
D i 1(1     \ yv 
ELECTEi^   ^ 
JEC 2 7.1994^ '1 

A. COMPARISON OF ERROR 
CATEGORIZATION SCHEMES FOR USE IN 
SOFTWARE SYSTEM SAFETY PROGRAMS 

THESIS 

Richard Escobedo, Captain. USAF 
Jim Thomas, Captain. USAF 

AFIT/GSS/LAR/94D-1 

."iCC 

H'X: 

CNJ 

T1'     .;.j"._ir.ou! nas o;sa appiov 
tor'Vubliv :ai30.;e and sale; iis 
di3t::bv.D.C2 is animated. 

ed 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

CVJ 
CVJ 

<3> 

Wright-Patterson Air Force Base, Ohio 



AFIT/GSS/LAR/94D-1 

A COMPARISON OF ERROR 
CATEGORIZATION SCHEMES FOR USE IN 
SOFTWARE SYSTEM SAFETY PROGRAMS 

THESIS 

Richard Escobedo, Captain, US AF 
Jim Thomas, Captain, USAF 

AFIT/GSS/LAR/94D-1 

Accesion  For 
\ 

NTIS     CRA&I 
DTIC     TAB 
Unar'nofK'ced 
Justification 

~a— 
D 
Li 

By 

Distribution / 

Availability Codes 

"Dist 
Avail and/or 

Special 
| 
i 

 L  

Approved for public release; distribution unlimited 



The opinions and conclusions in this paper are those of the authors and are not intended to 
represent the official position of the DOD, USAF, or any other government agency. 



AHT/GSS/LAR/94D-1 

A COMPARISON OF ERROR CATEGORIZATION SCHEMES 

FOR USE IN 

SOFTWARE SYSTEM SAFETY PROGRAMS 

THESIS 

Presented to the Faculty of the Graduate School of Logistics and 

Acquisition Management of The Air Force Institute of Technology 

AETC 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science In Software Systems Management 

Richard Escobedo, B.S. Jim Thomas, B.S. 

Captain, USAF Captain, USAF 

December 1994 

Approved for public release; distribution unlimited 



Preface 

This study analyzes software error taxonomies for improving the development of 

safety critical software. A major goal was to identify or create an error categorization 

scheme that would be useful in the development of Department of Defense weapon 

systems. Although the proposed scheme is made up of elements of previous schemes 

within different domains, the resulting taxonomy has been deemed useful in DOD software 

development by the software experts surveyed. 

Extensive work was performed to develop a telephone survey that would efficiently 

and concisely extract the opinions of software development experts. The use of an error 

taxonomy will be dependent upon an organization's software development process. 

Creating one for all DOD organizations is not our intention. Ideally, software 

development organizations would tailor the proposed scheme to fit their domain and 

defect prevention programs. 

During our research, we received support from many people. Although we cannot 

list everyone who helped us, the contributions of some were so significant they demand 

special mention. We wish to thank Lieutenant Colonel Chris Arnold and Dr. Freda 

Stohrer, our advisors, for the time and patience they showed us as we developed a good 

idea into good research. We also want to thank Mr. Dan Reynolds, Professor of Statistics, 

for helping us identify the best statistical technique for our survey analysis. We also want 

to thank the many software experts who participated in the survey. Finally, we want to 

thank our wives, Hilda and Debbie, for their understanding, encouragement, and 

support—we will always be in their debt. 

Richard Escobedo and Jim Thomas 



Table of Contents 

Page 

Preface ii 

List of Figures vi 

List of Tables vii 

Abstract viii 

I. Introduction 1 

General Issue 1 

Software System Safety 3 

Specific Problem , 3 

Investigative Questions 4 

Overview 4 

n. Error Classification 5 

Introduction 5 

Classification Criteria 5 

Classification by Symptom 5 

Classification by Cause 7 

Classification by Life-cycle Phase 7 

Classification by Severity 8 

Classification by Software Control 8 

Combination Classifications 9 

Relevant Schemes 11 

in 



Page 

Scheme A 11 

Scheme B 12 

Scheme D ...13 

Proposed Scheme C 14 

HI. Methodology 17 

Introduction 17 

Population 17 

Data Collection 18 

Literature Review 19 

Telephone Survey 19 

Survey Development 20 

Data Analysis 20 

Ranking Data 21 

Open-Ended Data 25 

Summary 25 

IV. Findings and Analysis 27 

Overview 27 

Investigative Questions 27 

Investigative Question 1: What are the different methods for categorizing software 

errors? 27 

Investigative Question 2: What are the candidate categorization schemes for 

software safety? 28 

Investigative Question 3: Which categorization schemes are beneficial for software 

system'safety? 29 

IV 



Page 

Investigative Question 4: Are different types of schemes useful for different 

disciplines: such as information systems, embedded systems or data bases? 33 

General Findings 34 

Summary 35 

V. Conclusions and Recommendations 36 

Overview 36 

Conclusions 36 

Future Research 37 

Appendix A: Software Error Categorization Survey 39 

Appendix B: Detailed Ranking Data Analysis 51 

Appendix C: List of Experts Surveyed 76 

Bibliography 78 

Vita - Captain Richard Escobedo 80 

Vita - Captain Jim Thomas 81 



List of Figures 

Figure Page 

1. Decision Graph for Sample Ranking Data ..24 

2. Decision Graph for Survey Question 1 53 

3. Decision Graph for Survey Question 2 . 55 

4. Decision Graph for Survey Question 3 57 

5'. Decision Graph for Survey Question 4 59 

6. Decision Graph for Survey Question 5 61 

7. Decision Graph for Survey Question 6......  63 

8. Decision Graph for Survey Question 7 65 

9. Decision Graph for Survey Question 8.... 67 

10. Decision Graph for Survey Question 9 69 

11. Decision Graph for Survey Question 10 71 

12. Decision Graph for Survey Question 11 73 

13. Decision Graph for Summary Test 75 

M 



List of Tables 

Table Page 

1. Collofello's Error Classification Scheme 12 

2. Jones's Error Categorization Scheme 12 

3. Russo's Error Categorization Scheme 14 

4. Proposed Error Categorization Scheme 16 

5. Investigative Question Methodology Matrix 18 

6. Sample Ranking Data 21 

7. Classification Types Represented In Survey 28 

8. Summary of Significant Scheme Ranking Results By Question 29 

9. Summary of Experts' Platform Experience 33 

vu 



AFIT/GSS/LAR/94D-1 

Abstract 

Software safety is becoming increasingly important in the development of DOD 

advanced weapon systems. To make software safer, hazard conditions must be avoided 

along with the errors that accompany them. The first step in identifying errors is 

classifying error data. The area of software error classification is not as advanced as other 

software development areas. The technical literature lacks examples of comprehensive 

taxonomies that can be applied to various computer software domains and applications. 

The predominant approach is to organize errors into categories particular to the program 

currently in work. The typical error scheme is made of narrow categories that are not 

interrelated. Errors have been classified by symptom, by cause, by life-cycle phase, by 

severity, and by software control. The focus of this research was to determine the best 

way to classify errors in order to aid system safety in software development. The research 

identified common areas used in industry that aid in error classification. A telephone 

survey of experts in safety and software was used to obtain input on the most effective 

classification schemes. The research also proposed a taxonomy that will be ideal for DOD 

software development. Since software is becoming a larger part of advanced weapon 

systems, development of error-free and safe software to operate and support these 

weapon systems is increasingly important. 

vui 



A COMPARISON OF ERROR CATEGORIZATION SCHEMES 

FOR USE IN 

SOFTWARE SYSTEM SAFETY PROGRAMS 

I. Introduction 

General Issue 

The success of the United States military defense is linked to the technological 

superiority of its weapon systems. The technically advanced weapon systems employed in 

Operation Desert Storm significantly affected the outcome (AFP 63-115,1993). To 

maintain technological superiority, the Department of Defense (DOD) is developing new 

weapon systems that exploit advances in computer technology. These new computer 

systems require software programs that have the responsiveness and the capacity to 

control time-critical devices or actual physical processes. This inevitable automation is 

becoming increasingly expensive, complex, and hazardous. Failures of these real-time 

mission-critical software systems can have devastating results as was evidenced by the 

discovery of an error in the timing system of the Patriot Missile after it was fielded for use 

during Operation Desert Storm. A software problem with the tracking system caused the 

computation of incorrect coordinates for incoming Scud missiles. The problem was traced 

to a clock error that grew with the total operating time of the tracking system. The 

eventual solution to this problem was to reset the clock error to zero after a short period 



of operation. However, the solution was not implemented in time and the error may have 

been responsible for 28 deaths and 98 injuries (Wiener, 1993). 

An analysis of the errors that contribute to the failure of a system will help prevent 

similar errors in future developments. As established above, the DOD is forced to rely 

heavily on computers to control critical decision making processes in weapon systems, and 

therefore must analyze past software errors to develop safe weapon systems. 

Mishaps resulting directly from software control problems or errors in execution 

are documented in a cumulative index provided by Peter G. Neumann. These mishaps 

affect a wide range of areas including DOD weapon systems (Neumann, 1989). Two 

additional examples of software related mishaps involving DOD weapon systems are 

summarized below: 

A Navy F-18 fighter and crew nearly perished during a missile launch test. 
A wing mounted missile experienced a timing problem when the missile 
failed to separate from the wing after firing. Software was the main factor 
in the mishap, when it opened the clamp holding the missile to the wing, 
fired the missile, and then closed the clamp before the missile could leave 
the wing. The missile failed to develop enough thrust to leave the wing. 
The missile added an extra 3000 pounds of thrust to the wing and caused 
the aircraft to fall out of control. The pilot regained control after losing 
20,000 feet of altitude. (Jorgens, 1988) 

A software error was suspected to be a contributing factor in the F-22 
Advanced Tactical Fighter prototype crash at Edwards AFB, CA, during 
developmental test and evaluation. The flight control computer seemed 
unable to move the aircraft control surfaces fast enough to keep up with 
the pilot's commands. The pilot survived but the aircraft was severely 
damaged. The mishap is still under investigation. (Gellman, 1992) 



Software System Safety 

Since software contributed to each of these DOD mishaps, the development of 

new weapon systems must address software system safety. That is, it must "...ensure that 

software executes within a system context without resulting in unacceptable risk" 

(Leveson, 1991). 

The challenge to weapon system developers is to manage this risk. The risk of 

using a system must be balanced with the needs of the mission. The infinite number of 

error possibilities in a complex system makes ensuring absolute safety with large and 

complex computer-controlled systems impossible. It is the responsibility of the safety 

professional to formulate a reasonable, cost-effective plan that is consistent with a 

program's identified hazards and complexities. Due to limited resources, software system 

safety must focus only on those critical components and interfaces that have been 

identified to contain potential hazards (Piechota, 1992). Categorizing errors will help 

weapon system developers identify those areas that have caused problems in the past. 

Software developers can then apply their limited resources to those areas. 

Specific Problem 

A comprehensive error categorization methodology will aid the DOD in 

implementing software safety. Categorizing the errors that contribute to mishaps will 

allow developers of software to concentrate limited resources to reduce these errors. This 

thesis identifies and evaluates error categorization schemes that can aid future software 

development associated with complex weapon systems. 



Investigative Questions 

To solve the specific problem outlined in the last section, we must answer the 

following investigative questions: 

1. What are the different methods for categorizing software errors? 

2. What are the candidate error categorization schemes for software safety? 

3. Which error categorization schemes are beneficial for software system 

safety? 

4. Are different types of schemes preferable for different disciplines: for 

example, information systems, embedded systems or data bases? 

Overview 

This thesis includes five chapters. Chapter I introduces our research area by 

stating the problem and the investigative questions that guided our efforts. Chapter II 

reviews the literature pertaining to software error classification. It presents several- 

schemes that may be useful in categorizing errors as part of a software safety program 

during software development, including a scheme proposed by the authors. Chapter III 

describes the methodology used to answer the investigative questions. Chapter IV 

discusses the research findings and data analysis. Chapter V states the research 

recommendations. The appendix contains the telephone survey used to obtain the input 

from the software experts. 



n. Error Classification 

Introduction 

An error classification scheme is a taxonomy that is used to categorize errors that 

occur during software development. Classification schemes are used to gather data on 

software errors in an effort to prevent them. Organizations have used different 

classification criteria in the construction of schemes. Therefore, deciding on the 

appropriate classification criteria for an organization is very important. Typical 

classification criteria are reviewed. Some existing software error classification schemes 

are presented for comparison. Finally, a proposed software error classification scheme is 

discussed. 

