to the system) than finding 
that a fault with the feature in general; (it) no additional parsing capability on the part of the 
system is required, beyond a means of indicating a faulty example; (tit) should the system desire 
further elaborations, it can generate other, single featured examples for clarification. 

• Multi-media Generation: There are many similarities between examples and pictures as parts 
of an overall explanation: (i) they are both 'atomic,' i.e., when an example is constructed in 
response to a goal posted by the text planner, the example cannot be further sub-divided, just like 
a diagram cannot be split beyond a certain point; (it) co-references between the accompanying 
explanation and the example/picture can be done in different ways (for instance, by generating 
prompts in both cases); (Hi) the effect on the explanation of both the example and the picture must 
be explicitly considered by the system during the discourse planning process. Other similarities 
lie in the fact that certain features can be highlighted by presenting two identical pictures, with 
the feature to be highlighted being the only difference. Much of the reasoning (if sequence of 
pictures, what order of presentation, etc) in multi-media generation and example presentation is 
very related. 

• Presenting Analogies and Examples: There are many similarities in the presentation of analogies 
and examples in natural language explanations. The discourse structure can be used in both cases 
to partition the set of features to try and find suitable analogies for presentation.8 Analogies are 
more open-ended than examples, and there are many other issues that will need to be considered 
if they are to be incorporated. However, the framework would remain essentially the same. 

There are many interesting implications about the application that result from explicitly reasoning 
about the examples and the explanation. The areas described above represent some of the applications 
in which the results from this work could be applied and evaluated. 

2 An initial attempt to make use of analogies in explanation using this framework can be seen in (Mittal and Paris, 1992). 
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Appendix A 

Descriptions of a list in different books 

We present seven descriptions of a list in LISP from various books, and point out some of the positive 
and negative aspects of each of them. 

A.1   Description 1 

[ Discussion on the LISP language deleted ] 

Now we are ready to perform an operation in LISP. LISP accepts commands in a somewhat different 
form from most calculators. First, we begin with a parenthesis. Next, we specify the name of the 
operation we would like to perform. Then we give the arguments we would like to use. We finish off 
the whole thing with a final parenthesis. For example, if we want to compute "8 + 3" using LISP, we 
type the following: 

—> (+ 8 3) 
11 

[ Description of arithmetic operators and prefix notation deleted ] 

For example, if we want to multiply 8 by 3, we can type: 

—> (* 8 3) 
24 

LISP programmers sometimes call these commands s-expressions. 

[ Description of LISP'S suitability for symbolic computation deleted ] 

The symbolic expressions given above are also called lists. A list is a sequence of objects inside a 
pair of parentheses. 

From (Wilensky, 1986), page3. 

Analysis: This description of a list does not introduce the concept before presenting examples, It 
presents examples of arithmetic operations that happen to be lists, and then uses them to illustrate 
its definition of a list. The definition itself is not well integrated with the examples, since the two 
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examples occur on two (successive) pages, and the definition occurs two paragraphs after the second 
example. 

A.2   Description 2 

LISP data-structures are called 8-expressions. An s-expression is: 

1. a number, e.g., 15, written as an optional plus or minus sign, followed by one or more digits. 

2. a symbol, e.g., F00, written as a letter followed by zero or more letters or digits. 

3. a string, e.g., "This is a string", written as a double quote, followed by zero or more characters, 
followed by another double quote. 

4. a character, e.g., # 
q, written as a sharp sign, followed by another backslash, followed by a character. 

5. a list of s-expressions, e.g., (A B) or (IS TALL (FATHER BILL)), written as a left parenthesis, 
followed by zero or more s-expressions, followed by a right parenthesis. 

From (Chamiak et al., 1987), page 2. 

Analysis: This description of a list presents two examples of a list before the definition. Both the 
examples contain only symbols. The second example contains a sub-list, but that is not explained or 
mentioned in the explanation. 

A.3   Description 3 

S-Expressions (symbolic expressions): these are defined recursively as follows: 

• An atom is an S-Expression 

• If xi... xn are S-Expressions, then (ri... xn), called a list of x\... xn, is an S-Expression 

Examples: 

(OITOGEIT) 
(THIS IS A LIST) 
(* PI  (EIPT R 2)) 
(ALL Z  (IF (MAI X)   (MORTAL X))) 
O ((())) ((()())()) 

The empty list, () is equivalent to the special atom IIL. 

Analysis: This description of a list occurs as part of a description of an S-Expression. There are 
a number of examples following the definition. The first two examples illustrate the variability in 
number of data elements, and the others illustrate the variability in the type of data elements. The 
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examples do not illustrate one feature at a time (the third example illustrates that elements can be 
characters or lists, in addition to symbols, but there is no prompt). The fifth example contains three 
lists in one line, of an empty list and combinations of empty lists. The order of presentation of the 
examples is not in terms of complexity - the empty list should have been presented first 

A.4   Description 4 

The most common kind of S-Expression is the list. A definition of a list is: A left parenthesis followed 
by zero or more S-Expressions followed by a right parenthesis is a list. Of course lists, as well as 
atoms, are themselves S-expressions, so (A (B C) D) is a list as well as (A B C D). We refer to the 
S-expressions in a list as elements or members of the list. The most important list is the one with no 
members -- ( ), called the empty list or the null list. Some more lists are shown below: 

( ) 
(ATOM) 
(ALPHA BETA GAMMA) 
(5 IS A IUMBER 

"THIS IS A STRUG") 
((A LIST WITHII A LIST)) 
( ( ) ) 
((((( ))))) 
(Al (IITERESTIIG 

((LIST) STRUCTURE))) 

From (Shapiro, 1986), page 8. 

Analysis: This description presents two examples of relatively complex lists with the definition. 
After some elaboration, more examples of lists are presented. These examples are well structured and 
in order of increasing complexity. The third example introduces two new data types, and there is no 
prompt for the recursive case. 

A.5   Description 5 

A list looks like a sequence of objects, without commas between them, enclosed in parentheses: 

(tables chain laapi bookcases) 

The parentheses identify a unit, and that unit can be used for a variety of purposes. In fact, lists 
provide both aprimary way of storing data and the means for defining and calling functions. 

A list can have any number and kind of elements, including other lists. A list can be as deeply 
nested as you wish. A list can also have no elements, in which case it is represented as IIL, and may 
be written as "( )" or "IIL". These two forms are completely interchangeable. IIL is a special symbol, 
whose print name is "IIL" and whose value is always IIL. Table 2-2 contains simple lists made up of 
kinds of elements you have already seen. Lists can also combine different kinds of elements, as shown 
in Table 2-3. 

