
AD-A286 060

RE PAGE 2. 3. Recipient's Accession No

4. Title and Subtitle 5. Report Date

Real-Time Reconfiguration Study (Final Report) August 1994

6.

7. Author(s) 8. Performing Organization
Daiel Searles Rept. No.

9. Performing Organization Name and Address 10. ProjectiTask/Work Unit No.
Loral Federal Systems N/A
Manassas, Virginia

11. Contract(C) or Grant(G)

No.

(c)N00014-91-C-0129

(G)
12. Spomering Organization Name and Address 13. Type of Report & Period

Office of Naval Research Covered

14.

15. Supplementary Notes

16. Abstract (Limit: 200 words)

17. Document Analysis a. Descriptors

None

b. Identlflers/Open-Ended Terms

None

c. COSATI Field/Group

None
11. Availiblility Statement 19. Security Clas (This Report) 21. No. of Pages

Unclassified 23

20. Security Class (This Page) 22. Prie
Unclassified

1I94-34535

Real-Time Reconfiguration Study (Final Report)

Prepared by

Daniel Searles

Loral Federal Systems (formerly IBM Federal Systems)
Manassas, Virginia

Accpsiu csL

August 1994 NTIS C
DTIC T43

JlUSt if i;•.-•

By

Contract: Dgstrltr.tr,,,

Avad b. ,• -.
N00014-91-C-0129 Avai evd ,•r~ijo

Dist

Prparedfor

Office of Naval Research

Real-Time Reconfiguration Study (Final Reporl)

Trademarks

Interleaf Interleaf, Inc.

pSOS+, pROBE+. pHILE+, and pNA+ Integrated Systems Inc.

Sun Microsystems, Sun Workstations, Open Win- Sun Microsystems Incorporated
dows, Sun View, Sun-2. Sun-3, Sun-4,
Sun-386i, SPARC, SPARCSTation, SUN OS

UNIX AT&T Bell Lahoratorie%

Undaftes iv

Real -Time Reconfiguration Study (Final Report)

Abstract

The objective of the real - econfiguration study was to implement a physical test bed for testing and
evaluating a suite of reconfi zn algorithms. The software architecture was composed of an operating
system which supported reai .. ic programming concepts, a set of model tasks, control software, and the
suite of reconfiguration procedures. Rate Monotonic scheduling was used to schedule the execution of the
task set, as well as for testing the schedulabilit, of new configurations. Of primary concern was the execu-
tion time of the reconfiguration algorithms. The general problem of reconfiguration is similar to the bin
packing problem and is NP-Complete. This suite implements a concept of "disturbance", a cost associated
with moving a task from one CPU to another, to reduce execution time. The hardware platform was com-
posed of a VME chassis populated with S Motorola 68030 CPUs.

Undass•fed v

Real-Time Reconfiguration Study (Final Report)

Contents

Trademarks .. iv

Abstract ... v

Ac owleg ents viii

List of Symbols, Abbreviations and Acronyms ix

Sum m ary .. 1

Introduction ... 2

Overview .. 3
Hardware/Software Environment 3
Process M odel ... 3
Program N otes 6

Results and Discussion 8
Descriptions and Test Cases 1-3 .. 8
Test C ase 4 .. 11
Rate M onotonic Scheduling .. 13

Conclusions ... 15

References ... 16

Appendices .. 17
A. Sample Report from the Test Bed System 17

UnCdw16ed vi

Real-Tlime Reconfiguration Study (Final Report)

Figures

Figure 1 MVME-147 CPU/flansfer board arrangement in VME chassis 3
Figure 2 Root Process Design .. 5
Figure 3 M odel Process Design ... 6
Figure 4 Description of a mode description block 8
Figure 5. Standard initial system configuration for test cases 1-3 9
Figure 6 Reconfiguration Case 1: After 9
Figure 7 Reconfiguration Case 2: After 10
Figure 8 Reconfiguration Case 3: After 10
Figure 9 Sample Communication Graph 11
Figure 10 Test Case 4: Before .. 12
Figure 11 Test Case 4: After .. 13

Undasafed vii

Real-Time Reconfiguration Study (Final Report)

Acknowledgments

The initial implementations of the RECONF, RFFD, and MFFD algorithms were done by Gary
Cornwell.

The burning of ROM chips and the construction of the VME chassis were done by Mark Jones.

unclasaifed viii

Real-Time Reconfiguation Study (Final Report)

List of Symbols, Abbreviations and Acronyms

CPU Central Processing Unit

FFD First Fit Decreasing

ONR Office of Naval Research

OS Operating System

RMS Rate Monotonic Scheduling

Unclasified ix

Real-Time Reconfiguration Study (Final Report)

Summary

This report documents the implementation and evaluation of the reconfiguration algorithms developed
for IBM b- Dr. John Lehoczky and Lui Sha of Logic Associates. The algorithms were implemented on a
standalon,m system for testing and debugging. Then the algorithms, along with a model task set and control
software, were transported and integrated on a test bed composed of a VME chassis and 5 Motorola 68030
CPUs. The net result verified that the test bed performed as predicted by the algorithms as long as the set
of tasks were independent.