Classification Criteria 

A comprehensive study of error classification schemes was performed by 

Collofello and Blumer in 1983. They identified several types of classification schemes 

which are useful in defect prevention and causal analysis. Errors have been classified by 

symptom, by cause, by life-cycle phase, by severity, and by software control. Most often a 

combination of types are used in a classification scheme (Collofello, 1983). 

Classification by Symptom. 

The first attempts to categorize errors considered symptoms only. These 

classifications grouped errors according to their effects on the system and according to a 

general description of the error. This information is easily obtained from defect reports 



during testing. The most popular classification by symptom scheme is by Endres. He 

produced a very detailed classification scheme in 1975. Based on internal testing of an 

operating system, the categories selected were very specific; for example, wrong register 

reference or incorrect resource allocation (Endres, 1975). Although Endres's scheme 

covered virtually all possible error symptoms for an operating system, the scheme falls 

short when used on a different project type, hardware system, or programming language. 

Essentially, the symptoms observed in these domains are vastly different.   At the other 

end of the spectrum, broader symptom classification schemes were developed. These 

include Maxwell's error categories scheme and Lipow's software failures scheme (e.g., 

logic, data handling, and interface).  While generalizations about the effectiveness of 

different error detection techniques can be made with these schemes, the biggest benefit is 

their application to various software domains (Maxwell, 1979; Lipow, 1979). 

Beizer presents "The Taxonomy of Bugs" in his book, Software Testing 

Techniques. Four broad categories are used to classify software "bugs" (function bugs, 

system bugs, data bugs, and code errors) and methods to detect and prevent them are 

discussed. These remedies include formal specification languages, design methodologies, 

and sound documentation (Beizer, 1983). Ostrand and Weyuker developed a new 

classification approach called an attribute categorization scheme. In this scheme, errors 

are not assigned to a single category. The attributes of the error are captured in four 

interpretive areas that describe more fully the characteristics of the error. The areas are 

major category (e.g., data, decision, or system), type (e.g., address, loop, or branch), 

presence (how the fault was corrected), and use (operation being performed) (Ostrand, 

1984). This symptomatic scheme does provide more insight into the errors than the other 

symptomatic schemes. However, the symptomatic schemes in general lack information on 

how to prevent the identified errors. More information on what should have been done to 

prevent these errors is needed (Buckland, 1982; Collofello, 1985). 



Classification by Cause. 

Causative error classification schemes provide this missing information. Processes, 

techniques, and tools can be evaluated more effectively with data from these types of 

schemes (Collofello, 1985). Basili classified error causes, not categories of symptoms. 

His causes include incorrect or misinterpreted requirements, incorrect or misinterpreted 

functional specifications, design errors (involving one or more than one component), 

misunderstanding of external environment, error in use of programming language or 

compiler, clerical error, or error due to previous miscorrection of an error. In his 

application of this error categorization scheme to the development of a medium scale 

satellite software project, Basili noted that a large portion of the errors were due to a 

misunderstanding of specifications or requirements (Basili, 1982). Jones asserts that the 

purpose of categorizing errors is to prevent their occurrence and that elaborate lists of 

categories are not required to do this. His scheme contains only four causes for any error: 

communication, education, oversight, and transcription. Jones proposes a process 

improvement methodology for performing causal analysis as part of the programming 

process. His general categories of root causes lead analysts directly to the software 

quality area of process improvement solutions (Jones, 1985). While the benefits to an 

error scheme based on cause are apparent, it must be noted that the difficulty with such a 

scheme is the effort required to determine the right cause or causes of an error. 

Classification by Life-Cycle Phase. 

Many error data collection processes consider the project phase, but not many 

include it directly in their classification scheme. Dunn proposed a classification scheme 

built around the phase of the software development life-cycle in which the error was 

produced. This information is key to the effectiveness of ongoing process improvement 

initiatives. Organizations have to know where in the software development life-cycle 

errors are prone to occur to improve the process. The categorization scheme has four 



major time frames: definition of requirements, design phase, coding phase, documentation 

and installation. Each time frame has many subcategories (Dunn, 1987). 

Classification by Severity. 

The final type of scheme is based on the severity of the error. The severity may be 

defined by the time and cost to correct the error as well as by the effect on the software. 

Davis and Gantenbein recognized the value of severity classification schemes in the 

development of safety critical systems. Their paper describing techniques that can be used 

to design fault-tolerant software classifies errors three ways. Internal errors can be 

handled by the system where they were produced. External errors cannot be handled 

internally but the effects remain in that system. Finally, pervasive errors cause errors in 

other systems. The pervasive category is the most damaging. The severity classification 

of an error provides a measure of importance it has to the system (Davis, 1992). 

Classification by Software Control. 

Another indicator of the impact a software error has on a system is the amount of 

autonomous control the software has over the system. The Department of Defense is 

developing a matrix that has two main categories pertaining to the type of control the 

error affects and severity of the error. This scheme is taken from the US Army 

Communications-Electronics Command Software System Safety Guide and is 

representative of other military categorization schemes. The control category consists of 

autonomous/time critical, autonomous/not time critical, information/time critical, operator 

control, and information decision algorithm control levels. The severity category is made 

up of catastrophic, critical, marginal, and negligible severity levels (Russo, 1992). This 

classification scheme attempts not only to capture the severity of an error but also its 

criticality to the system. 



Combination Classifications. 

Many developers of error classification schemes noted the importance of 

considering more than one type of classification; however, only a few have succeeded at 

combining two or more types in their categorization scheme. One of the earliest attempts 

was in 1976, when the Rome Air Development Center (RADC) sponsored a study of 

software reliability. The RADC successfully combined a detailed symptomatic scheme 

with causal categories and produced 164 error categories in 20 major classifications. This 

work was based on five software projects (Thayer, 1976). The symptomatic features of 

the scheme allow for easy data collection, while the causal components provide useful 

diagnostic insight. The error scheme is tailorable; however, it loses validity outside its 

project domain. Critics of the RADC study claim that the other classification types must 

be considered (Buckland, 1982; Collofello, 1985). 

In the 1980s, two schemes were published that moved away from the symptomatic 

classifications and combined causal categories with other classification types.   Buckland 

devised a three-dimensional error taxonomy for the purpose of statistical trend analysis of 

error data. The three dimensions are error category (cause), time of occurrence (life-cycle 

phase), and criticality (severity). The error categories defined by Buckland were similar to 

symptomatic categories (e.g., computational, logic, and interface); however, these error 

categories were broken down further by the research team to their root causes. Four time 

periods are used in this taxonomy: development, verification (integration), acceptance 

(formal testing), and transfer (operational use). Criticality was divided into three levels: 

A—critical error, B-dangerous situation, and C~minor problem. One of the major 

findings of her study of a space software application was that classification of errors 

should occur during development to be most effective. In her opinion many of the critical 

errors were produced in the requirements and design phases (Buckland, 1982). In 1985, 

Collofello proposed a two-dimensional error classification scheme. He concentrated on 



the life-cycle phase in which the error was introduced and the cause of the error. The 

scheme was designed to apply to any development organization for comparison, regardless 

of the development process or activities used. The broad life-cycle phases in the scheme 

include requirements specification, high-level design, detailed design and implementation, 

and modifications. These were cross-referenced in a matrix against the error causes: 

communicational, conceptual, and clerical. Individual categories, specific to the 

application, were also provided in each matrix cell. Collofello adhered to five data 

collection principles while developing his scheme: 1) the data collection must be 

nonobtrusive, 2) the scope of the data collection must be large (collect as much as you 

can), 3) data must not be specific to one project, 4) both'long- and short-term benefits for 

the organization must be maximized, and 5) the new data should complement previous 

efforts (Collofello, 1985). 

More recent error classification schemes expand on the cause-effect relationships 

of errors in software development. Nakajo and Kume use causal error classification 

schemes to identify intermediate cause-effect relationships between types of human errors 

and the ultimate system failure. They recognize that most classification schemes produce 

either an originating cause or a final result (system failure). Nakajo and Kume are after 

the intervening "work system flaws" that contribute to the error. They suggest these flaws 

occur in the development process, in the individual programmer's work, or in the 

engineering environment. Identifying these cause-effect relationships are very important 

for long-term process improvement of software development (Nakajo, 1991). 

The previous classification schemes were limited to new development efforts. 

Collofello expanded his 1985 error classification scheme to include follow-on support 

activities. In his new scheme, the ultimate goal for determining the cause of an error is 

process improvement. Collofello encourages using the scheme to develop cost-effective 

recommendations for elimination of the long-term causes of errors. The maintenance 

10 



causal categories include: system knowledge/experience, communication, software 

impacts, methods/standards, feature deployment, supporting tools, and human error. This 

scheme was applied to a modification of a large telephone system. One conclusion from 

the study is that almost 80 percent of all errors created during the modification activities 

were caused by insufficient knowledge/experience, communication problems, or software 

modification impacts (Collofello, 1993). 

Relevant Schemes 

To determine the best classification scheme for use in software safety programs, 

we chose three published error taxonomies, as well as our own, for comparison. The 

comparison was accomplished through a telephone survey of software safety development 

experts. The three published schemes are provided by Collofello, Jones, and Russo and 

they are labeled Scheme A, Scheme B, and Scheme D, respectively. Our proposed 

scheme, Scheme C, is discussed in the subsequent section. 

Scheme A. 

Collofello proposed this two-dimensional classification scheme in 1985. He 

developed a scheme that would apply to any development organization, regardless of the 

development process or activities used. Scheme A attempts to capture error data in terms 

of the cause of the error and the development phase in which it occurred. Three major 

causes are listed: Communicational, Conceptual, and Clerical. Communicational causes 

are breakdowns in communication among team members. Conceptual causes are 

difficulties in analyzing the problem and synthesizing a solution. Clerical causes are 

oversights or simple transcription problems. Software development is divided into four 

life-cycle phases: Requirements, High-Level Design, Detailed-Design and Coding, and 

Debugging and Maintenance (Collofello, 1985). 

11 



Table 1. Collofello's Error Classification Scheme 

Requirements High-Level Design Detailed-Design 
and Coding 

Debugging and 
Maintenance 

Communicational 
Conceptual 

Clerical 

Scheme B. 

Jones believed that large lists of causes were not necessary to prevent defects. He 

proposed a process improvement methodology for performing causal analysis. This 

methodology includes a causal scheme with only four error causes. The four major cause 

categories are Communications, Education, Oversight, and Transcription. 

Communications errors are errors due to breakdowns in lines of communication between 

team members. Education errors result from the software developer's failure in 

understanding or training. Oversight problems occur when all possibilities are not 

considered. Finally, transcription errors are simple clerical errors (Jones, 1985). 

Jones's scheme differs from Collofello's scheme because it concentrates on only 

one classification category: cause.   Jones's process improvement methodology is designed 

to use the error data for more than just defect prevention. Jones wants developers to deal 

with the real causes of errors and not overburden themselves with all the other details of 

the error. Therefore, corrective action is not limited to fixing the code. In addition, the 

flaws in the software process must be fixed. 

Table 2. Jones's Error Categorization Scheme 

Communications 
Education 
Oversight 

Transcription 

12 



Scheine D. 

Unlike the previous two schemes, Scheme D does not classify errors according to 

cause. Scheme D classifies error data according to the control that the software module 
» 

has over the system and the effect of the error on the system. The software control is 

characterized by the independence of the module in the system and the real-time 

execution. Autonomous Time Critical refers to software exercising autonomous control 

over potentially hazardous hardware systems, subsystems, or components without the 

possibility of real time human intervention to preclude the occurrence of a hazard. 

Autonomous Not Time Critical refers to software exercising autonomous control over 

potentially hazardous hardware systems, subsystems, or components allowing time for 

human intervention by independent safety systems to mitigate the hazard. Information 

Time Critical refers to a software item displaying information requiring immediate 

operator action to mitigate a hazard. Operator Control refers to software items issuing 

commands over potentially hazardous hardware systems, subsystems, or components 

requiring human action to complete the control function. Information Decision Algorithm 

refers to software generating information of a safety critical nature used to make safety 

critical decisions. 