These lists can be considered ways to store data. For example, you might want to store your inventory 
as a list, or group together names and phone numbers in a list of lists. Appropriately constructed lists 
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can also be used to call functions in LISP. If you type any of the lists in Table 2-4 to LISP, you will get 
an appropriate response. 

[15 lines on using lists as functions deleted here] 

TABLE 2-2. Some possible lists: 
(12 3 45) 
(A B C D) 
(#\A »\B #\C «\D) 
(this is a list) 

a list of numbers 
a list of symbols 
a list of characters 
a list of symbols 

TABLE 2-3. More complex lists: 

(this is (also) a list) 
((12 eggs (large)) (1 bread (whole wheat)) 

(4 pizzas (frozen with anchovies))) 
("this is a string in a list* -53) 
((beth "555-5834") (pat "555-8098")) 

a list whose third element is a list 
a list of lists of numbers, symbols 

and lists 
a list of a string and a number 
a list containing two lists 

TABLE 2-4. Lists that can be used to call functions: 
(SQRT 2) 
(+2 3) 
(-654) 

a list whose first element is the name of a function 
a list whose first element is the name of a function 
a list whose first element is the name of a function 

From (Tatar, 1987), page 16. 

Analysis: The examples presented in this description are collected into groups of four (so even 
though the total number of examples is more than four (Clark's (1971) maxim), they are partitioned 
into smaller groups). They are ordered by complexity. They also contain prompts about the features 
being illustrated in the examples. Only the second example in the second group of more complex 
examples is out of sequence. In the third table, the examples are again ordered by complexity (the 
number of elements increases). This is a very good description of a list for naive users. Its only 
drawback is that the examples themselves are not well integrated within the text: however the text 
refers to them explicitly. ' 

A.6   Description 6 

When left and right parentheses surround something, we call the result a list, and speak of its elements 
In our very first example, the list   (+ 3.14 2.71) has three elements, +, 3.14, and 2.71. 

[Discussion on the prefix notation deleted] 

• Indivisible things like 27, 3.14 and +, as well as things like F00, B27 and HYPHEIATED-SYMBOLare 
called atoms. 

• Atoms like 27 and 3.14 are called numeric atoms, or numbers. 
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• Atoms like F00, B27, HYPHEIATED-SYMBOL, FIRST and + are called symbolic atoms, or symbols. 

• A list consists of a left parenthesis, followed by zero or more atoms or lists, followed by a right 
parenthesis. 

From (Winston and Horn, 1984), page 20. 

Analysis: This description does not order the examples in terms of complexity. There are very few 
examples and they do not illustrate many of the features of a list at all. 

A.7   Description 7 

A list always begins with a left parenthesis. Then come zero or more pieces of data (called the elements 
of a list) and a right parenthesis. Some examples of lists are: 

(AARDVARK) 
(RED YELLOW GREEI BLUE) 
(2 3 5 11 19) 
(3 FREICH FRIES) 

A list may contain other lists as elements. Given the three lists: 

(BLUE SKY)   (GREEI GRASS)   (BROVI EARTH) 

we can make a list by combining them all with a parentheses. 

((BLUE SKY)   (GREEI GRASS)   (BROVI EARTH)) 

From (Touretzky, 1984), page 35. 

Analysis: This description presents the definition, followed by examples illustrating the variable 
features of a list The recursive example is prefaced by additional explanation, and the examples are 
very well integrated with the text 
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Appendix B 

The Heuristics used in the System 

There are a number of heuristics used in the system to decide on different decisions. Many of these 
heuristics depend upon the text type being generated. Since the current implementation does not 
handle intermediate texts, the heuristics listed here deal only with the introductory and the advanced 

• when should an example be generated: 

- if the text is introductory, and the concept definition has been presented, generate examples 
to illustrate the definition F 

-■ if the text is advanced, examples should not be presented until the complete description of 
the concept has been presented textually 

• information in text, examples, and both text and examples: 

- if the text type is introductory: 

* the definition of the concept must be described textually 
* information on different types of elements in an concept can be conveyed using only 

GXcuDp IG S 

* information on recursive element types (such as lists of other lists) must be conveyed 
through both text and examples 

- if the text type is advanced: 

* all of the information should be communicated in the text 

* the syntactic information can be conveyed through examples as well (but there is no 
replacement of textual elaboration by the examples) 

• characteristics of the textual explanation: 

- if the text is introductory: 

* the textual explanation should be about the syntactic construction 
* anomalous cases should not be introduced in the explanation 

- If the text is advanced, the textual explanation must be complete with regard to all the 
information represented about the concept. 

• characteristics of the examples: 

-- if the text is introductory: 

* the examples should introduce one feature at a time 
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* the elements of the examples should be simple ones 
* anomalous examples should not be presented along with other positive examples 
* if an interesting negative example is available, the example should be presented, (along 

with an explanation of the differences between the negative example and the positive 
ones) 

* positive examples which differ in a variable feature should be presented to illustrate 
that variable feature 

* if a positive-negative pair of examples is presented to illustrate a critical feature, then 
the example pair should differ in only the critical feature 

~ if the text is advanced: 

* the examples should contain as many features as possible 
* the elements of the examples can be as complex as necessary to illustrate the range of 

variation 
* since the definition is complete, there should be no anomalous examples in this context). 

Negative examples are not presented 

• number of examples: 

~ if the text is introductory 

* the number of examples should be at least as many as the number of features to be 
introduced 

* if a recursive example needs to be presented, then there should be background examples 
that should be generated in addition for use in the recursive example 

- if the text is advanced, the number of examples is determined by the minimum number of 
examples that convey all the features. To illustrate variable features, at least two examples 
should be presented, in which all of the variable features should be varied 

• order of example presentation: examples should be presented ordered by complexity at both 
the feature level and the individual example level. 

~ ordering groups of examples illustrating a feature: groups of examples illustrating a partic- 
ular feature should be sequenced by the relative complexity ofthat feature 

- ordering examples within each feature group: 

* within a group, the examples should be ordered by the complexity of each example 
* between positive-negative pairs, the positive example should be presented before the 

negative example 
* if the negative example is an interesting negative example of another concept, then the 

positive negative pair should be presented after all the other regular (not anomalous) 
examples 

* anomalous examples should be presented after all other examples (including interesting 
negative examples). 

