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Abstract

A research team led by SRI International has completed a 1.5 vear period of work in
daptive. distributed. fault-resistant systems. This rescarch has been motivated by the
mereasingly complex and dynamic nature of working environments for modern systems.
espeaally distnbuted. real-time systems. Operating conditions in such environments vary
greatly in the types and distributions of faults and input data, in user requirements in
chaneing ~ervice situations, and in possible losses of computing resonrces. The traditional
approach -applving given resources in a fixed system configuration to meet worst-case op-
erating conditions - 1s becoming less tenable. Adaptive systems can track changes in the
enviromment by modifying the way computing resources are organized and utilized. The
goal of the research was to establish a foundation for a general methodology of design for
adap*ive, distributed, real-time, fault-resistant systems.

This report presents a general theory and architecture, a taxonomy of design approaches,
and examples of concrete architecture and design techniques. A core approach is the use of
a control-theory madel for adaptive computer systems; kev issues derived from the model
are the need for accurate state evaluation and prediction and incremental control to assure
adaptation stabilityv. The study investigated general frameworks for specifying trade-offs
among service attributes such as timeliness, accuracy and precision and examined how such
trade-offs can be managed during adaptation.

Several new issues and opportunities in fault-tolerant computing were uncovered. includ-
ing the use of formal models for specifying and predicting adaptive fault-resistant systems,
reflective architecture for recursive control of fault tolerance implementations, and mul-
tihypothesis fault diagnosis to reduce the ambiguity and diagnosis latency in real-time,
distributed systems.

Several case studies are presented, including Adaptive. Distributed Recovery Blocks
(ADRBs), a scheme for exchanging processing resources for recovery speed. Adaptive
Distributed-Thread [ntegrity (ADTT), a scheme for dynamically selecting appropriate detec-
tion and recovery protocols for managing node and link failures in the Alpha programming
model, and Adaptive Fault Tolerance for Hybrid Faults (AFTHF), an efficient scheme for

tolerating faults with a wide range of complexity. R
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Chapter 1

Overview

A 1.5 year period of work in adaptive, distributed, fault-resistant systems was conducted
by a team of researchers at Concurrent Computers, University of California at Irvine, SRI
International, and two consultants, and was led by SRI International.

We hope that this report will communicate our view that incorporating adaptation into
operating environments as a fundamental characteristic of computer system architecture
offers (1) an important advance in computer architecture, and (2) a fruitful area for tech-
nology development.

1.1 Motivations and Objectives

In early applications and in current high-criticality applications, great efforts are made dur-
ing design toisolate a computer system from its environment except for a carefully managed
data flow. Designs are intended to provide a predetermined service to the users, using a
fixed set of algorithms for all data and environmental conditions within allowed ranges. In
the design, sufficient resources are provided to meet the worst possible combination of data
and environmental events; resolution of conflicts in resource allocation due to unpredictable
data events is relegated to a scheduler.

As computer systems become ubiquitous, the dynamic characteristics of their environ-
ment become more significant in determining how well (or poorly) a system serves its users.
The combined effects of faults and resource failures, wide swings in service demand, and
situation-dependent user requirements stress a computer’s ability to satisfy its service ex-
pectations. This is an especially significant problem in distributed systems that employ
unreliable communications, and whose components may operate in different and perhaps
harsh physical, data, and usage environments. For such operating situations, the principle
of meeting worst-case operatioual constraints using a fixed design has become increasingly
difficult to apply. One of the goals for adaptive design is to allow flexible use of available
resources to cover a much wider range of different kinds of environmental variables than
could be covered by a fixed, worst-case design.

Adaptivity has been increasingly suggested by researchers as a way to meet the challenge
of wide environmental changes. While some adaptive algoiithms have been developed and
employed for particular computer system functions-—the ethernet protocol is a well-known
example—adaptivity as a general principle in computer systems is not well understood or
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accepted. The purpose of the research was to establish and demonstrate the feasibility of
adaptive computer systems by initiating development of a systematic design methodology.
consisting of theory, architecture. and practical techniques of design.

(Given the newness of the subject, some effort was spent in establishing and clarifying
concepts—for example, one might say that an adaptive system responds to its environment,
but since all data processing is in some sense uniquely responsive to data values obtained
{rom the environment, at what point does a system cease to be just an implementation of
an algorithm, and become an adaptive system? We believe we have answered this question.

We also sought to arouse the interest of the research community, through papers and
presentations at conferences and workshops, in order to use the present project as a lever
in advancing technology. We are pleased to report that several researchers have responded
to our ideas, and are now contributing techniques for adaptivity to the scientific literature.

1.2 Work plan

The research focused on the following tasks:

¢ Develop a theory of adaptive fault-resistant systems and general principles of archi-
tectural design

¢ Develop specific architecturasl design techniques
¢ Demonstrate adaptive designs

o Communicate results to the scientific community

1.2.1 Theory ard General Architectural Principles

Chapter 2 presents results in theory and general architectural design principles. The discus-
sion is intended to clarify concepts, define key issues, and offer feasible solutions and design
approaches. It proceeds through the following subjects: basic concepts of fault-tolerant
service and adaptability, examples of adaptation, models for specification and performance
prediction, a general architecture for adaptive control, controlling the tradecffs of service at-
tributes in adaptation, a taxonomv of design techniques, real-time diagnosis, prediction and
stable control, recursive-reflexive control architecture, and adaptation relations in layered
and distributed systems.

We believe that the abstract specification and performance models, the discussion of
the critical role of diagnosis in achieving stable control, and the use of reflexive architecture
for fault tolerance are novel contributions to the methodology of adaptive computer design.
The use of the control-theory model for adaptive systems has been particularly useful in
exposing problems of state zssessment (called diagnosis in our treatment to conform with
the vocabulary of fault tolerance) and stability of adaptation.

1.2.2 Specific design techniques

The taxonomy of design techniques presented in Chapter 2 suggests the very wide range of
new techniques that may be employed to support adaptive architectures. We studied three
techniques, whose results are described in separate chapters:
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o Adaptive Distributed Recovery Blocks (ADRBs), a multiple-mode scheme for error
detection and recovery. useful for both hardware and software faults; the scheme allows
an exchange of processing resources for error-recovery speed (Chapters 3 and 4)

o Adaptive fault tolerance for hybrid faults. an economical technique for tolerating both
simple and complex fault types (Appendix A)

o Adaptive distributed-thread integrity, a technique for detecting and repairing thread
breaks in a wide range of operating environments using the Alpha programming model
(Chapter 3)

Our examples demonstrate specific design techniques and illustrate the service trade-
offs that are characteristic of adaptive designs. Models of service attribute tradeoffs are
reviewed, such as the triad basis of timeliness, precision, and accuracy. The examples show
that there is an abundance of types of functional adaptation, and that adaptive design can
be very straightforward. A remaining challenge is to find very economical design solutions
that can limit the added complexity ~nd performance overhead introduced by adaptation.
One example shows that adaptation can actually reduce the normal processing overhead for
systems that must cope with complex as well as simple faults.

Demonstration of adaptive distributed recovery blocks We developed a demon-
stration of the ADRB scheme, using the Alpha programming mode] and designed to run on
an Alpha testbed. The system is intended to demonstrate the tradeoff of resource utilization
(with impact on possible throughput) and arror-recovery speed. Three modes are exhibited:
(1) single processor, serial recovery, (2) dual processor, concurrent recovery, and (3) single
processor, default output. Mode 1 features low processor cost—hence high throughput for
a given set of processors, mode 2 {eatures rapid recovery but higher processor utilization,
and mode 3 features low processor cost but low accuracy. One of the challenges encountered
was to create a design that would make seamless transitions between operating modes.

Adap.ive fault tolerance for hybrid faults We developed a novei algorithm for using
redundant processors to tolerate hybrid faults—that is, faults of severai types. The tvpes
considered include crash faults (silent processors) and value faults of two kinds: symmetric
(all faulty processors produce the same wrong value) and asymmetric (faulty processors
produce arbitrary values). In contrast to other hybrid-fault tolerance schemes, the algorithm
has very low processing overhead in the normal, fault-free case. T:lie algorithm may be seen
either as a very economical way to broaden the fault coverage of classical primary-backup
processor systems or to lighten the average processing burden of classica! concensus-based
processor systems. The contribution of adaptivity is that errors are dizgnosed and a decision
is made as to the proper fault tolerance.

