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CHAPTER 1
INTRODUCTION

Pattern recognition is a field of great interest with a wide range of applications. It involves
systems that are capable of recognizing patterns. These patterns can be as simple as an alphabet
character or a complex image such as a human face. The application of machine vision to sorting
products on industrial assembly lines; recognizing fingerprints; and, on the battlefield, recognizing mine
fields or track enemy tanks and airplanes are all of great importance. Pattern recognition is an intriguing
problem that has been of interest to researchers over the last three decades. Recognition needs to be
performed at high speed with a high confidence level. Discrimination between similar objects is very
crucial. The object to be recognized can be distorted and/ot corrupted by noise. It has been realized for
a long time that recognizing objects with arbitrary aspect projection, scale, and rotation is a
computationally intensive problem.

Optics with its inherent parallelism and speed presents the proper medium for solving problems
with intensive computational needs. Optical systems seem to be a natural way for implementing
machine vision applications since the patterns to be recognized are usually present in an optical format
such as an image. Optical correlation techniques via the lens Fourier transformation property are the
backbone of optical pattern recognition systems. The capability of performing signal processing
operations such as Fourier transformation, correlation and convolution of two-dimensional signals in
paralle]l has always been the strength of optical systems. These properties have always provided optical
information processing systems an advantage over electronic systems which are in general sequential in
nature. The new surge of highly developed devices (i.e., lasers, detector arrays and spatial light
modulators (SLMs), filter designs and receat developments in neural networks (NNs) and wavelet
transforms (WTs)) have greatly made optics a viable contender in pattern recognition and computing
applications.

This study provides a vehicle for understanding the basic fundamentals of optical pattern
recognition systems. An emphasis on the capabilities and limitations of such systems is presented.
Areas in need of further development are highlighted. The applications of such systems to specific
military, industrial and commercial uses will be briefly mentioned. Therefore, this document should
primarily be used as a basis for understanding the operation, characteristics and limitations of these
systems.

Optical pattern recognition is a major branch of optical processing and computing. It can be
categorized based on a variety of factors (Figure 1). It can be categorized as coherent or incoherent
depending on the source of illumination used. Optical data processing can be performed either in the
space domain or in the frequency domain. This data processing can either be linear or nonlinear in
nature. Pattern recognition in general can be performed by comparing the input pattern to a template of
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FIGURE 1. OPTICAL PATTERN RECOGNITION SYSTEMS

stored reference patterns, template-matching, or it can be done by extracting certain features from the
pattern and making a decision based on that, feature-extraction.

Pattern recognition using optical systems can be performed based on either correlator or non-
correlator systems. Correlator-based systems are much more widely used because of the capability of
optical systems to perform such operations on two-dimensional images in parallel. There are two basic
architectures of optical correlators: 4-f in-line and joint-transform. Pattern recognition can be
performed directly using correlations and thresholding. Also, recognition can be achieved by using
linear processing techniques such as WTs or nonlinear processing using morphological operations or
NNs. Non-correlator systems are based on algebraic processors such as vector-matrix multipliers.

Chapter 2 presents definitions for some of the basic optical pattern recognition terminology.
Pattern recognition systems are introduced in Chapter 3. We start with the fundamentals of pattern
recognition, Fourier transformation using lenses, and the basic optical correlator architecture. Both the
4-f in-line and joint-transform correlators are described with an emphasis on the advantages and
limitations of each. Morphological processors are introduced along with their optical implementations.
NN and WT systems are considered with emphasis on their optical implementations. Chapter 4 presents
a brief overview of the optical components involved in the design and fabrication of optical pattern

2
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recognition systems. SLM fundamentals and comparison between the major available devices are given
in Chapter 5. Spatial filter designs, used in optical correlator systems, are reviewed in Chapter 6 with
particular emphasis on distortion-invariant applications. Chapter 7 is a preliminary discussion of system
performance criteria and a comparison between some of the systems discussed in Chapter 3. Chapter 8
summarizes the discussion and provides guidelines for future research and development. An extensive
list of references is also provided.

3/4
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CHAPTER 2
OPTICAL PATTERN RECOGNITION DEFINITIONS

COHERENT

Coherent optical processors are based on using coherent light illumination. The system is
analyzed using Fourier optics. The system is linear space-invariant in terms of the amplitude of the
electric field. The output is the convolution of the input function with the impulse response of the
system.

INCOHERENT

Incoherent optical processors are based on the use of partially coherent light for illumination.
This system is linear in intensity. The output intensity of the system is the convolution of the input
intensity with the modules square of the impulse response. Incoherent processors do not suffer from
coherent artifact noise. Also, the input does not need to be displayed on a SLM, which eliminates the
need for incoherent-to-coherent converters. Color image processing can be done using incoherent
systems.

SPACE- AND FREQUENCY-DOMAIN PROCESSING

Data manipulation in both coherent and incoherent processors can be done in either the spatial
domain (object space) or frequency domain (Fourier or other transform space). In the object space
processing case, object and reference are both processed without transforming. In the frequency domain
processing case, transforms of the object and reference are computed first, then processed.

SPACE-DOMAIN PROCESSORS

There are a number of techniques that are used in space domain optical processors; we describe a
few of these techniques here.

Shadow Casting

In this technique the object and reference are imposed on top of each other to perform the desired
operation. In the case of correlators, the object and the reference patterns are scanned either optically
(by using a collimated beam followed by a ground glass) or mechanically (by moving one of the patterns
with respect to the other).
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Algebraic

Many optical processing operations can be achieved using linear algebra manipulations. These
can be implemented by using vector-matrix and matrix-matrix multiplication type operations. Vector-
matrix multiplication is performed by expanding each element of the input vector and casting each on a
row of the matrix which is displayed on either a fixed mask or a dynamic SLM. The output from each
column is focused to form an element of the output vector.

FREQUENCY-DOMAIN COHERENT PROCESSORS
Frequency-domain processing in a coherent system is mainly dominated by correlators.

Correlators

Optical coherent correlators are the most widely used systems in pattern recognition. Correlation
is achieved in frequency domain processing by superimposing the Fourier transform (FT) of the input
function and the complex conjugate of the FT of the reference function on each other (to multiply the
two functions). The inverse FT of the product results in the correlation of the two functions. The FT of
the reference function is referred to as the filter. There are a wide variety of fiiter designs. We will
describe filter designs later in this document. The following is a discussion of some of the systems and
applications based on coherent correlators.

