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ABSTRACT

Ionospheric models have been developed to interpret Relocatable

Over-the-Horizon Radar data. This thesis examines the applicability of neural networks

to ionospheric modeling in support of Relocatable Over-the-Horizon Radar. Two neural

networks were used for this investigation. The first network was trained and tested on

experimental ionospheric sounding data. Results showed neural networks are excellent at

modeling ionospheric data for a given day. The second network was trained on

ionospheric models and tested on experimental data. Results showed neural networks are

able to learn many ionospheric models and the modeling network generally agreed with

the experimental data.
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I. INTRODUCTION

Relocatable Over-the-Horizon Radar (ROTHR) was developed to
support Navy fleet commanders' air defense mission. It was designed to
provide air surveillance and warning of attacks by long-range aircraft
(primarily bombers) on Navy battle groups and other U.S. and allied
tactical forces. (GAO, 1991)

ROTHR is a relocatable, ground-based system with separate transmitter and

receiver sites. The transmitters send high frequency signals (5-28 MHz) into the

ionosphere that are then refracted downward and reflected off aircraft and other objects.

The reflected signals return via the ionosphere to the approximately 8,000 foot receive

radar antenna and are processed by computers for target display. ROTHR provides

wide-area radar coverage that extends from 500-1,600 nautical miles with a 64-degree

azimuth. (GAO, 1991)

The ionosphere is the part of the atmosphere that contains enough ions and free

electrons to affect radio wave propagation. It starts about 60 km above the earth and

extends upward to the atmosphere's outer edge. Reflection off the ionosphere is due to

electron interaction with the radio wave electromagnetic fields (Beer, 1976).

A ground-based method of examining the ionosphere is by a sweep frequency

sounder known as an ionosonde. The ionosonde is a radio transmitter/receiver that

transmits a pulse nearly vertically through the atmosphere such that the pulse is reflected

off the ionosphere. The frequency of the pulse is altered smoothly and the echo time is

recorded as a function of frequency (Ratcliffe, 1972). An ionogram plots the echo time

against the frequency. An idealized ionogram is shown in Figure 1.1. By knowing the

signal travel time and the estimated speed of the pulse, the height of the reflecting layer

may be determined.

Three ionospheric layers appear quite regularly. The E layer, at about 120 km, is

lowest. The F1 layer, at about 150 to 200 km, is next. Finally, the F2 layer, at around

250 to 300 km, is the highest layer. (Craig, 1968)

1
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Figure 1.1 Idealized lonogram. (After Craig, 1968.)

As the pulse's frequency is increased, the reflection altitude increases until

reaching a frequency just sufficient for reflection. No reflection occurF for higher

frequencies. That is the layer's critical frequency. Critical frequencies show up as

ionogram discontinuities (see Figure 1.1) and are typically observed at two or more

frequencies. (Craig, 1965)

Over 10,000 ionospheric models have been developed by the Raytheon Company

to interpret ROTHR data. Each ROTHR model is uniquely defined by four numbers: the

critical frequencies of the E, F1, and F2 layers and the true height of the F, layer's peak

electron concentration. Proper model selection is a difficult task that requires operator

involvement. The present system finds the model that most closely matches the actual

sounding. Then the operator has the ability to select an alternate model that may actually

be a better match. Operator selection of alternate models requires a well trained operator

and this alternate selection process can lead to problems in ROTHR implementation.

2



This thesis will investigate the application of neural networks to ionospheric

modeling. In Chapter II, basic neural network theory is presented and the

backpropagation network is introduced. Chapter III describes the procedures used in this

investigation and Chapter IV gives the results. Chapter V closes with concluding

remarks.

