
05/1,/04 14'11 17Oý 740 3651 NAVAIR 01LA/PAG

A D-A 2084 824 SF'rE Silver Symposium

The Use of Genetic Algorithms for Ffigit Test and Evaluation of' Artificial
Itelligence and Complex Software! Systemis.

D&FL C. Elizabeth Davies
E L EC TEJohn McMaster

Mary Stark
NAWC-AD Patuxenat River MD 20670

F ~(301) 826-6381 (faxc)

Artificial Inteffigence (A!) te:.-no~og~ies ame emerging from :esearh la~boratories into
industry, particularly into the field of aviation. One such application is the ARPAA:JSAF
Pilot's Associate, a set of cooperatig expert systems designed to aid the tactical pilot in a
combat situation. Therm are currently no igmoius methods for the test and evaluation of
suchtactical airborne expertsystems. Th.- focus ofdtis pro;=m, sponsored in part by the
Office of Naval Technology, is the development of a rest and evaluation f=cilty for tactical
airborne systems which incorporate artificial intefligence. In particular, the subject of this
paper is the develop~ment, of a genetic algorithm (GA) which will automatically find those
test cases for, which the sy s=e under test performs most poorly.

The search space of possible test cases for an expert system such as the Pilot!'s Associate,
or indeed for a conventional software system such as the F/A-iS digital flight contruls is
practically infinite, Therfore a technique which could automatically find the most difficalt
test cases would provide a vast savings In time and rcsouzves during flight testing and
pnyvide a safer product. for the fleet, benetic algorithms have the potential to provide such
a benefit, A genefic algorithm is a search algorithm based on the mechanics of naftmal
selection. They have pruven to be effective in optmitifalon problems such as surface-to-air
missile evasion in computer simulations. OurW goal is to determine whether a genetic
algorithm can successfully generae difficult test cases.

For initial development, the genetic algorithm was written in C++ on a Macintosh
computer. The first optiwilmioai task given to the GA was an abstrat geometric p-oblem
which examined less than 2% of the end=r state space before the global optimum was~
achieved-

Encouraged by the perfonnance of the GA on an abstract problem, the next task was morc
realistic. T he CA was designed to generate an optimumn flight path ofT a hostile intereptor
against a. friendly fighter escort. This wcrrk centers on the development of GA techniqucs
to exploit the weaknesses of the fighter escor by proposing hard rstcases" consisting of
flight paths of the hostile interueptoi. Data from these experimenxts and a computer
demonstration will be presented. Conclusions as to the overall merit of genetic algorrithms-
for flight test and evaluation of artificial intelligence systems and cumplex conventional
software systems will be made.

94-286,15f

"THE USE OF GENETIC ALGORITHMS FOR FLIGHT TEST AND
EVALUATION OF ARTIFICIAL INTELLIGENCE AND COMPLEX SOFTWARE

SYSTEMS

ELIZABETH DAVIES
JOHN MCMASTER

MARY STARK
NAWC-AD PATUXENT RIVER MD

algorithms have the potential to provide such
Abstract a benefit.

Artificial Intelligence (Al) A genetic algorithm is a search
technologies are emerging from research algorithm based on the mechanics of natural
laboratories into industry, particularly into the selection. It simulates biological evolution by
field of aviation. One such application is the representing possible solutions as
ARPA/USAF Pilot's Associate, a set of chromosomes and using an evaluation
cooperating expert systems designed to aid function, analogous to natural selection, to
the tactical pilot in a combat situation. There determine the worth of that solution. By
are currently no rigorous methods for the test repeated iterations, a simulated evolution
and evaluation of such tactical airborne expert occurs and the population of solutions
systems. The focus of this program, improves. Eventually a "good enough"
sponsored in part by the Office of Naval solution is achieved.
Technology, is the development of a test and
evaluation facility for tactical airborne Genetic algorithms have proven to be
systems which incorporate artificial a powerful technique for optimization
intelligence. In particular, the subject of this problems such as surface-to-air missile
paper is the development of a genetic evasion in computer simulations. They have
algorithm (GA) which will automatically find also been used for submarine detection in a
those test cases for which the system under noisy environment and as a potential
test performs most poorly. scheduling tool for the Space Station.