Undassiied

Real-Time Reconfigurafion Study (Final Report)

Introduction

This report documents the effort to implement a set of reconfiguration algorithms developed for IBM
by Dr. John Lehoczky and Lui Sha and evaluate their performance. The reconfiguration problem is the prob-
lem of finding a way to place a set of modes (a mode is a set of processes) into a set of CPUs without exceed-
ing CPU, memory, or other system constraints such that all hard-deadline response requirements are met.
Usually a reconfiguration problem will start with a working system (mode to CPU mapping), and a CPU
is removed or disabled, causing a need to redistribute the modes among the remaining CPUs. This type of
reconfiguration has potential use in systems where it is critical that processing continue in the presence of
failed or disabled CPU resources in such a way that critical system response requirements are satisfied..

In Phase I of the study IBM established the process model for a sample system problem. This included
a definition of how many concurrent system modes would be active, how many processes comprised each
mode, whether processes could be co-resident with certain other processes, what the functional criticality
of the modes were, etc. Also, included in Phase I was the design of a test bed. During Phase HI, IBM was
to implement the algorithms on a physical network/processor test bed, to evaluate performance of a live
system, relative to the theoretical performance predicted by the algorithms.

The algorithm set consists of five algorithms: RECONF, RFFD, MFFD, CLUSTER, and SCHED. RE-
CONF is the controller. It initializes the system, accepts user inputs, and calls the other algorithms as need-
ed. RFFD stands for Reverse First Fit Decreasing, and is responsible for computing which modes may be
moved during a reconfiguration attempt. MFFD stands for Modified First Fit Decreasing. This algorithm
places movable modes into CPUs according to their characteristics and resources. CLUSTER is used if the
results of MFFD do not satisfy interprocess communications constraints. SCHED, used when processes are
being placed into CPUs, is used to determine if the set of processes assigned to a CPU will all meet their
deadlines under the Rate Monotonic Scheduling paradigm. Other constraints consist of CPU utilization,
memory utilization, pseudo resources, communications channel bandwidth and disturbance limitations.

In the mode/process model used on the test bed, -odes are composed of one or more processes, and the
processes may pass data among themselves (via TCP/IP sockets). Rate Monotonic Scheduling, however,
requires that the set of processes be independent (meaning no process can effect the execution of another
process except by higher priority preemption) before it can guarantee that all the processes will meet their
deadlines. If the socket calls are made non-blocking so that the processes are indepcndent, issues regarding
data integrity and synchronization are raised. For this report no interprocess communication requirements
were defined in any of the test cases.

Since the problem of reconfiguration is NP-Complete (similar to bin packing), exhaustive exploration
of all possible combinations becomes computationally prohibitive at some point, especially if encountered
in a real-time environment. The algorithms developed do not attempt to test all possible combinations, but
rather try to satisfy a set of criteria. The criteria used by these algorithms is based on a concept of "distur-
bance". Each mode is assigned a disturbance value by the designers of the system which approximates the
cost of suspending a mode, moving it to another CPU and reactivating it. The concept is extended slightly
to handle non-linear cases, such as when the cost of moving a pair of modes is more than the sum of the
costs of the individuals. The algorithms go one step further, and also try to minimize future disturbance.
Future disturbance is the theoretical cost of reconfiguring a system again, due to another failure. Since not
all possible combinations are checked, the algorithms may fail to generate any configuration, even though
a valid configuration exists, or they may not compute the best configuration possible. But the approach tak-
en by the algorithms attempt to do the best job possible considering the constraints.

s2Oncdassifiedl2.

Real-Time Reconfiguration Study (Final Report)

Overview

Hardware/Software Environment

The real-time reconfiguration study was supported by a number of platforms and environments during
its development. The target development and test platform consisted of the following components:

"* SUN 3/470, with 32 Mb memory. Sun OS 4.0.3.
"* Five Motorola MVME-1475A-1 or MVME--1475A-2 CPU boards mounted in a

VME chassis.
"• Five VME transfer cards supporting Ethernet interfaces.

"* Ethernet to connect Sun development/Test platform with CPU boards.

The five CPU boards and transfer cards were installed in a single VME chassis. Figure I on page 3 show
how the boards were arranged. Note that the speed of the CPUs on the 1475A-1 and 1475A-2 are not the
same, but this was accounted for in the tests. The reconfiguration algorithms require a set of identical CPUs.

For the operating system on the CPU boards, pSOS from Integrated Systems, Inc. was used. It supports
priority tasking with preemption, remote debug, and TCP/IP sockets. One of the major design goals was
to restrict interprocess communication to TCP/IP sockets, and avoid communications via the VME back
plane. So, although the initial test bed consisted of a single VME chassis, the VME back plane was not
utilized for interprocess communication purposes.

C rT C T[C C C T "7 T
P P P P t t
U a U a U U U a a a

n n n n n
s s S s 5

Ethernet

Figure 1 MVME-147 CPU/Transfer board arrangement in VME chassis

Process Model

Under the pSOS operating system there is a 'C' function designated as the "root" which is initialized to
run when a program is down loaded to a CPU board. This task is also initialized to run at the highest priority
available. In the implementation of the reconfiguration algorithms, the root task is used as a task controller

Undassied 3

Real-Time Reconfiguration Study (Final Repxrn)

for the other processes assigned to that particular CPU. One CPU is designated the master which also has
the responsibility for polling the other CPUs for detecting CPU failure, and computing and transferring re-
configuration data. The other CPUs are thus considered slaves. One of the responsibilities for the root pro-
cess in each CPU is to initiate the complete set of processes. Each process then determines if it should be
executing or not based on which CPU it is in. In this implementation a single flexible process model is used
to simulate process execution. The code for each process is identical, but execution is controlled by a table
of parameters. This method allows a process to initiate data transfers, receive data transfers or both or nei-
ther, to/from any other process in the system. By consulting the global configuration data, each process can
determine if the process with which it is to interact is located on the same CPU or not and to act appropriately.
The following design segment is for the root controlling task.

