DSMC PRESS
mcnngcu REPORT, TR 4-94

el

DEFENSE SYSTEMS MANAGEMENT COLLEGE
FORT BELVOIR, VIRGINIA

D-A285 759
AN

AN ABSTRACT MODEL
OF
ROGUE CODE INSERTION
INTO

RADIO FREQUENCY
WIRELESS NETWORKS

- THE EFFECTS OF
COMPUTER VIRUSES
ON THE
PROGRAM MANAGEMENT OFICE

TPIETRING: ON STATEMINT K7
\ Appzovm i oY } 3

T
B e

LTC CHRISTOPHER V. FEUDO
PROFESSOR OF ENGINEERING, DSMC

A Dissertation
Presented to the D1
Faculty of
The School of Engineering and
Computer Science
The George Washington University

APRIL 1994

94 10 25 132

ﬁ.
&Ub(3919943 j

PREFACE

This ressarch examines the effects of computer viruses® to the
PMO. Cowmputer viruses continue to be a real threat to all
computing systems, to include traditional and wireless based
netvorks. We will examine waye of mitigating this new threat.
Trends in increased computer, operating system, and network
standardization, as vell as increased use of distributed
systems, and computer connectivity enhance this viability of

attacking targeted hosts via radio frequency.

Hardware acquisition managers, like software acquisition
managers (Dobbins, 1994)', must Zfollow basic rules. Program
managers must recognize that both hardware and software

issues, just as software issues alone, can kill then.

The rapidly growing popularity of wirelass LANs is
proliferating intruders’ opportunities to infect computing
systems via radio frequency (RF). Telecommunication hardware
and software components, each component’s specifications, and
the technology to inject computer viruses via RF communication
channels are proven and readily available. Unauthorized users

can purchase "telecommunications saturday night specials" at

‘Defined as a "rogue program" throughout the dissertation
to denote any type of malicious code, such as logic and time
bombs, worms, and trojan horses

i

many electronics outlets to insert surreptitious code into RF

communication channels.

The implications for the PMO are mind-boggling - aircrafts,
weapan systems, tgmart® bomb technology, and C' face an
additional insidious threat, which wmay gravely affect the

security of the United States.

ii

ABBTRACT
This dissertation demonstrates that inadequately protected
wireless LANs are more vuilnsrable to rogue program attack than
traditional LANs. Wireless LANs not only run the same risks
as traditional LANs, but they also run additional risks
assocjated with an open transmission medium. Intruders can
scan radio waves and, given enough time and resources,
intercept, analyze, decipher, and reinsert data into the

transmission medium.

This dissertation describes the dovelopment and instantiation
of an abstract model of the rogue code insertion process into

a DOS-based wireless communications systes using Radio

Frequency (RF) atmospheric signal transmission. The model is

general enough to be applied to widely used target
environments such as UNIX, Macintosh and DGS operecting
systenms. The mathodology and three modules, the prober,
activator, and trigger modules, to generate rogue code and
insert it into a wireless LAN were developed to jllustrate the

efficacy of the model.

Alz0 incorporated into the model are defense measures against
remotely introduced rogue programs and a cost-benetit analysis
that determined that such defenses for a specific environment

were cost-justified.

TABLE OF CONTENTS

Chapter 1 INTRODUCTION . . . ¢ ¢ « « o« o + o & o
1.1 Related Work « .« « « « + « « « .
1.1.1 Intrusion Detection Systems (IDSS)
1.1.2 Cost-Benefit Analysis

* o s e
e o o o

1.2 Summary of the Contribution
1.3 Organization of the Dissertation

Chapter 2 BACKGROUND e e s
2.1 Rogue Programs Capabilities e e e s
2.1.1 Rogue Program Infiltration .
2.1.2 How Rogue Programs Work . . .
2.1.3 Rogue Program’s Structure .

2.1.4 Rogue Program Attack Mechanisms .

2.2 Computer Networks ¢ « + & & &« & .
2.2.1 Network Access e o « o e
2.2.2 Network System Processing and

Vulnerabilities e e a4 s e e e e e e e

2.3 Use of Wireless LANS + ¢+ ¢ o o « « &
2.3.1 The ALOHANET . . e o o o o
2.3.2 Captain Midnight Eacapadcs .« e e e e

2.4 Trends That Increase The Feasibility of
Inserting Rogue Code Rewmotely e s s e e e
2.4.1 Operating Systems and Computer

Standardization
2.4.2 Distributed Systems standardization .
2.4.3 Enhanced Computer Connectivity .« e e

2.5 SUMMAXY . . s 4+ s 2 e s e e o s s s s e .« s s
Chapter 3 REMOTELY INSERTING ROGUE CODE INTO A WIRELESS
LAN USING RADIO FREQUENCY+ « « o o s o« o &
3 L] 1 IntrOduction L] . L] L L] - L] L] L] - . L] - . » L L]

3.2 Background e 0 s s e 4 e s e e

3.3 Attack Goals . e e « o s . . . e e
3.3.1 Motivation to Develop an Abstract
nw. 1 * * - L] L] - - . . -* - - L] L] L] L)
2 Attack Mcthod e o o . . .
3 Verifying the Success af Roque Code
Execution . . .« ¢ ¢« ¢ ¢ ¢« ¢ ¢ e o o 4

3.3.
3.3.

13
15
15
16
17
17
20

28
28

29
31
24
36
36
37
40
43
43
45
45
46
46

46
49

51

3.4 An Abstract Model - Overview
3.4.1 Parameters and Requirements .« o .
3.4.1.1 Communications Channel . . .
3.4.1.2 Data Stream Conformation . .
3.4.1.2.1 Transmission Frequency
3.4.1.2.2 Synchronized
Communication
3.4.1.2.3 Coding Character;atxcs
3.4.1.3 Code Generation
3.4.1.4 Raquired Resources
3.4.2 Defense Measures . . .
3.4.2.1 CRCs
3.4.2.2 Checksums
3.4.2.3 Encryption . . .
3.4.2.4 Digital Signatures . . .
3.4.2.5 Safeqguards Incorporated in
Commercial Wireless LAN Software
3.4.2.6 Softvare and Hardware
Mechanisms
3.4.2.7 Defense Hcchanlsns COnbiﬁations
3.4.3 Cost-Benefit Analysis . . .
3.4.3.1 Access Vulnerability Likolihood
(VL)
3.4.3.2 Yearly Cost of Satequards (YCSG)
3.4.3.3 Basic and Recurring Costs
3.5 Suamary .

Chapter 4 MODEL INSTANTIATION . .
4.1 Introduction

4.2 Background,

4.3 Parameters and Reguirements . . .« s
4.3.1 Communications Channel . . .
4.3.1.1 Connectionless-mode thvark
Protocol (CLNP)
4.3.1.2 The Trivial File Transter
Protocol (TPFTP)
4.3.2 Data Stream Conformation
3.2.1 CLNP Data Stream
3.2.2 TFTP Data Stream
3.2.3 Coding Characteristics and
Synchronization
.4 Transaission Frequency . . .
riment Resources
e Generation . . . « . .
.1 Initializing Hosts to Transfe

4.
4.
4.
4

Files
4.3.‘.1.1 s.t HO.tn.‘C . . .

vi

4.3.4.1.2 Assign Packet Drivers . . 103
4.3.4.1.3 Initialize CLNP Network
Layer Software 104
4.3.4.1.4 Initialize TFTP Software 104
.4.2 Executing a Normal File Transfer. 10S
.4.3 Inserting Rogue Code During

a File {ransfer 109 v
4.3.4.4 Experiment Summary e 4 e o« e o 114

4.4 Defense M@ABUYE@E « = o o o s o o « o o« 118 .

4.5 Cost-Benefit Analysis . . .« « 116
4.5.1 Access Vulnerability Likllihood (VL) . 116
4.5.2 Yearly Cost of Safequards , 122
4.5.3 Basic and Recurring Costs 123

4.6 Attack Methodology Variations 127

4.7 CONClUBIONS . . - « +« « « 4 o o o o & + + - . 128
Chapter S CONTRIBUTIONS, CONCLUSIONS AND IMPLICATIONMS

FOR FUTURE RESEARCH ¢ ¢« 4 o 2 ¢« « » « = 131

5.1 Contributions o000 .. 131

S.2 Conclusions ¢ 4 s 4 ¢ s e+ .+ .+ 133

5.3 Future Work ¢« . + + « &4 « &+ « « « « 135
APPENDIX 1 -~ INITIALIZATION CODE « « 137
APPENDIX 2 - ROGUE PROGRAM CODE . . . « ¢« & o« o o+ « . 138

ENDNOTES - -« . L] . [] [} L] . . - - - . - . - 1 3 9

vii

LIBTING OF FIGURES
Figure Overwriting .COM File Infector. . . .
Figure Non-Overwriting .COM File Infector. .
Figure Vulnerabilities of Operating Systems .
Figure Schematic of the ALOHANET.
Figure Susceptibility of Operating Systems. .
Figure conceptual Model
Figure Attack Time Line.
Figure Abstract Model
Figure OSI Message Transmission Forxat
Figure OSI Layer Vulnerabilities . .
Figure Prober Module
Figure Activator Module .
Figure Trigger Module . . .
Figuras Insertion Module . . .
rFigure Hardware Resources . . .

Figure Computer Hardware/Radio Interface
System (CHRIS) . « + =« o ¢ & & = @

Figure Example Configuration

Figure Comparison of Wireless LANs Defensive
u.ch.n i -. . - - - L] - L] » . . . L] > L] -

Figure Accessibility Vulnerabjlity likelihood
Components. « . ¢« ¢ ¢ o o« o &

Figure Accessibility Factors.
Figure Data Protocol Data Unit (PDU) Structure

Figure 22. Hardware System Overview

viii

. LAWN Specifications . . « « « <100

LAWN Schematic « » s ..101
Host Aaron Sends Message to Host Bill 108
Host Bill Acknowledges Host Aaron’s Message . .108

Host Intruder’s Packet Reaches
Host Bill First. « ¢« + ¢ « +« . « 4o 110

Host Bill Acknowledges Host Intruder’s
Packet to Host Aaron. « 110

Example Subsystem.« « . « s 116

Computing Systems
Vulnerability Likelihood 119

Chapter 1 INTRODUCTION

Rogue programs?, including viruses, worms, and trojan horses,
have existed for some time’. Writers have devoted
periodicals*, security 3journals , newspapers, and entire
books’ to rogue programs. Rogue programs continue to attack
computer systems®’ as well as local area networks (LANs) .
Rogue programs will continue to thrive as long as operating
systems® vulnerabilities exist and LANs are proliferating.
Currently, there are over 4000 rogue programs' and 93.2% of

all installed PCs are expected to be networked. Also,

wireless LANs, which were first introduced in 1985', show

promise. The wireless LAN market generated about $3 million
in 1990, some $10 million in 1991, and $40 million in 1992,
Forecasts for 1997 range from over $200 million to nearly $1

billion® .

This dissertation shows that inadequately protected wireless
LANs are more vulnerable to rogue programs attack than
traditional LANs because wireless LANs have not only the same
risks as traditional LANs but also have the risks associated
with open transmission mediums (radio waves). People who want
to insert rogue programs into wireless LANs can scan radio

waves and intercept, analyze, decipher, and reinsert data into

the transmission medium.

An abstract model of the rogue code insertion process
demonstrates this claim. The abstract model is general and
applies to widely used target environments such as the UNIX,
Macintosh and DOS operating systems. The model is
instantiated on a DOS~based system that uses radio frequency
(RF) and employs a Local Area Wireless Network (LAWN) product.
The insertion is received undetected, without errors and later

executed surreptitiously by the targeted host.

1.1 Related Work

Although there are numerous articles on wireless LANs, only
one by Lathrop discusses their vulnerabilities' . Lathrop’s
paper provides an overview of wireless LANS and concludes that
wireless LANs face not only all of the risks asgociated with
traditional cable~based LANs but also the additional risk that

an open transmission medium imposes.

This dissertation is the first to develop an abstract model of
the rogue code insertion process into a targeted network and

then instantiates it on a personal computer system. This

abstract mnmudel has three components: parameters and

requirements definitions, defensive measures and a cost-

benefit analysis.

The required parameters and requiremants definition component
of the abstract model is analogous to the method used by the
Internet worm to attack hosts. Whereas the Internet worm
consisted of two parts, a main program and a bootstrap
program, the abstract model uses three modules (prober,
activator and trigger modules) for basically the same purpose.
See citations® for a detailed discussion of the Internet

worm.

1.1.1 Intrusion Deatection Systems (IDSS)

Defensive measures and the access vulnerability likelihood
(VL) of the cost-benefit analysis of the abstract model are
similar to intrusion detection systems (IDSS). IDSS monitor
accesg control; the VL is used to perform a quantitative
analysis. For example, IDSS monitor user activity
continuously to detect any suspicious activity as it occurs?
by comparing a user’s current behavior to his/her historical
behavijor. The VL is used to compute how the rogue code

infiltrates the computer system. Accessibility issues include

topological, vector and functional factors. Both are used to
prevent unauthorized access; one prevents breaking in; the
other (VL) provides the likelihood of breaking in. They are
both computer-based security measures. There are currently

nine intrusion detection systems in use’ .

1. Multics Intrusion Detection and Alerting System
(MIDAS)

2. Intrusion Detection Expert System (IDES)

3. ComputerWatch Audit Reduction Tool

4. Haystack

5. Information Security Officer’s Assistant (ISOA)

6. Network Anomaly Detection and Intrusion Reporter
{NADIR)

7. Network Security Monitor (NSM)

8. W&S

9. Distributed Intrusion Detection System (DIDS)

The Multics Intrusion Detection and Alerting S8ystem (MIDAS)?
was developed by the National Computer Security Center to
monitor the government Multics system; it has been operational
since 1988 and it encodes "a priori" heuristic rules that
define an intrusion. Midas’ rules attempt to detect all

penetrations including rogue program infection and misuse.

MIDAS accomplishes this detection by using four types of
heuristic rules:
1. Rule 1 deals with current behavior to detect those
actions which in themselves (e.g., in isolation) may
appear suspicious.
2. Rule 2 uses statistical user profiles to detect any
action which deviates from the user’s observed recorded
past behavior. These profiles list the operator’s
commonly used commands, typing speed, normal access
times, and location.
3. Rule 3 contains a global system profile, which
characterizes the normal use of the system. For
example, excessive use of the ccpy command would
indicate suspicious activity.
4. Rule 4 sequences commands which characterize known
~r nostulated rogue program attacks. Hence, such

attacks can be detected prior to causing any damage.

Currently, MIDAS monitors the use of Dockmaster. Note that
although MIDAS is implemented on the Multics system, with some
modifications and changing of rules (depending on the system

used), it can supposedly be adapted to any system.

The Intrusion Detection Expert Systea (IDES)’ , being developed
at. SRI’s Computer Science Laboratory since 1985, uses
statistical algorithms to observe user behavior to detect any
anomaly from the accepted documented normal profile. IDES
adaptively learns what is normal for both individual users and
overall system behavior. It also uses an expert system that
encodes known intrusion scenarios, known systen
vulnerabilities, and other violations of a system’s designed
security policy. IDES discerns suspicious activity via a rule
base. TIDES has been completely redesigned to accomplish its
intended objectives. It is modular, extensible, capable of
monitoring both heterogencous and homogenous target machines,
and providing protection in a real-time mode. SRI is in the
process of enhancing its current IDES prototype, implemented
in 1988 to provide a device which will become a tamper-
resistant, fault-tolerant, extensible, parallel, and
distributed prototype version. This new version will
supposedly be more robust, reliable and powerful than the
current version. There are currently three versions of IDES:

1. The basic IDES system, which detects any anomalous

system activity based on user profiles;

2. The Sun—IDES, which monitors UNIX and uses the C2 Sun

Unix Audit Trail; currently in use at SRI as a research

prototype

3. FOIMS-IDES, which monitors database use on an IBM

mainframe. The FBI has adopted FOIMS-IDES.

IDES endeavors to detect rogue program penetrations and misuse

are based on the premise that any exploitation attempts will

involve abnormal use of the system. Hence, SRI has
accentuated the statistical user profiles and statistical

analysis of user activities based on those profiles.

The cComputerWatch Audit Reduction Tool? , available gince
September 1989, was developed by AT< Eell Laboratories. This
tool summarizes audit trails and highlights anomalous behavior
via detection ruies. It is used on a2 Bl version of the UNIX
system V/MLS operating system and detects attempted break-in,
masquerading, many types of mistakes by legitimate users, many
types of denial-of-service ventures and rogue program
penetcations. It can also detect attacks involving more than

one person.

Haystack’ , developed by Los Alamos National Laboratory, is
designed to aseist system security officers to detect and
investigate any type of exploitation via anomalous events,
security improprieties, and summarizing the system’s audit

trails of user behavior. Raystack is considered cost-

effective because it uses Zenith Z-248 and Desktop III PC’s.
It attempts to detect brezk-ins, masquerading, any type of
operating system penetration, denial-of-service, and various

forms of malicious use.

The Information Security Officer’s Assistant (ISOA)? was
developed by Planning Research Corporation (PRC). It is a
functional real-time application prototype which uses a set of
statistical tools, an expert system, and a hierarchical set to
perform automated auditing and network monitoring. ISOA
compares the incoming audit data with a set of expected
events. It attempts to detect break-ins, masquerading, and
many types of wrongdoing by legitimate users; PRC is in the
process of including denial-of-service and rogue progranm
penetration detection. The ISOA is currently used with UNIX

Sun operating system C2, and the IBM AT XENIX.