- In-Line Correl S

This is the basic building block for optical data processing systems. The input function is placed
a distance F, focal length, in front of a Fourier transforming lens and illuminated with collimated
coherent light. The filter is placed in the back focal plane of this Fourier transforming lens. The back
focal plane of the lens is referred to as the Fourier plane or the frequency domain. Another Fourier
transforming lens is placed a distance F behind the filter plane and in the back focal plane of this lens 's
the output plane. The first lens performs the FT and the second lens performs the inverse Fourier
transform (IFT) operation. The output will depend on the filter pattern. If it is the transform of the
reference function, the output will be the convolution of the input function and the reference function. If
the filter is the complex conjugate of the reference function, the output will be the correlation of the
input and reference function.

Joint-Transform Correlator

In this system both input and reference functions are placed in the input plane, displayed on the
same SLM, in the front focal plane of a FT lens. FT of both functions is formed in the back-focal plane
of the lens. The pattern resulting from the interference ~€both transforms is detected and displayed on
another SLM. A FT of the interference pattern is produced by another FT lens and the correlation of the
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two functions will be formed in the back focal plane of this lens. Also in this system, the convolution of
the two functions will be present at the output plane. In both the in-line and the joint-transform
corrclators, the convolution and correlation are displayed at different locations in the output plane, so
they can be detected separately.

Wavelets

WTs are multiple correlations of the signal with a wavelet function which has a variable scale.
Wavelets can provide position and scale invariant detection and classification of images with low signal-
to-noise ratios. Optical correlators can be used to implement WTs in parallel. Wavelets are used in
time-frequency and multiresolution analysis. There are a wide range of wavelet functions that can result
in a wealth of applications.

NONLINEAR PROCESSORS

Morphological Processors

Optical morphological processors are based on specific mathematical operations performed on an
image. There are two main operations: dilation and erosion, on which morphological operations are
based. Using these two basic operations, opening, closing, segmentation, skeleronization, noise
suppression, edge detection and pattern recognition are realized. Optically these operations are
implemented using space- (shadow-casting and defocused imaging) and frequency-domain correlators.
The correlation is performed between the input image and a structuring element. In pattern recognition
the hit-or-miss transform (HMT) is used. The HMT detects specific features from the input image and
leaves a single spot in its place with all other features suppressed. Morphological systems are also used
very efficiently in preprocessing systems for image enhancement, the output of which can be processed
using other pattern recognition systems, such as an optical correlator.

Neural Networks

Artificial NNs are nonlinear systems. They are a distributed system of interconnected nodes and
nonlinear processing elements, mimicking the brain. The high connectivity of NNs provides a high
capability of feature extraction and classification. The interconnections between the nodes are on the
order of N2, where N is the number of nodes. This high interconnection density makes it extremely
difficult to hardwire electronically. The inherent parallelism of optics and high connectivity makes it the
natural choice for such an application. The challenging part of the system is the non linearity needed for
implementing the neuron. This can be achieved using optoelectronic devices. Artificial NNs can be
implemented either using algebraic (matrix-vector multiplier) or correlator based systems. Also,
depending on either recording the interconnection weights off- or in-line, non-adaptive and adaptive
NN, respectively, can be realized.

7/8
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CHAPTER 3
OPTICAL PATTERN RECOGNITION SYSTEMS

Optics with its parallelism attracted much attention during the development of pattern
recognition systems. Patterns to be recognized usually are in an optical format, i.e., an image. This
format lends itself to the optical domain and it seems more natural to be processed optically. In the last
three decades since the invention of the laser, a great deal of research has been directed towards
developing optical pattern recognition systems. Coherent optical Fourier processors capable of
performing vital mathematical operations such as Fourier transformation, correlation and convolution of
two-dimensional signals became the center of attention for such applications. The introduction of the
Vander Lugt filter! was a necessary breakthrough to initiate such efforts. Since then, many system
architectures and filter designs have been introduced. A major problem hindering the development of
such systems is the interface device limitations--SLMs in particular. Recently, technological advances
in such devices have made pattern recognition systems more feasible.

This chapter introduces the fundamentals of pattern recognition, then turns to specific systems,
both correlator- and non-correlator based.

PATTERN RECOGNITION FUNDAMENTALS

Pattern recognition here is meant in the general sense, i.e., character, image, speech or signal
recognition. The fundamental objective of pattern recognition is the classification of the input pattern.
Pattern recognition in general uses two broad techniques: template matching and feature extraction.2-
Template matching is based on comparing an input pattern to a template of all possible patterns. This
comparison can be made by performing correlation using space or frequency domain techniques. In
feature extraction, the system is considered as a two-stage device. The first stage is feature extraction
and the second stage is classification. Features are defined as measurements taken on the pattern. A set
of measured features is supplied to the classifier. The classifier’s task is to map these input features onto
a classification state.

OPTICAL CORRELATORS

Correlation is an operation to compare two patterns. Consider two functions f(x) and g(x); the
correlation is defined using the following mathematical operation:

c(x)= [f(P)g (B-x)dP, )
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FT system) on FG'. This results in the correlation of f(x,y) and g(x,y) which is represented as feg, where
« denotes the correlation operation. The functions f(x,y) and G'(u,v) can be recorded on a photographic
film or written on a SLM. The complex conjugate of the FT of g(x,y), g'(u,v), can be generated
optically® or numerically by a computer.

Input G'(u,v Output
Plane ( ) Pl?ne

11

f(x,y) f ’It ’I« * f

FIGURE 3. OPTICAL CORRELATOR SYSTEM, CORRELATING FUNCTIONS f(x,y) AND g(x,y)

The correlation is performed in parallel in two dimensions. As in the case of Fourier
transformation, the speed of the correlation operation is limited only by the time required for the light to
travel from the input to the output plane. This system is referred to as the 4-f in-line correlator. It is the
basic building block of most coherent optical signal processing systems. In this system if we replace G'
by G the output will be convolution instead of correlation. These operations are analog in nature so the
accuracy will be limited by the interface devices both in reading and writing the different functions.

The function G'(u,v) is placed in the frequency domain and it is referred to as the filter function.
A large body of literature exists regarding these filters and their design. F 'er design will be discussed
later in this document.

This system is translation invariant. Translating the object in the input plane does not affect the
position of its FT. Its transform remains centered with some phase change. The correlation spot tracks
the object indicating its exact position in the scene. The classical matched filter introduced by
Vander Lugt is holographically recorded.! Placing the filter in the Fourier plane is very critical; it
allows only a few microns of tolerance perpendicular to the optic axis and tens of microns along the
optic axis.6:7 This is a severe requirement on such systems and places a great emphasis on filter
positioning. Changing the scale or the orientation of the input object will reflect directly on the scale
and rotation of its FT. If this takes place in the correlator system, the correlation peak becomes very
small and the system fails to recognize the object. This sensitivity to scale and rotation changes is
considered one of the major problems facing such correlator systems. A number of techniques have
been proposed to design filters which can accommodate the in-plane scale and rotation changes.8-13
Some of these techniques will be discussed later.

