THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the Bureau of Standards are as set forth in the Act of Congress, March 3, 1907, as
amended by the Appropriations Acts. The Bureau is concerned primarily with the development and maintenance of the
national standards of measurement and the propagation of these standards; the making of accurate and reliable
measurements in connection with the determination of physical constants and properties of materials; the development of
methods of determining the characteristics of materials; the testing and inspection of manufactured products;
and in general, the application of standard methods of testing and measurement to the solution of practical problems
arising in the industries of the country. The Bureau is also charged with the development of standard methods, codes,
and specifications. These methods are to be applied in research, testing, inspection, and the manufacture of
products. The Bureau is also responsible for the preparation and publication of standards, codes, and specifications.

Publications

The publications of the Bureau's research are published either in the Bureau's own series of publications or
in the periodicals of professional societies or government agencies. The Bureau itself publishes these publications,
available from the Government Printing Office. The journal of research, published in five separate sections,
provides complete descriptions and technical papers. The journal is available in printed and bound volumes
for sale or subscription to other institutions. These are also listed in the series of government publications.

Supplements to this publication are available from the Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C.
Best Available Copy
NATIONAL BUREAU OF STANDARDS
Technical Note

May 1961

A Compilation of the Physical Equilibria
and
Related Properties of the Hydrogen-Carbon Monoxide System

by

Dennis E. Drayer

and

Thomas M. Flynn

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C.

DISTRIBUTED BY
UNITED STATES DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D.C.

Price $2.25
List of Tables ........................................ IV
List of Figures .......................................... V
Abstract .................................................. VI
1. Introduction ........................................ 1
   1.1 Purpose ......................................... 1
   1.2 Organization ................................... 1
   1.3 Scope ........................................... 2
   1.4 Acknowledgements ............................... 2
2. Survey of Literature ................................. 2
3. Discussion of Available Data ....................... 3
4. K-Factor Charts ...................................... 5
5. Solid-Vapor Equilibria ............................... 9
6. Three-Phase Equilibria .............................. 9
7. Phenomena Index .................................... 11
   7.1 Hydrogen ........................................ 12
   7.2 Carbon Monoxide ................................ 13
   7.3 General ......................................... 14
8. Properties Index ..................................... 15
   8.1 Hydrogen ........................................ 16
   8.2 Carbon Monoxide ................................ 18
   8.3 General ......................................... 19
9. Processes Index ...................................... 21
   9.1 Hydrogen ........................................ 22
   9.2 Carbon Monoxide ................................ 23
   9.3 General ......................................... 24
III

10. Bibliography of References ............... 25
11. Appendix .................................. 73
Table of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CO-H$_2$ Pressure-Concentration Data (Verschoyle: 88.2°, 83.2°, 73.2° and 68.2°K)</td>
<td>74</td>
</tr>
<tr>
<td>II</td>
<td>CO-H$_2$ Critical Constants (Verschoyle).</td>
<td>75</td>
</tr>
<tr>
<td>III</td>
<td>CO-H$_2$ Pressure-Concentration Data (Ruhemann and Zinn: 90°, 83° and 78°K)</td>
<td>76</td>
</tr>
<tr>
<td>IV</td>
<td>CO-H$_2$ Pressure-Concentration Data (Akerš and Eubanks: 122.2°, 100°, and 83.3°K)</td>
<td>77</td>
</tr>
<tr>
<td>V</td>
<td>Solid-Vapor Equilibria (Verschoyle: 63.2° and 58.2°K)</td>
<td>78</td>
</tr>
<tr>
<td>VI</td>
<td>Solid-Vapor Equilibria (Dokoupil et al.: 50, 25, 15, 10, 5 and 1.3 atm)</td>
<td>79</td>
</tr>
<tr>
<td>VII</td>
<td>Solid-Vapor Equilibria (Dokoupil et al.: 65° to 35°K)</td>
<td>80</td>
</tr>
<tr>
<td>VIII</td>
<td>Three-Phase Data (Verschoyle)</td>
<td>81</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>Regions Covered by Published Data</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Vapor-Liquid Equilibria Carbon Monoxide-Hydrogen System</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Solid-Vapor Equilibria, Concentration of Carbon Monoxide in the Vapor Phase</td>
<td>10</td>
</tr>
</tbody>
</table>
Abstract

Literature data have been used to calculate K-factors for the hydrogen-carbon monoxide system over the range of 68.2 to 122.2°K and 10 to 225 atmospheres. K-factors are presented graphically for eight isotherms over this range.

Published data on the solid-vapor region are presented separately as composition versus pressure at constant temperature.

A bibliography of approximately 450 references is also presented on related properties for this system and for the pure components.
1. Introduction

1.1 Purpose

Hydrogen gas for liquefaction purposes frequently contains large amounts of other gases. Typical impurities or contaminants found in hydrogen-source streams include nitrogen, carbon monoxide, methane, ethane, and higher hydrocarbons. Purification of these various sources of hydrogen requires a considerable knowledge of the physical equilibria of the systems involved.

As an initial step in the study of the physical equilibria of hydrogen systems, a review of the literature was undertaken to determine what has been done and is known in this area. In this paper, the carbon monoxide-hydrogen system was so studied. (Previously, the nitrogen-hydrogen system was examined). The purpose of this paper is to determine what is known about the physical equilibria relationships and to present an extensive compilation of known related references for data for this system. It is hoped that this paper will thus provide a firm basis for the conduct of research programs in this area.

Future publications in this series will be concerned with the physical equilibria of hydrogen and other important components. Binary systems will be studied initially. When such a program is completed, it is hoped that the results will be of significant value in the design of cryogenic equipment.

1.2 Organization

The information is presented in three principal parts: (1) physical equilibria with major emphasis on vapor-liquid equilibria, (2) properties related to physical equilibria, and (3) a bibliography of references. Some discussion is presented with Part (1). The information of Part (2) is presented in tabular form showing the reference where such data are to be found. Part (3), the Bibliography, lists the references alphabetically by author.
1.3 Scope

The scope of this work is as follows: an exhaustive literature search, as summarized in NBS Technical Note No. 56, revealed much of the pertinent data; such data were abstracted and presented in the form of K-factor charts and a concentration-pressure chart and as a bibliography of references for related areas of interest. The areas searched are presented in the above reference and will not be enumerated here. Generally speaking, the literature was searched extensively and includes articles published up to and prior to July of 1960.

1.4 Acknowledgements

The authors especially appreciate the aid of the staff of the Data Center of the National Bureau of Standards Cryogenic Engineering Laboratory who provided the majority of the original papers for review.

2. Survey of Literature

The literature search revealed three important references for carbon monoxide-hydrogen vapor-liquid equilibria data. These were Akers and Eubanks (4), Ruhemann and Zinn (368), and Verschoyle (423). K-factor charts were prepared from the data of these references. In all cases the data had to be re-interpreted to arrive at K-factors.

Of noteworthy interest is the article by Verschoyle (423) who also presents solid-vapor and solid-liquid-vapor data for this same system. Also, the extensive work of Dokoupil et al. (88) presents solid-gas equilibria data for this system.

No related physical data are actually presented in this report; only references for such material are listed. Other areas so covered include adsorption phenomena, purification processes, solubility relationships, density and compressibility data, equations of state, thermodynamic and transport properties, P-V-T data, critical constants, virial coefficients, Beattie-Bridgeman constants, analytical techniques, and various processing references. Such material for the pure components as well as for mixtures of carbon monoxide and hydrogen is included in many cases. A general phenomena category is also presented to aid in the theoretical study of adsorption, phase equilibria, purification, solubility relationships, and other important
areas.

3. Discussion of Available Data

For this system one could expect the vapor-liquid data, if complete, to range roughly from the triple point temperature of carbon monoxide to the critical temperature of carbon monoxide (68.1 to 132.98 K). The three articles mentioned previously provided data for eight isotherms between 68.2 K and 122.2 K. The isotherms so presented are at temperatures of 68.2 K, 73.2 K, 78.3 K, 83.2 K, 90.3 K, 100.3 K, and 122.2 K. (The vapor-liquid equilibria data for 83.2 K and for 83.3 K are plotted as one isotherm and so labeled 83*-83.3 K). Thus, the data available do present a rather complete picture of the vapor-liquid equilibria for this system.

The solid-vapor region has been explored at 58.2 K and 63.2 K and from 20 to 175 atmospheres by Verschoyle (423) and from 32 K to 70 K and 1.3 to 50 atmospheres by Dokoupil et al. (88).

The P-T regions covered by the published data are presented in Figure 1. This figure indicates that this system has been rather well explored in both the vapor-liquid region and the solid-vapor region. (The P-T data of hydrogen and carbon monoxide needed for the construction of Figure 1 were obtained from Johnson (189), Verschoyle (423) and Woolley, Scott and Brickwedde (446)).

The original data were treated to arrive at the corresponding K-factors. K is defined as y/x where y is the mole fraction of a component in the vapor phase and x is the mole fraction of that component in the liquid phase. K-factors were calculated for each component at a given temperature and pressure. After plotting the K-factors derived from the various investigations, a smooth curve was drawn for the given isotherm. Finally, the smoothed, individual K-factors were transferred to a plot of K versus total pressure with temperature as a parameter.

It is not the purpose of this report to present a test of the data for thermodynamic consistency. However, some general comments regarding the agreement between investigators is in order. Most discrepancies appear to lie in the pressure range from 10 to 30 atmospheres. In this range, there is some inconsistency in the hydrogen data as evidenced by cross-over of the isotherms of different investigators. The carbon monoxide data were not subject to these
Figure 1. Regions Covered by Published Data. Parenthetical Numbers Refer to Sources in Bibliography.
variations. This scatter of data for hydrogen may stem partly from the analytical techniques used.

