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Abstract

Good documentation is critical for user acceptance of any system. Advances in areas such as knowledge-
based systems, text generation and multi-media have now made it possible to investigate the automatic
generation of documentation from the underlying knowledge bases. Empirical studies have shown that
examples can greatly increase the effectiveness of system documentation. However, studies also show
that badly integrated text and examples can be actually detrimental compared to using either text or
examples alone. It is thus clear that in order to provide useful documentation automatically, a system
must be capable of providing well-integrated examples to illustrate its points.

This thesis builds upon previous work in natural language generation, example generation, cognitive
and educational psychology to identify relevant issues in the generation of coherent descriptions that
integrate text and examples. We identify how text and examples co-constrain each other and show
that a system must consider example generation as an integral part of the generation process. We
describe an implementation, and present an initial evaluation of the system’s effectiveness.




Chapter1

Introduction

Good documentation is critical for user acceptance of any system. Sophisticated on-line help facilities -
based on hypertext or similar retrieval methods are becoming increasingly common. Advances in areas

such as knowledge-based systems, natural language generation (NLG) and multi-media now make it

possible to investigate the automatic generation of documentation from the underlying knowledge

bases. This has several important benefits: it is easily accessible; it avoids frequent problems of

inconsistency, as the information presented is obtained directly from the underlying representation;

and not the least, it can take the communication context, such as the user, into account.

This thesis makes the following claims: examples are necessary in effective explanations; examples
cannot just be presented as an after thought, but must be well integrated with the accompanying
explanation; a text planning mechanism that plans text in terms of communicative goals can be used
to generate explanations that integrate text and examples effectively if the examples are treated as an
integral part of the planning process and their effect on the rest of the discourse is taken into account.
In this thesis, we describe the generation of descriptions of the syntax/surface structure for constructs
in programming languages. Even though the underlying semantics are not taken into account, the
descriptions illustrate important ways in which the text and examples constrain each other.

This thesis brings together results from cognitive psychology and education on effective presentation
of examples, as well as work on computational generation of examples from intelligent tutoring systems.
It also takes into account work in machine learning on computational learning from examples, and
a characterization of good examples for this purpose. We present our own analysis of a corpus of
instructional and explanatory texts to identify the different ways in which examples interact with
the surrounding text. We analyse relevant issues and derive a set of heuristics to generate effective
descriptions that integrate both text and examples. We then describe an implemented text generation
system that plans presentations of integrated text and examp!. : by taking these factors into account.

The rest of this chapter presents the motivation for the work: (i) the need for documentation
in the understanding and user acceptance of complex systems; (ii) the use of examples to enhance
comprehension, and their use in documentation, and (iii) the interaction between the generation of
text and examples in a description, as each constrains the other in several ways, and ignoring these
interactions and constraints can lead to reduced understandability.

After this background, this chapter concludes by briefly outlining the contributions of the work, and
the organization of the thesis in terms of the chapters that follow.




11 The Need for Documentation

Documentation of programs is one of the most vital and the
most abused aspects of data processing.

--P. W. Williams (1977)
U.S. Comptroller-General

Good documentation is a critical factor in user acceptance of any complex system. The following
excerpt from TIME magazine illustrates the importance of good documentation:

Coleco lost $35 million in the fourth quarter last year partly because people flocked to return the initial
version of its Adam computer which the company offered for $600. Coleco blamed much of the consumer
dissatisfaction on ‘manuals which did not offer the first-time user adequate assistance’ ... Coleco has
reintroduced the Adam complete with a new instruction manual.

(Greenwald, 1984)

There are numerous books and articles on writing good documentation, e.g., (Duin, 1990; Beard and
Calamars, 1983; Bell and Evans, 1989).! These deal with issues ranging from the effect of using
different typefaces (Tinker, 1963) and the use of everyday metaphors (Norman, 1988; Doheny-Farina,
1988; Hastings and King, 1986), to the effect of illustrations on user comprehension (Willows and
Houghton, 1987a; Willows and Houghton, 1987b). It is notable that in spite of differences in their
approach and ideology, all these books either stress the need for examples, or make extensive use of
examples themselves to convey their point.

Maintaining consistency between the system and the documentation is an important desiderata. As
complex systems evolve over time, in response to bug reports, maintenance fixes, and user requests,
often the associated documentation fails to keep up with these changes. Such a situation can lead to
documentation that is not useful, and worse, even wrong. Documentation generated by the system
from the underlying representation of the system can help mitigate this problem of inconsistency
between the documentation and the system’s representation.

LL1 Documentation: The Need for Examples

Examples play an important role in documentation. Consider the two descriptions in Fig. 1.1 for
instance. The first description is taken from a book on Al programming (Charniak et al., 1987).2
The textual explanation for the function is complete (in that it does not omit any facts); however, the
second description, with appropriate examples added by us, is far more understandable.® In this case,
the examples highlight points that may not be immediately obvious from the explanation, such as the
concatenation of the print name and the number in the output, the fact that the print-name can be
different from the actual output, etc.

10ther references to writing documentation are (Brockmann, 1990; Brockmann, 1986; Chinell, 1990; Crandall, 1987;
Doheny-Farina, 1988; Duffy et al., 1983; Hastings and King, 1986; Horton, 1991; Maynard, 1982, Morgan, 1980; Pakin and
Associates, Inc., 1984; Simpson and Casey, 1988; Stuart, 1984; Yoder, 1986; Tinker, 1963; Willows and Houghton, 1987a;
Willows and Houghton, 1987b; Norman, 1988).

2The intial sentence enclosed in brackets does not explicitly appear in the book, but the description occurs with other function
descriptions, and a generic statement such as this, about all the functions, appears before the group.

3In an evaluation with about 15 users, we found that all of the users found the second description easier to understand
compared to the first one.




(GENSYM &optional (PREFIX "G"))

[GENSYH is a function call with an optional argument called PREFIX. It] Returns a new,
uninterned symbol, whose print name begins with PREFIX and ends with a number; the
number is incremented with each call to GEESYM and the default value of PREFIX is reset to
whatever is passed as an argument to GENSYM.

From (Charniak et al., 1987), page 404.

(GENSYM &optional (PREFIX "G"))
GENSYN is a function call with an optional argument called PREFIX. For example:

(GENSYNM)
(GENSYM "ABC")

The function returns a new, uninterned symbol, whose print name begins with PREFIX and
ends with a number. For example:

(GENSYM "ABC") ==> #:ABC26
The number is incremented with each call to GEFSYM.

(GENSYM "ABC") ==> #:ABC27
(GENSYM "ABC") ==> #:ABC28

The default value of PREFIX is reset to whatever string is passed as an argument to GENSYM.

(GENSYM “USC") =
(GENSYN) =

Figure 1.1: Descriptions with, and without, examples.

A number of studies have shown the need for examples: a fifteen year survey on documentation
carried out on behalf of Xerox, Control Data Corporation and Scientific Data Systems found that the
lack of adequate numbers of examples was mentioned by users as one of the three most important
user complaints (Maynard, 1982).# Almost identical results were reported on military documentation
by Beard and Calamars (1983). In yet another study, LeFevre and Dixon (1986) found that in 76% of
the cases, users looking at documentation consistently skipped over the explanation initially, going
directly to the accompanying examples, returning to the explanations only if the examples could not be
understood. These studies show that users appreciate examples and the quality of the documentation
or explanation is often judged to be adversely affected by their absence.

4The other two were: (i) that manuals were software oriented rather than function oriented, and (i+) that they did not have
enough reference aids.




LL2 Documentation: The Effectiveness of Examples

Empirical studies of effectiveness of examples for comprehension have demonstrated significant
differences between explanations with and without examples: a study by Reder, Chamey and
Morgan (1986) found that the most effective manuals for instructing students on the use of 8 personal
computer were those which contained examples; in one case, when the examples were replaced by
‘equivalent’ textual descriptions (in an IBM PC manual), user comprehension fell to 48% of the
previous case when the manual used examples in communication. The speed of learning was seen to
increase significantly when examples were included, e.g., (Charney et al., 1988; Reder et al., 1986;
Doheny-Farina, 1988). Books on writing or generating good documentation all stress the need for
effective, well structured examples, e.g., (Bell and Evans, 1989; Chinell, 1990; Pakin and Associates,
Inc., 1984; Simpson and Casey, 1988; Stuart, 1984; Hastings and King, 1986; Horton, 1991).

The use of examples in the comprehension of complex concepts in programming and algebra was
studied by a number of researchers, e.g., (Pirolli, 1991; Pirolli and Anderson, 1985; Woolf, 1991;
Woolf and McDonald, 1984a; Zhu and Simon, 1987). These studies reflect the importance of examples
as an aid to comprehension in educational and instructional contexts. These studies found a need for
effective examples in documentation. Most authors writing documentation for tutorial texts in fact
recognize this need for examples. Similarly, a system designed to generate documentation on demand
from the underlying representation should incorporate examples within the descriptions.

L2 Examples and the Textual Description

Examples are an integral part of any instructional or explanatory process. They help clarify ambiguous
definitions and illustrate abstract descriptions. People often use examples to illustrate their point;
most text-books include examples in explanations or descriptions of complex concepts. In particular,
as we saw previously, examples are essential in certain text types, such as instruction manuals and
user documentation. Thus, for an explanatory system to be effective, it must be capable of presenting
examples to make its point.

Examples alone, however, are not enough. A number of studies have shown that subjects cannot
generalize well from examples alone. They have difficulties solving problems that are minor variants
of problems thay have seen as examples alone, e.g., (Reed et al., 1985; Reed et al., 1974; Gick and
Holyoak, 1980; Sweller and Cooper, 1985).5 Examples cannot be effective without explanatory text,
nor can an explanation be effective without accompanying examples.

Matters are not as simple as just presenting both the explanation and the examples. Sweller and his
colleagues showed that examples that were not well integrated with the text could make matters worse
for the user (Chandler and Sweller, 1991; Sweller and Cooper, 1985; Ward and Sweller, 1990). In the
domain of geometry, for instance, they showed how the placement (next to the text, same page, separate
page, etc.) of the diagrams that the proof dealt with could substantially affect user comprehension, by
distracting the user from the salient points in the description, and cause a deterioration in learning. It
is also important that the textual descriptions and the examples complement each other: Chi and her
colleagues (1989) showed that naive users understood examples very differently from advanced users.
Explanations accompanying examples that did not meet user requirements were not likely to help in
understanding the examples, and might even have a negative effect in comprehension. It is therefore
important to ensure that both the text and the examples are presented as part of a well integrated,

5Some of these negative results can be attributed to the nature of the examples presented to the users — as shown by
Pirolli (1991): structural examples — examples that showed the form of a function -~ were far more useful to naive students
being taught recursion than the process oriented examples that explained how recursion actually worked; consequently tests in
which zroceu oriented examples were presented to introductory users resulted in disappointing results on the effectiveness of
examples.



An assignment is a construct that tells TEX to assign a value to a register, to an internal
parameter, to an entry in an internal table, or to a control sequence. Some examples of
assignments are:

\tolerance = 2000
\advance\count12 by 17
\lineskip4pt plus 2pt
\everycr = {\hskip 3pt relax}
\catcode\’€ = 11

\let\grat = \par

\font\myfont cmbxi2

From (Abrahams et al., 1990), page 49.

Figure 1.2: Example of textual elision due to examples.

coherent description that complement each other by taking their interactions, mutual constraints, and
the context into account.

Examples depend upon the accompanying text (Feldman, 1972), and in turn, affect the actual textual
explanation produced (Klausmeier and Feldman, 1975): the information content of the examples and
the terms used in conveying that information are dependent on the accompanying description, while
the presence of the examples helps the explanation to refer to features and properties of the example
to better convey its point. In some cases, the introduction of examples can result in additional textual
descriptions being presented; in other cases, some portion of the original textual explanation may be
elided. Consider the description in Figure 1.2. It describes the assignment operation in TgX. The
examples illustrate a number of things which are not mentioned explicitly in the description because
they are illustrated in the examples. Some of these are: (i) the variable being assigned a value appears
on the left and the value on the right; (i) objects being assigned values can be either global variables,
local variables, fonts, or control characters; (iii) values being assigned can be either numbers, variables
or expressions to be evaluated; (iv) the variable and the value can be separated by “=” or space or
nothing at all (the “=” and space are optional). It is thus clear that the process of incorporating
examples is inextricably linked to the process that generates the text.

There is a large body of relevant experimental work on the interaction between examples and their
context in education. Researchers have studied the cognitive effects of varying different parameters in
the presentation of educational materials in the classroom, e.g., (Bruner, 1966; Carnine and Becker,
1982; Chi et al., 1989).% Much of this work dealt with the construction of conceptual models, studies of
attention spans, and the development of effective teaching techniques. None of the studies reported
had a computational perspective. However, there are important insights to be drawn from this work.
The results on the cognitive effects of presenting contrasting positive and negative examples, the need
to present simple examples before complex ones, and the need to vary the examples based on the user
corroborate our analysis of the corpus used. The fact that these studies were conducted in different
domains (biology, algebra, geometry, etc.) implies that such results are not applicable just to a narrow
application (such as programming languages), but are widely applicable.

€Additional references are (Clark, 1971; Engelmann and Carnine, 1982; Feldman, 1972; Feldman and Klausmeier, 1974;
Frederiksen, 1984; Gillingham, 1988; Houtz et al., 1973; Klausmeier, 1976; Klausmeier and Feldman, 1975; Klausmeier et al.,
1974; MacLachlan, 1986; Merrill and Tennyson, 1978; Moore, 1986; Michener, 1978; Rissland, 1978; Tennyson and Park, 1980;
Tennyson et al., 1975; Tennyson and Tennyson, 1975; Tennyson et al., 1972).
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Figure 1.3: A block diagram of the overall system.

L3 The System and the Application Domain

We have seen above that good documentation is an important aspect in user acceptance of a system,
that examples are important for good documentation, and that examples cannot just be added to the
text because they strongly interact with the accompanying description. To test the validity of the
hypotheses that resulted from our corpus analysis, we chose to implement a system in the domain of
automatic generation of system documentation. There are many reasons for this choice: (1) automatic
documentation is an important application in which to investigate these issues because examples are
crucial in documentation and documentation is a critical factor in user acceptance of a system; (i1) there
is a large body of work on how documentation should be written; (iii) a lot of actual material available
for our corpus analysis, including numerous examples of different text types (such as introductory and
advanced); and (iv) we could implement our results within a large software system.

A block diagram of the system is shown in Figure 1.3. The system consists of a text planner, an
example generator, a grammar interface and a sentence generator. The system takes a high level
communicative goal, such as ‘describe the concept list” and can generate a description of the type
shown in Figure 1.4. The system can also be used to generate advanced, reference manual type
descriptions of concepts.® Reference texts differ from introductory texts in many ways, and these can
be handled by the system as well. The system is part of the larger framework in the Explainable
Expert Systems Project (EES) (Neches et al., 1985; Swartout ef al., 1992; Swartout and Smoliar, 1987),
and builds upon previous work in text planning and explanation.

"The formal notation for specifying such goals will be described in Chapter 5, where the system is discussed in greater detail.

$Introductory and reference texts are the two text types that the system can currently generate texts for. Intermediate texts,
which are discussed for the sake of completeness cannot be handled by the system as yet, because the underlying semantics of
the constructs in our domain are not yet represented.



Alist always begins with a left parenthesis. Then come zero or more pieces of data (called the elements
of a list) and a right parenthesis. Some examples of lists are:

(MONKEYS)

(RED PIZZA CARS PLANES)
(235 11 19)

(6 BLUE 9 FISHES)

A list may contain other lists as elements. Given the three lists:
(BLUE ORANGE) (AARDVARKS ELEPHANTS) (FISHES APPLES)

we can make a list by combining them all with a parentheses.
((BLUE ORANGE) (AARDVARKS ELEPHANTS) (FISEES APPLES))

Figure 1.4: A description of the concept list using examples.

L4 Contributions of the thesis

This thesis is an attempt to synthesize related work on descriptions and examples in psychology,
education, the computational generation of examples and natural language generation, together with
the results of our corpus analysis. The contributions of this thesis are:

e an analysis of both the interactions between text and examples, and their mutual constraints by
corpus analysis (for instance the fact that examples can cause both deletion and addition of the
text around them); :

o the identification and analysis of the different features in the examples that are important in the
context of generation (the position of the examples, the type and amount of information in the
examples, the necessity for prompts in some cases, etc.);

e an improved categorization of example types that takes into account the context of the examples
and is computationally implementable;

o the identification of' the differences between descriptions (in the BNF-documentation domain)
generated for introductory texts and advanced texts;

These claims have been validated by implementation of a text planning system which generates
explanations using the heuristics identified in this thesis. The resulting texts not only closely matched
with the ‘typical’ texts in our corpus, but were in some cases better based on an empirical evaluation
of the cognitive effectiveness of our descriptions.

L5 Organization of the thesis

The thesis is organized as follows:

Chapters 2--4 present the background material, and a discussion of the major issues in the
presentation of examples. Chapter 2 presents the background and related work in the use of examples:
as aids in intelligent tutoring systems (ITS), work in machine learning on the characteristics of good
examples, and on the development of some instructional models that emphasize the use of examples.
Chapter 3 discusses the issues that were identified by us as being important in the integration from
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our corpus analysis. Chapter 4 presents a categorization of example types, necessary in building a
computational model.

Chapter 5 presents an overview of an implemented system used in generating descriptions that
integrate text and examples. It describes the text planning framework, and the representation of
text planning knowledge in the constraints of the plan operators. A brief description of the grammar
representation is given, followed by detailed descriptions of how the different examples are generated.
This is essential as background for the chapters that follow.

Chapters 6 and 7 illustrate how the system works by describing the generation of different scenarios.
These scenarios illustrate certain aspects of the interaction between text and examples, such as textual
elision and addition, the effect of negative examples, etc.

Chapter 8 discusses the effect of the text type on the descriptions. The text type significantly affects
the explanations produced, both in terms of the content of the text and examples, as well as in the
resulting positions of the examples. A description of a 1ist is generated for two text types (introductory
and advanced) to highlight some of these differences.

Chapter 9 presents results from empirical studies on the effectiveness of our heuristics. Portions of
the descriptions and the questions asked of the subjects are presented here. In all cases, the issues
identified in this thesis were found to make noticeable differences in the comprehensibility of the
descriptions.

Finally, Chapter 10 concludes with a look at the research contributions and possible directions for
future work.




Chapter 2

Related Work

This chapter reviews some of the previous research that deals with examples in learning. This work
has been primarily conducted in three fields: (¥) intelligent tutoring systems (ITS), (i) cognitive science
and educational psychology, and (ii{) machine learning (ML). Work in ITS has been concerned with the
generation of examples suitable for education. Work in cognitive science has been focused on factors
that affect understanding and human learning from examples. The work in machine learning reviewed
here has concentrated on the characterization of good examples from the point of view of efficient
learning by a system. The insights gained from this work on ML are relevant to this thesis because we
believe that the characteristics that make examples good for a system to learn from can lead to useful
heuristics for human learning. '

2.1 Intelligent Tutoring Systems

Tutoring systems in different domains such as algebra, e.g., (Baxter, 1989), arithmetic, e.g., (Burton
and Brown, 1982), legal reasoning, e.g., (Rissland, 1983; Rissland et al., 1984; Rissland and Ashley,
1986), LISP programming, e.g., (Reiser et al., 1985), etc. made use of examples in their interaction.
However, these systems concentrated on finding appropriate examples for specific aspects of the
situation. They did not consider issues involved in presenting the examples as part of an overall
description. As a result, issues in which the context of the examples plays an important role, such
as the accompanying explanation, the number of examples, their order of presentation, etc. were
not considered. (These systems were able to do so because of two reasons: (i) the descriptions
that were generated by these systems were done so using templates which had specific slots for
examples, and in some cases, such a template based generation scheme can result in acceptable
explanations, e.g., (Reiser et al., 1985); (#i) they did not address the explanation issue at all, but
concentrated on the examples in isolation, e.g., (Baxter, 1989; Rissland, 1983; Rissland et al., 1984;
Rissland and Ashley, 1986). An exception was the WEST system (Burton and Brown, 1982), which
specifically attempted to generate descriptions within a natural language interface. This system is
described further in Section 2.1.8.)

Most of the work on finding appropriate examples has concentrated on retrieving and modifying
previously stored examples. For example, Rissland (1981) studied the issue of when to construct vs.
retrieve examples. Later work by her group led to the identification of twelve important dimensions
along which legal examples could be indexed: this was implemented in the HYPO system (Ashley, 1991;
Rissland and Ashley, 1986; Rissland, 1983), which used these twelve dimensions (or feature axes) to
try to modify a retrieved example. A more general approach was adopted by Suthers ef al. in their
example generator (Suthers and Rissland, 1988; Woolf et al., 1988) in which definitions of objects in
the domain were annotated with procedural specifications for modifying different features so as to
satisfy various constraints.




Our system builds upon this work to find appropriate examples for use in the presentation. In the
following sub-sections, we discuss some of these approaches in greater detail and show how they may
be used (with appropriate extensions) as a part of an integrated system to generate object descriptions.

2.11 The Constrained Example Generator -- CEG

Rissland’s Constrained Example Generator (CEG) (Rissland, 1981; Rissland and Soloway, 1980;
Rissland, 1980) was one of the first systems to attempt example generation for tutorial purposes. It
was designed for use in mathematical domains and could generate examples for requests such as “g
list with three elements,” or “a list, such that the first element is also g list.” The system retrieved close
matches from a database of examples, and modified them to fit the current goal. It had specialized

presented examples into the current one.

Rissland’s work was also concerned with cognitive issues in the use of examples: whether people
were more likely to retrieve or construct examples in different situations. In several studies of human
protocols, she was unable to find specific situations in which people would do either one or the
other; both were equally likely (Rissland, 1981). The CEG system was built to test different example

its examples (for instance, when constructing a 1ist, the system would try and choose small numbers
like 2 or 3, while trying not to repeat them). However, it did not reason about factors such as amount
of information to be conveyed per example, possible integration within an explanatory discourse, etc.

CEG is relevant to this thesis because it generated examples specifically intended for tutoring.
Consequently, it used heuristics about the sort of elements to include in the examples. For instance, it
used numbers such as 2 and 3, rather than 3.1416927 in the generation. CEG was built so that it would
present different examples if asked to present more than one. Our example generator uses some of
these insights from CEG to generate examples in our framework.

2.1.2 Reasoning with Hypothetical Examples -- HYPO

A follow-up to CEG was the HYPO system (Rissland et al., 1984; Rissland and Ashley, 1986). This system
investigated the retrieve-and-modify paradigm, and was implemented in the domain of trade-rights
litigation. It had a knowledge base of domain terms and a specialized knowledge base that contained
only examples, the Example Knowledge-Base (EKB).

Given a set of constraints, HYPO could retrieve close examples from the EKB and modify them to
fit the situation. It could find positive examples to bolster its case, as well as weaken its opponent’s
case with negative examples. The system used twelve pre-defined features as indices to retrieve the

The system was designed to investigate the retrieval and modification of examples in a complex,
real-world domain. In actual court cases, the established precedent is considered to be of paramount
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importance; the system modeled that particular aspect very well. However, it did not address -
issues other than those covered by the twelve features, and therefore did not address any non-legal
issues, such as language, comprehensibility, complexity, etc. HYPO could reason about the pre-defined
dimensions, but the knowledge about how the dimensions related to one another was encoded in the
procedural knowledge, and modification of the system (of any feature’s relevance, for instance) was
very difficult.

Recent work on HYPO has focused on the generation of examples based on a general specification of
the goal (Aleven and Ashley, 1992; Ashley and Aleven, 1992). The examples (which are configurations
of legal cases) are constructed by putting together individual cases that when put together, help make
an argumentative point. The system uses a KL-ONE representation to find suitable examples. HYPO
illustrates how examples can be retrieved (and modified) even in complex, real world cases.

2.1.3 Presenting Context Dependent Examples -- WEST

‘One of the most sophisticated game playing programs built to teach basic mathematical concepts
such as addition, subtraction and multiplication was the WEST! system (Burton and Brown, 1982). It
generated examples to help illustrate better moves in any given situation. It is notable because it
took into account the context while presenting an example. WEST had specialized modules to help it
generate suitable natural language phrases in order to interact with the student. The central feature
of WEST was its ability to present appropriate examples to help support its criticism if the student
made sub-optimal moves. These examples were supposed to illustrate the alternative sequence of
moves that the student should have explored but did not. If the student made moves which the system -
considered sub-optimal (based on the system’s evaluation function), WEST would try and correct the
student’s high level strategic knowledge by generating a sequence of example moves to illustrate the
better strategy.

The system used rules about optimal strategies for the current board position to generate examples
for presentation. In general, conjecturing alternative strategies is extremely difficult unless one has
a sufficiently closed world, in which case the set of all possible strategies can be characterized. This
characterization can be either a generative mechanism, such as a grammar, or an explicit enumeration
of all possible alternatives. WEST’s world was small enough and closed enough that its designers felt
that the latter strategy would work sufficiently well.

WEST is relevant because it is one of the few ITS systems that was extensively field tested. It received
high ratings from users. This was credited to the fact that it used natural language to communicate
with the users. WEST’s success bolsters our position on the use of natural language interfaces. Our
approach to designing the documentation system substantially differs from that of WEST. This is
because WEST assumed a single user type, and because of its small domain, it had been possible to
enumerate all of its examples a priori. This is not possible in domains such as system documentation.

2.1.4 Lessons Learnt

The work on ITS illustrates the computational feasibility (CEG, HYPO) and importance (WEST) of
generating examples in tutoring. CEG highlighted the issue of using simple elements in tutoring
examples. HYPO illustrated the possibility of retrieving and modifying real life, complex examples.
WEST demonstrated how the combination of natural language and examples could result in high user
acceptance.

1A tutor/coach for the game “How the West was Won.”
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The next section describes some of the work in cognitive science and educational psychology which
concentrates on effective instructional methods based on the use of examples.

2.2 Cognitive Science and Educational Psychology

There has been a tremendous amount of work on examples done in both cognitive science and educa-
tional psychology. Examples have always been regarded as important in instruction; Klausmeier (1976)
hypothesized that if definitions alone were presented (without accompanying examples), “the child
runs the danger of merely memorizing a string of verbal associations, rather than understanding the
concept.” In this section, we discuss some of the studies relevant to this thesis. (Other studies, that help
corroborate our findings, while not discussed here, will be cited appropriately.) These studies serve .
as the basis for some of the heuristics used in our system. For instance, the Direct Instruction Model

described here discusses different ways of presenting instructional material and specifically deals with

activities that are relevant to learning; some of the work on distraction by the wrong placement of
examples and text (and figures and text) is directly relevant to our work.

2.2.1 The Direct Instruction Model

The Direct Instruction Model (DIM) (Bruner, 1966; Engelmann and Carnine, 1982; Moore, 1986) is
an instructional design theory that is concerned with the ‘creative application of empirically verified
instructional principles to improve the effectiveness of instruction across a wide range of cognitive
outcomes.’ DIM is comprised of four components that specify:

1. the kind of experiences that pre-dispose a student towards learning,
2. the form and structure of knowledge,
3. the most effective sequence in which to present the material, and

4. the nature and pacing of rewards and punishments in the process

DIM is a prescriptive model that does not g priori determine educational or training goals, but sets
out means to accomplish them, once they have been established. Most importantly, DIM categorizes
knowledge types in order to determine the most efficient means of presenting each category to the
user. There are three categories into which knowledge can be arranged: (?) facts, (i) correlations, and
(#%¢) cause-effects. Each of these categories is further sub-divided in (Bruner, 1966) as follows:

o Facts (Basic Forms):

=- non-comparatives (single dimensioned concepts, such as the color ‘green,’ the number ‘5,
etc.)

== comparatives (in a single dimension, such as ‘larger, ‘heavier,’ etc.)
= nouns/multi-dimensional concepts (such as ‘a car, ‘a shoe,’ etc.)

e Correlations (Joining Forms):

== transformations (F(z) — y)
- feature relationships (“when it rains, the leaves get wet”)

¢ Cause-Effects (Complex Forms):
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-- cognitive problem solving routines
-- communications about events (fact systems)

Each of these sub-types is then analysed to see how presentations of that particular form should
be made in instructional contexts. DIM contains specifications that must be considered during initial
instruction through examples. These are directly relevant in this research. For instance, it contains
warnings such as: “.. a concept cannot be taught through the presentation of only one example.
Positive examples alone are not sufficient, negative examples should be presented as well,” etc.

The DIM methodology is important because, unlike most other models in instructional design, it
describes the generalization learnt by the reader in terms of the features presented in the examples.
(Other models do so in terms of the internal processes of the user.) This allows the DIM model to be
applied to a computational system where the initial presentation is planned based on the features
of the concept to be described, rather than a detailed cognitive model of the user’s learning abilities.
Within DIM, individual differences in users are seen as irrelevant to the design of the instruction.
Learning outcomes are determined not by constructs such as the development stage, but by features of
the knowledge (in terms of the specific sets of examples) communicated to the user. Our system makes
use of the directives in DIM (such as the presentation of a pair of contrasting examples to illustrate
some features, etc.) to plan the presentation.

2.2.2 Adaptive Presentation Strategies

Adaptive presentation strategies, in contrast to the Direct Instruction Model, attempt to vary the
presentation based on the user’s response. Work in this area of research has focused on various aspects
of concept acquisition through the use of different instructional strategies in class-room instruction,
e.g., (Park and Tennyson, 1980; Tennyson et al., 1972).2

Adaptive presentation strategies are based on the hypothesis that concept learning is a two-stage
process: conceptual knowledge is formulated first, followed by development of procedural knowledge,
e.g., (Tennyson ef al., 1981; Tennyson et al., 1983; Anderson, 1987), Adaptive presentation strategies
dictate that example presentations should be sensitive to error patterns in these two learning phases: if
the learner has just been presented initial information about a concept, the examples should be oriented
towards learning the declarative, conceptual form. On the other hand, if the learner has already been
presented with the conceptual information, ‘interrogative” examples should be presented. Results
have shown that this adaptive instructional strategy was superior to the fixed selection strategy in
terms of both post-test and retention performance (Park and Tennyson, 1986).

Presentations in which the number and order of examples were varied based on the user response
were also seen to be useful in enhancing comprehension (Park and Tennyson, 1980). An experiment
to test the discrimination ability found that examples should be presented that cause the learner to
understand one discriminant before presenting further examples that deal with other discriminating
features of the concept. Thus, if succeeding examples are presented in reference to the classification
of the response, rather than in a pre-determined (response insensitive) order, the number of examples
could be minimized.

This model underlines the need to present appropriate number of examples in the right order, as
well as with the correct level of difficulty. If the learner’s comprehension can be taken into account

20ther references for adaptive presentation strategies are (Park and Tennyson, 1986; Merrill and Tennyson, 1977; Merrill
and Tennyson, 1978; Tennyson and Park, 1980; Tennyson et al., 1975; Tennyson and Tennyson, 1875; Carnine, 1980a;
Carnine, 1980b; Carnine and Becker, 1982).

8Interrogative examples are examples that highlight discriminant features. Such features can be used to categorize concepts
in ::nemberahip classes, and can be used to answer questions about whether an instance belongs to a particular concept class or
not.
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during the presentation process, adapting the examples from a declarative form initially (simple
positive examples) to an interrogative form (negative, as well as positive examples that highlight
discriminating features) as the learner gains familiarity with the concept can help in minimizing the
number of examples that need to be presented.

2.2.83 Cognitive Load Theory

Cognitive Load Theory (Chandler and Sweller, 1991; Sweller and Cooper, 1985; Ward and Sweller,
1990) suggests that effective instructional material facilitates learning by directing cognitive resources
toward activities that are relevant to learning, rather than toward ‘preliminaries to learning.” Thus,
the presentation of unnecessary information (even information that was useful, but non-essential,
such as for instance, a commentary on a figure) had deleterious effects on the learning process. On
the other hand, a separation in the presentation of independent sources of information did not detract
from comprehensibility. Thus, two unrelated pieces of information could be presented at different
places, or different times, with no loss in user comprehension.

On the other hand, separation of related sources of information, such as explanations and diagrams,
or text and examples, resulted in reduced comprehension as compared to their integrated presentation.
These studies indicate that there is a need to present different sources of information, such as text and
examples, appropriately: physically close, mutually referent, if they are related and complementary;
explicitly separated, or annotated as being independent, if the examples and text are not mutually
referent and are not necessary for understanding each other.

2.2.4 Examples and Explanations

In an effort to study the utility of examples in complex subjects such a recursion (in programming
languages), Pirolli and Anderson (1985) studied a group of nineteen students learning to program.*
The success of their attempts was dependent upon how well they understood the working of the
examples. The subjects, all novices in programming, were split into two groups; both groups were
given explanations with examples that illustrated the concept of recursion. One group was given
an explanation (of recursion) in terms of the structure of the examples (how it was written: the fact
that the terminating condition was written before the recursive call, etc), while the other group was
given a process oriented explanation of recursion (how the example worked). The examples in both the
explanations were identical, while the textual explanations accompanying the examples differed.

The group which was given the explanation in terms of the structure fared much better than the
other group which was given process-oriented explanation (in terms of time taken for understanding).
In the case of advanced users, however, (users with knowledge and experience of related concepts),
upon presentation of the same examples and descriptions, the group which was given the process-
oriented explanations fared better. Given that the examples remained the same, it is clear that the
differences in the comprehension and learning time were due to the accompanying explanation.

To investigate the importance of explanations further, Chi et al. (1989) analyzed self-generated ex-
planations of students working through complex examples in the domain of mechanics. Since examples
typically contain a series of unexplicated actions, self-explanations are important in understanding
the significance of the example. The study found that good and poor students used the examples in
different ways: good students tended to refine and expand conditions for the actions in the example
solutions, and link them back to the principles in the textual explanations; poor students did not

4Evidence of the popularity of examples can be seen in that 18 of the 19 students immediately attempted to use previously
seen examples to write code.
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generate sufficient self-explanations and relied very heavily on previously seen examples in attempt-
ing to solve further problems. This study shows that in the case of naive students, the explanations
that accompany the examples must encourage the linkage between the given example and the general
principles.

These studies emphasize the importance of presenting a textual explanation along with the examples
to help clarify and disambiguate difficult or important features in the examples.