• position of the examples: 

- if the text type is introductory, the examples illustrating a feature in a concept should be 
presented as part of the elaboration on that feature (after the feature is mentioned). This 
will result in examples interspersed within the explanation 

~ if the text type is advanced, all examples should be presented after the complete explanation 

• when should prompts be generated: 

- prompts should be generated when the example to be presented has more features than 
required by the discourse goal that caused the example to be generated 
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prompts should be generated when the example occurs far away from the point that the 
concept the example illustrates was described 

prompts should be generated if the example is as a result of combining two communicative 
goals 

if the text type is advanced and the example is recursive, prompts should be generated to 
mention that fact 
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Appendix C 

The Text Plan Operators 

; This operator is applicable when the object to be described is a noun. It 
; retrieves the appropriate features based on the text type, and posts two 
; goals, one to list the features, and another to elaborate upon each of 
; them. This elaboartion can be either in text or using examples. 

(define-text-plan-operator 
:name describe-noun 

:effect (bei hearer (noun ?object)) 
:constraints (and 

(isa? ?object noun) 

(get-text-type-for-object ?text-type ?object) 

(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type) 
(not *use-examples-only*)) 

:nucleus (bei hearer (list-ftrs ?ftrs ?object)) 

:satellites (((foreach ?ftrs (elaboration ?ftrs 'object)) »optional*))) 

The following two operators are used to present sequences of examples for 
a particular object. The constraints retrieve all of the features based 
on the text type, and filter them into critical and variable 
features. These are then sorted by complexity and the operator posts 
goals to present examples for the critical and variable 

features. Depending upon which one (critical vs. variable) features have 
greater complexity, the goals are ordered appropriately. 
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(define-text-plan-operator 
:name describe-noun-examples 

:effect (bei hearer (noun ?object)) 
:constraints (and 

(isa? ?object noun) 

(get-text-type-for-object ?text-type ?object) 

(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type) 
(select-critical-ftrs ?crit-ftrs ?ftrs ?object) 

(enumerate-ftrs ?ex-crit-ftrs ?crit-ftrs ?object) 
(order-by-complexity ?eg-crit-ftrs ?ex-crit-ftrs) 
(select-variable-ftrs ?var-ftrs ?ftrs ?object) 

(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object) 

(order-by-complexity ?eg-var-ftrs ?ex-var-ftrs) 

(complexity-greater ?eg-var-ftrs ?eg-crit-ftrs) 
*use-examples-only*) 

:nucleus ((foreach ?eg-var-ftrs  (bei hearer (example-seq ?eg-var-ftrs ?object))) 

(foreach ?eg-crit-ftrs (bei hearer (example-pair ?eg-crit-ftrs ?object)))) 
:satellites (((background (present-eg-background ?object)) 
♦optional*))) 

(define-text-plan-operator 
:name describe-noun-examples 
:effect (bei hearer (noun ?object)) 
:constraints (and 

(isa? ?object noun) 

(get-text-type-for-object ?text-type ?object) 

(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type) 
(select-critical-ftrs ?crit-ftrs ?ftrs ?object) 

(enumerate-ftrs ?ex-crit-ftrs ?crit-ftrs ?object) 

(order-by-complexity ?eg-crit-ftrs ?ex-crit-ftrs) 
(select-variable-ftrs ?var-ftrs ?ftrs ?object) 

(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object) 

(order-by-complexity ?eg-var-ftrs ?ex-var-ftrs) 

(complexity-greater ?eg-crit-ftrs ?eg-var-ftrs) 
*us e-examples-only*) 

:nucleus ((foreach ?eg-crit-ftrs (bei hearer (example-pair ?eg-crit-ftr« ?object))) 

(foreach ?eg-var-ftrs (bei hearer (example-seq ?eg-var-ftn ?object)))) 
:satellites (((background (present-eg-background ?object)) »optional*))) 

;;; This operator generates the appropriate background string to introduce an 
;;; example. 

(define-text-plan-operator 

:name generate-initial-example-string 

:effect (background (present-eg-background ?object)) 
:constraints nil 

:nucleus (inform s hearer (example-background ?object)) 
:satellites nil 

) 
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;;; This operator is used to generate a pair of positive negative examples to 
;;; highlight a critical feature of an object. 

(define-text-plan-operator 

:name example-crit-ftr 

:effect (bei hearer (example-pair ?ftr ?object)) 
:constraints (not *use-text-only*) 

:nucleus ((bei hearer (example ?ftr ?object))) 

rsatellites (((sequence (bei hearer (neg-example ?ftr ?object)))))) 

;;; This operator generates examples to illustrate a variable feature of an 
;;; object 

(define-text-plan-operator 
:name example-var-ftr 

:effect (bei hearer (example-seq ?var-ftr ?object)) 

:constraints (enumerate-ftrs ?eg-ftrs ?var-ftr ?object) 

.•nucleus (foreach ?eg-ftrs (bei hearer (example ?var-ftr ?object))) 
:satellites nil) 

;;; This operator presents a negative example in which a prompt is not 
;;; required 

(define-text-plan-operator 

:name generate-negative-example 

:effect (sequence (bei hearer (neg-example ?ftr ?object))) 
:constraints (and (isa? ?object noun) 

(get-neg-example ?example ?ftr ?object) 

(not (prompt-required? ?example ?ftr ?object))) 
:nucleus (inform s hearer (present-neg-example ?example)) 
:satellites nil) 

;;; This operator presents a negative example in which a prompt is required 

(define-text-plan-operator 

:name generate-negative-example-w-prompt 

:effect (sequence (bei hearer (neg-example ?ftr ?object))) 
:constraints (and (isa? ?object noun) 

(get-neg-example ?example ?ftr ?object) 
(prompt-required? ?example ?ftr ?object)) 

:nucleus (inform s hearer (present-neg-example ?example)) 

rsatellites (((sequence (neg-example-prompt ?ftr ?object)) «optional*))) 
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;;; This operator generates a positive example in which a prompt is not 
;;; required 

(define-text-plan-operator 

:name generate-actual-example 

:effect (bei hearer (example ?ftr ?object)) 

:constraints (and (isa? ?object noun) 

(get-example ?example ?ftr ?object) 

(not (prompt-required? ?example ?ftr ?object))) 
:nucleus (inform s hearer (present-example ?example)) 
:satellites nil) 

;;; This operator generates a positive example in which a prompt is required 

(define-text-plan-operator 

:name generate-actual-example-w-prompt 
:effect (bei hearer (example ?ftr ?object)) 
:constraints (and (isa? ?object noun) 

(get-example ?example ?ftr ?object) 

(prompt-required? ?example ?ftr ?object)) 
:nucleus (inform s hearer (present-example ?example)) 