The 78° and 90°K isotherms, as contributed by Ruhemann and Zinn, extend only to 50 atmospheres. By using the adjacent isotherms as guide lines, one could, if required, probably make a reasonable extrapolation of these two isotherms to higher pressures.

It must be emphasized that this report is based on the original data of the investigators. These data, in most cases, have not been tested for thermodynamic consistency and should be used only with thorough awareness of this fact.

4. K-Factor Charts

Presented in Tables I, III and IV in the Appendix are the data used in computing K-factors.

Figures 2 and 3 are plots of the K-factors of hydrogen and carbon monoxide, respectively. Dotted portions on these figures indicate extrapolated areas. Figure 4 shows, finally, the curves for both hydrogen and carbon monoxide as taken from Figures 2 and 3. In Figure 4, hydrogen K-factors are situated above the line \( K = 1 \) and carbon monoxide K-factors are below this line. The intersection of an isotherm with the line \( K = 1 \) is called the plait point for that isotherm. The plait points for the 68.2° and 73.2°K isotherms were estimated by Verschoyle to be at pressures of 380 and 325 atmospheres, respectively. Critical constants for this system have been estimated by Verschoyle (423) and are presented in Table II.

Figure 4 thus contains sufficient information to enable one to calculate the vapor and liquid compositions under given temperature and pressure conditions. After the K-factors are obtained, one simply substitutes into the following formulae to obtain phase compositions:

\[
K_1 = \frac{y_1}{x_1} \quad (1)
\]

\[
K_2 = \frac{y_2}{x_2} \quad (2)
\]
Figure 2. Carbon Monoxide-Hydrogen Vapor-Liquid Equilibria Data. Hydrogen K-Factors. Parenthetical Numbers Refer to Sources in Bibliography.
Figure 2. Carbon Monoxide-Hydrogen Vapor-Liquid Equilibria Data. Hydrogen K-Factors. Parenthetical Numbers Refer to Sources in Bibliography.
Figure 3. Carbon Monoxide-Hydrogen Vapor-Liquid Equilibria Data. Carbon Monoxide K-Factors. Parenthetical Numbers Refer to Sources in Bibliography.
Figure 3. Carbon Monoxide-Hydrogen Vapor-Liquid Equilibria Data. Carbon Monoxide K-Factors. Parenthetical Numbers Refer to Sources in Bibliography.
Figure 4. Vapor-Liquid Equilibria. Carbon Monoxide-Hydrogen System.
Figure 4. Vapor-Liquid Equilibria. Carbon Monoxide-Hydrogen System.
The subsripts refer to hydrogen and carbon monoxide. For example, at a system pressure of 100 atm., the phase compositions at 88.2 °K could be found as follows:

\[ K_{CO} = 0.159 = \frac{y_{CO}}{x_{CO}} \]  \hspace{1cm} \[ y_{CO} = 0.159 x_{CO} \]

\[ K_{H_2} = 3.72 = \frac{y_{H_2}}{x_{H_2}} \]  \hspace{1cm} \[ y_{H_2} = 3.73 x_{H_2} \]

Solving equations (3) and (4), one obtains

\[ y_{CO} = 0.122 \]  \hspace{1cm} \[ x_{CO} = 0.764 \]

\[ y_{H_2} = 0.878 \]  \hspace{1cm} \[ x_{H_2} = 0.236 \]

Similarly, dew points and bubble points of given hydrogen-carbon monoxide mixtures can be calculated.

5. Solid-Vapor Equilibria

The data of Verschoyle (423) are given in Table V. These data have been plotted in Figure 5 to show vapor phase composition versus total pressure for the isotherms of 58.2 ° and 63.2 °K.

The extensive solid-gas equilibria data of Dokoupil et al. (88) are given in Table VI. These data have been replotted (not shown) to arrive at P-y curves at 5 °K temperature intervals from 35 ° to 65 °K. The derived data are shown in Table VII and also on Figure 5. Of noteworthy interest is the minimum shown by each isotherm. The locus of these minimum points in the y-P curves thus allow the selection of the optimum total pressure at a given temperature to yield a minimum CO concentration in the gas phase.

6. Three-Phase Equilibria

Verschoyle has also presented data showing the locus of the three-phase curve. Table VIII contains this information.
Figure 5. Solid-Vapor Equilibria. Concentration of Carbon Monoxide in the Vapor Phase.
<table>
<thead>
<tr>
<th>Phenomena</th>
<th>MAJOR COMPONENT: HYDROGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adsorption</td>
<td>Other Components</td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
</tr>
<tr>
<td></td>
<td>Oxygen-Nitrogen-Methane-Carbon Monoxide</td>
</tr>
<tr>
<td>Phase Equilibria</td>
<td>136, 137, 156, 231, 239, 400</td>
</tr>
<tr>
<td></td>
<td>Argon</td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td></td>
<td>Deuterium</td>
</tr>
<tr>
<td></td>
<td>Helium</td>
</tr>
<tr>
<td></td>
<td>Hydrocarbons</td>
</tr>
<tr>
<td></td>
<td>Methane</td>
</tr>
<tr>
<td></td>
<td>Methane-Nitrogen</td>
</tr>
<tr>
<td></td>
<td>Methane-Nitrogen-Carbon Monoxide</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
</tr>
<tr>
<td></td>
<td>Nitrogen-Carbon</td>
</tr>
<tr>
<td></td>
<td>Methane</td>
</tr>
<tr>
<td></td>
<td>Non-Polar Solvents</td>
</tr>
<tr>
<td></td>
<td>Oxygen</td>
</tr>
<tr>
<td></td>
<td>Paraffins</td>
</tr>
<tr>
<td>Purification</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td></td>
<td>Nitrogen-Carbon Monoxide</td>
</tr>
<tr>
<td>Phenomena</td>
<td>Category</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Adsorption</td>
</tr>
<tr>
<td></td>
<td>Phase Equilibria</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purification</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**MAJOR COMPONENT**

**CARBON MONOXIDE**
### Phenomena

<table>
<thead>
<tr>
<th>Category</th>
<th>Other Components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purification</td>
<td></td>
<td>5, 135, 158, 217, 222, 243, 348, 355, 416, 418, 429, 441</td>
</tr>
</tbody>
</table>
Properties Index
### Properties

#### MAJOR COMPONENT

#### HYDROGEN

<table>
<thead>
<tr>
<th>Category</th>
<th>Other Components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beattie-Bridgeman Constants</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Critical Constants</td>
<td></td>
<td>9, 80, 103, 116,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>173, 189, 200, 207,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228, 434</td>
</tr>
<tr>
<td>Density, Expansion,</td>
<td></td>
<td>2, 3, 10, 14, 15,</td>
</tr>
<tr>
<td>Compressibility</td>
<td></td>
<td>17, 21, 47, 80, 85,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103, 139, 154, 155,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189, 192, 201, 213,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260, 269, 275, 277,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>373, 382, 438, 452</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td></td>
<td>421</td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
<td>14, 15, 17, 438</td>
</tr>
<tr>
<td>Equations of State,</td>
<td></td>
<td>1, 24, 61, 78, 115,</td>
</tr>
<tr>
<td>Corresponding States</td>
<td>Carbon Monoxide</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14, 15, 17, 75, 71,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>174, 276, 280, 297,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>298, 300, 381, 409,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>422</td>
</tr>
<tr>
<td>Isotherms</td>
<td>Carbon Monoxide</td>
<td>381, 409</td>
</tr>
<tr>
<td></td>
<td>Helium</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>14, 15, 17, 422</td>
</tr>
<tr>
<td>Thermodynamic Properties</td>
<td></td>
<td>33, 40, 77, 103,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106, 117, 124, 125,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139, 147, 165, 180,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189, 190, 195, 207,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>214, 236, 278, 383,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>386, 400, 445, 446</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>39, 147, 370</td>
</tr>
</tbody>
</table>
## MAJOR COMPONENT

**HYDROGEN**

(Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Other Components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Properties</td>
<td></td>
<td>23, 61, 102, 103, 139, 189, 285, 334, 446</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td></td>
<td>9, 55, 58, 62, 80, 103, 114, 116, 140, 145, 153, 162, 172, 189, 191, 193, 195, 283, 284, 383, 385, 411, 435, 436</td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Hydrogen Deuteride</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Methane</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>114, 225, 226, 411</td>
</tr>
<tr>
<td></td>
<td>Nitrogen-Carbon Dioxide</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Nitrogen-Methane</td>
<td>225</td>
</tr>
<tr>
<td>Virial Coefficients</td>
<td>Carbon Dioxide</td>
<td>285, 287, 375, 376</td>
</tr>
</tbody>
</table>

