"

4 668 - O

MWMMWMMWWW
CDRL: B008

29 January 1994

UNISYS

Software Architecture Seminar Report
Central Archive for Reusable Defense Software
(CARDS)

Informal Technical Data

ﬁﬁﬁriﬁiﬂf‘

Central Archive for Reusable Defense Software

STARS-VC-B002/001/00
29 January 1994

{ This document bas been approved
for public release and salef its

d;smbunon 18 L.n.xmued

RS

Lot 9%, s9613
5 LT

L

\ .

CDRL: B0O0S
29 January 1994
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)
Software Architecture Seminar Report
Central Archive for Reusable Defense Software
(CARDS)
STARS-VC-B008/001/00
29 January 1994
Informal Technical Data
CONTRACT NO. F19628-93-C-0130
Line Item 0002AB
f Accesion for '
Prepared for: NTIS CRAGI x N
. DTIC T4B
Electronic Systems Center Unannoun. og
Air Force Material Command, USAF Justificavers
Hanscom AFB, MA 01731-2816 - T
BY e e .
Prepared By: Distribution {
Availal-lity 'Tr.n:-w: T
Azimuth Incorporated Taved aoaror 7
under contract to Dist Speial
Unisys Corporation s
12010 Sunrise Valley Drive - J
Reston VA 22091 —

Distribution Statement “A”
per DoD Directive 5230.24
Approved for public release, distribution is unlimited

CDRL: B008
29 January 1994
INFORMAL TECHNICAL REPORT
For The
SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Software Architecture Seminar Report
Central Archive for Reusable Defense Software
(CARDS)

STARS-VC-B008/001/00

Informal Technical Data
29 January 1994

CONTRACT NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:

Electronic Systems Center
Air Force Material Command, USAF
Hanscom AFB, MA 01731-2816

Prepared By:

Azimuth Incorporated
under contract to
Unisys Corporstion
12010 Sunrise Valley Drive
Reston VA 22091

CDRL: B0O08
29 January 1994

Data ID: STARS-VC-B008/001/00

Distribution Statement “A”
per DoD Directive 5230.24
Approved for public release, distribution is unlimited

Copyright 1994, Unisys Corporation, kestc- /irginia
and Azimuth, incorporated '
Copyright is assigned to the U. S. Government, upon delivery thereto, in accordance with
the DFARS Special Works Clause

Developed by: Azimuth, Incorporated under contract to
Unisys Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution “A” of the Scientific and Technical
Information Program Classification Scheme (Do Directive 5230.24) unless otherwise indicated.
Sponsored by the U. S. Advanced Research Projects Agency (ARPA) under contract F19628-93-

C-0130 the STARS program is supported by the niilitary services with the U. S. Air Force as the
executive contracting agent.

Permission to use, copy, modify, and commeni on this document for purposes stated under
Distribution “A” and without fee is hereby granted, providing that this notice appears in each
whole or partial copy. This document retains Contractor indemnification to the Government
regarding copyrights pursuant to the above referenced STARS contract. The Government
disclaims all respon51b1hty against liability, including costs and expenses for violation of property
rights, or copyrights arising out of the creation ¢ use of this document.

In addition, the Government, Unisys, and its subcontractors disclaim all warranties with regard to
this document, including all implied warranties of merchantability and fitness, and in no event
shall the Government, Unisys, or its subcontractor(s) be liable for any special, indirect, or
consequential damages or any damages whatsoever resulting from the loss of use, data, or profits,
whether in action of the contract, negligence, or ther tortious action, arising in connection with
the use or performance of his document.

CDRL: B00O8

29 January 1994
INFORMAL TECHNICAL DOCUMENT

Software Architecture Seminar Report
Central Archive for Reusable Defense Software
(CARDS)

Principal editors:

- e

H. Jeff Facemire

Aleisa Petracca

Stephen Riesbeck

Approvals:

System Architect Kurt Wallnau

Program Manager Lorraine Martin

(signatures on File)

CDRL: BOOS
29 January 1994

ABSTRACT

In arder to increase awareness, explore current research into software architectures as a means
of implementing software reuse, and examine cumrent practices and issues involving
architectures, the Central Archive for Reusable Defense Software (CARDS) Program
sponsored a Software Architecture Seminar and Workshop at West Virginia University’s
Concurrent Engineering Research Center (CERC) facility in Morgantown, West Virginia on
November 16 and 17, 1993. The goals of the Seminar and Workshop were to understand the
various meanings of software architecture, current research in the field of architecture, and
current efforts in applying software architecture. This document provides highlights of the
- Seminar and Workshop. .

This document contains an overview of the proceedings of the Architecture Seminar on
Tuesday, November 16 and the Architecture Workshop on Wednesday, November 17. This
includes issues discussed, questions and answers, working group discussions, and references.
This document also contains presentation slides from the Seminar, the Seminar panel
discussion, and the Workshop.

CDRL: B008
29 January 1994

PREFACE

Just as the CARDS Software Architecture Seminar and Workshop could not have been a
success without the efforts of many individuals, this document also is based on the efforts of
many contributing authors. Thanks to primary authors Kurt Wallnau, Paul Kogut, Charlie
Snyder, and Kerri Haines, of Unisys Corporation, for their efforts, work, and research, and all
CARDS Program members who contributed to the Seminar and Workshop.

The CARDS Program also thanks all participants, who were able to make the Seminar and
Workshop enjoyable and enlightening.

Comments on this document are welcomed and encouraged.

vi

CDRL: B008
29 January 1994

TABLE OF CONTENTS
1 INtOQUCHIONuviiieiinncncnnnssesncsissensssmsncsseassssnstssssassasassmnsssnsassnssssssssssensssssessassssasancnsanssasanesss 1
1.1 The CARDS PIOZTAINcccccenisnnensesoasenmssssanscsssassssssasessesssnorssssasssssssssasesssnsssssansssnan 1
1.2 Document Organization eeeesnessettenae sttt s tenstetsasarseesennnssesestnstttensrasssssessasane 2
2 Software Architecture Seminar w3
2.1 Seminar Proceedings Summary SRR |
2.2 Seminar Proceedings Issues ... caesttensentensaat it st st s anars s s sresassrseanesesaneanesare saanons 3
2.2.1 Style 4
2.2.2 Architectures Definedccmmmessesmssmiansssssssasesssssssssssssssessnsssersassasssesses 4
2.2.3 CARDS ADPTOSCHcoviiiicsocnssmnnsnsisscassssemsissssesscsenssssassssscsessssmnsnasnssssessassessese 5
2.3 Seminar Panel Discussion Suminary S eeeeenestseresaenssassssnasessantsnssaserssnssnnsnnstessannce 5
2.4 Seminar Panel DiScussion ISSUEScccccececcemensnircssssssesescasensassesssssmnmsssessessessacssssas 6
2.4.1 OPEN SYSIBINScceeeceecncrisasisacsassennssnnssssassessmsrassssessassossacssssssssssansnensasasssnssssessasns 6
2.4.2 Structural Modeling and Proposals ceseteunaeuestsasenasssstaasasanassesrstessessneessnsnstesonnne 6
2.4.3 The New Concept of Architecture ceeerresiesnetsraenaasennnaes 7
3 Software Architecture Workshop cereeerratesenenataeasenarenans 8
3.1 Workshop Presentation SUMMATYcceerieieeneriennmsnacscscsisnensssssassassensssssssennsensescans 8
3.2 Workshop Presentation Issuesccoecouncuee . cremsrerimstsserenneasesaansseas 8
3.2.1 The Role of SOftware ATCHItECIUTESccocrieersesrermassessersssssseneresensssnnssesssas 8
3.2.2 Investment Considerations ceesuereineiaesesaneatstsass s satasaenns s sanesneeseenrens 9
3.2.3 Architectures Definedccccecemnininncssesencunnens ettt e saaaasessans 9
3.3 Workshop Working Group Summaries and ISSUESccecveeverecereerrnnnrreeeeaneerneenns. 10
3.3.1 WoOrKing GTOUP ONEcccoueeersrirnnereiecrsssmenstsencsesasmsarasassssssrssssssssessesssensesens 10
3.3.2 WOrKINg GIOUP TWOcoccerrrerermirieccessesencnstsssasssssssussesssasssssssesesssessssonsasensans 11
3.3.3 Working Group THIEcccceerinminicircrcsrmsincressassossnsmmsmessassassssssnssssessesssesssssen 12
3.3.4 Working GIoup FOUTccovriiiceiniiicisiesstecsenssnesssessennsseesesssessessseses 13
3.3.5 Working Group FIVecerccrtcreicsnicctesesesnnree e reaesessesse e seeeas 14
3.3.6 WOrKING GTOUP SiX ...oeceveiececnerernmiiiieniitennieicssssaneasensansteseessessessessessessusensenes 15
4 Architecture Seminar and Workshop SUMMIATYcccccvcnevecrrnrninrrerersecennneeecreseeeceseneens 16
4.1 Evaluation FOrm SUmmaryccminsnineeencnsescsncsscsssessssnssssesnesesessnns 16
B.1.1 OVEIVIEWooeeenereeeeareeernenensasasceestresssssomsssssssssssssnssssasnsssesesesrssssssansssseensnnesesnn 16
4.1.2 Detailed COMMENLScccceereeecrecciemeaeresesnneietossnsessssemssenssesssessssssessessennensessses 16
4.1.3 Evaluation FOIm ReSULLSccoeviniirirennneneeteseennntreecssanenesesnse s e e cenaens 17
S Architecture Seminar and Workshop Presentation SHAescovvenrecreeceniiceeeec s 20
Software Architecture Seminar INTOQUCHON.........cccvueveerrerrernrniirenrreneaesnsserenesnaneeessaeees 21
Session I Why ATCRItECIUTES..........cccccerurirmriiiiiiriertinci et etcenesenee e s esesnsssss e s e e sans e nes 35
Session I Senses of Architecture: Building the Category....ccommivieerevrvrcicier e 59
Manufacture PEISPECHIVE..........cccermrueemnmminmrcssesenssess s sestcentrass s ststsssssnssnesssssasessenn 63
Engineering PEISPECHVEccocveermriiniieireecnes s e e e e sassanse e e s esaeens 67
ATChIteCtUre PETSPECHIVEc.vieeeeeriierccitc e st esc e st et saes e s e sasnesar s e e e s e esseean 85
Scientific FOUNAAtONcoovieui et st ecrerer et e s mae et s e eate st eeese e e e e eeann 99

vii

Engineeri: ;3 Application. seensssesnnress 117
Considerations in Practice ereresseseetsasastesnesnnnns 133
Session III Software Architecture and REUSEccoccerecsecessrssnsneseesnesnesasncsnsssnesssnana, 141
ATCHItECtUTE MDAANEA" ooeeereecrrernneesrsarsssisssseonenesmssssesssmeseressrssssssssssensrsssassasesosscannannns 143
Towards a Science of Architecture reeesestesessesearsennastarensnsessentensanersesstesensannns 153
Trends in Architecture fOr REUSE.........ccccecuerermcssemsessssasasas sesssseasassssssssssssosasasssasasnanans 161
Architecture-Based REUSE SYSIEIMSccccrnereersserirssseirsssssssssercssesesssssnssessosssasecsannas 191
Session IV Architecture-Based Reuse Tools ceeernesaeenneneseessnnnrens 217
Session V CARDS Approach to Reuse and Software Architecture................ceeuene..... 275
CARDS Scientific reevesessessentesssese s tesnen i e Rt s e R et ar SR e e s e Sun e ans s e sraennans 277
CARDS ENQINEETINE. .. .ccersrirserssersassasssssssssscscssnssssisssnsesisesesstssssesssssssussassassasssssseons 289
CARDS Transition-t0-PraCHCEccccessensncscssseresscasacsesssssssnsesessssassssonsosssasssnsssnanes 309
Software Architecture Seminar Panel Discussion Introductionc..cccueeceecnccrcenenne. 322
Mr. T.F. "Skip" Saunders, Mitre COTPOTtONc.covvurrereecscrssrssseaanarnsenscacssssncanans 324
Mr. Hans Polzer, Unisys COIPOTAtON.ccceuseemesssrssssrrersusssssasasassessnssesssnsssssssasasssnsnes 372
Mr. Stan Levine, US Army CECOM eeeesesteasereserassssaststsessentantensanesassessaesnsae 384
Capt Frederick Swartz, USAF ASC/YTE......eiececescncnnnrnnsrensensesssssassnens 424
Software Architecture Workshop INTOQUCHON.cccovmecuruccsreeniiniscesessencsassnsseeseasnaans 436
Mr. Will Tracz, IBM FSD eeeseuetetsnersaseea st tsensenssnesensaseestesenssanas 442
Mr. Mark Gerhardt, ESL, INC.c.ccovverrereresessessasssamsssssssenesssssssenssnsssassessssassessessnsssnas 458
M. DEDOTEh GETY, DISA ...oovecurmunnneersmsesssssssssssesssssssssssssssssseesesssssmassssssnesssssnssssnsssnnes 472
MEI. Jim Baldo, URISYScecoscrercccmncsensmesssrssensesersesnsesssnsssersssssssasssssses sessassrsacosassns 480
Mr. Charles PLinta, ACCEL.........coveeeerersecrnssesessssssssessassscssssessassesessnsssesasssssnsasans 490
Capt Paul Valdez, USAF ESC/ENSuoiinmenicinssnssineanssssssecsessesssnsesssscons 506
Mr. UIf Olsson, CelsiusTech SYSLEmSccceeeeecrricsuncsmsansesisincscsenscsasorasenessseseesseennn 514
Mr. Jim Bonine, Design Metrics TeChnology..........coccccuvmnneninnincsrnivissessescssnen. 528
Mr. Steve Roodbeen, NUWCcvermerimecrersessmrissssesssssnssssessressassrassassassssssesessannns 534
Major Grant Wickman, CECOM.........ccceummerunremsninnineseranmnninesnssnrnsissssssessesecnens 544
Capt Kelly Spicer, USAF SWSC/SMXouuuerrmmmmminisnsssseniesssinssssessisessassssssssans 552
Mr. Stellan Kamebro, Defence Materiel AdminiStrationcc..ecveeeeverveeeeeesrceerecennes 562
Appendix A - PartiCIPANLScccoceureeveirerernmsusisensmstassasassssssssanssstssssmsssssassessasesssessasnsereens A-1
Appendix B - BIDHOGAPHYccocovemirmiiiiirscistenssensssinaesesssseses sttt e s s B-1

viii

, CDRL: B00O8
29 January 1994

LIST OF TABLES
Table 1: Time Given fOr EACH SESSIONcccccvvrecnrerrsccresracsersnsecssassossssssassrasersenssnasessasssssasenases 18
Table 2: The Material COVETEcccvivneermesnsrimmreseeseensnsensssssssesssssssniassssssessssessessosessasessseens 18
Table 3: Contents of Concepts cosoncuimsesitasessnssstasssaressnsaissasers asnnssnssantsssn 19
Table 4: SUPPOTHIG SEIVICESceecerireresssenmsenssassssassrsassssessssnssssssssssssosesnssssassssssssssanssrsensssnses 19
Table 5: Panel Discussion reteesssssstteesetarsaateresestesesesreserannnesasteennnnnnnnenes 19
ix

STARS-VC-B008/001/00 29 Jamary 1994

1 Introduction

In an effort to improve software quality and cost effectiveness, the Department of Defense
(DoD) is actively endorsing software reuse, the process of implementing new systems by
using existing software products and information. As noted in the DoD Software Reuse
Initiative Vision and Strategy, DoD aims:

[t]lo drive the DoD software community from its current “re-invent the
software” cycle to a process-driven, domain-specific, architecture-centric,
library-assisted way of constructing software.

A key element of the Vision and Strategy, architecture-centric reuse involves defining reuse-
oriented flexible architectures far DoD domains which are well supported by industry and the
R&D community, then spurring investment in creation of generic software components and
tooling which facilitates development of systems complying with approved architectures. The
creation of generic components must be independent of development of fieldable production
systems. One of the principal challenges of reuse is to develop processes and standards that
can facilitate development of a conventicn that enables effective sharing of components.

In order to increase awareness, explore current research into software architectures as a means
of implementing software reuse, and examine cuirent practices and issues involving
architectures, the Central Archive for Reusable Defense Software (CARDS) Program
sponsored a Software Architecture Seminar and Workshop at West Virginia University’s
Concurrent Engineering Research Center (CERC) facility in Morgantown, West Virginia on
November 16 and 17, 1993. The goals of the Seminar and Workshop were to understand the
various meanings of software architecture, current research in the field of architecture, and
current efforts in applying software architecture. This document provides highlights of the
Seminar and Workshop.

1.1 The CARDS Program

The Central Archive for Reusable Defense Software (CARDS) Program is a concerted DoD
effort to transition advances in the techniques and technologies of domain-specific software
reuse into mainstream DoD software procurements. This technology transition effort
combines a concrete demonstration project to illustrate the potential of domain-specific reuse
-- in this case for the domain of Command Centers -- with a broad-scale attack on the cultural
and contractual inhibitors to software reuse. The CARDS Program goals are to:

« Produce, document, and propagate techniques to enable domain-specific
reuse throughout the DoD

« Develop and operate a domain-specific library system and necessary tools

« Develop a Franchise Plan which provides a blueprint for institutionalizing
domain-specific, library-centered reuse throughout the DoD

» Implement the Franchise Plan with users and provide a tailored set of
services to support reuse

Page |

e

STARS-VC-B008/001/00 ' 29 Jarmary 1994

12 Document Organization
This document is organized into five chapters and two appendices.
Chapter One, Introduction, provides a general introduction to the document.

Chapter Two, Software Architecture Seminar, gives a summary of the Seminar and Seminar
Panel Discussion, along with highlights of issues discussed.

Chapter Three, Software Architecture Workshop, provides a summary of the Workshop and
issues surrounding the Workshop presentations.

Chapter Foux, Architecture S<~inar and Workshop Summary, contains a summary of the two
day event based upon evaluanon forms which were distributed to all participants.

Chapter Five, Architecture Seminar and Workshop Presentation Slides, contains over 500
presentation slides from the Seminar, Panel Discussion, a. Workshop.

Appendix A is a list of all participants, along with contact information.

Appendix B is a bibliography of sources used for development of the Seminar, and suggested
sources for additional information.

Page 2

fﬁ

STARS-VC-B008/001 /00 29 January 1994

2 Software Architecture Seminar

This Chapter outlines the proceedings and key points of the CARDS Software Architecture
Seminar conducted on November 16, 1993. The Seminar consisted of formal presentations
followed by a panel discussion. Accompanying presentation slides and speaker notes for the
Seminar and the Panel Discussion are located in Chapter Five; page numbers for the slides are
noted in text.

2.1 Seminar Proceedings Summary
The Architecture Seminar was divided into five sessions:

« Session 1 Why Architectures?

« Session II Senses of Architecture: Building the Category

« Session Il Software Architecture and Reuse

« Session IV Architecture-Based Reuse Tools

« Session V CARDS Approach to Reuse and Software Architecture

Session I (pages 35-58) of the Seminar focused on why architectures are needed, why
architectures are becoming mcre evident, and definitions of architecture. A major topic of
discussion in Session I was the various definitions of architecture and style; the notion of
architecture often depends on the perspective of the individual or organization.

Session II (pages-59-140) built upon the definition of architecture discussion in Session I,
drawing parallels to perspectives in manufacturing and engineering. Session II then contained
overviews of software architecture from a scientific foundation, engineering application, and
considerations in practice.

Session III (pages 141-216) examined architecture from a reuse standpcint, concentrating on
architecture “defined,” the science of architecture, trends in architecture for reuse, and
architecture-based reuse systems.

Session IV (pages 217-274) involved a examinativn of specific architecture-based reuse tools.

Session V (pages 275-321) presented the CARDS approach to Domain Engineering activities
as related to software architectures and reuse from scientific, engineering, and transition-to-
practice views.

2.2 Seminar Proceedings Issues

Throughout the Seminar, many participants raised issues on Seminar topics which generated
discussion. This section highlights some of these issues and includes some of the questions
raised by participants.

Page 3

ﬂ

STARS-VC-B008/00100 29 January 1994

2.2.1 Style
A significant topic of discussion during the Seminar was architectural style.

The question was raised: can we name styles of architecture (pages 87-98, 143-160)? It was
offered that there are certain specializations and rules, but there are limited capabilities on
how to apply these specializations and rules. There is a significant challenge in that there is no
formal representation or formal basis to build systems. But, there are tools for use in the “real”
world.

It seems we are still in a pre-paradigm stage regarding style. There may be a style emerging
for real time systems but it is very immature; since it is difficult to get a good definition for
architecture, it is difficult to get a clear style. There is still confusion on defining architectures,
and what style actually is.

One participant’s previous understanding of style was design patterns plus organizational
structures plus the ensemble (system specific features), but now the notion of style implies
globality. Another participant offered that a computational model (how the components
communicate) is the style, and that the computational model is the prime distinguishing
feature between architectural styles. Also, there are well known computational models.

With regard to the characteristics of an architecture, one participant stated that he’d like to
apply a test to architecture and style: if one has an architecture to preserve behavioral
attributes (such as security), where is this information captured? It was observed that some
systems may have wonderful qualities but bad style. These questions must be considered:
What elements of design have to be represented? Where does it stop? It was offered that
architectural models should focus on an understanding of style and coherence.

Another participant noted that there is a larger issue still; everything has an architecture but
architectures are viewed subjectively. However, there is objectivity regarding style:
understandability.

The point was also made that with regard to emphasis on style, the emphasis must be on all
elements. It was also pointed out that one should ensure that style captures operational
principles; software designs often end up with style cluttering it up or getting in the way.
Another observation was that functionality is the key; style alone is not enough.

2.2.2 Architectures Defined

With regard to the definition of architectures (pages 45-50, 85-98, 145-152), one participant
noted that based on experience, architectures should be at a higher level of reuse. There needs
to be a move away from expressing this as, for example, a compiler, so that architectures can
move closer to DoD application areas and can be used as examples for better understanding
by management level personnel. It was also noted that somewhere there should be data and
process views for mature design areas, such as combat weapons systems. Another participant
noted the importance of domain independence; we should think of things that will work in

Page 4

e ——

STARS-VC-B008/001/00 29 January 1994
different gystems.

In a discussion of wark done by Don Batory regarding design methods and architectural style
(pages 125-126), several participants made comments. Some felt that Batory’s work is similar
to others, but differs only in perspective. It is notable that Batory used a recursive way of
putting modules together, with the only difference being data types. Another participant noted
that Batory’s method “feels” different, while another noted that Batory’s work was somewhat
domain dependent.

The point was made that Batory’s work looks similar to other processes, but that he arrived at
his results in a different manner. Batory didn’t start with idioms; he performed a domain
analysis and abstracted idioms. Through domasin analysis and domain modeling, new idioms
can be found and the form of architecture can be the same.

It was also questioned if language should be used to drive the system. A response was that
form comes from the design method, and that language should be at the level of components
and connectors. One participant felt that there was no difference, while another felt that the
difference is only in perspective.

It is possible the difference between architecture and software/computer systems is that
computer systems deal with codifying a wide range of business processes. When building a
system to support these processes, there is a clash between pre-defined components and the
process which you’re trying to support. This calls for a close look at requirements.

In Session III, seven characteristics of software architecture were discussed (pages 147-150).
One participant noted that it is easy to see the part in the whole, but how can one see the
whole? Does seeing the part in the whole actually change the part? One reply was that if one
can see the part, such as a subsystem, one doesn’t necessarily need to see the whole, but can
gain an understanding of the whole system.

2.2.3 CARDS Approach

In the discussion concerning the CARDS approach to reuse and architectures (pages 281-285,
301-308), one participant observed that Prieto-Diaz’s idea of a faceted classificaticii scheme
usually results in 5 or 6 facets, while the CARDS approach involves more. CARDS chooses to
show more relationships, and, having a model-based library, concentrate on representing a
domain-specific model. Also, one participant noted that a knowledge based classification
scheme can also involve a high cost to implement and maintain.

2.3 Seminar Panel Discussion Summary
The panel discussion included presentations from four participants, followed by a question
and answer discussion. The four panel members were:

« Mr. T. F. “Skip” Saunders, Mitre Corporation

« Mr. Hans Polzer, Unisys Corporation

Page 5

—————’

STARS-VC-B008/001/00 29 January 1994

e Mr. Stan Levine, US Army Communications Electronics Command
(CECOM)

« Capt Frederick Swartz, Training System Program Office, ASC/YTE

The panel discussion consisted of presentations from each panel member. Mr. Saunders
presented views on architecture and reuse in texms of three points: goals, views, and trends
(pages 324-371). Mr. Polzer’s presentation (pages 372-383) concentrated on the economic
factors surrounding architectures. Mr. Levine offered some case history examples and lessons
learned on projects involving architectures (pages 384-423). Captain Swartz discussed the
role of architectures or structural models in proposals (pages 424-435).

2.4 Seminar Panel Discussion Issues'

2.4.1 Open Systems

One participant questioned the panel regarding open systems. The participant’s customer had
requested that architectures be re-defined to open systems, presenting difficulties in
conflicting standards. The question was raised: are architectures and open systems the same?

With regard to open systems and architecture, issues such as compatibility and interoperation
are often difficult; products are often built to different standards. However, these issues need
to be considered from an architectural standpoint so that components will connect in a
disciplined manner. This is starting to surface in the commercial sector. However, a problem
in the Government arena is that the Government can not specify one single system; this could
lead into contracting/legal difficulties. Therefore, the Government states the properties of a
desired system, then leaves it up to the contractor to decide how to meet the requirements. The
Government then evaluates the contractor’s approach.

The solution also depends on one’s definition of open system. A system doesn’t necessarily
have to follow a Government sanctioned standard. One approach is to follow an economic
approach: what/how much financial resources are available and “is it for me” in relation to
risk? Often open systems aren’t really open; there are so many alternatives. “Open”
sometimes means avoiding a large economic lock-in while still accomplishing what was
wanted. Also, from the Government point of view, there may be times when a Government
agency/customer can’t afford an open system. It may be best to let the contractor decide.

2.4.2 Structural Modeling and Proposals

Several participants were interested in specifying certain architectures (referred to in this
context as structural models) in Statements of Work (SOWs) and Requests For Proposal
(RFPs) (pages 424-435).

At times, the Government may not want to limit the contractor by specifyving a certain
architecture; other times, the Government may be limited by policy assuring that bids are
competitive. Also, architectures/structural models are still relatively new and not well defined.

Page 6

e

STARS-VC-B00&/001/00 29 January 1994

AmhiwcunemmunumodehcanbeinSOWnulmguupedﬁcpmductisnmspeciﬁed
However.thetemedtobetminedpeoplewhoknowthemwumlmodelandﬂmemustbeno

flaws in the structural model. Also, if the architecture/structural mode! is not specified, then no
one may bid it.

In order to evaluate proposals, evaluatable criteria must be in the SOW/RFP. The criteria that
are pushing the use of a certain architecture must be known. A track record that the
architecture works will help. If there is no track recard, one option is to let the contractor offer
an architecture or structural model, remembering that the burden will still remain on the
issuer/Government. It is important to know what attributes are desired.

243 The New Concept of Architecture

There was some debate as to whether architectures are a new concept, or have been used for
some time. Often architectures are developed unplanned. While the development community
seems to have been using architectures for a leng time, current emphasis is on their
formalization. Pieces of a system are better defined when this formalism is in place. It also
appears that vendors are now able to dictate architectures used in their products.

Page 7

ﬁ

STARS-VC-B008/001/00 29 January 1994

3 Software Architecture Workshop

This Chapter outlines the proceedings and key points of the CARDS Software Architecture
Workshop conducted on November 17, 1993. The Architecture Workshop began with
presentations from leading Government and industry specialists on current efforts and
research in software architecture. The paridcipants then split into six working groups to
continue discussion and examine issues in particular fields of interest. Accompanying
presentation slides and speaker notes for the Warkshop are located in Chapter Five of this
document; page numbers for the slides are noted in text.

3.1 Workshop Presentation Summary

Fourteen individuals representing Government and industry gave short presentations on their
current work in architectures. These diverse presentations offered an enlightening view into
the latest views and practices regarding software architectures, their respective definitions,
and role in application engineering. Workshop presentations were given by:

« Mr. Will Tracz, IBM FSD (pages 442-457)

o Mr. Mark Gerhardt, ESL, Inc. (pages 458-471)

» Ms. Deborah Gary, DISA (pages 472-479)

« Mr. Jim Baldo, Unisys (pages 480-489)

o Mr. Charles Plinta, ACCEL (pages 490-505)

« Capt Paul Valdez, USAF ESC/ENS (pages 506-513)

« Mr. Ulf Olsson, CelsiusTech Systems (pages 514-527)

« Mr. Jim Bonine, Design Metrics Technology (pages 528-533)
« Mr. Steve Roodbeen, NUWC (pages 534-543)

» Major Grant Wickman, CECOM (pages 544-551)

« Capt Kelly Spicer, USAF SWSC/SMX (pages 552-561)

« Mr. Stellan Kamebro, Defence Materiel Administration (pages 562-574)

3.2 Workshop Presentation Issues

Because of the diverse composition of the Workshop speakers, many issues surrounding
software architectures and reuse were examined. The following is an overview of some of
those issues, along with key points of discussion.

3.2.1 The Role of Software Architectures

People often feel that they’re communicating requirements effectively, but may instead have
different views. An architecture can serve as a common point of reference. Blueprints,
schematics, and the like are all ways that people communicate in their elements.

Page 8

e ———————————————

STARS-VC-B008/001/00 -+ 29 January 1994

AmhiwcuneisthesoﬁWuecommunicaﬁmvehich.memmhiwcmpointofview,
systems are treated as components. -

How can architectures be used in maintenance and sustained engineering activities? Mission
needs shift with time; as time goes by, things change. It is valuable to have a process for
transition from one architecture to another as technology changes.

In using domain specific software architectures, meeting requirements and creating particular
applications in a solution space may create tension. A solution is to draw the line between the
problem space and the solution space: create a domain model, pick out constraints, then create

specific applications.

Currently, components aren’t always compatible. Fatal component combinations must be
recognized. The more layers that are added to a software architecture, the less interaction
there may be between components. In some cases; it may be best to extract high level
elements and start from scratch, rather than try to ‘extract low level components to build a
system.]

3.2.2 Investment Considerations

The more detailed standards are, the more difficult it may be to communicate to another
platform. One solution is to publish a set of “building codes” with a broad scope that will
altow for architected systems.

There must be investment into a software architecture before it can be used. Initial cost of
software architecture development may be prohibitive. Also, some projects may be closing
down due to budget constraints. The knowledge from these projects needs to be captured
rather than lost. This approach involves capturing a design hierarchy, documentation,
development history, and design decisions.

Some felt the use of architectures may not apply to all kinds of systems, such as real time
embedded systems at this point in time.

Experiences and experiments in developing architectures need to be documented, even from
fatal architectures.

3.2.3 Architectures Defined

A good architecture is stable with a cover of customizations, while a poor architecture is the
reverse with props to make it stable. When customizations get too bulky, they outweigh the
base and make the system unstable.

Architectures are frameworks, but are not necessarily a solution; architectures are a layered
subset of the solution.

Every design problem has an objective logical architecture. A logical architecture is an
architecture in purely mathematical form.

Page 9

f—ii

STARS-VC-B008/001/00 29 January 1994

33 Workshop Working Group Summaries and Issues

The Workshop participants then separated into working groups to ideatify common problems
involving architecture and reuse implementation, and to develop a common approach to
solutions to these issues. The groups were organized as follows:

« Working Group 1: Evaluation and Measurement of Architectures

« Working Group 2: Software Architecture Technologies

« Working Group 3: Software Architecture and Reuse

« Working Group 4: Software Architecture and Standards

« Working Group 5: Software Architecture and Strategic (Product-line)
Planning

« Working Group 6: System Architecture Technical Committee for Reuse
Library Interoperability

33.1 Working Group One: Evaluation and Measurement of
Architectures

Working Group One concentrated on two topic questions:

e For procurement issues, how can many proposed architectures be
evaluated?

« For design issues, what are the “architecture-level” gqualities which can
and should be measured?

In order to compare one architecture against another, we must establish a common
understanding of what we mean when we refer to an architecture. Properties we are looking
for in an architecture should be specified. We should provide our definition of an architecture
and give examples of how we represent it.

1. The offeror must describe the architecture in 10 pages or less using the
following guidelines:
« Describe the basic elements which make up the architecture.
« Define the rules for how the eiements interact with each other.
« Describe how these basic elements make up the system design.
Evaluation criteria:

« Is the design based on the architecture?

« Is the style for defining and representing the architecture consistent?
« Are the functions separate from the interactions?

« Are the rules for combining the elements consistent?

Page 10

STARS-VC-B008/001/00 29 January 1994

2. Evaluate the offeror’s architecture on how well it addresses non-functional

requirements (e.g., interoperability, ability to tolerate change, cheap to build,
use of COTS). The offeror must explain and/or demonstrate this through a

prototype.
Evaluation criteria: »
«Can the architecture incorporate new functionality based on new
technology?
» How much COTS software is used and at what level?
« The ability to address changes in requirements.
« How the system interacts with other systems in the domain.
« Does the architecture incorporate open system standards?
« Can stress points be identified? How does the architecture compensate?

3. Evaluate the offeror’s architecture with m;;ect to how it is similar or different
from examples provided in the RFP.

Evaluation criteria:

« How much does the offeror understand about the domain?
« Did the offeror find innovative improvements to the architecture?

3.3.2 Working Group Two: Software Architecture Technologies
Working Group Two focused on the following topic questions:

e What are the current and emerging technologies for software
architecture?

e Where is the “low hanging fruit” (i.c., easily attained but useful
technology)?

Views about software architecture technology depend upon your goal and perspective.
Current technologies for software architecture involve the following issues:

1. Application Composition

« Composition formalisms
« Common infrastructure

2. Techniques for Reusable Components

« Multi-level
« Includes context for use definition (operational, testing, development)

Page |1

STARS-VC-B008/001/00 29 Janusry 1994

3. Legacy Systems/Software)

« Extraction of architecture and components
» Reuse in existing form

Although technologies for software architectures still need to emerge, there currently is
vident “low hanging fruit.”
1. Object-Oriented Technology

« Development
» Re-engineering

2. Formalisms For Composition

« Type Expressions (Batory) .
« Architecture Description Languages

3. Interconnection Techniques

« LIF, MIF, POLYLITH

« UNAS

« Wrappers/mediators

« Standards: CORBA, OS], etc.

Parameterized Programming

Consensus Definition of Architecture
Inductive Analysis of Current Exemplars
VHDL (Bailor)

Ontological Structuring

© N o U ok

3.3.3 Working Group Three: Software Architecture and Reuse
The topic questions for Working Group Three were:
» What does it mean for an architecture to be “reusable?”

» What is needed for product-line architectures to sustain a commercial
component provider industry?

Working Group Three presented an example of a layered architecture for discussion. Layering
helps in understanding design. However, abstractions may be violated in implementation, and
layering may be incomplete. Advantages for reuse include a partitioning strategy, and an |
abstraction mechanism. A disadvantage for reuse is a need for optimization. ‘

Page 12

#

STARS-VC-B008/001/00 ' 29 January 1994

Mthmgndwmsabbmhiﬁecummdomﬁm,meuchiwcuueshomumusable and
should also support the reuse of components. Do these conflict? Is there an issue surrounding

the variability of components versus the variability of the architecture? One strategy is to
utilize generative techniques and a generic architecture, which may require trade-offs. It is
also notewarthy that a small domain is more vulnerable to external architecture constraints,
and that a large domain involves a large number of resources.

There are also numerous issues for consideration.

Different domains, organizations, and/or audiences may have different architecture languages,
views, representations, and levels of abstraction (ravioli). How can these be made reusable?

If context is linked to architecture, what about “domain-independent” idioms? Does a
class/inheritance based taxonomy help capture this? '

Tension between architectural “quality” (from first principles) versus fit to existing systems.

Are there “complete” architectural style taxonomies, e.g., OO procedural, pattern-directed
inference, list processing?

An ‘architecture must include at least components, connections, constraints, plus context and
dynamic aspects.

Are generic architectures applicable for every domain? Are they high level designs with “plug
and play” variability at lower levels?

What is meant by reuse in architecture? Reusable architectures? Component reuse in
architectures? What is the difference between usability and reusability?

Architectural representations as assets: Freely accessible versus export controlled? Are they
attractive? Are they from fielded systems?

Facets/keywords for describing architectures: Are they agreed to (de facto)? Where are they
documented (standards)? Can they be retrofitted to existing assets?

Is a layered architecture descriptive enough to describe everything needed to develop a
system? For reusability?

Are architectures from Domain Analysis results integratible with existing components? Are
architectures from existing systems/components limited to existing capabilities?

3.3.4 Working Group Four: Software Architecture and Standards
Working Group Four examined two topic questions:
» What is the relationship between architecture and open systems?

Page 13

STARS-VC-B002/001/00 29 January 1994

e What are the areas of architecture standardization, e.g., “building
codes?"”
There is definitely a relationship between software architecture and open systems. While a
“good” architecture is cheap and modifiable, a “good” architecture also exploits open systems
for the lifetime of the product. However, an open system should not dictate the architecture. In
this context, there are restrictive standards; this applies to a wide range and to certain system
attributes. Also, there need to be enabling standards which deal with market opportunity,
especially in areas such as component suppliers and cost effective system solutions.

The topic of standardization and architecture often involves architecture and multiple
“building codes.” There are often degrees of constraining architecture, and regional variation
in the “codes.” There needs to be standardization at various layers of software architecture.
The purpose of standardization has multiple elements, such as:

« Portability

« Interoperability

« Product Family

» Component Supplier Market

« Conformance

« Bureaucracy Preservation
Approaches to standardization include:

« Proprietary, Publicly Known

« Negotiation

e Forum
Areas for standardization can include:

« Interfaces - syntax connections

« Data Consistency - semantic connections

« Usage Consistency

3.3.5 Working Group Five: Software Architecture and Strategic
(Product-line) Planning

The topic questions for Working Group Five were:

e« Where in the DoD should architectures be specified? Maintained?
Implemented? What are the prosicons of various approaches?

e« How can DoD architectures, if specified, be used prescriptively in
procuring systems?

Group Five noted that there must be some assumptions made:
« Offerers may provide an architecture.

« It is important that the Government own the Domain Model (source of
evaluation critenia).

Page 14

" STARS-VC-B008/001/00 29 Jammary 1994

The following issues were raised.

How do we convey what we mean by architecture? This can be done through white papers and
examples.

What questions can be asked about architecture which can discriminate alternative proposals?
There is reasonable certainty that answers to this question will be different.

How can you get common representations?

How is it possible to get an apples to apples comparison against criteria? Approaches include:
« develop evaluation characteristics
« likely to be non-functional
« scenarios make these concrete and evaluatable

3.3.6 Working Group Six: System Architecture Technical
Committee for Reuse Library Interoperability

Working Group Six, a subgroup of the Reuse Library Interoperability Group (RIG),
concentrated on issues surrounding reuse library interoperability. A topic of discussion was:

» What are some techniques for analyzing and comparing architectures (of
reuse libraries) for interoperability?

The discussion was difficult because of vocabulary problems, but a suggestion was offered;
there should be at least the possibility of a domain analysis for interoperability. The Group
also discussed a Technical Reference Model (TRM) for interoperability. This can be divided
into three elements:

« User Services (focus on the end user/the driver)
« Support Services (common for interoperating applications)
» Framework Services (common for all interoperating applications)

1. Using end user services maps to support services which maps to the
framework in order to interoperate.

2. Missing user services indicate missing support or framework services.
3. Adding support or framework services implies new user services.

Projecting the TRM through the architecture shows the implications of the architecture style.
Also, this will work for designs and implementations, providing greater detail.

Page 15

STARS-VC-B008/001/00 29 Jamary 1994

4 Architecture Seminar and Workshop Summary

Approximately eighty people attended the Seminar and Warkshop on November 16 and 17,
1993. Twenty-nine participants were from Government or DoD organizations, twenty-four
represented industry, twelve were from academia, and fifteen were from CARDS or other
organizations. Key points from the Seminar and Warkshop include:

1. There were multiple, valid perspectives regarding architectures.
« Computer Science (idioms, computational models, etc.)
« Design (standards, methods, educaiion, etc.)
« Engineering (prediction, measurement, non-functionals, etc.)
« Systems (high-level designs for applications)

2. There is a relationship between architecture and software reuse.

« High-level designs accompanied by context information
« Trends toward intersection of object-orientation and event systems

3. There is significant interest in the subject of software architectures.

4. While the Seminar focused on technology, there aze equally strong
connections to economics.

Participant responses and results from evaluation forms are in the following sections.