/* Design for the Root control process */
Root(MyCPU)
Begin

Initializý -race tables, local variables, the network interface
Read initial CPU configuration data
Create set of generic processes

Open sockets to root processes in other CPUs

Loop forever
If this root process is in the master CPU
Then

Send 'query' messages to other CPUs
Receive responses from other CPUs
If new CPU failure detected
Then

Suspend all generic processes
Send 'starting reconfiguration' message to other CPUs
Execute reconfiguration algorithms
Send new configuration data to other CPUs
Restart and resume generic processes

End if
Sleep 10 seconds

Else /* This is a root process in a slave CPU */

Wait for message from root master CPU
If

'query' message received
Then

Send 'Query response'
Else

Unclassified

Real-Time Reconfiguration Study (Final Report)

/* 'starting reconfiguration' message received */
Suspend all generic processes
Receive new configuration data
Restart and resume generic processes

End if
End if

End loop forever
End Root

Figure 2 Root Process Design

The following design segment is for the generic process model. The calculation of the deadline is com-
puted as pi ocess period plus the previous deadline. This method of computing a deadline maintains an envi-
ronment where Rate Monotonic Scheduling can be used. At the bottom of the cycle of the model process,
the current time is queried. When current time is before the computed deadline time, the task is suspended
until the deadline to maintain its period. If the process has run beyond its deadline, a deadline error is re-
corded, and the task is not suspended to minimize the delay until the start of the next cycle. This is one simple
method that maintains a Rate Monotonic Scheduling Structure. The pSOS operating system supports tasks
with priorities and task preemption.

/* Standard multi-purpose Client/Server task model */
GenericProcess(Procid)
Begin

Initialize counters, trace data, and other local variables.
Block here if this process is not assigned to this CPU.
Compute initial deadline

Loop forever
If CPU configuration has changed
Then

Close open sockets
If input is from a remote CPU
Then

Open socket to remote CPU
End if
If output is to a remote CPU
Then

Open socket to remote CPU
End if

End if

If input is from a remote CPU
Then

Read data from socket
End if

Perform CPU intensive processing, to simulate expected CPU usage.

If output is to a remote CPU
Then

Write data to socket
End if

Unclassified 5

Real-Time Reconfiguration Study (Final Report)

Compare deadline time to current time
If deadl:.ne passed
Then

Record deadline passed Error
End If

Compute new deadline time
If new deadline time has not been passed
Then

Sleep until deadline time
End If

Block here if this process is not assigned to this CPU
End Loop forever

End Generic-process

Figure 3 Model Process Design

Program Notes

The above designs are only one of many possible designs. Several factors are assumed or over looked
in favor of simplifying the implementation. Some, but not all of the factors include:

"* No accounting for process state data. When a process is moved from one CPU to
another, it will lose its state data unless some extra action is taken.

"* Reconfiguration stops and restarts all generic processes, even those unaffected by
the reconfiguration. Ideally, only those processes actually relocated should be
effected.

"* At most one possible input and one possible output per process cycle. The pa-
rameters which control input/output allow for skipping cycles to allow processes
with different periods to transfer data (as long as one period is a multiple of the
other). Note no input/output requirements were defined to allow the process set
to remain independent.

"* No CPU time is used to move or copy data into/out of a process when its input/
output is to a process in the same CPU.

"* Each process uses it rated percent CPU each cycle. The CPU used by a process is
really the sum of the 'cPu intensive processing' phase plus the time spent
getting or sending input or output data. Since the same number is used to control
the length of the 'CPU intensive processing' phase as which defined the
CPU usage of the process, the time spent getting or sending input or output data is
not accounted for.

For testing, a data file containing the initial configuration is the source of input for the reconfiguration
program. Compiler flags allow the development of slightly different versions of the program. One version
allows the name of the input data file to be a command line parameter. Another, planned for use ot) the test
bed, gets its input data from a 'C' code program fragment. This is required because file I/O is not supported
in our test bed implementation. The compiler flags also allow for various levels of debug capability by in-
cluding or excluding 'printfo' statements. The test bed implementation is not expected to support 'printfo'
capability, so those functions are also excluded in the test bed version. To monitor the execution of the pro-
cesses down loaded to the CPU modules, the pSOS interactive debugger is used. Every attempt was made

Unclassified 6

Real-Time Reconfigurauon Study (Finad ReMp)r

to minimnize overhead associated with the monitoring of the execution of the processes. such as storing trace
data in memory while the tests were executing and reviewing them afterwards.

The root process, and a system network process have the highest priority on the test bed. It is unknown
what the exact nature of the network process is other than it processes incoming and outgoing network pack-
ets. Its operation is considered overhead. The root process also has a priority higher than any of the generic
processes. The root process, however, is not following the RMS rule where its priority and period should
be inversely proportional. Currently it polls the other CPUs once every 10 seconds. During normal opera-
tion of a test, its processing is also considered overhead. During reconfiguration, which may consume a
substantial amount of CPU, the reconfiguration algorithms run at the root level of priority. But, since all
processes are suspended, this is not a concern. If, however, the processing of the reconfiguration data is
improved to the point where only processes affected by a change are disrupted, this design will have to be
changed to accommodate this processing. Reconfiguration processing is acyclic by nature, but, in order to
not disrupt the currently executing processes in the same CPU, it should be run at a very low priority.