The Network Anomaly Detection and Intrusion Reporter (NADIR)?,
operational since August 1989, was developed by Los Alamos
National Laboratory (LANL). It aids security managers to
detect computer abuse and penetration and attempts to detect
break-ins, denial-of-service, many types of automated attacks,
and many kinds of legitimate users’ abuses. NADIR is

specifically designed for use at LANL.

The Network Security Monitor (M8M)? , developed by University
of California, Davis, is a research project to detect many
types of misuse of hosts connected by a LAN. The NSM
prototype is currently running on a sun 3/50. The target
system is the Ethernet and all the hosts connected to it. NSM
will intercept all message traffic, regardless of its
destination, for examination. Experimentation on a live LAN
is anticipated, as well as broadening NSM appiication to WANs

and other platforms.

Wes® , developed by LANL, is a computer security anomaly
detection system. Its inception dates to November 1984.
There are currently two versions of W&S in use at the
Department of Z£nergy (DOE) and at the National Cosmputer
Security Center (NCSC). A third version is in experimental
use at LANL. WiS detects anomalies by identifying usage
patterns that differ from historical norms and compares
current system activity audit records to rules describing past
behavior patterns. W&S is especially effective in detecting
rogue program penetrations. It also detects other security

breach attempts similar to the methods used by the

aforementioned systems.

The Distributed Intrusion Detection SBystem (DIDS)® , developed
by Lawrence Livermore National Laboratory with participation
by the University of california, Davis, and Haystack
Laboratories in Austin, Texas, differs from the other IDSSs in
that it examines activity on all directly "monitored" hosts on
the network while simultaneously examining network activity
itself. It has been in Beta testing since July 1992. DIDS
has four major components:

1. The host monitor, which resides on each host computer

on the network, continuously monitors user activity by

comparing that activity with user profiles or particular

“gignatures® of intrusive behavior, such as reading or

writing files.

2. The network monitor provides similar functions as the

host wmonitor on the network.

3. The DIDS dirsctor and its expert system (ES) examines

the anomalous behavior or suspicious signatures for

legitimacy. The DIDS director notifies the user of any

unauthorized intrusions.
4. A user interface displays the network’s security
state, including the 1level of suspicious activity

inferred by the DIDS director.

1.1.2 Cost-Benefit Analysis

The rationale of cost-benefit analysis is that when
considering a proposed technology, the costs and benefits to
be expected frou its implementation should be assessed; and
then the technology o improving it is adopted only if the
anticipated benefits ouitweigh the anticipated costs. The

implementation of this analysis will vary in accordance with

stated assumptions’®. There are a number of cost analysis

methodologies available®.

Safeguards cost in the cost-benefit analysis of the abstract
model was adapted from formulas that Fred Cohen’ devised to
describe the total costs per year of rogue program defenses.
Cohen evaluated the costs of today’s widely used defenses such
as scanners’, monitors , cryptographic checksums and
integrity shells’ . His 20 costs elements were reorganized and
condensed into 7 elements and 5 sub-elements to satisfy the

requirements of this dissertation.

Some recurring costs were incorporated from Linda Rutledge’s
paper® to determine communication costs. She proposed a new
m2thod for secure transmission, called the Reference Matrix,
which provides a technique for encoding a message over public

switched networks using a spatial transformation. The re-

curring costs in her cost comparison of the Referencs Matrix
and other security methods vere used tc determine the commun-
ication costs in the cost-benefit component of the abstract

model. Cost-benefit analysis techniques are based on

traditional cost-benefit analysis approaches‘.

1.2 Sumxary of the Comtribution

This dissertation makes thres major contributions.
1. Demonstrates the problem: By successfully inserting
rogue code into a wireless network, this dissertation
demonstrates that inadequately protected wireless LANs
are more vulnerable to rogue program insertion than
traditional LANs.
2. Models a solution and illustrates the inatantiation of
the solution: This dissertation presents an abstract
model that modals the process whereby someone uses RF to
insert a rogue code into a targeted host’s communication
data stream. The abstract model is then instantiated
into a DOS-baseQ wireless communications system using RF.
3. Provides cost-benefit analysis: This dissertation
analyzes the cost of safeguarding the wireless LAN or
leaving it unprotected and concludes that (for specific
measures) it is cost-effective to implement controls to

protect the LAN.

1.3 Organization of the Disaertation

The remainder cf the dissertation is divided into four
chapters. Chapter 2 builds on previous research related to
rogue program characteristics, computer networks and their
vulnerabilities, wireless IANs, and the trends that increase

the feasibility of remctely inserting rogue code via RF.

Chapter 3 davelops an abstract model that shows how the
rogue code is inserted into a targeted host using a RF
communication channel. The chapter discusses the reasons
why the abatract model is developed, how tc process and
verify the model’s instantiated attack mechanisms, and the
componants that comprise the model: the parameters and
requirements necessary to apply it to widely used
environments; defensive measuraes and the cost-benefit
analysis that detzrmines when such measures are cost

effective. p

Chapter 4 instant.iates the wmodel on a DOS-based system using
a Local Area Wireless Network (LAWN) connection to insert a

rogue program via RF into a targeted host on a wireless LAN.

13

A

Tha last chapter concludes that insufficiently safeguarded
wireless LANs are more vulnerable to a rogue program attack
than traditionazl LANs. This chapter also concludes that the
abstract model developed in chapter 3 can bs instantiated, as
chapter 4 demonstrated and suggests the advisability of
conducting research to protect related systems such as
cellular phone penetration vulnerabilities, automatic teller
penetration techniques, short wave vulnerabilities, electronic

warfare, and satellite manipulation applications.

14

Chapter 2 BACKGROUND

Chapter 2 provides background material to help the reader
understand chapters three through five. This chapter has five
saections: section 2.1 delineates the rogue program
characteristics; section 2.2 discusses computer networks and
their wvulnerabilities; section 2.3 discusses and describes
wireless LANs; section 2.4 describes trends that increase the
feasibility of inserting rogue code remotely, and section 2.5

summarizes the chapter.

2.1 Rogus Program Capabilities

A rogue program must geilerally have three essential
capabilities to infect programs or entire systems effectively.
First, because infecting a single file may be inconsequential
to some users, the rogue program may be able to replicate
itself to multiple files. Second, the program must execute
its code to spread the infection. This contamination may be
accomplished by either executing an infected program or
executing the rogue program code via the operating system’s
resources such as booting up. Third, the rogue program code
may carry a payload to effect whatever task for which the
rogue program code was designed. In many cases, rogue

programs modify a bonafide program to satisfy the above

15

capabilities. Sections 2.1.1 to 2.1.4 describe how rogue
programs infiltrate hosts, how they work, what they look like,

and how they attack.

2.1.1 Rogue Program Infiltration

There are many ways in which an intruder can infect a
standalone computer or a network node with a rogue program.
Anytime a program is not written by the user himself (or is
written by the user but has bugs), and is executed, there is
the possibility of it being malicious. When a user gives

another user or another machine access to his system, he’ is

risking infection. Computer asystems are infected via an

infected disk which is physically placed into the syster, or
via a remote transfer mechanism, such as electronic mail. The
initial infection of a system can occur by:

1. booting a machine with an infected disk

2. copying and/or executing infected software, which

may be loaded from diskettes, obtained over a

network connection, or via modem on other input

methods, such as tape.

' “he'' generically denotes a male or a female user

16

2.1.2 How Rogue Prog. ams Work

For this section and the rest of this dissertation, unless
stated otherwise, the IBM platform is the computing systen.
When an infected program is loaded and executed in the main .
memory of the computer system, it can infect other executable
programs such as COM, EXE, SYS and OVL files. While
executing, the rogue program surreptitiously directs the
operating system to append or insert a copy of the rogue code
into other programs. Then, when the newly infected program is
itself loaded and a2xecuted, the rogue code takes control and
performs its preprogrammed functions, which generally include

self-propagation as well as performing mischievous or

destructive manipulations. Depending on the specific type of
rogua program, the rogue code may:
1. Remain in main memory
2. Hide in secondary memory such as a hard or floppy
disk, etc. Likely hiding spots include executables,
the boot sector, root directory, bad sectors, and the

partition table.

2.1.3 The Rogue Program’s Structure o
The one common characteristic of all rogue programs is that -
they modify or insert an entity such as a program, data, or

operating system into a targeted host. This section has a

17

rogue program’s modular stiucture as modified from citation*

vhich is valid for all rogue programs, except for wornms:

Infectorl Carrier I Noverl statusl

The abcve design and ordering of components are used for
convenience. In practice, a rogue program may neither be
modularly structured nor arranged in any specific order. What
ie important are the following functional components.
1. The infector component is the rogue program kernel
which contains the rogue code. This component contains
all the routines and functions to target and attack
potential vicf.:ims, to trigger how much damage to inflict,
to identify propagation avenues, and to evade capture/de-~
tection.
2. The garrier component is optional; it iz simply a
normal program within which the rogue program code has
been planted. It is useful, however, because it provides
the rogue program with a vehicle to propagate to other
programs.
3. The mover component is also optional. It moves
data which the rogue program has replaced so that the
program may still execute normally. The mover component
is used with nonoverwriting rogue programs, which will be

discussed in section 2.1.4.

18

4. The gtatus component is also optional and contains a
status flag that prevents multiple reinfections. The

status flag, which can be a single bit, indicates whether

the program has already been infected and stops multiple

infections of a single file. The status component will
not reinfect an already infected file ©because
reinfeciions increase the file size making the rogue
program susceptible to detection.
by
For the above structure to be viable, the rogue program must
have read and write privileges as well as a means to determine
which programs are present. The operating system already
contains the required mechanisms for the rogue program to
accomplish its purpose. For example, all operating systems
provide basic functions such as the COPY, ERASE, TYPE, DIR,
PRINT, ATTRIBUTE and PROMPT commands to manage files and
programs. Moreover, on DOS systems, all users can have access
to the Basic Input Output System (BIOS) and DOS services via

software interrupts*.

2.1.4 Rogue Program Attack Mechanisms

Rogue programs are either overwriting or nonoverwriting rogue

progranms.

overwriting rogue programs write over the host program’s code,
destroying all or part of it (Figure 1). The host program may

not properly execute after infection.

Original .COM Flle

Figure 1. Ovorwriting .COX File Infector

Nonoverwriting rogue programs substitute the host program’s
code with their own. 1In this case, the host program’s code
can be partially or wholly relocated (Figure 2), and the host

program should continue to function properly.

Original .COM Fle

{
g
g
T
]
¥

Pigurec 2. Nonoverwriting .COM File
Infector

Although overwriting rogue programs are destructive, they are
perhaps the easiest to design and detect®. These rogue
programs generally overwrite a number of bytes of an
executable file so that users cannot recover the file. Since
the rogue program overwrites a portion of the host progran,

the mover component is not required. The following sequence

21

of diagrams illustrate the operational aspects of such a rogue

program*t.

First, assuming that a program (carrier) is already infected,
the diagram below displays the infected program and two other

programs which are not yet infected:

Rogue Prograp Code:
Infectorl Carrier status“
Unjinfected Usexr Program 1:

User Program 1

Uninfected User Prooram 2:

User Program 2 n

When the infected program is executed, the jinfector component
attempts to infect another program. Once it locates an
executable praogram, in this case, User Program 1, it checks
the gtatus component, to determine if it is already infected.
If the flag indicates that it is not infected, then User
Program 1 is targeted for infection and the rogue code
overwrites the initial bytes in User Program 1. The files now

appear as:

22

I'Infectorl carrier I status“

Uninfected User Prodram 2:

User Program 2

At the conciusion of the infection process, the infector
component may trigger a damaging function. Execution then
returns to the garrier program so that the program looks

normal to users and they will remain unaware of the intrusion.

- The infection of User Program 2 follows the same sequence;
therefore, its infected structure looks like Infected User

Program 1’s structure:

Rogue Program Code:
Infectorl Carrier h Status“ . ?

- &

infected User Program 1: .

H Infectori Remainder of Program 1“ status“ ‘

-

23

Infected User Program 2;

Such an infected program will probably malfunction because the

rogue pfogram has overwritten some of its code. The 405

virus, which affects COM files is an example of such a rogue
program‘®*. The virus overwrites the firet 405 bytes of the
victim file, and if the victim file is shorter than 405 bytes,

the virus increases the file to 405 bytes.

Nonoverwriting rogue programs are the most common‘t, The
terminology, however, is deceiving. Although its title
implies nondestructive behavior, this type of rogue program
can be more destructive than damaging overwriting programs
because the overwriting programs generally cause errors
immediately with infected executables, and nonoverwriting
programs can be present and active within a system for long
periods of time without being detectaed. Nonoverwriting rogue
programs have a design similar to their overwriting
counterparts; their structure differs only by the mover
component, which is the mechanism by which the rogue code is
copied to the victim file. This type of rogue program adds
code to the host program either by increasing the file’s size

or by axploiting unused space.

24

An intruder has many techniques to insert a nonoverwriting
rogue code into a host program. Assuming that a program
(carrier) is already infected, one such technigque operates as

follows:

Roque Program Code:

I Infectorl Carrier Hover“ statusI

Uninfected User Program 1:

User Program 1 ﬂ

If a carrijer program is infected, the jinfector component
attempts to infect User Program 1. It first checks the
status; component to determine if it is already infected. If
the flag is not present, the infector component targets User
Program 1 by selecting an area at the very beginning of the
program which is the same length as the rogue code as

illustrated below:

User Program 1

\ 1
1<--- xogue-code-length --> 1

Here, the rogue-code-length is the sum of the lengths of the

infector, mover and gtatus components. The rogue program then

activates the pover component to append that specific rogue-
code-length area to the end of the program, thereby preserving
the original portion of the User Program 1’s code. The mover

component. then appends itself to the end of the user program.

: ===—\
H User | Program 1 I User ! Mover
t :—_— ==—J
: zocuo-codo-longth‘ : T0gue-code-length :

The initial rogue-code-length bytes in the host program are
then overwritten with the rogue code. The rogue program

triggers its preprogrammed function, and returns execution to
the carrier program. The newly infected program is now itself
a carrier program. The rogue program does not manifest any
activity until the newly infected program is executed. The

status of User Program 1 is now the following:

- - e My E» = o .-
W-Infector i Program 1 I User Hoverﬂ Status u
L T el e e -

The original beginning of User Program 1 has been retained, so

the host program can still execute properly. Once the
infected User Program 1 executes, the routine begins again.
The rogue program:

1. gseeks an area in the beginning of User Program 2,

activates mover to copy that section,

26

2. appends itself tc the space provided,

3. activates the task portion of the jinfector component to
execute the preprogrammed task, and

4. tries to infect the next user program, and remains

dormant until the program is executed.

Although User Program 1 is infected, after the rogue program
code performs its function, the program continues toc function
normally, making detection nearly impossible unless the user

notices that the file size has increased.

This scenario has many variations. For example, a rogue
program can place onl' part of the rogue code in the beginning
of the host program and append the rest to the end. The rogue
code can place its code anywhere in the host program, although
placing it in areas other than the beginning and end is more

difficult.

27

2.2 Computer Networks
Computer Networks generally use some type of cable for their
communication media. Citations*'**** adequately define and

discuss networks. They can be configured as LANs, Metropolitan

Area Networks (MANs) or Wide Area Networks (WANs)®%%,

Networks provide resource sharing and interconnection. They
must also ensure data integrity, secrecy, and service
availability®?. Networks provide data integrity when they
protect data from unauthorized destruction or modification.
They provide data secrecy when they protect data from
unauthorized disclosure, and they provide service availability
when they protect the system deliberate performance
degradation. Therefore, to ensure integrity, secrecy and
service availability, only the authorized users can access the
network and data processing must be protected within the

system®®.

2.2.1 Network Access

Unlike many stand-alone systems, networks generally use some
form of access control such as identification and
authentication. These controls ensure that only authorized
users have access to the system or system information. While

passwords are the oldest and perhaps the most familiar

personal identifiers, other tachnigues such as biometrics® and

smartcards®® are available.

2.2.2 Network Syastem Processing and Vulnerabilities

Incorporating security into the operating system is one way to
protect data processing. Operating systems generally provide
several security related functions®* which are generally
located in the operating system kernel‘'s’ where they monitor

and protect all operating system accesses and functions.

Some netwcrk operating systems vulnerabilities or functions
vulnerable to rogue program attack include®
1. I/O processing weaknesses,
2. access policy ambiqguity, and
3. readily available commercial-off-the-shelf (COTS)
programs are vulnerable because there are many of

these and so many people use them.

1/0 processing becomes vulnerable when, in the interest of
fast data transfer, the operating system bypasses the

particular functions protection features.

-

The operating system kernel performs the operating
systen low-level functions.

29

The computer industry has found it difficult to establish a

fixed, all encompassing network access policy because of
problems with accurately defining the difference between
isolating users and allowing them to implement the security
kernel. It is important to separate users tc protect their
data, but, it is just as lmportant to provide them access to
data to do their job, such as shared access to libraries,

utility programs, and common application data.

People implementing operating systems accommodate COTS
packages by using "hooks" to install these packages. Any user
can find these hooks and use them as trapdoors’ to access and
infiltrate the systen.

Network operating systems can provide security and controls
for all programs that run in its environment, but their size

and complexity make it difficult to protect them.

Other functions wvulnerable to rogue program attack for

networks can include:

1. Accessibility. Networks are easily accessible, since

there are so many computers interconnected; there are

‘ A trapdoor is a secret access to a software program for
debugging and developing functions.

3o

multiple points of attack. The level of security at any
node is dependent entirely on whatever security measures
(if any) are in place at that particular node.

2. Resource sharing. Generally, if one computer in a
network is infected, other computers are also infected.
3. Routing paths. Users can seldom control the routing
of their messages.