Adaptive distributed-thread integrity The Alpha distributed, object-oriented pro-
gramming model employs threads of control that may span several nodes. A distributed
thread has a root and a point of activity that may move {rom node to node as objects
are invoked. Control ultimately returns to the root as invocations complete. Node fail-
ures may break a distributed thead into several disjoint pieces. The system is responsible
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for identifying broken threads. safely terminating orphan thread segments, and properly
restarting thread activity. Different strategies are better suited for maintaining thread in-
tegrity. depending on the nature of the thread workload. the system resources, the fanlt
model, and the application requirements. We have developed an adaptive algorithm for this
maintenance function, and have simulated its behavio..

1.2.3 Communication of Results

Project work has been reported in the following communications:

o A paper at the IEEE Workshop on Advances in Parallel and Distributed Systems,
November 1993, Princeton [12]—included as an appendix to this report

e A manuscript submitted to the 1994 Symposium on Reliable and Distributed Systems.
November 1094

e Oral presentations at two 1993 Rome Laboratory Technical Exchanges

o Talk at a seminar of the University of Arizona Computer Engineering Department,
January 1993

o Talk at IEEE Workshops on Fault and Error Inject.on, Gotheborg, Sweden, June
1993, and Annapolis MD, April 1994

¢ Talk at the Bay Area System Seminar, Menlo Park CA, July 1993
o Talks at [FIP Working Group 10.4 meetings, June 1993, and January 1994

¢ Outline and material for a paper on distributed ADRB control

1.3 Summary

Adaptative fault resistance is a new direction in computer architecture. Adaptivity allows
decisions about algorithms and resource allocation to be made at operation ti-me that usually
are fixed at design time. The goal of adaptive design is to make it possible for a fault-tolerant
computer to cover a wider range of environmental conditions, such as variations in fault
types and distributinns, changes in user requirements, variations in workload, and variations
in resource availability, than could be served by a fixed design.

This report describes work of a multiorganization team in theory, system architecture,
and r.ethodology of design, including case studies, novel algorithms, and a demonstration.
The work is intended to build a fourdation for a methodology of system design. The results
have been reported in various professional meetings, resulting in some new investigations
by other researchers.



Chapter 2

Concepts and Techniques

The major technical issues and principles for adaptive fault resistance that have been de-
veloped during this project are discussed below. . Since our previous interim report, we
have introduced more formalism in the definition and behavioral description of adaptation,
sharpened our description of key issues such as attribute-based technique selection, and
developed several general and concrete architectural models for adaptive systems.

2.1 Objectives and Besic Concepts

The scope of the project was determined by the general motivations for, and concepts of
adaptation for, distributed fault-tolerant systems.

2.1.1 Project Scope

The basic technical concept of adaptive fault resistance (AFR) is that a dependable com-
puting system should have the ability to adapt its structure autonomously to changing
operational conditions, so that its service range will be larger than could be provided by
the same resources in a static structure.

This may be envisioned as an expansion of the envelope of dependabie service that is
determined by user requirements, computing resources, work load, and fault distribution.
A major area of application for adaptive fault resistance is distributed real-time systems,
which typically operate in environments that are highly variable and difficult to control.

The adaptation concept differs from current design methodology, which assumes that a
system is given certain behavioral capabilities, typically based on some worst-case assump-
tion, that are invariant during operaiion. We believe that in the dynamic environments in
which real-time distributed systems operate, it will be rare for the worst-case conditions to
occur simultaneously in ali dimensions. Adaptation seeis to take advantage of this non-
concurrency by reconfiguring system resources to meet the current combination of service
demands and fault conditions.

The objective of the research is to develop principles, methods, and techniques of design
that will make adaptive behavior a fundamental feature of dependable, real-time distributed

systems.
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2.1.2  Exp-ading the Envelope

We assume an st chassic design o which a svstens operates within a given domain that
s determined by oot of requirements and oxpected operational conditions, it s further
assumed that amy combimation of requirements awd operating condition:. may occur at
amy tme dupmne operation. As dlustrated in Figare 2000 we then assume that a revised
requirement has been submitted that significantly expands the doman with respect 10
some or all the dinensions of user requirements, available resonrces, work load. and fanlt
distribution. but with the additional possibility that not all combinations of operating,
conditions may occur simultaneously.
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Figure 2.1: Expanding the envelope of operations

We expect sucli expansions to be increasingly commor as dependable, real-time systems
move out of their current niche applications, such as ultracritical process control or well-
constrained transaction processing, into more complex, real-world applications.

The classic response to the expanded needs of complex environments is to add resources
and to compromise the initial requirements so as to attain a buildable and affordable system.
The AFR approach is to limit the increase of resources, and to structure the resources in
different ways at different times, in accordance with changes in operating conditions. The
design goal ic that for any given operating condition, the resources will give dependable
service comparable to that provided by the same resources for a constrained, fixed operating
domain.

The price to be paid for such economy of resources is that it may take time for the system
to adapt to new conditions and that some additional design risk and overhead performance
cost may be associated with the additional functionality of adaptation.

2.1.3 Adaptation Effects in Distributed Systems

Significant changes in operating conditions for a distributed system may apply globally or
locally, in one node or link or in several. We assume that such changes will trigger adaptivity
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Figure 2.2: \daptation effects in distributed systems

Externally visible changes resulting from adaptation may include

e Changes in the latency or bandwidth of exchanges between adapted and nonadapted
nodes

o Changes in the work load capacity of adapted nodes
o Changes in the error rate of delivered results

We note that the changes may be positive or negative; for example, the rate of fault
occurrence may increase or decrease with the appearance or disappearance of an external
fault source. Adapting to a reduced fault rate may result in increasing processing capacity.
which can benefit the system as a whole.

Externally visible adaptations effectively constitute a change in operating conditions for
the nonadapted nodes, and may therefore require them to undertake adaptation — that
is, there may be some propagation of adaptation through the system. This is a potentially
dongerous phenomenon, because the chain of adaptation may become a significant perfor-
mance burden or interruption, and if there are cycles in the adaptation path, there may be
instability.

An important technical issue is therefore how to limit or control the propagation of
adaptation effects within a distributed system. One way this can be expressed is the problem
of finding the smallest subset of a distributed system such that adaptation effects within
the subset are invisible to the remaining system.

2.1.4 Environmental Change Properties and Service Attributes

Changes in the environment’s properties may require systerm adaptation. We first review a
key set of properties, and then consider the criteria for service that will be used to guide
the adaptation.
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Environmeatal Change Properties

As allustrated in Figure 2.3, we consider the operating environment to be defin-d by four
dimensions:

o Work lnad

» User service requirements
o Faults

o liesources

For each dimension, it is assumed that there may be some operation-time variation that
stresses the system'’s ability to meet its requirements, and hence may require th2 svstem to
modify the way its resources are utilized. The dimension of user requirements is unique.
in that its changes may be both the reason for adaptation and the measure of how well
adaptation succeeds. Specifications of requirements may be both absolute and relative, and
different for each element of a user’s service. For example, a user may demand absolute
availability for some service element, while allowing a tradeoff between availability and error
rate for some other service element.

User Service Requirements
1

Y

. —s Delivered Service
WorkLoad—  apapTivE |

FAULT-RESISTANT

|
Faults ==  SYSTEM OK

L

' Anomalous/Mismatched
Resources

Figure 2.3: Operating-environment change factors
The following list contains some familiar instances and examples of the four di'nensions:

o Work load dimensions

— Data types (alphanumeric, logical, signals, strings)

— Time and space distribution (rates, intervals, location, clustering)
¢ User service dimensions (illustrated in Figure 2.4)

o — Data processing functionality

- Performance (throughput, latency)

— Timeliness (satisfaction of deadlines, allowed number of missed responses, preser-
vation of order, closeness of synchronization)
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— Accuracy (closeness of the coniputed to the ideal value. mutual consistency of
related data—but see below for a different interpretation)

P - Dependability (reliability, availability, safety, security)
¢ Fault dimeusions

- Fault types (permanent, transient; design, hardware, operator)
— Fault time, space and multiplicity distribution (rate, interval, location, cluster-
ing)
¢ Resource dimensions

- Magnitude of processing, storage, and communication resources
— Rate of permanent losses
~- Frequency and duration of rescurce overioads

y |
SERVICE ATTRIBUTES | SERVICE INTERFACES|
ey - - —
. | Data Functional ! e
i Il : ity I _ E—_—EJ—%:T; ______ F‘\failure )
;,___L’?erformance ; User interface ?
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. T ;‘::g[{?:rfs Subsystem interface
. —_ 9 1
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’ - Dependabilty |
! — BEmm—
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‘ Availability I N
— Safety
- Security Distributed System