11
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JOINT TRANSFORM CORRELATOR (JTC)

The positioning of the filter in the frequency plane (focal plane of the lens) presents a severe
restriction especially for high data inputs. The JTC was proposed as an improvement to the 4-f in-line
correlator for objects of great similarity and, also, it relaxes the filter positioning problem mentioned
above.14-17

In this correlator architecture both target and scene patterns are presented at the input plane
simultaneously. Patterns are placed in the front focal plane of a Fourier transforming lens and
illuminated by a coherent plane wave. Electric field distribution of FTs of both patterns are added to
produce an interference pattern at the back focal plane of the lens, as shown in Figure 4. This
interference pattern is recorded on a photographic plate as a hologram. The processed hologram is
illuminated by a plane wave and the correlation of the target with the scene is produced at the back focal
plane of the lens.

Input Beam  Hologram Output
Plane Splitter Plane

Target

> l———>l——>

(Both recording and reading are superimposed.)
FIGURE 4. JOINT TRANSFORM CORRELATOR

Soe
-l —

As in the case of 4-f in-line correlators using a holographic filter, the output plane contains
convolution, correlation and distorted images of the two functions. These are located in different
positions in the output plane.

The JTC system is advantageous in two respects. First, provided that the hologram is to be
replaced by a real-time optoelectronic device such as an SLM or a detector and SLM combination, its
parallelism is achieved.!8 The input and filter patterns can be displayed on the same SLM or two
different SLMs. This makes the system operate in near real-time and the reference filter need not be
recorded in advance. Second, the problem in positioning the filter in the Fourier plane is also alleviated
since the FT of the input and filter patterns are formed by the same lens.

12
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SHADOW-CASTING CORRELATOR

Shadow-casting correlators do not operate on the basis of the FT product. They operate on the
patterns directly in the spatial domain. !9 20 This technique is based on casting the shadow of one
pattern on top of the other and scanning them with respect to each other, either optically or
mechanically, and computing the area of overlap. It literally implements the correlation operation by
scanning one of the functions over the other. This particular system uses incoherent light illumination to
avoid the interference and diffraction effects of the coherent processor. The system is based on
geometrical optics imaging analysis and ignores diffraction completely. A possible system ar~hitecture
is shown in Figure 5. In this system an incoherent extended light source is used for illumination.

Input Output
Plane f(x,y) g(x,y) Plane
Light SouroeI f l 2f I f I I f*g

FIGURE 5. SHADOW-CASTING CORRELATOR

If we consider one point on the two-dimensional light source, the first lens expands and
collimates the beam. The collimated beam passes through object f(x,y) and casts it on g(x,y). The
second lens focuses the light on the output plane. The value of the output is the integration of the
overlap of functions f(x,y) and g(x,y). Another point on the light source casts a different projection of
f(x,y) on g(x,y). The large number of different points on the light source cast a large number of different
projections of f(x,y) on g(x,y). The projection of such patterns is the equivalent of scanning f(x,y) on
g(x,y) and measuring the overlap area of each of these projections. This in turn results in the correlation
of the two functions.

OPTICAL MORPHOLOGICAL PROCESSORS

These processors implement morphological operations. Mathematical morphology is a set
operational method in image analysis.21-23 A number of digital, incoherent, and coherent optical system
implementations have been proposed.24-27 This chapter introduces the basic morphological operations,
their optical implementations and their application in pattern recognition and classification.
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Morphology Fundamentals

Let us consider the most basic and fundamental operatio.:s in mathematical morphology, namely
dilation and erosion. All other operations in morphology are based on dilation and erosion. Consider an
image X and a structuring element B. Dilation is defined as

XOB={a:B, < X], (3)
where 0 denotes dilation, By is set B shifted by “a”, and ¢ denotes a subset. Similarly erosion is defined
as

X®B={a:B,NX =0}, @)

where © denotes erosion and N is the intersection or AND operation. An erosion followed by a dilation
is an opening, and a dilation followed by an erosion is a closing. Physically, erosion shrinks the image
and dilation expands it. Opening smoothes the contours of the image from the inside and suppresses the
sharp capes and cuts the sharp isthmuses of the image, while closing smoothes the contours of the image
from the outside and fills up its thin gulfs and small holes. An example of these operations is shown in
Figure 6 along with the image X and structuring element B.

X08B

FIGURE 6. MORPHOLOGICAL OPERATIONS: EROSION, DILATION,
OPENING AND CLOSING OF XBY B
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These basic morphological techniques are used to perform a number of image analysis operations
such as edge detection, noise suppression, segmentation, skeletonization and hit-or-miss transformation.
Morphology is used for both binary and gray-level images. It has many applications for image analysis
“n different fields, from biology and petrology to different industrial applications.

Morphol \policati

Morphology has many applications in image analysis and enhancement. Many image processing
operations can be achieved by a sequence of the basic fundamental morphology operations. Noise
suppression can be achieved by an opening followed by a closing version.

The application of interest in this study is pattern recognition. This is performed in morphology
through the HMT. HMT detects a particular feature from an input image and leaves a single pixel in its
place, suppressing the rest of the image. HMT is defined by two structuring elements. The first
represents the desired feature and the second is its complement. Consider an image X, and its
complement X€, a foreground structuring element B, and a background structuring element D, then the

HMT is defined as c
X®(B,D)=(XOB)\(XOD). (5)

The first erosion of X by B gives an output peak wherever the foreground object B is present in
X. The second erosion of X€ by D gives a peak wherever object D is present in the complement of
image X. The intersection N (AND) of the two erosions creates an output only if the foreground and
background objects are both present. Object B is the feature we desire to extract from the image.

OPTICAL IMPLEMENTATION

Optical implementation of morphological operations can be realized by many different systems.
Symbolic substitution based systems are introduced to perform both dilation and erosion using a
structuring element as the basis for the substitution.!8, 28,29 Implementing the basic morphological
nperations optically can also be achieved by using optical correlators.17:19, 30, 31 The existing
implementations are mainly binary. Gray-level implementations have also been proposed.32, 33

Both erosion and dilation can be performed by correlating the image with the structuring element
and using the proper threshold. Morphological operations are nonlinear because of this thresholding
operation. They can be used in either image classification or image recognition and detection.

Consider the optical correlator shown in Figure 3. It can be used for the dilation and erosion
operations. In the filter plane the transform of the structuring element is placed while the image is
introduced in the input plane. At the output plane, the correlation of the image with the structuring
element will result. Assume that the filter of the structuring element B has N pixels. In a binary
implementation if we apply a high threshold Ty = N an erosion results and if a low threshold Ty =1 is
used a dilation results.!® Using thresholding levels between T and Ty produces a rank-order filter
operation. A system which can implement these higher-order morphological operations must be
iterative to cascade the erosion and dilation operations. Such a system is shown in Figure 7.
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1

qml |

| I 1 |
Correlator 1 _ Correlator 2
(Erosion Operation) (Dilation Operation)

(Filters 1 and 2 are the FT of the proper structuring element.)
FIGURE 7. OPTICAL SYSTEM FOR IMPLEMENTING OPENING OPERATION

Figure 7 shows an example of how to implement a morphological operation. The system can
also be designed using only one correlator stage and performing the interactive process through feedback

loops.