**References**

- 23, 61, 102, 103, 139, 189, 285, 334, 446
- 9, 55, 58, 62, 80, 103, 114, 116, 140, 145, 153, 162, 172, 189, 191, 193, 195, 283, 284, 383, 385, 411, 435, 436
- 226
- 172
- 225
- 114, 225, 226, 411
- 226
- 225
- 285, 287, 375, 376
- 67
<table>
<thead>
<tr>
<th>Category</th>
<th>Other Components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Constants</td>
<td></td>
<td>53, 70, 79, 80, 189</td>
</tr>
<tr>
<td>Density, Expansion,</td>
<td></td>
<td>16, 19, 41, 79, 80, 85, 95, 132; 133, 189, 262, 288, 392, 443</td>
</tr>
<tr>
<td>Compressibility</td>
<td>Methane</td>
<td>54</td>
</tr>
<tr>
<td>Equations of State, Corresponding States</td>
<td></td>
<td>378</td>
</tr>
<tr>
<td>Isotherms</td>
<td>Hydrogen</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Hydrogen</td>
<td>16, 381, 409</td>
</tr>
<tr>
<td></td>
<td>Hydrogen-Nitrogen</td>
<td>381, 409</td>
</tr>
<tr>
<td></td>
<td>Nitrogen</td>
<td>407</td>
</tr>
<tr>
<td>Thermodynamic Properties</td>
<td></td>
<td>40, 77, 97, 106, 130, 147, 189, 262, 279, 323</td>
</tr>
<tr>
<td></td>
<td>Hydrogen</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Methane</td>
<td>264, 448</td>
</tr>
<tr>
<td>Transport Properties</td>
<td></td>
<td>143, 189</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td></td>
<td>60, 70, 79, 80, 140, 189, 262, 281, 447</td>
</tr>
<tr>
<td>Virial Coefficients</td>
<td></td>
<td>Nitrogen 389, 390</td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide</td>
<td>67</td>
</tr>
</tbody>
</table>
### Properties

<table>
<thead>
<tr>
<th>Category</th>
<th>MAJOR COMPONENT</th>
<th>GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Corresponding States</strong></td>
<td></td>
<td>63, 134, 149, 151, 152, 292, 302, 327, 347</td>
</tr>
<tr>
<td><strong>Critical Properties</strong></td>
<td></td>
<td>52, 129, 148, 254, 273, 319, 320, 340, 347</td>
</tr>
<tr>
<td><strong>Densities</strong></td>
<td></td>
<td>29, 129, 261, 341, 347, 366, 372</td>
</tr>
<tr>
<td><strong>Equations of State</strong></td>
<td></td>
<td>20, 22, 66, 68, 72, 73, 164, 167, 199, 205, 220, 224, 237, 253, 256, 257, 258, 268, 289, 293, 295, 302, 308, 310, 326, 345, 347, 361, 396, 397, 398, 431, 453</td>
</tr>
<tr>
<td><strong>Expansion</strong></td>
<td></td>
<td>234</td>
</tr>
<tr>
<td><strong>Isotherms</strong></td>
<td></td>
<td>175, 273, 309</td>
</tr>
<tr>
<td><strong>Lennard-Jones Potentials</strong></td>
<td></td>
<td>126, 299</td>
</tr>
<tr>
<td>Properties</td>
<td>Other Components</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td><strong>MAJOR COMPONENT</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>GENERAL</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Category</strong></td>
<td><strong>Other Components</strong></td>
<td><strong>References</strong></td>
</tr>
<tr>
<td>Virial Coefficients</td>
<td>91, 151, 205, 206, 210, 252, 299, 328, 329, 350</td>
<td></td>
</tr>
</tbody>
</table>
Processes Index
## Processes

### MAJOR COMPONENT

**HYDROGEN**

<table>
<thead>
<tr>
<th>Category</th>
<th>Other Components</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Carbon Dioxide-Oxygen-Carbon Monoxide</td>
<td>34, 75, 161, 305</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide-Methane</td>
<td>317, 380</td>
</tr>
<tr>
<td></td>
<td>Carbon Monoxide-Nitrogen</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>TELNUM</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>Nitrogen-Carbon Monoxide-Methane</td>
<td>185</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
<td>7, 83, 306, 433</td>
</tr>
<tr>
<td>Category</td>
<td>Other Components</td>
<td>References</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Analytical</td>
<td></td>
<td>34, 35, 131, 203, 307, 322, 426, 427, 430</td>
</tr>
<tr>
<td>Carbon Dioxide-</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Oxygen-Hydrogen</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Ethylene</td>
<td></td>
<td>317, 380</td>
</tr>
<tr>
<td>Hydrogen</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>Hydrogen-Methane</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Hydrogen-Nitrogen</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>Methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Other Components</td>
<td>References</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| Analytical   |                  | 38, 69, 142, 196,  
|              |                  | 286, 384, 403,     
|              |                  | 404, 425           |
Bibliography of References
1. van Agt, F. The behavior of hydrogen relative to the law of corresponding states
   Commun. Kamerlingh Onnes Lab. Univ. Leiden No. 176c, 7pp. (1925)

2. van Agt, F. and Kamerlingh Onnes, H. Isotherms of monatomic substances and of their binary mixtures. XXI. The compressibility of hydrogen and helium between 90° and 144°K (in Dutch)

3. van Agt, F. and Kamerlingh Onnes, H. The compressibility of hydrogen and helium between 90° and 144°K

   Advances in Cryogenic Eng. 3, 275-93 (1960)

5. Almquist, J. A. and Dodge, R. L. Ultra-purification of gas mixtures
   Chem. & Met. Eng. 32, 89-92 (1926)

6. Anon. Bibliography of gas properties

   Petrol. Processing 11, 136-8 (1956)

8. Armbruster, M. H. and Austin, J. E. The adsorption of gases on smooth surfaces of steel: argon, neon, hydrogen, nitrogen, carbon monoxide and carbon dioxide
   J. Am. Chem. Soc. 66, 159-71 (1944)


10. Augustin, H. Density of liquid hydrogen, index of refraction and dispersion of liquid hydrogen in liquid nitrogen (in German)
    Ann. Physik [4], 46, 419-45 (1915)


14. Bartlett, E. P. Compressibility isotherms of hydrogen, nitrogen and mixtures of these gases at 0° and pressures to 1000 atmospheres. J. Am. Chem. Soc. 49, 687-701 (1927)

15. Bartlett, E. P., Cupples, H. L. and Tremearne, T. H. Compressibility isotherms of hydrogen, nitrogen and a 3:1 mixture of these gases at temperatures between 0° and 400° and at pressures to 1000 atmospheres. J. Am. Chem. Soc. 50, 1275-88 (1928)


21. Beattie, J. A. and Bridgeman, O. C. A new equation of state for fluids. II. Application to helium, neon, hydrogen, nitrogen, oxygen, air and methane. III. The normal densities and compressibilities of several gases at 0°C J. Am. Chem. Soc. 50, 3133-8 (1928)


23. Becker, E. W. and Stehl, O. The viscosity difference between ortho and para hydrogen at low temperatures (in German) Z. Physik 135, 615-28 (1952)


A. I. Ch. E. Journal 3, 236-41 (1957)

29. Benson, S. W. Critical densities and related properties of liquids
J. Phys. & Colloid-Chem. 52, 1060-74 (1948)

Oil Gas J. 47, 95, 97, 130, 132, 135 (1949)

31. Bergeon, R. The solubility of solids and liquids in compressed gases (in French)
Genie chim. 79, 139-51 (1958)

32. Bergholm, A. Vapor-liquid equilibria at high pressure (in Swedish)
Svensk Kem. Tidskr. 63, 233-49 (1951)

33. Bjerrum, N. The specific heat of gases. II. Oxygen, hydrogen, argon, nitrogen and water vapor (in German)
Z. Elektrochem. 18, 101-4 (1912)

34. Blacet, F. E. and MacDonald, G. D. Microanalysis of gases. III. Hydrogen, carbon monoxide, hydrogen chloride and ammonia
Ind. Eng. Chem. Anal. Ed. 6, 334-6 (1934)

35. Blacet, F. E., MacDonald, G. D. and Leighton, P. A. Micro-analysis of gases. II. Carbon monoxide, ethylene and acetylene

36. Black, C. Phase equilibria in binary and multicomponent systems. Modified van Laar-type equation
Ind. Eng. Chem. 50, 403-12 (1958)

37. Black, C. Vapor phase imperfections in vapor-liquid equilibria
Ind. Eng. Chem. 50, 391-402 (1958)


41. Botella, S. G. Compressibility of carbon monoxide at 0°, at surrounding temperatures and at pressure between 50 and 130 atmospheres (in Spanish) Anales soc. espan. fis y quim. 27, 315-50 (1929)

42. Bratu, E. M. A general equation for calculating the pressure of saturated vapors (in Romanian) Bul. inst. nati. cercitari technol. 2, 36-49 (1947)


48. Burnett, E. S. Compressibility determinations without volume measurements

49. Burrell, G. A. and Robertson, J. W. Vapor pressures of various compounds at low temperatures

50. Burstein, R., Levin, P. and Petrov, S. Activated adsorption of gases on charcoal (in German)
   Physik. Z. Sowjetunion 4, 197-211 (1933)

51. Canjar, L. N., Ford, H. B. and Sebulsky, R. T. Predicting vapor-liquid equilibrium data. II.

52. Cardoso, E. Critical point (in French)
   J. chim. phys. 10, 470-96 (1913)

53. Cardoso, E. Critical points of nitrogen, oxygen, carbon monoxide and methane (in French)
   J. chim. phys. 13, 312-50 (1916)

54. Cardoso, E. Densities of the coexisting phases of methane and carbon monoxide (in French)
   Arch. sci. phys. et nat. 39, 403-4 (1915)

55. Cath, P. G. and Kamerlingh Onnes, H. The measurement of low temperatures. XXVII. Vapor pressure of hydrogen in the neighborhood of the boiling point and between the boiling point and the critical point

56. Cawood, W. and Patterson, H. S. Compressibilities of certain gases at low pressures and various temperatures
   J. Chem. Soc. 1933, 619-24 (1933)