Figure 2.4: Service attributes and interfaces

A Basis Set for Service Attributes

Tom Lawrence, Rome Laboratory, has noted that these service attributes may be interpreted
in terms of an economical basis set consisting of Timeliness, Precision, and Accuracy. In
this basis set, Precision refers to the amount of information processed, which might include
the volume of data or the rate of processing, while Accuracy may include correctness or
closeness to correct value. In any system and application environment, the service attributes
may be closely interrelated—for example, loss of timeliness in a service delivery may result
in a failure to service new data values adequately or at all, with resulting errors or omissions
in computed values. In terms of the attribute basis set, such loss of timeliness may cause
loss of both precision—in this case, throughput or coverage of input work, and accuracy—in
this case, errors of omission or incomplete processing.
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Faults, Errors, Failures, and Fault Tolerance

To round out our definitions of the service concept, we present a highly condensed summary
of kev ideas n fault tolerance. A more extensive definition and explanation of fault tolerance
concepts has been published by the IFIP 10.4 Working Group on Dependability and Fault
Tolerance [18]. We start by distinguishing faults, errors, and failures and their relations.
with specific reference to the point in a system at which they may occur or be observed:

e Fault — A deviation between the specification and implementation of a component’s
function, either by physical state change or design error. Faults may have many
different causes and manifestations —for example, faults may be transient, intermittent
or permanent, they may occur in hardware, software or in operation, and they may
occur at all ievels of a system. Proper treatment of a fault strongly depends on the
fault type——for example, repetition may be appropriate for a transient hardware fault.
but a waste of time for a software fault.

e Error — A deviation of the state of a computed variable from the value specified by
the design, as observed at a system component interface.

e lailure — A deviation of a system component from its specified behavior, as observed
at its interface. A failure specification may allow sume level of error in the system
output to be considered acceptable.

A fault-tolerance monitor can observe errors but can oaly infer faults. This is typically
done by comparing the results produced by a subsystem, for known inputs, with some
reference values. and deducing which computing elements within the subsystem may have
caused the error. In some cases, the data that produced an error is not available; in that
case, considerable ambiguity may be introduced in determining the fault type and location.

Fault effects can propagate in several ways. Errors may flow horizontally through cas-
caded chains of functional elements, and vertically through layers of support functions.
Errors that change the definition of a function create new faults—that is, malfunctions—
which become the source of new errors.

Fault-tolerant computers are designed to prevent faults from leading to failures by

e Bourding the propagation of errors

Masking or correcting erroneous results

Isolating faulty components
e Restoring system state to the ideal or acceptable value

Fault tolerance objectives may have to be compromised according to the availability of
resources and time. For example, it may only be necessary—or there may only be enough
time available—to mask errors rather than to isolate the faulty components that cause the

errors.
Given the possibility of fault propagation from point to point and layer to layer, it is
possibie to repair a fault at its origin without correcting all of its consequences—thus, a
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fault that originated in some low-level hardware element may give rise to complex fault
situations that must be remedied at a high system level.

Given the great variety of possible fault types and the complexity of determining the
nature and location of a fault from the available error information, it is extremely important
to be able to determine the tvpe of fault that may have occurred and to predict the faults
that are likely to occur in the next computing interval.

2.2 Adaptation Triggers and Responses

The phenomena that give rise to the need for adaptation, and possible adaptive responses,
are related to the four key syvstem properties of work load, user service requirements, faults.
and available resources.

In an adaptive fault-tolerant system, adaptation will be initiated when there is an exces-
sive mismatch between new operating conditions and the capabilities of the current system,
that is, when the currently available resources are not fully utilized to meet current require-
ments for performance and dependability. Figure 2.5 illustrates various kinds of changes in
operating conditions and possible adaptive responses.

Change Type Triggering Anomaly Response

Fault type

Too many software
errors

Usz2 alternative design
versions

Too many node and
link crashes

Use aiternative paths

Increase redundancy

User directive

1

Reliability sacrificed
for application
voverage!

Reduce fault-tolerance
redundancy levels

1
Fault cistribution

Too many comm-link
errors

Switch from optimistic to
pessimistic protocols

Data distribution

Too many processor

Employ load balancing

overloads Switch 10 memory-intensive

algorithm

Figure 2.5: Adaptation triggers and responses

Fault-type triggers For changes in the prevailing fault type, say from mainly hardware
to mainly software faults, a pcssible adaptation-triggering anomaly is the ccurrence of an
excessive rate of errors, resulting from the use of inappropriate fault tolerance mechanisms.
An appropriate response may be to tolerate errors using multiple program versions (a form
of software fault tolerance). A different kind of change in fault type may be the occurrence of
more node and link crashes than can be satisfactori'y handled by the current fault tolerance
mechanisms. Possible responses are to use alternative communication paths, to increase the
level of data redundancy over multiple nodes, or to switch from optimistic to pessimistic
communication protocols.
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User-requirement triggers A\ possible change in user requirements may be a user’s
decision to sacrifice the reliability of some application. for example. by accep.ing a higher
error rate of lower precision. to be sure that certain vital tasks are adequat sy served. A
possibie syvstem response is to shift resources from redundant to nonredundant task service.

Workload triggers Another important type of operating change is in the way input
data are distributed among processing nodes. For example. data from external sensors may
be concentrated at some pode so that the node is occasionally overlecaded. The resulting
inability to process additional data is equivalent at the system level to a transient node
failure. One obvious response is to employ load balancing among nodes. Some adaptation
may be sufficient within the node: for example, it mayv be useful to switch processing
algorithms at the node from processing-intensive to memory-intensive (i.e.. table lookup)
forms or vice versa.

Available-resource triggers As the number of resources available diminishes due to
failures or overload. certain fault algorithms may become infeasible to support-—for example,
there may not be sufficient processing resources to provide desired levels of replication.
Algorithms that require 4 certain balance of processing, storage and communication may
become infeasible-- for example, algorithms that depend on high bandwidth communication
to maintain close synchronization between replicated processes may be impractical if certain
timeliness and dJata consistency requirements must be satisfied.

These arc only a few examples of adaptation-triggering anomalies and possible responses.
We note that if a system were required to handle all of these changes simultaneously, as
a worst-case condition, and without adaptation, the complexity and processing overhead
costs of the fault-tolerant processing algorithm might be intolerable.

2.3 Adaptation Example: Adaptable Distributed Recovery
Blocks

As a study vehicle, we have developed the concept of adaptable distributed recovery blocks
(ADRDB), and have demonstrated it in a simple testbed. An ADRB, which was conceived
by Kane Kim. a project contributor, is w2 extension of a distributed recovery block (DRB),
also by Kim, which. in turn, is an extension of a recovery block (RB), which was conceived
and developed by Brian Randell of the University of Newcastle, UK. All of the RB versions
are intended to tolerate both software design faults and hardware faults. RBs can tolerate
transient hardwere faults, but DRBs can tolerate both transient and permanent hardware
faults. The basic DRB concept is to provide two or more versions of a program and to select
the results of a program if it satisfies a user-designed acceptance test (AT). The reliability
of the results depends on the precision of the AT, which is an application-level concern, and
not asystem-level concern. Practical ATs provide less than perfect assurance uf correctness.

[n the basic RB scheme, versions are tried sequentially until a version passes its AT. If
all ATs fail. control is returned to a higher svstem Jevel. In the DRB schenie, versions are
given a rank ordering; all versions are executed concurrently and output is chosen from the
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version of highest rank that passes its AT. Given the diversity of designs, the versions may
not all complete at the same time,

A third recovery block mode may be employed, which we call single-try (S7T). ST at-
tempts only o single program version; if the results fail the AT, they are discarded and
control passes to the next input data item. Clearly, this default action constitutes a degra-
dation of service.

The ADRB scheme, illustrated in Figuie 2.6, permits a collection of processing nodes to
be organized according to the RB, DRB, or ST scheme, depeuding on the desired system
attributes. The figure illustrates that a collection of communicating processors might be
set to operate in different modes simultaneously; for example, versions Al and A2 are
co-resident, and support the RB mode, versions Bl and B2 are in different processors,
supporting the DRB mode, and single-version C is in a single processor, supporting the ST

mode,
]/Alternative - /Aj
Program ——e\A2 @ @ @
Versions . ] I
~
Attributes (At 81 B2 | ¢
j Loy 1 \ \ \j
Resource | Recovery! Reliability test+> a teit 't/est test->¢
Mode| Utilization | Speed ’ A'2 Select dvefau[t
1 | high low i high ' |
: test+ a2 | /v\« |
2 low high . high v | b1 b2 fail l
, T fail
3 high high | low Mode | Mode 2 Mode 3
Attribute Trade-Offs quentlal Concurrent | Single-Try

Alternative Error-Recovery Schema

Figure 2.6: Adaptable distributed recovery blocks

As shown in the table of attribute trade-offs in the figure, the modes exhibit different
service attributes. RB mode has high resource efficiency (its only redundancy consists in
the execution of the AT), but it suffers from a low speed of recovery from errors because of
its need to re-execute a computation following an AT failure. This may result in a system
error if a fault occurs during the execution of a task that has @ tight deadline. In contrast,
DRB mode is advantageous in fault-recovery speed, because the results of a second version
are available immediately on the failure of the AT for the higher-ranked version, except for
possible differences in execution of diverse versions. DRB’s disadvantage is that it consumes
twice the processing :esources of RB, which diminishes the resources that may be needed
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to serve a high work load. The ST scheme has high resource efficiency and high recovery
speed (there is no second version to try again). but it suffers in reliability compared to RB
and DRB because failed ATs result in failed service.

