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ABSTRACT

Finlte-difference methods have come Iinto wide use for solving
special prodblems including transient-heat conduction, Dusinberrel
has ably presented the possibilities of finite-difference methods,

The success of most such methods depends on the existence of a

certain degree of uniformity of behavior of the temperature over the
finite intervals of both space and time selected for the computation
process, In some cases, however, this required uniformity constltutes
a handicap since temperatures are changing so rapldly that incon-
venlently short time 1lntervals have to be chosen, Trls paper repre-

sents an effort to develop a finite-difference method free from the

foregoing defect,

"Numerical Analysis of Heat Flow," by G, M, Dusinberre,
McGraw-Hill Book Company, Inc,, New vork. N, ¥,, 1949,




NEW FINITE-DIFFERENCE TECHNIQUE FOR SOLUTION OF THE HEAT-CONDUCTION
EQUATION, ESPECIALLY NEAR SURFACES WITH CONVECTIVE HEAT TRANSFER
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temperature influence coefficient defined in eq. 26
temperature influence coefficient defined in eq. 26
temperature influence coefficient defined in eq. 26

C,(0,t) and Ce(o,t) contributions to the temperaturs at x = O
from the reglilons x>0 and x<«<0, respectively.
temperature influence cosfficient defined in eq. 26
temperature influence coefficient defined 1in eq. 26
®function of”
"rth derivative of”
heat-conduction function defined by egs. 43 and 44, re N
heat-conduction function defined by eg. 78
heat-conduction function defined by eq. 52
convective heat-transfer coefficient, Btu/hr £t2 F
the ratio, (h)/k, as used in ref. 2, ft *
heat-conduction functlon defined by eq. 53 | Accesion For
integral defined by egs. 58, 59, and 60, °F. Sgg ?fg&
thermal conductivity, Btu/nr ft °F igﬁ:ﬁ;g:d Ei
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€ base of natural logarithms, 2.718
§,& dummy variables

thermal diffusivity, £4°/ar

dummy time variable, hr

% N X

function describing the amblent temperature, °F

Numerical subscripts apslied to temperatures, as in
Tl’ To, T_l, refer to temperaturss located at x = Ax,
x =0, and x = ~Ax, etc., at the time t = 0.

Positive and negative superscripts aoplled to tempseratures,
mean that the temperatures are to be evaluated at the plus and

minus sides of the polnts in gquestion.

Introduction:

In recent years finlte-difference methods have been used
to solve a vast number of spsclal problems involving transient
heat conduction. In flexibility of use and simplicity of con-
cept these methods excel those of classical mathematical anslysls,
and, indeed, on many occasions they are not to be regarded asa
substitutes for more precise methods, but as the only possible
methods to use. The possibilities of finite-differencs methods
for many problems akin to those considered in this paper are
well presented in the book by Dusinberrel.

The success of most finlte-difference methods depends on
the existence of a certain degree of uniformity of behavior of
the temperaturs over the finite intervals of both aspace and time
gelected for the computation procegs. There are, however, a
number of occasiona when this requirement of uniformity 18 a

handicap, since temperatures are changing so rapldly that incon-




veniently-short time intervals have to be chossn. This awkward
feature usually arises near the boundary of the coaputation
region; for example, it may arlse near the surface of a casting
during qusenching.

The present investigation represents an effort to develop
a finite-difference method fres from the foregoing defect.
Formulas ars derived which do not imply 2 uniformity of behavior

with respect to time. Within the interior of a solld, these

formulas reduce, in general, to those obtainable by the simpler
technique of heat balances. Howsever, near a convective heat-
transfer surface they do not reduce to earlier formulag. In
this reglon they possess greater potentiality, in that they
will handle with uniform precision cases of variable, and even
discontinuous, ambient temperatursg, with the heat-transfer
coaefficient ranging from zero (insulation) to infinity (perfect
contact.)

In actual practice, the new formulas merely introduce new
welghting factors Into the standard finlte-difference equations.
A numerical table of such weighting factors is given for the
temperatures on, and adjacent to, a convective heat-transfer
surface when the space and time intervals are chosen to conform
with the Binder-Schmidt selection of M = (Ax)2/KAt = 2.