57. Chao, K. C. Isobaric vapor-liquid equilibria
   Ind. Eng. Chem. 51, 93-4 (1959)


68. Cramer, F. An empirical equation of state for extremely high pressures. II. (in German)
Chem. Tech. (Berlin) 6, 590-5 (1954)

69. Cremer, E. and Prior, F. Application of chromatographic methods to the separation of gases and determination of adsorption energies (in German)
Z. Elektrochem. 55, 66-70 (1951)

70. Crommelin, C. A., Bijleveld, W. J. and Brown, E. G. Vapour tensions, critical point and triple point of carbon monoxide (in Dutch)

71. Crommelin, C. A. and Swallow, J. C. Isotherms of hydrogen from -217° to -240° at pressures up to 60 atmospheres
Commun. Kamerlingh Onnes Lab. Univ. Leiden No. 172a, 7 pp. (1924)

72. Cullen, E. J. and Kobe, K. A. Benedict equation of state: application to vapor-liquid equilibria
A. I. Ch. E. Journal 1, 452-5 (1955)

73. De Boer, J. Equation of state of gases at low temperature
Physica 24, 890-7 (1958)

74. Deitz, V. R. Bibliography of solid adsorbents 1900-1942, 1943-1953

75. Deitz, V. R. and Gleysteen, L. F. Determination of carbon and hydrogen in bone black and chars

76. Delaplace, R. Pressures of some permanent gases at low temperatures in the presence of silica gel (in French)
Compt. rend. 205, 664-5 (1937)
77. Deming, W. E. and Deming, L. E. Some physical properties of compressed gases. IV. The entropies of nitrogen, carbon monoxide and hydrogen
Phys. Rev. 45, 109-13 (1934)

78. Deming, W. E. and Shupe, L. E. Constants of the Beattie-Bridgeman equation of state with Bartlett's p-v-t data on hydrogen
J. Am. Chem. Soc. 53, 843-9 (1931)

79. Deming, W. E. and Shupe, L. E. Physical properties of compressed gases. II. Carbon monoxide
Phys. Rev. 38, 2245-64 (1931)

80. Deming, W. E. and Shupe, L. E. Some physical properties of compressed gases. III. Hydrogen, nitrogen and carbon monoxide
Phys. Rev. 40, 648-59 (1932)


Chem. Revs. 39, 403-17 (1946)

84. Dewar, J. The adsorption and thermal evolution of gases occluded in charcoal at low temperatures. Adsorption of hydrogen, nitrogen, oxygen, argon, helium, electrolytic gas, carbonic oxide and oxygen and carbonic oxide at 0° and -185°C

85. Dewar, J. The densities of solid oxygen, nitrogen, hydrogen, argon, carbon monoxide, etc.
86. DiCio, A. "Equation of state for carbon monoxide-hydrogen mixtures (in Italian)"
Riv. combustibili 11, 300-7 (1957)

87. van Dingenen, W. and van Itterbeek, A. Measurements of the adsorption of light and heavy hydrogen on charcoal between 90° and 17°K
Physica 5, 49-58 (1939)

88. Dokoupil, Z., van Soest, G. and Swenker, M. D. P. The equilibrium between the solid phase and the gas phase of the systems hydrogen-nitrogen, hydrogen-carbon monoxide and hydrogen-nitrogen-carbon monoxide

89. Dubinin, M. M. and Záverina, E. D. Adsorption of gases by active carbons (in Russian)

90. Dugdale, J. S. and MacDonald, D. K. C. Influence of zero-point energy on the thermodynamic properties of low boiling point elements
Phil. Mag. [7], 45, 811-7 (1954)

J. Am. Chem. Soc. 64, 2816-9 (1942)

Ind. Eng. Chem. 51, 711-3 (1959)

93. Ehrlich, G., Huemott, T. W. and Hudda, F. G. The low-temperature chemisorption of nitrogen and carbon monoxide
J. Chem. Phys. 28, 506-7 (1958)

94. English, W. N. Continuous purification of hydrogen in a large electron pulse chamber
Rev. Sci. Instr. 22, 598-600 (1951)

95. Estreicher, T. and Boboteck, J. The behavior of carbon monoxide at low temperatures (in French)
96. Eubanks, L. S. Vapor-liquid equilibrium in the system hydrogen-nitrogen-carbon monoxide

97. Eucken, E. U. and Lude, K. V. The specific heat of gases at medium and high temperatures. I. The specific heat of the gases air, nitrogen, oxygen, carbon monoxide, carbon dioxide, nitrous oxide and methane between 0° and 200°. (in German) Z. physik. Chem. 55, 413-41 (1929)


100. Faggiani, D. Energy, enthalpy and entropy of gases according to the most recent determinations (in Italian) Termotecnica (Milan) 1, 108-13 (1947)


102. Falk, G. and Mann, A. Viscosity of o- and p-hydrogen (in German) Z. Physik 142, 277-96 (1955)


107. Firth, J. B. Sorption of hydrogen by palladium at low temperatures J. Chem. Soc. 117, 171-83 (1920)


113. Freundlich, H. Adsorption and occlusion (in German) Z. Physik. Chem. (Leipzig) 61, 249-54 (1907)


116. Friedman, A. S., White, D. and Johnston, H. L. Critical constants, boiling points, triple point constants and vapor pressure of the six isotropic hydrogen molecules based on a simple mass relationship
J. Chem. Phys. 19, 126-7 (1951)

117. Friedman, H. L. Nonideality of liquid ortho-para hydrogen solutions
J. Chem. Phys. 27, 220-3 (1957)

118. Frolich, P. K., Tauch, E. J., Hogan, J. J. and Peer, A. A. Solubilities of gases in liquids at high pressures
Ind. Eng. Chem. 23, 548-50 (1931)

119. Frolich, P. K. and White, A. Adsorption of methane and hydrogen on charcoal at high pressure
Ind. Eng. Chem. 22, 1058-60 (1930)

120. Ganguli, A. The adsorption of gases by solids
J. Phys. Chem. 34, 665-8 (1930)

Trans. Faraday Soc. 32, 1744-8 (1936)

Zhur. Tekh. Fiz. 11, 801-8 (1941)

123. Geyer, E. W. Specific heats and energy charts for gases

124. Giacomini, F. A. The temperature dependency of the molecular heats of gases, especially of ammonia, methane and hydrogen at low temperatures
Phil. Mag. [6], 50, 146-56 (1925)

125. Giauque, W. F. The entropy of hydrogen and the third law of thermodynamics. The free energy and dissociation of hydrogen
J. Am. Chem. Soc. 52, 4816-31 (1930)
126. Gilbert, R., and Dognin, A. The calculation of the force
constants of Lennard-Jones potentials (in French)
Compt. rend. 246, 2607-9 (1958)

127. Gilliland, E. R. P-V-T relations of gaseous mixtures
Ind. Eng. Chem. 28, 212-5 (1936)

mixtures

129. Godridge, A. M. Some properties of gas mixtures

130. Goff, J. A. and Gratch, S. Zero-pressure thermodynamic
properties of carbon monoxide and nitrogen

131. Goffredo, L. A review of methods for the determination of
small quantities of carbon monoxide (in Italian)
Riv. combustibili 7, 84-5 (1953)

132. Goff, S. The compressibility of carbon monoxide at 0° and
above 50 atmospheres (in French)
Compt. rend. 189, 246-8 (1929)

133. Goff, S. Compressibility of carbon monoxide at 0° and ordinary
temperatures between 50 and 1.0 atmospheres (in French)
J. chim. phys. 27, 212-35 (1930)

134. Goldhammer, D. A. Studies in the theory of corresponding
states (in German)
Z. physik. Chem. 71, 577-624 (1910)

135. Gonel, H. W. Gas purification in the chemical industry (in
German)
Chem. Fabrik 6, 479-80 (1933)

Regular solutions of hydrogen (in Russian)


145. Grilly, E. R. The vapor pressures of hydrogen, deuterium and tritium up to 3 atmospheres J. Am. Chem. Soc. 43, 843-6 (1951)
146: Groth, V. W., Ihle, H. and Mürrenhoff, A. Determination of the temperature dependence of the vapor pressure relations (in German) Z. Naturforsch. 9a, 895-6 (1954)


156. Hala, E., Jiri, P., Vojtech, F., and Otakar, V. Vapor liquid equilibrium
Pergamon Press, New York, 1958, pp. 299-365

Ind. Eng. Chem. 49, 2010 (1957)

158. Hausen, H. Influence of the Lewis coefficient on the freezing-out of vapors from gas-vapor mixtures (in German)
Angew. Chem. B20, 177-82 (1948)

159. Havlíček, V. The coefficients of compressibility for gases (in Czech.)
Strojirenství 8, 903-4 (1958)

160. Hawkins, G. A. Brief review of available data on the dynamic viscosity and thermal conductivity for twelve gases

161. Hempel, W. Determination of hydrogen and methane in gas mixtures (in German)
Z. angew. Chem. 25, 1841-5 (1912)

162. Henning, F. and Heuse, W. A new determination of the normal boiling points of oxygen, nitrogen and hydrogen (in German)
Z. Physik 23, 105-16 (1924)

163. Henning, F. and Stock, A. Saturation pressure of some vapors between 10° and -181° (in German)
Z. Physik 4, 226-44 (1921)

164. Herz, W. On the b of the van der Waals' equation (in German)
Z. Elektrochem. 29, 527-30 (1923)

165. Hill, R. W. and Ricketson, B. W. A lambda-anomaly in the specific heat of solid hydrogen
Phil. Mag. 7, 45, 277-82 (1954)