The effects of the error on the system are divided into four major categories: 

Catastrophic, Critical, Marginal, and Negligible. Catastrophic errors result in system loss 

or life loss. Critical errors result in major system damage or severe injury. Marginal 

errors result in minor system damage or minor injury. Negligible errors result in less than 

minor system damage or less than subsystem loss. 

13 



Table 3. Russo's Error Categorization Scheme 

Catastrophic Critical Marginal Negligible 
Autonomous 
Time Critical 

m -- 

Autonomous 
Not Time Critical 
Information 
Time Critical 
Operator Control 

Information 
Decision Algorithm 

Proposed Scheme C 

Scheme C is proposed by the authors to aid in the development of DOD weapon 

systems. The literature agrees on several points about error classification schemes in 

general: 

• The purpose of categorizing errors is to aid in their detection and prevention. 

• The data required for the scheme must be easily obtained. 

• Not all schemes apply outside the project domain that they were based on. 

• A consistent and comprehensive error data collection methodology must be 

implemented for maximum benefits (Basili, 1982; Beizer, 1983; Collofello, 

1985 and 1993; Jones, 1985; Ostrand, 1984). 

14 



To devise a classification scheme for software development in the DOD, the 

characteristics of the previous effective schemes must be applied; in addition the severity 

of the error must be considered. Therefore, our error taxonomy will include the following 

dimensions: 

• Error Cause 

• Life-Cycle Phase 

• Error Severity 

Unlike Buckland's error category scheme where the same three dimensions (cause, 

life-cycle phase, and severity) were considered separately, our taxonomy will combine the 

dimensions in a matrix similar to Collofello's two dimensional matrix of cause and life- 

cycle phase (Buckland, 1982; Collofello, 1985). 

Scheme C attempts to capture error data in terms of the cause of the error, the 

development phase in which it occurred, and the severity of the error. The major causes 

are Incorrect Requirements, Communications, Oversight, Interface, Incorrect 

Computations, and Transcription. Incorrect Requirements occur when the specification, 

understanding, or applicability of the requirements is insufficient. Communications errors 

are breakdown in the flow of information between team members. Oversight errors occur 

when all possible cases or conditions are not considered or handled. Interface errors can 

be anomalies in communication or interaction between systems or subunits. Incorrect 

computations are incorrect formulations of equations or functions used by the system. 

Transcription errors are clerical errors. The development effort is divided into four life- 

cycle phases: Requirements, Design, Coding, and Support. Severity is indicated by 

adding the code provided for each level of the errors effect on the system: Catastrophic, 

Critical, Marginal, and Negligible. 

15 



Table 4. Proposed Error Categorization Scheme 

Requirements Design Coding Support 
Incorrect Rqmts 
Communications v 

Oversight 
Interface 

Inert Computes 
Transcription 

Note: Indicate the severity of the error by code: 

C        - Catastrophic R 

M       - Marginal N 

Critical 

Negligible 

16 



HI. Methodology 

.   Introduction 

This chapter describes the methodology we used to evaluate the four error 

categorization schemes identified in the previous section. All four of our investigative 

questions are discussed in this chapter. To refresh the reader's memory, the four 

questions are: 

1. What are the different methods for categorizing software errors? 

2. What are the candidate error categorization schemes for software safety? 

3. Which error categorization schemes are beneficial for software system 

safety? 

4. Are different types of schemes preferable for different disciplines: for 

example, information systems, embedded systems or data bases? 

The first section of this chapter addresses the population from which our survey data was 

collected, the next section addresses the data collection process, and the final section 

addresses the data analysis process. 

Population 

The target population for our research was software system safety experts within 

the DOD. There are several reasons for a small target population. First, the concept of 

software system safety appeared in the literature in the mid 1980's and thus is a relatively 

17 



new concept (Leveson, 1986). Second, as of 1992, over 96 percent of the Aeronautical 

System Center's System Safety Managers (SSMs) were not fully qualified in software 

system safety and few SSMs understand software safety analysis (Colan and Prouhet, 

1992). These facts led us to believe that there are few software system experts within the 

DOD. To identify DOD software system safety experts, we contacted the safety 

headquarters of the Army, Air Force, and Navy. After working down many organizational 

levels, we sent our survey to 12 software system safety experts who were affiliated with 

the DOD. One DOD, two Army, three Navy, and four Air Force software system safety 

experts provided data via the survey discussed later in this chapter. The remaining two 

experts did not respond to the survey. 

Data Collection 

The data collection for this research encompassed all four of our investigative 

questions. Table 5 shows a matrix of investigative questions and data collection methods. 

The first two investigative questions were satisfied by the literature review; the results 

were reported in Chapter II. Data for the third and fourth investigative questions were 

collected via a telephone survey of software system safety experts; the results are reported 

in Chapter IV. 

Table 5. Investigative Question Methodology Matrix 

Investigative 
Question 

Literature 
Review 

Telephone 
Survey 

1 X 
2 X 
3 X 
4 X 

18 



Literature Review. 

We reviewed both DOD and civilian literature to determine the different ways of 

categorizing software errors. Our research identified three candidate software safety 

categorization schemes. We then devised a fourth candidate scheme based upon our 

review of the literature. 

Telephone Survey. 

The telephone survey is one of the quickest and most economical approaches to 

reach individuals (Emory, 1991). The telephone survey was used to determine the 

following about the candidate categorization schemes identified in the previous chapter: 

1) How knowing the classification of errors relative to a scheme would 

lead to the development of safer systems. 

2) How implementing a scheme would affect an organization's software 

development process. 

3) How the costs associated with implementing a scheme vary. 

4) Whether a common scheme is best applicable to different software platforms 

and/or applications. 

Interviews were conducted using the set of predetermined questions located in Appendix 

A. The schemes and questions were provided to the respondent prior to the interview. 

This review of the candidate schemes and questions prior to the interview allowed 

respondents to become familiar with the candidate schemes, thus enabling the experts to 

formulate their opinions and recommendations about the proposed categorization 

schemes, and thereby minimizing the time respondents spent on the phone. 

19 



Survey Development 

Our survey was designed to obtain three different types of information and was 

therefore divided into three sections. First, the attitudes of those surveyed towards the 

candidate error categorization schemes were obtained. The majority of the questions in 

the first section consisted of closed-ended questions asking respondents to rank the 

schemes based upon various criteria. The remainder of the questions in the first section 

were open-ended to allow the respondent to discuss/identify the strengths and weaknesses 

of each individual scheme as well as identify whether data is currently being collected that 

could be used in each scheme. 

The second type of information, and thus the second section of the survey, was 

used for classification and analysis of the data obtained from the survey. These questions 

pertained to the education and experience of those surveyed. This education and 

experience data allowed additional insight into the applicability of the schemes to different 

software domains and applications. 

The third type of information involved data pertaining to the administration of the 

survey. This administrative information included the interviewer, respondent, date, time of 

the interview, and anonymity. 

Data Analysis 

The survey provided two different types of data for analysis. The first type is the 

ranking data provided by questions 1 through 11. The second type is the open-ended data 

inputs provided by questions 12 through 18. This section discusses the different methods 

used to analyze both the ranking data and the open-ended inputs received from the 

respondents. 

20 



Ranking Data. 

Each ranking question in the survey provided a set of data about the four proposed 

categorization schemes based upon different criteria. For each different criterion, we were 

interested in determining the experts' order of preference for the schemes. The schemes 

were ordered by the sum of the experts' rankings. For example, Table 6 shows the 

ranking by nine hypothetical experts: 

Table 6. Sample Ranking Data 

Scheme 

A B C D Sum 

Expert 

1 4 1 2 3 10 

2 3 2 1 4 10 

3 3 1 4 2 10 

4 3 2 1 4 10 

5 4 3 1 2 10 

6 3 1 4 2 10 

7 4 2 1 3 10 

8 4 1 2 3 10 

9 3 2 4 1 10 

Total 31 15 20 24 90 

The column totals show that the order of preference is scheme B, C, D, A. What we 

cannot easily interpret from these totals is if the ranking represents a consensus among the 

experts. To help interpret the agreement between the rankings, we used the 

21 



Kendall Coefficient of Concordance (Gibbons, 1976). This coefficient is a relative 

measure represented by a ratio of two different sums of squares. The Kendall Coefficient 

of Concordance can range between the values zero and one, with a value of one 

representing perfect agreement among rankings. As the value of the coefficient decreases, 

the strength of agreement between rankings decreases as well. According to Gibbons, the 

following equation is the simplest method for calculating the Kendall Coefficient, 

represented by the letter W. 

l2^R2j-3k2n(n + lf 

W = - M 

n k (n -1) 

where R represents the column totals 
k represents the number of rankings 
n represents the number of objects being ranked 

Applied to our previous example: 

\2 122^-3(9)24(4 + l)2 

W = —£ ,—r    reduces to W= 0.338 
4 (9)2(42-D 

A coefficient value of 0.338 may seem so low as to indicate that there is no consensus. 

However, the sample size affects the significance of the coefficient value greatly. In order 

to determine if the coefficient value is significant, we conducted a test using the Q test 

statistic. According to Gibbons, the Q statistic is most effective for tests with a large 

sample size (large number of experts). The tables in Gibbons's book for use with the 

Kendall Coefficient go up to a sample size of eight, with the caveat that values for larger 

22 



sample sizes can be estimated using the chi-square distribution. The following formula is 

used to calculate Q: 

Q = k(n-l)W 

applied to our previous example: 

Q = 9(3)0.338 reduces to Q = 9.133 

Two hypotheses will complete our test. The null hypothesis is that no significant 

agreement exists between the different rankings. The alternate hypothesis would thus be 

that a significant agreement exists. We will use an alpha level of significance of 0.05 for 

our test. The chi-square distribution with n-1 degrees of freedom is the appropriate 

distribution for a test using the Q statistic. We calculate a P-value in our test, which is 

defined to be the area under the chi-square distribution to the right of our calculated Q 

statistic. Our decision to accept or reject the null hypothesis depends upon the P-value 

and its relation to the chosen alpha level. If our P-value is greater than the alpha level, 

then we accept the null hypothesis and conclude that our Q statistic is from the same 

distribution as the null hypothesis. If our P-value is less than the alpha level, then we 

reject our null hypothesis and conclude our Q statistic is from a different distribution than 

our null hypothesis. The summary of the test involving our sample ranking data follows: 

23 



Null Hypothesis: No significant agreement exists between the rankings 

Alternate Hypothesis: A significant agreement exists between the rankings 

Distribution: Chi-Square with 4-1 = 3 degrees of freedom 

Alpha level: .05 

Q = 9.133      P(Q> 9.133) = .028 

Test Conclusion: 

Because our P-value is less than our alpha level of .05 then we reject the null 

hypothesis and conclude that a significant association exists between the rankings 

in our example. Thus, a Kendall Coefficient of Concordance value of 0.338 is 

significant and our inference that the order of preference B, C, D, A represents a 

consensus among the experts is supported.   Our test is summarized graphically in 

Figure 1 with the shaded region representing the rejection region and the vertical 

dotted line representing Q. 

U.i i        i i 

0.2 

\ 

— 

0.1 N i 
10 20 30 40 

Figure 1. Decision Graph for Sample Ranking Data 

24 



We repeated the above analysis for questions 1 through 11. We then conducted a 

summary test to establish an overall order of preference for the schemes evaluated in our 

survey. For the questions that resulted in a significant association for the rankings, we 

used the order of preference from that question to come up with a set of rankings using 

the questions as the evaluators for the schemes. We then conducted a Q test to see if 

there was a significant association between the rankings provided by each individual 

question. The analysis of the open-ended data questions depended upon the outcome of 

the summary Q test. 

Open-Ended Data. 

The open-ended data provided by questions 12 through 14 was used to determine 

some of the advantages and disadvantages of using the schemes assessed in our survey. 

The analysis of the open-ended data provided by questions 15 through eighteen was driven 

by the result of the summary Q test. Because the summary Q test resulted in a significant 

association between the rankings provided by the questions, the information was used to 

assess the applicability of the schemes to different software platforms. 