Probably the biggest departure from real world systems is the problem caused by real world sets of pro-
cesses not being truly independent. As an initial step it was appropiate to assume independence as this will
provide a baseline against which future, more complex studies may be measured. Even when the process
set is made independent by using non-blocking reads/writes, new questions concerning data integrity and
synchronization occur. Typically system designers "hardcode" a time line in their systems so they can verify
data flows at the appropriate times and rates. These systems rarely account for changes in CPU resources
or even have the ability to relocate processes. Investigation into the problems and solutions of data integrity
and synchronization with independent processes was beyond the scope of this study.

Unassified 7

Real Tinnsc Rc\todiguratim Stud• hu-inul Rekpwll

Results and Discussion

Descrptions and Test Cases 1-3

The following figure explains the notation used to represent CPUs. mode%, and processes.

MIM i

35 1

310 80 M6

Perceent_ Ctu7 15 2

- Tota I

Percent Memory
\Total Percent CPU

Percent
Process Memory

Period

Figure 4 Description of a mode description block.

A system is composed of a set of CPUs and a set of modes. A mode is comprised of a set of related pro-
cesses (one or more). The processes are depicted on the left side of the mode description block. Each
compartment represents a separate process and includes data on the processe's CPU usage, memory require-
ments, period of execution and a unique id. The middle portion shows total CPU/memory utilization, and
the disturbance factor associated with the mode. The right edge shows the mode id. The algorithm set sup-
ports pair-wise and triple-wise disturbance factors among modes but no such factors were defined for tests
in this report.

The first example (figure 5 on page 9) shows the standard test case consisting of 5 CPUs, 8 modes and
19 processes. The fifth CPU is empty and considered a spare. For cases where only one of the other CPUs
(except CPU 0) fail, the modes and processes of the failed CPU are merely relocated to the spare. In the
test bed system CPU 0 is used to detect failures in the other CPUs and control reconfiguration and is not
allowed to fail. The ratio at the bottom of each CPU is the total CPU/total memory utilization for that CPU.

The first set of reconfiguration examples are generated from the standard test case by failing CPU I and
CPU 4 (the spare), then CPU 2 and the spare, and then CPU 3 and the spare. Each of these cases forces the
processes in the failed CPUs to be distributed to other still functioning CPUs. The reconfiguration algo-
rithms are run and they attempt to minimize total system disturbance, but also respect CPU resources and
the Rate Monotonic schedulability of the resulting task sets.

Unassified
8

Rcal 1Irnc RLmonfiguration SUNKv (Final Ri)n)

CPU 0 CPU I CPU 2 CPU 3 CPU 4

15 M 10 U M4
1 ,79 7 10 3 8 M61 ", A56 is

10 85 MO " (4(6 0/0 (Spare)8 8 M2 M5 " : 15

256 15 10 507MS

10r_ C3o '2 -20 29 M7
L22 10

56/25 8 22 M3 60/55
67/25

F14 10

48/40

Figure 5. Standard initial system configuration for test cases 1-3.

Test case 1, CPUs 3 and 4 are marked as failed, and the resulting configuration is shown in figure 6 on
page 9.

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4

282 10 ' 113 Q 5-
m 18 M1 10 M4
132r--2- I7 L9 6.. 35

"1 56 M O A " - - 35

10 8 5 40 5 0/0 0/0 (Spare)1 -68 M2 3 50 M5
5 6 25 r 6 15 50 -M

102 105 28 20
10r, (30-

Xi M7i 8 M7 22 M3 60/55
ill ~ iiiill , -

1 10
85/35

1138 M6

86/55

Figure 6 Reconfiguration Case 1: After

Test case 2, CPUs 2 and 4 are marked as failed, and the resulting configuration is shown in figure 7 on

page 10. In this case the two processes of mode 5 are split apart and placed in different CPU~s.

Unclassified9

Real-Time Reconfiguration Study (Final Report)

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4

1r---18 Ml 1s~0 3 8 M132 157l 38 M6

A 56 MO&
10 5 8 6 0/0 6 0/0 (Spare)

68 9 M21
1615 1 10

1 25 3 CI
10 30 29 M7

22 2 10
-M- 8722 M3

_j 4 1010 M5
96/30 24 10 . .Is..

10 M 77/4)

58/75

Figure 7 Reconfiguration Case 2: After

Test case 3, CPUs 1 and 4 are marked as failed, and the resulting configuration is shown in figure 8 on
page 10.

CPU 0 CPU 1 CPU 2 CPU 3 CPU 4

28 2410 -

132 635 M 10 L- 38 M6S56 M / L

1050/0 403 6115 (/0 (Spare)

5 -1025 10o2 178 1
29 M7

.. 1. 1 " 10

5~ ~~~~. SO ,2 •.--:. t~

75/40

82/65

Figure 8 Reconfiguration Case 3: After

In addition to the mode/process definitions, each set of processes may have a communication graph de-
picting the source and destination of data flows. For the set of modes/processes depicted in figure 5, a sample
communication graph is shown in figure 9 on page 11. In a complete communication graph, the directed
arcs would be augmented with bandwidth data. Communication graphs are not required, but if a graph is

Urdassffied 10

Reai-Timc Reconfiguration Study (Final Report)

de~firMd for a reconfiguration problem, it is checked against communication channel bandwidth limitations.
Wiien bandwidth limitations are exceeded, the clustering algorithm is used to check for another configura-
tion which may exceed disturbance limitations, but not exceed channel bandwidth limits.