4.1 Evaluation Form Summary

4.1.1 Overview

As Seminar and Workshop participants registered, they were provided with evaluation end
feedback forms as part of their registration packets. Twenty-nine of the participants
responded, and the following results are based on those responses.

There was a consensus that the Seminar and Workshop were very successful and beneficial,
and that there should be similar events in the future, either annually, every two years, or every
six months. Many noted that there should he more time allotted, as a large amount of
information was presented in a relatively short \ime. There was a’so a consensus that there
should be smaller working groups which focus on particular areas of interest.

4.1.2 Detailed Comments

The participants suggested that particular individuals be invited to future
Seminars/Workshops. That list includes Bruce Anderson or a real building architect and a
movement training specialist (spatial analogies), Christopher Alexander, Gary Whitted
(IMASS Program), Rob Sturtenant (McDonnell Douglas and CIT Program), select individuals
from the software engineering community, architects from other fields (panel session), DISA,

Page 16

STARS-VC-B008/00100 _ : 29 January 1994

CFA, NRaD, MICOM, DSSA, service and DoD group leaders that are working on joint and
multi-service common architectures, intemational representatives (Europe and Japan),
Reuben Prieto-Diaz, Sholom Cohen, Mary Shaw, and John Foreman.

Several suggestions were made regarding the Workshop. It was suggested that there be more
woarking groups and more time for discussion. Also, three groups in one room was
impractical. It would be better to have smaller working groups; if they must be large, they
should focus on diverse viewpoints with mechanisms for synthesizing input (e.g., future
search conference). Some noted that there should have been more information geared to the
participant who has limited or no previous knowledge of architectures. The next Workshop
should attempt to produce, as a group, a viewer definition of software architectures and
examples, including success stories.

Several comments were also made with respect to how software architectures were defined
and presented. Comments indicated & good mix of CARDS and non-CARDS experts. One
attendee noted, “I think the audience was opened tdo broadly too early. It would have been
better to have an initial workshop to solidify the issues and CARDS viewpoints before having
a workshop/forum like this one.” It would have also been useful to have the CARDS
Architecture Task Force (ATF) talk delivered earlier to provide some context. Also, the
tool/representation survey was presented with virtually no context and was, therefore,
ielatively of little benefit.

It was suggested that there be more specific architectures presented. Following this, have
participants provide constructive criticism, and break into a domain working group and
develop architectures. Then, present the results to the main group. There could have been
more discussion of the qualities of an architecture and distinctions between design and
architectures. Another suggestion was to have more examples and hands-on interaction.
Participants want information and examples which they can apply. One recommendation was
to use a lecture room that is more accommodating for this type of event.

Regarding supporting materials, significant papers or books might be made available, either
for free or purchase. Workshop presentation slides should be provided beforehand, and
handouts should also be provided from the panelists and invited guest speakers. A
speaker/attendee hist should be available, as well as more information provided electronically.
A bibliography with list of references, citations, and resources should also be distributed.
Demonstrations of the tools should be included (if for nothing else, to interrupt the flow of the
“talking heads”).

4.1.3 Evaluation Form Results

Ninety-six percent of responding participants acknowledged that they would be able to apply
knowledge gained from the Seminar and Workshop on the job and three percent were unsure.
Sixty-eight percent said they had some previous knowledge of software architectures, twenty-
nine percent had limited knowledge, and four percent indicated no previous knowledge of
software architectures. One hundred percent of responding participants said that their
knowledge of software architectures was enhanced or increased in some way. One hundred

Page 17

—————

STARS-VC-B008/001/00 29 January 1994

percent also desired to have future seminarg. Four percent preferred to have them quarterly,
twenty four percent preferred to have them semi-annually, sixty eight percent preferred to
have them annually, and seven percent preferred to have them every other year.

Additional evaluation form results are summarized below.

% Adequate % Inadequate | % About Right
Session 1 70 : — 30
Session 2 73 8 19
Session 3 63 15 22
Session 4 58 * 27 15
Session § 54 29 17
Session 6 65 - 35

Table 1: Time Given for Each Session

% Too Specific | % Too General % Adequate
Session 1 4 -- 96
Session 2 4 9 87
Session 3 4 12 84
Session 4 5 22 72
Session 5 - 13 87
Session 6 5 5 91

Table 2: The Material Covered

Page :8

STARS-VC-B008/001/00 29 Jenuary 1994
% Too Much % About Right | % Not Enough
Session 1 - 100 -
Session 2 9 83 9
Session 3 8 63 29
Session 4 -— 67 33 .
Session 5 - 73 62
Session 6 - 95 5
Table 3: Contents of Concepts
% Poor % Fair % Good % Excellent N/A
Refreshments 8 12 58 23 —
Facilities 8 15 50 26 -
Visual Aids -— 20 63 15 -
Lunch 19 19 50 8 4
Handouts - 7 43 50 —
Examples - © 27 46 15 12
Table 4: Supporting Services
% Poor % Fair % Good % Excellent N/A
Knowledge -—— 8 43 44 -
Responses - 5 15 24 -——-
Selection --- 9 57 35 .-

Table 5: Panel Discussion

Page 19

STARS-VC-B008/001/00 29 Jenuary 1994 -

5 Architecture Seminar and Workshop Presentation Slides

This Chapter contains presentation slides from the Seminar, the Seminar panel discussion, and
the Workshop. The slides are divided into three sections, prefaced by introductory slides.

Software Architecture Seminar slides (pages 21-321) are from the five Seminar sessions:

« Session I Why Architectures (pages 35-58)

« Session Il Senses of Architecture: Building the Category (pages 59-140)
« Session ITI Software Architecture and Reuse (pages 141-216)

« Session IV Architecture-Based Reuse Tools (pages 217-274)

« Session V CARDS Approach to Reuse and Software Architecture (pages
275-321)

Slides from the Seminar Panel Discussion (pages' 322-435) were used by the four panel
members:

« Mr. T.F. “Skip” Saunders, Mitre Corporation (pages 324-371)
« Mr. Hans Polzer, Unisys Corporation (pages 372-383)

e Mr. Stan Levine, US Army CECOM (pages 384-423)

« Capt Frederick Swartz, USAF ASC/YTE (pages 424-435)

Software Architecture Workshop slides (pages 436-574) are from Workshop presentations
given by:

o Mr. Will Tracz, IBM FSD (pages 442-457)

» Mr. Mark Gerhardt, ESL, Inc. (pages 458-471)

« Ms. Deborah Gary, DISA (pages 472-479)

» Mr. Jim Baldo, Unisys (pages 480-489)

« Mr. Charles Plinta, ACCEL (pages 490-505)

« Capt Paul Valdez, USAF ESC/ENS (pages 506-513)

« Mr. UIf Olsson, CelsiusTech Systems (pages 514-527)

« Mr. Jim Bonine, Design Metrics Technology (pages 528-533)
« Mr. Steve Roodbeen, NUWC (pages 534-543)

« Major Grant Wickman, CECOM (pages 544-551)

« Capt Kelly Spicer, USAF SWSC/SMX (pages 552-561)

« Mr. Stellan Kamebro, Defence Materiel Administration (pages 562-574)

The slides from the Panel Discussion and the Workshop were optically scanned and imported
into this document. Page numbers are at the bottom right corner.

Page 20

L.

Central Archive for Reusable
Defense Software
(CARDS)

Software Architecture Seminar

16 November 1993
Kurt C. Wallnau and Paul A. Kogut, Unisys Corporation

noy isys
Roger Whitehead, DSD Laborutories

—ANus

We want to thank the following contributors, without whose help this seminar
would not have been possible:

Acknowledgments

Tom Bock, Shelly Jones and George Jackelen, Electronic Warfare
Associates, for their heroic efforts.

Charlie Snyder, Unigys, for his organizational skills.

Jim Estep, Unisys, for his cool-headed optimism and ability to make things
happen.

s

Welcome to CERC

CARDS would like to thank the Concurrent Engineering Research Center
(CERC) for donating the use of their facilities to host this seminar.

CERC was established in 1988 by the DoD’s Advanced Research Projects
Agency (ARPA) in response to a national need to improve the product
development capabilities of the U.S. defense-industrial base. As the
centerpiece of the (D)ARPA Initiative in Concurrent Engineering (DICE),
CERC’s mission is to design, develop, and promote concurrent engineering
technologies.

CERC has recently expanded the application of its technology to the
healthcare informatics domain. Funded by the National Library of Medicine,
CERC Is developing a pliot heslthcare information system that will integrate
the latest developments in multimedia, networking, and user interfaces to
provide shared access to multimedia patient records, and to enable remote
consultation among participating state medical facilities.

WA

MESSAGES:

Messages for participants of the forum can be left at the CERC
switchboard: (304) 293-7226

All messages will be posted outside the door to this room

Miscellaneous

PARKING:

ignore the “parking decal required” signs - the WVU parking authority
has been notified not to ticket cars parked at the CERC facility

ASSISTANCE:

For help or assistance at any time, contact the seminar support staff
(red ribbons)

LUNCH:
Will be served on the fourth floor

There will be a box available for depositing the $10.00 to cover food
and beverage costs

Lws

8:00 AM
8:10 AM
8:20 AM
8:30 AM
9:15 AM
9:25 AM
10:35 AM
10:45 AM
12:00 AM

1:00 PM

2:15PM
2:25PM
3:05 PM

3:15PM

5:00 PM

5:30 PM

Seminar Schedule 16 November
Seminar Logistics - Charlie Snyder

CERC Welcome - Dr. Ramana Reddy

CARDS Welcome - Bob Lencewicz

Why Architectures? - Charlie Snyder/Kurt Wallnau
Break

Senses of Architecture - Paul Kogut/Kurt Wallnau
Break .‘

Software Architectures and Reuse - Walinau/Kogut

Lunch - 4th Floor Antechamber

Case Studies of Reuse Systems - Kogut

Break

CARDS use of Architectures - Nancy Solderitch
Break

Panel Session - Architectures in Practice
- T.Saunders, Mitre

- H.Polzer, Unisys

- S.Levine, CECOM

- F.Swartz, Air Force ASC/YTE

Summary and Closing Remarks

CERC Demonstrations and Tour

26

Las

Architecture Forum Workshop - 17 November

Purpose: .

+ Explore the current practice of software architectures and software re-
" use on actual projects

« Explore current research into architecture as a means of implementing
reuse

Overview:

« Moming:
- Short presentations by practitioners and researchers on their current

work with architectures

« Afternoon:

- Working session to identify common problems in reuse
implementation and develop a common approach to solutions

WA

Workshop Schedule 17 November
8:00 AM Transitioning from research to practice - T. Saunders, Mitre

8:30 AM Architecture as the framework for realizing the benefits of reuse
- W. Tracz, IBM

8:45 AM Abstraction and layering within software architectures
- M. Gerhardt, ESL

9:00 AM Overview of DISA Software Reuse Domain Analysis
- D. Gary, DISA

9:15 AM Software Architecture, Reuse, and Maintenance
- Jim Baldo, Unisys

9:30 AM Break

9:45 AM The Object-Connection-Update Architecture
- Charles Plinta, ACCEL

Lws

Workshop Schedule 17 November - Continued
10:00 AM PRISM software architecture - P. Valdez, ESC/ENS
10:15AM NSA Unified INFOSEC Architecture (UIA) - B. Koehler, DIRNSA

10:30 AM 9LV Mk3 shipboard C2 architecture - U. Oisson, CelsiusTech
Systems

10:45 AM Architectures and the real world, based on the Army C2
common software program experience - S. Levine, Army

11:00 AM Break

11:15 AM Architectures in the CIS field - applying Christopher Alexander's
work - J. Bonine, Design Metrics Technology

11:30 AM OO-based architecture use at NUWC - S. Roodbeen, NUWC

11:45 AM Capturing domain knowledge at NTF - T. Gill, NFT/ENS

WA

Workshop Scheule Nvember - T

12:00 PM STARS demo project architecture - G. Wickman, CECOM
12:15PM The STARS Air Force Demo Project - K. Spicer, SWSC/SMX
12:30 PM Lunch - 4th Floor Antechamber

1:30PM Working Groups

4:30 PM Working Group Report

5:00PM Wrap-up

s

Proposed Working Groups and Topics - 17 November

Wa 1: Evalustion and Measurement of Architectures ‘
- procurement lssues: how can many proposad architeciures be evaiusted?
- design issues: what are the “architecture-level” qualities which can and shouid be
measured?
+ WG 2: Sohware Architecture Yachnologles
~ what are the cuiment and emerging technoiogies for software architecture?
< where is the “low hanging fruit” (Le., eesily attained but usetul technology)?
+ WG 3: Sofware Architeciure and Reuse
~ what does It mean for an architeciure to be “reusable?”
- what is needed for product-iine architeciures 10 susiain a commercial component
provider industry?
WG 4: Software Architecture and Standards
« whatis the relationship between architecture and open systems?
- what are aress of architecture standardization, e.g., “buliding codes?"
WQ 5: Software Architecture and Sirategic (Product-Line) Planning

= where in the DoD shouid architectures be specified? maintained? implsmented? What
are the pros/cons of various approaches?

« how can DoD architectures, If specified, be used prescriptively in procuring systems

31

_Avas

Please take a few minutes at the end of the forum to complete the evaluation
form provided in your handouts.

Forum Evaluation Form

We need your comments to improve our seminars and ensure that their
contents are relevant and timely to the software reuse community.

Any comments, suggestions, or criticisms are solicited, either attach them to
the evaluation form or contact either:

Charlie Snyder, Forum Coordinator, (304) 363-1731, snyder@cards.com

or

Kurt Walinau, CARDS System Architect, (304) 363-1731, wallnau@cards.com

32

Lwws.

Dr. Reddy

Dr. Ramana Reddy is a Professor of Computer Science and the Director of
the Concurrent Engineering Research Center (CERC) at the West Virginia

1 University. At CERC, Dr. Reddy leads the development into enabling
technologies for concurrent engineering. He has achieved significant
research results in multimedia communications, constraint management,
unceriainty reduction, and knowledge-based systems.

Central Archive for Reusable
Defense Software
(CARDS)

Session |
Why Architectures?

16 November 1993

A N-atura7 Eanﬂnuation 5 Eurrent Work

Software
Architectures

3

A Natural Continuation of Current Work

Software Architecture is a topic of considerable interest 10 practitioners and researchers in the academic,
govemment, and commercial software areas.

Why? Why now?

What is the relevance 1o an organization trying to improve its software development capability?
How does architecture relate 10 the other software development improvement concepts of
Software Process Improvement - SEI CMM
Total Quality Management
STARS Megaprogramming
Domain Analysis and Domain Engineering
Library based Reuse
Object-Oriented Analysis and Design
Many of the research topics and implementation efforts seem inevitably to lead to the study of software

architectures. This seems 10 stem from the continual human endeavor of always trying to generalize and
conceptualize from a specific instance to & more general case.

We believe ihat the cumrent interest in software architectures represents the natural evolution of the histor-
ical focus on changing software developrnent from a craft 1o an engineering discipline.

Why do we need Software Architectures?

Maintenance issues

increased Emphasis
on Standards

39

Why do we need Software Architectures?

There are many forces at work leading research and implementation efforts into considering architectures
&s an area of major payoff in software development improvement. Some major ones, and their implications
are listed below:

* Reuse of Analysis & Design- The higher level at which the artifacts are reused, the greater the
payott.

* Systems/Hardware issues - System performance and hardware capabilities often determine
the software de.agn

« Difficulties in implementing Reuse - Reuse of other than minor code modules s very difficult
because reuse is typically considered after system design

decisions have been made.
* Need for long-lived systems - Systems must be enhanced as new technologios appear.
* Need for adaptability - Longer lived systems have to change to meet situations not

envisioned when they were developed

* Increased emphasis on slandards -Systems now must conform to various interface standards
and often development standards that require interdace o a

variety of existing COTS software.
* Life-cycle Maintenance Issues - sammsysbmmalmeoomandoponsundam“em
to maintain than custom developed software.
« Greater Cost Savings - Reuseanddevelopmgsofmmusmlaroe-swoenstm

components promises 1o significantly reduce development cost.
Those savings have been historically difficult to achieve.

T NSNS

Why not before Now?

Diverse Design Approaches - Structured Design, 00D

e e tons Lack of Guallty Standards

- Ada, C, Assembly Software No Guiding Engineering Discipiine
- >
Reuse
Lack of Standards
Eacn System s Unicue iy L
Requires a Paradigm Shift

4

Architecture has just recently become a focus of study by the reuse community. While a major reason for this just occurring is the
increased emphasis on recognizing patierns in domain enginesring and other reuse activities, there are other forces serving o inhibit
architecture ergineering:

+ Diverse Design Approaches - The myriad of design methodologies inhbits a recognition of common structure. And
how can you reuse C++ classes in a structured design developed system?
« Diverse Applications - Practitioners consider each application donain as unique and unabie 10 share with

other outside domains. Thus the real-time practitioners and the MIS community
continue 10 svolve in separate ways.

+ Diverse Languages - While code incompatibifities are obvious, many times the choice of language dictates
the design in subtie ways. This is most cbvious with C++ and other QO languages, but
Assembly Language also scopes the design choices available

« Lack of Standards - Standards define the boundaries and limits on the design. Without standards, there
are no limits—every new sysiem is a complete new challenge.

* Lack of Quality Standards - How can the choice be made between several designs and approaches without some
standard defining the quasity of the product. Software development is just beginning
fo have such a standard.

< No Guiding Engineesring Discipiine- Software enginesring lacks the thecratical base of other engineering disciplines, it is

more a craft.

» Companies have different goals - Consider a full fixed-price contract (FFP) vs. & cost plus fixed fee contract{(CPFF).
There is no incentive for the contractor to control software osts on the CPFF contract.
Govemment auditors ofien disallow costs savings measures on the FFF contract. in
all cases the benefits from controlling costs 1 the contractor are somewhat
nebulous—the contractor wants 10 win new business as the major goal.

* Requires a Paradigm Shift - Just as with the concept of Software Process Improvement, reuss requires a major
change in orgenization for a company. Software now must be understocd, made an
ftem of capital investment, and must be managed. But many managers come from
hardware or business areas and have no understanding of or interest in software
development.

42

T —

The Goal of the Seminar

To use architectural concepts, we must understand-
» the various 'meanings of software architecture

« the current research in the field of architecture

» current efforts in applying software architecture

These and other concepts will be explored during the
remainder of this seminar.

The Goal of the Seminar

The remaining sessions will explore software architectures and the usefuiness of the concept for imple-
menting software reuse.

[ey
IR NNRTIT SNSRI
Some Cautionary Thoughts Before Proceeding

Exercise: Define the concept “Game”
No matter what you try, you will define a conceptual
category which:

— includes something which should be excluded
— excludes something which should be included

Intensional definitions do not work well with
abstract conceptual categories

This example iliustrates an old trick philosophy professors play on students—setting up definitions only (o
knock them down again. As it tums out, there are sound reasons why this trick “works™ where fairly abstract
concepts are concerned, as revealed by researchers in cognitive psychology.

The bottom line is that understanding what forms a cognitive category is no mean feal.
References

MW’. 0 angen

& A1 # B MY M LIS LILES [32 B
of Chicago Press, 1991. ISBN 0-226-46803-8.

Architecture as a Conceptual Category
Categories are formed from experience

§rogymIng language systom engineer

advocate
ggm acquisition

gg‘gi#/sltmolllgonco

i
policy computer scientist

tool builder

47

Given that we form conceptual categories based upon our own experiences (we can assume this propo-
sition for the purposes of the seminar, even though this theory is by no means universally held as “truth
revealed™), it should not be surprising that a number of ditferent perspectives on the topic of software ar-
chitectures, and domain-specific software architectures and reuse, have emerged.

Quite apart from the natural tendency in the research commumity 10 reward “innovative® and “unique” ap-
proaches (which tends 1o generate approaches which have commonality well-concealed beneath layers of
obscure terminology), there is also a natural tendency to stress what is important in a category based upon
personal experiences and personal needs.

The chart flustrates a number of different perspectives which might lead to a number of ditferent interpre-
tations about what conslitutes the most central concept in the architecture category. Naturally no attemnpt
has been made o enumerate all roles or all definitions/concepts for the architecture category, nor is it im-
plied that one perspective is only narrowly interesied in one concept (that is what is implied by “most central
member”).

A Smattering of Software Architecture Definitions

organizationsl structure of a system :
or component - IEEE 8t 610.12 components and connectors that have
structural patterns - Garlan/Shaw

mr«m-—u:dm:«uj

ponents - Braun the packaging of functions snd objects, their in-

terfaces, and control to ement applications

shipe), and rationale - . Yolf

{ high level description of a generic type of software) (Manmhl structural attributes of s)
systesns software system:
~functional roles of major components ~partitioning into components
—interrdationships stated in an spplication ori- ~flow of dats and control
~precise semantics for automated reasoning ~layers/standarde/protocols
~libraries of prototype components with execut- ~allocation of software to hardware
able specifications Saunders
—program synthesis capability to produce opti- | _ J
mized code
=2 constraint system for reasoning about consls- ~{ramework for logical and physical partitioning
tency ~semantic model of communication and cooperation
~design records that link requirements to design || _jayering capability to add algorithmic functionality
decisions “on top of” the framework
Lowry Commons/Gerhardt

\. y,
T

A Smattering of Software Architecture Definitions

In imes of crisis, however, we can find comfort in definitions. There are a number of definitions of softwane
architecture found in the literature (this list is not meant to be complete). The definitions usually refiect the
perspective of the author (e.g. Lowry has an Al perspective). Note that in some cases a single author will
have several different “senses” of the term. Perry and Wolt, for example:

“We use the term ‘architecture’ to invoke notions of abstraction, of standards, of formal training

(of software architects), and of style.”
Reterences:
. IEEE Std 610.12 - iIEEE Standard Glossary of Software Engineering Terminology, Dec. 1990

. Garlan, Shaw - “An Introduction 1o Software Architecture” 10 appear in Advances in Software Eng.
and Knowledge Eng., vol.1 1993

. Pemry, Wolf - “Foundations for the Study of Software Architecture® ACM SIGSOFT SEN, Oct. 1932
o Braun - “DSSAs: Approaches to Specifying and Using Architectures™ STARS 92, Dec. 1992

. Peterson - “Coming to Terms with Software Reuse Terminology: a Model-Based Approach® ACM
SIGSOFT SEN April 1991

. Saunders, Horowitz, Mieziva - "A New Process for Acquiring Software Architecture” MITRE TR

. Commons, Gerhardt - “A Model for Analyzing Megaprogramming, Reuse, and Domain Specific Soft-
ware Architectures” TRI-Ada, Sept. 1993

. Lowry - “Software Engineering in the Twenty-First Century” Al Magazine, Fall 1992

. CARDS Context

..
Wﬂﬂﬂ Vis { Strat
Domain Specific Reuse
Process Driven Reuse

Architecture-Centric Investment

Interconnected Reuse Libraries

CARDS Context

The CARDS program is one member of a larger DoD Software Reuse Initiative. The other member pro-
grams include the DISA/CIM software reuse program, and the STARS/ASSET program. These three pro-
grams provide cooperative, complementary coverage of the field of software reuse 10 heip transition the
techniques and technologies of reuse into practice.

Each of the programs are guided by the DoD Software Reuse Vigion and Strategy. The four fundamental
principles of the Vision and Strategy are listed on the lett of the slide.

The CARDS program is interestied in evaluating and wransitioning reuse technologies which bring together
the concepts of soltware architeciure, domain-gpecific reuse and reuse libraries. As will be seen in a later
presentation (Session V), CARDS is pursuing an advanced technology approach 10 fuse these concepts:
our kbrary lechnology is based on knowledge-representation formalisms which help us represent software
architectures and provide automated reuse assistance based on architecture models and a library of soft-
ware components.

This is one reason why CARDS is so actively interested in the state of research and the state of practice
in the field of software architecture.

52

The Topic Transcends Technology

' Standardization Issues Business Issues

Realizing
Architectures
in Broad
Practice

Procurement Issues Reuse Issues
53
b
N L

The Topic Transcends Technology

The corwvergence of business, policy, and technology must be a consideration, as well as differentiating
architecture technology from reuse technology. CARDS, to be successfui, needs to have a sufficiently
broad technical foundation to express the trends of architecture and domain-specific architecture methods
and technologies in order 10 help guide the formulation of business and acquisition models.

CARDS Cross Section of Ideas
,:‘t\ ::/3 TS = : [T
', . :“ ”:\ /:’\‘ ,”,\ ’.:\s
\ 17 N, ! N,
Logistic Center Commercial Tool industrial R&D
Providers

CARDS Cross Section of ldeas

Good ideas on the fopic of software architecture are not emerging only from research programs. In a
sensge, the image of a technology pipeline is inaccurate—a better image might be a geries of tachnology
sprinklers:

* basic research: theory, concepts, taxonomies of architectures.

« applied research: experimental, proof-of-concept technologies

* advanced technology demonstrations: demonstrations of scale-ability

* ongoing development programs: transition issues

* logislics and support programs: retro-fitling, reverse engineering, integration and test

The motivation for this seminar, and especially the follow-up workshop, is 10 heip the CARDS program to
cut-across these boundaries, 10 identify a broad cross-section of ideas on software architectures. in tum,
CARDS hopes to use this knowledge 10 help accelerate the transition of good ideas into practice, as well
as provide feedback 10 research and development efforts into the perspectives of practicing engineers.

Context Setting

Category Bullding

Session X

|
i
}
CARDS and Arch.

Architecture & Reuse
1
g
R
e B -]
SW Architecture and Practice

Architecture/
Reuse Systems

Anatomy of this Presentation

Session Vi

This chan depicis a more delailed anatomy of the seminar, with the size of each session block in rough
scale 1o the time allotted.

The top-level structure of the seminar are:
« Session I: Context sefting
« Session Ii: Building a conceptual category for software architeciure

* Session lI: Synthesizing session Il into a working model ol software architecture, and
extending our focus into kinds of software architeciures and architecture-based reuse

systems

+ Sassion [V: A survey of architecture-based reuse systems
* Session V: A short overview of what CARDS is currently doing, relative to software

architecture

« Session VI: A panel discussion on the

practical concems of adopling software architectures

in the DoD—which, hopetully, will reveal interesting issues and ignite interesting discussions.
Tomorrow, of course, is a workshop where we can continue the discussions, and continue to exchange
ideas.

Central Archive for Reusable
Defense Software
(CARDS)

Session Il
Senses of Architecture:
Building the Category

16 November 1993

_Avus

This page intentionatly left blank.

s

Architecture: Multi-Disciplinary Overview

s Manufacture Perspective J—— :mmmwmm
’ + process control

Engineering Perspective n—— :w ¢ In enginsering models
- predictable results through compasition

Roadmap for this Session

Architecture Perspective ey [Jovion decipine on
« design patterns and “style”
Software Architecture: Overview
Scientific Foundation ——p mmmum:“ classification, deecription
Engineering Application » :mlg concrete models "

Considerations in Practice — :mmdm considerations
- economic issues

L]

A.vas
S
Roadmap for this Session

Our approach is 10 take two tacks on the subject.

First we examine architecture from a broader perspective, stepping outside of the “computer science” dis-
cipline. The objective of taking a multi-disciplinary perspective to start with (imited as it is) is 1o eslablish
some reasonable analogies as a basis for further elaborating the characteristics of the emerging discipline
of software architecture and engineering. We look at three perspectives:

1) Manutacture — how do architectures relate 10 the production discipline.

2) Engineering — how do architectures relate 10 engineering, i.e., problem-solving disciplines

3) Design — how do architectures relate 1o the design, i.e., creativity, disciplines

We take these perspectives since 50 much of the discussions about software engineering are biased by
points of view related to these perspectives ("how 1o put the engineering in software engineering,” “how to
support reuse of designs,” “we need more engineering and less creativity,” "component factories,” eic.)

Afer establishing our analogy basis, we provide a high-level overview of some of the current approaches
directly relevant {o software architectures. Again, we take three perspeclives:

1) Scientific — the study of software architectures in their own right
2) Engineering — the development of product models and production models based on architecture

3) Transition to practice — the organizational, economic and policy considerations

The Industrial Revolution

- ok

Manufacturing Process

make parts from raw material | [build standardized/interchangeable parts |

| hand fit to assembly] [gauge conformance with spoclﬁcation]
[assemble into standard product|

_Anos

Industrial Revolution
Before the industrial revolution, the production of goods and services was done in cottage industries where
labor was cheap and materials were expensive. (notice that in software labor is expensive and materiais
—compuler resources—are Now cheap. in a cottage indusiry each pert was made from raw maferials (soft-
ware analogy ~ source code), and hand fit to an assembly (unique software design). Then festing was
done and parts would be further adjusted (integration).

In the lata 1700's the US Govemment looked for @ betier way 1o manutacture rifies. The idea was to build
standard interchangeabie parts which could be assembied into a rifle (a domain specific architecture). The
key facilitating idea (~1820) was that a measurement procedure and tool/gauge was used o determine
conformance 10 a specification within a certain tolerance (qualification process). It took 24 years for this
“armory practice” to be adopted for commercial products (technology transition)

~Aus

Build to Order

generic parts with

constrained set of
interconnections,
E materials, and sizes
assemble into
customized

product
Plumbing Systems

WA

Build to Order

Ideas from manutacturing processes were then later adapted 0 “build to order” products like plumbing sys-
tems (which are more like software systems). In “buid 10 order” there are generic parts such as valves and
pipe segments which have limited ways of interconnecting, are made of only certain kinds of materials, and
are available in only a certain set of standard sizes.

The “buiki 10 order” perspective most closely resembles component-based programming—i.e., program-
ming with higher-level abstractions/building blocks. The ARPA/ProtoTech project provides one view of this
kind ot programming model, as reflected in some of the focus ProtoTech has on module interconnection
languages (MIL) and formalisms (MIF). The idea of MIFs is to provide some standard interconnection
mechanisms as a way for components to be assembled. Note that the separation of coordination from form
is not a universally-held prerequisile for component-based programming.

What is most interesting in this discussion is that “build 1o order” need not require an architecture—there
are some who believe that for specific application areas in software, e.g., information management sys-
tems, that build-to-order based on large component chunks may be more appropriate than a refine-able
The idea of separating the interconnaction and coordination mechanisms from the component (or the
“form™) is an idea which will recur later.

References
Cox, “Planning the Sofware Incustrial Revolion”, IEEE Sohware Nov. 1990

Purtio, J.. Softwars Bus Organization: Reference Mode! and Camparison of Two Existing Systems, ARPA Module Inferconnection Formalism
Working Group Technical Note Series, TN No. 8, November 1991,

Nierstrasz, O., Component Oriemied Scftware Development, Communications of the ACM, Vol. 35, No. 9 Sept. 1992.

Roadmap for this Session
Architecture: Multi-Disciplinary Overview
Manufacture Perspective . discipline and automation

A

= Englneeﬂng Perspective —— ::smma.ep:,:
-mm’m m""’
Architecture Perspective s o and context: bounds on creativity
- design patterns snd “style”
Software Archifecture: Overview

Sclentific Foundation X : uommgumuum description

Engineering Application comm——- :"’...,'"m..u""&‘ and production techniques

Considerations In Practice - - strategic/business considerations

[14

_4.as

This page intentionally left blank.

8

A5

Engineering Design

extensive

capture
organize design
share reuse

Design

_d.vus

In chemical engineering, as well as in other mature engineering disciplines, most design is routine rather
than innovative (eventually even innovative designs become routine). Routine design involves solving fa-
miliar problems. The knowledge for routine design is captured, organized and shared within the engineer-
ing community. This leads 10 extensive design reuse.

References:
Shaw, M. "Prospects for an Engineering Discipline of Software” IEEE Software November 1990

(5

LS

Design Reuse in Chemical Engineering

Sclentific
Theory

n

Axas

Design Reuse in Chemical Engineering

mmmmmmmmnmmmnmmmmmm
(architectures), and corporate design standards. These are all based on empirical observations, scientific
theory, and economics. We will look at these three facilitators in more delail.

72

—

L

Handbooks
Chemical Engineering Software Engineering
- One main handbook for the entire <es~+ Fragmented set of hand-
field books
+ Comprehensive coverage of unit -ws+ Incomplete coverage of com-
operations ponents/algorithms
+ Patterns of unit operations -4+ Fow pattemns
* numerous heuristics -+ some heuristics
« over 100 authors -+ Oneorafew authors
+ emphasis on economics -+ processing/memory
+ common language - math and -sp-+ proliferation of languages
chemistry and design notations - Ada,
C, C++, Booch...

A
Handbooks

The one main chemical engineering handbook has more breadth and depth than existing software
engineering handbooks (because the field is more mature). Unit operations (e.g. a heat exchanger, a
distillation column) are the basic components in chemical engineering. A category of unit operations (e.g.
heat exchangers) forms a horizontal domain (analogous to search algoritims or DBMSs in software).
Most, but not all, software engineering handbooks deal with smal! grained components/algorithmns (vs.
large grained components like DBMSs) that are at a lower level of abstraction than unit operations.

Chemical engineering handbooks give patiems of how to put unit operations together in a process (see
next glide). This is an important distinction. Softiware engineering is just beginning to capture and organize
a wide range of information about patiems. Pattems in software may be more difficult to capture and
organize.

It is interesting 1o note that the amount of expertise needed for a comprehensive chemical engineering
handbook makes a large number of authors necessary. Also, the chem. eng. handbook emphasizes
economics, whereas many software eng. handbooks only address processing/memory resources.

References:
Perry. Chitton “Chemical Engineers’ Hancbook™ Sth ed. 1973

Knuth, “The Art of Computer Programming” vols. -ili 1873

Booch, Softiware Components with Ada” 1987

Seagewick, “Algorthms in C° 1890 and “Algorithms in C++" 1992

Dumas “Designing User interfaces for Sofware” 1988

Datapro "Repons on...” updated periodically

Barr, Fegenbaum, Cohen “The Handbook of Anflicial intelligence” vois, IV 1981 -1889

Liquid Extraction Systems

Exampi

Patterns

T8

"

Exrroct (o) Single contoct extroction
(b) Simpie multistoge contact sxtroction
@ these sloges
{c) Counigrcurrent mullistage extraction-
thres stogas)
(d) True canfinuous countercurren exiroction
(¢) Conlinugus countercurrent @xiraction

ﬁ ot with extroct reflux
w Exiroct 1 Extroct 2 Extract

Mixer Mixer

=r oL
Roflinate | Rollinare 2
’ (») _m raftinare

3 Ext, X,

Ih.nh.m.v Mizer

Settier

Feed 5“_!.

Seltier 1

id Extraction Systems

iqu

]
™

E' Miner

Settier 3
4
&
Settiar 2

————
| 4
-5
e
Settier |

Finished
_ gxtract f Final

) Extroct
Extroct
product Solvent
removal Solvant
4 free

Roftinale 14

J

column
extrgcior
i

Patterns - Example: L

This slide shows a good example of what is meant by patiemns of unit operations (components) that are
contained in the chem. eng. handbook (right side of slide is actually the top). A discussion of heuristics and

design trade-olfs related to these patiems is also found in the handbook.
Relerence: Perry, Chilton, “Chemical Engineers’ Handbook™, 5th ed. 1973

Solvenal recycle

)
s¢
H
l nsS
s

e

Y 4\ -

Published Processes

+ Generic industrial processes (architectures) are published in:
- handbooks
- journals
- patenta

+ Processes include:
- constraints on choice/placement of unit operations
- material flows
- control: temperature, pressure, timing...
* Design steps:
- refine generic process based on:
- production rates
- product and raw material specifications
- do detalled design of unit operations
- evaluate plant design by simulation/calculate return on investment

| Published Processes

In chem. eng., industrial processes for producing chemical products are published more frequently and in
more detail than in software engineering (note “industrial” -- many published system designs in software
eng. are research prototypes). There is a widely known published catalog of processes that covers the

entire spectrum of chemical process industries (1 know of no equivalent for software eng. - there are books
that look at generic designs of one specific application area - 6.¢. compilers). Patenting a detailed chem.
eng. process is common practice.

Notice the analogy of what a published chem. eng. processes includes to what is included in a software
architecture (e.g. constraints on choice/placement of components, data Kaow, and control information
(control is & major subfield of chem. eng.). See next slide for an example of a published process. Also
notice the analogy of refining a generic design/architecture based on cetailed requirements. This
emphasizes the engineering mindset of composing solutions from past experience. Notice the lack of
emphasis on calculating the retum on investment for a software engineering design. Evaluating the
composed system before it is built is also pant of the engineering mindset.

Reference: Shreve, Brink “Chemical Process Industries”, 4th ed. 1977

.
LS

Published Process - Example: Alcohol Distillation

e

g H 18.5%
Condenser Seporator {Ce 78:';.,:

6485_C. 200 c.B O T4%
CoHSOH 18.5% 'd‘§ o i
] A o

141% pt-——~
HeO 74% * Condenser
oA
H 0,
E':}gs ig'/’: o nifi OH 960%
Steam =2 HO 40%
Steom et~ Aqueous b

o 'U’ aicohol

Separator Equilibrium
Top layer Bottom layer Steom

Vol.% Overhead B840 16.0 Water
Compositions

CoH4OH 14.5% 53.0%

CeHe 845 1O

H,0 1.0 36.0 »

_Axus

Published Process - Example: Alcohol Distillation

Notice the choice and inie 2nections (architecture) of unit operations (component types), the material
flow (data flow), and the te. _.oratures (control inforrnation). Notice that each unit operation is treated as a
black box (except the separator) 5o there is flexibility in choosing the size and exact intemal design for the

actual equipment (implemeniat:on components).

References: Perry, Chilton “Chemical Engineers’ Handbook™ 5th ed. 1973

s

Corporate Design Standards

3

« Management commitment to design reuse
« Captures and organizes experience/knowledge of corporate engineers
» Design standards include:
- gpecific design equations
- heuristics for:
~ design criteria for equipment “Avoid thin wall tubes”
- parameter estimation
- example calculations

)]

Corporate Design Standards

These chem. eng. corporate design standards go beyond handbooks in helping to design unit operations
(horizontal domains). These standards are used along with published processes (architectures) which are
often supplemented by proprietary details. Can you imagine a set of corporate standard software
components used in all systems across all application domains?

e

Lws

How Does This Apply to Software Architecture?

« How Is community knowledge represented and shared?
« What are the architectures (product modeis)?

+ What are the design processes?

- How does management demonstrate commitment to design reuse?

Roadmap for this Session

Manufacture Perspective ____o. e parts and sacembiies
: control

- process
Engineering Perspective em—pn e Lrrarspin
+ codied coNed bwiedne. i angineering modele

&= Architecture Perspective B . formroand context: bounds on creativity
+ design pattems and “style”

Software Architecture: Overview

Sclentific Foundation e o) eneyals O Gescription

Engineering Application J—— .ng'"a"n..u' I.nngd and pmdueuon techniques

Considerations in Practice - . mIWM considerations

A\

Obvious Analogies
Claasical Architecture Software Architecture
Bluepri etc.: Design Representations:
- plan, M;E\'rvaeﬁon, « muitiple views
. ?d:awingslmdels, » modeis for differentiated roles
architect plans, (customer, system engineer,
shop plans sofiware engineer)
Architecture styles: Architecture styles:
- Romanesque, « Distributed
- Gothic « Client/Server
« Victorian + Layered
Constraints: Constraints:
« circulation pattemns - timing and schedules
« acoustics « reliability and fault tolerance
- gir flow « performance and throughput
« lighting... - data management and distribution
_A.xus
Obvious Analogies

Much has been made of the analogies between soltware architecture and classical (or “building™) architec-
ture. Some obvious analogies have been made between design notations used by software architects and
building architects; other analogies have been drawn between architecture idioms and recurring pattems
of software designs.

However, these analogies are of limited utility. For example, any discipline requiring problem solving where
the information space relevant 10 the successhul solution exceeds human short-term memory will involve
specialized notations. This is also the case where multiple parties are involved in problem solving and pro-
duction, in which case numerous specialized notations may be used.