166. Hilsenrath, J. (Editor) Tables of thermal properties of gases


175. Holborn, L. and Otto, J. The isotherms of various gases between 400° and -183° (in German) Z. Physik 33, 1-12 (1925)

176. Hollings, H. and Griffith, R. H. Activated adsorption of hydrogen Nature 129, 834 (1932)
177. Homfray, I. F. Adsorption of gases by charcoal

178. Homfray, I. F. Adsorption of gases by charcoal (in German)
Z. physik. Chem. 74, 129-201 (1910)

179. Husing, E. Adsorption of gases and gas mixtures by special
charcoals (in German)
Z. tech. Physik 17, 289-301 (1936)

180. van Itterbeek, A. The dependency of $C_p/C_v$ on pressure for
hydrogen gas deduced from measurements of the velocity of
sound at liquid hydrogen temperatures
Commun. Kamerlingh Onnes Lab. Univ. Leiden, Supp. No. 70b,
7-12 (1932)

181. van Itterbeek, A. and Borghs, J. The van der Waals adsorption
of gases (in German)

182. van Itterbeek, A. and van Dingenen, W. Adsorption isotherms
and heats of adsorption of oxygen and carbon monoxide on
charcoal in the temperature range of 50° to 90°K
Physica 4, 1169-80 (1937)

183. van Itterbeek, A. and van Dingenen, W. Determination of
adsorption isotherms of hydrogen on charcoal between 90°
and 50°K in connection with desorption experiments
Physica 4, 389-402 (1937)

184. Jager, G. The theory of the solubility of gases in liquids (in
German)

chromatography. I. Separation and analysis of mixtures of
hydrogen, nitrogen, carbon monoxide and methane (in Czech.)
Chem. listy 52, 1099-107 (1957)

186. Joffe, J. Fugacities in gas mixtures
Ind. Eng. Chem. 40, 1738-41 (1948)
187. Johnson, M. C. An analysis of hydrogen adsorption phenomena
Trans. Faraday Soc. 29, 1139-55 (1933)

188. Johnson, V. J. Removal of nitrogen from hydrogen with silica
gel at low temperatures
Advances in Cryogenic Eng. 3, 11-8 (1960)

189. Johnson, V. J. (Editor) A compendium of the properties of
materials at low temperatures - phase I.
(Dec. 1959)

190. Johnston, H. L., Bezman, I. I. and Hood, C. B. Joule-
Thomson effects in hydrogen at liquid air and at room tempera-
tures
J. Am. Chem. Soc. 68, 2367-73 (1946)

191. Johnston, H. L., Bezman, I. I., Ruben, T., Jensen, L.,
White, D. and Friedman, A. S. Gaseous data of state for
hydrogen between 1 and 200 atmospheres from 20° to 300°K
Phys. Rev. 79, 235 (1950)

192. Johnston, H. L., Keller, W. E. and Friedman, A. S. The
compressibility of liquid normal hydrogen from the boiling point
to the critical point at pressures up to 100 atmospheres
J. Am. Chem. Soc. 76, 1482-6 (1954)

193. Johnston, H. L. and White, D. Pressure-volume-temperature
relationships of gaseous normal hydrogen from its boiling
point to room temperature from 0 to 200 atmospheres

194. Johnston, H. L. and White, D. Summary of experimental
determinations of the J-T effects in gases

195. Johnston, H. L., White, D., Wirth, H., Swanson, C., Jensen,
L. H. and Friedman, A. S. Gaseous data of state. II. The
p-v-t relationships of gaseous normal hydrogen from the critical
temperature to room temperature and up to 200 atmospheres
pressure
T. R. 264-25, Ohio State Cryogenic Lab. (Nov. 25, 1953)


205. Kazavchinskii, Ya. A. A method of determining the constants for the virial form of the equation of state for a real gas (in Russian)


207. Keesom, W. H. Thermodynamic investigations including triple point and critical magnitudes of oxygen, argon, nitrogen, neon, hydrogen and helium (in German)
Onnes-Festschrift 1922, 89-163 (1922)


209. Keier, N. P. and Roginskii, S. Z. The properties of broadly heterogeneous surfaces as shown by the study of the adsorption of oxygen and hydrogen on activated charcoal (in Russian)

210. Kihara, T. Virial coefficients and intermolecular potential of small, non-spherical molecules

211. Kingman, F. E. T. Adsorption of hydrogen on charcoal
Nature 127, 742 (1931)

212. Kingman, F. E. T. Adsorption of hydrogen on charcoal
Trans. Faraday Soc. 28, 269-72 (1932)

213. Kinosita, M. and Otsi, J. Expansion and pressure coefficients of nitrogen, hydrogen, helium and neon and the absolute temperature of 0°C
Phil. Mag. [7], 24, 52-62 (1937)

214. Koeppe, W. The integral J-T effect for hydrogen at low temperatures and pressures up to 120 atmospheres (in German)
Kaltetechnik 8, 275 (1956)


220. Kordes, E. General equation of state for saturated vapors (in German) Naturwissenschaften 40, 359-60 (1953)

221. Kordes, E. The heterogeneous equilibrium liquid-vapor (in German) Z. Elektrochem. 58, 424-31 (1954)

222. Korsching, H. Diffusion-separator for gases (in German) Z. Naturforsch. 6a, 213-7 (1951)


228. van Laar, J. J. The critical density of hydrogen, helium and neon (in Dutch) Chem. Weekblad 16, 1557-64 (1919)

229. Lachmann, W. Process and apparatus for separating mixtures of gases or vapors by adsorption or chemical combination (in German) Z. Sauerstoff-Stickstoff-Ind. 16, 5-11 (1924)


231. Lachowicz, S. K. The relative solubility of hydrogen and deuterium in liquids at low temperatures Research Correspondence 8, No. 6, S 27-8 (1955)


235. Lee, J. F. Specific heat of gases at the critical point (in German) 

236. Lennard-Jones, J. E. The molecule fields of hydrogen, nitrogen and neon 

237. Lennard-Jones, J. E. and Cook, W. R. The equation of state of a gaseous mixture 

   A. I. Ch. E. Journal 3, 318-20 (1957)

239. Lepointe, R. Heat of adsorption of gases by charcoal at -183°C 
   (in French) 
   J. phys. radium 7, 469-72 (1936)

   Ind. Eng. Chem. 42, 1326-32 (1950)

241. Liang, S. C. Low vapor pressure measurements and thermal transpiration 
   J. Phys. Chem. 56, 660-2 (1952)

242. Livingston, M. K. The cross-sectional areas of molecules adsorbed on solid surfaces 
   J. Colloid Sci. 4, 447-58 (1949)

243. Lorenz, R. and Magnus, A. The separation of gas mixtures by diffusion (in German) 
   Z. anorg. u. allgem. Chem. 136, 97-113 (1924)

244. Lorenz, R. and Wiedbrauck, E. Adsorption equilibria of mixtures of two gases (in German) 
   Z. anorg. u. allgem. Chem. 143, 268-76 (1925)

245. Lowry, H. H. and Morgan, S. O. The adsorption of gases by graphic carbon 
   J. Phys. Chem. 29, 1105-15 (1925)
Ind. Eng. Chem. 51, 219-22 (1959)

247. Lydersen, A. L. and Hammer, E. Vapor-liquid equilibrium still for low pressures

248. Magnus, A. and Roth, N. Adsorption. VII. The adsorption of carbon dioxide-hydrogen mixtures on wood charcoal (in German)
Z. anorg. u. allgem. Chem. 150, 311-25 (1926)

249. Maidanovskaya, L. G. Adsorption of hydrogen on silica gel and glass (in Russian)

Uchenye Zapiski Tomsk. Gosudarst. Univ. im V. V. Kubysheva No. 35, 93-102 (1955)

251. Malanchuk, M. and Stuart, E. B. Effect of heat treatment on silica gel
Ind. Eng. Chem. 50, 1207-10 (1958)

252. Margenau, H. The second virial coefficient for gases: a critical comparison between theoretical and experimental results
Phys. Rev. 36, 1782-90 (1930)

253. Markov, V. P. Compressibility of gaseous mixtures. II. Verification of the equation of state for gaseous mixtures (in Russian)

254. Maron, S. H. and Turnbull, D. Equation of state for gases at high pressures involving only critical constants
J. Am. Chem. Soc. 64, 2195-8 (1942)
255. Marshak, R. E., Morse, P. M. and York, H. Equation of state of hydrogen, helium and Russell mixtures at high pressures and temperatures

256. Martin, J. J. and Hou, Y. C. Development of an equation of state for gases
   A. I. Ch. E. Journal 1, 142-51 (1955)

257. Martin, J. J., Kapoor, R. M. and DeNevers, N. An improved equation of state for gases
   A. I. Ch. E. Journal 5, 159-60 (1959)

258. Maslan, F. D. and Aberth, E. R. Equation of state for liquids

   J. Phys. Chem. 57, 106-9 (1953)

260. Maslan, F. D. and Littman, T. M. Compressibility chart for hydrogen and inert gases
   Ind. Eng. Chem. 45, 1566-8 (1953)

261. Mathias, E. Study of density curves at low temperatures (in German)
   Physik. Ber. 4, 701-2 (1923)

262. Mathias, E. and Crommelin, C. A. Carbon monoxide and helium (in French)
   Ann. phys. 5, 137-66 (1936)


   Trans. Faraday Soc. 52, 1488-1500 (1956)
265. Maverick, S. and Schlatter, C. Compressibility at 0° and below 1 atmosphere and the deviation from the law of Avogadro of several gases (in French) J. chim. phys. 27, 36-43, 44-53 (1930)