3
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I1. NEURAL NETWORKS

A neural network is a nonalgorithmiL. nondigital, and intenseli parallel

distributed information processing system. It consists of a number of relatively simple

and highly interconnected processors called processing elements. The processing

elements are connected by a series of weighted links, over which signals can pass. The

network is connected to the outside world through input and output elements. Signals

that are put into a network pass through the processing elements and generate a response

at the network's output. The neural network has the ability to learn from experience and

generalize its knowledge from previous examples. (Caudill, 1992)

A. PROCESSING ELEMENT

The processing element, shown in Figure 2. 1, is the fundamental unit in a neural

network. Typically, a processing element has many inputs and only one output. The

input stimuli are modified by connection weights and then summed. An activation

function modifies the summed input. This activation function can be a threshold function

that only outputs information if the internal activity level reaches a certain value, or it

can be a continuous function of the summed input. The activation function's output

response is transmitted along the processing element's output connection. This output

can be connected to other processing element inputs. (NeuralWare, 1993)

B. FEEDFORWARD NETWORK

Processing elements are highly interconnected and grouped into layers. When a

fully connected feedforward network, such as that shown in Figure 2.2, receives an input

vector, each processing element in the input layer receives only an element of the input

vector. The input layer processing elements then distribute their input vector elements to

the hidden layer processing elements. Due to differing connection weights, each hidden

layer processing element sees a different input vector. This causes the hidden layer

processing elements to produce differing output responses. Again due to differing

connection weights, each output layer processing element sees a different hidden layer

5



output %ector The output layer processing elements produce the neural network's

associated respone. (Caudill. 1993)

Out

activation
function

Weighted Input 1 Weighted Input 2 ...... Weighted Input n

Figure 2.1 Processing Element.

Output Layer

Hidden Layer

Input Layer

Input

Figure 2.2 Feedforward Neural Network.
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C. LEARNING

Neural networks are not programmed like traditional computing systems. They

learn to solve a problem through training (Caudill, 1993). Learning is achieved through

a learning rule that systematically changes the connection weights in response to training

inputs and optionally the desired outputs of those inputs. The learning rule specifies how

connection weights change in response to a training example. A learning schedule

controls how a learning rule may change over time as the network learns. (NeuralWare,

1993)

Supervised learning occurs when the desired response for each input is presented

at the output layer and the network modifies the connection weights to achieve

acceptable input/output performance levels. A hetero-associative network is a trained

network where the desired output is different from the input. (NeuralWare, 1993)

D. MEMORY

The connection weights contain the neural computing memory. The weight

values are the current state of network knowledge. An input/output pair is distributed

across many memory units in the network and it shares these memory units with other

input/output pairs stored in the network. This distributed memory characteristic gives

the neural network an ability to generalize. The network can produce an intelligent

response when presented with incomplete, noisy, or previously unseen input.

(NeuralWare, 1993)

Another distributed memory advantage is neural computing systems are fault

tolerant and exhibit graceful degradation. As processing elements are destroyed or

damaged, the network continues to function with only slightly degraded behavior.

(NeuralWare, 1993)
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E. BACKPROPAGATION

A network with at least one hidden layer must be used to solve complex,

non-linearly separable problems. The backpropagation algorithm is a neural network

training procedure that provides for hidden layer training. Before the backpropagation

training algorithm was developed, neural networks were constrained to one or two layers.

A network based on the backpropagation algorithm is an effective multi-layer network

that has been extensively used to solve pattern classification problems.

1. Architecture

Typically, a network utilizing backpropagation training is a feedforward network

with an input layer, an output layer, and one or more hidden layers. Generally there are

no processing element connections within a single layer, and usually each layer is fully

connected to the subsequent layer. Research indicates a maximum of three hidden layers

are required to solve complex classification problems (NeuralWare, 1993). The hidden

layer processing elements act as feature detectors. Their connection weights encode the

features present in an input. The output layer uses those features to determine the correct

response. The ability to generate output based on features of the input rather than the

raw input data allows the network to create its own complex representation of the

problem. (Caudill, 1993)

2. Training and Testing

Backpropagation training is a two-step procedure illustrated in Figure 2.3. First,

an input is forward propagated through the network. This causes a response to be

generated at the output layer. In the second step, the network's output is compared to the

desired output. If the output is not correct, an error signal is generated and passed back

through the network with the connection weights being modified as the error

backpropagates. (Caudill, 1993)

8



In testing, an input is presented to the network which generates an output. The

output is compared to the desired output and the difference is the test error for that

particular example.

Output F

B 0
a r
C w
k a
w: r
a d
r
d A

C
E t
rI
r
0 1
r t

Y
Input

Figure 2.3 Backpropagation Training. (After Caudill, 1993.)