Less obvious analogies can be drawn between the classical architecture and computer systems which are
more revealking. For exampile, after centuries of practice, a few key tamilies of constraints have emerged
in the design of buildings, e.g., acoustics, circulation flow. These are areas of potential “migfits™ between
a design problem and its solution (in this case, a building). Similarty, in computer systems a number of tam-
iies of constraints have likewise emerged—tault tolerance, security and human-machine interface ergo-
nomics, for example, which can result in misfits between a system and its requirements.

The real benefits of understanding classical architecture as & precursor to studying software architecture
is the relationship between classical architecture and a theory of design.

References:

Christopher Alexander, Notas pa the Sythesis of Forrn, Harvard University Press, 1964, ISBN 0-674-62750-4
Dewayne Perry, Wol, L., “Foundations for the Study of Software Architecture.” Software Enginsenng Notes. Vol.17 No. 4. Oct. 1992
Zachman, J., “A Framework for information Systemns Architecture.” IBM Systems Joumnat, Vol 26, No. 3, 1987.

Y A\

Classical Architecture Perspective on Design

+ Quotes from' on the nature of design
problems: '

about and their

Classical Architecture Perspective on Design
Reading an overview of the design problem which Christopher Alexander is addressing is like reading an
introduction to software/systems design textbook. Yet these are problems which classical architecture has
been grappling with for centuries.

Reference: Alexander, C., Noles on the Synthesis of Form. pp. 24

[

L.

Why Do Architects Introspect on the Design Process?

Deaires for Artistic
Basic Human Nesd
o Expreasion and

Recognition

Materials Properties,
Social Patterns, efc.

Perhaps classical architecture represents the purest example of a discipline
for controlling the creative design proceas

Architecture is considered an artistic discipiine in addition to being an
engineering discipline

What constraints are impased on the urge for spurious creation?

Why Do Architects Introspect on the Design Process?
Public introspection is an important part of any mature professional discipline: it is what nisiea: i possible
for a community of practitioners to evoive the state of practice within a discipline.

The discipline of classical (or “building™) archileciure has a vast body of literature which desss: »ith the na-
ture of design. While other disciplines atlend o the study of the design process, it is usually »5hin the con-
text of design methods—procedures and notations for representing and transtorming the wasi. siroducts of
problem solving. Classical architecture addresses these “syniactic” aspects of design, 1oo. £k #he disci-
pline also has a rich history of design theory bordering on mysticism, and certainly weil intc #» reaim of
meta-physics.

This is probably true because the element of aesthelics plays a more overt role in classicsi aschitecture
than in engineering. That is, while one may attain a Zen-ike appreciation for the austere workixgs of & DC
motor, such devises are not typically afforded appreciation as “works of art.” This is certainly < the case
in classical archilecture, where a jension exisis between the need 10 engineer a solution 10 f#w basic hu-
man need for sheller, while simultaneously satisfying additional cravings for artistic creation &rf individual
Architects study design bacause their problems are complex and il-formed, their solutions must salisty real
needs and because there is a tendency for designers 10 engage in false creativity, non-essestial creation
and egofistical design—all of which interfere with achieving useful solutions.

92

~Aus

S SN,
The Nature of Design: The Context/Form Ensemble

« A design problem consists of a two-
pert ensembie: a problem (contexy),
and a solution (form).
- Form and context are inseparabie
snd compiementary.
+ Design Is an effort to achleve “good
- / fit" between form and context. Fitness
7 Is & relation of mutual compstibility.
; iy « s Impractical (perhape imposaible)
m we can cont wers possible there would be no de-
* « represents solution
“problem™ to “problem” sign probiem.
+ What makes a design probiem a
How does this apply to software architecture? w Is 'h:' we are m;v::a n:
« Reuse of architecture implies reuse of design completely understand or specify.

- Reuse frequently Implies some adaptation

- “Form” of design depends upon complex “context” interactions

- Adaptation of the form (the architecture) makes sense only “in context”
- Seen in DSSA/ADAGE, E-2,... as design records, design rationale...

_Lvas

The Nature of Design: The Context/Form Ensemble
One of the most interesting, and usehu, ideas which emerge from Alexander is the idea of & design en-
sembile, something which consists of both a context and a form as inseparable, complimentary aspects of
the design problem.
An exampie of the complementary nature of contextform is the environment and a biological organism;
natural selection is the mechanism by which we achieve a degree of “fit" between a form and its context
(this fit is called "well adaptedness”).

In software and systems, we typically refer to the “context” as the “requirements,” and the “form™ as the
“design.” The ferm “context" seems befter, since it conveys the sense ot ensemble better than does the
term “requirements,” though for most intents both ferms are equivalent.

The idea of a complete context/lorm ensembie may seem cbvious enough, but it is crucial in understanding
reuse and software architectures. it will show up later in & variety of forms:

« component "qualification” is @8 measure of “fit" between a component and its context
« design reuse based on archilecture refinement requires the encoding of context information
to guide the refinement process
We should note that while the idea of a complete context/form ensemble makes a great deal of sense, in
practice software and system “designs™ are advertised as being reusable despite the fact that the context
which produced the form is not included, has been discarded, or has never been formally documented to
begin with.

References

Alexander. C.. Notes onihie Syrahesis of Fonm. pp. 16-45.

s

Patterns: A System for Achieving Form/Context Fit
Patterns: context—conflicting forces— configuration

e / / F PN 1S WA WIS)
Mm those characteristics of observation ‘
the problem which are » Patterns are documented and |

known, and known to i held to public critique
beinconflict g arrangement of parts, L Thereare fow Datte:ns |

%‘Yorm :Nchruclm relatively petie:ns ;

How does this apply to Software Architecture?

Gamma: Handbook of Shaw: Heterogeneous
OO micro architectures | | architecture idioms

vty
—

L
|
[LI

u
II
|

T

s

Patterns: A System for Achieving Form/Context Fit

it should not be surprising that “patiems” shouid be an important concept in architecture, as this is an elementary prerequisite
for lsaming, codifying knowledge and, ultimaiely, reuse. In the srchitectural sense, at least from Alexander’s point of view,
a patiem is & configuration of forms which bring conflicting forces into equilibrium. This notion of pattem crops up repeatedty
in the study of software architecture:

Gamma, el. al.,, have identified recurring patterns in cbject-oriented sysiems, which he rafers 10 as “micro™ architechures.
These are design abetractions, not code, which are used during object-oriented design, 1o tulfill spacific nesds within specific
contexts.

Lane also searched for what amount 10 “patierns,” or, what he referred 10 as design rules within a designspace #- dea
was 10 uncover "design rules” which express structural solutions (i.e., implementation decisions) to iteractions .~ - 10
tionatperformance dimensions (e.g., response time ve. (PC means). These design ruies are, in eflect, patiems.

Finally, Shaw and Garian have uncovered design idioms which have become widely used. While these idioms may be re-
lated 10 style (and may be style), when the kiioms are composed they begin 10 lock more like patiems.

What is significant in all of this is the search for and documentation of buiiding biock abstractions, or design elements, that
work in practice.

Gamma, E., Heim, R., Johnson, R., Viissides, A, Design Patisme: "Abstraction and Reuss of Object Ortented Design"—unpublished pepsr. Comtact
Erich Gamma & Taligent, inc.. 10725 N. De Anza Bivd., Cupertino, CA $5014-2000

Coad P, “Otject-Oriented Pattems.” Communications of the ACM, Vol 35. No. 9, September 1962.

Alsxander, C., Tha Tinslaas Way of Buliing. Oxtord University Press, ISBN 0-19-502402-8

David Qarian, Shaw, M., "An introduction 15 Solware Architecturs,” 10 apPe&r in Advances in Software Enginesring and Knowledge Engineering
Vol |, 1993. Works Scieniific Publishing Company.
Lane, T. G.. Studyving Aals A ag 1

85, CMU/SER90-TR-18, CMU, Pittsburgh, PA.

~Lws.

Architectural Style

le refers to a quality of a solution which brings
all of the design elements in an ensemble into

a coherent whole.

Style = Design Elements + Organizing Principles
/ /

some styles have as found In patterns: mqualmy dopendam upon
names: entrance ways of element materials |
transitions i
gothic m -» Vaulted arches
post-modem Mm stool/iglass — vertical, open ;
prairie Gokmmns sparse wood - light, slmplo

possibiiity for pre-fabrication ;| Aesthetics and social factors, toog

How does this apply to software architecture?

- Can software architecture be expressed with a small, standard set of
design elements? Are the design elements peculiar toa style?

- Can a software architecture have a ubiquitous style?

Architectural Style
There is a higher-level organizing principle than patterns and pattem languages called architectural style
(although avid followers of Alexander might claim that pattem languages embody this organizing principie,
and that the only “style” that matiers is “pattems that live”).

Some of the styles we refer 1o are known even 1o novices fo architecture: the Gothic style, the Post-Modern
style, the American Prairie style, etc. What constitutes a style is 8 combination of design elements and the
manner in which the elements are related 1o each other. Some of the factors in selecting organizing prin-
ciples are effected by the materials present in the design elements. For example, the use of stone or ma-
sonry leads to a very ditferent organizational approach to relating, say, an entrance way to a large room,
then will be the case if steel or wood are used.

What makes a style & style, of course, is that it represents a coherence among the design elsments—this
is what is meant by organizing principles. That is, we would not expect to see roman columns in tront of
an American Prairie home which uses reflective glass windows in steel frames.

This “definition” of style leads to a ditierent applicability of style 1o software architectures than usually con-
sidered. That is, style in software architectures would relate more 1o the set of design elements used, and
the manner in which those elements are related—not related in part, but related in the entire ensemble.
That is, software architectural style—to be style—must describe system-wide organizational principles. Ex-
amples will be found in structural medeling and Genesis.

*

L

Roadmap for this Session
Architecture: Multi-Disciplinary Overview
Manufacture I?enpeclhe I m_ mw m m&m
Engineering Perspective —- ::lnuﬂnn d-clpm models

« predictable resuits through composition

Architecture Perspective e m"' Pand context: bounds on creativity
« design patterns and “style”

i . gngineering and pmductlon techniques

Sofiware Architecture: Overview
& Scientific Foundation - > lon.mdmmum description
Engineering Application + abetract and concrete models

Considerations in Practice _ > -m“ IWN“M considerations

economic issues

A

This page intentionally left blank.

100

w

s

Perry and Wolf: Context of Architecture

N m characteristics
. Requirements - 3ystem cha
« description and

: nraocolmsls g

: « design elements

| Architecture . m’,?.cum among elements . » of style
« constraints on elements/nteractions « capture form and

context
. » modularization and detalled Interfaces
¥ Design « aigorithms and data types

Implementation . representation and encoding

101

Ao

Perry and Wolf: Context of Architecture

A good piace 10 start in understanding software architecture is the Foundations paper by Dewayne Perry
and A. Woll. We start here because Perry and Wolf make the strongest case for building on the analogy
of classical architecture in the study of software architecture, particularly as concerned with the notion of
architectural style.
The chart illustrates a starting point in the discussions: that software architecture is both a discipline ot de-
sign, and also a representation of design. Specitically, software architecture as illustrated is a kind of high-
level design. The key points of the Perry/Wolf paper are:

« architecture is a discipline with standards, codified styles and education

= architecture captures important high-level concepts in a system which must be preserved,

and which make global assertions about the system
* multiple views are needed to express an architecture
« strong analogies are made between the notions of “style” in soltware and classical
hitoct

References

Dewcyne E. Perry, Woll, A., “Foundations for the Study of Software Architecture,” ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 17, No. 4, October 1992, pp. 40-52.

102

Aas

Perry and Wolf: Elements, Form, Rationale and Views

Architecture =

Elements

* processing elements
* data eloments

» connecting elements

Form
o rules, wllgns which

of elements
« style + design

Rationale

« capture of rationale
for selection of form

» iinks to lrements

« functionaimonfunctional Data View
sfaction

Perry and Wal: atioal and Vi o
An architecture is comprised of elements, form and rationale.

Elements form the basis for various views: process, data and connectors. The figures illustrate two sepa-
rate views for a canonical compiler: the connector view is implicit *3 procedural/parameter coOnnNBCior view).
Altemative process and data views emerge if allemative connector strategies are determined.

The notion of {orm paraliels that of the discussion earfier in the classical architecture discipiine. Form is
concemed with constraints on the use and ammangement of various design elements. We should note that
Perry and Wolf admit to some ambiguity between “style” and “design” decisions, indicating that there is
somme gray area between architecture style, architecture and design.

Note that rationale is also included. This relates strongly to the notion of architecture as a compiete en-
sembie of context and form. in this case, additional rationale inks are made between the form and its more
detailed realizations in design.

s

Perry and Wolf: Constraints on and Nature of Style

«do
 required sn‘n;dtds Materials

ambun!] s « high-level description of

important invariant properties
l .ofa design
s 0 e anda cular architecture
- used :os ylvuy and

« computer sclence

mcgnm?au- Engin.aerilzg/‘ proscriptive

currency, etc.) Principles
. ;ﬁollwlon domain

inciples

s

Perry and Wolf: Constraints on and Nature of Style

One of the most important points of the Perry/Wolf concept concems the relationships between architec-
ture style and materials and engineering disciplines.

in the context of software architecture, the following analogy can be made:

» style and materials: the selection of a style must take info account the kinds of components
which may be reused or fabricated, the languages used 10 buiki and combine components,
properties of the execution environment (network speed, processor speed, efc.).

« style and engineering principles: ditierent computer science disciplines are involved in the
use of different styles. A distributed and concurrent style will involve different principles than
a simpler cal/retum style.

These considerations form part of the context for the form to be produced.

A

- Shaw and Garlan: Context of Architecture

4

« patterns: architecture styles

« large-scale m organization

g —— components and connections .m’mwcy, performance
San

L™

Q
g | lart ’mwmm<:m:c&c.mwlaum.lnbmmanmm
g

L structured programming « patterns: control structures

g <-smaloubsmms

§

S | formuia transiator < -m%mmwmm

E

& —— machine language

107

s

Shaw and Garlan: Context of Architecture
Shaw and Garlan are closer o the practice of architecture in their work than the Perry and Wolf paper.
Although Shaw and Garlan shares the view of architecture as high-level design, they also consider the
study of architectures 10 be a natural next-step in the evolution of computer science abstractions.
Again, using the metaphor Jf a pattern, we can see a certain historical trend towards the study of higher-
level abstractions for larger-scale systems.

References

Shaw, M., Larger Scale Systems Require Higher Level Abstractions, Sth international Workshop on Soft-
ware Specification and Design, May 1989.

108

_Lwws

Shaw and Garland: Taxonomy of Styles

Architecture Style =
{Component/Connector Vocabulary, Topology, Semantic Constraints}

independent » what intuition does it capture?
components - what Is the underlying structural model?
« what is the computational model?
« what are the properties of the style?
:mmﬂﬂ! ovent systems « what are some common examples ?
rocesses « what are Some common specializations?
implicit explich
invocation invocation Descriptive Framework
T ——————— H
H data-centered
batch & osito blackboard
sequential fﬂi P Y
callreturn
virtual machine
main & object layered
owr TAERR S S

Taxonomic Framework 18

Shaw and Garland: Taxonomy of Styles
Like Perry and Woit, Shaw and Garlan define architecture in terms of constituent design elements and con-
straints on the elements. The exact definition is a bit different.

In this case, the elements are components and connectors, describad in some idiom-specific manner. The
particular idioms are represented as topologies of the componentznrnector vocabulary, along with con-
slraints on how the topologies can be arranged.

Shaw and Garlan have classified a number of idioms, and describe their general properties, elc. using a
consistent descriptive framework. This taxonomy has emerged from case studies of actual systems. ltis
the foundation for courses taught at CMU on the topic of architecture and software design. it has also been
widely published and distributed through technical literature and lutorials provided by Garlan and Shaw.

References

David Garlan, Shaw, M., “An Introduction o Software Architecture,” 1o appear in Advances in Software En-
gineering and Knowledge Engineering, Volume), World Scientific Publishing Company, 1993.

A

Shaw and Garland: Heterogeneous Styles

Systems need not be designed to only one style

o implicit invocation style

client/server style

11

_A.vus

Shaw and Garland: Heterogeneous Styles

It is interesting 10 nole that Garlan and Shaw have observed that systems do not usually consist of a single,
consigtent idiom that is used across an entire system. For example, they provide examples in case studies
of systems which, at one level of abstraction present one idiom, while a single component within this idiom
is realized through an entirely different idiom.

It is not clear whether this indicates the limits of the analogy made with traditional architecture—conceming
the notion of style as a consisieni, giobal property of a system. it may be that software systems are inher-
ently “recursive” in design through many levels of abstraction, in which case “style” could be constrained
1o any one aspect or view of a system design.

References

David Garlan, Shaw, M., “An introduction to Software Architecture,” 1o appear in Advances in Software En-
gineering and Knowledge Engineering, Volume |, World Scientific Publishing Company, 1953.

f—

s

Shaw and Garland: Styles as Reference Models

/

/;’jg -
00|~
_—

s

h desl :o'fiht ’t'alrl
legacy design interpretation

of Iaga'g_,v designs
reference styles

_Axes

Shaw and Garland: Styles as Reference Models
Another inferesting aspect of this work is the use of styles or ikfioms as a way of examining legacy designs.
At least one case study is provided which llustrates how a systemn can be viewed from multiple idioms, and
how each idiom reveals some characteristic about the system under observation.

The example illustrated is a natural language processing System viewed through the interpreter idiom and

What is significant and worth noting is that this dlustrates the usefuiness of architectural abstractions in the
analysis and understanding of properties of sofiware designs.

Relerences

David Garian, Shaw, M., “An Infroduction to Software Architecture,” o appear in Advances in Software En-
gineering and Knowledge Engineering, Volume i, Workd Scientific Publishing Company, 1993.

s

Gamma, et.al.: Handbook of Object-Oriented Patterns

Characterization
creational | structural | behavioral
Jurisdiction | Class |- Factory |- . = Imant
method m m — Motivation I
= Applicabiity
Object |- Abstract |-A * Chain of
_ Factory :am . Reponsivll — Participants
- Sornans® | - Gloe pyrat-i el — Coliaborators
om *
- Observer — Diagram
:smo — Consequences
= implementation
* Walker — See Also...
Taxonomic Framework Descriptive Framework

_A4nps

Gamma, et.al.: Handbook of Object-Oriented Patterns
Other researchers and practitioners have adopled a similar approach 1o Shaw and Garlan, but at a ditferent
scale. For example, this chan llustrates a fragment of a taxonomy of *micro” aschitectures found in object
oriented systems. The term micro architecture is used by Gamma (one of the authors of the handbook)
because the scale includes a configuration of objects and classes which would be combined with other
micro-architectures o create an application. in contrast, the idioms of Shaw and Garlan “feel" larger
grained.

Note that it is within the OO community that the largest direct use of concepts from Chrigiopher Alexander
are found. This might be because the OO community tends 1o be more avant guard, or it might be that the
arguments made by Alexander—that the design elements of architecture must be closer 10 the physical
world—have a natural setting in object-oriented design, which espouses a similar principle of abstraction
With this we leave the science and philosophy of architecture behind, and examine some of the engineer-
ing factors—lechnology and process.

References
Gamma, E., Heim, R., Johnson, R., Viissides, R., Design Patiems: “Abstraction and Reuse of Object Ori-

ented Design"—unpublished paper. Contact Erich Gamma at Taligent, Inc., 10725 N. De Anza Bivd., Cu-
pertino, CA 95014-2000

s

Roadmap for this Session

Architecture: Multi-Disciplinary Overview
Manufacture Perspective > m and sutomation
Engineering Perspective . discipiine
— N wanaatng moce

Architecture Perspective ——— mdwlpl on
« design pattems and “style” ’

Software Architecture: Overview

Scientific Foundation ——— MMI:“ classification, description

= Engineering Application » ::;}fw and .ﬁ'm“ models -

Considerations in Practice - ::.lmwtlmn considerations
- sconomic issues

uz

.S

This page intentionally left blank.

U S — -

s

Some Topics in Engineering Application

« Architectural Style and Formalized Design Elements
- Style and Engineering Design
- Style and Automation

« Design-Process Generated Design Elements
« Module Interconnection Formalisms
« Evaluation of Architectures

"9

_Avos

Some Topics in Engineering Application
There are quite a variety of fopics. The following discussion touches on only a few important topics. Notably
methods, impact of software architectures on lile-Cycle processes, relationship between structural versus
behavioral descriptions in architecture, etc.
The topics which are addressad were selecled: to amplify concepts introduced in the earlier discussions;
to introduce some technology considerations which will be relevant in later discussions; and to provide ties
wherever possible 1o ongoing software engineering efforts (both in theory and practice).

120

Y A\ -

Architecture Style and the Engineering Design Process

Object

OCU Style:

“replication of simail mumber of slements,
standard means of control/data transfer r

« separation of mg‘s)lon (controlier) from]

. Ioullaﬂog,gf#m and services (objects)

s

Architecture Style and the Engineering Design Process
One ilustration of the idea of consigtent “style” in sofiware architectures is provided by the OCU model:
Object, Connect, Update. A thumbnail description of this “style” is provided. Essentiafly, the style is orga-
nized around the idea of subsystems, subsystem controtiers and objects. It is an austere model which con-
stitutes a style because it has a few primitive design elements, and rules for combining the elements.

The chart is meant fo iliustrate how an architectural style can be used within the context of an engineering
process. First, by constraining the form of the solution so tightly, the style itself can serve as a 100l for help-
ing form the problem space during the problem forming process. That is, the style provides a kind of vo-
cabulary for discussing the problem space. Similarty, once formed, the problem can be “sef” in terms of
the style as well.

Perhaps this is nothing more than the observation made by object-oriented designers in undertaking a kind
of object-oriented analysis phase prior 10 design. On the other hand, the very restrictive style, it sufficient
for the problem space, can be said 10 allow the software/sysiem designer 10 focus creative energies where
they are needed most, rather than on re-inventing structural or coordination models for each new problem.

The OCU style was used in practice as the basis for a flight simulator.
References '

ineer annotated briefing, Air Force Institute of Technology and the Software En-
gineering Institute, Camegie Mellon University.

Les, K, ot. al., An OOD Paradigm for Flight Simulators, Technical Report CMU/SEI-88-TR-30, Software Enginesting Insti-
tute.

N \ MOCGSIING. Al ADDICARON AMOWOIK and [jopment Process for Fligl i atots, Technical
Report CMU/SEI-93-TR-14, Software Engineering Institute, CMU, Pittsburgh, PA.

A

Architectural Style and CASE Tooling

Defined Design Elements and Constraints (Style) Permits Automation
CASE Tool Style Design Elements __ Automated Services -

NAS/SALE « Independent » Tasks * Network
u Objects - Message -'l’ouseamﬂouoglhn
:Soem + Graphical Design Tools
+ Processes
« Process Groups
SARA « independent :colnetmu
- Graphical Design Tools

i

I
%

s

Architectural Style and CASE Tooling
The previous chan iitustrated the role that architecture style can play in the engineering process. It is also
the case that defining an architecture stylo—iientifying design elements and rules for cornbining thege el-
ements—provides opportunities for automation. Only two of many possible instances are ihstrated here:
UNAS/SALE, a commercial product marketed by TRW, and SARA, a well-4kmown research system.

in each case, these syslems are construcied on a foundation of a few primitive elements, and larger sys-
tems can be specified and executed. Other tools include the micro-Rapide language/system being devel-
oped as part of the ARPA/ProloTech project, and various other tools for specifying properties of
architectures.

incidentally, although there are many design tools which provide primitives for describing characteristics
of system designs, the term “architecture descriptior: lang..age” tends 10 apply 1o only those nolations that
describe components and component interactions (further evidence of the appropriateness of the Shaw
and Garlan perspective on software architectures).

References

Waker Royce, Brown, D., “Architecting Distributed Realtime (sic) Ada Applications: The Software Architect’s Lifecycle En-
vironment,” Ada X, 1991, (Contact: Waker Royce, TRW Systems integration Group. 213-764-3224)

Gerald Estrin, Fenchel, R., Razouk, R., Vemon, M., “SARA (System ARchitects Apprentice): Modeling, Analysis, and Sim-
ulation Support for Design of Concurrent Systems”, IEEE Transactions on Software Engineering, Vol. SE-12, No. 2, Febru-
ary 1986, pp. 293-311.

David Luckham, Vers, J., “aRapide: An Executable Architecture Definition Language ” Aprll 7, 1993.
124

A

Batory: Design-Method —> Architecture Style

Application
Domain

Layout
Editor

Layered Style Components Application Generator/Composer

Batory: Des:gn-Method - Archltecture Style

Architecture-level automation does not always appear 1o depend upon pre-definition of & small number of
design elements. Batory has demonstrated application-specific generation/composition based upon soft-
ware architectures in non-trivial application domains.

In this case, the architectural style is said to be layered, but there are no further design primitives for de-
scribing these layers beyond those reflected in the interfaces 1o components which result from a domain
enginearing/domain design process. That is, rather than defining primitive design elements for describing
software architectural abstractions, Batory et. al. have defined a design process for producing components
which have certain, constrained properties. It is these properties which aliow automation and generation
of applications from the design/architecture.

In this method, components are aggregates of classes and objects which implement what amounts 1o a
“subsystem,” with each component representing & specilic layer in a layered architecture. The type model
implemented by these higher-level (component) abstractions allows higher-levels of tie design 10 be pa-
rametarized by lower levels.

Reterences
Don Batory, O'Malley, S.,

able Components, Technical F!epoﬂ Tn~91 22 Unwsrs:ty of Toxas at Aushn Taxas 78712-1188 January
1992 (revised).

~Lus

Architecture and Module Interconnection Formalisms

One form of module interconnection
formalism addresses the need to
separate coordination from function

The need Is especially strong in

reusing co nents where systems

will vary by distribution and heterogeneous
platforms

Examples: Polylith, Linda

Another form of module interconnection
formalism addresses higher-level
semantics of component composition

Examples: LILEANNA, P++

A

Architecture and Module Interconnection Formalisms

hmmmwmhmmm-Mmhmmmm'ﬁt‘Aw
fion conceming the relationships between software components and architectures arises where feature binding time is con-
cerned. Especially where reuss is concemed, architecturs reuse implies aome flexibility in selecting application features. If
components prematurely smbed certain features the probability of reusing thess components is decreased.

One frequently-encountered problem is that cods, sspecially for distributed systems, embeds coordination logic which is ar-
cane and makes the code non-reusabls. Since the “connections” among components at an architecture level may imply co-
ordination models, it would be nice 10 have the means of sepamating these coordination models from the underlying
componenis—that is one purpose for MiFs.

Ammmumdmmmummmmunimmnmomm
this is already possbie with abject-oriented languages (aithough Batory has noted some limitations along thess knes.) MiFs
which extend the encapsulation/abstraction of programming language modules 10 support a more flexible composition at
design-time would be nice. Languages such as LILEANNA and P++ are designed with thess kinds of issuss in mind, and

allow for combining modules, adding, emoving and hiding capabilities of modules, parameterizing modules with other mod-
ules, and 8o on.

David Gelerator, Carriero, N., “Coordination Languages and ther Significance,” Communications of the ACM, Vol. 35 No. 2,
1992,

John Callahan, Purtilio, J., “A PMSM!&HWM Execution Environments,” IEEE Transactions on Soft-
ware Enginesring, Vol. 17 No. §, June 1991,

Vivek Singhai, Batory, D., P++: A Language for Software System Generators, Technical Report TR-93-16, Department of
Computer Science, University of Texas at Austin, 1993.

Will Tracz, “Parameterized Programming in LILEANNA," unpubiished, IBM Federal Systems Company.
OMG “The Common Object Request Broker: Architecture and Specification™ 1992

Lws

SEI:SAAM—Software Architecture Analysis Method

Architecture Description Language
(possibly domsin-epecitic?)

.S

SEI:SAAM—Software Architecture Analysis Method

Otmnbﬂwmmhmmmmnmmgomnwdmmuwﬁudmm.Th.nmqn-
cific “metrics” £-ailable for assessing quality fectors of source code~—modularity, complexity, etc., and perhaps there are
measures that could apply to behavioral cheracweristics of a system—data throughput, mean response time, mean-tme ©
failure, etc. But, practically speaking, how does one svaiuate the relative “goodness” of architectures?

The Software Architecture Analysis Method has some features worthy of note. Firet, there is an inversion of the Garlan/Shaw
concept of examining & design from the perspective of muitiple styles. in SAAM multipie designs are examined from the per-
spactive of a single referance madei. The reference model is a canonical functional partitioning of appilication functions—it
looks ke a high-level domain-specific design.

The second interasting feature is the use of an architecture description language (ADL). In conjunction with the reference
model, individual “unique” architactures can be “profiled,” are in effect re-cast in terme of the reference model and the ADL_
In this way disparate, unique designs are “normalized” to a common linguistic framework. Note thet the ADL used is focused
on structural aspocts of the design; specific behavioral description is imited 1o the idea of “control flow” and “process.” The
design of the ADL may have been influsnced by the application domain: the differentiation of “active® from “passive” repos-
ilory” seems to indicate the influence of one or more representative architectures within the domain being studied.

The third interesting feature is that quality factors are selected, along with specific scenarios which exercise the quality fac-
fore. Note that the quality factors are focused on so-calied non-functional system characteristics: in the paper thess factors
were focused on various dimensions of system adaptability. Kazman, et. al. desm the quality factors 10 be relevant 10 a spe-
cific organizational context, not necessarily to the application domain. Other non-functional quality factors may be of use in
difierent contexts.

Kazman, R, Bass, L, Abowd, G., Webb, M., Analyzing Properties of Usar interface Softwarg, to be released as a Technical
Report, Software Engineering Institte, Carnegie Mellon University, Pittsburgh PA.

A

SEI: Information Architecture and Non-Functional Analysis

information Architecture
Layer I Mission

/ Architecture o
non-tunctional - o=
qualty atures Layer 2: Dertved #...o-""
Wm’ —

o 3

at the highest \ e Layer 3: Design

Stepwise
: “Ve‘r,lv;ication"

L))

SEI: Information Architecture and Non-Functional Analysis
A draft paper by Salasin of the SEI on analysis of non-functional characteristics of architectures for the Bal-
listic Missile Defense Organization (BMDO) Battle Management/Cormnmand Control Communications
(BM/C3) Sysiem discusses process and representation issues of ensuring satistaction of non-functional qual-
ity features. Instead of posi-mortem evaluation of critical quality iaciors the approach described buids “satis-
faction” into the architecture refinement process and architecture representation. Some notable points:

1) The “information architecture” reflects a complete design ensemble (context/form, here expressed as prob-
lem space/solution space). The “mission architecture,” for exampile, models the operational requirements (the
“shall") as well as the concepts of operation.
2) Non-functional qualities:

* are made explicit in the form of “indicators.”

« are fied {0 objects in the information architecture;

« are used 1o define scenarios for evaluation/verification purposes (similar 1o SAAM);

« have metrics associated for quantitative evaluation of indicators (i.e., did the commitment satisfy

the obligation?)

3) The process for managing the non-funclional requirements is step-wise, and can be integrated with existing
design reviews.
References

John Satasin, Waugh, D., “An Approach 10 Analyzing Non-Functional Aspects During System Definition,”
Draft Technical Paper, in Proceedings of the ARPA/DSSA Vil Workshop.

132

Roadmap for this Session

Architecture: Multi-Disciplinary Overview
Manufacture Perspective ____,,. w*zmmmm

Engineering Perspective = e WM' o In engineering models
« pradictable results through composition

Architecture Perspective ey, ;Jovndiscipline bounds on creativity
« design patterns and “style”

Software Architecture: Overview
Scientific Foundation e - Wontification, ciassification, description
Engineering Application - abatract and concrete models

ot + ongineering and production techniques

& Considerations in Practice - . mwmum considerations
- economic issues

Thspagoimontonalyleﬂbhm

_—

Lws

Practical Considerations

« System v. software engineering and binding time of design decisions...

« Procuring architectures without over- or under-constraining the form
(reference models, tools and representation standards)...

+ How o allow technology progression and introduction of new, more op-
timal solutions (architecture life cycie)...

« Re-engineering and architectures—migration and interoperation of lega-
cy systems...

« Ownership and rights...
« Domain engineering and domain management...

AND... Much Much More. The Workshop is intended to identify issues from

the perspectlves of engineering practitioners, program managers, policy
makers and other stakeholders.

135

This page intentionally left biari

f‘f

A\

Summary of “Senses of Architecture”

« There are a diversity of perspectives on what is “important” in the study of
software architecture

« There are interesting and useful analogies in the areas of manufach:ﬂng,
claasical engineering and classical architecture

« The computer science and software engineering foundations are not mature

« There are a range of practical considerations for the adoption of software ar-
chitecture in the DoD

137

A

Tris page intentionally left biank.

139
140

Session Vi
Hane Polzer
Sitan Levine
Ered Bwartz

931198.d PuUe aINjIBNYOIY MS

i

‘YoIy pue Sauvo

el

il] | &

—

s

Central Archive for Reusable
Defense Software
(CARDS)

Session Il
Software Architecture and Reuse

16 November 1993

_Avas

This page intentionally it blank.

[e

Y A

Roadmap for this Session

> Architecture “Defined” R
Towards a Science of Architeciure - . Winds of architeciires

Trends in Architecture for Reuse .y, S0iectorented archhectures

« object-ortented/event hybrids
Architecture-Based Reuse — L VeTVIow Of CONCOPES
Systems nnmm""umn

s

Two Key Questions in the Search for Architecture
Architecture: High-Level Design Architecture: Design Discipline

Requirements
Deslgn %
Methods
Design (Current
l Design
Implementation Methods

Product Perspective Process Perspective

if this is valid, then the question: if this is valid, then the question:

s

Two Key Questions in the Search for Architecture
Session two of the seminar covered many different perspectives on the fopic architecture. We are in a po-
sition of hypothesizing about the structure of the conceptual category “architecture.® This is not the same
as providing an axiomatic definition. instead, we will adopt a phenomenclogical approach: based on the
concepis we have highlighted earlier, can we identity what characteristics we might observe of software
architectures?

Betore we do 80, two premises need to be established, and two derivative questions proposed, 1o justify a
phenomenological approach. Note that only one of the premises need to be true, although both could be
true, for a phenomenological approach 10 be reasonable (although our notions of architecture phenomena
might still be invalid).

1. lfit is valid that software architecture is a high level design, then is it true that alf designs have an archi-
tecture? We heliave that not all designs are “architecled™ designs, in the same way that not all programs
are structured programs.

2. Hitis valid that architecture is a discipiine of design, then is it true that the forms rwoduced by the process
will be different from the forms produced by a non-architectural design discipline? We balieve that not al
design processes are based on principles of architecture, and that, in general, current design processes
do not produce architected designs.

If you accept the premises, the questions and our answers, then it is reasonable 10 ask whether, in theory,
one could observe differences between architected and non-architected forms (i.e., designs). if thare are
no observable forms, then why study software architecture? If there are differences, what are they?

The following seven characteristics of software architecture need not be considered as a rigid statement.
itis not clear that all elements need fo be present (in the same way that a three-legged elephant is still an
elephant). And, naturally, there may be characteristics which we have nol included.

148

Las

Seven Characteristics of Software Architecture

+ relatively few elements
« structural and behavioral

S5
1. « component/connector level
% Cnd Z « function v. form v. coordination

- configurations of design

2. Patterns < 3| . fepested organizing strategi

. . ' « repeated organizin egies
-scgleemrouggh repefiuon 9

« standard configurations
- documented characteristics
« descriptive and prescriptive

L N L

3. Named Patterns < =

P

« coherency among patterns
- system-wide pattern
« see the whole from a part

4. Style

147

A

Seven Characteristics of Software Architecture

NOTE: We do not claim that all characteristics must be pressnt, or that this repressnts a comprehensive set of characterietics. We be-
Bove all of these slements may be obsarved in architected designa.

1. Identifiable Dasign Elaments. As we noled earlier, one characteristic of architectures is that they may
be represented in terms of so-called architecture description languages (ADLs). There are various com-
puter-aided software engineering (CASE) toois which claim to be “architecture” fools, and they have cod-
ified abstractions, rules for composing specifications from these abstractions, and environments for
simulating/executing/evaluating these specifications. The SEI Object/Connect/Update (OCU) “style” also
has identifiable design elements: objects, controllers, imporVexport ereas, eic. Note that architecture de-
sign elements should pertain to the structure and behavior of systems at the component/connector level
of abstraction. It should be possibie 10 separate application functionality from structure, and structure from
coordinalion among structural elements.

2. Patlemns. Pattems may be reflected in the types of design slements and composition rules, and in spe-
cific configurations of design elements. However, pattemns are not dependent upon specialized, architec-
ture-ievel design elements—they can be refleciad in the properties of impiementation elements such as
code components, modules. For example, type properties presented by component interfaces which are
generated by a design method also represent architectural pattems.

3. Named Pattams. Patterns should have sufficiently regular and predictable form to be recognized and
documented. The features of the patiem, its strengths and weaknesses, and the contexts for the use of
the pattern, should be apparent in the pattern definition. The pattems should be descriptive, i.e., support
understanding, and prescriptive, i.e., Support reasoning.

4. Style. Style refers 10 a sysiem-wide pattem, or the application of principles which bring about a state of
coherency among the pattemns used in a design. Styles shouid also be name-able, and permit description

148

A

Seven Characteristics of Software Architecture (Cont.)

” problem and solution space
s, gamplale ContentForn | [[EH) [P - ahternatives and rationale
Ensemble mnabouteomextfmm

. g:;leral laws: mathematics
6. Tled to Physics 7 Q « material eonslralnls:p hardware

{ o form optimized for anticlpated

7- Adagiable orm | Fesilnce to drift and erasion

A

Seven Characteristics of Software Architecture (Cont.)
5. Complete Context/Form Ensemble. As noled earlier & design problem consists of a context and a formn.
The idea of linking the form to context appears repeated—in Perry and Wolif's definition, in Salasin’s infor-
mation architecture, and as will be seen where-ever design-level reuse is anticipated. We can think of the
following two characteristics as revealing different aspects of & design ensemble.

6. Tied 10 Physics. In the engineering discipfine the laws of nature define the boundaries of problems and
solutions. There are equivalent laws of nature in the problems and solutions of software systems. As virtual
machines, software depends upon the mathematics of computation—it is hoped that as the discipline of
design and archilecture matue, more formal, mathematical reasoning about designs will become com-
monplace (temporal logics, type logics, calculus of communicating systems, eic.). Dusigns need also be
tied 1o the practice of engineering within an application area—designe for control systems may look ditfter-
ent from designs for information management systems. Finally, there are materials physics—virtual ma-
chines are implemented on rea! machines which define physical constraints on software solutions. All of
these tactors represent part of the “context” for a design.

7. Adapiable Form. This may be the most important characteristic: it should be possible to reason about
the adaptability of the design from its form. As aiready observed, the context for software is constantly
changing, and changing at an increasingly fast pace. The missions for software are becoming more com-
plex, and the capabilities of hardware are pushing (or are being hindered by) software capabilities.

L

A Note on Concept and Terminology
Software Architecture Disci

line

more detalled
solution models 181

Lws_

A Note on Concept and Terminology

The myriad uses of the noun "architecture” is sometimes confusing—overuse may result in a degenerate
vuligarization of imporiant concepts. it should be possible 1o more cleanly ditlerentiate the concepts of “the
design” from “the architecture.”

One possible partitioning strategy is illustrated on the chart. In it we establish the notion that architecture
is about producing designs. There are (at least) two disciplines involved: one involving the structuring ¢!
software, the other involving the application of engineering “know how” in problem solving. The structuring
of sciiware involves computer science and software architecture, the engineering “know how” involves en-
gineering problem-solving approaches, disciplines and dormain/application expertise.

With this viewpoint the question “what is your architecture” is more clearly directed towards application-
independent structuring and styling issues, while “what is your design” is more clearly direcied towards the

152

—_—
Lws.

Roadmap for this Session
Architecture “Defined” g DUSNOMONOIOGY altien of
architecture: a hypothesis

s Towards a Science of ArchiteCture ..ps. . Kinds of architectures

Trends in Architecture for RouSe ... ; Oblectoriented archiectures

object-oriented/svent hybrids
Architecture-Based Reuse .- VSTVl O CONCOPAS ion
Systems mmgun“:.n ”

15

s

154

_m%

Toward a Science of Software Architecture

« What kinds of software architectures exist?

+ What kinds of software architecture best support re-
use?

WA

Toward a Science of Software Architecture

These two questions are important for this seminar. The first part of this session will attempt 10 answer
these questions. Al this point it is appropriate to survey some of the architecture styles that were identified
by Garlan and Shaw. The graphic shows that gefting to a theory of software architecture is an upstream
paddie.