Summary 

This chapter identified the target population for our survey as software system 

safety experts affiliated with the DOD. Because software system safety issues have only 

recently been addressed in the literature, our target population was small. We described 

the purposes of the literature review and telephone survey, the two data collection 

methods used to satisfy our four investigative questions. A discussion of survey 

development and the two types of data obtained from the survey was completed. This 

chapter concluded with a discussion of the data analysis plan, including how the Kendall 

25 



Coefficient of Concordance was used to analyze the ranking data. The next chapter 

presents the results of our data analysis and relate those results to each investigative 

question. 

26 



IV. Findings and Analysis 

Overview 

This chapter details the findings of the research and analyzes the survey data used 

to support these findings. The chapter discusses the investigative questions, restating each 

investigative question, and presenting the findings. The chapter concludes with a 

discussion of general findings and a summary. A complete analysis of each ranking 

question in the survey is contained in Appendix B. 

Investigative Questions 

Investigative Question 1: What are the different methods for categorizing 

software errors? 

The purpose of the first investigative question was to determine the current 

methods used to categorize software errors. By identifying the various ways software 

errors are categorized, we were able to study the best methods and to gain insight into 

their success. As discussed in the literature review, Chapter II, there are many ways to 

categorize software errors. These types of classification schemes, which are useful in 

defect prevention and causal analysis, are classification by symptom, by cause, by life-cycle 

phase, by severity and by software control. Most recently a combination of types has been 

used in classification schemes. 

27 



Investigative Question 2: What are the candidate categorization schemes 

for software safety? 

Investigative question two sought to identify actual categorization schemes from 

the classification types listed under the first investigative question. These schemes were 

limited to a representative sample potentially applicable to software safety. They were 

then examined by software safety experts. 

In Chapter II, we presented four candidate categorization schemes for software 

safety. The four schemes were included in the survey in Appendix A. All but one of the 

candidate schemes combine two or more of classification types identified above in 

investigative question one. Combination schemes were chosen as candidate schemes 

because they provide more information on software errors and reflect the inherent 

complexity of software errors. Table 7 shows which classification types were included in 

each scheme. All classification types were represented in the candidate schemes except 

for classification by symptom. 

Table 7. Classification Types Represented In Survey 

Scheme A Scheme B Scheme C Scheme D 

Symptom 

Cause X X X 

Life-cycle Phase X X 

Severity X X 

Software Control X 

28 



Investigative Question 3: Which categorization schemes are beneficial for 

software system safety? 

Investigative question three attempted to evaluate the candidate schemes and 

determine the ones that apply to software safety. As discussed in Chapter III, the survey 

questions were developed to answer this question by obtaining information in four 

different areas. These areas are restated below with reference to the survey questions that 

were designed to obtain the information: 

1) How knowing the classification of errors relative to a scheme would lead 

to the development of safer systems. (Survey Questions 1,2, 3, and 4) 

2) How implementing a scheme would affect an organization's software 

development process. (Survey Questions 5, 6, and 9) 

3) How the costs associated with implementing a scheme vary. 

(Survey Questions 7, 8, and 10) 

4) Whether a common scheme is best applicable to different software platforms 

and/or applications. (Survey Questions 11,15, 17, and 18) 

Table 8 summarizes all the survey question results by providing the relative rankings of the 

candidate schemes. Only results that demonstrate agreement among the experts are 

included. 

Table 8. Summary of Significant Scheme Ranking Results By Question 

Rank SQ2 SQ3 SQ4 SQ5 SQ9 SQ10 SQ11 SumQ 

1st C&D C C C C C C C 

2nd A A A&D A D D A&D 

3rd A&B D D B&D A A 

4th B B B B B B 

Note: SQ # refers to survey question # 

29 



The first question in the survey (see Appendix A) presents the types of 

classification schemes, and asks the experts to rank them in order of usefulness to 

software safety. Our analysis showed strong agreement among the experts, with a 

P-Value of 0.007. They ranked severity first, which is understandable from a software 

safety perspective. The errors with the highest severity potential must be given the most 

attention. Cause and software control were tied for second. These two types of 

classification schemes appear to have equal importance to the experts. The type of 

classification that ranked fourth was symptom, which beat out last-ranked life-cycle phase. 

This ranking was surprising inasmuch as literature review (page 6) indicates that current 

software error categorization methods depart from the traditional practice of noting 

symptoms and are moving to methodologies that consider life-cycle phase. 

Survey question two addressed error collection. With a P-Value of 0.00022, the 

rankings provided by the experts were significant. Schemes C and D tied for first, with 

schemes A and B tied for third. Both schemes C and D capture the severity of an error, 

which the-experts deemed very important. 

Survey question three addressed error correction. A P-Value of 0.024 indicated 

significant rankings by the experts. Scheme C was ranked first by the experts, followed by 

schemes A, D, and B being ranked second, third, and fourth respectively. Both schemes A 

and C categorize errors by cause and, as discussed in the literature review, determining the 

cause of an error is a significant step in correcting that error. Scheme B contains cause 

categories only, but it was dismissed by the experts as too simplistic to provide useful 

information. 

Survey question four addressed error prevention. A P-Value of 0.006 indicated 

consensus among the experts. Scheme C was ranked first by the experts, followed by 

schemes A, D, and B in respective order. Again cause was the common thread between 

30 



the top two schemes for preventing errors. Both schemes A and C categorized errors by 

the life-cycle phase; however, as discussed earlier in this chapter with investigative 

question one, the experts ranked this aspect as least important for categorization. This led 

us to believe that the experts did not consider life-cycle phase in determining their 

preferences. 

Survey question five addresses modification of the development process. A 

P-Value of 0.05 was just within our rejection region and thus represented significant 

agreement between the experts on the ranking of schemes . Scheme C Was ranked first by 

the experts, followed by a tie for second for schemes A and D. Scheme B was ranked last 

by the experts. We believe that the combination of the cause and life-cycle phase is the 

reason for Scheme C ranking first. 

Survey question six addresses changes required in the software process. A P- 

Value of 0.392 indicated the association between the experts' rankings was insignificant. 

Thus no ranking conclusions could be made for this question. One possible explanation 

for this lack of agreement is that each organization utilizes a different software process 

and thus the scheme requiring the fewest changes in one organization may require many in 

another organization. 

Survey question seven addresses error categorization training. When a process is 

changed, training is required to make sure benefits are realized from the change. This 

training typically translates to an additional expense. A P-Value of 0.178 represented no 

association in the experts' rankings, and thus no ranking conclusions could be made for 

this question. 

Survey question eight addresses the cost to implement an error categorization 

scheme. It was not our intention to imply that this was true; however, we felt it was 

important to obtain the experts' opinion on the relative cost of implementing the different 

schemes. A P-Value of 0.718 represented no agreement by the experts on the rankings, 

31 



and thus no ranking conclusions could be made for this question. Again, one possible 

conclusion is that each organization may utilize a different software process and thus the 

cost of one scheme may be the cheapest for one organization and the most expensive for 

another. A different conclusion could be the method by which an organization chooses to 

implement the schemes, i.e., manually or computer-aided. 

Survey question nine addresses software process improvement. A P-Value of 

0.012 represented significant rankings by the experts. Scheme C was ranked first by the 

experts; Scheme A ranked second; and schemes B and D tied for third. The combination 

of cause and life-cycle phase was the reason for Schemes A and C ranking above the other 

two. This information fit well with the process improvement methodologies we have 

studied in our classes at AFIT. 

Survey question ten addresses the cost and benefits of implementing an error 

categorization scheme. Qualifiers were included to instruct the expert to make sure 

implementation costs as well as savings from long-term use were to be considered in their 

answer. A P-Value of 0.019 represented significant agreement by the experts. Scheme C 

was ranked first by the experts, followed by schemes D, A, and B in order. The top two 

schemes incorporate severity, which was deemed most important by the experts in an 

earlier question. 

The results of survey question eleven showed that the experts preferred Scheme C 

over the other schemes for use with software system safety. Survey question eleven asked 

the experts to consider all of their previous answers when ranking the schemes. A 

P-Value of 0.001 represented significant agreement by the experts. Scheme C was 

followed by schemes D, A, and B in that order. 

A summary test verified the rankings from survey question eleven. We used the 

rankings from questions two through ten (questions 2,3, 4,5,9, 10) in which the null 

hypothesis rejected to calculate a Kendall Coefficient and a corresponding P-Value. With 

32 



a P-Value of 0.005, we concluded that the rankings derived from the individual questions 

were significant. More importantly, the rankings are similar to those obtained in question 

eleven, thus our cross-check was successful. 

Investigative Question 4: Are different types of schemes useful for 

different disciplines: such as information systems, embedded systems or 

data bases? 

This question sought to determine if safety experts with diverse software 

experience would prefer different categorization schemes. The information necessary to 

answer this question came from both the summary test ranking and the open-ended data. 

The ranking data discussed above in investigative question three concluded that Scheme C 

was preferred by the experts.  The results from open-ended question eighteen indicated 

that our experts did have diverse software experience. Table 9 contains the platform 

results from question eighteen. 

Table 9. Summary of Experts' Platform Experience 

Expert 

Platform 1 2 3 4 5 6 7 8 9 10 

Avionics X X X X X X X X X 

Business X X X 

Ground X X 

Manned Space X 

Missile X X X X X X 

Mobile 

Ship X X X 

Unmanned Space X 

Other X X 

33 



The mobile platform is the only platform where our experts did not have some experience. 

Both the avionics and missile platforms were well represented by our experts. Based upon 

the results of our summary statistical test and that our experts have diverse platform 

experience, we concluded that one scheme is applicable to different software domains. 

General Findings 

This section discusses general findings drawn from some of the open-ended 

questions in our survey. The issue of data collection for the candidate schemes is 

discussed, followed by some general strengths and weaknesses of the schemes. 

When we initially searched for experts to participate in our survey, several 

different sources were contacted concerning the availability of data to test the candidate 

schemes. Actual DOD mishap data was preferred, but after several sources failed to 

uncover specific relevant data, we would have welcomed any applicable data.   All sources 

contacted indicated that data was not readily available, and thus the data search ended 

without success. Survey question twelve was included in the survey to determine if the 

experts were aware of data being collected for each scheme. After analyzing the results 

from survey question twelve, we concluded that over fifty percent of the experts were 

aware of data being collected that could be classified by each of our candidate schemes. 

This issue will be addressed in the next chapter. 

Survey question thirteen addressed the weaknesses of each of the schemes 

included in our survey. One nearly unanimous comment was that Scheme B was too 

simplistic to capture much meaningful data.   Also, several experts stated that Schemes A 

and B did not capture the severity of an error. Many of the experts commented that 

classification of errors into the software control categories in Scheme D was very difficult. 

34 



A weakness noted by a couple of experts was that none of the schemes incorporated 

hardware hazards. While we realize this is important from a total system safety aspect, the 

focus of our research was categorizing software errors pertaining to software system 

safety. 

Survey question fourteen addressed the strengths of each of the schemes included 

in our survey. A majority of the experts approved that severity was captured in both 

schemes C and D. This correlates well with the results of survey question one, where 

severity was the highest ranked classification scheme. The only other consistent comment 

pertained to Schemes A and C. The experts felt that both of these schemes would 

contribute significantly to process improvement initiatives. One theme common to both 

schemes is that they include cause and life-cycle phase. As mentioned earlier, 

classification by life-cycle phase ranked last in the first question of the survey. This 

apparent conflict will be discussed in the next chapter. 

Summary 

This chapter presented the research findings and survey data analysis. The first and 

second investigative questions indicated that there are many ways to categorize errors. 

The method of choice is dependent upon the individual development organization and the 

processes employed by that organization. The research indicates that more organizations 

are using combination schemes to deal with the complexity of software errors. The third 

investigative question indicated that Scheme C was determined to be the most beneficial to 

software system safety by the experts surveyed. The fourth investigative question 

indicated that one scheme is applicable to a variety of different software disciplines. 

35 



V. Conclusions and Recommendations 

Overview 

This chapter presents the conclusions and recommendations of our research effort. 

The chapter begins with a discussion of the conclusions we made from the investigative 

question results. The chapter concludes with suggestions for future research. 

Conclusions 

The research suggested some interesting conclusions about software error 

categorization.  We were unable to locate data to compare or validate the candidate 

schemes; however, the experts reported that they were aware of data being collected 

pertaining to the different schemes contained in the survey. This data is being collected, 

but it is not being consolidated into a public repository or made available in any way for 

use by software safety researchers. Availability of a data repository of such data would 

have helped our research greatly. 