3. Processing Element

A backpropagation processing element's output is determined as follows. First,

the weighted input received by processing element j from a total of n processing elements

in the network, I, is computed:

9
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The incoming signal from the ith processing element is x, and the weight on the

connection directed from processing element i to processing element j is w%. Next, the

weighted input passes through the activation function. An activation function commonly

used is the sigmoid function (Figure 2.4):

A -) + I (2)

The sigmoid function is a squashing function with a minimum output value of 0 and a

maximum output value of +1. Each processing element's output is usually this activation

value. The sigmoid function's derivative is:

N() =f(I)(l -Ml)) (3)

The sigmoid function is everywhere differentiable with a positive slope. (Caudill, 1993)

Sigmoid Function
1

--0.4

0.2

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

x

Derivative of Sigmold Function
0.25 . , , " , . . ...

.•0.15

-• 0.1

0.05

-10 -8 -6 -4 -2 0 2 4 6 a 10

x
Figure 2.4 Sigmoid Function and Derivative.
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4. Learning

The generalized delta rule is often used for backpropagation training. The

change in a given connection weight is:

Awo = OEft!) (4)

where E is the error for this processing element, J3 is the learning coefficient, a number

between zero and one, andf(l) is the processing element input. (Caudill, 1993)

The output layer and hidden layer processing element error terms are computed as

follows:

Output desired acfwal-y y (5)

E~u"~ = lh*'•(#••' (6)

Processing element j is in the output layer and processing element i is in a hidden layer.

The output layer processing element's output is y. (Caudill, 1993)

The generalized delta rule is a gradient descent system that moves the connection

weight vector's projection down the steepest descent of the error surface. This is

illustrated in Figure 2.5. Multidimensional input and output spaces result in a

multidimensional surface instead of the paraboloid shown. (Caudill, 1993)

5. Momentum

A small learning coefficient is desired to avoid divergent behavior but a small

learning coefficient leads to very slow learning and a greater possibility of getting stuck

in a local minimum. A momentum term, a, may be added to the generalized delta rule to

resolve this dichotomy:

Awi, = AExi + aAw)i"'O (7)

Sis the learning coefficient, E is the processing element error, and x, is the processing

element input. The momentum term has a value between zero and one. This additional

11



term allows for faster learning by keeping the weight vector tending to move in the same

direction. (Caudill, 1993)

Global
Error

' Weight y

Initial Weight
/ • -• ,-•b; Vector

/ • New Delta

Weight x Weight Weight
gh Vector

Vector

Figure 2.5 Generalized Delta Rule. (After Caudill, 1993.)

12



III. EXPERIMENTAL PROCEDURE

This chapter discusses the experimental procedures used in this thesis. First to be

described is the computing package used in this investigation. Both hardware and

software issues are discussed. Then the data package used for this research is described.

Data types, structure, and formats are discussed. Finally, a discussion on the two neural

networks used in this investigation is presented. Training and test file generation, neural

network architecture, and training and testing procedures are all discussed.

A. COMPUTING PACKAGE

Research for this thesis was conducted on a Sun Microsystems, Inc. SPARC2

workstation using the NeuralWare, Inc. NeuralWorks Professional 1/PLUS (version 5.0)

software package. The MathWorks, Inc. MATLAB (version 4.1) software package was

also extensively used.

1. Hardware

The workstation was configured with 64 megabytes of random access memory.

This large amount of random access memory allowed a complete training file to be

loaded into memory. Loading the entire training file into memory significantly increased

1/) speed and saved the hard drive from excessive use (NeuralWare, 1993). The

complete ionospheric data package was able to be stored on the workstation's large 2.2

gigabyte hard drive.

2. Software

The Sun OpenWindows workspace provided a multitasking, windowed graphical

user interface on top of the SunOS operating system. SunOS is the version of the UNIX

operating system used by the workstation. This provided for the ability to

simultaneously train multiple networks while performing other data manipulation. (Sun

Microsystems, 1991)

13



NeuralWorks Professional H/PLUS is a multi-model neural network prototyping

and development system. It may be used to design, build, train, test, and deploy neural

networks to solve complex real-world problems. NeuralWorks has over two dozen well

known, built-in network types that can be quickly generated. It also provides for eustom

network creation. Networks are displayed graphically in full color or monochrome.