A

What Kinds of Software Architectures Exist?

Main program and subroutines

Object-oriented systems

Batch Sequential

Pipes and Filters

Data Flow Systems Call and Return Systems

s

What Kinds of Software Architectures Exist?

Academic researchers are cumently studying and dassifying architeciures (similar 10 the way a biologist
would study species of plants or animals). Hopefully this will lead to the identification of common styles
(idioms) and system patiems. The long term goal is to develop guidelines for applying these styles and
patiems in new/re-engineered systems. The main styles and pattems that have been identified so far are
expiained briefly below.

Data Flow style:

. Batch Sequential - each step nms to completion

. Pipes and Filters - linked stream transiormers

Call and Retum style:

. Main program and subroutines - traditional functional decomposition

. Hierarchical layers - well defined interfaces and information hiding (e.g. kemels, shelis)
. Object-oriented systems - abstract data types with inheritance

Relerence: Garlan, Shaw - “An Introduction to Soltware Architecture” to appear in Advances in Software
Eng. and Knowiedge Eng., vol.1 1993

A

What kinds of Software Architectures Exist?

]

m .
A
{

Event Systems

53

Rule Based Systems

*
ne

‘Transactional
Databese systems

Blackboards

independent Components Virtual Machines

s

What Kins o o es

Independent Components style:

. Communicating processes - 8synchronous message passing
. Event systems - implicit invocation

Virtual Machines style:

. Interpreters - input driven state machine

. Rule-based systems - rule based interpreter

Data-centered systems:
. Transactional Database Systems - central data repository/query driven
. Blackboards - central shared representation/opportunistic execution

Relerence: Garlan, Shaw - “An Introduction to Software Architecture” to appear in Advances in Software
Eng. and Knowledge Eng., vol.1 1983

ﬁ

Lws

Roadmap for this Session
Architecture “Defined” g BROTOTONOIODY iea ot

architecture: a hypothesis
Towards a Science of Architecture ep»- - Kinds of srchitoctures

w Trends in Architecture for Reuse ey. ;SDloCtorlented architoctures
- object-oriented/event hybrids
Architecture-Based Reuse —p._ OVOIVIOW of CONCopis
Systems ln:al':gy with configuration

WA

162

| a0
O RN T

L. o

What Kinds of Architectures Best Support Reuse?

Object-oriented systems
« how do they support reuse?
« trends

maximum Event systems
reuse
potential + what are the key ideas?
« why do they support reuse?

 trends

A.nos

What Kinds of Software Architecture Support Reuse?

An architecture that has a mixture of object-oriented and event systems characteristics is best suited tor
supporting reuse of design and code in our view. The following part of the presentation will discuss these
architecture styles in more detail. There has been an explosion in object-oriented systems in the last
decade and it is assumed that most of the audience is familiar with the basic concepts. Event systems are
less well known so more background will be given.

Lws.

Object-Oriented Systems - Why?
Key reuse mechanisms:
+ abjects
- encapsulation
- abstraction
« classes
- inheritance

« mechanisms scaled-up to large
objects

165

oS

Objects facilitate modeling the world directly in software thus making a system easier to understand. They
hide details (abstraction). Objects reduce coupling and therefore reduce the propagation of changes.
Objects are more independent from the context of a system and therefore probably more reusable.

Object-Oriented Systems - Why?

Classes group objects for ease of undersianding. Inheritance reduces duplication of design/code and
allows extension of existing dlasses into new subclasses.

In the context of architectures and mega-programming we are not talking about small data structure
objects (code level). We are talking about large components or subsystems (e.g. stand-alone tools).

The disadvantage of OO systems is that objects have to know the names of the operations in other objects.

Reterences:

Garlan, Shaw - "An Infroduction 10 Software Architecture” 10 appear in Advances in Software Eng. and
Knowledge Eng., vol.1 1993

Booch - “Object-Oriented Design with Applications” Benjamin Cummings 1991
Meyer B. “Object-Oriented Sottware Construction™ Prentice-Hall 1888

A

Object-Oriented Systems - Trends

Common Object Semantics

Standard Design Representations Improved

Reuse
Patterns

Frameworks

167

_4.nos

Object-Oriented Trends

Common cbject ssmantics: The Object Management Group has developed an object model (as part of the Common Object
WMrmmW)mmthbMMwmmmmmm
platiorms and establish common facliities (standard general utiity objects - ¢.. editors, help facilities, e-mafl). This is done
by sstablishing standard cbject interfaces(signatures) which inciude operations and parameters. The object model would

promote exiensive reuse of general objects. The SE! is pursuing the idea of common signatures in the context of a specific
domain. This should prove 1o be & powerful reuse approach.

Standard design represeniations: Currently their is a proliferation of object-oriented design representations {graphics and
wxi). Developing a standard representation would greatly faciiitaie the reuse of design/cods.

Patlems: Researchers are beginning 1o identity and catalog pattems (micro-architectures) in cbject-oriemed systems. These
pafierns are organized in a taxonomy and have a standard documentation template that may inciude: intent, motivation,
collaborations, ciagrame,

, participants, eonuquonao implementation, exampies, and "see also”. These
pcmmtwil help develop and facilitate mmﬂing software architectures for whole systems.

Frameworks: Object-oriented frameworis are flexible configurations of components (component classes) connected by data
flow. Frameworks have many of the characieristics ol a software architecture. Ressarchers are experimenting with the
appiication of frameworics in various domains.

OMG “Object Manegement Architechure Guide® Sept. 1992
Peterson, Staniey "Mepping a Domain Modal and Architecture 1 & Generic Design” CMUWSEL-TR draft

Booch "Next Generation Methods - Bringing Order out of the Chaos® Journal of Object Oriented Programming - Suppiement on OO
Analysis and Design JulyAugust 1993

Tah “Ada 9X: A Technical Summary” Communications of the ACM, Nov. 1992

Gamma, E., Heim, R., Johnson, R., Viissides, R., Design Patierns: “Abstaction and Reuse of Object Oriented Design®—unpublished
paper. Contact Erich Gamma st Taligent, inc., 10725 N. De Anza Bivd,, Cupertino, CA 95014-2000

Nierstasz, Gibbs, Tsichritzis “Componsnt Oriented Software Development’, Commurications of the ACM, Val. 35, No. 9 Sept. 1992.
Buschmann “Rational architectures for object-oriented software systems® Journal of Object-Oriented Programming, Sept. 1993

168

Lws

Object-Oriented Framework: Example

Production Work
order Schedule
Materia!
User | flow control
Y
1
Transport
system
A \
Machine Intermediate Load-unioad
tool storage station Work piece
[} 4 [

el 189

_Aos

Object-Oriented Framework: Example

An OO framework is both & reusable architecture and an architecture that supports reuse of components. This particular
framework is for a generic materia) flow control system which is part of a larger framework for flexible manufacturing
systems. The basic structure and relationships between elements (component classes) can be reused regardless of the spe-

cific work pieces being transported. Basic operations and data (i.c. signatures) are defined at an abstract level for the
domain.

References:

Buschmann “Rational architectures for object-oriented software syslems” Joumnal of Object-Oriented Pro-
gramming, Sept. 1993

170

s

Object-Oriented Framework: Example Adaptation

s

Object-Oriented Framework: Example Adaptation

An OO framework can be designed to be adaptable and flexible so that new objects or subsysicms can be grafied in or
removed. The top part of the slide shows the basic framework. The bottom part of the slide shows several new objects
grafted in.

References:

Nierstrasz, Gibbs, Tsichritzis “Component Oriented Software Development”, Communications of the ACM,
Vol. 35, No. 9 Sept. 1992.

172

A\

Event Systems - Key Ideas

» Components can announce (broadcast) events.

Event Manager
- Components can register for events of interest
and assoclate operations with them.
Components « Upon event announcement the corresponding
operations are automatically invoked (by the
system).

+ Hence, invocation is implicit, although explicit
invocation is often still provided.

s

Event Systems - Key Ideas

Event systems are emerging as an important architecture for integrating diverse components (objects or
modules). Many event sysiems are aiso objecti-oriented. They may aiso aliow explicit invocation (direct
calis) to control the flow of execution.

References:

David Garian and Curtis Scott

Adding Implicit Invocation to Traditional Programming Languages
Proceedings of The 15th International Conference on Software Engineering
May 17-21, 1993 Baltimore, MD, pp. 447-455.

David Garlan and Mary Shaw

An Introduction to Software Architecture

To appear in Advances in Software Engineening and Knowledge Engineering, Volume |
World Scientific Publishing Co, 1993.

David Garlan, Gail E. Kaiser and David Nokin
Using Tool Abstraction to Compose Systems
IEEE Computer, June 1932, pp. 30-38

vent Systems Example

[ovjectA) [obectB) [objectc) [System Register
Comeni) | | oo | | (oower | - [ErObRiOoe]
Announce Write w A Al
Eventy “invocation”

x 8 Bt

Y B Bt

y C C1
\ J L _J

Assume Operation A1 Is called. This results in the announcement of event y.

The m register ovommana er) shows that both Ob B and
Ob]osctysct:.unm (ger) ject

Object B would invoke ration B1;
Oblg Ope

C would invoke Operation ci.

If the system does not choose one over the other,
then “Implicit invocation” will be output (in some order).

s

This page intentionally left blank.

176

Lwws.

Evolution of Implicit Invocation

SEE Productl
DBMS uction
Tool Integration Data Triggers Spreadsheets Systems

N/

General Purpose
Implicht Invocation
Systems

CORBA OCA
Ada Event System

177

A
Evolution of Implicit Invocation

A main source of ideas for event Systems was research on (SEE) Tool integration Frameworks.These SEE
integrated frameworks are usually a collection of 100ls running as separate processes. Event are broadcast
via separate dispatcher process. Communication channels are provided by host OS (e.g.. Unix sockets).

The ideas behind event systems also show up in special purpose languages and application frameworks
which provide access through special notations and runtime support. Examples include: active data trig-
gers for a DRMS, spreadsheets (via dependency facts), and production systems for expert advice.

General purpose event systems are beginning 10 emerge. They are being built within general purpose
language environments like Ada. The Common Object Request Broker Architecture (CORBA) is an
emerging standard for event system architectures across heterogeneous platiorms. The Object
Connection Architecture (OCA) is a generalization of the Object Connection Update (OCU) model
originally developed for the flight simulator domain (the OCA is related 1o the event system architecture).
References:

Garian, Scott "Adding Implicit Invocation to Traditional Programming Languages™ 15th ICSE

OMG "Object Management Architecture Guide” Sept. 1992

Peterson, Stanley "Mapping a Domain Model and Architecture to a Generic Design® CMU/SEI-TR dratt

Lee, Rissman, D'lppoiito, Plinta, Van Scoy “An OOD Paradigm for Flight Simulators® CMU/SEI-88-TR-30

178

L.

Event Systems: Advantages

» Provides significant support for reuse:

- Can integrate components simply by registering their interest
in the events of the system.

- Eases system evolution:

- Loose coupling helps eliminate name dependencies between
components.

- Can add / replace components without interfering with existing
objects.

- Changes localized to system register / event manager.
+ Upward compatible.

- Can still have explicit invocation.

WA

This page intentionally left blank.

Lws

Event Systems: Disadvantages
« Indirection overhead may be high.

» Special purpose languages for event broadcast are limited by definition.
« Components relinquish control over the overall computation.

« A component does not know: “who” will respond or the order and com-
pletion of invocations, 8o cycles could result.

+ Hard to reason about corectness.

181

s

-m F
Event Systems - Trends

Continued Research on Mechanisms
improved

Standard Event Manager Interface - CORBA Reuse

Standard “glue” - Basic Object Adapter

WA

Event Systems -Trends

Continued research is needed to explore the design space of event system mechanisms and to fine tune them for specific
classes of applications. Ongoing research is also addressing the process of developing systems based on the event system
model

References:

Garlan, Scott “Adding Implicit invocation to Traditional Programming Languages™ 15th ICSE

Peterson, Staniey "Mapping a Domain Model and Architecture to a Generic Design® CMU/SEI-TR draft

s

CORBA
object A object B
|
a baslct sp’gclal
&) &l
(object request broker)
L ,

s

CORBA

The Object Management Group (OMG) is working on standardizing the interfaces to an object request broker within the
Common Object Request Broker Architecture (CORBA). OMG has developed an interface definition language (IDL)
that looks a lot like C++. Bindings to the IDL can be writien in other languages (a C binding exists now). The OMG has
also defined 8 Basic Object Adapter which provides standard “glue™ (i.e. a wrapper) 50 that components can be integrated
into 8 CORBA based heterogenecous system. Special purpose adapiers can also be defined. CORBA is still evolving.

References:

OMG “The Common Object Request Broker: Architecture and Specification” 1992

Hybrid Architecture: Event/Data-centered System

(e
-

187

_Anos

Hybrid Architectures: Event/Data-centered System
Large systems often are made up of components that have combined architeciure styles. This diagram
shows a popular hybrid architecture for software engineering environments where the two styles are com-
plimentary. Control integration is achieved through event system mechanisms whereas a data-centered
mechanism (repository) facikiiates data integration.

Reference: Garlan, Shaw - "An Introduction to Software Architecture” to appear in Advances in Sofiware
Eng. and Knowledge Eng., vol.1 1993

e

Y 4\ -

Architectures for Reuse - Summary

_4A.vus
Architectures for Reuse - Summary

As of late 1993 object-oriented and event systems appear to be the most promising architecture styles for accomplishing
large scale reuse. CORBA is an important injtiative that should facilitate the cost-effective sdoption of a hybrid object-
oriented event system architecture. CORBA is also atempting to address a few other important issues such as interna-
tionalization (multi-lingual and multi-cultural issues).

190

s

_m [
Roadmap for this Session

Architecture “Defined” e e : sxternally vm quaiities of

Towards a Science of ArcChieCtUre w...ps- . inds of architeciuires

Trends in Architecture for ReUSE e - ODject-orianted architectures

ovent-based
Architecture-Based Reuse — | el with COMTGaFation
= Systems mmau'numn

wm

_A.xus

This page intentionally left blank.

192

s

Architecture-Based Reuse for the End User
PINBALL CONSTRUCTION SET

=
The el PCS Saomes e N e

Miprien, humpen, deop targets, Grest bull and Mlppee action, phs
&umﬂm‘%gr Che Hlmmp.:tmu
mﬂeﬂuw rpwrt -

s

Architecture-Based Reuse for the End User

Sometimes it is usehil 10 imagine the extremities of a concept (e.g., “reductio ad absurduny).

Is this pinball constructor kit perhaps the uitmate in architecture-based reuse environments? it seems 1o
havemdmabmmmdexm:awitmmwbnhwmdm, rules
for construction, automated support for construction, mechanisms for connecting components, etc.

Intrisexample.ﬂntserdﬂnmmosystemisﬁuappﬁeaﬁonendm. Would it be unreasonable 10 ex-
pect the end user of, say.acanmndammdcamndcemerbsinihﬁy'eompose'meadivnycew
wm.mmuﬂhﬂmﬁmibwmmmaMacﬁvitycom«sMﬂmamMmbﬂlntho
marlermtﬁsmaynotbeleasiblewelotheoomplexitydmappicaion.medependenquyshmhm-
tiononevemsandﬁme.meimpaaomisionanddoaﬂm.elc..onmeemapplicaﬁon.

References

Pinball Constructor: photocopy of a product jacket for commercially-avalable personal computer applica-
tion

A

Architecture-Based Systems for the System Designer

P 1§

A oW . auesibeanER sestay SHGR e

o € e f 0 iy SN0 Do @ S Jng e |

e G g, guandtuptEn
.

design critic/feedback

_A.ngs

Architecture-Based Systems for the System Designer

The previous example illustrated architechure-based services for the end user of the application; we might
view the previous exampie as more of a “tailorable application” than architecture-based reuse systern.

But what if we target such a sysiem not for the application end-user, but for its designer? In this case the
system could move one noich closer to the implementation abstractions. in this illustration two systems
from the Crack project demonsirate the concept nicely. The sysiem depicted on the left is a design assis-
tant for human-machine interfaces (HM), while the system on the right is targeted o kitchen design. Al-
though we are slill not at the level of command center, these systems mirror some of the capabilities of the
pinball construcior: a set of design elements, in these cases largeted to application designers; rules for
composition; a composition/construction area, efc.

Note that in these examples the design elements are “domain-specific.” This was true of the pinball con-
structor (flippers, bells, balls, eic.), the window design assistant (display, scrollers, eic.) and the kitchen
design assistant (doors, sinks, stoves, etc.). But what if we substitute for domain-specific design elements
the components, or design elements, of an architecture style (or architecture model)? We may find our-
selves in an environment such as that provided by several CASE vendors (StateMate, UNAS/SALE).

References

Gerhard Fischer, "Human Computer Interaction Software: Lessons Learned, Challenges Ahead,” IEEE
Soltware, January 1989.

A

Architecture-Based Systems for the Programmer

[0)

A

Chaplet 7: e Row of Contal In Despares fo fvents

Bl
Bl
* \.‘J! : E
L= Lj R
QL Jii 2

Architecture-Based Syts the gmm o

This final example illustrates yet another concept of architecture-based reuse system. Where the pinball
constructor was targeted o end users, and the kitchen design assistant targeted to a system designer, the
Apple Macintosh MacAPP represents an architecture-based reuse system targeted to programmers. This
figure is copied from the MacAPP documentation, and illustrates the use of an architecture as a template,
or framework, into which application-specific functionality are inseried. In this case the application archi-
tecture is (more or less) “fixed"—much of the hard design work has been encoded in the application tem-
plate.

What this succession of examples illustrates is that there is a range of possible manifestations of “archi-
tecture-based reuse system.” Moreover, these illustrates only varied the intended user of the system:;
many other dimensions of variability are possible.

A more general way of thinking about archilecture-based reuse systems is to think of such systems as the
means of conveying the results of a domain-engineering life cycle to many possible application engineer-
ing life cycies. Since the nature ol each life cycle will vary depending upon domain, engineering infrastruc-
ture technologies (i.e., software development environment fooling), local cultures, efc., the associated
reuse systems will also vary.

Relerences
Apple Macintosh MacAPP Developer's Kit Documentation.

s

Reuse Environment: Integrating Domain and
Application Engineering Life Cycles

i/ DOMAIN ENGINEERING hY
i oo, preeen., _ PR ,
! Domain | | t [Sottware /Domain : |{Reusable { Comport
i Analysls > wy—m : Software'- c““awl |-»: and/or
; ‘ } : i | Dovelopmens| i Senerstirs
lf ~
a

! \ .
Analysis { Applic. | [SWsystem] : :
user req't ' ; : :
', Spec. /' SW Arch A
" APPLICATION ENGINEERING

~Lwas

Reuse Environment: Integrating Domain and
Application Engineering Life Cycles
The reuse environment is not simply an applicalion building environment, it is a set of mechanisms and
reusable products that allow us, in effect, to integrate domain engineering and application engineering pro-
Casses.

Domain specific reuse is generally acknowledged 10 consist of two separate file Cycles: the domain engi-
neering kfe cycle, and the application engineering ke cycle.

Some mechanisms must be present in order to transfer the results of domain engineering to application
engineering—the packaging of reuse products, the tools and documentation needed 10 apply these prod-
ucts.

The chart llustrates the addition of a process dimension 0 this packaging. That is, the kinds of reusable
products which flow from domain engineering 10 application engineering will depend upon the internal pro-
oesses implied, or required, by each lfe cycie model. This chart Bustrates just one of many possible mod-
ols.

Reference:

T. Payton, “Domain-Specific Reuse,” STARS 92 Annotated Briefing Chart, pp. 16-17. This chart is an in-
terpreted rendering of one found in the STARS 92 proceedings.

~Lws

A DSSA View of Architecture-Based Reuse Systems

Operator

A\ -

A DSSA View of Architecture-Based Reuse Systems
This chart llustrales the ARPA/DSSA view of architecture-based reuse systems. The chart is copied from
a ARPA/DSSA presentation—the shaded box which highlights the application-specific development envi-
ronment has been added to emphasize that in our discussions we are concemed with the toois and envi-
ronmenis delivered to application developers, and not with the tools and environments necessary 1o
conduct domain engineering aclivities.

References

11.Col. Eric Matella, “Domain-Specific Software Architectures,” STARS 92 annolated briefing, pp. 90-116.

A

Reuse Techniques and Architecture

Transformational

®>\ Compositional
. - module bullding blocks

57 €Y S shapes ot pr- b cesign

S'r: where Ls t;n “architecture?” (a.k.a. reference architecture, application
mwor 1117

— pure transformational: in the transformation rules and languages
—pure compositional: in the form and function of components

WA

Reuse Techniques and Architecture
We need to facior in another dimension in order 10 really understand the implications of the DSSA picture
for domain-gpecific application engineering environments. The exact form and content of reference archi-
tectures, components and tools will be dependant upon the basic reuse technology approaches taken. Big-
gerstaf! and others have defined taxonomies of reuse approaches. Without getling into neediess detail, a
top-level partitioning of approaches is the transtormational/compositional dichotony.

The transiormational approach is characterized by a sequence of ransformations among representations,
with each transiormation bringing the representation towards closer 10 some final state. Two major classes
of transformational sysiems are:

1) generators: systems where the transformations are invisible/automatic (or, more commonly, there is
only one automated transformation siep).

2) kn:xvedge-based assisiants: systems where there are multiple transiormations, perheps but not
necessarily through different representations, and where the transformations are visible 1o the “user,”
and where there is guidance provided by the system 1o assist in performing the transiormation.

The compesitional approach is characterized by reuse through manual composition of concrete code com-
ponents. Eithe r families of components are developed (e.g., GRACE componente) or highly-parameterized
components are csveloped. in either case there is littie scope for “automation.”

Interestingly, in both "extremes” the question of “where is the architecture” is the same: the architecture is
implicitly represented. In the case of the transiormation approach the architecture is found in the pattems
tocked in code generalors, in the terminology of the languages, and the rules for creating sentential forms.
in the composition approach the architecture is again implicit, or, at best, reflected in the structure/iorm
(i.e., intertaces and function) of the components.

The use ol software architecture can help achieve the benefits of both approaches in a hybrid strategy ™

A\

Hypothetical Impact Analysis

" Hybrid Reuse

\ _
5 Purely Purely
g Compositional Transformational
= Reuse Reuse
2
=
)
<,
S
R H
g
E _ customizable
<) ~ applications
S

Domain Specificity A
Bource: Martn Grise, Hewlet-Peackard, Wi Pr 205

Hypothetical Impact Analysis

Although there are no sokid economic modeis to draw upon, there is general consensus within the reuse
community that, all else being equal, generative reuse lechniques will yield more dramatic reuse results
than a purely compositional approach.

The chart illustrates a hypothetical curve, with the area under the curve being “economic impact.” No scale
or measures are infended, and the picture is not meant fo imply any precision: the “shape” of the curve is
a guess. However, a number of factors support the general hypothesis that hybrid reuse may provide, in
practice, the biggest bang-for-the-buck:

1) While generative reuse would be ideal, such generaiors can be extremely expensive {0 deveiop, and
may only be effective in highly stable application domains. The most {requently applied application of gen-
erational lechnology is through “application specific languages” for pieces (“subdomains”) of application
domains, e.g., message formal processing systems, human-machine inmertace subsystems, form/report
generation subsystems, are just a few examples.

2) Compositional reuse is still a labor intensive activity, and it is difficult to develop a sufficiently "dense”
poputation of components 10 satisfy diverse application requirements.

Ideally, then, we wish 1o develop reuse technologies which support the opportunistic hybridization of gen-
erafive reuse with compositional reuse, whereever possible. Domain-specific software architectures can
provide a mechanism for coherent infegration of compositional and generational reuse, and, perhaps, a
migration path towards increasing use of generative techniques within application domains.
Relerences:

Martin Griss, Informal Presentation Charts, WISR6, Owego NY, Nov. 3-5 1993.

- erawe

A

Hybrid-Reuse Strategies Centered on Architectures

_A.vos

Hybrid-Reuse Strategies Centered on Architectures
Wae've taken some fiberties with illustrations from ARPA/DSSA presentiations on this slide—we believe it
reflecis some important poinis of the ARPA/DSSA approach, but it should be noted that this picture is equal
part “plagiarism” and “inferpretation.”

The basic lenant is that a reference architecture can be defined which represents a “pariial application” in
the domain. One analogy used 10 describe the reference architechiwe is as a “design with holes in it,” with
design refinement as the means of *filling the holes.” in some cases the hole can be filled by generating a
component, of selecling/adapting a component from a component lkibrary. In other cases the hole may be
filled by selecting among various design altematives, each altemative adding information fo the design but,
potentially, also introducing “new holes” which need to be filled.

it needs to be noted that this picture, though rich in concept, represents one conmmon perspective from the
DSSA program-—diifferent member projects each have refined the meaning of thig picture using ditierent
technologies and processes. In at least one case the reference software architecture appears in the “mid-
die” of a detailed system development process including hardware, controllers and sottware. The DSSA
program has illustrated that the domain-specific application engineering environment does need fo vary
according 10 the problem domain, common engineering practice within the domain and cultural factors.

Relerences

11.Col. Eric Matella, “Domain-Specific Soltware Architectures,” in proceedings ol STARS 92 Conference,
annotated briefing, pp. 90-116.

Robert Balzer, “Model Management Examples,” in proceedings of DSSA VIl Workshop.

Robert Balzer, “Design Refinement in DSSAs,” in proceedings of the JSGCC Sofiware Initiative Strategy
Waorkshop, December 1992.

208

A

Hybrid Architecture-Based Reuse and Compositional CM

Compositional CM = {system model+ version space + selection rules}
Vi

system model (many possible representations)

Hybrid Architecture-Based Reuse and Compositional CM
Even without getting into the details of specific domain-specific application engineering environments, it is
possible 1o understand some of the information management requirements introduced by this model of hy-
brid, architecture-based reuse. One way 1o expose some of these issues is to compare the hybrid reuse
approach with the relatively mature discipline of configuration management (CM).

liustrated on this chart are some of the key principles behind a mode! of CM referred to as “compositional
CM" ina paper by Feiler. The key elements of compositional CM are: 1) a system model, 2) a version space
of sources, and 3) selection rules. There is great flexibility in the realization of this model (in fact, 1 and 2
can be combined). As lllustrated by Feiler, the this CM model appears in a number of commercial products.

The system model reflects the structure of an application-—-here modeled as a simple “and/or” graph with
*or” denoted as “+" and “and” denoted by the absence of a symbol. The interpretation is straightiorward: a
sysiem is composed of A and B, with A composed either of variant C or D, eic. (it is important to note that
we need not have such a representation, bul it is convenient for the analogy.) Eventually, leat nodes on
the graph refer fo concrete objects in the version space.

The selection rules can be primitive, €.g., an enumeration of the abjects in the version space which belong
1o a configuration, or can be more elaborate. For example, one use of the and/or structure could be o mir-
ror the hierarchical relationships in the system design, and could be “decorated” with attributes which could
then be used in selection rules as predicates, 6.g., configuration version 1 is such that we select versions
where TESTED=TRUE and HOST=VAX It is easy lo see how a tamily of systems can be enumerated.

For the purposes of the analogy, we will equate system model with reference architecture, version space
with component library, and selection rules with refinement rules.

Peter Feiler, Configuration Management Models in Commercial Environments, Technical Report
CMU/SEI-91-TR-7, Software Engineering Institute, Camegie Mellon University, Pittsburgh, PA. 210

L

Hybrid Architecture-Based Reuse and Compositional CM

Compositional % problemand Hybrid Reuse
Configuration % :
Management

Hybrid Architecture-Based Reuse and Compositional CM
Our contention is that in many ways the hybrid architecture-based reuse approach mimors that of composi-
tional CM. The folowing dichotomies serve 1o iilustrate thece differences, and shed light on the technology
md«amwdvodhmmu-basedmsyum

smﬂde—oﬂsandnﬂomdmmwdngwhdndmgndmnbm which components 10 inte-
grate, efc. This requires detailed information about the problem space. in contrast, CM manages objects in
the solution space.

v ‘ ansional configurations: For architecture-based reuse we do not want to
tnvebewatedlpossuuemignm but rather define the rules for creating new instances.

plicit faature interaction: CM is not a design discipline: there is no inherent
mnmdmnmmmm(mmmmv
Note: there are gray areas, such as Tartan's Configuration Management Assistant.

ixad component form: if the context in which components are reused is
mmnsmmmmmm»mmwnmemmmmms
is one motivation for research into module interconnection languages.

D) PSS pieteness: By definition, a relerence architecture is incomplete. This implies that
mﬁnemsm and composmon toois will need 10 accommodate, track and manage incompieteness.

02

s

Hybrid Architecture-Based Reuse and Compositional CM
Inconsisiency vamus consistency: See incompleteness. There are some ditferences with incompleteness,
mainly concemed with the interaction of features and design reinements which may occur as & result of
refining several aspects of a design simuianecusly (as i on a design agenda). it will be necessary fo man-
age incongistencies; nmmumnmw (Incompieteness can be thought of
a8 & severe form of iInconsisiency) .

\ ; ' igumtion audit: As designs are refined there must be a
mawmmwwmummmmmummwm
by domain; umumhmmmmmmm
mm.mammmdmbmwm However, the emphasis
in CM is on change conirol and change management, while architecture-based reuse sysiems will involve
more elements of computer-supported cooperative work. This is not unexpected since the architecture-
based reuse system is likely 10 emphasize aspects ol collaborative and exploratory design.

N 0 Mﬂecumywmaspedsdmw
Memmmmmmdmmm:mmemmbowdu
more or less atomic. However, real sysiems design takee place over an exiended ime, and may involve
Raferences: :

Peter Feiler, Configuration Management Modeis in Commercial Environments, Technical Report CMU/SEI-91-TR-7, Soft-
wars Engineering institute, Camegie Meiion University, Pitsburgh, PA.

R. Balzer, “Design Refinement in DSSAs,” in proceedings of the JSGCC Software Initiative Strategy Workshop, Dec. 1992.
23

A

Influences on Selection of Exemplar Systems

- managing uncertainty
Problem Solving - managing complex constraint
« reasoning with Incompleteness \

Problem Scale

CARDS
Technology

— reuse of models

Las

Influences on Selection of Exemplar Systems
A number of consequences on technology for architechre-based reuse systems can be discemed from
the “wheel” diagram on the previous chart. Two key ideas emerge which differentiate architecture-based
reuss sysiems from compositional CM systems: the focus on problem solving support and managing cog-
nitive complexity from scale.

Both of theee fogether may imply some use of formal modeling—inciuding both inowledge representation
and more mathamatical, i.e., aigebraic, representations. Even if this implication is not accepted by the
reader, it is certainly the case that the fopic of archilecture-based design assistants and domain-specific
archilectures is attracting the attention of researchers in artificial intelligence and formal methode. Naturally
this has influenced our selection ot 1ools for evaluation purpoees.

Note: MMWmmmﬂbmm«oﬂﬂumm
will be ciscussed in the next session in detal, will be disclosed in Session V:
CARDS and Software Archilectre.

A second contributing factor is, of course, our own program biaseg, based in large part on the technology
foundations used by CARDS 10 build architecture-based reuse kbrasy systems. This base technology
draws heavily upon knowledge representation systems, and demonstrates the development of automated
reuse assisiants for DoD software-intensive applications.

Session | Session Nl

o
£ | inovitabitty ot Sesslon VI
£ [oot 3 Ammmmﬂ . SessionV s
& | Archhecwne 1 -Viaibie festures f._’ Scientific Thomss Saunders
] gnymum x© < | -taskforce 8
2 3 - Engineering 'g Hanae Poizer
§ CARDS Perspeciiv g G| -0l 4
Iranaltion Q.
§ g - franchising -] Stan Levine
2 & |- handbooks €
]
5 © 2 | Emeonn
Session i < %
®
iy s £
e DISCUSSIONS AND
] < | BT
. S
(/7]

Category Building

Architecture/
Reuse Systems

f

A

Central Archive for Reusable
Defense Software
(CARDS)

Session IV
Architecture-Based Reuse Tools

16 November 1993

A

A

Architecture Based Reuse Tools

+ Pioneers:
- Draco
- ROSE-2

? FZ QT M

- KAPTUR

- UNAS
- Technology Book
« Emerging:

—— - LILEANNA
- uRapide
« Future:
- Integrated tools and libraries

_Avus

Architecture Based Reuse Tools

The purpose of this session is to survey some representative 10ois which at least partially support
architecture based reuse. This can be considered a mini-domain analysis of architecture based reuse
tools. First we look at some earty pioneers 10 give an historical context. Then we look at a sample of current
tools (proprietary and available 10 the public). Next, tools emerging from the research community are
examined because they may fill gaps in existing capabilities. Finally, we look at the vision for the future.
For each ool we will describe key concepts, archilecture representations, 100l functionality, and lessons
leamed.

Braco: Key &ncep!s

« Easrly example of architecture based reuse tool
« A mixture of generation, assistance, and composition

* Reuse all aspects of software system development:
- Requirements Information '
- Design Information
- Source Code

« Application Architecture made up of multiple domains:
- Application Domains (vertical)
- Modeling Domains (horizontal)

« Muitiple domain specific languages:
- requiremenis/domains at different abstraction levels
- transformations within domains
- refinements between domains

« History mechanism:
- tactics
- pre-refined subsystems

_xas

Draco embedded the notion of an application domain architecture made up of other, olten more general
purpose domains (horizontal domains). These horizontal domains could be reused in other application do-
mains.Draco appiied rules to transtormyrestate) specifications within one level of abstraction(domain) and
refine specifications into a lower level of abstraction (until hopetully they reached code components). Dra-
€0 also used a history mechanism to capiure tactics for iransformationsirefinements and resulting re-oc-
curning subsyslems.

References:

Freeman, P., 1987. A conceptual analysis of the Draco approach to constructing sofiware systems. IEEE
Transactions on Soltware Engineering. SE-13, 7 (July), 830-844.

Neighbors, J.M., 1984. The Draco approach to constructing software from reusable components. IEEE
Transaction on Software Engineering. SE-10, 5 (September), 564-574.

Neighbors, J.M., 1989. Draco: A method for engineering reusable software systems. In Frontier Series:
Software Reusability: Volume | - Concepts and Models. Biggerstaft, T.J., and Perlis, A.J., Eds. ACM Press,
New York, pp. 295-319, Chapter 12.

Neighbors, J.M., 1992. Draco: The evolution from software components to domain analysis. Intemational
Joumal of Software Engineering and Knowledge Engineering. Volume 2, Number 3, September 1992; pp.
325-354.

Draco: Key Concepts

Krueger, C. W., 1992. Software Reuse. ACM Computing Surveys. Volurme 24, Number 2, June 1992, 131-
183. 22

Draco

des

Domain Analyst

Parser
generator

3

Parser | __| Draco

B!lllder

Executable
code

A was
Draco

. Parser: Parses the application domain specification.
. Prettyprinter: Interacts with the systermn builder during the refinement process.
. Draco contains ransformation and refinernent rules and code components.

. Domain analyst: Develops domain specific language. This requires a significant amount of effort for
either an application or modeling domain.

Draco: Refinement Process

application modeling domains executable
domain

_d.us

Draco: Refinement Process

The Draco refinement process begins with specifications only in the application domain (e.g Command
Center domain) and gmadually fieshes out the design by refining/transtforming components trom the mod-
eling domain (e.g. DBMSs, Geographical Information Systems, Message Processors...) until all require-
ments are fulfiied by executabie code.

s

ROSE-2: Key Concepts

|
|

select & adapt
design
abstractions

Rose-2: Key Concepts
Reuse of Software Elements (ROSE-2) developed by MCC: A key objective in soltware design reuse is to
provide mechanisms that help the user select and adapt design abstractions to solve software probiems.
To achieve this objective the user should be presented with clear requirements and design allematives
that he/she can choose from to solve problems.

Five Strategies:

. use design schemas 10 represent abstract reusable design solutions

. organize requirements and design alternatives into issue-based structures (IBIS)
- develop and customize designs using the knowledge-based refinement paradigm
« use dependency-direcied backiracking 10 support design exploration

. present multiple design views 0 enhance the reuse and evaluation of designs.

References:

. M. R. Lowry and R. D. McCartney.1991. Automating Software Design. Califomia: AAAI Press.
[Chapter 5]

. Lubars, M.D. 1989. A General Design representation, Technical Report STP-066-89, MCC Corp.,
Austin, Texas.

. Lubars, M. D. 1991. Representing Design Dependencies in an issue-Based Style. /[EEE Sofiware
July 1991: 81-89. Washington, D.C.: IEEE Computer Society Press.

Y 2\

Rose-2: Key Concepts

Design Schemas contain the following elements:

basic architecture for constructing systems of a general form

a set of requirements and design aftematives that specify which customizations can be appled to
the design .

a set ol speciakization rules that select among alternative design customizations

a set of refinement rules that perform specific design customizatons

a set of constraints that enforce dependencies between ditferent requirement and design decisions
classification information to assist in selecting design schamas from a reuse library.

Multiple Design Views

General Design Representation (developed by MCC) is used as the base design representation from
which the other design views can be displayed

State-transition diagrams and state charts (1o answer state- and event-oriented questions)

mmmwm(bmrmnmwmmmus-
tions)

Structural views (1o answer questions about subsystems and iower-level system components)

s

ROSE-2: Process

backtrack
select instantiate refine
schema schema schema

design

Y 2\ '

Rose-2: Process

‘ Schema-based process of Reusing Design
. Schema selection
, - choose a design schema from a library that maiches a given sei of user requirements
. Scnema instantiation
- creale an instance of a selecied design schema based on the given user requirements
. Schema refinernent

- supply additional requirements and design decisions 10 further guide the refinement and
customnization of the design

Knowiledge-Based Refinement Faradigm
The selection of design schemas and the application of refinement nies 0 semiautomnatically customize

design based on user requirements is a software development process called the Knowledge-Based
Refinement Paradigm.

b<}]

s

Rose-2: Process

Advantages of Knowledge-Bases Refinement Paradigm:

. helps to reduce the size and complexity of user-supplied software requirements by supplementing
them with detail from the design schemas

. helps assure that compilete and consistent requirements are provided by checking them against con-
straints and issue structures in the design schema

. helps partially autornate software design construction by applying the schema's refinement ruies

. tweips suppon software specification and design as paraliel and complementary activities by refining
design in direct response 10 user-supplied requirements

d helps support soltware design reuse as an inlegral part of the design process

Design Exploration and
Dependency-Directed Backtracking

Allow the user to supply and retract ditferent requirements and design decisions and observe the effects
as different sels of refinement rules are applied 10 customize the design

a2

Y 2\

Rose-2: Issue-Based Information System

Structures(IBIS)
Printer is slow £ | Faster printing
I —&3 P
Buy new printe A | Cost

WA

Rose-2: Issue-Based Information System
Structures(IBIS)
* Requirements and design questions are formulated as issues

. Alternatives for resolving the issues (specific requirements or design decisions) are formulated as
positions

. Each of these positions can be supported by, or objected to, by arguments.

Representational goal in design reuse is to incorporate the IBIS method into design schemas and design
reuse mechanisms 8o that the following requirements are met:

. Requirements and design altematives are clearly presented to the user as he/she attempts to reuse
and customize designs

. The user can examine the relative benefits and disadvantages of the various altematives.

. The design history can explicitly be recorded and examined as the user chooses alternatives, and
the design is subsequently customized

a5

LASSIE: Key Concepts
Overcoming “Invisibility”

Complexity &
|nVIS?bI|It;'y

Software Information System

_A.nus

LASSIE: Key Concepts
Brooks identified two problems in soltware development: Complexity and Invisibility. LASSIE is imtended
to exploit kmowledge-representation as a means of attacking these two problems.
» Complexity: Software is relatively complex compared to other constructs because no two
parts are alike, and scale-up is non-knear
* Invisibility: The structure of softiware, unfike buildings or automobiles, is hidden and difficuilt
to visualize. Execution behavior is the way we generally get behavioral data
The developer's burden is 10 determine whether something has been done before and how %0 make it con-
form to the architecture. But:
* Invisibility leads to violations of the architecture.
Awmnvmawemmnmmmmmmmy
* Increased complexity intensifies invisibility. And soon .
msmmmmmmmuwmm which in tum exacerbate invisibllity and
complexity and erode integrity.