Although genetic algorithms have existed as
A computer demonstration of the an AI technique for optimization since the

genetic algorithm will be presented. mid 1970s, they have not previously been
Conclusions as to the overall merit of genetic used for testing. Our goal was to determine
algorithms for flight test and evaluation of whether a genetic algorithm could be run "in
artificial intelligence systems and complex reverse" to automatically generate the most
conventional software systems will be made. difficult test cases for a system under test.

Introduction For initial development, the genetic
algorithm was written in C++ on a Macintosh

The search space of possible test computer. The first optimization task given
cases for an expert system such as the Pilot's to the GA was an abstract geometric problem
Associate, or indeed for a conventional which examined less than 2% of the entire
software system such as the F/A-18 digital state space oefore the global optimum was
flight controls is practically infinite, achieved.
Therefore a technique which could
automatica!ly find the most difficuit test cases Encouraged by the performance of the
would provide a vast savings in time and GA on an abstract problem, the next task was
resources during flight testing and provide a more realistic. The GA was designed to
safer product for the fleet. Genetic generate an optimum flight path of a hostile

interceptor against a friendly fighter escort.
Copyright c 1994 Davies, McMaster, Stark This work centers on the development of GA

I)1TE, C- J I, •-,ý 1-4;51 'UI ED f3

techniques to exploit the weaknesses of the used : replace-least-fit and replace-uniform-
fighter escort by proposing hard "test cases" randomly. Replace-least-fit requires that the
consisting of flight paths of the hostile two least ranked genomes of the current
interceptor. Data from these experiments and population are replaced. If replace-uniform-
a computer demonstration will be presented. randomly is used then two different gcnomes
Conclusions as to the overall merit of genetic from the current population are selected and
algorithms for flight test and evaluation of replaced by the two offspring.
artificial intelligence systems and complex
conventional software systems will be made. Given the generation of a pair of

genomes, there remains the question of
Approach whether or not to accept them to the current

population. This decision is made
Looking at the task of generating an independently of their evaluation. It is made

optimum flight path of a hostile interceptor solely upon comparing the genetic makeup of
against a friendly fighter escort, this work each genome with the other newly created
centered on developing techniques that genome and possibly the genomes of the
would be applied to the GA. First a current population. Two acceptance methods
Euclidean distance function was used as the are available: accept always and accept-if-
evaluation function. While the evaluation unique. Accept-if-unique guarantees that the
function converged rapidly, unrealistic paths population does not become cloned.
were being generated as solutions, such as
negative altitude values. Next, improvements In the first set of experiments the red
were made to the evaluation function. Jane's path consisted of five legs and had a
manual was referenced to put limits on the population size of 20. If replace-uniform-
GA parameters, such as aircraft speed. This randomly was selected, it resulted in a large
function computed the distance to the evaluation function. This was due to the fact
intercept point and accepted low angle-off that "good genetic" information may be
during the last leg of the path. This temporarily lost when replaced with newly
evaluation function started producing some generated offspring. In one of the
interesting but still simplistic flight paths. experiments, near the end of the run, the

solutions changed drastically and
Our next approach was to tune the improvement in the evaluation function

various parameters of the GA. The choice of occurred. This indicated that longer
parameters can effect the performance of the generations must take place in order for
GA. Decisions guiding a GA generation are "good genetic" information to be generated
defined by the GA operators. They are and be replaced back into the current
divided into the following categories: fitness population.
scaling, population renewal, mating
selection., crossover, mutation and creep, If ilace-least-fit was selected, the
offspring acceptance, and population evaluation function was small from the
replacement. We began our investigation with beginning and converged very rapidly. This
population renewal and replacement, and occurred because the genomes with the
offspring acceptance categories. A lowest rank were replaced with newly
population renews itself by generating generated offspring. This would limit our
offspring and integrating those offspring with search space and focus on refining good
the current population. Two renewal solutions. (See Figure 1.)methods are provided: generational and

partial. Generational renewal requires that The next twc sets of experiments 13
the whole current population is to be replaced consisted of doubling the number of legs in
by newly generated offspring. The partial the red path anO then increasing the size of

renewal requires that two offspring are to be the population to 100. (See Figures 2 and 3.)
generated then integrated into the current In these two sets of experiments the
population. Now the issue of replacement is evaluation function values grou~ped into three
rlevant. Two replacement strategies were categories. In the first group, if generational Codes