Network performance may be monitored through an extensive instrumentation package.

There are dozens of activation functions and learning rules available. Data for networks

can come from the keyboard or an ASCII file. Fully trained feedforward networks may

be converted into C code providing a built-in facility for deploying developed networks.

NeuralWorks Professional 11/PLUS is a very powerful neural network development

system. (NeuralWare, 1993)

MATLAB is another software package used in this research. It was used for

numeric computation, data manipulation, and graphing. MATLAB is a technical

computing environment written in C code for high-performance numeric computation

and visualization (MathWorks, 1992).

B. DATA PACKAGE

The Raytheon Company provided the data package used in this investigation. It

consisted of a Quasi-Vertical-Incidence (QVI) sounding data tape, the ROTHR model

QVI library data tape, and a computer printout that shows the QVI model that the current

pattern recognition algorithm chose to best-fit each QVI sounding as modified by an

expert observer.

1. QVI Sounding Data

A Sun workstation compatible data tape contained grayscale and peak QVI

ionospheric soundings for a 24 hour period on 3 May 1990. The soundings were

recorded every 10 minutes.

14



The grayscale data is the raw sounding information (a
two-dimensional array giving received power as a function of sounding
frequency and time delay). The peak data is an abstracted version of the
grayscale data, in which the two-dimensional array has been searched to
find points which have great enough signal-to-noise ratio to probably be
real returns and which are local peaks in range and frequency. The intent
of converting the grayscale data to the peak data is to reduce the real-time
computational load on the ROTHR data processing equipment. (Thome,
1991)

Figures 3.1-3.3 show the first three QVI peak soundings recorded.

3.5

2.5

=• 1 .5 - . . . . . . . . . . .• . . . . . . . . ... ... ... . .. . . .. .. . . . . . . . . . . . . .

E

S.. .... .... . ... .... ... . .. . ... ..... . . . . . . ... ... .... . . . i . . . . . .... . ... . . .... ... ..

0 .5 . . .... .. . .. . .. . .. .. . .... . . ... .. ... ... .. ... ... . .. . .. ... .. .. ..:. . . . . . . .. .. .. .. .... .. ... ....

-2 4 6 8 10 12 14 16 18 20

Frequency/ (MHz)

Figure 3.1 QVI Peak Sounding, 3 May 1990, 0008Z.
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0

E

0- .5 . ........ ........- _
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0
2 4 6 8 10 12 14 16 18 20
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Figure 3.2 QVI Peak Sounding, 3 May 1990, 0018Z.
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Figure 3.3 QVI Peak Sounding, 3 May 1990, 0028Z.
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2. ROTHR QVI Library Data

A Sun workstation compatible data tape contained the ROTHR model QVI

library in four files. There are over 10,000 models in this library.

Each model is uniquely defined by four numbers: the critical
frequencies of the E, F1, and F2 layers and the true height of the peak of
the F2 layer. For each model contained in the library, there is stored on
tape a set of points which define a model QVI sounding (in the same
coordinate system and with the same granularity as for the observed QVI
soundings). (Thome, 1991)

Figure 3.4 shows a sample QVI library model sounding and Figure 3.5 shows the

QVI library model data format.

4.5

4 . . .. . . . . ... . .. . .... . .. . .. . . . . .... . . . ... . . .. .. .. . . . . . . . .. . . . . .. . . . . . . . . .. . . . . .

3 .5 . . .. .... . ... ... . . . .. . . .. ... . . . . .. . .. ... .... ... . .. . .. ... .. .

3 - . . .. . . . . . . . . . .. . . .

E
2 . . . . . . . . . . .... .... .. " .. .. .. . ... . .... .... ... ..... .... . .... .... .. .. .... .. ... ... ...... ... ....

2.5.

E
1 .5 . . .. . .. . . . . . . . .. .. . ... . . . , .. . .. . . . . ., .. .. .. . . . . . . .. .. . .. . . . . .. . . . .. . .. ... .. . .. . .. . .