Morphological processors can play an important role in the preprocessing of images since they
can be used in image enhancement and noise reduction. Using these processors for image recognition
and classification can be done using HMT.

OPTICAL NEURAL NETWORKS

NN are systems that mimic the brain. The brain is very powerful in quickly recognizing images.
NNs are based on a simple nonlinear processing element (neuron). Neurons are distributed and
interconnected. NNs achieve their computation through the evolution of the system.34-38 A model for
the neuron is shown in Figure 8.

SUM THRESHOLD

FIGURE 8. NEURON MODEL
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In this neuron model, which is considered as ti.. processing element in the NN, the relation
between the output Y and the excitations x; and weights w; is A

y= fh[iwixi] , ©)

I
where fj, is a step function (known as the heaviside function) given by
1 x>0
x)= )]
Sr(x) { 0 x<0°

The output of the neuron will be on if the sum of the weighted input values exceeds a certain
threshold; otherwise, the neuron will be off. The thresholding function constitutes the nonlinear nature
of these neurons. The model neuron is known as the “perceptron.” Each set of nodes is comprised in a
neural layer. Several neural layers can be cascaded to form a multilayer system.

The perceptron can learn to classify different patterns from one another by adjusting its weights.
A single layer perceptron can be used as a linear classifier; i.e., it can classify patterns that can be
separated in the two-dimensional Euclidean feature space by a straight line.

An improvement on the single layer perceptrons to perform more complex pattern classifications
is achieved by two steps. First the non-linearity must be changed to become either linear or sigmoidal

(Figure 9).
f Jl
0 0

Linear Threshold Sigmoidal Threshold

FIGURE 9. LINEAR AND SIGMOIDAL THRESHOLD

The second step is the use of multilayer NNs. The basic model is now made of an input layer, an
output layer and a middle layer which is not connected directly to the input or the output. The middle
layer is called the hidden layer. The new model is shown in Figure 10. The learning algorithm for this
model is the famous back propagation rule.39.40

The three-layer NN is capable of the classification of any pattern regardless of how complex the
shape. This is referred to as the Kolomogrov theorem.30 A summary of NNs classification abilities is
shown in Figure 11. Using sigmoidal thresholding will make the classification regions smooth. The
complexity of the classification problem will affect the number of nodes in each of the network layers.
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FIGURE 10. THE MULTILAYER NEURAL NETWORK

Perceptron structwre
1 layer

2 layer

3 layer

FIGURE 11. NEURAL NETWORKS AND THEIR CORRESPONDING DECISION REGIONS
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OPTICAL IMPLEMENTATIONS OF NEURAL NETWORKS

NN are highly interconnected. Optics with its natural parallelism provides a suitable means of
implementing neural networks. The wide-bandwidth high-volume interconnection of optics allows a
large number of neurons to be connected with each other. This immense interconnectivity is due to the
fact that light beams can cross each other with no effect. A large number of systems have been
proposed to implement NNs optically.4!-45 Implementing NNs optically is done using linear algebraic
processors33; 34 and optical correlators.35-37, 46, 47 Thresholding is achieved either through optically
addressed spatial light modulators or through optoelectronic devices (detector arrays). Application in
associative memory, image classification, and recognition are typical for the NN.

LINEAR ALGEBRAIC PROCESSOR-BASED NEURAL NETWORKS

The direct implementation of NN is by using vector-matrix multipliers. The input data can be
written as a vector and the interconnection weights as a matrix. Thresholding can be done using
optoelectronic devices. Figure 12 shows a typical implementation of a NN using an optical vector-
matrix multiplier.

Light Emitting

Thresholding

FIGURE 12. OPTICAL NEURAL NETWORK USING VECTOR MATRIX MULTIPLIER

In this system the input to the network modulates the intensity of the light emitting diodes (LED)
(representing the neurons). Light from each LED is spread horizontally and passes through a row of the
weight matrix displayed on the SLM. The light emerging from the SLM is the product of the input with
the corresponding weight. Light emerging from each column of the matrix is focused on a photodiode
which corresponds to a summing operation. As the output vector emerges it is thresholded. The output
can be fed back if more iterations are desired. The time required for the operation is independent of the
size of the network since all the multiplications and summations are done in parallel.
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CORRELATOR- BASED NEURAL NETWORKS

The main operation of NN is thresholding the inner product of the input with the weights. The
inner product can be considered as a correlation. Moreover, correlation is an invariant inner product.
Optical correlator systems demonstrate the massive interconnection desired by NNs. Optical correlators
are used to construct auto associative memories and other NN configurations.36, 48, 49

A proposed system for associative memory applications is shown in Figure 13.49 In this system
the input image is split by the beam splitter in two copies. One is recorded on the thresholding device (it
can be an SLM) and the other copy is projected on the hologram H1. This hologram contains the images
to be recognized by the system. The input pattern passes through the hologram, which correlates the
input image with the stored patterns. The output from the hologram is focused and passed through a
pinhole which is subsequently collimated and passed through the second hologram H2. This hologram
is similar to the first. The collimated beam reconstructs the image that most likely corresponds to the
input image. The hologram output is imaged on the thresholding device which passes to its other
surface the brightest image. The enhanced image displayed on the other surface of the thresholding
device is reflected off its surface and passed through hologram H! for a second iteration. The enhanced
image continues to be iterated until the output of the system settles with no further changes in the output.
The speed that the system relaxes is limited by that of the thresholding device. This system is capable of
recovering an image when only a very small proportion of the original image is presented.

i

Hologram
H2

Th sholding J§
Device .

Hologram
H1

Input
Image

FIGURE 13. A HOLOGRAPHIC PATTERN RECOGNITION NEURAL NETWORK
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OPTICAL WAVELET TRANSFORMS

Image processing, in general, is based on either space or frequency domain analysis. These
analyses extensively use Fourier methods. In Fourier analysis the signal is decomposed into linear
combinations of elementary functions. The FT of the function g(x) is defined as

G(f)= [8(x) T2 dx. ®

The FT integrates the function g(x) over space extending from -oo to co. This makes FT more suitable
for stationary signals (signals that do not change in space). In many applications signals need to be
analyzed in both the space and frequency domains. Ambiguity and Wigner distribution functions are
two examples of time-frequency analysis. The Ambiguity function30 is used for time-Doppler shift
signal representation, and the Wigner distribution function31-53 is a time-frequency representation of the
signal.