2.2.5 Summary

Each of the four approaches discussed -- DIM, Adaptive Presentation, Cognitive Load Theory and
combining examples and explanations ~ has important consequences for the comprehensibility of
generated descriptions. The presentation directives in DIM are useful since a computational system
can have, at best, a sketchy model of the learner’s cognitive state. At the same time, it can have
extensive information about the features and attributes of the concept it wishes to present. Adaptive
Presentation techniques are important since the system has to generate for different user types with
differing backgrounds; the system must also be responsive to the context, as well as the previous
interaction. Cognitive Load Theory and the studies on explanations with examples emphasize the need
to physically as well as conceptually integrate the related components, while explicitly separating the
unrelated ones. As we shall see later, this becomes essential in cases where exceptional (or anomalous)
examples are presented by the system.

2.3 Machine Learning

Examples have always been used in machine learning. Systems have been implemented to test various
theories, and computational results have been derived. Inductive machine learning from examples
and Explanation Based Learning (EBL) represent two of the approaches that have been studied in this
area. In this section, we review some work in machine learning pertinent to this thesis. The work
reviewed here deals with the characterization of good examples for machine learning. Since there are
some similarities between machine learning and cognitive learning (and some of the work in machine
learning is inspired by cognitive analyses, such as SIERRA, for instance), the hope is that examples
which are good for machine learning have characteristics that are beneficial for learning in people as
well.

Particularly relevant is the work in computational learning theory, where it has been shown that
factors such as the type of examples presented, the order in which they are presented, whether
the target concept contains disjunctions, etc. can significantly influence the resources required for
generalizing to a concept, e.g., (Valiant, 1984; Angluin, 1987) and the number of examples that are
required to do so, e.g., (Ling, 1991; Rivest and Sloan, 1988). Similar results hold in cognitive studies of
learning, where the limited amount of short term memory can determine which presentation sequences
are likely to be effective (Anderson ez al., 1980; Anderson and Matessa, 1990). However, in this section,
we describe some of the earlier work on learning from examples for illustration.




2.3.1 Learning from Near-Misses -- ARCH

One of the earliest systems to learn from examples, the ARCH program (Winston, 1975; Winston et al.,
1983), learnt generalized structural® descriptions from a series of examples. It identified the notion of
a ‘near-miss’ as being an important concept in learning. These ‘near-miss’ examples were examples
that differed from positive examples in only one feature. When a negative example differs from the
current understanding in more than one feature, the learner cannot determine which (or both) of these
differences is the critical one. This can lead to considerable search and false refinement. The program
used these near-misses to reason about mandatory-- and inconsequential-- relations in this model® --
the system learnt to distinguish these based on the classification of the examples it was shown. ARCH
was among the first programs to emphasize the quality of examples as a factor in its learning process.

ARCH is relevant to this thesis in several ways: it was the first attempt to characterize good examples
in the learning process. The concept of near-misses -- which exists in the Direct Instructional Model,
and is expressed as the need to present a pair of contrastive examples -- and the stress on the
presentation sequence of examples are both important criteria that must be adhered to by the system.

2.3.2 Version Spaces

Mitchell's (1982) version space approach presents one of the first computational accounts of how
negative examples can help constrain the search space of possible generalizations. The approach
involves representing and revising the set of all hypotheses that are describable within the framework
and are consistent with the observed examples. Two sets are used to represent the hypothesis
space: S, which represents the most specific generalizations and G, which represents the most general
specializations consistent with the examples. S and G are updated with each example. When the two
sets are identical, the system stops since any further examples would not contribute new information.
The version space approach requires the ability to order generalizations by specificity by direct
examination. The advantage of the version space approach lies in the fact that G summarizes the
implicit information in the negative examples (by bounding the ‘maximum’ level of generality) and S
summarizes the implicit information in the positive instances. This representation of the version space
in terms of G and S allows the algorithm to process examples without explicitly storing the training
examples for later consideration.

The results from version-spaces illustrate the necessity of negative examples in the learning process,
rather than just their desirability: the G set is specialized based on the negative examples seen by the
system. Similarly, the use of negative examples can help a learner prune his/her mental hypothesis
space.

2.3.3 Generating Examples -- LEX

LEX (Mitchell et al., 1983) was a system designed to investigate the acquisition of problem solving
heuristics in the domain of symbolic integration. LEX learnt heuristics by generating practice problems
to solve, attempting to solve them, and then generalizing from the problem solving experience. The
rate of learning was thus dependent upon the nature of problems that LEX attempted to solve. LEX
used the version space approach to learn new knowledge. The two important points of LEX were: (1) it
possessed heuristics to generate example problems, and (#4) it had perfect knowledge of the internal
state of the learner.

5Structural descriptions portray objects as consisting of various components that have different relationships defined between
them; attribute descriptions, on'the other hand, list only global properties of the object, such as for instance, its height, weight,
color, etc.

These are similar to the critical and variable features defined in educational peychology.
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One of the heuristics used by LEX in generating example problems was to generate a problem
that would allow the refinement of some existing, partially learned domain heuristic. To do this,
it would select a partially learned heuristic, find a previously solved problem that matched it, and
then minimally modify the problem until it no longer matched the heuristic completely. Thus, LEX
generated near-misses based on this heuristic, for its own learning mechanism.

LEX is very relevant to this thesis because it was concerned with the issue of generating good
examples for the system to solve. To this end, it generated near-miss problems; the difference between
LEX and a human teacher is that LEX knew the exact state of the learner, and could therefore target its
problems to refine partial heuristics.

2.3.4 Importance of Example Sequences -- SIERRA

SIERRA (VanLehn, 1987) is a machine learning system that was inspired by class room observations.
Thus, characterizations of good examples for SIERRA are based on good examples in classroom
situations. Van Lehn found that people tend to regard as significant, the order in which the examples
are presented to them. SIERRA, a computational learning system (VanLehn, 1987), was among the
first to try and make use of the sequencing assumption: that the examples presented to it had been
generated by someone who had taken the sequencing into account. SIERRA used this assumption to
bridge gaps in the example sequences presented to it by considering the examples around the gap.
The use of this assumption allowed SIERRA to significantly reduce the number of examples required
to learn a procedure; previous systems had assumed that each of the training examples presented
were independent of one another; they considered each example in isolation, ignoring information such
as its position in a sequence, its neighbouring examples, etc., cues that are usually valuable in real
teaching situations.

This discussion on SIERRA is relevant because it underlines the fact that the presentation of examples
in an appropriate sequence can greatly reduce the number of examples required to learn the concept.

2.3.5 Relationships between Machine Learning and Documentation

There is an interesting parallel between machine learning and documentation. The requirements
in two approaches in machine learning from examples correspond to two different text types in
documentation. One approach to learning from examples is induction, which assumes minimal
background domain knowledge, e.g., (Holland et al., 1987; Michalski, 1983). The other is Explanation
Based Learning (EBL), e.g., (Mitchell et al., 1986; DeJong and Mooney, 1986), which requires the
presence of a strong domain theory. Induction often assumes no prior knowledge of the concept, and
can require a great many number of examples to generalize. EBL on the other hand, with its strong
domain theory, can sometimes learn from just a single, complex example. We noticed that introductory
texts meant for naive users (with little or no domain knowledge) used a large number of examples
to explain a concept, while reference materials targeted towards advanced users (with significant
amounts of domain knowledge, as in EBL) had far fewer, and more complex examples.

2.4 Discussion

Much of the work on learning from examples in each of the three fields discussed above (cognitive
science, intelligent tutoring systems, and machine learning) has significant implications for each other.
For instance, the importance of ‘near-misses’ has been emphasized in both cognitive psychology as
well as machine learning; the importance of presenting minimal irrelevant features, and ordering the
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presentation sequence have also been studied in both fields. Computational complexity results on
learning disjunctions in machine learning parallel some of the results in cognitive studies in children.

Surprisingly few tutoring systems have attempted to make use of examples as one of their teaching
strategies. This may be due to the fact that for example presentations to be effective, there are many
other issues that must also be addressed before practical systems can be designed to take advantage
of this strategy (issues such as the type and amount of information to be presented in each example,
the description, their placement, etc.). Also, unless the examples used are appropriate for the context,
they can be detrimental, rather than helpful, in user comprehension.

Our system synthesizes the insights from previous work and builds upon them: its uses the results
from ITS to find and construct good examples; results from cognitive science and educational psychology
to plan effective and comprehensible presentations; and results from machine learning in modifying
examples to construct near-misses and use them in presentation sequences.

In the following chapter, we discuss the issues that arise in the generation of integrated descriptions
with both text and examples.
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Chapter 3

Issues in the Integration of Text and Examples

Examples, like eyeglasses, blur everything that they do not make more clear.
-- Anonymous

Chapter 1 has argued that documentation is far more effective when it contains well integrated
examples. Many issues must be addressed before a systematic account can be developed and a system
can be implemented to generate such descriptions -- we discuss them in this chapter. These issues were
identified based on a corpus analysis, as well as a synthesis of previous studies in cognitive science
and educational psychology.

3.1 Corpus Analysis

We studied a large number of descriptions in different manuals, books, help materials, and on-line
documentation to identify the interactions between text and examples and help isolate relevant issues
in their integration. The corpus consisted of books about LISP (Meehan, 1979; McCarthy et al., 1985;
Novak Jr., 1985; Shapiro, 1986; Steele Jr., 1984; Tatar, 1987; Touretzky, 1984; Charniak et al., 1987;
Norvig, 1992; Keene, 1989; Wilensky, 1983; Friedman and Fellesisen, 1987; Winston and Horn, 1984;
Lucid, 1990), as well as other programming languages: Postscript (McGilton and Campione, 1992;
Braswell, 1989), TEX (Knuth, 1990; Knuth, 1979; Abrahams et al., 1990; Borde, 1992), C (Perry, 1992;
Vetterling et al., 1990; Harbison and Steele, 1993), and Unix (UNIX Documentation, 1986; Waite et
al., 1983; Stevens, 1990). Each of these publications is well regarded as either a good text-book or a
definitive reference manual in its area. Some of these books such as (McGilton and Campione, 1992;
Borde, 1992; Perry, 1992; Vetterling et al., 1990), explicitly attempt to explain by using examples.

The availability of multiple books and publications on the same language allowed us to examine
various descriptions of the same concept. In addition, we had available publications which were
intended either for use as reference manuals by advanced users, or as introductory material meant for
naive users. This proved invaluable, as the differences between these two genres is quite significant.
In this chapter, we discuss some of the issues raised by our corpus analysis. When discussing each of
these issues, we attempt to reference related work in cognitive psychology, to show that some of these
issues had already been remarked upon, though usually in isolation, rather than as part of a set of
criteria that determine the effectiveness of the presentation.
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3.2 Issues in Integration

It is essential when planning an explanation that involves examples to pick the examples carefully
to fit into the accompanying text. A bad example can be worse than no example. However, choosing
the correct example is not sufficient either, since care must be taken to present it in a way that it
can be understood easily. This implies that the accompanying explanation must also complement the
example. As Pakin observes (underlining ours):

Examples and illustrations support and amplify verbal explanations. They help make concepts specific
and show how things look and work . .. Simply including examples and illustrations does not, however,
improve documentation, To be effective, each illustration must be an essential piece of documentation
— well-planned, carefully prepared, properly labeled, and easily understood. The text should refer to the

example specifically.
(Pakin and Associates, Inc., 1984), page 9.

Examples cannot be generated in isolation, but must form an integral part of the description, supporting
and complementing the surrounding text. A number of issues arise in generating descriptions and
examples in a coordinated, coherent fashion, such that they complement and support each other. These
issues are:

1. When should an example be generated?

2. How is each example generated? Is it retrieved from a knowledge base, or is it constructed? What
attributes guide the construction/retrieval process?

3. What information should each example contain? How does it relate to the explanatory text? How
many examples should be used? Should the information to be communicated be divided across a
number of examples, and if so, how?

4. What order should examples be presented in, if more than example is to be presented? Does this
order affect the structure of the accompanying text?

5. How should the example be positioned with respect to the explanation? Should the example be
within the text, before it, or after it?

6. When should prompts! be generated and how should they be indicated?

7. What should be contained in the descriptive component of the explanation??

8. Are there different types of examples? If so, what, if any, are the consequence of membership in
a particular category? Do different types of examples need to be presented differently?

9. Does the text type play a role in the description? Does it place constraints on the textual
explanation, the examples, or both?

10. How does the type of information (concept vs relations) being communicated affect the explana-
tion? textual explanation, examples, or both?

We discuss the first six issues in turn in this chapter. Issue #7 will be discussed in the context of the
other issues, as well as when the issue of the text type (issue #9) is dealt with in chapter 8. Issue #8 is
g;]scribed in detail in chapter 4. The last issue on the knowledge type is discussed briefly at the end of

is chapter.

!Prompts are attention focusing devices such as arrows, marks, or addjtional text associated with examples.
2Descriptions occurring in different text-types are often quite different. In this thesis, we are mainly concerned with the
differences between introductory texts and advanced texts.
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3.3 When should an example be generated?

An important question to be addressed before a system can be implemented to effectively use examples
in descriptions is the question of when it should attempt to use an example. The presentation of
examples can be either system or user initiated.

The system can decide to include an example as part of its description, to illustrate one or more
features. This can be due to the fact that the explanation strategy being followed by the system
specifies the need for examples. This is the case for certain text types, such as on-line help manuals:
(these manuals have a fixed format of descriptions which are invariably followed by examples), and for
certain types of concepts, such as abstract concepts. Exactly when an example is generated depends
upon both the concept being described and the text type. This will be explained in detail later, in
Chapter 6. :

The user can initiate example generation by signalling the need for an example in confusion over a
complex or abstract definition. Indications of confusion can be responses such as “Huh?” or repeated
requests for help on the same topic. Both Woolf and McDonald (1984a) and Moore’s PEA system (Moore,
1989) followed a strategy whereby the system would present an example if the user did not indicate
an understanding after presentation of a definition.

3.4 Retrieval vs. Construction of Examples |

Suitable examples need to be found before they can be used in a description. Examples can either be
retrieved from a pre-defined example database and modified to suit the given situation, or constructed
in response to a specified goal. HYPO (Ashley and Aleven, 1992; Ashley, 1991; Rissland and Ashley,
1986; Rissland et al., 1984) is an example of a system which took the former approach (retrieval).
As discussed in chapter 2, it had twelve pre-defined dimensions along which the feature values
could be modified to make the example specific to the given situation. So did the generator by
Suthers and Rissland (1988). The Constrained Example Generator (CEG) by Rissland (Rissland, 1980;
Rissland, 1981) took the other approach, investigating how examples could be constructed by putting
together simpler examples.

Cognitively, it is unclear when people use which method. Protocol analyses by Rissland (in
the geometry domain) demonstrated that people were equally likely to do either one (Rissland,
1981). Computationally, there are advantages and disadvantages for both approaches: retrieval and
modification implies an efficient indexing scheme into a database of example instances and adequate
rules to modify the example to fit the given situation. This approach relies on the assumption that
a close match will be available, that modification will be relatively inexpensive and and that will
result in an appropriate example. In some cases, however, this approach may prove to be more
expensive than constructing the example from scratch (Rissland, 1981). Construction of an example,
on the other hand, assumes the availability of sufficient knowledge to assemble an example by putting
together its components in the correct manner; this requires some knowledge of how the different
features of an instance interact and contribute to it being a good/bad example. Modification can
often be achieved with less background knowledge than construction, since the system need only
change certain feature values. There has been considerable work on modification in Case Based
Reasoning on adapting cases for particular situations, e.g., (Hammond, 1990; Kambhampati, 1990b;
Kambhampati, 1990a; Veloso and Carbonell, 1990; Cook, 1989; Mostow, 1989; Stanfill and Waltz, 1986;
Schank and Riesbeck, 1981)

It is likely that a flexible system will need both (retrieval as well as construction) capabilities.
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3.5 The Number of Examples

Studies have shown that user comprehension is enhanced when the message contains a minimum
number of irrelevant features, allowing the user to focus on the important aspects of the message.
This also holds if the message is in the form of examples, e.g., (Ward and Sweller, 1990). This maxim
is particularly important for example presentation because examples are concrete instances, bristling
with detail. It is usually not possible to construct examples without all the associated low level details,
as some of these details are required for the example to have its illustrative power. For instance,
the definition of a function (in most programming languages) requires the specification of three
components: the function name, the parameters of the function, and the body of the function. However,
examples of a function will contain not just these three conceptually important components, but will
also contain low level syntactic requirements. Examples illustrating this are shown in Figure 3.1.

In the first case, the example illustrates the use of defun as a means of defining a new function
name. To do so, the example also presents a number of features not mentioned in the definition: the
fact that there are a number of parentheses, the function has parameters, a documentation string,
and a body that references the parameters, etc. The second example illustrates ‘a procedure that does
symbolic computation.’ As in the previous case, a number of details necessary for the example to work
are not mentioned in the description. For instance, the use of the CADR function to retrieve the second
element of a list as an atom, and then the use of the LIST function to create a new list. In the third
case, the example (from the PASCAL programming language), facts such as the statement separator is
a semi-colon, the program terminator is a period, the use of the keywords ‘begin’ and ‘end,’ etc.

Each example of a concept will necessarily include some features or attributes of the concept. These
features can be classified into two categories, depending upon their role:

o critical features: features that are required for the example to be an instance of the concept
being illustrated. For instance, the definition of a function in LISP must begin with the left
parenthesis, followed by the keyword defun, followed by the function name and a list (possibly
empty) of the parameters. If either of these is missing, the example is not of a function.

o variable features: features that can change within an example without causing the example
to not be an example of the concept being illustrated. For instance, the name of a function, the
name and number of parameters, etc. are variable features. Their presence is critical, but their
actual value is not.

‘It is essential that the user grasp this difference in the nature of the features. Thus, the system must

take this factor into account when presenting examples. To minimize confusion, the system must
present examples that highlight specific features and their type (critical or variable) clearly. This can
be done, for instance, by presenting pairs of examples, which are identical in all respects, except for
the feature being illustrated. This implies that the pair of examples which attempts to emphasize a
critical feature will be a positive-negative® example pair; the pair that emphasizes the variable nature
of another feature will be either a positive-positive or a negative-negative pair. Since a concept can
have a number of critical and variable features, the clearest possible presentation would have at least
one pair of examples for each feature. However, this may not always be either possible (because of
restrictions by the text type). This is reflected in the data, where descriptions in advanced, reference
manual type texts have very complex examples with a large number of features. Consider, for instance,
the examples in Figure 3.2.

The first example, from (Harbison and Steele, 1993), illustrates the fact that in the C programming
language: (i) type declarations can define a new type, (#) specify that a variable is of that type, (iis)

3 A positive example is an example of the concept being illustrated. A negative example is not an example of the concept being
illustrated.
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The special form defun stands for “define function.” It is used here to define a new function
called last-name.

(defun last-name (name)
"Select the last name from a name represented as a list"
(first (last name)))

From (Norvig, 1992), page 12.

Consider an example of a procedure that does symbolic computation, rather than a numerical
one. This procedure exchanges the first and second elements of a two element 1ist:

(defun exchange (pair)
(list (cadr pair) (car pair))) ; reverse elements

From (Winston and Horn, 1984), page 42.

When a program has more than one statement, each one is executed in the order it appears.
For example:

program SecondRun (output);
begin
writeln CHello. I love you.’);
writeln CHow about lunch?)
end.

From (Cooper and Clancey, 1982), page 8.

Figure 3.1: Examples often contain many other details.

any number of variables can be specified to be of that type, etc. The second example from (Steele Jr.,
1984) illustrates multiple different aspects of the ‘tormat’ statement in LISP: the fact that it can be
used to combine symbols into strings, be used to select from different parameters passed to it, some
directives may be recursive, etc.

The number of examples is also dependent on the intended user: the number of critical features the
user can be expected to recognize and assimilate from each example. For an introductory text, each
example should contain as few features as possible, to ensure that the user is able to recognize them,
e.g., (Klausmeier, 1976; Feldman, 1972; Clark, 1971). On the other hand, an advanced user is likely to
understand examples containing three to four features without significant difficulty.

The number of examples will thus depend on the text type, as well as the total information content
to be conveyed. Studies have suggested that there is a maximum number of examples before the user
loses attention. Clark (1971) suggested that four examples were optimal to explain a concept to the
user in most cases; more than four together resulted in loss of attention. Feldman and Klausemeier
found that the number of examples required depended upon (i) the number of attributes, (ii) the
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An enumerated type in C is a set of integer values represented by identifiers ... [number of
lines deleted] ... For example:

enun fish { trout, carp, halibut }
my_fish, your_fish ;

From (Harbison and Steele, 1993)

[ A long description of various options that a format statement can take appears here, and
has not been reproduced.]

(format nil "~@? *D" "<~A “D>" “Foo" 5 14 T) ==> “<Foo 5> 14"

From (Steele Jr., 1984)

Figure 3.2: Examples from advanced, reference manual type texts are complex and multi-featured.

level of abstraction, and (##7) the student’s learning characteristics; no fixed, optimal number was
suggested (Feldman, 1972; Klausmeier and Feldman, 1975). Markle and Tiemann (1969), suggested
that an “observation of the critical and variable attributes” to determine the number of examples was
required.

3.6 The Order of Presentation of the Examples

Given that there may be a number of examples to be presented, their presentation sequence is
important. Psychological studies show that the order of presentation of the examples plays an
important role in comprehension. Feldman (1972) reported that sequencing was most effective
when positive and negative examples were paired together. Houtz et al. (1973) suggested that
sequencing positive examples and minimally differing positive and negative examples together was
the most effective sequencing strategy; Klausmeier et gl. (1974), Litchfield et al. (1990), Markle and
Tiemann (1969) and Tennyson et al. (1975) reported essentially the same (latter) conclusions.

Ordering the examples can be done on at least two levels:

1. feature level: at the ‘macro’ level, the order in which different features of the concept are to be
illustrated using examples

2. example level: at the ‘micro’ level, the order within a set of examples illustrating a feature

Empirical studies show that presenting easily understood examples before presenting more difficult
ones has a significant beneficial effect on the listener (Carnine, 1980b). A set of examples illustrating
the importance of ordering based on complexity are shown in Figure 3.3. This ordering is also
suggested by the Principle of End-Weight in linguistics (Giora, 1988; Werth, 1984), where sequencing
the presentation of easily understood information before the presentation of inferred or unknown
(relatively more difficult) information is recommended. Thus, while describing a concept, the simpler
features should be presented before the more complex ones. The determination of the complexity of a
particular feature is domain dependent. In our domain of programming languages, an indication of the
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Mathematical operators in TEX can have limits. The lower limit is specified as a subscript,
and the upper limit as a superscript. Examples of operators with limits are:

$$\bigcap_{k=1}"r (a_k \cup b_k)$$
produces
() (ar Ub)
k=1
while
$${\int_0-\pi \sin"2 ax\,dx} = {\pi \over 2}$$
produces .
/0 sinaz dzr = -;—
and

$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
~{-\infty}-{+\infty} f(x)e"{-i\lambda x}\,dx$$

produces

400
a(d) = -217 / f(z)e™7 dz
From (Abrahams et al., 1990)

Figure 3.3: It is important to order examples based on their complexity.

complexity of a particular symbol in the grammar can be obtained by estimating the total number of
unique examples that could be generated to illustrate that symbol. In a sense, the greater the number
of examples possible, the greater its complexity.* This will be explained in more detail in Section 5.3.5.

Within a set illustrating a particular feature, the importance of sequencing becomes even more
evident because of the implicit information that the sequence can be used to convey. The order of
presentation is an important means of focusing the reader’s attention. Sequencing can be used to
highlight the critical features by presenting pairs of positive and negative examples, and emphasize
the variable features by presenting different positive examples. Consider for instance, the examples in
Figure 3.4. The first two pairs of examples illustrate the point that atoms and numbers are not lists
unless they are enclosed in parentheses. The next three examples show that symbols or numbers or
both can be elements in a 1ist, and finally the last example shows that a 1ist can also be made up
of other lists. These points would have been much less obvious if the examples had been presented as
in Figure 3.5, because the reader would have to realize the similarity between different examples and
contrast them on his/her own.

4The actual computation of the complexity uses a heuristic that takes into account the number of explicitly defined terminal
symbols that a symbol can make use of; this prevents the non-terminal ‘integer-number,’ for instance, from being assigned a
complexity value of infinity.
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(aardvark) ; example of a list

'aardvark ; not a list

(1) ; example of a list

| ; not a list

(big blue sky) ; a list of atoms

(146809) ; a list of numbers

(10 white clouds) ; a list of atoms and a number

((big blue sky) (10 white clouds)) ; a list of lists
From (Novak Jr., 1985), page 4.

Figure 3.4: Sequences carry implicit information in example sequences.

list of atoms
list of atoms and number

(big blue sky)
(10 white clouds)

’
(1) ; a list
(aardvark) ; another list
1 ; not a list
'aardvark ; not a list
(14689) ; list of numbers

((big blue sky) (10 white clouds)) list of lists

Figure 3.5: Bad sequencing can cause loss of information content.

Thus, a critical feature can best be illustrated through a pair of examples, one positive (possessing
the feature) and another negative (similar to the positive one, but without the critical feature). Variable
features are best illustrated through a collection of positive examples similar to each other but varying
widely in their variable features. To minimize information loss through bad sequencing (and to prevent
the user from the errors of either over-generalization or under-generalization), the system should use
the following two principles in structuring example presentations:

1. Principle of Maximum Positive Variation: there should be maximum possible variation between
positive examples about the same feature — this prevents the hearer from under-generalizing the
concept based on the examples presented.

2. Principle of Minimum Negative Difference: there should be minimal difference between positive
and negative examples about the same feature -- this helps the hearer rule out the maximum
possible number of non-critical features. Features that change between a positive and negative
example are then easier to identify as critical features. If the two examples are minimally
different, there will be fewer features to consider as possible critical candidates.

Since the examples are an integrated part of the accompanying description an additional constraint
in the order of example presentation is often the order in which the various features are mentioned in
the accompanying description, or vice versa.

Finally, possible example sequence orderings can also depend upon factors such as the type of concept
being communicated: whether it is a disjunctive or a conjunctive concept, and whether it is a relation
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or a process. In an interesting extension to the concept of sequencing, Tennyson and Tennyson (1975)
found that an animated presentation where the positive example changed to a negative one, was more
effective than the presentation of examples in a static sequence, because it drew attention to the
differences between the two examples.

The significance of the order of presentation is particularly evident from a curious anomalous result
on the theoretical limits of languages that can be learnt from examples. Gold (1965, 1967) showed that
certain concepts that could not be learnt when both positive and negative examples are presented,
could however be learnt solely from positive examples when the presentation sequence was carefully
constructed. This is the class of recursively enumerable languages. Consider for example the class of
Fibonacci numbers. Given a sequence: §, 1, 21, 8, 2, 8, 18, the reader is unlikely to be able to recognize
the concept. However, should the sequence be presented as: 1, 2, 8, 5, 8, 18, 21, there is a much better
chance that the hearer will recognize the sequence and be able to generalize to the set of Fibonacci
numbers. The hearer actually recognizes the generating function or the algorithm to generate the
examples rather than the concept description itself. This illustrates the importance of sequencing
examples carefully.

3.7 Positioning of the Example and the Description

Once an appropriate example has been generated, it needs to be presented with the accompanying
explanation. Should the example be presented before, within or after the textual explanation? An
example can either play a ‘supporting’ role where it illustrates the preceding text, or it can be the
focus/subject of the text. Depending on the role, the example either occurs after the definition of the
concept, or before the description of concept based on the example. If the text is introductory, the
examples are used to illustrate each attribute of the concept, immediately following the presentation
of the attribute in the definition. This results in descriptions where each attribute specification is
followed by examples, resulting in a description with examples interspersed within it.

When examples are used to elaborate on points that are not explicitly mentioned in the textual
description they are often inter-woven with the textual description of the concept. They could have
been replaced by text elaborating on these points. This was illustrated in the description of the TEX
assignment operation, as shown in Figure 1.2, repeated here for clarity, in Figure 3.6. In this case,
the examples could be replaced by a statement that conveys all the features being illustrated through
examples, as shown in the lower half of the figure.

In another example, consider the description of a 1ist given in Figure 3.7.5 The examples of 1ist
(in group II) of Figure 3.7 communicate information that could have been expressed textually by the
following sentence: “The elements of the list can be either symbols, numbers, or a combination of these
two.” In this case, the examples replaced the sentence above; however, the system may choose to
elaborate using both examples, as well as text. This is illustrated by groups III and IV in the figure,
in which the information about lists being made up of sub-lists is expressed both textually (in III) and
then by means of an example (in IV). The choice between text and examples depends upon both the
text type and the concept being illustrated. In the case of an introductory text, examples are presented
if the definition has already been presented. In the case of anomalous or exceptional features, both
the text and the examples are presented. This is illustrated in the 1ist case, where sub-lists need to
be presented. This is a recursive example, and the system presents it using both text and examples.
This illustrates the point that examples cannot just be inserted in a dogmatic fashion at the end of a
description.

5The text and examples have been delineated by us for clarity: the text is framed by a clear box, while the examples appear
in shaded boxes.
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An assignment is a construct that tells TEX to assign a value to a register, to an internal
parameter, to an entry in an internal table, or to a control sequence. Some examples of
assignments are:

\tolerance = 2000
\advance\counti2 by 17
\lineskip4pt plus 2pt
\everycr = {\hskip 3pt relax}
\catcode\’€ = 11

\let\graf = \par
\font\myfont cmbxi2

From (Abrahams et al., 1990), page 49.

An assignment is a construct that tells TEX to assign a value to a register, to an internal
parameter, to an entry in an internal table, or to a control sequence. The variable being
assigned a value is specified first on the left, followed by the value. The variable and the
value can be optionally separated by the ‘=’ character, or a space. The value can be either a
number, a dimension with units, a variable name, an expression, a control character or a
font name.

Figure 3.6: Example of textual elision due to examples.

A list always begins with a left parenthesis. Then come zero
{ | or more pieces of data  (called the elements of the list), and
a right parenthesis. Some examples of lists are:

"(AARDVARK) _
- {RED YELLOW GREEN BLUE)

- ;_(_23 51119) -
"© {3 FRENCH FRIES)

0l | A List may contain other lists as elements. || Given the thrae lists:

BLUE SKY) ~ (GREEN GRASS) (BROWN EARTH)
) can make alistby con-bmng them all with a parenthesis:

((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

Figure 3.7: A description of 1ist using examples.

From (Touretzky, 1984), page 35.
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Numbers and symbols cannot be used as inputs to CAR because numbers and symbols,
unlike lists, are not built of CONS cells. Taking the CAR of FROB, for example, causes an
ERROR.

(CAR 'FROB) ==> Error! Not a list.
The function CDR returns the input list after removing its first element. Thus for example:

(CDR ’(FOO BAR BAZ)) ==> (BAR BAZ)
(CDR *(A B C D)) ==> (B C D)

The CDR of a single-element list is the empty list, NIL.
(CDR (FROB)) ==> NIL
CDR will not work on inputs that are not lists:
(CDR 'FROB) ==> Error! Not a list.
CAR and CDR work on nested lists just as easily as on flat ones. For example:

(CAR ’((BLUE CUBE) (RED PYRAMID))) ==> (BLUE CUBE)
(CDR ’((BLUE CUBE) (RED PYRAMID))) ==> (RED PYRAMID)

Two more pairs are:

(CAR *((A B) (C D) (EF))) =
(CDR *((A B) (C D) (E F))) =

~ From (Winston and Horn, 1984), page 24.

Figure 3.8: A description with a large number of examples of the functions CAR and CDR.

The function CDR returns the input list after removing its first element. The CDR of a
single-element list is the empty list, NIL. CDR will not work on inputs that are not lists.
CAR and CDR work on nested lists Jjust as easily as on flat ones. For example:

(CDR ’(FOO BAR BAZ)) ==> (BAR BAZ)

(CDR (FROB)) ==> NIL

(CDR ’FROB) ==> Error! Not a list.

(CAR ((A B) (¢ D) (EF))) ==> (A B)

(CDR "((4 B) (C D) (EF))) ==> ((C D) (E F))

Figure 3.9: Alternative description for the functions CAR and CDR.

The importance of the placement of examples is even greater when there are a large number of
examples. Consider for instance, the description given in Figure 3.8. The examples are provided at
appropriate points in the description, rather being all placed at the end of the description. While the
equivalent description in Figure 3.9 is possible, most introductory texts resemble the description in
Figure 3.8.
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The idleArry contains the information used by postscript for idle time font scan conversion.
The array can be broken down into groups containing different pieces of information. For

example:
/Times-Bold % font name
14 % x scale
14 %y scale
0 % rotation
% conversion characters
(abcdefghijklmnopgrstuvvxyz) % string length = 26

From (Braswell, 1989), page 8-5.

A function to convert temperatures from Fahrenheit to Celsius could be written as:
(DEFUN F-TO-C (TEMP)

(SETQ TEMP (- TEMP 32)) ; subtract
(/ TENP 1.8)) ; divide

From (Winston and Horn, 1984), page 43.

Examples of control strings are:

nege ;+ An °S directive with no parameters or modifiers
"“3,~4:0s" ; An °S directive with two parameters, 3 and -4,
i and both the colon and at-sign flags
"T, 448" ; First prefix parameter is omitted and takes
; on its default value; the second parameter is 4

From (Steele Jr., 1984), page 386.

Figure 3.10: Prompts are often used in examples.

3.8 Prompt Generation for the Examples

Examples can communicate a lot of information, some of which is communicated through their
ordering. However, this information can sometimes be lost on the reader, especially if he/she is unable
to discern the critical difference between juxtaposed examples. To prevent this, one can attempt to
draw the reader’s attention to the salient point through the use of prompts. Prompts are symbols or
additional information presented along with the examples to help focus the reader’s attention on the
critical attributes. Consider for instance the examples in Figure 3.10. The notes in comments on the
right represent prompts, focusing attention on a particular feature of the example. Prompts are often
used to replace long, detailed explanations about the examples.

Carnine (1980) demonstrated that drawing attention to the changing attributes can significantly
help the user focus on critical features of the examples and enhance understandability. There are
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Consider the code to draw a triangle given below. The second line of the program is the
first real line of code - an instruction to position the pen on the page. 72 144 moveto is an
instruction to move to position (72, 144) on the page.