Disl

Ie.)06 - N6 le006 T T T 1 T

.- AOeoIace Uniltormtly Aanaom

.Petlace Uniformly Randomly ivares, 400)

100000 Aeplace Least Fit
'Il~ Uni.e ,'/aC Least~ac FittFi

Acceot AlwayS ReolaCt Least Fit00000

0000 // &ceot Uninue. Gene-ational Renewal

--- _-_- ,_ -- Generat ional Renewal

'ACCeot AlwayS. Generatio,-l Renewal

1000 L _ --______ 10000 r -

0 2 4 6 a 10 12 1- 16 1S 2Q 0 2 4 6 a 10 12 14 16 IS
Generat ion (. 20oI Generat ion 1. .o01

FIGURE 1 FIGURE 3

renewal parameter was selected the values of As a result of these experiments, it is
the function would jump around in the recommended when running off-line tests
intermediate range. It would take almost that either generational or replace-uniform-
twice the run time if this parameter was randomly renewal schemes be used. Large
implemented. The second group of values population sizes are used to allow a diverse
occurred if the replace-least-fit parameter was schemata available when generating test
selected. The function would take on very cases. For better on-line performance, a
large values and then at some point in the small population size is recommended
generation cycle it would d&op to intermediate because they have the ability to change more
values. If the replace-uniform-randomly rapidly. For population renewal, replace-
parameter was selected the last group of least-fit and for offspring acceptance, accept-
function valves occurred. The function if-unique should be used. Further
values were very large and at some point the investigation of the GA parameters will be
paths generated would change. part of our future work.

1.0006 ..- When looking at generating test cases
using a GA, it is necessary to consider the
types of weaknesses a test system is likely to

e,.r " "n....l ,,exhibit in order to evaluate the merit of the
ata,, . ,I,,ormly, daoomly (var ies 400) GA approach. We reason that performance

S..e•,laif Least Fit could vary in any of three ways as test inputs
/ - vary across their space:

S 00000
1. As a continuous function such as the Pk

. / Vs position in lethal cone geometry.

S1 2. As one or more abrupt discontinuities such
S / \ as a blind speed on pulsed doppler.

_....__ 3. As one or more less abrupt discontinuities,
lolocal0 2 A 6 ,0 ,to ,, ,4 , Is that is local rninimat

FIGURE21 Our investigation of the GA's ability
to discover each of these types began with the

use of a simple evaluation function effect, the GA was able to "consider" all
representing the first kind of degradation of possible paths through the region.
performance. This function employed the
basic criteria of distance to a computed It is recognized that "needle-in-the-
intercept point, low angle-off during the last haystack" problems, i.e., problems for which
moments before intercept and the the evaluation function has only small
interceptor's position within the target's 60 (relative to the entire search space) and
degree lethal cone, when the range to the isolated minima require the most processing
target decreased below two miles. A plot of time for GA solution. Given a longer run
this evaluation function is shown in figure 4. time, our experiments would have found the

60 degree lethal cone, albeit inefficiently from
a tester's standpoint. Moreover, the limited
processing power of the Macintosh II
desktop machine used for the experiments
made extended runs impractical.

2000o

15000It is evident that in order to effectively
apply GAs to testing of complex systems, the

,o00o necessarily large space of possible test cases
5000 that the GA is will create must be partitioned

and/or constrained in some intelligent manner
to both minimize the time needed to locate
performance degradation and obtain cases of

- .i5_ 0 performance degradation that are interesting
° , 5100 ,5 0 0 o -_00 -. 50 to the tester.