® 2 . . . . . ' .. .. . ... ....- - .- • . ... . .. . ...,. ...

0 .5 . . . . . . . . . . . . . . . . . .. . . .. .... .. . . .... :... .. . . . . . . ...... .. . .. . .. .. . . .

2' 4 6 8 10 12 1 4 16 1 8 20
Freauency (MHz)

Figure 3.4 Sample QVI Library Model Sounding.

17



8888 (Flag)

E Index

F1 Index Frequency step size

F2 Index is 40 KHz.

F2 Height Index l There are up to 450

correspond to Number of Frequencies (N) | steps in frequency,corrspon to each of 40 KHz.

word numbers Pointer to First Frequency

within the
record.

Pointer to Nth Frequency

One QVI Model
Nbr of Time Delays For Freq K (L) Sounding

Time Delay (1,K)
Words within
the record '___Timedelaystepsize
begin at 1. Time Delay (L,K) Time delay step size

is 25 usec.

'_ __ .There are up to 12
Nbr of Time Delays for Freq N (L) time delays per

Time Delay (1,N) 40 KHz step.

Nominally there are
2 time delays per

Time Delay (L,N) 40 KHz step.

8888 (Flag)

ETC

Figure 3.5 QVI Library Model Data Format. (After Thome, 1991.)
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3. Expert Data

Expert data came from a computer printout that listed the four model-defining

numbers of each QVI model the current pattern matching algorithm (the expert) chose to

best-fit each observed QVI sounding. Figure 3.6 shows the E layer expert data. Figure

3.7 shows the F, layer expert data. Figure 3.8 shows the F2 layer expert data. Finally,

Figure 3.9 shows the F2 layer peak height expert data. The expert data shows the diurnal

variation of the various layers in a discretized manner.

4 .5 . . . ... .. ... ... . :.... ... .. . . .. . ... .. .... .. . . .. .. ... . .. . ... . . ... . ... ... ... ... .......... . . . . .

4 N O ... ........... .. .... .. .. . ...... . . . .. ............. ........ .. ........ ......... g

-I-
2 3 .5 . .. ... ... . ... ... ... i.. . ... ... .. . .. ... . ... ... ... ... ... ... ... .. .. ... .. . ..... .. .. .. . . . . . . . . .

€." 3 ® .oD ............. !a ) ..... ......... ....................... ................ . . . . . .

S-2.50) .................... 4XIM .... ........................... .......... ...............
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UJ

1 . . . . . . .... .. . . . . . . . . .......... ......... . . . .... ....... ....... .. . .............

0 .5 . . . . . . . . . . : . . .. .. . ... ... ... ... . ... . .. . . .. . ... . . . ... .. .... . .. ... ... ... .. ... ... . ... ...

5 10 15 20

Zulu Time (Hours)

Figure 3.6 E Layer Expert Data, 3 May 1990.
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Figure 3.7 F1 Layer Expert Data, 3 May 1990.
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C. EXPERIMENTAL SOUNDING NEURAL NETWORK

The experimental sounding neural network was trained on half the experimentally

recorded QVI sounding data. Then it was tested on the same training data to test the

networks ability to recall previously presented examples. Finally, the network was

tested on the other half of experimentally recorded QVI sounding data to check

independent test data performance. The specific steps required to perform this portion of

the research is given in the following paragraphs.

Before constructing the neural network, the training and test files were created.

There were 146 QVI peak soundings with corresponding expert data. Every other

sounding/expert-data pair was placed in the training file. The other sounding/expert-data

pairs were placed in the test file. That resulted in a 74 example training file and a 72

example test file.
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Figure 3.6 shows there are four soundings where the expert assigned an E layer

critical frequency of 0 MHz. Since the E layer does not normally disappear at night,

these values are possibly in error. Therefore, the four soundings in question were

removed from the training and test files for the majority of this investigation. However,

the effect of including the four questionable soundings in the training and test sets was

investigated and the results are reported in Chapter IV.

The revised training file had 72 records and the revised test file had 70 records.