CPU 0 CPU I CPU 2 CPU 3

MO 9N

0 0 4

2 ~ M26

6 2

3 7

M3
8

7

9

Figure 9 Sample Communication Graph

Test Case 4

The fourth test case demonstrates the case where greater than zero additional disturbance is required, and
a mode from a non-failed CPU must be relocated. The before configuration is shown in figure 10 on page
12. The initial configuration is very similar to the initial configuration of the test cases above, only the per-
cent CPU of process 0 is changed (from 28% to 33%).

11Uncdassified

Real-T•me Reconfiguration Study (Final Report)

CPU 0 CPU I CPU 2 CPU 3 CPU 4

10 Q 353 522 15Ujjjj
18 M! 10 M47 -,, 10 38 M613 2 1-535"- ---- l

61 MO F9
10 " 8 6 40 6 0/0 (Spare)6 8 M2 1302 0 18 15

-" 10 30• [29 M7

61/25 -22 M3 60/55 22

"67/25
140I

48/40

Figure 10 Test Case 4: Before

CPU 2 is marked as failed, and modes 4 and 5 must be relocated. This system cannot be reconfigured
without incurring the additional disturbance cost of relocating a mode from a non-failed CPU. Mode 2
which started out in CPU I was moved to CPU3. Mode 4 from failed CPU 2 was moved to CPU 1, and mode
5 was split across CPUs 0 and 1. The results are shown in figure 11 on page 13.

od i 12

Real-Time Reconfigurauor Study (Final Report)

CPU 0 CPU I CPU 2 CPU 3 CPU 4

33 10U35 22 C15
2 1•8 MI 1 38 MM

9 l
"6 1 M O - 6 0 (a

10 H- 10 30 t3 0/0 6 1 0/0 (Spare)
S8 22 M3 1 1

5 10 29 M7

S14 10 2,10

10 40 U
40.MS . M2

71/40 5 1
5 75/40

10 4
7 . .

90/65

Figure 11 Test Case 4: After

Rate Monotonic Scheduling

Rate Monotonic Scheduling is a scheduling algorithm. When a set of tasks are being scheduled according
to its rules, it is possible to determine the schedulability (whether or not all the tasks will meet their dead-
lines) by checking their periods and CPU utilization. RMS algorithm requires that the priority of each task
be inversely proportional to its period. The theorem restated here is:

RMSI: A set of n independent preemptive periodic tasks scheduled by the rate monotonic
algorithm will always meet its deadlines, for all task phasings, if:

C, C, I+ ... + < U(n) = n(2 - 1)

U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
U(2) = 0.828 U(5) = 0.734 U(8) = 0.724
U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

U(-) In 2 0.69

Where:
C, = Task Computation Time
T', = Task Periodicity
U, = Task Utilization

RMS 1 is conservative, and if it doesn't show schedulability, RMS2 can be used for a more detailed test:

RMS2: For a set of independent, preemptive periodic tasks scheduled by RMS algorithm,
start all tasks at t=O. If each meets its first deadline, the deadlines will always be met.

Undasaified 13

Real-l•ime Reconfiguration Study (Final Report)

Applying RMS 1 to CPU 1, test case 2 after, results with:

Task4: C/T=.Il .11 < U(1)= 1.0

Task 10:C/T = .03 .14 < U(2) = 0.828

Task 11 :CLT = .07 .21 < U(3) = 0.779

Task 7: C/"=.10 .31 < U(4) = 0.756

Task 8: C/T = .08 .39 < U(5) = 0.743

Task 5: C/IT = .07 .46 < U(6) = 0.734

Task 9: C/T = .04 .50 < U(7) = 0.728

Task 12:C/T = .40 .90 > U(8) = 0.724 Fails.

Since RMS 1 fails to show that the tasks can successfully complete their processing by their deadlines,
RMS2 can be used to perform a check with greater detail. Note that the longest period of any task in CPU
1 is 30, and applying RMS2 to test case 2, CPU 1:

4: a

10: a a a a
11: * 0
7: - m
8:
5: wt
9: t •m

12: aam M C
-.. .= -" l

0 3.6 7.2 10.8 14.4 18 21 .6 '25.2 28.8
tick - .36 time units

.33 x 10 = 3.3

.18 x 5 = 0.9 The first 7 tasks consume 16.48 time units of the 30.42 x 5 = 2.1 time unit frame. This leaves 13.52 time units for the

.42 x 5 = 2.1 last task, which only requires 12.00. The diagram can-

.70 x 5 = 3.5 not show all the blocks needed due to scaling and

.56 x 4 = 2.24 round off errors.

.69x4 = 2.76

.56x3 = 1.68

16.48

The RMS analysis performed above predicts that the set of processes will always meet their deadlines,
and is a sample of the processing performed on the test bed during a reconfiguration calculation. Execution
on the test bed demonstrated that the process set performed as expected in all test cases.

urdassmd 14

Real-Time Reconfiguration Study (Final Report)

Conclusions

One interesting conclusion was a potential problem which may occur under the described reconfigura-
tion algorithm set when future disturbance is considered. Excluding a configuration based on its future dis-
turbance may exclude the only possible reconfiguration which satisfies all other constraints. This results
in a false failure. A simijar circumstance may occur when pseudo resources are strictly adhered to. A change
is needed to allow a reconfiguration to occur even though its future disturbance score is too high or pseudo
resource limit is passed, when that is the only reconfiguration where all the CPU and memory resources
(real) are satisfied.