Derivation of Formulag for the Infinite Medium:

Formulas will here be derived which are appropriate for
use in computing the transient conduction of heat in an infin-
ite medium of uniform, constant properties. The diffserential

equation to be applied 1is as follows:

oT _ x °T
ot =% 5xe W

Thlis is a linear differential equation, and the responss at




gsome time "t" 1s linearly related to the temperature distribu-

tion input "f(x)" at time zaro by the solutlon glven below=.
- (x-x’
Tix t) Zert ff(x}e 21 dx (2)
At the point x=0 thils laat equation reduces to:
+oo - ‘2
T(0t) = —1= /f(x)e d x (3)
(c,1) 2¥rxt_J

Now let the contribution to T(0,t) originating within the
reglon x>0 be denoted by Cl(o,t). Thias contribution can be

written in the following manners

,2

¢ (ot) = /f(z) £y (4)
Or:

Cgt) = 47—;,: /J(zw-) : def (5)
The integral in eq. 5 can be successively integrated by parts
to glve:

C‘(ot)—- —-[zf(a)Q VKE) zerfc(a)+)
n+t

+ /(24"‘) FloeviE) iertc(x) dx [ (6)

where the 1Perfc(¥) are the iterated error functions defined

by 2
» 2 ¥
i erfc(®)= 7 € (7)
and: “;_
"erte @) = [z' erfc () dS (8)
£

The presumption in writing eq. 6 is that the first "n"
derivatives of f(x') are continuous on the plus gilde of x'=C.
These derivatives may, or may not, be continuous through

x'= 6. If they are continuous, then when the contribution

P4
"Conduction of Heat in Solids,” by Carslaw and Jaeger,
Oxford University Press, 1947.




Ce(o,t) is added to Gl(O,t), all odd temperature derivatives

cancel, leaving the following result for T(C,t).

Tlot)=> #ao taxt) ierte @) + IR ey f v erte (1 &8
=0 o

When the last integral in ec. 9, which 1is the error term,

is neglected, and wnen use 1s made of the fact that:

l e/mfb ©) = ,(%,) (10)

6g. 9 then reduces to:

7o, t)= Z{"t) £ o) (11)

Thus when the temperaturs distrlbution in an infinite medium

conforms 3t t=0 with some polynomial in "x", eq. 1l gives the
exact answer for all subsequent time. In terms of the modulus

"M" this eguation becomss:

n _r 2r ,2r
Tt == M [i) £ ] (12)
t = -0 = At (13)

Equatlion 13 is still not a convenlent expression to use

where:

numerically. An improvement can be made by evaluating the
derivatlves 1n this expression in terms of discretely-spaced
temperatures with the uniform interval, Ax. Thus, for a

second~degree polynomlal:

Ax) )= T, (14)
Ax) f) = T 2T+ 1,

For higher-degree polynomials, the second and higher derivatives
take on more complicated, but similar, form. Substitution of
eqs. 14 into eq. 12 glves the standard finite-difference form,
wldely used in heat-conduction studies Thus:

Tfoat)=T, +5(T-27+T,) (15)

The Speclal Case of M =

Equation 15 can be deduced very much more quickly by




direct use of heat balances. In this case the abllity of the
present, more elaborate analysis to accomodate non-uniform
time behavior is not made evident. To bring this ability into
evidence, let it be supposed now that at time zero neither

the tempsrature nor its derivatives is continuous through

x=0. Such a situation can arise physically when two plates

of similar material, but dissimilar temperatures, are suddenly
brought into good thermal contact. It obvioualy

includes as a speolal case the more usual situation analyzed
above.

In the present, more general cass, cl(o,t) and Ca(o,t)
must be evaluated separately. Now let 1t be assumed that the
temperature distributicn at t=0 for x>0 can be well represented
by a second-degree polynomial. Furthermore, let the tempera-
tures on the plus side of varioue statlons be identiflied with
"pluse® superscripts, and the temperatures on the minus side

with "minus®™ supersoripts. Then:
Feo)= T
(Ax)FGO) = £(4TE3T-T7) (16)

B e = -2+ T+

Since lerfc(0) = 1//m , use of eq. 16 in eq. 6 glves:

GO t)=4 [Tl +i4)+ T - 2) + T (G =) ] o0

Tnis last expression is valid regardless of the temperature

distribution for x<0j that is, regardless of the magnitude of

the time derivatives 1nduced by discontinulties at x=0.
Inspection of eq. 17 shows that a rather remarkable

simplification occurs 4f M = n. In this svent, only the tem-

peratures Té and Tl need to be known 1n order to obtain exact




results for an initial quadratic temperaturs profile. If
the profile for x<0 1a also quadratic, though different,

addition of the contributions C, and C leads agaln to eq. 15,

2
provided the temperature To in that equatinn be interpreted as:

_..__/_( + - \
T=2(T"T) (28)
Thus the new methed of deducing the finite-difference equations

has brought out the unique property of M =

namely, that it can accomodate spacs discontinuities in the
temperature and its derivatives, if these discontinulities
ocecur at a central grid point.