It is reasonable to expect a test
system's performance to degrade under
conditions it was not designed to

FIGURE 4 accommodate, therefore one immediate
partitioning of the search space would be of
realizable versus non-realizable test case

The experiments conducted with this parameter values. This partitioning of the
evaluation function showed that the GA search space would prevent the GA from
population was quick to converge on local generating and considering test cases which
minima, i.e. one of the "troughs" of the would not or could not be realized by the test
graph in figure 4, but did not locate the 60 system in the operational environment. In
degree lethal cone, in the time allowed. In our own experiments, non-realizable cases
essence, the GA spent its time learning that it (for instance, if the interceptor sought to fly
must close on the target, rather than learning below zero altitude) were punished by the
how to close on the target for optimum effect. evaluation function; an increase in processing
We attribute this to our characterization of the speed would result if the partitioning took
problem. place at the representation level, i.e., non-

realizable test cases would be detected as they
The representation we chose are generated and not admitted into the

represented values of thrust, roll, pitch and population.
yaw, at a succession of points in time. Part
of our evaluation function included criteria It is also reasonable to expect that
for closing on the target and for maintaining certain portions of a test case would not be
bearing to target. While this is a useful reahstically expected to vary; to allow the GA
demonstration problem for a GA, it also to operate on these "irnmuiable" portions of
allows the GA to expend effort in learning test cases is inefficient. One possible
uninteresting information, i.e., that the target implementation of this idea would allow the
must be approached in the first place. In GA to operate on codings of higher level

abstractions of test cases, thus keeping the the representation level and the ability to log
"immutable", lower-level detail out of the and preserve snapshots of the population
representation. when significant variations in the population

are detected. Investigation of the utility of
The search space constrained as these techniques will provide greater insight

abuve is still likely to be quite large and to the GA technique's capabilities for test
therefore a maximum of processing power is case generation.
needed. Small local dips in performance may
be as important to the tester as global "worst References
case" scenarios. Useful information about
such small local minima could be lost in a-a Booker, L. B. (1982) Intelligent Behavior as
extended run. A possible solution to this is an Adaptation to the Task Environment.
the inclusion of a log facility, that would (Doctoral Dissertation, Technical Report #
record snapshots of the population whenever 243 Ann Arbor; University of Michigan,
a significant variation in overall fitness of the Logic of Computers Group). Dissertations
pcpulation is found. Abstracts International, 43(2), 469B.

(University Microfilms No. 8214966).
Conclusions

Davis, Lawrence (1991) Handbook of
In summary, our results suggest Genetic Algorithms. New York: Van

certain requirements of the GA tool and Nostrand Reinhold.
certain practices to be employed by the tester:

DeJong, K. A. (1975) An Analysis of the
1. The GA tool must permit the user to Behavior of a Class of Genetic Adaptive
partition the search space at the representation Systems. (Doctoral Dissertation, University
(chromosome) level. It must permit the of Michigan). Dissertation Abstracts
establishment of immutable components of a International, 36(10), 5140B. (University
test case and "reality checks" that forbid the Microfilms No. 76-9381).
entry of non- realizable test data into the gene
pool. DeJong, K. A. (1980) A Genetic based

Global Function Optimization Technique.
2. The GA must permit the user to obtain (Technical Report # 80-2) Pittsburgh:
"snapshots" of the population whenever the University of Pittsburgh, Department of
variation in the overall fitness of the Computer Science.
population exceeds user defined limits. This
would enable the investigation of small Goldberg, David (1989) Genetic Algorithms
variations in test system performance that in search, optimization, and machine
would otherwise be overlooked in pursuit of learning. Addison-Wesley.
larger variations in performance.

Grefenstette, J. J. (1986) Optimization of
Testers employing this approach control parameters for genetic algorithms.

should be expected to obtain and define the IEEE Transactions on Systems, Man and
constraints on test cases for realizability and Cybernetics, SMC-16(l), 122-128.
the components of test cases that are to be
considered immutable. Schultz, A. C., Grefenstette, J. J., DeJong,

K. A. (1992) Adaptive Testing of Controllers
Recommendations for Autonomous Vehicles. Proceedings of

the Autonomous Underwater Vehicles 1992
At the time of writing, the GA library Conference, June 1992.

routines are being ported from the Macintosh
II machine to an SGI Indigo Extreme. In
addition to the extra processing power this
affords, we expect to include enhancements
that permit partitioning of the search space at