The WT is a new basis for representing and analyzing functions in a scale-translation
domain.34,55 WT is efficient in time-dependent frequency analysis of short transient signals. The basic
function of the WT, called wavelets [hy,(x)], is generated by dilation and translation of a so-called
mother wavelet h(x). The wavelets are defined in terms of the mother wavelet by

1 (x-b
hap(x) = ﬁh( ; ) ) ©9)
where a > 0 is the dilation factor and b is the translation factor. The WT of a function g(x) is defined as
1 T «(x-b
’b = — h ( ) (X)dxo (10)
Wy(a,b)= = _L — J8

The function W¢(a,b) can be considered a function of the space shift “b” for each fixed scale “a”
that displays g(x) at various levels of resolution. The integral in Equation (10) is a correlation between
the signal g(x) and a dilated wavelet. As the dilation factor approaches zero, the wavelet h,,(x) becomes
more concentrated about x=b. W(a,b) then displays the small-scale high-frequency features of g(x).

The larger the dilation factor “a” becomes, the coarser low-frequency features are displayed. In the
spatial-frequency domain, the wavelet is expressed as

Hap(fr)= [hap(x)e 72T an
=Vae 2P H(af,)

where H(fy) is the FT of h(x). From Equation (11) a dilation x/a in time is equivalent to a compression
“afy” in the spatial-frequency domain, and a shift b is equivalent to a phase shift exp(-j2nfyb). From
Equations (10) and (11) we can get

W,(a,b)=a jH*(afx)e-jZ”f’b G(fx)df ». (12)
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There are a number of well-known wavelet functions such as Morlet’s,36 Haar’s,57
Daubechies’s,38 the Mexican-hat’9 and Meyer’s.60

OPTICAL IMPLEMENTATION OF WAVELET TRANSFORMS

The WT can be implemented optically by a variety of techniques.6! The WT as defined by
Equation (11) is the corr *-~tion of the signal g(x) with the wavelet h(x), translated by factor “b”, and
dilated by factor “a”. This correlation can be implemented directly using an optical correlator. Another
way of implementing the WT is by using Equation (12). The technique uses the FT of the wavelet
hgp(x) as the filter to be placed in the FT plane in a coherent optical processor. The WT filter is the FT
of the dilated h(x/a) but without any translation. According to Equation (12) the coordinate in the
correlation plane is the continuous translation factor b.62 This method can be implemented by using the
system shown in Figure 14.

The optical WT processor shown in Figure 14 is based on a two-dimensional optical
multichannel correlator to perform a one dimensional WT. The input signal g(x) is displayed on an
SLM, such as an acousto-optic modulator. A plane coherent light wave illuminates the input. A 1-D
FT of g(x) is performed by the cylindrical lens along the x-axis. In the Fourier plane (u,v). a 1-D signal
spectrum G(fy) is displayed along the u-axis and spread along the v-axis. A bank of 1-D filters H(af, ) is
placed in the Fourier plane where each of these horizontal strips represents a filter with a different value
of the dilation factor “a”, which varies along the v-axis. A spherical-cylindrical lens combination
performs the IFT along the u-axis and image along the v-axis. The detected output is divided by the
factor. The output is a display of the space-translation joint representation of the signal g(x). This is not
the only optical implementation of WT. There are a large number of proposed optical systems to
perform WT with variable flexibilities.6!

FIGURE 14. OPTICAL WAVELET TRANSFORM PROCESSOR,
(A) TOP VIEW, (B) SIDE VIEW62
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PATTERN RECOGNITION USING WAVELET TRANSFORMS

WTs are proposed to be used in the detection of patterns. Also, WTs are used for noise and
clutter suppression. This application is mainly used with classification of targets in cluttered
backgrounds. This involves edge detection by wavelet and Gabor functions.63
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CHAPTER 4
SYSTEM COMPONENTS

In this chapter we present the major components in optical pattern recognition systems. This is
presented for review and will not be an extensive or detailed presentation. Both passive and active
components will be discussed. These components play a major role in the performance and limitations
of pattern recognition systems.

OPTICAL COMPONENTS

The components considered here are passive elements such as FT lenses, beam splitters, and
polarizers.

ET Lenses

The basic element in almost all optical systems is the lens, a device that reshapes the wavefronts
(equiphase surfaces) of light. Reshaping the wavefront results in deviation of the propagation of light
beams. In its simplest form it is made from a material with a different index of refraction from that of
the medium surrounding it. There are two types of lenses: convex lenses (thicker at the center than at
the edges) which converge plane waves, and concave lenses (thinner at the center than at the edges)
which diverge plane waves.

The ideal lens acts as a phase transformer; in other words, it causes a phase change across the
light beam passing through it. For a paraxial approximation (rays traveling close to the optical axis) the
transfer function, h(x,y), of a spherical lens is given by

h(x,y)=e R (13)

where A is the wavelength of the light beam and F is the focal length of the lens.

FT lenses must be chosen with low aberration and high optical quality. The diameter (D) and
focal length (F) of these lenses are determined by the overall size of the system, the highest spatial
frequency of the object (a) and its maximum length (L), the size of spatial filter (A¢) and the wavelength
of the light (A).

D=L+2AaF (14)
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Polacizing Beam Soli

Beam splitters are used to split an optical beam. The two emerging beams can have similar or
different amplitudes by properly choosing the beam splitter. A second class of beam splitters splits light
beams according to their polarizations. Polarizing beam splitters are in the ferm of a cubic double
prism. Light with a certain polarization can propagate through the prism without any reflection while
light beams with orthogonal polarization will be reflected. These beam splitters are used in conjunction
with spatial light modulators that modulate light by rotating its polarization.

LIGHT SOURCES

For incoherent systems the use of white light sources, such as an arc lamp that is capable of
producing enough power for the system, is common. The systems we have considered here are mainly
coherent. The coherence length of a laser varies from one type to the other. Gas lasers such as HeNe
and Argon, which are widely used in optical pattern recognition, have coherence lengths in the range
from a few centimeters to a few meters, while semiconductor lasers, such as AlGaAs, have coherence
lengths of about a tenth of a millimeter. Long coherence lengths are required for recording filters in
holographic setups. Semiconductor lasers are the favorite for optical pattern recognition systems
because of their small size, high power levels and their power conversion efficiency.

DETECTORS

The output from an optical system is usually converted to an electrical signal for post processing.
This conversion from optical to electrical power is achieved through a photo detector array. Photodiode
arrays are available in many different sizes from a single photo diode to a 1024 x 1024 element array.
The size of the photodiode elements in these devices is in the range of 10 mm. A major concern in
choosing these devices is that the number of elements should be larger than the space-bandwidth product
of the system. This insures no overlapping of the output signals. Thresholding operations can also be
performed on the photodiode chip if included in its design. The speed of the photodiode array should be
compatible with the speed of the system. It should be as fast as the SLM.