266. McBain, J. W. The mechanism of the adsorption of hydrogen by carbon Phil. Mag. [6], 18, 916-35 (1909)


269. Megaw, H. D. The density and compressibility of solid hydrogen and deuterium at 4.2°K Phil. Mag. [7], 28, 129-47 (1939)


271. Melkonian, G. A. and Reps, B. Isotope displacement by adsorption and desorption on silica gels at low temperatures and pressures (in German) Z. Elektrochem. 58, 616-9 (1954)


274. Michels, A. An experiment on the interaction of dissimilar molecules (in Italian) Nuovo cimento, Suppl. 4, 358-64 (1958)


279. Michels, A., Lunbeck, R. J. and Wolkers, G. J. Thermodynamic properties of carbon monoxide at temperatures between 0°C and 150°C and at densities up to 600 amagat. Physica 18, 128-34 (1952)


293. van Ness, H. C. Use of the Redlich and Kwong equation of state in calculating thermodynamic properties of gases from experimental compressibility data A. I. Ch. E. Journal 1, 100-4 (1955)

295. Neusser, E. The van der Waals' equation for rare gases (in German) Physik. Z. 33, 76-81 (1932)

296. Neven, P. and van Tiggelen, A. Quantitative adsorption of hydrogen Bull. soc. chim. Belges 61, 328-9 (1952)


298. Nijhoff, G. P. and Keesom, W. H. Isotherms of hydrogen at temperatures from -225.5° to -248.3°C and pressures from 1.6 to 4.2 atmospheres Commun. Kamerlingh Onnes Lab. Univ. Leiden No. 188e, 2 pp. (1928)


300. Oiski, J. 0° and 100° isotherms of helium, hydrogen, neon, argon, air and carbon dioxide at pressures below 2 atmospheres and absolute temperature of 0°C J. Sci. Research Inst. (Tokyo) 43.

301. Oliphant, M. L. E. Selective adsorption from gaseous mixtures by a mercury surface formed in the mixture Phil. Mag. [7], 6, 422-33 (1928)


305. Paal, C. and Hartman, W. Gaseometric determination of hydrogen by catalytic absorption (in German). Ber. 43, 243-58 (1910)


313. Peters, K. and Proksch, E. The kinetics of adsorption of gases near their critical temperature (in German). Z. Elektrochem. 61, 1241-6 (1957)

315. Petit, P. and Weil, L. Solubility of oxygen, nitrogen and argon in liquid hydrogen


317. Pfundt, O. Detection and recording of small amounts of carbon monoxide, particularly in purified contact hydrogen (in German)
Chem. Fabrik 6, 69-71 (1933)

Phys. Rev. 45, 215 (1934)

319. Pickering, S. F. A review of the critical constants of various gases
J. Phys. Chem. 28, 97-124 (1924)

320. Pickering, S. F. A review of the literature relating to the critical constants of various gases

321. Pickering, S. F. Compressibilities of gases

322. Picon, M. The extreme sensitivity of the determination of carbon monoxide, ethylene and acetylene by iodic anhydride (in French)

323. Pier, M. Specific heat and gaseous equilibria by explosion studies, carbon dioxide, sulfur dioxide and carbon monoxide (in German)
Z. Elektrochem. 16, 897-903 (1910)
324. Pierotti, G. J., Deal, C. H. and Derr, E. L. Activity coefficients and molecular structure
Ind. Eng. Chem. 51, 95-102 (1959)

325. Pietsch, H. Determination of very small amounts of oxygen, carbon monoxide, methane and nitrogen in purest ethylene by adsorption chromatography (in German)
Erdol u. Kohle 11, 157-9 (1958)

326. Pings, C. J., Jr. and Sage, B. H. Equations of state
Ind. Eng. Chem. 49, 1315-28 (1957)

327. Pitzer, K. S. Corresponding states for perfect liquids
J. Chem. Phys. 7, 583-90 (1939)

328. Pitzer, K. S. Volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coefficients
J. Am. Chem. Soc. 77, 3427-33 (1955)

J. Am. Chem. Soc. 79, 2369-70 (1957)

J. Am. Chem. Soc. 77, 3433-40 (1955)

331. Piutti, A. Adsorption of carbon monoxide (in Italian)
Ciorn. chim. ind. ed appl. 5, 70-3 (1923)

332. Podgursku, H. H. and Emmett, P. H. The adsorption of hydrogen and carbon monoxide on iron surfaces
J. Phys. Chem. 57, 159-64 (1953)

333. Pollard, F. H. The adsorption of carbon monoxide and hydrogen by platinized asbestos
J. Phys. Chem. 27, 356-75 (1923)
334. Powers, R. W., Mattox, R. W. and Johnston, H. L.  
Thermal conductivity of liquid normal and para-hydrogen from  
15° to 27°K  
J. Am. Chem. Soc. 76, 5792-3 (1954)

335. Prausnitz, J. M.  
Fugacities in high-pressure equilibria and  
in rate processes  
A. I. Ch. E. Journal 5, 3-9 (1959)

336. Prausnitz, J. M.  
Fugacities in simple gas mixtures  

337. Prausnitz, J. M.  
Regular solution theory for gas-liquid  
solutions  
A. I. Ch. E. Journal 4, 269-72 (1958)

338. Prausnitz, J. M. and Benson, P. R.  
Effective collision  
diameters and correlation of some thermodynamic properties  
of solutions  
A. I. Ch. E. Journal 5, 301-3 (1959)

339. Prausnitz, J. M. and Benson, P. R.  
Solutility of liquids in  
compressed hydrogen, nitrogen and carbon dioxide  
A. I. Ch. E. Journal 5, 161-4 (1959)

Psuedocritical constants  
from volumetric data for gas mixtures  
A. I. Ch. E. Journal 4, 494 (1958)

341. Prausnitz, J. M. and Gunn, R. D.  
Volumetric properties of  
non-polar gaseous mixtures  
A. I. Ch. E. Journal 4, 430-5 (1958)

342. Prausnitz, J. M. and Snider, G. D.  
Thermodynamic  
consistency test for multicomponent solutions  
A. I. Ch. E. Journal 5, 7 S - 8 S (1959)

343. Ray, G. C. and Box, E. O., Jr.  
Adsorption of gases on  
activated charcoal  
Ind. Eng. Chem. 42, 1315-8 (1950)


348. Reimann, A. L. Clean-up of various gases by magnesium, calcium and barium. Phil. Mag. (7), 18, 1117-32 (1934)


359. Rowe, H. The adsorption of gases by activated charcoal at very low pressures. I. At air temperatures. Phil. Mag. [7], 1, 109-31 (1926)

360. Rowe, H. The adsorption of gases by activated charcoal at very low pressures. II. At -183°C. Phil. Mag. [7], 1, 1042-54 (1926)


<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Details</th>
</tr>
</thead>
</table>

376. Schafer, K. The second virial coefficient of the different modifications of light and heavy hydrogen. II. Theoretical calculations (in German) Z. physik. Chem. B38, 187-208 (1937)

377. Schames, L. Direct relationship of equation of state and internal friction of nitrogen, helium, neon, hydrogen, air, argon and oxygen (in German) Physik. Z. 32, 16-20 (1931)


Chem. listy 50, 1864-5 (1956)

385. Simon, F., Ruhemann, M. and Edwards, W. A. M. Melting point curves of hydrogen, neon, nitrogen and argon (in German)
Z. physik. Chem. 16, 331-42 (1929)

386. Smith, A. L., Hallett, N. C. and Johnston, H. L. Condensed gas calorimetry. VI. The heat capacity of liquid para-
hydrogen from the boiling point to the critical point

387. Smith, S. R. I. Gas-liquid phase equilibria in the system helium-hydrogen. II. Development of mass spectrometer
 techniques for analysis of helium-hydrogen and their isotopes
Ph. D. Thesis, Ohio State Univ., Columbus (1952)

388. Stage, H. and Baumgarten, I. S. The determination of vapor-
liquid equilibrium (in German)
Oel u. Kohle 40, 126-31 (1944)

389. Steckel, F. Dew and boiling points for mixtures of nitrogen
with carbon monoxide at pressures up to 17 atmospheres (in
Russian)
Zhur. Tekh. Fiz. 6, 137-40 (1936)

390. Steckel, F. Dew and boiling point curves of nitrogen-carbon
monoxide mixtures up to 17 atmospheres (in German)
Physik. Z. Sowjetunion 8, 337-41 (1935)

391. Steckel, F. and Zinn, N. Determination of diagram of state
of the liquid-vapor system methane-nitrogen-hydrogen (in
Russian)
Zhur. Khim. Prom. 16, 24-8 (1939)

392. Stevenson, R. Compressions and solid phases of carbon
dioxide, carbon disulfide, carbonyl sulfide, oxygen and carbon
monoxide at low temperatures
393. Stewart, J. W. Compressibilities of some solidified gases at low temperatures
Phys. Rev. 97, 578-82 (1955)

394. Stock, A., Hennung, F. and Kuss, E. Vapor pressure tables for determinations between 25° and -185° (in German)
Ber. 54B, 1119-29 (1921)

395. Storfer, E. Heterogeneous catalysis. I. Activated adsorption of hydrogen on charcoal (in German)
Z. Elektrochem. 41, 198-204 (1935)

396. Strehlow, R. A. Method of extrapolating equation-of-state data to higher temperatures
J. Chem. Phys. 23, 1562 (1955)

397. Su, G. J. and Chang, C. H. Generalized Beattie-Bridgeman equation of state for real gases
J. Am. Chem. Soc. 68, 1080-3 (1946)