High recovery speed can have an important impact in reducing error rate, as foliows:
for high input data rate, it may occur that recovering from an error in processing one input
datum using the serial method (standard RB) may prevent a processor from respondiag to
a new input datum. The result may be the omission of output for the new datum or an
imperfect computation. This corresponds to an interaction of Timeliness and Accuracy in
Lawrence's attribute basis set.

The different attribute sets of the several modes present trade-off choices to the operator,
in this case, resource efficiency, error recovery speed, and reliability. The operator may
choose to use RB, DRB, or ST, depending on the relative importance of the three attribute
characteristics. For a multiple-processor system, this choice may be made independently
for different tasks and different processors.

In summary, we have described an example of an adaptable system with several modes
that offers the operator alternative combinations and degrees of service attributes. Sec-
tion 2.8.3 discusses how the adaptation choice itself may be made and put into effect.

2.4 Adaptation Models

Two abstract models for acaptation are described here. The first model, which is state
based, is intended to allow specification of essential adaptive behavior, such as probability
of successful and unsuccessful adaptation, adaptation thresholds, and transition times. The
second model, which is Markovian [48]. is intended to allow prediction of performance, both
successful and unsuccessful, given probabilities of certain fault and work load experience
and adaptive responses.

2.4.1 A Model for Specifying Adaptation

An engineering methodology for adaptive fault resistance design must include some means
for specifying precisely when and how the system will perform adaptation. Figure 2.7
presents a simple, abstract model that suggests the possible form of such a specification.

An adaptive system is represented by the interaction between two state spaces: the
operating-condition state space and the system-configuration state space. States in the
operating-condition state space are themselves points in a vector space, with dimensions
such as user requirements, work load, fault mode, and computing resources, and states
in the system-configuration state space represent choice of data processing algorithm and
cesource configuration. The quality of match between operating-condition state and system-
configuration state is represented by the match/anomaly function space.

In the figure, it is assumed that an extraneous condition has caused a change in the
operating-condition space from state OC; to OC,. For a given initial system-configuration
state, SC,, the match function value, will then change from M(OC;, SC,) to M(0C;, SC,).
It is assumed that the distance between the two match functions is sufficient to trigger a
change in system configuration state from SC, to SC,, with a resulting change in match
function from M(OC,,SC,) to M(OC,. 5C;). In making a change in configuration state,
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Extraneous Change
/

Operating-Condition
State Space

Match/Anomaly
Function Space

System-Contiguration
State Space

Figure 2.7: State model of adaptive systems

it must be considered that a harmful transition to a degenerate state, identified as SCg.
may occur; the degeneration may be static, for example, an unrecoverable partition or loss
of control integrity, or dynamic, for example, a thrashing among adaptation states that
interferes with delivery of service.

This model allows a buyer and vendor of an adaptive fault-resistant system to specify
adaptation behavior in terms of certain relationships among the states and state transitions;
for example, it may be specified that

e t, the transition time from SC, to SCg, must be less than some value T.

e ¢, the difference in quality of match following a change o in operating states sufficient
to cause a change in configuration, must be less than some value C.

e d, the difference in quality of match following an adaptation, must be less than the
initiating mismatch ¢, by some value D.

o Py, the probability of failure into a degenerate state, must be less than some value
Py.

Such models are useful in exposing the performance and reliability issues that must drive
a practical design. The model also may help a customer and vendor to negotiate the difficult
trade-offs of a system design. The model can serve as a point of reference for evaluating
the success of an adaptive design. This particular model abstracts out the performance of
an adaptive system; other models are needed for that important property.
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2.4.2 A Performance Model for Adaptive Systems

Markov models have been used to predict the behavior of fault-tolerant systems, given
probabilities of elementary events, such as faults and fault recovery actions. When the
behavior of interest is reliability. or availability, the model is used to predict expected failure-
free life from initialization (reliability), or mean service time (availability). Such models also
have been used to study performability, which is the expected performance of a system that
is subject to temporary or permanent loss of resources.

The model depicted in Figure 2.8 is a Markov model for systems that adapt to changes
in fault type and work load. As with classic Markov models, it describes a system as a set
of states and state transitions. Each state of the described system assumes some level of
computing resources and a level of performance efficiency for those resources. The following
events are represented by transitions in one of three dimensions, depicted by the three-axis
cartoon:

C Adaptation Failure

- v /'

Fault-type Adaptation
A

: Resource Recovery
| T

“—— Resource
| Resource loss |Arr | Arr P Ay Exhaustion
/ | ' | Failure
‘l’ - -W — -\
Work Load -

! AwL i

Adaptation

Figure 2.8: Markov model of fault and work load adaptation

¢ Resource loss because of a transient or permanent component failure

¢ Resource recovery, either intrinsic, following a transient fault, or logical, provided by
a fault tolerance mechanism

o Fault-type adaptation, intended to improve the effectiveness of the system's fault-
tolerant responses to changing fault types

¢ Work load adaptation, intended to improve the computing effectiveness of a system'’s
resources for a changing work load

The Lenavior of the system may be visualized as an ongoing transition between nodes
of the state graph resulting from the system’s response tc faults, changing fault types, and
changing work loads.
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Two kinds of system failures are recognized. The first failure results when the computing
resources are exhausted hecause of unrecovered component fajlures. The second failure is a
breakdown of integrity of the system because of improper adaptation, such as sending the
system into a degraded computing configuration, or entering into an unproductive series of
adaptations.

Such a model may be useful both for absolute piedictions of performance and failure and
for comparisons of alternative designs. Getting realistic numbers for the state transition
rates may be expensive, but some estimation of these rates will be necessary to justify the
effectiveness of a proposed design.

2.5 A General Adaptation Scheme

We have found that the adaptive control model used in modern control system theory is
quite useful in characterizing the behavior of adaptive computer systems. Issues of stability
and the use of models to analyze and predict behavior are translatable with little essential
difference. A simplified illustration of such a control system model is shown in Figure 2.9.
The controller ures models of the system and the environment, to translate goal commands
into control commands for the system under control. The controller also updates the mod-
els using the difference between the predicticns and the observations. For simplicity, the
illustration does not assume predictions of the control goal, but that is entirely feasible.

System Under Control e«

»  Observer-predictor

! Controller [+— Goal

System and Environment |,
L Models
)

l Model Correction

Figure 2.9: A model-based control system

Figure 2.10 shows a general architectural scheme for adaptation, which translates the
general scheme of an adaptive control system into relevant computer objects. ‘The system
under control is represented as a current fault-tolerant implementation of a set of user
requirements for logical service, performance, and dependability, including a tunction that
reports the system’s service behavior; the system is driven by work load data and by faults.
The implementation is governed by the fault tolerance scheme selection and control function
of an adaptation controller. That function is driven by two sources: (1) an adaptation
control function, and (2) a report on the inventory of available computing resources. The
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adaptation control function integrates user requirements for performance and dependability
and a diagnosis of the behavior of the system under control, both its current state and
predictions based on environraental data.
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Figure 2.10: A general adaptation scheme

The scheme is formally equivalent to a control system in which a control function, derived
from the system output, is applied to a system in order to make it meet some externally
specified goal in the presence of environmental disturbances. In the adaptation scheme,
the goal is to satisfy user requirements for logical service, performance, and dependability.
The external disturbances are chauges in user requirements, work load, faults, and avail-
able computing resources. Adaptive versions of such control systems, such as the Kalman
Filter, provide for the prediction of changing euvironmental and system properties based on
continually updated models. The same paradigm is appropriate for an adaptive computing
system.

We note that in the general scheme as described, the system ard the controller are
monolithic. We have noted earlier some of the problems of distributed systems—for exam-
ple, the need to bound the propagation of adaptation effects. In Section 2.9, we discuss
how the notion of reflective architectures may be applied to layered systems.