4. Unknown nodes. As networks continue to proliferate,
security measures at the new nodes will become more and

more unreliable.

2.3 Use of Wireless LANs

An alternative technology to "“cable-bound" LANs is the
wireless LAN. Wireless LANs free people from the hardware
location restrictions as well as to managing and maintaining
miles of wires that connect workstations. Wireless LANs
provide hardware mobility and flexibility - essential
requirements in our highly mobile society. Managars can
configure networks to transmit data via RF transmissions.

Currently eight companiesg®? ¢%:61.61.63.64.65.6¢ nroquce wireleass LANs.

31

-

Figuvre 3 lists these companies

with their specifications:

e fep Ml Engin
i s NOR neNy W oplkendl
L]

figs Unimbd SOR WGk
i

e WR NNGR KAk
s R NOKR KNk
Sip R 2R

wxis s @R

N s R

itps GMs SOR

Figure 3. Wireless LANs and Specifications

1. NCR Wireless LAN System (WAVELAN); 2. Motorola’s
Virelass LAN Metwork (Altair); 3. 0’Neill’s Communications’
Local Area Wireless Natwork (LAWN):; 4. Proxim Inc.’s ProxNet
(alias RangeLAN); 5. Telesystems SLW Inc.’s ARLAN 600 Wireless
Network System; 6. California MNicrowave Inc.’s RadioLink
Network; 7. Black Box Corporation’s BestLAN; 8. IBN’s Wireless
LAN (TBA).

32

Other companies®’, such as BICC Communications of Auburn,
Massachusetts, and Photonics Systems Inc. of Northwood, Ohio,
manufacture wireless LANs that use infrared rather than RF
transmission techniques. Infrared LANs use basically the same
techneclogy as remote-control units for television, VCR or
stereo which employ the 1light spectrum to transmit data
between nodes. Infrared transmission uses a much higher data
rate than its RF counterpart, and unlike RF wireless LANs, is

immune to radio interference.

Unlike RF systems, an infrared system requires that its units
be in direct line of sight with each other; signals cannot be
transmitted through physical barriers, such as walls and

furniture.

Wireless LANs, unlike conventional LANs, are more vulnerable

to rogue program infection because with enough resources and
time, intruders can scan radio waves and intercept, analyze
and possibly decode and retransmit data into the communication
medium. Although some hosts use wireless LAN modules that use
spread spectrum’ technology which makes it difficult to

intercept data between hosts, all an intruder needs to do is

‘ spread spectrum radio transmissions 4istribute the
transmitted data across multiple frequencies.

33

to use one of eight available modules so i1e does not have to

break any code; the correct module does it for him.

Computer, operating systeu, network standardization, increased
use of distributed systems, and computer connectivity enhance
the viability of attacking wireless LANs. All an intruder
needs is a complete description of the transmission
frequencies, modulation, synchronization and coding function

(as discussed in the next chapter).

Using RF to communicate among computers is not new. For

example, the world’s first computer system to utilize ground

based radio packet broadcasting for its communication facility

was the ALOHANET system at the University of Hawaii in 1970.
Another example of using RF technology to communicate is the
Captain Midnight Escapades of 1986. The following subsections

discuss the these similar technologies.

2.3.1 The ALOHANET

The ALOHANET (Figure 4°%') used packet broadcasting via radio
to give seven campuses on four islands access to a central
computer in Oahu. Each campus communicated with the central

computer by using an FM radio transceiver whose power was

boosted with powerful repeaters. Two distinct 100 Khz
channels were employed: an inbound random access channel,
since the probability of contention was high, and an outbound
broadcasting charnel, since contention was minimal. There
were no direct station to station communications®®. The
ALOHANET became defunct in 1979 when a wire-based LAN cable

was installed.

LI]
S N i}@}u

mm 8ce &0 ’—Jl'_JTJL BMI0 for UF opeione)

NPANET MONET

Figure 4. Schematic of the ALOHANET

35

2.3.2 Captain Midnight Escapades

The cCaptain Midnight Escapades also used RF technology.
Shortly after midnight in April and June 1986, a disgruntled
satellite dish user and non-Home Box Office (HBO) cable
subscriber preempted HBO with the fcllowing message decrying

scrambling:

"Good Evening HBO from Captain Midnight.
$12.957 No Way! Showtime/The Movie Channel

Beware!™"

Captain Midnight used a transponder at the Central Florida
Teleport Co., where he worked, in Ocala, Florida. The
transponder consisted of 2 10 meter satellite dish with 2000
watts of RF power. It was sufficient to overpower the HBO
signal, much to the dismay of the cable company, but to the
delight of many satellite dish owners throughout the country’.

2.4 Trends That Increase The Feasibility of Inserting
Rogue Code Remotely

The evolution, development and proliferation of computing
networks have significantly enhanced system vulnerabilities to
rogue program attacks. Operating system and computer

standardization, expanded use of distributed systems, network

36

connectivity, and wirelesgs LANs have all increased the

viability of successful rogue program intrusion.

2.4.1 Operating Systems and Computer Standardisation

Operating systens, because they are standardized,
interoperable, transportable, and form a common platform have
become a major target for rogue program attacks. Operating
systems vulnerabilities are well known. Journals’, books’?,

and periodicals’®’ delineate ways to identify such

vulnerabilities systematically. Figqure 5 enumerates some

operating system components vulnerable to rogue program

attacks.

Operating Systens
DoS UNIX Macintosh
Yulnerable to Attack
File Structure Files/ Same Same
Directories (Finder)
System Functions DOS Functions Kernel Resources
(Code, CDEV,
Patch)
Boot-up Boot-up Seq Same Init
Sequence Resource
Command Command.Con Shell System File
Interpreter Toolbox
Hidden Files I/0.8YS NA Desktop
MSDOS.SYS File
Telecommunication NA System Network NA

Utilities (i.e.,
mail forwarding,
authorized access,
trusted host files)

Figure S. Susceptibility of Operating Systems

In addition, books such as Mark Ludwig’s The Little Black Book
of computer Virusesg'® teaches the basics of writing rogue

programs, complete with examples.

38

To promote interoperability and transportability and to
control acquisition and support costs, standard commercial
off-the-shelf (COTS) hardware and software systems that meet
national or international standards are becoming more popular’®
than customized hardware and software. Using COTS saves money
and reduces the logistical support needed to maintain
software. Because the ratio of CPU performance to price
doubles every year, it is not cost-effective to develop
hardware or software from scratch, which can require up to ten

years to develop and deploy’.

Users must be able to deploy systems rapidly and have access
to portable software to adapt quickly to standardization
hardware. Hardware standardization includes fixed and floppy
drives, controllers, chips, boards, power sources, video cards
and monitors, CPU, and many peripherals. Software
standardization packages include WordPerfect, Dbase, Lotus
123, Harvard Graphics, plus other management and decision-

oriented software packages.

Al- the features which make COTS hardware and software so
appealing are the same features that make these systems
vulnerable to rogue code attack. COTS products include a rich

spa~. set of functions such as computer architecture

39

benchmarks, routines, and protocols to provide the maximum
flexibility and functionality. But because they are so
flexible, intruders, if they can detect a flaw in any of these

functions, can access all network nodes.

2.4.2 Distributed Systems Standardization

The computing community including government and corporate
services, banking institutions, airlines, and military
services, nationwide department stores, and computer stores
widely employ distributed systems. Corporations are
increasing their use of distributed processing because
standards organizations such as the Open Software Foundation
(OSF), the International Standards Organization (I50), and
Consultative Committee on International Telegraph and

Telephone (CCITT) are endorsing it.

CSF, a consortium founded by Hewlett-Packard, IBM, and Digital
Equipment Corp, announced the components of a Distributed
Computing Environment (DCE) in May 1990. This environment
allows users to run distributed processing applications across

a network to allocate the processing power of the

networkdynamically. The consortium released the preliminary

version of the OSF~Distributed-Computing-Environment technolo-

gy in 19917,

The IS0, including constituents of the national standards
organizations in the member countries, deals with
international standardization of various protocols. ¢CITT,
consisting of national, public and private telecommunication
administrations, is primarily concerned with telephone and
data communications systens. The IS0 and CCITT are both
standardizing a framework for structuring distributed
applications. ISO is expected to release the Open Distributed
Processing (ODP) Draft International Standard which addresses

distributed applications in 1995.

The "Big Three" software companies, Lotus Development,
Microsoft, and WordPerfect, are competing for developers and
customers to use their cwn distributed architectures. Each
architectural design is centered around computer systems and
interconnectivity, application integration, advanced

functionality and common user interface'.

Stand-alone and distributed systems share some of the same
risks; however, distributed system are far more vulnerable

than stand-alone systems for the following reasons:

41

1. Intruders can propagate infection easily because
distributed systems are interconnected. For example, one
infected machine can contaminate all the mnachines
throughout the communications subsystem.

2. Multiple access points to the connected system and
mulciple security mechanism levels for each host make
installing rogue code easy. The more hosts that there
are, the greater their availability, and the greater the
likelihood of getting hit with a rogue code, especially
if one host is already infected.

3. The availability of a multitude of other services
such as network system utilities which include file
transfer, remote job entry, and sharing of computing
functions provide a rich environment for a rogue program
attack.

4. Because distributed systems are harder than stand-
alone systems to debug, they require more debugging
tools. Sometimes, debugging routines bypass security
checks and thereby enhance the system’s susceptibility to
rogue program attacks.

5. Normally, only a client host distributes new or
improved software. When users log-on, as in the case of
“prodigy" updates, the host automatically downloads files

to the user’s machine®. Because only one host is

42

involved, intruders can readily determine system

weaknesses.

2.4.3 Enhanced Computer Connectivity
Increased computer connectivity is inherent in standard
operating systems, networks, and distributed systems. There
were over 400,000 LANs and LAN-operating systems sold in the
United States in 1992%’. Customers probably purchased these
LANs to send and receive electronic mail; however, file
sharing is expected to play a progressively more important
influence, especially with client/server networking‘.
Therefore, because of connectivity, the whole world may be

able to access your electronic door.

2.5 Summary

This chapter described rogue program characteristics,
discussed computer networks’ susceptibility to rogue code
attack, and the use of wireless LANs, trends that increase the
feasibility of remotely inserting rogue code by RF and how

rogue programs infect wireless LANs. Chapter 3 uses this

The computing system that used to rum on a single
machine is now a distributed asystem spread across multiple
computers, technologies, geographies, and organizational
functions.

43

-

knowledge of rogue programs to develop an abstract model of

the rogue code insertion process into a communication Qata

stream to a targeted host via radio frequency. Chapter 4

instantiates the abstract model developed in chapter 3 on a

DOS~-based system.

Chapter 3 REMOTELY INSERTING ROGUR CODE IMTO
A WIRELESS LAM USING RADIO FREQUENCY

3.1 Introduction

In Chapter 1, the purpose of the dissertation was discussed.
In Chapter 2, characteristics of rogue programs were
delineated (what they were, how they were structured and how
they functioned), networks discussed, and the concept of
wireless LANs introduced. This chapter develops an abstract
model of the rogue code insertion process into a targeted
(networked) wirelass communjcations system using Radio

Frequency (RF) atmospheric signal transmission.

The first three sections provide background information and
the reasons for developing an abstract model. Section 4
discusses the abstract model. The model is general enough to
apply to widely used target environments such as UNIX,
Macintosh and DOS operating systems. In Chapter 4, a DOS-
based model is used to demonstrate the feasibility of actually

inserting rogue code to a targeted host via RF.

This chapter has five sections: an introduction (3.1);
background (3.2); reason for the model and its attack

mechanisms (3.3); model development (3.4), and summary (3.5).

3.2 Background

Rogue codes can rapidly spread throughout target computer
networks*’ which are vulnerable to rogue code attacks. The
magnitude of tha damage depends on the intruder’s intent and
the system’s safeguards against infection. In October 1989,
Cramer and Pratt’s "Computer Virus Countermeasures - A New
Type of Electronic Warfare," discussed for the first time
applying computer rogue program techniques to electronic
warfare't*, This dissertation is the first to develop a
generic model to model the insertion of rogue code into a

targeted system and instantiate it on a DOS-based system.

3.3 Attack Goals

We have so far discussed similar technologies to use RF to

effect computer communications. The following subsections

discuss the motivation to develop a general model of the rogue
code insertion process, rogue code insertion procedures and

verifying insertion success.

3.3.1 Motivation to Develop an Abstract Model
The reason to develop an abstract model is to show how easy it

can be to insert rogue code into a targeted host via RF. The

purpose of inserting rogue code into a targeted host can
include a variety of covert goals including disrupting,
degrading or exploiting the targeted host’s operational
capabilities to function properly. The main components of the
model at a conceptual level shown in Yigure 6é are the

intruder, the attack mechanism and the targeted host.

Figure 6. Conceptual Model

To affect a targeted host’s operations adversely, the
intruder’s program must insert, modify or delete the host’s

control messages. Such manipulations can among other things

cause the routing algorithm to select suboptimal routing.

47

Distributed system nodes can be highly vulnerable to false
syster conirol messages, either from communications errors or
from a deliberate attack. For example, the Internet is
vulnerable to false control messages being inserted either on

interswitch communication lines or from one of the switches

themselves {switches are the network’s connection

mechanisms]®. Flooding the network with a continuous stream
of bogus messages can significantly incr;ase processing time
and hence disrupt or degrade the system’s operations. Packet
communications are very vulnerable to a variety of fraudulent
message and message alteration attacks because packets can be
generated that appear to have come from another source.

Packets can be captured, modified and reinserted into a

network without the bonafide hosts knowing it.

Other typical approaches to disrupting or degrading a targeted
host’s operations include forcing a system crash, destroying
data, or inserting delays in real time systems. An intruder
can easily cause a system crash by modifying a program which
executes automatically during the booting procedure such as
COMMAND.COM for DOS~based machines. Destroying data is
another way of disrupting or degrading the system. An
intruder can destroy data by overwriting or erasing the data

or by changing the pointers to that data. For example, the

intruder could change the pointers on a DOS-based machine by
modifying the FAT. He can alter data either en masse or
piecemeal, depending on his goals. He can also disrupt or
degrade data by writing a rogue program that delays packets.
Disruption and degradation attacks can be referred to as
denial of service attacks because they are intended to reduce

the communication channel’s information carrying capacity.

Intruders can use passive measures in addition to active
measures to gain valuable information from a targeted host
such as revealing the host’s system resources, such as
configuration and data and system files, and addresses and
listings of trusted hosts to which they are connected. The
intruder can exploit this information at the time of the

attack or at a later date.

3.3.2 Attack Method
The following "Attack Process Events Time Line" provides the
guidelines (Pigure 7) for examining the attack process:
"Attack Process Events Time Line"

1. Determine Possible Target Hosts

2. Probe Target Characteristics

3. Build A Rogue Program

4. Task the Rogue Program

5. Rogue Program Executes Task at Predetermined Time.

49

bl

Pigure 7. Attack Time Line

First, the intruder must list targeted hosts. Then, he must

probe system characteristics and resources to determine if the

attack against a specific host is viable. If attacking a
specific host is not viable, he will continue to attack other
hosts until he is successful. Once he is successful, he must
determine his goals. If his goals are feasible, the intruder
will build the rogue program code and infect the system with
it. If the goals are not feasible, he can modify then.
Depending on the intruder’s goal, the rogue program can lie
dormant for future execution or be executed immediately.

50

3.3.3 Veritying the Success of Rogue Code Execution
Intruders must give serious consideration to determining if
the rogue code is in control. For example, an intruder might

build a signal into the program that would respond

automatically or upon request to verify that the injected code

is operational. The rogue program may send such a signal,
which would reguire a very small bandwidth via covert channels
so that the host system could not detect the signal and the
infection. However, such a strategy would promote
cpporturitius for detection by the targeted host. Depending
on the situation, it may be worth the risk of exposure to

obtain confirmation.

Another option available to the attacker to ensure that the
rogue program is actually doing what it was designed to do is
to conduct covert or overt testing upon infection or

periodically after infection.

Covert or overt testing can be conducted with a systenx similar
to the targeted hosts’ system in a controlled environment
established by the attacker. The authenticity of such a
system would depend on how much information was available on
the targeted system this "analogous parallel" system may
consist of an abbr-.viated or an exact version of the targeted
host. Although intruders can verify that they have infected

51

the host with the rogue code they can not predict how the
rogue code will affect the host, because they do not have full
knowledge of software, special hardware, or firmware. In
shprt, there does not appear to be an adequate feedback
mechanism to determine the operational status of such rogque

programs or to control them once they are executed.

3.4 An Abstract Model - Overview
The abstract modal has three components: requjred parameters,

defense measures, aad tile a cost benefit analysis. riqgro]

pictorializes the abstract modei.

52

NN

rigure 7. The Abstract MNodel

3.4.1 Parameters and Requirements

To develop an abstract model it is first necessary to identify
the parameters and requirements that exist within a system.
Within the context of a network, the key parameters to be
considered are the targeted network’s communicaticns channel

in order to format the rogue code properly so that the

53

receiving host would accept it and how the target host
processed the data it received from a communications 1link
including the target host’s protocols and applications.

4

3.4.1.1 Communications Channel
A network may consist of a series of homogeneous or

heterogeneous computers cornzscted in a local area network

(LAN) or in a wide g%ea networ) (WAN). The communication over

connecting transmission media is acconplished using complex
protocols. - Protocols are designed as a neries of dependent
layer:: to attenuate their complexity. While the topology of
these 1layers may differ for different networks, the

characteristics are basically the same.

The International Organization for Standardization (IS0) has
proposed the Reference Model cf Upen Systems Interconnection
(O8I;, as a first step toward internationally standardizing
the various protocols. The I80 O8I reference model, commonly
known as OSI', has seven layers, each one built on the

previous layer; each with its own specific function (see

Figure 9).