Using Rate Monotonic Scheduling to verify that the task set is schedulable and will meet all its deadlines
has the potential to execute for longer than may be desirable. If only the conservative check is performed
then execution time is bounded by the size of the task set. This alone is very efficient at verifying the schedul-
ability of a set of tasks. But using only the conservative check leaves open the possibility of excluding a
schedulable configuration. Performing the second check will prevent that possibility but at the cost of a
potentially CPU intensive algorithm. The algorithm used in the test bed effectively identifies all the times
when a task is started, stopped and preempted, for all tasks in a CPU for the period of the longest task in
that CPU. The bound on its running time is O(NP) where N is the number of tasks and P is the greatest task
period.

Using Rate Monotonic Scheduling has another drawback in that it applies only to sets of independent
tasks. Tasks which pass data among themselves and spend time waiting for data are not independent. On
the other hand tasks which communicate usually have periods which facilitate the exchange of data. This
leads to a more constrained problem than the general problem of schedulability, possibly leading to simpler
scheduling paradigms. The test cases in this report demonstrated that the test bed performed as expected
when the tasks were independent.

Finally, the paradigms and algorithms used in the test bed need to be designed into a system from its be-
ginning. Trying to convert an existing system to take advantage of them is likely to be difficult because of
the operating environment needed. Task preemption, non-blocking system calls, control over the priority
of tasks, and mechanisms for communicating configuration information to effected tasks all effect the archi-
tecture and design of a system and need to be considered before the system is implemented.

urs 15

Real-Time Reconfiguration Study (Final Report)

References
Advanced Distributed System Control Study - Reconfiguration Methodology, Final report for phase 1: July 25 to Decem-
ber 31, 1983. Data item DS001 in IBM document 83-DB5--0007, for the contract Distributed System Reconfiguration
& IBM Purchase Order number YD-289660.

Advanced Distributed System Control Study - Reconfiguration Methodology, Final report for phase 1: July 25 to Decem-
ber 31, 1984. Deliverable technical report for the contract Distributed System Reconfiguration Study. IBM Purchase Order
number 283261 B-YD.

Ada Real-lime Programming: A Seminar, August 16, 1990. C. Douglass Locke, Thomas C. Ralya and David R. Vogel,
IBM Federal Sector Division, Owego, NY 13827.

Integrated Systems, Inc.
3260 Jay Street
Santa Clara, California 95054
tel: (408) 980-1500
fax: (408) 980-0400

onsed 16

Real-Time Reconfigurauon Study (Final Repxon)

Appendices

A. Sample Report from the Test Bed System

The following is an excerpt from a report generated by executing test case 2 on the test bed system. At
about the 65 time unit mark, CPU 2 was disabled. CPU 0 picked up process 12 and all the tasks started
executing again around time unit 100. The test ran for approximately 200 time units before the report was
generated.

Proc:t000**** CPU Id 0 Period: 2 Percnt:28 Loops:80 Misses: 0
n Start Finish Deadline Margin Missed Cstart Cstop
0 211 267 411 144 0 211 267
1 411 466 611 145 0 411 466
2 611 666 811 145 0 611 666
3 811 866 1011 145 0 811 866
4 1011 1066 1211 145 0 1011 1066
5 1211 1267 1411 144 0 1211 1267
6 1411 1466 1611 145 0 1411 1466
7 1611 1666 1811 145 0 1611 1G66
8 1811 1866 2011 145 0 1811 1866
9 2011 2066 2211 145 0 2011 2066

10 2211 2266 2411 145 0 2211 2266
11 2411 2466 2611 145 0 2411 2466
12 2611 2666 2811 145 0 2611 2666
13 2811 2866 3011 145 0 2811 2866
14 3011 3066 3211 145 0 3011 3066
15 3211 3266 3411 145 0 3211 3266
16 3411 3466 3611 145 0 3411 3466
17 3611 3666 3811 145 0 3611 3666
18 3811 3866 4011 145 0 3811 3866
19 4011 4066 4211 145 0 4011 4066
20 4211 4266 4411 145 0 4211 4266
21 4411 4467 4611 144 0 4411 4467
22 4611 4666 4811 145 0 4611 4666
23 4811 4866 5011 145 0 4811 4866
24 5011 5066 5211 145 0 5011 5066
25 5211 5266 5411 145 0 5211 5266
26 5411 5467 5611 144 0 5411 5467
27 5611 5666 5811 145 0 5611 5666
28 5811 5866 6011 145 0 5811 5866
29 6011 6066 6211 145 0 6011 6066
30 6211 6266 6411 145 0 6211 6266
31 6411 6466 6611 145 0 6411 6466
32 10183 10238 10383 145 0 10183 10238
33 10383 10438 10583 145 0 10383 10438
34 10583 10638 10783 145 0 10583 10638
35 10783 10838 10983 145 0 10783 10838
36 10983 11038 11183 145 0 10983 11038
37 11183 11239 11383 144 0 11183 11239
38 11383 11438 11583 145 0 11383 11438
39 11583 11638 11783 145 0 11583 11638
40 11783 11838 11983 145 0 11783 11838
41 11983 12038 12183 145 0 11983 12038
42 12183 12239 12383 144 0 12183 12239
43 12383 12438 12583 145 0 12383 12438