398. Su, G. J. and Chang, C. H. Generalized equation of state of real gases
Ind. Eng. Chem. 38, 800-2 (1946)

399. Su, G. J., Huang, P. H. and Chang, Y. M. The compressibilities of gas mixtures
J. Am. Chem. Soc. 68, 143-5 (1946)

400. Swenson, C. A. The catalysis of the ortho-para conversion in liquid hydrogen
J. Chem. Phys. 18, 520-2 (1950)

401. Szuba, J., Gajewski, Z. and Laskowska, H. An apparatus for the determination of the solubility of solids in liquids by the weighing method (in Polish)
Koks, Smola, Gaz 2, 75-7 (1957)

402. Tanner, C. C. and Masson, I. The pressure of gaseous mixtures. III.


406. Titov, A. The adsorption of gases on charcoal (in German) Z. physik. Chem. 74, 641-78 (1910)


410. Trautz, M. and Badstubner, W. Calculation of the specific heats of gases from vapor-pressure curves (in German) Ann. Physik [5], 8, 185-202 (1931)


419. Van Der Waarden, M. and Scheffer, F. E. C. Adsorption of nitrogen, hydrogen and their mixtures on silica gel Rec. trav. chim. 71, 689-98 (1952)


421. Verschaffelt, J. E. Contributions to the knowledge of the surface $\psi$ of Van der Waals (in Dutch) Arch. neerl. sci. 11, 358-444 (1906)


428. Wagener, S. Adsorption measurements at very low pressures. II. J. Phys. Chem. 61, 207-71 (1927).


433. Wenzel, L. A. Low-temperature distillation

434. White, D., Friedman, A. S. and Johnston, H. L. Direct
determination of the critical temperature and critical
pressure of normal hydrogen
J. Am. Chem. Soc. 72, 3565-70 (1950)

435. White, D., Friedman, A. S. and Johnston, H. L. Low
pressure p-v-t data of gaseous hydrogen from the boiling point
to room temperature
Ohio State Univ. Cryogenic Lab., Columbus, T. R. 264-12
(1951)

436. White, D., Friedman, A. S. and Johnston, H. L. The vapor
pressure of normal hydrogen from the boiling point to the
critical point
J. Am. Chem. Soc. 72, 3927-30 (1950)

constants for carbon monoxide
Ind. Eng. Chem. 40, 1742-6 (1948)

and of four mixtures of hydrogen and nitrogen at 0°, 25°, 50°,
100°, 200°, and 300° and to 1000 atmospheres
J. Am. Chem. Soc. 60, 2300-3 (1938)

439. Wilkins, F. J. Adsorption of gaseous mixtures at solid
surfaces
Nature 141, 1054-5 (1938)

440. Winkler, O. Adsorption of gases at low pressures by active
carbon and silica gel (in German)
Z. tech. Physik 14, 319-32 (1933)

441. Wirth, H. Separation of gases by sorption processes. II.
(in Austrian)
Monatsh. Chem. 84, 741-50 (1953)

442. Wohl, K. Thermodynamic evaluations of binary and ternary
liquid systems
J. Chem. Soc. 1933, 846-54 (1933)

444. Woolley, H. W. Effect of dissociation on the thermodynamic properties of pure diatomic gases

445. Woolley, H. W. High rotational levels and the partition function for hydrogen
J. Chem. Phys. 9, 470-2 (1941)

446. Woolley, H. W., Scott, R. B. and Brickwedde, F. G. Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications

447. Wylie, L. M. The vapor pressure of solid argon, carbon monoxide, methane, nitrogen and oxygen from their triple points to the boiling point of hydrogen
M. S. Thesis, Georgia Inst. of Tech., Atlanta (1958)

448. Young, J. A. Some thermodynamic studies of binary liquid mixtures of carbon monoxide and methane


450. Yushkevich, N. F. and Zhavoronkov, N. M. The purification of hydrogen and hydrogen-nitrogen mixtures from carbon monoxide in the synthetic ammonia industry (in Russian)
Zhur. Khim. Prom. 11, 18-24 (1934)

451. Zickermann, C. Adsorption of gases on solid surfaces at low temperatures (in German)
Z. Physik 88, 43-54 (1934)

Appendix
## TABLE I

**CO-NH PRESSURE CONCENTRATION DATA**

Reference: Veershoy (423)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure</th>
<th>Reference</th>
<th>Liquid</th>
<th>Vapor</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mole H₂</td>
<td>mole CO</td>
<td>mole H₂</td>
</tr>
<tr>
<td>-180.0</td>
<td>68.2</td>
<td>181.3</td>
<td>45.4</td>
<td>55.6</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>184.2</td>
<td>45.0</td>
<td>55.6</td>
<td>73.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186.6</td>
<td>51.0</td>
<td>49.0</td>
<td>84.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186.6</td>
<td>49.6</td>
<td>50.4</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186.6</td>
<td>49.8</td>
<td>50.2</td>
<td>85.7</td>
</tr>
</tbody>
</table>
### CO-H\textsubscript{2} CRITICAL CONSTANTS

Reference: Verschoyle (423)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Pressure (Atm)</th>
<th>Mole % H\textsubscript{2}</th>
<th>Temperature (°K)</th>
<th>Pressure (Atm)</th>
<th>Mole % H\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-185</td>
<td>88.2</td>
<td>187</td>
<td>210</td>
<td>58</td>
<td>54</td>
</tr>
<tr>
<td>-190</td>
<td>83.2</td>
<td>228</td>
<td></td>
<td>60</td>
<td>48</td>
</tr>
<tr>
<td>-200</td>
<td>73.2</td>
<td>(325)</td>
<td></td>
<td>(64)</td>
<td>34</td>
</tr>
<tr>
<td>-205</td>
<td>68.2</td>
<td>(380)</td>
<td></td>
<td>(66)</td>
<td>30</td>
</tr>
</tbody>
</table>

Mole % H\textsubscript{2} values are rounded to the nearest whole number.
TABLE III

CO-H₂ PRESSURE-CONCENTRATION DATA

Reference: Ruhemann and Zinn (388)

<table>
<thead>
<tr>
<th>Temperature °K</th>
<th>Pressure Atm</th>
<th>Liquid Mole % H₂</th>
<th>Liquid Mole % CO</th>
<th>Vapor Mole % H₂</th>
<th>Vapor Mole % CO</th>
<th>K H₂</th>
<th>K N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>50</td>
<td>11.2</td>
<td>88.8</td>
<td>87.2</td>
<td>12.8</td>
<td>7.79</td>
<td>0.144</td>
</tr>
<tr>
<td>&quot;</td>
<td>35</td>
<td>9.5</td>
<td>90.5</td>
<td>85.9</td>
<td>14.1</td>
<td>9.04</td>
<td>0.156</td>
</tr>
<tr>
<td>&quot;</td>
<td>25.8</td>
<td>7.7</td>
<td>93.3</td>
<td>84.5</td>
<td>15.5</td>
<td>13.0</td>
<td>0.166</td>
</tr>
<tr>
<td>&quot;</td>
<td>20</td>
<td>4.6</td>
<td>95.4</td>
<td>81.9</td>
<td>18.1</td>
<td>17.8</td>
<td>0.190</td>
</tr>
<tr>
<td>&quot;</td>
<td>11.7</td>
<td>2.9</td>
<td>97.1</td>
<td>74.5</td>
<td>25.5</td>
<td>25.7</td>
<td>0.263</td>
</tr>
<tr>
<td>&quot;</td>
<td>6.9</td>
<td>1.2</td>
<td>98.8</td>
<td>61.6</td>
<td>38.4</td>
<td>51.3</td>
<td>0.389</td>
</tr>
<tr>
<td>83</td>
<td>49.7</td>
<td>10.3</td>
<td>89.7</td>
<td>92.1</td>
<td>7.9</td>
<td>8.94</td>
<td>0.0881</td>
</tr>
<tr>
<td>&quot;</td>
<td>34.5</td>
<td>8.1</td>
<td>91.9</td>
<td>91.5</td>
<td>8.5</td>
<td>11.3</td>
<td>0.0925</td>
</tr>
<tr>
<td>&quot;</td>
<td>19.5</td>
<td>3.1</td>
<td>96.9</td>
<td>89.5</td>
<td>10.5</td>
<td>28.9</td>
<td>0.108</td>
</tr>
<tr>
<td>&quot;</td>
<td>12.0</td>
<td>1.6</td>
<td>98.4</td>
<td>85.4</td>
<td>14.6</td>
<td>53.4</td>
<td>0.148</td>
</tr>
<tr>
<td>78</td>
<td>50</td>
<td>9.3</td>
<td>90.7</td>
<td>94.1</td>
<td>5.9</td>
<td>10.1</td>
<td>0.0650</td>
</tr>
<tr>
<td>&quot;</td>
<td>35</td>
<td>6.9</td>
<td>93.1</td>
<td>93.8</td>
<td>6.2</td>
<td>13.6</td>
<td>0.0666</td>
</tr>
<tr>
<td>&quot;</td>
<td>25.8</td>
<td>5.0</td>
<td>95.0</td>
<td>92.1</td>
<td>7.9</td>
<td>18.4</td>
<td>0.0832</td>
</tr>
<tr>
<td>&quot;</td>
<td>20</td>
<td>3.8</td>
<td>90.2</td>
<td>91.5</td>
<td>8.5</td>
<td>24.1</td>
<td>0.0884</td>
</tr>
<tr>
<td>&quot;</td>
<td>11.7</td>
<td>1.9</td>
<td>98.1</td>
<td>88.1</td>
<td>11.9</td>
<td>46.4</td>
<td>0.121</td>
</tr>
</tbody>
</table>
**TABLE IV**