30 [— -

H‘:.:. [w][e] wnh4
o ([T J[sT e] Sgund 0o
-~ TR EOICE T—

L_ i

et (O] (W] (W] e
F

ot | (OINTIS]E JC oW wr Te I AN fefiefe \[ofu Tie e 1,

Layer 1

Phytioal

Cimmwican Kadhew: By Ay O

/S S | R

§: 2union Her/ax ‘squancing or; esndadrraives LD,
T dmapot Veadv:: ecraclin bosvsiion

N Naobwak Hamler mding ivcavalion

8 Dala Link Honsar: spquance inkomation

€ Daln Link Tallae: omar comacin iomalion

Yigure 9. OSBI Kessage Transmission Format

A sender initiates ressage transmission at layer 7 with an
application program. Message transmission traverses the
interdependent layers down to layer 1, the physical layer,
which is concerned with transmitting specifically formatted,
individual bits over a communication channel to the physical

layer at the receiver.

55

While the above series of layers simplify the protocol, they
also introduce more opportunity for rogue code programmers to
penetrate systems especially since networks were not designed
with security as a high priority. See TFigure 10 for OSI
vulnerabilities.

SusceplbBly of
1. Network Reconutiulion ¢—

2 Managarmert and Conkdl —

Suscapibily of
1. Manipulaing LN +————
2 Contd +———

ammm/

Layer 7
Applcation
Layer 6
Presentation
Layer 5
Sestion
Loyer 4
Transport
layer 3
Network
Layer 2
Deia Link
Layer 1
Physica

Smospblyod
Channel Access Schemes

Figqure 10. OBI Layer Vulnerabilities

3.4.1.2 Data Stream Conformation
The injected rogue code must be formatted properly for the
targeted host to interpret it as normal network data. The ISO

OSI model follows this message transmission format:
LBHNHTJSH M "EJJ

is the Data Link Header - Frame Marker

is the Network Header - Routing

is the Transport Header - Priority

is the Session Header - Synchronization

is the Message

is the Data Link Trailer - Error Correction

HXOaAE®

The intruder must also know the following parameters to be
able to insert the rogue code into the data stream
effectively:

1, transmission frequency

2. synchronization

3. coding characteristics.

We describe these now.

3.4.1.2.1 Transaission Frequency

Transmission frequencies vary from 300 bita per second to 2

Mbpa. The intruder must know this frequency, which determines

the message transmission rate, to insert rogue code into a

data strean.

3.4.1.2.2 8ynchronised Coamunication

communication is synchronized when the data characters and
bits are transmitted and the sending and receiving hosts are
synchronized. For example, when one interface message process
(IMP) wants to send a frame to another IMP, it sets the frame
in a memory buffer and then starts the transmission hardware.
Before sending the first character in the buffer, the
transmission hardware sends a synchronizing signal defining
the start of the frame. After the message is transmitted,

another synchronizing signal is sent to define that the

process is completed. There is a finite amount of time

allotted for specific packets to be transmitted and
acknowledged. Synchronization signals also define the time
period that a sending host will wait until a packet is resent
if no acknowledgement is received. Such signals define delays
among hosts as well. Therefore, to inject rogue code into a
data network successfully, the intruder has to know the

synchronization signals.

3.4.1.2.3 Coding Characteristics

Coding characteristics include transfer modes, such as ASCII
and octet, packet size, and other structural parameters. The
intruder must know these characteristics to make the rogue
code look like the code it is replacing; otherwise the
receiving host will reject it.

58

3.4.1.3 Code Generation

Unlike standard methods of inserting rogue code into target
systems where code size is not critical, the rogue code to be
inserted via RF ghould be small. The time period within which
such code can be injected during a transmission is limited.
Hence, limited insertion time dictates limited code size. A
packet size code of 512 bytes or less wodid be optimal. Note
that. the smallest known rogue program, the "Define Virus", is

only 30 bytes*.

Intruders can compress the rogue cods to make it as small as
possible. After they inject this compressed code into the
targeted data stream, and the "duped" host accepts it, it can
decompress and infect the targeted host while remaining
inconspicuous. The following modules help the reader
understand how an intruder can compress rogue code and infect

computer systaems:

lProber Module I Activator Module H Trigger Module

The Prober Module ascertains the target host’s specific

characteristics and gives them to the Activator Module. The

59

Activator Module containg the "builder," which collects and
analyzes all data to build or create the rogue code, to create
a rogue program which uses the targeted system’s own
resources. The Trigger Module executes the assigned tasks and
propagates at will by using stealth techniques as discussed in
chapter 1 (hides, infiltrates, bypasses antirogue program

tools in place).

The Prober Module (Pigure 11) decompresses (if the code is

compressed) and initiates its probing function.

Prober Module

N

Via Systam Utilities Via interrupt Vectors

NS

[2eacese]

-

Figure 11. Prober MNodule

o

The abstract model’s prober is instantiated by the Internnt
Worm’s prober module functions; they both prcbe the targeted

machines in the network for informaution wusing system

utilities, public configuration files and the target’s

60

interrupt vectors.

If the probing module is successful, it performs the following

sequence:

1. makes a copy of the original, compressed code

2. stores the compressed code in high memory for DOS
machines or in another file for other platforms
"feeds" the information it has obtained to the
Activator Module so that the Activator Module can
compile the rogue code
searches for other viable paths to propagate the

rogue code to other hosts.

If the pirrobing module successfully performs this seqguence, it
transrits the original, compressed code to identified hosts
and deletes its original copy from memory or deletes the file

within which it used to hide.

If the probing module is unsuccessful, it continues its
attempt to perform the sequence with the exception that it
does not feed information to the Activator Module. Each time
it fails, it deletes itself from the particular network it is
trying to invade and keeps trying to invade targeted networks

until it is successful.

The Prober Module activates the Activator Module (Figure 12)
which consists of a decompressor unit, a compiler and groper
units. The decompressor unit decompresses the compressed
rogue code. The "builder"™ unit compiles its code to build the
rogue program, and the groper unit seeks procedural or
technical vulnerabilities, such as poor passwords which will

be feed into the Trigger Module.

=~

Figure 12. Activator Module

The Trigger Module :Figure 13) executes the rogue program to
infect the targeted system. It uses stealth techniques to
infiltrate the system, bypass any resident antirogque program

62

tools, camouflage itself, and propagate at will.

Figure 13. Trigger Module

The technigue of injecting rogue code into the target’s host

data stream may include creating a virus, while subsequent

propagations may include transmitting a worm. Viruses do not
require network connectivity as worms do, and can therefore
access more machines than worms. This dissertation’s attack
uses a virus to infiltrate the targeted system. Figure 14
illustrates the Generic Rogue Program Insertion Model and
pictorializes direct and indirect rogue code attack

mechanisms.

~.
L
o

@\@
~

0 TP

E
;
|
18

Figure 14. Insertion Module

3.4.1.4 Required Resources
To ascertain the required parameters as discussed above and
insert rogue code via RF into a targeted system, the model
uses "ham-radio" technology. The following three hardware
components are required to insert rogue code into an RF data
stream:

1. a computer system

2. a computer hardware/radio interface system (CHRIS)

3. a transceiver.

It is assumed that the mes::age is in clear text. Otherwise

the intruder would have tc capture and decrypt the message to
determine all parameters, and insert the rogue code into the

system.

The intruder uses coummercially available and inexpensive
hardware components to insert rogue via RF into a computer

system (Pigure 15).

The underlying technology Is readily avallable - only
three components required:

1. Computor System — IBE XT/AT or compatible with
mor=m, rurning DOS 2.11 or highes;

< $500.00

2. Computer Hardware/Radio Interface System (CHRIS) —
the inte:face device between the computer terminal
and RF transcelver. The Interface assembles and
disasssmbles packets and provides error detection:

L
< $750.00

3. Transceiver (radlo) — to transmit and/or receive
data;

$250.00 - $5000.00

Total Cost = $1500 - $6250

m.am. America’s Best Mail Order Compuler Somrer

v/ pitet_}11,900,000 CUSTOMERS SERVI.1!

Brings You a Complete S12K 1M1z 286 Computer
Full AT Compatibility For Onlyt

E amHaxmﬁaﬂw
329"

S e
Orien 200 44

An Exceilent Perse-ol Computer for Your Flome, Sciroel or Business

- y 08 D Py ¥ 1 v
.Ir.l...‘l-'[’-.l.ll’l{.' -
-A[.Ol-lll-ixl-lnnu,‘flqtl. *

1 T80t oo Farboge 17 YEAR eaRAANTY

CRIS 6000 Computer/Radio Interiace System

for IBM-compatibdle computers and many i:dio modcls

PRICE: $749 plus $8 UPS surface shipping

¢ NOTE: .pecily whether your coMmpules eansl port usss
e 13 cin connecier, your Poppy disk site and the 1),e o
rodie to be comtruliod.

{ o 1

m JC-28AT 1 me 7 781

2 Bl e, = 2

«< Al 1C9T0 ATH muls-masr =

T chom o puaie A -

R o B ' F.

PR [. e Fomnrres 1wl

g _ FEB S WL. e —

[$3998 e |} e Vet Fon s V90 08I0 et . renminEER $53%9

x G ALE R (Y| ER g Tl IC-735

- "ﬂ.-” i 5 || w0 FEB $2598 [l

Ukl wiua FFASINS =

\m FES 2095 s x
s Uommpann § sl bemmused LC 15 F 0 T 0!
e (RTVIN . o) Vot Akt Bepers T4
S EEB SH99.95

:

Figure i5. Hardware Rescurces

The Computer Hardware/Radio Interface System (CHRIS), Figure
16, the interface device between the computer terminal and RF
transceiver, assembles and disassembles packets and detects
errors. The transceiver (radio) transmits and receives data.
The intruder uses these three components to intercept and
download packets to determine required parameters such as

communication protocol, message transmission format,

transmission frequency, synchronization, and coding

characteristics. The intruder can then replace specified

packets with rogue code.

Pigure 16. Computer Hardware/Radio Interface
System (CHRIB)

RS=-232 communications ports make configuring the CHRIS easy.

For example, a RS-232 cable allows the CHRIS to intarface with
the computer and the transceiver. The standard RS~232C serial
port consists of up to 25 pins, only a handful of which are
required to configure the CHRIS (Pigure 17).

Figure 17. Example Configuration

3.4.2 Defense Muasures

While subsection 3.4.1 developed the nucleus of the abstract
model, by determining the communication protocol, message
transmission format, freguency, synchronization, coding
characteristics and required resources, subsections 3.4.2 and
3.4.3 extend the model. In subsection 3.4.2, defensive
measures and countermeasures are incorporated into the
abstract model to complete it. Further, subsection 3.4.3

addresses whether the defenses are cost justified.

The following six technigues can be used to defend against RF-
insertion:

1. cyclic redundancy checks (CRCs)

2. checksums

3. encryption

4. digital signatures

5. built-in security controls

6. combinations of the above

For purposes of illustration, the experiment described in this
dissertation uses CRCs and checksums to demonstrate successful

detection of rogue code insertion.

The cost-benefit analysis, subsection 3.4.3, indicates if
using these protective techniques is cost-justified.

69

3.4.2.1 CRCs

CRCs check the number of a file’s sequential bytes to assign
a unique numker for that file by treating bits as a
representation of a polynomial with coefficients of 0 and 1.
For example, a k-bit message is regarded as the coefficient
list for a polynomial with one or more k termz, ranging from
x** to x° with a degree of k-1. For example, 101011
represents a six term polynomial with coefficients 1,0,1,0,1,1
or x'4+x’4+x4+x’. To produce the unigue number, polynomial
arithmetic is performed using modula 2, in accordance to the
rules of algebraic field theory*. The three polynomials that
are currently the international standards are CRC-12, CRC-16,

and CRC-CCITT?,

CRCs can detect unsophisticated rogue programs, because any
change in the number of a file’s segquantial bytes produces a

different CRC. However, sophisticated rogue programs® such

as those containing stealth capabilities can circumvent CRCs.

Therefore, a CRC check alone may not prevent such attacks.

A checksum calculation is the exact number of a file’s
individual bytes. The process of performing a checksum

verifies a file’s integrity prior to execution by making sure

that a file has the exact number of bytes that it should have.
Checksum algorithms range from the very simple to ultra-
complex. Users can also employ checksums in conjunction with
encryption to determine if a file has been modified. A table
of checksums for each file can be stored off-line, on a write-
protected floppy, in ROM, on a card, or even encrypted
somevhere in the system. When a file is loaded, the checksunm
of the executable file can be compared with the checksumr in
the table of the file to verify the file’s integrity. An
assortment of different checksum algorithms exist®’. Checksum

algorithms can detect RF-inserted, non-stealth rogue code.

3.4.2.3 Encryption

Encryption can prevent unauthorized users from gaining access
to information. Encryption consists of an algorithm and cne
or two keys. The algorithm uses a key to scramble the
message, caliled plaintext, into unreadable ciphertext. The
same key and the same algorithm unscramble ghe ciphertext?®.
Encryption, which can both prevent the insertion of rogue code
and isolate rogue programs once a system hasc been infected®,
can also be effective in an RF environment. Regardless of the
context within which encryption is used, using encryption

mechanisms to transmit messages can make it very difficult for

71

rogue program writers to insert their rogue code onto a
transmission media via RF or any other means because the rogue
program writer probably will not have access to the proper key

to encipher/decipher the message. Although an encryption

algorithm may be breakable', it may not be practical to do so,

because it would take too long to decrypt it*’+*,

Although encryption can be a powerful tool, it alone may not
prevent the insertion of rogue code via RF. Encryption
protects against disclosure and detects modification attempts.
Using encryption makes a potential rogue writer work harder

than if he would have to if code were not encrypted.

3.4.2.4 Digital Signatures

Digital signatures authenticate messages to defend against the
threat of rogue code insertion onto a data stream via RF,
Digital signatures can be performed at the message or at the
packet level in several ways. The three most widely used are
the Rivest-Shamir-Adelman (RSA) algorithm, the Data Encryption
Standard (DES)-based message authentication code (MAC)*, and
the Digital Signature Standard (DSS)-based Digital Signature

Algorithm (DSA)%°.

Digital signatures make it difficult for rogue programs to
insert code. Digital signatures at the packet level will make

it wvirtually impossible for rogue program code to be

successfully inserted onto a transmission media via RF. The

rogue code could be detected - if the imposter does not
possess the originator’s private key. To limit performance
penalties and overhead, digital signatures can be utilized
only on the first packet of a message and still ensure
reasonable security, nominal performance degradation and lower

cost.

3.4.2.5 Safeguards Incorporated iu Commercial Wireless
LAN Software

The wireless LAN software that comes with many of the
commercially available modules incorporates one or more of the
following five security mechanisms that make it difficult to
insert a covert rogue program and to infect the network nodes
in general:
1. The network software can ensure that no two nodes
have the same nanme.
2. The network software can use a security code to
authenticate users on the network; the code can be a
number from 1 to N, where N can be any number greater

than or equal to 1. LAN modules must have the

73

same security cocde to talk to each other.

3. A "so-called" secure channel can be set up so that
other modules in the network can not intercept
messages. Users can choose between two or more channels.
4. Users can purchase an encryption moduls separately.
5. Users can purchase an optional bocot-up from ROM.

6. Many products use spread spectrum technology.

Fijure 1&, compares the defensive mechanisms available with

each of the wireless LAN products discussed in section 2.3.
The products are listed in order of the number of defensive

controls irncorporated.

b ol Ml fopim O I
Oamk O hs Ob K hxam
maM [] 1] whei oghni L)
[]
. Y " ™ []] Y
=]
WAEComa [] ™] L]] Y
(1"
L Yu) |] » Yo
el
H.n | |]]] [] Yoo
M] »)] »]
(=]
[V 1Y (] » [] [] []
i Mmweeny)
[No N ok oplinl Y
Pust Sy
B] [Y "] ™

Figure 18. Comparison of Wireless LANs
Defensive Mechanisms

These products (except for Radiolink) all use spread spectrum
technology and the network software defends against having two
nodes with the same name. Spread spectrum technology is
incorporated within the wireless LAN modules. If an attacker
was using the same module as the bonafide host, spread
spectrum is no longer a problem for the attacker. The module
does the necessary spreading and decoding of the data.
Moreover, =zlthough no two hosts on the wireless LAN are

75

supposed to have the same name, using C’Neill’s LAWN package,
The author was able to have two hosts with the same name as
long as one of those hosts was inactive. In short, an
intruder with the same host name as a bonafide user’s name
cculd send data to another bonafide user, assuming that all
other parameters such as rate of transmission, security code
and channel were the same. Note that the only requirement to
infectﬁng the system in this way is that the host that the
intruder is masquerading as is not transmitting over the
wireless LAN. The bonafide user could still be doing other

work on the computer and does not have to be logged of.

3.4.2.6 Hoftware and Eardwere Mechanisas
Antirogue software products alone may not prevent rogue code
from being inserted into a transmission media but may prevent

such code from being executed at a targeted host because the

softwvare will have detected the code before it executes.
Furthermore, this measure may be effective against only sone
rogue programs. Stealth rogue programs as defined in
citation!® may be able to bypass some of these control

mechanisms, depending on the specific mechanism(s) used.

76

Antirogue hardware products may be effective against known as
well as wunknown régue programs, depending on the product

quality and ccntrol mechanism(s).

3.4.2.7 Defense Kechenisms Combinations !

Firally, a combination of control mechanisms will provide more
protection and will make it nore diffisult for rogue programs
to bypass p%otection schemes. The usevof encryption and
digital signatures should be considered for incorporation into
RF nets; otherwise, it may be possible to compromise each of

then alone.