Some key issues in the realization of this general scheme are strategies for adaptive
implementations, techniques for selecting implementations to meet atiribute requirements,
and i.cremental techniques for diagnosis and coatrol.

2.6 Adaptation Strategies for Fault Tolerance

The set of modifiable fault tolerance techniques, illustrated taxonomically in Figure 2.11, is
giite rich. We note three broad classes of mcdification, alternative fault-tolerant algorithmic
scheme selection, alternative service algorithm selection, and parameter variation. Fauit-
tolerant algorithm options include (1) the fault anticipation policy of an algorithm, which
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may be optimistic or pessimistic anticipations about the likelihood of occurrence of a fault
during the algorithm’s execution, (2) recovery policy, which may be of the forward or back-
ward type, (3) management of group redundancy—in practice, the use of primary/backup
or consensus fault masking, and (4) choice of fault isolation or error masking. Service al-
gorithm options will affect the amount of resources required for user service, and indirectly
affect the amount of resources available for fault tolerance. Options include (1) the types of
concurrency-serial or parallel, (2) the degree of distribution of control-—centralized or dis-
tributed, (4) the logical model for processing—such as imperative, functional, model-based,
or rule-based, (5) the balance or mix of processing, storage, and communication resources
used by a given algorithm, and (6) whether processing is optimized at design and compile
times, or at run time.

Fault-Tolerant Processing
Implementation Strategies

1 | |

L Fault-Tolerance Algorithm I I Service Algorithm “L Parametric |
L Fault Anticipation - Concurrency Time
| |
Optimistic - Serial t Delay
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Backward — Distributed Balance
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Figure 2.11: Implementation strategies

Parametric changes may include modification of (1) time parameters, such as the time
allowed for a failed but possibly recoverable process to recover, or the number of repeti-
tions attempted before a fault process is considered to be unrecoverable, and (2) resource
parameters, such as the level of redundancy applied to a given fault tolerance scheme, or
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how load is distributed among a set of resources.

These few examples indicate that there is little limitation in finding feasible strategies
for adaptation. There are, however. several important challenges in selecting and applying
sets of fault tolerance techniques, such as

¢ When should changes be made?

¢ How can changes be made safely (to avoid failure or thiashing), incrementally (to allow
assessment of correctness of the diagnosis that triggered the change), and reversibly
(to cope with incorrect adaptation decisions)?

¢ lHow can the overhead cost of multiple techniques be minimized?

In Section 2.8.3, we argue that the an-ount of change attempted in an adaptation shouid
be a function of the confidence in the diagnosis of mismatch conditions. This implies
that useful adaptation strategies should not only offer many alternatives in fault tolerance
technique, but that the techniques should allow different levels of change, ard that if an
adaptation proves to be unfruitful or harmful it should be possible to restore the system'’s
initial configuration with minimum loss. Overhead cost includes the performance cost of
the selection mechanisin and the possible temporary reduction in service during changes.

These criteria indicate that despite the abundance of alternative techniques for modify-
ing system implementation, the selection of sets of economical, safe, and effective alternative
techniques is far from trivial.

The use of parametric changes clearly provides opportunity for making incremental
changes. The method of changing algorithms, while discrete, also may be applied incre-
mentally. For example, if there is some uncertainty about the nature of the current fault
type, a small fraction of the current workload might be processed with a different algorithm.
Success would encourage increasing that workload fraction incrementally.

2.7 Attribute-Based Technique Selection

In the ADRB example in Section 2.3, the different modes provide the designer with different
levels of service attributes such as resource utilization, fault-recovery time, and reliability.
The different attribute levels may be helpful in responding to changes in user or operator
requirements, but they also may constitute a difficult challenge in satisfying a given set of
requirements with diminished resources; a given scheme may satisfy one attribute, but not
another. The general adaptation scheme calls for the adaptation controller to find a fault-
tolerant processing scheme that best satisfies an operating condition. This is essentially a
problem in design, but one that must be solved at operation time.

To solve this problem, we assume, as shown in Figure 2.12, that a human designer
generates, as part of the design process, a set of fault-tolerant processing techniques to
cover the expected range of changes, and for each technique derives a characterization of
all pertinent service attributes. Generally, such a characterization wil' be parameterized,
showing the effect of applying difterent levels of resources to the technique. For example,
the technique of multichannel, majority-logic voting may be characterized by throughput,
latency, reliability, and availability functions, parameterized by the number of channels.
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Figure 2.12: Design-time analysis of technique attributes

The resulting attribute profiles will be stored in the adaptive controller for use at run
time. Figure 2.13 illustrates how a set of service attribute requirements may be evaluated to
determine if a given technique is feasible for serving a particular set of run-time-developed
service attribute requirements. The feasibility of a technique is assessed for varying levels of
resources for which the scheme has been parameterized. That technique should be selected
that satisfies the given attribute requirements with the lowest assignment of resources.

The assignment of resources should satisfy global requirements as well as the demands
of the current adaptation circumstances; that is, it may be necessary to compromise some
requirements in favor of others.

2.8 Diagnosis and Control

In defining our approach to diagnosis and control of adaptive fault-tolerant systems we
examine the general role of diagnosis in system control, discuss a very simple diagnosis and
control scheme, and present a more general approach to diagnosis and control.

2.8.1 The Role of Diagnosis in Adaptive Control

The function of adaptation is to execute a change in the way a computing system accom-
plishes a specified service. This may be seen as a kind of computation in which the datais
not an observation of the real world, but rather a concrete characterization, or diagnosis of
the effectiveness of the current service implementation—the product of the computation is a
new implementation. In control theory, such characterization is called System Identification
(28]. Implementation-characterization, which we will refer to as diagnosis in the remaining
discussions, is one of the central issues in adaptation, because it, together with the service
requirement, provides the information as to what problem an adaptation must solve.
Diagnoses should be fast and accurate in order to both achieve the highest level of
service implementation and to avoid instability in making changes. Speed is important to
avoid instability caused by excessive lags in following rapid changes in the environment.
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Figure 2.13: Attribute-based technique selection

Accuracy is important to avoid corrections that cause the system to depart from, rather
than to approach, the desired state and hence diminish the prospects and increase the rate
of convergence to the correct new system state.

We suggest two approaches to diagnosis and control. The first is a very simple scheme,
in which diagnosis is a threshold function, with hysteresis, driven by a single, filtered adap-
tation variable. The second is a more complex scheme that ainis to deal with ambiguous
evidence about system effectiveness and, furthermore, to obtain high-quality diagnoses as
rapidly as possible.

2.8.2 A Simple Control Scheme

A simple control scheme is illustrated in Figure 2.14. In this scheme, some adaptation
variable, say the occurrence of errors, is observed and smoothed with a low-pass filter, The
result is tested by a threshold detector with hysteresis—that is, a change is triggered when
the variable rises above the high threshold and falls below the low threshold. The filter
tends to produce an output only when there is a long-term shift in the effectiveness of the
system service implementation, and the hysteresis serves to avoid changes due to momeutary
variations.

The scheme allows some parameter setting by a higher level of control—including the
time constant of the filter and the level of the two thresholds.

This simple scheme might be used for low-level system adaptation, where the data
about adaptation effectiveness is relatively unambiguous. For example, two nodes may
communicate using either an optimistic or a pessimistic protocol, depending on the error
rate. In this case, the error rate is the only adaptation variable of interest, and the choice
of implementation modes is simple. This simple scheme wouid be satisfactory for a Poisson

—
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Figure 2.14: A Simple Control Scheme

error distribution, but it might not be satisfactory if the distribution is bursty or has
predictable fluctuations.

2.8.3 Incremental Diagnosis and Control

In complex systems, information about the effectivencss of a service implementation may
not be easy to interpret. In analyzing service anormalies, it may be difficult to distinguish
the contributions of faults and service overloads, and to distinguish the various types of
faults and overloads themselves. A given anomaly may have many explanations, whose
remedies may be very different, and even opposed. The problem is complicated by the fact
that causes usually cannot be observed directly, and can only be inferred from weak and
fluctuating evidence.

A further difficulty arises from the need to make decisions about adaptations as soon as
possible after operating changes occur, in order to maintain performance and avoid possible
catastrophic failure.