Inivisibility is also manifested by a “discovery phenomina:*

« what a developer or maintainer must do to prepare for the actual task

» takes approximately 50% ot a¥f developer’s fime

* is a trail of inquiries to gain understanding of the system at hand.

» Vigual displays are not effective; even graphs don't simplity things much. Documents are
rarely up-to-date and comect and complete and available and oriented towards discovery.
Knowledge largely resides in experts who may not be available or willing; may have to re-
establish context; may not expiain weil.

e
Lwws

LaSSIE Key Concepts
Relerences:

Premiumar Devanbu, Ronald J. Brachman, Peter G. Selfridge and Bruce W. Ballard.
LaSSIE: A Knowledge-Based Software information System
Communications of the ACM, May 1991, pp. 34-49.

Peter G.
Representation Support for a Software Information System
of the 7th Conference on Artificial intelligence Applications
February 24-28, 1991 Miami Beach, FL, Volume |I: Technical Papers, pp. 134-140; Volume II: Visuals, pp.
271291,

Peter G. Sefiridge, Loren G. Tesveen and M. David Long

Managing Design Knowledge 10 Provide Assistance {o Large-Scale Soltware Development
Proceedings of the 7th Knowledge-Based Software Engineering Conference

Seplember 20-23, 1992 MclLean, VA, pp. 163-170.

P.F. Patel-Schneider, R.J. Brachman and H.J. Levesque

Argon: Knowledge representation meets informatiori retrieval
Proceedings of the First Conference on Artificial intelligence Applications
1984, pp. 280-286.

—operan Q:aoﬂe-a.u
-] ok Qenario-Call)
~enviroament Gesario~C

Information query

Ls________

LaSSIE: Key Concepts

Knowledge Base: Emphasis is on capturing the semantics of the actions and objects of the architecture.
Support is provided for complex questions involving architectural, conceptual and code views without
knowing siructure ol Knowledge Base.

User imlerface: Provides easy access at a conceptual ievel via a window/mouse interface. Provides "Query
by Reformuiation” (Patel-Schneider, Brachman & Levesque).

Knowledge Representation: Frame-based system with inheritance, which offers economy ot
representation and semantic integrity. Retrieval “hits" are ingtances of the frames subsumed by the query.

Example: System recognizes that MERGE-ACTION ié & CONNECT-ACTION based on the descriptions of

each. it also realizes from the descripion (not shown here) of At td~But ton-Push that this is an ACTION
by an ATTENDANT, which is defined 10 be a specialization of USER. The Argon-fike user interiace displays
the retrieved individuals, from which the user can select one for detailed display, with all s slots and fillers,
each of which itseif can be selected for further display.

Limitations: Action-based representation does not help the developer establish the contexts in which the
actions are parformed - no map of the territory. Plan-oriented questions like: “Why is this operation being
performed?” are not supported. Knowledge acquisition is essentially manual.

s

LaSSIE: Related Tools - CODE-BASE

}-—)m e _ve-oaiecs

PRIMITIVE

PARENTS CODE-DIRECT

CRILDREN

COMMENT these have LND in their names
WRMEER 7

IOADED 7

CR{BAS-DEFINED-IN} [0 1) @cC{FIlE)
ER{EAS-MAME) (1 1] @C(TEING)}

error-function

lastdial-tunction

dial-function

~obkiect

lnd-macro

ISD GRS EEoard KEESE |IGESTIAY hEc) IGTAFAY A KSRl

CODE~-RASE-QUERY: (X:error-function | x is-in lastdial-function, has-calls-function}

0 OBJ 5526 cp procerr e P procerr
PARENTS ERROR-FUNCTION

2As-mae- e
HAS-NM~CALLS-FUNCTION 1
EAS-FO-DEFIMED-IN 1

BAS~¥U-REFERENCED~BY 106
HEAS-DEFIMED-IN ex{oBJ 261)

Y 7\

LaSSIE: Related Tools -CODE-BASE

Complementary
model.Goal is to extend

10 LaSSIE: LaSSIE supported semantic-based discovery in a hand-coded domain

conceptual model 10 incorporate a code model and provide
between them. CODE-BASF represents code-level information (at the level of a construct such as a

linis

procedure, function or declaration) which is automatically acquired, thus guaranteeing synchronization of
KB with the code. The user interface aliows posing of specific queries as well as “hyperiext® style traversal.
Thus we gee a reverse engineering type 100l supporting a reuse fool.

CODE-BASE: example:

WA\

Upper-Left Panel : Browse the concept hierarchy

Upper-Right Panel : Examine an individual concept

Middle Panel : Where CODE-BASE queries are entered

Lower-Lelt Panel : Display instances which maich the query

Lower-Right Panel : Display a selected instance

211

LaSSIE: Related Tools - Design Assistant

Annotated Design Document

| Design Document

Traces of interactions
with Design Assistant

Suggested updates to KB

242

Lws

LaSSIE: Related Tools - Design Assistant

. Need 10 capiure the folldore which is not docusmented and remeins accessible only through human
experts.

* Tomanage such knowledge with automation we must deal with: difficulty of acquisition, representa-
tion and accessbiity, and maintainence of design knowledge

« Can'tassume a “ump sum” single occurmence capture of ali the knowledge. Need facilities 10 capture
elaboration and evolution of design. Need faciiiies 1o capture new knowledge arising from normal

¢ Taxonomy of design problems with associated advice kems which: removes redundancy and facili-
tates an advice exception (i.e., overide) mechanism. KB is accessed by a design assistant program

. Maintenance via the incorporation of design advice into the design,
80 it is also subject 1 the nommal organizational review process.

YA\

KAPTUR: Key Concepts

- methods (services, functions)
- variables (atiributes)
- message pussing

= feature modeling, and

- extension of SEl FODA by Including both
visible and non-visible user features.

- case-based reasoning
Captures (hence KAPTUR) Domain Products,
Legacy Systems, Features, Design Trade-ofis
and Rationaie
Follows a Supply Side <> Demand-Side Cycie 10
Domain Analysis and Systems Analysis
Supports Various Architectural Perspectivas

KAPTUR was developed by CTA incorporated under NASA sponsorship.

KAPTUR is a to0l that is used in conjunction with an entire domain analysis process that begins with iden-
titying and scoping a domain, cepluring and analyzing domain information, creating a validated domain
madel, and using the knowledge captured and modeled 10 generate new systems in the domain using the
knowiedge gained from the legacy systems in the domain. KAPTUR is the tool used to onganize and struc-
ture the information relative to the domain, as well as document decisions made in the development of do-
main sysiems.

The supply side of the KAPTUR process (and model) involves the accumulation of domain knowledge, or-
ganization of that knowledge, and knowledge placement in the KAPTUR tool. The supply side person is
like a domain manager, a domain owner, or a domain developer - an expert in the domain and the person
who creates the representations of the legacy systems in the domain. This person takes the perspeciive
that components need 1o be reused and can distinguish the features or characteristics that make a com-
ponent reusable. The dermand side of the KAPTUR process (and model) involves the use of domain knowi-
edge as it applies to & new system.

References

CTA Incorporated
6116 Executive Boulevard
Rockville, MD 20852

245

Lus

KAPTUR: Tool Functionallty and Representations

+ Tool has direct support for capturing
rade-offs and rationale for:

- Operstional Festires

WA

Descriptive information is avaiable for each architecture and annotaions (descriptive information) are
available for each element in an architecture view. Associated with each architecture is a set of features
and with each feature is information dealing with the decision that feature represents, the trade-off asso-
ciated with the decision, and raionale for the decision made. Any feature may or may not be present in
any of the architectures. To the exient that a feature is in one architecture and not in another indicates al-
temative implementations that a user may need to consider. Based on the presence or absence of a fea-
fure, the user may need to go and ook at an ailemative architecture, again looking at the features,
decisions, trade-offs, and rationale information.

KAPTUR is a tool used to represent sofiware architeclures in support of object-oriented modeling. KAP-
TUR has several ways in which 10 represent the objects analyzed. There are various architecture views
{or perspectives) currently available in KAPTUR.

247

UNAS: Key Concepts

Universal Network Architeciure Services (UNAS)
— developed by TRW

[Hom Development Tools | Aschitcctae -
%:.,n.. - Serectare & Partition - A Process-based, Asynchronous, Message-
- CASE Tocls - Dats & Control Flow driven Language Framework for Rapidty
-Documestation - Opersting Dynamics Developing Distributed Applications
Product Companonts Applications - A Collection of integrated Tools to Support
- Reusable, Adapacd. Custom ;{ - Mission Specific the Development and Management of
mmmm; 41 |Swic Quality Mewics Distributed Appiications
:mm Platform Indepeadent = A Software Architectural Design Paradigm
.m'“ Neswork Independent
Brvirormnent | ArCMISCAIS Comptaton, Uning - Compiiers, CASE Tools, Debuggers
- Muntwe | Physical \ondNode
Bwironent | Arcitecaure
Target Runtins Tooks [Physical Architocture + Software/System First Mentality
- - Allocation to Hardwars - Promoles the of the “logicar”
Off-Hoe Analysis - Neswork Topology architecture first, which Is later mapped %
- Data Reducticn Dynamic Quality Metrics the ™ architecture (architectural
Execution Servioes i clements are allocated 10 hardware)
- Operating Systems
Inm"""'”"""’ + Standard, integrated Runtime Environment
- Runtime and off-line analyzers, network
resource managament, runtime lbraries

At it's core, UNAS can simply
language is targeted for applications (potentially hetsrogenous) based on a
message driven paradigm. However, in addition 10 being & there exisis a highly integrated col-
Jection of tools and services which support the development of distributed applications and the runt-

ime management of those appiications. These tools and language, fogether, define UNAS's architectural

paradigm which is supported by architectural representation, rules for assembiing elements of

be defined as a high level

m&mummmmm

design
UNAS elemenis and toois to enforce that paradigm.
UNAS development environment permits the architect to built the system first without

cemed with the underlying physical implemeniation or hardware. This architecture can be defined
in terms including performance, structure and control & data flow and then executed 1o establish metrics
with which 10 perform comparative analysis against expected and actual results. Architectural elements
can be assigned and allocated 10 the target hardware environment, thus instantiating the “physicaf” archi-
tecture from the “logical”.

References

UNAS Training Class, July 7-9, 19953

TRW Systems Enginesring & Development Division
DH2NZ2T

Carson, CA

249

UNAS: Tool Functionality

« UNAS:
= defines basic architectursi

elements and rules for thelr
interconnections

- provides messaging between and

confrol & management of those
eclements

« SALE — frontend:
(UNAS CASE Tool Option)
- QUi for buliding UNAS distributed
sppiications

As a back-end to00l, s&swmmmmmmmmmww
inter-task communication (ITC) and generic application controls (GAC) services. Once compiled, the ap-
plication built can be executed as a skeleton which will exhibit periormance behavior as presented 1o the
tool. SALE will automatically generate design documentation which describes both mission-independent
and mission-dependent (that which was entered into the CASE Tool) portions of the application.

The UNAS message MMNMumvmrTﬂmmaTC)mmy
known as ITC services and automatic heterogeneous data translation. Data structures written in Ada
source are converted to meta-message format via UNAS off-line message registration tools. The meta-
message format is the mechanism that permits data conversion between heterogeneous network nodes.
Further, ITC services provides that Ada package generic to ensure Ada's strong type cohesion between
the distributed process which write and read passed messages.

Other services of ITC include emor reporting and propagation, task creation, interactive network manage-
ment, SNMP interface 10 network management, and message interjection and recording.

UNASsGenomApplmhoncomml(GAC):sarngherlevelofabsncumdmsewmsprMdelec

y, GAC removes the application developer from many of the “quirks™ and detaits of the ITC
layeraswslasaddngb\medeOmenwssagepasung.mgemung logical separation of
nodes, processes and sockets from their physical implementation, and busit-in performance and utiization.
Addm':nally exception handiing, error reporting and logging is greatly enhanced and absiracted in the
GAC layer.

ALws

UNAS: Representations

UNAS Architecture Paradigm
« Basic elements:

Z—__7 Tasks exchanging messages
=Y Messages are exchanged over interconnected sockets
O A Socketis a names source/destination associated with a task
=3 Connections are paths between sockets controlling message flow

: Tasks are organized into Processes tor control and re-configuration

i Processes are combined into Groups for operational uniqueness

s

Thmmmmbwcudmmobmummbemodbmammﬂmﬁmﬁm
are made up of one or more tasks which communicate over one or more sockets connected 10 other tasks
(or itseif in the case of imer sockets). Messages are used to communicate data over interconnected 50ck-
mMmmummﬂmmm(aaMmemUNASmmm)mm
be either read-only, write-only, orread-wme The figure below shows an example of a simple UNAS appli-
cations in terms of these elements

Figure: Sample UNAS Application

In the above figure, the lask “Federal_Express®, communicates via & “Write_Sockel” with another task
calied “Customer”. TMmessagethanspassedtrommeﬁrsttaskiothesecondtaskeanodybeonype
“Federal Express Message”. in this exampie, either task can belong to a different process, or they could
be two tasks in the same process.

Lws

Technology Book: Key Concepts

design evolution
and maintepance

knowledge reuse:

efficient access to best
domain specific
information in

organization

WA

Technology Book: Key Concepis

The tools presented in this section are based or the approach used at Schiumberger. Design evolution and
maintenance are the dominant activilies in many software development organizations. Thus, the reuse of
analyses and designs is of greater benefit than the reuse of software. To obiain this benefit the engineering
mmmmammwmmmmom“bmm
information available in the organization. The approach is:

- Domain analysis 1o consolidate crilical analysis and design information for product famifies.
- Representation of reusable information in Structured form via ‘Technology Books'.
- ‘Graft-Host’' method for reusing design information and managing datebases of constraints in a
systematic and reiable way.
Referances: Guiliemno Asango, Eric Schosn and Robent Petengit

Proceedings
May 17-21, 1983 Bakimore, MD, pp. 231-242.

Quillermo Arango, Eric Schosn, Robert Petengli and Josiah Hosking

The Qrat-Host Method for Design Change

Pmcsedings of The 15th intemational Conference on Software Engineertrg
May 17-21, 1993 Baximore, MD, pp. 243-254.

Quitermo Arango, Eric Schoen and Robert Pettengil

Design &s Evoiution and Reuss

Procsedings of the Second international Workshop on Software Reusabilty
March 24-28, 1993 Lucca, Raly

Lwws

Technology Book Use:
Finding an Algorithm
NS
Technology Book Use:
Finding an Algorithm

. in (1) the user finds there are three choices of algorithm for computing the CRC using the taxonomic
relationship.

. Then in (2) she follows an analysis of their space and time properties.
. She identifies multiple combinations of generator polynomials and aigorithms in (3).

. Finding that she must use CRC-16 1o maintain backwards compatibility, inspects the CRC-16 Pattermn
Algorithm in (4).
. She finds in (5) the required polynomial coefficients via a uses relationship.

. Finally, she inspects a mathematical description of the algorithm in (6) via & documentation link.

Lws

Technology Book Use:
Finding an Algorithm implementation

_4dvas

Finding an Algorithm Implementation

Technology Book Use 2:

User selects the algorithm in (1).

The implementation relation graph (2) shows there are three implementations of the CRC-16 pattem
algorithm.

Designer selects a C-language implernentation in (3) and browses the source code.

She also views the detailed documentation in (4) for the chosen implementation.

259

A

Technology Book: Tools

([RADIO Environment h

ooDB

document
boLL preparation

\

formal rationale

design history traces:
~deliberation/negotiation
—workproduct development

Technology Book : Tools
The representation s a compromise between usability and formality:

- Semantic Tags: issue, definition, assumption, imporied constraint, exported constraint,
position, design decision, unresoived, result.

- Syntactic Tags: authors, headings, equations, enumerations.
- Information Is stored in typed nodes and reiations between them.

- Information nodes are organizad into taxonomies by type:
domain entities, project entities, work products, resources, statements, analyses.

- Relations Include : history, taxonomy, derivation, aggregation, use, justification,
interconnection, ownership - as determined by domain.

. RADIO Environment (with Motif-based GUI) includes: Object oriented DBMS, DOLL (Modeling Lan-
guage), and Document Preparation.

. RADIO: provides Browser / Editor for: depicting book contents, navigation, and updating.

. DOLL: emphasizes descriptiveness and runtime flexibility, not runtime speed or storage minimiza-
tion. Nonetheless it provides subsecond response time.informal elements (text, pictures, tables,
equations) are stored as Framemaker attachments to DOLL objects.

s

Technology Book: Graft-Host Method

Graft ‘_ Target in Host
Analysis Analysis

Reconcile

/\

Design

N

Impiementation implementation

Reconclle \
/

Reconcile

/\

Technology Book: Graft-Host Method

Helps make design consraint management a systematic and reliable process.
Host : System to be changed.

Target : Subset of the Host aftected by the change.
M:Pwﬁmmmmum
Reduces risk in change by providing guidance for developing change plans.

Reduces need (via lechnology books) for designers 1o rediscover design rationales.

Fewer design iterations; more errors caught more early.

Shorter training times for engineers and maintainers.

LILEANNA: Key Concepts

forallX: - Support for Architecture specification
construction '

~ Support for version and configuration
management
Q = Support for high level abstraction sand

composition

LILEANNA Key Concapt

. LILEAnna is a Library Interconnect Language Extended with Annoted Ada, which is intended to sup-
port high level absiraction, composition and reuse of Ada Software. LILEANNA supports the design
of parameterized components and soltware architectures.

. The language was designed 10 allow certain automated analyses based on formal specification of
preconditions (using the Anna foolset); Automated selections, composition, tailoring and instantiation
of Ada code from LILEAnna specification and pre-existing Ada code.

. LIL and Anna were pre-existing languages that have been refined and merged.

- LIL is language for designing, structuring, composing, and genemating soliware systems.

- Anna is a language extension of Ada to include taciities for formally specitying the intended
behavior of Ada programs. It is designed 10 meet a perceived need to augment Ada with
precise machine-processable annotations 0 that well-established formal methods of
specification and documentation can be applied 1o Ada programs.

. References: Tracz, W. “A conceptual model for megaprogramming” ACM SIGSOFT SEN July 1991

. Tracz, W., “LILEANNA: A Parameterized Programming Language” in Proceedings of the Second In-
ternational Workshop on Sofiware Reusability, March 24-26, 1993, Lucca, ltaly

. Goguen “Reusing and interconnecting Software Components” in Domain Analysis and Software sys-
tem Modeling Prieto-Diaz and Arango

. Luckham and von Henke "An overview of Anna a Specification Language" for Ada * IEEE Soltware
March 1985 285

Lws.

LILEANNA: Key Concepts

* LILEANNA provides mechanisms 10 specity abstraction and composition of Ada packages. It has the
LMWF&I«.WMNMNMMWMW instantiations

mmmmmﬂm'nmmummwammm

. Supports Architecture specification and construction of a executable Ada application with two fea-
tures VIEWS and MAKES.

- VIEWS allows users {0 spacity how generic parameters, exporied services, and (for LILEAnna
packages) imported services are bound 10 (provide by) other LILEAnna theories, LILEANMa
packages, Ada packages, and the objects exported by them.

- MAKES allows users 10 specity how Ada packages can be composed and instantiated 10 form
other Ada packages, where VIEWS can be used fo refined and control this process.

. Both VIEWS and MAKES allow partial bindings, which if cartied through the MAKES process results
in Ada generic packages.

. Existing packages may be manipulaied through packages expressions specify the instantiation, ag-
gregation, renaming, additions, elimination or replacement of operations, types or exceptions.

. Pmdeswbrnmbnmmmmwmm
. Provides muitiple controlied inheritance
. Supports the structuring and composition of sofiware modules from existing modules.

A

LILEANNA: Tools

front LILEANNA
end

tools

Ada
compiler

Lws

LILEANNA: Tools

LILEANNA can be programmed in directly or used with a variety of front end fools. The LILEANNA
translator is part of the IBM DSSA Avionics Domain Application Generation Environment. A graphical
composition front end ool has aiso been proposed.

L.

wRapide: Key Concepts

| + Exscutabile srchitecture definition language.
+ NModels time-sensltive, concurrent and

distributed hardware and soltware systems.
+ pRapide Festures inciude

- event patterns

« Tool Supported:

- CPL - Common Prototyping Language front-
ond complier which transiates jLRapide
source code Into Ada.

- IRS - Mustirated Run-time System for the
viewing and printing of partiaity ordered
ovent traces genersted by nRapide
computations.

= POB - Partially Ordered event trace Browser
for the viewing of pRapide computations as
they occur.

wRapide: Key Concepts
Event patterns are expressions that define sets of events and their dependency and timing relationships.
An event signifies an activity during system execution. Event pattems conlain information such as threads
of control, data values, time interval; modelled as a tuple of values. Execution of a distributed system is
modelied as a partially ordered set of events, called a posef, based on causality or timing relations.

An interface gives an extemnal view of the behavior of a type of component and defines how components
of its type react to events by changing state and generating new events. Members of a component type
are called objects.

Architectures define the flow of events between interfaces. An architecture consists of a set of components
(objects of some interface types) and a set of ruies. These detine how the components communicate by
senxiing each other events or calling each other's functions. Communication rules are defined using event
pattems.

Mappings define how architectures are related. One can then define how events in one system correspond
10 events in another. In the domain of design hierarchies refinement mape serve to express compiex low
level simulations as behaviors of a higher level. The mapped behavior is much smaller and simpler.

References

David C. Luckham and James Vera uRapide: An Executable Architecture Definition Language April 7, 1983

David C. Luckham and James Vera Event-Based Concepts and Language for System Architecture March 16, 1993
Rapide-0.2 Language and Took-Set Overview Doug Bryan February, 1992

These and related papers are available via anonymous f1p 1o anna.stantord.edu. in /pub/Repide

wRapide: Example
« MySpeaker, COPiayer and TapePiayer are
components. .

« There Is no dependency between any
event in the first sequence and any event
in the second sequence.

« Given this particuler execution poset, the
system user invoied Play before Stop.

WA

wRapide: Example

in this example, paths from AudicOut events 10 AudioIn event indicale communication fom COPlayer
and TapePlayer {0 MySpeakex. S0, they complete the definition of this architecture - since an architec-
ture defines how componenis communicate by means of events.

Note that for this example, there are no timing constraints between any of the other events, which means
there is a possible design flaw: A user could invoke Play then Stop, but still hear noise because the events
depending upon Stop could overtake the events depending upon Piay.

Using mapped behavior {from complex low-level systems 10 simpler high-level systems) yields these ben-
efits:
. Fadl)itatesuﬂemmd'ng.(&wapprmﬁmdmpphgsmdmdunmm&awmaon
to 5.
» The formal constraints of high level architectures which capture design requirements can be
automatically checked when low-level simulations are “mapped up”.
« Emrors in the mapped behavior can be traced back.

2

~Lws

Architecture Based Reuse Tools: Summary

Features found in tools:
- easy access to large amounts of knowledge
- problem space -domain specific semantics
- solution space - architecture
- assistance - person In the loop
- method accompanies tool
- rationales and trade-offs
- composition - components and horizontal domains
- language and graphics oriented
- some tools biased toward an architectural style
- requirements, architecture, detalied design, code intermingled
- evaluation through automated analysis and simulation
- Ssource code generation

- Integrated tool sets
- knowledge acquisition support
- cooperative design

_Aas

Architecture Based Reuse Tools

It is difficult to draw a coherent piciure from this or any set of tools b ause architecture based reuse is still
an emerging area but some of the trends are clear. One major trena is the capture of large amounts of
problem space (domain specific context) and soiulion space knowiedge in organization wide knowledge
mssmmm“wmmdmmwmwwmmmm
assistance 10 help apply that knowledge. There is still a fension between formal and informal
representations. Another major trend is the emphasis on capturing rationales. These rationales provide
clues that promote conformance 1o an archileciure.

Some tools clearly work on the assurnption of an undertying architecture style. Others allow the user to
follow their own architecture style. The 100is do not tend to limit themselves just o representing
architecture. They ollen include detailed design, requirements and code.

1t is difficult to predict winning Wends. Tool integration will continue to be a major goal. Tools that require a
lot of knowledge need 10 support acquisition and storage. Since designers do not work aione on large
systems we should see increasing support for cooperative collaboration.

e

_

_Lxus

Central Archive for Reusable
Defense Software
(CARDS)

Session V
CARDS Approach to
Reuse & Software Architecture

16 November 1993

U s

Roadmap for this Session
= CARDS Scientific ' gy - Architecture Task Force -
_ WN‘?&W Domain Ilodolln'e.
Representation
CARDS Engineering ey, Somponent Quaiification

CARDS Transition-to-Practice —— :m

m

_Avus

Presentation Overview

During this portion of the seminar, the CARDS approech to Domain Engineering activities as they relate to
software architectures will be discussed.

CARDS Phase 1 focused on the mechanics of Domain Engineering activities, making sure the infrastruc-
ture hardware and software and fibrary modeling processes function correctly.

During Phase 2, CARDS focused on refining the processes of and developing prototype tools for domain
specific component qualification and system composition.

For Phase 3, the CARDS focus is on architectures. An Architecture Task Force (ATF) was constituted with

the goal of determining the best processes for capturing and representing architecture information in the
library framework.

Throughout all the phases, CARDS has documented and transferred the information through its formal de-
liverables and franchising efforts.

A

Architecture Task Force Context & Goals

archRecture reuse W ATF Goals
sominer and oovering “domain
» Formalize the CARDS modeling
[approach for software architec-
—| ATF |+—d
nology : :-M - facilitate franchise
l orte implementations
- basis for reuse tools
KAPTUR 2= SAR « Gather and synthesize informa-
tion for:
% f oy - Reuse Adoption Handbooks
= ey - Evaluation of current
technologies (e.g. UNAS,
KAPTUR, etc.)
- - Architecture Seminar &
Workshop
| -
g w

Architecture Task Force Context & Goals

CARDS has: 1) Basic technology, model base with different views of the knowledge; tools (e.g. browser,
composer, qualifier) that work off the base and 2) Process for certifying components for a domain (see later
slides) and modeling the qualification information.

CARDS needs: 1) ‘Good” Soltware Architecture Representation (SAR), and 2) Semantics for the integra-
tion of muttiple architecture views.
Consi ions:
» What abstractions are needed 1o support:
- automated component qualification and
- gystem composition?
« What information, technology is needed to support refinement and composition processes;
system design and analysis processes; procurement, etc.?
+ What technologies are available for architecture-centric reuse?

- how do different fechnologies “fit?”

- what are the invariants which allow representation and tooling diversity?

- What approach shouid CARDS adopt 1o
- support systematic modeling without requiring an advanced degree in Al?
- provide a conventional, non-Al interface 1o the CARDS model base?

A

Approach: ODM for Software Architecture Representations

DA process (Tellored ODM)
m
MODELING MODELING MPLEMENTATION

SetContext Model Develcop SAR Use SAR on
Doman Domain Solanee e oplanatory real architec-
CARDSSAR examples
inegrate | innovate
Moadels &
Data Sources Interpret
Generate ¥
radeoft Creale
Scope Data Model Characterize a
{Domain Data Gustomers Analysia Preecriptive
of Focus Model
Pre-selecied) Creats
Models Rescope Select

281

JOTST OO OT0 N TOTT OO0 O0S RO OTEa S UTO U OETUN oSO hU O OOTSuus U0 OTS O URuUTTTUR TR TN
Approach: ODM for Software Architecture Representations
Organization Domain Modeling (ODM) is a STARS Domain Engineering methodology. ODM is based on col-
laborative, team-based modeling involving all the “stakehoiders® of the domain. ODM provides the ability 1o map
points of commonality and difference without trying to work or resoive allernatives oo rapidly. There i method-
ology support 10 model altemative “views" ol the same information. ODM views the domain as the defined scope
of reuse.

ODM has two distinct phases, descriptive modeling in which commonalities and difierences are modeled, and
a prescriptive phase where the modeling represents decisions and commitments to functionality to be supported
and expresses the range of variability
Note: ODM presumes the definition of domain put forward by Arrango & Prieto Diaz that says: “A body of infor-
mation is considered a problem domain if:

+ Deep or comprehensive relationships are known or suspected with respect to some class of

problems

« There is a communily that has a stake (that is, stakeholders) in solving the problems

* The community seeks software intensive solutions to these problems; and

» The community has access 10 knowledge that can be applied to solving problems™

« And Software Architectures fits every one of their criteria.
Relerences

Mark Simos, Qrpanizational Domain Modefing, STARS Technical Report, Unisys Corporation.

Guillermo Arango, Prieto-Diaz, R., “Domain Analysis Concepts and Research Directions,” in Domain Analysis
and Systems Modeling, IEEE Computer Sociely Press, 1991. iISBN 0-8186-8996-X.

282

1 s

~Las

Why ODM? A Documentable Survey & Synthesis Method

Separstes and Enforces

the “whet it is” .

from the “what you want it 10 be”
=% * Domain Lexicon

Supports impartiality
- Domain intensional Definition based on observation

2 focuses modeling on what you can ses
£ | | - Domain Extensional Definition .]
§ - exemplar set Atiows CARDS 10 adopt & “Don’t kvent Here

-re ntative set
I ™N

=== « Domain Stakeholder Model

}’Amhlncmn-md

- Domain Interconnection Model (\:“‘:m/

s'I - Domain Genealogy Model /{,,,m,; \

s

Why ODM? A Documentable Survey & Synthesis Method

The descriptive phase of ODM is intended 10 focus the analyst on describing what the systemny(s) is and dis-
courages “creative” enhancements and personal bias (this is left to the prescriptive phase). Hence, obser-
vation of exemplars in the domain of analysis is focused on what exists and what can be seen. So rather
than trying to obsarve and synthesize all at once, impartial observation allows an objective view of the do-
main exemplars. For CARDS, this approach is atiractive insolar as we can collect as much information about
sofiware architecture representations and not have 10 lry 10 re-invent, or invent on our own representation.

L.

Why ODM? A Documentable Survey & Synthesis Method

Organisstion Domain Modeling (ODM), a STARS Domesin Enginesring methadology, was selecied and isiiored for determining the
CARDS software archilecture reprassntation (8AR). The Domain of Focus (DOF) was pre-asiected, an annotaied bibliography com-
pilad.

Domain Lexicon Sources inciude: IEEE Sui §10.12; Garian & Shew, Penry & Wolt; Seunders, Horowitz, Miszive; Walinau, eic.
intensional Domain Definition = Rules for inclusion and exclusion: A representation i included in the SAR domain if it is a design
represeniation for at least some aapects of soliware architectire. A repreesniation is not inciuded in the S8AR domain ¥ & focuses pri-
marfly on requirements, cletalied design, or aigorithms.

©xtensional Domeln = Example SARS inchxling the Exemplar (Core) set: KAPTUR; UNAS/SALE; Booch Object Orierted Dasign;
Slatemnate, p- Rapide; LILEANNA; QAD...; Borderine: Garian & Shaw tsaonomy of archilecisre sty:es; Counter st requirements spec-
Moation langusges; POL; programming languages. A represeniative setis a sibeet of the axampiar est which is analyzed in detal. itis
the basis for the desoriptive model of SAR fsallres. The cusrent represenistive set is: KAPTUR; UNAS/SALE; Garland & Shaw taxon-
amy of architectural styles; ROSE-2; u- Rapide; LLEANNA; DCDS/RDD.

Domain Stalsholder Model provides context of how an SAR is related 10 rolss of pecpie in & software arganization. The reuse tech-
mology provider develope/maintaina the SAR, develops Kols and provides tschnology transition. The domain angineer represents the
domain specific solware architschure (DESA) n the SAR and cquaiifissbuilds components based on the DSSA. The appiication engineer
uses the DSSA and ools © bulkiAnaintain systeme.

Domain Geneslogy Model provides historical information on the development of the domain (useiul in descriptive modeling).
Domain interconnection Model shows the reistions between domain of focus and related domaeins.

wmumdumdnminmmmhm.mummmm
sized Into a prescrigtive madel. In this case, the prescriptive model « the software architechure repressntation (SAR).

Requirements for the Prescriptive Model (SAR): must tacilitate architeciure-centric reuse; must represent moat DoD software archi-
wctures; must support interactive composition of sysiems; must asaist component qualification; must be encodable in STARS Reuse
Ubrary Framework (RLF). aes

WA\

This page intentionally left blank.

W

Lws

ATF Summary and Status

« Domain Definition and Scope:
- first step in formalizing the CARDS modeling approach
- provides technical input to:
- Architecture and Reuse Seminar
-~ Reuse Adoption Handbooks
- Evaluation of UNAS and other similar technologies

+ Descriptive modeling in progress

« Plans
- Complete ODM process on SAR domain
- Develop explanatory examples
- Use SAR on to describe real systems

287

ATF Summary ——

To date, the CARDS Architecture Task Force has completed the Domain Definition and Scope for the sofi-
ware architecture representation domain. Early resuits of this work are being presented at this seminar and
workshop and is also input to the CARDS Reuse Adoption Handbooks, 10 our tools evaluation, and to our
domain engineering activities in the Command Center domain.

Descriptive modeling of the domain of software architecture is in progress. In addition to the coordination
during this seminar, CARDS is in contact with numerous reuse organizations. The CARDS program wel-
comes the opportunity to collaborate with interested DoD, academic and industry partners.

The ATF plans to complete the ODM process on SAR domain, develop explanatory examples and make
the results part of the CARDS operational library.

Las

Roadmap for this Session

CARDS Scientific . « Architecture Task Force
Domein of Software Architecture
Representation

« Com Qualification
s CARDS Engineering ooy * COMPpONONt

CARDS Transition-to-Practice —, Hendbools

This page intentionalty left blank.

s

A Context for a Model-Based Approach to Reuse

» Concept of “ibrary assistance” varies by
perspeciive
— « Component-based ibraries
_-i::ﬂ, 5"3;'""' - organizad for search and retrieval of
§ |(rict compoation) (design refinement) individual reusable components
' = - highly-developed, effective search
- — mechanisms (relational)
H Componen M - wealmess: parts-orfentation loses
B| Oriened ' Ortented context information
i « Model-based libraries
Component-based Model-based - organized for talioring and adaptation of
g Libraries Libraries domain modeis
——_ - imowledge representation and
— conventional engineering notations
g mm Domain - weaimess: hard 10 bulid and get buy-in
+ These approaches are complementary
- need models and components
- “certification” vs. “qualification”

A Context for a Model-Based Approach to Reuse

CARDS represents an alternative technology approach 1o reuse libraries, one which is more focused on
describing the context of components (their intemrelationships and their relationships %o design, require-
ments—i.e., a domain model and an architecture). We have found it useful to distinguish two classes of
reuse: a model-based approach, and a component-based approach. The model-based approach
(CARDS) pursued by CARDS atiempts 1o capiure domain knowledge as formal models, and atlempts to
use this encoded knowledge 10 automate reuse through the use of knowledge-based assistanis. it is also
possible to consider mode!-based approaches based on formal methods.

Note that component-based libraries can be domain-specific or domain-independent, while model-based
libraries tend! to be domain-spedific.
Also note that these approaches are complementary. Model-based kibraries need components to work,

while component-based libraries could develop large component populations in anticipation of encoding
knowledge about their use in various conlexis.

Examples of componeni-based kibraries: STARS/ASSET, DISA/DSRS
Examples of model-based libraries: AT&T LaSSIE, CARDS, NASA/KAPTUR.

32

A

P
Model-Based Reuse: Certification and Qualification

Component-Based Perspective Model-Based Perspective
Ohject Facus:
« what ikind s K7 « what uses it?
« what doss &k do? - what does It use?
« how good is It? FORM » when, why Is R used? CONTEXT
 powertul naming scherme ,.q_,.mm“.“l
-mwuu with with “where to find it
tofind "
19 iy
- the process for determining whether - the process for determining the degree of
a system or component is suliable “fit” between a component (form) and a
for operational use. perticuiar design (context).
“Svom: Slardiad Glossery of Scfwere Bnginesring Terminology, IEEE St 616.12 1900 « CARDS Dafirition

s

S0 U OO TP O OOV VO TV OO URT T USVTTOOR
Model-Based Reuse: Certification and Qualification

While Certitcation measures the goodness of a component in & rather generic tashion, Qualification of a
component in a kbrary provides assurance that this component is suitable for the domain.

The focus that component-based and model-based reuse libraries place on objects is fundamentally dif-
ferent. In a component-based approach, the emphasis on components in the library focus on “what” the
component is and how “good” is it. This approach serves as a solid foundation in developing a rich and
powerhul ciassification scheme for equating “what the component is” 1o “where 1o find it” allowing the de-
velopment of sophisticated mechanisms %0 search and retrieve components maiching the search criteria.

In a model-based approach the focus is more on how the component fits in the application domain for
which it is intended to be reused. in this approach the emphasis is on “what uses it” and “what does it use™
which is an infent (0 preserve some or most of the context information lost in component-basad approach-
es. Additionally, the model-based approach emphasizes on the “when” and “why" a8 component is used in
the application domain where the infent is 1o tie the operational context or requirements for a components
use. This approach serves as a foundation for semantic search classification schemes which relate how a
component is used to “where fo find if".

While CARDS Libraries adhere to a model-based paradigm in support of domain-specific reuse, CARDS
befieves that component- and model-based approaches are complementary, not diametrical.

294

A

Genealogy of CARDS Qualification Process

Software Reuse
initiative Libraries

Genealogy of CARDS Qualification Process

The CARDS qualification process was synthesized from PRISM, ASSET and DSRS (RAPID) certification
processes and refined to suit CARDS’ domain specific library approach 10 reuse.

Reuse libraries, like DSRS and ASSET (which tend o focus more on components), are geared more fo-
wards a certification view of reusable assets. The CARDS library (which tend o focus more on the form
and context of components) is geared more lowards & qualification view of components. This does not im-
ply that component-based libraries are purely certification oriented and conversely that model-based librar-
ies are purely qualification oriented. The CARDS Qualification Process recognizes the complementary role
that certification and qualification should play in the assessment of components for reuse libraries.

Clearty, a component-based library may not be so interested in the “domain”, or context, that a component
is infended to operate — for those qualification does not have a role. However, it would be il conceived for
a model-based library 10 totally ignore cerfification issues when qualifying a component for a domain.

296

Qualification Process

A

For Qualification the emphasis is on domain criteria and generic architecture. For Certification, the em-
phasis is on general characteristics such as reliability, maintainability, and portability.
The Qualification process was deveioped for the Command Center domain, but is applicable 1o other ver-
tical domains with large grained COTS/GOTS/public domain components. The component classes repre-
sent horizontal doviains. The qualification results are modeled in RLF and used in the qualification fool,
sysiem composition 100l. Evaluation reports are also available in the CARDS kibrary.

Duwring the Iidentification phase a list of potential products suitable for the domain is compiled and infor-
mation required for product screening is obtained. During Screening the list of potential products is prior-
itized so that more delailed evaluations can be performed with a high acceptance rate. Soltware
Development Folders (SDF) are produced for products which pass screening. Products which do not pass
screening are archived. The purpose of the Evaluation phase is to measure the selecied Configuration
Htem against domain and common criteria and 10 produce the evaluation report.

Domain Criteria measure components against the domain and generic architecture (i.e. the “form, fit, and
function”) and are divided info component constraints, architectural constraints, and implementation con.-
straints. Domain criteria are determined for each component class (horizontal domain), and selected do-
main criteria marked critica) for vertical domain (command cenler). Criterion sources include: DISA
Command Center Design Handbook, PRISM reports. Common Criterla measure domain independent
evaluation of: refiability, maintainability, us: ~aturity, portability, and cost.

Qualification Process

298

Qualification and Architecture

improvements
(e.g. befter constraints)

Architecture Qualification
Refinement Process

feedback
(e.g. better designs)

WA

Qualification and Architecture

There is an imeresting interdependency between architecture and qualification, which can be expressed
as & positive leedback 100p.

Architecture Refinement can be thought of as addressing three aspects of architecture: 1) the theory of
software architecture (representation, evaluation, processes, elc.); 2) a specific application architecture/-
design; and 3) the manner in which CARDS represents the application architecture in the CARDS library.
As a resuit of undergoing qualification efforts, feedback can occur:

Architecture Theory: befter understanding of the evaluation of non-functional characterislics of software
archilectures.

Application Design: a tuned design which expresses more trade-off information regarding the selection of
components

SAR: a tuned representation which reflects advances in theory and capture of new and different kinds of
trade-off information.