An RF net without any security niechanisms is vulnerable to
rogue program attack. All of the above control mechanisms,
singularly or combined, implemented either by software,
hardware or both, will help protect a communication channel
from rogue programs, but at a price. The next section

analyzes the cost and benefits of each control mechanisms.

3.4.3 Cost-Benefit Analysis
To determine whether it would cost more to implement a control
or to accept the anticipated cost of intrusion, a cost~benefit

77

analysis can determine whether a specific defensive control’s
cost is justified. The following cost-benefit analysis is a
less comprehensive, less time consuming but more appropriate
technique than risk analysig!®:103.10¢, The cost-bene:rit
analysis alleviates some of the difficulties in analyzing and
evaluating those controls which would reduce the seriousness
of rcgue infection via RF. It incorporates formulas devised
by Fred Cohen'’® that describe the total costs per year of
rogue program defenses and by Linda Rutledge!?® that determine
communication costs with a proposed access vulnerability

likélihood (VL) that we develop. The analysis ascertains a

cost-benefit ratio by%

1. determining the accessibility of computing systems to
rogue program at:-acks (VL)

2. determining the yearly cost of applying antirogue
products

3. determining the basic cost (BC), recurring cost (RC)
and the expected yearly cost of damaging the computing

system.

3.4.3.1 Access Vulnerability Likelihoed (VL)

The VLais a unit of measure defined as the vulnerability of a

%

closed iietwork resulting from the direct connection to any

node in the network and their associated links. A computing

system’s accessibility to rogue program threats, how the rogue

code infiltrates the computer system, includes topological,

vector and functional factors (Figure 19).

rigure 19.

Topological factors,
computing system,

connectivity/interface

Accessibility Vulnerability
Likelihood Components

the physical characteristics of a
connoted by T, consist of
links among computing systems. These

79

links are potential entry points for infection. Vector
factors, connoted by V, consist of carriers that serve as
rogue program vectors directly connected from each 1link.
Vector factors are used to determine the likelihood that link
interfaces are infected. Functional factors, which may be
based on subjective experiences and are assigned weights,
connoted by F,, consist of the likelihood of penetration Fy
and the havoc’ F;, a rogue program can inflict which depends on
the presence of or lack of defense mechanisms a computing
system incorporates. The Functional Factors, F;, can be

denoted as F;, = Fu, * F;;,. See Pigure 20.

damage a rogue program Can cause

80

sy

Figure 20. Accessibility Fractors

Therefore, to calculate the VL:

a v

VL = (V/T)*[Y (Fy + 3 (F, * Fy))]

1-1 4~0

Where:

T = topological factor
V = vector factor
F; = functional factor or F;, * Fy,

F,s= penetration likelihood

F;»= havoc/damage likelihood

i = index

j = index

n = number of subsystems (nodes)

3.4.3.2 Yearly Cost of Bafeguards (YCB8QG)

To determine if the costs of applying safeguards are

justified, the YCSG must be computed. To determine the yearly

cost for cryptographic equipment for encrypting, digital
signatures and authenticating messages, and the various
antirogue products such as scanners, eradicators, monitors and
cryptographic checksums, the following subset of Fred
Cohen’s'”” parameters are used:
1. the number of scans/checks (C) to be cond:cted
2. the Luss of employee productivity (P) during
scans
the time (T) to perform the scan
the one-time cost for licensing/purchasing (L) the
product
the cost for key management (X)
the cost for installation and updates (U), which
includes the time to install/update (U,) plus
labor costs U,, and
the cost for eradicating (E) detected rogue
programs, which includes the time required to clean
up (B,), to restore damaged files (B,), and costs of

labor (E,).

Therefore, the yearly cost of safeguards is calculated as
follows:
Yearly Cost of sSafeGuard (YCB8G) = (CPT + M + U + L + E)
Where U = U, + U,

E= E +E, +E

3.4.3.3 Basic and Recurring Costs
To determine the one time basic cost and the recurring
communivation cust of each system without any incorporated
safequards, the following subset of Linda Rutledge’s®®
parameters are used:
1. basic costs (BC) (nonrecurring) including the cost
for:
* hardware (N,),
* gsoftware (N,)
* installation (N;) and
* network connection (N,)
2. recurring costs (RC), including costs for:
* call initiation cost (R,), which consists of:
** overhead cost to establish communication
with the destination computing system (R,,),
plus

% cost of the time that a carrier signal

83

must be present for the destination computing
system to respond (R,),
times

. ** the number of ports (R,), and

* the cost for data transmission overhead (R.)

Therefore, the Total Cost = S(BC + RC)
Where:
8 = the number of subsystems
Basic Cost (BC) = N

\ Where N = Nh + Ns + Ni + Nn

Recurring Cost (RC) = R

Where R Rb + Rt

Rb

Rbp (Rbo+ Rbr)

At this point, we can calculate the ratio of the expected loss

if no safeguards are implemented and the expected loss if
- safeguards are implemented as follows:

Loss-Ratio=(VL* (BC+RC)) / ((VL*((1~3SAFE)* (BC+RC)))+CSG)

Where :

84

VL* (BC+RC)=the expected loss if no
safeguards are implemented
((VL*((1-3SAFE) * (BC+RC))) +CSG) =the expected loss with
safeguards implemented
$SAFE=the percentage of
protection the safeguards

provide

Therefore, the Cost-Benefit Ratio for an unprotected systen is
calculated as follows:
Cost-Benefit Ratio = BSMG / CSFG
Where:
BSMG = Benefit per system from safegquards
= (VL*BC) - (VL*((1 - $SAFE)BC))
CSFG = Cost per system for safequard

= CSG

This completes the abstract model. Section 4.5 instantiates
the cost-benefit analysis using 3 computing systems consisting
of a total of 9 links to determine :if the defensive measures

are cost-justified.

85

3.5 summary

This chapter developed a generic abstract model of the rogue
code insertion process into a communication channel via RF,
delineated the parameters, requirements and resources to
insert the code and examined insertion goals and methods.
Moreover, the proposed cost-benefit component was discussed to
determine whether it would cost more to implement a control or
to accept the anticipated cost of the loss. The cost-benefit
analysis allows the user to determine the point of diminishing
returns whenever the benefit per system, which is the expected
logs without safeguard minus the expected 1loss with

safeguards, equals the cost of safegquards.

Building on the work of Cohen'® and Rutledge!'® to determine
the total costs of computing systems used for transmitting
messages, a cost-benefit component to determine the cost
effectiveness of using defense controls against rogue programs
was proposed. The next chapter instantiates the abstract
model on a DOS-based computing system using O’Neill
Communication wireless LAN, called LAWN, to insert rogue code

into a targeted host by RF.

Chapter 4 MODEL INSTANTIATION

4.1 Introduction

This chapter instantiates the abstract model developed in
chapter 3 to insert rogue code into a target host’s
communication data stream using RF and provides data for the
formulas developed in chapter 3. The technique used to
instantiate the abstract model presumes that an adversary
intent on inserting rogue code can covertly monitor all
communications traffic among legitimate network members. The
chapter also discusses how the model matches the conditions of
the abstract model, examines the two control mechanisms
implemented to prevent rogue code insertion via RF, provides
examples of the cost-benefit component proposed in chapter 3
to determine if the defensive measures are cost-justified, and
discusses various techniques to insert rogue code into a

targeted host.

Chapter 4 has seven sections: the introduction (4.1);
experiment setting (4.2); abstract model imstantiation
including the environment description to instantiate the model
on a Dos~based system (4.3); two control mechanisms
implemented to prevent rogue code insertions via RF (4.4) and
cost-benefit analysis that determines that thz defense
measures were cost-justified (4.5); techniques to insert rogue
cede into a targeted host (4.6); summary (4.7).

87

4.2 Background

The chapter describes the Remote Insertion of Rogue Code
(RIRC) Experiment conducted on 18 October 1991. The author
uses the ISO 8473 Connectionless-mode Network Protocol'*?
(CLNP) for network level connectivity, and the Trivial File
Transfer Protocol!? (TFTP) as its basic transmission protocol
through applications ievel connectivity to insert the rogue
code. CLNP and TFTP perform the same functions as the better
known communication protocols, the Transmission Control
Protocol*® (TCP) for network 1level connectivity and the
Internet Protocol?* (IP) for its transmission protocol,

respectively.

In the RIRC experiment, three IBM PC-compatible computer
systems connected an RF local area hetwork, using O’Neill
Communications’ Local Area Wireless Network (LAWN) modules.
The author copied a file between two computer systems to
ensure that the file transfer software worked. The third
computer system, acting as an imposter, was then activated to
ingert rogue code into the data stream as the file was being
transferred a second time between the same two legitimate
computer systems. The innocent recipient computer executed
the rogue code whe it executed the infected file, thereby

illustrating the rogue code’s successful insertion.

88

Tiie experiment showed that a rogue progras could be inserted

via RF into a network with only built in security mechanisas.

Although intruders have more difficulty subverting secure
netwvorks, the above experiment is valid although insertion

techniques are more complex for these systems.

4.3 Parameters and Requirements

Determining the target host’s paraaeters and requirements was
not difficult. In the experiment, because the intruder host
used the same hardware module as the bonafide hosts, he knew
the target network’s communications protocol. The LAWN module
automatically formatted the rogue code and the receiving host
accepted the formatted code. The following three sections
discuss the communications channel, data stream conformation,

and code generation for this instantiation.

4.3.12 communications Channel
The experiment used the seven-layer IS0 O8I reference model,
the ISO 8473 Connectionless-mode Network Protocol!!® (CLNP) and

the Trivial File Transfer Protocol!* (TFTP).

4.3.1.1 Connectionless-wode Metwork Frotoocol (CLNP)

The I30 8473 CLNP provides netvork-level connectivity.
Regiding at level 4, the transport layer of the OSI seven-
layer model!'’ provides end-to-end communications. The latest
international standard network protocol, the Government Open
System Profile (GOSIP)'* maidates CLNP. CLNP identifies and
catogorizes the method to perfora functions within the network
layer, provides a uniform structure and describes which

protocols provide the OSI network servica.

4.3.1.2 The Trivial Frile Transfer Protocol (TPTP)

TFTP is a small, easily implemented protocol that transfers
files at the application levell®. For example, some diskless
UNIX client machines use TFTP to load their operating
eystam'?. Diskless workstation manufacturers can place TFTP
in many platforms read-only memory (ROM) to bootstrap the
system when the machine is on. TFTP’s advantage is that it
allows bootstrapping code to use the same protccols as the
running systems'’’., 1Its features are limited to reading and

writing files from a remote server. Any transfer activates a

90

request for connection to read or write a file. If the server
authorizes the request, the connection is opened and the file

is sent in 512 byte packets.

4.3.2 Data Stream Coanformation

The target host accepts the rogus code as normal network data
because the LAWN module had formatted it properly for CLNP and
TFTP.

4.3.2.1 CL¥NP Data Streanm

The two CLNP protocel data units (PDUs) that transfer data and
report errors are the data protocol and error report PDUs.
DPUs contain octets (bytes) that are numbered sequentially
starting with number one. When a data PDU is discarded, an
error report PDU is generated which identifies the PDU that

was discarded, why it was discarded, and where the error

occurred. Both PDUs have five parts'?’:

1. the fixed part
the address part
optional segmentation information part
optional switches part

optional data part.

Figure 21 shows a data PDU’s structure.

An error-report PDU’s gtructure is not shown.

Optons Part {
Deta Part {

Pigure 21. Data Protocol Data Uanit (PDU)
Stxucture

Both PDUs are padded to an integral number of octets and each
data octet is numbered. To avoid duplicating data between
sessions, each session’s first octet is assigned a unique
number for the virtual connection (VC). This sequential -
number starts with one. Other packets are assigned numbers
incrementally as they are transferred. These unique numbers
assure the receiving host that the data is legitimate and is

arriving in order.

4.3.2.2 TIFTP Data Streaa
The TFTP packet contains one of the following five opcode
headers:

1. Read Regquest (RRQ) = 1

2. Write Request (WRQ) = 2

3. Data (DATA) = 3

4. Acknowledgment (ACK) = 4

$. Error (ERROR) = 5

The Read Request/Writ: Request packets have the following .

format:

2 bytes string

string

1 byte 1 byte

lopcodo-l or 2

The filename and the mode string are zero-terminated ASCII

913

characters. TFTP supports three transfer modes: ASCII (&
bits), binary (8 bit bytes), and mail which allows it to be

integrated with electronic mail.

The data packet has a block number and a data field. The
block number starts at 1 and increases sequentially by one for
each additional packet. The data field is from 0 to 512 bytes

long. The data packet format follows:

The acknowledgment packet acknowledges all but termination and

timeout packets. The receiver must acknowledge sach packat
individually block #. The acknovledgment packet format

follows:

2 bytes 2 bytes
=1 =0
The error packet contains an integer which indicates the error

<not defined>
<files not found>
<access violation>
<disk full or alincation exceeded>
<illegal TFTP operation>
94

$ = <unknown transfer ID>
6 = <tfile already exists>

7 = <no such user>
The error message, like all the other strings consista of

zZero-terminated ASCII characters that explains the error’s

nature to the user. The error packet format follows:
2 bytes 2 bytes string 1 byte
[opcodo-si .rrorcodct crr--g

4.3.2.3 Coding Characteristics and synchronisation

To ensure that the rogue code "looks-like" the code it is
replacing, CLNP and TFTP code charactaristics are coordinated

with their synchronizaticn.

SLMR
CLNP packets contain 512 octets. Synchronization is every 500

ms, and priority codes handle contention. The priority
parameter’s value indicates the relative priority of the PDU.

Priorities vary from 0 (the detault) through 14 (the highest).

A checksum octet, applied at the source node and authenticated
at the destination node, assures data integrity. The checksus
95

is computed on the entire PDU header, which includes the
segmentation’ and options information if available for a data
PDU. For an error-report PDU, checksum includes the reason

for discard as well.

CLNP reguires positive acknowledgement for all of the data it
sends. If the destination or receiver does not acknowledge
data integrity witnin a specified timeout period, the sender
will retransmit the data. The sender retransmits the data for
some number of iterations before it resets the connection.
The length of the timeout period is based on packet size of
512 octets, specified in increments of 500 ms. For example,
the timeout period is 500 ms for each packet with five

retries!*®. Tha receiver discards duplicate packets.

Ine

The size of a TFTP packet is 512 octets. Synchronization is

every 500 ms. Each TFTP data packet is assigned a block
number which is assigned consecutively starting with one.
Each data packet contains one data bliock which must be
acknowledged with an acknowledgnent packet before the next

packet is gent. If a packet gets lost enroute, the sender can

‘ Used when the sisze of the PDU is greater than Si2
octets.

96

transmit the packet for a set timeout period of 3 seconds.
After 3 seconds, the connection is terminated. The connection
is reset also after a preset number of retries. The receiver

discards all the duplicate packets.

4.3.2.4 Transmission Frequency
Deternining the transmission frequency was unnecessary because
the intruder successfully inserted the rogue code message as

the first packet.

4.3.3 Experiment Resources

Analogous to the required hardware for the generic abstract
model discussed in chapter 3, the experiment resources
consisted of a DOS-based computer system and the LAWN module
which contained a microprocessor and a radio transceiver that
sent and received data via radio signal. The module served
the same purpose as the CHRIS and the transceiver from the
abstract model. The configuration was comparable to a LAN and
can be adapted to a WAN using repeaters or more powerful
transceivers. The workstations were connected via RF modems

to provide the physical and link-level connectivity.

97

For purposeii of this experiment, the two authorized hosts are
named Aaron and Bill and the unauthorized user is named

Intruder.

Figure 22 provides a system overview of the network.

Pigure 22. Hardware Syatea
overview

The three system’s hardware configuration follows.

1. For the computing systen

+ Host Bill is a Packard Bell ISM-compatible computer
system with a 12 MHz Intel 80286 CPU, with two §
1/4 inch floppy disk drives, 640K of RAM and a VGA
monitor.

* Host Aaron is a BraglL IBM-compatible computer system
with a 25 MHz Intel 80386 CPU, with a 5 1/4 inch
high density floppy disk drive, 3.5 inch high

98

density floppy drive, 80 Mbyte hard disk, 640K of
RAM and a super VGA monitor.

* Hoat Intruder is a Zenith-150 IBM-compatible
computer system with a 4.77 MHz Intel 8088 CPU,
.with two 5 1/4 inch floppy disk drives, 640K of RAM

and a CGA monitor.

2. The LAWN Module connects the three computers to the
network wirelessly, using high-frequency spread
spectrum radio transmissions which distribute the

transmitted data across multiple frequencies'?,
Spread spectrum uses a pseudorandom seguence generator by
adding from 10 - 1,000 bits to the signal. Spreading the bits
results in a new signal'’® which is distributed over a wide
range of freguencies for trznsmission. This signal is then
reduced to the size of the original frequency at the

receiver’’. See Figure 23 for LAWN specifications.

99

» Inferface - RS-232C » Frequency - 902-826 MHz

» Speod - 1820C bps » Tranamit power - 20 miliwets

» Madulation - Spreac Spectum > Antenna - intemal
(omnidirecional)

» Protocol - CLNP/TFTP » Repeeters - 2 per path

» Dimensions- by 4'by2 » Weight- 1602

» Contention - Carer Sense Multiple Access (CSMA)

» Coverage inside Bulldings - 10,000 sq. ft.