The research found opinions about the cost of the schemes to be inconsistent. No 

agreement could be reached about the relative cost of implementing one scheme over 

another; however, the experts did agree that Scheme C would be more cost beneficial than 

the other schemes. We concluded from this that even if Scheme C was the most costly to 

implement, its use would also result in the greatest amount of savings. Implications for 

future research from this conclusion will be discussed in the next section. 

36 



The research also suggests that an error categorization scheme for software safety 

should include cause and severity as major categories. The experts strongly agreed with 

the top ranking of Scheme C, which combined cause, severity, and life-cycle phase in one 

scheme. Life-cycle phase as an individual categorization method was ranked lowest by the 

experts, thus causing some doubt as to the effectiveness of its inclusion in Scheme C. 

Therefore, a two-dimensional scheme, categorizing errors according to cause and severity, 

would be an excellent start for an organization beginning a software safety related error 

data collection process. 

Future Research 

There is a great need for research in the area of error categorization pertaining to 

software system safety. Areas for research include: 

• Validation of the effectiveness of schemes 

• Usefulness of life-cycle phase data 

• Applicability of schemes to non-DOD system development 

• Incorporation of hardware and software into one scheme for 

overall system safety. 

Our research discovered that data was being collected that could be used with 

schemes in our survey. Worthwhile future research could be to apply data to the schemes 

and assess their effectiveness at capturing and summarizing this data. An effort in this 

area would provide a transition from theory to reality. 

Our research also suggests that error classification by life-cycle phase was the 

least important to include in a proposed error categorization scheme. Life-cycle phase 

ranked lowest when experts were asked about the usefulness of collecting error data by 

various methods. This is counterintuitive to the notion of process improvement, where 

37 



phase of development is important. A study into the benefits of including life-cycle phase 

in an error categorization scheme should be explored. 

Another area for future research is to evaluate the schemes using experts from 

outside the DOD. Such research will indicate whether the same scheme would be 

applicable to commercial software development. A tremendous amount of software work 

is being accomplished in the private sector and many companies have surely realized the 

benefits of error data collection. However, the experts should be selected from 

organizations doing work where safety is important. 

The last recommendation for future research is a direct result of comments by the 

survey experts pertaining to hardware hazards. Experts indicated that hardware hazards 

need to be incorporated into the error categorization schemes. A worthwhile effort would 

be to devise a scheme that could incorporate both software and hardware safety hazards 

simultaneously. 

38 



Appendix A: Software Error Categorization Survey 

Below are software error categorization schemes proposed by various researchers. The 

specific goals of each researcher are different, but they all relate to improving the software 

development process. We have labeled the schemes Scheme A, Scheme B, Scheme C, 

and Scheme D. An introduction to each scheme is provided along with an explanation of 

terms and an illustrated example of how an error would be placed in a scheme. 

Scheme A 
Scheme A attempts to capture error data in terms of the cause of the error and the 

development phase in which it occurred. Three major causes are listed: Communicational, 

Conceptual, and Clerical. The development effort is divided into four life-cycle phases: 

Requirements, High-Level Design, Detailed-Design and Coding, and Debugging and 

Maintenance. 

Explanations: 

Communicational - Breakdown in communications among team members. 

Conceptual - Difficulties in analyzing the problem and synthesizing a solution. 

Clerical - Oversights or simple transcription problems. 

Requirements High-Level Design Detailed-Design 
and Coding 

Debugging and 
Maintenance 

Communicational 
Conceptual 
Clerical 

39 



Example: 

During testing, an error is discovered in a flight control system module. The user 

did not fully specify that he wanted a backup display updated continuously in-flight. The 

problem is an annoyance but will cost a bundle to correct. 

This error occurred during the requirements phase of development and is a result 

of miscommunication between the user and the system designers. The error would fall in 

the cell located under Requirements and across from Communicational 

Scheme A Example 

Requirements High-Level Design Detailed-Design 

and Coding 

Debugging and 

Maintenance 

Communicational Incorrect display 

Conceptual 

Clerical 

40 



Scheine B 

Scheme B classifies errors according to their cause. Four major cause categories 

are used: Communications, Education, Oversight, and Transcription. 

Explanations: 

Communications - Breakdown in communications between team members. 

Education - Team member's failure to understand something due to inadequate training 

or education. Errors of this type can be further divided into understanding new or old 

functions. 

Oversight - All possible cases or conditions are not considered or handled. 

Transcription - Simple error. 

Communications 
Education 
Oversight 
Transcription 

Example: 

During testing, an error is discovered in a flight control system module. The user 

did not fully specify that he wanted a backup display updated continuously in-flight. The 

problem is an annoyance but will cost a bundle to correct. 

This error is a result of miscommunication between the user and the system 

designers. The error would fall in the cell located across from Communications. 

Scheme B Example 

Communications Incorrect display 
Education 
Oversight 
Transcription 

41 



Scheine C 

Scheme C attempts to capture error data in terms of the cause of the error, the 

development phase in which it occurred, and the severity of the error. The major causes 

are: Incorrect Requirements, Communications, Oversight, Interface, Computational, and 

Transcription. The development effort is divided into four life-cycle phases: 

Requirements, Design, Coding, and Support. Severity is indicated by adding the code 

provided for each level of the errors effect on the system: Catastrophic, Critical, 

Marginal, and Negligible. 

Explanations: 

Cause Categories 
Incorrect Requirements - The specification, understanding, or applicability, of the 

requirements is insufficient. 
Communications - Breakdown in communications between team members. 
Oversight - All possible cases or conditions are not considered or handled. 
Interface - Anomalies in communication or interaction between systems or subunits. 
Computational - Incorrect formulation of equations or functions used by the system. 
Transcription - Simple error. 

Severity Categories 
Catastrophic - Results in system loss or life loss. 
Critical - Results in major system damage or severe injury. 
Marginal - Results in minor system damage or minor injury. 
Negligible - Results in less than minor system damage or less than subsystem loss. 

Requirements Design Coding Support 
Incorrect Rqmts 
Communications 
Oversight 
Interface 
Computational 
Transcription 

Note: Indicate the severity of the error by code: 
C Catastrophic R 
M Marginal N 

Critical 
Negligible 

42 



Example: 

During testing, an error is discovered in a flight control system module. The user 

did not fully specify that he wanted a backup display updated continuously in-flight. The 

problem is an annoyance but will cost a bundle to correct. 

This error occurred during the requirements phase of development and is a result 

of miscommunication between the user and the system designers. The error would fall in 

the cell located under Requirements and across from Communicational. The severity is 

captured by coding the entry. The problem is minor so the severity is Negligible. 

Scheme C Example 
Requirements Design Coding Support 

Incorrect Rqmts 
Communications N- Inc display 
Oversight 
Interface 
Computational 
Transcription 

Note: Indicate the severity of the error by code: 

C Catastrophic 

R Critical 

M - Marginal 

N Negligible 

43 



Scheine D 

Scheme D classifies error data according to the control software module has over 

the system and the effect of the error on the system. The software control is characterized 

by the independence of the module in the system and the real-time execution. The effect 

of the error on the system is divided into four major categories: Catastrophic, Critical, 

Marginal, and Negligible. 

Explanations: 

Control Categories 
Autonomous Time Critical - Software exercises autonomous control over potentially 
hazardous hardware systems, subsystems or components without the possibility of real 
time human intervention to preclude the occurrence of a hazard. 
Autonomous Not Time Critical - Software exercises autonomous control over 
potentially hazardous hardware systems, subsystems or components allowing time for 
human intervention by independent safety systems to mitigate the hazard. 
Information Time Critical - Software item displays information requiring immediate 
operator action to mitigate a hazard. 
Operator Control - Software items issue commands over potentially hazardous hardware 
systems, subsystems or components requiring human action to complete the control 
function. 
Information Decision Algorithm - Software generates information of a safety critical 
nature used to make safety critical decisions. 

Catastrophic Critical Marginal Negligible 
Autonomous 
Time Critical 
Autonomous 
Not Time Critical 

- 

Information 
Time Critical 
Operator Control 

Information 
Decision Algorithm 

44 



Example: 

During testing, an error is discovered in a flight control system module. The user 

did not fully specify that he wanted a backup display updated continuously in-flight. The 

problem is an annoyance but will cost a bundle to correct. 

The error is not time critical and only provides information to the operator. Since 

the problem is minor the severity is Negligible. The error would be placed in the scheme 

under Negligible and across from Information Decision Algorithm. 

Scheme D Example 
Catastrophic Critical Marginal Negligible 

Autonomous 
Time Critical 
Autonomous 
Not Time Critical 
Information 
Time Critical 
Operator Control 

Information 
Decision Algorithm 

Incorrect 
display 

45 



CONFIDENTIALITY 
Although your responses are not anonymous, only the researchers will be able to 

match your responses with your identity. 

Section 1 - This section will collect rank information on the schemes. 

1. Many different classification methods of categorizing software errors have been used in 
previous software work. Please rank from one to five (one being the best, no ties please) 
the following classification methods from the one most useful to the one least useful in 
collecting data about software system safety. 

  Classification by Symptom (effect of error on the system) 
  Classification by Cause (why the error occurred) 
  Classification by Life-cycle Phase (when the error was injected) 
  Classification by Severity (of the error on the system) 
 ._ Classification by S/W Control (level of control over the system) 

2. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme would best identify those errors likely to have an impact on the safety 
of a system. 

    Scheme A 
    Scheme B 
    Scheme C 
    Scheme D 

3. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme provides categorization information about critical errors most likely to 
be of use in correcting those errors. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

4. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme provides categorization information about critical errors most likely to 
be of use in preventing those errors. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

46 



5. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme provides categorization information about critical errors most likely to 
be of use in modifying the development process to prevent occurrence of those errors in 
future systems. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

6. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme would require the fewest changes to your software process to 
implement. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

7. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme would require the least amount of training to implement in your 
organization. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

8. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme would be the least costly to implement. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

9. Rank the provided schemes from one to four (one being the best, no ties please) based 
upon which scheme would fit best with ongoing software process improvement initiatives 
in your organization. 

 '_ Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

47 



10. Considering all costs associated with implementing a scheme and likely savings 
accrued from its long-term use, rank the provided schemes from one to four (one being 
the best, no ties please) based upon which scheme you would expect to be most cost 
beneficial. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

11. Considering your previous replies, rank the provided schemes from one to four (one 
being the best, no ties please) based upon which scheme you would most favor for use in 
conjunction with a software safety program. 

  Scheme A 
  Scheme B 
  Scheme C 
  Scheme D 

The following questions will be asked about each individual scheme. 

12. Is data being collected that could be used in conjunction with this scheme? 

   Yes 
No 

13. What is the biggest drawback of using this categorization scheme? 

14. What is this the best feature of this scheme? 

Section 2 - This section will collect information about the interviewed expert 

15. What is the highest level of education you have completed? In what disciplines? 

Bachelor's degree in   

Master's degree in  

Doctorate in   

48 



16. Have you attended any short courses/seminars in which software system safety was 
addressed? If yes, describe. 

17. What is your current position and how does it relate to Software System Safety? 

The following four lists will be used to code any software experience you have: 

Platform: 
1. Avionics 
2. Business 
3. Ground 

4. Manned Space 
5. Missile 
6. Mobile 

7. Ship 
8. Unmanned Space 
9. Other 

Application: 
a. CAD 
b. Command/Control 
c. DataBase 
d. Diagnostics 
e. Flight 
f. Graphics 

h. MIS 
i. Mission Planning 
j. MMI 
k. Office Automation 
1. OS/Executive 
m. Process Control 

o. Report Generation 
p. Simulation 
q. SW Development Tools 
r. Test 
s. Training 
t. Utilities 
u. Other g. Message Switching  n. Radar 

Type of Involvement: 
1. S/W Development 
2. Managing S/W Development 
3. Operating S/W 
4. S/W Acquisition 

Length of Experience: 
a. Less   than 1 year 
b. More than 1 year but less than 3 years 
c. More than 3 years but less than 5 years 
d. More than 5 years 

Here is an example of how the experience coding will be accomplished. For six months at 
an Air Force Program Office, a captain was responsible for the oversight of a contractor 
that was developing control software for a communication satellite that had developed a 
problem after launch. In one of the set of blanks provided, the captain would write the 
platform number (8 for unmanned space) in the first blank, the application (b for 
command/control) in the second blank, his involvement (4 for S/W Acquisition) in the 
third blank, and his length of experience (a for 6 months) in the last blank. It would 
appear like this: 

8      b      4      a 

49 



18. Please fill out a set of blanks for each type of experience you have with software: 

Section 3 - This section will be completed by the interviewer to capture administrative 
data about the survey. 