Lws_

Model-Based Approach to Reuse
+ Model contains information
- about the domain
- about the components
. Formal model of domain products
—~ It 2
- long-iived domains
- reuss at ditferent phases of
tmm nu-m;yn systems-engineering life cycie
Prasmowork - development of multiple reuse
applications
- g’ﬁ - ‘components In, systems out’
EEEE * Diflerst approaches 1o formal
et ...E - domiain fanguages
- module Interconnection
languages
- expert system shells

_Avus

Model-Based Approach to Reuse

The CARDS program has adopted a model-based approach to developing reuse technologies. More spe-
cificalty, to be effeciive, our approach i 10 define our library model in the context of a domain, initially Com-
mand Centers. This slide depicts the architecture for a domain specific, model-based, reuse kbrary.

The library store “warehouses” the components stored in the library. The library model, or domain model,
captures the products of domain analysis and defines the relationships between the components specific
to a particular domain. Reuse tools, which leverage the information and relationships encoded in the brary
model to support a number ot gervices available to CARDS library users.

The domain model gives us a formal encoding of the relationships between the requirements, architecture
and implementation. The encoding can become the basis for & kibrary framework in which 1o build applica-
tions 10 leverage those relationships and perform a variety of services. This is vitally important in post-de-
ployment maintenance as those inifially involved in building the domain model, defining the system
architecture, and building the implementation are most likely not the individuals that will be making modi-
fications 10 that system throughout its kfe cycle.

The focus of the domain model in a domain-specific reuse Ebrary is to bring together all the information
that went info the architecture and implementation of the system. The library then becomes a vital tool in

Additionally, CARDS has employed the STARS product, Reusabifity Library Framework, (RLF), as the
modeling paradigm to support the encoding of the domain model and the applications which access that
model.

L ——

s

Model-Based Approach to Reuse

—— [t

Rouse Librasy
Famowark (RLF)

apen-ayainm
fbrery
-4

Model-Based Approach to Reuse

The CARDS approach to library modeling is to characterize the domain model in terms of three sub-mod-
els, each describing different kinds of constraints:
. requiremem constraints - for instance, those imposed by the DISA! Command Center Design
Handbook (CCDH);
« domain architecture consirains - those constraints imposed by a specific architecture
implementation such as the PRISM? Generic Command Center Architecture (GCCA); and
« implementation constraints - those constraints imposed by a specific COTS? 100l or software
wrappers needed to integrate reuse components.
Also expressed are constraints which map between those sub-models:

« allocation constraints map between requirements and architecture - thus showing traceability
how a spedific part of the architecture satisfies portions of the requirements;
* composition constraints map between architecture and implementation - detailing how the
architeclure is satisfied by a particular implementation brought together from the library store.
The goal of domain-specific reuse library is to elicit reuse at higher levels of abstraction: requirements, ar-
chitectures, systems and subsystems as well as components. This increases our ability to readily adop!
reuse for a specific dormain.

Significant benefits are achieved by focusing on model-based approach to capture the architecture and
constraints o move the architecture along, avoiding the tendency of erosion and drift.

! Defense Information Sysiams Agency (DISA)
2 Porable, Reussble. Integrated Software Modules (PRISM)
3. Commercial off-the-sbelf (COTS)

s

Model-Based Approach to Reuse

K

s

Model-Based Approach to Reuse

Thig slide provides a more realkistic view of where CARDS lechnology is moving with respect 1o domain-
specific reuse libraries. The Command Center domain is our initial domain, but other domaine are planned.
Theretore our reuse tools are designed 10 operate on any domain model.

The first prototype for the CARDS CC Library reuse tool, the system composition application, supports rap-
id inlegration. The system composition application works by eliciting input from the library user in order to
identify the constraints that an operational command center must satisty. The use of deductive inferencing
in conjunction with the constraint network atiows the system composition application to query the user for
the minimal amount of information necessary 10 support automatic composition of a prototype system. Al-
though the system composition application is targeted to the development phase, its computational model
will apply 1o post-deployment support.

Other reuse tools envisioned, that 10 apply themselves 10 poet-deplioyment maintenance, are a change im-
pact analysis and component qualification application. The change impact analysis appiication buitt on the
allocation constraint network would 8ssess changes in requirements on the architecture. Further, on the
composition constraint network, it would assess the impact of changes in the architecture on the imple-
mentation. The component qualification tool would aiso leverage the composition constraint network to
SUQQest alternate components in an implemeniation during adaptive maintenance.

Also important 10 note about this slide is that there is not one library store for Command Centers and an-
other kibrary store for the next domain. Rather, each library model references those components in the
store which are qualified and applicable for its’ domain. it would be very likely that domains which both
share the concept of a database management system would both “point” to the same component in the
library store which satisty the constraints placed on DBMSs.

306

A

System Composition

§_,m::: _,C Elas
- N\

)

Generic
Architecture

weisis

System Composition

The objective of system composition is 1o provide command center library users with fools 1o automate the
composition of new command centers, or portions thereot, based on user requirements from components
in the ibrary model. The approach is 10 apply user input 10 the library model to produce prototype demon-

strations of systems, assist users in the decision making process of building new systems, and when pos-
sible, provide users with the actual software 10 build them.

This slide provides a top level view of the system composition application. There are three inputs fo the
“System Composer”: a model of the Command Center Library, target system constraints elicited from the
user, and a rule-base for system composition and heuristics for building the system. The outputs of the
system composition 100l are system demonstrations and composed systems (or portions of a system).

The System Composition Tool prototype has provided a reference for whal we expect out of a software

archilecture represeniation, that is what are the products a software architecture should be helping o pro-
duce.

P

Y A\

Roadmap for this Session
CARDS Scientific v Architecture Task Force _
Damain of Software Architeckire.
Representation
. Qualification
CARDS Engineering . _ms o ComBboaK)

s CARDS Transition-to-Practice e :m

WA

This page intentionally left blank.

ano

s

CARDS Tech Transfer in Practice

Established Franchises

Reuse
Franchise implementation

Training and Education

_Aos

CARDS Tech Transfer in Practice

The rectangles in this slide represent the CARDS Phase 3 proiect areas and how they inferact. Notice that
Training and Education span our entire project. CARDS contact with the Reuse Community atfects the oth-
er technical projects: Domain Engineering, Library Development and Franchise Concepts. The processes
and products produced by these groups is then transferred to franchise organizations wishing to establish

CARDS Tech Transfer Approach

Technical Concepts Document
Legal and Acquisition Issues Document
and many more...

313

_Ad.vas

CARDS Tech Transfer Approach

CARDS has two main avenues for transfer of technical information;, the Handbools and Franchising activ-
ities.

The handbooks include: Engineering Handbook, Library Operations Policies and Procedures, Technical
Concepts Document, Acquisition Handbook, Direction Level Handbook, Component and Tool Developer's
Handbook. CARDS is also developing Modet Contracts/Agreements and is conducting Market Studies.

CARDS reuse support services are available to Govemment organizations. Thase services include imple-
mentation of the CARDS biueprint according to the Handbooks and CARDS Franchise Plan.

L
Lan
"
-

The Franchise Approach to DoD-wide Reuse

Services and Agencies
+ CARDS seoks 10 Create
Service Elements z established reuse capebilities within DoD
l Projects | : organizations (Le., “franchises”)

? « Franchise Pian is CARDS 00l to apply the
_ reuse blueprint to DoD organizations

+ Once established, franchises may create,
manage and support use of domain-gpecific
assets

+ Franchise-developed reuse capsbilities
become part of & larger DOD reuse
infrastructure

« Goal Is 10 support, and Integrate, reuse

Evolutionary institutionalization Process

S

_A.os

The Franchise Approach to DoD-wide Reuse

The CARDS approach to technology transter includes a heavy emphasis on direct involvemnent between
CARDS and technology adopting organizations. We refer 10 such organizations as “tranchises.*

We view Franchising as a process-feedback approach to incremental adoption of reuse in the DoD. The
approach recognizes that reuse capabilities (dornain expertise, product ines, etc.) exist within DoD prod-
uct and logistics centers, and therefore reuse adoption must take place within these organizations. Thus,
CARDS provides services to support an organization in adopting reuse, but, ultimately, the reuse products
and experience generated from the use of reuse technology and methods must ke genemaied by DoD or-
ganizations. CARDS views Franchising as a means 10 initiate the transition aclivity, and the channel the
resulting products and lessons-eamed into future franchising activities.

Note that CARDS joint-development activities are not restricied to only one kind of organization. We cur-
rently have development activities underway at the National Security Agency and A ~orce Sacramento
Air Logistics Center, as well as with the Air Force PRISM program (who serve as the domain experts and
prototype developers for the major elements of the CARDS library).

s

Recognizing Franchise-Unique Context
FERGIMOUS VIR0 EMSHY DO SONWEN)
organizations

- MU*GMIII.N
commitment 0, reuse

- all of the usual socio/political variations

- Technology transition must recognize
ontry organizational diversity

- different business cbjectives
g crgspization-epecic - different starting points (capabiiities)

b Technology transition must also recognize
“w""”'m“ Q—m echnology diversity

Teuse - domain-induced technology
implementstion tallored reuse requirements
oservices implementation plan - technoiogy diversity anong DoD
) contraciors
dovelop reuse = continuous advances and evolution in
;'”" technology ond

Recognizing Franchise-Unique Context

To be successiul at technology transition, CARDS believes it is inevitable that organizaion-specific needs
be addressed. Specifically, no two organizations are in a curment state of “reuse makxity” (however one
wishes to define this concept), nor do any two organizations share the same culiure, business climate or
strategic objectives. In short, the context into which a technology is being transferred shapes the approach
taken 1o undertake the transfer.

wwnwmsmaupm.mm 3Wedmlyss.mmmm-dmbpmom

requiremets for the development of a reuse implementation plan. (Note: these materials have only recent-
ly been developed, and have not yet been appiied).

itis possible, of course, 10 assist an organization in developing a reuse implementation plan—and we have
provided setvices o the Air Force to do 80 in one instance—withoul having created an organizational pro-
file. While CARDS believes that this may make the reuse implementation pian less eflective (or at least
increase the lkelihood that the pian will be less than optimal), it is sometimes necessary fo accept such
planning limitations in the name of making even small progress in initiating organization and business prac-
tice changes 10 Support reuse.

Finally, there is aiso scope for inserting reuse techniques info an organization at the "grass roots” level
through direct prototype development efforts with organizations.

ne

Lws

CARDS Team Members

« CARDS is managed by ESC/AVS
Mr. Robert Lencewicz, Program Manager (617) 377-9369

« Unisys Corporation is the prime contractor

« Subcontractors represent a highly diverse and skilled team
DSD Laboratories
Electronic Warfare Associates
Azimuth
DN American
Galaxy Global Corporation
Strictly Business Computer Systems, Inc.
HGO Technology, Inc.
AETech Inc.

_A.vus

This page intentionally left blank.

.t

Session V1

90[108.d pue auNOelyOIY MS

il i

1 Batds (1,43]
= m 3 mm 2
i et 3 el
:an_u.__.m.l - /o1 M..o&
ekl | i i

Bupjas 1xouo0)

Bujpying Asobaje)

-mm
Central Archive for Reusable

Defense Software
(CARDS)

Software Architecture Seminar
16 November 1993

Panel Discussion

Panel Discussion
Architectures in Practice

Mr. T. F. “Skip” Saunders, Mitre Corporation
Mr. Hans Polzer, Unisys Corporation

Mr. Stan Levine, US Army Communications
Electronics Command (CECOM)

Capt Frederick Swartz, Training System Program Office, ASC/YTE

Views oxi Architecture and
Reuse

T. F. Ssunders

16-27 Nov 83

Outline

@ Goals:
interoperability, Changeability, Cost Effectiveness
® Views on Architecture
e Program Management Perspectives for Reuse
@ Acquisition management of Architectures -
- A strategy to promote Reuse
- A strategy dependent on “Popular” Standards

¢ Interoperabllity

34

325

Emerging interest in “Architecture”

e Driven by desire for:
- more changeabliity - “vertical” fiexibility
~ mors interoperabiiity - “horizontal” flexibllity
~ cheaper development - commercisl product exploltation
o Technical solution is (and has been for a long time) envisloned
(but not proven) to be associated with technoiogy that is weli
ordered (i.e. well structured, modular,etc.)
= Vertical flexibility comes from framework based system structure
» “gpen” standards for components within the system
« mix of- proprietary and non-proprietary products
- Horizontal flexibility comes from standard protocols
s “open” protocols for exchanging bits

o data slement standardization for interpreting the bits exchanged
or tranalators

- Commercisl rends are providing technology to support both vertical
and horizontal flexibil

am

“Open” Concepts -

An important distinction in definitions

e Open Systems:

- A system is “open” if it has publicly known interfaces such
that its components may be treated as “black boxes”

- A system Is a “desirable open” system if the interfaces are
supported and used by a wide variety of vendors

Note: Publicly known # publicly owned,
Le. an open system may have proprietary componenis

o “Proprietary” allows financial reward for:
- achleving large market
- improving produycts
- maintaining backward (or forward) compatibiity

. R S

3%

kg

Three Objectives for “Information
Architecture”
Changeabllity
(Vertical flexiblity)
-.---~-~v--..-c~---~.-.:‘?
...................... S Interoperability
{Hortzontal fexibility)
Cost to Performance
and Sc! le
Wmc, Seek: :::nh Changeability
exploitation - “best value™) Low Cost & Short Delivery
[m
MITRE
Outline
¢ Goals:

Interoperability, Changeability, Cost Effectiveness
® Views on Architecture
¢ Program Management Perspectives for Reuse
e Acquisition management of Architectures -
= A strategy to promote Reuse
~ A strategy dependent on “Popular” Standards
® interoperability

L7}

3%

Popular definitions for “Architecture”
(partial list)

am

¢ Organizational
- Functional - Mission tasks (subtasks) to be done
- Logical- Communications links between tunctional areas
- Physical - Resources used to executs functions
® System
- Components - Major elements of system
- Connections - Links between components
- Constraints - Environment & bshavior bounds

® Software
- Components - Major sw design relevant structures
- Connections - Data & control fiow mechanisms
~ Constraints - Performance, construction rules & resources

Different Views of Architecture -
Academic View

Academic View

Components
Connections

Constraints -

3%

33

Different Views of Architecture -
Software Developer’s View

Academic View SW Developer's View

Com Comgponents
Connections Data Flow
Control Flow

Constraints e Timing, etc
Layering, stds, etc
HW/SW allocation

Different Views of Architecture -
Software Developer’s View (Notes continued)

2

3

Different Views of Architecture -

Standard Protocol Community View
Academic View SW Developer’s View
Com Components
Connections Data Flow
Control Flow
Constraints o> Timlnlg, etc
Layering, stds, etc Profile [+—Technical
HW/SW allocation | Referen
Model

Standard Protocol View

Different Views of Architecture -
Government Standards Commanity View

vernment
oSl e -
Profile Profies iy
Data Element
Standards
i“f
MITRE

335

Different Views of Architecture -
Rapid Prototyping Community View

COTS based requirements coTs

COTS Products

MITRE
3%
Different Views of Architecture -
Architecture Preservation Community View
System Requirements, s

and Vision for Changes ~\

Custom Application
Software

kxy)

Different Views of Architecture -

Mission Organization’s View
Mission Requirements
S . cors
nteroperability -ﬂﬂ-h'ﬂ-w\"" -
Ceta Producte
Componants
2 | o row —

Conkel Rew ¥

g e \ o Py —fnes

Different Views of Architecture -
Hardware View

Components
Data Flow
Contro! Flow
Client/Serve, Timing, etc
Distributed Layering, stds, etc
Centralized »——{ HW/SW allocation
Pipelined

etc.

Different Views of Architecture -
Sommary

¢ Observations
- There may be other views of architecture

- There Is no common nomenciature for describing
different aspects of architecture

o Recommendation
- Widely recognized and accepted technique for
describing architectures Is needed to aliow
architectures to be:
¢ Requested
¢ Evaluated
¢ Preserved

Outline

¢ Goals:
Interoperability, Changeability, Cost Effectiveness
© Views on Architecture
e Program Management Perspectives for Reuse
@ Acquisition management of Architectures -
- A strategy to promote Reuse
= A strategy dependent on “Popular” Standards

© Interoperability

A Domain Managers Motivations -
Reusable products to fulfill “corporate” perspective

Cost for generic parts
bome by domain mansger

(orbettarstn- >
by COTS vendort)

-+

1.2 3 4 § .. N

Number of Different Systems
that can use common components

A Program Managers Motivations -
The missing “corporate” perspective

Generic

Total Cost
of Systems comprising
§ components
4

gt 40
1 2 3 & Specific
30
Costs of Individvsl eomponents
B ey savas 20 additional cost for first version
oeneric or spaciic esmponsriz) 1 «&—" 10 gubsidize generic parts
} coat for first systom
1 2 3 4 § . N

Number of Different Systems that
could use common components

MITRE

342

Outline

o Goals:

Interoperability, Changeability, Cost Effectiveness
® Views on Architecture
¢ Program Management Perspectives for Reuse
® Acquisition management of Architectures -
= A strategy to promote Reuse
= A strategy dependent on “Popular” Standards
® Interoperabllity

am

Current Acquisition Approach

100% oqules tor 7 Ty
Now Capabitty U wew
Y Oatvend

Avallable
Capeblity
Miasion Need \
inadequate joods

-

Current Acquisition Experience

0 e user's staloment of requiraaenis

Trends in Software Development
The shift towards integrated rather than developed products

Developed 00d01 0
I Ti
Tou‘l"'cm v me Systems
gmmd & Control
Systems
05
Business info Systems
Vce Automation
Based Systams
0.0
T—
2000
L—_ I N

347

- 48

Information System Architecture -
A Spectrum of “Buil “odes”

Full ent: rentation Mission domain orisntstion
- SRS, -
“Internet” “Unix” “Sun/OS” “Suntoois™

class class class class
Application standard standard standard standard

T Ense isgratlon &
but, requires much care mmm' Bt
and changeabliity phys'.gu A enplicstion n..!:'m

wa am

Domain Specific Choices -
Mandatory vs. Enabling Standards

Domain Specific Choices -
Mandatory vs. Enabling Standards

350

Family of options

Organization which X Partof the *PC"

organization
besed standardization b~ with unique SW

351

- g

Leveraging Commercial Products -
The Promise of “Open” & “Structured” Architected Systems

Progressive Acquisition

v [
Qs |

35

Future Acquisition Approach

100%
vemeni imitel 1o progrees]
Mbdmum‘
Avaltable
Capabitity Romiive
Wasion Need Fnprovements
[, 3
[] s 1° 1§ 2 F-]
Ysars

* Mot driven to weet 0l svatved siusien Reede

Outline

o Goals:
interoperability, Changeability, Cost Effectiveness
o Views on Architecture
e Program Management Perspectives for Reuse
o Acquisition management of Architectures -
- A strategy to promote Reuse
- A strategy dependent on “Popular” Standards
© Interoperability

354

ass

Interoperability =
Interconnectivity + Data Compatibility

e C4| systems must exchange information for system
interoperabillity
© interoperabliity implies
- Interconnection protocols allow systems to exchange bits
~ Systems within a user community have same representations
for the same information, or eise & means for translating
between systems
o Existing C4l systems send and recelve messages
~ directly when they have the same data standards and gsame
internal definitions for data
~ by using transiators, externai or internal, when they do not
have the same intemnal data representations

Data Element Format Mismatch -

Example
Prog A Prog B
You should send lighters 1 should send who?
"""":.::"""‘ Em> wiasion 10 ¥ hars?
Poshion Latitade Poshian Langiute
Lt (7 otee) RN (] soem [F)
Long (0 [omoms [(T7)
(VR imatou(s shary

3s7

Data Element Format Mismatch -
Examples
S Prog A Progd ProgC

Data Element Standardization
Connection complexity without standards - Universal Interoperability

P

: S, ;'o"&
" (.' ¢“‘. 4“"\35"

;"/ ‘ "‘ \"’ ‘>"

& S

’ :ée.'.?.’. "'q/‘.'s‘;:. X
WAL, I S
\f’:?a’,;‘.-‘é 4¢‘-‘-“~3 R

7, -

3%

LY

Data Element Standardization
Connection complexity with standards - Universal Interoperability

o

Data Element Standardization
Connection complexity with standards - Universal translator

&

BACKUP

S

Program D Architecture -

Reusable components

Technical Reference Model -
A Generic Version

.. e

Technical Reference Model -
NIST Application Portability Profile

'] information "~ Communication ‘internal] Application
Interface__interchange _Interface _ System] [o9en

a oftware,Platlo

Externat
Environment
Interface

‘Platform x1rn nvironment

.

-

Technical Reference Model -
pODNS

=)

e =

Technical Reference Model -
DISA Technical Reference Model for Information Management (v 1.3)

Applications .

Interiece (AP1)

Technical Reference Model - The Profile
DISA The DoD Profile of Standards (v 1.3)

The “Building Codes”

Bullding codes shouid be established to correspond to differsnt degrees of detall
and content (as appropriate) depending upon the “scope of the enterprise”

Broad Scope Narrow Scope 1
- Narrow Scopo 2~

Narrow Scope 3

How to Derive the “Building Codes”

Commercial a:rvl::wwe Standards & COTS Product
f P ;ﬂ Labe sssees Compatile products & sics
of Practice “popularity
Provides products Test bed !_:'“alom orope
Ostermines ad hoc Deveiop wools for architeciure preservation
standards tegacy
Pro vides g .M‘ on Boerds
plthvnytml am Publish “Bulkiing Codes™ and advisories
/ fense information Systems Agency
Determine data definitions

congistent
Recommend standards for C3 interaperability

B ! :‘ q /
Product Domain . :;':D Ad\;i:: &
Manager Determines criteria
Select Buliding Codes for building
Provide Funding)

n

CARDS Architecture Workshop

Monaey: the Architecturs Engine

Hans W. Polzer
16 November, 1993

(‘

CARDS Architecture Workshop

UNISYs

m

Money: the Diffsrentiator

@ Science versus Engineering

©® Ideas versus Products

© Specuiation versus investment

® Point Solutions versus Pervasiveness

© Littie Money versus Big Money

UNisYsS

n

(.ummwm

Architectures: Ssving Money

® Repelitive point solutions suggest common slements
@ Common slements reduce design costs an successive systems

@ Architecture adoption creaiee 8 component industry
« @lements become commercial components
« recuces component, hence system cost
campetition aiso increeses component diversity

® Utiity of srchitectures incressed by component industry
= apply to new business problems
w increased cusiomer confidence/assurance

\. UNisYs -~/

kY23

(.mmmuwm

The Money Test:

if it doesn't attract investment beyond a single product
or system, it isn’t an architecture.

L UNisYs

378

-

CARDS Archissoture Workshop

@ New Technologies cresie architectursl checes

@ New Business Models creste architectural chaos

® Candidete architectures rarely have overwheiming business
advanisges

® industry dominance by any piven architecturs not assured

Architectural Chaos

Previous architectures no longer cost-eflective

No established architeciure exists for the new technology
No axperience base for selecting en architecture

Often sugpest new business modeis

- Exampie: advent of chesp, powerkil desidop computing

Architectures embedded in business modeis
Component incussy impact

Otven tacliitated by changes in sechnology
May drive new technoiogy development

~ Exarnple: deskiop publishing

UNisYs -~/

CARDS Architecture Workshop

® Small perturbations in acceptance of an architecture can inliiate a
positive feedback loop.

©® Adoption snowballs untll economic space s satursted
® Architscture adoption rarely based on technical excelience (eg: MS-DOS)

@ Architecture must, however, be useful (eg: MS Windows)

~

Architecture Adoption:
A Positive Fesdback Loop

Percepsion of architecture accepiance is key

Moerits of architecture not always technically obvious
Markelpiace acceptance inNCreases 8conomic retum ©© adoplers
Early adopters gain move than late adoplers (as a rule)

UNisYs

3%

3

r

e

CARDS Archissciure Worlashop
Architecture Adoption: \

Driving invastment

Architecture adoption means committing business assels:
= Asa supplier
- developing components 10 it the architecture
~ busiding systems that rely on the architectsre
- buginess modeis for seling these products
- special wooling
= As s customer
~ buying products and services based on the architeciure
- business models that depend on thess products
~ custom systems that rely on the architechure
— training of staff 10 use these products
Investment transcends individual products/systems

Initial investment encoursges additional investment in same
architecture

\

Investment in “Yoreign" srchitectures difficult to justify e)
UNISYS
/. CARDS Architecture Workshop
investment Constraining Architecture W

Changes in an srchitecture are consirsined by investment
= gxisting component and systam base

= business models

« staff training

= special tooling

Importance of backwsrd compatibility of new infrastructure components
investment blinds organization lo need for new architecture
New starts more Nkely to adopt new architectures

New architecturs not likely to be adopted I it requires larpe inltial
Investment

Large compenies more likely sources of new, high-investment arch
= Requires management “vision(s)"
= Large discretionary resource base (eg, Micrasoft NT)

UNISYS

3

Architecture: \
The Road to Bankruptcy

r.ummmvm

® Dynamic technoiogy and business/socisl conditions maie any
architeciure susceptible to obsolescence

@ Heavy investment in dated architectures
= high intemal costs
= existing customer base focus
=« dalivering products not desired by the general market

® Recognition deisyed end remedial action inhiblied by sire of
investment and the degres of architectural “binding” to corporate
structure

© Swikch 1o newer technology ofien comes afier others have setablished
market positions
= recovery uniikely
« burden of oid architeciure investment stil exists

\. UNisys -~/

CARDS Architecture Workshop
r Managing Architscture as a Business Process \

@ Orpanizations need to manage architectures as an integral part of the
business process
= command sizable investments
= impact underlying business models
= can achieve business success
= C8n destroy an enterprise

® Orpanizations need to desl with muitiple srchitectures and their
interactions
= identifying and imiting the scope of spacific architectures
= planning 8 managing transition from one architecture to another

(.cmwwm

The srchitecture procsss needs to be made explicit:)
o identiy

= Bugsiness modeis that are predicated on architecture

= gconaomic foroes that drive architectural selection

= fechnology avsilabiity that drive architecture

® Mansge
= astablish architecture owners with expliclt resources
= periodic architechure assessmant reviews
= gstabiish early transition plans 1o new architectusres

® Leam
= when old archilectures become suboptims!
= when business modeis need re'hinking
= when architectral criteria need »> be changed

. UNisys

CARDS Architecture Workshop
(- Profiting from Architsctures \

® Estabiish formal architecture assessment within your organization
® Avold propristary architectures unless you control them

@ Encoursge adoption of favorable architecturss through aggressive
perception mansgement
focus on potential component suppliers
use neutral third parties as leversge
= use he media
= sell your management

® Provide architecture adoption services to your customers
® Do not overcommit to an srchitecture

= monitor architecture-driving conditions
= react to warning signs early

\. UNisYs

ARCHITECTURAL
DEVELOPMENTS

ARMY
COMMAND AND CONTROL SYSTEM
COMMON SOFTWARE PROGRAM

STANLEY H. LEVINE
DEPUTY PROJECT MANAGER
COMMON HARDWARE SOFTWARE

PARCHITECTHRE

LASACNA d

RAviag,

e SIMPLE Folm
e SHAPES

s LAYERS

‘NO CommECTIon 5

. SImrce WameEs | YIEYE AP

ACCS COMMON SOFTWARE PROGRAM

major software reuse initiative that consisis of two projects:
A - Common ACCS Support Software (CASS)
- Common Applications (CA)

BEST RETURN
ON INVESTMENT

\

CASS COMPONENTS

CASS PHILOSOPHY

FOR CSCI DEFINITION

-EAGHLAYER.IWEMGI’I‘ECTUHEREPRESENTSALEVELOF
ABSTRACTION TO THE LAYER IMMEDIATELY ABOVE

-mmmmmmavmommm
'NOTM.I.FMONSNEEDBEACHVEATAGNENBFANODE

ISOLATED AT THE CASS LEVEL

\—

PUl COMMOM SOFTWARE

~)

"ATCCS LAYERED ARCHITECTURE PROVIDES A FUNCTIONAL FRAMEWORK

"DIFFERENCES IN SOFTWARE ARCHITECTURE DUE TO HOST HARDWARE ARE

J

Di3ses
O Juse 1909

i

Flguse 1.1-). ATCCS Commos Sofiware Aschitactuss

sHi' i ' ki y

) ravnes
Ccommane
D CONTER. o w3 b rired
Fgve
amon o
mem ewm o —stam T —
PO I — aa” aa supmcm. omOmAn
s cooman. | S0, swcmoa [ommumanen |-ty o { G0 -y
BPNEAY S aale © COMMMAREN |« MG cuvmuem | cowonpey
o | Samemswr] cowmm. o rmpmrnaney | +Lomnvam | Smeece st
l st | e | s |, ansuna [—reer;
I o ey {« e
I [T =7+ swverrs
-
- L 1] AND SHARED
rnoun wewm uasce
*omANS
nanmveny SAtpna
Sorwany
rOmALTY

s
i
$

otta

CASS CODE SIZE ESTIMATES

LINES OF CODE
CSCl (X 1000)
SYSTEM SERVICES 15
SOLDIER-MACHINE INTERFACE 12
SYSTEM MANAGER | 8

DATA MANAGER 10
MESSAGE HANDLER 16
COMMUNICATIONS 27
TOTAL 88

SOFTWARE

\

CASSWG ORGANIZATION

My
5

|

(
—
\

e J

CASS ARCHITECTURE WORKING GROUP
(ARCHWG)

PUBPQSE: TO DEFINE CASS ARCHITECTURE AND THE SOFTWARE
BACKPLANE REQUIREMENTS

ACTIVITIES
- DEFINE TOP-LEVEL CASS ARCHITECTURE FUNCTIONS

- PREPARE SOFTWARE REQUIREMENTS SPEC AND ADA
SPECIFICATIONS FOR THE ITC -

- DETERMINE CASS STANZARDS AND METRICS, DEFINE ADA
BINDINGS, SELECT COMMO:t APPLICATIONS

CHAIR: BRUCE GRAY, CSE

_ N y

TRW

Methodology*

Near Term Architecture Definition

CDT

* Ao shown (n B V0.1 Thin Sipec Addsndum

[N i

mw_) _: 1

Tl il |
z*_ __ “m_)
el) E il _mw _ i
* _ : :..r.l _.“s
T i
_w_mw ____ W il | atll] i i il

il . .

= {1

| 8 ~

i ul){ |

o ~nt

CnT

Objective Architecture Definition
Method

ology

72 4

OABS 068 § hiuy $90Y) GABS ADSU Bivy 1001)
"GASS shal” Soguistmenin oo —
Smsess, subsinsesn, Shjsnt Sthesuingy Seamtptian
i e, S, Stgees
V4 Swsugh V4 Rgmn ot Puliie Opomaines Liss
Snfaten
Aoguts @ Ghesk Mapping

"

CDT CASS Objective Architecture 7
CASS SURLAYER 2
atwans MoK e [a0 wamon
= | e | e | [
B | &2 = s
e e
a1 . Pouom g by Cusn
— | [e | [EEa o
o "=-""_ 2—":_:""".‘_
Vv Queliguasinn
'.'.‘.-..-.‘m‘ orve
— — POyE————"
= = == =
- Gy P Yot - s e =
o gy =y
~ Wtmtbon Owesl

Comparison of Near Term Arch with sss
T Objective Arch TR
Archisechre md Numbero! | 885 Date | versions Poascn for dierences
Wil Maar Torm 13] Dec 1901 | VirSorme ot
Axhhacase v
Rovissd Newr Tom | 19 « Dec 1981 | ViiSome of | Broke BCS o separate
oty T | et
COT actes o movod b
blocks
Chlective " - May 1981 n Wwough | 18 Chjects Ackied er v2
3 towsr Objects de 1o
rouping into ueer
sslectatie Objects
© added cbjects result o
hin spec comments
NN i
%8
CDT Product Availability Issues T
* Issue: MCS and AFATDS products appear to be the best match
for CASS requirements but they will not be available when needed
to complete product evaluations within schedule
= Resolution:
- Meet with MCS regarding Loral CSCls and AFATDS to
workarounds (e.g., Beta Release, draft
documentation, etc.) for as many objects as possible
- Identify aiternate products for near term and develop plans
for upgrading CASS when AFATDS and MCS products
become avallable
L) S
399

CDT Activities T —1

\ L 14

CDT ACCS 4-Layer Architecture 5
Agplcation
Sl O3 Unigms Commen
Sefveaw Agplansimne 8V
Gyl
Set o« PR secvp SN
- PTG N G S VR
Sy os o
el [nn i w Segwun o
[P 2] CHS Opuming Sywon
[WS
O Masdoars
Gaw)
.

Accomplishments (Continu soe
T roduct Sum(mary o) TR

128 41 Products 12 Products
— ST
CDT CASS Interim Architecture smaymme
i ' nterien Architechure:
© insorpersies CASE 888 ViV2
" -
© Dosumented in “Thin Spece”
© Bosls for VO.1 and VB2 Objects

ity
I CMIERLATER
Chjestive Asvhitestrs:
© tnosrpesaines CASS 808 Vi
Rogtemeats
o Degumentad In 8900

© Basle for VLS - VA5 Ohjoets

L

0

,H"E“E[Hq

R
L
Lessons Learned o
e Object Oriented Analysis Ty
« Enhances Reusabiiity

- Focuses on identification of Interfsces
- Highlights Object Relstionships and Dependencies
- Good Toolkit Design Mechenism
« OOA Immature
- Gap Between OOA and OOD
-Roguires Additional Tectniques to Ful
aicyo" (4.8 Processing Sequences, Data Flow Diegrams,
“"""Mmenmmrmu.
* Documenting Results of OOA Produces Large Documents

Lessons Leamed uss
coT Software Reuse TRw

. nize Schedule Risk In Y When GFE
Recog! our Planning Using

« Rigorous Product Evaluations Essential
- Eliminate immature Products
- Reduce integration Risk
-mmwmmm

-&wwmummmmmaw
Porting and Development Effort Associated With a Release

u..ltmytaut.loudnonb?on-wma
.ml Joporte

from the ICC o the ALSYS complier
Are V I.argo.Samm&ndl.cMSomo
lhyao t:o‘l’gl‘v
« The Extent and Quality of the Documentation of Pmdueutobo
Ported Has a Significant impact on the Cost of Each Release

nupomm«m of Product Developers b CODT Technical
and Extent Product Developed With Naming

T —r

Lessons Learned T
CpT Software Reuse (continued) Tt

CDT Resource Allocation
for V0.2

Menagemeant and
Adminigtrative

Product Evelustion 10%

Poring and Deveiopment 20%

Imagration and Temt 10%

The extent and quality of the documentation of products to be
ported has a significant impact on the cost of each release

TR —1

' Lessons Learned ans
o1 COTS Interface TRw

« CASS Developed S/W Interface Preferable to COTS SW
interface
- Product independence

- Portsbility
» CASS COTS 8/W interface Provides BFAs a SW
Layer Buffer COTS Product Changes

CASS REQUIREMENTS DRIVEN MCS DESIGN DRIVEN

EMBEDDED EXCESS MCS FUNCTIONALITY, LIMITED IMPLEMENTATION PLEXIBILITY AND PERFORMANCE OF CASS
MODULES

ATCCS MESSAGE PROCESSING MCS MESSAGE PROCESSING
SUPPORTS PROCESSING OIFFEAENT KINGS OF MESRAGES NOT JUST USMTF

OBJECT ORIENTED FUNCTION DECOMPOSITION
LESS DIFRCULTY BN SW MAINTENANCE & TRANSITION 70 CHE2 AND CHANGES

EXPLOIT MULTIPLE SOURCES RELY ON SINGLE SOURCE
DISTRSBUTED RISK, MORE LICELY TO GET SOME OF THE SOFTWARE

ATCCS PRODUCT MANAGEMENT BFA PRODUCT MANAGEMENT
SUPPORTS CASS' BIDEPENDENCE FROM A NODAL P

CASS AS A TOOLKIT CASS AS A SINGLE ENTITY
SUPPORTS CASS AS A SET OF OBJECTS THAT CAN SE USED INDEPENOENTLY

ACCESS DISTRIBUTED PROCESSES PROCESSES IN A COMPUTER

SUPPORTS PROCESSES DISTRIBUTED ACROSS MULY) WORK STATIONS, SEAMLESS TO USERS

1 MARCH 1983 7 =2

ACCS COMMON SOFTWARE PROGRAM

DOCUMENTATION

e

(’

CASS INTER-SOFTWARE COMMUNICATIONS (ISC)
REQUIREMENTS DOCUMENT

* THE ISC REQUIREMENTS DOCUMENT ESTABLISHES A OISTRIBUTED
PROCESSING PARADIGM AND ARCHITECTURE FOR CASS

* THE CASS ISC IS ACCESSED 8Y MULTIPLE ADA PROGRAMS
(Potentially on Multiple Processors) VIA ABSTRACT
INTERFACES DEFINED FOR:

- A LOWER-LEVEL DIRECT TRANSPORT INTERFACE (BCS)
- AN UPPER-LEVEL RPC INTERFACE (Distributed Services)

DEFINED BY THE CASS ARCHITECTURE WORKING GROUP IN 1989/
1990

INCLUDES ADA PACKAGE SPECS THAT DEFINE THE BCS, BASED ON
THE AFATDS DESIGN .

REFERENCED AND BASELINED BY THE CASS SSS IN JUNE 1991

* UPCOMING REVISION PLANNED TO AMEND ADA SPECS WITH NEW
AFATDS 8CS DESIGN

\

\— — v

410

41

CASS COMPONENT BREAKOUT)

(- Aceeobwouso;:ns PROGRAM N

CASS ARCHITECTURE

ALERT nAP MESSAGE W W
Lo] ml WTRE PY ASAS P APATDS P AFATOS

ereme————————
[WIRAASE SLOCK
CASS BUBLAYER 2 (Functions)
-‘= e oot : L an d
woncenows | | -4
ST JLOCK : #: :n-v 130/80¢ 10 Bageagn
[v -4 ...’--
Cenfipantien ::-lv ~Sinege Tout Auswiniiug GITF) Suly
~Haper 09 Sapment
¥ oy ~dinasage 8t
Aug e IR 1287901 (9} way .-“1
3 ‘:—-u—-
oty oy eree]
e
[e sweacas sLooK CUNMANSEATIONS SRIVACES 50 S0
= el Lammmer
“Aiae-fnced 801 o
~ARwry TP evenge e
ey Sy iy-lned [<cesY .35 subsac
pr~—y 100 Sagmant btvm %33 Sutmet
=17 Puchec
: j-cown Sisuctery Secene Lo Santgmmi
4—1‘4. -400 Comw Qondywuiing
ottty Liver tag | |v:cieu] Toamisad | eyt
- 1 el Fmneci et iun Contre) cics {000 e Oome vy
O Frosmes [ae)1an1e
~Fosese Coiigeuie | Loreommistion Layer S rveid
ol FOPISE | §-wem ol f e]
[d | ¥]
s rred 0w sncr
s IDREWPLENENTED N V1)
i Source: [C) amarw =) ormss
oot Grom o omne [}
e s £ ovce
ey] [y
e =/,

\

ACCS COMMON SOFTWARE PROGRAM \
CASS TOTAL LINES OF CODE

moooO MO vmz—r

% Y
\TEGORY

414

415

Need for Interdependence

Implementation of a reuse strategy for a tamily
of systems/users requires more organizational
coordination and interdependence, balancing
the conflicting Interests of various develop-
ment and government organizations.

T@l@SW

A Major Problem

Pressure imposed by developing the
reusable assets while the target projects
were already in development.

416

417

Lesson 1

Technically acceptable solutions were
found for every technical issue.

Corollary: No solutions were found for
technical problems that became political
issues.

418

Lesson 2

Support from the highest management levels
makes a significant difference in the
initiation of a reuse-oriented approach.

Coroliary 1: Even small amounts of financial
and programmatic assistance will change the
attitude of the participants trying to deal with
the implementation problems.

Corollary 2: Without the unified support at
the top, the individual projects pursue their
own best interest.

TELS

419

Lesson 3

Put the very best people that can be made
avallable on the job of requirements definition
and architecture description.

The two most important characteristics for
these people are technical competence and the
abllity to work as members of a team.

420

TECHNICAL ISSUES

1. Focus on the technical issues instead of the
programmatic and budgetary Issues

2. Work by consensus

3. Develop the requirements documents from
scratch in working groups with technical
representatives of all major users (developers)

ACCS COMMON SOFTWARE PROGRAM \

LESSONS LEARNED

» Day to dsy management must be driven by an independent PM with
significant customer PM involvement.