Uns 17

Real-Time Reconfiguration Study (Final Report)

44 12583 12638 12783 145 0 12583 12638
45 12783 12838 12983 145 0 12783 12838
46 12983 13038 13183 145 0 12983 13038
47 13183 13238 13383 145 0 13183 13238
48 13383 13438 13583 145 0 13383 13438
49 13583 13638 13783 145 0 13583 13638
50 13783 13838 13983 145 0 13783 13838
51 13983 14038 14183 145 0 13983 14038
52 14183 14238 14383 145 0 14183 14238
53 14383 14438 14583 145 0 14383 14438
54 14583 14638 14783 145 0 14583 14638
55 14783 14838 14983 145 0 14783 14838
56 14983 15038 15183 145 0 14983 15038
57 15183 15238 15383 145 0 15183 15238
58 15383 15439 15583 144 0 15383 15439
59 15583 15638 15783 A45 0 15583 15638
60 15783 15838 15983 145 0 15783 15838
61 15983 16038 16183 145 0 15983 16038
62 16183 16238 16383 145 0 16183 16238
63 16383 16439 16583 144 0 16383 16439
64 16583 16638 16783 145 0 16583 16638
65 16783 16838 16983 145 0 16783 16838
66 16983 17038 17183 145 0 16983 17038
67 17183 17238 17383 145 0 17183 17238
68 17383 17438 17583 145 0 17383 17438
69 17583 17638 17783 145 0 17583 17638
70 17783 17838 17983 145 0 17783 17838
71 17983 18038 18183 145 0. 17983 18038
72 18183 18238 18383 145 0 18183 18238
73 18383 18438 18583 145 1 18383 18438
74 18583 18638 18783 145 0 18583 18638
75 18783 18838 18983 145 0 18783 18838
76 18983 19038 19183 145 0 18983 19038
77 19183 19238 19383 145 0 19183 19238
78 193b3 19438 19583 145 0 19383 19438
79 19583 19638 19783 145 0 19583 19638
80 0 0 19983 0 0 0 0

Proc:tOO1**** CPU Id 0 Period: 2 Percnt:13 Loops:80 Misses: 0
n Start Finish Deadline Margin Missed Cstart Cstop
0 267 293 467 174 0 267 293
1 467 492 667 175 0 467 492
2 667 692 867 175 0 667 692
3 867 892 ±067 175 0 867 892
4 1067 1092 1267 175 0 1067 1092
5 1267 1293 1467 174 0 1267 1293
6 1467 1492 1667 175 0 1467 1492
7 1667 1692 1867 175 0 1667 1692
8 1867 1892 2067 175 0 1867 1892
9 2067 2092 2267 175 0 2067 2092

10 2267 2292 2467 175 0 2267 2292
11 2467 2492 2667 175 0 2467 2492
12 2667 2692 2867 175 0 2667 2692
13 2867 2892 3067 175 0 2867 2892
14 3067 3092 3267 175 0 3067 3092
15 3267 3292 3467 175 0 3267 3292

unlassfd 18

S

Real- Time Reconfiguration Study (Final Report)

16 3467 3492 3667 175 0 3467 3492
17 3667 3692 3867 175 0 3667 3692
18 3867 3892 4067 175 0 3867 3892
19 4067 4092 4267 175 0 4067 4092
20 4267 4292 4467 175 0 4267 4292
21 4467 4493 4667 174 0 4467 4493
22 4667 4692 4867 175 0 4667 4692
23 4867 4892 5067 175 0 4867 4892
24 5067 5092 5267 175 0 5067 5092
25 5267 5292 5467 175 0 5267 5292
26 5467 5493 5667 174 0 5467 5493
27 5667 5692 5867 175 0 5667 5692
28 5867 5893 6067 174 0 5867 5893
29 6067 6092 6267 175 0 6067 6092
30 6267 6292 6467 175 0 6267 6292
31 6467 6492 6667 175 0 6467 6492
32 10238 10264 10438 174 0 10238 10264
33 10438 10464 10638 174 0 10438 10464
34 10638 10664 10838 174 0 10638 10664
35 10838 10864 11038 174 0 10838 10864
36 11038 11064 11238 174 0 11038 1!.564
37 11239 11265 11438 173 0 11239 11265
38 11438 11464 11638 174 6 11438 114r4
39 11638 11664 11838 174 0 11638 11664
40 11838 11864 12038 174 0 11838 11864
41 12038 12064 12238 174 0 12038 12064
42 12239 12264 12438 174 0 12239 12264
43 12438 12464 12638 174 0 12438 12464
44 12638 12664 12838 174 0 12638 12664
45 12838 12864 13038 174 0 12838 12864
46 13038 13064 13238 174 0 13038 13064
47 13238 13264 13438 174 0 13238 13264
48 13438 13464 13638 174 0 13438 13464
49 13638 13664 13838 174 0 13638 13664
50 13838 13864 14038 174 0 13838 13864
51 14038 14064 1423F 174 0 14038 14064
52 14238 14264 14438 174 0 14238 14264
53 14438 1446! ±4638 174 0 14438 14464
54 14638 14664 14838 174 0 14638 14664
55 14838 14864 15038 174 0 14838 14864
56 15038 15064 15238 174 0 15038 15064
57 15238 15264 15438 174 0 15238 15264
58 15439 15465 15638 173 0 15439 15465
59 15638 15664 15838 174 0 15638 15664
60 15838 15864 16038 174 0 15838 15864
61 16038 16064 16238 174 0 16038 16064
62 16238 16264 16438 174 0 16238 16264
63 16439 16464 16638 174 0 16439 16464
64 16638 16664 16838 174 0 16638 16664
65 16838 16864 17038 174 0 16838 16864
66 17038 17064 17238 174 0 17038 17064
67 17238 17264 17438 174 0 17238 17264
68 17438 17464 17638 174 0 17438 17464
69 17638 17664 17838 174 0 17638 17664
70 17838 17864 18038 174 0 17838 17864
71 18038 18064 18238 174 0 18038 18064