In response to these difficulties, we suggest a diagnosis approach that has three compo-
nents:

e Multiple concurrent diagnoses, to deal with ambiguity in error evidence
e Prediction, to maximize a priori knowledge about environmental variations

e [ncremental decision making, to achieve most rapid possible adaptation to rapidly-
changing operating conditions

Multiple Concurrent Diagnosis and Incremental Decision Making

These approaches are illustrated in Figure 2.15. An incremental and differential diagnosis
unit observes error reports from the system under control and presents one or more possibie
diagnoses, each with some measures of confidence and precision (specificity of the size of
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the region that contains the fault). Diagnoses are attempted at every error report, and as
new evidence is obtained, the likelihoods of the several candidate fault diagnoses may be
modified (shown by the feedback of weight adjustment) in accordance with the changing
weight of evidence for each fault hypothesis.

As faults change from one type to another, the level of confidence in the curreat diagno-
sis should change, initially decreasing as new evidence arrives that is inconsistent with the
prevailing theory, and then increasing as new error information arrives and new hypotheses
are strengthened. At some point in the transition between dominant hypotheses, the adap-
tation controller will have to decide when the confidence level in a new hypothesis justifies
a change in fault tolerance technique, and, for any given confidence level, what amount of
commitment of the system to a new technique is justified.
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Figure 2.15: Incremental diagnosis and control

Given the uncertain and data-dependent arrival of error information in real systems, we
assume that the adaptation controller is capable of periodically probing the system with
tests to quickly reveal the presence of faults.

There is sutrprisingly little literature on the subject of real-time diagnosis—that is, diag-
nosis that attempts to achiere useful analysis of a system that operates within a changing
data and fault environment. Most diagnosis results are given for static situations—that is,
situation: in which time is not a limiting facter in the analysis. For most diagr.osis tech-
nology, the problem to be solved is to determine complexity—the number of tests required
to analyze a system of a given size, or coverage—and the fraction of faults that may be
uncovered for tests of a given length. By ccntrast, the problem of real-time testing is to
determine the function relating accuracy of testing and number of obcervations, in order to
allow the earliest possible estimation of system state.
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Prediction for Diagnosis and Adaptation Decisions

Modern control systems make substantial use of prediction in generating control commands.
Predictions are based on some model. In simple control systems the predictions may be
based on a fixed model-—say a filter that integrates recent observations. In advanced.
adaptive control systems, the model is dynamic-——that is, it is updated by comparing the
predictions it generates with experience.

Some opportunities for prediction in distributed computing systems are

¢ Prior knowledge about the operation, including the dynamics of data arrival for the
normal working day and for different operating situations

¢ Knowledge about trends in fault behavior, such as gradual breakdowns of storage and
communication rnedia, models of crash behavior, models of overloads and recoveries.
and histories of failures of particular subsystems

¢ Knowledge about user priorities for work in different operational situations

Such knowledge can be very valuable both in diagnosing system conditions on the basis
of partial evidence, and in deciding whether or not an adaptation is justified.

For diagnosis, prediction may help to distinguish random from burst faults, and physical
from design faults, which can be crucial in chosing fault tolerance remedies. For adaptation
decisions, it is clearly beneficial to avoid system changes when, after environmental changes
are detected, it can be predicted that changes are only temporary.

Benefits of fault and environmental prediction have been discussed informally in the fault
tolerance research literature, but there is no existing theory or systematic methodology for
exploiting it in practical systems.

Multiple-dimension diagnosis

Aspects of the operating environment such as faults, workload, resources and requirements,
may be characterized individually by various criteria. For example, faults may be charac-
terized by type and by spatial and temporal distribution; workload may be characterized
by rate, object size, and spatial concentration, and so on. Quantified indicators exist that
can serve as the basis for adaptatioa for any single aspects..

Since a given set of resources must be configured to serve all of these aspects, the
best use of the resources would likely result from using a characterization that integrated
all relevant dimensions. The use of techniques from the fields of pattern recognition and
neural networks may be useful here. Neural techniques offer the additional possibility of
learning from actual system experience.

2.9 Reflective and Hierarchical Architecture

A recently developed principle of system hierarchy, called reflection, can be used for orga-
nizing adaptive control and techniques for managing adaptation in hierarchical system:.
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2.9.1 Reflective Architecture

The general adaptation scheme discussed previously assumes that both the system under
control and the adaptation controller are monolithic. In practice, designers employ a layered
structuring for their systems in order to manage complexity, and we expect that practical
adaptive systems will be so layered. We further expect that the control logic required for
adaptation will itself be so complex as to justify some degree of layering. We find the
relatively new notion of reflective architecture discussed in recent literature to be attrac-
tive, both for the layering of adaptive control and for applying adaptive control to layered
systems.

Reflective architecture is based on a hierarchical relation, which is illustrated in the first
part of Figure 2.16. The figure shows layer R observing layer Q’s behavior and subsequently
directing Q to change the way it implements some function, such as fault tolerance. The
same principle has been applied to balancing load in a multiprocessor. The second part
of the figure shows a combination of a conventional Uses-based hierarchy and a reflective
hierarchy. Layer C uses layer B as, for example, an application program uses an operating
system utility — but layer B is subject to the control of a reflective hierarchy, shown as
B(R1), B(R2), and so forth.

REFLECTIVE ARCHITECTURE \
Y

4
“1 e} B R2
| R [ z
i\ ' —J ’ Y
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Fotsanves | emomnod Cuses8| [ 2w  zopaen
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Figure 2.16: Reflective architecture

The B() hierarchy separates out several adaptivity concerns; for example, layer E(R1)
may be concerned with selecting appropriate fault tolerance schemes, while layer B(R2)
may be concerned with when an adaptation should be attempted; that is, it moderates the
action of B(R1). Layer B(R3) might be concerned with how aggressively an adaptation
should be carried out, given the current level of diagnostic confidence and the current user
policy on how adaptation risk and service urgency are to be balanced. Such layering of
adaptation concer :s may help to simplify adaptive designs and to allow orderly growth of
capabilities with experience.
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In some cases, the two kinds of hierarchy might usefully be integrated, as suggested in
the third part of Figure 2.16, where layer Z observes, modifies, and uses layer Y.

Reflection does not solve the algorithmic problems of adaptive control, but it offers a
general structure for organizing ccmplex adaptive control functions.

2.9.2 Multilayered Changes in a Function-Support Hierarchy

In layered systems, a change of system configuration may not easily be restricted to a
single layer. Figure 2.17 illustrates a layered adaptive system, where alternate functions are
available at each level, and functions at one level support functions at higher levels. It is
assumed that a function at one level may not be able to support ali functions at the next
higher level, that is, the dependencies from level to level are incomplete. In the figure as
constructed, a change from function S(2,1) to function S(2,3) at level 2 is assumed to be
required to accomplish an adaptation originating at level 2. As shown, such a change will
require level-3 changes from function S(3,1) to function $(3,3), inasmuch as S(3,1) is not
supported by 5(2,3).

Subsystem Alternative Implementation Sets
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! Change from |
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Figure 2.17: Multilayer changes for adaptation

We conclude that changes made to accomplish adaptation in a multilevel system may
have to extend over several functional system layers, and that changes among levels may
have to be coordinated at design time.

2.10 Results and Future System Design Issues

This review has extended and formalized the statement of general principles and discussion
of examples and technical approaches presented in previous reports. We have differentiated
adaptive fault-resistant systems from traditional fault-tolerant systems by emphasizing an
adaptive system’s need to have autonomous awareness of an anomalous mismatch between
its current implementations of fault tolerance and the demands of a dynamically changing
set of requirements. We have presented several schemes for design that have a high degree of
generality. The following technical insights and problem areas have risen from this viewpoint:

_
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e Abstract models based on finite-state machines are available for specifying adaptive
behavior and predicting performance and misadaptations.

o Process-control models are very fruitful analogues for adaptive computer system con-
trol; directly appropriate issues include gain control, prediction, instability, and adap-
tation failures.

e Uncertainty of evidence is a critical issue in real-time system state analysis and fault
diagnosis, and has a central impact on making adaptation decisions. Usefu] techniques
include concurrent multihypothesis diagnosis, predictive diagnosis, and incremental
decision making.

o reflective architecture, developed originally to allow extendibility in computer lan-
guages, provides an excellent and general structure for adaptive architecture.

e There is an abundance of design families within which adaptation choices may be
made.

e Selecting particular fault tolerance techniques to meet changing user requirements
may be bied on predetermined service attributes of candidate techniques.

¢ Similar to the need for bounding fault propagation in fault-tolerant systems, there is
a need to bound (1) the propagation of adaptation responses in a distributed system,
and (2) vertical propagation of changes in multilayer support functions.

We believe that these general and particular results offer a useful basis for a methodology
of design for future systems.