CO-H\textsubscript{2} PRESSURE-CONCENTRATION DATA

Reference: Akers and Eubanks (4)

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Pressure Atm</th>
<th>Liquid Mole % H\textsubscript{2}</th>
<th>Mole % CO</th>
<th>Vapor Mole % H\textsubscript{2}</th>
<th>Mole % CO</th>
<th>K</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-240</td>
<td>122 2</td>
<td>64.1</td>
<td>30.0</td>
<td>70.0</td>
<td>30.0</td>
<td>70.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54.1</td>
<td>13.4</td>
<td>86.6</td>
<td>33.4</td>
<td>66.6</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>4.1</td>
<td>95.9</td>
<td>22.1</td>
<td>77.9</td>
<td>5.36</td>
</tr>
<tr>
<td>-280</td>
<td>100</td>
<td>136.1</td>
<td>41.2</td>
<td>58.8</td>
<td>61.1</td>
<td>38.9</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115.5</td>
<td>32.2</td>
<td>67.9</td>
<td>73.5</td>
<td>26.5</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.7</td>
<td>24.1</td>
<td>75.9</td>
<td>77.5</td>
<td>22.5</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.0</td>
<td>16.5</td>
<td>83.5</td>
<td>78.2</td>
<td>21.8</td>
<td>4.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.8</td>
<td>11.4</td>
<td>88.6</td>
<td>77.8</td>
<td>22.2</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>6.5</td>
<td>93.5</td>
<td>76.5</td>
<td>23.5</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.4</td>
<td>3.5</td>
<td>96.5</td>
<td>67.4</td>
<td>32.6</td>
<td>19.3</td>
</tr>
<tr>
<td>-310</td>
<td>85.3</td>
<td>238.1</td>
<td>66.3</td>
<td>33.7</td>
<td>74.7</td>
<td>25.3</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>217.1</td>
<td>49.4</td>
<td>50.6</td>
<td>80.3</td>
<td>19.7</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175.9</td>
<td>31.3</td>
<td>68.7</td>
<td>83.1</td>
<td>16.9</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154.3</td>
<td>27.3</td>
<td>72.7</td>
<td>85.5</td>
<td>14.5</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.1</td>
<td>24.2</td>
<td>75.8</td>
<td>88.4</td>
<td>11.6</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115.5</td>
<td>21.0</td>
<td>79.0</td>
<td>89.5</td>
<td>10.5</td>
<td>4.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.7</td>
<td>15.6</td>
<td>84.4</td>
<td>91.0</td>
<td>9.0</td>
<td>5.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.0</td>
<td>13.3</td>
<td>86.7</td>
<td>93.4</td>
<td>6.6</td>
<td>7.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.7</td>
<td>9.4</td>
<td>90.6</td>
<td>93.0</td>
<td>7.0</td>
<td>9.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.0</td>
<td>6.2</td>
<td>93.8</td>
<td>92.4</td>
<td>7.6</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.4</td>
<td>4.1</td>
<td>95.9</td>
<td>90.3</td>
<td>9.7</td>
<td>21.9</td>
</tr>
</tbody>
</table>
TABLE V
SOLID-VAPOR EQUILIBRIA
Reference: Verschoyle (423)

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Temperature °K</th>
<th>Pressure Atm</th>
<th>Mole % H₂</th>
<th>Mole % CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-210</td>
<td>63.2</td>
<td>195.75</td>
<td>96.31</td>
<td>3.69</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>176.41</td>
<td>96.53</td>
<td>3.47</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>147.39</td>
<td>96.88</td>
<td>3.12</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>137.76</td>
<td>97.03</td>
<td>2.97</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>104.01</td>
<td>97.80</td>
<td>2.20</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>79.80</td>
<td>97.42</td>
<td>2.58</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>65.74</td>
<td>98.76</td>
<td>1.24</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>32.03</td>
<td>99.18</td>
<td>0.82</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>21.85</td>
<td>99.12</td>
<td>0.88</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>16.81</td>
<td>99.22</td>
<td>0.78</td>
</tr>
<tr>
<td>-215</td>
<td>58.2</td>
<td>176.37</td>
<td>98.18</td>
<td>1.82</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>157.03</td>
<td>98.08</td>
<td>1.92</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>128.05</td>
<td>98.50</td>
<td>1.50</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>89.52</td>
<td>98.90</td>
<td>1.10</td>
</tr>
<tr>
<td>&quot;</td>
<td>&quot;</td>
<td>51.37</td>
<td>99.47</td>
<td>0.53</td>
</tr>
</tbody>
</table>
### TABLE VI

**SOLID-VAPOR EQUILIBRIA**

Reference: Dokoupil, Van Soest and Swank (88)

<table>
<thead>
<tr>
<th>Pressure (Atm)</th>
<th>Temperature (°K)</th>
<th>Vapor Phase Mole % CO</th>
<th>Pressure (Atm)</th>
<th>Temperature (°K)</th>
<th>Vapor Phase Mole % CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>63.0</td>
<td>0.763</td>
<td>5</td>
<td>62.6</td>
<td>1.22</td>
</tr>
<tr>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
<td>10</td>
<td>63.0</td>
<td>0.763</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>0.138</td>
<td>5</td>
<td>62.6</td>
<td>1.22</td>
</tr>
<tr>
<td>50</td>
<td>69.9</td>
<td>1.86</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>50</td>
<td>65.7</td>
<td>1.03</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>50</td>
<td>60.8</td>
<td>0.569</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>50</td>
<td>57.9</td>
<td>0.330</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>50</td>
<td>55.4</td>
<td>0.171</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>50</td>
<td>49.7</td>
<td>0.0623</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>50</td>
<td>45.6</td>
<td>0.0329</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>50</td>
<td>35.6</td>
<td>0.0124</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>60.7</td>
<td>0.400</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>59.4</td>
<td>0.266</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>55.6</td>
<td>0.104</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>54.6</td>
<td>0.0334</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>51.4</td>
<td>0.0128</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>46.1</td>
<td>0.00624</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>44.9</td>
<td>0.00480</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>42.5</td>
<td>0.00374</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>42.5</td>
<td>0.00375</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>42.1</td>
<td>0.00620</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>38.1</td>
<td>0.00139</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>35.0</td>
<td>0.00112</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
<tr>
<td>15</td>
<td>34.1</td>
<td>0.00102</td>
<td>25</td>
<td>67.7</td>
<td>1.36</td>
</tr>
<tr>
<td>15</td>
<td>34.1</td>
<td>0.00103</td>
<td>40</td>
<td>5</td>
<td>0.138</td>
</tr>
</tbody>
</table>
TABLE VII
SOLID-VAPOR EQUILIBRIA

Reference: Dokoupil, Van Soest and Swenker (88)
Table VI, This Report

<table>
<thead>
<tr>
<th>Temperature, K</th>
<th>Pressure, Atm.</th>
<th>Mole Fraction CO in Vapor Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1.3</td>
<td>0.00000355</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0000205</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0000240</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0000110</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.000063</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.000119</td>
</tr>
<tr>
<td>40</td>
<td>1.3</td>
<td>0.0000044</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0000145</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0000125</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0000175</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.0000112</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.000180</td>
</tr>
<tr>
<td>45</td>
<td>1.3</td>
<td>0.0000223</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0000780</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0000520</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0000510</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.000113</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.000310</td>
</tr>
<tr>
<td>50</td>
<td>1.3</td>
<td>0.00110</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.000361</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.000233</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.000212</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.000241</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.000630</td>
</tr>
<tr>
<td>55</td>
<td>1.3</td>
<td>0.00470</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00148</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00103</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.000910</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.000750</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.00160</td>
</tr>
<tr>
<td>60</td>
<td>1.3</td>
<td>0.0160</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0099</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00420</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.00325</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.00280</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.00480</td>
</tr>
<tr>
<td>65</td>
<td>25</td>
<td>0.0081</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.0100</td>
</tr>
</tbody>
</table>
TABLE VIII
THREE-PHASE DATA

Reference: Verschoyle (423)

<table>
<thead>
<tr>
<th>Pressure Atm</th>
<th>Temperature °C</th>
<th>Temperature °K</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.2</td>
<td>-206.12</td>
<td>67.04</td>
</tr>
<tr>
<td>55.2</td>
<td>-206.15</td>
<td>67.01</td>
</tr>
<tr>
<td>104.1</td>
<td>-206.54</td>
<td>66.62</td>
</tr>
<tr>
<td>104.1</td>
<td>-206.59</td>
<td>66.57</td>
</tr>
<tr>
<td>104.1</td>
<td>-206.73</td>
<td>66.43</td>
</tr>
<tr>
<td>147.4</td>
<td>-206.48</td>
<td>66.68</td>
</tr>
<tr>
<td>147.4</td>
<td>-206.67</td>
<td>66.49</td>
</tr>
<tr>
<td>147.4</td>
<td>-206.72</td>
<td>66.44</td>
</tr>
<tr>
<td>147.4</td>
<td>-206.87</td>
<td>66.29</td>
</tr>
<tr>
<td>205.5</td>
<td>-206.34</td>
<td>66.82</td>
</tr>
<tr>
<td>205.5</td>
<td>-206.38</td>
<td>66.78</td>
</tr>
<tr>
<td>205.5</td>
<td>-206.39</td>
<td>66.77</td>
</tr>
</tbody>
</table>