Person Contacted: 

Date/Time: 

DOD Affiliation: 

List in Appendix: Yes or No 

Interviewer: 

50 



Appendix B: Detailed Ranking Data Analysis 

51 



Question 1 concerning different classification methods in collecting data about software system 
safety 

Classification 
Methods 

Rank: 

4 2  5 3   f 
3   1  2 4 5 

3  4 5 2   1 

2  3  4 1   5 

4 3  5 1  2 

5  3  4 1  2 

2 4  5 1   3 

4 2  3 1   5 

4 3  5 2   1 

2 4 5 1   3 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank: = Rank Matrix is transposed for calculation purposes. 

n : = rows(Rank)      n = 5 number of objects being ranked 

k : = cols(Rank)        k = 10        number of experts ranking objects 

k 

»:=Z Rank 
<j>    Sum of the columns representing the total score received by 

each object being ranked (the lower the total, the more popular 
j = 1 the object) 

R =R Transpose the vector back into the familiar original 

Column sums: 

R = (33   29   43   17   28) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

W 

12-      >        R 

z=l 

<z> 3-k-n-(ni-ir 

W =0.352 
i2     2    i nk• n  - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function Chi-Squared PDF: 

1 
f(x,v): = 2 2 •x       e F(hi,v) 

2        V 2 -r - 

hi 
fljx,v) dx 

52 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a = .05    Level of significance for our test 

v : = cols(R) - 1     v = 4 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v) - (1 - oc),y)     Formula to find value where CDF = 1 - sig. level 

crit = 9.488 Critical value calculated above 

x : = 0,S..5-v 

z = crit, crit-i- 8..5-V 

range variable used for Chi-Squared Graph below 

range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 4 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.352        Kendall Coefficient of Concordance for the set of rankings 

Q=k-v-W       Formula for calculating Q Q = 14.08 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

021 ' ' n ' ' P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

1 - F(Q,v) = 0.007 

Figure 2. Decision Graph for Survey Question 1 

Because the    Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for gathering data about Software System Safety is as follows: 

R = ( 33    29    43    17    28 ) The column totals calculated above 

1) Severity 
2) Cause and S/W Control (No apparent preference for one of these over the other) 
3) Symptom 
4) Life Cycle Phase 

53 



Question 2 concerning scheme that would best identify those errors likely to have an impact on 
the safety of a system. 

Schemes 

(A  B C D) 

Rank 

4  3  2   1" 1 

2  3   14 2 

4  3  2   1 3 

4 3   12 4 

3  4 2   1 5 

4  3  2   1 6 

3  4  2   1 7 

3  4   12 8 

4  3  2   1 9 

4  3   12 10 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank : = Rank Matrix is transposed for calculation purposes. 

n = rows(Rank)      n = 4 number of objects being ranked 

k=cols(Rank)        k = 10        number of experts ranking objects 

k 

-I Rank 
<i>    Sum of the columns representing the total score received by 

each object being ranked (the lower the total, the more popular 
j= 1 the object) 

R: = RT Transpose the vector back into the familiar original 

Column sums: 

A    B    C    D 

R = (35    33    16    16) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

12-     J]      R< <z> 3-k-n-(n + 1) 

W  =- 
z= 1 W =0.652 

,2       2      . nk • n  - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

f(x,v) ■ = — 

i      v 2-r - 

2 2 ■x       e 
F(hi,v) : = 

•hi 
f( x, v) dx 

54 



Define the necessary parts for our statistical test: 

Ho  : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a: = .05    Level of significance for our test 

v=cols(R)- 1     v=3 Degrees of Freedom for our test (number of objects ranked-1) 

Determine the Critical Value for our Test 

y ■- 10 initial guess at value 

crit=root(F(y,v)-(1-a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x = 0,8.. 10-v range variable used for Chi-Squared Graph below 

z : = crit, crit + 8.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.652        Kendall Coefficient of Concordance for the set of rankings 

Q =kv-W       Formula for calculating Q    Q = 19.56 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

031 i i i i       p.Va|ue. 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q.v) =0.00022 

Figure 3. Decision Graph for Survey Question 2 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the schemes that would    best identify those errors likely to 
have an impact on the safety of a system    is as follows: 

A    B    C    D 

R = (35   33    16    16) 

1)CandD 
2) A and B 

The column totals calculated on previous page 

55 



Question 3 concerning scheme that provides categorization information about critical errors most 
likely to be of use in correcting those errors. 

Schemes 

Rank : = 

1   4 3 2 

3   2 1 4 

2  4 1 3 

2   1 3 4 

3   4 2 1 

4  3 2 1 

2  4 1 3 

2  4 1 3 

2  3 1 4 

2  4 1 3_ 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank  = Rank Matrix is transposed for calculation purposes. 

n : = rows (Rank)       n = 4 number of objects being ranked 

k = cols (Rank)        k = 10        number of experts ranking objects 

k 

»-2 Rank 
Sum of the columns representing the total score received by 
each object being ranked (the lower the total, the more popular 

j - 1 the object) 

R=R 

Column sums: 

R = ( 23   33    16   28 ) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

W  = 

cols(R) 

12-     J      R^ 
z= 1 

3-k -n-(n+- 1) 

W =0.316 
i2       2      i n-k • n  - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

1 
f(x,v) 

7 V 2-r - 

2 2 
•x       -e F(hi,v) 

hi 
f( x, v) dx 

56 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a = .05   Level of significance for our test 

v=cols(R)- 1    v=3 Degrees of Freedom for our test (number of objects ranked-1) 

Determine the Critical Value for our Test 

y := 10 initial guess at value 

crit =root(F(y,v) - (1 - oc),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x=0,8.. 10-v range variable used for Chi-Squared Graph below 

z :=crit,crit-t- 8.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.316        Kendall Coefficient of Concordance for the set of rankings 

Q = kv-W       Formula for calculating Q    Q = 9.48 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

fl>,v) 

fTz,v) 
•a-     o.i h 

P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q.v) =0.024 

Figure 4. Decision Graph for Survey Question 3 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the schemes that     provide categorization information about 
critical errors most likely to be of use in correcting those errors is as follows: 

R = ( 23   33    16   28 ) 

1)C 
2) A 
3)D 
4)B 

The column totals calculated on previous page 

57 



Question 4 concerning scheme that provides categorization information about critical errors most 
likely to be of use in preventing those errors. 

Schemes 

Rank  = 

3   2 1 4" 

2  3 1 4 

4  3 2 1 

1   3 2 4 

3   4 2 1 

4  3 1 2 

2  4 1 3 

2  3 1 4 

2  3 1 4 

3   4 1 2. 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank  =Rank Matrix is transposed for calculation purposes. 

n : = rows (Rank) n = 4 number of objects being ranked 

k =cols(Rank) k = 10        number of experts ranking objects 

k 
V   „   ,<i> Sum of the columns representing the total score received by 

R   —     ?       Rflnfc 
Z_i each object being ranked (the lower the total, the more popular 
j=l 

R =R 

Column sums: 

R = ( 26   32    13   29 ) 

the object) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

W 

12-      2      R 
z= 1 

<z> 
3-k-n-(n-h 1) 

W = 0.42 
.2       2      . n-k • n  - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 

Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

1 f(x,v) 

~) V 2-r - 

2 2 •x       e 
F(hi,v) 

hi 
f( x, v) dx 

58 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a : = .05    Level of significance for our test 

v : = cols(R) - 1     v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y := 10 initial guess at value 

crit : = root(F(y,v) - (1 - a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x=0,8.. 10-v range variable used for Chi-Squared Graph below 

z:- crit, crit +- 5.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.42 Kendall Coefficient of Concordance for the set of rankings 

Q: = kv-W       Formula for calculating Q      Q = 12.6 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

031 r— I I l        p-value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

1 - F(Q,v) =0.006 

Figure 5. Decision Graph for Survey Question 4 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the schemes that provides categorization information about 
critical errors most likely to be of use in preventing those errors is as follows: 

R = ( 26   32   13   29 ) 

DC 
2) A and D 
3)B 

The column totals calculated on previous page 

59 



Question 5 concerning scheme that provides categorization information about critical errors most 
likely to be of use in modifying the development process to prevent occurrence of those errors in 
future systems. 

Schemes 

Rank 

1   3 4 2 

2  4 1 3 

3   4 2 1 

1   2 3 4 

3   4 2 1 

4   3 1 2 

2  3 1 4 

2  3 1 4 

4  3 1 2 

2  4 1 3. 

E 

x» 

P 
e 
r 

t 

s 

Define a ranking matrix with the columns representing 

the objects being ranked and the rows being the 

ranks the objects received from each expert 

Rank  -Rank Matrix is transposed for calculation purposes. 

n : = rows (Rank)       n = 4 number of objects being ranked 

k: = cols (Rank)        k = 10        number of experts ranking objects 

k 

R :=   y\   Rank 

j = 1 the object) 

Z<j>    Sum of the columns representing the total score received by 
m each object being ranked (the lower the total, the more popular 

R =R 

Column sums: 

R = (24   33    17   26) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

W 

12-     J]      R 
z= 1 

- 3k -n-(n-t- 1) 

.2     2     , 
n-k ■  n  - 1 

W = 0.26 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

1 
f(x,v): = - 

2 2 •x       e 
F(hi,v) 

1 V 2-r - 

hi 
f( x, v) dx 

60 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a: = .05    Level of significance for our test 

v : = cols(R) - 1    v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y := 10 initial guess at value 

crit =root(F(y,v) - (1 - a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x■-0,5.. 10-v range variable used for Chi-Squared Graph below 

z :=crit,crit-t- 8.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.26 Kendall Coefficient of Concordance for the set of rankings 

Q=kvW       Formula for calculating Q      Q=7.8 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

031 ^ ' ' '        P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q,v)=0.05 

x,z 

Figure 6. Decision Graph for Survey Question 5 

Because the Q value is within our rejection region also substantiated by a P-value equal to 
.05, we reject the null hypothesis and conclude that there is a significant association 
between the different experts rankings. We can further conclude that the order of 
preference for the schemes that provide categorization information about critical errors most 
likely to be of use in modifying the development process to prevent occurrence of those 
errors in future systems is as follows: 

R = ( 24   33    17   26 ) 

1)C 
2) A and D 
3)B 

The column totals calculated on previous page 

61 



Question 6 concerning scheme that would require the fewest changes to your software process to 
implement. 

Schemes 

Rank ■- 

1 3 2 4' 

3 2 1 4 

2 1 3 4 

3 2 4 1 

1 2 3 4 

1 2 3 4 

3 1 4 2 

1 3 2 4 

4 3 1 2 

3 4 1 2. 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank   =Rank Matrix is transposed for calculation purposes. 

n : = rows (Rank)       n = 4 number of objects being ranked 

k : = cols (Rank)        k = 10        number of experts ranking objects 

k 

* = L Rank 
<j>    Sum of the columns representing the total score received by 

each object being ranked (the lower the total, the more popular 
j = 1 the object) 

R=R 

Column sums: 

R = ( 22   23    24   31 ) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

W : = 

cols(R) 

12-     V      R<z>      - 3-k2-n-(n+ l)2 

z= 1  

nk • n   - 1 
W =0.1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Chi-Squared PDF: 

1 
f(x,v) 

22.r v 

__ !     __ 
2 2 •x       e 

Cumulative Chi-Squared Distribution Function: 

•hi 
F(hi,v) f( x, v) dx 

Jo 

62 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a : = .05    Level of significance for our test 

v = cols(R) - 1     v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y := 10 initial guess at value 

crit : = root(F(y,v)- (1- a),y)     Formula to find value where CDF = 1 -sig. level 

crit = 7.817 Critical value calculated above 

x: = 0,8.. 10-v range variable used for Chi-Squared Graph below 

z :=crit, crit-t- 8..5-V       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3                Degrees of Freedom (number of objects being ranked minus one) 

W = 0.1           Kendall Coefficient of Concordance for the set of rankings 

Q : = k-v-W       Formula for calculating Q    Q = 3 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

0.3 i— 1 1 1 1        p.value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q,v) =0.392 

x,z 

Figure 7. Decision Graph for Survey Question 6 

Because the Q value is well within our acceptance region also substantiated by a P-value 
significantly greater than .05, we accept the null hypothesis and conclude that there is no 
significant association between the different experts rankings. We cannot make any 
conclusions concerning the order of preference for the      schemes that would require the 
fewest changes to your software process to implement. 