We have used one case study, ADRBs, to illustrate the need for techniques for selecting
alternative implementations based on possibly changing service attributes. Further details
on ADRBs are presented in Chapters 3 and 4, and a case study on distributed thread
integrity is discussed in Chapter 5.




Chapter 3

The Adaptive Distributed
Recovery Block Scheme

In many challenging applications, environmental conditions that affect fault tolerance re-
quirements imposed on computer systems change dynamically. As significant changes in
environmental conditions or in internal computing resource conditions occur, the effective
set of fault tolerance mechanisms also changes.

3.1 The Role of ADRBs in Adaptive Fault Tolerance

The purpose of adaptive fault tolerance (AFT) is to meet the “*rnamically and widely chang-
ing fault tolerance requirement by efficiently and adaptively using a limited and dynamically
changing amount of available redundant processing resources [19).

When the fault tolerance requirement reaches a highly stressful state (that is, at or near
the peak) in an application in which the fault tolerance requirement fluctuates widely, the
processing rescurces available in the computer system are typically not sufficient to support
all the fault-tolerance mechanisms needed without adjusting the set of services provided
by the computer system. In addition, given that the resources (processing, communica-
tion, and data storage) of a computer system are finite and that under increasing stress
the availability/usability of these resources will decrease because of failures, the questions
are: Toward what objective will the remaining resources be directed? And is the current
strategy for fault tolerance the most effective under this greater stress? The system resource
manager may decide to decrease the functionality (that is, total set of functions supported)
to maintain the level of timeliness (that is, the ability to produce critical responses during
the required time periods) and the level of consistency (that is, the degree of deviation from
the intended relationship among the states of the different parts of the computer system
and the environment). Or it may decide to give up some consistency for functionality and
timeliness. The system resource manager must, therefore, trade-off functionality, timeli-
ness, and consistency in order to maintain an optimal system operation having decreased
resources. As a part of this trade off, the set of fault tolerance mechanisms activated may
need to be dynamically adjusted. Hence comes the notion of adaptive fault tolerance.

29
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The distinctive nature of AFT as compared to more conventional fault tolerance becomes
more evident when the fault tolerance requirement or the resource availability changes “in
a noticeably discrete fashion.” that is, from one mode to another mode. In response to
such mode changes, the adaptive fault-tolerance management system (FTMS) adjusts its
operating strategy accordingly, that is, entering a new mode of operating fault tolerance
capabilities. Such an adaptive multimode FTMS is bound to have a highly modularized
structure and is thus easier to implement reliably than monolithic static FTMSs that may
execute all available fault tolerance mechanisms all of the time. In fact, in most challenging
distributed computer system (DCS) applications, it already becomes prohibitively expensive
to operate the DCS with continuous activation of the fault-tolerance mechanisms needed
only in several highly stressing modes, let alone operate with all the available fault tolerance
mechanisms activated. An adaptive FTMS reallocates its resources to activate a set of
fault tolerance mechanisms effective in a new mode of the environment and the computing
resource.

A specific instance of an AFT technique, the adaptive distributed recovery block (ADRB)
scheme is a major extension of the basic distributed recovery block (DRB) scheme developed
in [21, 25, 13. 24, 22]. The DRB scheme was adopted as the basic structure for designing
fault-tolerant real-time DCSs because of its wide applicability and ability to handle both
hardware and software faults with no loss of real-time task executions. One fundamental
software approach to realizing real-time fault tolerance capabilities in DCSs is parallel re-
dundant execution, which is to have multiple processing nodes execute the same real-time
task in a redundant fashion. The DRB scheme is a practical and broadly applicable formal-
ization of the parallel redundant execution approach. The scheme is essentially an approach
to structuring a duplex redundaut computing station, called a DRB station, dedicated to
execution of one or a few real-time application processes and capable of handling both
hardware and software component failures with the effect of real-time forward recovery.

The ADRB scheme extends the DRB scheme in two major ways. First, a critical real-
time task can be executed not only (1) in the parallel redundant mode, which is the standard
mode used in the basic DRB station, but also (2) in the sequential backward recovery mode,
which is the execution mode adopted in the original recovery block scheme (17, 39], and
(3) in the sequential forward recovery mode, which has been considered in many previous
projects on exception handling. Therefore, an ADRB station dynamically switches its op-
erating mode in response to significant changes in the resource and application modes.
Secondly, the supervisor station under the DRB scheme is basically responsible for three
functions: detection of node crashes, detection of misjudgments by the nodes in DRB sta-
tions about the status of their partner nodes, and network reconfiguration including task
redistribution. Under the ADRB scheme the supervisory function is not necessarily con-
centrated in a particular node or computing station. Moreover, the supervisory function
station has an additional dimension—that is, changing the set of real-time tasks to be exe-
cuted. The supervisor function can be executed not only in the centralized mode but also
in the decentralized mode. Therefore, again, the system can dynamically switch between
the centralized supervisory mode and the decentralized cooperative monitoring and control
mode. The algorithms and execution modes for accomplishing the three basic functions can
thus be adjusted as significant changes in the resource and application modes occur.

Although the basic DRB scheme has been evolviug over the past ten vears, exploration
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of various possible implementation structures has thus far taken place more in the context

of highly parallel multicomputer networks (25, 24]. Only in recent years have some concrete

implementation structures and prototypes of DRB stations for use in real-time LAN-based

systems been studied [13, 22]. In order to partially validate one version of a DRB im-

plementation structure and identify detailed implementation issues. a simple experimental

implementation of DRB stations in a small-scale LAN-based DCS testbed was conducted.
issues are discussed in Section 3.2.7.

3.2 Basic Principles of the DRB Scheme

The most basic and important problem in constructing a real-time fault-tolerant DCS is to
construct highly reliable and fault-tolerant constituent computing stations. One approach
to realizing this is by parallel replicated execution of real-time tasks. A practical and
basic approach that keeps the amount of data communication between replicated processing
nodes to a minimum is to structure a computing station in the form of a pair of self-
checking processing (PSP) nodes, each processing node possessing the capability of judging
the reasonableness of its task execution results. The PSP scheme is a core component of
the DRB scheme.

We concentrate here on two instances of the PSP scheme. The first scheme is intended to
tolerate primarily hardware faults (although some operating system faults are also tolerated)
by using identical, replicated software and hardware. The second scheme tolerates software
faults as well as some hardware and operating system faults, by using nonidentical software
(intended to produce equivalent results for the same inputs), running on identical hardware.

3.2.1 Primary-shadow pair of self-checking processing nodes

An abstract representation of a PSP-structured computing station is given in Figure 3.1.
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Figure 3.1: PSP-structured computing station

There are largely two basic approaches to implementing the self-checking functions, one
through hardware support and the other in software. Self-checking hardware mechanisms
have been extensively developed [47, 51]. Self-checking software mechanisms are not nec-
essarily substitutes for self-checking hardware mechanisms, but rather the fornier can be
supplements to the latter. Omne of the most versatile and flexible self-checking software
mechanisms is the acceptance test, which is a routine for checking the acceptability of the
execution results of a task (17, 39]. Use of this mechanism, possibly in conjunction with
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some self-checking hardware mechanisms. is the approach adopted in the DRB scheme. It
can be virwed as an instance of an executable assertion.

Figure 3.2 illustrates a PSP-structured computing station based on the self-checking
function implemented in the form of an acceptance test routine. Each node nas its own local
database. Node A is the initial primary node, and node B is the initial shadow node within
this computing station. Each node has its own local data base for application processing.
Both nodes obtain input data from the multicast channel (built on a system-wide multiaccess
communication network), and the primary node A informs the shadow node B of the ID
of the data item that ncde A selected for processing in the current task execution cycle.
Nodes A and B process the data and perform their self checking concurrently by using the
same acceptance test routine. Because node A passes the test here, it informs the shadow
node R of its success and then delivers the results to the successor computing station(s).
Upon successful delivery, node A informs node B of -he success, and both nodes proceed to
enter the next task execution cycle.

Processing of task input data usually requires reference to a database. It is essential
that the database be protected from unacceptable results that may be generated by either
of the procrssors. There are several ways to achieve this protection. One way is to provide
some meaus for undoing a change to a local database—say by using a buffer that records
all changes as a local state vector. Another way is to use an external persistent store for
recording all acceptable results. The second way is simpler to manage, but it imposes the
burden of downloading Jata into a processor for every new task.

It also may be desirable to protect the local database informat‘on from loss rasulting
from processor faults. In this case, a separate data base may be provided for each processor.
For this solution, it must be possible to copy the contents of the unfailed database into a
corrupted database.