:satellites (((sequence (example-prompt ?ftr ?object)) »optional*))) 

;;; Generates prompts of the form: "An example of a list" 

(define-text-plan-operator 
:name example-prompt 

:effect (sequence (example-prompt ?ftr ?object)) 
:constraints (and (isa? ?object noun) 

(single-ftr? ?ftr)) 
:nucleus (inform s hearer (prompt ?object)) 
:satellites nil) 

;;; Generates prompts of the for«: "A list of atoms, numbers and strings" 

(define-text-plan-operator 

:name example-prompt-detailed 

:effect (sequence (example-prompt ?ftrs ?object)) 
:constraints (and (isa? ?object noun) 

(multiple-ftrs? ?ftrs)) 
:nucleus (inform s hearer (prompt ?object ?ftrs)) 
:satellites nil) 
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;;; Generates prompts ior negative examples: "This is not a list" 

(define-text-plan-operator 
:name neg-example-prompt 

:effect (sequence (neg-example-prompt ?ftr ?object)) 
:constraints (isa? ?object noun) 

:nucleus (inform s hearer (neg-prompt ?object)) 
:satellites nil 

) 

; Generates background text and examples for recursive examples. It checks 
; if the text being generated is introductory, and gets its sub-components, 
; filters the fixed features and after ordering them by complexity, posts 
; goals to introduce each of the background features. 

(define-text-plan-operator 
:name set-up-eg-background 

:effect (bei hearer (set-up-background-for-eg ?ftr ?eg-ftrs ?object)) 
:constraints (and (isa? ?object noun) 

(get-text-type-for-object ?text-type ?object) 
(introductory-text? ?text-type) 

(get-sub-components ?sub-ftrs ?ftr ?object) 

(filter-fixed-ftrs ?eg-ftrs ?sub-ftrs ?user-type) 
(order-by-complexity ?bkg-ftrs ?eg-ftrs)) 

:nucleus (foreach ?bkg-ftrs 

(bei hearer (example-of-ftr ?bkg-ftrs ?object))) 
:satellites nil) 

Generates an example if not a recursive or an anomalous case. The plan 
operator accesses the discourse structure to find out whether the example 
is anomalous in this context or not. 

(define-text-plan-operator 
:name ftr-eg-siaple-case 

:effect (bei hearer (example-of-ftr ?ftr ?object)) 
:constraints (and (not (recursive-ftr? ?ftr ?object)) 

(not (anomalous-ftr? ?ftr ?object))) 

:nucleus (inform s hearer (generate-eg-for-ftr ?ftr ?object)) 
:satellites nil) 
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;;; Generates an example in a complex case, by presenting the background 
;;; before presenting the actual example. 

(define-text-plan-operator 

:name ftr-eg-complex-case 

:effect (bei hearer (example-of-ftr ?ftr ?object)) 
:constraints (or 

(recursive-ftr? ?ftr ?object) 

(anomalous-ftr? ?ftr ?object)) 

:nucleus (inform s hearer (generate-eg-for-ftr ?ftr ?object)) 
rsatellites (((background (present-info ?ftr ?object))))) 

;;; Plan operator to handle the generation of multiple examples for multiple 
;;; features r 

(define-text-plan-operator 

:name ftr-eg-complex-case-many-ftr 

:effect (bei hearer (example-of-ftr ?ftr ?object)) 
:constraints (and 

(multiple-ftrs? ?ftr) 

(get-text-type-for-object ?text-type ?object) 
(introductory-text? ?text-type)) 

nucleus (foreach ?ftr (bei hearer (generate-eg-for-ftr ?ftr ?obiect))) 
rsatellites nil) 

;;; Plan operator to handle the generation of one example for multiple 
;;; features 

(define-text-plan-operator 

:name ftr-eg-complex-case-many-ftr 

:effect (bei hearer (example-of-ftr ?ftr ?object)) 
:constraints (and 

(multiple-ftrs? ?ftr) 

(get-text-type-for-object ?text-type ?object) 
(reference-text? ?text-type)) 

:nucleus (bei hearer (generate-eg-for-ftr ?ftr ?object)) 
rsatellites nil) 
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;;; Plan operator to handle the case of a single recursive feature 

(define-text-plan-operator 
:name ftr-eg-complex-case 

:effect (bei hearer (example-of-ftr ?ftr ?object)) 

:constraints (and (recursive-ftr? ?ftr ?object) 

(single-ftr? ?ftr)) 

:nucleus (bei hearer (generate-eg-for-rec-ftr ?ftr ?object)) 

:satellites (((background (present-rec-info ?ftr ?object))))) 

;;; Plan operator to handle the generation of background textual information 
;;; in the case of a recursive feature. 

(define-text-plan-operator 
:name background-information-recursive-case 

:effect (background (present-rec-info ?ftr ?object)) 
:constraints (recursive-ftr? ?ftr ?object) 

:nucleus (inform s hearer (recursive-case ?ftr ?object)) 
:satellites nil) 

;;; Plan operator to handle the construction of a complex example from other 
;;; simpler examples. 

(define-text-plan-operator 
:name ftr-eg-complex-case 

:effect (bei hearer (generate-eg-for-rec-ftr ?ftr ?object)) 

:constraints (and (simple-cases ?s-cases ?ftr ?object) 

(build-complex-eg ?complex-eg ?s-cases ?object)) 
:nucleus (inform s hearer (complex-eg ?complex-eg ?object)) 

:satellites (((background (present-egs ?s-cases ?object))))) 

;;; Plan operator to present the background examples for a recursive example 

(define-text-plan-operator 
:name background-egs-recursive 

:effect (background (present-egs ?s-cases ?object)) 
:constraints nil 

:nucleus (inform s hearer (simple-egs ?s-cases ?object)) 
:satellites nil) 
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;;; Plan operator to list multiple features of an object 

(deiine-text-plan-operator 

:name list-many-ieatures 

:eiiect (bei hearer (list-ftrs ?ftrs ?object)) 

:constraints (and (multiple-ftrs? ?ftrs) 

(get-first-itr ?f-ftr ?itrs) 

(get-rest-ftrs ?r-ftrs ?ftrs) 
(not *use-examples-only*)) 

:nucleus (bei hearer (list-ftrs ?f-ftr ?object)) 

rsatellites (((sequence ?r-ftrs ?object) «required*))) 

;;; Plan operator to list a single feature of an object 

(define-text-plan-operator 

:name list-single-feature 

:effect (bei hearer (list-ftrs ?ftr ?object)) 
:constraints (single-ftr? ?ftr) 