63 



Question 7 concerning scheme that would require the least amount of training to implement. 

Schemes 

Rank = 

1 3 2  4" 

2 1 3  4 

2 1 3  4 

3 2 4   1 

2 1 3  4 

1 2 3   4 

2 1 4  3 

1 3 2  4 

3 4 1   2 

4 3 1   2_ 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank -Rank Matrix is transposed for calculation purposes. 

n : = rows (Rank) n = 4 number of objects being ranked 

k = cols (Rank) k = 10        number of experts ranking objects 

k 
v~i <j> Sum of the columns representing the total score received by 
Z_i     w each object being ranked (the lower the total, the more popular 
j = 1 the object) 

R : = R Transpose the vector back into the familiar original 

Column sums: 

R = (21   21   26   32) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

12-     £      R <z>   L        , , 2      ,      ,   . ,2 - 3k  n-(n+ 1) 

W : = - 
z= 1 

i2       2      i n-k • n  - 1 
W =0.164 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Chi-Squared PDF: 

1 
f(x,v) 

? V 2 -r - 

2 2 •x       e 

Cumulative Chi-Squared Distribution Function: 

•hi 
F(hi,v) f(x,v) dx 

0 

64 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a : = .05    Level of significance for our test 

v :=cols(R) - 1    v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v)- (1 - cc),y)     Formula to find value where CDF = 1 -sig. level 

crit = 7.817 Critical value calculated above 

x=0,8.. 10-v 

z:= crit,crit-t- 8.. 5-v 

range variable used for Chi-Squared Graph below 

range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.164        Kendall Coefficient of Concordance for the set of rankings 

Q: = kvW       Formula for calculating Q      Q=4.92 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

o.3i 1 1 , i i       p.Va|ue. 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q.v) =0.178 

Figure 8. Decision Grapji for Survey Question 7 

Because the Q value is well within our acceptance region also substantiated by a P-value 
significantly greater than .05, we accept the null hypothesis and conclude that there is no 
significant association between the different experts rankings. We cannot make any 
conclusions concerning the order of preference for the    schemes that would require the least 
amount of training to implement. 

65 



Question 8 concerning scheme that would be the least costly to implement. 

Schemes 

Rank = 

12 4 3" 

2  3   14 

3  4  2   1 

3  2  4   1 

2   13  4 

2   13  4 

2   14  3 

2   13  4 

3  4   12 

3  4   12 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank : - Rank Matrix is transposed for calculation purposes. 

n= rows (Rank)       n=4 number of objects being ranked 

k = cols (Rank)        k = 10        number of experts ranking objects 

k 

R =  Yj   Rank 

j = 1 the object) 

<j>    Sum of the columns representing the total score received by 
each object being ranked (the lower the total, the more popular 

R=RT Transpose the vector back into the familiar original 

Column sums: 

R = ( 23   23   26   28 ) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

W = 
*z= 1 

,<z> 3-k-n-(ni- 1) 

W =0.036 
i2       2      i n-k • n - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Chi-Squared PDF: 

1 
f(x,v) 

1 V 2-r - 

--1 -- 
2 2 •x       e 

Cumulative Chi-Squared Distribution Function: 

•hi 
F(hi,v) f( x, v) dx 

0 

66 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a : = .05    Level of significance for our test 

v : = cols(R) - 1     v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v) - (1 - cc),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x: = 0,5.. 10-v 

z : = crit, crit-H 8.. 5-v 

range variable used for Chi-Squared Graph below 

range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.036        Kendall Coefficient of Concordance for the set of rankings 

Q: = kvW       Formula for calculating Q    Q = 1.08 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

1- F(Q,v) =0.782 

x,z 

Figure 9. Decision Graph for Survey Question 8 

Because the Q value is well within our acceptance region also substantiated by a P-value 
significantly greater than .05, we accept the null hypothesis and conclude that there is no 
significant association between the different experts rankings. We cannot make any 
conclusions concerning the order of preference for the schemes that would be the least 
costly to implement. 

67 



Question 9 concerning scheme that would fit best with ongoing software process improvement 
initiatives in your organization. 

Schemes 

Rank : 

2  3   14' 

2  3   14 

3  4   12 

2  4   13 

4  3  2   1 

2   13  4 

2  3   14 

13  2  4 

3  4   12 

4  3   12. 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank : = Rank Matrix is transposed for calculation purposes. 

n =rows(Rank)      n=4 number of objects being ranked 

k = cols (Rank)        k = 10        number of experts ranking objects 

k 

-z Rank 
<j>    Sum of the columns representing the total score received by 

each object being ranked (the lower the total, the more popular 
j = 1 the object) 

R : = RT Transpose the vector back into the familiar original 

Column sums: 

R = (25   31    14   30) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

12-     £      R' 
<z>   "        ,,2      , . .2 - 3-k -n-(n + 1) 

W 
z= 1 

,2       2      . 
n-k ■ n  - 1 

W =0.364 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Chi-Squared PDF: 

1 f(x,v) 

"> V 2-r - 

2 2 •x       e 

Cumulative Chi-Squared Distribution Function: 

•hi 
F(hi,v)  = f( x, v) dx 

0 

68 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 
3. 

a :=.05    Level of significance for our test 

v : = cols(R) - 1     v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v)- (1- cc),y)     Formula to find value where CDF = 1 -sig. level 

crit = 7.817 Critical value calculated above 

x =0,8.. 10-v, range variable used for Chi-Squared Graph below 

z: = crit, crit +• 5.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.364        Kendall Coefficient of Concordance for the set of rankings 

Q=k-vW       Formula for calculating Q    Q = 10.92 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

o.3i r 1 i i       p.Va|ue. 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

1 - F(Q,v) =0.012 

Figure 10. Decision Graph for Survey Question 9 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the   schemes that would fit best with ongoing software 
process improvement initiatives in your organization is as follows: 

R = (25   31    14   30) 

DC 
2) A 
3) B and D 

The column totals calculated on previous page 

69 



Question 10 concerning scheme that they expect would be most cost beneficial. 

Schemes 

Rank 

1   3 4  2 

2  3 1   4 

4  3 2   1 

1   4 3  2 

4  3 2   1 

4  3 2   1 

2  4 1   3 

2  4 1   3 

3  4 1   2 

.3  4 1   2. 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank -Rank Matrix is transposed for calculation purposes. 

n ■- rows (Rank)      n = 4 number of objects being ranked 

k =cols(Rank)        k = 10        number of experts ranking objects 

k 
v~i <j>    Sum of the columns representing the total score received by 
ZJ     m each object being ranked (the lower the total, the more popular 
j= 1 the object) 

R =R Transpose the vector back into the familiar original 

Column sums: 

R = ( 26   35    18   21 ) 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

cols(R) 

12-      £      R' - 3-k -n-(n+ 1) 

W 
z= 1 W =0.332 

i2     2    i n-k • n - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Chi-Squared PDF: 

1 
f(x,v) 

7 V 2-r - 

2 2 •x       e 

Cumulative Chi-Squared Distribution Function: 

Thi 
F(hi,v) f( x, v ) dx 

0 

70 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a: = .05    Level of significance for our test 

v-cols(R)- 1    v=3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v) - (1 - a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x=0,8.. 10 v range variable used for Chi-Squared Graph below 

z: = crit, crit +- 8.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.332        Kendall Coefficient of Concordance for the set of rankings 

Q: = k-v-W       Formula for calculating Q      Q=9.96 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

03' ' ' ' ' P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be*obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q,v) =0.019 

Figure 11. Decision Graph for Survey Question 10 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the scheme that the experts expect would be most cost 
beneficial is as follows: 

R = ( 26   35   18   21 ) The column totals calculated on previous page 

1)C 
2)D 
3) A 
4)B 

71 



Question 11 concerning scheme that they would most favor for use in conjunction with a software 
safety program. 

Schemes 

Rank 

2   4 1 3~ 

2   3 1 4 

4   3 2 1 

3   4 1 2 

4   3 2 1 

4  3 2 1 

2   4 1 3 

2   4 1 3 

3   4 1 2 

4   3 1 2. 

E 
x 

P 
e 
r 
t 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank  = Rank Matrix is transposed for calculation purposes. 

n = rows (Rank) n = 4 number of objects being ranked 

k : = cols (Rank) k = 10 number of experts ranking objects 

k 
E„   , <j> Sum of the columns representing the total score received by 

R Jin K 
each object being ranked (the lower the total, the more popular 

j = 1 the object) 

R =R 

Column sums: 

R = ( 30   35    13    22 ) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

W 

cols(R) 

12-      £      R 

z= 1 

<z>   z        , ,2       ,      ,   ,,2 - 3-k  n(n +- 1) 

W =0.556 
.2     2    , n-k ■ n  - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

1 
f(x,v) 

0 V 2-r - 

2 2 ■x      -e 
Chi 

F(hi,v) f( x, v) dx 

72 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a :=.05   Level of significance for our test 

v : = cols(R) - 1     v = 3 Degrees of Freedom for our test (number of objects ranked -1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v) - (1 - a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x: = 0,5.. 10-v range variable used for Chi-Squared Graph below 

z :=crit, crit-t- 5.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 10 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.556        Kendall Coefficient of Concordance for the set of rankings 

Q =k-v-W       Formula for calculating Q      Q = 16.68 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

0.3 

f(x,v) 

*z,v) 
■a-      0.1 r- 

P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

1- F(Q,v) =0.001 

Figure 12. Decision Graph for Survey Question 11 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the   schemes that they would most favor for use in 
conjunction with a software safety program is as follows: 

R = ( 30   35    13   22 ) The column totals calculated on previous page 

DC 
2)D 
3) A 
4)B 

73 



Overall Kendall Coefficient test to see if an association exists using the rankings established in 
the different questions where our tests showed a significant association exists among the expert 
rankings. 

Schemes 

Rank 

"4321" ' 2 " 

2 4  13 3 

2 4   13 4 

2 4  13 5 

2  4   13 9 

3  4   12. .10. 

Q 
u 
e 
s 
t 
i 
0 

n 
s 

Define a ranking matrix with the columns representing 
the objects being ranked and the rows being the 
ranks the objects received from each expert 

Rank: - Rank Matrix is transposed for calculation purposes. 

n : = rows(Rank)      n = 4 number of objects being ranked 

k = cols(Rank)       k = 6 number of experts ranking objects 

k 

-Z Rank 
<j>    Sum of the columns representing the total score received by 

each object being ranked (the lower the total, the more popular 
j = 1 the object) 

R =R 

Column sums: 

R = ( 15   23   7   15 ) 

Transpose the vector back into the familiar original 

Define the Kendall Coefficient of Concordance (value ranges between 0 and 1) 

W 

cols(R) 

12-     £      R 

z=l 

3-k-n-(n-t- 1) 

W =0.711 
.2     2    , n-k • n - 1 

Define the Probability Density Function and Cumulative Distribution Function for our Statistical 
Test: 

Cumulative Chi-Squared Distribution Function: Chi-Squared PDF: 

1 flXv) 

22-rv 

--1   — 
2 2 -•x      -e 

F(hi,v) 
hi 

f[x,v) dx 

74 



Define the necessary parts for our statistical test: 

H   : no significant association exists between the different experts rankings 

H   : a significant association exists between the different experts rankings 

a - .05    Level of significance for our test 

v =cols(R)- 1     v=3 Degrees of Freedom for our test (number of objects ranked-1) 

Determine the Critical Value for our Test 

y : = 10 initial guess at value 

crit =root(F(y,v)- (1- a),y)     Formula to find value where CDF = 1 - sig. level 

crit = 7.817 Critical value calculated above 

x=0,8.. 10-v range variable used for Chi-Squared Graph below 

z = crit, crit-t- 5.. 5-v       range variable used to shade the rejection region in the Graph below 

Calculate the Q value that will fall either in our acceptance or rejection region: 

k = 6 number of experts ranking objects 

v = 3 Degrees of Freedom (number of objects being ranked minus one) 

W = 0.711        Kendall Coefficient of Concordance for the set of rankings 

Q : = k-v-W       Formula for calculating Q    Q = 12.8 

Now we can graphically assess whether or not we should accept or reject our null hypothesis: 

03 , 
P-Value: 

Assuming the null hypothesis is true, 
The P-value for our calculated Q 
value can be obtained by subtracting 
the Q value's cumulative probability 
from 1: 

l-F(Q.v) =0.005 

x,z 

Figure 13. Decision Graph for Summary Test 

Because the Q value is well within our rejection region also substantiated by a P-value 
significantly less than .05, we reject the null hypothesis and conclude that there is a 
significant association between the different experts rankings. We can further conclude 
that the order of preference for the schemes taking the rankings from all questions 
indicating a significant association between expert's rankings is: 

R = ( 15   23   7   15) The column totals calculated on previous page 

1)C 
2) A and D 
3)B 

75 



Appendix C: List of Experts Surveyed 

This appendix contains an alphabetical list of the experts that participated in the 
survey. The order of this list does not correspond directly with the order of the experts' 
rankings for each question analyzed in Appendix B. One expert wished to remain 
anonymous and thus is not included in this list. 