Although the interpretation of T, according to eq. 18
makes eq. 15 for M = m highly accurate when a temperature-
Jump occurs at the central grid point, there remains the
problem of how to welght the temperatures at station 1, say,
if a temperature jump occurs there, instead. As before, let
the temperature profiles to the right and left of station 1
be quadratic, though different. Then Gz(o.t) can immediately
be written as:

C.(ot) = 2[7(/ Z)+ 27] (19)
On the other hand, C,(0,t) requires special treatment.

Let f*kx') be the smooth, or analytic, continuation

into the region x'>Ax of the actual temperature profile

existing in the region x'<Ax. Then C,(0, t) can be writt.en

12
ss: C (0,1) 21/7;7&/[ (x)€4)(tdx + [f(x)ertdx +,)

* “— ’
* z?mtA{[f(X’)—f(x')} e AT o (20)
The first two integrals in thlg last equation can be summed

for M = 1 to give: 2[7' 2T’+ TJ




The third integral milght be integrated by parts, as on earllier
occasions, to yleld a series. However, since such a procedure
would complicate any formula by introducling temperatures
beyond TI, it is not followed. Instead, the functional
difference f(x') - f*kx') 18 treated as stationary compared
with the fast-attenuating exponential, and the last 1ntegral

ig approximated by the following expression:

+ - /ﬂ: —v+ .
(77‘77)3’9"’2("2"/= o./osa{/,—f,') (21)
Combination of the foregolng results gives the complets
expression for Cl; i. .,
- * -
Gt =5’[7;(_7§)+12;7,"]+o./055(77*7;) (22)

Since 0.1053 m = 0.331 = 1/3, the sum of C,+C, can be

2
[} -— +
written with high accuracy as: 2T+ T

fi /
T,4t)= %o + 7-7“2":;7; (23)

3
Comparison of eq. 23 with eq. 15 shows that the standard form

of eq. 15 can be retained if, when predicting T(0,At) with a

temperature jump at station 1 (x =Ax), the "insilde" temperature

at the Jump is weighted twice as heavily ag the "outgide”" tem-

perature. Or, in other words, '1’l in eq. 15 is to be interpreted

- +
as? T, = 2T, + Ty (24a)
3

Put alternatively, the following extended form of eq. 15 ylelds
excellent accuracy when M = m and when the temperature profile
can be represented by second-degree curves in the intervals:
X<—-AXx ,~Mx<X< 0;0<x<Ax ; x> Ax
- + -~ At -
: LT, A IA ’ L
Thus T(o;At)":Z{Z;*Z) + -Z,-‘gzrl +21; ! _(7;'4-7;!}1- (24Db)

To 1llustrate the practical uge of ths foregoing rules,

let us consider the following example. "A semi-infinite slab

M




(x>0) at a temperature of 100 degrses ls sudienly brought into
perfect th-rmal contact with a second seml-infinite slab (x<O)
at a tamperature of -100 degrees. The temparature diastribution
for all time for x>0 1s desirod.”

The above example 13 solved in ref. 1 (p. 121) for

M =2, 5and 4. Table I of thls paper shows the numerical results

obtained when M = . For the chosen mathematical model,
exact values are shown in parentheses. A%t no tabulated
point does the absclute error of thwe finite-difference method

exceed 3.2%.

TABLE I
-Ax 0 _Ax 2 Ax 3Ax_ _4 Ax
o -100 100 100 100 100
At o} 78.7 100 100 100
(79.0) (98.8)
2 At o} 60.5 93.3 100 100
(62.4) (92.3)
3At 0 51.7 97.9 100

85.0
(53.0) (85.2) (97.0)
It 1s interesting to note that the temperature at x=0
18, for the purposes of computing future temperatures at the
gsame point, taken as zero right from the start. However,
for purposes of computing future temperatures at station 1,
the initlial temperature at x=0 1s, by eg. 24, to be taken

as: 2.x 1003+ (-100) _ 3%3.3 deg.