:nucleus (inform s hearer (ftr ?object ?ftr)) 
:satellites nil) 

;;; Plan operator to describe a feature as one in a list of features 

(define-text-plan-operator 

:name describe-sequence-of-features 
:effect (sequence ?ftrs ?object) 

:constraints (and (multiple-ftrs? ?ftrs) 

(get-first-ftr ?f-ftr ?ftrs) 

(get-rest-ftrs ?r-ftrs ?ftrs)) 
:nucleus (bei hearer (list-ftrs ?f-ftr ?object)) 

:satellites (((sequence ?r-ftrs ?object) »required*))) 

;;; Plan operator to describe the last of the features in a list of features 

(define-text-plan-operator 

:name describe-last-of-a-sequence-of-features 
:effect (sequence ?ftrs ?object) 

:constraints (single-ftr? ?ftrs) 

:nucleus (inform s hearer (ftr 'object ?ftrs)) 
:satellites nil) 
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;;; Plan operator to elaborate upon the attributes of an object 

(define-text-plan-operator 

:name elaborate-on-attributes 

:effect (elaboration ?ftrs ?object) 

:constraints (and (isa? ?object noun) 

(elaboratable-features? ?ftrs ?props) 
*use-text-only*) 

.■nucleus  (bei hearer (describe-attributes ?ftrs ?props)) 
:satellites nil) 

;;; Plan operator to elaborate on the variable features of an object 

(define-text-plan-operator 

:name elaborate-var-ftrs-using-eg 
:effect (elaboration ?property ?object) 
:constraints (and (isa? ?object noun) 

(get-variable-ftrs ?var-ftrs ?property ?object) 
(order-by-complexity ?variable-ftrs ?var-ftrs) 
*use-examples-and-text*) 

:nucleus  (foreach ?variable-ftrs 

(bei hearer (describe-a-ftr-using-eg ?variable-ftrs ?object))) 
:satellites (((background (for-eg ?property ?object)) *optional*))) 

;;; Elaborate upon the attributes in text 

(define-text-plan-operator 
:name attributes-text 

.•effect (bei hearer (describe-attributes ?object ?ftrs)) 
:constraints (and *use-text-only*) 

:nucleus (inform s hearer (attributes ?object ?ftrs)) 
.'satellites nil) 

;;; Plan operator to generate background text for the examples. 

(define-text-plan-operator 
:name background-example-t ext 

:effect (background (example-prompt ?object)) 
:constraints (and *use-examples-and-text*) 

:nucleus (inform s hearer (background-to-examples ?object)) 
.-satellites nil) 
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;;; Elaborate upon the attribute» using examples. 

(define-text-plan-operator 
:name attributes-examples 

:effect (bei hearer (describe-attributes ?object 'ftrs)) 
constraints (and *use-examples-and-text* 

(multiple-ftrs? ?ftrs)) 
••nucleus (foreach ?ftrs (bei hearer (example ?ftrs 'object))) 

:.at.lllt„ (((background (example-prompt^bject)) ^ttnal*))) 

(define-text-plan-operator 

:name describe-a-feature-using-an-eg 

:effect (bei hearer (describe-a-ftr-using-eg ?ftr 'obiect)) 
constraints (and (isa? Tobject noun) object)) 

(enumerate-ftrs ?eg-ftrs ?ftr Tobiect)) 
:nucleus  (foreach ?eg-ftrs °°ject;; 

satellites nil)  ^ ^^ <""*1—*-«* ^ftr. Tobj.ct))) 

;;; Describe a variable feature using examples 

(define-text-plan-operator 

:name describe-var-feature-using-eg 

:effect (bei hearer (describe-a-ftr-using-eg ?ftr 'obiect» 
constraints (and (isa? ?object noun) object)) 

(variable-ftr? ?ftr ?object) 

(instantiate-ftr-values ?ex»pl-ftr. ?ftr Tobject) 

nucleus  (foreach^°:g f
rt"r

bI"C0"PleXity ?^ft"  ?~P^»)> 

satellites nil)  ^ *""* t™*1*-**-***  ?•«-«» Tobj.ct))) 

;;; Describe a critical feature using examples 

(define-text-plan-operator 

:name describe-crit-feature-using-eg 

:effect (b.l hearer (describe-a-ftr-using-eg ?ftr *obi.ct» 
constraint, (and (i.a? Tobj.ct noun) object)) 

(critical-ftr? ?ftr ?object) 

(instantiate-ftr-values ?ex»pl-ftr. ?ftr Tobj.ct) 
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;;; Present the definition of a concept and optionally elaborate upon it. 

(define-text-plan-operator 
:name describe-object 

:effect (bei hearer (concept ?concept)) 

:constraints (and (isa? ?concept penman-kb::object)) 
rnucleus (bei hearer (definition ?concept)) 

:satellites (((elaboration ?concept) »optional*))) 

;;; This plan operator elaborates upon the attributes of a concept. 

(define-text-plan-operator 

:name elaboration-obj ect-attribute 

:effect (elaboration ?concept) 

:constraints  (attributes ?concept ?attributes) 

:nucleus (bei hearer (ref (attributes ?concept) ?attr)) 
:satellites nil) 

;;; This plan operator is used to describe the elements of a set. 

(define-text-plan-operator 
:name elaboration-object 

.•effect (elaboration ?concept) 

:constraints (set-elements ?concept ?elements) 
:nucleus (bei hearer (ref (individuals ?concept) ?elements)) 
:satellites nil) 

;;; This plan operator is used to describe a disjoint covering. 

(define-text-plan-operator 
:name elaboration-object 

:effect (elaboration ?concept) 

:constraints (covering-subtypes ?concept ?subtypes) 

:nucleus (bei hearer (ref (subtypes ?concept) ?subtypes)) 
:satellites nil) 

;;; This plan operator is used to describe the different part-subparts of a 
;;; concept. 

(define-text-plan-operator 
:name elaboration-object 

:effect (elaboration ?concept) 
:constraints (parts ?concept ?parts) 

rnucleus (bei hearer (ref (parts ?concept) ?parts)) 
:satellites nil) 
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; This plan operator is used to elaborate upon a disjoint covering of a 

; conept and orders them by the maxim oi end-weight before listing them and 
; elaborating upon them. 