SPATIAL LIGHT MODULATORS

SLMs are optoelectronic devices that are capable of modulating information on an optical beam.
SLMs modulate the amplitude, phase, polarization, and/or intensity of the light beam. These devices
provide the means for impressing an image on a light beam. SLMs can be either electrically or optically
addressed. In the former an electric signal modulates the light beam while in the latter an optical beam
provides the modulating signal. SLMs can be static (e.g., photographic film) or dynamic (e.g., liquid
crystal devices). SLMs use electro-, magneto-, or acousto-optic effects for modulating the light beam.
Chapter 5 provides an expanded discussion of SLMs.
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CHAPTER §
SPATIAL LIGHT MODULATORS

An SLM®4 is a device that can modify the phase, amplitude, intensity, and/or polarization of a
one- or two-dimensional light beam as a function of either the intensity distribution of ancther time-
varying modulating optical beam (optically addressed SLM) or a time-varying electrical drive signal
(electrically addressed SLM).

SLMs can be either reflective or transmissive. In optically addressed SLMs (O-SLMs) there are
two light beams involved—the "write” and “read” beams. These two beams usually have two different
wavelengths. In electrically addressed spatial light modulators (E-SLM) there is only one beam that is
the “read” beam. In this case the input information (modulating function) is in an electrical format.

Many SLMs take the generic structure depicted in Figure 15. SLMs consist of a charge
generating layer and a light modulating layer. In O-SLMs a bias voltage V), is shunted to the light-
modulating material and the charge-generating material (e.g., photoconductor layer). The bias voltage
generates an electric field which causes the modulating material to modify the polarization, phase,
amplitude, and/or intensity of the readout light beam. The readout beam, shown in Figure 15, passes
into the modulating material and is reflected by a mirror at the center of the device. The mirror is
usually accompanied by a light-blocking material to prevent the readout beam from leaking into the
photosensor. The light modulating layer can be made out of electro-optic crystals, liquid crystals,
deformable plastics and other photosensitive materials. In E-SLMs, electric fields are typically applied
to the modulating material by electrode matrices, electron beams, or arrays of active transistors.

SLMs perform a wide variety of operations such as multiplications of two functions,
amplification of a light beam, conversion from incoherent-to-coherent light, memory or storage of an
image, thresholding and other nonlinear operations.

Some other advanced processing functions can be performed by SLMs such as intensity-to-
spatial frequency conversion,65 edge detection56 and logic operations.67
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FIGURE 15. BASIC STRUCTURE OF A TWO-DIMENSIONAL SPATIAL LIGHT MODULATORS4

SPATIAL LIGHT MODULATOR EVALUATION PARAMETERS
Parameters which characterize SLMs and determine their performance are

Responsivity: The ratio between the output to the input beams
Useful dynamic range/contrast ratio (number of gray levels)
Write and readout wavelength range

Cascadability

Exposure sensitivity (J/cm2) for O-SLMs only
Framing speed (Hz)

Storage time (memory)

Spatial resolution (cycles/mm or pix/mm?)

Space bandwidth product (SBW) (total number of pixels)
Voltage and power requirements

V%N AW N o

Pob
e

SPATIAL LIGHT MODULATORS COMPARISON

In Table 1 a comparison is made between the major SLMs listed by the names of their
manufacturer. Key parameters are listed in two lists (optically addressed and electrically addressed
SLMs). A large number of SLMs are not included such as acousto-optic devices, quantum-well devices,
deformable plastics, photorefractive crystals, bistable devices, semiconductor laser arrays and others.
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We have listed the main SLMs which are available for use in the market; i.e., those for which sufficient
information about their characteristics is available, and those that are commonly used in two-

dimensional pattern recognition systems.
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TABLE 1. SPATIAL LIGHT MODULATORS COMPARISON

Optically Addressed SLM's ~
Type/ Hughes LCLY | Micro-Opties LC | GEC-Marcosi LC | Hamamatsu 1L.C | Displaytech Electros
Specifications FLC Trapping
Fiber-Optic
Input Window Facepiate Fiber Optic Glass Glass Glass Glass
Output Window Fused Silica Glass Glass Glass Glass Glass
Modulation Format Continuous Continuous Continuous Continuous Binary Continuous
Resolution [lp/mm|) 20-40 30 10100* 32-64 50 20-100 40
Response Time 25-80ms 40 ms 20 ms 70 ms 40 ms to S ms Ims
Coatrast Ratio 100:1 100:1 30:1 2x phase 100 to 500:1
Active Area 25 mm x 25 mm 25 mm x 2 5mm 40 mm x 40 mm 18 mm x 18 mm 27 mm x
27 mm
Write Light
Sensitivity 100 mW/cm? 100 mW/cm? 150 mW/cm? 50 mW/cm? 45 mW/cm?2
Write Light 488 nm
Wavelength 430 - 780 nm 488 - 633 nm 430 - 850 nm 430 -700 nm (Optimum) 488 nm
Read Light
Wavelength 450 - 650 nm 488 - 633 nm 633 nm 633 nm 488 nm 1064 nm
Drive Voltage [peak-
to-peak] 1-20V 65V § V Square Wave 45V
~ All O-SLMs operate in the reflective mode
* Micro-Optics P2010-25
* Micro-Optics J2010-33
Electrically Addressed SLMs
Type/ Boulder |Display-tech| Texas Inst. Litton Litton Hamamatsu Semetex
Specfication Noulinesr DMD T-MOSLM R-MOSLM EBSLM SIGHT MOD LCTV
Ferro- Ferro-
Material Electricon | Electricon | Deformable | Magneto-Optic | Magneto-Optic | Electro-Optic | Magneto-Optic | Liquid Crystal
VLSI VLSI Mirror
Mode Reflective Reflective Reflective Transmissive Reflective Reflective Transmissive Transmissive
Modulation Binary Binary Continuous Binary Binary Continuous Binary Continuous
Format Amplitude | Amplitude Phase Amplitude Amplitude Complex Amplitude | Amplitude/ Phase
Number of 48 x 48 120 x 146" 10
Pixels 128 x 128 128 x 128 128 x 128 128 x 128 128 x 128 256 x 256 480 x 640°
33mmx
Active Area 38 mmx 21 mm x 25 mm x 18mmx 18mm| 6 mmx 6 mm 25mmx 33 mm¥
3.8 mm 2]l mm 25 mm 25 mm 91 mm x
91 mm®
Contrast Ratio 10:1 150:1 NA NA NA NA 10,000:1 10:1,* 100:1°
Frame Rate
[frames/ sec} 5,000 10,000 NA 1,000 10,000 NA 1000 30
TRadio Shack 16-155
Sharp XG2000
*In-Focus
NA- Not Available
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CHAPTER 6
SPATIAL FILTERS

Optical pattern recognition systems discussed in this report mostly employ coherent optical
correlators. In these systems, correlation is achieved by IFT, the product of the FT of the signal and
reference. The complex conjugate of the reference function is called the spatial filter. Generating the
spatial filter is critical to the performance of pattern recognition systems. This chapter discusses the
generation of spatial filters both optically and numerically. It also discusses the different filters
proposed for improving the performance of recognition systems either by increasing the correlation
peak-to-clutter ratio, signal-to-noise ratio, light efficiency or rotation and scale invariance.