» Range in open amas - 500 faet

FPigure 23. Lawn Specifications

It is easy to install the LAWN module. For example, it weighs
16 ounces, is six inches long and two inches wide. It
includes all the software necessary for alectronic mail, file
transfers and peripheral sharing as well as AC power adapters
and 9- and 25-pin RS-232 serial port connectors. The module
is easy to install, easy to use, and easy to move. When the
user plugs in the module into the serial port of the computer,

the power source executes its software.

100

The module has four lights on the front panel which indicate
the LAWN’s status (Figure 24). A summary of the four

indicator lights follows:

Figure 24. LAWN S8chematic

1. The red POWER light indicates the module is receiving

power. This light blinks when the module is receiving a

message.

2. The green TRAFFIC light signifies that the module is
in use.

3. The green CONNECTED light indicates that the computer
is communicating with another machine.

4. The green TRANSMIT light indicates that the computer

is sending data to another machine.

4.3.4 Code Generation
Because the time period when the intruder can inject code
during a transmission is limited, he used a packet size rogue
code of 512 bytes and followed this three step methodology:
1. Initialized the hosts to transfer files.
2. Executed a normal file transfer.

3. Inserted the rogue code during file transfer.

4.3.4.1 Initializsing Hosts to Transfer Files

The author initialized the three computer systems, host Aaron,
host Bill, and host Intruder, by connecting the LAWN modules
to each system via the RS-232 serial port connectors. He

inserted two 5 1/4" diskettes in each system’s drives A and B

and typed the <start> command on the command line in drive A

to initialize each host. Initialization occurs when the

applicable software programs are executed.

Initialization ensures that the system is set up to perform
its function, such as identifying each specific host on the
LAN, ensuring that the peripheral device controlled by the
driver is present and functional, and processing the
communications between the application and the computer LAWN.

Initialization consists of the following four steps:

1. Set hostname
2. Assign packet drivers
3. Initialize CLNP network layer software

4. Initialize TPTP software

The system must be initialized for file transfer. See
Appendix 1 for the batch code for this initialization.

4.3.4.1.1 8et Hostname
First, the author assigns each computer system a hostname so
that the network can uniquely identify each system. The
commands to set this parameter are:

1. For host Aaron ==> SET HOSTNAME=Aaron

2. For host Bill ==> SET HOSTNAME=Bill

3. For host Intruder ==> SET HOSTNAME=Aaron

(the imposter host is masquerading as host Aaron)

4.3.4.1.2 Assign Packet Drivers
Then, to provide the link layer connectivity, packet drivers
for each host were assigned in accordance with each machine’s

specific hardware configuration as discussed in section 4.3.3.

103

For each specific host, the following parameters’ were used:

1. Host Aaron ==> For COM1l: lawnslip O0x65 -h 6 3 Ox2f8 19200

2. Host Bill ==> For COM3: lawnslip 0x65 -h 6 4 Ox3f8 19200
(COM1 and COM2 were already being used)

3. Host Intruder==> For COM1: lawnslip Cx65 ~h 6 4 0x3f8
19200

4.3.4.1.3 Initialise CLNP Network Layer Software

Second, the author initialized the CLNP network layer software
for each system by executing the command <clnptsr>. The CLNP
software is a TSR memory resident program that provides
telecommunications and information exchange between systems.

See citation!®” for the CLNP code.

4.3.4.1.4 Initialise TPFIP Software
Thirdly, the TFTP software, which contains both server and
client processes is automatically initializes when it executes

a file transfer beginning with the command <tftp> for a

* Usage:
LAWNSLIP (-n] [~d] [-w]) packet_int mno [-h] [-p count] [-t
count] [driver_class) [1nt noj [io addr] [baud_rate])
[send_buf sise] [rcev buf -1101 [datn bur_sise)
-h enables hardware handshaking
~p modifies limit bafore polling mode used
-t modifies the timeout for dallying after last
character.
The driver_class could be SLIP, KISS, AX.25, or a
nunber.

104

bonafide host or <bftp> (bad file transfer protocol) for an
intruder host. BPFTP is a modified version of TFTP that allows

the host intruder to monitor all traffic and insert rogue code

in the first packet sent to the receiver host. This completes

the hosts’ initialization process.

4.3.4.2 Executing a Normal File Transfer
To ensure that the RF modems wvere operational and that the two
friendly hosts could communicate, the author sent a file from
host Aaron to host Bill: he enters a "request wait" command at
hogt Aaron by invoking <tftp> as follows:

Typed from host Aaron: <tftp>

At Host Bill the author raquests the file “"crc.exe" from host

Aaron and renames it "test.exe", as follows:

Typed from host Bill: <tftp -h Aaron -g crc.exe test.exe>’

The TFTP specifies that the TFTP protocol is to be used to
communicate between hosts Aaron and Bill. The second and
third parameters, -h Aaron, specify Aaron as the source
address. The ramaining parameters request the file <crc.exe>
be transferred from host Aaron to host Bill and renamed
<test.eaxs>. To verify that test.exe is an exact duplicate of
crc.exe, the author conducted the following three tests: a
file size test usinc the DIR command, a CRC, and a byte-by-
byte comparison. The "DIR" command shows that the files have
the sane size ~ 3273 bytes. A CRC via crc.exe established
that the CRC values for both files were identical - $B A2 for
crc.exe and test.exe.

Where:

Usage:

Without -h, -p or -q, Server Operation

Client Operation must supply either -h hostname or -a
address, with

=p local_filename remote_filename to put a remote file or
=g reaote_filename local_filename to get a remote file.

[Option parameters with (default settings)] as follows:
~r (5)] Retry attempts defore giving up
-8 (512)] PDU data size
-u (69)] TFTP protocol sslector 4
-f (1)] Fragmented PDU’s Permitted, Mo = 0, Yes = 1
=¢ (0)] Eeader Checksum Requested, No = 0, Yes = 1
-8 (1)] Brror Reports Requested, No = 0, Yes = i
«d (0)] Debug level, O=none, l=some, 2=detailed

106

oroc.exe is the file that was sent by host Bill

test.exe is the renamed file crc.exe

In addition to the CRC check, although there was a 1 to 2
chance that two files wil) have the same CRC value'’?* (using
four characters), the author conducted a byte-by-~byte
comparison using the DOS COMPARE commani for further
vaeritication as follows:

A:\>comp crc.exe test.exe

Comparing CRC.EXE and TEST.EXE......c..

Files Compare OK

The COMPARE command showed that crc.exe and test.exe files
vere the same. Therefore, the author could successfully

transfer files between the two friendly computer systems.

To understand how to insert rogue code during a file transfer,
it is beneficial to axamine the data flow between the machines
during file transfer. First, host Bill sends # read request
for the file "crc.exe" from host Aaron. Host Aaron opens the
file and reads the first block of 512 bytes into a buffer. A
PDU is then created using the addressing information in host
Bill’s read request. A sequence number of 1 is assigned to

the first data block which is sent to Host Bill (Pigure 25).

107

Mt BB
Hast Avon
Tenanils Facket
| e s ——p gy

rigure 25. Nost Aaron Sends a
Nessage to Host Bill

Upon successful receipt of the data, host Bill sends an ACK

PDU with the same seguence number, seg. #1, to host Aaron

(FPigure 26).

Most bgnhr

=)

Noot Aamn Host 68

g:-mm-

rigure 26. EHost Bill
Acknowledges Host
Aaron’s Massage

Hoat Aaron, upon roceiving ths ACK, continues to send blocked
packets with sequentially increasing sequence numbers until
the entire file is transferred. If an ACK is not received
within a specific time, the packet iz retransmitted until
either an ACK is received or a timeout has been reached. If
the packet is not in the correct format or the checksum in the
network protocol or a CRC in the LAWN protocol does not match,

the packet is rejected.

4.3.4.3 Inserting Rogue Code During a Pile Transfer

At this time, the intruder inserts rogue code into the
friendly host’s data stream. To invoke the protocol, the
imposter, masquerading as host Aaron, with the HOSTNAME=Aaron,
executes <bftp>. This command places the imposter host in a
monitoring wmoda, ready to insert its code as soon as it
detects a file transfer. No operator interaction is required
for this process. To ingert the rogue program, host intruder
Creates a spurious PDU whose format is identical to the
legitimate system’s PDU format; the spurious PDU must pass the
CLNP network layer checksun, pass the link layer CRC test, and
have the same sequence number and format as the good packet.
The intruder uses the snsame procedures as set forth in
paragraph 4.3.4.2 to effect a normal file transfer. As host
Intruder detects a file transfer taking place, it immediately
sends its "spurious" packet to the receiver host, host Bill

109

(rigure 27).

Figure 27. Host Intruder’s
Packet Reaches Host
Bill rirst

Host Bill accepts the bad packet and sends an ACK to hcst

Aaron indicating that the first packet has been successfully

received (Figure—28)-

) =
5=

rigure 28. Nost Bill
Acknowledges ERost
Intruder’s Packet
to Host Aaron

The above operational steps took place in this order:
Step Timsline
0 Host Bill sends file request to host Aaron.

1 Host Intruder detects that a file
transfer is to take place.

2 Host Intruder sends its prepared rogue packet,
spurious packet #1 to the receiver host, host Bill.

3 Host Aaron prepares its message for host Bill
and sends its first packet bonafide packet #1.

4 Host Bill receives rogue packet, spurious packet #1
from host Intruder.

5 Host Bill receives host Aaron’s packet,
bonafide packet #1 and discardes it, because
has already received packet #1. No ACK is sent
for rejected packats.

6 Host Bill acknowledges receiving packet #1 (really
saent by host Intruder) to host Aaron

7 Host Aaron receives acknowledgement for (rogue)
packet #1 (sent by host Intruder), and then
continues to send the other packets

Host Intruder will almost always beat the sender host because
the sender host has much more to do than the host Intruder to
prepare a packet for transmission such as finding and opening
the file and preparing and sending PDUs. To illustrate this
point, the host Intruder was the slowest machine with a 4.77
MHz CPU clock speed; the sender, host Bill, was the fastest

computer with a 25 MHz CPU clock spsed.

The following paragraphs describe why the intruder’s packet
got to host Bill before the sender’s packet.

111

DOS programs use a unique, 16-bit value called a file handle
to perform file operations:’”., The file handle identifies the
file currently being accessed and the operation to be
performed, such as to open or create files and subsegquent
functions to perform other file operaticns such as reading and
writing. The following describes the timeline and steps
required to transfer files:
tep Timeline

0 Receiver host Bill regquests a file from
the sender host Aaron.

1 Sender host must fjirst locate the requested
file via the find ¢gfirst file function,
Interrupt 21, Function 4EH.

2 The sender host opens the found file
via the open file function, Interrupt 21,
Function 3DH.

3 Sander host places the file in an internal
buffer to prepare it for transmission and to
prepare the data PDU.

4 Sender host transmits the data PDU to
the receiver host.

The host Intruder does not have to follow these steps with its
rogue code packet already prepared, as soon as it detected a

file transfer operation request, it immediately transmitted

112

its prepared packet to the receiving host. The intruder can,
therefore, prepare the rogue packet in advance and skip the

file I/0.

An examination of test.exe demonstrates that the insertion was

successful. Performing a DIR command, the file size is the

same as the original file, crc.exe: 3273 bytes. But, a CRC

check shows that the CRC value is different, BD 9F. Also, a

byte~by-byte comparison using the DOS COMPARE command shows:
A:\>comp crc.exe test.exe

Comparing CRC.EXE and TLEST.EXE...

Compare error at OFFSET O Compars error at OFFSET S5
filel = 4D filel = 1}
file2 = BB file2 = 8C

Compare error at OFFSET 1 Compare error at OFFSET 6
filel = S5A filel » 0O
file2 = 2 file2 = CA

Compare error at OFFSET 2 Compare error at OFFSET 7
filel = C9 filel = 20
tile2 = 0 file2 = 8E

Compare error at OFPFSET 3 Compare error at OFFSET 8
filel = @ filel = 0
file2 = BY £ile2 = DA

Compare arror at OFMSET 4 Compare srror at OFFSET 9
filel = 7 filel = 0
file2 = 40 file2 = BA

10 Mismatches - ending compare

113

The COMPARE command shows that the two files crc.exe and
test.exe are different only at the program’s first ten bytes -

where the rogue code was inserted.

When host Bill executes the infected test.exe, it displays the
messay<, "This file has been infectad with a harmless computer

virus! This file is no longer good".

The "bftp" software notifies the rogue operator that the rogue
program was transmitted as well as how many packets the sender
host transferred. See Appsndix 2 for the transmitted rogue

program’s code.

4.3.4.4 Experiment sSummary

The above three sections describe how a rogue program is
inserted into a wireless communication gtream. The imposter,
host Intruder, masqueraded as the sender host, host Aaron, by
creat.nyg packets that look like they came from host Aaren.
The imposter monitored all traffic between the two friendly
hosts, Aaron and Bill. Once the imposter detected that a file
transfer was to take place, it immediately forwarded its
spurious rogue code packet to the receiver host Bill, which
acknowledged to the sender host Aaron that the packet was the

114

bonafide sender’s first packet. Host Bill, upon receiving

host Aaron’s legitimate first packet, discarded it as a
duplicate. Host Aaron, upon receiving an acknowledgement for
its "supposed" first packet, continued to send the rest of the
packets. Therefore, host Intruder was able to insert
successfully its rogue code into the file that host Aaron sent
to host Bill. The next section discusses the defense measures
that hosts Aaron’s and Bill’s users could have taken to

minimize the host Intruder’s threat.

4.4 Defonse Neasures

For purposes of this dissertation, only the first two defense
measures of the seven that Chapter 3 discussed, CRC and
checksum, were used in <the experiment to demonstrate
successful detection cof rogue code insertion. The DIR command
shoved that intruder modified the original file, crc.exe
because the infected file, test.exe, was not the same size as
the original file. The checksum, COMPARE command, reinforced
the fact that the two files were not the same via a byte-by-
byte comparison. The CRC clearly showed that the two files

were different lengths.

4.5 Cost-Benefit Analysis

In this section, the formulas provided in chapter 2 are
implemented with examples to determine whether it would cost
more to implement controls or to accept the anticipated cost

of the loss.

To implement the cost~benefit portion of the model to
ascertain the cost-benefit ratio, the following three
parameters must be computed:
1. the accessibility of computing systems to

rogue program attacks, access vulnerability

likelihood (VL)

the cost of applying antirogue products

((the yearly cost of safeguards (CSG) which enhances

product effectiveness))

the basic cost (BC), recurring cost (RC) and

the expected yearly loss of the computing system

4.5.1 Access Vulnerability Likelihood (VL)

Using the formula from page 75,

[3 v

VL = (V/T)*[) (Fy + Y (F. * Fy)))

f=1 =0

Where:

T topological factor

v vector factor

F, functional factor or Fys * Fy,

Fi4= penetration likelihoocd

F;,= havoc/damage likelihood

i = index

j = index

n = number of subsystems (nodes) that can be

carriers
three computing systems were used consisting of 9 links as

shown in Pigure 29. The topological factor is 9, since there

is a total of nine links.

Figure 29. Example Subsystem

The vulnerability, based on the vector analysis contribution

was .66 because 6 of the 9 links can carry the infection.

117

The likelihood of the three printer links becoming carriers
wags remote, Dividing the vector contribution by the
topological contribution and multiplying it by the function
contribution of each of our subsystems determined the VL. The
function contribution was determined from the following matrix
which contains a number of safeguards with associated
(subjective) weights assigned specifically for purposes of
this dissertation (other researchers nay assign different
weights depending on their own experiences or purposes):

Functional Pactor Matrix

UBE OF SAFEGUARDS WERIGHTED VULNERABILITIES
Penetration (F,) Damage(F,)
1. CRCs .50 .50
2. checksuns .30 .30
3. encryption .50 .10
4. digital signatures .10 .99
5. incorporated safeguards .30 .99
6. SW or HW mechanisms .10 .10
7. combination of the above .10 .10

For example, in the case where 3 computing systems had a total
of 9 links, 6 of which can be carriers, assuming that
computing system-A is using software or hardware safeguards
with its respective weight where F, = (Fy) * (Fy,) = .10 * ,10
= .01, and computing system-B is using TRCs where F, = .50 *
.50 = .25 and computing system-C is using no safeguards, F, =

.99, to determine VL (see Figure 30), one calculated:

118

Por m=1: VL(1)~=.66(.01+(.01%.29)+(.017.99)) = .015
Por m=2: VL{2)~.66{.25+(.25°.01)+(.25*.99)] = .330
FOor m=3: VL(3)=.66(.99+(.99°.01)+(.99¢.25)] - .82%

Therefore, VL = VL(1)+VL(2)+VL(3) = 1.17

FPigure 30. Computing Systems
Vulnerability Likelihood

Hence, the VL for the three computing systems is 1.17, meaning
that there is a lesser chance than the mean®’ that the network
may be infected. Converting VL to a percentage for use in
forthcoming calculations, 1.17 approximates to a 20%
vulnerability. This percentage is determined by caiculating
the lower bound (i.e., full protection which is defined at
99%) and the upper bound (no protection at .01%) vulnerability
for this network, and then normalizing the upper bound. For

the above three computing systems, the lower bound is

POr nel: VL(1)=.66[.01+(.01*.01)+(.01v.01)] = .0067
POT N=3: VL{3)~.66[.01+(.01*.01)+(.01*.01)] = ,0067
POY N=3; VL(3)=.66[..01(.01*.01)+(.01*.01)] = ,00§7

Therefozre, VL = VL(1)+VL(2)+VL(3) = .0202

The upper bound vulnerabiiity is
POI nel: VL(1)=.66[.99+(.99* .99)+(.99°.99)] = 1.947
POX n=2: VL(2)=.66(.99+(.99°.99)+(.99¢.99)] - 1.947
FOX me3: VL(3)=.66[.99+4(.49¢.99)¢(.99¢.99)) = 1.947

Thezefors, VL = VL(1)eVL(2)+VL(3) = 5.861
Therefore, the percentage equivalent of VL is determined by
normalizing the lower bound to 1, such that 1.17/5.841 = 20%.
Hence the accessibility vulnerability likelihood is 20%. See
the following table for an analysis of VL as the value of n

doubles, while keeping all other parameters constant.