Suppose that the PSP-structured computing station in Figure 3.3 is the successor sta-
tion. Upon receiving data from the predecessor station (in Figure 3.2), the primary node
C informs node D of tue data item to nrocess next, for example, via transmission of the ID
of the data item. The nodes process the data and perform their self checking concurrently,
but this time the primary node C fails while the shadow node D passes. Node D will learn
of the failure of node C via either an explicit notice from node C or a time-out (if node
C has crashed). Node D then becomes the new primary node, delivers its task execution
results to the successor computing station(s), and notifies the partner node, if alive, of the
successful delivery. Meanwhile, node C, if alive, attempts to become a new shadow node by
trying again to process the data item. If node C passes the self-checking test this time, it
can then countinue as a shadow node; upon learning of the successful delivery of the result
by the partner node D, it proceeds to the next task c¢ycle as the shadow node.

To realize the full potential of this PSP scheme, cost-effective mechanisms must be
provided for ensuring that all versions get the same data in each task execution cycle, and
for reliably saving some relevant task execution results into persistent store upon successful
completion of acceptance tests. These issues are discussed in Section 3.2.5.

This primary-shadow scheme is thus capable of handling hardware faults with the effect
of real-time forward recovery and is a core component of the DRB schemne.
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Figure 3.2: Detailed view of a PSP-structured computing station
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3.2.2 Replication of recovery blocks

If the system designer is concerned with not only hardware faults, but also with software
faults, the primary-shadow scheme discussed with Figures 3.2 and 3.3 can be extended by
incorporating the idea of using multiple versions of the application task procedure for each
task. These multiple versions and a task-specific acceptance test related to the same task
can be structured together in the form of a recovery block (RB) [17, 39].

The syntax of a recoveryv block is: ensure T by Bl else by B2 ... else by Bn else error.
Here, T denotes the acceptance test (AT), Bl the primary try block, and Bk, 2 < k < n,
the alternate try blocks. All the try blocks are designed to produce the same or similar
computational results. The acceptance test is a logical expression representing the criterion
for determining the acceptability of the execution results of the try blocks. A try (that is,
execution of a try block) is thus always followed by an acceptance test. If an error is detected
during a try or as a result of an acceptance test execution, then a rollback-and-retry with
another try block follows.

The extended scheme is the distributed recovery block (DRB), and under this scheme a
recovery block is replicated into multiple nodes forming a DR B station for parallel redundant
processing. In most cases, a recovery block containing just two try blocks, the primary
and the alternate, is designed and then assigned to two different nodes, the primary and
shadow nodes, as depicted in Figure 3.4. The specification of the maximum execution time
allowed for each try block is an integral part of the DRB scheme. A try block that is
not completed within the time, because of hardware faults or excessive looping, is treated
as a failure. Therefore, the acceptance test can be viewed as a combination of both logic
and time acceptance tests. The roles of the two try blocks are assigned differently in the
two nodes. The governing rule is that the primary node tries to execute the primary try
block whenever possible, whereas the shadow node tries to execute the alternate try block.
Therefore, primary node X initially uses try block A as the first try block, whereas shadow
node Y initially uses try block B as the first try block. Until a fault is detected, both nodes
receive the same input data, process the data using two different try blocks (that is, block
A on node X and block B on node Y), and check the results using the acceptance test. Both
nodes perform all these tasks concurrently. The time acceptance test (that is, the time-out
mechanism) is used to ensure the timely behavior of both nodes.

In a fault-free situation, both nodes will pass the acceptance test with the results com-
puted with their first try blocks. In such a case, the primary node notifies the shadow node
that it successfully passes the acceptance test. Thereafter, only the primary node sends its
output to the successor computing station(s). Both nodes then proceed to the next task cy-
cle. However, if the primary node fails and the shadow node passes its own acceptance test,
the shadow node assumes the role of the primary node; that is, the nodes exchange their
roles. These actions by ine two nodes are done asynchronously as explained in Figure 3.3.
On the other hand, if the shadow node fails first, the primary node need not be disturbed.
In both cases, the failed node attempts to become an operational shadow node; it attempts
to roll back and retry with its second try block to bring its application computation state
including its local database up to date. This attempt does not disturb the primary node.

The DRB scheine imposes some restrictions on the use of the recovery block scheme.
A recovery block to be used in the DRB scheme shoull be two-phase structured; it should
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Figure 3.4: A DRB combines PSPs and replicated RBs
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consist of one input acquisition phase and one output phase. During the input phase,
the recovery block must not involve any output step (i.e.. sending computation results
to the outside) while it may involve multiple input steps. Similarly, during the output
phase, the recovery block may involve multiple output steps but not a single input step.
This restriction is essential to prevent interdependency among different DRB stations for
recovery from being formed.

There is also the possibility that the two local databases, each belonging to a different
partner node, may diverge in their contents. The goal of the DRB scheme is to keep
these local databases in acceptable states. If the acceptability criterion used here is a
rigorous one and if the two local databases are in acceptable states, the differences in the
contents of the local databases will be limited by the acceptability criterion, and hence
not problematic. Therefore, the quality of the acceptance test in a DRB station is very
important. Fortunately, experience has indicated that design of good-quality acceptance
tests is much easier in real-time application fields than in non-real-time data processing
applications.

Under the DRB scheme, real-time forward recovery is achieved regardless of whether
faults occur in the hardware or software components. During fault-free operation, the
execution overhead is very small because the actions of the primary node do not depend
on those of the shadow node. By adopting the RB structuring as its component, the
DRB scheme supports flexible incorporation of algorithmic redundancy because the two try
blocks are not required to produce identical results and the second try block need not be
as sophisticated as the first try block. When the designers cannot accommodate the costs
of developing alternative try blocks, they can still use the PSP portion of the DRB scheme
to facilitate real-time hardware fault tolerance.

3.2.3 Recursive shadowing with N (> 2) try blocks

In some highly safety-critical applications, the system designer may design more than two
try blocks into a recovery block to further increase reliability. Although several approaches
to structuring a DRB station that uses three try blocks are conceivable, one of the most
natural approaches is recursive shadowing, which is to treat the third node as a shadow
node for the team of the first two nodes as depicted in Figure 3.5 [24].

Node Z in the figure will normally use try block C as its primary try block and deliver
its resuvlts only when both X and Y fail to produce acceptable results in time. Nodes X and
Y behave like a single functional node with respect to interfacing with their shadow node Z.
They must share responsibilities for providing their status information to node Z at various
points as well as responsibilities for understanding the “useful/useless shadow” status of
node Z. If node X or Y crashes, then it can be replaced by node Z and thus the computing
station can start functioning as an ordinary two-node DRB station. Similarly, crash of node
Z will result in the computing station functioning as an ordinary two-node DRB station.
If both X and Y fail at their acceptance tests but are alive, then node Z becomes the new
primary node and one of the two failed nodes (X and Y) should become the new secondary
node (a shadow for node Z) and the other should become the third node (a shadow for the
team of Z and the secondary node). In an n-node DRB station, the nth node functions
as a shadow for the team of the first n-1 nodes. A natural consequence of this recursive
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Figure 3.5: A DRB station with recursive shadowing

shadowing organization is the modest increase in the implementation complexity as the
number of nodes used in a DRB station increases. For the sake of simplicity in discussion,
these cases of using more than two try blocks in a DRB station will be treated as special
cases throughout the remainder of this report.

3.2.4 Supervisor station

A major extension of the basic DRB scheme made by Hecht et al. [14, 13] was in incorpo-
rating a supervisor computing station into the LAN-based system. A centralized form of
a supervisor station was incorporated in [13], but many of the supervisor station functions
can also be decentralized. Demonstrations of decentralized implementations have yet to
take place.

The supervisor station is basically responsible for three functions:

¢ Detection of node crashes

e Detection of misjudgments by the nodes in DRB stations about the status of their
partner nodes

o Network reconfiguration, including task redistribution

To make the supervisory function highly robust, it is useful Lo dedicate a DRB sta-
tion (rather than a nornredundant computing station) to the supervisory function (see Fig-
ure 3.6).

Interactions between the supervisor station and “worker” DRB stations must be imple-
mented efficiently. Many different forms of interactions are conceivable.
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Figure 3.6: Using a DRB station as supervisor

3.2.5 A DRB Implementation Structure for Multicast LAN-Based Sys-
tems

A node in a DRB station basically engages in two types of inter-node communication:

e Data communication with other (predecessor and successor) computing stations,
which may be DRB stations

¢ Status exchanges with partner node(s) within the same DRB station

The timings of the two types of communication are different and the status messages
are short signals unlike the data messages, which may be substantial and of variable length.

Therefore, in choosing efficient imnlementation structures for DRB stations, t