(define-text-plan-operator 

:name elaboration-on-set-covering 

:effect (bei hearer (ref (individuals ?concept) ?elements)) 
:constraints (disjoint-covering? ?concept ?elements) 

:nucleus ((setq ?d-j (apply-maxim-of-end-weight ?elements)) 

(inform hearer (disjoint-covering ?concept ?d-j))) 
:satellites (((foreach ?d-j (bei hearer (concept ?d-j)))  «optional*))) 

(define-text-plan-operator 

:name describe-object-with-disjoint-covering 
:effect (bei hearer (concept ?concept)) 

:constraints (and (isa? ?concept penman-kb::object) 

(disjoint-covering ?concept ?d-c)) 
:nucleus (bei hearer (disjoint-covering ?concept ?d-c)) 
:satellites nil) 

This plan operator is used to describe a concept in terms of its 

superclass by presenting the superclass and then the differences. The 

constraints check to see that the superclass has not already been 
presented previously. 

(define-text-plan-operator 

:name define-superclass-w-diffs 

:effect (bei hearer (definition ?concept)) 

:constraints (and (all-superclass ?concept ?super-concepts) 

(appropriate ?super-concepts ?appropriate-super-concepts) 
(not (in-explanation-context 

(bei hearer (concept ?appropriate-super-concepts))))) 
mucleus (inform s hearer (class-ascription ?concept ?appropriate-super-concepts)) 

:satellite« (((setq ?diff (get-defining-attributes ?concept ?super-concepts))) 
((elaboration-obj ect-attribute 

(ref (defining-attributes-wrt-super ?concept) ?diff)) 
♦required-when-pres ent*))) 

if the superclass has been presented earlier, then this plan operator is 
selected. It does not describe the superclass again, but only the 
differences. 
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(define-text-plan-operator 

:name define-superclass-w-diffs 

:effect (bei hearer (definition ?concept)) 

:constraints (and (not (and (all-superclass ?concept ?super-concepts) 

(appropriate ?super-concepts ?appropriate-super-concepts) 
(in-explanation-context 

(bei hearer (concept ?appropriate-super-concepts))))) 
(differences ?diff ?concept ?super-concepts)) 

:nucleus (forall ?diff 
(bei hearer (ref (defining-attributes-srt-super ?concept) ?diff))) 

:satellites nil) 

;;; Plan Operator used to describe a value restriction using an example 

(define-text-plan-operator 

:name elaborate-object-value-restriction-attribute-with-example 
:effect (bei hearer (ref (defining-attributes ?concept) ?filler)) 

:constraints (and (value-restriction ?filler ?restriction-value)) 

:nucleus ((setq ?role-restricted (get-role-restricted ?filler)) 
(setq ?features-to-appear-in-eg 

(get-features ?restriction-value ?role-restricted ?concept 

♦user-model* »explanation-context*)) 
(setq ?features-only-in-eg 

(get-features-for-eg ?features-to-appear-in-eg ?role-restricted ?concept 

♦user-model* *explanation-context*)) 
(setq ?features-in-text (filter-out ?restriction-value ?features-only-in-eg)) 

(inform s hearer (?restriction-type ?role-restricted ?features-in-text))) 
:satellites (((elaboration-by-example ?features-to-appear-in-eg 

?role-restricted ?concept)))) 

(define-text-plan-operator 

:name generate-the-actual-example-multiple-critical-features 
:effect    (bei hearer (example-features ?ftrs ?concept ?role-restricted)) 
constraints (not (single-critical-ftr? ?ftrs)) 

:nucleus   (bei hearer (example ?ftrs ?concept ?role-restricted)) 

:satellites (((background (pos-example ?ftrs ?concept ?role-restricted)) *optional*))) 
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(define-text-plan-operator 

.-name g«nerate-the-actual-example-single-critical-feature 
:effect    (bei hearer (example-features ?ftrs ?concept ?role-restricted)) 
:constraint» (and (single-critical-ftr? ?ftrs) 

(interesting-neg-example? ?neg-example-concept 

?ftrs ?concept ?role-restricted) 
(get-differences ?neg-example-concept ?concept ?differences)) 

:nucleus   (bei hearer (example ?ftrs ?concept ?role-restricted)) 

satellites (((background (pos-example ?ftrs ?concept ?role-restricted)) «optional«) 

((contrast (example ?neg-example-concept ?concept ?role-restricted))) 
((evidence (differences ?concept ?neg-example-concept ?differences))))) 

(define-text-plan-operator 

:name contrast-with-neg-example 

:effect     (contrast (example ?ftrs ?concept ?role-restricted)) 

:constraints (get-neg-example ?neg-example ?ftrs ?concept ?role-restricted 

«explanation-context*) 
.•nucleus    (bei hearer (example ?neg-example ?ftrs ?concept ?role-restricted)) 
.•satellites nil) 

(define-text-plan-operator 

:name generate-example-prompt 

:effect    (elaborate-sith-prompt (example-prompt ?ftrs ?concept ?role-restricted)) 
:constraints (prompt? «explanation-context«) 

:nucleus    ((setq ?prompt-ftr (get-prompt-ftrs ?ftrs ?concept ?rol.-restricted)) 
(inform (prompt ?prompt-ftr))) 

:satellites nil) 

(define-text-plan-operator 

:name elaborate-object-number-restriction-attribute 

:effect (bei hearer (ref (defining-attributes-srt-super ?concept) ?filler)) 
:constraints (and (muiber-restriction? ?filler)) 

:nucleus ((setq ?restriction-type (get-restriction-type ?filler)) 

(setq ?number-restriction (get-number-restriction ?restriction-type ?filler)) 
(setq ?role-restricted (get-role-restricted ?filler)) 

(inform s hearer (?restriction-type ?number-restriction ?rol.-restricted))) 
:satellites nil) 
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;;; Plan Operator to elaborate upon an attribute 
(define-text-plan-operator 

mama elaborate 

:effect (elaboration-object-attribute ?concept ?diff) 
:constraints nil 

:nucleus (inform s hearer (attribute ?concept ?diff)) 
:satellites nil) 

;;; Plan operator to elaborate upon an object restriction 
(define-text-plan-operator 

:name elaborate-object-restriction-attribute 
:effect (elaboration-object-attribute ?object ?filler) 

:constraints (and (get-restriction-type restriction-type ?filler) 
(get-role-restricted role-restricted ?filler) 

(get-restriction-value restriction-value ?filler)) 
:nucleus (inform s hearer (?restriction-type ?role-restricted 

?restriction-value)) 
:satellites nil) 

(define-text-plan-operator 

:name elaborate-object-number-restriction-attribute 
:effect (elaboration-object-attribute ?object ?filler) 
:constraints (and 

(get-restriction-type restriction-type ?filler) 