¢ Common Software must have a separate budget line not subject to
customer PM budget cuts and user priorities.

* The PEO must control and sxpedite top level requirements management
with full customer PM involvement.

o Each PM's program must be tied to the common effort both in the
approval and the budget cycles.

« Use of common products and producing common products must be
added to a system’s formal requirements and to a PM's formal mission.

« Do not use the common modules on a specific program’s products
without first svaluating the robustness and reusabllity of the program,
(rchmctun, and design.

S _—

422

423

STRUCTURAL MODELS IN PROPOSALS

FREDERICK J. SWART2
WRIGHT PATTERSON AFB OH

424

The Training System Program Office is a wing-level
organization singularly responsible for the planning,
contracting, designing, testing, and delivery of
sophisticated, multi-million dollar training aircraft and
aircrew/maintenance training devices and systems to
USAF frontline troops. Products enabie USAF aircrews
and maintainers to train like they fight.

425

OUTLINE

History of Structural Models
Overview of Structural Models

Use of Structural Models in RFPs

Structural Modeling

« A Structural Model provides a high level
design
- structure: classes of containers for functionality
- coordination: captures coordination model which
specifies communications, synchronization and time
managemant
« Ability of the architecture to leverage
development through structure

« Reusable software architecture - a high level
embodiment of design decisions

426

o

STRUCTURAL MODELING

CLEARER
PARTITIONS

N

EASEER TO
UNDERST.

42

Structural Modeling Addresses

+ Development Cost
- simplifies and standardizes design
- provides ability to make decisions early in process
- minimizes assumptions buiit into designs
-~ promotes reusability (architecture, design,
implementations)
+ Integration
= clear picture of how system is constlituted

- early Integration harness provides complete model ot
system

- aliows substitution of real parts for models in incremental
fashion

- reduced integration time, fewer surprises

429

Structural Modeling Addresses

« Maintenance Cost
- “robust” under modification
~ more saslly understood by msintainers
- predictabllity in cost and performance

- well defined expectations of structure, composition, and
coordination

« Alrcraft Currency
-~ close mapping to aircraft design
~ well defined Interfaces to avionics components
- tolerance for data voids

STRUCTURAL MODELS IN
PROPOSALS

« Instructions to Offerer (ITO)
- Describe the structural Model(s)
- Demonstrate model(s) is complete
- Describe how modei(s) will be applied

 Statement-of-Work (SOW)
- Use object oriented methods
- Ada structural modeling
- SSR -- architectural guidelines
- PDR -~ Incremental
- CDR - Incremental

431

e

STRUCTURAL MODELS IN
PROPOSALS

- System Requirements Documents
- Modularity
- Maintainabillity
- P3l

STRUCTURAL MODELS IN
PROPOSALS

- What else
- New reviews
* Pre SRR -- Architecture Guidelines &
SDP
* Pre PDR - Structure Model Review |
* Pre CDR - Structure Model Review Il

« Guidebook
- SEI produced
- Part of bidder library

sWhite Paper on Structural Modeling

432

433

STRUCTURAL MODELS IN
PROPOSALS
SUMMARY

« Structural model is still maturing
- Based on Object Oriented methodology
« Very little specifics in ITO, SOW, and SRD

« Evaluating approach based on:
- Risk

- Performance

- llities

« Guidebook will give the basics

44

435

e

s

Central Archive for Reusable
Defense Software
(CARDS)

Software Architecture Workshop
16 November 1993

s

Architecture Forum Workshop - 17 November

Purpose:

Explore the current practice of software architectures and software re-
use on actual projects

Explore current research into architecture as a means of implementing
reuse

Overview:

Morning:

- Short presentations by practitioners and researchers on their current
work with architectures

Afternoon:

- Working session to identify common problems in reuse
implementation and develop a common approach to solutions

ar

i 4\ " -

8:00 AM
8:30 AM

8:45 AM

9:00 AM

9:15 AM

9:30 AM
9:45 AM

Workshop Schedule 17 November
Transitioning from research to practice - T. Saunde_ra, Mitre

Architecture as the framework for realizing the benefits of reuse
- W. Tracz, IBM

Abstraction and layering within sofiware architectures
- M. Gerhard, ESL

Overview of DISA Software Reuse Domain Analysis
- D. Gary, DISA

Software Architecture, Reuse, and Maintenance
- Jim Baldo, Unisys

Break

The Object-Connection-Update Architecture
- Charles Plinta, ACCEL

_Auus

Workshop Schedule 17 November - Continued

10:00 AM
10:15 AM

10:30 AM

10:45 AM

11:00 AM

11:15 AM

11:30 AM

11:45 AM

PRISM software architecture - P. Valdez, ESC/ENS
NSA Unified INFOSEC Architecture (UIA) - B. Koehler, DIRNSA

9LV Mk3 shipboard C2 architecture - U. Olsson, CelsiusTech
Systems

Architectures and the real world, based on the Army C2
common software program experience - S. Levine, Army

Break

Architectures in the CIS field - applying Christopher Alexander's
work - J. Bonine, Design Metrics Technology

0O0-based architecture use at NUWC - S. Roodbeen, NUWC

Capturing domain knowledge at NTF - T. Gill, NFT/ENS

_f—

i £\

Workshop Schedule 17 November - Continued
12:00 PM STARS demo project architecture - G. Wickman, CECOM
12:15PM The STARS Air Force Demo Project - K. Spicer, SWSC/SMX
12:30PM Lunch- 4th Floor Antechamber

1:30PM Working Groups
4:30PM Working Group Report
S:00PM Wrap-up

_us

Proposed Working Groups and Topics - 17 November

WG 1: Evaluation and Measurement of Architectures
- procurement lssues: how can many proposed architectures be evaiuated?

= design issues: what are the “architecture-level” qualities which can and shouid be
measured?

WG 2: Software Architecture Technologles

= what are the current and emerging technologies for software architecture?

- where is the “low hanging fruit” (Le., easily atiained but useful technology)?

WG 3: Software Architecture and Reuss

~ what does It mean for an architecture to be “reusabie?”

- whatls needed for product-line architeciures to sustain & commercial component
provider industry?

WG 4: Software Architecture and Standards

- what is the relationship between architecturs and open systems?

= what are areas of architecture standardization, e.g., “buliding codes?”

WGQ 8: Software Architecture and Strategic (Product-Line) Planning

- wheve In the DoD should architectures be specified? maintained? implemented? What
are the pros/cons of varfous approaches?

= how can DoD architectures, Iif specified, be used prescriptively In procuring systems

441

£661 ‘L1 33quRAoN

NOO'NET LANAOTOVIL

ISNTY TIVM.LIOS
aNV
STUNLOILIHOYV
FUYVMIJO0S DIJI0AdS-NIVINOA

3313 ay3 Jo doy wo Iw8 T, —
yoeas Jo no 3snf spasom Ljure(—
1y Sudueq-uoy -

A3opeue

(19Tng 13AnIg/way) wapion,, A J, -

$32N)NNYIIY
SJeMYOos WO FWOJIBAIINGQ *

SI2qUIIW Weay, —

goeoidde (U2} pue STe0D) —
uonugaq ~

VSSA st g °

n\l.ﬂﬂdu

R}

e

¢ ek DSSA Arena

/et g Wy .

‘31 dyunRAS
PR auygas/ajenymeysuy 0y ASojoporjam/ssecoid v o
pre ‘jemuonAme /amjponsysegu; Saypsoddus s3) ¢
‘(7qV e Ut possaido)
ampParpPe (perpsiaumeied) 0TI ¥ @
(smaia [912436) PPOTT UIWIIDP € o

. -suonyeordds ryssacons Suyppmq JOf 3A1323gR
{&oj0d0y) amyonais pestprepuess v o} pasodwod -

‘TWWOP 19T} $90IV M ANV Joj PITUIITIS -

‘(upewmop) 3sv3 Jo 3dLy ;umoRIvd ¢ 10) PasTURads -
* I0auoduwmod aremyjos jo IBv|quesse Ty

@ me Mo ﬂcmﬁﬁvn R—dﬁmmmlho-u— . Wil Traez

Modollng. Hequlnmcn
lieation. Refinement, & Evol on
' v-lidatlon. Oonﬂowulonhebge, Load, & Eumlu
Evaluation TPA/Cimflex
_ Teknowiedge

© z

*@fﬁ

veoasr waw DSSA Lifecycle ™ ‘%t

R Dmh‘ .".‘n vt
equiretients | * Domals .. Unsatlafied Con m.q
(~‘Modeling " Errors, Add
Changed/Unsatisfied N 4
Requirements Domain Reusable
Errors, Adsptations Model \ Cumponent
| Acqulslﬂon
Reference & Getterator Sety
Application System | Application Architecture
Reyuirements R eqsu'ri?:s:ients
é Definition Imported
Reusable
Application Components 5
Sys(e:l“ ion !
Specificat Applicativn
— — 0 N
4 H 3 cw
Qppllcation Zesen .| Components
Executable System
\ Prototy Constraints § r——/
simmatﬁ 2 | Appliation
Model Architecture
nsatisfied Requirements, Errors, Adaptations Applicafion

LU System

Domain Engineering D Application Engineering B¢ Part of Each

“« LAl “13 Byonag L LTI

UG MR W putey VAXVTIT)) nade) spiased

] (a03K) wrnean sepessdiy spppurg pes sonpp 1saivy IOYAY-VEST *aL 1 oty

LY
axn
il .'J_
, ey
§ YNXY
vany;), vaxv m e
. 10w v
: I
)
vouvr] Juemosd metey| | wono
{ A | I
Dy Yoy, By

{drgsuoneisy 4ovay / VYNNVZTIT|

oery

450

am

EH A0vav-vssa

e m————
- -

o ——
- ..

]

\
kY

\

e
15} vz
f~arad

=
-\ ~ .

oy
M

oo
Conpmes. J‘.‘__.
/\..r_
// §
o, {/
/
corond
STe—,
T
Cortunny “wn Poman
Pomst ey’
e

14
w /| -
'-'-'ﬁ ,
=

L N
Y) i
,m_ mﬂrﬁ.ﬂ.mhm‘ y,,.\i&r“ ma

S b= i

{ASa7en3g Juewdojeaay aaljeray]|

ium

451

452

. ¢g-121e)
JuauIjSoAUL pue autdiostp sa1mnbay e

sauy] Jonpoad Joj AemAue 31 o ®

swajsAs xajdwod 10y Lemlue 3 O(] *

S[IRAQIJ ASUIG WOWIUIOY) @

W3y st 20U YT, *

19730 ag} noyjim pood jou 83UQ) *

[ASojeuy jo[ng Jeapig/unn uapjon)|

453

oy A

835830014 JuLsauiduy Urewo(y ¢
83883001 J Surjeopopy utewo(g ¢

\Eovmm M 8 Jopuexa[y e

e
achb\ sng aremyjog ¢

aeuo[jel pi0ddYy *

¢y 30 vy ~ I8 ampPAPIY o

454

Laad! 11

§311038 §8200NS IO ®
11oddns amjonagsesyul ySS ¢

sa8enSuer] worjdiadsa(2INIINYILY @

|yoeay jo InQ 3snr spesioly Ljure(|

455

828N¢ aIeM)JOS SnoduaBoIdyBY A[niy, *

JTSWTOITAUD pajeldajuf e

{391L ay3 jo da, uo Teyg agy)|

457

(e R)

Software Architecture Workshop
for the CARDS Community

November 17, 1993

J. Chris Commons and Mark Gerhardt

ESL, Inc.

495 Java Drive

Sunnyvale, CA 94088-3510

{408) 738-2888 N

chris_commons@amtp.esl.com

gerhardt@ajpo.sei.cmu.edu
_ -)

ESL What Is Architecture? -
<. a mﬂ

o Architectures are 3 things
- Framework
- Behavior
~ The basis for extension and customization

« A consequence of a well defined framework is
predictable behavior

_ . Y,

458

459

Domain Specific Software
ﬁ;m Architectures (DSSA) m.".\

¢ Deals with sets of related problems

* Does not mean equivalent final solutions
—~ The same architectural framework

- Different piece parts that fit into the framework for
ditferent problems

- Different customizations on top of the architecture
* The architecture is a subset of what’s shipped
as a problem solution
- Customized to solve a problem

_ . J

oy Current vs. Desired Reuse
A TRW Company Approaches r7: 4

e C: -entreuse approaches just look at pieces

- . e structure and mindset of component
respositories is that all components are combinable

e An approach is needed that considers
collection of pieces
- An “architecture oriented” mindset

—~ Emphasize the cooperation and coordination of
pieces

-~ Understanding the consequences of using groups
of pieces

» Behavior
» Resources considerations
» Pathological combinations

Reuse by Scavenging

Methodology: Scavenging

L 1]

_/

ESL Current Reusg_ Process:
ATRW Company Scavenging areww
Point
Solution
Extract Component More
Point “Giue” fge- Point
Solution Parts Reposito
Point *
Solution '
‘ A “parts oriented” approach, instead of
an “architecture oriented” approach.

Tagm 6

J

¢ Interaction side effects often occur when
architectural components are arbitrarily
combined
— A “fallure” of our abstraction technology
- Information about low level resources that will be
commitied in the course of providing a service is
not conveyed
- We do not have a good mechanism to encapsulate
side effects or behavior effects of black box
components

Reuse: Components vs.
(f?"mm hamevl::rks m%
* Reuse is not just components, repositories,
browsers

* Reuse is really about:

— Generalization

- Layering

— Connectivity

-~ Non-point solutions

- Collective Behavior
e We need to deal with:

- Generality and its cost

~ Modularity and its cost ;

- Shifting complexity, layering (abstraction), and
generalization from architecture byproducts to first
class concerns

N J

ESL

L compary DSSA Development Fm\

A generalized approach for developing DSSA
is difficult:
— Generality can only be obtained from collections of
specifics.
— Bottom up approach
— Factoring of commonality
» Recurring functionality (Common modules)
» Framework or infrastructure uniformity

. /

éﬂu" DSSA Development -2 m%

¢ Tradeoff between extensible framework or
parametrized problem-based architecture
— Framework exampie - spreadsheet
~ parametrized problem-based exampie - MacinTax
- but MacinTax is constructed via an interaction rule
base on top of a spreadsheet engine!

ESL .
ﬂ“"’ Y DSSA Development -3 mﬁ

* SO: MOST important - DSSAs result from
recursive generation of successively more
abstract composite objects

- easily repeatable perceived behavior
- sasily varying access to internal sublayers

ThisisaDSSA ————»

\ and the whole pyramid is also a DSSA ! /
Togm 12

A TRW Company

Frameworks

R)

« All Frameworks are Architectures, but
not all Architectures are Frameworks

Extensions

Framework

An existing framework with extensions

can be a specific problem solution
or a new framework!

470

o

Engineering

Deborah Gary (DISA/TXED)
0N) S36-0909

V Overall Concept

 Domain Engineering is the systematic
identification of commonalities among a group of
related software systems

* Domain Engineering is composed of three major
parts:
- Domain Analysis
- Domain Design
- Domain Implementation

473

Domain Engineering —
! The Products... Domain Model

¢ Object Oriented Domain Model

¢ Identifies Common Software Objects And
Requirements For A Family Of Systems

474

The Process: Domain Desisn

Products of Domain Design

" » Domain Specific Software Architecture (DSSA)
A specification for assemblage of software components that is:
s Specialized for a particular class of tasks (domain),
Composed in a standssdized structure (topology),
Effective for building successful applications.

Minimally provides a framework for specifying the major
components and the inierfaces that satisfy the requirements. oares;

Components: ,
¢ Graphical Diagram
» Class/Object Design Specifications

» Domain Design Classification Terms

475

mRgo<“ven

wReresew

¢

e Praces= Ciomain Desige

High-Level DSSA Diagram

ThaProcess: Oosin Ocsize

DSSA - Execution Thread or ss “Ocder Request

RETAIL SUPPLY

1l

]
I
4

i

an

Class/Object Design Specificatior. - Template

the name with the domain aome. ¢.3..
MIS:Dambhase_Interface_Binding)>

*Required/Optionsl: <an
Description: car>

duw
* Reuse Guidance: <ar>

b.(llhwndﬁulmﬂ-dn prefix

Source(s): utm employing
Retplre-um (Varhm)

/ Class/Object Name: <x>) Coustraiass: N\
. This nome should reflect the se of dasa ¢ Directives/Standards: <>
standordization. lf an existing © Seftware: <cxs (from SWIHW
Mnﬂnhhmawk conswaings)>

Class/Object Design

Jhe Proceis Domain Dexien

Specification - Template (conr)

cardinality>
Message: <object_name with associased
service>

External Interfaces: <ebject_name with
associeted ettribuie>

Attributes:

Description: <resr>
Source(s): <«arn

¢ Traceability to Domain Model:

<stwibut _name>
Adapistion: <rexr>
Traceability:
* Dows to Detailed Desiga/Code:

. &pecifications)>
* Up to Domain Model):

/C tion: ﬁ
Instance: cclass/object_name with

® State Space: <sae trensition diggram/motriz>

<corpilation units (e.g.. Package

Dac'lplhl: <text>

<problem_gpace_objects,)
\ derivations>
214

. P’l“ J

478

479

—

The Laws of Nature, the Lost Wisdom of the ancients, W
and the

Common Sense of Planning:
Software Architecture, Reuse, and Maintenance

James Baldo Jr.

17 November 1993

CARDS Architecture Seminar
baldo@stars.reston.paramax.com

Unisys—/

g r@e

Some SW Maintenance Issues

+ Early 1990’s data indicates that corporate expenditures for software is
around $100 billion/yr.

» Approximautely $70 billion/yr is allocated to maintenance.

« If maintenance costs increase at 10%/yr (at the same rate as the size of
system growth), then over a ten year period over $1 trillion will be spent
on maintenance.

* The value of legucy system software is in the trillions of dollars and is
usually not economically feasible to replace.

* The documentation of legacy system software in some cases does not
exist, not adequate, or not current.

D.V. Sdclosia, ACM Sigiohk. Softwere Engiscering Noses, Wl 13, No. 4, Oct. 1993, pg. 94 - 95.

Unisys—r/

o bete

Architecture

Fatal Architectures

Unisys—r’

apies

Architecture

« Software Architecture Definition
» Software Architectures Context
« Software Architectures Benefits

2
A

III

User Hostile Architectures

Unisys—r/

Reuse

* Development of reusabie assets from scratch requires a huge initial
investment of human capital, real capital, and time that gives reuse a
loag lead time before it stars to pay off in a significant way.

* A promising potential cost effective approach is by extracting and re-
engineering them from existing software systems.

Unisys—/

fup e

Reuse

* Premise:
= A large amount of knowledge and expertise of the companies that
developed and/or use a software system can be retrieved from the
same system in different forms such as requirements or design
documents, code, test cases, user manuals, maintenance journal.

= The use of an existing software system to extract reusable assets
allows part of this knowledge and expertise to be salvaged in order to
reapply it in the maintenance of the original system or in the
development of other similar systems.

Unisys—.’

[2L

Some Maintenance Predictions

« Client-server paradigm to grow to dominate the way organizations
structure their computer configurations, both in terms of hardware and
software. The additional demands on application and system software,
data communications, databases, files, and transaction integrity (to note
a few factors), will make software maintenance more difficult in a client-
sever environment.

« Multiprocessing in several forms will become common, and expectation
congistent with the client-sever one. This adds to software maintenance
an additional dimension (multiprocessing) to be understood and
maintained. As hardware and operating systems offer ever more
multiprocessing capsbility, persoane! doing software maintensace will
increasingly have to work with it.

1993 IEEE

Confarence es Softeurs Malscaence. Paact: CSM: Ten Yours Lasey, Ned Chapin, Pasal Position
Susamweat, pg 411 - 412.

Unisys—.’

N rate

Workshop Questions

» Can software architectures, software reuse, and software
maintenance, be defined and governed by a set of rules to effectively
develop and evolve software systems?

« It has been estimated that “legacy software” is in the order of trillions
of dollars. The maintenance of these systems consumes a large
amoun: of the software budget, approximately 70%. Can software
architecture and software reuse be used to address these issues?

Solution

P
i

Jﬁ

Architectures supporting Software Maintenance

Unisys—.’

.....

JERSIUY VOV TR TR R W

Rntmpev - pemg o
Rommee)
gy o
WIS M0 Sy BRI 0y S0ug by AN e -
g momes (s 4 lggnpdy oyt o opy e sy
Ve Dogny: i 09y
o a0t esen o S e oy oa!
Sas [ran-ipensinrd wah agne
000 30404 @ e SR 28 AV Libeuie el () ey 0 Srypenny e Soymus 6 1] Sagst Sy
eamy
STopRE IR
J
Akin P gae W T g ¢
oL S0 aVa ¢ * o . L .39
QUi 9PYD

asnay pue 83NN IYIIY dIBMYOS

uo Jeunmag SQUVO
ay) Joj uonyBIUISAIG

suogynges aeowmyfes Mupsssutiine sof sopfimouyad) § preasd
Suusautduy aiemyjog 1200y

= el

‘910 ‘oauds usdo oBIB| ¥ ‘SI00P ‘SMOPUIM

:opnj3uy sjeipeyied Bujulijeap 20} pasn SRPOW jo sadwex3y
-snbseuswoy pue ‘supuezig

‘D10 :SPNIOU| SN (1IPIUES JO Seichuwx]

sjeoll Bupsauibue
10 198 & PuB (XBjL03 S} OF SANIEIRS WOISAS 8 Jo oSN
pus "sausuLIoped 'SMINNAS By} SSULIP UOHINES SIUL «
“uopsodwod 20}
S8)N11 PUS S}SPOE |0 198 HGNITHLIOI § JO UOHINIIS BY) WY
Suninses eiis @ qiyxe (suojeiuauadw) pue) subjsep «

‘ulljsap jo 81418 8 9] SISO ‘Ao PRI
{Bupyng 10 SIS 10 poyisw @ :(5551) v ‘s seisqsm]
{3INPYIY ue St JBYM

— L

¢
Sivn oprpny sayul by
n.!.ﬂu.iq..ll;w“mzl-l - P po-ing
11‘. .wr.lm-“.,ul-"ll. Iol-”ql‘!.l
§ e s 10 inash s’ 2G4 5T LIUNYS AL vt Svptape . Sufibging
S e nijes smsbheg
g L o LT 'IICIII'-I’“
T TRy S VTS Yy TSR IRy YRy Sy 130 W Y NSV
ﬁ Y
SAQNISAS BIBMYOS 2BUS 8 yBnony
] Jean o u 10 orchuexe 8dn0sB BuIOM B4} JO [0IUOD PUB UORBAIIE SEpjACd J) o
' ._ ! . sdnosB Bupyiom Ojuy S1apjacsd 8HAISS Pus
uw 81 (NDO0) PO BIPAN-UOHIGVUAT-130{AQ 9,132V oy oa B e 0] sonk .
(wswerduy pus ‘ubisep Ajjoeds ') ¢ pus BuiBuyoed JO 108 ULDJUN B S0 3 «
‘swaisds juspuadap ‘(ssepirosd s2pas38)) OP NOA
QUB/MION SADS PUS 188 'ULI0) Of POSN ‘S{IPOW 8aNidWI0I |0 Moy Pue (SUOIESI) Op O} WEM NOA WyM JO LRI
108 ¥ U} POIPOGUIS UBISEP JO BAlS 8 8] SINI3BHHII SIEMYOS poljsep oy} U0 peseq o) ydidupd BuziueBio sy ¢
-abed snojasid Apiqeueiugew BuiseI3u) PUB ‘UOHIEILIWNDOP PUE
Sy} UO UORIULAP YY) JOYS PIRPOW “87] *ABM [BUOIIPRIY Ayxoyduwsod Bupanpas ‘(swaisAsqns) 8:01ued AlARoe Ssemy0s
SI0UL B Uj SINIISHYIIE SIBM|OS S|P O} sop0ud oM BujnjuuBi0 205 8INIINANS [BINJITNYIE A8 ¥] NDO L
(01n33YIIY 3TemyYog B S 1BYM _ (IOPO [8302IRIY 1D0 01 ST IBYM
/1!! Pos—— g _J __ Supmmarbvy sesayey g L

band

a ot —y

wal SeBp wah @ Jeniiegm AP iohl L 1]
gt wy S s Snsogs st ilaguase B gnn ¢ Sopn sty oyl am 0g w

S ugt i, +aophni A Mg Sl @

MJI

»

oargt o & poun < st By oseg Poppied oy ot SRV

200 Yy e RRETT VG T SN VPR R TN

Sopuey i et 3440500 go Dl AERens
e 5p 9 ahosp 1 ihpuy .. ARG 2 aeen NP PV My
e 15 SPE B o oet wenadieg) RES 0§ WV WO TG U ARG N PPy UL

WY) Ao S0 00 mign 2 704 2)
- LK P N ’ [d

& L ad K o L
-

. “-_—p

e (AL S WN0A VS o oo e S o ety S AV IV
a3

-~ o - L o ey z...ul‘ﬂll.-
L] 31 Simpeyn)
n x; ~

0 S 0.3 200 g Jom P U Joudoyn oy wribus (4 5YIV: “ ¥
...r.’lullllclo-lillt..lt -y swpn

ey
" " "

oy Jnoes S0 2@ diad b uy V‘llt.il.vlv”lts- (B 49wy V) o ey W) WY

ey

S92 s 0 3yt e oty

P Lhomio 8 26 Poogtes ot Fuige QLY Shor ¢ PR LIV) S I
L) WSV 10 340 0 Senepss puv sepeapdds 3y u

ANTTRTEPATIN PRI S SR T SRR

-uogjsodwod uojedjidde
1921458 yym BupuiissBosd uoEIdde 8281084 0} «

‘UOYEZIUOISNI SMOLIS PUB SAEKALE] PuB ‘SWI0)
‘Suaas Usemiaq diySUC(IBIS] 1) SPUMEIPUN 18YL 100} B «

‘wesp 100} 38V

(qof 511 pip q “WeBags A19a Jou) SI0HPS PUS MEIQIENY «
‘pasn 800} ISV

ssymduie) 9p0d o

20} LOEIYIdedS »

SV »
isuopepiesaday

ﬁ N0 3y Juasazday apy o MOH
= eSS L B

%se} Liguo[injoas pus ‘Supunsuod
owg unappp Asa v s) ainjdeyose ue Bupess) 310N

poped 1k g B 1940 59038 LORBIYAAR 1813008
u uopespdde pejsadas yBnoIy) (Joulw) UO) PAAICAD

POLLIES] SUOSSS
o3 BujAiddens ASnonunuod ‘VORISE) IBILSLAISU| US Y
sweisAsqns jO JepuRWIe) 0) Ppow jrieucB Buiynse: pajddy

topowss [maush B peIBRID
PUS ‘s18d $30108 SPTUCULLOD I8 PINOO} ‘woug peddels

183u-4)0ep siind eieass paiuswetdwy pus peuliiseq

Aygeuopoun) uowwod ‘Aessedsu
20) vojiEo|Idde awiEs) O SLEd [RIBASS 18 PO

{NDO0 2y dopae(oM PId MOH

.. . iigl\

"y 14
oy oam § 8 0 g P 5P e

ronwy -
}ii‘i

b IR U i ias S il - pab

500 20 Il VG SPAIAD SIS ALPASISP 2 GgP 8 A0 st AN wi:r S W oy wpmegsedg

osey B yon Sopry
B e 9 8 Sy VY Y

- -

- g A B 9 Fmputbue)
et Sy e ks Ayt S0 seenn wen P eiga 200 VRO
popie 0y lnuwduas une sglly

v s (e et SRS 1) Y Wl Doy

ﬁ...

pebpyiq sue vogsusLadw)

pus uBsep usemieq pue ulissp pue sisiEue ussmpq sdeg

*SISPOW U SMNONIS BISMYOS

VOGS B USAS pue ‘Paanided ‘PeiRiOe] 8] Ssjadue Uiswaq

‘PEONPAS 818 $1900 LOHMUIUNIOP Pue ‘Bupse ‘Bupod
“8)9P0W U PEINICE] 828 ASH (O SjuBIOAIOD
‘paanpas s Ayxerdwod vonsanddy

*persondas Aisee pue 81qisSE28 8| 831304 1309

4NO0 o Buisn

woa] pazijeay uoag dAe}] sjyauog 18YM

Q_ o) /

wiwadey(] dwo0d] (wshsqng) NOO

Wy, .
P e smpley
ke P vasmbam) Py e "o by
eyt ANAIG2 0 PN Smavidon e 0 2pkls S0t BEORL 0 AU Avamn wing T B TR Ry
-
Prebnw g asonbgs ng YWy Wariniis sy o 0t B ool
oo es ooy do

113
St Ly put 00
o & goretes m g o XN “ - phusa; 0 vags,
WA g
vy » ps wp g Senpes
PTIE » W L
e o il
Tapengh o SR Sy I VIR I - »
s v Boapduns
~ - "
oy 2y foper e oy oy
Do ey Syl 97 By -
wasng 0 50 @ prygy 20 © Sye s piewms yo sl gt 100 5 g sppatiopd o gopasnd
-y 1 10t 1 we sempngm g Sy 2 1100 & O oY
(o 4 ~y

i — s e . "
——— e
o et T s - ——
. » SPU
S ————————
—— e
b3 T Per=

-

lli

i
11
|
|
i

i

 \

PREIE I,
P .14 - SO
R e eomn amatrny |

ajajdurogu] — saejdwa], pue SULIO]

g.}gﬂ W,

290 sxgasus)) Nuog W] MNIINEE Sueg
oy . -
==L " ~agm=g
] -
pi -2 o, .2
i) = 4n %as
H * Ay e o |4m .lh
Al ey
e W =355
O E—]
Wy dg Sy T ity
- - ‘c. “" cluﬂ
; ———y st s
] SSEESSBIR
e e a=)l\..-...ﬂnu_
ey o avet ~ ongVRTw—

pajojdwio)) ~ sejejduId , pue suL0

Bupsmsaivy sonsyoy

E5]7- B

V. puan o fupanny) Sumg 59 W, 20

ﬁi.i

den)og g

3
[- saj0N uonyedi{ddy [g13Udn)

Z- aSozu”..uc:ao:nn< [esouan
Smpaenugiug samagel g

J

01

" aghe wmva

.
AP owmIN o Jon W A iy

Mgy Sarnd vyt

el g skt IR AX Ly "WNBSE SITEN I

wepny
9 s poomy i Py Way? e € g Sapeast M) 15 QY 9 4Y Jouspy (] baned et ¥

D Sy asy SRRl ny
i“ilt}lﬂu—:ilil]‘lflﬂ-‘l’l-il
wad 12y s g & PP e pus pom Sphain apes P01 Ty
- -

ignapeniapuy yoe WS any PO 8.
Sors o ipinbym peyuits og w52 S0p 29

! -y
o { ouny, TP} 7. Wi sl st 2P 3 Eaomia | iy e sl anmwe s Snlving

Ty g voafon sk

Vg eyt
o oy ik Ju0 Sy ~wanduy 0g way {goett oo “lgpesy wumema
g wnblin @ Ty -y
iy oo oy » vl o ogm
aabite v g Yeuu P
et pmen Py v = vy o e
TN Ry WY S PRy WieeN
7 \——— covauny Iu
A4 -
- 1 f ~ 5

ﬁ‘....

[T
g - 910N uoneoyddy [siauap)

=T

‘SA[IN2exe S2emyos aBus ¢ ydnosy)
8dn0.0 BupIoM 84} JO [OSU0D PUS UONBALIIE Sepjansd || o
-gdnosB Gupliom 0| ssepiacd enases pue
suotEsiu siyy BupnionNe J0) SANDIUYIP) LOIIEAUNWOD
pus BujBuyded 0 108 LWLIOHUN B S8pA0M | o
“(nsspiacad agasas) y 0P NOA
MOy puE {SuC|E[) OP O) Juem NOA Wy jO uojissedes
Paljsep ey} v paseq 9| adioupd Bunuebio sy «
-Ainiqeupeiuiew BujseRidu) pus ‘uolisILaWNd0p pus
Ayxopduiod Bujdonpas ‘(SwaisAsans) 8201402 AYANOS SIEMYOS
BujTuuBi0 10) 2IMINNS (#1N1304uIe ASY B 8] NDO L

EIPPOJY [BIMRIIGRIY 100 OU1 ST ITYUM
f-l!l.l Fojsonley srnaysy g

_

At Ty Th, PV AL W (o sl g By
oy ary Sugrd U Ry Wit PELY
ey . A —
1ab4 R0 = Mgy Suymes 24 snagry pyad
ey Py W ERY S Vo 4 AT) WYy TedAQ ey
0 g bacg v wgng st Ouppampling V) Sogng, «
- o [<]
gy o), Y eapg Ladry ST Svg WD TR O VY0 VIR I-l-il}ll
vy NS NN S sty Shpeq Se g Samusy g‘l‘
oy mry pun
mpung igunmiy usageg Ramipayy.
st e B rg Wity sy
gty 4 AT

— Y00 BupsonuiBve sy svplivpeuges peownape Buppranid
Augaoouiduy 0I8M)JOg 199y

= e

100dss ubpep (Vopusdepur-1npasd o samey ©

Ship System 2000

CelsiusTech

514

The Projects

Displacement {t) Length(m) Armament

Gteborg 380 57 Guns

@ SSM
ASW

SF300

(74643) 300 54 ﬁurr(\’ o
weapons)

IS/86 2700 112 Gun

)

Aauma 200 48 Gun

@ SSM

ANZAC 3225 118 Gun

(10) SAM

Gotland 1250 52 Torpedo

(3+1)

Stric Multi-site national

Air Defence System

518

The Background
Mk3: Kkv Gbg (42) >

Mk2.5: Kkv Sto (15) NN

B Mk2: Hugin (67)

IEEEpmSmsssmsm—— M1 Spica (32)

| L 1

- 70 80 80

516

Strategy

.

Structure for reuse

Use recognized standards (open systems)
Emphasis on applications

Produce family of components

integrate components into a system

517

Classical Multi-Project Development

time

s18

Creating a Set of Components

Customer system 1 Customer system 3

Customer system 2

Custorner
system 4

time

519

Ship System 2000

x

50

Structure in a Node

| Nodes
‘ on the
. LAN

Structure
; within a
F kil e Rl R Cl |

Software
~ structure
within
aCPU

521

IPC

Life in an Ada Program

1: Next event
anEa g

2: change state,
initiate VO,
nd iPC

HW

£>~

Configuration Data

Special Applications =1 1 =]
Standard Appiications

specific

»_. Critical -
Y Interfaces

Technology SS2000 Standard Customer
Components

Platform

s

MMI Flexibility

The software
component sees
one view:

type track is record
Tabolistzing:
poa t position
cat t cateqory;

- Hardware EEE%

Mgr Text/graphics B G,
Symbology @mw Suw

Color MmN
Language xesT
Operator roles ! E g.
efc...
534
$52000 Software Commonality

% 20% 0% 60% 0% 100% o

Frigate

Submarine

Air Defense
Centet

B New
B Moditied
B Common

525

526

The situation 1993

» Several systems operational with
several customers

+ Highly successful firing tests
» =2 MDSI operational
+ Stable architecture

« High quality in the delivered
software

« Demonstrated portability

527

LY |

IkCustomchetup and Data
limiteq by user

Req. 53. ¢ the custq TeCond already €Xists thep
display the eXisting Customer,
Requiremcm Interdependency Record

Req1 823147 eqg

5»

\

Lists of the
s 0 be adkdreracd
@span R
.
Dusignidetrics © 1953

Listof the
Reguisewnenes

The Decomposition Process

Customer Information System Parts.

Trasmacvions
7 o Kems
/ WE'] Parsc Key
?& foues Inserfxes
/ \Emuhm
P : Uter Luerface
Information
Sywem

Das Opermions Duabome
User Operatione
Dets bnser-
] —
relaicastips Rutes
______.. fmta Andis
Facilives

DesigniMetrics € 1993

53

Customer Information System Parts.

S
? Keyed Entities
Data-Structured
Customer Inform-
ation System (CIS) Interfaces
o= | External Database
Operations
; Data Inter-
lnscarcleciosships
. relationships
__
Ossignidetics © 1993

The Operational Principal Of A CIS.

DesignMetncs © 1993

533

532

”’-_—b
e

Software Architectures

Steve Roodbeen
Naval Undersea Warfare Center
Division Newport, RI
17 November 1993

534

NUWC Division Newport

Architecture

* The Science, Art, Or Profession Of Designing
And Constructing Bulldings, Bridges, Etc.

* The Design And Integration Of Components Of
A Computer Or Computer System.

535

NUWC Dwvesion towpart

Software Architecture

* The Sclence, Art, Or Profession Of Designing

end Constructing Software, Software Systems,
tc.

+ The Design And Integration Of Software
Components in A Computer Or Computer
System.

NUWC Division Newport

Current Emphasis

- Analysis, Acquisition, And Integration Of Several
Heterogeneous Support Software Tools.

« All Support Software Tools Accessible Through A Central
interface.

« All Software System information Accessible Through A
Central interface.

« List Of Tools includes: CARDS RLF, SEE-Ada, Rational
Rose, AdaMAT, and Objecimaker.

537

HIUAYC Divesion Hoepee

Current Goal

« Analyze Legacy Software Systems And Extract
Deslign Information.

NUWC Division Heviport

Design Capture

« Analysis And Extraction Of Design information From
Legacy Software.

5%

UG Dot pornt

An Object-Based View Of Functionally
Desligned Code

NUV/C Division Hewport

Architecture Representation

« Primary Representation Vehicle CARDS RLF

« RLF Seslected Due To Its Robustness (e.g., Its Abllity To
Provide Access To A Varlety Of information).

« Ali Other Representation Tools Can Be Launched From The
.?LF. Basically, RLF Provides An Open Interface To Other
ools

541

RUWC Diviston Newport

Lessons Learned

- Developer's Reluctant To Provide Design
information

» Design information May No Longer Be Avalilable

« information That is Avallable Is incorrect Or
Obsolete

« It Is Difficult To Incorporate The New Software
Engineering Paradigm Into The Design Process (l.e.,
Now Is A Tutf Time To Change The Way We Do
Business)

NUWC Division New/port

The Ultimate Goal

* Define Process Which Will Result In The
Generation Of Reusable Software Systems/
Subsystems/Components

* Object Oriented Technology
* New Tools Emerging To Support This Approach

+ Expand Software Architecture To Include
Everything Known About A Given System

542

543

SOPFTWARE SIOPEERING DIRECTORATE 1

TWO KINDS OF DOMAIN

l HORIZONTAL
Dumsin debning 2
uscionsl aree spuming

r TWO KINDS OF HORIZONTAL DOMAIN)

System Architecture

DISTRIBUTED
_ Domain defisings
separae ssbsywems of the sysen

—

SOPTWARR BNONGIEIND DIRECTORATR 1

MAXIMUM DIVERSITY
DOMAIN / SYSTEM INTERACTION

Domains Systems

r SOFTWARE ENGINEERING DIRECTORATE w
SYSTEMATIC APPROACH TO IEW REUSE

(- INTELLIGENCE-ELECTRONIC WARFARE DOMAIN w
A N
Set (57 - u

. — ’m 24
L . W Sywou ~
Appicasion Engimering - Domala Sagiasring
¥ US ARMY CS00W RDAE CENTER st

SYSTEMATIC APPROACH TO IEW REUSE)

(CONT’D)

— — - ——r - ——

r—-—o—n—u—u——-—‘

h——-——-—--—-—-——-q B

g 7Y

Domain
Architecture

Fesature
Prioritization

Reusable Assets
hY z

Asset Implementation

Asset Implementation
Planning

@ Exemplar Workproducts

SOPTWARE ENGINEERING DIRECTORA'

" ODM DOMAIN ANALYSIS REFE‘;!ENCE MODEL)

Il Descriptive Anaiysis
Prescriptive Analysis

Domain Domain
Stakeholder
Input

o ik e

U ARMY NTER.
nawn

529

: SOFTWAM ENORGERG DRECTORATE j
(PRESCRIPTIVE ANALYSIS
SOLUTION SPACE
1mplementation
A Asset

B Specification

i P

? Asset
Eosemble
Performance
“n"” DIMENSTONAL FEATURE SPACE v

SOPTWARE ENCGINEIRING DIRECTORATE

DOMAIN ARCHITECTURAL MODEL VARIANTS
Model
Asset
Enscmbles
Asset
Spees
Separately Selectable Ensembles
» A Domain Architectural Model will be some combination
of a layered and separately selectable set of Asset Ensembles
» Asset Base Archilecture underlys the domain architecture
\ US ARMY CECOM RDAS CENTER J .