Each record consisted of an input/output pair containing 902 items of data. The input

was an observed QVI sounding and the output was the sounding's corresponding expert

data. The input specifically consisted of 898 time delays (two time delays for each of the

first 449 frequencies recorded).

After creating the training and test files, the neural network was constructed with

the Backpropagation command in the NeuralWorks InstaNet menu. The QVI Peak

Sounding Neural Network was a fully connected, feedforward, backpropagation network

with two hidden layers. There were 898 processing elements in the input layer (one for

each time delay), 100 processing elements in the first hidden layer, 20 processing

elements in the second hidden layer, and four processing elements in the output layer.

The output layer processing elements returned the E, F1, and F2 layer critical frequencies

as well as the F2 layer peak height. The processing element activation function was the

sigmoid function and the learning rule was the generalized delta rule with momentum.

The network was now ready to be trained and then tested.

A problem that can occur with backpropagation networks is the problem of over

training. Over training a neural network results in some loss of the network's ability to

generalize. When over trained, the network performs well on the training data but poorly

on independent test data. The problem of over training is handled through the

NeuralWorks SaveBest training option. SaveBest runs train/test cycles and automatically

saves the best performing network based on the performance criteria selected. In this

investigation, the performance criteria selected was the Root Mean Square (RMS) error

for all processing elements in the output layer. (NeuralWare, 1993)
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Through the SaveBest training option, the network was trained 100,000 times on

the training file examples and tested every 1,000 training iterations on the test file

examples. The training rate was approximately 11,000 examples/hour. Examples were

presented until all examples were used once. Then another random pass was made

through the data set, etc. This continued until 100,000 examples were presented to the

network. The results are presented in Chapter IV.

D. MODEL NEURAL NETWORK

The model neural network was trained on ROTHR model QVI library data. Then

it was tested on all experimental data (142 soundings) to see how the model network's

output compared to the expert's output. The specific steps required to perform this

portion of the research is given in the following paragraphs.

The first item to be created for this neural network was the training file. ROTHR

QVI library data was contained on four files that were grouped by the range of F2 values

they contained. Figure 3.8 shows an F2 layer critical frequency range of 4-9 MHz for the

24 hour period. This range of F2 values was chosen as the training set range. There were

6,878 library models available with an F 2 layer critical frequency in the 4-9 MHz range.

Every other model in that range was placed in the training file resulting in 3,439

examples. A training example's input consisted of 400 model time delays (two time

delays for each frequency below 10 MHz) and its output was the model's four defining

parameters. The frequency range was decreased for this network to aid in reducing the

training time required.

Next, the test file was created. The test file consisted of all 142 QVI peak

soundings and corresponding expert data that were previously used for the QVI Peak

Sounding training and test files. A test record's input consisted of 400 measured time

delays (two time delays for each frequency below 10 MHz) and its output was the

sounding's corresponding expert data.

After creating the training and test files, the neural network was constructed with

the Backpropagation command in the NeuralWorks InstaNet menu. The ROTHR QVI

23



Library Neural Network is a fully connected, feedforward, backpropagation network

with two hidden layers. There are 400 processing elements in the input layer, (one for

each time delay), 100 processing elements in the first hidden layer, 20 processing

elements in the second hidden layer, and four processing elements in the output layer.

The output layer processing elements returned the E, F1, and F2 layer critical frequencies

as well as the F2 layer peak height. The processing element activation function was the

sigmoid function and the learning rule was the generalized delta rule with momentum.

Now the network was ready for training and testing.

Through the SaveBest training option, the network was trained 2,310,000 times

on the 3,439 training file examples and tested every 1,000 training iterations on the 142

test file examples. The training rate was approximately 20,000 examples/hour. Because

there were more than 2,500 training examples, NeuralWorks simply randomly selected

training examples until 2,310,000 examples were presented to the network. The results

are presented in Chapter IV.
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IV. RESULTS

This chapter presents the results found in this investigation. The experimental

sounding neural network's results are discussed first followed by the model neural

network's results.

A. EXPERIMENTAL SOUNDING NEURAL NETWORK

Figure 4.1 plots the experimental sounding network's output layer test set RMS

error as a function of training received. The optimal amount of training, defined as the

smallest output layer RMS error for the experimental sounding test set, is 5,000 training

iterations. Until 5,000 iterations, the network's test performance steadily improved.