CLASSICAL MATCHED FILTER (CMF)

Optical correlators are very powerful for recognizing multiple occurrences of an object in the
presence of noise. Let an image be represented by g(x.y) and its two-dimensional FT G(u,v).

Guv)= [ [gxy)e 2" M axay, (15)

where u and v denote the spatial frequencies. The objective is to design an optimum linear filter to
maximize the ratio of peak signal to mean-square noise. This kind of filter will detect only the image
g(x,y). Any other image will result in a smaller correlation peak. This also will be the case if image
g(x,y) is slightly altered, e.g., rotation. Also similar images result in similar correlation peaks. This is
referred to as a matched filter. The transfer function of this filter is shown to be given by!. 68

H(u,v) = G'(u,v). (16)

This filter H(u,v) can be generated optically using holographic techniques shown in Figure 16.
The matched filter transfer function H(u,v) is, in general, a complex quantity.

Matched filters can also be displayed on an SLM. In this case the transfer function H'(u,v) needs
to be generated numerically.

Matched filters have a number of limitations when used in optical pattern recognition.69
(1) CMFs are very sensitive to even slight variations in the reference or input images, such as rotation
and size change. (2) CMFs are light inefficient because of their transmittance which is much less than
unity over many of the spatial frequencies. (3) Most SLMs cannot accommodate the wide dynamic
range and complex nature of the transfer function H(u,v). Many different designs have been proposed to
overcome some or all of these limitations.
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FIGURE 16. HOLOGRAPHIC RECORDING OF A MATCHED FILTER!

Phase-only filters (POFs) were proposed0 to improve the light efficiency because the
transmittance of the filter will be unity throughout the frequency spectrum. A binary version of the
POFs is called binary phase-only filters (BPOFs).7! BPOFs were introduced to be implemented using
binary spatial light modulators. A large number of composite filtersé6 were advanced to achieve multi-
object shift-invariant and distortion invariant pattern recognition.

PHASE-ONLY FILTERS

Optimum light efficiency of the matched filter can be achieved through a POF. This filter can be
generated by omitting the amplitude information of the matched filter. The transfer function of such

POFs becomes H(u,v) =e jo(u,v)

Hpoop (u,v) =
rer () = i o) a7

where $(u,v) is the phase function of the matched filter. The loss of the amplitude information in the
new filter makes it more sensitive to noise. POFs improve the light efficiency of the correlator and also
enhance the output peak structure of the correlator. The POF output is similar to a conventional
correlation function which is subsequently high-pass filtered.1-2 In an auto correlation case the output
peak is strongly enhanced. This in turn improves the signal-to-noise ratio and the discrimination ability.
On the other hand, the POF is more sensitive to distortion variations of the input object such as rotation
and scale change.
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BINARY PHASE-ONLY FILTERS

The availability of binary SLMs influenced the introduction of the BPOFs. One way of defining
the transfer function of the BPOF is
+1, if(u,v)20

H =
BPoF {-1, if P(u,v) < 0. (18)

The effect of the binarization process is an additional noise term.7# This noise term can be described as
a ghost image. The autocorrelation peak is strongly enhanced over that of the CMF. Also the signal-to
noise ratio is improved. The BPOF suffers from the same problem as that of the POF, namely the
sensitivity to noise and input function variations.

There are also methods where binarization of the input image was proposed. It has been shown
that for some cases the binarization of the input object amplitude resulted in a signal-to-noise ratio
compared with gray-scale correlation of the same signals.”>

COMPOSITE FILTERS

In the previous types of filters, only one view of an object is recorded and the system is capable
of recognizing such an object. For practical applications the object must be recognized with all different
variations and distortions. Composite filters76 were proposed for use in optical correlator systems to
provide distortion-invariant pattern recognition.

Let g,(X,¥), 82(X,Y), ----» 8x(X,y) denote N training images representing N possible distortions to a
reference image g(x,y). Let G(u,v) denote the two-dimensional FT of g(x,y). The objective of the
composite filter is to design a filter with a transfer function H(u,v) such that when H(u,v) is placed in the
filter plane of an optical correlator we obtain similar output correlation peaks for all input images
g](x’Y)’ gz(x,)'), seeny and gN(pr)

Synthetic discriminant function (SDF)”” filters were introduced as a way of designing spatial
filters that satisfy the above criterion. SDFs are based on the idea of generating the filter through a
linear combination of the reference images to create a composite image. The weights for the linear
combinations are selected so that the output cross-correlation peaks are the same for all images
belonging to one class.”® The designed filters can be generated using computers or multiple exposure
holographic techniques. SDFs are not optimized for noise tolerance. Minimum variance SDFs7? were
proposed to maximize the noise tolerance of the SDFs. The original SDF is designed in such a way that
the correlation peak is to be located at the origin. This makes it difficult to determine the location of
shifted targets. Minimum average correlation energy (MACE) filters80 were proposed to solve such a
problem. Recently, a new algorithm based on the MACE concept that allows the selection of the spatial
frequency content of the filter automatically, has been proposed.8! This is called an automatic spatial
frequency selection algorithm. These filters, given preliminary results, show more tolerance to
distortion than the MACE-based correlators. A number of variations of SDFs are described in the
excellent tutorial given in Reference 65.
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CIRCULAR HARMONIC EXPANSION (CHE) FILTERS

CHE:s were first proposed for designing in-plane rotation invariant filters.82 The input image
g(x,y) can be expressed in polar coordinates as g(r,0). The image g(r,0) is periodic in 6, with a period of
2n. The image can be expressed as a Fourier series

8(r,0)= Y gm(rie™®, 19)

where g (r) is the mth circular harmonic component given by
1 2n im8
=— [g(r,0)e™ ™ d0.
gm(r) = o~ { g(r,0)e” ™" do 20)

The filter h(x,y) can also be expressed in terms of its circular harmonics. The cross-correlation between
the filter h(r,0) and input image g(r,8-6,), which is the input image rotated by angle q,,, is given by
o2

C(6,) = | [1"(r,0)8(r, 6~ 6,)rdodr
00

= 27T ane-jnﬂ,

n.—w

@21

where q,, is given by -
qn = Irh* (r)gn (r)dr. (22)
0

The cross-correlation function C(6,) periodic function in 6, the rotation angle of the input. If only one
component of the circular harmonics of h(r,0) is non zero, e.g, h,,(r), then gy, is zero for all n except for
n=n, Then the output intensity |C(6,)|2 will be independent of the rotation angle 6,
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CHAPTER 7
SYSTEM PERFORMANCE AND EVALUATION

This chapter presents system performance and evaluation. The criteria governing performance is
introduced first, then system performance comparisons are presented based on these criteria.