(number-restriction? ?restriction-type ?filler) 
(get-number-restriction number-restriction ?filler) 

(get-role-restricted ?role-restricted ?filler)) 
:nucleus (inform s hearer (?restriction-type ?number-restriction 

?role-restricted)) 
:satellites nil) 

(define-text-plan-operator 

:name describe-defining-attributes 

:effect (elaboration-object-attribute (ref (defining-attributes ?concept) ?diff)) 
:constraints nil 

:nucleus (foreach ?diff 

(bei hearer (ref (defining-attributes ?concept) ?diff))) 
:satellites nil) 
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Appendix D 

Descriptions in the LISP domain planned by the system 

This appendix contains the concept descriptions that were planned bv the sv^t^n, TU«a« A 

sSiSSr1 at Td;rfrom frthe usp domain ^^^^Tz^^Tz descriptions presented here can be compared with naturally occurring texts on risp77JI£ ! T 
of the system's strengths and limitations. As we have sUted^X£Section 9 3?ZT ? 
implementation does not have the semantics of the construct repr^eXd tWstesul^n ™ inT?£ 
to generate useful examples where the semantics are required. Kver A^entlm^Z^1^ 
does reason explicitly about the effects of the example's on the bourse ÄeÄTjfS 
positioning of the examples, the order of presentation of the examples, etc. are^enLt actunt 

Most of the descriptions given here are relatively straightforward. These descriotions «m«w Wl, 
the range and the limitations of the current implementation. They do m^«S^USS^i 
the function forms, nor give examples of what these forms might retuTüX^x^ 

^äTZS? 
manua113: ?. ■"annotation'but was not" s°me ^^sstss^ 

The cons-form: 

2SKffi^^Ä2»££3-C0NS—* • - 
(COHS 'ORAIGES '(PIZZAS APPLES CARS)) 

(COIS '2 '(PIZZAS APPLES CARS)) 

(COIS '(AB) '(PIZZAS APPLES CARS)) 

(COKS '(A B) '(3 PIZZAS 5 APPLES)) 

The car-form: 

(CAR '(ORAIGES MOIKEYS CARS)) 

153 



(CAR   '(26156)) 

(CAR   '(ORAHGES 2  CARS  6)) 

(CAR   '((ORAHGES ORAHGES)   (CARS MONKEYS))) 

The cdr-form: 

The construct CDR consists of a left parenthesis followed by the word CAR followed by a list followed 
by a right parenthesis. For example: 

(CDR  '(FISHES CARS APPLES CARS)) 

(CDR   '(3  5  6)) 

(CDR   '(MEH 7 CARS 7)) 

(CDR  '((FISHES MEH)   (ORAHGES CARS))) 

The function-form: 

The function form consists of a left parenthesis followed by the word DEFUN followed by a function 
name which is a symbol followed by a parameter list which is a list of symbols. Then there is a body 
which consists of zero or more s-expressions, followed by a right parenthesis. For example: 

(DEFUH ORAHGES  (MEH CATS PIZZAS) 

FISHES) 

(DEFUH CARS  (ORAHGES FISHES) 

5) 

(DEFUH FISHES  (ORAHGES MEH) 

(MEH CARS CARS)) 

The parameter list can have optional and keyword parameters in it. Optional parameters are specified 
by the word &OPTIONAL. For example: 

(DEFUH FISHES (40PTI0HAL CARS) 
MEI) 

(DEFUH CARS  (»OPTIOHAL MEH PLAHES CARS FISHES) 
PLAHES) 

Keyword parameters are specified by the word &KEY. For example: 

(DEFUH FISHES (MCEY PLAHES) 
CARS) 

(DEFUH MOHKEYS  (ftKEY MEH CARS ORAHGES APPLES) 
PLAHES) 

The parameter list can have both optional and keyword parameters. For example: 
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(DEFUI APPLES (»OPTIONAL ORAHGES »KEY GRAPES) 
MOIKEYS) 

The prog-form: 

The prog-form consists of a left parenthesis followed by the word PROG followed by a list of variables 
There are some forms after the list of variables. Finally there is a right parenthesis. For example: 

(prog  (oranges) iishes aardvarks) 
(prog  (men blue)  2 3 4 5) 
(prog (cars women apples) oranges 6 apples 7) 
(prog (yellow fishes) (iishes men planes)) 

Constants: 

A constant-form consists of either T, NIL, a number, or a quoted s-expression. For example: 

T 
MIL 
5 
'(fishes men) 
'oranges 

However, the following example is not a constant, but a variable because there is no quote: 

oranges 

The difference between a variable and a constant is that the value of a constant cannot be changed. 

The append-form: 

The append form consists of a left-parenthesis followed by the word APPEND followed by two lists 
Finally there is a right parenthesis. For example: 

(append  '(oranges fishes)   '(cars bananas)) 
(append  '(1357)   '(cars planes)) 
(append  '(oranges 3 men 5)   '(fishes men cars)) 
(append  '((cars men)   (pizzas women))   '(aardvarks)) 

The reduce-form: 
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The reduce-form consists of a left parenthesis followed by a function name followed by a list. Finally 
there is a right parenthesis. The function name specifies a function that has two arguments. For 
example: 

(reduce 'cons   '(oranges pizzas men)) 
(reduce 'plus   '(4 S 9 5 6)) 
(reduce 'times   '(fishes 4 bicycles 9)) 
(reduce 'append  '(cars planes  (aardvarks aardvarks))) 

(The last two examples assume certain things that need to be true: the variables fishes and bicycles 
need to have numeric values; the variables cars and planes need to have values that are lists for the 
example to work.) 

The subset-form: 

The subset-form consists of a left parenthesis followed by the word SUBSET followed by a unary 
predicate. This is followed by a list of elements and finally there is a right parenthesis. For example: 

(SUBSET  'ODDP  '(men cars planes)) 
(SUBSET  'KUMBERP  '(fishes 2 oranges 7)) 
(SUBSET  'LISTP     '((FISHES BLUE)   (RED MEN))) 

The let-form: 

The let-form consists of a left parenthesis followed by the word LET followed by a list of local variables 
followed by a number of forms. Finally, there is a right parenthesis. A local variable is specified as a 
list of the variable name which is a symbol and an initial value. Examples of let-forms are: 

(LET  ((ORANGES FISHES)) NEI) 
(LET ((BICYCLES 3)   (PIZZAS  *MEI)) 2 9 CARS) 
(LET ((YELLOW SKY)   (FISHES BLUE))   (MEI AARDVARKS)) 
(LET ((APPLES APPLES)   (FISHES SHARKS))   ((MEM CARS)   (MEI BLUE))) 

(The last example illustrates the necessity of representing some of the semantics in addition to the 
syntax: it has an erroneous declaration of the local variable APPLES, since the variable will not have an 
initial value, the assignment will give an error when executed.) 