Expert: 
Organization: 
DOD Affiliation: 

Dr. Stephen Cha 
Aerospace Corporation 
Air Force 

Expert: 
Organization: 
DOD Affiliation: 

Frank Foley 
Northrop Corporation 
Air Force 

Expert: 
Organization: 
DOD Affiliation: 

Dr. Michael Friedman 
Hughes 
DOD 

Expert: 
Organization: 
DOD Affiliation: 

Dr. Ross Grable 
Army Missile Command 
Army 

Expert: 
Organization: 
DOD Affiliation: 

William J. Kauffman 
Army Missile Command 
Army 

Expert: 
Organization: 
DOD Affiliation: 

Mitchell Lustig 
ASC System Safety Office 
Air Force 

Expert: 
Organization: 
DOD Affiliation: 

Captain Steve Mattern 
WL/XPN 
Air Force 

Expert: 
Organization: 
DOD Affiliation: 

Dr. Tim Shimeall 
Naval Post Graduate School 
Navy 

Expert: 
Organization: 
DOD Affiliation: 

Eileen Takach 
Naval Air Warfare Center 
Navy 

76 



THIS PAGE INTENTIONALLY LEFT BLANK. 

77 



Bibliography 

AF Pamphlet 63-115. Guidelines for Successful Acquisition and Management of Software 
Intensive Systems, Final Draft. November 1993. 

Basili, V. "Software Errors and the Complexity, An Empirical Investigation," 
Proceedings of the Seventh Annual Software Engineering Workshop. Goddard 
Space Flight Center. December 1,1982. 

Beizer, B. Software Testing Techniques. New York: Van Nostrand Reinhold, 1983. 

Colan, Peter W. and Robert W. Prouhet. An Assessment Of Software Safety As 
Applied to the Department of Defense Software Development Process. MS 
Thesis. AFIT/GSS/ENG/92D-2, School of Acquisition and Logistics 
Management, Air Force Institute of Technology, Dayton OH, 1992 
(AD-A258155). 

Collofello, J. S. and B. P.'Gosalia. "An Application of Causal Analysis to the Software 
Modification Process," Software-Practice and Experience, 23(10): 1095-1105 
(October 1993). 

Collofello, J. S. and L. B. Blumer. "A Proposed Software Error Categorization Scheme," 
Proceedings of the National Computer Conference. 537-545. AFIPS Press, 1985. 

Collofello, J. S. and L. B. Blumer. A General Scheme for Software Error Data Collection. 
Arizona State University Computer Science Technical Report, June 1983. 

Davis, F. and R. Gantenbein. "Responding to Catastrophic Errors: A Design Technique 
for Fault-Tolerant Software," Journal of Systems Software. 17: 243-251 (1992). 

Dunn, Robert H. "The Quest for Software Reliability," Handbook of Software Quality 
Assurance. New York: Van Nostrand Reinhold, 1987. 

Emory, C. William and Donald R. Cooper. Business Research Methods (Fourth 
Edition). Homewood IL: Richard D. Irwin, Inc., 1991. 

Endres, A. "An Analysis of Errors and Their Causes in System Programs," IEEE 
Transactions on Software Engineering, SE-1(2): 140-149 (June 1975). 

Gellman, Barton. "Computer Problem Cited in Crash of F-22 Prototype," Washington 
Post, 115: A3 (30 April 1992). 

Gibbons, Jean Dickinson. Nonparametric Methods for Quantitative Analysis. Atlanta GA: 
Holt, Rinehart, and Winston, 1976. 

Jones, C. L. "A Process-Integrated Approach to Defect Prevention," IBM Systems 
Journal, 24(2): 150-166 (1985). 

Jorgens III, J. and J. Greenbaum. "Software Quality Assurance and System Safety," 
Journal of Clinical Engineering, 13: 196 (1988). 

78 



Leveson, N.G. "Software Safety: Why, What, and How", ACM Computing Surveys. 18: 
25-69 (June 1986). 

Leveson, Nancy G. "Software Safety in Embedded Computer Systems," Communications 
of the ACM. 34: 35-46 (February 1991). 

Lipow, M. "Prediction of Software Failures," Journal of Systems Software. 1: 71-75 
(1979). 

Maxwell, F. D. The Determination of Measures of Software Reliability. Final Report. The 
Aerospace Corporation. 1979 (NASA-CR-158960). 

Nakajo, T. and H. Kume. "A Case History Analysis of Software Error Cause-Effect 
Relationships," IEEE Transactions on Software Engineering. 17: 830-837 (August 
1993). 

Neumann, Peter G. "RISKS: Cumulative Index of Software Engineering Notes," ACM 
SIGSOFT Software Engineering Notes. 14: 22-26 (January 1989). 

Ostrand, Thomas J. and Elaine J. Weyuker. "Collecting and Categorizing Software Error 
Data in an Industrial Environment," The Journal of Systems and Software. 4: 289- 
300 (1984). 

Parnas, David L., A. John van Schouwen, and Shu Po Kwan. "Evaluation of Safety- 
Critical Software," Communications of the ACM. 33: 636-648 (June 1990). 

Piechota, Charles L. "The Twilight Zone," Professional Safety. 37: 32-35 (January 1992). 

Russo, Leonard L. Software System Safety Guide. CECOM-TR-92-2. FortMonmouth 
NJ: US Army Communications-Electronics Command, May 1992 (AD-A250321). 

Thayer, T. A. Software Reliability Study. Final Technical Report. Griffis NY: TRW 
Defense and Space Systems 1976 (RADC-TR-76-238). 

Wiener, Lauren R. Digital Woes. Reading MA: Addision-Wesley Publishing Co., 1993. 

79 



Vita - Captain Richard Escobedo 

Captain Escobedo was born in San Antonio, Texas, on 15 September 1964. He 

attended Holy Cross High School in Texas where he excelled in academic as well as extra- 

curricular activities, graduating second in his class in 1983. He attended The University of 

Texas at San Antonio, San Antonio, Texas, graduating with a Bachelor of Science in 

Electrical Engineering in May 1988. 

Captain Escobedo's commission from Reserve Officer Training Corps was on 20 

May 1988. For his first assignment, Captain Escobedo moved to Edwards AFB, CA to 

work with the 412th Test Wing as a flight test engineer. His duties included mission 

support flying, program management of the aerial refueling test capability, and the upgrade 

of the support fighter and pacer fleet. He was hand-picked to receive training as a mission 

support flyer with the Advanced Cruise Missile Chase Program (ACM), where he earned 

his non-rated mission support flyer wings. He performed test operations support with the 

ACM program in the F-4C and KC-135 aircraft. As manager for the Air Force's aerial 

refueling instrumentation test capability, Captain Escobedo contributed to the successful 

completion of developmental test and evaluation of major aircraft programs. These 

programs include the B-2 Stealth Bomber, the C-17 Airlift Transport, and the F-22 

Advanced Tactical Fighter programs. Aerial refueling testing was conducted from 

modified KC-135 and KC-10 aircraft, which were maintained by his instrumentation team. 

He modernized the Air Force Flight Test Center's (AFFTC) general support and pacer 

fleets. Aging A-7 and F-4 test support aircraft were replaced with modified F-16 and F-15 

aircraft that enabled the AFFTC to continue its test mission well into the next century. He 

was selected to attend the Air Force Institute of Technology, in May 1992. 

Permanent Address: 
Richard Escobedo 
174 Honey Jay 
San Antonio, TX 78228 

80 



Vita - Captain Jim Thomas 

Captain Thomas was born in Colorado Springs, Colorado, on 29 July 1966. He 

attended Junius H. Rose High School in Greenville, North Carolina. In August 1988, he 

obtained an ROTC commission along with a Bachelor of Science degree in Mathematics 

from North Carolina State University. 

Captain Thomas's first assignment was to Columbus AFB, Mississippi for 

Undergraduate Pilot Training in March 1989. After six months of flight training, he was 

assigned to Los Angeles AFB, California in the Satellite Communication Program Office. 

His first job, as a production acquisition manager, entailed coordinating technical, 

contractual, budgetary, and program management aspects of military acquisition with 

other program office members. This involved leading several government teams through 

the negotiation of new contracts as well as changes to existing contracts. He negotiated 

numerous contractor proposals involving satellite launch operations and on-orbit orbital 

support. After two years, Captain Thomas became the DSCS III orbital support manager. 

He was responsible for coordinating the activities of many organizations in order to 

maintain an operational constellation of communication satellites. He also participated in 

the successful launch of three satellites that will provide military communications well into 

the next century. In May 1993, Captain Thomas was assigned to the Air Force Institute of 

Technology. 

While in Los Angeles, Captain Thomas married his wife, Deborah. He learned 

what true happiness was after their marriage in December 1991. He is looking forward to 

many happy years with Deborah at his side. 

Permanent Address: 
Jim Thomas 
2000 Brook Road 
Greenville, NC 27858 

81 



REPORT DOCUMENTATION PAGE 
form Approved 

OMB No. 0704-0188 

Puolic reporting Duraen for this collection of intormation is estimated to average i ^our per resoorse. mcluamg the time tor reviewing instructions, searcmng existing aata sources. 
gathering and maintaining the aata needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other asoect Of this 
collection of information, including suggestions tor reducing this burden, to Washington Headduarters Services, Directorate tor information Operations and Reports, 1215 Jefferson 
Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188), Washington. OC 20S03. 

1.  AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

December 1994 
3. REPORT TYPE  AND DATES COVERED 

Master's Thesis 
4. TITLE AND SUBTITLE 

A COMPARISON OF ERROR CATEGORIZATION SCHEMES 
FOR USE IN SOFTWARE SYSTEM SAFETY PROGRAMS 

6. AUTHOR(S) 

Richard Escobedo, Captain USAF 
Jim Thomas, Captain USAF 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 

Air Force Institute of Technology, 
WPAFB OH 45433-6583 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GSS/LAR/94D-1 

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

ASC/EMSS 
Wright Patterson AFB, OH 45433 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) Software safety is becoming increasingly important in the development of DOD 
advanced weapon systems. To make software safer, hazard conditions must be avoided along with the errors that 
accompany them. The first step in identifying errors is classifying error data. The area of software error classification is 
not as advanced as other software development areas. The technical literature lacks examples of comprehensive 
taxonomies that can be applied to various computer software domains and applications. The predominant approach is to 
organize errors into categories particular to the program currently in work. The typical error scheme is made of narrow 
categories that are not interrelated. Errors have been classified by symptom, by cause, by life cycle phase, by severity, 
and by software control. The focus of this research was to determine the best way to classify errors in order to aid system 
safety in software development. The research identified common areas used in industry that aid in error classification. A 
telephone survey of experts in safety and software was used to obtain input on the most effective classification schemes. 
The research also proposed a taxonomy that will be ideal for DOD software development. Since software is becoming a 
larger part of advanced weapon systems, development of error-free and safe software to operate and support these 
weapon systems is increasingly important. 

14. SUBJECT TERMS 
Software Safety, Software Errors, Error Categorization 

15. NUMBER OF PAGES 
91 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18.   SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 