PERFORMANCE CRITERIA

Optical pattern recognition systems are used for a wide range of applications. These include
character recognition, pattern classification, image enhancement and pattern recognition.

The performance criteria used in this evaluation are based on the discrimination level of the
different systems considered. The discrimination level of each system is characterized by

1.
2. image distortion (rotation, scaling or translation)
3. the signal-to-noise ratio

4,
5
6
7

sensitivity to noise

speed of processing

. throughput
. system integration and compactness

. real-time processing and parallelism

This kind of evalaation requires testing different systems based on similar problems and
environment. Since such tests have not been performed, test results are unavailable in the literature.

OPTICAL PATTERN RECOGNITION SYSTEMS COMPARISON

Table 2 is an overall performance comparison that addresses the major parameters with a more or
less qualitative evaluation. For a complete comparison a more thorough siudy needs to be performed.
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TABLE 2. OPTICAL PATTERN RECOGNITION SYSTEMS COMPARISON
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Inco-
System herent Coherent
Cor- Joint- Neural-

Parameter relator 4-f In-Line Transform Morphology Networks Wavelet
Input SLM No Yes Yes Yes Yes Yes
Coherent Source No Yes Yes Yes Yes Yes
Scale Sensitive Yes Mostly Yes Yes Yes Mostly Yes No
Rotation Sensitive Yes Mostly Yes Yes Yes Mostly Yes Yes
Translation Yes No No Yes No No
Sensitive
Off-Line Filter . .

R ling Yes Yes No Either Either Yes
Noise Sensitivity High High High Medium Low Medium
Preprocessing

Suitability No No No Yes Yes Yes
Speed High High High Low (iterative) | Low Giterative) | High |
Thresholding No No No Yes Yes No
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CHAPTER 8
SUMMARY

State-of-the-art optical pattern recognition systems were reviewed. The problem of recognizing a
pattern buried in noise and/or distorted has been addressed. Optics, with its inherert parallelism and
speed, is shown to provide the means of constructing a system capable of recognizing and classifying
targets with high precision and speed.

Pattern recognition is performed either through template matching or feature extraction.
Template matching is performed by comparing the tarpet under inspection with a set of refrence images
to determine which closely matches the target. Comparing an input image with a set of references can
be performed through correlation operations. Feature extraction based pattern recognition is done by
detecting particular features in the image. Using a set of measure basis the classification of the image is
determined. This classification can be achieved using optical correlators where the reference patterns
will be the image features.

Optical systems are capable of perfcrming a correlation operation of a two-dimensional image in
parallel. This is made possibie by using the FT property of a lens. For an image of 256 x 256 pixels, a
coherent optical processor can perform the correiation in 0.6 ns (this is based on 5-cm focal length
lenses). Because it is done in parallel, the same time will be required even if the image was 1024 x 1024
or larger; correlation time is the same regardless of the size of the image. This leads to the fact that
optical correlators are capable of performing more than 10% correlations per second. Electronic
processors typically perform less than a hundred correlations per second for a 256 x 256 image. The
number of correlations will decrease significantly for larger size arrays. The tremendous computational
speed of optical correlators cannot be used by the present technology. SLMs used to modulate light
beams with the image are one of the limiting factors in the speed of optical correlators. Ferroelectric
SLMs can be operated at 10,000 frames per second, based on a binary SLM.

Optical pattern recognition is performed by direct correlations and determining the correlation
peak, or by using nonlinear processing techniques as in the case of morphological and NNs processors.
Morphological processing is b~sed on fundamental operations, namely dilation and erosions. These are
used in image enhancement such as noise suppression and removal, and image segmentation. Pattern
recognition in morphological processing is done using the hit-or-miss transform which can be
implemented using optical correlators. Optical NNs are a new means of achieving massive connectivity
to perform pattern recognition. This is achieved by the natural parallelism of optics. Neural nets can be
trained to recognize a reference set of images. Examples of the application of NNs are associative
memory and winner-take-all processors. WTs recently have been introduced as multiresolution
processing tools. Optical implementations of wavelets are realized by a coherent optical processor.
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Fundamental issues confront both electrical and optical pattern recognition systems. These
issues include the recognition of partial or distorted images caused by rotation, scale, translation, or
noise. Since it is impossible to store all possible views of an image in a template, a variety of techniques
were invented to overcome this problem. This is achieved through creative designs of filters such as,
composite filters in the form of synthetic discriminant functions and others. More research is being
conducted in designing filters that can be implemented using available spatial light modulators.
However, questions still need to be answered concerning the number of reference images needed in
recording such composite filters and how to minimize the number of reference images.

Morphological processors can be used effectively in pattern recognition using the hit-or-miss
transform. Optical processors can implement such operations with high throughput. The critical
operation in these systems is the thresholding operation. Thresholding can be performed by an SLM or
other optoelectronic devices such as photodetector arrays. This operation is generally the limiting factor
in system throughput.

NNs can be used for recognition or pre- and post-processing operations in conjunction with
optical correlators and morphological processors. Optical NNs have been demonstrated to be effective
pattern recognition systems.

WTs provide new means for image processing. These transforms can be used in preprocessing
operations for noise and clutter suppression as well as in pattern recognition. Optical systems can
implement WTs very effectively. These transforms are not sensitive to translation or scale variations.

SLMs are the critical components in optical processing systems. Speed of processing is limited
by the speed of SLMs. The available SLMs with high frame rate are mainly binary. The need for
analog SLMs is critical for some applications. There is a thrust in industry to develop such devices with
a large number of pixels, high speed, and large dynamic ranges.

Optics has great potential for image recognition at extremely high data rates. More research and
development are needed in SLMS, high-speed photodiode arrays and thresholding devices. In particular,
gray-level SLM development must be actively encouraged. The gray levels required for pattern
recognition also must be investigated. Invariant-filter designs for correlator applications need to be
studied and developed to achieve a number of objectives. First, filter designs need to be optimized for
reference storage. Second, filters suitable for implementation using existing SLMs with limited dynamic
range must be developed. System architectures also require research to improve integratability,
ruggedness, compactness and power efficiency.
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