The major source of improvement of the present computational
accuracy over the cited examples in ref. 1 lles in the treat-
ment of temperatures at a point of discontinuity.

If automatic computing machinery 1s to be used for the
finite-difference computations, the selection of M = mw should

introduce negliglible inconvenlence. However, for hand compu-
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tation the use of M = 3, a value quite close to ™, would

appear to be preferable because of the simpler arithmetical
manipulations required. The rules given by eqs. 18 and 24
should be retained. 1In the foregolng example, use of M = 3

with these rules increases the maximum error by only C.3Z%.

Formulas for the Neighborhood of 3 Convective Heat-Transfer
Surface:

The formulas obtained in the previous section are valld
for the infinite medium, or for finlte reglons which can be
mimicked by an infinite medium through the use of superpositicn
of symmetric and anti-symmetric temperature distributions. 1In
the general case of heat convection from a surface, however,
the heat transfer coefficlent is usually neither so small that
heat transfer can be neglected, nor so large that pserfsct
thermal contact can be assumed. This general cass does not,
unfortunately, lend itself readily to the supervosition technlqus,
and special formulas are required. Sultable formulas of high
accuracy will be given in this section. Thelr detalled derivation
1s glven in the Appendix, and, because no new principles are
involved, it will suffice here to summarize and iliustrate the
results.

The short-term behavior of all slabs of finite thickness

18, with respect to changes at their surfaces, like that of

corresponding semi-infinits slabs. Accordingly, tlie results
| obtained for the seml-infinite slab whose surface 1s exposed
| to convective heat-transfer, can also be used for the finite
slab, 8o long as Atfor the time intsesrval of computation 1is
not too large. Consider, therefore, a semi-infinite solid

medium having uniform, constant properties. Within the solld
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the temperatures must obsey Fourier's equation (sq. 1l). At
the surface of the solid, cooling takes place according to

Newton's "Law™ of Cooling; 1. e.,
_ 27T (25)

Now let the temperature within the solid at t = O be

expressible as a second-degree polynomial in "x" for all
"x" beyond the surface. Further, let the ambient temperature
between t = +0C and t = At - 0 be a linear function of time.
Then because of the linearity of the governing differential
equation and its boundary conditions, the temperatures T(C,At)
and T(Ax, At) can be linearly expressed in terms of T;, Tys
To» Ta(+0) and T,(At - 0). The welighting factors for the
varlous temperatures are arrived at in a manner similar to
that used for the case of the infinite medium. The results
aret  T(0,At) = AJTJ + ByTy + GoTy +)

DoTy (+0) + E,T (At - 0)  (26)

T( Ax, At) = A T + BTy + C T, +)

D,T (+0) + E;T, (At - 0)  (27)

The coefficlients defined by egs. 26 and 27 are given by the

following formulas:

AJ=-NF’{-3F1‘-NF;+%[ y=1,2 (28)
B, = QF;; ﬁ + 2N F; " (29)
c, = -ELe - Ey " (30)
D, = N F:*- NM F; " (31)
Ey = MM Fy " (32)
In these equations "N" 1s a Nusselt number defined by:
N = h(Ax)/k (33)




The various F's are dependent on the cholce of "31", and are

to be calculated by the following relations:

F*__ 5-J-'A4(E erfc #) (34)
where: - ./1/_—

(35)

ﬂl&

F'= 7 ferte () - £°] (36)

/-2'*: TVLZ;-}?-AT ierfc(‘-/;z@-f,"j (37)
e s e ]

The coefficlients in eq. 26 and 27 are functions of
M, N and the position parameter, }. Their calculation in-
volves a fair amount of numerical work. However, for specifilc
and widely-used values of M, tables of these coefflclents can
be prepared for universal use. One such table, for M = 2, 18
given in the next section. (Table II) It occuples little
space, yet 1s sultable for linear interpolaticn over the
entire range of possible values of the heat transfer coefficient.
When such a table 1s avallable, use of the new coefficlients
is very stralghtforward. Questions of stabllity do not arise,
and discontinulties of temperature in both gpace and tlme at
the surface are handled automatically.

F'r grid pcints more than distance Ax from the surface, the
standard finite-difference formula appropriate to the chosen M
ghould be used. (See eq. 15). At a sacrifice of accuracy,
this formula can also be used to compute the temperature history

at x =Ax.




The Special Case of M = 2:

To illustrate the capabilitles of the new finlte-difference
formulas, a table for M = 2 will now be given, and used to
solve typlical problems. Table II gives the needed coefficlents.
Equations 26 and 27 are repeated, making use of the table nearly
self-explanatory. The argument to be used in entering the

table 1s 1/{(N+1), which 18 *he ra2tioc of the surface resistance

to the sum of the surface resiatzrca nlus the resistance of
a slab of thizkress, Ax. 4 stusle check which all such
tables must saticfy is unz. tre .. ¢f ~1e ccefficilents for

¢ Teomivy,  T™heh osris gtatement must be true

any gL an "V T

i

can be geen from the fzct that 1T 3ll temneratures within the
golid are the same as “ho constant amolent temperature, the
temperatures at x = 0 and x =Ax must be the same at the end
of time At as st the beginning. When the amblent temperature
is constant, very often it can be used 3s the datum temperature
(1. e., taken as zero), and in this event the coefficlents

D, and E, do not snter the computation.

J J
Consider the followling problem to illustrate the use of

the foregoing table. "A semi-infinite medium of uniform, con-
stant properties is everywhere at a temperature of 1000 degrees
at time zero. At this time convective cooling commences at
1ts exposed surface to an amblent temperature of O degrees. The
thermal properties of the medium are known, as well as the
value of the surface heat-transfer coefficlent. Find the tem-
perature history within the slab.”

This problem 1s solved by the nsw technique by selecting

first a slze of space interval suitable for sampling the tem-




14
A
TABLE I

BOUNDARY INFLUZNCE CCEFFICIENTS FCK M = 2

_ +
T(0, At) = AoTo + BOTl + CT

+ DoTa(+O) + EOTa(At.- o)

o 2

I‘T—%-T AO BO cO DO EO
0 0 ) 0 ) 1
0.1 C.0129 0.0480 0.0267 0.CE6T2 0.8452
0.2 0.0334 0.1080 C.0474 0©0.1087 0.7C25
0.3 C.0609 C€.1749 C.C628 C.1276 C.5738
Q.4 0.C935 0.2438 0.0743 C.1292 0.4592
0.5 €.1290 0.3116 C.Cc826 0.1189 C.3579
0.6 C.1654 0.3765 (©.0888 0.1C09 ©.2684
C.7 C.2017 0.4375 C.C933 0.0783 (€.1892
0.8 C.2370 ©.4943 0.0967 0.C531 0.1189
0.9 0.2709 O©.5471 0.0991 0.C266 C.0563
1.0 0.3C32 €.5957 C.lCll C C

T ! B & Dy Ey
o ©.1074 0.1507 ©.4246 ©0.1666 0.1507
0.1 0.1256 0.1802 0.4248 0.1491 0.1203
0.2 0.1443 0.2074 0.4243 0.1286 0.0954
0.3 0.1624 ©0.2315 0.4234 0.1077 0©.0750
0.4 0.1792 0.2527 0.4222 0.0877 0.0582
0.5 0.1944 0.2710 0.4212 0.0692 0.0442
0.6 0.2081 0.2869 0.4201 0.0524 0.0325
0.7 0.2204 0.3008 0.4191 0.0372 ©.0225
0.8 C.2314 0.3130 0.4182 0.0235 0.0139
c.9 0.2414 0.3234 0.4176 C.Cl14 0.0062
1.0 0.2500 C.3333 0©.4167 o 0




perature dizt:-ivution in tlhe Tuglions ¢of interest. The time
intervil mus thun be chosen 8¢ tnat M = 2. Also, from the

space-interval selection, the surface Nusgelt Number, N, can

be calculated. This last parameter determines the coefficients
which are read from Table II. In the present cassa, suppose
= 1/2. Table III gives computed results for six time intervals

Certain exact results ars glven in parentheses to provide a

gauge of the computational accuracy. At no point of comparlson
does the error of the finlte-differsnce process exceed 0.7%.

TASLE III
T e} Ax 2A0Ax 3Ax 4 Ax 5 Ax 6 Ax

0 © 1000 1000 1000 1060 1000 1.00C 1000
At ¢ (ggg: g) 932.4 100C 1000 1000 1000  100C
2At © (gig:gi) 847.1 966.2 10C0 100C 1000 1000
34t c (ggg:g) 789.2 923.6 983.1 10CO 1000 1000
4At o 520.4 T42.3 886.2 961.8 991.6 1000  100C
5At 0O E%g%;g; 704.4 852.0 938.9 98C.9 995.8 1000
6A¢t o 465.3 672.2 1.7 916.4 967.4 990.5 997.9

(467.2)(674. 7)(82; 9)

To assess the worth of the present adaptation of the
method of finilte-differences, one must compare it with alterna-
tives. For example, as shown in ref. 1, p. 129, a heat-balance
at the surface, made on the assumption of conastant temperature

gradients throughout one time interval, gives coefficlents

equlivalent in avrplication to the pressent AO' B0 and DO. The
formula is as follows:
- 2 N 2 . 2

It 18 to be used in conjunctlon with eg. 15 for all interlor




polints. Dusinberrel shows that stability in the numerical cal-
culations requires that M be greater than 2(N+1l) in eq. 39, and
greater than two in eq. 15. (Thus M=2 used in the above example
1s at the 1limit of stability of eq. 15 and beyond the limit of
stability of eq. 39.) When N = 1/2, M = 4 meets the foregoing
stability criteria, and this value of the modulus was used

with eqas. 15 and 39 to solve the example problem. Retention

of the same space interval meant the use of twice as many tlme
intervals to achleve the same real time; that 1s, twice as

many computation points were required. The error in thls altern-
ative calculation was almost uniformly twice as great as 1ln the
calculation tabulated in Table III.

To 1llustrate further the use of the table of coefficlients,
two other problems will be solved for the first few time inter-
vals. As a first illustration, suppose that the heat-transfer
coefficient in the problem Jjust solved were essentially infinite.

Then the solution of the problem would start as shown in

Table IV.
Table IV
Ja 0 Ax 24x 3A4x
o 0 1060 10C0 1000 1000
At | o 0 683 10C0 1000
2Af | o© 0 528 842 1000
Table V
W +0  Ax  z8x 34x
o § 100 200 300 400
at | & § 180 217 300 400
24t S 214 242 308 400




As a second example, consider a :omi-infinite slab having
uniform thermal propertiss. Let ths =xposed surface be insulated,
and let the temperature vary linear’y with distance from the

exposed surface. The calculaticns bezin as in Table V.
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APPENDIX
In this Appendix detalled derivations are given for the
functions and formulas useful in calculating heat conduction
in a g0lild near a convective heat-transfer surface.

PROPERTIES OF THE FUNCTIONS F_(x, t,#) and G_(x)

The Iterated Error Functions:

The Iterated Error Functlions are defined by eqs. 7 and 8.

They are tabulated in refs. 2. From eq. 7 differentiation
gives: n —
2-‘4 ierfc(x) = =i erfc(x) (40)
X

This last relation can be used tc glve meanling to iterated

functions with indices less than migps one (-1). Thus:

Merfetr = e (41)

The recurslon equation satisfied by these functions 132:

n -2 =i
2n ierfctx)a i erfe(x) —2x i erfc(x) (42)
Equations 7 and 8 can be used to establish the validity of
eq. 42 for all "n".
44 2
Definition of Fn(x,t, ):

The functions "F, " are defined by the recursion equation:




bt = %Q,Zizm)hl'"erfcﬁ*ﬁ - 5‘7 (43)

wiehs L+ xlh? x
E=c erfe (zvmE + AVAE S (44)

a nh.n X .
Since both F, and all the (2%F) ¢ erf&é;af?) satisfy the

heat-conduction equation, it follows that:

zF ()F
AT (45)
Now suppose that, for a moment:
ok, — _ (46)
el =
then: 4 n-1 g X aF
-F =4 f{z*wct) Terfe i) - 5 (47)

- n-1 X
But also: -F,-,-——ﬁ [‘(21/'(7) i 3"'7‘5(5;/1?—2‘) + /‘;_,] (48)

Therefore:

g—f‘ =-F, (49)

Thus eq. 49 1s true if eq. 46 1s true. But likewlss, if
eq. 49 is true, eq. 46 can be proved to be true. Finally,
eq. 46 can be directly verified for n = 0. Hence, by induction,
8q. 46 1s true in general.
Also, through the use of eqs. 45 and 46, a second useful

relation can be found. Thus:

FE., __ i _p _ 1 2
2= a0 = e = S (507
Or:
/1;_, = ).(’_- 5—}5“ for all "n" (51)

Recursion Formula for the G Functions:

A second type of function appears in the heat-conduction
formulas to be developed. It is deflined by:
. .
G k) = i"erfe (x) + i erfclx) (52)

A complementary set of functions 1s deflned by:

Ho(x) = i"erte6) - i"erfe (x) C (s3)




The recursion equation for the Iterated Error Functlons gaslly

gives: RnG, — G, , = -2x H,, (54)

2nH, - H,,= -2x G,_, (55)

and:
When values of "Hn“ from eg. 54 are substituted into eq. 55,

the following recursion squation 1s obtained for the "Gn".
Thus:

- (2)(24‘2'7—/)6»-; -Z'L n-3

= 6
6‘;7-“ 2nns1) (56)
The first few functions are given below.
G..=0 2 G, =2 G, = 2x + 2ierfe (x)
G =7%€ Go= % (1+ 2x)

RESPONSE NEAR SOLID SURFACZ TC VARIABLE AMBIENT TEMPERATURE

Analytical Solution:
The following problem is solved in ref. 2, p. 297.

"The region x>0. Initial temperature f(x). Radiatlon
(Newtonian cooling) at the surface into medium at ¢(t)."

T"Il+ I, + I3 (57)

. -lx-x')% - )2
where: I f [ £ + € (?'? ') dx’ (58)
f f lrff*-h‘(x-rx} of {'"x +fﬁj!{x’)¥xl (59)

xBE(t-T)+hx [ x y

. / e‘ t.-r) - [____. + 147“(,_,)] ¢@)dr

and I f [ ortin ﬁe erlc VR (60)
Each of the above three integrals will now be expressed in

terms of the functions F‘n and Gn.
Evaluation of I,:
The firat of these integrals is handled in preclsely the same

manner as was used to evaluate T(O,t) in egs. 3 to 9. The result

I —LZf(OJ(ZV—')rG,g F(zvid), ff ‘”fciﬁalx (61)

F=o +ierfc
= 2v/xt
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Evaluation of I,:

o
The second integral can be rewritten as:
---ﬁ [F(x+x,2‘£)f6¥')dx (62)
= 'ﬁff(x) {J%X) dx’ (63)
=74/_1f(o)5(,z;£) [E $t) dx’ ] o (64)

ort o _f [f;"(o)/;j,(x tE)+ ff"(*;) Edx[ s

Evaluation of I,! r=0
The third integral can also be expressed simply in terms
of the "F" functions. Thus:

I, = x% ffr, b, t-7.4) #0) dr (66)

Or, with the yss of eq. 51, one obtaina;
=%, / 2'L_yS(r):{?- = -# [”ﬁr)dr (67)
'4[F¢(r) +{ fF ¢(r)d7' (68)
--AF(:(, 4,4) $t) - { f ¢(r)¢17' (69)
"ﬁ[c ?‘(’)*-LF¢10)_7 + 7: fF ¢'t) dr (70)

The general result ia:

J ¢ *
L =1 Z F {xtﬂ) ¢(° é,, ofl;",?S';r/) dr (71)

rmo

DETERMINATION OF THE TEMPERATURE COEFFICIENTS

The final result for T(x t) is, exclusive of error terms:

Thot)=4 Zf(o)&r)G ) - fZ,f(o)E“( . LA) +
ES """’F (ot h) (72)

The derilvatives appearing 1n eq. 72 can be expressed in terms
of finite differenceeB. If, at time zero, the space distribu-
tion of temperaturs can be expressed by a second-degree poly-

nomial in "x", and the amblent temperature as a linear function

"Numerical Calculus,” by W. Z. Milne, Princeton University
Press, Princeton, N. J., 1949,
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o of "t", the following expressions apply to the various derivatives:
° +
Flo)= 1, , y (73)
£lo) = (4T - 3T;= T, )ibx) (74
-2
f’(o) = (7;+~27;+7;)(AX) (75)

o) = T, (+0) (76)
$lo) = [T (4t-0) -T,(+0) } (at)" (77)

These expressions are used in this paper, although the result
contained in eq. 72 applies to polynomials of arbltrarily-high

degree.

When the finite-difference expressions T73-77 are sub-

stituted into eq. 72, the coefficients of the various equally-

spaced temperatures can be assembled. For the case where

t = At and x = }{(Ax) these coefficients are given in eqs. 28-32
of the text. In presenting these coefficlients, it is convenient

to use the dimenslonless sequence of functions defined by:
»*

F,o= F/(Ax)" (78)