Between 5,000 and 40,000 iterations, the network's test performance generally declined.

After 40,000 iterations, the network had essentially memorized the training set and little

additional learning was taking place.
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Figure 4.1 Test Set Error for the Experimental Sounding Neural Network.
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Figures 4.2 and 4.3 contrast the experimental sounding network's E layer train set

results for the optimally trained and over trained networks. The optimally trained

network (Figure 4.2) has learned the layer's diurnal variation with a train set critical

frequency RMS error of 0.1549 MHz. The over trained network (Figure 4.3), with an

RMS error of 0.0011 MHz, has essentially memorized the train set.

Figures 4.4 and 4.5 contrast the experimental sounding network's E layer test set

results for the optimally trained and over trained networks. The optimally trained

network (Figure 4.4) has learned the layer's diurnal variation with a test set critical

frequency RMS error of 0.3293 MHz. The over trained network (Figure 4.5) exhibits a

larger test set RMS error of 0.3453 MHz. This larger error is due to over training that

has degraded the network's ability to generalize.

The optimally trained network similarly exhibited superior performance on F1, F2 ,

and F2 layer peak test data. Therefore, only the optimally trained network's test results

for the Fl, F2, and F2 layer peak will be discussed.

Figure 4.6 shows the experimental sounding network's F, layer test set results.

The optimally trained network has learned the layer's diurnal variation with a test set

critical frequency RMS error of 0.6705 MHz. Because the train set included a probable

anomalous reading of 1 MHz at approximately 1 l00Z (shown in Figure 3.7), the

network's test set results show a corresponding cluster of responses near 1 MHz around

I1OOZ.

Figure 4.7 shows the experimental sounding network's F2 layer test set results.

The optimally trained network has learned the layer's diurnal variation with a test set

critical frequency RMS error of 0.4109 MHz. Because the network was trained on a

probable anomalous reading of 4.5 MHz at approximately 0200Z, the network's

responses are lower than they should be around 0200Z.

26



4.5
+ neural net

o expert +

+ rn-s enor 0. 1549 Mz + +÷

3.5 - 4+ + .-

+ +

3 -0 ..... o0 . .

+

+

o,. +

S00
Wu +

+

1.45
4 +4÷

0 5 10 15 20 25
ZuLu Trnis (Hours)
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Figure 4.8 shows the experimental sounding network's F, layer peak test set

results. The optimally trained network has learned the layer's diurnal variation with a test

set F2 layer peak height RMS error of 22.5358 km. The network exhibits declining

performance after 1700Z due to widely scattered expert data. Also, the network was

trained on three probable anomalous readings that were in the train set data. The

anomalies were 225 km at approximately 0200Z, 300 km at approximately 1930Z, and

325 km at approximately 2300Z. The network ignored the outlier at 0200Z, but it did

return a cluster of approximately 300 km responses around 1930Z and a cluster of

approximately 325 km responses around 2300Z
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Figure 4.8 Test Set (F2 Layer Peak) - Experimental Sounding Network.

5,000 training passes.

The effect of what is thought to be anomalous data can be seen in the following

comparison. Figure 4.9 shows an experimental sounding network that was trained and

tested on data that included suspected anomalous readings at approximately 1 lOOZ and

1700Z. Figure 4.10 shows an experimental sounding network that was trained and tested

on data that excluded the anomalous soundings. By comparing the two figures it may be

30



seen that the anomalous data caused the E layer critical frequency to drop below 1 MHz

between I 1OOZ and 1400Z and it also caused a group of low values around 1700Z.

Including the suspected anomalous readings resulted in an 18% larger RMS error in the E

layer critical frequency.
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Figure 4.10 Experimental Sounding Network Trained on Reduced Data Set.
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B. MODEL NEURAL NETWORK

Figure 4.11 plots the model network's output layer test set RMS error as a

function of training received. The optimal amount of training, defined as the smallest

output layer RMS error for all experimental data, is 10,000 training iterations. Until

10,000 training iterations, the network's test performance generally improved. Between

10,000 and 70,000 training iterations, the network's test performance generally declined.