s 19

Real-Time Reconfiguration Study (Final Report)

72 18238 18264 18438 174 0 18238 18264
73 18438 18464 18638 174 0 18438 18464

74 18638 18664 18838 174 0 18638 18664
75 18838 18864 19038 174 0 18838 18864
76 19038 19064 19238 174 0 19038 19064
77 19238 19264 19438 174 0 19238 19264
78 19438 19464 19638 174 0 19438 19464
79 19638 19664 19838 174 0 19638 19664
80 0 0 20038 0 0 0 0

Proc:t002**** CPU Id 0 Period: 5 Percnt:10 Loops:32 Misses: 0
n Start Finish Deadline Margin Missed Cstart Cstop
0 293 343 793 450 0 293 343
1 793 924 1293 369 0 793 924
2 1293 1343 1793 450 0 1293 1343
3 1793 1924 2293 369 0 1793 1924
4 2293 2343 2793 450 0 2293 2343
5 2793 2924 3293 369 0 2793 2924
6 3293 3342 3793 451 0 3293 3342
7 3793 3924 4293 369 0 3793 3924
8 4293 4342 4793 451 0 4293 4342
9 4793 4924 5293 369 0 4793 4924

10 5293 5342 5793 451 0 5293 5342
11 5793 5924 6293 369 0 5793 5924
12 6293 6342 6793 451 0 6293 6342
13 10264 10314 10764 450 0 10264 10314
14 10764 10895 11264 369 0 10764 10895
15 11265 11314 11764 450 0 11265 11314
16 11764 11895 12264 369 0 11764 11895
17 12264 12314 12764 450 0 12264 12314
18 12764 12895 13264 369 0 12764 12895
19 13264 13314 13764 450 0 13264 13314
20 13764 13895 14264 369 0 13764 13895
21 14264 14314 14764 450 0 14264 14314
22 14764 14895 15264 369 0 14764 14895
23 15264 15314 15764 450 0 15264 15314
24 15764 15895 16264 369 0 15764 15895
25 16264 16314 16764 450 0 16264 16314
26 16764 16895 17264 369 0 16764 16895
27 17264 17314 17764 450 0 17264 17314
28 17764 17895 18264 369 0 17764 17895
29 18264 18314 18764 450 0 18264 18314
30 18764 18895 19264 369 0 18764 18895
31 19264 19314 19764 450 0 19264 19314
32 0 0 20264 0 0 0 0

Proc:t003**** CPU Id 0 Period:10 Percnt: 5 Loops:17 Misses: 0
n Start Finish Deadline Margin Missed Cstart Cstop
0 343 393 1343 950 0 343 393
1 1343 1393 2343 950 0 1343 1393
2 2343 2393 3343 950 0 2343 2393
3 3343 3393 4343 950 0 3343 3393
4 4343 4392 5343 951 0 4343 4392
5 5343 5392 6343 951 0 5343 5392
6 6343 6392 7343 951 0 6343 6392
7 10314 10364 11314 950 0 10314 10364

undase 20

SReal-Time Reconfiguration Study (Final Report)

8 11314 11364 12314 950 0 11314 11364
9 12314 12364 13314 950 0 12314 12364

10 13314 13364 14314 950 0 13314 13364
11 14314 14364 15314 950 0 14314 14364
12 15314 15364 16314 950 0 15314 15364
13 16314 16364 17314 950 0 16314 16364
14 17314 17364 18314 950 0 17314 17364
15 18314 18364 19314 950 0 18314 18364
16 19314 19364 20314 950 0 19314 19364
17 0 0 21314 0 0 0 0

Proc:t012**** CPU Id 0 Period:30 Percnt:40 Loops: 3 Misses:0
n Start Finish Deadline Margin Missed Cstart Cstop
0 10364 12968 13364 396 0 10364 12968
1 13364 15969 16364 395 0 13364 15969
2 16364 18969 19364 395 0 16364 18969
3 19364 0 22364 0 0 19364 0

Loops indicates the number of cycles executed by the model process.

Missed is the number of missed deadlines.

n is the cycle index.

Start, Finish, and Deadline are points in time. All time figures are in 100th's of a time unit (for exam-
ple, process t000 finished cycle I at 4.66 time units from the start of the test).

Margin is the amount of time between Finish and Deadline.

Missed is a 0/1 missed deadline indicator.

Cstart and Cstop are time tags for the start and completion of the CPU busy loop of the model process.

ur~assii 21

Real-Time Reconfiguration Study (Final Report)

This report was prepared under Interleaf 5.2. A template for the ANSI Z39.18 standard was created and
used and is available upon request.

Undarsifid 22