The setf-form: 

The SETF-form consists of a list of three components: the keyword SETF, followed by a variable 
name, followed by a value. The variable name is a symbol; the value can be an expression. Examples 
ofSETF-FORMsare: 
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(SETF X23 3.1415) ; X23 is assigned the value 3.1415 
(SETF BBB (ABC)) ; BBB is assigned the value of the expression (A B C) 
(SETF BAD ORAIGES) ; BAD is assigned the value of ORAIGES 

However, the following is not a valid SETF-form because it cannot be used to change the value of a 
constant or a number: 

(SETF 123 ORANGES) ; invalid example, because 123 is not a variable 
(SETF ABC 908) ; invalid example if ABC is a constant 

The assoc-fonn: 

The ASSOC-form is written as a list with three components: the keyword ASSOC, followed by a 
constant or a variable, followed by a list or a variable representing a list. For example: 

(ASSOC   'B   '(ORANGES PIZZAS)) ; constant and a list 
(ASSOC ABC   '(ORANGES PIZZAS))       ; variable and a list 
(ASSOC ABC XYZ) ; two variables 
(ASSOC ABC  'XYZ) ; invalid example because the second 

; parameter is not a list 

Floating Point Numbers: 

Floating point numbers are written as: (1) decimal numbers (2) scientific notation. Decimal numbers 
consist of a sequence of digits followed by a decimal point followed by some more digits. Scientific 
notation consists of an optional sign, followed by some digits, optionally followed a decimal point and 
more digits, followed by an exponent Examples of floating point numbers are- 

1,0 >' a floating point number in decimal notation 
0E0 >' floating point zero in scientific notation 
",1 »" a negative floating point number 
+-1 ; » positive floating point number 
0-0 J a floating point number in decimal notation 
°' I 10T » floating point number, but an IITEGER 

The with-open-file form: 

The WITH-OPEN-FILE form consists of a list with three components: the keyword WITH-OPEN- 

e™s1onVornexSe    * ""** "^ * ^^ "* °^0^ dedarations> ™* *•*. - 
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(with-open-file (abc "/home/mittal/lisp-init.lisp"  :direction  :input)  nil) 
(with-open-file  (xyz  "/home/paris/.login"   .-direction   :output 

:if-exists  :supersede)   (ab c)) 
(with-open-file (xyz "/home/mittal/ees.lisp")   'DONE) 

However, the following is not a valid WITH-OPEN-FILE form because instead of a variable, it has a 
number as a parameter. 

(with-open-iile (453 "/home/mittal/ees.lisp")   'DONE) 

The defstruct-form: 
The DEFSTRUCT form consists of a list as follows: the first element of the list is the keyword 

DEFSTRUCT, followed by a NAME-EXPRESSION. This can be followed by an optional documentation 
string. The remaining elements consist of SLOT-DESCRIPTORS. The NAME-EXPRESSION can 
be either a symbol, or a list consisting of a name and optional keyword arguments. Each SLOT- 
DESCRIPTOR consists of a slot-name, optionally followed by default values. For example: 

(defstruct ABC XYZ)   ;   a DEFSTRUCT form with name ABC and one slot XYZ 
(defstruct BGF "Oranges Fishes" MMM GGG)   ;  a DEFSTRUCT form with name 

;  BGF,  two slots and a 
;  documentation string 

(defstruct  (GF56)  GGG XYZ)   ;  a defstruct form with name GF56 and two 
;   slots 

(defstruct  (VIB  :cone-name nil)  YYY)   ;   a DEFSTRUCT form with the keyword 
;   argument  :C0NC-MAME defined 

(defstruct  (GAD  predicate "CHECK"   constructor "HHH") LKJ)   ;  a DEFSTRUCT 
;  form with two keyword arguments defined 

The defconstant-form: 

The DEFCONSTANT form consists of a list with the keyword DEFCONSTANT, followed by a 
variable-name, followed by a lisp expression and finally followed by an optional documentation string. 
For example: 

(defconstant ABC 453) 
(defconstant R2D2  '(A 6 7 B)) 
(defconstant XYZ 567 "this is a string") 

However, the following expression would be an invalid example of a DEFCONSTANT-form: 

(defconstant 456     '(ab c)) 

because 456 is not a valid variable name. Another invalid example of a DEFCONSTANT-form is: 
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(defconstant  (car  '(a b c))  711) 

This is because "(car >(a b c))" is not a variable name. Thus, a DEFCONSTANT-form differs from a 
SETF-form in that the second element of the list must be a variable name in a DEFCONSTS-fom 

(Actually a SETF-form and DEFCONSTANT-form differ in another way as well: a SETF-form cannot 
have a documentation string; the system did not detect it here because it tried to dasIfyamZZd 
version of the last example and was successful with the SETF-form.) modified 

The dotimes-form: 

The DOTIMES-form consists of a list with the following components- the kevword DOTIMITQ 
followed by the ITERATION-LIST, followed by PROON-BLOCK* The ÄScS 
vamble name and a lisp expression, which is not a quoted constant. » For example: 

(dotimes  (abc 4)  <some lisp code here>) 
(dotimes  (r2d2  (abed))  <some lisp code here>) 
(dotimes  (b xyz)  <some lisp code here>) 
(dotimes  (b   -xyz)  <some lisp code here»   ; invalid example,  because 

; the second parameter in the 
; ITERATIOI-LIST is a 
; quoted constant 

The endp-form: 

varfablfFDor e'ZpTe-81^ ** ** ** ^ COmp0nents: *• k<*™d ENDP followed by a list or a 

(EMDP    (ABC)) ;   example of EIDP with a list 
(EIDP    XYZ) ;  EIDP and a variable name 

SP    «?? :   lnValid exaaPle-  «iac«  '«C is not a list 
(EMDP    MIL) ;  valid example,  «ince IIL is a list 
(EIDP    (AB)   (CD))       ;  invalid example because number of argument, must 

;  be one 

PROGÄT C0n8tmCt8' *■ ** 0fÜXe C°de ta not essential ~ «* V— —«y indicate, these »gmenU of code , 

be SraSdÄ^Sr D0TmESM ™^* ^e r..uH-,or., » optional ^ of ^ 8pecification ^ ^ 
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