Between 70,000 and 1,500,000 training iterations the network's test performance

generally improved but at a much slower rate than before. After 1,500,000 training

iterations, the network had essentially memorized the training set.
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Figure 4.11 Test Set Error for the Model Neural Network.

The lower graph is an expanded portion of the upper graph.
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Figures 4.12 and 4.13 contrast the model network's E layer test set (all

experimental data) results for the optimally trained and over trained networks. The

optimally trained network (Figure 4.12) correctly modeled the layer's diurnal variation

and had a test set critical frequency RMS error of 0.6665 MHz. This may imply that for

this layer the models are very good and the experimental data is accurate. The optimally

trained network performed much better than the over trained network on test data. The

over trained network (Figure 4.13) exhibits a much larger test set critical frequency RMS

error of 1.4188 MHz. This large increase in error is due to over training.

The optimally trained network similarly exhibited superior performance on F1 , F2,

and F2 layer peak test data. Therefore, only the optimally trained network's test results

for the F,, F2, and F2 layer peak will be discussed.

Figure 4.14 shows the model network's F1 layer test set results. The optimally

trained network has modeled the layer's general diurnal variation shape but the results do

not agree with the experimental data between approximately 0800Z and 1600Z. The

network returned values of approximately 1 MHz while the experimental data showed

values of 0 MHz. One possible explanation might be that there were not enough training

examples that matched the experimentally recorded conditions for that time frame. Only

20 out of 3,439 models in the train set had an F1 layer critical frequency of 0 MHz, an E

layer critical frequency of 1 MHz, and an F1 layer peak height above 350 km. Those

three conditions were experimentally recorded for the majority of the time between

0800Z and 1600Z. Therefore, the network was not trained much on a pattern that

occurred often in the test set.

Figure 4.15 shows the model network's F2 layer test set results. The optimally

trained network correctly modeled the layer's diurnal variation and had a test set critical

frequency RMS error of 0.5294 MHz. This may imply that for this layer the models are

very good and the experimental data is accurate.
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Figure 4.16 shows the model network's F, layer peak test set results. The

optimally trained network's responses show a general pattern reflecting the daily

variation of the F, layer peak height but they are widely scattered. Between 1700Z and

2400Z there are large changes in the expert data over short time frames. This may imply

there is a large uncertainty in the data during that time period. Therefore, the network's

error may be caused by the combination of a large uncertainty in the expert data and the

possibility that the modeling of the F2 layer peak may not be quite adequate. Modeling

the F2 layer peak is complicated by the fact that its behavior is not yet fully understood in

detail and must represent the net effect of many individual physical processes

(Ivanov-Kholodny, 1986).
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Figure 4.16 Test Set (F2 Layer Peak) - Model Network.

10,000 training passes.
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V. CONCLUSIONS

The experimental data neural network showed neural networks are excellent at

modeling ionospheric data for a given day. The continuous nature of neural networks

and their ability to interpolate provide for more accurate modeling than is possible when

using discrete data. The neural network was good at mastering the diurnal variations of

the ionosphere and all general trends were predicted.

It was shown that individual exceptions in the train set can influence the

network's output. Therefore, to teach a network the best general trend it is essential to

remove anomalous data from the train set.

The library data network showed neural networks are capable of learning many

different ionospheric models. The network agreed well with the E layer and F2 layer

experimental data. One interpretation of this may be that for those two layers the models

are very good and the experimental data is accurate.

The library data network's F1 layer performance showed the correct diurnal

variation pattern but the disappearance of the layer at night was not predicted. One

possible source of this error might have been a lack training examples like the measured

data.

The library data network's F2 layer peak performance showed a correct general

trend but the network's output data was quite scattered. There are two factors that may

be contributing to the error; a large uncertainty in the expert data, and the modeling of

the F2 layer peak may not be quite adequate.

This thesis has shown neural networks have tremendous potential in the field of

ionospheric modeling in general and ROTHR modeling in particular. Further research in

this area should be made. The development of a network that has been trained on data

taken during different seasons should be investigated. That could lead to the

development of a universal ionosphere neural network that would be provide a single

continuous model of the ionosphere.
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