L]

The mean is determined by avoraging the VL for the
three subsystems with no vulnerabilities (i.e, Fr(i)=.o01;
hence, VL=.0202) and with full vulnerabilicies (i.e.,
F(i)=.99; hence, VL=5.841). Therefore, the mean=2.93.

120

¥ YL LB UB %

3 1.17 .0202 5.841 20 e ¥ of nodes

6 2.34 .0404 11.682 20 VL - Measure of Vulnezability
12 4.68 .0808 23.364 20 o 7 Lower ound
24 9.36 .1616 46.728 20 O e lived Valve

48 18.72 .3232 93.456 20
96 37.44 .6464 186.912 20

As expected, the normalized VL does not change when n is
doubled and all other factors remain the same. Hence, adding
more nodes to a network does not change the percentage of the
VL as long as all the other parameters remain the same. There
is no difference in the VL percentage when adding or
subtracting nodes vhen all other parameters are constant.
4.5.2 Yearly Cost of Bafeguards

» determine the yearly cost of safeguards, the following

uation was used:

Yearly Cost of B8afeGuard (YC8G) = (CPT + M + U + L + E)

WL re:
C = the numbex of scans/checks
P = the loss of employess' productivity
T = the time to pertorm the scan
M = the cost £oz key managesant

U = the cost for insGallation and updates
= Ui (the time to install/update) * Ue (the esployees®' costa)

L = the cost foxr licensing/purchasing of product
B = the cost £ox exadicating detected rogus programs

= Xc (the time requized to clean damaged tiles) + Br (time to Xestors damaged files) + Xe
(suployees' time involved)

121

For axample, to calculate the safeguard costs, it was assumed
that a cryptographic mechanism and a scanner/eradicator were
installed such as the RSA algorithm and SCANV that provided

99% protection, as per the PFunctional Factor Matrix.

8] « .

Husber of Scans (C): 250 (Scan dons aftex each bootup - daily)
Lous of Bmploves Time (P): .27 {® $16.00 per hour « ¢£.27/min)

Time to Perfozrm 8Scan (T): S min (tox 80 MByte MD, 25 MHX)

Esy Management Copts (M): $350.00 (one time cost of equipmeut)

cost for Installation (U): $34.00 (one hour for cyypto, :/2 hour for scan)

Sost £0F URdatee: $40.00 (4 updates pexr year @ $10.00 per scau)

Sost £03 BEDIoVee: $32.00

Sost for Licensing (L): $35.00 {par year)

Cont €O Bradicate (RB): §.025 (scanner will sutomatically exsdicate w/permission - appr¢x 3 sec)
Cost to Restore: $.9¢ {assume Dack-ups availadble - 2 min to get them)

Cost of Employee: $4.00 (assume no major damage - 15 min to back-up apecific filas)

Yearly Cost of Safeguards = (250%,27*5+50+96+25+4.55)

= $513,05
Hence, the yearly cost of safequards was $513.05 per year for
each subsysteq: which may be a reasonable cost depending on
the importance of the data to be proiected. The above costs

were obtained from citations'??:3t,

122

4.5.3 basic and Recurring costs
To determine the total cost of each subsystem without any
incorporated defensive controls:

Total Cost = S(BC + RC)

Where:

= the mmber of subsystems
Basic Oost (BC) « M
Whezre N = Mh + Ma + Ni + ¥n
¥h = hardwara coste
Ws = softwars costs
Wi « installation costs

n * network connection costs

Securriag Oost (RC) - R
Wheze R = Rb + Rt
« Rbp(Rbo+ Rbx) = initiation cost
® cost to establish communicastion
= cost of che zemponse time

= nuabsx of ports

= cost fox data tzansmiasion

Exapple: Assuming 3 computing systems connected via

RF as in the previous example:
NONRECURRING COST KECURRING COST
hardvare *+ software + install + connection call iniciation ¢ tzansmiseicn ovezrhead

$ 3000.00 + S000.00 + 8.00 + 450.00 .01s 075

Basic Cost = $8458.00
Recurring Cost = $.10
Where: For Basic (Monzecurring) Costs
hardvare cost = $3000.00
softwaze cost - $5000.00

inatall cost = one smployes working at $16.00 per hour for 1/2 houx

connection coet = the cost of the wizeless LAN compodents, such as the LAWN

- $430.00
Therefore, Basic Cogt = N,+N,+N,+N, = $3000 + $5000 + $8 + $450
$8458.00
Whers: FOr Recurring Coats
call init cost = cone employee working at $16.00 pexr hour for 2 seconds fox
overhead (Rbo=$.010) and for 3 seconds for xeepond (Rbr=$.0135)

{(® $.005 per second)
- §.925
transmit cost ~ one employee vorking at $1¢.00 pex houx for 13 seconds
for a 60K tile transmitted at 4K bps

= $.075 (assuming one port (Rbp=1))

Therefore, Recurring Costs = R = R, + R, = R (Ry, ~ R;) + R;
= 1($.010 + $.015) + $.075
= $.10

Hence, Basic Costs plus Recurring Costs = $8458.10 per

subsysten. The total system cost = 3 * $8458.10) =

$25,374.30,

At this point, the ratio of the expected loss with no

safeguards to the expected loss with safeguards for each

subsystem was calculated as follows:

Loss=Ratio=(VL*(BC+RC)) / ((VL*((1 ~ 3SAFE)*(BC+RC)))+CSG)
Where :
VL* (BC+RC) = the expected loss if no
safeguards are implementad
(VL* ((1 - 3SAFE) *(BC+RC)) +CSG)= the expected loss with
safeguards implemented
$SAFE = the percentage of
protection provided by the

safeguards (its effectiveness)

Therefore, the Cost-Benefit Ratio for an unprotected subsystem
was calculated as follows:
Cost-Benefit Ratio = BSMG / CSFG
Where:
BSMG = Benefit per subsysten from safeguards
= the expected loss if no safegquards
are implemented minus the expected
loss with safeguards implemented
= (VL*BC) - (VL*((1 - 3SAFE)BC))
= Cost per subsystem for safeguard
= CSG

125

Racalling that the VL = 20%, the expected cost of loss without
safeguards to the expected cost of loss with safeguards is:

Expected Cost of Loss Without Safeguards = (.20%8458.10)
= $1691.62
Expected Cost of Loss WAtk Safeguards » ((.20°((1-.99)+8458.10))+513.05)
* $529.97
Loss Ratio = (.2078458.10) / ((.20%((1-.99)°8454.10))+513.08)
- 1691.62 / 329.97

*3.3/1

-3/1

The Cost-Benefit Ratio for an unprotected subsystem was

calculated as follows:
Rxpected damage per subsystem due to access vulnerability likelihood of .20 (from above) 18 = $1§91.63
(vhich is the expacted damage per subsystem WITHOUT safeguards)
Expacted damage per subsystem with gafaguarda (from alwove) 1e $3529.97
Tharefors:
Benatit pex subsysvem from safeguards (BSNMG) = (Bxpected damage) - (Bxpected damage w/safeguards)
e 1691.62 - 529.97

e $1161.6%
Cost per subsystea for safegusxd (CSPG) = $513.08
Cost-Benefit Ratic (fox each subsystem) = BMOMG / CIPQ

= {1161.63) / (513.05) = 2.3

Therefore, the Cost-Beastit Ratie - 2.3

=2/1

126

These figures demonstrate that for every dollar spent on
safeguarding an unguarded system, the user will avoid spending
approximately 3 dollars (loss ratio = 3/1). For every dollar
spent, the user will save 2 dollars (cost benefit ratio =
2/1). If the user does not select this wise choice, then
according to the vulnerability estimate, he could end up
spending an additional $1161.65 due to rogue program infection

and associated lossas.

4.5 Attack Methodology Variations

In the above experiment, the intruder inserted rogque code into
a targeted host via RF by replacing the first valid packet
with a rogue packet. 1Insertion can also ba accomplished by
replacing any packet in the data stream; however, it is more
difficult to insert rogue code successfully into other data
stream locations because the timing sequence and packet order
become more important. After the first packet, the rogue code
could accomplish many different tasks such as deleting files,
modifying programs, capturing programs or propagating its
rogue code to other computing systems. In all these cases,
the code would be more complicated and would require more than
two packets. Moreover, the intruder host can masquerade as
the receiving host as well as the sending host, thereby having
the capability to eavesdrop on transmissions. The intruder is

127

able to masquerade as the receiving host assuming that the
intruder knows the hostname of the bonafide receiver host as
well as using the same hardware with the appropriate settings.
Acknowledgments from the intruder are not a concern because
the protocol will discard any duplicate acknowledgements.
Also, the rogue code can accomplish many other tasks, but the
more tasks it pursues, the more rogue code required, the more
chances of something going wrong and, hence, the more prone

the rogue code is to detection.

4.7 Conclusions

This dissertation demonstrated that unprotected wireless LANs
are more vulnerable to rogue program attack than traditional
LANs. This vulnerability was demonstrated by developing and
instantiating an abstract model of the rogue code insertion
process into a targeted wireless communications system that

used RF atmospheric signal transmission.

The model was general enough to apply it to widely used target
environments such as the UNIX, Macintosh and DOS operating
systems. In this experiment, the model was instantiated on a
DOS-based system that used a Local Area Wireless Network

(LAWN) connection.

128

This experiment to instantiate the abstract model in chapter
3 tc insert rogue code into a targeted host was successful.
The author used the ISO 8473 Connectionless-mode Network
Protocol!*® (CLNP) for network-level connectivity, and the
Trivial File Transfer Protocol!?® (TFTP), as its basic
transmission protocol through applications level connectivity
to insert the roque program. Three IBM PC-compatible computer
systems were connected by RF LAN, using O0’Neill
Communications’ Local Area Wireless Network (iAWN) modules.
The author copied a file between the two legitimate computer
systems to ensure that the file transfer software worked. The
third spurious computer system, the imposter, then inserted
rogue code into the data stream as the file was being
transferred a second time between the same two, legitimate
computer systems. The innocent recipient executed the rogue
code when it executed the infected file, thereby illustrating
the rogue code’s successful insertion. Two defense measures,
CRCs and checksumming, to prevent rogue code insertions via RF

were examined.

129

The technique to instantiate the abstract model, ising

specific protocols (CLNP and TFTP) and O’Neill’s (uZWN)

wireless communication modules, may be generalized. The
principles and the technique used remain valid for other
protocols and other communication modules. Inserting rogue
programs can be more complex and sometimes near impossible
with current technology, but with wunlimited ¢time and

resources, it can be done.

Chapter S5 CONTRIBUTIONS, CONCLUSIOMS AND IMPLICATIONS FOR
FUTURE RESEARCH

$.1 Contributions

Wireless LANs are becoming more ard more popular. This
popularity increases the opportunities for intruders to infect
computing systems via RF. The hardware and softuxre
telecommunication components, the specifications for each
component and the technology to inject rogue programs via RF
communication channels are proven and readily available.
Unauthorized users can purchasze "Telecommunication Saturday
Night Specials" at many electronics outlet to insert rogue

code into a communication channel via RF surreptiously.

This dissertation makes three major theoretical and three

proof of concept contributions. The first major theoretical

contribution is the development of an abstract model of the

rogue code insertion process into a wireless network using RF.

The second major theoretical contribution is the development
of the methodology and three modules to generate rogue code
and insert it into a wireless LAN. The three modules are the

prober, activator, and trigger modules.

The third major theoretical contribution is the inclusion of
the V1. into the abstract model. This was accomplished by

combining Fred Cohen’s'’* and Linda Rutledge’s!’® works with

the proposed topological, vector and functional factors, to

establish a computing system’s VL to rogue program threats.

The first proof of concept contribution is the finding that
inadequately protected wireless LANs are more vulnerable to
rogue program attack than traditional LANs. Because of their
inherent characteristics, wireless LANs have unique security
concerns. They run not only the same risks as traditional
LANs, but they also have the additional risks associated with
an open transmission medium. Intruders can scan radio waves,
and given sufficient time and resources, they can interrupt,
analyze, decipher and reinsert data into the communication

medium.

132

The second proof of concept contribution is the demonstration
that rogue code could be successfully inserted into a target
host via RF. This will not only make the computing community
awvare of wireless LANs’ inherent vulnerabilities, but the
insertion will also help the community identify, analyze and
neutralize these weaknesses and defend against unauthorized

users.

The third proof of concept contribution is the cost-benefit
component of the abstract model. The component demonstrated
that it generally costs users significantly more not to employ

safeguards on their wireless LANs than to employ safeguards.

5.2 conclusions

The value of this work is that this study can be applied to
the UNIX, MVS, Macintosh and other operating systems or other
related telecommunication spheres, such as cellular phones,
automatic bank tellers, short wave communications, electronic

warfare, and satellite manipulation applications.

Cellular phones are popular with all population sectors. By
the end of 1994, millions of people will have cellular phones
in the USA alone and thousands more will have cellular

modems'’®*. This technology has provided ample opportunity for

133

companies to make money and "would be intruders" to cause

havoc using the various methods of communicating through the

air.

Some of these methods include'¥:

1. Cellular Digital Packet Data (CDPD), which is an
emerging technolegy that transmits data over cellular
networks by inserting data packets into unused voice
channels. Its main uss is likely to be for short, bursty
transactions, such as mobile credit-card authorizations.
2. Circuit-switched cellular, which uses today’s cellular
network to transfer connection-oriented data via a
cellular modem.

3. Mobile satellite service, which is voice and
messaging-oriented technology targeted at places without
an existing wired infrastructure.

4. Paging, which is a one-way data messaging and

broadcast technology.

5. Enhanced Mobile Radio, which is voice and data

technology.

For example!’*, UPS uses CDPD-like technology today to the tune

of 510,000 to 520,000 calls per day.

Short wave, electronic warfare'*®, and satellite manipulation

applications are other areas which will become more vulnerable

as technology improves. They all function within the radio

frequency spectrum. For example, the FCC recent announcement
to allocate thin slices of spectrum in the 2-GHz range to
potential service providers may give unauthorized users the

cpportunity to gain access for illegitimate purposes.

$.3 Future Work
This work points out the need for more research in protocol
design. The current protocol suite' use layers to reduce
their design complexity and provide well-defined interfaces
between the layers, so that a change on one layer doesn’t
affect an adjacent layer. The protococl suites are'‘':

1. the TCP/IP protocol suite (the Advanced Research

Projects Agency (ARPA) Internet protocols),

2. Xerox Network Systems (Xerox NS or XNS),

3. IBM’s Systems Network Architecture (SNA),

4. IBM = NetBIOS,

5. the 0SI protocols,

6. Unix-to~-Unix Copy (UUCP).

* A protocol susite is a collection of protocols from more
than one layar that forms the basis of a useful network.

135

Each of these protocol suites define different protocols at
different layers, such as Trivial File Transfer Protocol
(TFTP) is one specific user process whose protocol is defined

by the TCP/IP protocol suite.

Protocols provide resource sharing and interconnection;
security was not a major factor. These protocols generally do
not have duplicate packet checking, resulting in discarding
any duplicate packets. The rogue code exploited this protocol
characteristic in chapter 3 to insert the rogue code into the
communication stream of a targeted host via RF. More robust
protocols would minimize the threats delineated in this

dissertation.

Another extension of this dissertation for future researchers
is to conduct an empirical analysis of the Accessibility
Vulnerability Likelihocod. This dissertation only discussed
the variability of VL as n doubles with the other parameters
remaining the same. As expected the normalized value of VL
remains the same. Further study is needed to determine the
effects of VL as all parameters vary to provide a

comprshensive perspective of how accessible networks are to

rogue programs.

APPENDIX 1 - INITIALISATION CODE

Initialisation code for Host Aaron (Btart.Bat)

PATH=a:\;b:\;b:\clnptsr;b:\clnpmgr;a:\packet
SET HOSTNAME=aaron

prompt thhh $psSg

a:

cd \packet

call llawn

b:

cd \clnptsr

clnptsr

cd \clnpmgr

Initisligation Code for Host Bob (Start.Bat)

PATH=a:\;b:\;b:\clnptsr;b:\clnpngr;a:\packet
SET HOSTNAME=bob

prompt tShSh$h $pSg

a:

cd \packet

call llawn

b:

cd \clnptsr

clnptsr

cd \clnpmgr

Initialixzation Code for Host Imiruder (Start.Bat)

PATH=a:\;b:\;b:\clnptsr;b:\clnpmgr;a:\packet
SET HOSTNAME=intruder

prompt tSh$hsh $psg

at

c& \packet
call llawn
b:

c¢d \clnptsr
clnptsr

cd \clnpmgr

137

APPENDIX 2 - ROGUE PROGRAM CODE

.Text segment byte public "code"
.Text ends

Assume CS: .Text

Text segment

Label msgbegin near

db "This program has been infected by a harmless
virus", 0
Label msgsend near

Virus proc near
mov bx,2
mov cx,offset (msgsend - msgbegin)
mov dx,cs
mov ds,dx
mov dx, offset msgbegin
mov ah, 48H
int 21H
mov ah, 4cH
int 21H

enddp
ends
segmaent
end

Virus

Endnotes

1. Dobbins, J.H., "Software Acquisition Management, "
Manager, Journal of the Defense Systems Management College,
January-February 1994, pages 2-8.