%!PS % Postscript magic number
72 144 moveto % set initial point

306 648 lineto % add line segment

540 144 lineto % add another line segment
closepath % finish the shape

stroke % paint the path

showpage % display page

'From (McGilton and Campione, 1992), page 11.

Figure 3.11: Prompts can be indicated through the use of bold typefaces.

many ways in which prompts can be generated. For instance, the critical features could have been
indicated by using bold or italic typefaces. An example of this is illustrated in Figure 3.11. The
writer is describing the use of the moveto operator, and presents a small code fragment in which it
appears. To highlight the statement, the rest of the code is shown in grey (in the actual book), while
the statement being considered is shown in bold face. In this work, we only consider the case of textual
prompts like the ones shown in Figure 3.10.

3.9 Summary

In this chapter, we have identified some of the basic issues that arise in the presentation of descriptions
that integrate both textual descriptions and examples. These issues were identified from our corpus of
programming language manuals and text books. While some of these may be more relevant to software
documentation than to other domains (such as physical devices, for instance), they are, nevertheless
important, and need to be considered by a generation system.

One issue that also arises in the integration of text and examples is the choice of lexical items
for the text and the examples. Empirical work on lexical choice includes studies by Feldman and
Klausmeier (1974) on the effect of different lexical terms in the definitions and the examples. Their
study demonstrated that confusion and ambiguity was minimized by a consistent choice of the lexical
terms, in both the definition and the example. Another study by Ward and Sweller (1990), showed
that instructional and explanatory materials were most effective when they presented the definitions
and the examples using the same lexical terms and constructions. It is therefore important to ensure
that the lexical items used in both the descriptions and the examples be used consistently. However,
the issue of lexical choice is a complicated one, and currently outside the scope of this work. In our
system implementation, since both the text and the examples are generated using the same planner,
we ensure that the terms used in both the text and the examples are consistent.

In the following chapter, we describe a scheme for categorizing example types, one that differs
gignificantly from all previously proposed categorizations. This categorization enables us to find
appropriate examples in different situations, and use previous results from educational psychology on
good presentation sequences for examples illustrating concepts belonging to certain categories. The
chapters following that will be concerned with the actual system implementation, and present different
traces of the system as it generates different scenarios.




Chapter 4

A Categorization of Example Types

The previous chapter discussed a number of issues related to the presentation of examples as part
of integrated descriptions. Some of the issues raised there used the terms ‘positive’ and ‘megative’
examples. Are there any other types of examples? What are they, and how are they characterized? In
this chapter, we consider these questions. We categorize examples into different classes, and define
them.

4.1 The Need for Categorizing Examples

Since examples play an important role in comprehension, e.g., (Houtz et al., 1973; Pirolli, 1991;
Reder ef al., 1986), it is important for a system to be able to present examples to the user. A large
number of examples can potentially be used to illustrate a given point. However, not all examples
are equally effective in all situations; some are better than others in specific contexts, and others
tend to illustrate different aspects of the same concept in different ways and achieve different goals.
Categorizing examples is useful because identifying a category from which to generate an example can
greatly constrain the number of possible examples that can be applicable in the given situation.

Previous studies on the categorization of examples include studies by Polya (1945) and Michener
(1978) on the suitability of examples in different situations. However, these categorizations did not
explicitly take into account the context in which the example was presented. Yet, the context of an
example affects its characterization and usefulness. To use examples effectively -- i.e., as an important
and a complementary part of the overall description -- the system must reason with the constraints
introduced by both the textual explanation, as well as the examples. This is because both the examples
and the surrounding description affect each other.

This chapter discusses the issue of characterizing the type of examples that appear in natural
language descriptions. This can be of great help to a system in choosing appropriate examples to
present. We first describe previous work on categorizing example types, and illustrate how the same
example can be categorized in two different categories if the accompanying description is not taken
into account. Then, we present a new categorization, that takes the context into consideration. This
categorization is based on three orthogonal dimensions: (i) the information content, (ii) the text type,
and (iii) the knowledge type of the example.

4.2 Previous Work on Categorizing Examples

Polya (1945) categorized examples into three categories:
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1. leading examples
2. suggestive examples

3. counter examples

Leading examples were ones that contained mostly critical! features and very few variable? features;
they were meant for naive users. Suggestive examples contained more variable features than leading
examples and were meant to ‘guide the student in the correct direction.’ Counter-examples were
negative examples that illustrated how instances were not indicative of some concept.

In her work, Michener categorized examples into five categories (Michener 1977; 1978):

. introductory examples: perspicuous, simple cases,
. model examples: general, paradigmatic cases,
reference examples: standard, ubiquitous cases,

. counter examples: limiting, falsifying cases, and

= I OO R

. anomalous examples: exceptional, pathological cases.

These categorizations make significant contributions to our understanding, but are deficient in two
respects:

1. because they do not explicitly take into account the context of the presentation, the same example
can often be classified into different categories;

2. the definition of the category is not clearly specified; it is therefore difficult to implement in a
computational system.

Furthermore, the two categorizations above did not specify relationships (if any) between their different
categories, nor did they specify whether these categories were mutually exclusive.

4.3 The Need for Categorizing Examples in Context

Our categorization of examples was driven by the need to be able to generate tutorial and explanatory
descriptions that integrate text and examples coherently in a computational framework. In such a
framework, a system must be able to present suitable examples to illustrate the description or the
definition being presented. The suitability of an example is determined in the context it appears in,
rather than in the abstract: it depends upon the goal of the description, what features are being
presented, where in the overall description the example appears, etc.

Furthermore, the suitability of the example is also affected by other examples around it. As we have
described in Section 3.6, the presentation order of the examples plays an important role in reader
comprehension. Thus, the appropriateness of a single example, presented for the same description,
can be different based on other examples that appear with it, and where in the presentation sequence

1As discussed in Chapter 38, critical features are features that are necessary for an example to be considered a positive
example of a concept. Changes to a critical feature cause a positive example tc become a negative example.

2Variable features are features that can vary in a positive example. Changes to variable features creates different positive
examples.
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it appears. It would therefore seem obvious that an example can be categorized only in conjunction
with the context in which it appears.

We now describe the three dimensions along which we characterize an example in context: the
relationship of the information in the example to that in the context, the text type in which the
example is to be generated, and the knowledge type being communicated by the examples.

4.8.1 The First Dimension: The Relationship between the Example and the
Description

One of the dimensions that an example can be characterized along is the relationship of the information
contained in the example with the information contained in the accompanying descriptive explanation
that it illustrates. Along this dimension, an example can fall into three categories:

Positive Examples: These examples are instances of the concept being described and satisfy the
properties of the concept as described in the accompanying description. These examples must possess
all the critical features of the concept they illustrate. Such examples are usually in an elaborative role
to the information in the description.

Negative Examples: Negative examples (or counter-examples) are not instances of the concept being
described. These are cases that do not meet the requirements specified in the accompanying description,
and they play a contrastive role in the context.

Negative examples can be very useful be-

(AARDVARK) ; example of a list cause they help rule out non-critical features
AARDVARK ;not a list of a concept (Houtz et al., 1973). For instance,
. the examples of a 1ist in the programming
Figure 4.1: Two examples about a 1ist. language LISP in Figure 4.1 illustrate the

_ need for parentheses in a 1ist. The negative
example conveys the information that the symbol AARDVARK by itself is not sufficient for an instance to
be a list. By virtue of the fact that the only difference between a positive and a negative example is
the set of parentheses, it draws attention to the fact that the parentheses are important for something
to be a 1ist. Thus, features in common between positive and negative examples can be ruled out as
sufficient features, while differing features are highlighted as necessary features and thus become more
important.

Anomalous Examples: Anomalous examples represent irregular or exceptional cases. These are
either: (i) instances of the concept described, but not covered by the description, or (i) instances
likely to be mis-classified by the reader (because of an incomplete description). Thus, positive
instances which appear to be very different from other positive examples, or negative instances which
appear to be very similar to positive examples, would be classified as anomalous cases. Anomalous
examples must be presented with appropriate introductory text, and presented apart from the other
examples (Engelmann and Carnine, 1982).

The classification of an example into either of these categories depends upon the context established
by the accompanying descriptive explanation. For instance, an anomalous example in one context
could classified as a normal, positive example in another context. Consider the following description of
alist in LISP:

A left parenthesis followed by zero or more S-expressions followed by a right parenthesis is a list.
From (Shapiro, 1986)




Given the above definition of a 1ist, the following examples would classify as positive, negative and
anomalous cases:

| Positive Examples | Negative Examples | Anomalous Examples |
(ABCD) 'THIS-IS-AN-ATOM | NIL
(1234567 1234567
(BLUE SKIES GREEN GRASS) | 'BLUE

This categorization of examples could change with another definition:

A list is a CONS-cell whose CDR is either the atom XIL or another list. The atom NIL is the identifier
that represents the empty list and the boolean concept FALSE.
From (Steele Jr., 1984)

In this case, NIL becomes a positive example of a 1ist. Similarly, a 1ist may be so defined as to include
the concept of a dotted-list as well.

It is clear that it is difficult, and sometimes impossible, to classify an example as belonging to a
certain category without taking into consideration the surrounding contextual information. It is also
difficult to categorize examples as being ‘suggestive’ or ‘model’ or ‘reference’ without having a complete
definition of these different categories. Correct classification of the examples is essential, because
examples must be presented in accordance with the category they happen to classify in. For instance,
anomalous examples need to be presented separately from the regular examples, with a suitable
introduction to notify the user of the anomalous nature of such examples.

4.3.2 The Second Dimension: The Text Type

The second dimension that examples can be characterized along is dictated by the text type in which
the generation is to take place. It has long been observed that naturally occurring texts fall into
certain linguistic patterns which characterize the genre of that text. Many of these genres, such as,
for instance, scientific papers, financial reports, etc. impose strong constraints on both the type and
frequency of occurrence for certain types of linguistic phenomena such as the rhetorical structure,
lexical types, grammatical features, etc. (Hovy et al., 1992). Several text typologies have been proposed
by linguists, e.g., Biber (1988, 1989) identified eight basic types of texts based on statistically derived
grammatical and lexical commonalities; de Beaugrande (1980) proposed a general classification of text
types, also arguing that text types determine the types of discourse structure relations used.

The text type is an important constraint on the selection of information to be presented both in the
description and the example. In our case, we only use three different text types in our categorization:
(7) introductory texts, (ii) intermediate texts, and (iii) advanced, or reference manual type texts.
Since these text types are based on the intended user,® results in user modelling can also be taken
into account. Among the many studies on the need for varying both the amount of information
and the manner of presentation based on the user are (Paris, 1993; Paris, 1988; Nwana, 1991;
London, 1992). The results from these studies, on the differences in the textual descriptions presented
to the user should also be taken into account.

As we have already mentioned before, the major short-coming of both the previous example
categorizations was due to the fact that they did not take the accompanying context into account.

S3There is a close correspondance between the text type and the intended user type. Thus, this dimension can also be labelled
as the intended user type.
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A list always begins with a left parenthesis. Then come zero or more pieces of data (called
the elements of a list) and a right parenthesis. Some examples of lists are:

(AARDVARK)

(RED YELLOW GREEN BLUE)
(235 11 19)

(3 FRENCH FRIES)

A list may contain other lists as elements. Given the three lists:

(BLUE SKY)
(GREEN GRASS)
(BROWE EARTH)

we can make a list by combining them all with a parentheses.
((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

From (Touretzky, 1984), page 35.

Figure 4.2: Introductory examples are usually single featured.

In contrast, we consider both the description and the example for categorization. This is essential,
because our system needs to generate both the text as well as the example in its explanation.

From our corpus analyses, we have classified examples in the context of their accompanying
descriptions into three main classes -- introductory, intermediate and advanced. This classification
constrains both the content and the presentation style of the descriptions and the examples:

1. introductory: text type meant for users with little or no previous exposure assumed for the
concept; goal is to learn about the concept,

2. intermediate: text type meant for users with moderate previous exposure; goal is to learn to make
use of the concept,

3. advanced: text type meant for users with extensive knowledge; goal is to clarify some point or
misconception about the concept.

Introductory Texts: Examples in introductory descriptions tend to be simple ones -- where ‘simple’
refers to the fact that they are usually single-featured (or if they have multiple features, usually
no more than two, where the two features are along two different feature dimensions). This has
also been reported in other studies, e.g., (Clark, 1971; Michener, 1977; Carnine, 1980b; Litchfield et
al., 1990). In our domain of programming languages, the accompanying description is syntactic or
surface/appearance oriented. Anomalous examples are usually absent, and if they are presented, they
only appear after all the other examples. Examples are often introduced as soon as the point they
illustrate is mentioned in the text.

Consider for instance the description in Figure 4.2. The descriptions are centered around the syntax
or the surface appearance of the 1ist. The examples are simple and illustrate a feature at a time (the
type of data elements, except in one case where the type and the number, two different dimensions of




A list looks like a sequence of objects, without commas between them, enclosed in paren-
theses.

Appropriately constructed lists can also be used to call functions in LISP. If you type any of
the lists in table 2-4 to LISP, you will get an appropriate response.

Table 2-2:
(123465) ; List of numbers
(ABCD) ; List of symbols
(#\A #\B #\C #\D) ; List of characters
Table 2-3:
(This is (also) a list) ;third element is also a list
((12 eggs (large)) (1 bread (whole wheat)) ;list of lists of numbers,

(4 pizzas (frozen with anchovies))) ; symbols and lists
("this is a string in a list" -B3) ;list of a string and a nuaber
((Beth "555-5834") (Pat "555-8098")) ;list containing two lists

Table 2-4:
(SQRT 2) ; the first element is the name of a function
(+ 2 3) ; the first element is the name of a function
(- 65 4) ; the first element is the name of a function.

Lists can be considered ways to store data. For example, you might want to store vour
inventory as a list, or group together names and phone numbers in a list.

From (Tatar, 1987), page 16.

Figure 4.3: Intermediate ‘use’ oriented examples.

variation, are illustrated). Examples do not always have prompts, because the same information is
usually realized as sentences in the accompanying description.

Intermediate Texts: Descriptions written for the ‘intermediate’ reader (who is already assumed to
have introductory knowledge) tend to be more complex than the ones for introductory users, in that
they include more detail on how the information may be used by the user. The examples are not always
presented immediately; if there are a number of related points, these points are stated first, before a
group of examples illustrating these points are presented. The examples themselves are usually briefly
annotated (with prompts). Intermediate descriptions contain a few introductory examples, which are
then followed by examples that illustrate the use of the concept. For example, the description in
Figure 4.3 describes how a list can be used to represent shopping lists, store phone numbers and
write function calls.

Reference or Advanced Texts: Since the purpose of advanced or reference materials is not
instruction, it is not surprising that both the textual description and the accompanying examples are
very different from those in the introductory ones. The documentation and the examples usually occur
in a fixed format, with the examples following the definition and the explanation. The examples are
not simple, single-featured, but tend to be few and multi-featured. The examples are often almost
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Alist is recursively defined to be either the empty list or a CONS whose CDR component is a
list. The CAR components of the CONSes are called the elements of the list. For each element
of the list, there is a COXS. The empty list has no elements at all.

A list is annotated by writing the elements of the list in order, sebarated by blank space
(space, tab, or return character) and surrounded by parentheses. For example:

(abec) ; A list of 3 symbols

(2.080 (a 1) #\#) ; A list of 3 things:a floating point
; number, another list, and a character
; object

The empty list NIL therefore can be written (), because it is a list with no elements.

From (Steele Jr., 1984), page 26.

Figure 4.4: Reference documentation has fewer, more complex examples.

The 1ist function takes any number of inputs and makes a list of them all. For example:

INPUT to list OUTPUT

foo bar baz — (foo bar baz)
foo - (foo)
(frob) — ((frob))

From (Touretzky, 1984), p.51

Figure 4.5: Examples of a relation.

independent of the textual description, with little cross-referencing between the two. This almost
invariably results in prompts being used to indicate some of the salient characteristics of the examples.
Since the descriptions tend to be comprehensive, there are few (if any) anomalous examples. If there
are any anomalous examples, they are always presented. For example, a description of a 1ist from an
advanced, reference manual is shown in Figure 4.4.

4.3.3 The Third Dimension: The Knowledge Type

The knowledge type can also be used during the generation process to determine the appropriate
type and sequence of examples to be generated in an explanation. The knowledge type refers to the
categorization of information into one of three broad classes: concepts, relations or processes. There can
be significant differences in the presentation of examples and the accompanying descriptions based on
whether the idea to be explained is a concept, relation or a process. Consider for instance the concept
list’ (as described in Figure 4.2) and the relation %list’ (functions are relations that hold between the
input parameters and the output values of the function), as illustrated in Figure 4.5.

The concept list is described as an object, and examples of list are instances of this object; the
function list, on the other hand, is described in terms of its input and output parameters, and examples
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Text Type =

Information —p»
Positive Anomalous Negative Content

Introductory Intermediate Advanced

Figure 4.6: The three dimensions used in categorization.

of the function reflect this fact. Similarly, processes, which are sequences of functions are described
differently and their examples are often instances of function parameters at every step in the sequence.
In generating examples of relations, it is important to keep in consideration that the examples used as
input-output parameters must be known to the hearer. Also, since anomalous or pathological examples
of concepts used as either input or output examples for examples of relations often result in anomalous
examples of relations, the examples must be chosen carefully.

Examples of processes consist of chains of events that take place in a particular order. The goal is
to communicate the sequence of events and their cumulative effect. In case the reader does not know
about certain relations or concepts involved in the steps of the routine, the generator must adequately
explain such relations or concepts as well. This is to ensure that the hearer is familiar with the rest of
the steps in the sequence before the difficult examples are encountered.

4.4 Discussion

In this chapter, we have presented one method of categorizing example types. Such a categorization
is important, because different situations often require the presentation of different types of examples
with specific presentation requirements about the number of examples, the sequence of presentation,
the associated prompts, etc. (Engelmann and Carnine, 1982). A specification of the different presen-
tation requirements is particularly important in designing an effective explanation system. We have
argued that examples must be characterized based on the context in which they appear. We have
presented one such characterization, and illustrated it with examples from our corpus.
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Our categorization is a generalization of the previous work by Michener and Polya, and extends
the scope of the characterization to take into account the surrounding context of the example. This
is important in generating well integrated text and examples. The categories along each of the
three dimensions that we have mentioned can be sub-divided further into smaller classes and specific
presentation methods can be associated with each class.

This categorization is not specific to a particular architecture for generation, and can be easily
incorporated into any system such as CEG (Suthers and Rissland, 1988) or HYPO (Ashley, 1991). The
dimensions can be further refined or modified if necessary to suit particular applications: for instance,
recent work on categorizing dialectical examples (Ashley and Aleven, 1992) can be easily incorporated
into our framework by further dividing the positive example category into ‘representational,’ ‘conflict
resolution,’ ‘ceteris paribus’ and ‘coherence’ categories.* Our categorization is general in the sense that
it does not depend upon the aspect an example is supposed to illustrate. Given a particular context in
a particular application domain, our classification scheme can be further refined into many different -
sub-categories. In addition, this categorization can help a system partition the search in the example
knowledge base for suitable examples. Given that a particular concept needs to be illustrated, the
system need only consider examples that meet the classification criteria, for instance, positive, simple
(introductory texts) and of a concept.

The following chapter describes an implemented system to generate integrated descriptions.

4These categories are all defined as positive examples, with different characteristics, depending upon the feature(s) they
illustrate in the context of legal reasoning.
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Chapter 5

The System Implementation

In the previous chapters, we have presented the motivation, related work, relevant issues, and
a categorization of different example types. In this chapter, we describe an implementation of a
system capable of generating descriptions with integrated text and examples. The system consists
of four major components: the text planner, the example generator, the knowledge representation,
and the english interface (the grammar interface and the sentence realizer). As the basis for our
implementation, we use the EES text planning system (Moore and Paris, 1989; Moore and Paris, 1988;
Moore, 1989), to which we have added an example generator that retrieves/constructs actual examples
given a specification of what is required. The planning system has access to several knowledge
sources, such as the domain knowledge, the user model and the dialogue history containing a record
of the previous discourse. While planning, the system passes requests for examples to the example
generator. The output of the planning phase is a discourse structure tree, which is then passed through
an interface and a sentence generator to produce english. A block diagram of the overall architecture
is shown in Figure 5.1.

The rest of this chaptér describes the text planner, the knowledge representation and the example
generator in more detail.

5.1 The Text Planner

The system uses a text planning framework to plan the overall discourse in terms of high level
communicative goals. It uses a hierarachical, linear planning mechanism -- based on the STRIPS
planner (Fikes and Nilsson, 1990) -- to plan the structure of the discourse: given a top level
communicative goal, the system finds plans capable of achieving this goal. Plans typically post further
sub-goals to be satisfied, and planning continues until primitive speech acts -- i.e., directly realizable
in English - are achieved. The result of the planning process is a discourse tree, where the nodes
represent goals at various levels of abstraction with the root being the initial goal, and the leaves
representing primitive realization statements, such as (INFORK ...) statements.

To ensure that the generated text is coherent, the system selects plan operators such that each
communicative goal in the discourse tree is related to adjacent communicative goals through coherence
relations. Coherence relations are used to generate appropriate connectives during the realization
phase. We use relations from Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) as our
set of coherence relations.

The resulting discourse tree is then passed to a grammar interface which converts it into a set
of inputs suitable for input to a sentence generator, which results in the actual english output. A
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(define-text-plan-operator
:EFFECT (elaboration-by-example ?ftr ?object)
:CONSTRAINTS (and (isa? ?7object concept)
(get-example-available ?example ?ftr ?object)
(prompt-required? ?example ?ftr ?object))
INUCLEUS (bel hearer (present-example ?example))
SATELLITES (elaboration (example-prompt ?ftr Zobject))))

Figure 5.2: Sample Text Plan Operator.

detailed description of the system can be seen in (Moore, 1989; Moore and Paris, 1989; Paris, 1991;
Moore and Paris, 1993; Moore and Paris, 1992).

5.L1 Plan Operators

Plan operators describe how to achieve a communicative goal. They are designed by studying (large)
corpora of natural language texts and transcripts. They include conditions for their applicability.
These conditions can refer to resources like the system knowledge base (KB), the user model, or the
context (i.e., the dialogue context, the current text being generated, the text type, etc.). A sample text
plan operator is shown in Figure 5.2. The operator has four slots:

EFFECT: a specification of the goals that the plan operator may be capable of achieving; in the case of
the plan operator in Figure 5.2, the EFFECT specifies that the operator can achieve the goal of
presenting an example of an object (the variable ?object) to illustrate a particular feature (the
variable ?£tr)

CONSTRAINTS: the pre-conditions that must be true in the environment for the operator to be selected.
These constraints can be either predicates, or functions that bind variables to specific values. For
instance, in the case of Figure 5.2, the constraints check: (i) whether the object being described is
a concept (as opposed to a relation, or a process, for instance); (#1) whether an example is available
(can either be retrieved or constructed) to illustrate the feature ?ftr in the object ?object --
this will cause the generation of the actual example, and if successful, bind it to the variable
?example; if there is no example that can be either found or constructed, this constraint will fail,
causing this plan operator to not be selected; (iii) whether a prompt is required for the example
selected (?example) for the object (object) for feature (2£tr). Of the three constraints therefore,
the first and the third constraints are purely predicate in nature, while the second one actually
binds a variable with a new value.

NUCLEUS and SATELLITE: according to RST, the communicative goal specified in the EFFECT slot can
be achieved by providing some information: this information can often be further partitioned into
two parts: (i) information playing the central role, which must necessarily be communicated:
this is represented by the goal in the NUCLEUS; (#) information playing a supportive role; such
information is often used as background material, or as elaboration upon the information in the
NUCLEUS: this is represented by the goal in the SATELLITE position. Information in the SATELLITE
is often not required for the original discourse goal to be satisfied; in such cases, the SATELLITE
may be marked ‘¢optionals.’ As stated earlier, the sibling goals posted as a result of the NUCLEUS
and SATELLITE subgoals must be related through the use of coherence relations: in this case, the
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relation ‘elaboration’ marks the relationship of the information in the SATELLITE to that in the
NUCLEUS.

In this framework, experimenting with additional sources of knowledge in the planner is not difficult,
because these additional sources can be added to the system by incorporating additional constraints
in the plan operators which reference these resources. In this system examples are generated by
explicitly posting a goal within the text planning system: i.e., some of the plan operators used in the
system include the generation of examples as one of their steps, when applicable. (Figure 5.2 shows a
sample plan operator that can be used to present examples.) This ensures that the examples embody
specific information that either illustrates or complements the information in the accompanying textual
description. A snap shot of the screen with the text planner is shown in Figure 5.3. This shows the
discourse structure being constructed, the plan operator being evaluated by the system at that time,
and another window with a trace containing information on constraints being tested.

At present, the system has about 60 plan operators in our domain of software documentation that
deal with the generation of concept descriptions with examples.

5.2 The Knowledge Representation

Our system is part of the documentation facility we are building for the Explainable Expert Systems
(EES) Project (Swartout et al., 1992), a framework for building expert systems capable of explaining
their reasoning as well as their domain knowledge. In EES, a user specifies a domain model in the
high level knowledge representation language LooM (MacGregor, 1988),! as well as problem solving
principles, i.e., methods for solving problems in the domain. Given these and a variabilized goal to
achieve, EES generates an expert system to solve goals of the same form.

The problem solving methods have to be written in a specific plan language, INTEND, which was
designed specifically for the project, with the goal of facilitating explanations. INTEND is specified in
the Backus-Naur Form (BNF), a fragment of which is shown in Figure 5.4. The grammar contains
productions, and, optionally ‘filter functions’ on the productions, i.e., tests that have to be satisfied
before the production can be selected. For instance, ‘pred-relation-form-test’ is a filter-function defined
on the pred-relation-form production. The grammar of INTEND is quite complex, and thus provides a
good test-bed for a documentation facility. With such an on-line facility, users can get information as
to what might be wrong when a plan does not parse, as well as descriptions of the various constructs
involved, together with examples.

To generate documentation, the system must first convert the BNF-representation of the grammar to
an equivalent LOOM representation. In our system, the BNF grammar is specified using POPART (Wile,
1987). The POPART representation of the BNF form can be easily converted (in most cases) to the
desired LOOM representation. '

The BNF representation must first be converted to LOOM for use by the generation facility; the

form :

A :=BC;
is represented in LOOM as:

(defconcept A

:is (:and B (:the grammar-sequence C)))

i.e., concept A consists of concept B followed by (related by the relation named grammar-sequence to)
concept C; the form

A:=B| C;

1Loom is a KL-ONE type language.
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action-role~form :=
'( action-role-name restricted-expression ’) ;

predicate~form :=
pred-value-form | pred-relation-form |
pred-logical-form | pred-action-form || ;

pred-relation-form :=

’( relation-description restricted-expression + ’)
I> predicate-relation-form-test ;

Figure 5.4: A fragment of the EES grammar.

action-role-name

(defconcept ACTION-ROLE-FORM
ds (:and left-parenthesis
(sthe grammar-sequence
(:and action-role-name
(:the grammar-sequence
(:and restricted-expression
(sthe grammar-sequence right-parenthesis)))))))

Figure 5.5: Representing BNF productions in LOOM.

is represented as a disjoint covering (B or C) under concept A.
(defconcept A
:disjoint-covering (B C))

Consider also the grammar fragment shown in Figure 5.4. The first production specifies that an
action-role-form is an action-role-name followed by a restricted-expression, with both of these
enclosed by parentheses. This is represented in LOOM as shown in Figure 5.5. ‘grammar-seq’is a relation
defined to order the grammar symbols in the correct sequence. The non-terminal predicate-forn’ can
be easily represented in LOOM as a disjunction of the four possibilities.

The production ‘pred-relation-fora’ is one that cannot be completely represented in LOOM au-
tomatically. This is due to the fact that the specification of a pred-relation-form is more than
Jjust the syntactic specification of restricted-expressions following a relation-description; the
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POPART representation also specifies that the form must satisfy the test represented by the filter
function ‘predicate-relation-form-test.’ These tests are defined in POPART to enforce non-syntactic
constraints. For instance, in this case, the predicate-relation-form-test checks to see whether the
number of restricted-expressionsin the parse tree is equal to the arity of the relation-description.
This is specified in the form of LISP code, and this information must be manually added as an
annotation to the automatically generated LOOM definition of the concept.

Most BNF forms can be translated into an equivalent LOOM form in a straightforward fashion.
Occasionally, however, certain constructs are more difficult to translate. The kleene-closure is one
example of a construct that maps differently into LooM. Consider the POPART and LOOM descriptions of
alist as given in Figures 5.6 and 5.7 respectively. Since there can be any number of data elements in
a list, some of which could be embedded lists, the system must necessarily be able to count the number
of left and right parentheses in addition to checking for the types of data elements. Both of these --
lists being part of lists, and the need for counting parentheses -- cause problems in the representation
for KL-ONE type languages (Patil, 1993). To get around this problem, it becomes necessary to ‘escape’
to the Lisp level. In LOOM, this can be done through the use of the “:predicate” feature, which allows
the definition of a Lisp predicate that can be used by LOOM in testing for membership for a class. The
LOOM description of a 1ist, along with the required LISP predicate -- the function ‘1oomn-1ist-p’ -- used
to determine whether a given instance classifies under the description or not is shown in Figure 5.8.
However, this results in a LOOM representation that cannot be easily used by the text planner (which
expects the syntactical (BNF) information expressed in terms of LOOM relations and concepts and
not embedded in LISP code). It is thus necessary to add the structural/syntactic information about
lists that the text planner expects and needs to generate from. In our domain, the 1ist concept is
represented as shown in Figure 5.9.

There are many advantages to using a representation such as LoOM; the main one is the availability
of the classifier mechanism. As we describe in the following section, the classifier allows the generation
system to do two tasks very easily: (i) to categorize different features in an example as being either
critical or variable, and (i{) to determine if a negative example generated by the system is ‘interesting’
or not.

5.3 The Example Generator

This section deals with the generation of examples to be used in the presentation. As discussed in
Section 5.1, the text planner posts explicit goals to present examples as part of the overall description.
In this section, we discuss issues such as the construction, storage and retrieval of examples, the
determination of their critical and variable features and whether prompts are required.

5.3.1 Construction of Examples

Examples can either be retrieved from a pre-existing Example Knowledge Base, as in HYPO (Ashley,
1991), or can be constructed, as in CEG (Suthers and Rissland, 1988). Our system uses both
construction and retrieval to find suitable examples. Initially, the system possesses examples of the
primitive grammar elements such as atoms, numbers, strings, etc., in the LISP domain. Examples of
such elements are therefore always retrieved. When the system needs to present an example of a more
complex grammar symbol, such as a 1ist, for instance, the system constructs the example based on
the BNF definition of a 1ist, as well as the features being illustrated. Unlike HYPO, which used 12
pre-defined features as indices, our system uses LOOM to allow us to retrieve examples with as few, or
as many indices as necessary; the greater the number of indices specified in the retrieve, the fewer the
number of possibilities returned by LOOM for consideration.
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data-element := symbol | number | character | list ;

list := ¢( {data-element *} ’) ;

Figure 5.6: Description of a 1ist in POPART.

(defconcept data-element
:is (:or symbol number character list))

(defconcept list
:is (:and grammar-symbol (:predicate (?x) (LOOM-LIST-P ?7x))))

Figure 5.7: Description of a 1ist in LOOM.

(defun LOOM-LIST-P (x)
(declare (special parens no-erxor))
(setf no-exror t)
(cond ((loom-type—p x ’left-parenthesis)
(setf parens 1) (loom-list-1-p (get-range x ’grammar-sequence))
(and no-error (zercp parens)))
(t 2il)))

(defun LOOM-LIST-1-P (x)

(cond ((null x) nil)
((Qoom-type-p x ’left-parenthesis) (setf parens (+ parens 1)))
((loom-type-p x ’data-elements))
((loom~type-p x ’right-parenthesis) (setf parens (- parens 1)))
(t (setf no-error anil)))

(it (and x (get-range x ’‘grammar-sequence))

(loom~list-1-p (get-range x ’grammar-sequence))))

Figure 5.8: The predicate used by LOOM to check for a 1ist.

(defconcept list
:is (:and grammar-symbol (:predicate (7x) (loom-list-p ?x)))
:annotations ((syntax
(left-parenthesis (kleene-closure data-elements )
right-parenthesis))))

Figure 5.9: LOOM description of a 1ist.




The example generator takes as input the list of features for a concept that needs to be illustrated by
presenting an example of a particular object. The syntactic specification of the function and a typical
call to it are given below:2

function: get-example
(get-example ?concept ?features ?object)

typical call:

(get-example ’data-element ’(atom number) ’list)

In the function above, ?concept refers to the concept being illustrated, 7f eatures specify the features
of the concept that the example should try and illustrate, and ?object is the object whose example
should be presented. Thus, in the instantiated function call shown above, the system constructs an
example of a list, where the concept to be illustrated is that of a data element, and the features that
need to be highlighted are the facts that a data element can be either an atom or a number. The
resulting output from such a function call would be

(oranges &)

The function accesses global constraints such as the text type to determine the type of elements
required; in the case of the advanced text type, the element representing the number could have been a
more complex, floating point number (this is done by specifying default types for the text type: lacking
any further information, if a number is required for use in an example in an advanced text, the system
will retrieve a floating point number, as opposed to an integer.

The function get-example also takes an optional parameter, the X1-c1-number, which represents the
number of elements desired for the feature in the concept that happens to be defined as a kleene-closure.
In the case of a 1ist, for instance, the BNF definition (in POPART notation) is:

list := ‘( data-elements = ');

Since the default value of the k1-c1l-number is one, if the parameter is not specified, the system will
generate examples of lists with one data-element if no other information is available. In cases such as
the one above, where the features to be exemplified are specified (in the variable features), the system
will generate examples taking both the k1-c1-number and the features into account. The generated
examples are then also stored in the knowledge base.

If the system is successful in generating an appropriate example, that example is then stored in
LooM as an example for the concept. Given the classification facility in LOOM, this is automatically
indexed underneath a 1ist, as well as any other grammar symbols it is applicable to. The next time
the system needs to generate an example for the same features, the system can retrieve this example,
rather than constructing one from scratch.

The function get-example, described here, is a relatively low-level function, in that it takes a very
specific request for the object, as well as the features that need to be highlighted. This was done so as
to make the text plan operators more explicit. The reasoning to determine the number and order of
examples to be presented, determining the critical and variable features, etc., is represented clearly
in different constraints on the plan operators and are the focus of this study. This allows for easy
modification of different strategies to observe their effects on the plan generated.

2In the actual implementation, the function takes other arguments as well; these are to do with the variable that needs to be
instantiated with the example, etc.
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The next few subsections describe how the example generation component determines the critical
and variable features, generates ‘interesting’ negative examples and, if necessary, prompts, for the
examples.

5.3.2 Determining Critical Features

As we mentioned earlier, in Section 3.6, it is essential to convey to the user that some of the concept
features are required for any instance to be an example of the concept. These features are referred to
as critical features. To be able to emphasize the critical nature of a feature, the system can (in tutorial
contexts), present a pair of examples, one positive and one negative, identical in all respects, except
for the critical feature being emphasized. To be able to do so, the system must be able to determine
which of the many features of the concept are critical, and which are not.

In our system, the representation of the domain model in LooM allows us to determine critical
features relatively easily. This is because the classification facility in LooM allows the system to
query it regarding relationships between concepts and instances. This allows the system to determine
whether a particular feature is critical or not, by simply modifying the value of each feature along
various dimensions and then testing (querying LOOM) to see if the modified instance still classifies
as an instance of the original object. We have defined for our domain a number of ways to modify
the definition of a concept.® The system successively attempts these operators on the given concept
definition, and finds those features whose modification causes the example to fail to classify under the
object being explained. The modifications attempted by the system are given in Figure 5.10.

The generate-and-test approach taken by the system to determine whether a particular feature is
critical or not is inefficient compared to say an alternative approach based on analytically examining
the LOOM definition and determining the features from there. This, however, is not possible in our
case, because certain constructs such as the kleene-closure in BNF cannot be represented in the LooM
semantics. Since these constructs are essential, they are represented as predicates in LISP that are used
by LooM during classification and matching. These predicates thus cannot be examined analytically to
determine the critical and variable features, and it is therefore necessary to use the generate-and-test
approach to classify the features as such. The representation of a 1ist in LISP, which is defined using
a kleene-closure will be seen in Chapter 6.

There are a total of seven ways along two dimensions with which the system attempts to modify each
feature of a concept definition in this domain to try and find a critical feature. Two of the seven ways
in which the systems attempts modification are with respect to the number dimension; the remaining
five are with respect to the type dimension. We shall illustrate the working of the algorithm by taking
the example of the concept 1ist in the LISP domain. In the case of the introductory text type, the
system retrieves the syntactic, surface features for presentation. These are the left parenthesis, the
data elements, and the right parenthesis. Given these three features, the system must now determine
which of these features are critical and which are variable. The system attempts to generate and
test different instances created from modifying the definition of a 1ist, As stated above, the system
attempts to modify features along two dimensions:

Number Dimension: First, the system attempts to see if deleting the feature under consideration
from the definition causes the gystem to classify this modified instance wrongly. If it does, the feature
is marked as being critical. Secondly, the system checks to see whether adding an extra element
identical to the feature causes the system to find the modified instance as belonging to another class.
In both these cases, the fact that the feature is critical with regard to the number is noted by the
system. Thus, if the BNF definition is of the form

31t is possible that these modifications will not be applicable in many domains; the alternative (to not using such domain
specific modification information) is to use a representation as in CEG (Suthers and Rissland, 1988), in which every concept
contained annotations on how various features could be modified.
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For each feature in the set of input features, determine if the feature is a critical feature by
creating an instance of a modified definition and checking whether the (modified) instance
classifies under the original definition. The modified definitions are created by varying each
feature in the definition as follows:

1. Varying the Number:

(a) modify the definition by omitting the feature from the definition
(b) modify the definition by adding another symbol of the same type as the current
symbol in the definition

if in either of these two cases, the modified instance fails to classify under the original
definition, mark the feature as being critical along the number dimension.

2. Varying the Type:

if the feature is a terminal symbol:

(a) modify the definition by substituting the feature with another terminal symbol of -
the same type

(b) modify the definition by substituting the feature with a terminal symbol of another
type

else if the feature is a non-terminal symbol:

(a) modify the definition by substituting the feature with the superconcept of the
feature

(b) modify the definition by substituting the feature with the subconcept of the feature

(¢) modify the definition by substituting the feature with the sibling concept of the
feature

if in any of these cases, the modified instance fails to classify under the original
definition, mark the type of the feature as a critical feature.

Figure 5.10: Determing the Critical Features of a Concept in BNF.

A -- grammar-seq -- B -- grammar-seq -- C
the system successively considers modified definitions of the form:

A -- grammar-seq -- A -- grammar-seq -- B -- grammar-seq -~ C
A -- grammar-seq -- B -~ grammar-seq -- B -~ graxmar-seq -- C

see if in any of these cases, the modified concept description still classifies as a subconcept of the
original concept.

For the case of a 1ist, instances of a 1ist are created from modified definitions and tested to
see whether they classify under the original definition of a 1ist, Modifications along the number
dimension, such as reducing the number of parentheses by one, or adding an extra parenthesis, cause
the instances to not classify under the original definition. Thus, both the left and the right parentheses
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are marked as critical. On the other hand, modifications to the number of data elements in the list,
by either deleting one, or adding one, do not result in the instance failing to classify as a list. At this
point therefore, the data elements are not classified as critical features.

Type Dimension: There are a number of different ways in which the system attempts to medify a
feature by varying the type dimension: '

Terminals: If the feature being considered happens to be a terminal symbol (the POPART-to-LOOM
transformer marks the grammar symbols appropriately as being terminal and non-terminal symbols
based on their BNF representation), the system modifies the definition of the concept in two ways: (1)
by replacing the symbol with another terminal symbol of the same type. For instance, if the terminal
symbol happened to be a number, say 2, the system would try to replace 2 with another number, for
instance, 7. (i) by replacing the terminal symbol with another terminal symbol of another type. For
instance, in the previous case, the system could attempt to replace the number 2 with a character, -
such as ‘a’. In the case of the list, the system can attempt to replace the left-parenthesis with
another terminal symbol, such as the right-parenthesis, and in the second case, by a keyword, such
as ‘defun’. If in either of these cases, an instance of the modified definition did not classify as an
instance of the original definition, the system would mark the fact that the type of the feature was a
critical feature.

Non-Terminals: If the feature being considered is a non-terminal symbol, the system attempts to
modify the definition by changing the symbol in three different ways: (i) by replacing it with a
superconcept, (ii) by replacing it with a sub-concept, and (iii) by replacing it with a sibling concept.
In the case of the 1ist, case (i) is not applicable, because data-element is the most general type in
the representation of a 1ist, since it is the disjunction of the symbol, number, and 1ist types; case (i)
could result in the system replacing data-element with another type such as number, and case (iii) is
again not applicable in the case of data-element. Since a list of numbers is still a valid list, the type
aspect of data-elements is not marked as being a critical feature for a 1ist.

The algorithm is also given in Figure 5.10.5 The algorithm allows the system to determine the critical
features of a concept. Once these features have been determined, the system caches these values so
that it does not have to repeat this reasoning the next time it has to determine critical features for the
same object and is given the same set of input features.

As in the case of get-example, the function to find the critical features of an object has been designed
for use as a function in the CONSTRAINTS of a text plan operator. The function is given a list of features
and an object, and returns those features from the set that are critical. A typical call is shown below:

function: select-critical-features
(select-critical-features ?features ?object)

typical call:
(select-critical-features
’(left-parenthesis (kleene-closure data-elements)
right-parenthesis)
'list)

In this case, the function call returns:

4Currently, the system does not attempt to vary more than one feature at a time while trying to determine the nature of the
features. Thus, the system does not attempt to add/delete both the parentheses and see whether the resulting construct would
still classify as a list or something else.

5Note that this algorithm is a superset of the algorithm used by LEX (Mitchell et al., 1983) to generate new problems: LEX
only attempted substitution of a term with a sibling term.
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(left-parenthesis right-parenthesis)

The function selects critical features from a list of features passed to it, rather than finding the
critical features, because different cases may require the presentation of different sets of features. For
instance, the generation of descriptions for introductory and advanced texts requires the presentation
of quite different amounts and types of information in many domains. Thus, in our system, the
constraints in the plan operator first select the appropriate features for the given text type from
the LOOM representation, and then, determine the critical features from this set of features to be
presented.

5.3.3 Determining Variable Features

As in the case of critical features, the system must know which features are variable in nature. A
knowledge of the variable features then allows the system to illustrate the variability by presenting
multiple positive examples that vary in the variable features. Since variable features are not critical
features, if the critical features for a concept are known, the system can attempt to prune the set of
features to be considered by removing the critical features.® The remaining features are then processed
exactly in the same manner in which the critical features are determined; the only difference is that
the systems tests for successful classification (rather than a failure to classify) after each modification.
Each feature is varied along both the type, and the number dimensions as in the previous case
regarding the critical features:

¢ Number Dimension:

- vary the definition by omitting the current feature from the definition
- vary the definition by adding another feature of the same type as the current feature

¢ Type Dimension:

-- if feature is a terminal: attempt replacements with (i) other terminals of the same type, and
(ii) terminals of another type

-- if feature is a non-terminal: attempt replacements with subtype, supertype and sibling types

If instances created from the modified definitions still classify under the original definition of the
concept, the feature is marked appropriately as a variable feature. As we mentioned previously, LOOM
allows us to determine the class of the description very simply with its classification mechanism. As
in the case of critical features, the variable features of the object are cached upon computation so that
future calls to the function can be answered using simple retrieves.

Features of a concept can be critical and variable at the same time--along different dimensions.
Consider the case of the operator PLUS in LISP for instance. While the number of arguments that follow
the operator are not critical, the type of the arguments is--they should be numbers. Similarly, in the
case of the operator CONS in LISP, the number of arguments is critical, while their type is not. It is
therefore important to identify not just whether a feature is critical or variable,” but also in what
respect.

6The reasoning mechanism which determines the critical features also uses this null intersection criteria to prune the set of
features it has to consider in finding critical features.

7All features are either critical or variable, depending upon their role in the concept definition. However, some critical
features such as parentheses in LISP are so ubiquitous that they can be a distraction when discussing complex constructs. To
handle this aspect, we shall introduce the concept of fixed features, which are critical features and therefore appear in all
examples, but are not explicitly used by the system to generate negative examples, or commented upon. We shall see an example
of these fixed features in Chapter 7.
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(GREEN GRASS BLUE SKIES) ; list of symbols
GREEN GRASS BLUE SKIES ; not a list
(AARDVARK) ; a list of one symbol
AARDVARK ; an ATOM, not a list.

Figure 5.11: Some negative examples are more interesting than others.

5.3.4 Finding Interesting Negative Examples

An important aspect in generating tutorial descriptions is the presentation of negative examples.
Negative examples need to be presented to highlight the critical aspects of the concept being described.
However, since there can be different negative examples that can be used in any given situation, it
is beneficial to use examples that are ‘interesting’ in some sense, rather than any random example.
Consider for instance, the case of a 1ist in Figure 5.11. In this case, let us consider the two parentheses
(left and right), as being one atomic unit in the grammar; i.e., the parentheses are either removed,
or added, only as pairs. In the two pairs of positive-negative examples presented there, both the
pairs emphasize the critical nature of the parentheses. However, the second pair of examples is more
pedagogical, because it conveys not only the fact that the negative example is not a list, but also that it
is an atom. It is therefore important to find such ‘interesting’ negative examples, if they are available.
Note also that this allows the system to opportunistically include more material if so desired (with a

COXTRAST relation).

In our system, finding interesting negative examples is made quite easy using the classification
mechanism in LooM. Each time the system finds a critical feature, it tests to see whether the
modification causing the example to become negative also causes the example to classify under another
description in the knowledge base. If it does, the system marks this critical feature, as well as the
classification of the negative example, and uses this in preference to some other example.

This method of finding interesting negative examples is very dependent on the availablity of a
classification mechanism.® While the previously mentioned use of LOOM (in determining critical
and variable features) could possibly be implemented even without the use of a classifier, finding
interesting negative examples would be much harder to implement without this capability.

5.3.5 Example Complexity and Sequencing

An important issue in the presentation of examples is the issue of sequencing their presentation
appropriately. As discussed in Section 3.6, the order of presentation is, in general, dependent on the
relative complexity of the features of the concept to be presented. There are two levels at which the
sequencing needs to be planned: .

o at the feature level, where the system must decide which features need to be presented first. This
will determine the presentation order of example sets illustrating each feature.

8Classification - structural subsumption — is theoretically undecidable (Doyle and Patil, 1991). However, for certain
restricted languages, exponential algorithms to determine whether one description logically entails another exist, and are
widely used.




The complexity of the feature ftr is defined as:

1. if terminal(ftr) then complezity(ftr) = 1

2. if non-terminal(ftr) and the right-hand side (RHS) of the grammar production is a
disjunction, then complezity(ftr) is equal to the sum of the complexities of the types in
the disjunction on the RHS.

3. if non-terminal(ftr) and the RHS of the production is not a disjunction, then
complezity(ftr) is equal to the product of the complexities of each of the elements
in the RHS.

4. if kleene-closure(ftr), and the ftr is defined as a disjunction of n types, then
complezity(ftr) is equal to

2n-1, complezity(type;) +--- + 2" 1« complezity(type, )
5. if recursive(ftr) then complezity(ftr) = 0o

Figure 5.12: Determining syntactic complexity of a term in the BNF domain.

e at the individual example level, where the system must determine how examples within each
example set (illustrating a feature) need to be sequenced.

The complexity of a feature, or a concept in a domain cannot be determined completely independently
of the domain: in our case (using BNF grammars for programming languages), the syntactic complexity
of a particular construct is computed as follows:

o if the feature is a terminal symbol, the complexity measure of that feature is considered to be 1.
Thus, the complexity measures of terminal symbols such as left-parenthesis, characters, such
as a, b, etc., numbers such as 5 and 7, are all 1. This is because a terminal symbol can be
considered a constant and needs only one example to illustrate.

e if the feature is a non-terminal symbol where the non-terminal symbol is a disjunction of different
types, then the complexity measure of the feature is the sum of the complexity measures of the
different types in the disjunction. For instance, if data-element is a non-terminal defined as
follows:

data-element := symbol | number | string | character | list;

then the complexity measure of data-element is defined to be the sum of the complexity-measures
of symbol, number, string, character, and 1ist.

This is because the number of examples that would be required to communicate the different
features of the non-terminal on the left hand side of the production would be equal to the sum of
the examples required for each of the right hand side elements. In the simplest case, if the right
hand side consisted only of a number of terminal symbols, the complexity of the non-terminal on
the left hand side would be the number of terminals in the disjunction.

o if the feature is a non-terminal symbol which is not defined as a disjunction, then the complexity
of the symbol is the product of the complexity of each of the elements in right-hand side (RHS) of
the production. In this case, the complexity reflects the fact that the total number of examples
needed to illustrate this non-terminal would be the total number of legal permutations possible
for the production. For instance, consider the definition of a 1ist:
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list := left-parenthesis {data-elements +} right-parenthesis ;

In this case, the complexity measure of the symbol 1ist is the product of the complexity measures
of a left-parenthesis, the term ‘{data-element +}’ and the right-parenthesis.

o the complexity of a kleene-closure of a symbol (such as {data-elements +}), is computed by
calculating the sum of the products of the complexity of each of the symbol's derived types,
and the number of examples that each of these derived types can occur in. Since a kleene-
closure of a symbol represents the power set of all of the symbol's derived types, the total
number of examples that a particular type can appear in is 2"~ where n is the total number of
derived types. For example, the complexity of the kleene-closure of data-element (the expression
‘{data-element +}’), could be computed as follows. If data-element is defined as a disjunction:

data-elements := symbol | number | list;

the derived types are: symbols, numbers and lists, and n is equal to 3.
complexity({data-elements +}) = 2% + complexity(symbol)

+22 » complexity(number) + 22 » complexity(1ist)

The rationale for this complexity measure lies in the fact that a kleene-closure can vary in two
dimensions: () in the number of elements per set (ii) the type of elements in each set. Thus, the
total number of examples necessary for illustrating a term defined as a kleene-closure is the total
number of examples in the power set, plus the additional examples generated due to the variable
nature of each of the derived terms that are part of the examples. If the complexity measure of
each of the derived types is 1 (for instance, if all of the derived types were terminal symbols),
then the complexity of the term under consideration is equal to 2", where n is the number of
derived types (this represents the power set of the derived types).

o if the feature is a recursive non-terminal (i.e., the non-terminal on the left-hand side of the
production also appears on the right-hand side of the production), then the complexity of the
feature is considered to be infinity. This is because the feature can potentially need an infinite
number of examples to illustrate all the possible cases.

The algorithm is summarized in Figure5.12. The algorithm is invoked by the top-level function
ORDER-BY-COMPLEXITY, which is the function used in the CONSTRAINTS of the plan operators. This function
also takes into account certain annotations which indicate whether the feature is a variable one. In the
case of variable features, there are two ways in which they can vary: the number and the type. Given
the goal of generating examples for two variable aspects of a feature, the system compares the relative
complexity of the two features. For instance, in illustrating the variable nature of data-element of a
list, the function would compare the complexity of the number aspect and the type aspect for data
elements. The ‘number’ aspect is computed as 2 (one example at each end of the range is desired to
illustrate the variable nature: one with a small number of elements, and another with a large number
of elements). The complexity of the ‘type’ aspect is computed by finding the number of sub-types of
the given feature. This is because the system needs to present at least one example of each sub-type.
The ordering of the presentation is then done on the basis of their relative complexities. In the case of
the data-elements given above, since the type complexity is greater than 2, examples illustrating the
variable nature of the ‘number’ aspect are presented before the examples illustrating the ‘type’ aspect.

Apart from the complexity measure mentioned above, there is one more constraint that can
sometimes influence the order in which examples are presented: if there is a ‘significant’ negative
example that the system needs to present to the user, and the text type is introductory, the system will
need to generate additional text discussing the negative example (and its differences with the ‘close’
positive example). In this case, the system orders the examples such that the ‘positive’--‘interesting-
negative’ example pair is the last pair presented in the sequence. This allows the system to present

56




all the positive examples together, before presenting a discussion of the interesting negative example.
(An instance of this case will be seen in Section 7.3.)

5.3.6 Generating Prompts

There is another aspect of the presentation that must be dealt with at the same time as the example
generation. This is the issue of presenting prompts. As mentioned earlier (in Section 3.8), prompts
are meant to convey additional information that can help focus the user's attention; while they can
be pictorial, formatting directives (such as bold-face fonts, changes in color, etc.), or even animated
characters, we only consider here the use of short phrases in text to achieve our purpose. Prompts are
essential if the examples illustrate multiple features at the same time. Prompts become necessary:

o if the example retrieved by the system in response to a communicative goal happens to possess
more (or less in the case of a negative example) features than the communicative goal specified;
this can be determined by analysing the number of variable features that a positive example
possesses (positive examples will possess all critical features) and comparing them with what
was asked for; in the case of a negative example, since a negative example may be deficient in
more than one critical feature, the numbers of both critical and variable features need to be
observed. If the number of features in the goal and the examples generated do not match, it is
desirable that prompts be generated to highlight those features in the examples that the goal
was supposed to illustrate. In our system, this will result in generation of a prompt.

o if the examples are presented physically far away from the point where the concept being
illustrated is mentioned in the textual description. This is one of the reasons why prompts are
seen 80 often in reference manual style texts, because the text type prevents the generation of
examples until the description is complete: this often results, in the case of long descriptions, in
examples being placed away from the concept’s mention.

o if the example is a result of combining more than one communicative goal: this may be either
by design, as in the case of reference manual style texts, where goals to illustrate individual
features are combined at the end to present one or two complex multi-featured examples, or
serendipitously (as in the case of the planner finding two adjacent speech acts presenting
examples that can fulfill each other’s goal: an example of this occurs in a description of a 1ist
presented in the following chapter, where the following two goals are generated adjacent to each
other in the discourse structure:

(PRESENT-EXAMPLE LIST (DATA-ELEMENT (NUMBER NULTIPLE)))
(PRESENT-EXAMPLE LIST (DATA-ELEMENT (TYPE ATONS)))

The first goal occurs as a result of another goal that illustrates how examples can contain different
numbers of elements; as it happens, the planner generates an example of multiple elements that
are all atoms to satisfy the goal. This example meets the requirements of the next goal, which
specifies the need to generate an example of a list of atoms. In such cases, if the system folds
these two goals into one, it needs to generate a prompt to highlight the fact that two features are
being illustrated).

o It is also essential to explicitly mark an example as being either anomalous or exceptionally
difficult (for instance recursive constructions of a concept, such as a list of lists): such marking can
be done either through the use of prompts, or through the generation of appropriate background
text before the example is actually presented. In introductory texts, the system usually generates
backgrlound text; in the case of advanced texts prompts are preferred over text explaining the
examples.
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5.4 Status of the System

Our framework is thus centered around a text planner that generates text and posts explicit goals
to generate examples that will be included in the description. Plans also indicate how and when to
generate the prompt information. By appropriately modifying the constraints on each plan operator,
we can investigate the effects of different resources in the framework. Our example generator uses
the classifier mechanism in LOOM to determine critical and variable features, as well as interesting
negative examples. We have devised a complexity heuristic for the BNF domain that works well in
our application. We use this complexity information to devise the ordering of the examples in the
presentation at the global level.

The system currently contains about 60 plan operators that generate descriptions with integrated
text and examples. The operators can model various interaction effects between text and examples
such as the introduction of ‘interesting’ negative examples in both LISP and the INTEND domains.
The operators have been tested by planning the description of 20 LISP constructs and 10 constructs
in INTEND;? these are shown in Appendix D. The discourse structures generated were checked for
correctness, and also whether the system had found the all the critical and variable features.

The system is currently unable to generate meaningful descriptions for constructs in which the
syntax does not contain enough information. For instance, the 1et-form is defined in INTEND as given

below:

let-form := *( 'LET ’( { let-binding + } ’)
expression + ') ;

In this case, there is no further information that the variables defined in the let-binding should
appear in the expression. Consequently, the system generates a description that does not reflect user
expectations. Similarly, the loop statement is defined as:

loop~form := ’( ’LOOP { loop-with }
{ loop-initially }
{ iteration-driving-clause + }
{ loop-condition-clause + }
{ loop-action-form }
{ loop-tinally } *) ;

However, the relationship between each of the components of a 1oop are not specified, and the system
is unable to generate useful explanations about it. This illustrates one of the major shortcomings
of this implementation: it does not, as yet, represent any semantic information about the various
constructs in the domain. This results in an inability to generate descriptions at present that are
either ‘use’ oriented, and so depend upon the underlying semantics, as seen in intermediate texts, or
in generating even purely syntactic descriptions in which different parts of the syntactic specification
interact with each other in ways that are not captured by the BNF. These and other limitations of our
current implementation are discussed further in Section 10.2. If this system is to be scaled up, the
semantics of the constructs must be represented as well.

In the following chapters, we illustrate the working of the system by generating descriptions about
LISP as well as INTEND about some constructs for which the system can generate useful descriptions.

*The system can generate explanations for 8 much larger percentage of the INTEND grammar, since many of the productions
in the grammar are very similar -- such as simple disjunctions, or a syntactic specification.
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Chapter 6

Generating Integrated Natural Language Descriptions

An example is always more efficacious than precept.

-- Samuel Johnson

The previous chapter described the text planner and example generator components of the system.
In this section, we illustrate the working of the system by tracing through the generation of three
descriptions for the same concept, a 1ist in LISP. The descriptions are in the text-only mode, examples-
only mode, and both text and examples. This will clarify many of the issues that were presented
earlier.

We have already discussed the representation of a 1ist as a concept in LooM (Figure 5.9). Using
this representation of a 1ist, we present three scenarios in which the system generates presentations
that consist of only text, only examples, and finally, both text and examples. The target text
type is introductory, so examples are generated wherever possible, usually interspersed within the
description. This will illustrate the integration between text and examples.

6.1 A Purely Textual Description of a LIST

To generate a description for the concept 1ist, the system starts with an initial top level goal of (BEL
HEARER (CONCEPT LIST)).! Two of the plan operators in the plan library that match this goal (i.e., their
EFFECT slot is specified as (BEL HEARER (CONCEPT ?70BJECT)) and the variable ?object can be bound to
list) are shown in Figure 6.1.

Both the plan operators in Figure 6.1 can be used by the system to describe objects: the first
plan operator is used to generate descriptions that have some textual explanation, with or without
examples; the second plan operator is used to generate descriptions that have only examples. The first
plan operator checks whether the object is a term in the grammar, and then finds the appropriate
text type? to use for the object. This is done using a simple user model, which contains the objects
the user is familiar with. If the object being described appears in the user model, the system selects
the advanced text type, otherwise, the system generates an introductory text. In our current scenario,

1in our initial implementation, the goal form contained the term ¥oUN, which in the DIM model (Engelmann and Carnine,
1982), represents a multi-featured basic form.
21n this implementation, we have not considered the generation of intermediate texts.
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(define-text-plan-operator

:EFFECT (bel hearer (concept ?object))

:CONSTRAINTS (and
(isa? ?7object grammar-object)
(get-text-type-for-object ?text-type ?object)
(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type)
(not *use-examples-only*))

:NUCLEUS (bel hearer (ftrs-list 7ftrs Zobject))

:SATELLITES (((foreach ?ftrs (elaboration 7ftrs ?object)) *optional*)))

(define-text-plan-operator
:EFFECT (bel hearer (concept ?object))
:CONSTRAINTS (and
' (isa? ?object grammar-object)

(get-text-type-for-object ?text-type ?object)
(get-appropriate-ftrs-for-user ?ftrs ?object ?user-type)
(select-critical-ftrs ?crit-ftrs 7ftrs 7object)
(enumerate-ftrs ?ex-crit~ftrs ?crit-ftrs ?object)
(order-by-complexity ?eg-crit-ftrs 7ex-crit-1trs)
(select-variable-ftrs ?var-ftrs 7ftrs 7object)
(enumerate-ftrs 7ex-var-ftrs ?var-ftrs 7object)
(order-by-complexity ?eg-var-ftrs ?ex-var-ftrs)
suge-examples-only*)

:NUCLEUS ((foreach ?eg-var-ftrs (bel hearer (example-seq ?7eg-var-ftrs 7?object)))

(foreach ?eg-crit-ftrs (bel hearer (example-pair ?eg-crit-ftrs ?object))))
:SATELLITES (((background (present-eg-background ?object)) *optional#)))

Figure 6.1: Top level Plan Operators to describe Objects.

the user model contains only atom, and number. Thus, the system selects an introductory text type for
generation. The constraints then cause the selection of appropriate features to be presented to the
user. In this case, the text type cause surface, syntactic features to be selected for presentation. The
plan operator also specifies that the object is to be described by first listing the features, and then
elaborating upon each one of them.

The second plan operator is discarded by the system because the *use-examples-only* constraint is

not satisfied in the context. This plan operator is therefore inapplicable in the given situation.

The constraints in the plan operator selected bind the variable ?£trs to the syntactic features of a

list. This is because the text type is specified as introductory (the differences between introductory
and advanced text types will be discussed in greater detail in Chapter 8). The system posts appropriate
goals for both the NUCLEUS and the SATELLITE:
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NUCLEUS:
(BEL HEARER
(FTRS-LIST (left-parenthesis (kleene-closure data-elements)
right-parenthesis)
list))

SATELLITE:
(ELABORATE left-parenthesis list)
(ELABORATE (kleene-closure data-elements) list)
(ELABORATE right-parenthesis list)

The relation ELABORATE appears in each of the subgoals posted as a SATELLITE; as we mentioned
earlier, the presence of appropriate coherence relations between the text spans allows for the insertion
of appropriate cue phrases to ensure that the final text is coherent.

The planner looks for applicable plan operators for the first subgoal, the one posted by the NUCLEUS.?
The system finds two plan operators that have applicable :EFFECT specifications: one of the plan
operators is meant for listing a single feature, and the other one is meant for goals listing multiple
features. Since there are three features to be listed in this case, the second plan operator is selected
for this subgoal. This goal in turn, posts further subgoals that finally result in the posting of three
primitive goals which mention each of the three features. Each of these subgoals is an INFORN ... goal,
or a speech-act, which can be realized in English without further planning. These three subgoals are
linked to each other through the SEQUENCE relation, which here indicates the ordering of the syntactic
elements. The SEQUENCE relation causes the realization component to insert the cue phrase followed
by between the phrases generated by the primitive goals. The text plan generated so far appears in
Figure 6.2.* At this point, the system can generate the following sentence, which mentions all the
features of a 1ist:

A list consists of a left parenthesis, followed by zero or more data elements, followed by a right parenthesis.

The system still needs to expand the goals which were posted as the SATELLITE goals of the original
top-level goal:

SATELLITE:
(ELABORATE left-parenthesis list)
(ELABORATE (kleene-closure data-elements) list)
(ELABORATE right-parenthesis list)

The system attempts each of these (optional) goals in turn. It fails to find further information in
the domain model for the 1left-parenthesis and is therefore unable to expand on this feature. Since
the satellite was marked soptionals, the system does not try to backtrack up to the parent node
(which was to describe a 1ist). The second SATELLITE goal is to elaborate upon the kleene closure of
data-elements in a list. The system determines, based on the domain model, that data-elements ofa
list can be of different types: symbols, numbers, or lists. It therefore expands this goal by generating
a speech act which is an INFORM goal about the kleen closure of symbols, numbers or lists. Since this
is a primitive goal, it is not expanded further. The third satellite goal, to elaborate upon the right

3In most cases, the NUCLEUS subgoals are generated first, before the satellite subgoals; however, certain RST relations, such
a8 BACKGROUND and PURPOSE specify that the SATELLITE text should be generated before the nucleus subgoal is expanded.
4The text plans shown here are simplified to show the communicative goals without the formal notation.
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Figure 6.2: Plan skeleton for listing the main features of a 1ist.

parenthesis also fails due to a lack of further domain knowledge. Thus, the top level satellite goals
result in a speech act that represents the fact that data elements of a list can be kleene closures of a
set which contains symbols, numbers or other lists.

The resulting discourse structure is then processed by the grammar interface and the sentence
generator. The resulting output, with appropriate connectives generated because of the coherence
relations, is shown in Figure 6.3. The figure contains a screen snap shot of the system showing the
complete text plan (with goals and plan operator names truncated after 20 characters), as well as the
resulting description.

6.2 Communicating a Description of a LIST solely through
Examples

The previous section showed the system generating a purely textual description of a list in LISP. An
alternative description of a list can be one in which the system generates only examples, without any
accompanying explanation.

Since the system must communicate all the features through examples only, the system must first
categorize each feature as being either a critical feature, or a variable feature. This is necessary
because critical and variable features are communicated using different strategies: critical features
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through the pairing of minimally different® positive and negative examples, and variable features
through the presentation of groups (at least 2) of widely differing positive examples.® The system must
then also order these examples for presentation to the user.

In the case of a 1ist, there are only three features that can be expressed through examples: the
left parenthesis, the data elements and the right parenthesis. The system determines (using the
algorithm given in Sections 5.3.2 and 5.3.3) that the left parenthesis and the right parenthesis are
critical features, because the instances that the system created without these features did not classify
as instances of a 1ist, whereas modifying the data-elements in different instances did not cause the

instances to not classify as a 1ist.

The system must also determine the order in which examples illustrating different features are to
be presented: it does this ordering within each group (critical features and variable features) using
the algorithm presented in Section 5.3.5. Since both the left and the right parentheses are equally
complex according to the algorithm, the system presents them without any particular ordering. Since
data-elements is a non-terminal, the system first determines its sub-types (symbols, numbers and
lists), finds the kleene closure (the power set of these 3 sub-types) and orders them in increasing
complexity (again, using the algorithm in Section 5.3.5). The system must also ensure during the
presentation of the variable features that it generates examples with varying number of elements in
them.

Finally, the system determines whether the number of examples required to communicate the
critical features is more than the number of examples required to communicate the variable features.
Since the variable features require more examples, the system presents examples illustrating the
critical features before the variable features. This can be seen in the constraints of the plan operator
in Figure 6.4.7 The plan operator posts a goal to present a pair of examples for each critical feature,
and a set of examples for the variable features.

It may seem that because critical features are important in the examples that the critical features
should be presented first, before the variable features. While most of the texts in the corpus do display
this phenomenon (critical features being presented first), we believe that the ordering of the features
is actually caused by the fact that the number of examples necessary to illustrate the critical features
in most cases are less than the number of examples necessary to illustrate the variable features, and
thus according to our complexity heuristic, are presented first. It is also sometimes not possible to
present critical features first, because the presence of significant negative examples could cause the
generation of further explanation, which should be sequenced last. Since the positive and negative
examples should be presented adjacent to each other in the presentation sequence, that critical feature
then gets presented last.

Since the examples are presented on their own, with no accompanying description, the system must
also present prompts with the examples. The prompts should, at the very least, identify the examples
as being either positive or negative. In this case, if more than one feature is being illustrated, the
system generates prompts which contain information about the types of data elements in the list, The
resulting text plan, and description are shown in Figures 6.5 and 6.6. The first four examples in the
output are due to the critical features. The remaining examples are due to the variable features: a
list of atoms, a list of numbers, a list of atoms and numbers, a list of a list, etc. The system did not
present negative examples of atoms (by stripping the parentheses) because as we stated earlier, the
system ouiy attempts to determine critical and variable features by modifying the original definition
one feature at a time,

5The difference is in the presence and absence of the critical feature.

€The examples are identical except in the varying feature, which is widely varied.

"The system actually posts goals in reverse order, i.e., if there are two goals in the NUCLEUS, the system will first post the
goal that appears second in the NUCLEUS. Thus, the actual plan operator in the system has the goals in the NUCLEUS reversed;
however, for clarity, we have presented the goals here in the more conventional order.




(define-text-plan-operator
:EFFECT (BEL HEARER (NOUN ?DBJECT))
:CONSTRAINTS
(and (isa? ?object concept)
(get-user-type-for-object ?user-type ?object)
(get-appropriate-ftrs-for-user ?ftrs ?object ?user-type)
(select-critical-ftrs Z?crit-ftrs ?ftrs ?object)
(enumerate-ftrs ?ex-crit-ftrs ?crit-ftrs ?object)
(order-by-complexity ?eg-crit-ftrs ?ex-crit-ftrs)
(select-variable-ftrs ?var-ftrs ?ftrs ?object)
(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object)
(order-by-complexity ?eg-var-ftrs Tex-var-ftrs)
(complexity-greater ?eg-crit-ftrs Zeg-var-ftrs)
*USE-EXAMPLES-ONLY#)
‘NUCLEUS ((FOREACH ?EG-CRIT-FTRS
(bel hearer (example-pair ?eg-crit-ftrs Zobject)))
(FOREACE ?EG-VAR-FTRS
(bel hearer (example-seq ?Zeg-var-ftrs Zobject))))
:SATELLITES (((BACKGROUWD
(eg-background ?object)) soptionals)))

Figure 6.4: Plan Operator to generate example-only descriptions.

6.3 Generating an Integrated Description of a LIST

Let us now see how the system generates an integrated description containing both text and examples.
The system initially begins (as in the previous two cases) with the top-level goal being given as
(BEL HEARER (CONCEPT LIST)). The text planner searches for applicable plan operators in its plan
library, and it picks one based on the EFFECT statement and the applicable constraints. The plan
operator selected is the same plan operator initially selected when the system generated a purely
textual description of a list. The text type causes the syntactic features of the list to be selected for
presentation, as in Section 6.1. The main features of 1ist are retrieved, and two subgoals are posted:
one to list all the features (the left parenthesis, the data elements and the right parenthesis), and
another to elaborate upon them.

At this point, the discourse tree has only three nodes: the initial node of (BEL HEARER (CONCEPT
LIST)),® and its two children nodes, namely LIST-FEATURES and DESCRIBE-FEATURES, linked by a
coherence relation, ELABORATE.

The text-planner now has these one NUCLEUS and three SATELLITE goals to expand:

8For the sake of clarity, we shall refer to such goals as (DESCRIBE-... ).
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Figure 6.5: Text Plan Generated for the Examples-Only description of a 1ist.
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Figure 6.6: Output generated in the examples-only mode of a 1ist description.

(LIST-MAIN-FEATURES
LIST (LEFT-PARENTHESIS (KLEENE-CLOSURE DATA-ELEMENT)
RIGHT-PARENTHESIS))

(DESCRIBE-FEATURE LEFT-PARENTHESIS LIST)
(DESCRIBE-FEATURE (KLEENE-CLOSURE DATA-ELEMENT) LIST)
(DESCRIBE-FEATURE RIGHT-PARENTHESIS LIST)

The planner searches for appropriate operators to satisfy the first of these goals. The operator
to describe a list of features indicates that the features should be mentioned in a sequence. Three
goals are appropriately posted at this point. These goals result in the planner generating a plan for
describing the main features of a list: the left parenthesis, the data elements and the right parenthesis.
At this point, the portion of the discourse tree that has been constructed is identical to the one that
was constructed for the top level NUCLEUS goal in the ‘purely textual’ description that was presented
in Section 6.1. The discourse tree contains the structure and information necessary to generate the
first sentence of the description: “A list consists of a left parenthesis, zero or ... ”. A skeleton of the
resulting text plan is shown in Figure 6.2.

The system needs to expand the three SATELLITE goals to describe each of the three components
of a list. As in the previous case, described in Section 6.1, two of these SATELLITE goals, the ones to
elaborate upon the left and the right parentheses, founder for lack of additional information. Being
*optional*, the system continues without trying to backtrack up a level.

The system now attempts to satisfy the goal DESCRIBE-DATA-ELEMEXTS by finding an appropriate plan.
Data elements can be of three types: numbers, symbols, or lists. The system can either communicate
this information by realizing an appropriate sentence, or through examples (or both). The system is
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now no longer constrained to generate purely textual descriptions, as in Section 6.1. Since the text is an
introductory one, and the definition of a list has already been presented, heuristics in the system cause
it to select examples for presentation. The introductory text type specifies that if a concept definition
has been presented, elaborations are preferably realized in the form of examples immediately following
the definition. The system therefore attempts to generate examples of a 1ist which illustrate these
different types of data elements. Since data elements can vary in two dimensions, it generates two
goals, one for each dimension: the number of elements, and the type of different elements. The goal
to illustrate the variable number of data elements causes the posting of two goals, one to generate an
example with a single element, and one to generate an example with multiple (four) elements.

(GENERATE-EXAMPLE (VAR-FTR DATA-ELEMENT) 1 LIST)
(GENERATE-EXAMPLE (VAR-FTR DATA-ELEMENT) 4 LIST)

Note that the system picks the numbers 1 and 4 for the following reasons: the system needs to pick an
example at the lower end of the range of possible numbers, and selects zero, but a list with no elements
is defined as the symbol NIL as well. Since the symbol ¥IL classifies as an anomalous example, and
this is an introductory text, the system chooses ‘one’ as the number of elements to present. At the
other end of the range, four’ is specified in the system as the higher limit. Both of these goals causes
other goals to be posted to actually construct the example. The example generation algorithm ensures
that (i) the examples selected for related sub-goals (such as the two above) differ in only the dimension
being highlighted; (i) the remaining dimensions are kept as simple as possible: thus the examples
generated contain only atoms. (Both numbers and atoms are considered to be equally complex in
this implementation, and numbers could also have been chosen to construct the three simpler lists;
however, the implementation in LOOM returns the first of the retrieved list, and this happens in this
case to be atoms.) The resulting output of these two goals is the presentation of two lists of atoms, one
with a single element, and another with four elements.

Similarly, the goal to illustrate the type variability of elements in a list causes the generation of
multiple goals: a goal to illustrate the fact that data elements can be atoms, numbers, number+atoms,
lists, numbers+lists, etc. The fact that there exists a kleene-closure of the data-elements causes the
system to generate a power-set of all the sub-types. These are then sorted in order of increasing
complexity, using the top-level function ORDER-BY-COMPLEXITY. As mentioned previously, this function
is based on the complexity algorithm described in Section 5.3.5. The first four goals to present examples
are selected. This is based on Clark’s maxim of four examples (Clark, 1971). These four goals are:

(GENERATE-EXAMPLE (VAR-FTR ATOM) LIST)
(GENERATE-EXAMPLE (VAR-FTR NUMBER) LIST)
(GENERATE-EXAMPLE (VAR-FTR (ATOM NUMBER)) LIST)
(GENERATE-EXAMPLE (VAR-FTR LIST)) LIST)

The first three goals are further expanded by posting appropriate goals to construct and present
appropriate examples. However, in the fourth case, the text type prevents the system from simply
generating an example of a 1ist which has other lists as its data elements. This is because in
introductory cases, the system cannot simply present examples of either recursive or anomalous
cases without explicitly marking them as such: this is done through the presentation of information
explaining such concepts to the user. The system therefore posts two goals, one to provide background
information (which presents three simple lists), and the other to build a list from these three lists.
The system needs to present three simple lists (three is chosen as a number ‘midway’ between 1
and 4 the two limits in our system): these lists need to be simple, and therefore the previously
presented lists which varied in their number of elements as well as their type, are not selected for
re-use. Presentations of recursive examples can either be annotated by prompts, or (as in this case),
accompanied (usually prefaced) with additional textual explanations. In the case of introductory
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texts, the system has the option of generating text (for advanced texts, however the system would be
constrained from generating additional text, and would therefore generate prompts).

The resulting discourse structure is shown in Figure 6.7.° The discourse structure is processed by
the sentence realizer to an intermediate form, which represents only the speech acts and the rhetorical
relations between them. This is shown in Figure 6.9. The resulting english output is shown in
Figure 6.10.

6.4 Discussion

In this chapter, we have presented traces of the system in three different operating modes 80 as to
clarify the working of the system. These traces illustrate the integration between text and examples
discussed earlier in this thesis. The generation of the integrated description illustrates:

e Examples can replace textual explanations. The sentence describing the different types of data
elements possible is replaced by examples illustrating the different types. This results in the
elision of text.

o Examples can cause additional text to be generated; when anomalous or exceptional examples
are presented, background text is added to introduce them. For example, the recursive example
of a list of lists is prefaced with additional information.

The description in this chapter also illustrated two issues mentioned previously; the ordering of
features and examples by complexity, and the selection of certain parameters so as not to present
anomalous examples with the other regular examples (the system chose 1 rather than 0 as the
minimum number of elements in a list so as to avoid having to present the anomalous case of ¥IL.) In
the next chapter, we discuss the generation of documentation for a more complex concept; this will help
illustrate some other conditions in which additional textual explanations are necessary if examples
are presented.

%A simplified version of the text plan with the communicative goals is shown in Figure 6.8.
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(elaboration
(sequence
((ftr 1ist (left-parenthesis)))
(sequence
((£tr list ((kleene-closure data-elements))))
((ftr list (right-parenthesis)))))
(background
((for-eg))
(((generate-eg-for-ftr
(:var-ftr (kleene-closure data-elements) 1) list))
((generate-eg-for-ftr
(:var-ftr (kleene-closure data-elements) 4) list)))
(((generate-eg-for-ftr (atom) list))
((generate-eg-for-ftr (lisp-number) list))
((generate-eg-for-ftr (atom lisp-number) list))
(background
((recursive-case (list) list))
(background
((simple-egs
(" ( oranges oranges ) "
" ( aardvarks elephants ) "
“ ( fishes apples ) ") list))
(complex-eg
((" ( oranges oranges ) "
* ( aardvarks elephants ) "
* ( tfishes apples ) ")) list))))))

Figure 6.9: Intermediate form used by the sentence realizer in generating the integrated description.
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Chapter 7

Negative Examples and their Effect on Explanations

Technical Prose is almost immortal.

-- Frederick P. Brooks, Jr.
The Mythical Man-Month’

The previous chapter presented three different modes in which our system can generate concept
descriptions illustrating how the presentation of examples can cause the elision of some text from the
descriptive explanation, and how the presence of difficult (either recursive or anomalous) examples can
require additional text to be presented with the example. In this chapter, we discuss the presentation
of negative examples and how they affect the surrounding text. As we have already mentioned
(Section 3.6), negative examples are very useful in helping to convey the critical features of the
concept. In this chapter, we illustrate how the system handles the issue of negative examples by
generating documentation for concepts from the INTEND grammar (used in EES).

7.1 A Documentation Example from INTEND

The INTEND grammar used in EES is large and complex, with 125 productions, 21 filter functions
and 91 terminal symbols. Many of these productions are seemingly identical. This is because while
the BNF specifications of the syntax are the same, the filter functions test for different properties.
For instance, consider the grammar productions for a predicate-relation-formand a function-form
shown in Figure 7.1. Thus, with a grammar such as INTEND, it is important that the documentation
generated for a concept take into account other concepts that are very similar to the one being
described, and contrast them for the reader. Productions such as these, represent patterns which
can be very effectively contrasted by using examples (Polya, 1973). The introduction of contrasting
examples can result in the generation of additional explanation. We will illustrate this aspect of the
tight interaction between text and examples in this chapter.

An explanation generated by the system for the grammar symbol predicate-form, whose BNF
definition is shown in Figure 7.1, is shown in Figure 7.2. Consider the examples and the textual
explanation generated by the system. There are four examples presented in the explanation, three
of which are positive, and the fourth is negative. The negative example serves to highlight the
differences between two closely related forms: a predicate-relation-formand a function-form. Since
the problem solving domain in question happened to be that of local area networks, all of the examples
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if-form := ’( ’IF predicate-form 'TEEE expression
{ ’ELSE expression } ’) ;

restricted-expression := var-name | concept-desc |
function-form | predicate-form ;

predicate-form := pred-relation-form |
pred-logical-form | pred-action-form ;

pred-relat ion-formj 1=

'( relation-name restricted-expression + ')
I./
|> pred-relation-form-test ;

pred-action-form := action-form |> pred-action-test ;
pred-logical-form :=

*( ’AND predicate-form + ') |
"( 'OR predicate-form + ') | '( 'HCT predicate-form ');

[fu.nction—form} .=
"( relation-name restricted-sxpression + ')
I> function-relation-form-test ;

Figure 7.1: A fragment of the grammar for the INTEND plan language in EES.

A predicate-form is a restricted-expression. It returns a boolean value, and the number of arguments
in a predicate-form i8 equal to the arity of the relation. A predicate-form can be of three types: a
predicate-relation-form, a predicate-action-form, or a predicate-logical-form.

A predicate-relation-form consists of a relation-name followed by some arguments. The arguments
are restricted-expressions, such as variables, concepts, function-forms and predicate-forms. Examples
of predicate-relation-forms are:

(INDICATOR-STATE LED-1 o1
(HARDWARE-STATUS LANBRIDGE-2 FAULTY)
(COREECTED-TO DECSERVER-! VAX-4)

However, the following example is not a predicate-relation-form, but a function-form, because the
number of arguments is not equal to the arity of the relation:
(COFHECTED-TO DECSERVER-1)

The difference between a function-form and a predicate-relation-form is that the function-form takes
one less argument than the arity of the relation, and retwrns the range of the relation, while the
predicate-logical-form takes as many arguments as the arity and returns a boolean value.

A predicate-action-formis ...

Figure 7.2: The documentation for ‘predicates-form’,

that the system constructed are from that domain. As in the scenario presented in Section 6.3, the
interaction of the text and the examples can be seen in various places:
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1. the examples illustrate features mentioned in the text, namely the syntax of the
predicate-relation-form

2. to make sure the first three examples are understood as positive examples, the system generates
appropriate background text to introduce the examples: “Examples of predicate-relation-forms
are...”

3. the sentence “However, the following is not a (positive example) ... ” is generated to explicitly
highlight the contrast between positive and negative examples

4. the negative example selected causes the generation of additional text both before and af-
ter the presentation of the example. This is because the example is not just not a
predicate-relation-form, but it is also a function-form, a different, but similar construct
which can be contrasted with the predicate-relation-form. Additional text is generated first
to introduce the negative example as a contrast to the positive ones, and later to explain the
differences between the two similar constructs.

This scenario also illustrates the other aspects that have to be taken into consideration when
generating integrated text and examples:

o Fixed Features: As previously mentioned in Section 3.6, it is important for the system to
differentiate between variable features and critical features because of the differences in the way

. examples are presented to illustrate them. It is also useful for the system to represent and reason
about fixed features. Fixed features are critical features representing terminal symbols that are
specified as being known to the user.! For instance, terminal symbols such as the keywords
‘defun’ and ‘defmacro’ in the LISP domain may be specified as fixed features once the system has
presented definitions and examples of functions and macros to the user. After these keywords
(which are critical features in the examples) have been annotated in the system as being fixed’,
the system will

-- not explicitly mention these features in its textual explanation when explaining either the
same concept or its sub-concepts;

-- not generate negative examples for these features.

For instance, if the system is generating examples of functions to calculate, for instance, the
factorial of a number, the system will not generate negative examples of functions that do
not have the keyword ‘defun;’ instead the negative examples would be concerned with other
aspects of the functional specification. Fixed features are dependent upon the context (what
has been presented earlier, or what is represented in the user model), and are used to prevent
the system from generating overly verbose explanations. In this scenario, the fact that a
predicate-relation-form must begin and end with a parenthesis is considered by the system
an instance of a fixed feature. Thus, the parentheses are not mentioned in the accompanying
explanation, nor does the system generate negative examples with missing parentheses.

Variable features are those which can vary within a certain range in a positive example -- in this
case, the relation-name is a variable feature. It is usually necessary to provide several examples

to communicate the variable nature of the feature (Clark, 1971). In this case, several different
relation-names are used in an attempt to ensure that the user realizes its variable nature.

Critical features are features which, if modified, cause the example to change from positive to neg-
ative. Critical features in this case are the number of arguments that follow the relation-nasme;
there must be exactly as many arguments as the arity of the relation.

1This also satisfies Grice’s Second Maxim of being concise by omitting facts that are already known to the user.
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o Presentation Order: The presentation order of the examples depends upon the complexity of the
features they illustrate; the ordering is also important to communicate the critical features of a
concept (as discussed in Section 3.6,. In this case, the variable features and the critical features
both require two examples; since the negative example of the second pair is an ‘4interesting’
negative example (resulting in more explanations), the examples illustrating the variable feature
are presented before the second pair.

e Additional Explanation: text to draw attention to specific points in the examples might be needed
to render explicit the implicit information that may otherwise be overlooked. In this cage, the
need to introduce the positive and negative examples is quite clear; however, the information on
the negative example being a function-form could have been easily overlooked.

This scenario illustrates again the close relationship between text and examples. The next section
describes how our generation system can generate such explanations.

7.2 Plan Operators

Two of the plan operators used in this example are shown in Figure 7.3.2 As mentioned earlier, the
constraints of the plan operators indicate how the text and the examples co-constrain each other.

The first plan operator can be used to describe a concept and one of its role restrictions, e.g., it
could be used to describe the fact that a predicate-formis constrained to return a BOOLEAK value. The
first constraint finds the type of the role restriction on the concept (whether its a value restriction --
as in the case of the BOOLEAK, or whether its a number restriction, etc.). This is necessary because
the eventual phrasing depends upon this information. The second constraint finds all the features
pertaining to this role and the concept that need to be presented, taking into account the user model
and the previous discourse. The next constraint determines which of these features can be presented
in the form of examples: this is dependent upon both the features themselves -- syntactic features can
be expressed through examples, but not structural features -- as well as the explanation context --
whether for instance, the appropriate definition has already been presented. The last constraint filters
out the fixed features that the planner should not present in text. At this point, the operator can be
selected, since all of its constraints have been satisfied. It therefore posts two sub-goals: one to present
a textual explanation of the role restriction on the concept, and another, optional sub-goal, to present
examples of the concept that illustrate the role restriction.

The second plan operator can be used to present a contrasting pair of positive-negative examples.
The first constraint finds a positive example for the concept illustrating the role. The second constraint
finds a negative example by using the same information, as well as the positive example constructed
as a result of the previous constraint being satisfied. The third constraint checks to see whether the
negative example constructed is an interesting one or not. If all of these constraints are satisfied, the
planner can apply this operator. This results in the planner posting three sub-goals: one to present the
positive example and two for the negative example. The two sub-goals for the negative example result
in the background text (“However, thisis not a ... ") and the actual example and the differences.

2The plan operators shown here have been simplificd somewhat; for instance, the constraints that take into account the text
type have been removed from these two operators for the sake of brevity.
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(define-text-plan-operator
:EFFECT (BEL HEARER (ref (defining-attributes ?concept) ?role))
:CONSTRAINTS
(and
(get-Testriction-type Trestriction-type ?role Zconcept)
(get-features ?features ?role 7concept *user-model*
*explanation-context*)
(get-features-for-eg ?features-only-in-eg ?features ?role
?concept *user-model* *explanation-contexts)
(tilter-fixed-ftrs ?features-in-text ?features
?features-only-in-eg *user-model* *explanation-context#)))
‘NUCLEUS
(INFORM S hearer (?restriction-type 7role ?features-in-text))
:SATELLITES
( ((ELABORATION-BY-EXAMPLE ?features ?role ?concept) *optionals)))

(define-text-plan-operator
:EFFECT (EXAMPLE 7ftrs 7concept 7role))
:CONSTRAINTS
(and
(get-pos-example ?pos-example 7ftrs ?concept ?role)
(get-neg-example ?neg-example ?pos-example ?ftrs 7concept
?role-restricted)
(significant-negative-example? ?new-concept ?neg-example))
‘NUCLEUS
(BEL HEARER (example ?pos-example ?ftrs ?concept ?role))
:SATELLITES
(((BACKGROUND (neg-example ?neg-example ?concept ?role))
*optionals)
((EVIDENCE (counter-example ?neg-example ?ftrs ?new-concept
?7role)) *optionals)))

Figure 7.3: Text Plan operators used in in presenting Examples.

7.3 Generating the Documentation on Predicate-Relation-Form

The system initially begins with the top-level goal of (BEL EEARER

(CONCEPT PREDICATE-FORNM)). The text planner searches for applicable plan operators in its plan- -
library, and, finding an applicable plan operator,® it posts two subgoals: one to give a definition of

the concept (predicate-form), and another (optional one) to elaborate upon this definition. (This is

the same plan operator that was utilized by the planner for generating the descriptions of a 1ist in

Sections 6.1 and 6.3.) At this point then, the planner has two goals:*

3There are several plans available in the plan library for describing objects. The system chooses one using selection heuristics
designed by Moore (Moore, 1989).

4As in the previous chapter, we shall not use the formal notation in presenting goals for the sake of clarity.
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Figure 7.4: A skeletal fragment of the text plan generated for the initial text.

(DESCRIBE (CONCEPT PREDICATE-FORK))
(ELABORATE PREDICATE-FORM)

The planner expands the first subgoal by providing a definition of the concept predicate-forn. There
are a number of different ways in which a concept definition can be provided. For instance, a concept
can be defined in terms of its parent with their differentiating attributes clearly specified. Another
way would be to present its syntactic or structural description, as was done in the case of the 1ist. Yet
ancther way is to describe the concept in terms of its disjoint coverings (such as describing ‘humans’
as being either ‘male’ or female’). Which of these methods is used to describe the concept depends
upon the concept: for instance, in the case of 1ist, the parent concept of the 1ist was grammar-symbol.
Since a grammar-symbol is any symbol in the grammar, the system did not describe a list as being a
grammar-symbol. In the case of a predicate-form, the system does not have the option of presenting
the syntactic definition, because it does not have a syntactic definition. The system could present a
description of the predicate-formin terms of its sub-types, but the selection heuristics pick the first
method (describing it in terms of its parent) over the third method (in terms of its children). This
results in the first two sentences of the explanation:

A predicate-formis a restricted-expression. It returns a boolean value and the number
of arguments is equal to the arity of the relation.

The SATELLITE goal to elaborate upon a predicate-form is now expanded by the planner. The
only information that the system has about the predicate-form that has not been expressed, is that
predicate-forms can be of three types: predicate-relation-forms, predicate-action-forms, and
predicate-logical-forms. The planner expands the satellite goal by posting two goals: one to present
this information about the three sub-types, and another to describe each of the three sub-types. The
NUCLEUS sub-goal is a primitive goal which results in the generation of the third sentence in the
documentation:
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A predicate-form can be one of three types: a predicate-relation-form, a predicate-action-
form, or a predicate-logical-form.

The goals to elaborate upon each sub-type of a predicate-fornm will be expanded in turn. Because
these sub-types might be of differing complexity, and it is important to present the information from the
simplest one to the most complex oneS The resulting ordering is: predicate-relation-form followed
by predicate-action-form followed by predicate-logical-form. Each elaboration results in posting
the goal of describing a sub-type. So the three sub-goals are posted in turn.

(ELABORATE (CONCEPT-DESCRIPTION PREDICATE-RELATION-FORM)
(ELABORATE (CONCEPT-DESCRIPTION PREDICATE-ACTION-FORM))
(ELABORATE (CONCEPT-DESCRIPTION PREDICATE-LOGICAL-FORM)

This portion of the planning process is recorded in the skeleton text-plan shown in Figure 7.4. This
text plan shows the communicative goals that have been posted as well as the coherence relations
between them.

The first goal that the planner expands is the one to describe the concept predicat e-relation-form.
As in the case of predicate-form, the system has a number of options to describe it. The first option,
which is to describe it in terms of its parent concept -- a predicate-form -- is not chosen because the
concept-parent relationship between a predicate-relation-form and a predicate-form has already
been mentioned (the predicate-relation-form was introduced as a sub-type of predicate-form). The
second option of describing a concept in terms of its syntax is applicable in this case, because thereisa
syntactic definition associated with the concept. The third option of describing the concept in terms of
its sub-types is not applicable in this case. Thus, the planner selects the plan operator that describes
the syntax of the concept. In this case, the syntax is:

PREDICATE-RELATION-FORM := ‘( RELATIONK-NAME { ARGUMENT + } ‘)

Instantiating the plan operator, the system has the option of describing the syntax in textual form, or
through examples (since the text type is introductory, the system can present examples at any point).
However, the system has not yet presented a definition of predicate-relation-form. In introductory
texts examples can be presented only after the definition of the concept. The plan operator chosen by
the system posts two sub-goals: one to present the definition (in text), and the other to elaborate upon
predicate-relation-form through examples.

(PRESENT (CONCEPT-DEFINITION PREDICATE-RELATION-FORM))
(ELABORATE (COKCEPT-DEFINITION PREDICATE-RELATION-FORM))

Before the two sub-goals are posted, the constraints of the plan operator selected compute the pa-
rameters that determine what gets expressed via text, via examples and both. The plan operator in this
case is very similar to the first plan operator in Figure 7.3. In the case of the predicate-relation-torm,
the system determines® that there are three critical features, i.e., the left parenthesis, the right paren-
thesis, and the number of arguments in the predicate-relation-form (which must be equal to the
arity of the relation). There is only one variable feature: the relation-name (the arguments to the
relation-name are constrained by the relation chosen, so they are not independently variable) The
system also determines that the parentheses should not be mentioned in the text as they are fixed
features, and will be mentioned in all the examples.

The system now has enough information to continue with the presentation planning process: the
first sub-goal posted, to present the definition of the concept expands into two sub-goals:

6as mentioned in Section 3.6, one of the constraints in the plan operator selected explicitly orders the sub-types using the
function ORDER-BY-COMPLEXITY, before posting the sub-goals to describe them in turn.

6 A5 described in Section 5.3.2, the system determines critical features and variable features by modifying the definitions and
seeing whether an example of the modified definition becomes a negative example of the concept, using the LOOM classifier.
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(INFORM S HEARER (ISA RELATION-NAME PREDICATE-RELATION-FORM))
(SEQUENCE (SYNTAX-FTRS ARGUMENTS PREDICATE-RELATION-FORK))

The first sub-goal results in “A predicate-relation-form consists of a relation-name”. The coherence
relation SEQUENCE between the two goals causes the generation of the cue phrase “followed by”, and the
second sub-goal results in “A predicate-relation-form has some arguments”. When these two sub-goals,
along with the coherence relation, are processed by the sentence generator, it results in:

A predicate-relation-form consists of a relation name followed by some arguments.

The sub-goal to describe the arguments also causes the posting of a goal to elaborate upon the fact
that restricted-expressions can be of different types such as variables, concepts, and function-forms.
This is realised by a primitive speech act as shown in Figure 7.5. Thus, the planner has generated the
first four sentences at this point.

The planner now has to expand the goal of
(ELABORATE (CONCEPT-DEFINITION PREDICATE-RELATION-FORM))

Since at this point the definition of a predicate-relation-formhas already been presented, the system
can present examples of a predicate-relation-fornmto satisfy this goal. As described in Section 53.2,
the variable and critical features computed previously are retrieved. During the computation of the
critical features, the system modifies the definition of the predicate-relation-form by reducing the
number of arguments by one (as described in the algorithm in Section 5.3.2). An example generated
for this modified definition classifies under the concept function-form. Since the system finds an
interesting negative example, it orders the other examples so that the negative example is presented
last (according to the ordering criteria given in Section 5.3.5). The system needs to present at least two
examples to illustrate a variable feature. These two examples illustrating the variable feature (the
relation-name) are to be presented first, followed by the pair for the critical features. The planner
must also indicate that the examples are positive and negative as well. This is done through the
posting of a BACKGROUND goal to generate text to introduce the positive examples. This is followed by
a goal to generate the examples for the variable features, and the goal to generate examples for the
critical feature. Since examples illustrating variable features should be widely different, the system
generates examples with two different relations, and the first two examples are generated. This part
of the text plan is shown in Figure 7.5.

In the case of the positive-negative pair to illustrate the critical feature, the positive example can be
presented without any introduction because the immediately preceding examples are positive examples
as well. To present the negative example, the system must generate additional introductory text to
explicitly mark the example as being negative. The planner posts an appropriate goal to generate text
to introduce the negative example. This is linked to the goal for presenting the positive example with
the coherence relation CONTRAST. This results in the generation of a cue phrase such as “However, ...
.” The presentation of the negative example is accompanied by the presentation of a goal to elaborate
upon the differences between a predicate-relation-formand a function-form. The relevant portions
of the text-plan are shown in Figure 7.6.

The planner continues expanding goals in this fashion, until all the goals are primitive speech-acts,
such as (INFORX ...). Finally, the completed discourse tree is passed to an interface which converts
the INFORM goals into the appropriate input for the sentence generator. The interface constructs the
individual sentences as well as connects them appropriately, using the rhetorical information from the
discourse tree. For example, it chooses “However” to reflect the CONTRAST relation. It also chooses the
appropriate lexical items. Finally the sentence generator produces the English. The resulting output
is shown in Figures 7.7 and 7.8.
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Figure 7.5: Plan fragment for the predicate-relation-form.

7.4 Discussion

In this chapter, we have seen additional ways in which both examples and text interact with and
co-constrain each other. It is important to recognize and present interesting negative examples when
they are available; however, such examples can cause additional text to be generated, as well as affect
the order in which the examples are to be presented. It is important to recognize this interaction in
order to provide an appropriate, well-structured and coherent presentation to the user. This chapter
has reinforced the argument that example generation must be considered as an integral part of the
_generation process. Our scenario from the documentation system has illustrated some of these issues.

In the next chapter, we look at the effect of the text type on the generation process, and study the
major differences between the descriptions that occur in introductory vs. advanced texts.
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Figure 7.6: Text-plan fragment for the generation of the examples for the critical feature.
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Predicate—Relation-Form

p———— ——

pI3)2 BURY ROTATE

A predicate-form is a restricted-expression. It
returns a boolean value, and the number of arguments
in a predicate-form is equal to the arity of the
relation. A predicate-form can be of three types: a
predicate-relation-form, a predicate-action-form, or
a predicate-logical-form. ' :

A predicate-relation-form is a relation-name followed
by some arguments. The arguments are
restricted-expressions, such as variables, concepts,
function-forms and predicate-forms. Examples of
predicate-relation-forms are:

(INDICATOR-STATE LED-1 ON)
(HARDWARE-STATUS LANBRIDGE-Z2 FAULTY)
( CONNECTED-TO DECSERVER-1 VAX-A)

However, the following example is not a
predicate-relation-form, but a function-form, because
the number of arguments is not equal to the arity of
the relation:

(CONNECTED-TO DECSERVER-1)

The difference between a function-form and a
predicate-relation-form is that the function-form has
one less argument than the arity of the relation, and
returns a range of the relation, while the
predicate-logical-form has as many arguments. as the
arity of the relation and returns a boolean value.

Figure 7.7: Documentation for predicate-relation-form with Examples.
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Chapter 8

The Effect of the Text Type on Descriptions

The previous chapters discussed two instances of the interaction between the text and the examples:
the elision of text due to the presentation of ‘equivalent’ examples, and the addition of text, due to the
presence of anomalous, or negative examples. All of the previous descriptions have been generated

. for an introductory text type. Given another text type, the descriptions can be very different. It

is important to generate appropriate descriptions in different situations. This chapter analyses the
differences between introductory, intermediate, and advanced text types. While we shall discuss the
main points of each of these three text types, it must be emphasized that our implementation as yet
does not have a representation for the intermediate text type. Thus, our generation can only be done for
the introductory and advanced text types. This is because we do not, as yet, represent the semantics of
the various constructs, and these are essential in the generation of descriptions for intermediate texts.
This chapter presents the main differences between these three types, describes how introductory and
advanced texts affect the generation of concept descriptions. We have already seen the generation of
a 1ist for an introductory text; in this chapter, we shall trace the generation of a description for an
advanced text to contrast the two processes and thus illustrate our points.

First we discuss the need to vary the descriptions. Then we describe what a text type is considered
to be, and its implications for the text as well as the examples. We later deal with each of the
effects, and describe how one of the differences noticed in our corpus -- the placement of the examples
with respect to the text -- can be explained by using the text type. Finally, the rest of the chapter
traces the generation of the advanced text scenario to show how these issues are considered in this
implementation.

8.1 The Need to Vary Descriptions

Different situations can result in widely varying descriptions. The variation can occur in both the
textual descriptions and the accompanying examples. Contrast the two descriptions for the same
concept - a list — given in Figures 8.1 and 8.2. Not only is the textual description different, the
examples -- in terms of number, content, position, etc. - are different as well. It is therefore essential
to generate descriptions which take into account the situation. In this case, we are concerned with
generating descriptions in different text types.

Researchers have studied the effect of different situations on the textual description: for example,
Paris (1988) and Paris and Bateman (1989) studied the changes resulting in the text based on the
intended user (a concept analogous to the text type). Polya (1945) and Michener (1978) presented
characterizations of different example types. However, there has been no work on the characterization
of descriptions that include examples in different text types.
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Alist always begins with a left parenthesis. Then come zero or more pieces of data (called the elements
of a list) and a right parenthesis. Some examples of lists are:

(AARDVARK)

(RED YELLOW GREEX BLUE)
(23511 19)

(3 FRENCE FRIES)

A list may contain other lists as elements. Given the three lists:

(BLUE SKY) (GREEN GRASS) (BROVFN EARTH)
we can make a list by combining them all with a parentheses.

((BLUE SKY) (GREEN GRASS) (BROWN EARTH))
From (Touretzky, 1984), page 35.

Figure 8.1: A description of 1ist in an introductory text.

Alist is recursively defined to be either the empty list or a COXS whose CDR component is a
list. The CAR components of the CONSes are called the elements of the list. For each element
of the list, there is a COXS. The empty list has no elements at all.

A list is annotated by writing the elements of the list in order, separated by blank space
_ (space, tab, or return character) and surrounded by parentheses. For example:

(abec) ; A list of 3 symbols
(2.080 (a 1) #\») i A list of 3 things:a
; floating point number,
; another list, and a

; character object

From (Steele Jr., 1984), page 26.

Figure 8.2: A description of 1ist from a reference manual.

One cannot independently plan a description tailored to a user, separately generate examples
tailored to the user, and then present them together: Sweller et al. found that if the examples
and the descriptive component were not integrated, the combination could result in reduced user
comprehension (Chandler and Sweller, 1991; Ward and Sweller, 1990). Examples and text must be
presented to the user as a coherent whole, and together, appropriately tailored to the situation. Yet, the
issue of tailoring descriptions that include examples for the situation at hand has not been addressed.

8.2 The Notion of a Text Type

It has long been observed that certain types of linguistic phenomena such as the rhetorical structure,
lexical types, grammatical features, etc. closely reflect the genre of the text, e.g., introductory tutorial
material, reference manuals, etc. Several text typologies have been proposed by linguists. For
instance, Biber (1989) identified eight basic types of texts based on statistically derived grammatical
and lexical commonalities ; the Washington School proposed a detailed classification of different
genres of written scientific and technical English (Trimble, 1985), and de Beaugrande (1980) proposed
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a general classification of text types, arguing that text types determine the types of discourse structure
relations used.

A text generation system can make use of the notion of text types to constrain its options, such as
which communicative goals to achieve, which discourse relations to favor, any appropriate grammatical
constraints, etc. In our case, text types play a particularly important role in the generation of examples
and their positioning. More specifically, for descriptions, two text types -- introductory and advanced --
constrain the positioning of examples with respect to the descriptive material. These are the two text
types that we describe in this chapter and are used by the implemented system.

8.3 Integrating Examples: Issues Related to the Text Type

Many issues need to be considered when generating descriptions that integrate descriptive text and
examples, because both these components co-constrain and affect each other. While we have discussed
these issues in previous chapters, especially Chapter 3, we review some of them here:

¢ What should be in the text, in the examples, in both?

¢ What is a suitable example? How much information should a single example attempt to convey?
Should there be more than one example?

¢ If multiple examples are to be presented, what is the order of presentation?

o If an example is to be given, should the example be presented immediately, or after the whole
description is presented?!

¢ Should prompts be generated along with the examples?

Answers to these questions depend on whether the text is an introductory or advanced text. Consider,
for example, the descriptions of 1ist given in Figure 8.1 taken from (Touretzky, 1984), an introductory
book, and Figure 8.2 taken from (Steele Jr., 1984), an advanced, reference book: they contain very
different information in both their descriptive portions as well as their examples; while Figure 8.1
contains eight lists (which are used either as examples or as background to the examples), Figure 8.2
has only two lists as examples. The elements of the examples in the two descriptions are also
significantly different: the numbers in Figure 8.1 are integers, such as 2 and 3, while the number used
as an element in Figure 8.2 is a more complex instance: 2.080. The examples in Figure 8.1 do not
contain prompts, while those in Figure 8.2 do. Finally, the examples appear very differently placed
(with respect to the explanation) in the two figures.

The next section discusses each of these issues in turn.

8.4 Introductory versus Advanced Texts

We now consider how descriptions that contain examples differ from introductory to advanced text.
Note that this is one of the dimensions for example categorization that we described in Chapter 4. We
shall address each of the questions presented in Section 8.3. The different components that can vary
are:

1This will determine whether the example(s) appear within, before, or after the descriptive text.
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o The descriptive component: in the case of the introductory texts, the descriptive component
contains surface or syntactic information. This fact was found to be true in our entire corpus
without exception; it was also noticed in other studies, e.g., (MacLachlan, 1986; Charney et al.,
1988; Reder et al., 1986).

Reference material is technical, detailed and comprehensive. The material usually contains all
the facts about the system (including the internal structure of the concept), forming the basis for
all other types of documentation (Brockmann, 1986).

o The actual examples: examples in both text types illustrate critical features of the surface or
syntactic form of the concept or its realization. In introductory texts, however, examples are
simple and tend to illustrate only one feature at a time. (Sometimes it is not possible to isolate
one feature, and an example might illustrate two features; in this case, the system will need to
generate additional text -- such as a prompt -- to mention this fact.) On the other hand, examples
in reference texts are multi-featured.

o The number of examples: since introductory texts contain usually single-featured examples,
the number of examples depend upon the number of critical features that the concept pos-
gsesses. In contrast, as reference texts contain examples that contain three or four features per
example (Clark, 1971), proportionately fewer examples need to be presented.

o The polarity of the examples: introductory texts make use of both positive and negative
examples, but not anomalous examples. Advanced texts on the other hand, contain positive and
anomalous examples, but usually not negative ones.

o The position of the examples: in introductory texts, the examples are presented immediately
after the point they illustrate is mentioned. This results in descriptions in which the examples
are interspersed in the text. On the other hand, examples in reference texts must be presented
only after the description of the concept is complete.

e Prompts: in general, prompts are generated when an example contains more than one feature.
The system must also generate prompts in the case of recursive examples (these are examples
that have as elements other examples of the concept), and anomalous examples if background
text has not yet been generated. In introductory texts, background text is usually generated and
thus prompts are not necessary. In contrast, in advanced texts, the examples are grouped at the
end, after the textual description; background text cannot be generated at that point, so prompts
may be necessary.

These observations are summarized in Figure 8.3.

The six factors listed above are the major reasons for differences between introductory texts and
advanced texts.? Taking these into account, our system can generate descriptions that match naturally
occurring ones in the corpus. The role these factors play will be illustrated by working through the
generation of descriptions similar to ones presented in Figures 8.1 and 8.2.

Each of the factors described in the previous section affects some of the other factors in varying
degrees. For instance, the number of examples is dependent upon the number of features presented in
each of the examples; the presence of prompts depends upon the number of features and the number
of examples, etc. However, one of these factors, the placement of the examples with respect to the text,
is more important than the others. This is because this factor, the positioning of the examples, directly
affects all of the other five factors. The next section describes the effect of the text type on the other
factors.

2These factors do not take into consideration differences in the phrasing and lexical choice.
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For each issue, the effect of the text-type is:
¢ Examples:

introductory: simple, single critical-feature
advanced: complex, multiple critical-features

¢ Accompanying Description:

introductory: surface, syntactic information
advanced: complete information, including internal structure

¢ Number of Examples:

introductory: depends upon number of critical features
advanced: few (each example contains three to four features)

o Positioning the Examples:

introductory: immediately after points being illustrated
advanced: after the description is complete

e Prompts:

introductory: prompt if example has more than one feature
advanced: prompts if anomalous and recursive examples

Figure 8.3: Brief description of differences between examples in introductory and advanced texts.

8.5 Positioning the Examples

Examples can either occur before the text, within the text, or after the text. Consider for instance,
the descriptions in Figure 8.4, taken from two introductory books, one on UNIX (Waite et al., 1983), and
the other on TgX (Abrahams et al., 1990). In both cases, the descriptions have examples interspersed
within the text. Consider the descriptions given in Figure 8.5 where the examples occur before the
accompanying description, and Figure 8.6 where the examples occur after the description.

The three descriptions of a 1ist in LISP given in Figure 8.7, illustrate three different descriptions
occurring in three different text types. The placement of the examples in each of the descriptions
is different: in the introductory case, the examples are interspersed within the description, in the
intermediate case, the examples are before the description, and in the advanced case, the examples
are after the description. These descriptions of a 1ist emphasize how the same object can be presented
very differently in different situations. We have already presented the generation of a list for an
introductory text previously; in this chapter, we shall generate a description for an advanced text to
illustrate how the placement of the examples affects the resulting descriptions.

8.5.1 Effect of the Placement on Comprehension

The position in which the examples appear affect the descriptions significantly. Studies on the efficacy
of presenting examples in different positions with regard to the accompanying description showed that
examples within and after the description are used most often. Klausmeier showed that texts for naive
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UNIX has a who command, which results in a list of the people logge ! onto the system at
that moment. An example of the command and its output is:

% who

bob tty04 Aug 23 8:27
catfish tty07 Aug 23 8:16
sneezy tty1b Aug 23 8:52
granny tty21 Aug 23 23:13

%

The first column gives the login name of the user. The second column identifies the terminal
being used. The remaining columns give the date and time each user logged in.

From (Waite et al., 1983), page 50.

A delimiter in TEX is a character that is intended to be used as a visible boundary of a math
formula. For example, the left and right parentheses are delimiters. If delimiters are used
around a formula, TEX makes the delimiters big enough to enclose the box that contains the
formula. For example:

$$ \left( a \over b \right) $$

yields: a

9
TEX made the parentheses big enough to accomodate the fraction. But, if instead of the
previous expression, one had:

$$ ({a \over b})$$
the result would be:

a
(3)
Since the parentheses are not in a delimiter context, they are not enlarged.

From (Abrahams et al., 1990), page 58.

Figure 8.4: Introductory Text: Examples within the description.

users were most effective when the example immediately followed the definition of the concept being
illustrated (Klausmeier, 1976). Maclachlan (1986) found a number of correlations between the position
of examples and their comprehension. His study found that the presentation of an example followed
by an explanation of that example® (rather than an explanation of the concept that the example
was an instance of) was an effective teaching method when the user was already familiar with the

3Thus resulting in a description where the example appeared before the accompanying explanation.
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Consider the following expression, in which + is followed by something other than raw
numbers:

(+ (»22) (/22))

It is easy to see that (¢ 2 2) produces 4, (/ 2 2) produces 1, and these results, fed in turn
to +, give 6 as the result. If, instead, we think of this expression as data, then we see that
we have the three element list: + is the first element, the expression (# 2 2) is the second
element and (/ 2 2) is the third. Thus lists themselves can be part of other lists.

From (Winston and Horn, 1984), page 20.

Figure 8.5: Intermediate Text: Examples often occur before an explanation.

Used without arguments, who lists the login name, terminal name, and login time for each current user. who
gets this information from the /etc/utmp file.

{... 16 lines deleted ... ]

example’, who am i

example!ralph ttypl Apr 27 11:24
example,

example’, who

mktg ttym0 Apr 27 11:11

gven ttyp0 Apr 27 11:25

ralph ttypi Apr 27 11:30

example,

From (UNIX Documentation, 1986)

Figure 8.6: Advanced Text: Examples usually occur after the description.

concept.* Most reference manuals include examples clustered after the description, e.g., (Meehan, 1979;
Lucid, 1990; Steele Jr., 1984; UNIX Documentation, 1986). It is clear therefore, that each of these three
possibilities may occur during generation, and must be handled by the generation system.

8.5.2 Determining the Placement of the Examples

Our corpus analysis has enabled us to identify two factors which govern the positioning of examples
with respect to the description:

1. the text type in which the description is being generated, and

2. the communicative goal that the example achieves.

4This method is most effective when the user possesses a declarative knowledge of the concept, but lacks sufficient procedural
knowledge about it to use the knowledge to do something with it.




Alist always begins with a left parenthesis. Then come zero or more pieces of data (called the elements
of a list) and a right parenthesis. Some examples of lists are:

(AARDVARK)

(RED YELLOW GREEN BLUE)
(2356 11 19)

(3 FRENCH FRIES)

A list may contain other lists as elements. Given the three lists:
(BLUE SKY) (GREEN GRASS) (BROWN EARTH)

we can make a list by combining them all with a parentheses.
((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

Introductory text (Touretzky, 1984)

(FORMAT #standard-output#* "~a~d~a"
(name person) (age person)
(it (> (age person) 65) "senior" () ))

Alist can contain atoms, numbers, strings or other lists as elements. For instance, the example above
contains two atoms, a string and three lists as elements. A list can have any number of elements, as
in the example above, where the top-level list contains six elements, and the some of the other lists
contain two, three and zero elements. A list can also be a function, if it can be evaluated: in this case,
the first element of the list is the name of the function.

Intermediate text (Winston and Horn, 1984)

A list is recursively defined to be either the empty list or a COXS whose CDR component is a list. The
CAR components of the CONSes are called the elements of the list. For each element of the list, there
is a cONS. The empty list has no elements at all. A list is annotated by writing the elements of the list
in order, separated by blank space (space, tab, or return character) and surrounded by parentheses.
For example:

(abc) ; A list of 3 symbols
(2.030 (a 1) #\») i A list of 3 things: a short floating point
; number, another list and a character object

Advanced text (Steele Jr., 1984)

Figure 8.7: Three descriptions of a list in different text types.

The notion of a text type has previously been discussed in this chapter. The communicative goal,’ or
intentional goal, represents a desired state of affairs for the system to achieve. Examples of such goals
in our system are:

(BEL HEARER (CONCEPT LIST))
(BEL REARER (DISJOINT-COVERING

5Communicative goals have been mentioned previously in the context of our description of the system generating explanations.
We briefly present it here, for the sake of completeness.
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The decision to place an example before, within or after the description depends upon two
co-constraining factors:

1. The Text Type:

o if the text type is either tutorial or introductory, and appropriate examples are
available, generate examples to illustrate points as soon as they are mentioned in
the description (examples occur within the description)

o if the text type is a reference text, prevent examples from being generated until
the description is complete (examples appear after the description)

2. The Communicative Goal:

o if the top-level communicative goal can be achieved through an example, and the
text type does not prevent it, then present the example and elaborate upon it in
the description. (example occurs before the elaboration in the description)

e if a communicative goal, which is not a top-level communicative goal, can be
realized through the presentation of examples, and the text type does not prevent
it, then present the examples (within the description)

o if the presentation of example(s) achieves a goal to elaborate on a concept, and this
goal is posted after a goal (at the same level in the discourse structure) to provide
descriptive information about that concept, these examples will appear after the
descriptive explanation

Figure 8.8: Algorithm for determining the placement of examples in a description.

S-EXPRESSION (ATOM NUMBER STRING LIST)))

The first communicative goal, for instance, causes the system to present to the hearer a description of
a 1ist. The second generates a description of the fact that an s-expression has a digjoint-covering
of either an atom, a number, a string or a 1ist. Among the many advantages in representing the
intentional goals explicitly in the discourse structure that is generated by the planner is the ability to
recover from communication failures, to engage in dialogue, and answer follow-up questions (Moore
and Paris, 1989; Moore and Swartout, 1989). Communicative goals are also essential in determining
where an example should be positioned with respect to the accompanying explanation.

An algorithm to determine the placement of examples is shown in Figure 8.8. The algorithm
generates descriptions with examples that match the texts in our corpus, as well as the desiderata
mentioned in psychological literature, e.g., examples should be presented after the definition in
introductory texts (Feldman, 1972; Klausmeier, 1976); cases where the examples are the focus of
instruction should have an elaboration on the features of the example rather than the concept, etc.

The next section elaborates on the algorithm, and discusses the effects of the positioning on the five
other factors that vary with the text type.

8.5.3 Effect of the Positioning on the Other Factors

This section describes how the algorithm determines where the example can be presented, and its
implications for other issues in the generation. The cases that the system can encounter are:
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o the system finds an example to directly achieve the top-level discourse goal: if the text type is
intermediate,® the presentation of the example, followed by additional descriptive information
elaborating on the features in the example satisfies the goal. In this case, the example is treated
like a concept definition: the example is presented first, followed by an elaboration on the features
in the example.

Consider for instance, the description from (Winston and Horn, 1984) in Figure 8.7. The
description begins with an example followed by the explanation.” In such descriptions, the
examples can be quite complex, depending upon the initial communicative goal.

the system finds an example that satisfies an intermediate level discourse goal: if the text type is
introductory, there are three possibilities for the system:

1. the goal can be satisfied without using the example (only text is generated),
2. the goal can be satisfied by presenting the example(s) (and some text may be elided), or
3. the goal can be satisfied by presenting the example(s), as well as some text.

The planner must now make a choice between these three possibilities, based on the context (the
knowledge base, user model, as well as the dialogue history). If either #2 or #3 are chosen, the
result will be examples interspersed within the description, as in the description from (Touretzky,
1984) given in Figure 8.7. The choice is made as follows: if the definition of the concept has not yet
been presented, then the system cannot present examples at that point, but must generate text
(this is what happened in the case of predicate-relation-torm in Section 7.3). If the definition
has been presented, the goal is to elaborate upon a recursive, or an anomalous feature (such as,
for instance, a list of lists), then the system generates both text and examples. Otherwise, the
system presents only examples.

Consider the description from (Touretzky, 1984) in Figure 8.7: the first set of examples are used
to illustrate two features about data elements in a 1ist: (i) the fact that the number of elements
in a 1ist can vary, and (2) the type of elements in a list can also vary. This fact could also
have been expressed by a descriptive explanation as in: “The types of the elements of a list can be
either atoms, numbers, or both”, following the statement about the number of elements. As can
be seen in this description, the communicative goal of expressing the different types of elements
is satisfied by presenting a group of examples, causing the sentence above (in italics) to be elided
from the resulting description.

In the last example, when the system had a goal of elaborating upon a list of lists, the system
presented both the textual explanation, as well as an example.

the text type constraint prevents the generation of examples by communicative goals before the
top-level goal to describe the concept has been achieved: this is the case in reference texts as seen
in the description from (Steele Jr., 1984) in Figure 8.7. There are two important implications of
postponing the presentation of examples until the complete description has been given:

1. Since the text type constraints prevent the generation of examples to satisfy intermediate
level discourse goals immediately, all intermediate level discourse goals must be realized in
text. This implies that the textual description generated cannot have portions replaced by
example elaboration, thus resulting in descriptions that are comprehensive and complete.

2. Since all the goals to generate examples are postponed till the end, examples that satisfy
multiple goals can be generated. This results in examples that are more complex, have
multiple features and illustrate more than one point. This results in the need to generate
prompts with the examples to ensure that the user does not miss the points being made

€The system reasons that in an intermediate text type, basic definitions of concepts are known to the intended user.

"While the description begins with a ‘background’ statement, this statement serves as background to the example, and in our

system would be generated as part of the example.
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by the examples. Prompts may also become necessary because the examples may now be
presented physically distant from the description.

We have presented our algorithm, and some of the implications that arise from the use of this
algorithm in the generation of descriptions with examples. The algorithm has worked well in
determining the placement of examples in descriptions generated by our system; in addition, the
algorithm correctly predicted the position of examples in hand simulations of other texts in our corpus.

8.6 A Trace of the system

The generation of an integrated description for introductory texts has already been described in
Section 6.3. We will illustrate the working of the algorithm by generating a description of a LISP
list when the text type is advanced. The descriptions of the concept 1ist should resemble the ones
presented in Figure 8.1 and 8.2. Since the generation of the description for an introductory text type
has previously been described, we will only discuss the points at which the text type plays a role in the
decision making process.

8.6.1 Text Type: Introductory

The top-level goal given to the system in both cases is (BEL HEARER (CONCEPT LIST)). In the case of
an introductory text, the text type restricts the choice of the features to present to be syntactic ones.
The main features of 1ist are retrieved, and two subgoals are posted: one to list the critical features
(the left parenthesis, the data elements and the right parenthesis), and another to elaborate upon
them (Figure 8.9 shows the skeletal text plan again). The system also needs to elaborate upon the
data elements of a list. These can be of three types: numbers, symbols, or lists. The system can either
communicate this information by realizing an appropriate sentence, or through examples -- since it
can generate examples for each of these types, or both. The introductory text type constraints cause
the system to pick examples to satisfy this intermediate level discourse goal. The system posts two
goals to illustrate the two dimensions along which the data elements can vary: the number of elements
and the type. :

At this point, the system can present a few complex, multi-featured examples of data-elements in
a list, or it can present a larger number of simpler examples. The text type constraints force the
system to choose the simple, single featured examples. Thus the planner generates a goal to present
an example of each type: symbols, numbers, symbols and numbers, and sub-lists. Because the text
type is introductory, the last data type, sub-lists, is marked by the planner as a recursive use of the
concept, and has to be handled specially. In the case of an introductory text, such examples must be
introduced with appropriate explanations added to the text. For this data type therefore, the planner
realizes the goal through both text and examples. The resulting skeletal text-plan generated by the
system is shown in Fig. 8.10. The resulting output is shown in the screen dump in Figure 8.11.

8.6.2 Text Type: Advanced

Consider the second case, in which the text type is specified as ‘advanced.” The system starts with
the same top-level goal as before, but the text type constraints cause the planner to select both the
structural representation of a 1ist, as well as the syntactic structure for presentation. This results in
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the planner selecting the following features for presentation:®

Structural Features:
(ISA LIST (OR EMPTY-LIST
(CONS-CELL (CAR :type ‘name "list-elements")
(CDR :type LIST :name NN

Syntactic Features:
(LEFT-PARENTHESIS (KLEENE-CLOSURE DATA-ELEMENTS)
RIGET-PARENTHESIS

The planner posts two goals, one a NUCLEUS subgoal to describe the 1ist textually, and a SATELLITE
subgoal to present examples about it, related by the coherence relation EXAMPLE. (This results in the
phrase “For example ... .”) The NUCLEUS sub-goal is to describe a 1ist (textually). It posts two
NUCLEUS goals: one to describe the underlying structure, and one to describe the syntactic form of a
list. These two goals are linked by the coherence relation JOINT (this is because, unlike SEQUENCE in the
previous description, there is no particular ordering between the structural and syntactic descriptions
here).

The goal to describe the structure paraphrases the feature as follows:

A list is defined to be either the empty list or a CONS cell whose CDR component is a list.
The CAR components of the CONSes are called elements of the list.

The planner queries the knowledge representation for any further information regarding a list. Two
other facts are retrieved about 1ist-elements: there is a CONS cell for each element, and there are no
elements in an empty-1list. The planner generates English for these two facts as well. Both of these
statements are linked to the (DESCRIBE (STRUCTURE LIST)) goal through the ELABORATE coherence
relation. The final output as a result of the (DESCRIBE (STRUCTURE LIST)) goal is:

A list is defined to be either the empty list or a CONS cell whose CDR component is a list.
The CAR components of the CONSes are called elements of the list. For each element of the
list, there is a CONS cell. The empty list NIL has no elements.

The second sub-goal posted because of the top-level NUCLEUS goal is for generating a syntactic
description of a list. Since the text type prevents the generation of any examples for intermediate level
discourse goals, the sub-goal of (DESCRIBE (SYNTAX LIST)) results in a purely textual description. The
generation of such a description is described in Section 6.1, and will not be repeated here. Since our
system does not currently address the phrasing issue, the description about the syntactic specification
of a list is exactly the same as in the introductory case (without examples). The only difference is that
since the text type is advanced, the system retrieves two additional types of data elements: characters
and strings. These are not presented in introductory texts.? This results in the following output:

A list consists of a left parenthesis, followed by zero or more data elements, followed by a
right parenthesis. Data elements can be either symbols, numbers, characters, strings, lists,
or a mixture thereof.

Since the advanced text type constrains the system from realizing any of the intermediate level
discourse goals by presenting examples, the description generated so far is:

8The structural element selected for paraphrasing is illustrated here in simplified fashion, rather than the LOOM notation
for clarity.

9Both of these types are not defined in introductory texts before the list is described. Quite often, the character type is not
mentioned through out the introductory book. We implemented our text type constraints to take these types to be ‘advanced.’
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o free of any examples: the only examples presented are due to the top-level SATELLITE goal,

o the textual description is comprehensive: all the information is presented in the description,
since examples cannot possibly cause the elision of text

The system still needs to expand the top level SATELLITE goal to present examples. This sub-goal is
related to the NUCLEUS sub-goal through the EXAMPLE relation, which results in the generation of
the “For example:” phrase between the two text spans which result from the nucleus and the satellite
expansions. The text type constrains the system to generate as few examples as possible. Since at
least two examples are required to show the variable nature of any feature, the system generates two
examples of a list to illustrate the data elements. To generate the maximum contrast possible between
two examples of a list, the system posts two goals: one to generate an example of a 1ist illustrating
the following features:

Example 1 Example 2
data elements can be: | data elements can be:
symbols numbers, characters,
lists, strings, or
a mixture,

In constructing the two examples, the system picks simple symbols for the first example, and complex
instances to build the second example: thus the system selects a floating point number rather than an
integer as an element of the list. The example generator also ensures that the lists generated are all of
different lengths. The planner finds that the second example is recursive: there is a list as an element
of the list. Since the planner cannot generate background text in this text type, the planner generates
prompts for the examples.!? The resulting text plan and output is shown in Figures 8.12 and 8.13.

8.7 Discussion

We have presented an analysis of the differences in descriptions that integrate examples for introduc-
tory and advanced texts. The variations occur not just in the descriptive part of the explanations, but
also in the examples that accompany them. Since the examples and the descriptive component are
tightly integrated and affect each other in many ways, a system designed to generate such descriptions
must take into account these interactions and be able to structure the presentation accordingly. We
have presented information necessary to generate descriptions for these two text types. The algorithm
used by the system was illustrated by tracing the generation of two descriptions of the LISP 1ist.

10The planner need only generate a prompt for the second example; however, in an attempt to replicate the texts in our corpus,
the system generates prompts for all examples in a group if a prompt is necessary for one of them.
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Chapter 9

Evaluation
The proof of the pudding is in the eating.
-- Don Quixote de la Mancha!
The previous chapters have dealt with . “-rent aspects of the generation of descrintions with
integrated examples. We h:.. = znumerated - aportant issues involved, and presented system traces
of the generation of various descriptions. ' ~=zver th- validity of the issues identified as relevant

must be verified before acceptance. in empirical evaluation of the efficacy of the different issues
involved can also help in gaining a better understanding of the relative importance of the issues. This
chapter presents an evaluation of the different heuristics that the system uses.

9.1 Evaluating the OQutput

Evaluating Natural Language Generation (NLG) systems is a difficult task. A workshop on NLG
evaluation (Hovy and Meteer, 1990) acknowledged the importance of evaluation, but did not reach
any definite conclusion on how NLG systems may be evaluated. Previous approaches to this question
have been based on an introspective analysis of the fluency of the generated text. Kukich (1983) and
Mellish & Evans (1989) performed such an analysis for their systems. While fluency is important,
our emphasis in this case is to do with information presented in a useful and effective form. The
descriptions generated by our system for the INTEND grammar were liked by the members of our
project. The LISP descriptions were also considered very readable by people who took part in our
evaluation.

The main motivation for our system was the presentation of examples and their integration with the
accompanying explanation. It is essential that the writer explicitly consider the communicative effects
of each example on the reader and take these into account during the discourse planning process. This

'In (de Cervantes, 1981), page 322.
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e examples and text strongly constrain each other, and explanations in which these

is important becaus
two components are not well integrated can cause & loss of comprehension (Chandler and Sweller,

1991), or even mis-lead the reader into making incorrect inferences based on implicit or assumed
information (Merrill and Tennyson, 1978). If the heuristics presented in this thesis allow the system
that minimize such occurrences, then the heuristics can be considered useful.

to generate descriptions
To this end, we compared the presentations generated by using our heuristics to descriptions in text

books to see the effect of a systematic application of our principles.

Appendix A presents seven descriptions of a list from popular introductory or texts on LISP.
We analysed each of these descriptions for their example presentations, and their integration with
the textual explanation. Based on the requirements identified in various psychological studies, we
consider that at least 5 of the descriptions do not satisfy all of the requirements in some form or
the other, such as presenting examples ordered by complexity, or marking anomalous cases, etc.
The remaining two descriptions do not violate these requirements, and are therefore good by these
dards. Given that the description generated by our system takes all of these

educational/cognitive stan
factors into account, we consider our description to be of better than average quality, at least according

on the educational/cognitive scale.

The seven descriptions presented in Appendix A illustrate some of the shortcomings that are
often found in naturally occurring texts. This may be due to the fact that people are prone to
write descriptions without keeping in mind all the different issues that can lead to reduced reader
comprehension.! As an example of how some of these issues can be over looked by people, consider for
instance the examples presented in a description of a 1ist in an advanced text (Steele Jr., 1984).

A list of 3 symbols
A list of 3 things: 2 floating point
number, another 1ist, and a character

object

(abc)
(2.080 (a 1) #\»)

we ws wo wa

This description presents two lists (at the top level), both of which have three elements. Given this
description, the user may possibly generalize incorrectly that top level lists must contain exactly three

elements.

9.2 Evaluating the Issues

To test the validity and estimate the importance of the issues mentioned in Section 3, we attempted
to empirically evaluate the effect of each factor on the comprehensibility and ease of understanding
of descriptions containing examples. To do so, we generated two descriptions, one taking the factor
into account, and the other specifically disregarding the factor.? Subjects were then made to answer 8
set of questions, categorizing different examples as either belonging, or not belonging, to the concept

under consideration.

The test subjects were a number of graduate students in different departments at USC, Carnegie-
Mellon University and the University of Pittsburgh.® These subjects may well represent the most

remarked to me that he had neglected to consider some of

1After a discussion on these issues, a computational linguist once
discussion, and reported that he found his presentation

these issues in his current writing; he revised his document after the

greatly improved (Kerpedjiev, 1993).
2Gome of these descriptions were generated by the system, by modifying the text planning operators to not consider specific

issues; others were generated manually, specifically for the evaluation.
3Most of these tests were given to twelve students. With the exception of two students, the subjects were not in Computer

Science.
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(GENSYM &optional (PREFIX "G"))

GENSYM is a function call with an optional argument called PREFIX. It returns a new,
uninterned symbol, whose print name begins with PREFIX and ends with a number; the
number is incremented with each call to GENSYM and the default value of PREFIX is reset to
whatever is passed as an argument to GEESYX.

(GENSYM &optional (PREFIX "G"))

GENSYN is a function call with an optional argument called PREFIX. For example:

(GENSYM)
(GENSYM "ABC")

The function returns a new, uninterned symbol, whose print name begins with PREFIX and
ends with a number. For example:

(GENSYM "ABC") ==> #:ABC26
The number is incremented with each call to GENSYN.

(GE¥SYM "ABC") ==> #:ABC27
(GENSYM "ABC") ==> #:ABC28

The default value of PREFIX is reset to whatever string is passed as an argument to GENSYN.

(GENSYM "USC") ==> #:USC20
(GENSYN) ==> #:USC30

Figure 9.1: Descriptions with and without Examples.

likely initial users of such help facilities; all of them use advanced equipment almost constantly
throughout the day. All of these subjects represented the naive user being introduced to the domain.
However, for more representative results, these tests should ideally be administered on a broader cross
section of subjects with different backgrounds. An initial problem with the use of graduate students
was that they were very unwilling to be beaten’ by a question; they would consequently spend large
amounts of time reading and re-reading the description until they could answer the questions. The
first few questionnaires were returned with almost all of the answers marked correctly, though the
time taken to answer the tests differed drastically. We decided that the only way to test for relative
superiority among the concept descriptions was to limit the amount of time available for answering
the questions.* This forced the subjects to try and understand the concept from the two descriptions in
similar amounts of time. The rest of the section describes the results obtained in our study.

4This is the same approach taken in most of the standardized tests, such as the GRE, SAT, etc.
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{  FUNCTION CALL == OUTPUT CORRECT INCORRECT |
(GENSYN) = ERROR! a] o
(GENSYM) = #:G27 o o
(GENSYM "ABC") = #:ABC27 o o
(GENSYM "ABC") = #:GABC27 o o
(GENSYM "ABC") = #:GABC27#:GABC28 o u}
(GENSYM "ABC") = #:ABC28 o o
(GENSYM) = #:G29 ] o
(GEESYN) = #:G30 (a] m]
(GENSYM) = #:ABC31 o o
(GENSYM) = #:ABC29 u} o
(GENSYM) = #:ABC30 o o
(GENSYM "“ABC") = #:ABC30ABC31 a] 0
(GENSYM "G") = #:ABC30G32 0 n]
(GENSYM) = #:627 a] (a]
(GENSYN) = #:G28 Q u]
(GENSYM "#:G628") = #:G2829 m] n}
(GENSYN) = #:G32 a u]
(GENSYM "XYZ") = #:XYZ27 0 a}
(GENSYM "XYZ") = #:XYZ#:XYZ27 o o
(GENSYM "XYZ") = #:XYZ#:XYZ#:XY2Z27 0 o

Figure 9.2: Questionnaire on GENSYM used to test effectiveness of examples.

9.2.1 Descriptions With and Without Examples

There have been a number of studies on the usefulness of examples, especially in documentation,
e.g., (Charney et al., 1988), but we decided to see the results with our subjects. The subjects were split
into two groups. Four different concept descriptions were given to the subjects. Each description had
two versions: one with examples, and another without examples which were given to the two groups.
One such pair of descriptions on the LISP function GEXSYN is shown in Figure 9.1 and the questions are
shown in Figure 9.2.

The group given the description without the examples made between 4 and 11 mistakes out of the
21 questions. The average number of mistakes made were 6 mistakes. (Most of these mistakes were
around the notion of the prefix being ‘reset.’) However, in the second group -- the group who were given
the description with included examples -- the maximum number of mistakes made by people was 4
(the average number of mistakes was 2), and there were 6 people who made no mistakes. The results
indicate that the inclusion of examples helped clarify the issues for the users.

9.2.2 Positioning the Example

It is important that examples be placed appropriately with respect to the accompanying text. We
have seen in previous chapters how examples can sometimes occur before the text, within the text,
and after the text, depending upon the text type. Empirical studies have shown that in the case of
introductory users, the best placement of examples seems to be immediately following the point they
are supposed to illustrate. We presented the descriptions shown in Figure 9.3 and 9.4 to our test
subjects, who were novices with respect to TgX. For a description with examples before the explanation,
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Stacking operations are used in TEX to produce fractions: \over produces fractions with the
argument on the left hand side becoming the numerator, and the right hand side argument
becoming the denominator. Other variations of \over are:

o \atop which leaves out the fraction bar

o \above which provides a fraction bar of a specified thickness

e \choose which leaves out the fraction bar and encloses the construct in parentheses
« \brace which leaves out the fraction bar and encloses the construct in braces

o \brack which leaves out the fraction bar and encloses the construct in brackets.

For example:
$${n+1 \over n-1} \qquad {n+1 \atop n-1} \qquad
{n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
{n+1 \brace n-1} \qquad {n+1 \brack n-1}$$
produces:
n+l n+1 ntl n+1 n+1 n+1
n—-1 n—-1 n—1 n—1 n—1 n—1

Figure 9.3: Description with examples after the description.

we used the same description as in Figure 9.3, with the positions of the example and the explanation
interchanged.

The test subjects were split into three groups, one for each description. Each of the groups was
given a minute to study the descriptions (this is the time it takes to read the description twice). The
subjects were made to answer 10 questions related to the stacking operator in TEX. In the group
with interspersed examples, only one person made a mistake. In the group with examples after the
description, 5 people made an average of 3 mistakes, and in the group with the examples given before
the description, the result was almost identical, with one additional person making a mistake.

In the case of naive users therefore, the placement of examples immediately after the concept’s
definition seems indicated as the most beneficial.

9.2.83 Presentation of Different Example Types

Chapter 4 dealt with the different example types in our system. According to our categorization,
examples can vary along three dimensions: their polarity with respect to the definition they accompany,
the text type for which they are generated, and the knowledge type of which they happen to be instances.
For a concept therefore, an example (and its associated presentation) can be varied along the polarity
and the text type. In this section, we consider the issue of polarity.

The polarity of an example can either be positive, negative, or anomalous. The importance of negative
examples in concept learning has already been shown by empirical studies, e.g., (Feldman, 1972;
Houtz et al., 1973). However, we are not aware of studies on the presentation of anomalous examples
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\over produces fractions, with the argument on the left hand side becoming the nu-
merator, and the right hand side argument becoming the denominator. For instance:

$${n+1 \over n-1}$$ produces
n+1

n—-1
Other variations of \over are: \atop which leaves out the fraction bar. For instance:
$${n+1 \atop n-1}$$ produces:

n+1l
n—-1
\above which provides a fraction bar of a specified thickness. Thus:

$${n+1 \above 2pt n-1}$$ produces:
n+1l

n—1
\choose which leaves out the fraction bar and encloses the construct in parentheses, as in:
$${n+1 \choose n-1}$$ which produces:

n+1

n—-1
\brace which leaves out the fraction bar and encloses the construct in braces, as in:
$${n+1 \brace n-1}$$, which produces:

n+1
n—-1
and \brack which leaves out the fraction bar and encloses the construct in brackets, as in

$${n+1 \brack n-1}$$, which produces

n+1
n-—1

Figure 9.4: Description with examples within the description.

with, or apart (marked as specifically different) from the regular examples. We therefore decided to
study the differences in the presentation of anomalous examples together with, and apart from the

normal examples.

Consider the two descriptions of the UNIX command who shown in Figures 9.5 and 9.6. In the case
of Figure 9.5, even though the description talks only about files as being arguments to the command,
the examples presented include the two® anomalous cases of who. The distinction between the normal
arguments to who (files) and the exceptional cases of who are much more clearly marked in Figure 9.6.
This is clearly a case of an anomalous example, since by the classification presented in Chapter 4,
anomalous examples are defined to include ‘instances that are examples, but are not covered by the
definition.’ In the evaluation, all of the subjects given the first description (with unmarked anomalous
examples) got all questions of the form:

5Though this has been suggested in (Engelmann and Carnine, 1982).
6The command whoami is not considered here, since by UNIX standards, it is not a special form of the who am i command,
but an entirely different one.
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who is <user-name>
who <user-name>

wrong.” Only 2 out of the 6 people given the second description with marked analogous examples got
questions of this type wrong. It would seem therefore that it is important to separate and explicitly
present anomalous examples as such.

9.2.4 On the Complexity and Number of Examples

As we have already stated in Chapter 3, the more the number of features illustrated in each example,
the less the number of examples required to illustrate all the features of the concept. Even if the
same number of examples are used in two cases, one with simple examples, and one with complex
multi-featured examples, the descriptions are likely to be understood to different extents. In our test,
we asked our volunteers to look at two descriptions that featured the FORMAT statement in LISP and
then answer questions on simple aspects of the FORMAT statement.® The description with the two sets
of examples is shown in Figure 9.7.

We conducted two tests with these descriptions: in the first case, four members of the group were
given the description and the three simple examples. The second group was given the description
with the three complex examples, while the third group was given the description with only the last
example. The first group got all their answers right, while the second group made an average of 2
mistakes out of the 10 questions (one person got all the answers correct). The third group, which was
given a single question, fared the worst, with none of the four getting all the answers correct, and the
average number of mistakes per person being 3.25.

In another test on the number of examples required, the subjects were given more examples than
the number of features being illustrated. The success rate did not rise significantly beyond that in
which the each example illustrated one feature. It would thus appear that the larger the number of
examples presented to naive users, the better their understanding of the concept.

9.2.5 Order of Presentation of the Examples

It is important that the examples be presented in the correct sequence. Since examples are not
generated in isolation, but with associated material such as prompts, background information, or
contrasting negative examples, the associated information will also be moved around if the example
‘moves away’ from its correct position in the sequence. An instance of this can be seen in Figure 9.8,
where the original description of a 1ist (described in Section 6.3) was generated with the ordering
constraint on the plan operators reversed. The system generated the goals to elaborate upon the data
elements of a list. To satisfy this goal, the system needed to present examples of lists in which the
data-elements were atoms, numbers, lists, and a mixture of the above. The system chose (because of
reversed ordering) to satisfy the goal of presenting a list of lists first. However, since this is a recursive
case, the system was forced to present background material in the form of other lists, resulting the
description presented in Figure 9.8, which does not resemble any of the descriptions we have observed
in our corpus. This figure also illustrates again the strong mutual interaction of the examples and
text in a description. Changing any of the factors that affect one is likely to affect the other as
well. From this description, it is clear that ordering is an important factor in ensuring the overall
description generated is coherent and useful. In other descriptions, where the description took into

"People with some Pprevious exposure to UNIX were especially prone to making errors in the first case because of the presence
of the vhois command in UNIX.

8The last example shown in Figure 9.7 was accompanied with extra information that gave the values for ‘(get-name person)’
and so on.
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who: When used without arguments, who lists the login name, terminal name, and login
time for each current user. When a file name is specified, who examines its contents and
lists it as shown:

example’, who
ramesh console Aug 23 09:34
ramesh ttyp0 Aug 24 14:19 (:0.0)
macgreg ttyp2 Sep 2 09:36 (128.9.208.151:0.)
mittal ttypb Sep 4 11:18 (seuss.isi.edu)
example’, who /var/adm/wtmp
mittal ttyps Feb 12 13:13 (pover-chow.isi.e)
mittal ttyps Feb 12 13:15 (power-chow.isi.e)

ees ttyp7 Feb 12 13:24 (doc.isi.edn)

koda ttyp?7 Feb 12 13:30 (rising.isi.edu)
example), who am i

doc.isi.edu'!mittal ttypdb Sep 4 11:18 (seuss.isi.edu)
example’, who is who

doc.isi.edu!mittal ttypb Sep 4 11:18 (seuss.isi.edu)

Figure 9.5: Description with anomalous examples not explicitly marked.

who: When used without arguments, who lists the login name, terminal name, and lo-
gin ... [lines deleted] ... contents. Examples of the usage of who are:

example), who
ramesh console Aug 23 09:34

koda ttyp7 Feb 12 13:30 (rising.isi.edu)

However, there are two cases in which the argument to who need not be a file name. who
can be used to find out who you are logged in as: it displays your hostname, login name,
terminal name, and login time.

example who am i
doc.isi.edulmittal ttypb Sep 4 11:18 (seuss.isi.edu)

exampleX who is who
doc.isi.edu!mittal ttypb Sep 4 11:18 (seuss.isi.edu)

Figure 9.6: Description with anomalous examples clearly marked.

account the pairing of positive and negative examples for critical features and the pairs were ordered
by the complexity of the feature being illustrated, the group that was given the ordered description

fared better (2 mistakes out of 10) than the group which did not (6 mistakes on the average).




Description:

FORMAT is a powerful, generalized string manipulation function. FORMAT takes three types
of arguments: a stream on which to write (this can be ¥IL), a control string containing
directives, and the information to be used by the directives. Different directives are used
to process different types of data to be inserted into the output string. a is used for ASCII
strings, while c is used to print characters, and d to print integers in decimal notation.

Simple Examples:

(format nil "Blue Bird") — "Blue Bird"
(format nil "~a" "Green Grass") =—> "Green Grass"

(format nil "Its a ~A! Its a ~A!" "bird" “"plane")
= "Its a bird! Its a plane!"

(format nil "~a~¥%~a" "who?" "what?") —
“gho?
what?"

Complex Examples:

(format nil "The ansver is ~ D." (expt 47 5)) —
"The answer is 229,345,007."

(format nil "Type “C to ~A."
(set-char-bit #\D :control t) "delete all files")
= "Type Control-D to delete all files."

(format nil "~% Name: ~a”% ~a"a" (get-name person)
(if (get-address person) (get-address person) "No known address"”)
(it (get-age person) (format nil "“a:"a" “Age:" (get-age person))))

Figure 9.7: Descriptions with simple and complex examples.
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A list begins with a left parenthesis. Then come zero or more pieces of data (called the
elements of a list) and a right parenthesis. A list may contain other lists as elements. Given

the three lists:

(BLUE SKY) (GREEN GRASS) (BROWN EARTH)

we can make a list by combining them all with a parentheses

((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

Other examples are:

(3 FRENECH FRIES)

(RED ORANGE GRAPE CAR)
(RED YELLOW GREEN BLUE)

(AARDVARK)
(2 35611 19)

Figure 9.8: The description of a 1ist, with no ordering on the examples.

%!PS
/inch { 72 mul } def
306 396 270 0 360 arc
closepath
gsave
0.50 setgray
£i11
grestore
72 setlinewidth
stroke
/Palatino-Bold findfont
360 scalefont
setfont
96 275 moveto
(PS) false charpath
gsave
18 setlinewidth
stroke
grestore
1.0 setgray
£il1l
showpage

% define inch procedure

% draw a circle

% finish circle

% remember graphics state
% medium gray shade

% fill circle

% restore graphics state

% fat line width

% paint outline of circle

% find a font

% make letters large

% set current font

% position current point

% get character path

% remember graphics state
% fat line width

% paint outline of characters
% restore graphics state

% white color

% fill character outlines

% display page

Figure 9.9: Example used in testing the effect of prompts.
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9.2.6 On the Need for Prompts

As we have mentioned previously (Section 3.8), prompts
are usually seen in reference texts, where complex examples
illustrating multiple points are presented. Prompts serve
to highlight factors in the example that may not have been
mentioned immediately before the example is presented. To
test for the efficacy of prompts in the presence of such de-
scriptions, we presented our subjects with relatively long de-
scriptions (more than 10 lines) from different books and pre-
sented multi-featured examples, with and without prompts
to them. An instance of the multi-featured example presented
in this evaluation is shown in Figure 9.9. The same example
was used, once with prompts as shown, and once without
prompts. (The postscript code generates the output shown in
Figure 9.10). The description accompanying these examples
in the test was a page from (McGilton and Campione, 1992).
The group given the example with prompts fared better than
the one without prompts: the average number of mistakes
made in the two groups were 3 and 5, out of a possible 12
questions. Thus, it would seem that prompts play a useful
role in certain text types.

Figure 9.10: Output generated by
code in Figure 9.9.

9.3 Discussion

The evaluation reported in this chapter on the effect of different factors in the generation of integrated
descriptions indicate their importance and necessity for coherence and comprehensibility. This chapter
presented some of the descriptions that were used in the evaluation. There are undoutedly many ways
in which the evaluation could have been improved: for instance, the number of participants could have
been increased, the issues could have been analysed at finer levels of detail, and statistical correlations
derived. However, due to a lack of both resources and time, we conducted the limited experiments
described here. These experiments suggest that the issues identified from the corpus analysis may be
worth further study. This skeletal evaluation served that goal satisfactorily: each of the issues tested
for did indeed suggest a correlation with comprehension. Thus, it may be useful to further consider
these, and related issues, in the design of systems meant to generate descriptions integrating text and
examples together.

An important issue that we discussed briefly in Section 9.1 was on how closely the descriptions
generated by our system matched those found in naturally occurring texts. It is important to state
here that our system cannot generate any descriptions that depend upon the underlying semantics in
any way because we do not have represent these semantics now. Almost all of the texts in our corpus
show some variation in their writing style, even among the reference manuals. In most cases, this is
because while the major part of the manual may have been written by one person (albeit over a long
period of time), there are often sections that are written by other authors. Thus, for instance, in the
case of the LISP manual (Steele Jr., 1984), whole chapters (on format and loop, for instance) have been
written by other people. Writing styles can thus vary even within the same book. An example of such
a book is the one on LISP programming by Winston and Horn (1984); on the other hand, some of the
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manuals, or reference texts in our corpus were written in a very rigid format, e.g., (Meehan, 1979;
McCarthy et al., 1985).

Our heuristics cover perhaps about 80 per cent of the texts that we have seen in our corpus. The
figure refers to how often our heuristics matched naturally occurring texts in the following criteria:
(i) the position of the examples with respect to the explanation; (ii) if the example(s) are within the
explanation, the point at which the example(s) occur; (iii) type of examples (single featured, positive,
negative, etc); (iv) the order of presentation of the examples; (v) the communication of information
through text, examples and both; (vi) the presence or absence of anomalous examples, and their
treatment; (vii) the presence of background explanation and examples for recursive cases, and (viis)
the use of prompts. The figure does not take into account the actual examples themselves, i.e., whether
the quality of the examples generated by the example generator component matched the quality of
examples found in our corpus. This was due to the use of only syntactic and type knowledge by our
system in the example generation process. Since the current implementation does not represent, or
reason with, the semantics of the different constructs, the actual examples generated are often quite
unlike the ones seen in the corpus. Examples in naturally occurring texts are usually written by taking
into account the semantics of the construct, their typical usage and the non-syntactic relationships
between different parts of the examples. This will be seen clearly in Appendix D, where some of the
descriptions planned by the system are presented.




Chapter 10

Conclusions and Future Work

Everybody talks about documentation,
but nobody does anything about it.

-- Anonymous

This thesis argues for the presentation of examples in user help and automatically generated
documentation. Documentation is an important factor in user acceptance of any system; it is essential
that a system designed to automatically generate documentation be able to generate descriptions that
include examples. Previous approaches to the generation of descriptions did not address the issue of
presenting examples as an integrated part of a coherent description. This thesis presents one approach
to the planning and presentation of such descriptions that integrate examples and text.

10.1 Contributions

There are a number of issues that must be identified and addressed if a system is to be designed to
plan complex descriptions that involve both text and examples. In this thesis, we presented these
issues -- based on a synthesis of results in related fields such as educational psychology, as well as
our own corpus analysis -- and showed how they may be addressed in a computational framework to
succesfully plan the presentation of complex descriptions that include examples. The contributions of
this thesis are:

o the synthesis of results and ideas from different fields on the generation and presentation of good
examples for learning and understanding;

o the identification and analysis of the different ways in which examples and text influence each
other (deletion and addition of text under specific circumstances);

e the specification of the different factors that are important in the context of natural language
generation (the position of the examples, the type of examples, prompts, etc.);

e a new and improved categorization of example types that takes into account the context of the
examples;

e the finding that interesting negative examples are not only useful, but can affect the choice of
the positive examples;
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The let-form consists of a left parenthesis followed by the word LET followed by a list of
local variables followed by a number of forms. Finally, there is a right parenthesis. A local
variable is specified as a list of the variable name which is a symbol and an initial value.
Examples of let-forms are:

(LET ((ORANGES FISHES)) MEN)

(LET ((BICYCLES 3) (PIZZAS ’'MEN)) 2 9 CARS)

(LET ((YELLOW SKY) (FISHES BLUE)) (MEN AARDVARKS))

(LET ((APPLES APPLES) (FISHES SEARKS)) ((MEN CARS) (MEX BLUE)))

Figure 10.1: Explanation of a 1et-form planned by the system.

o the identification of the differences between descriptions (in the BNF-documentation domain)
generated for introductory texts and advanced texts;

o avalidation of these claims by implementation of a system to generate such descriptions;

¢ an empirical evaluation of the cognitive effectiveness of some of the heuristics developed in the
thesis.

10.2 Limitations of the Work

There are some issues that we did not address in this work. One of these was the generation of
descriptions for intermediate texts (intended for users between the introductory, naive users and the
advanced, expert users): such descriptions (and the associated examples) are very ‘use’ oriented, i.e.,
they illustrate different ways in which the concept could be made use of. For instance, in the case of
a list, the typical descriptions seen are about how 1ists can be used to associate names and phone
numbers, write functions, etc. For the system to be able to generate descriptions of this sort, the
representation of the concept would have to include its typical uses, along with examples of each use.

Perhaps the greatest limitation of this thesis was this lack of a semantic representation for the
constructs. This lack of semantic representation prevented us from generating not only intermediate
texts, but also from generating meaningful descriptions of constructs such as loop and let forms.
Such a representation was not explored in this thesis, which looked at the generation of descriptions
and examples of only the syntactic form from an underlying representation that was generated almost
automatically from the BNF representation. The issue of representing the semantics is, however, a
problem of knowledge representation; given the appropriate knowledge of the semantics, the system
would be able to take the knowledge into account and generate suitable descriptions.!

Some of the problems this caused our system can be seen in the descriptions for the 1et~-form shown
in Figure 10.1. The fact that the BNF form does not specify that the variables declared initially in the
let-form are usually then used in the body of the 1et-form causes the system to generate examples of
let-forms that reflect this lack of knowledge. The last example also shows how this lack of semantic
representation can cause the system to generate a syntactically correct, but semantically incorrect
example where the unbound variable ‘apples’ is assigned its own undefined value. Such problems

10ne of the goals of EES was to design a knowledge representation acheme for precisely this reason: explainability. It has
a sophisticated and complex representation for actions, operators, their effects, etc. In the current implementation, we have
attempted to generate descriptions at the purely syntactic level to see how useful such descriptions may be without extensively
representing each construct in the system.
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are compounded in the case of a the description for a function-form (described in Appendix D), where
the parameters, the keyword arguments and the optional arguments have different implications on
their presence or absence which is not recognized in the BNF specification. To a lesser extent, the
same problem affects the system in generating examples of a list: examples of lists in our corpus were
of the form (BLUE SKY), (GREEN GRASS), or (3 FRENCH FRIES). Since there is no representation of the
relationship between each of the elements, the examples generated by the system do not emulate these
naturally occuring examples.

These shortcomings on the part of the current implementation can be overcome if the semantics of
the constructs and the relationship between the different parts of these constructs are represented in
the system. The semantics would need to be represented using a language that both the text planner
and the example generator would be able to understand and reason with during the planning process.
Such a representation could also be augmented with stereotypical uses of the constructs; this would
allow the system to generate intermediate texts with examples.

Another aspect that we did not address in depth in this thesis was the issue of generating descriptions
of relations and processes; only concept descriptions were considered here. There are many similarities
and some differences between descriptions generated about concepts and descriptions about relations
and processes. Many of the issues raised earlier, such as determining the number of examples,
determining critical and variable features, sequencing based on example complexity, integration with
the textual description, etc. remain the same. However, the examples themselves generated for
relations and processes are different from those of concepts. For instance, in the case of relations,
the examples are not of the relation itself, but consist of n-tuples of instances, where n is the arity
of the relation, and the instances are objects between which the relation holds. Thus, to generate
such examples, the system must first generate examples for the different concepts that the relation
exists between; such examples (for each concept) would need to follow all of the issues presented
in this thesis, such as that of complexity, sequencing, prompts, etc. Each example for the relation
would then need to be evaluated in terms of complexity, critical features, etc. in terms of the relation
definition, as well as the examples of the different constituent concepts. Similarly, ‘process-examples’
are also quite different from ‘concept-examples’ and ‘relation-examples’, because each process-example
can require the presentation of a number of relation-examples, thus compounding the issues that need
be considered.

The thesis did not address any issues relating to the lexical choice or phrasing in this work. The
thesis also did not touch the issues of either formatting or the presentation of graphical examples
(pictures or diagrams). Each of these issues is a very complicated one, and is currently not considered
by the system.

Perhaps one of the most important limitations of this thesis was the application domain used:
programming languages. While all of the issues described in Chapter 3 on the integration of examples
with text remain valid in other domains as well, the heuristics on determining the relative complexity
of an element and finding interesting negative examples will no longer be applicable. Algo, the
the differences between introductory and advanced texts will almost certainly be different in other
domains.

10.3 Future Work

Future directions in which this work can be extended to include all of the current limitations. In
addition, there are other promising areas in which this work can be extended:

o Critiquing: There are many similarities between explanation generation and critiquing: they
both involve explaining aspects of the system to the user in natural language. However, there are
also many differences between an explanation and a critique. For instance, while an explanation
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can be blunt and ‘to the point,’ a critique must be phrased very differently, so that it plays up the
positive aspects of the user’s solution, and tactfully suggests better alternatives for the incorrect
aspects of the solution.

Presenting counter examples for the weak points (or gaps) in the solution could help convince
the user more effectively than just a plain statement. The WEST system, with its pre-enumerated
examples, was very successful in its critic’s role in mathematics. The example generator would
need to generate good counter-examples.

¢ Knowledge Acquisition: An interesting extension of such a system would be in the application area
of knowledge acquisition. Should the system’s internal representation be faulty or incomplete,
the explanations generated by the system will also be faulty or incomplete. Such gaps and
inconsistencies are much more easily noticeable in the form of a wrong example than in a
text. Given that the discourse structure represents the relationship of the example to the text
and the internal representation, it should be possible for the system to modify the knowledge
representation based on the user’s input about a faulty example. There are at least three
advantages of using explanations with examples over plain text explanations in knowledge
acquisition: (i) given that there are multiple examples are presented for each feature, an
indication of a faulty example can be much more precise (and helpful to the system) than finding
that a fault with the feature in general; (ii) no additional parsing capability on the part of the
system is required, beyond a means of indicating a faulty example; (iii) should the system desire
further elaborations, it can generate other, single featured examples for clarification.

e Multi-media Generation: There are many similarities between examples and pictures as parts
of an overall explanation: (i) they are both ‘atomic,’ i.e., when an example is constructed in
response to a goal posted by the text planner, the example cannot be further sub-divided, just like
a diagram cannot be split beyond a certain point; (ii) co-references between the accompanying
explanation and the example/picture can be done in different ways (for instance, by generating
prompts in both cases); (iii) the effect on the explanation of both the example and the picture must
be explicitly considered by the system during the discourse planning process. Other similarities
lie in the fact that certain features can be highlighted by presenting two identical pictures, with
the feature to be highlighted being the only difference. Much of the reasoning (if sequence of
pictures, what order of presentation, etc) in multi-media generation and example presentation is
very related.

e Presenting Analogies and Examples: There are many similarities in the presentation of analogies
and examples in natural language explanations. The discourse structure can be used in both cases
to partition the set of features to try and find suitable analogies for presentation.? Analogies are
more open-ended than examples, and there are many other issues that will need to be considered
if they are to be incorporated. However, the framework would remain essentially the same.

There are many interesting implications about the application that result from explicitly reasoning
about the examples and the explanation. The areas described above represent some of the applications
in which the results from this work could be applied and evaluated.

2An initial attempt to make use of analogies in explanation using this framework can be seen in (Mittal and Paris, 1992).
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Appendix A

Descriptions of a list in different books

We present seven descriptions of a 1ist in LISP from various books, and point out some of the positive
and negative aspects of each of them. : .

A.1 Description 1

[ Discussion on the LISP language deleted ]

Now we are ready to perform an operation in LISP. LISP accepts commands in a somewhat different
form from most calculators. First, we begin with a parenthesis. Next, we specify the name of the
operation we would like to perform. Then we give the arguments we would like to use. We finish off
the whole thing with a final parenthesis. For example, if we want to compute “8 + 3” using LISP, we
type the following:

--> (+ 8 3)
11

[ Description of arithmetic operators and prefix notation deleted ]
For example, if we want to multiply 8 by 3, we can type:

-=> (* 8 3)
24 '

LISP programmers sometimes call these commands s-expressions.
[ Description of LISP’s suitability for symbolic computation deleted ]

The symbolic expressions given above are also called lists. A list is a sequence of objects inside a
pair of parentheses.

From (Wilensky, 1986), page3.

Analysis: This description of a 1ist does not introduce the concept before presenting examples, It
presents examples of arithmetic operations that happen to be lists, and then uses them to illustrate
its definition of a list. The definition itself is not well integrated with the examples, since the two
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examples occur on two (successive) pages, and the definition occurs two paragraphs after the second
example.

A.2 Description 2

LISP data-structures are called s-expressions. An s-expression is:

1. a number, e.g., 15, written as an optional plus or minus sign, followed by one or more digits.
2. a symbol, e.g., FOO, written as a letter followed by zero or more letters or digits.

3. astring, e.g.,"This is a string", written as a double quote, followed by zero or more characters,
followed by another double quote.

4. acharacter, e.g., #
q, written as a sharp sign, followed by another backslash, followed by a character.

5. a list of s-expressions, e.g., (A B) or (IS TALL (FATHER BILL)), written as a left parenthesis,
followed by zero or more s-expressions, followed by a right parenthesis.

From (Charniak et al., 1987), page 2.

Analysis: This description of a 1ist presents two examples of a list before the definition. Both the
examples contain only symbols. The second example contains a sub-list, but that is not explained or
mentioned in the explanation.

A.3 Description 3

S-Expressions (symbolic expressions): these are defined recursively as follows:

¢ An atom is an S-Expression

o Ifzy ... z, are S-Expressions, then (z, ... z,), called a list of z; ... z,, is an S-Expression
Examples:

(ONTOGEKY)

(THIS IS A LIST)

(» PI (EXPTR 2))

(ALL X (IF (MAN X) (MORTAL X)))
O «O» (€4010218))

The empty list, () is equivalent to the special atom NIL.

Analysis: This description of a list occurs as part of a description of an S-Expression. There are
a number of examples following the definition. The first two examples illustrate the variability in
number of data elements, and the others illustrate the variability in the type of data elements. The
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examples do not illustrate one feature at a time (the third example illustrates that elements can be
characters or lists, in addition to symbols, but there is no prompt). The fifth example contains three
lists in one line, of an empty list and combinations of empty lists. The order of presentation of the
examples is not in terms of complexity -- the empty list should have been presented first.

A.4 Description 4

The most common kind of S-Expression is the list. A definition of a list is: A left parenthesis followed
by zero or more S-Expressions followed by a right parenthesis is a list. Of course lists, as well as
atoms, are themselves S-expressions, so (A (B €) D) is a list as well as (A B C D). We refer to the
S-expressions in a list as elements or members of the list. The most important list is the one with no
members -- ( ), called the empty list or the null list. Some more lists are shown below:

()
(ATOM)
(ALPHA BETA GAMMA)
(5 IS A NUMBER

“THEIS IS A STRING")
((A LIST WITHIN A LIST))
CcC))
(eI
(AN (INTERESTING

((LIST) STRUCTURE)))

From (Shapiro, 1986), page 8.

Analysis: This description presents two examples of relatively complex lists with the definition.
After some elaboration, more examples of lists are presented. These examples are well structured and
in order of increasing complexity. The third example introduces two new data types, and there is no
prompt for the recursive case. '

A.5 Description5

A list looks like a sequence of objects, without commas between them, enclosed in parentheses:
(tables chairs lamps bookcases)

The parentheses identify a unit, and that unit can be used for a variety of purposes. In fact, lists
provide both aprimary way of storing data and the means for defining and calling functions.

A list can have any number and kind of elements, including other lists. A list can be as deeply
nested as you wish. A list can also have no elements, in which case it is represented as ¥IL, and may
be written as “( )" or “DIL”. These two forms are completely interchangeable. ¥IL is a special symbol,
whose print name is “UIL” and whose value is always ¥IL. Table 2-2 contains simple lists made up of
kinds of elements you have already seen. Lists can also combine different kinds of elements, as shown
in Table 2-3.

These lists can be considered ways to store data. For example, you might want to store your inventory
as a list, or group together names and phone numbers in a list of lists. Appropriately constructed lists
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can also be used to call functions in LISP. If you type any of the lists in Table 24 to LISP, you will get
an appropriate response.

(15 lines on using lists as functions deleted here]
TABLE 2-2. Some possible lists:

(12345) a list of numbers
(ABCD) a list of symbols
(#\A $\B #\C #\D) a list of characters
(this is a list) a list of symbols

TABLE 2-8. More complex lists:

{this is (also) a list) a list whose third element is a list

((12 eggs (large)) (1 bread (whole wheat)) a list of lists of numbers, symbols
(4 pizzas (frozen with anchovies))) and lists

("this is a string in a list* -53) a list of a string and a number

((beth "555-5834") (pat "555-8098")) a list containing two lists

TABLE 2-4. Lists that can be used to call functions:

(SQRT 2) a list whose first element is the name of a function
(+23) a list whose first element is the name of a function
(-654) a list whose first element is the name of a function

From (Tatar, 1987), page 16.

Analysis: The examples presented in this description are collected into groups of four (so even
though the total number of examples is more than four (Clark’s (1971) maxim), they are partitioned
into smaller groups). They are ordered by complexity. They also contain prompts about the features
being illustrated in the examples. Only the second example in the second group of more complex
examples is out of sequence. In the third table, the examples are again ordered by complexity (the
number of elements increases). This is a very good description of a list for naive users. Its only
drawback is that the examples themselves are not well integrated within the text; however, the text
refers to them explicitly.

A.6 Description 6

When left and right parentheses surround something, we call the result a list, and speak of its elements.
In our very first example, the list (+ 3.14 2.71) has three elements, +, 3.14, and 2.71.

[Discussion on the prefix notation deleted)
e Indivisible things like 27, 3. 14 and +, as well as things like FOO, B27 and BYPEENATED-SYMBOL are
called atoms.

o Atoms like 27 and 3. 14 are called numeric atoms, or numbers.
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¢ Atoms like FOO, B27, HYPEENATED-SYMBOL, FIRST and + are called symbolic atoms, or symbols.

o A list consists of a left parenthesis, followed by zero or more atoms or lists, followed by a right
parenthesis.

From (Winston and Horn, 1984), page 20.

Analysis: This description does not order the examples in terms of complexity. There are very few
examples and they do not illustrate many of the features of a list at all.

A7 Description 7

A list always begins with a left parenthesis. Then come zero or more pieces of data (called the elements
of a list) and a right parenthesis. Some examples of lists are:

(AARDVARK)

(RED YELLOW GREEN BLUE)
(2 3511 19)

(3 FRENCH FRIES)

A list may contain other lists as elements. Given the three lists:
(BLUE SKY) (GREEN GRASS) (BROWN EARTH)
we can make a list by combining them all with a parentheses.

((BLUE SKY) (GREEN GRASS) (BROWN EARTH))

From (Touretzky, 1984), page 35.

Analysis: This description presents the definition, followed by examples illustrating the variable
features of a list. The recursive example is prefaced by additional explanation, and the examples are
very well integrated with the text.
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Appendix B

The Heuristics used in the System

There are a number of heuristics used in the system to decide on different decisions. Many of these
heuristics depend upon the text type being generated. Since the current implementation does not

handle intermediate texts, the heuristics listed here deal only with the introductory and the advanced
texts:

e when should an example be generated:

-- if the text is introductory, and the concept definition has been presented, generate examples
to illustrate the definition

=- if the text is advanced, examples should not be presented until the complete description of
the concept has been presented textually

¢ information in text, examples, and both text and examples:
- if the text type is introductory:

* the definition of the concept must be described textually

* information on different types of elements in an concept can be conveyed using only
examples

* information on recursive element types (such as lists of other lists) must be conveyed
through both text and examples

-- if the text type is advanced:

+ all of the information should be communicated in the text

+ the syntactic information can be conveyed through examples as well (but there is no
replacement of textual elaboration by the examples)

o characteristics of the textual explanation:
-~ if the text is introductory:

* the textual explanation should be about the syntactic construction
* anomalous cases should not be introduced in the explanation

-- If the text is advanced, the textual explanation must be complete with regard to all the
information represented about the concept.

o characteristics of the examples:

- if the text is introductory:
* the examples should introduce one feature at a time
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+ the elements of the examples should be simple ones

* anomalous examples should not be presented along with other positive examples

* if an interesting negative example is available, the example should be presented, (along
with an explanation of the differences between the negative example and the positive
ones)

* positive examples which differ in a variable feature should be presented to illustrate
that variable feature

* if a positive-negative pair of examples is presented to illustrate a critical feature, then
the example pair should differ in only the critical feature
-- if the text is advanced:

* the examples should contain as many features as possible

* the elements of the examples can be as complex as necessary to illustrate the range of
variation

* since the definition is complete, there should be no anomalous examples in this context).
Negative examples are not presented

¢ number of examples:

-- if the text is introductory
* the number of examples should be at least as many as the number of features to be
introduced
* if a recursive example needs to be presented, then there should be background examples
that should be generated in addition for use in the recursive example

-- if the text is advanced, the number of examples is determined by the minimum number of
examples that convey all the features. To illustrate variable features, at least two examples
should be presented, in which all of the variable features should be varied

e order of example presentation: examples should be presented ordered by complexity at both
the feature level and the individual example level.

-- ordering groups of examples illustrating a feature: groups of examples illustrating a partic-
ular feature should be sequenced by the relative complexity of that feature
- ordering examples within each feature group:
* within a group, the examples should be ordered by the complexity of each example
* between positive-negative pairs, the positive example should be presented before the
negative example
* if the negative example is an interesting negative example of another concept, then the
positive negative pair should be presented after all the other regular (not anomalous)
examples

* anomalous examples should be presented after all other examples (including interesting
negative examples).

¢ position of the examples:

- if the text type is introductory, the examples illustrating a feature in a concept should be
presented as part of the elaboration on that feature (after the feature is mentioned). This
will result in examples interspersed within the explanation

- if the text type is advanced, all examples should be presented after the complete explanation
¢ when should prompts be generated:

-- prompts should be generated when the example to be presented has more features than
required by the discourse goal that caused the example to be generated
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-- prompts should be generated when the example occurs far away from the point that the
concept the example illustrates was described

-- prompts should be generated if the example is as a result of combining two communicative
goals

-- if the text type is advanced and the example is recursive, prompts should be generated to
mention that fact
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Appendix C

The Text Plan Operators

755 This operator is applicable when the object to be described is a noun. It
;3 retrieves the appropriate features based on the text type, and posts two
;35 goals, one to list the features, and another to elaborate upon each of
;55 them. This elaboartion can be either in text or using examples.

(define-text-plan-operator

‘name describe-noun

:effect (bel hearer (nmoun ?object))

:constraints (and :
(isa? ?object noun)
(get-text-type-for-object ?text-type ?object)
(get-appropriate~ftrs-for-user ?ftrs ?object ?text-type)
(not *use-examples-only*))

‘nucleus (bel hearer (list-ftrs 7ftrs ?7object))

:satellites (((foreach ?ftrs (elaboration ?ftrs 7object)) *optional#*)))

;15 The following two operators are used to Present sequences of examples for
ii; a particular object. The constraints retrieve all of the features based
+;; on the text type, and filter them into critical and variable

;i; features. These are then sorted by complexity and the operator posts

i3 goals to present examples for the critical and variable

;+; features. Depending upon which one (critical vs. variable) features have
55 greater complexity, the goals are ordered appropriately.
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(define-text-plan-operator

:name describe-noun-examples

:effect (bel hearer (noun ?object))

:constraints (and
(isa? ?object noun)
(get-text-type-for-object ?text-type Zobject)
(get-appropriate-ftrs-for-user ?ftrs 7object 7text-type)
(select-critical-ftrs ?crit-ftrs ?ftrs ?object)
(enumerate-ftrs Zex-crit-ftrs ?crit-ftrs ?object)
(order-by-complexity 7eg-crit-ftrs Zex-crit-ftrs)
(select-variable-ftrs ?var-ftrs 7ftrs 7object)
(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object)
(order-by-complexity ?eg-var-ftrs ?ex-var-ftrs)
(complexity-greater ?eg-var-ftrs ?eg-crit-ftrs)
*use-examples-only*)

:nucleus ((foreach ?eg-var-ftrs (bel hearer (example-seq ?eg-var-ftrs “Zobject)))

(foreach 7eg-crit-ftrs (bel hearer (example-pair 7eg-crit-ftrs ?object))))
:satellites (((background (present-eg-background ?object))
*optional#*)))

(define-text-plan-operator

‘name describe-noun-examples

teffect (bel hearer (noun ?object))

:constraints (and
(isa? ?object noun)
(get-text-type-for-object ?text-type ?object)
(get-appropriate-ftrs-for-user ?ftrs ?object ?text-type)
(select-critical-ftrs ?crit-ftrs ?ftrs ?object)
(enumerate-ftrs ?ex-crit-ftrs ?crit-ftrs ?object)
(order-by-complexity ?eg-crit~-ftrs 7ex-crit-ftrs)
(select-variable-ftrs ?var-ftrs ?ftrs ?object)
(enumerate-ftrs ?ex-var-ftrs ?var-ftrs ?object)
(order-by-conplexity 7eg-var-ftrs 7ex-var-ftrs)
(complexity-greater ?eg-crit-ftrs 7eg-var-ftrs)
*use-examples-only*)

:nucleus ((foreach ?eg-crit-ftrs (bel hearer (example-pair ?eg-crit-ftrs ?object)))

(foreach 7eg-var-ftrs (bel hearer (example-seq ?eg-var-ftrs “Zobject))))
:satellites (((background (present-eg-background ?object)) *optionals)))

i3 This operator generates the appropriate background string to introduce an
3; example.

(define-text-plan-operator
‘name generate-initial-example-string
:effect (background (present-eg-background ?object))
:constraints nil

‘nucleus (inform s hearer (example-background 7object))
:satellites nil
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;;; This operator is used to generate a pair of positive negative examples to
;35 highlight a critical feature of an object.

(define-text-plan-operator
:name example-crit-ftr
ieffect (bel hearer (example-pair ?ftr ?object))
:constraints (not *use-text-only*)
:nucleus ((bel hearer (example ?ftr ?object)))
:satellites (((sequence (bel hearer (neg-example 7ftr ?7object))))))

;35 This operator generates examples to illustrate a variable feature of an
;3 object

(define-text-plan-operator
‘name example-var-ftr
:effect (bel hearer (example-seq ?var-ftr ?object))
:constraints (enumerate-ftrs ?eg-ftrs ?var-ftr ?object)
‘nucleus (foreach ?eg-ftrs (bel hearer (example ?var-ftr ?object)))
:satellites nil)

3; This operator presents a negative example in which a prompt is not
;33 required

(define-text-plan-operator

‘name generate-negative-example
teffect (sequence (bel hearer (neg-example ?ftr 7object)))
:constraints (and (isa? ?object noun)

(get-neg-example ?example ?ftr ?object)

(not (prompt-required? 7example ?ftr ?object)))
‘nucleus (inform s hearer (present-neg-example ?example))
:satellites nil)

i35 This operator presents a negative example in which a prompt is required

(define-text-plan-operator

:name generate-negative-example-w-prompt

:effect (sequence (bel hearer (neg-example ?ftr Zobject)))

:constraints (and (isa? ?object noun)
(get-neg-example ?example ?ftr ?object)
(prompt-required? ?example ?ftr 7object))

‘nucleus (inform s hearer (present-neg-example ?example))

:satellites (((sequence (neg-example-prompt ?ftr ?object)) *optional#)))




;;; This operator generates a positive example in which a prompt is not
;33 required

(define-text-plan-operator
‘name generate-actual-example
:effect (bel hearer (example ?ftr ?object))
:constraints (and (isa? ?object noun)
(get-example ?example ?ftr ?object)
(not (prompt-required? ?exampls ?ftr ?object)))
nucleus (inform s hearer (present-example ?example))
:satellites nil)

ii; This operator generates a positive example in which a prompt is required

(define-text-plan-operator

:name generate-actual-example-w-prompt

teffect (bel hearer (example ?ftr Zobject))

:constraints (and (isa? ?object noun)
(get-example ?example ?ftr ?object)
(prompt-required? ?example ?ftr ?object))

:nucleus (inform s hearer (present-example ?example))

:satellites (((sequence (example-prompt ?ftr ?object)) *optional#)))

;i3 Generates prompts of the form: "An example of a list"

(define-text-plan-operator
‘name example-prompt
teffect (sequence (example-prompt ?ftr Zobject))
:constraints (and (isa? ?object noun)
(single-ftr? ?ftr))
‘nucleus (inform s hearer (prompt ?object))
:satellites nil)

ii; Generates prompts of the form: "A list of atoms, numbers and strings"

(define-text-plan-operator
‘name example-prompt-detailed
effect (sequence (example-prompt 7ftrs ?object))
:constraints (and (isa? ?object noun)
(multiple-ftrs? 7ftrs))
‘nucleus (inform s hearer (prompt ?object ?ftrs))
:satellites nil)
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;;; Generates prompts for negative examples: "This is not a list"

(define-text-plan—-operator
:name neg-example-prompt
teffect (sequence (neg-example-prompt ?ftr ?object))
:constraints (isa? 7object noun)
:nucleus (inform s hearer (neg-prompt Zobject))
:satellites nil

;+: Generates background text and examples for recursive examples. It checks
;33 if the text being generated is introductory, and gets its sub-components,
ii; filters the fixed features and after ordering them by complexity, posts
;35 goals to introduce each of the background features.

(define-text-plan-operator
‘name set-up-eg-background
teffect (bel hearer (set-up-background-for-eg 7ftr ?eg-ftrs 7object))
:constraints (and (isa? ?object noun)
(get-text-type-for-object ?text-type ?object)
(introductory-text? ?text-type)
(get-sub-components ?sub-ftrs ?ftr ?object)
(filter-fixed-ftrs ?eg-ftrs ?sub-ftrs 7user-type)
(order-by-complexity ?bkg-ftrs Zeg-ftrs))
:nucleus (foreach ?bkg-ftrs
(bel hearer (example-of-ftr ?bkg-ftrs Zobject)))
:satellites nil)

;33 Generates an example if not a recursive or an anomalous case. The plan
;13 operator accesses the discourse structure to find out whether the example
;;; is anomalous in this context or not.

(define-text-plan-operator
:name ftr-eg-simple-case
:effect (bel hearer (example-of-ftr ?ftr ?object))
:constraints (and (not (recursive-ftr? ?ftr ?object))
(not (anomalous-ftr? ?ftr ?object)))
:nucleus (inform s hearer (generate-eg-for-ftr ?ftr ?object))
:satellites nil)




i;; Generates an example in a complex case, by presenting the background
;;; before presenting the actual example.

(detine-text-plan-operator
:name ftr-eg-complex-case
:effect (bel hearer (example-of-ftr 7ftr ?object))
:constraints (or
(recursive-ftr? ?ftr ?object)
(anomalous-ftr? ?ftr ?object))
:nucleus (inform s hearer (generate-eg-for-ftr ?ftr ?object))
:satellites (((background (present-info ?ftr ?object)))))

;33 Plan operator to handle the generation of multiple examples for multiple
;3 features

(define-text-plan-operator
‘name ftr-eg-complex-case-many-ftr
reffect (bel hearer (example-of-ftr ?ftr 7object))
:constraints (and
(multiple-ftrs? ?ftr)
(get-text-type-for-object ?text-type 7object)
(introductory-text? 7text-type))

‘nucleus (foreach ?ftr (bel hearer (generate-eg-for-ftr ?ftr ?object)))
:satellites nil)

i35 Plan operator to handle the generation of one example for multiple
;3 features

(define-text-plan-operator
‘name ftr-eg-complex-case-many-ftr
reffect (bel hearer (example-of-ftr ?ftr ?object))
tconstraints (and
(multiple-ftrs? ?ftr)
(get-text-type-for-object ?text-type 7object)
(reference-text? ?text-type))

‘nucleus (bel hearer (generate-eg-for-ftr ?ftr ?object))
:satellites nil)
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;;; Plan operator to handle the case of a single recursive feature

(define-text-plan—operator
:name ftr—-eg-complex-case
teffect (bel hearer (example-of-ftr 7ftr 7object))
:constraints (and (recursive-ftr? 7ftr ?7object)
(single-ftr? 7ftr))
:nucleus (bel hearer (generate-eg-for-rec-ftr ?ftr 7object))
:satellites (((background (present-rec-info ?ftr ?object)))))

;53 Plan operator to handle the generation of background textual informatiom
;55 in the case of a recursive feature.

(define-text-plan-operator
:name background-information-recursive-case
:effect (background (present-rec—info ?ftr ?7object))
:constraints (recursive-ftr? ?ftr ?object)
:nucleus (inform s hearer (recursive-case ?ftr ?object))
:satellites nil)

;33 Plan operator to handle the construction of a complex example from other
;3 simpler examples.

(define-text-plan-operator
:name ftr-eg-complex-case
:effect (bel hearer (generate-eg-for-rec-ftr ?ftr 7Tobject))
:constraints (and (simple-cases ?s-cases 7ftr Zobject)
(build-complex-eg 7complex-eg ?s-cases ?object))
:nucleus (inform s hearer (complex-eg ?complex-eg ?object))
:satellites (((background (present-egs ?s-cases ?object)))))

177 Plan operator to present the background examples for a recursive example

(define-text-plan-operator
:name background-egs-recursive
:effect (background (present-egs ?s-cases Zobject))
:constraints nil
:nucleus (inform s hearer (simple-egs ?s-cases ?object))
:satellites nil)




;i; Plan operator to list multiple features of an object

(define-text-plan-operator

:name list-many-features

reffect (bel hearer (list-ftrs ?ftrs ?object))

:constraints (and (multiple-ftrs? ?ftrs)
(get-tirst-ftr 7f-ftr ?ftrs)
(get-rest-ftrs ?r-ftrs ?ftrs)
(not #*use-examples-only*))

:nucleus (bel hearer (list-ftrs ?f-ftr Zobject))

:satellites (((sequence ?r-ftrs ?7object) *requireds*)))

ii; Plan operator to list a single feature of an object

(detine-text-plan-operator
‘name list-single-feature
:effect (bel hearer (list-ftrs ?ftr Zobject))
:constraints (single-ftr? ?ftr)
:nucleus (inform s hearer (ftr ?cbject ?ftr))
:satellites nil)

;i1 Plan operator to describe a feature as one in a list of features

(define-text-plan-operator

:name describe-sequence-of-features

:effect (sequence ?ftrs Zobject)

:constraints (and (multiple-ftrs? 7ftrs)
(get-first-ftr 7f-ftr 7ftrs)
(get-rest-ftrs 7r-ftrs 7ftrs))

‘nucleus (bel hearer (list-ftrs 7f-ftr ?object))

:satellites (((sequence ?r-ftrs ?object) *requireds)))

i+ Plan operator to describe the last of the features in a list of features

(define-text-plan-operator
:name describe-last-of-a-sequence-of-features
:effect (sequence ?ftrs 7object)
:constraints (single-ftr? ?ftrs)
:nucleus (inform s hearer (ftr ?object ?ftrs))
:satellites nil)
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;3 Plan operator to elaborate upon the attributes of an object

(define-text-plan-operator

:name elaborate-on~attributes

:effect (elaboration ?ftrs ?object)

:constraints (and (isa? ?object noun)
(elaboratable-features? ?ftrs ?props)
*uge-text-only#*)

inucleus (bel hearer (describe-attributes 7ftrs ?props))

:satellites nil)

;33 Plan operator to elaborate on the variable features of an object

(define-text-plan-operator

‘name elaborate-var-ftrs-using-eg

teffect (elaboration ?property ?object)

:constraints (and (isa? ?object noun)
(get-variable-ftrs ?var-ftrs ?property ?object)
(order-by-complexity ?variable-ftrs ?var-ftrs)
*uge—-examples-and-text*)

inucleus (foreach ?variable-ftrs

(bel hearer (describe-a-ftr-using-eg ?variable-ftrs ?object)))
:satellites (((background (for-eg 7property ?object)) *optional#)))

;+; Elaborate upon the attributes in text

(define-text-plan-operator
:name attributes-text
:effect (bel hearer (describe-attributes ?object ?ftrs))
:constraints (and *use-text-only#)
‘nucleus (inform s hearer (attributes Zobject ?ftrs))
:satellites nil)

i;; Plan operator to generate background text for the examples.

(define-text-plan-operator
:name background-example-text
reffect (background (example-prompt 7object))
:constraints (and *use-examples-and-text*)

‘nucleus (inform s hearer (background-to-examples ?object))
:satellites nil)




ii; Elaborate upon the attributes using examples.

(define—toxt-plan-operator
‘name attributes-examples
:effect (bel hearer (describe-attributes Tobject ?ftrs))
:constraints (and *use-examples-and-text#
(multiple-ftrs? ?ftrs))
‘nucleus (foreach ?ftrs (bel hearer (example ?ftrs Tobject)))
‘satellites (((background (example-prompt 7object)) *optionals)))

(define-text—plan-operator
‘name describe-a-teature—using-an-eg
:effect (bel hearer (describe—a—ftr—using~eg ?7ftr ?object))
:constraints (and (isa? ?object noun)
(enumerate-ftrs 7eg-ftrs ?ftr ?object))
‘nucleus (foreach ?eg-ftrs

(bel hearer (example-of-ftr 7eg-ftrs ?object)))
:satellites nil)

ii; Describe a variable feature using examples

(define-text-plan-operator

‘name describe-var-feature-using—eg

:effect (bel hearer (describe-a—ttr—using-eg ?ftr ?object))

‘constraints (and (isa? ?object noun)
(variable-ftr? ?ftr ?object)
(instantiate-ftr-values 7exmpl-ftrs ?ftr ?object)
(ordor-by-conplexity ?eg-ftrs ?exmpl-ftrs))

‘nucleus (foreach ?eg-ftrs

(bel hearer (example-of-ftr ?eg-ftrs ?object)))
:satellites nil)

ii; Describe a critical feature using examples

(detine-text-plan-operator
‘name dolcribe-crit—foature-using-eg
:effect (bel hearer (describe-a-ftr-u
‘constraints (and (isa? ?object noun)
(critical-ftr? 71¢r ?object)
(instantiate~ftr-values Texmpl-ftrs ?ftr ?object)
(order—by—conplexity 7eg-ftrs ?exmpl-ftrs))

‘nucleus (bel hearer (example-pair ?eg-ftrs ?object))
:satellites nil)

sing-eg ?ftr Zobject))
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;;; Present the definition of a concept and optionally elaborate upon it.

(define-text-plan-operator
:name describe-object
:effect (bel hearer (concept ?concept))
:constraints (and (isa? ?concept penman-kb::object))
:nucleus (bel hearer (definition ?concept))
:satellites (((elaboration ?concept) *optional#)))

;;; This plan operator elaborates upon the attributes of a concept.

(define-text-plan-operator
:name elaboration-object-attribute
:effect (elaboration ?concept)
:constraints (attributes ?concept ?7attributes)
:nucleus (bel hearer (ref (attributes ?concept) 7attr))
:satellites nil)

;35 This plan operator is used to describe the elements of a set.

(define-text-plan-operator
:name elaboration-object
:effect (elaboration ?concept)
:constraints (set-elements ?concept ?7elements)
:nucleus (bel hearer (ref (individuals ?concept) 7elements))
:satellites nil)

;35 This plan operator is used to describe a disjoint covering.

(define-text-plan-operator
:name elaboration-object
:effect (elaboration ?concept)
:constraints (covering-subtypes ?concept 7subtypes)
:nucleus (bel hearer (ref (subtypes ?concept) ?subtypes))
:satellites nil)

;55 This plan operator is used to describe the different part-subparts of a
;53 concept.

(define-text-plan-operator
:name elaboration-object
:effect (elaboration ?concept)
:constraints (parts ?concept ?parts)
:nucleus (bel hearer (ref (parts ?concept) ?parts))
:satellites nil)
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;i3 This plan operator is used to elaborate upon a disjoint covering of a
;33 conept and orders them by the maxim of end-weight before listing them and
;3 elaborating upon them.

(define-text-plan-operator
iname elaboration-on-set-covering
1effect (bel hearer (ref (individuals ?concept) 7elements))
tconstraints (disjoint-covering? ?concept 7elements)
:nucleus ((setq ?d-j (apply—maxim—of—end-woight 7elements))
(inform hearer (disjoint-covering ?concept ?d-j)))
:satellites (((foreach ?d-j (bel hearer (concept ?d-j))) *optional#*)))

(define-text~-plan-operator
:name describe-object-with-disjoint-covering
reffect (bel hearer (concept ?concept))
:constraints (and (isa? ?concept penman-kb::object)
(disjoint-covering ?concept ?d-c))
:nucleus (bel hearer (disjoint-covering ?concept ?d-c))
:satellites nil)

;35 This plan operator is used to describe a concept in terms of its
i3; superclass by presenting the superclass and then the differences. The

;33 constraints check to see that the superclass has not already been
;3 presented previously.

(define-text-plan-operator
:name define-superclass-w-diffs
:effect (bel hearer (definition ?concept)) ,
:constraints (and (all-superclass 7concept ?super-concepts)
(appropriate ?super-concepts ?appropriate-super-concepts)
(not (in-explanation-context
(bel hearer (concept ?appropriate-super-concepts)))))
:nucleus (inform s hearer (class-ascription Pconcept 7appropriate-super-concepts))
rsatellites (((setq ?diff (get-defining-attributes ?concept ?super-concepts)))
((elaboration-object-attribute
(ret (defining-attributes-wrt-super ?concept) 7diff))
*required-when-presents)))

i5; if the superclass has been presented earlier, then this plan operator is
i;; selected. It does not describe the superclass again, but only the
;73 differences.
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(define-text-plan-operator
:name define-superclass-w-diffs
:effect (bel hearer (definition ?concept))
:constraints (and (not (and (all-superclass 7concept ?super-concepts)
(appropriate ?super-concepts ?appropriate-super-concepts)
(in-explanation-context
(bel hearer (concept ?appropriate-super-concepts)))))
(differences 7diff ?concept ?super-concepts))
:nucleus (forall ?diff
(bel hearer (ref (defining-attributes-wrt-super ?concept) ?diff)))
:satellites nil)

;3; Plan Operator used to describe a value restriction using an example

(define-text-plan-operator
:name elaborate-object-value-restriction-attribute-with-example
:effect (bel hearer (ref (defining-attributes ?concept) 7filler))
:constraints (and (value-restriction ?filler ?restriction-value))
:nucleus ((setq ?role-restricted (get-role-restricted ?filler))
(setq ?features-to-appear-in-eg
(get-features ?restriction-value 7role-restricted ?concept
*user-model* *explanation-context#))
(setq ?features-only-in-eg
(get-teatures-for-eg ?features-to-appear-in-eg ?role-restricted ?concept
*uger-model#* *explanation-context#))
(setq 7features-in-text (filter-out ?restriction-value ?features-only-in-eg))
(inform s hearer (?restriction-type ?role-restricted ?features-in-text)))
:satellites (((elaboration-by-example ?features-to-appear-in-eg
?role-restricted ?concept))))

(define-text-plan-operator
:name generate-the-actual-example-multiple-critical-features

:effect (bel hearer (example-features 7ftrs ?concept 7role-restricted))
:constraints (not (single-critical-ftr? ?ftrs))
:nucleus (bel hearer (example ?ftrs ?concept ?role-restricted))

:satellites (((background (pos-example ?ftrs ?concept ?role-restricted)) #optionals)))




(define-text-plan-operator
‘name generate-the-actual-example-single-critical-feature
:effect (bel hearer (example-features 7ftrs ?concept ?role-restricted))
:constraints (and (single-critical-ftr? ?ftrs)
(interesting-neg-example? 7neg-example-concept
7ftrs ?concept 7role-restricted)
(get-differences 7neg-example-concept ?concept ?differences))
:nucleus (bel hearer (example ?7ftrs ?concept ?role-restricted))
:satellites (((background (pos-example ?ftrs ?concept ?role-restricted)) *optionals)
((contrast (example ?neg-example-concept ?concept ?role-restricted)))
((evidence (differences 7concept ?neg-example-concept ?differences)))))

(define-text-plan-operator
‘name contrast-with-neg-example
teffect (contrast (example ?ftrs ?concept ?role-restricted))
‘constraints (get-neg-example ?neg-example 7ftrs ?concept ?role-restricted
*explanation-contexts*)

:nucleus (bel hearer (example ?neg-example ?ftrs ?concept ?role-restricted))
:satellites nil)

(define-text-plan-operator
:name generate-example-prompt

teffect (elaborate-with-prompt (example-prompt ?ftrs ?concept ?role-restricted))
:constraints (prompt? *explanation-context#)
:nucleus ((setq ?prompt~ftr (get-prompt-ftrs ?ftrs ?concept ?role-restricted))

(inform (prompt ?prompt-ftr)))
:satellites nil)

(define-text-plan-operator
‘name elaborate-object-number-restriction-attribute

:effect (bel hearer (ref (defining-attributes-wrt-super ?concept) ?filler))
:constraints (and (number-restriction? ?filler))
‘nucleus ((setq ?restriction-type (get-restriction-type ?filler))
(setq 7number-restriction (get-number-restriction ?restriction~type 7filler))
(setq ?role-restricted (get-role-restricted ?filler))

(inform s hearer (?restriction-type ?number-restriction ?role-restricted)))
:satellites nil)
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;33 Plan Operator to elaborate upon an attribute
(define-text-plan-operator
:name elaborate
:effect (elaboration-object-attribute ?concept ?ditf)
:constraints nil
:nucleus (inform s hearer (attribute ?concept ?diff))
:satellites nil)

;i3 Plan operator to elaborate upon an object restriction
(define-text-plan-operator

:name elaborate-object-restriction-attribute

:effect (elaboration-object-attribute ?object ?filler)

:constraints (and (get-restriction-type restriction-type ?filler)
(get-role-restricted role-restricted ?filler)
(get-restriction-value restriction-value 7filler))

:nucleus (inform s hearer (?restriction-type ?role-restricted

Trestriction-value))

:satellites nil)

(detine-text-plan-operator

:name elaborate-object-number-restriction-attribute

:effect (elaboration-object-attribute Tobject ?filler)

:constraints (and
(get-restriction-type restriction-type ?filler)
(number-restriction? ?restriction-type ?filler)
(get-number-restriction number-restriction 7filler)
(get-role-restricted ?role-restricted 7filler))

:nucleus (inform s hearer (?restriction-type 7number-restriction

?role-restricted))
:satellites nil)

(define-text-plan-operator
:name describe-defining-attributes

teffect (elaboration-object-attribute (ref (defining-attributes ?concept) ?diff))
:constraints nil

:nucleus (foreach ?diff

(bel hearer (ref (defining-attributes ?concept) ?7diff)))
:satellites nil)
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Appendix D

Descriptions in the LISP domain planned by the system

to generate useful examples where the semantics are required. However, the current implementation
does reason explicitly about the effects of the examples on the discourse, and effects such as the
positioning of the examples, the order of presentation of the examples, etc. are taken into account,

Most of the descriptions given here are relatively straightforward. These descriptions suggest both
the range and the limitations of the current implementation. They do not contain the typical uses of

The cons-form:

The construct CONS consists of a left parenthesis followed by the word CONS followed by a data
element. Then there is a list and finally a right parenthesis. For example:

(CONS ’ORANGES ’(PIZZAS APPLES CARS))
(CONS 2 *(PIZZAS APPLES CARS))
(CONS (A B) *(PIZZAS APPLES CARS))

(CONS ’(A B) ’(3 PIZZAS B APPLES))

The car-form:

The construct CAR consists of a left parenthesis followed by the word CAR followed by a list followed
by a right parenthesis. For example:

(CAR ' (ORANGES MONKEYS CARS))
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(CAR (26 1 5 8))
(CAR ' (ORANGES 2 CARS 6))

(CAR ' ((ORANGES ORANGES) (CARS MONKEYS)))

The cdr-form:

The construct CDR consists of a left parenthesis followed by the word CAR followed by a list followed
by a right parenthesis. For example:

(CDR ’(FISHES CARS APPLES CARS))
(CDR (3 5 6))
(CDR '(MEN 7 CARS 7))

(CDR ’((FISHES MEN) (ORANGES CARS)))

The function-form:

The function form consists of a left parenthesis followed by the word DEFUN followed by a function
name which is a symbol followed by a parameter list which is a list of symbols. Then there is a body
which consists of zero or more s-expressions, followed by a right parenthesis. For example:

(DEFUN ORANGES (MEN CATS PIZZAS)
FISHES)

(DEFUN CARS (ORANGES FISHES)
5)

(DEFUN FISEES (ORANGES MEK)
(MEN CARS CARS))

The parameter list can have optional and keyword parameters in it. Optional parameters are specified
by the word &OPTIONAL. For example:

(DEFUN FISEES (&4OPTIONAL CARS)
MEN)

(DEFUN CARS (&O0PTIONAL MEN PLANES CARS FISHES)
PLANES)

Keyword parameters are specified by the word &KEY. For example:

(DEFUN FISHES (&KEY PLANES)
CARS)

(DEFUN MONKEYS (&KEY MEN CARS ORANGES APPLES)
PLANES)

The parameter list can have both optional and keyword parameters. For example:

154




(DEFUN APPLES (X0PTIONAL ORANGES &KEY GRAPES)
MONKEYS)

The prog-form:

The prog-form consists of a left parenthesis followed by the word PROG followed by a list of variables.
There are some forms after the list of variables. Finally there is a right parenthesis. For example:

(prog (oranges) fishes aardvarks)

(prog (men blue) 2 3 4 5)

(prog (cars women apples) oranges 6 apples 7)
(prog (yellow fishes) (fishes men planes))

Constants:

A constant-form consists of either T, NIL, a number, or a quoted s-expression. For example:

T

NIL

5

’(tishes men)
’oranges

However, the following example is not a constant, but a variable because there is no quote:

oranges

The difference between a variable and a constant is that the value of a constant cannot be changed.

The append-form:

The append form consists of a left-parenthesis followed by the word APPEND followed by two lists.
Finally there is a right parenthesis. For example:

(append ’(oranges fishes) ’(cars bananas))

(append '(1 3 6 7) ’(cars planes))

(append ’(oranges 3 men 6) ’(fishes men cars))
(append ’((cars men) (pizzas women)) ’(aardvarks))

The reduce-form:
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The reduce-form consists of a left parenthesis followed by a function name followed by a list. Finally
there is a right parenthesis. The function name specifies a function that has two arguments. For
example:

(reduce ’cons ’(oranges pizzas men))

(reduce ’'plus '(4 5 9 5 6))

(reduce ’times ’(fishes 4 bicycles 9))

(reduce ’append ’(cars planes (aardvarks aardvarks)))

(The last two examples assume certain things that need to be true: the variables tishes and bicycles
need to have numeric values; the variables cars and planes need to have values that are lists for the
example to work.)

The subset-form:

The subset-form consists of a left parenthesis followed by the word SUBSET followed by a unary
predicate. This is followed by a list of elements and finally there is a right parenthesis. For example:

(SUBSET ’ODDP '’ (men cars planes))
(SUBSET 'NUMBERP °’(fishes 2 oranges 7))
(SUBSET °LISTP ’((FISEES BLUE) (RED MEN)))

The let-form:

The let-form consists of a left parenthesis followed by the word LET followed by a list of local variables
followed by a number of forms. Finally, there is a right parenthesis. A local variable is specified as a
list of the variable name which is a symbol and an initial value. Examples of let-forms are:

(LET ((ORANGES FISHES)) MEN)

(LET ((BICYCLES 3) (PIZZAS 'MEN)) 2 9 CARS)

(LET ((YELLOW SKY) (FISHES BLUE)) (MEN AARDVARKS))

(LET ((APPLES APPLES) (FISHES SHARKS)) ((MEN CARS) (MEN BLUE)))

(The last example illustrates the necessity of representing some of the semantics in addition to the
syntax: it has an erroneous declaration of the local variable APPLES, since the variable will not have an
initial value, the assignment will give an error when executed.)

The setf-form:

The SETF-form consists of a list of three components: the keyword SETF, followed by a variable

name, followed by a value. The variable name is a symbol; the value can be an expression. Examples
of SETF-FORMs are:

156




(SETF X23 3.1415) ; X23 is assigned the value 3.1415
(SETF BBB (A B C)) ; BBB is assigned the value of the expression (A B C)
(SETF BAD ORANGES) ; BAD is assigned the value of ORANGES

However, the following is not a valid SETF-form because it cannot be used to change the value of a
constant or a number:

(SETF 123 QORANGES) ; invalid example, because 123 is not a variable
(SETF ABC 908) ; invalid example if ABC is a constant

The assoc-form:

The ASSOC-form is written as a list with three components: the keyword ASSOC, followed by a
constant or a variable, followed by a list or a variable representing a list. For example:

(ASSOC ’B ’(ORANGES PIZZAS)) ; constant and a list

(ASSOC ABC ’(ORANGES PIZZAS)) ; variable and a list

(ASSOC ABC XYZ) ; tvwo variables

(ASSDC ABC 'XYZ) ;i invalid example because the second

; parameter is not a list

Floating Point Numbers:

Floating point numbers are written as: (1) decimal numbers (2) scientific notation. Decimal numbers
consist of a sequence of digits followed by a decimal point followed by some more digits. Scientific
notation consists of an optional sign, followed by some digits, optionally followed a decimal point and
more digits, followed by an exponent. Examples of floating point numbers are:

1.0 ; a floating point number in decimal notation
OEO ; floating point zero in scientific notation
-.1 ; & negative floating point number

+.1 ; & positive floating point number

0.0 ; a floating point number in decimal notation
0. ; NOT a floating point number, but an INTEGER
The with-open-file form:

The WITH-OPEN-FILE form consists of a list with three components: the keyword WITH-OPEN-
FILE, a list consisting of a variable name, a pathname and optional declarations, and finally, an
expression. For example:
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(with-open-file (abc "/home/mittal/lisp-init.lisp" :direction :input) nil)
(with-open-file (xyz "/home/paris/.login" :direction :output

:if-exists :supersede) (a b c¢))
(with-open-file (xyz "/home/mittal/ees.lisp") 'DONE)

However, the following is not a valid WITH-OPEN-FILE form because instead of a variable, it has a
number as a parameter.

(with-open-file (453 "/home/mittal/ees.lisp") ’DONE)

The defstruct-form:

The DEFSTRUCT form consists of a list as follows: the first element of the list is the keyword
DEFSTRUCT, followed by a NAME-EXPRESSION. This can be followed by an optional documentation
string. The remaining elements consist of SLOT-DESCRIPTORS. The NAME-EXPRESSION can
be either a symbeol, or a list consisting of a name and optional keyword arguments. Each SLOT-
DESCRIPTOR consists of a slot-name, optionally followed by default values. For example:

(defstruct ABC XYZ) ; a DEFSTRUCT form with name ABC and one slot XYZ
(defstruct BGF "Oranges Fishes'" MMM GGG) ; a DEFSTRUCT form with name
; BGF, two slots and a
; documentation string
(defstruct (GF56) GGG XYZ) ; a defstruct form with name GF56 and two
; slots
(defstruct (VIB :conc-name nil) YYY) ; a DEFSTRUCT form with the keyword
; argument :CONC-NAME defined
(detstruct (GAD :predicate "CHECK" :constructor "HHH") LKJ) ; a DEFSTRUCT
; form with two keyword arguments defined

The defconstant-form:

The DEFCONSTANT form consists of a list with the keyword DEFCONSTANT, followed by a
variable-name, followed by a lisp expression and finally followed by an optional documentation string.
For example: -

(defconstant ABC 453)
(defconstant R2D2 (A 6 7 B))
(defconstant XYZ 567 "this is a string")

However, the following expression would be an invalid example of a DEFCONSTANT-form:

(defconstant 456 ’(a b c))

because 456 is not a valid variable name. Another invalid example of a DEFCONSTANT-form is:




(defconstant (car ’(a b c)) 711)

This is because "(car *(a b ¢))" is not a variable name. Thus, a DEFCONSTANT-form differs from a
SETF-form in that the second element of the list must be a variable name in a DEFCON STANT-form.

(Actually, a SETF-form and DEFCONSTAN T-form differ in another way as well: a SETF-form cannot
have a documentation string; the system did not detect it here because it tried to classify a modified
version of the last example and was successful with the SETF-form.)

The dotimes-form:

The DOTIMES-form consists of a list with the following components: the keyword DOTIMES,
followed by the ITERATION-LIST, followed by PROGN-BLOCK.! The ITERATION-LIST consists of a
variable name and a lisp expression, which is not a quoted constant. 2 For example:

(dotimes (abc 4) <some lisp code here>)

(dotimes (r2d2 (a b ¢ d)) <some lisp code here>)

(dotimes (b xyz) <some lisp code here>)

(dotimes (b ’xyz) <some lisp code here>) ; invalid example, because
; the second parameter in the
; ITERATION-LIST is a
i quoted constant

The endp-form:

The ENDP form consists of a list with two components: the keyword ENDP followed by a list or a
variable. For example:

(ENDP (A B C)) ; example of ENDP with a list

(EXDP XYZ) ; ENDP and a variable name

(ENDP ’ABC) ; invalid example, since ’ABC is not a list

(ENDP NIL) ; valid example, since NIL is a list

(EFDP (AB) (CD)) i invalid example because number of arguments must
; be one

'In many Lisp constructs, the body of the code is not essential -- our system currently indicates these segments of code as
PROGN-blocks.

2The initial representation of the DOTIMES-block omitted the result-fora, an optional part of the specification that cannot
be explained purely syntactically.
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