WOt | S gt _vedu

550

551

STARWAIR PORCE DEMONSTRATION PRONECY
ENGINEERING - SWIC PRODUCT LINE APPROACH

Air Force/STARS

Demonstration Project

Space Command & Control
Architectural Infrastructure (SCAI)

Capt Kelly L. Spicer, USAF

Lead, Domain Engineering & Reuse Working Group
17 November 1993

Space and Waming Systems Center

Air Force Space Command
SWSC/SMX, Swop 2320, 130 W. Paine St
Peterson AFB, Co, 80914-2320

(719)554-6675
kspicer@spacecom.af mil

Mot A IS AN s afCAR DS _Pengum b

552

553

ssmmsmThe Architectural Goal mump- (@})

554

mmmm Systems Development ssmige- (@})

Diats Base Lagaer Agpphasien Tost Enginrer
!. Intaractive Natwark. Univorsl Ve
and Sumulslion

Detn Sese & Ban.

] - Gaglay lormars (Rat Sikc)
- Swasa g foraat (Sowns)
- quasy ehs (Rt le)
« Snigsion dotn (dbes}
- - Wl scenacio (dams)

P
sssmesm Command Center Architecture s

[Opensie2Graup

Misgion Platform Duration Effort | Application | A i Reused ! Total
Alr DEC/VMS 4 85 1506 4434 2430
Mislle | SUN/HP/DEC/UNIX 108 979 66,323 204 | 64,440 | 157477
Space | BM/AIX 100 20 17,558 Qs 124.876

557

STARWAIR FORLE DEMUNSTRATION PRUJKLT
DOMAIDN ENGINEERING - SWSC PRODUCT-LINE APPROACH

TARGET: REFINE LAYERS TO SCAI
ARCHITECT URE

o ® oo 'Q@f
S .. B |tk
T e 8 8 e

Library Funcrians & Algorihas (1Y SW

s " e 1 e
mm

Coding Standurds

A e\ SAF s Orpiat ¥CARDS_Presto doc

STARS/AIR FURCE DEMUNSTRATION PROJELT
ENGINEERING - SWSC PRODUCT-LINE APPROACH

REFINE LAYERS TO SCAI
ARCHITECTURE

= Abstract Display-User Interaction Classes Into Mission Objects/
Classes

* Define Standard Structure For Mission Objects

« Continue to Refine Layering Scheme:
» »Standardize Layer Interfaces (¢.g. Common Layer)
« sDefine Standardized Interface to RICC Tools

« Define Consistent Display Interface Paradigms
» Extend Scope of OO Analysis to Other Missions Besides Space
« Extend RICC “Layer” To Include Additional Tools

Moyl USAFANCa/Aa/CARDS Prowsibx:

5%

ARSIAIR PORCE DEMONSTRATION PROJECT
mgmm SWIC PRODUCT-LINE APPROACH

Building the Product-Line Organization
[Functional Organization Mimics Architecture Layering)

At WATA

Operational Reuse [Mission Experts
gori! se 01' g
I D [
Common Services
(nmnmmsplmmvnu-m)[RICCExpm.s

| | TT1]

%ﬂ/mmmm [sﬁ"ﬁm@
o/

P SAF oM oefCARDS Prcams b

APPLICATION
SYSTEM APPLICATION BASED SYSTEM

INTRODUCTION:
A SOFTWARE ARCHITECTURE SUITABLE FOR COMPLEX INTERACTIVE Cl SYSTEMS

TARGETED C3 SYSTEM CHARACTERISTICS

« MULTIPLE COOPERATING APPLICATIONS

« GEOGRAPHICALLY DISTRIBUTED

» TOLERANT TO COMMUNICATION LINK INTERRUPTION
» REPLICATED DISTRIBUTED DATABASES

< VARYING SECURITY LEVELS AND REQUIREMENTS

» PORTABLE AND REUSABLE APPLICATION SOFTWARE

o=

~

_\ m
| P
Joo

)
(
(B

-

"o ANALYZE INFORMATION FLOW

=))

CONCEPT:

EACH SYSTEM ELEMENT IS SELF-CONTAINED. PROVIDING ALL HARDWARE
AND SOFTWARE NECESSARY TO EXECUTE IT8 TASK

EACH SYSTEM ELEMENT CAN OPERATE IN A STAND-ALONE MODE IN THE
EVENT COMMUNICATION OVER CY NETWORK 1S NOT POSSIBLE :

EASIER TO DEVELOP AND MAINTAIN THAN CONVENTIONAL SYSTEMS

PROVIDES A SBIPLE SOLUTION TO SECURITY PROBLEMS UNTIL MORE
ROBUST PRODUCTS ARE DEVELOPED

SUPPORTS SHARING OF COMPUTE RESOURCES TO ALLOW PARALLEL AND
DISTRISUTED PROCESSING EMPLOYING OTHERWISE UNDERUSED
COMPUTE RESOURCES

\ e Y,

APPLICATION
BASED \

SYSTEM

APPROACH DESCRIPTION:

ITERATIVE PROCESS

. IDENTIFY TASKS AND WORKFLOW USING THE ABC METHOD
« IDENTIFY SECURITY REQUIREMENTS FOR EACH TASK

« 1DENTIFY DATA REQUIREMENTS FOR EACH TASK

+ ANALYZE DATA AND CONTROL INTERFACES BETWEEN TASKS

APPLICATION Y™

BASED \
J

APPROACH DESCRIPTIOM:

« DECOMPOSE SYSTEM INTO FUNCTIONAL TASK GROUPS BASED
UPON ANALY®S PERFORMED IN THE PREVIOUS STEPS. THESE
TASKS GROUPS SHOULD BE ORGANIZED SUCH THAY
COMMUNICATION BETWEEN THEM MAY BE ACCOMPLISHED 8Y
SIMPLE MESSAGES. THIS RESULTS IN A SYSTEM SEGMENT
SPECIFICATION FOR EACH TASK GROUP

« DEFNE DATA BASE STRUCTURES REQUIRED FOR EACH TASK

RELOCATION OF APPLICATION CODE. THIS RESULTS IN A DATARBASE
DESCAIPTION DOCUSENT

« DEFRINE MESSAGES USED TO COMMUNICATE BETWEEN TASK
GROUPS. THIS RESULTS IN AN INTERFACE DESIGN DOCUMENT

« ITERATE OVER THE ABOVE STEPS UNTIL A SUTTABLE ARCHITECTURE
18 ACHIEVED

N)

2§
='§

APPLICATION
PLATFORM
PROFILE

)

ADVANTAGES:

« DECOMPOSING INTO SMALLER COOPERATING ELERENTS RESULTS
IN SYSTEMS WITH IMPROVED UNDERSTANDABRITY

+ TOLERANT OF UNRELIABLE COMMUNICATION LINKS
« TOLERANT OF OTHER SYSTEM ELEMENT FAILURE
« SOLVES SECURITY PROBLEMS

« SUPPORTS FLEXIBLE MESSAGE ROUTING AND MINMIZES
COMMUNICATION

« USE OF MESSAGES PROVIDES IMPROVED INFORMATION
TRACEABRITY BETWEEN SYSTEM ELEMENTS

« USE OF MESSAGES REDUCES DEVELOPMENT AND INTEGRATION
COSTS BY SIMPLIFYING SYSTEM ELEMENT SIMULATION

N

J

=) B

DISADVANTAGES:

» INCREASES INTERFACE COMPLEXITY
« MAY RESULT IN SLOWER ACCESS TIMES
» REQUIRES MPROVED INTERFACE MANAGEMENT TOOLS

?

CONCLUSION:

THE APPLICATION BASED SYSTEM ARCHITECTURE PROVIDES A

METHODOLOGY FOR ADDRESSING AND SOLVING MANY OF THE

1SSUES FACING SWEDEN FOR DEVELOPING A COMPLEX CY

-

(dV) 30V:UIINI NVHOOUd NOLLY DI tddY

r ASVAVLYA NILLIIM-YISOTIAIG TYIISSVTD k

NOUVULSININGY 13I4ALYI IONISI0

—

GG YOUNSA I WAT VIR HAM ©AOM *

—

STARS-VC-B008001/00 29 January 1994
APPENDIX A - PARTICIPANTS

Dr. Dennis Ahern .Westinghouse Electric
Mr. Robert Allea........... Camegie Mellon University
Capt Emily Andrew National Test Facility
Ms. Rose Armstrong DSD Laboratories/CARDS
Ms. Pam Arya General Research
Mr. Ali BabadiCERC
Major Paul Bailor.............. Air Force Institiute of Technology/ENG
Mr. James Baldoccconmenesennsessensseninnnnsssessesnsnscnsessaees Unisys
Mr. Eric Beser : Unisys
Mr. Christopher Bengtsson C31, Sweden
Mr. Vincent Bia..... National Test Facility
Mr. James BORNInecccoocvcceccisemsenseniscssansnsacsssesanas Design Metrics
Mr. Wayne Brandt... bessesssssasemasstssersansassrntstasasantnsensanes CERC
Ms. Linda BroWn.......c.ccovmimmincscssneninneniasessessonercssonecssssnsons OASD
M. J. Chris COMMONScorerereerverssstnnnrsasansasasssnsesasnessens ESL, Inc

M. Dick Creps........coccecenernreennnsinssensas cveentsensssesannans Unisys
Mr. Paul Dumanoie... . DOD/Army STRICOM
MI. Jim EStEPueivvirmnnresessisencntnsserssonaresesacecansons Unisys/CARDS
M. Jeff Facemire...........cccceceonmeunsunccorersccnncnennnnaces Azimuth/CARDS
Dr. Peter Feilerccc... Software Engineering Institute/CMU
Ms. Karen Fleming ... Strictly Business Computer Systems/CARDS
Ms. Deborah Gary...........cccveueneuecnissencsnseesesecannns DISA/CSRO
Mr. Mark Gerhardt..........cceeeeeeeeieeeecenennniiieesenericereneenee ESL, Inc

M. Mark Gerkenccovenciencecrenvencnncnsucecceeenennacs AFIT/ENG
Mr. Terry Gill........coovvivciicenccciennccresiennaennn National Test Facility
Dr. Robert Gillespieccoveuimeneeiniiinncnceneneineninieeerereenns WVT
Mr. Chandra GOllypudyccceceeeeemerseveniccnevereecsienreeaesennaens CERC
Mr. Nicholay Gradetsky.........ccoceceeereressecmnrnreseeccresenrernanecesnnnns CERC
M. Paul Gregorycceeveccniinessccssnncnsinessesecenes Unisys/CARDS
Ms. Kerri Haines...........coovveenenicnrcscnnnninennecseenacn. Unisys/CARDS
Ms. Kammi Hefnercocovevnnnneene Electronic Warfare Associates
M. Scott HiSSamL.........cooveerremrerivrsnssensnscnsensenseessaneae Unisys/CARDS
MTI. John JAmeSccovvvemccaesnenieceerenvrenscnnersessnesenssanas Intermetrics
Mr. Dan Juttlestadt..........cccoevnevmercmesnnncnrinieereenreen NUWC
M. Erik Karikoskicccevnvenieensnininniinnennnne Unisys Sweden
Mr. Stellan Karnebro.........cocovvvevccreenmcncecicvcereiees Syst. Tech.
Mr. Perry Koger Electronic Warfare Associates/CARDS
Mr. Paul Kogut...........cccovvvemnerinncnrennniiiienecene. Unisys/CARDS
Mr. Jim Law ..., D.N. American/CARDS
M. ROY LaWsOmccoiiiiniiiiienimeree e CERC
MI. BOb LENCEWICZ.......c.ceeeieemreerrcennnnnenecennneannesarenns ESD/ENS
Mr. Stanley Levine.......cooooeeeinicinincniie e CECOM
Mr. Ed Liebhardt IL.........ccccoviivininn MountainNet

A-l

e

STARS-VC-B008/0100 29 Jenuary 1994

Mr. Quiang Lin ...cccucecevevenecees Galaxy Global Corporation/CARDS
Mr. Bill Loftus ... WPL Labs, Inc.
M. Pete MAraveltiascovreesunaraniniencnrinsessasossnssssssaasess USAF
Ms. Lorraine Martin.........ccccccneneennsncnnennessnassenes Unisys/CARDS
Mr. Dan McCaugherty eereentsae bt s s saesennes Intermetrics
Mr. Steven Merritt......... rertacscsnesasseasssssosausases DISA
Mr. Mike NiChOlccouiouenmricccninennienteninicscsecnae ASC/EN(CR)
Mr. Dan Nichols.................. Electronic Warfare Associates/CARDS
Mr. Ulf Olsson eeeeeeen. CelsiusTech
MEI. A. SPencer PEtersoncoceuvuesereernnsesnnnncnssanansasaesens SEI/CMU
- Ms. Aleisa Petracca .. Azimuth/CARDS
Mr. Jim Petro ...Electronic Warfare Associates/CARDS
M. Charles PLNLAcccoeeerecreceieesescrsuessiennencnsasesessnscssersansense Accel
MT. Hans POIZETcoverrcersecsesnenccsnsansennnnienisicssseeassesessenses Unisys
Mr. Jay Reddy............ Strictly Busmess Computer Systems/CARDS
M. Stephen Riesbeckcccvnrneeinnnciincinnnnene Azimuth/CARDS
M. Steve ROOADELN........cccrvininienrncniitiininiinicssssnsnncassannss NUWC
Mr. Robert Rutherfordccoeviineiniencsnncccnnsccscneenns SofTech, Inc.
Mr. Skip Saunders.........coeeveennnesrneesnsennnesnnensseseeanens Mitre Corp
Mr. Evan Schmidtcccccecveccnceen. Electronic Warfare Associates
M. Bill SCHWAITZ.......ccoveceeernnrsissnrensesarestieniecssssnsscsssaserasssesanas DoD
Ms. Jennie ShIPe........ccvvivercninirnnnenresinecciencnnesanonens SofTech, Inc.
Mr. Mark SImOSccoccereecrensesunneserscsscesasseniecacnesaene Organon Motives
Dr. Thomas J. Smithcoccovnvinncinnnninecnncreccrnnnne Mitre Corp
Ms. Catherine Smothermancoceceevenieenncrennerecreceecensnnene Unisys
Mr. Charlie Snyder.........c.ccoececvenriernecsninennerensennes Unisys/CARDS
Mr. Michael SobolewskKi.......c.ccocevervircnsiirecnennnnreeseensesencasaneas CERC
Dr. Nancy Solderitsch.........cccocooenvenireernnnccnrsnnenne Unisys/CARDS
Capt Kelly SPIiCeT........cccoeceniererimnnssescrsonsenaninneeeseseanes SWSC/SMX
Major Frederick Swartzcccoocveveeeecnincnnrncnencnnscncnenee ASC/YTEC
MI. RObErt TEITY ...ccviucercncerninnneneeecaiiecssnenens MountainNet
MI. WHLL TFaCZ....ceveveeeeeecerrenesesrensnesessecesenrsisisenassssnnennens IBM FSC
Capt Paul Valdez............cccceeoceirinnnneerennincnineeseneceenens ESC/ENS
Mr. Kurt Wallnauceereceiconnnsnecnsciecnnnecunnene Unisys/CARDS
MI. Mike WebD......ccoioiermrcecrncseinrnnenenescnenecsnsseseneensseneessene SEI
Mr. Bob WebSteT ..ot ESC/ENS
Mr. Roger Whitehead............ccccoceneennen. DSD Laboratories/CARDS
Major Grant Wickmanccccceceieeeneiniinniinieneensueecnnnas CECOM

A-2

STARS-VC-B00&/001/00 . 29 January 1994

Mr. Dennis Ahern
Westinghouse Electric
P.O. Box 746, MS 432

Baltimore, MD 21203-0746

Mr. Robert Allen
CcMU
Science Hall 8214
Pittsburgh, PA 15217-3890

Capt. Emily Andrew
National Test Facility
730 Irwin Ave.
Falcon AFB, CO 80912-7300

Ms. Rose Armstrong
DSD
1401 Country Club Rd.
Fairmont, WV 26554

Ms. Pam Arya
General Research
1900 Gallows Road
Vienng, VA 22182

Mr. Ali Babadi
CERC
P.O. Box 6506
Morgantown, WV 26506

Major Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-6583

Mr. James Baldo
CARDS
2010 Sunrise Valley Drive
Reston, VA 22091

Mr. Christopher Bengtsson
C3I
S-115 88 Stockholm
Sweden

A-3

STARS-VC-B008/001/00 29 January 1994

Mr. Eric Beser
12344 Greenspring Ave.
Owings Mills, MD 21117

Mr. Vincent Bia
NTF
730 Irwin Ave., MS N9000
Falcon AFB, CO 80909

Mr. James Bonine
Design Metrics
2 Cedar Tree Lane
Stamford, CT 062903

Mr. Wayne Brandt
CERC
P.O. Box 6506
Morgantown, WV 26506

Ms. Linda Brown
OASD
1225 Jefferson Davis Highway
Arlington VA 22202

Mr. J. Chris Commons
ESL, Inc.
495 Java Drive
Sunnyvale, CA 94088-3510

Mr. Dick Creps
Unisys
12010 Sunrise Valley Drive
Reston, VA 22091

Mr. Paul Dumanoie
DoD/Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

Mr. Jim Estep
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

A-4

—

STARS-VC-B008/001/00 29 January 1994

Mr. Jeff Facemire
'Azimuth
1401 Country Club Rd., Suite 204
Fairmont, WV 26554

Dr. Peter Feiler
SEI/CMU
Camegie Mellon Univ.
Pittsburgh, PA 15213-3890

Ms. Karen Fleming
SBI
12 Moran Circle
Fairmont, WV 26554

Ms. Deborah Gary
CSRO
500 N. Washington St., Suite 200
Falls Church, VA 22046

Mr. Mark Gerhardt
ESL, Inc.
495 Java Drive
Sunnyvale, CA 94088-3510

Mr. Mark Gerken
AFIT/ENG
2950 P. Street
Wright-Patterson AFB, OH 45433-7765

Mr. Terry Gill
Nationa! Test Facility
730 Irwin Avenue
Faicon AFB, CO 80912-7300

Dr. Robert Gillespie
WVT
West Virginia Tech
Montgomery, WV 25136

Mr. Chandra Gollypudy
CERC
P.O. Box 6506
Morgantown, WV 26506

A-5

STARS-VC-B008/001/00 _ 29 Jamary 1994

Mr. Nicholay Gradetsky
CERC
P.O. Box 6506
Morgantown, WV 26506

Mr. Paul Gregory
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Ms. Kerri Haines
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Ms. Kammi Hefner
- EWA
1401 Country Club Rd.
Fairmont, WV 26554

Mr. Scott Hissam
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

M. John James
Intermetrics

Mr. Dan Juttlestadt
NUWC
Building 1171, 3rd Floor
Newport, RI 02841-4612

Mr. Erik Karikoski
Unisys Sweden

Mr. Stellan Karnebro
Syst. Tech
S-115 88 Stockholm
Sweden

Mr. Perry Koger
EWA
1401 Country Club Rd.
Fairmont, WV 26554

A-6

‘——-——

STARS-VC-B008/001/00

Mr. Paul Kogut
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Jim Law
DNA
1401 Country Club Rd.
Fairmont, WV 26554

Mr. Roy Lawson
CERC
P.O. Box 6506
Morgantown, WV 26506

Mr. Bob Lencewicz
ESD/ENS
Bidg. 1704
Hanscom AFB, MA 01731-5000

Mr. Stanley Levine
CECOM
710 Carol Avenue
Ocean, NJ 07712

Mr. Ed Liebhardt I
MountainNet
2705 Cranberry Sq.
Morgantown, WV 26505-9286

Mr. Quiang Lin
Galaxy Global
1401 Country Club Rd.
Fairmont, WV 26554

Mr. Bill Loftus
WPL Labs, Inc.
410 Lancaster Ave., Suite 6
Haverford, PA 19041

Mr. Pete Maravelias
USAF
ESD/AVS, Bldg. 1704
Hanscom AFB, MA 01731-5000

29 Jenuary 1994

A-7

STARS-VC-B008/001/00

29 January 1994

Ms. Larraine Martin
CARDS

4 Militia Dr., Suite 11

Lexington, MA 02173

Mr. Dan McCaugherty
Intermetrics

Mr. Steven Merritt
DISA
500 N. Washington St.
Falls Church, VA 22046

Mr. Mike Nichol
ASC/EN(CR)
1865 4th St., Suite 11
Wright Patterson AFB, Ohio 45433-7126

Mr. Dan Nichols
EWA
1401 Country Club Rd.
Fairmont, WV 26554

Mr. Ulf Olsson
CelsiusTech
S-175 88 Jarfalla
Sweden

Mr. A. Spencer Peterson
SEI/CMU
Camegie Mellon Univ.
Pittsburgh, PA 15213-3890

Ms. Aleisa Petracca
Azimuth
1401 Country Club Rd., Suite 204
Fairmont, WV 26554

Mr. Jim Petro
EWA
1401 Country Club Rd.
Fairmont, WV 26554

A-8

STARS-VC-B008/001/00

29 January 1994

Mr. Charles Plinta
Accel
449 Maple Avenue
Pittsburgh, PA 15218

Mr. Hans Polzer
Unisys
12010 Sunrise Valley Dr.
Reston, VA 22091

Mr. Jay Reddy
SBI
12 Moran Circle
Fairmont, WV 26554

Mr. Stephen Riésbeck
Azimuth
1401 Country Club Rd.
Fairmont, WV 26554

M. Steve Roodbeen
NUWC

Bldg. 1171-3, Code 2221

Newport, RI 002841-1708

Mr. Robert Rutherford
SofTech, Inc.
P.O. Box 210386
Montgomery, AL 36121-0386

Mr. Skip Saunders
Mitre Corp.

202 Burlington Rd.

Bedford, MA 01730

Mr. Evan Schmidt
CARDS
1401 Country Club Rd., #201
Fairmont, WV 26554

Ms. Jennie Shipe
SofTech
Alexandria, VA

A-9

STARS-VC-B008/001/00

Mr. Mark Simos

~ Organon Motives

36 Warwick Road
Watertown, MA 02172

Dr. Thomas J. Smith
Mitre Corp.
7528 Colshire Drive MS:W197
McLean, VA 22102

Ms. Catherine Smotherman
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Charlie Snyder
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Michael Sobolewski
CERC
P.O. Box 6506
Morgantown, WV 26506

Dr. Nancy Solderitsch
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Captain Kelly Spicer
SWSC/SMX
130 W. Paine St.
Peterson AFB, CO 80914-2320

Major Frederick Swartz
ASC/YTEC
2240 B St., Suite 7
Wright-Patterson AFB, OH 45433-7111

Mr. Robert Terry
MountainNet
2705 Cranberry Sq.
Morgantown, WV 26505

29 January 1994

A-10

STARS-VC-B008/001/00

‘

Mr. Will Tracz
IBM, FSCMD 0210
1801 State Route 17¢

Owego, NY 13827-3994

Capt. Paul Valdez
" ESC/ENS
Bldg. 1704, Rm 107
Hanscom AFB, MA 01731-2116

Mr. Kurt Wallnau
Unisys
1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Mike Webb
SEI
Camegie Mellon University
Pittsburgh, PA 15213-3890

Mr. Bob Webster
ESD/ENS, Bldg. 1704

'Hanscom AFB, MA 01731-5000

Mr. Roger Whitehead
CARDS
75 Union Avenue
Sudbury, MA 01776

Major Grant Wickman
CECOM
AMSEL-RD-SE-R-ESD-SPT
Ft. Monmouth, NJ 07703

29 January 1994

—*

STARS-VC-B002/00100 : 29 January 1994

" APPENDIX B - BIBILIOGRAPHY

The following sources were used for the development of Seminar materials.

Abowd, et. al., “Structural Modeling: An Application Framework and Development Process
for Flight Simulators.” Technical Report CMU/SEI-93-TR-14, Software Engineering
Institute, 1993.

Air Force Institute of Technology and the Software Engineering Institute, “Putting the
Engineering in Software Engineering.” Annotated briefing, Carnegie Mellon University.

Alexander, C., “Notes on the Synthesis of Form.” Harvard University Press, ISBN 0-674-
62750-4, 1964.

Alexander, C., “The Timeless Way of Building.” Oxford University Press, ISBN 0-19-
502402-8.

Apple Macintosh “MacAPP Developer’s Kit Documentation.”

Arango, G., Prieto-Diaz, R., “Domain Analysis Concepts and Research Directions.” Domain
Analysis and Systems Modeling, IEEE Computer Society Press, ISBN 0-8186-8996-X, 1991.

Arango, G., Schoen, E., Pettengill, R., “A Process for Consolidating and Reusing Design
Knowledge.” Proceedings of The 15th International Conference on Software Engineering,
May 17-21, 1993.

Arango, G., Schoen, E., Pettengill, R., “Design as Evolution and Reuse.” Proceedings of the
Second International Workshop on Software Reusability, March 24-26, 1993.

Arango, G., Schoen, E., Pettengill, R., Hoskins, J., “The Graft-Host Method for Design
Change.” Proceedings of The 15th International Conference on Software Engineering, May
17-21, 1993.

Balzer, R., “Model Management Examples.” Proceedings of DSSA VII Workshop.

Balzer, R., “Design Refinement in DSSAs.” Proceedings of the JSGCC Software Initiative
Strategy Workshop, December 1992.

Barr, Feigenbaum, Cohen, “The Handbook of Artificial Intelligence.” Vols. I-IV, 1981-89.
Batory, D., O’Malley, S., “The Design and Implementation of Hierarchical Software Systems

with Reusable Components.” Technical Report TR-91-22, University of Texas at Austin,
Texas, January 1992.

Booch, G.,“Software Components with Ada.” 1587.

B-1

NN

STARS-VC-B008/001/00 29 January 1994

Booch, G., “Object-Oriented Design with Applications.” 1991.

Booch, G., “Next Generation Methods - Bringing Order Out of the Chaos.” Journal of Object
Oriented Programming, Supplement on OO Analysis and Design, July/August 1993.

Braun, “DSSAs: Approaches to Specifying and Using Architectures.” STARS 92, December
1992.

Bryan, D., Rapide-0.2 Language and Tool-Set Overview. February 1992.

Buschmann, “Rational Architectures For Object-Oriented Software Systems.” Journal of
Object-Oriented Programming, September 1993.

Callahan, J., Purtillo, J., “A Packaging System for Heterogeneous Execution Environments.”
IEEE Transactions on Software Engineering, Vol. 17, No. 6, June 1991.

Coad, P.,, “Object-Oriented Patterns.” Communications of the ACM, Vol. 35, No. 9,
September 1992.

Commons, J.C., Gerhardt, M., “A Model for Analyzing Megaprogramming, Reuse, and
" Domain Specific Software Architectures.” TRI-Ada, September 1993.

Cox, “Planning the Software Industrial Revolution.” IEEE Software, November 1990.
Datapro “Reports on...”, updated periodically.

Devanbu, P, Brachman, R.J., Selfnidge, P.G., Ballard, B.W,, “LaSSIE: A Knowledge-Based
Software Information System.” Communications of the ACM, May 1991.

Dumas, “Designing User Interfaces for Software.” 1988.

Estrin, G., Fenchel, R., Razouk, R., Vernon, M., “SARA (System ARchitects Apprentice):
Modeling, Analysis, and Simulation Support for Design of Concurrent Systems.” IEEE
Transactions on Software Engineering, Vol. SE-12, No. 2, February 1986.

Feiler, P, “Configuration Management Models in Commercial Environments.” Technical
Report CMU/SEI-91-TR-7, Software Engineering Institute, 1991.

Fischer G., “Human Computer Interaction Software: Lessons Learned, Challenges Ahead.”
IEEE Software, January 1989.

Freeman, P, “A Conceptual Analysis of the Draco Approach to Constructing Software
Systems.” IEEE Transactions on Software Engineering, SE-13, July 1987.

B-2

—

STARS-VC-B008/001/00 29 January 1994

Gamma, E., Helm, R., Johnson, R., Vlissides, R., “Design Patterns: Abstraction and Reuse of
Object Oriented Design.” Unpublished paper. Contact Ench Gamms at Taligent, Inc., 10725
N. De Anza Blvd., Cupertino, CA 95014-2000.

Garlan, D., Shaw, M., “An Introduction to Software Architecture.” To appear in Advances in
Software Engineering and Knowledge Engineering, Volume I, World Scientific Publishing

Company, 1993.

Garlan, D., Scott, C., “Adding Implicit Invocation to Traditional Programming Languages.”
Proceedings of The 15th International Conference on Software Engineering. May 17-21,
1993.

Garlan, D., Kaiser, G.E., Notkin, D., “Using Tool Abstraction to Compose Systems.” IEEE
Computer, June 1992,

Gelerator, D., Camiero, N., “Coordination Languages and Their Significance.”
Communications of the ACM, Vol. 35, No. 2, 1992.

Goguen, “Reusing and Interconnecting Software Components.”
Griss, M., Informal Presentation Charts. WISR6, November 3-5, 1993.

Harel, D, et.al., “STATEMATE: A Working Environment for the Development of Complex,
Reactive Systems.” Technical Report, 10th ICSE, 1988.

IEEE Std 610.12 - IEEE Standard Glossary of Software Engineering Terminology. December
1990.

Journal of Object-Oriented Programming, September 1993.
Kazman, R., Bass, L., Abowd, G., Webb, M., “Analyzing Properties of User Interface

Software.” To be released as a Technical Report, Software Engineering Institute, Carnegie
Mellon University.

Knuth, “The Art of Computer Programming.” Vols. I-ITI, 1973.

Krueger, C. W., “Software Reuse.” ACM Computing Surveys, Volume 24, Number 2, June
1992.

Lakoff, G., “Women, Fire and Dangerous Things: What Categories Reveal About The Mind.”
University of Chicago Press, ISBN 0-226-46803-8, 1991.

Lane, T. G., “Studying Software Architectures Through Design Spaces and Rules.” Technical
Report CMU/SEI-90-TR-18, Software Engineering Institute, 1990.

fﬁ

STARS-VC-B008/001/00 . 29 January 1994

Lee, Rissman, D'Ippolito, Plinta, Van Scoy, “An OOD Paradigm for Flight Simulators.”
Technical Report CMU/SEI-88-TR-30, Software Engineering Institute, 1988.

Lowry, “Software Engineering in the Twenty-First Century.” AI Magazine, Fall 1992.

Lowry, M. R,, McCartney, R. D., “Automating Software Design.”” AAAI Press, 1991.

Lubars, M.D., “A General Design Representation.”” Technical Report STP-066-89, MCC
Corp., Austin, Texas, 1989.

Lubars, M. D., “Representing Design Dependencies in an Issue-Based Style.” IEEE Software,
July 1991,

Luckham, D.C.,, von Henke, “An Overview of Anna: a Specification Language for Ada.“
IEEE Software, March 1985.

Luckham, D.C., Vera, J., “pRapide: An Executable Architecture Definition Language.” April
1993.

Luckham, D.C., Vera, J., “Event-Based Concepts and Language for System Architecture.”
March 1993.

Metalla, E.,“Domain-Specific Software Architectures.” STARS 92 Annotated Briefing, 1992.

Mettala, E., “The Domain Specific Software Architecture Program.” DARPA Software Tech-
nology Conference, April 1992.

Meyer, B., “Object-Oriented Software Construction.” Prentice-Hall, 1988.

Neighbors, J M., “The Draco Approach to Constructing Software from Reusable
Components.” IEEE Transaction on Software Engineering, SE-10, September 1984.

Neighbors, J.M., “Draco: A Method for Enginecring Reusable Software Systems.” Frontier
Series: Software Reusability: Volume I - Concepts and Models, ACM Press, 1989.

Neighbors, J.M., “Draco: The Evolution From Software Components to Domain Analysis.”
International Journal of Software Engineering and Knowledge Engineering. Vol. 2, No. 3,
September 1992,

Nierstrasz, O., Gibbs, Tsichritzis, “Component Ornented Software Development.”
Communications of the ACM, Vol. 35, No. 9, September 1992.

OMG, “The Common Object Request Broker: Architecture and Specification.” 1992.

OMG, “Object Management Architecture Guide.” September 1992.

B4

-

STARS-VC-B008/001/00 29 January 1994

Patel-Schneider, P.F,, Brachman, R.J., Levesque., HJ., “Argon: Knowledge Representation
Meets Information Retrieval.” Proceedings of the First Conference on Artificial Intelligence
Applications, 1984.

Payton, T., “Domain-Specific Reuse.” STARS 92 Annotated Briefing, 1992.

Perry, Chilton, “Chemical Engineers’ Handbook.” 5th ed., 1973.

Perry, D.E., Wolf, A., “Foundations for the Study of Software Architecture.” ACM SIGSOFT
Software Engineering Notes, Vol. 17, No. 4, October 1992.

Peterson, S., “Mapping a Domain Model and Architecture to a Generic Design.” CMU/SEI-
Technical Report, draft.

Peterson, S., “Coming to Terms with Software Reuse Terminology: A Model-Based
Approach.” ACM SIGSOFT Software Engineering Notes, April 1991.

Purtilo, J., “Software Bus Organization: Reference Model and Comparison of Two Existing
Systems.” ARPA Module Interconnection Formalism Working Group Technical Note Series,
TN No. 8, November 1991.

Royce, W., Brown, D., “Architecting Distributed Realtime Ada Applications: The Software
Architect’s Lifecycle Environment.” Ada IX, 1991.

Salasin, J., Waugh, D., “An Approach to Analyzing Non-Functional Aspects During System
Definition.” Draft Technical Paper, Proceedings of the ARPA/DSSA VII Workshop.

Saunders, Horowitz, Mleziva, “A New Process for Acquiring Software Architecture.” MITRE
Corporation, 1993.

Sedgewick, “Algorithms in C.” 1990.

Sedgewick, “Algorithms in C++.” 1992.

Selfridge, P.G., “Knowledge Representation Support for a Software Information System.”
Proceedings of the 7th Conference on Artificial Intelligence Applications, February 24-28,
1991.

Selfridge, PG., Terveen, L.G., Long, M.D., “Managing Design Knowledge to Provide
Assistance to Large-Scale Software Development.” Proceedings of the 7th Knowledge-Based
Software Engineering Conference, September 1992.

Shaw, M. “Prospects for an Engineering Discipline of Software.” IEEE Software, November
1990.

B-5

STARS-VC-B008/001/00 29 January 1994

Shaw, M., “Larger Scale Systems Require Higher Level Abstractions.” 5th International
Waorkshop on Software Specification and Design, May 1989.

Simos, M., “Organizational Domain Modeling.” STARS Technical Report, Unisys
Corporation.

Singhal, V., Batary, D., “P++: A Language far Software System Generators.” Technical
Report TR-93-16, Department of Computer Science, University of Texas at Austin, 1993.
Taft, “Ada 9X: A Technical Summary.” Communications of the ACM, November 1992.

Tracz, W., “LILEANNA: A Parameterized Programming Language.” Proceedings of the
Second International Workshop on Software Reusability, March 24-26, 1993.

Tracz, W.,, “A Conceptual Model for Megaprogramming.” ACM SIGSOFT Software
Engineering Notes, July 1991. :

UNAS Training Class, TRW Systems Engineering & Development Division, DH2/1271,
Carson, CA, July 7-9, 1993.

Zachman, J., “A Framework for Information Systems Architecture.” IBM Systems Journal,
Vol 26, No. 3, 1987.

The following sources are recommended for those interested in additional information.

Agrawala, Jackson, Vestal, “Domain-Specific Software Architectures for Intelligent
Guidance, Navigation and Control.” DARPA Software Technology Conference, April 1992.

Bailin, S., “KAPTUR: Knowledge Acquisition for Preservation of Tradeoffs and Underlying
Rationales.” Unpublished, 1993.

Belz, Luckham, Purtilo, “Application of ProtoTech Technology to the DSSA Program.”
DARPA Software Technology Conference, April 1992,

Bhansali, Nii, “Software Design by Reusing Architectures.” Proceedings of the 7th
Knowledge-Based Software Engineering Conference, September 1992.

Braun, Hatch, Ruegsegger, Balzer, Feather, Goldman, Wile, “Domain Specific Software
Architectures - Command and Control.” DARPA Software Technology Conference, April
1992.

Coglianese, Goodwin, Smith, Tracz, Batory, Bellman, Gries, McAllester, Selby, Taylor, “An
Avionics Domain-Specific Software Architecture.” DARPA Software Technology
Conference, April 1992.

——-—-——"‘L

STARS-VC-B008/001/00 29 Jenuary 1994

Coglianese, Tracz, Newton, McAllester, Goguen, Taylor, Selby, Batory, “DSSA-ADAGE.”
DSSA VI Briefing, July 1993.

Dasgupta, S., “A Hierarchical Taxonomic System for Computer Architectures.” IEEE
Computer, March 1990.

Davis, A., “A Comparison of Techniques for the Specification of External System Behavior.”
| CACM, September 1988.

Fichman, Kemerer, “Object-Oriented and Conventional Analysis and Design Methodologies:
Comparison and Critique.” IEEE Computer, October 1992.

Fowler, M., “O0 Methods: A Comparative View.” Journal of Object Oriented Programming,
Supplement on OO Analysis and Design, July/August 1993.

Graham, L., “Object-Oriented Methods.” Addison Wesley, 1991.

Gruber, T., “Toward principles for the design of ontologies used for knowledge sharing.”
Unpublished report, January 1993.

Guindon, R., “The Knowledge Exploited by Experts During Software System Design.” MCC
STP-032-90, 1990.

Hayes-Roth, F., Erman, Terry, Hayes-Roth, B., “DSSA: Distributed Intelligent Control and
Management Applications and Development Support Environment” DARPA Software
Technology Conference, April 1992.

Jullig, R., “Applying Formal Software Synthesis.” IEEE Software, May 1993.

Lalum, C,, “Analysis of DCDS Data Model.” STARS CDRL 3048R, January 1991.

Lee, J., “The 1992 Workshop on Design Rationale Capture and Use.” Al Magazine, Summer
1993.

Long, Morris, “An Overview of PCTE: A Basis for a Portable Common Tool Environment.”
CMUY/SEI-TR-93-1, 1993.

Lubars, M., “The ROSE-2 Strategies for Supporting High Level Software Design Reuse.”
Automating Software Design, 1991.

Lubars, M., “Domain Specific Software Architectures.” MCC STP-RU-043-91, February
1991.

Meadow, C. L., Latour, L., “Layered Generic Architectures: A Methodology for the
Construction of Reusable Software Components.” Prepared for the US Army CECOM Center
for Software Engineering, July 1991.

B-7

4___—

——-—-——_—

STARS-VC-B004/001/00 29 Jamuary 1994

Monarchi, Puhr, “A Research Typology for Object-Oriented Analysis and Design.” CACM,
September 1992.

Neches, Fikes, Finin, Gruber, Patil, Senator, Swartout, “Enabling Technology for Knowledge
Sharing.” Al Magazine, Fall 1991.

Platek, R., “DSSA's far Hybrid Control.” DARPA Software Technology Conference, April
1992.

Schwanke, Altucher, Platoff, “Discovering, Visualizing, and Controlling Software Structure.”
5th International Workshop on Software Specification and Design, May 1989.

Software Technology Support Center, “Requirements Analysis and Design Tools Report.”
April 1992. ,

Tracz, Coglianese, Young, “Domain-specific SW Architecture Engineering.” ACM SIGSOFT
Software Engineering Notes, October 1992.

Tracz, W., “Megaprogramming and Domain Engineering Tutorial.” ICSE 15, May 1993.

Tracz, Shafer, Coglianese, “DSSA-ADAGE Design Records.” ADAGE-IBM-93-05, July
1993,

Vestal, S., “A Cursory Overview and Comparison of Four Architectural Description
Languages.” Informal technical report, February 1993.

Vestal, S., “Host Environment Support for Architecture-Oriented Toolsets.” Informal
technical report, March 1993.

Webster, D., “Mapping the Design Information Representation Terrain.” IEEE Computer,
December 1986.

Wiederhold, Wegner, Ceri, “Toward Megaprogramming.” CACM, November 1992.

Wood, Pethia, Gold, Firth, “A Guide to the Assessment of Software Development Methods
Technical Report CMU/SEI-88-TR-8, 1988.

B-8 -