2. Hoffman, Lance J., "Rogue Programs: Viruses, Worms, and
Trojan Horses,"™ Van Nostrand Reinhold, 115 Fifth Avenue, New
York, N.Y. 10003, 1990, page xi.

3. Danning, Peter, "Computers Under Attack - Intruders, Worms,
and Viruses", ACM Press, New York, N.Y. 1990, page xiii.

4, USENIX, The Journal of the USENIX Association, University
of California Press, Vol. 2, Spring 1989, pages 155-176.

5. Computers & Security, Elsevier Advanced Technology, Volume
9, number 5, August 1990.

6. Markoff, J., "U.S. Is Moving to Restrict Access to
Facts About Computer Virus," New York Times. Nov 11, 1988.

7. Slade, Robert, "antivirus Contact List," Vancouver
Institute for Research into User 3Zecurity, Integrity Canada,
V7K2G6é, Internet address is Robert_ Slade@mtsg.sfu.ca, 1991.

8. Highland, H., "The Brain Virus: Fact and Fantasy,"

computers and Securxity, Vol. 7, August 1988, page 367,

9. Denning, Peter, "Computers Under Attack - Intruders, Wornms,
and Viruses," ACM Press, New York, N.Y. 1990, page xii.

10. Stoll, Clifford, "Stalking the Wily Hacker,"
communjcations of the ACM, Vol. 31, No. 5, May 1988.

11. Dataquest Research, 600 Delran Parkway, Delran, NJ 08075
1980.

12. Hoffman, P., "VSUMX", Virug Summary List, 333 Bowers Ave,
Suite 130, Santa Clara, CA., Dec 1993,

13. NCR Corporation, NCR WAVELAN, Dayton, ©Ohic, 1990,
telephone number: 1-800-225-5627.

14. Perry, D., Bugsiness communications Review, "Will Wireless
LAN8 Realize Their Potential?", vol 23, JXssue 8, Aug 1993,
page 19.

15. Lathrop, D., "Security Aspects of Wireless LANs,"
computers and Security, Vol. 11, 1992, pages 421-426.

16. Eichin, Mark W., and Rochlis, Jon A., "With Microscope and
Tweezers: The Worm from MIT'’s Perspective,” Communications of
the ACM, Vol. 32, No.6, June 1989.

17. Seeley, Donn, "A Tour of the Worm," The Computer Worm - A
. Cornell
Univeraity, Ithaca, N.Y. 14853, Feb 1989.

18. Spafford, Eugene, H., "The Internet Worm: Crisis and
Aftermath," Department of Computer Sciences, Purdue
University, West Lafayette, IN., 47907.

19. United States General Accounting Office, "Computer
Security," June 1989, GAO/IMTEC-89-57.

20. Trusted Information Systems, Inc., "Computer System
Intrusion Detection," Contract No. F30602-87-D-0093, Sept 11,
2990, page 8.

21, Trusted Information Systems, Inc., "Computer System
Intrusion Detection," Contract No. F30602~87-D-0093, Sept 11,
1990.

22. The computer Security Alert, "Distributed Intrusion
Detection System,* Computer Security Institute, San Francisco,
CA., 94107, No. 107, Fab 1992, pages 3-8.

23. Trustad Information Systems, Inc., "Computer System
Intrusion Detection," Contract No. F30602-87-D-0093, Sept 11,
1990, pages 30-35 (Appendix B).

24. Ibid, pages 17-23.

25. pages 1-5.
pages 11-16.
pages 24-29.
pages 36-44.
pages 45-47.

pages 48-53.

31. Ihe cComputer Security Alert, "Distributed Intrusion
Detaction System," Computer Security Institute, San Francisco,
CA., 94107, No. 107, Feb 1992, pages 3-8.

32. Fischhoff, B., "The Art of Cost-Benefit Analysis", Defense
Technical Information Center, Camercn Station, VA, Feb 1984,
page 2-1.

33. Cassady, P., "Integrated Family of Test Equipment Electro--
Optical Program Cost-Benefit Analysis", Defense Technical
Information Center, Cameron Station, VA, Dec 1990, pages 9-12.

34. Cohen, F., "A Cost Analysis of Virus Defenses," A_Short
, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

35. Cohen, F., "A Note on the use of Pattern Matching in
Computer Virus Detection®, Invited Paper, Computer Security
Contference, London, England Oct 11-13, 1989.

36. Hirst, J., "Eliminator - Virus Detection and Removal®",
Users Manual, British Computer Virus Research Center, 1990.

37. Cohen, F., "A Cryptographic Checksum for Integrity
Protection", Computers and Secvrity, Vol. 6, No. 6, 1987,
pages 505-~510.

38. Cohen, F., "Models of Practical Defenses Against Computer
Viruses", Computers and Security, Vol. 7, No. 6, 1988, pages
308-313,

39. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
Mar 1987, page 97.
40. Figschhoff, B., "The Art of Cost-Benefit Aanalysis,"
Decision Research, 1201 Oak St., Eugene, Oregon, Jul 1978,
pages l1l-1 to 4-14.

41. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, 52nd Street SE, Grand Rapids, MI., 49508, page 13.

42. Microsoft, "MS-DOS Programmer’s Reference," Microsoft
Press, Redmond WA., 98052, 1991, pages 115, 116.

43. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, Grand Rapids, MI., 49508, 1988, page 98.

44. Ibid, pages 98-~99,
141

45. Hoffman, P., "Virus Information Summary List", 3333 Bowvers
Avenue, Santa Clara, CA., 95054, Dec 1993, page 5.

46. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, Grand Rapids, MI., 49508, 1988, page 100.

47. Dettman, T., DOS Programmer’s Reference, Que Co., 11711
N.College Ave., Carmel, IN., 46032, 1989, page 250.

48. Tanenbaum, A., "Computer Networks", Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 07632, 1981, page 2.

49. Pfleeger, C., "Security in Computing," Prentice-Hall,
Englewood Cliffs, NJ, 1989, page 365.

50. Pfleeger, C., "“Security in Computing," Prentice-Hall,
Inc., 1989, page 403.

$1. Tanenbaum, A., "Computer Networks," Prentice-Hall, 1988,
pages 117, 118.

52. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, page 371.

53. Ibid.

$4. PIN, Warfel and Miller Inc., Vol. 6, No. 6, July 1990,
page 4.

55. National Institute of Standards and Technology (NIST)
Special Publication 500-157, "Smart Card Technology: New
Methods for Computer Access Control," i
Technolegy, US Department of Commerce, Sept 15988.

56. Pileeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, pages 258-269.

57. Amas, S., "“Secuvrity Kernel Design and Implementation: an
Introduction, " Computer, Vol. 16, No. 7, Jul 83, pages 14-23,

58. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, page 276.

59. NCR Corporation, NCR WAVELAN, Dayton, ©Chio, telephone
numder: 1-800~225-5627, 1990.

60. Altair Product Operations, 108 East 91st Street, New York,
NY., 10128, telephone number: 1-800-233-0877.

142

61. O’'Neill Communications, Inc., "The LAWN," Thanet Circle,
Princeton, NJ., 08540, telephone number: 1-609-497-6800.

62. Proxim, Inc., "ProxWNet,®" Mountain View, CA., telephone
number: 1-415-960-1630.

63. Telesystems SLW Inc., "Arlan," Don Mills, Ontario.

64, California Microwave Inc., "Radio Link," 985 Almanor Ave,
Sunnyvale, CA., 94086, telephone number: 1-800-772-5465.

65. The Black Box Corporation, "BestLAN," Lancaster, PA.,
telephone number: 1-412-746~-5565.

66. IBM, Marketing Division for Wireless LANs, telephone
number: 1-800-426-3333.

67. Kramer, M., "Infrared Schemes Offer Alternative t¢o Radio

LANS," PC Week Magazine, June 3, 1991, page 93.

68. Tanenbaum, A., Computer Networks, Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 07632, 1981, page 275.

69. Proc. APIPS NCC, 1975, pages 203-215.

70. Broadcasting, "Captain Midnight Strikes; Preempts HBO with
Message Decrying Scrambling," Washington D.C., July 28, 1986,
page 71.

71. USENIX, The Jourpal of the USENIX Assocjation, University
of California Press, Vol. 2, Spring 1989, pages 155-176.

72. Burger, R., "Computer Viruses: A High Tech Diseaze,"
Abacus, Grand Rapids, MI., 1989.

73. communications of the ACM, Vol. 32, No. €, June 1989.
74. ABACUS, Vol. 4, No. 4, Summer 1987.

75. Ludwig, M., "The Little Black Book of Computer Viruses",
American Eagle Publications, Inc., Post Office Box 41401,
Tucson, Arizona 85717, 1991.

76. Defense System Management College, "Software Acguisition

Strategies Caselet", Software Management, Ft. Belvoir, VA.,
July 1993, page 4.

77. Ibid.

143

78. Computergram International, Technology News of America
Co., 110 Green St., Rm. 1101, New York, NY., 10012, Feb 21,
1991, No. 1617, page 3.

79. IEEE Network, Vol. 1, No. 5, Nov 1990, page 10.

80. Seybold, Patricia, "Network Monitor," Version 6, No. 6,
Jun 1991, page 24.

81. Computerworld, "Software Distribution KXey to Open
Systems," Vol. 27, No. 42, Oct 18, 1993, page 85.

§2. Computer Protection Systems, Inc. "LAN Security," 150 N.
Main, Plymouth, Michigan 43170, Vol. X, No. 10, Jan 1993, page
3.

83. Cohen, F., "Computer Viruses -~ Theory and Experiments,"
Computers and Security, Vol. 6, No. 1, 1987, pages 22-35.

84. Cramer, Myron, and Pratt, Stephen, "Computer Virus
Countermeasures- A New Type of Electronic Warfare," Defense
Elsctronicg, oct 1989, pages 75-84.

85, Cramer, M., and Pratt, S., "Computer Virus Countermgasures

- A New Type of Electronic Warfare," Rogue Proqrams: Viruges,
, edited by Lance J. Hoffman, Van
Nostrand Reinhold, New York, NY., 1990, pages 246-260.

86. GAO, "Virus Highlights Need for Improved Internet
Management," GAO/IMTEC-89-57, June 1989, page 39.

87. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., Englewood Cliffs, NJ., 1989, pages 366-369.

88. Hoffman, P., “VSUMX", Virus Supmary List, 333 Bowers Ave,
Suite 130, Santa Clara, CA., Aug 1993, page 10.

&9. Tanenbaum, A., "Computer Networks," Prentice-Hall, NJ.,
1981, page 129,

90. Tanenbaum, A., "“Computer Networka", Prentice-Hall, NJ.,
1981, page 130.

91. Hoffman, L., "Rogue Programs: Viruses, Worms, and Trojan
Horses, " Van Nostrand Reinhold, NY., 1990, page 19.

92. Mayo, J., "Computer Viruses," Windcrest Books, Blue Ridge
Summit, PA., 1989, page 106.

93. Ferbrache, D., "A Pathology of Computer Viruses,"
Springer-vVerlag London, 1992, pages 110-111.

94. Schneider, B., "Making Sense of Encryption," Infosecurity
News, Vol. 4, No. 2, March/April 1993, page 37,

95. Pozzo, Maria and Gray, Terence, E., "An Approach to
Containing Computer Viruses", Computers and Security, Vvol. &,
1987, page 17.

96. Pfleeger, C., "Security in Computing," Prentice-Hall,
Englewood Cliffs, NJ., 07632, 1989, page 25.

97. Ibid.

99. Parker, S., 1
McGraw-Hill Inc., 1988, pacge 180.

100. U.S. Department of Commerce, "Digital Signature
Standard", Computer Systems Laboratory (CSL) Bulletin,
National Institute of Standards and Technology, January 1993.

102. Feudo, C., "The Computer Virus Desk Reference," Busirness
One Irwin, Homewood, IL., 60430, 1992, pages 105-107.

102. Hoffman, Lance J., “Computer Viruses: A Plea for Sanity,"
presented at the Invitational Workshop on Computer Viruses,
Oct 198, New York, N Y., page 1.

103. Pfleeger, C.P., "Security in Computing," Prentice-Hall,
Engiewood Cliffs, New Jersey, 1989, pages 462-463.

104. Gardner, P., "Five Risk Assessment Programs," Ccomputers
and Security, vol. 8, No. 6, Oct 1989, pages 291-296.

105. Cohen, F., "A Cost Analysis of Virus Defenses," A Short
Course on Computer Viruses, ASP Press, PO Box 81270,
Pittshurgh, PA., 1990, pages 155-160.

106. Rutledge, L., "A spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

107. Cohen, F., "A Cost Analysis of Virus Defenses," A Short

course) 8, ASP Press, PO Box 8i270,
Pittsburgh, PA., 1990, pages 155-1i60.

145

-

108. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security,” The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

109. Cohen, F., "A Cost Analysis of Typical Computer Viruses
and Defenses", ASP Press, PO Box 81270, Pittsburgh, PA., 1990.

110. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST~87-04,
March 1987, page 97.

111. International Organjization of Standards, ISO 8473 1988,
“Information Processing Systems - Data Communications -
Protocnl for Providing the Connectionless-Mode Network
Service".

112. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981,

113. Tanenbaum, A., "Computer Networks", second edition,
Prentice-Hall Inc., 1988, pages 358, 429-431.

114. Tanenbaum, A., "Computer Networks", second edition,
Prentice~Hall Inc., 1988, pages 358-361.

115. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service",

116. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981.

117. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., NJ., 1989, page 366.

118. International Organization of Standards, ISO 8473 1988,
page 1.

11¢. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981.

120. Stevens, R., "UNIX Network Programming," Prentice-Hall
Software Series, 1990, page 465.

121. Comer, D., "Internet Working with TCP/IP: Principles,

Protocols, and Architecture," Prentice-Hall Inc., 1988, page
239.

146

122. International Organization of Standards, ISO 8473 1988,
page 14.

123. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service", pages 6, 24.

124. Pickholtz, D., Schilling, D., and Milstein, L., "Theory
of Spread-Spectrum Communications - A Tutorial," GWU-IIST-81-
31, May 1982, pages 855-884,

125, Pickholtz, D., Schilling, D., and Milstein, L., "Theory
of Spread-Spectrum Communications - A Tutorial," GWU-IIST-81-
31, May 1982, pages 855-884,

126. Pickholtz, R., et al, "Spread Spectrum Goes Commercial,"
IEEE Spectrum, Aug 1990, page 40.

127. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service".

128. Nelson, M., Dr, Dobb’s Journal, "File Verification Using
CRC," Vol. 17, No. 5, May 1992, pages 61-68.

129. Dettmann, T., "DOS Programmer’s Reference," Que
Corporation, 11711 N. College Ave., Carmel, IN., 46032, 1989,
pages 262-263.

130. Cohen, F., ™A Cost Analysis of Virus Defenses," A Short
, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

131. Rutledge, L., “"A Spatial Enccding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

132. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocel for Providing the Connectionless-Mode Network
Service",

133. sollins, K., The TFTP Protocol, Network Working Group.
Regquest for Comments: 783, MIT, June 1981.

147

1]

134. Cohen, F., "A Cost Analysis of Virus Defenses," A_Short
. ASP Press, PO Box 81270,

Pittsburgh, PA., 1990, pages 155-160.

135. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

136. Computerworld, "Enterprising Networks," Oct 11, 1993,
Vol. 27, No. 41, pages 51--54.

137. Ibid, page S51.
138. Ibid, page 54.

139. Evancce, P., and Bentley, M., "Computer Viruses Loom as
Future Era Weapons®™, Defense Journal, February 1994, pages 19-
21.

140. Stevens, R., "UNIX Network Programming®, Prentice Hall,
Englewood Cliffs, NJ, 1990, pages 171-196.

148

[6c"ADORES: (trty, Stete, and ZiP Code)

'8, NAME OF FUNDING / SPONSORING 80, OFFICE SYMBOL
ORGANEATION (I applicable)

N HI$ PAGE

|

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 07040188

1a. REPORT SZURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

S
3. DISTRIBUTION /AVAILABILITY OF REPORT
"A" distribution for public release;

P
2b. DECLASMRCATION / DOWNGRADING SCHEDULE

distribution unlimited

m
4. PERFORMNG ORGANIZATION REPORT NUMBER(S)
Defense Systems Management College TR 4-9

I

6b. QFFICE SYMBOL
(f applicable)

6a. NAME OF PERFORMING ORGANIZATION

Defense Sys Mgmt College

S. MONITORING ORGANIZATION REPORT NUMBER(S)

(73 NAME OF MONITORING ORGANIZATION

Same as 6a.

9828 Belvoir Rd Ste G38
Ft. Belvolr, VA 22060--5565

70. ADDRESS (C/ty, State, and ZIP Codk)

Same as 6c¢.

l

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS&ity, State, and 2iP Code)

10. YOURCE OF FUNDING NUMBERS

R ——— M
PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

11, TITLE (mddude Security Classification) .
An kbstract Model of Rogue Code Insertion

into Radio Frequency Wireiess Networks

|2 PEROMR ATV bher v. Feudo

139, TYPE OF REPORT

13b. TIME COVERED

T~y T v T —— o S
14. DATE OF REPORT (Year, Month, Day) J15. PAGE COUNT

Technical Report FROM __To____
4 16, SUPPLEMENTARY NOTATION
17. COSATE CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP
19. ABST (Continue on reverse if necessary and identify by block number)

A dissertaion presented to the faculty of
Science, the George Washington University.

computer viruses to the Program Management Office.

the School of Engineering and Computer
This research examines the effects of

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFED/UNUMITED T saME as RPT.] pTIC USERS Unclassified
22a. NAME OF RESPONSISLE (NDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Sylsia Nance (703) 805--2376 :
_
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE :

